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Identification of extragalactic cosmic-ray sources using data from various detection
facilities

A. V. Uryson* )

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
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Showers with energiesE.3.231019eV andE>1020eV detected at the AGASA~Akeno, Japan!,
Haverah Park, and Yakutsk arrays are investigated. The question of how the identification
of sources depends on the error in determining the shower arrival directions is analyzed.
Confirmation is obtained for the conclusion in the author’s earlier work, that the principal
sources of shower-driven particles are Seyfert galaxies with red shiftsz<0.0092, which are weak
emitters in the x-ray and radio ranges. ©1999 American Institute of Physics.
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1. INTRODUCTION

The origin of cosmic rays with energiesE.431019 is
an object of active study. It follows from an analysis of e
tensive air showers generated by cosmic rays that part
having such energies are very likely of extragalac
origin1–4 and come to us from distances of at mo
;50 Mparsec~Refs. 4 and 5!. @Particles in the form of
nuclear fragments withE'(2 – 3)31020eV can arrive from
distances of;100 Mparsec~Ref. 6!#. If this is the case, the
spectrum of cosmic rays in the rangeE>1020eV does not
have the blackbody cutoff predicted in Refs. 7 and 8. Inde
particles with energiesE>1020eV have been detected a
various ground stations: Sydney,9 Yakutsk,10 Haverah
Park,11 Fly’s Eye,12 and the Akeno Giant Air Shower Arra
~AGASA!.13 The spectra obtained at these sites are discu
in several papers.12–15 In previous papers16,17 we have ana-
lyzed the measurement data and submitted arguments a
ing that the spectrum does not have a blackbody cutoff.

Given the coordinates of the particle arrival directio
and the range of distances up to;100 Mparsec, we can at
tempt to identify the cosmic-ray sources.

The sources discussed in the literature are divided
three groups. First of all, the sources can be various as
physical objects: pulsars, nuclei of active galaxies,1 hot spots
of powerful radio galaxies and quasars,5 lacertides,18 and in-
teracting galaxies.19 Second, ultrahigh energy particles ca
be generated by cosmic necklaces.20 Third, they can be gen
erated in the decays of metastable superheavy particle
cold dark matter, which accumulate in the galactic halo21

~The possibility of particle acceleration in gamma-ray bur
has also been raised.22! Sources can be identified direct
only if they belong to the first group. In the second case
incidence of any objects in the region around the part
arrival directions will be random. In the third case the ma
stream of particles will be from the galactic halo, and a we
stream from the Virgo cluster is possible.21

In previous papers23–25 we have identified cosmic-ra
sources from an analysis of 17 AGASA showers with en
gies 3.231019,E<231020eV, for which the coordinates
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of the arrival directions have been determined with an r
error ssh<3° ~Refs. 4 and 26!.1! We have adopted the firs
model~astrophysical objects as sources! and have looked for
possible sources in x-ray pulsars~as the most powerful!, Sey-
fert galaxies, lacertides, and radio galaxies. The field
search for the sources was determined entirely by the erro
the shower arrival direction in equatorial coordinat
~Da,Ds! and was equal to 3ssh53(Da,Dd). This magni-
tude of the search field is dictated by two factors. First,
know from statistics27 that the probability of a proton exist
ing in the rms error field is only 66%, but the same probab
ity in the triple-error field is 99.8%. Second, the error
determining the optical coordinates of astrophysical obje
can be disregarded, because it is no more than a few seco
while the error in the shower coordinates is a matter of
grees.@We have assumed that intergalactic magnetic fie
are weak,B<8.7310210G ~Ref. 25!, and when a proton is
deflected by them, it still remains in the region 3(Da,Dd)
<9°.# Calculating the probabilities of the random inciden
of possible sources in the 3ssh field around the shower axis
we have found that this probability is low,P.3s, only for
Seyfert galaxies with red shiftsz<0.0092, i.e., at a distanc
of no more than 40 Mparsec from Earth, if the Hubble co
stant isH575 km/s•Mparsec. The radio waves and x-ray
from these galaxies are weak.~Here s is the spread of a
Gaussian distribution in error theory.!

In the present study, in addition to these 17 showers,
consider showers withE.431019eV recorded by the
Yakutsk detector array~their errors are calculated in this pa
per! and showers withE>1020eV: two recorded by the Hav
erah Park array,11 and one by the Fly’s Eye array.12

2. SHOWERS WITH ENERGIES 3.231019<E<1020 eV

2.1. Yakutsk showers

Twelve showers with energiesE.431019eV have been
recorded at the Yakutsk array.10 The errors in their arrival
directionsDa, Dd are calculated as follows. In the measur
ments of Refs. 10 and 28 the horizontal coordinates of
shower axisu, w and the errorsDu and the solid angleDV
© 1999 American Institute of Physics



598 JETP 89 (4), October 1999 A. V. Uryson
TABLE I. Arrival directions of Yakutsk showers in equatorial coordinates~Ref. 10!, calculated errorsDa, Dd, and Seyfert galaxies withz<0.0153 from Refs.
29 and 30 in the shower search field. For showers 3, 4, 6, and 11 the axes haveubu<10° and lie well within the ‘‘zones of avoidance’’ of the galaxies.

Shower
Coordinates Errors Seyfert galaxies

No. a° d° Da° Dd° a d z Cataloga

1 163.7 52.9 3.023.2 1.9 11h19m 59.3° 0.0058 @29#
11291533 0.0036 @29, 30#

2 270.5 67.6 8.428.8 1.421.6 18221665 0.0153 @29#
3 297.8 33.5 2.022.1 2.1 -
4 342.9 65.8 7.728.1 1.421.6 -
5 184.0 47.0 3.423.6 2.622.7 11291533 0.0036 @29, 30#

11531554 0.0036 @29#
11551536 0.0038 @29, 30#
11551557 0.0041 @29#
12001448 0.0023 @29, 30#
12031477 0.0019 @29#
12031529 0.003 @30#
12041433 0.0028 @29#
12051434 0.0034 @29, 30#
12161475 0.0020 @29, 30#
12481413 0.0011 @29#

6 335.2 51.0 3.924.3 2.422.6 -
7 118.1 57.0 5.125.6 2.022.2 06451609 0.0069 @29, 30#

08401503 0.0112 @29, 30#
08491515 0.0025 @29, 30#
08511589 0.0032 @29#

8 235.4 79.8 10.7216.9 2.623.1 16341783 0.0046 @29, 30#
9 69.0 74.9 7.528.9 1.621.9 06091710 0.0141 @29, 30#
10 92.5 374.0 5.726.8 2.122.2 06091710 0.0141 @29, 30#
11 314.8 57.8 5.425.9 2.122.3 -
12 21.3 45.7 2.1 3.4 01061354 0.0006 @29#

aCatalog Ref. Nos. are shown in brackets.
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are determined. The error ofw is Dw5dV/(sinu•Du). From
the relations between the horizontal and equatorial coo
nates~see, e.g., Ref. 2!

sind5sinw0 cosu2cosw0 sinu cosw,

a5t l2t, sint5sinu sinw/cosd,

cost5~cosw0 cosu1sinw0 sinu cosw!/cosd,

wherew0561.7° N is the geographic latitude of the Yakuts
array,t l is the local sidereal time,t is the universal time, and
the longitude of the Yakutsk site is 129.4°E, we calculatea
and d for ~u,w!, (u1Du,w), (u2Du,w), (u,w1Dw), and
(u,w2Dw). We then find the differences

Dd~u1!5d~u,w!2d~u1Du,w!,

Dd~u2!5d~u,w!2d~u2Du,w!,

Dd~w1!5d~u,w!2d~u,w1Dw!,

Dd~w2!5d~u,w!2d~u,w2Dw!,

along with the same differencesDa. The differencesDa and
Dd are then the errors ofa andd due to the errors of mea
surements ofu andw. ~The calculation of the errors from th
differences is analogous to the formal approach to the ca
lation of the corresponding partial derivatives.27!

Next we find the scatter of the errors of declination a
right ascension, combining the errors as follows: From e
pair of calculated errorsDd(u1), Dd(u2) and Dd(w1),
i-

u-

h

Dd(w2) we take the maximum valuesDd(u)max and
Dd(w)max and determine the maximum declination error

Ddmax5@Dd2~u!max1Dd2~w!max#
1/2,

and from the minimum valuesDd(u)min and Dd(w)min we
find the minimum declination error

Ddmin5@Dd2~u!min1Dd2~w!min#
1/2.

In exactly the same way we obtain

Damax5@Da2~u!max1Da2~w!max#
1/2,

Damin5@Da2~u!min1Da2~w!min#
1/2.

The arrival directions of the showers with the calculat
errors and Seyfert galaxies withz<0.0153 in their search
field are summarized in Table I.~The galaxies emit weak
streams in the radio and x-ray ranges.! The errorsDa andDd
in the arrival directions of the Yakutsk showers exceed 3
as a rule, and differ severalfold from one shower to the ne

2.2. Influence of errors in the shower arrival direction on
source identification

For our analysis we have chosen AGASA showers4,26

with E,1020eV, for which the error in the arrival coordi
nates isssh<3°. Their coordinates and Seyfert galaxies w
z<0.0092 in the search field~3Da, 3Dd! are shown in Table
II. Three of the showers in Table II, Nos. 2–4, for which n
such galaxy was found in the search field, arrived from pa
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TABLE II. Arrival directions of AGASA showers with 3.231019,E,1020 eV ~Refs. 4 and 26!, group assignments, and Seyfert galaxies withz<0.0174 in
their search field. Our shower numbering system is used. In the search for galaxies it is assumed that (Da,Dd)<3°.

Shower
Coordinates Galaxy

No. a d Refs. Group a d z Refs.

1 01h09m 20° 4 ~1,2! 01h40m 13.3° 0.003 30
01241133 0.0174 29, 30

2 01 42 71 26 ~1! - - -
3 03 30 70 26 ~1! - - -
4 05 20 20 26 ~1! - - -
5 11 10 24 26 ~1,2! 11371321 0.0092 29, 30

11371172 0.0101 29, 30
6 11 12 57.8 4 ~1,2! 11221546 0.0036 29, 30
7 11 27 57.3 4 ~1,2! 11191593 0.0058 29
8 13 25 16 26 ~1,2! 12541219 0.0013 29, 30

13041133 0.0091 29
9 13 40 35 26 ~1,2! 13081373 0.0036 29, 30

13111368 0.0032 29, 30
13131422 0.0020 29
13511337 0.0079 29, 30
13531407 0.0089 29

10 14 00 50 26 ~1,2! 13271474 0.0018 29, 30
13271474 0.0022 29
14031539 0.0014 29

11 15 30 41 26 ~1,2! 15241418 0.0083 29, 30
12 18 44 47.4 26 ~1,2! 19071508 0.0080 29, 30
13 20 00 60 26 ~1,2! 20361659 0.006 30
14 21 50 28 26 ~1,2! 22051311 0.0041 29, 30
15 23 20 3 26 ~1,2! 23021120 0.0087 29, 30

23311096 0.0067 29, 30
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of the celestial sphere with a galactic latitudeubu<10°, i.e.,
were situated well within the ‘‘zones of avoidance’’ of th
galaxies. We therefore consider two groups of showers:~1!
all the showers;~2! showers arriving from parts of the cele
tial sphere withubu.10°. The number of showersK in ~1!
and~2! and the number of showersN for which at least one
galaxy withz<0.0092 occurred in the search field are sho
in Table III. We consider groups ofK artificial showers, for
which the arrival coordinates are randomly determined
for which the error in the arrival direction is (Da,Dd)53, 4,
5, 6, 7°, and we determine the probabilities of the rand
incidence of galaxies withz<0.0092 in the search field
3(Da,Dd) for a given number of showersN, precisely as in
our earlier work.23 The probabilities are shown in Table II
It follows from the table that the error in the arrival directio
of the showers influences source identification. The proba
ity of the random incidence of galaxies in the search field
a given number of showers is found to differ for differe
n

d

il-
r

catalogs of galaxies. For the catalogs we used, Refs. 29
30, this probability is low, P.3s, for showers ~1! if
(Da,Dd),4°, and for showers~2! if ( Da,Dd),6°. For
source identification, therefore, the proposed method mus
used to distinguish showers for which the error in the arri
direction ~Da,Dd! is less than 4° or, if the showers hav
ubu.10, is less than 6°.

2.3. Identification of sources from showers with energies
3.231019<E<1020 eV

Proceeding from the results of Sec. 2.2, we include fo
Yakutsk showers, Nos. 1, 3, 5, and 12, in the statistics~1!
and four Yakutsk showers, Nos. 1, 5, 7, 12, in the statis
~2!. The new number of showersK in ~1! and ~2! and the
probabilities of the random incidence of galaxies withz
<0.0092 in the search field forN of them are shown in
Table IV. These probabilities are low,P53s23.70s; con-
TABLE III. Probabilities P of random incidence of Seyfert galaxies withz<0.0092 in search zone~3Da, 3Dd! for N of K showers with 3.231019,E
,1020 eV ~Refs. 4 and 26! in groups~1! and ~2! @K515 in ~1! andK512 in ~2!#.

Group

ProbabilityP

(Da,Dd)53° (Da,Dd)54° (Da,Dd)55° (Da,Dd)56° (Da,Dd)57° (Da,Dd)58°

~1!a 2.631024 6.731023 0.043 0.13 0.23 0.23
~2!a ,431025 8.031025 1.231023 7.831023 0.036 0.11
~1!b 1.7531023 0.02 0.012 0.048 0.12 0.20
~2!b 7.031025 1.831023 231024 1.331023 6.731023 0.023

aGalaxy search from Catalogs in Refs. 29 and 30;N515 in ~1!, N512 in ~2!.
bGalaxy search from Catalog in Ref. 29 only; in both groupsN510 for ssh<4° andN512 for ssh>5°.
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TABLE IV. ProbabilitiesP of random incidence of possible sources in the search domain forN of K showers in groups~1! and ~2!; ~I! showers with 3.2
31019,E,1020 eV ~Yakutsk, Ref. 10; AGASA, Refs. 4 and 26!, sources are Seyfert galaxies withz<0.0092; ~II ! showers with 3.231019,E<(223)
31020 eV ~Yakutsk, Ref. 10; AGASA, Ref. 4 and 26; Haverah Park, Ref. 11!, sources are Seyfert galaxies withz<0.0092;~III ! the same showers as in~II !,
sources are lacertides from Ref. 30;~IV ! the same showers as in~II !, sources are radio galaxies from Ref. 31.

~I! ~II ! ~III ! ~IV !

Showers N K P N K P N K P N K P

~1!a 15 19 2.431023 18 22 7.231024 14 22 0.12 19 22 0.18
~2!a 16 16 1.831023 19 19 5.931024 18 19 0.086 19 19 0.65
~1!b 15 19 3.631024 17 22 2.531024 - - - - - -
~2!b 16 16 2.531024 19 19 3.031025 - - - - - -

aSearch for Seyfert galaxies from Refs. 29 and 30.
bSearch for Seyfert galaxies from Ref. 29 only.
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sequently, the Yakutsk detector data confirm the previ
source identification based on the data of Refs. 26 and 2

3. SHOWERS WITH ENERGIES 3.231019<E<331020 eV

Data on showers withE>1020 eV are shown in Table V.
Also shown in the same table are Seyfert galaxies with
shifts z<0.0174 lying within the search field~3Da,3Dd!
around the shower axis. Shower Nos. 1, 4, and 5 in Tabl
can be included in the statistics~1! and ~2!. The number of
showersK in the resulting groups and the probabilitiesP of
the random incidence of galaxies withz<0.0092 in the
search field forN of them are shown in Table IV. The prob
ability depends on the galaxy catalog used for identificati
but it is small in any case: For showers not selected by
lactic latitude b we have P5(2.5– 7.2)31024, and for
showers withubu.10° we haveP53.031025– 5.931024.
The probabilities of the random incidence of Seyfert galax
with different values ofz in the search field forN out of K
showers are shown in Fig. 1, from which it follows that b
selecting galaxies withz<0.0174 in the search field we ar
in fact selecting those for which random coincidence of
coordinates with the direction of the particles has a low pr
ability.

In addition to Seyfert galaxies, the search field also
compasses lacertides and radio galaxies. The probabilitie
s
.

d

V

,
a-

s

e
-

-
of

the random incidence of these objects in the search field
N out of K showers are shown in Table IV. The probabilitie
P are high, and according to probability theory, the in
dences can be random.

4. DISCUSSION

Our source identifications disagree with the conclusio
of Refs. 32 and 33. The authors of Ref. 32 investigated
same showers withE>1020 eV as those in Ref. 25 and in
this paper. In Ref. 32, however, they concluded that
sources of the shower-driven particles are quasars with
shifts 0.3<z<2.2. In identifying the possible sources, th
authors of Ref. 32 considered objects in the rms error z
around the shower axis and estimated the probability of r
dom incidence of objects in this zone. As mentioned, ho
ever, the coordinates of the particles are situated in the
error field with only 66% probability. Possible sources mu
also be sought in the triple-error zone around the sho
axis, where the coordinates of the particles lie with 99.8
probability. The probability of random incidence of objec
in the rms error zone is two to three orders of magnitu
lower than in the triple-rms-error zone. Reference 33 de
with the celestial distribution of showers with energiesE
>431019 eV recorded by the Volcano Ranch Station, Ha
erah Park, Sydney, and Yakutsk detector arrays. The aut
TABLE V. Showers withE.1020 eV and the nearest Seyfert galaxies in their search field. Our shower numbering system is used.

Shower Energy, eV

Coordinates Seyfert galaxies

a d a d z Cataloga

1 @11#b (1.2060.10)31020 11h56m612m 2762.8° 11h37m132.1° 0.0092 @29, 30#
12171295 0.0022 @29, 30#
12231338 0.001 @30#
12331262 0.0037 @29#

2 @11#b (1.0560.08)31020 13h24m634.8m 7162.5° 12051654 0.0049 @29#
12351744 0.0067 @29#
13391679 0.0090 @29, 30#

3 @12# 331020 06h20m624m 48(15.2,26.3)° 06451609 0.0068 @29, 30#
4 @4#c 1.131020 18h42m 48° 19071508 0.0080 @29, 30#
5 @4#c 2.131020 01h15m 21.1° 01401133d 0.003 @30#

01241189 0.0174 @29, 30#

aCatalog Ref. Nos. are shown in brackets.
bErrorsDa andDd are taken from Ref. 32.
cErrors (Da,Dd)5&31.6°'2.3°.
dThe galaxy lies in the search field ifDa52° andDd52.6°.
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were unable to identify any kind of extragalactic cosmic p
ticle sources. In analyzing the celestial distribution of t
shower arrival directions, the authors relied on two assum
tions. First, for all the showers the source search field w
Da<3°, Dd<3°. This field is at least three times small
than triple the error of the coordinates for all these show
Second, the nuclei of active galaxies withz,0.017, Seyfert
galaxies in particular, were assumed to be uniformly distr
uted in the celestial sphere. However, the distribution of n
Seyfert galaxies at a distance less than 100 Mparsec f
Earth (z,0.025) is nonuniform, as we have demonstra
previously.24,25

It follows from the results of Table IV that the principa
sources of particles with 3.231019,E<(2 – 3)31020 eV
are Seyfert galaxies withz<0.0092,which are weak emit-
ters in the x-ray and radio ranges.

In none of our papers have we looked for possi
sources in interacting galaxies, in which, according to R
19, conditions can exist for the effective acceleration of p
ticles. Following are the reasons for this decision. In iden
fying sources in Refs. 23 and 25, we calculated the proba
ties of random incidence of objects as possible sources in
shower search field. In all the given shower selections
probability has been found to be low only for Seyfert gala
ies: P.3s. The majority of normal galaxies are interactin
galaxies,34 and their number is tens of times greater than
number of active nuclei. Consequently, the probability
random incidence of a normal galaxy in the search field w
be much higher than for Seyfert galaxies. At the present t
it is difficult to discriminate from observational data norm
galaxies in which the conditions set forth in Ref. 19 exist
the sufficiently effective acceleration of particles.

5. CONCLUSION

The principal sources of particles driven by showe
with energies of 3.231019,E<331020eV are Seyfert gal-
axies with red shiftsz<0.0092, which are weak emitters i
the x-ray and radio ranges. For galactic latitudesubu.10°
the probability of random coincidence of the coordinates
such galaxies with the particle arrival directions isP53

FIG. 1. Probability of random incidence of Seyfert galaxies29 with different
z in the search field forN of K showers.~1! K522, N517 for z>0.01,
N519 forz.0.01, search field (3Da, 3Dd),12°; ~2! K5N519, galactic
width of the shower axisubu.10°, search field (3Da,3Dd),18°.
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310252531024, depending on the galaxy catalog.@For
any galactic latitudes down tob50° this probability is also
low, P5(2.5– 7.2)31024.# The error ~Da, Dd! in the
shower arrival direction influences the identification
sources. For identification it is necessary to select show
for which the error is less than 4°. If showers withubu
.10° are selected, the error~Da, Dd! can exceed 6°.

The results obtained here can be tested in studies a
AGASA, Fly’s Eye, and Haverah Park ground-based det
tors and also at new~under construction and contemplate!
giant arrays designed for the investigation of showers w
energiesE>1020eV, which will have far superior angula
~to 0.2°! and energy resolution, such as the ShAL-100
Telescope Array, HiRes, and Pierre Auger Project, as wel
satellites.35

I would like to thank I. E. Sleptsov for graciously pro
viding the horizontal coordinates of the twelve Yakut
showers.

* !E-mail: uryson@sci.lebedev.ru
1!In an earlier paper23 we incorrectly stated the coordinates of showers 7 a

8. The nearest Seyfert galaxy in their search field is NGC660,z50.003
~Ref. 31!. This oversight did not affect the final conclusions in Ref. 23
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The paper shows how vector topological charges for topological excitations in nonlinear
s-models on compact one-dimensional spacesTG andG/TG can be defined~hereG is a simple
compact Lie group andTG is its maximal commutative subgroup!. Explicit solutions, their
energies and interactions between different topological charges have been obtained. A possibility
of topological interpretation of quantum numbers of groups and particles is discussed.
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1. INTRODUCTION

The discovery of new, topologically stable solutions,1–4

has revived an old hypothesis, which dates back to antiqu
that elementary particles have a topological nature. D
cartes, for example, suggested a vortex model of mag
tism,5 Helmholtz suggested a vortex model of matter,6 and
Lord Kelvin suggested the concept of atoms as knotted c
figurations of the ‘‘ether.’’6 Although all these hypothese
proved wrong in the long run, they bore fruit, since th
stimulated studies of these phenomena and developme
the theories of vortices and knots,7 as well as their applica
tions to various physical sciences, ranging from hydro
namics to the theory of polymers.8–10

The advantage of this concept over the conventional
proach, treating particles as structureless objects, is tha
former suggest a visual picture of an elementary parti
Modern physics has much in common with the physics of
second half of the 19th century, given that condensate
various fields play the role of ‘‘ether’’ or another hypothe
cal fluid. For this reason, such concepts have been rev
from time to time in the history of physics. In particula
theories based on various topological invariants h
achieved considerable success in the physics of conde
state.9–11 In field theory, the hypothesis of a topological n
ture of elementary particles and their properties has also b
quite popular because it has provided a more visual inter
tation of their structure and quantum numbers, in compari
with the previous formal, purely algebraic description. T
literature on this topic is enormous, so here we quote o
one book for reference.12 But the set of topological charge
generated by only one of the topological invariants is ins
ficient for a complete description of real particles with th
internal symmetries.

The necessary conditions for a topological interpretat
are the following:

~1! the corresponding field theory should have a deg
erate vacuum state which would form a certain manifoldM

with a nontrivial topology;
~2! the theory should have solutions with nontrivial t

pologies and finite~or logarithmically divergent! energies;
~3! the set of allowed topological charges should be
6031063-7761/99/89(10)/9/$15.00
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same as the set of possible quantum numbers.
The first two properties obtain in the cases of such to

logical solutions as solitons, vortices, instantons, and mo
poles, but the third condition is not satisfied, at least for
first three types of excitations.

It is noteworthy that in the recent time adequate te
niques for description and investigation of corresponding
pological problems have been developed in mathematics13

Usually the quantum numbers of particles are det
mined by the weights of irreducible representations to wh
they belong. It is known that the weights of simple compa
groupsG are related to the maximal commutative subgro
TG of the groupG, i.e., the Cartan maximal Abelian tori.14

All possible weights of a simple compact group form
n-dimensional latticeLw , wheren is the rank of the groupG.
Therefore, topological charges should also belong to this
tice. It was shown previously that solitons with topologic
isovector charges belonging to the latticeLw of the groupG
can exist in two-dimensional theories generalizing the si
Gordon~SG! theory. These theories are related to the ch
acters of groupsG of rank n.1 ~Ref. 15!. Their vacuum
configurations are point-like and form infinite lattice
Charges of respective solitons can be related to the ho
topic groupp0 of these lattices.

Generally speaking, feasibility of topological excitation
in systems with a degenerate vacuum state depends on
nontriviality of homotopic groupsp i(M) of the vacuum
spaceM. For example,p1(S1)5Z corresponds to conven
tional vortices and one-dimensional instantons,16 whereas
p2(S2)5Z corresponds to two-dimensional instantons.4,13 In
order to obtain topological charges belonging to a lattice
weights of a simple compact Lie groupG, one should con-
sider the following manifolds:17 a torusTG in the cases of
vortices and one-dimensional instantons, and a more spe
homogeneous space of groupG, namely, the flag spaceFG

5G/TG , in the case of two-dimensional instantons.
This paper continues the analysis of these manifoldsM.

We show how vector topological charges can be defined
these manifolds, and explicit solutions with such charges
found. We consider mostly nonlinears-models on manifolds
M because they are effective theories for a wide range
models withM as their vacuum manifolds. We will als
© 1999 American Institute of Physics
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discuss conditions under which quantum numbers of gro
G admit a topological interpretation.

2. MANIFOLD WITH A VECTOR GROUP p1

It is convenient to begin our study of manifolds wi
vector ~i.e., those of rankn.1) homotopic groups with
manifolds with vector groupsp1(M). For our purposes, it is
sufficient to consider only manifolds with Abelianp1 , since
the corresponding topological charges should be comm
tive. For simplicity, we limit our analysis to free homotop
groups. Although their properties are simple and w
known, we are going to discuss them, focusing attention
possible vector structures. This is helpful in discussing ma
folds with vector groupsp2 . The simplest generalization o
a circle

S15e2p if, 0<f<1,

is the torusTn, which can be described as a direct product
n circles,

Tn5 ^ i 51
n Si

1 . ~1!

The torus Tn can be also represented as a factor of
n-dimensional Euclidean spaceRn:

Tn5Rn/Zn, ~2!

whereZn is ann-dimensional simple cubic lattice whose sit
have integer coordinates:

Zn5 % i 51
n Zi . ~3!

A more generaln-dimensional torusTL of rank n can be
defined as a factor

TL5Rn/L, ~4!

whereL is a certainn-dimensional nondegenerate lattice
Rn:

L5(
i 51

n

niei , niPZi , eiP$ei%L . ~5!

Here the set of linearly independent vectors$ei%L , i
51, . . . ,n is the basis of the latticeL. ForTn, the set$ei%L is
identical to the canonical orthonormal basis

ei5~0, . . .,0,1i ,0, . . . ,0!, i 51, . . . ,n.

In any lattice the basis can be defined in several differ
ways, and all these bases are related to each other by m
lar transformations

$ei8%L5M $ei%L , det~M !561, ~6!

whereM are matrices with integer elements. For bases wh
vectors have the same orientation det(M )51. Usually the
most convenient basis is that whose vectors have mini
norms.

The first homotopic groupp1(Tn) of a torus, being a
group of homotopic classes of mappings of the sphereS1

into Tn, is usually expressed as follows:

p1~Tn!5 % i 51
n Zi5Zn, ~7!
s
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where thei th component describes the mapping ofS1 onto
the i th circle of the torusTn. It is clear that mappings onto
different components cannot cancel out. A similar express
is often used for arbitrary toriTL . Then this form only sig-
nifies that coordinates of different homotopic mappi
classes are integer in a certain basis but do not contain in
mation about this basis. This means that a vector b
should be introduced for a complete description of a hom
topic group inp1(TL). In order to obtain this basis explic
itly, one can use the factor~coset! nature of the torusTL . It
is desirable to select this basis to be compatible with
vector structure of the covering spaceRn. The most natural
way is to retain the Euclidean vector structureRn. In this
case, we obtain the following expression forp1(TL):

p1~TL!5L, ~8!

wherep1(TL) contains basis vectorsei in explicit form this
time. This form contains more information than Eq.~7! be-
cause, in addition to the integer property of homotop
classes (niPZi), it also describes the geometrical charact
istics of the torusTL . For a full description we also need th
metric and the corresponding scalar product in the spac
topological charges. They will be of considerable importan
in discussing interaction between topological excitations a
various topological charges. Note that this metric can dif
from that of the covering space~see below!.

Since each basis vectorei corresponds to a nontrivia
elementary homological cycleg i of the torusTL , the corre-
sponding homologic group of cyclesH1(TL ,Z) is isomor-
phic to the groupp1(TL). This is a consequence of Gurev
ich’s general theorem about isomorphism of the fi
nontrivial homotopic and homologic groups.13 Consequently,
H1(TL ,Z) also has a vector structure, which can be e
pressed as

g5( nigi , gi5g iei , niPZi . ~9!

A similar vector structure can be introduced to a cohom
logic group of integer-valued differential 1-formsd
PH1(TL ,Z), which is dual to a groupH1(TL ,Z),

d5(
k

nkdk , nkPZ,

with basis$dk%5$dksk%5$dfksk% and convolution

~gi + dk!5~ei•sk! R
g i

dfk5d ik , ~10!

where$sk% is the basis of the dual latticeL* :

~si•ek!5d ik , ~11!

and (si•ek) denotes the Euclidean scalar product of vect
(si andek ).

Topological chargesQ of the torusTn are usually de-
fined as integers equal to the winding number of elemen
cyclesg i :

Q5~q1 , . . . ,qn!, qiPZi . ~12!
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The winding numbers can be expressed as integrals in
space of the parameters of the torusTn of 1-formsdk conju-
gate to cyclesg i ,

qi5 R
g i

df5 R
g i

(
k51

n

nkdfk5ni , df5 (
k51

n

nkdfk,

or

qi5 R
g
df i5 (

k51

n

nk R
gk

df i5ni , g5 (
k51

n

nkgk .

~13!

Here gPH1(Tn,Z) and dfPH1(Tn,Z) are a certain closed
path and closed 1-form onTn, respectively. Similar expres
sions forQ are also frequently used in the case of arbitra
tori TL . In this formal representation, allQ’s have the same
integer structure. All geometrical properties of chargesQ are
again hidden in abstract bases of elementary cycles
1-forms.

In order to obtain vector topological charges correspo
ing to a vector homotopic group, one can use any of
vector structures mentioned above. For example, one ca
up to the covering spaceRn and define vector topologica
chargesQ as contour integrals of vector 1-formsdxk (x
PRn) over the curveg* , which is a prototype of the close
pathg on the torus:

Q5E
g*

dx5(
i 51

n

niei . ~14!

The latter equation derives from the condition that both e
of the curveg* should belong to the latticeL. A similar
expression is obtained if one uses the vector structure f
Eq. ~9! in the space of cyclesg:

Q5 R
g
df5(

i ,k

n

niei R
g i

dfk5(
i 51

n

niei . ~15!

In what follows, we will apply the second approach, whi
uses the vector structure of the homologic group, to allM

under discussion because they will satisfy the conditions
the Gurevich theorem. Such a selection is both easy to v
alize and convenient, especially when the differential for
involved are specified, e.g., by an action functional of
theory or symmetry properties.

Thus, we have introduced vector topological charges
the torusTL explicitly containing the lattice basis$ei%L . In
order to obtain the metric and the respective scalar produ
the space of topological charges, one should consider a
cific realization of the torusTL and a chiral model on this
torus. The torusTL of rankn can be realized in the form of
diagonaln-dimensional matrixt:

t5diag@exp~2p is1•f!, . . . ,exp~2p isn•f!#, ~16!

where the set of vectors$si% is the basis of the dual latticeL*
from Eqs.~10! and ~11!. It is clear that one of the exponen
tial functions in the matrixt with dual vectorsi corresponds
to each elementary cycleei .

The latticeL* is a lattice of weights for the torusTL

treated as a group. The necessary condition for the topol
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cal interpretation of its weights isL$L* . For example, the
latticeZ n is identical to its dual lattice, hence all weights
the groupTn have a topological interpretation.

For this reason, tori corresponding to the self-dual l
ticesL5L* play an important role in the case of general to
TL , since all their weights are in a one-to-one corresp
dence with possible topological charges.

Now let us proceed to compact chiral models related
tori TL and present an explicit realization of the vector top
logical charges introduced previously. A first model is a ge
eralization of the two-dimensionals-model on circleS1

~Ref. 19!. We will use forTL the realization in the form~16!.
A two-dimensional~Euclidean! nonlinear s-model on TL

can be described in terms of the following actionS ~or
energyE):

S 5
1

2aE d2x Tr~ tm
21tm!5

~2p!2

2a E d2x~fm•fm!, ~17!

where tm5]mt, fm5]mf, m51,2. Here the new scala
product (*) is determined by the effectiven-dimensional
metric gik on the space of the torus

~f•f!5 (
p51

n

~sp•f!~sp•f!5( gikf ifk,

gik5 (
p51

n

sp
i sp

k . ~18!

It is clear that metricgik for a general latticeL differs from
the canonical Euclidean metric onRn. This is the metric
which defines interaction among various topological char
on the torusTL .

Such chiral models can be treated as effective theo
corresponding in the long-wave limit to theories of th
Ginzburg–Landau type with vacuum manifoldM5TL or
lattice models with variables that belong toTL . Since
p1(TL) is nontrivial, the theory yields vortex-like solutions
These vortex solutions are ill-defined at small distan
where the full action should be used to determine the vor
core structure. In describing topological properties, howev
only their behavior at large distances is important. For t
reason, we will use in our analysis a cut-off parametera at
small distances, which is an analogue of the vortex core
dius or lattice constant.

The corresponding equations

gik]2fk50 ~19!

haveN-vortex solutions in planeR2 with N punctures at the
points (xi ,yi):

f~x!5(
i 51

N

qi

1

p
tan21 S y2yi

x2xi
D , qiPL, ~qi•sk!PZ,

~x,y!PR2. ~20!

The energy of one vortex with topological charge

q5(
i 51

n

niei

is logarithmically divergent:
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Eq5
~q•q!

2a
2p ln

R

a
, ~q•q!5(

i 51

n

ni
2 , ~21!

where R is the space radius. The energy of theN-vortex
solution with the total topological charge

Q5(
i 51

N

qi50

is finite and equals

EN5
2p

2a (
iÞk

N

~qi•qk!ln
uxi2xku

a
1C~a!(

i

N

~qi•qi !. ~22!

Here the scalar product of topological charges is given by
formula

~qi•qk!5 (
p51

n

nipnkp , qi5 (
p51

n

nipep , ~23!

andC(a) is a specific~not universal! constant which deter
mines the ‘‘self-energy’’~or core energy! of vortices and
depends on how the core is regularized. It follows from E
~21! and ~22! that, irrespective of the latticeL, topological
charges corresponding to different cycles do not interact w
one another, as in the case of the torusTn! This property is a
consequence of the occurrence of the effective metricgik on
the torus space. We can see that properties of vortex-
excitations in nonlinears-models on all toriTL ~with torus
dimensionalities equal to their ranks, including compl
Abelian tori! are similar to those of a nonlinears-model on
the torusTn. It is easily understandable, since initial cycl
on any torus can be deformed so as to obtain canon
cycles. At the same time, this result supports the correctn
of the vector structure which we have introduced in the sp
of topological charges.

But this is not the end of the story. There are tori diffe
ent from those likeTn andTL . They can be called degene
ate because their ranksn are smaller than their dimensional
ties p. They will be discussed in the next section.

Other models to be discussed in this paper are o
dimensional conformals-models onTL , which are generali-
zations of similars-models onS1. Their action is expresse
as

S 5
1

2aE dxdx8
ut~x!2t~x8!u2

~x2x8!2 ~24!

5
1

2aE dx dx82 (
i 51

n

$12cos@2p~si•~f~x!2f~x8!!!#%,

~25!

wherexPR1. By using the technique suggested previousl16

one can prove that these models haveN-instanton solutions
like that given by Eq.~20! with vector topological charge
Q5( i

NqiPL:

f~x!5(
i 51

N

qi

1

p
tan21

x2a1i

a2i
. ~26!
e

.

h

e

al
ss
e

e-

Herea1i anda2i are arbitrary constants characterizing po
tions and widths of the corresponding instantons. All top
logical chargesqi in Eq. ~26! should satisfy the condition

~qi•sk!<0 or ~qi•sk!>0 ~27!

for all sk , k51, . . . ,n. This condition is a generalization o
the similar condition in thes-model onS1, which is, in its
turn, an analogue of the analytical~or anti-analytical! prop-
erty of two-dimensional instantons. The corresponding
tion is

S N5
~2p!2

2a (
k51

n

(
i

N

u~sk•qi !u, ~sk•qi !PZ. ~28!

Such an additive form of the action linear inuqi u holds only
if the set of charges satisfies condition~27!. Interaction be-
tween different charges turns up only for superpositions
instantons with arbitrary charges~or if fluctuations of the
instanton background are taken into account!.

3. CARTAN TORI

This section is dedicated to degenerate tori associa
with the Cartan maximal Abelian toriTG of simple compact
Lie groupsG. We will consider some of their represent
tions, the corresponding homotopic groupsp1(TG), and
their topological charges.

The Cartan torusTG consists of elements

g5exp 2p i ~H•f!, H5$H1 , . . . ,Hn%PC ,

@Hi ,H j #50, ~29!

where n is the rank of the groupG, and C is the Cartan
maximal commutative subalgebra of the Lie algebraG of the
group G. In deriving Eq. ~29! we have assumed that th
product (H•f) is the conventional scalar product in the E
clidean space. All theHi can be diagonalized at the sam
time because they are commutative. Their eigenvaluesw,
which are named weights, depend on the specific repre
tation of G andC . The weights$wa%t , a51, . . . ,p, which
belong to ap-dimensional representationt(G), form a set of
‘‘quantum numbers’’ for this representation.

All possible weightsw of a simply connected groupG
~or a universal covering groupG̃ in the case of a multiply
connected groupG) form a lattice of weightsLw . Its basis
can be defined in several different ways. From the viewpo
of representation theory, the most convenient basis is tha
fundamental weightsw̄i , i 51, . . . ,n. Any weightw can be
expressed as

w5(
1

n

niw̄i , ~30!

where allni are integers. In a general case, not allw̄i have a
minimal norm. In some cases a more convenient basis is
composed of vectors with minimal norms.

The lattice of weightsLw , the lattice of rootsLr , and the
lattice of dual rootsLv ~the last two are related withLw) are
necessary to calculatep1(TG), which can depend on the
specific representationt(G). Groupp1(TG) can be obtained
in a general form by the method of group theory and L
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algebras.14 Here we use a more simple and easily und
standable technique which was applied in the previous
tion to tori TL . Since one can select eigenvectorsua& of
operatorsH as a basis in each irreducible representat
t(G) of dimensionalityp,

Hua&5waua&, a51, . . . ,p, ~31!

all Hi in this basis~and also all elementsgPTG) have a
diagonal form:

gt5diag@exp~2p iw1•f!, . . . ,exp~2p iwp•f!#. ~32!

In the general case some weights in Eq.~32! can be identical
and even equal to zero. The trace of elementgt is a character
of t-representation ofG:

x~g!t5 (
a51

p

exp 2p i ~wa•f!.

The main differences between this form of toriTG and those
of type TL in the form ~16! are the following:

~1! The dimensionality of diagonal matrices in Eq.~32!
equals the dimensionalityp of the representationt, which is
usually greater than the rankn of the groupG;

~2! The set of weights$w%t has discrete Weyl symmetry
which implies Weyl invariance of the torusTG and two prop-
erties:

(
a51

p

wa50, gik5 (
a51

p

wi
awk

a5Btd ik , ~33!

where the constantBt depends on the representation.
It follows from Eq.~33! that, in the case of the torusTG ,

the effective metricgik over the space of its parameters
proportional to the Euclidean metric. This property is ve
important for the interaction between different topologic
charges and the difference between properties of nonlin
s-models on toriTL andTG .18

From Eq.~32! it is obvious that in this representation a
gPTG are periodic with the lattice of periodsLt

21 , which is
reciprocal to the latticeLt generated by the weightswa (a
51, . . . ,p) of the representationt. This means thatLt

21

forms a set of all topological charges of thet-representation
of the torusTG . Let us denote this set byLt

Q . It clearly
follows from the definition of the latticeLt that these lattices
are identical for conjugated representations~whose weight
sets are opposite to one another!. Generally speaking, the
lattice Lt can be a sublattice of the latticeLw : Lw$Lt . If
Lw.Lt , then we can define a factor-grouppt5Lw /Lt ,
which should be a finite Abelian group.

The lattice of dual rootsLv is reciprocal to the latticeLw

and has its own basis of dual rootsr i
v ( i 51, . . . ,n):

~r i
v
•w̄k!5d ik . ~34!

Now one can see that, for those representationst for
which Lt5Lw holds, the latticeLt

Q is isomorphic to the
n-dimensional latticeLv of dual rootsr v:

Lt
Q5Lv .

For those representations for whichLw.Lt holds, the lattice
Lt

Q is multiplied by the factorpt :
-
c-

n

l
ar

Lt
Q5Lv3pt ,

where the symbol3 denotes semidirect product. This mea
that Lv is a sublattice of the latticeLt

Q . This structureLt
Q is

similar to the structure of the groupp1(TG) for multiply
connected groupsG.17 Again the maximal factorpt corre-
sponds to an adjoint~ad! representation

pad5ZG ,

whereZG is the center of the groupG.
In order to obtain a topological interpretation of a

weights $wa%t in terms of topological chargesQPLt
Q , we

have to satisfy the following condition:

Lt
Q5Lv3pt$Lt5Lw /pt .

In the case of exact equality we have

Lv3pt5Lw /pt .

Structures of all latticesLw , Lr , andLv , of simple compact
groups are known.14 For example, the latticesLr andLv be-
long to four series of integer lattices of types A, D, E, and
For simply constructed groupsG @i.e., for groups of series
An5SU(n11), Dn5SO(2n), E5E6,7,8], the latticeLv is
identical to the root latticeLr , which is a sublattice of the
weight lattice,Lr#Lw :

Lw /Lr5ZG .

In what follows, we will discuss only the minimal and ad
joint representations. The weights of minimal representati
usually generate a lattice of weightsLw ~except the case o
orthogonal groups from seriesB and D). In this case, the
sublattice of topological charges is identical to that of du
roots Lv . The weights of adjoint representations are roo
They generate a root latticeLr . In this case, topologica
charges belong to the latticeLr

215Lw* , which is a weight
lattice of the dual groupG* ~or a lattice of the dual weights
w* ). Hence it follows that, for all simple compact groupsG,
topological charges of the torusTG* of the adjoint dual
groupG* reproduce all weights of the groupG.

Usually one attempts to describe all weights of the gro
G in terms of the groupG itself. As was shown in Ref. 17
for groups G5G2 ,E8 ,Cn ,adAn , adBn ,adDn , and
adE6,7, the lattice of all possible topological charges sat
fiesLt$Lw . Consequently, these groups allow a topologi
interpretation of all their ‘‘quantum numbers’’ in terms o

these groups. For groupsG andG8 such thatLt
G5Lw

G8 there
is also a possibility of topologically interpreting all ‘‘quan
tum numbers’’ of groupG8 in terms of topological charge
of the groupG. For example,Lmin

G2 5Lw
A2 . For other groupsG

such thatLt
adG5Lw

G ~for example,G5An ,Bn ,Dn , andE6,7),
not all sets of topological charges corresponding to a spe
representation~for example, quark representations of th
groupsAn or spinor representations of the groupsBn and
Dn) correspond to exact~single-valued! representations.

Now consider a two-dimensional chiral model on t
torusTG . The corresponding actionS has the form
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S 5
1

2aE d2x trt~gn
21gn!5

~2p!2

2a E d2x trt~H•fn!2

5
~2p!2

2a
BtE d2x~fn!2, ~35!

where

g5exp 2ip~H•f!PTG , f5~f1, . . . ,fn!, ~36!

n is the rank of the groupG. Here turns up the effective
metricgik from Eq. ~33! generated by the system of weigh
$w%t of the t-representation.

It is convenient to introduce to this model a normaliz
trace in order to eliminate the constantBt from the effective
metric:

Tr5
trt

Bt
. ~37!

Then S takes its usual form without the factorBt . The
corresponding equations

~]n!2~H•f!50 ~38!

have classical vortex-like solutions in the regionR.r .a
similar to solutions of Eq.~20!:

f~x!5
1

p
Q tan21 S y2y0

x2x0
D , QPLt

21 . ~39!

The topological interpretation of all quantum numbers
groupsG such thatLt

21$Lw is based on these solutions.17

The energy of these vortices is also logarithmically div
gent:

E5
~2p!2

2a E ~]mf!2d2x5
2p

2a
~Q!2 ln

R

a
. ~40!

This leads to a logarithmic interaction between vortices w
different noncollinear topological charges, in contrast to
case of tori of typeTL :

E5
1

2a
~Q1•Q2!2p ln S ux12x2u

a D . ~41!

This interaction depends on the mutual orientation of vec
topological charges, therefore, configurations of charge
tices are of great importance. The energy of anN-vortex
solution is expressed in the same form as Eq.~22!, but with
the usual scalar product of topological charges. Now it
clear that properties ofs-models on Cartan tori depends o
the geometry of sets of weights which define a torus and
the latticeLt

21 . As was noted above, all root lattices relat
to the simple compact groups belong to four seriesA, D, E,
andZ, which are integer-valued, given a proper selection
the scale.20 How the critical properties of topological phas
transitions in nonlinears-models on Cartan toriTG depend
on the latter was described in Ref. 18~see also Ref. 15!.

One-dimensional conformals-models on toriTG can be
considered similarly to the models on toriTL . The only dif-
ference is that now the sum in the trace is performed ove
weights of a given representation. Since instantons~or anti-
instantons! do not interact with one another, there is no gre
difference between properties ofs-models on toriTL andTG
f

-

h
e

r
t-

s

n

f

ll

t

so long as we consider only nonmixed configurations. B
they will be different if we take into account all possib
configurations.

It might be interesting to list all compact spaces besid
tori for which the homotopic groupp1 can be an integer
lattice of rankn>2. In such spaces, topological excitatio
may have new properties. For example, in nonline
s-models on the torusT2, there exist knotted vortex configu
rations corresponding to so-called ‘‘toric’’ knots.13 In par-
ticular, a vortex with topological chargeq5(2,3) corre-
sponds to a ‘‘trefoil’’ knot.

But such knotted vortices can exist only
d-dimensional (d>3) physical spaces. In spacesRd with d
<2 they can exist only in the isotopic spaceM, since the
torusT2 cannot be embedded inR1,2. For this reason, Lord
Kelvin’s conjecture can be realized in the case of low dime
sionality only in the isotopic space.

It is noteworthy that there are spaces withp1 equal to
finite cyclic groups. They can also generate vortex exc
tions; their topological charges will be defined modulo the
groups. These cases, however, are not discussed in thi
per.

4. MANIFOLDS WITH p25L

Now let us proceed to compact manifoldsM with vec-
tor homotopic groupp2 . Manifolds of this type that are mos
widely known can be divided into two large classes:

~1! Homogeneous spaces of simple Lie groups;
~2! Hodge submanifolds of complex projective spac

CPn differing from M in the previously discussed class. W
are more interested in homogeneous spaces because the
have groupp2 with topological charges belonging to weigh
lattices~or their sublattices! of the corresponding Lie groups
In finding out solutions of the instanton type with topologic
chargesqPLr , the most important spaces are complex h
mogeneous spaces. The basic classification theorem a
such manifolds asserts that all of them can be treated as
bundle spaces over some flag spacesF:

M→
T

F,

where fiberT is a parallelizable space. Moreover, the spacT
should be a complex torus ifM is simply connected or
Kahler. But if both conditions are satisfied, thenM should
be a flag spaceF ~Refs. 21 and 22!. Sincep2(T)50, flag
spacesF are most important from the viewpoint of the exi
tence of instanton solutions. Among these spaces, there
maximal flag spacesFG5G/TG with p2(FG)5Lv ~Refs. 17
and 23!.

Chiral models onFG were analyzed by Perelomov an
Prati,23,24 who showed that, sincep2(G/TG)5p1(T̃G)Þ0
and there is a complex structure onG/TG , the corresponding
equations have holomorphic instanton solutions. But
analysis of topological charges did not take account of
possible vector structure of the corresponding grou
p2(FG). The underlying assumption of the authors was t
corresponding topological charges, being convolutions
certain 2-forms with different 2-cycles, were scalar intege
Sincep2(G/TG)5Lv , one can treat the corresponding top
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logical charges as isovectors. In order to see how they ca
realized, one should turn to thes-model onG/TG . Its action
has the form23

S @u#5
1

2g2E d2xgab̄~u,ū!]mua]mūb,

a,b51, . . . ,p, 2p1n5dimG. ~42!

Here ua are local complex coordinates onG/TG ~these are
also field variables of the theory!, and metricgab̄(u,ū) is an
integer 2-form from the homological class%, where% is an
isovector equal to half the sum of all positive roots of the L
algebraG :

%5
1

2 (
a.0

ra5(
i 51

n

w̄i ,

and w̄i are the fundamental weights of the groupG. This is
the metric which is Einsteinian onG/TG ~Refs. 24 and 25!,
i.e.,

gab̄~u,ū!5kRab̄~u,ū!, k51/2, ~43!

whereRab̄(u,ū) is the Ricci tensor of spaceFG . This selec-
tion of the invariant metric guarantees that the action~42! is
renormalizable.24,26

On holomorphic fieldsua(z), zPC5R2, the actionS is
formally identical~up to a numerical factor! with the topo-
logical invariant

Q5
1

2E d2xgab̄~u,ū!«mn]mua]nūb5
1

2E gab̄dua`dūb.

~44!

As is well known,21,24 all integer 2-forms onFG5G/TG

V5Vab̄dua`dūb

can be expanded~modulo exact forms! in the basis of
2-forms v i , i 51, . . . ,n, parametrized by the fundament
weightsw̄i :

V5(
1

n

civ i , ciPZ. ~45!

The 2-form corresponding to the metricgab̄(u,ū) has a simi-
lar expansion with coefficientsci51. On the other hand
there is a space of 2-cyclesg on G/TG which is dual to the
space of 2-forms. All 2-cycles can be presented as lin
combinations of Schubert cells of the minimal dimension
ity ~real dimensionality 2 or complex dimensionality 1!,
whose number equals the rank of the groupG ~Ref. 21!.
Sincep1(FG)50 and, according to the Gurevich theore
p2(FG)5H2(FG ,Z)5Lv , one can introduce a vector stru
ture on the space of 2-cycles similar to the structure in
~9! and select a parametrization of 2-cycles by the latticeLv .
In this case, basis cycles$g i% are parametrized by simpl
dual rootsr i

v :

g→g5(
1

n

nig i r i
v , niPZ. ~46!
be

ar
-

,

.

The convolution of 2-formsv i and 2-cyclesgk dual to them,
i.e., the integral of the 2-formv i over the 2-cyclegk , equals

~v i +gk!5E
gk

v i5d ik .

Since the 2-form%, which determines the action and th
corresponding topological charges, is fixed, the vector na
of the space of 2-cycles implies that the space of topolog
chargesQ has a vector nature too:

Q5(
i 51

n

qir i
v5S % +(

1

n

qig i D r i
v , qiPZ. ~47!

Hence we conclude that topological charges correspond
to various independent cycles cannot be added as scala
particular, they cannot cancel one another. In calculation
is advisable to note the similarity between the topologi
cell structure of torusTn and flagFG in their first nontrivial
cell complexes: for the torusTn this complex equals a bou
quet of circlesTn5S1

1~ . . . ~Sn
1 ~Ref. 13!, whereas for the

space of flags it looks like a bouquet of 2-spheresM5S1
2

~ . . . ~Sn
2 .

For example, forG5SU(n11), one can select ele
ments of the upper diagonal line closest to the main diago
on the 2-spheres as local coordinates. Then the instan
corresponding to these 2-spheres are simple Belav
Polyakov instantons.4 For the actionS of n instantons with
topological chargesq1 , . . . ,qn corresponding ton different
2-cycles, we obtain

S 5
1

2g2 (
1

n

uqi u. ~48!

This expression looks like the similar expression for on
dimensional instantons in Eq.~28!.

Thus, we have shown that instanton solutions of tw
dimensional chiral models on maximal flag spacesFG

5G/TG can realize isovector topological charges belong
to p2(G/TG)5Lv , so they can realize all quantum numbe
of groupsG such thatLw#Lv . Other groups require addi
tional factorization of the spaceFG .

5. THREE-DIMENSIONAL TOPOLOGICAL EXCITATIONS

Topological excitations of vortex and instanton type
i.e., those related to the groupsp1(TG) and p2(FG), can
also exist in a three-dimensional space. Vortex excitati
can form closed or open lines. In the first case, they can fo
knotted configurations in both physical and isotopic spac
Their energy in the case of open vortex lines isE
;L ln R/a, where L is the length of the line. Topologica
excitations associated with topological chargesQ
Pp2(G/TG) can exist in the generalized Higgs–Salam
Weinberg~HSW! models in the form of three-dimensiona
particle-like monopoles. They should have a finite energy
gauge field are included, or their energy can diverge with
these fields. It is noteworthy that, sincep2(FG)5Lv , which
does not contain weights of fundamental quark represe
tions in the case ofG5SU(n), the latter cannot exist in the
form of topological excitations onFG . Probably, this fact is
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related to the quark confinement. Additional factorization
FG or additional spontaneous symmetry breaking is nee
for a topological interpretation of quarks in the HS
model.27

Consider as an example of three-dimensional topolog
excitations related to the homotopic groupp2 a three-
dimensional chiral model on the sphereS2 with action19

S5
1

2aE d3x~]mn!2, nPS2. ~49!

The following equations have solutions of the instanton ty
and the latter can be expressed in the form

ni~x!5
xi

r
u r~r 2a!, ~50!

whereu r(r ) is the regularized step function. Its topologic
charge is

Q5
1

4pE dS, ~51!

where the integral*dS is performed over the sphereS2 in
the isotopic space, and the energy

E5
1

2aE d3x~]mn!25
1

a
4pE

a

R

dr.
4p

a
R ~52!

grows linearly withR. This means that the instantons in th
model can be bound in neutral complexes, as quarks in q
tum chromodynamics, and can be detected only at sm
separations between them. All infrared~long-wave! proper-
ties should not be affected by their existence. Thes-models,
defined on other manifolds withp25L, have similar prop-
erties.

Using an exact homotopic sequence for stratificat

G→
TG

FG , one can prove14 that

pk~G!5pk~G/TG!5pk~G,TG!, k53,4, . . . ,

wherepk(G,TG) are the corresponding relative homotop
groups. This means that fork.2 the flag spaceFG has the
same homotopic properties as the groupG. For this reason,
the nonlinears-model on the flag spaceFG may have knot-
ted solutions associated with the groupp3(FG)5p3(G)
5Z similar to those suggested recently for the fou
dimensional Yang–Mills theory.28

6. DISCUSSION

We have shown that quantum numbers of groups can
represented in the form of topological charges of vortic
and instantons. But instantons, in the strict sense of this te
do not interact with one another in general. Thus, instant
alone cannot be used as a model of real interacting partic
Their realization requires topological excitations interact
as two-dimensional vortices, but through three-dimensio
potentials of the Coulomb and Yukawa types~or logarithmi-
cally!:

E5q1•q2V~r !, VC~r !5
1

r
, VY~r !5

e2mr

r
.

f
d

al

,

n-
ll

n

-

e
s
m,
s
s.

al

In a three-dimensional space, such excitations can be ge
ated in a conformal~hence nonlocal! nonlinears-model on
manifolds withp25L ~Ref. 29!. With this end in view, theo-
ries like the quantum chromodynamics ors-models with ad-
ditional gauge fields are applied to local theories. The la
procedure can be executed by various means. For exam
in one version of this procedure nonlinear gauges-models
can be considered on fixedFG . In another, more sophisti
cated version,FG is treated as one element of the family
such conjugate subspaces in the groupG. In this case, all
these subspaces are equivalent if there is no fixing pote
for FG . This means that the fields ofs-models at different
points can assume values in different subspacesFG , more-
over, the gauge fields can occur as conjugation transfor
tions relating these subspaces. This approach demands
ther development.

In conclusion, note that the manifoldsTG andFG should
be viewed as indispensable components of any theory
the Grand Unification Theory or the theory of strings, whi
attempts to develop a physically transparent~in particular,
one based on topological concepts! interpretation of elemen-
tary particles.
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Temperature dependence of superradiance intensity
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St. Petersburg State Technical University, 195251 St. Petersburg, Russia
~Submitted 8 April 1999!
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Using the idea of exchange interaction in a system of two-level atoms participating in a
superradiance process, we derive from first principles the superradiance Hamiltonian of such a
system, which is found to be analogous to the Heisenberg Hamiltonian. We consistently
calculate the coupling constant of the interaction that leads to the emergence of a superradiance
state in the system. We also predict the existence of isospin excitations in the superradiance
state, whose presence reduces the intensity of the corresponding superradiance pulse. Finally, we
calculate the temperature dependence of the intensity of the superradiance pulse and find it
be analogous to the BlochT3/2-law for spin systems. ©1999 American Institute of Physics.
@S1063-7761~99!00310-8#
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1. INTRODUCTION

Many light-induced phase transitions can take place
the simplest quantum systems, such as ensembles of
level atoms interacting through radiation, the electrosta
field, the dipole–dipole interaction, photons, etc.1 The study
of such nonequilibrium phase transitions has shown
there is a profound analogy between such processes
second-order phase transitions2,3 that occur in a spin system
in the presence of an interaction between the spins wh
coupling constant~exchange Coulomb interaction! exceeds
the energy of thermal motion that leads to disorientation
the spins. In this case, spontaneous alignment of the s
emerges in the system, which macroscopically manifest
self in remanent magnetization. Phase transitions
quantum-optics systems are also caused by an intera
that leads to the emergence of order in the orientation
so-called energy spins~isospins!. Dicke superradiance is on
example of the manifestation of such transitions.4 Naturally,
this brings phase transitions and the superradiance e
closer together. Furthermore, as shown by Andreevet al.1 in
their analysis of the state of polariton generation in an o
medium of two-level atoms interacting via the Stokes field
Raman scattering of light, the onset of a superradiance
gime is actually a phase transition.

Interaction via a reradiation field is one of the most u
versal types of interaction in such systems. However, i
medium consisting of two-level atoms with constant dipo
moments, the collectivization of the ensemble of atoms
occur due to static dipole–dipole interaction. Additional i
teraction via phonons emerges in crystals.

The analogy with equilibrium second-order phase tran
tions in magnetic systems is due to the fact that the Ham
tonian describing the behavior of two-level atoms in a rad
tion field is similar, if we allow for interatomic interaction, t
the Heisenberg Hamiltonian for spin systems. Many attem
have also been made in quantum optics to reduce the Ha
tonian directly to the Heisenberg Hamiltonian.5 However, the
coupling constant, which is a coefficient in the scalar prod
6121063-7761/99/89(10)/6/$15.00
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of isospins, is assumed to be either the coupling constan
the interaction via the reradiation field or simply the dipole
dipole coupling constant.

When drawing an analogy with magnetic systems,
must be noted that the direct magnetic dipole interaction
ists by itself in magnetic systems, but there it does not lea
spontaneous spin alignment, since its coupling constan
small compared to the energy of thermal motion. Hence i
the exchange Coulomb interaction of boundd-electrons, and
to a lesser extent, of free electrons that leads to the em
gence of magnetic order. The coupling constant of this in
action can be calculated from first principles,6 and it coin-
cides, to order of magnitude, with the chemical bindi
energy,7 so that allowing for this constant can obstruct t
process of spin disorientation. It is therefore unlikely that t
interaction of atoms via the reradiation field can by its
lead to alignment of energy spins, since the coupling c
stant of this interaction is small4 compared to the equilibrium
temperature of the system of atoms, to the equilibrium th
mal radiation emitted by the system, and finally to the inte
sity of the pump field, which in radiative systems acts a
variable parameter and is the analog of temperature.

The electric dipole interaction of atoms plays an impo
tant role in generating a superradiance state even when
atoms have only dipole moments of transitions. Za�tsev
et al.8 used a semiclassical approach to study the effec
the Coulomb interaction on the superradiance of a system
two-level atoms and found that the Coulomb interacti
leads to coherent transfer of excitation from atom to ato
which results in approximate spatial homogeneity of inv
sion in a chain of atoms. Thus, it can be stated~and this
statement is later proved! that the Coulomb dipole–dipole
interaction not only does not destroy the superradiance s
but instead facilitates the generation of such a state, cont
to common belief. It is also shown that the Coulomb inte
action must be taken into account in all systems with a sm
Fresnel number, since in such systems the time of ‘‘
change’’ of excitations,tc , is much shorter thantR , the
superradiance time.
© 1999 American Institute of Physics
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Attempts to account for the Coulomb interaction for
small number of atoms were made in earlier work,9,10 where
it was found that the electrostatic interaction in the semic
sical approximation has no effect on the dynamics of sup
radiance, but leads to phase modulation. However, a m
thorough analysis of the dynamics of superradiance with
lowance for the Coulomb interaction8 has revealed that th
luminescence intensity exhibits distinct oscillations in
time dependence, which might be related to the propaga
of wavelike excitations in a system.

In the present paper we derive, from first principles,
system Hamiltonian analogous to the Heisenberg Ham
tonian in the theory of magnetism. In doing so we allow f
the dipole Coulomb interaction of the atoms comprising
system and the interaction via the reradiation field. We th
use the Hamiltonian to study wave excitations in the sys
analogous to spin waves in a ferromagnet or antiferromag
We find that precisely these excitations lead to a charac
istic temperature dependence of the superradiance inten
We also calculate the critical temperature at which supe
diance disappears and a second-order phase transition o
in the system. Long-range order forces, which emerge
Boltzmann gas when long-wavelength isospin excitatio
~predicted in the present paper! propagate in it, must be ex
amined by using quantum mechanical principles. Tak
such anab initio approach in this paper, we are not only ab
to establish the isospin contributions to the interaction
tween the atoms, but also to understand the physics of t
contributions. The mechanism of formation of isospin ex
tations and the dispersion laws for them are obtained i
natural manner on the basis of operator models.

2. HAMILTONIAN OF A COOPERATIVE SYSTEM

We examine the energy states of a system consistin
two noninteracting atoms in each of which the active lev
have energiesE1 andE2 . The state of each atom is describ
by a spinor~see Ref. 4!, wherex (↑)5(0

1) means that the atom
is in the energy state withE5E2 andx (↓)5(1

0) means that
the atom is in the state withE5E1 . Such a state of the
system of two noninteracting atoms can be written a
simple product of the spinorsx I andx II of the corresponding
atoms I and II:

x I,II5x I~ i !x II~ j !, ~1!

where the indicesi and j run through the values 1 and
corresponding to the states↓ and↑.

If, following Dicke,4 we introduce the operator

Ŝz5
1

2 S 1 0

0 21D ,

the Hamiltonian of the noninteracting system can be writ

Ĥ05E~ŜIz1ŜIIz!, ~2!

where E5E22E1 . Then Ĥ0x I,II5E(ŜIz1ŜIIz)x I,II . To
some of the energy states of the system, say withE5E1

1E2 , there can correspond two functions,x I,II

5x I(↑)x II(↓) andx I,II8 5x I(↓)x II(↑).
-
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The system is thus degenerate. The functionsx I,II and
x I,II8 are orthogonal to one another~as can be easily verified!.

We now allow for interaction between the atoms. T
mechanism of this interaction can be any one of those
scribed above, provided that it is consistent with the exp
mental situation. To describe this interaction we introduce
operatorV̂I,II . The coupling constant of any of the types
interaction discussed above is small compared to the dif
ence of the energiesE2 andE1 , so that ordinary degenerat
perturbation theory is applicable. The perturbation introdu
a well-known correction to the total energy of the system7

« (1)5K6A, where in our caseK5^x I,II uV̂I,II ux I,II& and
A5^x I,II8 uV̂I,II ux I,II&, with the corresponding correct wav
functions being

x15
1

2
~x I~ i !x II~ j !1x I~ j !x II~ i !!,

x25
1

2
~x I~ i !x II~ j !2x I~ j !x II~ i !!.

Clearly, if initially the system is in a state withE5E1

1E2 , the state that is advantageous when the perturbatio
accounted for is

x25
1

2
~x I~↑ !x II~↓ !2x I~↓ !x II~↑ !!

if A.0, or x1 if A,0. Initially, the energy states of th
diatomic system withE52E1 andE52E2 are not degener-
ate, and of these states onlyx1 , the symmetric state, is
realized, sincex2[0.

We introduce the operatorP̂I,II5
1
2(114ŜI•ŜII), where

Ŝx , Ŝy , and Ŝz are, as in Ref. 4, equivalent to the Pau
matrices with a factor of 1/2 It can easily be verified that f
the symmetric state the eigenvalue of the operatorŜ25(ŜI

1ŜII)
2 corresponds to the total isospin of the system, wh

is equal to 1. For the antisymmetric state of the system
total isospin is 0. Similarly, the eigenvalues of the opera
P̂I,II are11 and21 for thex1 andx2 states, respectively
Then the operator of the interaction energy of two atoms t
explicitly allows for the isospin states of the atoms can
written

Ĥ int5K1AP̂I,II5K1
A

2
~114ŜI•ŜII !

5K1
A

2
12AŜI•ŜII . ~3!

The total Hamiltonian of a system consisting ofN atoms
with allowance solely for pairwise interactions can be writt

Ĥ5(
k,l

~Ĥ0,k1Ĥ int,k,l !

5E(
k

Ŝkz1(
k, l

JklŜk•Ŝl1
N

2
E0 , ~4!

whereE05K1A/2, andJkl52Akl , with k and l the num-
bers of the atoms.
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We have obtained a Hamiltonian analogous to
Heisenberg Hamiltonian of the theory of spin systems. T
Hamiltonian ~4! contains an exchange parameterJkl ~just
like the Heisenberg Hamiltonian!, since it is the exchange
interaction that is the result of the symmetry of the wa
functions of the initial system and therefore is closely rela
to alignment~in our case the alignment of isospins!. How-
ever, in contrast to the Heisenberg Hamiltonian, the te
responsible for the exchange interaction is positive. The
son is that the sign of of the ‘‘exchange’’ term is direct
linked to the symmetry ofx1 . The corresponding sign in th
analogous expression in the Heitler–London problem is
lated just to the symmetry of the space part of the comp
wave function, while the symmetry of the spin parts, in a
cordance with Young tableaux,7 is supplementary.

Now we discuss the relationship between the Ham
tonian~4! and Dicke states. These states,4 which are charac-
terized by the total isospin of the system~the so-called co-
operative quantum numberr ! and the projection of the tota
spin on thez axis ~the polarization quantum numberm!, are
eigenstates of the operator~4!, so the matrix of this operato
calculated for the Dicke states is diagonal. In our proble
states with a definite polarization numberm cease to be de
generate, since degeneracy in the total isospin of the sys
is lifted due to the interaction described by the second te
in ~4!. Dicke statesur ,m& with different values ofr but equal
values ofm now correspond to different sublevels of th
energy:

Ĥur ,m&5H Em1
J

2 F r ~r 11!2
N

2 S 1

2
11D G J ur ,m&, ~5!

where the operatorJ(k, lŜk•Ŝl , J5Jkl , in ~4! is written

J

2 F S (
k

ŜkD 2

2(
k

Ŝk
2G .

In contrast to magnetic spin systems, the main contribu
to the energy of the system is provided by the first ter
since uEu@uJu, and in the absence of preliminary pumpin
the system of the atoms is in a state with energyE1 , which
corresponds to the Dicke stateur 5N/2,m52N/2&. How-
ever, of all the possible states withm50 the most energeti
cally advantageous isur 50,m50&, as Eq.~5! clearly shows.

This state corresponds to a shallow well into which
the paired atoms fall and land on a single level, irrespec
of whether they were initially bosons or fermions. Dick
found that such a completely antisymmetric state is sta
since in this case the system does not emit radiation, bein
a kind of ‘‘frozen’’ state.

An avalanche discharge of photons can be initiated
interactions with an external pump field, as described by
operator

Ŵ52P•~exŜx1eyŜy!52P•(
k

~exŜkx1eyŜky!, ~6!

whereŜx5(kŜkx , Ŝy5(kŜky , andP is the polarization vec-
tor. The nonvanishing matrix elements of this operator
Dicke states correspond tom→m61 transitions. Hence this
interaction enables the system to run through all poss
e
e
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values ofm, and the system, after being pumped to the st
with m5N/2, can easily find itself in a state withm50. But
this latter state can be realized as a linear combination
states with different values ofr (um&5( rCrmur ,m&), so that
the probability of the system being taken out of the ‘‘frozen
state and emitting radiation with intensityI}N2, as predicted
by Dicke, isPrad512uC00u2. The presence of such a ‘‘fro
zen’’ state can explain the time lag preceding the superr
ance regime.

Thus, the Hamiltonian~4! derived in the present pape
describes both the general case of cooperative systems
the special case of a superradiance state.

3. ISOSPIN EXCITATIONS. TEMPERATURE DEPENDENCE
OF SUPERRADIANCE

We now turn to a system of atoms cooled to low te
perature, with the mean free path that the atoms travel in
time tR of superradiance being much less than the charac
istic interatomic distance:vTtR!n21/3, wheren is the con-
centration of the atoms, andvT is the thermal velocity of the
atoms. Then we can assume that the ‘‘neighbors’’ of th
atoms are essentially unchanged, and following Ref. 8,
system can be considered a chain of interacting atoms.
solid such a model is more than justified.

We attribute the spontaneous deviation of the polari
tion vectorP from its quasiequilibrium position at the mo
ment at which avalanche discharge of superradiance be
to excitations that exist in the system. We also assume
any thermal effects are the cause of relaxation in the sys
of isospins, when both ‘‘neighbors’’ go to the state wi
E5E1 . We denote this state by

ujn&5ux (↓)n21x (↓)n1x (↓)nx (↓)n11&. ~7!

The Hamiltonian describing the excitation is chosen in
form ~4! with allowance for~3!, from which we subtract the
energy of the coherent ground state,

V̂exc5(
i

Ĥ int,i ,i 112«05A(
i

~ P̂i ,i 1121!, ~8!

where«05(N/2)E11(N/2)E2 . We can easily show that

P̂k,k11uxk(↑)xk11(↑)&5uxk(↑)xk11(↑)&,

P̂k,k11uxk(↑)xk11(↓)&5uxk(↓)xk11(↑)&,

and so forth. A possible state with one transferred spin in
chain of atoms can be written as a linear combination of
statesujn&:

uj&5(
n

Cnujn&. ~9!

If we denote the energy of such an excitation by\v, we can
write V̂excuj&5\vuj&. Applying the operator~8! directly to
the function~9! and allowing for the properties of the oper
tor P̂i j , we obtain

\v(
n

Cnujn&5A(
n

~Pn22,n21211Pn,n2121!Cnujn&,
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\v(
n

Cnujn&5A(
n

Cnu~jn211jn1122jn!&.

Equating the coefficients of thejn , we obtain \vCn

5A(Cn211Cn1122Cn). Now we seek a solution for the
Cn as a linear combination of traveling waves:

(
k

qk exp@ i ~kxn2vkt !#, xn5nr,

wherek is the wave vector. Then\v54A sin2(kr/2), where
r is the mean separation of atoms in a gas or the lat
constant in a solid.

In the long-wavelength approximationkr!1 we obtain

\vk54AS kr

2 D 2

5Ar2k2,

or the dispersion relation for isospin excitations,

vk5~Ar2/\!k2,

which has exactly the same form as for spin waves in a so
The Hamiltonian form of the energy of these excitations w
various numbers of transferred spins can be written in te
of generalized coordinates and momenta as the sum of e
gies of harmonic oscillators with distinctvk ,

V̂exc5(
k

S P̂k
2

2
1

vk
2x̂k

2

2
D , ~10!

and the energy of the state of oscillatory systems avera
over the ensemble can be written

u5(
k

\vkS n̄k1
1

2D , ~11!

wheren̄k is the Planck distribution function for the numb
of excitation quanta in the system~pseudomagnons!. The
sum overk ~k52pn/r, with n an integer! goes fromk50 to
a kmax, which is related to the existence of a minimum wav
lengthlmin . Clearly, the relative deviation of the polarizatio
vector from the optimum valuep`5uduN/2 at T50 is re-
lated to the propagation of excitations in the system. Th
the extent of this deviation can be calculated by determin
the total number of thermal excitations of pseudomagn
type:

uP`2P~T!u
P`

;VE d3k

~2p!3~e\vk /T21!

5
V

4p2 E Ak2dk2

e\vk /T21
. ~12!

Let us findvmax. The number of modes is equal to th
number of atoms. Hence, using the dispersion relationvk

5Ar2k2/\, we obtain

~6p2n!2/3
Ar2

\
5vmax. ~13!

We calculate the integral in~12! for two limits.
1! T<\vmax, the low-temperature limit:
e

d.

s
er-

ed

-

s,
g
n

uP`2P~T!u
P`

;
V

4p2 E
0

` Ak2dk2

e\vk /T21

5
3

2 S T

\vmax
D 3/2

zS 3

2D Ap

2
, ~14!

wherez(x) is the Riemann zeta function.
2! T>\vmax, the high-temperature limit:

uP`2P~T!u
P`

;
V

4p2 E
0

vmaxA\vk /r2Ad~\vk /r2 A!

\vk /T

5
V

4p2

1

~Ar2!3/22A~6p2n!2/3Ar2T

5
3T

\vmax
. ~15!

Thus,

uP`2P~T!u
P`

;Q~T!

5H 3

2 S T

\vmax
D 3/2

zS 3

2D Ap

2
, T!\vmax,

3
T

\vmax
, T>\vmax.

~16!

The characteristic critical temperature at which superra
ance disappears is

TC5\vmax'A. ~17!

The superradiance intensity is also temperature dep
dent,I (T);P2(T). Hence, sinceP(T)5P`@12Q(T)#, for
the temperature dependence of the superradiance inte
we haveI (T)5I `@12Q(T)#2. At low temperatures (Q(T)
!1), I (T) can be expanded in series:

I ~T!5I `@122Q~T!#5I `F123zS 3

2D Ap

2 S T

\vmax
D 3/2G .

~18!

At high temperatures (Q(T);1) we have

I ~T!5I `S 12
T

AD 2

. ~19!

The existence of a critical temperatureTC suggests that
the system can undergo a phase transition with order
analogous to spin ordering in antiferromagnets, where
equilibrium state is one with systematic antiparallel orien
tion of the spins. We believe that such ordering of isosp
emerges in superradiance systems just before the disch
of the coherent pulse. Existing thermal excitations sponta
ously degrade this emergent order, and thereby reduce
luminescence intensity.

4. COUPLING CONSTANT

Here we discuss the problem of allowing for the overl
of the coordinate functions of interacting identical atoms.
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is known, allowance for the symmetry properties of the fun
tion of a system of identical particles leads to a splitting
energy terms. Note that this splitting is not the result of
rect interaction of atoms~dipole–dipole, etc.!. According to
exchange perturbation theory,6 the correction to the interac
tion energy due to the permutation of atoms is given by
formula

«~R!5~F8uV̂~R!uF!, ~20!

where the prime indicates the wave function of the ato
that differs from the initial wave function~unprimed! by a
permutation of the atoms. The functionV(R), whereR is the
nuclei separation, is the potential energy of the interaction
the atoms in the dipole approximation. In other words,
function V(R) describes the unsplit energy term of a syst
of two atoms.

Our numerical model, analogous to the one used in R
11, is based on the following ideas. To the direct interact
of atoms we assign a functionA(R), present in~3!, that is
written as a Sutherland potential:

V~R!5A~R!5H 2
C

R3 , R.a,

`, R,a,

whereC is a constant defined as the product of the dip
moments of the transitions between the active levels o
two-level system~see Appendix A!, anda is the range of the
repulsive forces between the atoms. LetT be the temperature
of the gas in the adopted atomic units. Then the probab
of the distance between neighboring atoms beingR is given
by the Boltzmann function

W~R!5
1

Z
expH 2

V~R!

T J ,

where Z is the normalization factor, which can be foun
from the condition*0

rW(R)dR51, with r the mean separa
tion of atoms. We find the averaged interaction energy wit
modified version of Eq.~20!:

«̄~R0!5~F8uV̂~R!W~R!uF!. ~21!

Note that this procedure is equivalent to averaging with
density matrix in the coordinate representation, with the
change overlap not accounted for in the normalization f
tors, since the corresponding contributions contain integ
of rapidly oscillating functions. The state vector of the re
tive motion of atoms can be written

uF)5eikz1 f ~Q!
eikR

R
,

where z5R cosQ is the position measured along the ax
connecting the atoms,f (Q) is the scattering amplitude de
termined by the direct interaction of atoms, i.e., by the p
tential V, andk5p/\ is the wave number~p is the momen-
tum of relative motion of the atoms!. The state vector in
which the permutation of atoms is taken into account can
written
-
f
-

e

s

f
e

f.
n

e
a

y

a

a
-
-
ls
-

-

e

uF8)5e2 ikz1 f ~p2Q!
eikR

R
.

Using these definitions, we obtain an expression for the
sired exchange energy~see Appendix B!:

«̄5
bT

2kZ
Im~ I 2~k!12 f̄ I 3~k!!, ~22!

wheref̄ is the scattering amplitude averaged over the ang
variables~it is of ordera!, b5C/T, and

Z5E
a

r

expH b

R3J R2dR.

If ka.1, r@a, anda.a ~herea is the Bohr radius, which
is unity in atomic units!, using the approximate values of th
integrals, we obtain

«̄56
3b2T

ka6

1

R0
expH 4

3
kR02

b

a3J S 11
2 f̄

R0
2

1.5

a
D 56J,

~23!

whereJ is coupling constant in~4!.
For atomic hydrogen at close to room temperatu

T510214erg (;100 K), the constantb553103c ~wherec
50.3! andk'1 ~the values are given in atomic units!. The
radius of the potential barrier in the Sutherland potentia
usually chosen within the range of the van der Waals m
mum and is approximatelya'5, andR0'10. For such val-
ues Eq.~23! yields J53C/R0

3'3T. When the temperature
increases by a factor of 10, the saddle point in the integ
winds up inside the barrier, i.e.,R0,a, and the calculations
become invalid.

The increase of the coupling constant for the atomic
teraction due to exchange effects is a consequence of
interference redistribution of the concentration of atoms
the gas that takes place in such a way that the probabilit
the atoms that are coupled via the dipole interaction com
into ‘‘coherent’’ contact rises sharply.

5. CONCLUSION

At present there is no doubt that an increase in the
perradiance temperature of a system degrades the chara
istics of emission by reducing the luminescence intensity,
a consistent theoretical description of this phenomenon
yet to be found.12 We have proposed a model that enco
passes, at least in principle, both the ways in which the ato
interact in a superradiance system and the ideas abou
thermal excitations of such a system, which resemble s
waves. We called these excitations isospin waves. The p
ence of such excitations can be verified experimentally: t
can be identified by the characteristick-dependence of the
fine structure of a superradiance line. Furthermore, we
lieve that the existence of such excitations leads to a cha
teristic temperature dependence of the intensity of a supe
diance pulse,

I ~T!5I `F12S T

TC
D 3/2G .
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Using these ideas of isospin waves, we have calculated
critical temperature above which superradiance disappe
For sodium this temperature is about 700 K~superradiance
disappears in sodium in Rydberg states at higher temp
tures!, while for pure hydrogen the temperature is roughly
K.

This work was sponsored by the Russian Fund for F
damental Research~Grant No. 99-02-17076!.

APPENDIX A: EXCHANGE ENERGY FOR THE DIPOLE
INTERACTION OF ATOMS

1. System of hydrogen atoms

For the two-level system we take the statesc2

5c210(r ) andc15c100(r ). This leads to an expression fo
the exchange contribution to the energy in the first appro
mation in the form

A5
2d21

z d12
z

R3 5 K c210~ r̄ I!c100~ r̄ II !

3U3dIzdIIz2dIdII

R3 Uc100~ r̄ I!c210~ r̄ II !L ,

where

d12
z 5d21

z 5E c210~ r̄ !r cosuc100~ r̄ !d3r 5
28

35&
a .

Then

A5
C

R3 , C5
215

310a2, ~A1!

wherea is the Bohr radius.

2. System of sodium atoms

For this system the states are

c25An2S r

2aD 4

e21.68r /2aA 3

4p
cosu,

c15An1S r

aD 3

e21.68r /a
1

A4p
.

The normalization factors are

An2
5

~1.68!5A1.68

A2a3A10!
24, An1

5
~1.68!4A1.68

Aa3A8!
.

For sodium the dipole moment of the transition is

d12
z 5d21

z 5
210A25

311

A30

1.68
a. ~A2!

Then for the exchange contribution to the energy of the
pole interaction of sodium atoms we have

A5
C

R3 , C5
226

3211.68
10a2. ~A3!
he
rs.

a-

-

i-

i-

APPENDIX B

Integrals of the type

I n~k!5E
a

r

expH 2ikR1
b

R3J dR

Rn ~B1!

can be calculated in the following way.
If k!1, n.0, andb.0, the integral can be calculate

by the method of steepest descent.13 The saddle point in the
complex plane is

z05R0 expH 2
p i

8
2

in

8kJ , a,R05S 3b

kTD 1/4

.

The integral converges rapidly ifkR0.1, and is given by

I n~k!5
1

R0
n21 S p

4kR0
D 1/2

expH 4

3
kR01

n13

8
p i J . ~B2!

If k50 and n522, the integral can be calculated by th
asymptotic expansion method, and

Z5I 22~0!5
b1/2

3xa
3/2exaF11

3

2xa
1OS xa

xr
D G . ~B3!

Herexa5b/a3 andxr5b/r3.
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Radiative properties of diamagnetic levels in atoms: dependence of transition
probability on magnetic field strength
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We study the effect of diamagnetic interaction on the probability of radiative transitions of an
atom from states split by a field. We write the analytic expressions for the diamagnetic
corrections to the matrix elements of transitions belonging to the Lyman and Balmer series and
of transitions between arbitrary nondegenerate states in hydrogen. We also discuss the
perturbation theory for transitions from degenerate diamagnetic states. The theory is based on
expanding in powers of the field strength the eigenfunctions and eigenvalues of the
matrix of diamagnetic interaction in the subspace of states with given principal and magnetic
quantum numbers. The field changes the coefficients in both the superposition and the
degenerate basis. To derive the analytic expressions for the higher-order matrix elements, we use
the Sturm expansion of the reduced Coulomb Green’s function. We also elaborate on the
features of the frequency dependence of the corrections to the radiative matrix elements, which
correlate with the structure of the diamagnetic spectrum of excited levels. Finally, we
establish that the magnetic field acts selectively on the diamagnetic components of emission
lines: as the field strength increases, an increase in the intensity of certain lines is accompanied by
a decrease in the intensity of the other lines. ©1999 American Institute of Physics.
@S1063-7761~99!00410-2#
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1. INTRODUCTION

Establishing the changes in the characteristics of
atomic spectrum caused by a magnetic field constitute
fundamental problem of experimental and theoretical phy
dating back to the discovery of the Zeeman effect.1 The split-
ting, polarization, and intensity of the Zeeman lines ha
been thoroughly described by the classical and quantum
chanical theories. However, investigations into the nonlin
effects of a magnetic field on an atom are of more rec
vintage. The research in this field deals primarily with t
shift and splitting of atomic lines in the lowest order in th
diamagnetic interaction~see, e.g., Braun’s review2!. Insuffi-
cient attention to the quadratic interaction in the fie
strength can be explained by the very small value of
corrections introduced by this interaction into the energies
the atomic levels under conditions typical of laboratory e
periment, in which the paramagnetic interaction linear in
field strength essentially completely determines the posi
of the atomic lines in the spectrum, while the diamagne
interaction produces a relatively small correction to the lo
est bound states.

The situation changes dramatically as the magnetic fi
strength and/or the energy of the excited state incre
Hence interest in the dynamic part of the spectrum of
interaction operator was encouraged by the discovery of
tronomical objects with very high magnetic fields~white
dwarfs and neutron stars!, as well as by the development of
new branch of atomic and molecular physics, the spect
copy of highly excited~Rydberg! states.3 By the 1980s, ex-
tensive data had been gathered on the splitting, in the
6181063-7761/99/89(10)/14/$15.00
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order in the diamagnetic interaction, of the Zeeman state
the atoms of hydrogen and alkali metals~a review of the
corresponding literature is given in Ref. 2!. Grozdanov and
Taylor4 calculated second-order corrections by employing
effective Hamiltonian that used the additional symmetry
the excited states of the hydrogen atom.5

The splitting into diamagnetic sublevels is accompan
by a redistribution of the intensity of the emitted lines acro
the entire split set. Finding the intensity of the individu
components of this set amounted to calculating the distri
tion of the dipole oscillator strengths, which is proportion
to the contribution of vectors with given angular momenta
the initial and final states.2–4 Since the wave functions of th
atom in the field were determined by the eigenvectors of
diamagnetic matrix in the lowest order, neither the struct
of these states~the coefficients in the expansion in spheric
harmonics! nor the corresponding matrix elements of the
diative transitions depended on the field strength. The dep
dence of these characteristics on the field strength can
detected only if higher-order corrections are taken into
count. Knowing this dependence not only augments the
formation about the properties of the atom and its interact
with the field, but also makes it possible to use this inform
tion in developing new methods to determine the force w
which a field acts on the atom, and for magnetic induct
monitoring of the radiative intensity.

In addition to an existing line becoming more~or less!
intense, new lines can emerge that are not present in
spectrum of the free atom. The diamagnetic part of the in
action operator mixes states of the same parity and diffe
© 1999 American Institute of Physics
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619JETP 89 (4), October 1999 V. D. Ovsyannikov and V. V. Chernushin
orbital quantum numbers, which leads to the emergence
magnetic fieldB of lines that obey the selection rules fo
orbital angular momentum,uD l u52L11, with L51,2... .
The corresponding dipole matrix elements are proportio
to B2L. Thus, in addition to emission lines corresponding,
example, to dipolep–s transitions, magnetically induce
lines emerge in the spectrum. These new lines correspon
f –s, h–s, etc. transitions, whose matrix elements are p
portional toB2, B4, etc.

A specific situation emerges for the transitions betwe
hydrogen-like states. The degeneracy that remains if we
low only for the paramagnetic splitting is lifted completely
we take into account the diamagnetic interaction. Here
wave function of each diamagnetic state is a superpositio
wave functions with given orbital angular momentum
well-defined parity. The coefficients of such a superposit
are, in the zeroth approximation, independent of the fie
Nevertheless, the contribution of each term to the ma
element of the dipole transition between the hydrogen-
levels in the field emerges in a specific diagram of the p
turbation theory for degenerate states,6 so that, for example
the f –s transitions produce a contribution proportional
B2, as they do for nondegenerate states of many-elec
atoms.

In the present paper we calculate the corrections to
matrix elements of the dipole radiative transitions betwe
hydrogen-like states, which are induced by the interaction
the atom and a constant magnetic field. In Sec. 2 we de
general formulas for the corrections of the perturbat
theory for nondegenerate atomic levels, which can be u
for example, to calculate the transitions between states
responding to ‘‘circular’’ orbits of an electron in a Coulom
field. The first-order corrections are written in terms of t
radial matrix elements of the operators of the dipole mom
and the diamagnetic interaction. The matrix elements are
culated analytically via a Sturm expansion for the Coulo
Green’s function.

Magnetically induced corrections to the matrix eleme
of the radiative transitions from the degenerate states
hydrogen-like atom are discussed in Sec. 3. There we a
for the effect of the magnetic field on the basis functions a
the coefficients in the superposition of these functions.
Sec. 4 we give the results of numerical calculations of
corrections to the intensity of the Zeeman components
longing to the Lyman and Balmer series. There we also a
lyze the magnetically induced corrections to the distant co
ponents of both series, which correspond to radiative de
of highly excited~Rydberg! states.

2. DIAMAGNETIC CORRECTIONS TO THE DIPOLE MATRIX
ELEMENTS OF TRANSITIONS BETWEEN
NONDEGENERATE STATES

The probabilityWi f ~intensityI i f ) of emission of electric
dipole radiation corresponding to the transition of an at
between statesu i & andu f & with energiesEi andEf is propor-
tional to the third~fourth! power of the transition frequenc
v i f 5Ei2Ef and the square of the matrix element of t
dipole moment operatordi f 5^ i udzu f & ~see, e.g., Ref. 7!:
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I i f }v i f Wi f }v i f
4 udi f u2. ~1!

The introduction of a magnetic field changes both the f
quency and the transition matrix element, so that the dep
dence of the line intensity on the magnetic field strengthB
can be found if one knows the dependence onB of the two
factors in~1!. For a fieldB!B0 /n3 (B052.353105 T, and
n is the principal quantum number of an atomic level!, the
magnetically induced corrections to frequencies and ma
elements can be found by perturbation-theory techniqu
Here for the central~unshifted! Zeeman line with polariza-
tion parallel to the magnetic field~p-polarization!, both
the frequency shift and the change in the matrix elem
are quadratic in the field strength. For the deviated lin
with polarization perpendicular to the magnetic fie
~s-polarization!, the main contribution to the change in th
intensity in weak fields is provided by linear corrections
the line frequency. Nevertheless, knowing the quadratic c
rections for such lines can be important, especially for a s
with a large value of the principal quantum number parti
pating in the transition. Since corrections to the frequenc
of atomic lines have been thoroughly studied~see, e.g., Refs
2, 4, and 6!, we limit ourselves to corrections to matrix ele
ments, since so far there have been no studies of such
rections.

The operator representing the interaction of an atom
a constant magnetic fieldB contains two terms,VB5Vm

1VD , where1!

Vm52m–B ~2!

is the magnetic dipole interaction, withm52(L12S)/2 the
operator of the magnetic dipole moment~the fine structure
constanta'1/137 is included in the definition of the un
magnetic fieldB0), and

VD5
B2

12
r 2F12C20S r

r D G ~3!

is the diamagnetic interaction, withr and r /r the radial and
angular variables of the atom. In the one-electron appro
mation, the radius vectorr determines the position of a
outer electron with respect to the atomic nucleus (C20(r /r ) is
a modified spherical harmonic!, and L5 l and S5s are the
orbital and spin angular momenta of the valence electron

If we neglect the effect of spin on the energy spectru
En of the unperturbed atom and allow for the fact that rad
tive transitions are spin-independent, we can incorporate
operator~2! into the main Hamiltonian and leave only th
diamagnetic interaction~3! as the perturbation. Here th
wave functions of the unperturbed basis do not change, w
the energies split according to the magnetic quantum n
ber, Enm5En1mB. Since the action of the diamagnetic in
teraction operator on the wave function does not change
value of the magnetic quantum number, we can set u
perturbation theory for this operator in the subspace of st
with a givenm ~below we assumem to be positive!.

Suppose that in zero magnetic field the nondegene
initial and final states in~1! coincide with the statesu1& and
u0& ~with energiesE1 and E0). Then the equations for the
wave function and energy of the atom in a finite field can
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written in integral form, convenient for iterations, via th
Green’s functionGE(r ,r 8) of the unperturbed atom:8

Ei ( f )5E1(0)1^1~0!uVDu i ~ f !&,

u i ~ f !&5u1~0!&2GEi ( f )
8 VDu i ~ f !&, ~4!

where

GEi ( f )
8 ~r ,r 8!5GEi ( f )

~r ,r 8!2
^r u1~0!&^1~0!ur 8&

E1(0)2Ei ( f )
~5!

is the reduced Green’s function.
Using the standard iterative procedure of perturbat

theory to solve Eqs.~4!, we obtain series expansions in pow
ers of the small parameterB2!1 for the wave functions and
energies. These expansions are then used to obtain p
series for the frequency and the transition matrix elemen

v i f ~B!5v10S 11(
s51

`

w10
(s)B2sD ,

di f ~B!5d10S 11(
s51

`

q10
(s)B2sD . ~6!

The coefficientw10
(s) in the expansion for the frequency is th

ratio of the difference of the diamagnetic susceptibilitie
x0

(s)2x1
(s) , which determine thes-order corrections to the

energy of the lower and upper level,DEf ( i )
(s)

52x0(1)
(s) B2s/2s!, to the unperturbed frequencyv10 ~see Ref.

9!:

w10
(s)5

x0
(s)2x1

(s)

2s!v10
. ~7!

We can easily obtain analytic expressions for the fir
order susceptibilitiesxnlm

(1) of unperturbed hydrogen-like
states~states withm< l ,n<m14, the lowest in the Zeema
set of states with a given magnetic quantum number, wh
are called states with circular or nearly circular orbits! from
the diagonal part of the matrix element of the operatorVD

~see, e.g., Refs. 2–4!:

Vll 85^nlmuVDunl8m&52
B2

2
v l l 8

(1) ,

v l l 8
(1)

52
~ l 21 l 211m2!n2

4Z2~2l 21!~2l 13!
@5n21123l ~ l 11!#d l 8 l

1H @~ l 11!22m2#@~ l 12!22m2#

~2l 11!~2l 13!2~2l 15!
@n22~ l 11!2#

3@n22~ l 12!2#J 1/25n2

8Z2 d l 8 l 12

1H @~ l 21!22m2#@ l 22m2#

~2l 23!~2l 21!2~2l 11!
@n22~ l 21!2#

3@n22 l 2#J 1/25n2

8Z2 d l 8 l 22 , ~8!
n

er

,

-

h

whered l l 8 is the Kronecker delta.
An expansion of the tensorx (2) into irreducible parts for

the unperturbed levels of many-electron atoms was don
Ref. 9, where the results of numerical calculations of
irreducible components of this tensor for thes, p, and d
states of alkali elements were also given. A method for c
culating x (2) of highly excited ~Rydberg! states was pro-
posed in Ref. 6. Numerical calculations of susceptibilit
x (s) of very high orders~up to s575) of hydrogen levels
with the principal quantum numbersn<3 were done by
Va�nberget al.10 Analytic expressions for third-order susce
tibilities in nondegenerate states of hydrogen with arbitr
values ofn were derived in Ref. 11.

In addition to perturbation-theory techniques, oth
methods have been developed to calculate the energie
atomic levels, making it possible to determine the change
the frequencies of radiative transitions in magnetic fie
stronger than those that perturbation theory can handle~see,
e.g., Refs. 12–15!. Thus, we now possess a broad array
analytic and numerical methods to calculate the change
the frequencies of radiative transitions of atoms in magn
fields, and consequently to determine the corrections~7!.
There have as yet been no studies of the changes induce
a magnetic field in the matrix elementdi f (B).

The solution of this problem can be obtained on the ba
of the integral equations~4!. Expanding the wave function
of the initial and final states in powers of the operator~3!, we
can write the coefficientsq10

(s) in ~6! as a ratio of the
s-ordermatrix element to the unperturbed matrix element
particular, ats51 ~below we limit ourselves to the first
order correctionq10

(1)[q10 and drop the superscript (s) indi-
cating the order! we have

q105q10~1!1q10~0!, ~9!

where

q10~1!52
^1uVDGE1

8 dzu0&

B2d10
~10!

determines the contribution related to changes in the w
function of the upper level,u1&, induced by the field, and the
term

q10~0!52
^1udzGE0

8 VDu0&

B2d10
~11!

is related to the variation of the wave function of the low
level, u0&.

After integration over the angular variables of the v
lence electron is performed, the quantities~10! and~11! can
be written as a ratio of the radial matrix elements of the fi
and orders of the operators of the electric dipole and diam
netic interactions (r and r 2). In particular, for the
p-transition from theunlm& state to theun8l 8m& state with
m5 l 85 l 21 we have
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qnl,n8 l 8
p

~nl !52
l

4~2l 13!

^nlur 2gl
(n)~r ,r 8!r 8un8l 8&

^nlur un8l 8&
,

qnl,n8 l 8
p

~n8l 8!52
l

4~2l 11!

~2l 13!^nlurgl 21
(n8)~r ,r 8!r 82un8l 8&22^nlurgl 11

(n8)~r ,r 8!r 82un8l 8&

~2l 13!^nlur un8l 8&
. ~12!
s
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Similar expressions for thes-transition from theunlm& state
to the un8l 8m8& state withm85 l 85m215 l 21 have the
form

qnl,n8 l 8
s

~nl !52
l 11

4~2l 13!

^nlur 2gl
(n)~r ,r 8!r 8un8l 8&

^nlur un8l 8&
,

qnl,n8 l 8
s

~n8l 8!52
l

4~2l 11!

^nlurgl 21
(n8)~r ,r 8!r 82un8l 8&

^nlur un8l 8&

2
^nlurgl 11

(n8)~r ,r 8!r 82un8l 8&
4~2l 11!~2l 13!^nlur un8l 8&

. ~13!

In these expressions,gl 1
(n)(r ,r 8) is the reduced radial Green’

function in the subspace of states of the valence electron
the orbital angular momentuml 1 ~Ref. 8!.

For transitions between hydrogen-like states in atoms
the radial matrix elements in the expressions~12! and ~13!
can be calculated analytically and represented as function
principal and orbital quantum numbers. For the first-ord
matrix elements, these expressions are given by the Go
formulas~see, e.g., Ref. 16!. Using the Sturm expansion o
the reduced Green’s function of the Coulomb potential o
chargeZ,6,9,11

gl
(n)~r ,r 8!5

4Z

n H (
kÞnr

`
k!

~k12l 11!!

f kl~2Zr/n! f kl~2Zr8/n!

k1 l 112n

1
nr !

~n1 l !! n
F5

2
f nr l S 2Zr

n D f nr l S 2Zr8

n D
1r

d fnr l
~2Zr/n!

dr
f nr l S 2Zr8

n D
1 f nr l S 2Zr

n D r 8
d fnr l

~2Zr8/n!

dr8
G J , ~14!

we obtain expressions for the second-order matrix elem
that are similar to the Gordon formulas. The reason is
orthogonality of the Sturm function

f kl~x!5e2x/2xlLk
2l 11~x! ~15!

and the radial wave function

Rnl~r !5
2Z3/2

n2 A nr !

~n1 l !!
f nr l S 2Zr

n D , ~16!

which follows from the orthogonality of the Laguerre pol
nomialsLk

a(x) ~see Ref. 17!. This property truncates the in
finite series in~14!, leaving only a finite number of terms. I
particular,
ith

ll

of
r
on

a

ts
e

K f klS 2Zr

n D ur 2u f k8 l S 2Zr

n D L
5S n

2ZD 5E
0

`

e2xx2l 14Lk
2l 11~x!Lk8

2l 11
~x!dx

5S n

2ZD 5 ~k12l 11!!

k!
$2~k22!3dk8k2316~k1 l !

3~k21!2dk8k2223k@5k~k12l 11!14l ~ l 11!12#

3dk8k211@~k12l 12!319k~k12l 12!2

19~k21!2~k12l 12!1~k22!3#dk8k

23~k12l 12!@5k~k12l 13!14l 2114l 112#

3dk8k1116~k1 l 12!~k12l 12!2dk8k12

2~k12l 12!3dk8k13%, ~17!

where we have used Pochhammer’s symbol (a)s5a(a11)
3¯(a1s21). Note that the orthogonality condition hold
only if the energy of the initial~or final! state coincides with
the energy of the Green’s function.

Thus, after integrating the term with two Sturm fun
tions ~15! with respect to the radial variable of the operat
VD , we are left with six terms in~14!, each of which is
similar to the radial matrix element of the first-order dipo
radiative transition and has an indexk that differs from the
radial quantum numbernr5n2 l 21 by at most 3. In con-
trast to~17!, the arguments of the Sturm function in such
matrix element are different, since the energies of the ini
~final! and intermediate~the Green’s function! states do not
coincide. It is convenient to express such a matrix elemen
terms of the hypergeometric function of two variables, t
Appell function F2 ~Ref. 17!, which is represented by a
double sum with the number of terms depending on the
dial quantum numbers of the upper and lower levels:

K f klS 2Zr

n D UrU f k8 l 8S 2Zr

n8 D L
5S nn8

4Z2D 2 ~k1b!! ~k81b8!!

k! k8!

a!

b! b8!
xl 12~x8! l 812F2

3~a11;2k,2k8;b11,b811;x,x8!, ~18!

where we have introduced the notation

a5 l 1 l 813, b52l 11, b852l 811,

x5
2n8

n1n8
, x85

2n

n1n8
.
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The second-order matrix elements are represented in
form of a superposition of expressions of type~18!, in which
one of the integer parametersk or k8 coincides with the
radial quantum number of the upper,nr5n2 l 21, or lower,
nr85n82 l 821, level, while the other coincides with th
summation index of the series in~14!. In practice, the radia
quantum number of the lower level is usually not very larg
so that it is convenient to write the seriesF2 as a sum of
nr811 Gauss hypergeometric series:

F2~a11;2k,2nr8 ;b11,b811;x,x8!

5(
s50

nr8 ~a11!s~2nr8!s

s! ~b811!s
~x8!s

2F1~a111s,2k;b11;x!.

Since Ns5a1s2b5s1 l 82 l 12 is a positive integer (l 8
5 l 61), 2F1 can be written as the sum ofNs11 power-law
expressions in terms of the argumentx ~see Ref. 17!:

2F1~a111s,2k;b11;x!5~12x!k2Ns (
s850

Ns

3
~b1k11!s8~2Ns!s8

s8! ~b811!s8
~x!s8.

As a result, the first-order matrix element^nlur un8l 8&
can be written as a Gordon formula, and for the correct
factors we can obtain fractional rational expressions that
pend on the principal and orbital quantum numbers of
initial and final states. For lines of the Lyman seri
(n851 andl 850) these expressions have the form

qnp,1s
p ~np!5

1

2
qnp,1s

s ~np!

5
n4~15n8280n61152n4284n21189!

60Z4~n221!3 ,

qnp,1s
p ~1s!5

79n62677n41269n2255

120Z4~n221!3 ,

qnp,1s
s ~1s!5

113n621089n41263n2255

120Z4~n221!3 , ~19!

qnp,1s
p 5qnp,1s

p ~np!1qnp,1s
p ~1s!

5
30n82100n6174n41159n2255

120Z4~n221!
,

qnp,1s
s 5qnp,1s

s ~np!1qnp,1s
s ~1s!

5
60n102260n81348n61125n42208n2155

120Z4~n221!2 .

The analogous expressions for the transitionsunp&→u2s& of
the Balmer series (n852 andl 850) are
he

,

n
e-
e

qnp,2s
p ~np!5

1

2
qnp,2s

s ~np!

5
n4~15n82280n611684n423168n2112 096!

60Z4~n224!3 ,

qnp,2s
p ~2s!5

2~451n626316n4115 184n2213 120!

15Z4~n224!3 ,

qnp,2s
s ~2s!5

2~507n628172n4115 568n2213 120!

15Z4~n224!3 ,

~20!
qnp,2s

p 5qnp,2s
p ~np!1qnp,2s

p ~2s!

5
15n82160n61164n414312n226560

60Z4~n224!
,

qnp,2s
s 5qnp,2s

s ~np!1qnp,2s
s ~2s!

5
15n102220n81804n612076n4212 288n2113 120

30Z4~n224!2 .

For the transitionsuns&→u2p& we have~below we give only
the overall coefficient, which takes into account the con
butions of the upper and lower levels,qp,s5qp,s(n)
1qp,s(n8))

qns,2p
p 52

100n82675n611028n425088n217680

120Z4~n224!
,

qns,2p
s

5
125n1021630n815224n619280n4256 064n2161 440

120Z4~n224!2 .

~21!

For the transitionsundm&→u2pm8& the overall coefficients
are

qnd0,2p0
p

5
1565n8220 040n6150 512n41196 608n22344 064

5376Z4~n224!
,

qnd1,2p0
s

5
15n102268n811392n62128n428448n2110 752

42Z4~n224!2 ,

~22!
qnd1,2p1

p

5
15n82208n61560n413008n225376

42Z4~n224!
,

qnd2,2p1
s 5

45n102804n814176n61512n4234 304n2143 008

84Z4~n224!2 ,

qnd0,2p1
s 5

835n10216 580n8192 048n6170 976n421 081 344n211 376 256

2688Z4~n224!2 .
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TABLE I. The factorsqp,s for magnetically induced corrections to the matrix elements of the radiativep- ands-transitions from thenp to the 1s and 2s
states and from thens andndm to the 2pm8 states in the hydrogen atom; (k)510k.

q n52 3 4 5 6 7 8

qnp,1s
p (n) 9.926 136.7 876.2 3.543~3! 1.091~4! 2.801~4! 6.315~4!

qnp,1s
p (1s) 21.468 0.0833 0.3815 0.4931 0.5477 0.5788 0.5983

qnp,1s
s (1s) 22.838 20.0573 0.4647 0.6580 0.7522 0.8057 0.8391

qnp,2s
p (n) 154.3 564.6 2.778~3! 9.368~3! 2.522~4! 5.846~4!

qnp,2s
p (2s) 263.23 35.51 49.90 54.48 56.52 57.60

qnp,2s
s (2s) 2176.4 17.02 45.93 55.38 59.66 61.99

qns,2p0
p (n) 2137.7 22.706(3) 21.149(4) 23.582(4) 29.245(4) 22.090(5)

qns,2p0
p (2s) 2210.9 256.89 228.37 217.75 212.50 29.482

qns,2p1
s (2s) 2421.8 2113.8 256.75 235.50 225.01 218.96

qnd0,2p0
p (n) 55.39 538.2 2.934~3! 1.023~4! 2.806~4! 6.576~4!

qnd0,2p0
p (2p) 211.65 23.11 28.00 29.50 30.15 30.49

qnd1,2p0
s (n) 117.6 568.9 3.360~3! 1.206~4! 3.351~4! 7.913~4!

qnd1,2p0
s (2p) 254.27 44.44 55.82 58.75 59.82 60.30

qnd1,2p1
p (n) 117.6 568.9 3.360~3! 1.206~4! 3.351~4! 7.913~4!

qnd1,2p1
p (2p) 251.71 60.44 74.54 78.50 80.08 80.85

qnd2,2p1
s (n) 176.4 853.3 5.040~3! 1.809~4! 5.027~4! 1.187~5!

qnd2,2p1
s (2p) 280.13 74.67 93.09 98.00 99.86 110.72

qnd0,2p1
s (n) 183.3 345.8 2.533~3! 9.688~3! 2.766~4! 6.630~4!

qnd0,2p1
s (2p) 2108.5 88.89 111.6 117.5 119.6 120.6
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With allowance for the symmetry relation for the coefficien
qnlm,n8 l 8m85qnl2m,n8 l 82m8 , which follows from the invari-
ance of the operatorVD under inversion of the vectorB, the
expressions~19!–~22! fully determine the magnetically in
duced corrections to the matrix elements of the transiti
belonging to the Lyman and Balmer series. The overall
efficients have an asymptotic dependence, common to
transitions, on the principal quantum numbern of the upper
level: qnl,n8 l 8;n6. Here the main contribution is provided b
corrections due to the action of the magnetic field on
upper state. The corrections to the wave function of
lower level, which determine the termqnl,n8 l 8(n8l 8), are es-
sentially independent ofn for n@1, and are negligible com
pared toqnl,n8 l 8(nl).

One interesting feature of the quantitiesq is that the
same power of the factorn22n82 appears in the denomina
tors of all the expressions~19!–~22!: the third power for the
individual componentsqp,s(nl) andqp,s(n8l 8), the second
power for the total quantityqs5qs(nl)1qs(n8l 8), and the
first for qp5qp(nl)1qp(n8l 8). This pattern can serve as
check on the validity of such expressions for other transiti
as well.

Table I lists the numerical values of the compone
qnlm,n8 l 8m8

p,s (nl) and qnlm,n8 l 8m8
p,s (n8l 8), which correspond to

the contributions of the magnetically induced corrections
the upper and lower levels involved in the dipole transitio
of the hydrogen atom from thenp to the 1s and 2s states
and from thens andndm to the 2pm8 states (m50,1,2 and
m850,1). By virtue of the simple relationship between t
corrections for thep- ands-transitions between thep ands
states,qnp,n8s

s (np)52qnp,n8s
p (np), which follows from the

general expressions~12! and~13!, we list only the values of
qnp,n8s

p (np). The data in Table I graphically show the rel
tionship between the contributions to the overall correct
s
-

all

e
e

s

s

o
s

n

to the matrix element of the corrections to the wave fun
tions of the upper and lower levels, with the overall corre
tion being obtained by adding the numbers from two neig
boring rows. Clearly, whenn@n8, the contribution of the
correction to the lower level can be neglectd. The data can
used directly in the matrix elements of the transitions b
tween nondegenerate states (u2p&,u3p&→u1s&, u3p&→u2s&,
and u3d1,2&,u4d1,2&→u2p0,1&). For other states the data de
termine the correction only partially, since a magnetic fie
mixes highly excited states of the hydrogen atom in suc
way that the angular momentum ceases to be a consta
the motion even in the zeroth approximation~see Sec. 3!.
Note that the magnetically induced corrections to the ma
element are positive for all the transitions listed in Table
with the exception ofqns,2p

p . Thus, for transitions from the
unperturbed states in the Lyman and Balmer series, the p
ence of a magnetic field increases the absolute value of
radiative matrix element.

The general formulas for the coefficientq determining
the corrections to the matrix elements of transitions betw
nondegenerateunlm& states with arbitrary principal quantum
numbers can also be easily derived from the expressions
the corresponding radial integrals. All these transitions
duce the orbital quantum number by 1,unlm&→un8l 8
21m8&, with the magnetic quantum number remaining u
changed,m85m, in the case ofp-transitions, and they re
duce the magnetic quantum number by 1,m85m21, in the
case ofs-transitions. As in~19!–~22!, the salient character
istic of these transitions is the principal quantum number
the upper level; the orbital (l ) and magnetic (m) quantum
numbers differ by at most 3:l 5n21,n22 andm5 l ,l 21.
Sincel 2 l 851 andm2m850,1, the variation of the princi-
pal quantum number in such transitions is limited by t
conditionn2n851,2. Thus, there are generally three typ
of p-transitions and six types ofs-transitions between non
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TABLE II. Analytic expressions for the factorsqn lnmnn8

p,s andwn lnmnn8

p,s for the magnetically induced correction
to the matrix elements and frequencies of the radiativep- ands-transitions between nondegenerate states of
hydrogen atom,nlm→n8l 21m8, wherel 5n2n l , m5n2nm , andn85n2nn8 ; the upper part of the table
corresponds top-transitions (m85m) and the lower~larger! part, tos-transitions (m85m21).

q121
p 52

n~n21!

48~2n21!
~18n52112n4176n314n229n11!,

w121
p 5

~n21!3n3~3n21!

4~2n21!
,

q231
p 52

n22

48~2n21!2 ~36n72502n611272n522350n412698n321677n21521n264!,

w231
p 5

~n21!2n2~n22!

4~2n21!
~3n217n24!,

q232
p 52

n22

24~n21!
~25n62210n51460n42524n31400n22168n132!,

w232
p 5

n2~n22!3

8~n21!
~5n224n12!.

q111
s 52

n

48~2n21!2 ~48n72318n61445n52271n4180n31n228n11!,

w111
s 5

n3~n21!2

4~2n21!
~4n223n11!,

q121
s 52

n~n21!

48~2n21!2 ~48n62306n51381n42154n326n2117n22!,

w121
s 5

n3~n21!3

2
,

q221
s 52

n21

48~2n21!2 ~48n72486n611385n523170n414204n322879n21978n2128!,

w221
s 5

n2~n21!3

2~2n21!
~2n215n24!,

q231
s 52

48n82570n712373n625827n519724n429799n315552n221627n1192

48~2n21!2 ,

w231
s 5

n2~n21!2

4~2n21!
~4n313n2225n112!,

q222
s 52

57n82604n712233n624469n515708n424864n312672n22864n1128

48~n21!2 ,

w222
s 5

n2~n22!2

16
~11n2212n18!,

q232
s 52

n22

48~n21!2 ~57n72540n611623n522563n412550n321612n21584n296!,

w232
s 5

n2~n22!3

16~n21!
~11n2211n16!.
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degenerate states, and each of these types can be char
ized by a set of three numbers,

n l5n2 l , nm5n2m, nn85n2n8.

Table II lists the analytic expressions for the facto
qp,s[q(1), which determine theB2-corrections in~6! to the
matrix elements of the transitions between nondegene
states, and which are characterized by certain sets of
numbersn l , nm , andnn8 ~lower indices!. For all these ex-
pressions, the contributions of the corrections to the w
functions of the upper and lower levels are of the same or
but have opposite signs~this property of having opposite
signs is clearly seen in thea lines of the Lyman and Balme
series in Table I!.
cter-

te
he

e
r,

Since to have all the information about the changes
the transition probability we must know the corrections
both factors in~1!, in Table II we also list the analytic ex
pressions for the corresponding factorswp,s[w(1), which
determine the first-order corrections to the dipole-transit
frequencies in~6!.

Table III lists the numerical values of the facto
qnlm,n8 l 8m8

p,s calculated by the formulas of Table II for variou
values of the principal quantum numbern of the initial state.
When n<5, the positive contribution of the upper level
dominant; whenn>6, the factorqp becomes negative~for
the p-transition with l 5n22, m5n23, andn85n21 this
happens whenn>12), since in this range of values ofn the
negative contribution of the correction to the wave functi
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TABLE III. The factorsqp,s for magnetically induced corrections to the matrix elements of the radiativep- ands-transitions between nondegenerate sta
of the hydrogen atom,nlm→n8l 21m8, where l 5n2n l , m5n2nm , and n85n2nn8 ; the first three rows of the table correspond top-transitions
(m85m) and the remaining rows, tos-transitions (m85m21); (k)510k.

n l nm nn8 n54 5 6 7 8 9 10

1 2 1 1.910~2! 1.942~2! 26.434(2) 24.026(3) 21.324(4) 23.386(4) 27.464(4)
2 3 1 5.252~2! 1.718~3! 4.113~3! 7.908~3! 1.265~4! 1.669~4! 1.651~4!
2 3 2 6.293~2! 1.076~3! 29.947(2) 21.232(4) 24.687(4) 21.295(5) 23.005(5)

1 1 1 2.121~2! 21.606(1) 21.784(3) 27.743~3! 22.283(4) 25.524(4) 21.177(5)
1 2 1 1.484~2! 26.460(1) 21.655(3) 27.072(3) 22.093(4) 25.101(4) 21.094(5)
2 2 1 4.732~2! 1.069~3! 1.521~3! 4.986~2! 24.949(3) 22.026(4) 25.439(4)
2 3 1 2.106~2! 4.961~2! 4.928~2! 21.083(3) 27.057(3) 22.264(4) 25.646(4)
2 2 2 9.280~2! 1.269~3! 22.106(3) 21.790(4) 26.361(4) 21.698(5) 23.854(5)
2 3 2 6.133~2! 9.106~2! 21.857(3) 21.544(4) 25.579(4) 21.513(5) 23.479(5)
ti
-
s
a
d

ee

n-
n
fo
ity

le
fie
n

s
th
d
to

fre
de

co
m

is

I
t
c
it

ed
i

ic

ted
-
e
es,
t of
en-
rily

ter-
d
me
a-
ity

died
in

f

nd

f
ith

tes
-
en-
dis-
e

e
he
the
the
rely

is
of the lower level becomes dominant. The asympto
(n@1) dependenceqp}2n6 has a sign opposite to that rep
resented by Eqs.~19!–~22! for the higher-order component
of the Lyman and Balmer series. This result shows, in p
ticular, that the presence of a magnetic field leads to a
crease in the matrix element of a dipole transition betw
Rydberg states with circular orbits.

Nevertheless, the second factor in the expression~1! for
the probability, the transition frequencyvnn8 , always has a
positive quadratic correction}n6 for hydrogen-like lines
whenn@1, as the formulas of Table II show. The relatio
ship between the coefficient in this asymptotic behavior a
the corresponding coefficient in the asymptotic behavior
qp,s determines the sign of the correction to the probabil
Such a correction is positive for all transitions withnn851
and negative for transitions withnn852. Thus, the transition
probability between the nondegenerate states of adjacent
els of the hydrogen atom increases as the magnetic
strength increases, while for the transitions in which o
shell is skipped this probability decreases.

Note that such a relationship between the correction
the frequencies and matrix elements is specific only to
given group of transitions, since here an increase in the
ference of the diamagnetic susceptibilities in the numera
of ~7! is accompanied by a decrease in the transition
quency in the denominator. As a result, the asymptotic
pendence onn of the factorw(1) for the correction to the
frequency proves to be similar to the dependence of the
rection to the matrix element. But if the principal quantu
number of only the upper level is increased, thenw(1)}n4,
and the main contribution to the change in probability
provided by the correction matrix element,q(1)}n6, which is
the same for transitions of all types.

The above results together with the formulas of Table
and the numerical data of Table III forn>6 can be used no
only for hydrogen but also for many-electron atoms, sin
essentially all Rydberg states of a valence electron w
m>3 are hydrogen-like.2,3

3. CORRECTIONS TO THE MATRIX ELEMENTS OF
TRANSITIONS FROM DEGENERATE STATES

The above data do not allow for that fact that excit
hydrogen-like levels are ordinarily degenerate, so that
c
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pure form there are nonlm-states even in a weak magnet
field, with the exception of four states withm>n23, for
which the analytic relations and the numerical data are lis
in Tables II and III. Whenm,n23, only the magnetic quan
tum numberm and the parityP are exact constants of th
motion. Within the scope of perturbation theory techniqu
the principal quantum number is an approximate constan
the motion. On the other hand, the orbital angular mom
tum l ceases to be a constant of the motion even in arbitra
weak fields, since all states of a givenn-shell with differing
values ofl have the same energy, and the diamagnetic in
action ~3! is not spherically symmetric. A magnetic fiel
mixes states with different angular momenta but the sa
parity @by virtue of the even parity of the diamagnetic oper
tor ~3!#, and the atom goes into a state with par
P5(21)m, which is a superposition of states withl 5m,
m12,̄ , n21, or into a state with parityP5(21)m11,
which is a superposition of states withl 5m11, m13,̄ ,
n21. The general properties of such states had been stu
by the early 1980s, and are described, for example,
Braun’s review.2

Thus, highly excited levels (unp&, in particular! are only
a component of the Zeeman stateunml2& with m50,1 and
negative parity, which also incorporates states withl
53,5,..., while the levelsuns& and und& are components o
the unml1& state withm50 and positive parity, which also
incorporates components withl 54,6,.... The number of
unml6& states~below we call them diamagnetic states a
label them with the ‘‘diamagnetic quantum number’’l! is
n2m ~an equal number of even- and odd-parity states in
and m have the same parity, or the number of states w
parity P5(21)m is greater by one than the number of sta
with parity P5(21)n). All these levels have different qua
dratic shifts, i.e., the diamagnetic interaction lifts the deg
eracy in the hydrogen spectrum completely. Thus, the re
tribution of the intensity of dipole radiation among th
diamagnetic statesunml& in the Lyman series~correspond-
ing to unp&→u1s&) is determined by the contribution of th
np-wave function of the spherical Coulomb basis. In t
zeroth approximation, this contribution is independent of
field strengthB, since the energy of degenerate states is
same, and the transition to diamagnetic states me
changes the symmetry of the wave function. This situation
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fully analogous to the redistribution of transition probabi
ties among the Stark levels in an electric field, which a
described by parabolic quantum numbers.16

As B increases, both the matrix element of theunp&
→u1s& transition~described in Sec. 2! and the contribution
of the np-state to the diamagnetic wave function chan
Moreover, the interaction~3! also induces transitions from
states withl 53,5,..., which enter into the wave function o
the zeroth approximation as well. Hence, in addition to c
rections to the matrix elements of type~9!–~11!, for transi-
tions from degenerate states two new types of transition
lated to the above causes emerge. To calculate th
corrections, we use higher-order perturbation theory for
generate states.6

The wave function of a diamagnetic state with giv
principal and magnetic quantum numbers satisfies the i
gral equation

cnmlp~r !5 (
l 5m1p

l max

al~l!@11GE8 ~r ,r 8!

3VD~r 8!#21uwnlm~r 8!&, ~23!

wherewnlm(r ) is the wave function of the unperturbed sta
with given orbital angular momentum,p50(1) determines
the parityP5(21)m1p of the state and the number ofl ’s in
the sum, and the parameterl labels the diamagnetic state
the number of states is equal to the multiplicity of the deg
eracy, i.e., the number of terms in the sum~23!. The upper
summation limitl max is equal ton22 if the paritiesm1p
andn are the same, and ton21 if the paritiesm1p andn
are opposite. The reduced Green’s functionGE8 (r ,r 8) is or-
thogonal to the states of the unperturbed basis and allow
mixing by the magnetic field of the states from the compl
sets not incorporated in the basis, including the continu
In the zeroth approximation inVD the term with the Green’s
function can be discarded, with the wave function remain
a superposition of wave functions with the same value of
principal quantum numbern but with different orbital angu-
lar momenta.

Thus, in contrast to nondegenerate states, a radia
transition in a magnetic field occurs between atomic sta
with no definite orbital angular momentum. This leads to
situation in which a transition to the lower level, which in th
absence of a magnetic field can originate only from a s
wnlm with a given orbital angular momentuml and must
meet the dipole selection rules, in a magnetic field origina
from almost all mixed states~23! in which alÞ0. Here the
intensity of radiation from theunml& state constitutes only a
fraction of the intensity of a transition from the ‘‘pure’’ stat
wnlm proportional toual(l)u2.

The coefficientsal of the superposition~23! satisfy a
system of homogeneous algebraic equations, which ca
obtained by substituting the wave function~23! into the
Schrödinger equation and projecting the result onto t
spherical basis statesuwnlm&:

~En2E!al1 (
l 85m1p

l max

al 8^wnlm~r !uŴ~r ,r 8!uwnl8m~r 8!&50,

l 5m1p,m1p12,...,l max, ~24!
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where

Ŵ~r ,r 8!5VD~r !@11GE8 ~r ,r 8!VD~r 8!#21

5VD~r !(
s50

`

@2GE8 ~r ,r 8!VF~r 8!#s ~25!

is the integral operator that exactly accounts for the diam
netic interaction.

In setting up the perturbation theory series in powers
VD , we must allow for the dependence of the Green’s fu
tion GE8 on VD ~with E the energy of the atom in the field!.
We then set up a series in powers ofB2 for the matrix

Wll 85^wnlm~r !uŴ~r ,r 8!uwnl8m~r 8!&, ~26!

which determines the coefficients of the system of homo
neous algebraic equations~24!. Thus, the perturbation theor
for the energies and wave functions of the diamagnetic st
of the hydrogen atom reduces to a perturbation for the eig
vectors and eigenvalues of the diamagnetic matrix~26!, with
the new theory of perturbations represented by a serie
powers ofB2.

By analogy with the series expansion of diamagnetic
ergy,

DEl5El2En52(
s51

` xl
(s)

2s!
B2s, ~27!

wherexl
(s) is s-order susceptibility, we can write the serie

for Wll 8 in the form

Wll 852(
s51

` v l l 8
(s)

2s!
B2s. ~28!

The coefficientsal must also be expanded in power serie
which in contrast to the quantities~27! and~28! ~which van-
ish asB→0) begin with the zeroth term:

al5(
s50

`

al
(s)B2s, ~29!

so that atB50 the coefficients remain finite, i.e., limB→0al

5al
(0) . Substituting~27!–~29! into the left-hand side of Eq

~24! and setting the coefficient of each power of the para
eter B2 to zero, we obtain a sequence of equations for
al

(s) . In the lowest order we have

(
l 85m1p

l max

al 8
(0)

~v l l 8
(1)

2x (1)d l l 8!50. ~30!

Thus, the set of the coefficientsal
(0) is an eigenvector and

x (1) the eigenvalue of the matrixv l l 8
(1) , whose elements are

given by the analytic expression in~8!. Equation~30! clearly
shows that the expansions~27!–~29! remove the magnetic
field B from Eqs.~24!, so solving these equations amounts
solving an eigenvalue problem for a matrix independent
the magnetic field. The eigenvalues of this matrix are
first-order diamagnetic susceptibilitiesxl

(1) , where
l51,2,...,K, with K being the multiplicity of the degen
eracy, i.e., the number of terms in the sum~23!. At K51 we
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havexl
(1)5v l l

(11) . At K52 we can also write analytic expres
sions for the susceptibilities as functions of the princip
quantum numbern ~see Refs. 4, 6, and 9!. The eigenvectors
are the sets of the zeroth-order coefficients in the superp
tion, i.e., the field-independent part of the series~29!.

The values ofxl
(1) andal

(0)(l) obtained in this manne
are used to solve the system of equations~24! in the next
order inB2, with the system being

(
l 85m1p

l max

al 8
(1)

~l!~v l l 8
(1)

2xl
(1)d l l 8!

5 (
l 85m1p

l max

al 8
(0)

~l!~xl
(2)d l l 82v l l 8

(2)
!. ~31!
p
op
e
in

m
o

e

l

si-

Multiplying both sides of~31! by al
(0)* (l), summing overl ,

and taking into account~30! and the completeness conditio
(ual

(0)u251, we obtain an expression for the second-ord
susceptibility:

xl
(2)5 (

l 5m1p

l max

(
l 85m1p

l max

al
(0)* ~l!al 8

(0)
~l!v l l 8

(2) . ~32!

Thus, the second-order diamagnetic susceptibility is de
mined by the eigenvectoral 8

(0)(l) of the first-order matrix~8!
and the second-order matrix elements. After integrating w
respect to the angular variables, we obtain explicit expr
sions for these matrix elements:
v l l
(2)5bnl

(0)1
3m22 l ~ l 11!

l ~2l 21!
bnl

(2)1
3~ l 212l 25m2!~ l 225m221!210m2~4m221!

l ~2l 21!~2l 22!~2l 23!
bnl

(4) , ~33!

v l l 12
(2) 52F ~~ l 11!22m2!~~ l 12!22m2!~n22~ l 11!2!~n22~ l 12!2!

~2l 21!2~2l 11!~2l 13!2~2l 15!~2l 17!2 G1/2n6

32
@gnl

(0)1m2gnl
(2)#, ~34!

v l l 14
(2) 5F ~ l 112m!4~ l 111m!4~n1 l 11!4~n2 l 24!4

~2l 11!~2l 13!2~2l 15!2~2l 17!2~2l 19! G1/2205n6

128
. ~35!
a-
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c
-
,

tri-

e-
n’s

or

d
imit
in

s-
the
The m-independent parameters in the expressions are su
positions of second-order radial matrix elements of the
eratorr 2, which by virtue of orthogonality relations of typ
~17!, can be written in closed form as functions of the pr
cipal and orbital quantum numbers:6

bnl
(0)5

n6

240
$5n2@97n2233l ~ l 11!1365#

212~21l 4142l 31179l 21158l 160!%, ~36!

bnl
(2)5

ln6

336~2l 13!
$n2@802n221005l ~ l 11!12000#

13~175l 41350l 31523l 21348l 2480!%, ~37!

bnl
(4)5

l ~ l 21!n6

1120~2l 13!~2l 15!
$15n2@41n2122l ~ l 11!

2185#21001l 3~ l 12!13421l 214422l 22160%,

~38!

gnl
(0)5n2@429l ~ l 13!2802#1237l 3~ l 16!

13145l 213036l 22484, ~39!

gnl
(2)55~41n2137l 21111l 275!. ~40!

Having calculated the susceptibilityxl
(2) , we can solve

the system of equations~31! for the correctionsal 8
(1)(l) to

the coefficients~29!. However, the determinant of the syste
~31! exactly equals the determinant of the system of hom
geneous equations~30! and consequent ly vanishes. Henc
er-
-

-

-
,

in addition to~31!, we must use the condition of conserv
tion of the normalization of the wave function~23! in the
first order inVD :

(
l 5m1p

l max

al
(0)~l!al

(1)~l!50. ~41!

The values of the susceptibilities~32! together with the
coefficientsal

(1)(l) must be calculated for each eigenvect
of the diamagnetic matrix~8! corresponding to the specifi
eigenvaluexl

(1) . The al
(1)(l) determine the first-order cor

rections inB2 to the wave function~23! of a degenerate state
which are due to the variation in a strong field of the con
bution of the basis vectorswnlm . The variation of the con-
tribution of the other states, which do not belong to the d
generate basis, is determined by the term with the Gree
function. This part is fully analogous to the corrections f
nondegenerate states.

Since in all transitions belonging to the Lyman an
Balmer series the lower levels are nondegenerate, we l
ourselves to the study of the most interesting transition
practice, from the degenerate stateunml& to the nondegen-
erate stateun8l 8m8&. In the zeroth approximation the expre
sion for the matrix element is given by a superposition of
form

d10
(0)~l!5^nmludzun8l 8m8&

5al 821
(0)

~l!^wnl821mudzuwn8 l 8m8&1al 811
(0)

~l!

3^wnl811mudzuwn8 l 8m8&. ~42!
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When m85 l 8, the first term on the right-hand side of~42!
vanishes. Thus, the transformation of the excited states l
to a splitting of the line of the transitionunlm&→un8l 8m&
into the diamagnetic componentsunml&→un8l 8m&, whose
number is determined by the multiplicityK of the degen-
eracy (l51,...,K), whose frequencies are determined by t
eigenvaluesxl

(1) , and whose intensities by the eigenvec
componentsal 811

(0) of the diamagnetic matrix~8!. In other
words, the action of a magnetic field on the spectrum of
atom results in a redistribution of the intensityI n,n8 l 8 of the
unl811m&→un8l 8m& transition among the diamagnetic su
levels unml& with different quantum numbersl51,...,K in
proportion to the contribution of the stateunl811m& to these
sublevels, i.e.,I nml,n85ual 811

(0) (l)u2I n,n8 l 8 . This relationship
characterizes theB-independent distribution of the oscillato
strengths of dipole transitions among the diamagnetic s
levelsunml& of the excited state,2,3 similar to the distribution
among the Stark states of a parabolic basis in an ele
field.16

As B increases, so does the contribution of the fie
dependent corrections to the matrix elements. The expres
for these corrections in the first order inB2 is

d10
(1)~l!5al 811

(1) B2^wnl811mudzuwn8 l 8m8&

1al 811
(0)

~l!B2@^wnl811muVDGEn
8 dzuwn8 l 8m8&

1^wnl811mudzGE
n8

8 dzuwn8 l 8m8&#

1al 813
(0)

~l!B2@^wnl813muVDGEn
8 dzuwn8 l 8m8&

1^wnl813mudzGE
n8

8 dzuwn8 l 8m8&#. ~43!

Dividing this by d10
(0)(l), we can write the factor of the firs

B-dependent term in the expansion of the matrix elemen
~6! in the form

qnl,n8 l 8
p

5qnl811,n8 l 8
p

1
al 811

(1)
~l!

al 811
(0)

~l!
1

al 813
(0)

~l!

al 811
(0)

~l!
qnl813,n8 l 8

p ,

~44!

whereqnl811,n8 l 8
p

5qnl811,n8 l 8
p (n)1qnl811,n8 l 8

p (n8) is the fac-
tor for the transition between nondegenerate states, wh
components are given in~12!. Similar expressions can b
written for the components of the factorqnl813,n8 l 8

p

5qnl813,n8 l 8
p (n)1qnl813,n8 l 8

p (n8):

qnl813,n8 l 8
p

~n!5
1

4~2l 815!
A3~ l 811!

2l 817

3
^nl813ur 2gl 811

(n)
~r ,r 8!r 8un8l 8&

^nl811ur un8l 8&
,

qnl813,n8 l 8
p

~n8!5
1

4~2l 815!
A3~ l 811!

2l 817

3
^nl813urgl 812

(n8)
~r ,r 8!r 82un8l 8&

^nl811ur un8l 8&
.

~45!
ds

e
r

e

b-

ic

-
ion

in

se

For each specific set of values of the quantum numbers of
lower leveln8l 8 there are simple formulas for these para
eters. In particular, for transitions belonging to the Lym
series we have

qn f ,1s
p ~n!5

n4A3~n224!~n229!/7

480Z4~n221!3

3~55n61115n42411n22527!,

qn f ,1s
p ~1s!5

n2A3~n224!~n229!/7

30Z4~n221!3 ~49n221!. ~46!

For un0l2&→u2s& transitions of the Balmer series we hav

qn f ,2s
p ~n!5

n4A3~n224!~n229!/7

480Z4~n224!4

3~55n8280n624832n4181 664n21134 912!,

qn f ,2s
p ~2s!52

256n2A3~n224!~n229!/7

15Z4~n224!4

3~7n214!~n212!. ~47!

For un1l1&→u2p1& transitions we have

qng,2p
p ~n!5

n4A2~n229!~n2216!/3

672Z4~n224!3 ~125n62220n4

24752n2234 624!,

qng,2p
p ~2p!52

64n2A2~n229!~n2216!/3

21Z4~n224!3 ~25n224!.

~48!

Note that all these expressions have similar patterns
pointed out earlier for the components of the factors~19! and
~20!: as n increases, the componentqp(n) in ~46!–~48! in-
creases asn6, while qp(n8) remains essentially the same
large values ofn. Moreover, the expression for the su
qp5qp(n)1qp(n8) becomes much simpler in compariso
to the expressions for the individual components:

qn f ,1s
p 5qn f ,1s

p ~n!1qn f ,1s
p ~1s!

5
n2A3~n224!~n229!/7

480~n221!
~55n41225n2216!,

qn f ,2s
p 5qn f ,2s

p ~n!1qn f ,2s
p ~2s!5

n2A3~n224!~n229!/7

480~n224!2

3~55n61360n422832n224096!, ~49!

qng,2p
p 5qng,2p

p ~ng!1qng,2p
p ~2p!

5
n2A2~n229!~n2216!/3

672~n224!

3~125n41780n22512!.

It must also be noted that the factorqnl813,n8 l 8 in the case of
nondegenerate states determines the matrix element
magnetically induced dipole transition, which is forbidden
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TABLE IV. The factors qnml6,n8 l 8
p for magnetically induced corrections to the matrix elements of the radiativep-transitions of the Lyman series

un0l&→u1s&, and of the Balmer series,un0l&→u2s& and unml&→u2pm&, with m50,1. The indexl is determined by the absolute value represented
individual columns by the diamagnetic susceptibility of the upper level,xnml6

(1) ; (k)510k.

n l 2xn0l2
(1) /2 qn0l,1s

p qn0l,2s
p

2xn0l1
(1) /2 qn0l,2p0

p
2xn1l1

(1) /2 qn1l,2p1
p

1 9.0 1.368~2! 9.107~1! 5.171 21.179(2) 9.0 6.609~1!
3 2 1.958~1! 1.920~3!

1 1.335~1! 1.525~3! 1.439~3! 1.868~1! 21.014(3) 3.60~1! 6.293~2!
4 2 3.865~1! 5.396~2! 1.646~2! 6.532~1! 1.044~4!

1 3.425~1! 4.451~3! 4.158~3! 2.834~1! 1.539~2! 4.438~1! 7.788~3!
5 2 1.095~2! 2.776~3! 1.701~3! 6.875~1! 22.033(3) 1.056~2! 2.666~3!

3 1.654~2! 3.579~4!

1 5.215~1! 2.070~4! 2.025~4! 5.759~1! 24.188(3) 1.056~2! 2.021~4!
6 2 1.150~2! 4.168~3! 3.098~3! 1.710~2! 23.473(4) 2.454~2! 9.364~3!

3 2.513~2! 8.941~3! 6.529~3! 3.519~2! 9.876~4!

1 9.064~1! 3.912~4! 3.831~4! 8.631~1! 5.290~3! 1.396~2! 8.490~4!
2 2.545~2! 2.200~4! 1.964~4! 1.842~2! 25.906(4) 2.507~2! 3.762~4!

7 3 5.001~2! 2.393~4! 1.923~4! 3.636~2! 21.142(5) 4.918~2! 2.571~4!
4 6.643~2! 2.349~5!

1 1.322~2! 1.070~5! 1.058~5! 1.352~2! 26.683(3) 2.444~2! 1.468~5!
2 2.842~2! 3.637~4! 3.379~4! 3.655~2! 21.145(5) 4.992~2! 8.790~4!

8 3 5.081~2! 4.635~4! 4.168~4! 6.854~2! 23.249(5) 8.885~2! 6.056~4!
4 8.995~2! 5.549~4! 4.717~4! 1.150~3! 5.003~5!
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the absence of a magnetic field, and the above expression
serve as a means of numerically estimating the values
such matrix elements.

We also write the expression for the factorq correspond-
ing to the transition of the Balmer series from the even co
ponent of Zeeman states withm50, i.e., to theun0l1&
→u2p0& transition:

qn0l1,2p0
p

5Fqnd0,2p0
p 1

A5a0
(0)

2a2
(0) qns,2p

p 1
a2

(1)~l!

a2
(0)

1
a0

(1)~l!

8a2
(0) A5~n224!

n221
12A 3

10

a4
(0)

a2
(0) qng,2p

p G
3F11A5~n224!

n221

a0
(0)

8a2
(0)G21

, ~50!

whereqns,2p
p , qnd0,2p0

p , andqng,2p
p are defined in~21!, ~22!,

and ~49!.
In the general case ofm< l 823, the right-hand side o

Eq. ~43! acquires three terms, which can be obtained fr
those that have already been written if we replacel 811 with
l 821 andl 813 with l 823; these correspond to the contr
bution to the diamagnetic stateunml& of the statesunlm&
with orbital angular momental 5 l 821 andl 5 l 823.

4. RESULTS OF NUMERICAL CALCULATIONS AND
DISCUSSION

The expressions~44!–~50! are sufficient to calculate th
numerical values of the factorqp of any transitions belong
ing to the first two series of a hydrogen-like atom. We c
ried out calculations of theqp for the un0l2&→u1s& transi-
an
of

-

-

tions of the Lyman series and of three types of transiti
un0l2&→u2s&, un0l1&→u2p0&, and un1l1&→u2p1&, of
the Balmer series.

The transitions to the 1s and 2s states originate from the
same excited states of negative parity,un0l2&, are deter-
mined by the same coefficientsa1

(0) , a3
(0) , and a1

(1) of the
wave function~23! of the upper level, and differ only in the
parametersqnp,n8s

p andqn f ,n8s
p . Formulas~19!–~20!, and~49!

show that for large values ofn the difference between thes
parameters disappears. Hence the correction factors~44! for
the matrix elements of radiative transitions from highly e
cited magnetic states in the Lyman and Balmer series
essentially identical.

The difference in thep-transitions into the states 2p0

and 2p1 is not only quantitative but also qualitative even
the zeroth approximation, since the former, in contrast to
latter, contains a contribution corresponding to transitio
from ns states. This fact manifests itself in the dependen
of the factor~50! on the coefficientsa0

(0) anda0
(1) and also on

the parameterqns,2p
p , which has negative values that exce

in absolute value the positive values of the parame
qnd0,2p0

p by about a factor of 3~see Eqs.~21! and~22! and the
data given in Table I!.

Table IV lists the numerical values of the facto
qnml,n8 l 8m

p for the transitions of the Lyman and Balmer seri
from states withn<8. To label the transitions~so as to de-
termine the numerical value of the parameterl!, we use the
energy distribution, which in the first order is determined
the susceptibilityxnml

(1) of the upper level with the principa
quantum numbern. The numerical values of this suscep
bility are listed in Table IV together with the factorsq for
each group of transitions that originate from the same exc
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states. Note the existence of a correlation between the m
netically induced corrections to the energy,xnml

(1) , and to the
matrix elements of the radiative transitions,qnml,n8 l 8m

p . As
for the energy, the problem is a trivial one, since at la
values ofn the diamagnetic susceptibilityx0

(1) of the lower
level is small compared to the susceptibilityx1

(1) of the up-
per, so that in the expression for the correction@Eq. ~7!# we
can neglectx0 . Thus, the correction coefficientwnml,n8

(1) for
the transition frequencies of the diamagnetic lines if the L
man series is approximately four times smaller than the c
responding coefficient of the Balmer series~in proportion to
the ratio of the unperturbed binding energies of the sta
with n51 andn52). The fact that the coefficients~44! for
the Lyman and Balmer series at large values ofn are iden-
tical is not obvious, since even the unperturbed matrix e
ments in the series differ in the asymptotic region by a fac
of larger than 20~see Ref. 16!. Nevertheless, the proximity
of the coefficientsqnml,1s

p and qnml,2s
p is obvious from the

data of Table IV byn55. Here the difference between th
coefficients is at its minimum for the lower diamagne
components of the emission line (l51) and at its maximum
for the higher diamagnetic components of the emission
(l5K). Calculations show that forn>30 the maximum dif-
ference does not exceed 1%: (qnmK,1s

p 2qnmK,2s
p )/qnmK,1s

p

<0.01.
The decay of excited states of positive parity w

m50, which contributes nothing to the Lyman series, c
proceed by ap-transition of the Balmer series to theu2p0&
state. Despite the fact that the susceptibilities ofun0l1&
states differ from the susceptibilities of the diamagnetic l
els un0l2& by a factor no greater than two, as one can
from Table IV ~for n@1 the susceptibilities of the lowes
diamagnetic levels of opposite parities, the so-called diam
netic doublets, are essentially identical2!, the correction fac-
torsq for the un0l1&→u2p0& transitions differ substantially
from the corresponding factors for theun0l2&→u2s& transi-
tions in both absolute value and sign.

The ground state in the set withm51 is u2p1&, with the
result thatp-transitions within this set are encountered on
in the Balmer series. The correction factorqn1l,2p1

p is deter-
mined by~44!, as for transitions to the 2s states. Hence both
quantitatively and qualitatively the distribution of the give
factor among the even-parity diamagnetic sublevelsun0l1&
is identical to the distribution of the factorqn0l,2s

p among the
odd-parity sublevels. These distributions are compared
Fig. 1, which depicts the numerical values of the fact
qn1l,2p1

p ~dark circles! andqn0l,2s
p ~open circles! for the ma-

trix elements of the diamagnetic components of the Balm
series, corresponding to the radiative decay of states wi
principal quantum numbern540. The resonance-like jum
in the region of the transition from the doublet diamagne
spectrum to the split states of different parities2 is observed
in both curves, symbolizing the dependence on the diam
netic energy, which is represented on the horizontal axis
the first-order susceptibilityxnml

(1) .
Figure 1 also depicts the numerical values of the fact

qn0l,2p0
p for the transitions from even-parity states in the do

blet region of the spectrum~the3 ’s). These transitions also
g-
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exhibit a sudden change in the nature of the energy dep
dence in the vicinity of the transition from doublet to sp
states, accompanying the crossover from positive to nega
values of the factors. The entire set of values ofqn0l,2p0

p is
depicted in Fig. 2 with a 20-fold change in scale along t
vertical axis in comparison to Fig. 1. As Fig. 2 shows, t
more sudden jump in the values ofqn0l,2p0

p occurs in the
high-frequency part of the diamagnetic spectrum, i.e.,
proximately at a distance of one-fifth of the entire width
the diamagnetic set from the upper limit~on the energy
scale!. Here for almost all states below this jump the fact
qn0l,2p0

p is negative, and since its absolute value exceeds
corresponding diamagnetic susceptibilities by a factor of 1
or more~see the scaling factors for the quantities along b
axes!, the intensity of the corresponding lines decreases
the magnetic field becomes stronger. For the last three l
in the high-frequency part of the spectrum, as for essenti
all lines whose diamagnetic corrections are depicted in F
1, the intensity increases with field strength, exceeding
intensity of the corresponding radiation emitted by a fr
atom in a fieldB'1 T by 30–40%.

5. CONCLUSION

In a sufficiently strong magnetic field, there can be n
only complete splitting of the emission lines of atoms but t
probability of the atoms emitting and absorbing radiati
may be redistributed dramatically. The intensity of ess

FIG. 1. Numerical values of the correction factorsqn1l,2p1
p ~dark circles

connected by the solid curve1! andqn0l,2s
p ~open circles connected by th

dashed curve2! of the diamagnetic components of the Balmer line cor
sponding to the radiative decay of the level withn540. The3 ’s connected
by the curve3 depict the first six values forqn0l,2p0

p corresponding to those
depicted in Fig. 2.

FIG. 2. Numerical values of the correction factorsqn0l,2p0
p of the diamag-

netic components of the Balmer line corresponding to the radiative tra
tion from the even-parity statesun0l1& of the level withn540. The first six
values~the 3 ’s) are plotted in Fig. 1 on a larger scale.
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tially all p-components of the Lyman series increases w
field strength. In the Balmer series the same increase in
tensity is observed for transitions in the Zeeman set w
m51. In the set withm50 there is a redistribution of inten
sities in favor of the decay lines of odd-parity states an
small number of states from the low- and high-frequen
parts of the diamagnetic set of positive parity. On the ot
hand, the intensity of the lines of decay of even-parity sta
from the middle of the diamagnetic spectrum decreases
increasing field strength.

Our calculations show that the changes in the radia
properties of a hydrogen-like atom in a magnetic field can
described analytically by using the spherical Coulomb ba
We did so and arrived at a complete solution of the probl
of the hydrogen atom in a magnetic field with allowance
diamagnetic corrections not only for the energy but also
the wave functions. The method of determining the corr
tions to optical characteristics of degenerate states of
atom in a field by solving the system of algebraic equatio
~24! combined with the expressions for higher-order mat
elements of the type~19!–~22!, ~33!–~40!, and ~46!–~49!
could be useful in solving other problems of the interact
between excited atoms and electromagnetic fields.

The analytic expressions and quantitative data listed
the Table I–IV and Figs. 1 and 2 provide information abo
changes in the intensity of atomic lines. They can be app
not only to hydrogen but also to many-electron atoms
Zeeman states with large magnetic quantum numb
(m>3) and can be used to describe the spectral charact
tics of Rydberg atoms in moderate and strong magn
fields, generated in laboratories on the Earth and produce
stellar plasma.
h
n-
h

a
y
r
s
th

e
e
s.

r
r
-
e

s

in
t
d

n
rs
is-
ic
in

This work was sponsored by the Russian Fund for F
damental Research~Grant No. 97-02-16407! and the Russian
Ministry of Education~Grant No. 97-0-5.1-63!.

* !E-mail: vit@ovd.vsu.ru
1!In this paper we use the atomic system of units.

1P. F. A. Klinkenberg, inAtomic Physics 15 (invited papers of the 15
ICAP), World Scientific, Singapore~1997!, p. 221.

2P. A. Braun, Rev. Mod. Phys.65, 115 ~1993!.
3D. Kleppner, N. G. Littman, and M. I. Zimmerman, inRydberg States of
Atoms and Molecules, R. F. Stebbings and F. B. Dunning~eds.!, Cam-
bridge Univ. Press, London~1983!, p. 73.

4T. P. Grozdanov and H. S. Taylor, J. Phys. B19, 4075~1986!.
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Escape into vacuum of fast electrons generated by oblique incidence of an ultrashort,
high-power laser pulse on a solid target
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The possibility that fast electrons can escape in a direction close to the trajectory of a reflected
ultrashort laser pulse at extremely high laser radiation fluxes is examined analytically and
numerically. Analytic estimates are made of the feasibility of forming electron bursts in the plasma
and of their subsequent motion. The self-consistent, collisionless motion of a plasma acted
on by specified incident and reflected ultrashort laser pulses is modeled in two dimensions by the
particle-in-cell method. It is shown that a substantial number of electrons located in the
subcritical region are gathered into bunches by the resultant forces and escape to the vacuum in
a direction different from the normal to the target surface within a narrow range of solid
angles. This demonstrates the feasibility of laser acceleration of an electron burst during reflection
of an ultrashort laser pulse from a solid target. ©1999 American Institute of Physics.
@S1063-7761~99!00510-7#
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1. INTRODUCTION

The development of laser technology for generating h
power (q>1018 W/cm2), ultrashort (t i<0.1 ps! pulses1 has
meant that earlier ideas regarding the mechanisms by w
this laser radiation interacts with matter are inadequate
explaining the experimentally observed physical effects.
particular, data on the angular distribution of the fast el
trons escaping from a target under obliquely incident la
light have been obtained in numerical and real exp
ments.2,3 Analysis of these data shows that the bulk of t
fast electrons escaping from the target moved in the direc
of the reflected laser pulse. One possible reason for the
mation of these beams is the acceleration of electrons es
ing from the laser plasma in the electromagnetic fields of
incident and reflected laser pulses. This mechanism dif
from the acceleration of electrons in vacuum by a plas
wave, which has been studied experimentally and theo
cally4 for a laser pulse of duration<1 ns and intensity 1015

W/cm2. The interaction of this kind of pulse with a targ
leads to significant hydrodynamic outflow of the resulti
plasma. In this weakly inhomogeneous~compared to the
scale of the laser wavelength! plasma, intense plasma osc
lations develop and accelerate electrons in the direction
the plasma wave, owing both to resonant absorption
stimulated Raman scattering.

This paper is devoted to a study of the dynamics
electrons in the incidence and reflection regions of an
trashort laser pulse. For pulses of this type lasting less th
ps, plasma ions are unable to move and the plasma boun
remains sharp. In this sort of weakly inhomogeneous plas
the generation of longitudinal plasma waves is suppres
and there is no resonant acceleration mechanism. In this
per, we assume that the laser plasma is collisionless and
6321063-7761/99/89(10)/8/$15.00
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the motion of electrons is determined by the external el
tromagnetic field and by the ambipolar potential owing
charge separation. We have studied the electron dynam
with the aid of analytic estimates and numerical calculatio

In Sec. 2 the trajectory of an electron is constructed a
lytically and its emergence angle and energy are estima
This makes it possible to understand the physics of the p
nomenon, and subsequently to interpret the results of
numerical calculations. In Sec. 3 the same problem is sol
numerically using a particle-in-cell~PIC! code for particular
parameters of the laser pulse and plasma. In Sec. 4 we
cuss the results of the numerical calculations, compare
analytic and numerical results, and explain the resulting
pendences.

2. ANALYTIC TREATMENT OF THE ESCAPE OF
ELECTRONS FROM THE TARGET SURFACE

We consider the oblique incidence~at an angleu) of a
laser pulse of finite widthD on a target surface. Here th
following obvious distribution of fields develops~Fig. 1!:
region i contains the field of the incident wave,o that of the
reflected wave,b a superposition of the incident and reflect
waves, andpl the field within the plasma. We assume th
near the target surface there is a small group of electrons
that those electrons have no effect on the distribution of
fields in the vacuum or in the plasma. This group resu
from the electron density profile being steepened as a re
of the ponderomotive pressure of the laser pulse and a s
number of electrons with a density below critical remains
the vacuum. This sort of distribution of electron density w
obtained via one-dimensional numerical simulation,5 in
which processes within the plasma were the main conc
These electrons will also be examined subsequently. S
© 1999 American Institute of Physics
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the longitudinal and transverse dimensions of the laser p
are of the order of tens of wavelengths, the laser field c
sists of an electromagnetic wave with slowly varying amp
tudeE0(r ,t). In dimensionless variablest↔vt, y↔(v/c)y,
z↔(v/c)z, E↔eE/mvc, B↔eB/mvc, A↔eA/mc2,
f↔ef/mc2, andv↔v/c, the laser fields corresponding t
the various regions of Fig. 1 are

for region i

Bx
( i )52E0

( i )~r ,t !cos@z cosu1y sinu2t#,

Ez
( i )5Bx

( i ) sinu, Ey
( i )52Bx

( i ) cosu; ~1!

for regiono

Bx
(o)52hE0

(o)~r ,t !cos@2z cosu1y sinu2t1a#,

Ez
(o)5Bx

(o) sinu, Ey
(o)52Bx

(o) cosu; ~2!

and, for regionb

Bx
(b)5Bx

( i )1Bx
(o) , Ez

(b)5Ez
( i )1Ez

(o) , Ey
(b)5Ey

( i )1Ey
(o) .

~3!

The reflection coefficienth and phasea of the reflected
laser wave derive from matching of the electromagne
fields ~3! with the fields within the plasma in regionpl. In
general, the fields in regionpl are self-consistent solutions o
Maxwell’s equations and the kinetic equations for the plas
particles. There are obviously no analytic expressions foh
anda in some arbitrary case. In the case of resonant abs
tion in the normal skin effect regime,6

h5
ucosu2zu
ucosu1zu

, a5argS cosu2z

cosu1z D , ~4!

where

z521.38i j1/3$11j2/3@0.722sin2 u~0.2110.48 lnj!#%

1pj sin2 u. ~5!

The parameterj is the dimensionless scale length for dens
inhomogeneities of the plasma:j5vL/c. To order of mag-
nitude,L is the durationt i of the laser pulse multiplied by
the ion sound speedcs . Equation~5! holds for j<1. Nu-
merical calculations ofh anda for reflection of a laser pulse
in the anomalous skin effect regime can be fou
elsewhere.5,7

Having determined the parameters of the laser fie
above the plasma surface, we now proceed to describe
tron dynamics. In the fields~1!–~3!, the trajectory of elec-
trons is two-dimensional, and the equations of motion in
gion b have the form

FIG. 1. Incidence of a laser beam on a plasma surface (z50).
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dpz

dt
5~sinu2vy!~Bx

( i )1Bx
(o)!2

]Uam

]z
, ~6!

and

dpy

dt
5vz~Bx

( i )1Bx
(o)!2cosu~Bx

( i )2Bx
(o)!, ~7!

whereBx
( i ,o) is the magnetic field in the corresponding regi

andUam(z,t) is the ambipolar potential of the plasma ion
which we determine below. In regionsi ando, Bx

(o) andBx
( i ) ,

respectively, are absent from Eqs.~6! and ~7!.
We first examine the solution of Eqs.~6! and ~7! for

nonrelativistic laser fields,uBx
( i ,o)u,1. Thenp5v in the cho-

sen system of dimensionless variables. We distinguish os
lating ~frequencyv) and mean components of the coord
nates and velocity of the electron:v5^v&1dv. Then,
averaging Eqs.~6! and~7! over the period of the oscillations
we obtain for the mean components,

d^v&
dt

52
]~Ueff1Uam!

]r
, ~8!

where

Ueff~r ,t !5~E0
( i )!21h2~E0

(o)!2

2h cos~2u!E0
( i )E0

(o) cos~2z cosu2a! ~9!

is the effective potential, which is the time-averaged squ
of the laser electric field:8 Ueff5^E2&/2.

The potential~9! contains three substantially differen
time scales: 1! the laser wavelength; 2! the transverse exten
of the laser beam, which is tens of wavelengths; and 3! the
transverse scale length of the laser pulse, which is hund
of wavelengths. The greatest contribution to the force on
electron in Eq.~8! is obtained by differentiating the potentia
~9! with respect to the very shortest scale length. In t
approximation, Eq.~8! takes the form

d^vz&
dt

52h cos~2u!cosuE0
( i )E0

(o)

3sin~2z cosu2a!2
]Uam

]z
, ~10!

d^vy&
dt

50,

^vy&5sinu@~E0
( i )!21h2~E0

(o)!2

22h cos~2u!E0
( i )E0

(o) cos~2z cosu2a!#/4. ~11!

The quantity^vy& in Eq. ~11! follows from conservation of
they-component of the canonical momentum of the partic
which happens when the dependence of the amplitudeE0

( i ,o)

on the coordinate is neglected. The motion of electrons
this approximation can be described qualitatively as follow
Initially electrons are near the plasma surface (z50). They
then approach the plane of the nearest minimum in the
tential ~9!, i.e., 2z cosu 2 a50. As they oscillate in the po-
tential well near the plane of the minimum, the particl
move at velocity^vy& toward regiono, where they are en-
trained by the reflected wave and acquire a mean velo



ea
ge
on
gy
te
th
on
,

o

a
s,

on

ld

ni

he
n

ly

ll

la
of

nt

u

t,

of
ofile
eans
e in
al
of

ear
he

he
g
ata

the
tron
ec-
ser-

ts,
an

tial

tive
the
tive
um
the

in
art

the

-

.e.,
der
the
n.

le to

634 JETP 89 (4), October 1999 Andreev et al.
h2(E0
(o))2/4 in the direction of the reflected pulse.9 Taking

the transverse structure of the laser pulse into account l
to a modification of the physics of electron motion: lar
scale potential variation shows up, and the moving electr
tend to occupy positions that minimize the potential ener

This kind of motion can be approximately represen
by a mass point sliding over a curvilinear surface. Here
kinetic energy of the electron after it escapes from regi
occupied by the field will equal its initial potential energy

U~z50!5~E0
( i )!21h2~E0

(o)!22h cos~2u!E0
( i )E0

(o)

3cosa1Uam~z50!,

and the angle of escape will depend on the specific form
the functionU(y,z).

We now estimate the angle of escape for a laser be
with a triangular transverse distribution of field amplitude

E0
( i )~y,z!5E0~12uz sinu2y cosuu/R!,

uz sinu2y cosuu<R, ~12!

E0
(o)~y,z!5E0~12uz sinu1y cosuu/R!,

uz sinu1y cosuu<R, ~13!

whereR is the radius of the laser beam in units ofc/v, i.e.,
R5Dv/2c. Note that estimates of the time the electr
moves in regionsb, o, and i for E0>0.1, along with trans-
verse beam sizes of the order of twenty wavelengths, yie
time much shorter than the pulse duration. Thus, Eqs.~12!
and~13! do not contain the laser pulse length. Electrons i
tially concentrated in the neighborhood ofz;0, y;0 escape
to the vacuum, since the potential falls off toward t
vacuum near that point. The equation of motion for electro
escaping to the vacuum in regionb has the form

d2z

dt2
5

2E0
2 sinu

R S 11
z sinu2y cosu

R D
1

2E0
2h2 sinu

R S 11
z sinu1y cosu

R D , ~14!

d2y

dt2
52

2E0
2 cosu

R S 11
z sinu2y cosu

R D
1

2E0
2h2 cosu

R S 11
z sinu1y cosu

R D . ~15!

In regions i and o we must remove terms respective
containing or not containingh in Eqs. ~14! and ~15!. In
writing Eqs.~14! and ~15! we have averaged over the sma
scale~of the order of the wavelength!. Equations~14! and
~15! do not contain a force corresponding to the ambipo
field. As will be shown below, this is true for small values
the phasea of the reflected wave. Equations~14! and ~15!
comprise a set of linear equations with constant coefficie
Their solution in regionsi, b, and o and the matching of
solutions at the boundary present no difficulties. As a res
for the rightward escape angleue

(1) ~between the velocity of
the electron and thez axis! of an electron from a laser spo
we obtain
ds

s
.

d
e
s

f

m

a

-

s

r

s.

lt,

ue
(1)5arctan

3S tanu
x~12h!2cos~2u!~12h!/~m22h2!

x~11h!1cos~2u!~12h!/~m22h2!
D ,

~16!

where x5A2E0 /R and m25$11h21@(11h2)2

24h2 sin2(2u)#1/2%/2.
Obviously, it is impossible to determine the angle

escape for a laser beam with an arbitrary transverse pr
by the method considered above. We now suggest a m
of estimating the angle of escape. Since electrons mov
the plane of the minimum in the effective potenti
Ueff(y,z), we can assume that they move along a field line
Ueff that passes through the neighborhood ofy;0, z;0.
~For a convex transverse laser profile, electrons initially n
the maximum of the effective potential will escape to t
vacuum.! The differential equation for the field line is

dy

dz
5

]Ueff /]z

]Ueff /]y
, y~0!50.

Hence, it is easy to find the slope of the field line at t
boundary of regionb and to estimate the speed by invokin
energy conservation. These quantities will be the initial d
for the electron’s motion in regionsi ando. In these regions
the field lines are perpendicular to the wave vector of
incident and reflected waves, respectively, so the elec
acquires an additional component of velocity in these dir
tions, whose magnitude is also determined by energy con
vation, i.e., the potentialUeff at the point of entry into region
i or o. Knowing the final values of the velocity componen
it is easy to find the angle of escape of an electron for
arbitrary field configuration.

We now proceed to analyze the ambipolar poten
Uam(z). The ambipolar potential, likeUeff , is proportional
to E0

2, since the ambipolar field balances the ponderomo
pressure of the laser light. To find the ambipolar field and
corresponding potential, we assume that the ponderomo
force of the radiation acts on the plasma from the vacu
side, pressing the bulk of electrons into the depth of
plasma and not affecting the small part of the plasma lying
the transparent region. Neglecting the effect of this small p
on the formation of the ambipolar field, in the regionpl we
have equilibrium between the ponderomotive force and
ambipolar field created by the bulk of the electrons:

Eam52~sinu2vy!~Bx
( i )1Bx

(o)!, z.0. ~17!

Thus, the bulk charge densityr corresponding to the ambi
polar field is

r5
1

4p

]Eam

]z
. ~18!

The charge density is nonzero only within the skin layer, i
in a very narrow region near the surface. For example, un
actual conditions the scale length of the skin layer is of
order of a tenth of the wavelength of the incident radiatio
Thus, at distances from the plasma boundary comparab
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the wavelength, but less than the width of the laser beam
charge configuration~18! is equivalent to a plane with sur
face charge densitys given by

s5E
0

`

rdz5
1

4p
EamU

z50

52
1

4p
~sinu2vy!BxU

z50

.

~19!

The ambipolar field in vacuum, which affects the esca
of particles, can be assumed to be the field due to the sur
charges, i.e.,Eam54ps. As a result, the ambipolar poten
tial takes the form

Uam~y,z!'
]Ueff

]z U
z50

•uzu52h cos~2u!

3cosuE0
( i )E0

(o) sinauz50•uzu. ~20!

At distances comparable to the physical dimensions
region b, the ambipolar field falls off in accordance wit
Coulomb’s law. Thus, Eq.~20! holds at smallz, and is actu-
ally the Taylor series expansion of the ambipolar potent
At small z the ambipolar field balances the force owing
ponderomotive pressure up to the linear term of the Tay
series. This leads to a reduction in the dependence of
energy of an escaping electron on the laser pulse intensity
E0,1.

To conclude this section we consider relativistic las
intensities, for whichE0.1. The averaged equation of mo
tion then takes the form8

dp

dt
52

¹^E2&

2~11p21^E2&!
, ~21!

where p is the electron momentum. This equation can
solved analytically in regionsi and o. Solving Eq.~21! in
region o yields the angle of escape of an electron from
region occupied by the field,

ue
(1)5u1arctan

@2~g/gb21!~11vb!#1/2

g2gb~12vb!
, ~22!

wheregb , vb , g, andv are the Lorentz factor and velocit
upon entering and leaving regionb. One important conse
quence of Eq.~22! is that acceleration of an electron by th
reflected laser pulse (g.gb) causes it to escape in the spec
lar direction, i.e.,ue

(1)→u for g→`.
Summarizing the analytic treatment of electron moti

in incident and reflected laser fields, we find that for nonr
ativistic fields the parameters of the trajectory are determi
by the form of the effective potential~i.e., the spatial distri-
bution of the laser fields!. At relativistic intensities, entrain
ment of the electron by the reflected pulse induces it to m
in the direction of the latter.

3. NUMERICAL SIMULATION OF ELECTRON MOTION

The analytic model for the motion of electrons above
plasma constructed in the preceding section contains m
approximations, but it provides a qualitative description
the escape of electrons from the surface. This model is a
rate to within a factor of order unity. A more rigorous e
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amination of this problem requires a comprehensive solu
of the electron equations of motion and Maxwell’s equatio
in two-dimensional geometry. This complicated compu
tional problem will be solved by the method described b
low. To simplify the problem we takeh anda from Eq.~4!,
i.e., we assume that the transverse field above the pla
surface (z,0) is given, and we calculate the ambipolar fie
and electron trajectories self-consistently.

The superposition principle is used to calculateE andB
in the region where the incident and reflected laser radia
intersect. Forz.0 and outside the beam, all components
the electric and magnetic fields are assumed equal to z
The ambipolar field is calculated at each time using the P
son equation and is added to the fields from the laser pu

We take the parameters of the laser pulse and targe
be close to the possible experimental values. Conside
plane laser beam of widthR510 mm incident on a target a
an angleu530° ~Fig. 1!. We take the reflection coefficien
to be 0.8 and the phase to bea50. This is consistent with
estimates using Eqs.~4! and~5! for a laser pulse of duration
t i5100 fs and intensity 1018 W/cm2. We take the laser fre-
quency to bev51.831015 s21. In the calculations we ex-
amined several values of the maximum laser intensity
various transverse and temporal profiles for the laser pu

The target plasma with which the laser radiation int
acts has initial electron densityNe(z) and mean electron
temperature 0.1 keV. TheNe(z) dependence is taken from
estimates of the expansion dynamics of a plasma expose
a picosecond preheating laser pulse. Atz.0 we have
Ne(z)5aNc , and atz,0,

Ne~z!5aNc exp~2z/zc!,

whereNc51021 cm23 is the critical density,a53 is the ratio
of the maximum density to the critical density, andzc50.3
mm is the scale length of the inhomogeneity at the criti
point.

To describe the motion of plasma electrons we ha
used the particle-in-cell~PIC! method. Three-dimensiona
particle motion is described relativistically, including th
Lorentz force. The difference scheme employed here i
second-order approximation in space and time. To impr
the accuracy of the fields at the particles, they were ca
lated separately for each particle at each time step. The n
ber of steps was set to 18000. The time for the calculati
was 3t i . The number of particles in each calculation w
100000. They were all injected into the laser spot region
the initial time in accordance with the density profile a
initial energy of the target plasma, and they continue to mo
until the pulse terminates. To represent particle motion
clearly as possible, the spatial distribution of electron den
is recorded several times during the laser pulse. After
calculation is complete, the energy and the angle of escapw
~the angle between the momentum and the normal to
surface at the time the calculation ends! of each particle is
retained. The distribution of electronsne(w) with respect to
the angle of emissionw is determined by summing the accu
mulated information over all particles, and the mean elect
energy is calculated.
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In this model the ions are also assumed to move. The
and electron density profiles initially coincide, and the io
subsequently move under the influence of the same field
the electrons.

4. NUMERICAL CALCULATIONS

The calculations were carried out for peak laser pow
1017 and 1018 W/cm2 with triangular spatial and tempora
distributions of the laser fields, as well as at an intensity 118

W/cm2 with a rectangular pulse shape. The overall durat
of the triangular pulses was 200 fs, and that of the rectan
lar pulses was 100 fs.

We begin our examination of the results by analyzing
triangular pulse with intensity of 1018 W/cm2. Figure 2
shows the spatial distribution of electron density at t
times,t540 and 308.9 fs. The abscissa in both plots of F
2 is the linear positionz of an electron above the plasm
surface, and ranges from24 mm to 10mm; the ordinate is
the positiony, which ranges from212 mm to 10 mm. The
density scales are in units of electrons/cm3. The calculations
show that the laser radiation is already ‘‘pressuring’’ ele
trons into the plasma by 40 fs. The resulting ponderomo
potential repels some electrons from the pointz;zcr . Those
that are ‘‘turned back’’ by the laser light and ambipolar p
tential subsequently form two broad beams and emerg
the right.

Comparison of the distributions at timest540 fs and
308.9 fs indicates that a beam of electrons that does
move along the surface normal is actually formed from
subcritical plasma. This is illustrated most clearly by Fig.
which shows the angular distributionne(w) of electrons at
z.0 at timet5308.9 fs.

Analysis of Fig. 3 indicates the presence of a beam
electrons with an energy of roughly 15 keV emitted at
angle of258° to the normal. The results of this calculatio
for intensity 1017 W/cm2 are shown in Fig. 4. At lower in-
tensities the angular distribution of the emitted electrons
comes narrower~they emerge closer to the normal!, and the
angular asymmetry of the distribution is reduced. The an
lar distribution in Fig. 4 has three characteristic peaks: o
central and two side peaks. The central peak in the plo
ne(w) ~Fig. 4! was obtained using a numerical model
which the unconstrained ends of the laser plasma move
der the influence of the pulse. Note that the energy of
emerging electrons increases slowly as the laser inten
rises, and is 7.9 keV at 1017 W/cm2 and 13 keV at 1018

W/cm2. This effect is related to compensation of the acc
erating force by the ambipolar field, as noted in Sec. 2@Eq.
~21!#.

Ions also leave the target, but unlike electrons, th
leave normal to the surface. The mean ion energy is of
same order of magnitude as the electron energy~for Z51).
The ions move because of the ambipolar potential.

We now analyze the calculations for rectangular spa
and temporal distributions of the laser intensity at 118

W/cm2. Figure 5 shows two calculated two-dimension
electron density distributions at times 50 fs and 240 fs,
done previously for a triangular distribution. The abscissa
n
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both plots of Fig. 5 is the linear positionz, which ranges
between the same limits as in Fig. 2. The calculations sh
that the laser radiation also ‘‘pressures’’ electrons into
plasma at 40–50 fs. The resulting ponderomotive poten
repels some electrons from the pointz;zcr . In contrast to
the case of a triangular pulse shape, the part that is ‘‘tur
back’’ falls into a minimum of the ponderomotive potenti
~9! and is retained there for the duration of the laser pu
undergoing oscillations at the minimum of the potent

FIG. 2. Spatial distribution of electron density for a laser pulse with
triangular transverse profile at various times. The laser intensity is 118

W/cm2. Electron density is given in units of 1019 cm23. The abscissa is the
position normal to the target surface and the ordinate is the position a
the surface. The origin of the abscissa corresponds to the position o
target surface at the initial time, and that of the ordinate to the center of
laser spot.
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637JETP 89 (4), October 1999 Andreev et al.
Ueff}cos(2zcosu2a). Figure 5 shows that the electron bur
has a transverse size of 0.8–1mm at 50 fs and is stretche
out along the entire surface of the laser spot.

After the laser pulse ends (.100 fs!, the resulting elec-
tron bunch escapes the target at a characteristic angle o
with mean energy 19 keV. Comparison of the results at eq
intensities 1018 W/cm2 but different transverse profile
shows that the mean electron energy is insensitive to p
shape. The spatial structure of electron density and the a
at which electrons are ejected into the vacuum, howe
differ substantially for rectangular and triangular transve
laser beam profiles. Assuming that the contribution of
ambipolar field decreases as the laser intensity increases
have done some additional calculations of the range of em
sion angles and energies for triangular distributions at int
sities 1019 W/cm2 and 1020 W/cm2, neglecting the ambipola
field. The corresponding emission angles are 48° – 57°
42° – 51°, while the energies are 450–570 keV and 460
5200 keV. These data imply that electrons emerge at an
between the specular direction and the direction of the w

FIG. 3. Angular distribution of escaping electrons for a laser pulse wit
triangular transverse profile and intensity 1018 W/cm2. The abscissa is the
emission angle relative to the surface normal and the ordinate is the nu
of electrons.

FIG. 4. Angular distribution of escaping electrons for a laser pulse wit
triangular transverse profile and intensity 1017 W/cm2. The abscissa is the
emission angle relative to the surface normal, and the ordinate is the nu
of electrons.
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electric field, while the electron energy~neglecting the am-
bipolar field! increases in proportion to the intensity of th
laser radiation in accordance with the relativistic dynam
of an electron in the field of a monochromatic plane wa
~see expression~4! on p. 152 of Ref. 9!. To evaluate the
influence of the initial conditions on the angle at which ele
trons are ejected from the laser field region, we have d
some calculations with special initial conditions. It was a
sumed that electrons initially leave the plasma (z50) either
at a fixed angle of 30° to the normal or isotropically. Th

a

er

a

er

FIG. 5. Spatial distribution of electron density for a laser pulse with
rectangular transverse profile at various times. The laser intensity is18

W/cm2. Electron density is given in units of 1019 cm23. The abscissa is the
position normal to the target surface, and the ordinate is the position a
the surface. The origin of the abscissa corresponds to the position o
target surface at the initial time, and that of the ordinate to the center of
laser spot.
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initial electron energy was 2 keV and the laser intensity w
1018 W/cm2. In either case, the angular distribution and e
ergy of the emitted electrons were the same as in Fig
Thus, the parameters of the emitted electrons are determ
by the laser field configuration above the plasma surface

5. COMPARISON OF NUMERICAL AND ANALYTIC
RESULTS

We now compare the results of the numerical and a
lytic models. Above all, we note the qualitative agreemen
the calculations with the theory of electron motion in t
effective potential. Comparing Figs. 2 and 5, where the
tensities and energies of the laser pulses are the same,
the transverse profiles are different, we see that in Fig. 2
a triangular pulse shape, electrons are pushed out of the
field region to form two lateral bunches. In Fig. 5, where t
pulse profile is rectangular, there is a single electron bu
that is uniform along the surface of the plasma at tim
0–100 fs. Figures 2 and 5 imply that during initial interacti
of the laser pulse with electrons~i.e., at times of 0–40 fs!,
the particles are divided into two groups, moving resp
tively into the vacuum and into the plasma. This is also
plained by the structure of the effective potential~9!: near the
surface there is a maximum of the potential~9! at 2z cosu
52p. At u530° and wavelength 1.04mm, z is 0.3mm. The
initial concentration of electrons falls off exponentially wi
a characteristic scale lengthzc50.3 mm. Electrons are re-
pelled from the regionz;zc as they approach the minimum
in the effective potential. The subsequent minima ofUeff

along thez axis are weakly populated by electrons, owing
the exponential drop in initial electron density, and~cf. Figs.
2 and 5! are absent up to 1018 cm23 on the chosen densit
scale. If the density resolution is increased, it is possible
observe a ‘‘striped’’ structure in electron density along thz
axis. After formation of the initial electron bunches ov
times of 0–70 fs under the influence of the strong gradie
of Ueff over scale lengths of the order of the waveleng
these bunches begin to move under the influence of
weaker gradients ofUeff on scale lengths of the order of th
transverse size of the laser beam. The time over which
motion takes place is of orderR/(Ueff /me)

1/2, which for the
numerical parameters chosen here is less than the puls
ration. An electron burst can therefore cover the entire reg
occupied by the field. For nonrelativistic intensities, t
function Ueff(y,z) ends up symmetric with respect to th
normal to an accuracy of the order of the difference betw
the reflection coefficienth and unity. Thus, the angular dis
tribution of the emitted electrons in Fig. 4 ends up alm
symmetric.

When the ambipolar field is taken into account at inte
sities 1017– 1018 W/cm2, the mean energy of the emitte
electrons is not proportional toUeff ~i.e., to the intensity of
the radiation!, but has a weaker dependence onUeff ~7.9 keV
at 1017 W/cm2 and 13 keV at 1018 W/cm2). Finally, when
the intensity rises to relativistic levels 1018 W/cm2, the num-
ber of electrons emerging in the direction of the reflec
pulse increases~cf. Fig. 3, corresponding to 1018 W/cm2, and
Fig. 4, corresponding to 1017 W/cm2). For ultrarelativistic
s
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intensities 1019 and 1020 W/cm2, the emission angle ap
proaches the specular value.

We now compare the emission angle and electron ene
for a triangular laser beam with intensity 1017 W/cm2 @Eqs.
~16! and~17!# with the numerical results of Fig. 4. A calcu
lation using Eqs.~16! and ~17! yields ue

( i )'17° and ue
(o)

'28°; the numerical simulation yieldsue
( i )'10° andue

(o)

'20°. Finally, estimates of the emission angle from t
slope of the field lines of the effective potential~as described
in Sec. 2! yield ue

( i )'6° andue
(o)'16°. The electron energy

according to estimates ofUeff at z'0, y'0, is 12 keV and
the numerical calculation yields 7.9 keV. Given the appro
mations entailed in the analytic estimates~the lack of an
ambipolar field!, we can say that the numerical and analy
results are in agreement.

This analysis implies that by varying the angle of inc
dence, the intensity, and the transverse profile of the la
beam, it is possible to control the motion of the electr
bunch produced by the interaction of a laser pulse with
solid target.

6. CONCLUSION

An analytic model and two-dimensional PIC calculatio
of the collisionless expansion of a plane plasma from a s
target under the influence of incident and reflected subp
second laser pulses with energy fluxes exceeding 116

W/cm2 have shown that electrons in the subcritical dens
region are driven into the vacuum by ponderomotive a
ambipolar forces in directions different from the target s
face normal.

The angular distribution of the emitted electrons has
following features.

a! At intensities below 1017 W/cm2, the angular distri-
bution is essentially symmetric with respect to the norm
and has a characteristic emission angle that is determine
the transverse shape of the laser beam and by the ang
incidence.

b! When the intensity rises there is an increase in ang
separation between the peaks in the angular distribution
well as an increase in the number of electrons emerg
closer to the direction of the reflected laser pulse. This res
from entrainment of electrons by the reflected laser light.

At intensities above 1018 W/cm2, the energy of the emit-
ted electrons is proportional to the laser intensity, since
increase in accelerating force is not balanced by the amb
lar field. Ions leave the target normal to the surface under
influence of the ambipolar field.

In the region where the incident and reflected la
beams intersect, electron bunches develop in the reg
where the ponderomotive potential has a minimum.

These results imply that a brief, intense laser pulse
be used to produce and control bunches of accelerated
trons.

This work was supported by the MNTTs~Grant No.
N-107! and INTAS ~Grant No. 94-934!.
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The interaction of a relativistic classical electron with an inhomogeneous electromagnetic field is
investigated. In second-order perturbation theory the motion is separated into fast and slow
motions, and the relativistic Newtonian equation is averaged over the fast oscillations. The rate of
change obtained for the slow component of the electron momentum is interpreted as a
relativistic ponderomotive force. The result is generalized to the relativistic case of the well-
known expression for the Gaponov–Miller force acting on an electron at rest. The expressions
obtained for the relativistic ponderomotive forces are very complicated in the general case.
They simplify in the limit of a stationary field~pulses of long duration! and a small gradient. The
most typical and simplest special case of an inhomogeneous field—a stationary plane-
focused beam—is investigated. The main difference between relativistic ponderomotive forces
and their nonrelativistic limit is they have multiple components. In addition to the usual
force directed along the gradient of the field, the relativistic case is also characterized by force
components that do not have the form of the gradient of a potential and are parallel to
the wave vector and the direction of the field polarization. It is shown that when a relativistic
electron travels in a direction close to the direction of the wave vector of a focused
laser beam, these components can greatly exceed the gradient force. A force directed along the
field polarization vector arises even when the gradient of the field in this direction is
zero. © 1999 American Institute of Physics.@S1063-7761~99!00610-1#
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1. INTRODUCTION

The concept of ponderomotive forces is well known f
its widespread applications in plasma physics, in laser ph
ics, and in many other branches of physics. In continu
physics~classical field theory! ponderomotive forces are in
terpreted as time-averaged forces acting on an element
medium because either the field or the mediumper se is
inhomogeneous.1 In low-density media ponderomotiv
forces are often viewed as time-averaged forces acting o
individual electron in a spatially inhomogeneous electrom
netic field. This definition is widely used in plasma physi
and in the physics of the interaction of free electrons
beams of ionized atoms with the inhomogeneous field o
focused laser beam. In the nonrelativistic approximatio
ponderomotive force acting on an individual electron is
rected along the gradient of the average intensity of the fi
for this reason it is often called agradient force. An explicit
expression for the gradient force acting on a nonrelativi
electron appears to have first been derived by Gaponov
Miller,2 and for this reason the concept is often known by
alternative name ‘‘Gaponov–Miller force.’’ The expressio
for the ponderomotive force in Ref. 2 was derived by app
ing a field iteration procedure to the nonrelativistic Newto
ian equation and then averaging the second-order~in
the field! equations over time. It has been shown3,4 that
the same result can be obtained by the elementary proce
6401063-7761/99/89(10)/7/$15.00
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of averaging over time the nonrelativistic electron Ham
tonian in an inhomogeneous electromagnetic fieldH5(p
2eA(r ,t)/c)2/2m, which gives

FGM52¹Upond~r ,t !, ~1!

where

Upond~r ,t !5
e2

2mc2 A2~r ,t !5
e2«0

2~r !

4mv2 ~2!

is the ponderomotive potential,A(r ,t)52(c/v)«0(r )
3cos(vt) is the vector potential of the field,«0(r ) andv are
the amplitude and frequency of the field, and the over
signifies averaging over the period of the field.

The validity of Eqs.~1! and ~2! rests on the condition
that the electron translational velocityv and the velocity of
the electron oscillations in the radiation fieldv«[e«0 /mv
are small in comparison with the light velocityc: v,
v«!c. The assumption that the electron oscillation veloc
be small imposes conditions that limit the strength« and
intensity I of the field: «!« rel5mcv/e and I !I rel

5m2c3v2/8pe2. At frequencies in the optical range we hav
« rel;1010V/cm andI rel;1018W/cm2. The restriction on the
field v«!c is retained in the present study, but no such lim
tations are assumed in the ratio of the velocity and energ
translation motion of the electron. In other words, t
Gaponov–Miller iteration and averaging procedure2 is gen-
© 1999 American Institute of Physics
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eralized to the case in which the translational motion of
electron is relativistic. As in Ref. 2, the calculations are c
ried out in second-order perturbation theory with respec
the inhomogeneous field. The main result obtained below
that in the relativistic case the gradient force acquires inc
ments, which under certain conditions are not small, do
take the form of the gradient of some potential, and are
directed along the gradient of the field.

It is important to note that in a similarly posed proble
back in 1966 Kibble5 averaged the classical equations
motion of an electron to second order with respect to
inhomogeneous field. In Ref. 5, however, the averaged fo
acting on a relativistic electron was not calculated, and so
characteristics of relativistic ponderomotive forces were
revealed. These characteristics were also missed in
papers6,7 dealing with the motion of relativistic electrons i
strong fieldsI>I rel . As mentioned, the case of strong fiel
is not considered in this paper. Consequently, our objec
does not include a detailed comparison with the approxim
tions and conditions for the validity of the results in Refs
and 7.

In Sec. 2 we derive general expressions for the rela
istic ponderomotive force. In Sec. 3 we consider the m
typical special case of electromagnetic field configuration
plane-focused light beam.

2. AVERAGING OF THE RELATIVISTIC NEWTONIAN
EQUATION IN SECOND-ORDER PERTURBATION THEORY

We consider the relativistic Newtonian equation with t
Lorentz force:

dp

dt
5e«~r ,t !1

e

c
v3H~r ,t !, ~3!

where«(r ,t) andH(r ,t) are the electric and magnetic field

«~r ,t !52
1

c

]A~r ,t !

]t
,

H(r ,t)5curlA(r ,t), p is the momentum of the electron,v is
its velocity, v5c2p/E, and E is the energy, whose rate o
change is defined as the work done by the field in unit tim

dE

dt
5ev–«~r ,t !. ~4!

Equation~4! can be used to write the relativistic Newtonia
equation~3! in an equivalent form as an equation for th
electron velocityv:

dv

dt
5

c2

E H 2
e

c

]A~r ,t !

]t
1

e

c
v3@¹3A~r ,t !#

1
e

c3 vS v•
]A~r ,t !

]t D J . ~5!

In its most general form the vector potential of a fie
that satisfies Maxwell’s equations is represented by the F
rier expansion

A~r ,t !5
1

2 E dkAk exp@ i ~k–r2vkt !#1c.c., ~6!
e
-
o
is
-
t

ot

f
e
e
e
t
o

e
-

-
t
a

:

u-

where Ak are the coefficients of the expansion, which a
arbitrary functions of the three-dimensional wave vectork,
and vk5cuku is the frequency corresponding to the wa
vector k. We shall assume below that the spectral width
the fieldA(r ,t) is not too large,Dv/v0!1, whereDv is the
width of the spectrum, andv0 is the center frequency of th
radiation.

We note that the specification of the field in the form~6!
provides a fairly general description of both the spatial a
the temporal inhomogeneities, i.e., the distribution of t
field intensity at the focus together with the activation a
deactivation of the field during transmission of the lig
pulse.

The initial conditions for Eq.~6! are given in the form

r ~ t !u t→t0
5r0 , v~ t !u t→t0

5v0 , ~7!

wherer0 andv0 are the initial values of the radius vector an
velocity of the electron, and it is assumed here that the fi
is zero at the initial timet0 in the region occupied by the
electron.

Clearly, the relativistic equations of motion of an ele
tron in the general form~3!–~5! cannot be solved exactly b
analytical means. We therefore confine the present invest
tion to relatively weak fields,v«!c or I !I rel . We also as-
sume that as the electron moves through the inhomogen
field, different time scales can be distinguished, and the p
cess can be separated into fast and slow motions. Fast
tions comprise oscillations of the field on the unperturb
path of the electron, which take place at the Doppler-shif
frequency of the field. Depending on the direction of t
electron velocity, the light frequency along its path vari
from 2v0 to v0/2g2 ~Refs. 8 and 9!, whereg is the relativ-
istic factor of the translational motion of the electron,g
5@12(v0 /c)2#21/2, and motion at these frequencies is r
garded as fast. Superposed on these fast oscillations is a
motion in the form of a smooth variation of the field amp
tude along the path of the electron. We assume that the
plitudes of the electron coordinates and velocity induced
the field of the fast oscillations are small in comparison w
their smooth, slow, but large-scale variations. It is no
meaningful to pose the problem of averaging the motion
an electron over fast oscillations and finding averaged eq
tions for the slowly varying components of the electron v
locity and momentum. We note that this statement of
problem is meaningful in the given situation only when r
strictions are imposed on the size of the region of inhom
geneity of the field and on the initial electron energy. Inde
the Doppler frequency shift of the field oscillations along t
electron path is also manifested as an increase in the sp
period of the field-induced rapid oscillations of the electro
We know9 that when a relativistic electron moves along t
axis of a focused laser beam, the spatial period of the os
lations of the electron coordinates and velocity in the fie
becomes equal to 2g2l, where l52pc/v0 is the wave-
length of the radiation. Averaging over the rapid oscillatio
makes sense if the number of oscillations over the fo
lengthL is large, i.e., if

L@2g2l. ~8!
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Consequently, the main ideas of the foregoing discuss
are the method of iterations with respect to the interaction
an electron with a field and averaging over the rapid osci
tions. In the iterative procedure the time-dependent rad
vector r (t) and the electron velocityv(t) are sought in the
form of perturbation series:

r ~ t !5r (0)~ t !1r (1)~ t !1r (2)~ t !1...,

v~ t !5v(0)~ t !1v(1)~ t !1v(2)~ t !1..., ~9!

where r (n)(t);v(n)(t);«0
n , and the zeroth-order solution

are determined by the initial conditions~7!:

r (0)~ t !5r01v0t, v(0)~ t !5v0 . ~10!

It is obvious that whenr5r (0)(t) and v5v(0)(t) ~10! are
substituted into the right-hand side of Eq.~5!, the equation
for v(1)(t) acquires only rapidly oscillating terms. Represe
ing the vector potential of the field in the form~6!, we can
integrate the resulting equation forv(1)(t) and find explicit
first-order solutions:

v(1)~ t !52
ec

2E0
E dk

vkBk

vk2k–v0

3exp@ i ~k–r (0)~ t !2vkt !#1c.c., ~11!

r (1)~ t !52
ec

2E0
E dk

vkBk

~vk2k–v0!2

3exp@ i ~k–r (0)~ t !2vkt !#1c.c., ~12!

where the following notation has been introduced
economy of space:

Bk5Ak1
v03~k3Ak!

vk
2

v0

c2 ~v0•Ak!, ~13!

andE05mc2@12(v0 /c)2#21/2 is the initial electron energy
Clearly, the direct averaging of Eqs.~11! and~12! yields

zero and has no significance. Nonzero average values o
electron velocity and momentum arise only in second-or
perturbation theory. A second-order equation is convenie
deduced from Eq.~3! after expressions for the fields« andH
in terms of the vector potentialA are substituted into its
right-hand side, together with the quantitiesr5r (1)(t) and
v5v(1)(t), whereupon we obtain

dp(2)

dt
52

e

c H ~r (1)~ t !3¹!
]A~r ,t !

dt
1v(1)~ t !3¹A~r ,t !

1v03@~r (1)~ t !3¹!¹A~r ,t !#J U
r5r (0)(t)

, ~14!

where the functionsv(1)(t) andr (1)(t) are given by Eqs.~11!
and ~12!. Substituting these expressions into Eq.~14!, we
average the result over rapid oscillations. Essentially
means that we are omitting terms proportional
exp$6i(vk1vk8)t% in the resulting sums and integrals an
are leaving only difference-frequency terms proportional
exp$6i(vk2vk8)t%. The rate of change of the slow comp
nent of the electron momentum induced by averaging is
terpreted as the ponderomotive forceFpond(t) acting on the
ion
of

la-
ius

t-

r

the
er
tly

is
to
d
to
-
in-

electron at any instantt during its motion through the region
occupied by the inhomogeneous field. The final general
sult of our calculations has the form

Fpond~ t !5
dp(2)

dt
52

e2

2E0
ImS E dkdk8

3exp$ i @~k2k8!r (0)~ t !2~vk2vk8!t#%

3vkH Bk3~k83Ak8
* !

vk2k–v0
1

k8•Bk

~vk2k–v0!2

3~vk8Ak8
* 1v03~k83Ak8

* !!J D . ~15!

We note that, generally speaking, the definition of t
average~ponderomotive! force as the time average of th
rate of change of the momentump is not the only one pos-
sible in the relativistic case. For example, the average 4-fo
can be defined as the derivative of the electron 4-momen
averaged overw with respect to the phasew5vt2k–r ~Ref.
6!. The definition~15! is not relativistically covariant, but
this does not prevent its use in the laboratory coordin
frame. The laboratory frame is distinguished from all othe
and therefore contains the light source. As a rule, the fi
assumes the simplest form in this frame. For example, in
case of long-duration pulses discussed below, the labora
frame is the only frame in which the field is stationary. T
physical significance of the definition~15! is that the time
integral of the forceFpond(t) is equal to the change in th
electron momentumDp during the entire interaction time
The momentum variation, in turn, governs~e.g.! the varia-
tion of the direction of electron motion after traversing t
region of localization of the inhomogeneous field~relative to
its initial direction of motion!. As for the path of the electron
as a whole averaged over the rapid oscillations,r (t), in the
general relativistic case it does not depend on the ave
force ~15!. Its determination requires time-averaging Eq.~5!
for the velocityv rather than Eq.~3! for the momentump.
The averaged Eq.~5! can then be integrated to obtainr (t). In
this paper, however, we are content to find the relativis
ponderomotive force given by Eq.~15!.

The general equation forFpond(t) ~15! is valid for an
inhomogeneous field of arbitrary spatial and temporal c
figuration. An important special case discussed below is
case of a stationary field. This approximation is valid if t
laser pulse lasts much longer than the electron time of fli
through the region of the inhomogeneous field. In this c
the spectral width of the radiationDv is so small that we can
setvk5vk85v0 in the integrand of Eq.~15!, whereupon we
obtain

Fpond
st ~ t !52

e2v0

2E0
ImS E dkdk8 exp$ i ~k2k8!•r (0)~ t !%

3H Bk3~k83Ak8
* !

v02k–v0
1

k8•Bk

~vk2k–v0!2

3~v0Ak8
* 1v03~k83Ak8

* !!J D . ~16!
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Strictly speaking, the integration overk and k8 in Eq.
~16! can be carried out in general form without specifyi
the functionsAk andAk8 . It should be noted in this regar
that the spectral expansion~6! assumes the form

A~r ,t !5Re@A0~r !exp~2 iv0t !#, ~17!

whereA0(r ) is the complex amplitude of the field:

A0~r !5E dkAk exp~ ik–r !. ~18!

Finally, the power-law dependence onk andk8 in the inte-
grals of Eq.~16! can be replaced by differentiation operato
according to the rulesk→ i¹5 i ]/]r and k8→2 i¹8
52 i ]/]r 8. As a result, we obtain the following operato
representation for the relativistic ponderomotive force:

Fpond
st ~ t !5

e2v0

2E0
ImH i

B0~r !3@¹83A0* ~r 8!#

v02 iv0•¹

1
¹8•B0~r !

~v02 iv0•¹!2 ~ iv0A0* ~r 8!

1v0@¹83A0* ~r 8!# !J U
r5r85r (0)(t)

, ~19!

where the operator fractions are defined by power series¹
and¹8, and the functionB0(r ) is equal to

B0~r !5A0~r !1 i
v03@¹3A0~r !#

vk
2

v0

c2 ~v0•A0~r !!.

~20!

Bearing in mind this definition of the operator fractions
terms of power series in¹, we can state that in general th
relativistic ponderomotive forces in a stationary inhomog
neous field of arbitrary configurations are determined by
infinite number of higher derivatives of the average intens
of the field I (r ) at an arbitrary pointr on the path of the
electron,r5r (0)(t). This expression for the forceFpond

st (t)
given by ~19! can be simplified in the small-gradient a
proximation, when the expansion in powers of¹ can be re-
stricted to the first order only. This approximation and t
corresponding results will be described in the next sec
for the case of a plane-focused stationary light beam.

3. PONDEROMOTIVE FORCES IN A WEAKLY
INHOMOGENEOUS LIGHT FIELD

We now consider the frequently encountered case o
weakly inhomogeneous field. One example of this situat
under certain conditions is the field of radiation focused b
lens. Criteria of weak inhomogeneity will be formulated b
low. Qualitatively, a field is weakly inhomogeneous if it di
fers only slightly from the field of a plane wave, which,
turn, is characterized by an average wave vectork0 . For a
stationary field this means that in Eqs.~17! and ~18! the
complex amplitudeA0(r ) can be assigned a specific form b
writing it as the product of a slowly varying function of th
coordinatesA00(r ) and the quantity exp(ik0•r ):

A~r ,t !5Re@A00~r !exp$ i ~k0•r2v0t !%#, ~21!
-
n
y

n

a
n
a
-

where once again, by analogy with~18!, the slow function
A00(r ) can be expanded into a Fourier integral:

A00~r !5E dkA0k exp~ ikr !. ~22!

In this notation the ponderomotive force is described by
previous equation~16!, but now withk and k8 replaced by
k01k and k01k8. The slowness of the functionA00(r ) in
comparison with exp(ik0•r ) implies that on the averageuku
!k0 . By a procedure analogous to the transition from E
~16! to ~19! we can once again integrate over the variablek
andk8 and write the equation for the ponderomotive force
the form

Fpond
st ~ t !5

e2v0

2E0
ImH i

B0~r !3@~¹81 ik0!3A00* ~r 8!#

v02 ik0•v02 iv0•¹

1
~¹81 ik0!•B0~r !

~v02 ik0•v02 iv0•¹!2 ~ iv0A00* ~r 8!1v0

3@~¹81 ik0!3A00* ~r 8!# !J U
r5r85r (0)(t)

, ~23!

where

B0~r !5A00~r !1 i
v03@~¹2 ik0!3A00~r !#

vk

2
v0

c2 ~v0•A00~r !!. ~24!

We can interpret the slowness of the functionA00(r ) in Eq.
~22! as slowness of the gradients¹ and ¹8 in comparison
with (v02k0•v0)/v0 in the denominators of Eq.~23!:

uv0•¹u!v02k0•v0 . ~25!

Of course, inequality~25! is a conditional statement an
needs to be interpreted. An appropriate explicit estimate
be given below. For the time being we merely note that
virtue of condition~25! the expansion of the operator frac
tions in powers of¹ and¹8 in Eq. ~23! can be restricted to
the lowest ~linear! approximation in the gradients, whic
gives

Fpond5Fpol1Fk0
1Fgrad, ~26!

whereFpol andFk0
are directed along the polarization vect

e[A00/uA00u, and the force componentFgrad is directed
along the gradient of the average intensity of the field. C
culations by this scheme yield the following equations
the indicated components of the relativistic ponderomot
force:

Fpol5
e2

2E0~v02k0•v0!
~v0¹!

3ReH A00* ~r !S k0•A00~r !1
v0

c2 ~v0•A00~r !! D J , ~27!
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Fk0
52

e2

2E0~v02k0•v0!2 k0~v0•¹!

3Re@~v0•A00~r !!~k0•A00* ~r !!#, ~28!

Fgrad52
e2

2E0
¹H UA00~r !U2

1
Re@~v0•A00~r !!~k0•A00* ~r !!#

v02k0•v0
J . ~29!

We now estimate the conditions under which the wea
inhomogeneous field approximation~25! is valid. We con-
sider the simple scheme of a plane-focused laser beam~Fig.
1!, for which the gradient of its intensity is directed along t
x axis, the wave vectork0 is directed along thez axis, and
the polarization vectore5A00/uA00u is directed along they
axis. The main characteristic parameter of this scheme is
angle of diffraction spreading of the beamu las:

u las5
1

k0d
5

2pl0

d
;

d

L
;S l0

L D 1/2

!1, ~30!

where d is the diameter of the focal spot,L is the focal
length, andl052p/k0 . The parametersu las and l0 can be
used to estimate characteristic values of the transverse
longitudinal ~relative tok0! gradients of the field intensity:

¹'5
]

]x
;

1

d
;

u las

l0
, ¹ i5

]

]z
;

1

L
;

u las
2

l0
. ~31!

We note that the estimates~31! characterize the maximum
possible gradients. In particular, the estimates of¹' and¹ i
refer to regions sufficiently far from the focal axis and fro
the focal plane, respectively~¹'50 on the axis, and¹ i
50 in the focal plane!. Let ue be a small angle between th
electron velocity vectorv0 and the direction of propagatio

FIG. 1. Ponderomotive forces acting on a relativistic electron in an in
mogeneous laser beam.
y

he

nd

of the laser beam~i.e., the vectork0!. Also, let the electron
velocity v0 be close to the light velocityc, and let 12v0

'1/2g2, whereg@1. Under these conditions we can use t
estimates~31! to write the criterion~25! in the form

11
ue

u las
!

1

2g2u las
2 1S ue

u las
D 2

. ~32!

Figure 2 shows graphs of the left-hand and right-hand si
of these inequalities as functions of the ratio of the ang
ue /u las for two different values of the parameterg2u las

2 . If
the relativistic character of the electron is not too pr
nounced, i.e., forg2u las

2 !1, inequality ~32! is satisfied for
any values ofue /u las. But if the electron energy is so hig
that g2u las

2 @1, then inequality~32! is satisfied only forue

.u las, i.e., only if the angle between the direction of th
electron velocityv0 and the vectork0 is not too small. This
means that forg2u las

2 @1 and for motion of the electron alon
or almost along the focal axis (ue,u las) the weakly inhomo-
geneous field approximation is invalid, and the relativis
ponderomotive force is given by the general equations~16!,
~19!, ~23!, and~24!, but not by the simplified equations~27!–
~29!, which are linear in the gradient of the field. In th
important special caseg51/ue condition ~32! is satisfied
only for ue.u las.

We now analyze the dependences and estimates o
components of the ponderomotive force~27!–~29!. We con-
sider the same plane focusing scheme as above~Fig. 1!. Be-
cause the polarization vector of the field is assumed to
orthogonal both to the gradient of the field and to the wa
vectork0 , we havek0•A00(r )[0 and, accordingly,Fk0

[0.
If, in addition, the velocity vectorv0 lies in the plane formed
by the vectorsk0 ande, Eqs.~27! and~29! for Fpol andFgrad

then assume the form

Fpol5ey

e2ueg
2

2E0~11g2ue
2!

]

]z
uA00~r !u2,

uFpolu;
e2ueu las

2 g2uA00u2

2E0l0~11g2ue
2!

, ~33!

Fgrad52
e2

2E0
S ex

]

]x
1ez

]

]zD uA00~r !u2

;2
e2uA00u2

2E0l0
~exu las1ezu las

2 !, ~34!

whereex , ey , andez are unit vectors along thex, y, andz
axes~see Fig. 1!.

-

FIG. 2. Graphs of the left-hand side~1! and right-
hand side~2! of inequality ~32! as functions of
ue /u las for g&,2u las ~a! andg&.2u las ~b!.
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We see at once that Eq.~34! is a direct, elementary gen
eralization of the Gaponov–Miller force:Fgrad ~34! is ob-
tained from Eqs.~1! and ~2! by replacing the electron mas
m with E0 /c25gm.

It follows from Eq.~33! that the dependence of the forc
Fpol on ue has a maximum~Fig. 3! at ue51/g, and at the
maximum

Fpol
max5

e2g

2E0

]

]z
uA00~r !u2;

e2u las
2 guA00u2

2E0l0

;gFgradi@Fgradi , ~35!

i.e., the force directed along the polarization vectorey is g
times larger than the longitudinal~along k0! component of
the gradient forceFgradi[Fgradz . Owing to the weak inho-
mogeneity condition~32! for g51/ue , which holds only if
ue.u las, the forceFpol

max in Eq. ~35! also exceeds the trans
verse gradient forceFgrad'[Fgradx :

Fpol
max

Fgradx
;

g

u las
5

ue

u las
.1. ~36!

It is important to note that, generally speaking, one sho
compare the gradient force and its increments in the s
direction. In the present case of plane focusing, however,
gradient force in they-direction is zero, whereasFpol

maxÞ0. In
this sense we can state that the nongradient ponderom
force directed along the field polarization vector is infinite
many times greater than the gradient force in the same d
tion.

In view of the somewhat unexpected nature of this
sult, we explain its origin qualitatively. The main reason f
the onset of a ponderomotive force directed along the fi
polarization vector in the relativistic case is that the relat
istic equation for the electron velocityv ~5! differs from its
nonrelativistic limit. This difference is governed mainly b
the last term on the right-hand side of Eq.~5!, which is
proportional tov(v•«). When we solve this equation itera
tively, the velocity acquires in the first order a correcti
directed along the initial electron velocity vectorv(1)}v0 .
The substitution of the resulting componentv(1) into the last
term of Eq. ~3! causes the second-order force to acquir
term proportional to the cross productv03H. When the pro-
jection of the initial electron velocity onto the direction o
the wave vectork0 has a nonzero value, the cross produ

FIG. 3. Ratio of the component of the relativistic ponderomotive fo
directed along the field polarization vectorFpol given by~33! to the gradient
componentFgradi given by ~34! as a function of the angleue .
d
e
e

ive

c-

-

ld
-

a

t

v03H has a component directed along the field polarizat
vector «. The calculation of the second-order force comp
nent by this elementary procedure and averaging of the re
over fast oscillations yields a result that coincides with E
~33!.

For a different field polarization with the vectorA00(r )
situated in the common plane of the gradient and the ve
k0 ~the xz plane in Fig. 1!, the productk0•A00(r ) is not
constant and in general has a nonzero value. If the elec
velocity v0 also lies in the samexz plane asA00(r ), bothFpol

~27! andFk0
~28! are nonzero quantities. Now the force com

ponent directed along the wave vectork0 assumes the form

Fk0
52ez

2e2g4

E0~11g2ue
2!2 S ue

]

]x
1

]

]zD
3Re@ueA00x1~A00z!A00z* #. ~37!

Taking into account the estimates of the maximum poss
projections of the vector potential of the focused fieldA00x

;A00, A00z;u lasA00 and the estimates of the derivatives
the potential~31!, we can also estimate the magnitude of t
force Fk0

:

Fk0
;

e2g4A00
2 u las

2 ~u las1ue!
2

E0l0~11g2ue
2!2 . ~38!

A qualitative graph ofuFk0
(ue)u is shown in Fig. 4. The

maximum of the curve is pronounced forgu las,1 and ue

.u las. It is attained atue;1/g.u las, and at the maximum
we have

Fk0

max52
e2g2A00

2 u las
2

E0l0
;g2Fgradi@Fgradi . ~39!

This result shows that in the present case of a weakly in
mogeneous, plane-focused laser field under optimal co
tions the force directed along the focal axis can beg2 times
greater than the longitudinal gradient force. In other wor
the estimate of the force acting on the electron in the dir
tion of k0 , according to Eq.~34!, for the trivial relativistic
generalization of the Gaponov–Miller force (m→gm) can
produce a large—by a factor ofg2—error, whereg@1. This
effect occurs for radiation polarized in the plane of the g
dient of the field~xz plane! if, in addition, the initial electron
velocity vectorv0 lies in the samexz plane and forms an

FIG. 4. Dependence of the ratio of the component of the relativistic p
deromotive force directed along the wave vectorFk0

~37! to the gradient
componentFgrad i ~34! on the angleue .
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angleue51/g with the focal axis~z axis! and if the relativity
factorg and the angle of diffraction spreading of the focus
beam satisfy the conditionsg@1, gu las,1, andu las,ue .

CONCLUSION

To summarize, we have found a general expression~15!
for the ponderomotive forces exerted on a relativistic el
tron by an inhomogeneous electromagnetic field of arbitr
configuration with an arbitrary time dependence. We ha
analyzed the results specifically for the approximation o
stationary, weakly inhomogeneous, plane-focused field.
have estimated the conditions underlying the validity of
small inhomogeneous field approximation~32!, from which
it follows, in particular, that for very high electron energi
(g@1/u las) and an electron velocity directed very close
the direction of the focal axis (ue<u las) the weakly inhomo-
geneous field approximation fails, and the general equa
~15! obtained for relativistic ponderomotive forces must
used. When the conditions supporting the approximation
weak inhomogeneity of the field hold, we have determin
that the relativistic ponderomotive forces have several co
ponents, i.e., besides the usual gradient forces they also
tain terms directed along the field polarization vector and
focal axis. Our estimates show that the resulting ‘‘inc
ments’’ can greatly exceed the gradient component of
relativistic ponderomotive force. We have found conditio
under which the relativistic ponderomotive force differs su
stantially from its gradient component. These conditions
sentially entail the proper choice of polarization of the fie
and direction of the initial electron velocity vectorv0 , as
well as a relation between the directions ofv0 and the focal
axis (k0) so as to satisfy the conditiong51/ue .

In addition to the expressions obtained for the relativis
ponderomotive forcesper se, it is also important to deter
mine the averaged electron paths in an inhomogeneous
as a whole. As mentioned above, this problem can be so
-
y
e
a
e

e

n

f
d
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n-

e
-
e

s
-
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c
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ed

by time-averaging the relativistic equation~5! for the elec-
tron velocityv(t).

The results of the present study have been obtaine
second order with respect to the light field, which corr
sponds to a relatively low intensityI !I rel . Of unquestion-
able interest is the generalization to stronger fields. Mo
over, together with the classical treatment of the problem
this paper, it would also be interesting to solve the quantu
mechanical problem of relativistic ponderomotive force
Under certain conditions the results of the present study
most likely be reproduced in terms of the quantum solution
in the latter the initial state of the electron is specified in t
form of localized wave packets.10,11

The authors are grateful to N. B. Narozhny� for helpful
critical comments.
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Spontaneous interference bremsstrahlung effect in the scattering of a relativistic
electron by a nucleus in the field of two light waves
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This paper presents, for the general relativistic case, a theoretical study of nonresonance
spontaneous bremsstrahlung by an electron scattered by a nucleus in the field of two elliptically
polarized light waves propagating in the same direction. We show that there are two
significantly different kinematic regions: the noninterference region where the main multiphoton
parameters are the Bunkin–Fedorov quantum parametersg1,2, and the interference region
where interference effects play an important role and where the quantum interference parameters
a(6) act as multiphoton parameters. We encounter the spontaneous interference
bremsstrahlung effect in two cases: in the special case of the same linear polarization of both
waves, and in the general case of elliptical polarization of the waves. The effect manifests
itself in the interference region and is due to stimulated, correlated emission and absorption of
photons of both waves. For moderately strong fields, we find the cross sections of
spontaneous bremsstrahlung by an electron scattered by a nucleus in the given kinematic regions.
Finally, we show that the differential cross section in the interference region with correlated
emission~absorption! of equal numbers of photons of both waves can be much greater than the
corresponding cross section in any other geometry. ©1999 American Institute of Physics.
@S1063-7761~99!00710-6#
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1. INTRODUCTION

Spontaneous bremsstrahlung by an electron scattere
a nucleus in the field of a plane electromagnetic wave
been investigated for a long time~see, e.g. Refs. 1–6!. At-
tention was focused primarily on the study of resonan
associated with mass-shell effects in the Green’s function
the intermediate electron in the plane-wave field. For
general relativistic case, the resonances were studied in
7 ~see also the review in Ref. 8!.

Lately there has been an upsurge of interest in elem
tary quantum processes that occur in a superposition of
eral laser fields. For instance, Karapetyan and Fedorov9 stud-
ied, in the nonrelativistic limit~in the dipole approximation!,
stimulated bremsstrahlung and inverse bremsstrahlung
electrons scattered by a nucleus in the presence of two p
electromagnetic waves. This process for the general rela
istic case in the field of two waves was examined in Re
10–12 and in the field of an arbitrary number of plane el
tromagnetic waves, in Ref. 13. These studies revealed a
physical effect, the interference effect11,12 associated with
correlated emission and absorption of equal numbers of p
tons of the two waves by an electron scattered by a nuc
in a specific plane into given angles~the interference effec
was generalized to an arbitrary number of waves in Ref. 1!.
Note that stimulated bremsstrahlung and inverse bremss
lung by an electron scattered by another electron in the fi
of two waves were studied in Ref. 14. The spontane
emission of a photon by an electron in the field of two wav
6471063-7761/99/89(10)/17/$15.00
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was studied earlier~see, e.g., Refs. 15–19!. The same pro-
cess in the interference region in the field of two waves w
studied in Ref. 20 and in the field of an arbitrary number
plane waves, in Ref. 21. Here a spontaneous combina
effect was discovered: the emission by the electron o
spontaneous photon at combination frequencies of the ex
nal waves.

In the present paper we investigate nonresonant spo
neous bremsstrahlung by an electron scattered by a nuc
in the field of two plane electromagnetic waves propagat
in the same direction. Note that we do not study the re
nance associated with mass-shell effects in the Green’s f
tion of the intermediate electron in the plane-wave field. W
do, however, investigate in detail spontaneous bremsst
lung in the noninterference and interference regions, and
the latter we predict the emergence of a spontaneous in
ference bremsstrahlung effect in two cases: for equal lin
polarizations of the waves and elliptical polarization of t
waves. In the latter case the effect amounts to strong co
lation of the exit angles of the electron and spontaneous p
ton, to a dependence of the emission spectrum on the en
and polar incidence angle of the initial electron, and
stimulated, correlated emission and absorption~due to wave
interference! of photons of both waves. We also show th
the differential cross section of spontaneous bremsstrah
in the interference region can be much greater than the
responding cross section in any other geometry. In this pa
we use natural units, with\5c51.
© 1999 American Institute of Physics
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FIG. 1. Spontaneous bremsstrahlung by an el
tron scattered by a nucleus in the field of two ligh
waves. The solid incoming and outgoing line
correspond to the wave functions of the initial an
final electrons in the field of two waves~Volkov
functions!, the dashed lines correspond to th
spontaneous photonk8 and the ‘‘pseudophoton’’
of the nucleus, and the internal lines correspo
to the Green’s function of an electron in the fiel
of two waves.
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2. AMPLITUDE OF SPONTANEOUS BREMSSTRAHLUNG

We select the 4-vector potential of the external field
the form of the sum of two plane electromagnetic wav
propagating parallel to thez axis:

A5A1~w1!1A2~w2!, ~1!

where

Aj~w j !5
F j

v j
~ejx cosw j1d jejy sinw j !. ~2!

Here d j is the ellipticity parameter~d j50 for linear polar-
ization and d j

251 for circular polarization of waves!,
ejx5(0,ejx) and ejy5(0,ejy) are the 4-vectors of wave po
larization,F j andv j are the field strength and frequency
the first (j 51) and second (j 52) waves, and the argumen
w j has the form

w j5v j~ t2z!, j 51,2. ~3!

The amplitude of spontaneous bremsstrahlung by an elec
scattered by a nucleus in the light wave~1! has the form~see
Fig. 1!

Sf i52 ie2E d4x1d4x2c̄ f~x2uA!

3@ g̃0A0~x2!G~x1x2uA!Â8~x1 ,k8!

1Â8~x2 ,k8!G~x1x2uA!g̃0A0~x1!#c i~x1uA!, ~4!

wherec i(x1uA) and c̄ f(x2uA) are the wave function of the
electron in the initial and final states in the light wave~1!
~the Volkov function!,22 G(x1 ,x2uA) is the Green’s function
of the electron in the field of the plane wave~1! ~see Refs. 7
and 23–26!,

A0~x!5
Ze

uxu
~5!

is the Coulomb potentialZe of the nucleus, the ‘‘hatted’’
expressionÂ8(x,k8)5g̃mAm8 denotes the scalar product o
the Dirac matricesg̃m (m51,2,3,4) and the 4-vector poten
tial of the spontaneous photon,

Am8 ~x,k8!5A2p

v8
«m* exp$ ik8x%, ~6!

with «m* and k85v8n85v8(1,n8) the 4-vector of polariza-
tion and 4-momentum of the spontaneous photon. After p
forming simple manipulations~see Refs. 7 and 22! with the
amplitude~4!, we can write
s

on

r-

Sf i5 (
l 52`

`

(
s52`

`

Sls , ~7!

where the partial amplitude with emission~l .0 ands.0! or
absorption~l ,0 ands,0! of u l u photons of the first wave
and usu photons of the second is

Sls52 i
8p5/2Ze3

A2v8Ẽi Ẽf

exp$ if i f %@ ūfHlsui #
d~q0!

q2 , ~8!

with

Hls5 (
l 852`

`

(
s852`

` FMl 2 l 8,s2s8~ p̃f ,q̃i !
q̂̃i1m*
q̃i

22m
*
2 Kl 8,s8

3~ q̃i ,p̃i !1Kl 8,s8~ p̃f ,q̃f !
q̂̃ f1m*
q̃f

22m
*
2 Ml 2 l 8,s2s8~ q̃f ,p̃i !G .

~9!

Heref i f is the phase, which is independent of the summ
tion indices,ui and ūf are Dirac bispinors,q5(q0 ,q) is the
4-momentum transfer, andq̃i and q̃f are the 4-momenta o
the intermediate electrons for the amplitudes of diagram
and b~see Fig. 1!, respectively:

q5 p̃f2 p̃i1k81 lk11sk2 , ~10!

q̃i5 p̃i2k82 l 8k12s8k2 , ~11!

q̃f5 p̃f1k81 l 8k11s8k2 . ~12!

In Eqs. ~9!–~12!, k15v1n5v1(1,n) and k25v2n
5v2(1,n) are the 4-momenta of the photons of the first a
second waves,p̃i andp̃f are the 4-quasimomenta of the ele
tron before and after scattering, andm* is the effective mass
of the electron in the light wave~1!:

p̃ j5pj1
m2

4~k1pj !
@~11d1

2!h1
21~11d2

2!h2
2#k1 , j 5 i , f ,

~13!

m* 5mA11
1

2
~11d1

2!h1
21

1

2
~11d2

2!h2
2. ~14!

Herepj5(Ej ,pj ) is the 4-momentum of the electron befo
( j 5 i ) and after (j 5 f ) scattering, and

h1,25
eF1,2

mv1,2
~15!

is the classical Lorentz-invariant parameter characteriz
the intensity of the first and second waves, respectively.
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In Eq. ~9!, the operatorsMrr 8 , which determine the am
plitude of the scattering of an electron~as if the intermediate
electron were real; see Ref. 11! by a nucleus in the field o
two waves, have the form

Mrr 8~ p̃2 ,p̃1!5g̃0I rr 81
v1m2

8~k1p̃1!~k1p̃2!
Brr 8k̂1

1
m

4~k1p̃1!
g̃0k̂1D̂rr 8

1
m

4~k1p̃2!
D̂rr 8k̂1g̃0 , ~16!

wherer 5 l 2 l 8, r 85s2s8, p̃15q̃i and p̃25 p̃f for the am-
plitude a, andp̃15 p̃i and p̃25q̃f for the amplitude b~see
Fig. 1!. The operatorsKl 8s8 in ~9!, which determine the am
plitude of spontaneous emission of a photon by an elec
~as if the intermediate electron were real; see Ref. 20! in the
field of two waves, have the form

Kl 8s8~ p̃2 ,p̃1!5 «̂* I l 8s81
v1m2

8~k1p̃1!~k1p̃2!
Bl 8s8k̂1

1
m

4~k1p̃1!
«̂* k̂1D̂ l 8s8

1
m

4~k1p̃2!
D̂ l 8s8k̂1«̂* . ~17!

where p̃15 p̃i and p̃25q̃i for the amplitude a, andp̃15 p̃f

and p̃25 p̃f for the amplitude b. In Eqs.~16! and ~17!, the
functions I rr 8 and Brr 8 and the 4-vectorDrr 8 , first intro-
duced in Ref. 11~see also Refs. 12 and 13!, have the form

Drr 85h1~e1* I r 11,r 81e1I r 21,r 8!

1h2~e2* I r ,r 8111e2I r ,r 821!, ~18!

ej5ejx1 id jejy , j 51,2,

Brr 85h1
2@2~11d1

2!I rr 81~12d1
2!~ I r 12,r 81I r 22,r 8!#

1h2
2@2~11d2

2!I rr 81~12d2
2!~ I r ,r 8121I r ,r 822!#

12h1h2@d2I r 21,r 8211d2* I r 11,r 811

1d1I r 21,r 8111d1* I r 11,r 821#, ~19!

d65~16d1d2!cosD1 i ~d16d2!sinD, ~20!

D5/~e1x ,e2x!,

I rr 8[I rr 8~x1 ,g1 ,b1 ;x2 ,g2 ,b2 ;t2 ,t1 ,a1 ,a2!

5
1

~2p!2 E
0

2p

df1E
0

2p

df2 exp$ i ~F2rf12r 8f2!%,

~21!

F5g1 sin~f12x1!1b1 sin 2f11g2 sin~f22x2!

1b2 sin 2f21a1 sin~f11f22t2!

1a2 sin~f12f22t1!. ~22!

The arguments of the functionsI rr 8 are
n

tant65
Im d6

Red6
5

d16d2

16d1d2
tanD, tanx j5d j

ejygj

ejxgj
, ~23!

gj[gj~ p̃2 ,p̃1!5
p̃2

~kj p̃2!
2

p̃1

~kj p̃1!
,

g j[g j~ p̃2 ,p̃1!5h jmA~ejxgj !
21d j

2~ejygj !
2, ~24!

b j[b j~ p̃2 ,p̃1!5
~12d j

2!h j
2m2

8 F 1

kj p̃2
2

1

kj p̃1
G , j 51,2,

~25!

a6[a6~ p̃2 ,p̃1!5h1h2

ud7um2

2~k16k2! S 1

p̃1
2

1

p̃2
D . ~26!

We note that the integer values ofr andr 8 in Eqs.~18!,
~19!, and~21!, and of the 4-momentap̃1 andp̃2 in Eqs.~18!,
~19!, and ~21!–~26!, are equal to the respective values
formulas ~16! and ~17! ~see text following these formulas!.
We also note that the functions~21! and ~22! can be ex-
panded in Bessel functionsJr of integer order:11

I rr 85 (
j 52`

`

(
j 852`

`

exp$2 i ~ j t21 j 8t1!%Jj~a1!Jj 8~a2!

3Lr 2 j 2 j 8~x1 ,g1 ,b1!Lr 81 j 82 j~x2 ,g2 ,b2!. ~27!

Here the functionsLr 2 j 2 j 8 andLr 81 j 82 j are determined by
the parameters of the first and second waves and des
multiphoton processes in the field of one wave:11,27–29

Lr~x,g,b!5exp$2 ir x%

3 (
r 852`

`

exp$2ir 8x%Jr 22r 8~g!Jr 8~b!. ~28!

Note that theg j in ~24! are the well-known Bunkin–
Fedorov multiphoton quantum parameters.27–29The quantum
parametersb j in ~25! play an important role for linear polar
ization of the waves at high electron energies~b j50 for
circular polarization of the waves and for elliptical polariz
tion, but in the dipole approximation for the interaction
the electron and the electrostatic fields of both waves!, and
the a6 in ~26! are quantum interference parameters, wh
determine the interference effects in the scattering of an e
tron by a nucleus and in the spontaneous emission of a p
ton by the electron in the field of two waves. We also no
that in Eqs.~16! and~17! the functionsI rr 8 in ~27! determine
the multiphoton processes in the field of two waves; a
tailed analysis of these functions can be found in Ref.
Here we merely note that ifa6*1, correlated emission an
absorption of photons of the two waves become importa
But if a6!1 ~this condition holds in the dipole approxima
tion, in the optical frequency range at arbitrary electron e
ergies and moderate wave intensities,h1h2!v1,2Ei /m2v i ,
and for linearly polarized waves of arbitrary intensity
D5p/2; see~26! and~20! and Refs. 11 and 12!, interference
processes can be ignored (j 5 j 850) and the functionsI rr 8 in
~27! become the product of functions that determine the
dependent emission and absorption of photons of the
and second waves:
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I rr 8~x1 ,g1 ,b1 ;x2 ,g2 ,b2 ;0,0,0,0!

5Lr~x1 ,g1 ,b1!Lr 8~x2 ,g2 ,b2!. ~29!

The expressions~7!–~9! for the amplitude of spontane
ous bremsstrahlung by an electron scattered by a nucleu
valid for arbitrary intensities and frequencies of both wav
and for electron velocitiesv i , f@Z/137. It can easily be
shown that when one wave is switched off~say, when
F250!, the expressions~7!–~9! determine the amplitude o
spontaneous bremsstrahlung by an electron scattered
nucleus in the field of one wave,7 and when both waves ar
switched off (F15F250), the expressions~7!–~9! deter-
mine the amplitude of spontaneous bremsstrahlung by
electron scattered by a nucleus in a vanishing external fie22

We also note, then, that for equal frequencies of
waves (v15v2) and equal polarizations (d15d2), the ex-
pressions~7!–~9! become the expression for the amplitude
spontaneous bremsstrahlung by an electron scattered
nucleus in the field of one wave, whose strengthF and po-
larization vectorsex and ey are linked to the initial param
eters of the waves through the relations

F5AF1
21F2

212F1F2 cosD, ~30!

ex5
F1e1x1F2e2x

F
, ey5

F1e1y1F2e2y

F
. ~31!

We therefore assume that the frequencies of the waves d
by Dv5v22v1 . Then the expressions~10!–~12! for the
4-momenta become

q5 p̃f2 p̃i1k81@ l 1s~11Dv/v1!#k1 , ~32!

q̃i5 p̃i2k82@ l 81s8~11Dv/v1!#k1 , ~33!

q̃f5 p̃f1k81@ l 81s8~11Dv/v1!#k1 . ~34!

These relations~32!–~34! show that if

uDvu
v1

!1, ~35!

this term can be ignored.
We can then introduce new photon numbersr 5 l 1s and

r 85 l 81s8, and sum the amplitude in~7!–~9! first over all
values ofs and then over all values ofs8. In doing so we use
the easily verifiable relations

(
s52`

`

I r 2r 81s82s,s2s85exp$2 ia2 sint1%Lr 2r 8~x,g,b!,

(
s52`

`

I r 2s8,s85exp$2 ia28 sint1%Lr 8~x8,g8,b8!, ~36!

where

tanx5
g1 sinx11g2 sinx2

g1 cosx11g2 cosx2
,

g5Ag1
21g2

212g1g2 cos~x12x2!, ~37!
are
s

a

n
.
e

f
a

er

b5b11b21a15
~12d1

2!m2

8 F 1

k1p̃2
2

1

k1p̃1
G~h1

21h2
2

12h1h2 cosD!. ~38!

Note that in~36! the primed parameters differ from the co
responding unprimed parameters by the values of
4-momentap̃1 and p̃2 @see text following formulas~16! and
~17!#. Allowing for all this, we find

(
s52`

`

Mr 82r 81s82s,s2s8→exp$2 ia2 sint1%Mr 2r 8 ,

(
s852`

`

Kr 82s8,s8→exp$2 ia28 sint1%Kr 8 , ~39!

and

(
s52`

`

Hr 2s,s→exp$2 ia2~ p̃f ,p̃i !sint1%Hr , ~40!

where Mr 2r 8 and Kr 8 determine the amplitude of electro
scattering by the nucleus and the amplitude of spontane
emission of a photon by an electron in the field of one wa
andHr determines, with allowance for~8!, the amplitude of
spontaneous bremsstrahlung by the electron scattered b
nucleus in the field of one wave.7,8 Note that the phase in
~40! is large (ua2u@1), but in calculating the probability it
is balanced by being multiplied by the complex-conjuga
value. Thus, if condition~35! holds, we have the thoroughl
studied process of spontaneous bremsstrahlung by an
tron scattered by a nucleus in the field of a plane wave.7 In
what follows, we therefore assume that the opposite of~35!
holds:

uDvu
v1

*1. ~41!

Moreover, we assume that the wave frequencies obey
conditions

v1.v2 , v1,2!H m if Ei*m,

1

2
mv i

2 if v i!1.
~42!

Since the Bunkin–Fedorov parametersg j @Eq. ~24!#
strongly depend on the kinetics of electron scattering and
emission of a spontaneous photon, following Refs. 11–
20, and 21, we can specify two kinematic regions: the n
interference region where the main multiphoton parame
are the Bunkin–Fedorov quantum parameters, and the in
ference region where these parameters do not manifest th
selves~by virtue of special kinematics, all eight paramete
g j vanish!, and where multiphoton processes are determi
primarily by the quantum interference parametersa6 @Eq.
~26!#, i.e., stimulated emission and absorption are gover
by the interaction between the electron and the interfere
field of both waves.
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3. AMPLITUDE OF SPONTANEOUS BREMSSTRAHLUNG IN
THE INTERFERENCE REGION

In the interference region, the following relationshi
must hold in the general case of arbitrary wave intensitie

ejxgj~ p̃f ,q̃i !5ejygj~ p̃f ,q̃i !50,

ejxgj~ q̃i ,p̃i !5ejygj~ q̃i ,p̃i !50, j 51,2, ~43a!

for amplitude a~Fig. 1!, and

ejxgj~ q̃f ,p̃i !5ejygj~ q̃f ,p̃i !50,

ejxgj~ p̃f ,q̃f !5ejygj~ p̃f ,q̃f !50, j 51,2, ~43b!

for amplitude b. Here the 4-vectorsgj are given by~23!. By
virtue of ~43a! and~43b!, the Bunkin–Fedorov quantum pa
rameters~24! and the phasesx j @Eq. ~23!# must vanish:

g j~ p̃f ,q̃i !5g j~ q̃i ,p̃i !50,

g j~ q̃f ,p̃i !5g j~ p̃f ,q̃f !50, j 51,2, ~44!

x j~ p̃f ,q̃i !5x j~ q̃i ,p̃i !50,

x j~ q̃f ,p̃i !5x j~ p̃f ,q̃f !50, j 51,2. ~45!

For arbitrary wave intensities, the conditions~43! hold in
two cases:

~1! in the special case of equal linear polarizations
both waves~D50 ande1x5e2x5ex! in the scattering of the
electron and the ejection of a photon in the plane perpend
lar to the polarization vectors of both waves:~the yz plane:
ex–k85ex–pi5ex–pf50; see Sec. 5!;

~2! in the general case of elliptical polarization of bo
waves, for which the corresponding vectorsgj @see Eqs.~43!#
are either parallel or antiparallel to the direction of propa
tion of the two waves~vector n!, i.e., perpendicular to the
polarization plane (ejx ,ejy) ~see Sec. 6!.

Thus, in the interference region given by~43!, the pa-
rametersg j vanish and the functionsI rr 8 in ~27!, which de-
termine the amplitude of spontaneous bremsstrahlung@Eqs.
~7!–~9!#, become the functionsJr 1r 2

~see Ref. 11!:

I rr 8~0,0,b1 ;0,0,b2 ;t1 ,t2 ,a1 ,a2!

→Jr 1r 2
~b1 ,b2 ;x1 ,x2 ,a1 ,a2!

5exp$2 i ~r 1x21r 2x1!% (
j 52`

`

(
j 852`

`

exp$ i ~ j x1

1 j 8x2!%Jr 12 j 2 j 8~a1!Jr 22 j 1 j 8~a2!Jj~b1!Jj 8~b2!,

~46!

where we have introduced the notation

x15t21t1 , x25t22t1 ,

r 15
1

2
~r 1r 8!, r 25

1

2
~r 2r 8!. ~47!

We see that in the interference region the numbers of p
tons of both waves emitted and absorbed by the electron
correlated in such a way that half the sum and half the
ference of these numbers~r andr 8! are integers~r 1 andr 2!.
:

f

u-

-

o-
re

f-

We now rewrite the expressions~7!–~12! and~16!–~19!
for the amplitude of spontaneous bremsstrahlung in the n
notation ~47!. Here the sum and difference of the integ
indicesl 8,s8 and l ,s can be either even,

l 81s852s1 , l 1s52l 1 ,

l 82s852s2 , l 2s52l 2 , ~48!

or odd,

l 81s852s121, l 1s52l 121,

l 82s852s221, l 2s52l 221. ~49!

Assuming that they are even@Eqs. ~48!#, we obtain corre-
lated emission~absorption! of equal numbers of photons o
both waves, and the 4-momenta~10!–~12! transform as

q→q(0)5 p̃f2 p̃i1k81 l 1~k11k2!1 l 2~k12k2!,

q̃i→q̃i (0)5 p̃i2k82s1~k11k2!2s2~k12k2!,

q̃f→q̃f (0)5 p̃f1k81s1~k11k2!1s2~k12k2!. ~50!

Here I l 8s8→Js1s2
, I l 862,s8→Js161,s261 , I l 8,s862

→Js161,s271 , I l 861,s861→Js161,s2
, I l 861,s871→Js1 ,s261 ,

andDl 8s8→0 ~the 4-vectorDl 8s8 is finite only if ~49! holds!.
In the ‘‘odd’’ case~conditions~49! hold!, instead of~50! we
have

q→q~1!5 p̃f2 p̃i1k81S l 12
1

2D ~k11k2!

1S l 22
1

2D ~k12k2!,

q̃i→q̃i (1)5 p̃i2k82S s12
1

2D ~k11k2!

2S s22
1

2D ~k12k2!, ~51!

q̃f→q̃f (1)5 p̃f1k81S s12
1

2D ~k11k2!

1S s22
1

2D ~k12k2!.

Here I l 811,s8→Js1s2
, I l 8,s811→Js1 ,s221 , I l 821,s8

→Js121,s221 , I l 8,s821→Js121,s2
, I l 8s8→0, and Bl 8s8→0.

Equations~50! and ~51! suggest that in the interference r
gion the electron, during electron deceleration at the nucl
and spontaneous emission of a photon, emits~absorbs!, in a
correlated manner, equal numbers of photons of the first
second waves~s56 l and s856 l 8! or numbers that differ
by 1 @s56( l 11) ands856( l 811)#; processes in which
the numbers of emitted~absorbed! photons of both differ by
more than one are suppressed. Formally, this looks like
electron emits~absorbs! in a stimulated manner an integer o
half-integer number of photons at the combination frequ
cies v16v2 ~although actually there are no such photon!.
The final formula for the amplitude of spontaneous brem
strahlung by an electron scattered by a nucleus in the in
ference region is
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Sf i5 (
l 152`

`

(
l 252`

`

@Sl 1 l 2

(0) 1Sl 1 l 2

(1) #, ~52!

whereSl 1 l 2

(0) andSl 1 l 2

(1) are the partial amplitudes with corre

lated emission~absorption! of equal numbers of photons o
both waves and of numbers of such photons that differ b
and are specified by Eq.~8!, in which q must be replaced by
q(0) and Hls by Hl 1 l 2

(0) , and q by q(1) and Hls by Hl 1 l 2

(1) ,

respectively. Here

Hl 1 l 2

(0) 5 (
s152`

`

(
s252`

`

@Tl 12s1 ,l 22s2

(0,0)

1Tl 12s111,l 22s211
(1,1) #,

Hl 1 l 2

(1) 5 (
s152`

`

(
s252`

`

@Tl 12s1 ,l 22s2

(1,0) 1Tl 12s1 ,l 22s2

(0,1) #,

~53!

where

Tl 12s1 ,l 22s2

(a,b) 5Ml 12s1 ,l 22s2

(a) ~ p̃f ,q̃i (b)!
q̂̃i (b)1m*
q̃i (b)

2 2m
*
2

3Ks1s2

(b) ~ q̃i (b) ,p̃i !

1Ks1s2

(b) ~ p̃f ,q̃f (b)!
q̂̃ f (b)1m*
q̃f (b)

2 2m
*
2

3Ml 12s1 ,l 22s2

(a) ~ q̃f (b) ,p̃i !, ~54!

a,b50,1, and

Ks1s2

(0) ~ p̃2 ,p̃1!5 «̂* Js1s2
1

v1m2

8~k1p̃1!~k1p̃2!
Bs1s2

(0) k̂1 ,

~55!

Ks1s2

(1) ~ p̃2 ,p̃1!5
m

4~k1p̃1!
«̂* k̂1D̂s1s2

(1)

1
m

4~k1p̃2!
D̂s1s2

(1) k̂1«̂* , ~56!

Ml 12s1 ,l 22s2

(0) ~ p̃2 ,p̃1!5g̃0Jl 12s1 ,l 22s2

1
v1m2

8~k1p̃1!~k1p̃2!

3Bl 12s1 ,l 22s2

(0) k̂1 , ~57!

Ml 12s1 ,l 22s2

(1) ~ p̃2 ,p̃1!5
m

4~k1p̃1!
g̃0k̂1D̂ l 12s1 ,l 22s2

(1)

1
m

4~k1p̃2!
D̂ l 12s1 ,l 22s2

(1) k̂1g̃0 .

~58!

In Eqs. ~55!–~58!, the functionsBrr 8
(0) and the 4-vectorDrr 8

(1)

are of the form
1,

Brr 8
(0)

5h1
2@2~11d1

2!Jrr 81~12d1
2!~Jr 11,r 811

1Jr 21,r 821!#1h2
2@2~11d2

2!Jrr 81~12d2
2!

3~Jr 11,r 8211Jr 21,r 811!#12h1h2@d2Jr 21,r 8

1d2* Jr 11,r 81d1Jr ,r 8211d1* Jr ,r 811#, ~59!

Drr 8
(1)

5h1~e1* Jrr 81e1Jr 21,r 821!1h2~e2* Jr ,r 821

1e2Jr 21,r 8!. ~60!

Note that the operator determining the correlated emiss
and absorption of photons of both waves whose numb
differ by 1 @second line of~53!# is proportional to the inten-
sities of the external fields,Hl 1 l 2

(1) }h1,2, and disappears a

h1,2→0, which sets it apart from the operatorHl 1 l 2

(0) , which

in the limit of weak fields,h1,2→0, is given by an expression
that determines the amplitude of spontaneous bremsstrah
by an electron scattered by a nucleus in vanishing exte
fields.

4. SPONTANEOUS BREMSSTRAHLUNG IN THE
NONINTERFERENCE REGION

We now turn to spontaneous bremsstrahlung of an e
tron scattered by a nucleus in the noninterference reg
where the conditions~43! fail, i.e., in the kinematic region
where the Bunkin–Fedorov quantum parametersg j in ~24!
are not small and are the main multiphoton parameters. N
that this region is broad. Only fixed-angle scattering of
electron and emission of a spontaneous electron in the p
perpendicular to the polarization vector of both waves~for
equal linear polarizations of the waves see Sec. 5! and in the
plane of the initial electron momentum and the wave vec
~see Sec. 6! are ruled out in this region.

We begin with relativistic electron energies. Then t
quantum parameters~24!–~26! have the following orders of
magnitude in the noninterference region:

g1,2;
h1,2m

v1,2
, b1,2;g1,2j1,2, a6;g1j2;g2j1 ,

~61!

where

j1,25
h1,2m

upi u
~62!

is the classical parameter that determines the constants o
motion in the noninterference region.8,11–13 In moderately
strong fields we havej1,2!1, which is equivalent to the fol-
lowing conditions on the intensities of the fields as functio
of the electron energy:

h1,2!H 1 if Ei;m,

Ei /m if Ei@m.
~63!

Under these conditions, the values of the quantum
rameters are such thatb1,2!g1,2 and a6!g1,2, and multi-
photon processes are primarily determined by the co
sponding Bunkin–Fedorov parameters~l 8&g1 ands8&g2!.
Noting that l 8v1 /Ei , f&j1!1 and s8v2 /Ei , f&j2!1, we
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find that in moderately strong fields@the conditions~63!# the
expression for the amplitude of spontaneous bremsstrah
@Eqs.~8!–~17!# becomes much simpler. For instance, the
pressions for the 4-momenta~10!–~12! and amplitudes~16!
and ~17! assume the form

q5pf2pi1k8, qi5pi2k8, qf5pf1k8, ~64!

Ml 2 l 8,s2s85g̃0I l 2 l 8,s2s8 , Kl 8s85 «̂* I l 8s8 . ~65!

Equation ~64! shows that in moderately strong fields, th
resonances associated with mass-shell effects in the Gre
function of the intermediate electron in the field of the wav
do not emerge~qi

2Þm2 andqf
2Þm2!, i.e., the range of field

strengths given by~63! also determines the nonresonan
region.

Since the arguments of the functionsI l 8s8 and I l 2 l 8,s2s8
in ~65! are independent of the sum of the summation indic
if we allow for ~65!, the amplitude~9! can easily be summe
over all integersl 8 ands8. The final expression for the am
plitude given by~8! and ~9! is

Sls5I ls exp$ if i f %S* , ~66!

whereS* is the amplitude of spontaneous bremsstrahlung
an electron scattered by a nucleus in a vanishing exte
field,22 and the functionsI ls are determined by the expre
sions~27! and~28! in whose arguments@Eqs.~23!–~26!# we
must putp̃15pi and p̃25pf , i.e.,

g1,25g1,2~pf ,pi !, b1,25b1,2~pf ,pi !, a65a6~pf ,pi !.
~67!

Allowing for the expression~66! for the amplitude, we
can easily derive a formula for the differential cross sect
of spontaneous bremsstrahlung by an electron scattered
nucleus in the field of two waves:

ds ls5uI lsu2ds* , ~68!

whereds* is the differential cross section of spontaneo
bremsstrahlung by an electron scattered by a nucleus
the emission of a photon of given frequency and direct
and with ejection of the final electron in a given direction~in
a vanishing external field!.22 Note that the derived expressio
is valid for ultrarelativistic electrons moving in the initial o
final states in a narrow cone with the external-field photo
at angles that are not too small (u i , f

2 @h1,2m/Ei , f), but is not
valid for ultrarelativistic electrons moving in a narrow con
with the spontaneous photon~the appropriate expressions fo
a single wave were derived by Borisov and Zhukovski�

2!.
Equation~68! makes it clear that in moderately stron

fields @the conditions~63!#, the spontaneous bremsstrahlu
cross section becomes the product of probabilities of em
sion~absorption! of l photons of the first wave ands photons
of the second wave by the cross section of spontane
bremsstrahlung for an electron scattered by a nucleus
vanishing external field. Thus, the emission of a spontane
photon and the emission~absorption! of photons of both
waves in the electron deceleration at the nucleus proc
independently. Here the emission and absorption of pho
of the first and second wave are generally correlated via
quantum interference parametersa6 .
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Note that forg1,2!j1,2
21@1 andg1,2!j2,1

21@1, which for
the intensities of the fields considered as functions of
electron energy is equivalent to

h1,2
2 !H v1,2/m if Ei;m,

v1,2Ei /m2 if Ei@m,
~69!

h1h2!H v1,2/m if Ei;m,

v1,2Ei /m2 if Ei@m,

the quantum parameters are small:b1,2!1 anda6!1 @see
~61!#. The functionsI ls in ~27!, ~28!, and~68! therefore be-
come products of independent Bessel functions@see ~29!#,
and the differential cross section assumes the form

ds ls5Jl
2~g1!Js

2~g2!ds* . ~70!

Thus, at the field intensities given by~69!, the emission
~absorption! of photons of the first and second waves and
emission of a spontaneous photon as a result of decelera
of an electron by a nucleus proceed independently. Note
the conditions~69! are much more stringent than the cond
tions ~63!. For example, in moderately strong fields@see
~63!#, the energy of the final electron is independent of t
number of absorbed or emitted photons of both waves,
the differential cross sections~68! and ~70! can easily be
summed over all possible emission and absorption proces
The result is predictable: the total cross section coinci
with the cross section of spontaneous bremsstrahlung b
electron scattered by a nucleus in a vanishing external fi
i.e., as a result of summation, all essentially quantum con
butions completely cancel~as for a single wave7!:

ds5 (
l 52`

`

(
s52`

`

ds ls5ds* . ~71!

We next deal with nonrelativistic electron energies. He
we assume that the velocities of electron oscillations in
field of both waves are small compared to the speed of lig

v i , f!1, vF1,2
5h1,2!1. ~72!

Under these conditions, the expressions~8! and ~9! for the
amplitude become much simpler, and after doing the nec
sary calculations as in the relativistic case, we obtain~66!. In
the process, energy and momentum conservation require

pf
2

2m
2

pi
2

2m
1bn–~pf2pi !1v81 lv11sv250,

q5pf2pi1k8, ~73!

where

b5
1

4
@~11d1

2!h1
21~11d2

2!h2
2#. ~74!

The argumentsx1,2 andg1,2 of the functionsI ls are given by
~23! and ~24!, in which

g1,25
pf2pi

v1,2m
, ~75!

and
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b1,25
~12d1,2

2 !h1,2
2

8

n–~pf2pi !

v1,2
,

a65h1h2ud7u
n–~pi2pf !

2~v16v2!
. ~76!

Clearly, energy conservation in the form~73! holds for wave
intensities

h1,2
2 *v i , ~77!

i.e., the velocities of electron oscillations in the waves
much greater than the velocity of the electron’s translat
motion (h1,2@v i). We write the law of energy conservatio
~73! in the form of a standard quadratic equation for t
electron velocity in the final state:

v f
212bfv f2ci50, ~78!

where

bf5b cosu f , ci5v i
212bv i cosu i2

2~ lv11sv21v8!

m
,

~79!

with u i , f5/(n,pi , f).
The solution of Eq.~78! depends heavily on the signs o

the coefficientsbf andci . If ci.0, there is only one physi
cally meaningful root~for all bf!, but if ci,0, there are two
such roots~for bf,0!. Note that the sign ofbf depends on
the electron scattering angle relative to the direction
propagation of both waves:bf.0 for u f<p/2 andbf,0 for
u f.p/2. On the other hand, the sign ofci depends on both
the polar angleu i and the total number of emitted and a
sorbed photons of both waves. The final solution of Eq.~79!
is

v f5H v1[2bf1Abf
21ci for ci.0 and all u f ,

v1,2[2bf6Abf
21ci for ci,0 and u f.p/2.

~80!

Bearing all this in mind, we see that the delta function
the amplitude of spontaneous bremsstrahlung, when Eq.~78!
has one or two roots, can written

d~ . . . !5
d~v f2v1!

mAbf
21ci

,

d~ . . . !5
d~v f2v1!1d~v f2v2!

mAbf
21ci

. ~81!

Allowing for the nonrelativistic limit~66!, doing the neces-
sary averaging and summing over photon and electron po
izations, and integrating over the momenta of the final el
trons, we obtain an expression for the differential cro
section of spontaneous bremsstrahlung for the cases of
and two roots of Eq.~79!, respectively:

ds ls5
1

p2 Z2r 0
2a0Yls~v1!

dv8

v8
dVk8dV, ~82!
e
n

f

r-
-

s
ne

ds ls5
1

p2 Z2r 0
2a0@Yls~v1!1Yls~v2!#

dv8

v8
dVk8dV,

~83!

wherer 0 is the classical electron radius,a0 is the fine struc-
ture constant, and

Yls~v f !5uI lsu2
~mv f !

2

v iAbf
21ci

~q3n8!2

q4 . ~84!

Equations~24!, ~75!, and~76! clearly show that in the inten
sity range~77!, the values of the quantum parameters a
such that b1,2;a6*mv i

2/v1,2@1 and g1,2;b1,2h1,2
21

@b1,2. Hence, in the given intensity range, the princip
multiphoton processes are those in which the numbers
photons in the first and second waves arel;mv i

2/v1h1 and
s;mv i

2/v2h2 , respectively.
We now consider the intensity range complementary

~77!:

h1,2
2 !v i , but h1,2*v i . ~85!

Energy conservation Eq.~73! requires

pf
2

2m
2

pi
2

2m
1v81 lv11sv250. ~86!

The expression for the differential probability can be o
tained from~82!, in which we must setbf50, while in the
coefficientci in ~79! we must ignore the second term. Th
result is

ds ls5
1

p2 Z2r 0
2a0uI lsu2

upf u
upi u

m2~q–n8!2

q4

dv8

v8
dVk8dV.

~87!

Here the Bunkin–Fedorov quantum parameters are less
in the region ~77!, but still they are large:
g1,2;h1,2mv i /v1,2*mv i

2/v1,2@1. In the intensity range
given by~85!, where the velocities of electron oscillations
the waves are of the order of the velocity of translation
motion, emission and absorption of a large number of p
tons of both waves are therefore dominant:l;mv i

2/v1 and
s;mv i

2/v2 . Note that if the wave intensities obey cond
tions more stringent than the first inequality in~85!, i.e.,

h1,2
2 !

v1,2

mv i
, h1h2!

v1,2

mv i
, ~88!

bothb1,2 anda6 will be much less than unity, so that in~82!
we can putuI lsu25Jl

2(g1)Js
2(g2).

The inequalities~88! are thus the conditions for the ap
plicability of the dipole approximation, in contrast to les
stringent condition~72! commonly used in nonrelativistic ap
proaches to such problems. The reason is that in fields
strong thath1,2;v i , the typical wavelength of a spontaneo
photon is of order (g1,2v1,2)

21, rather thanv1,2
21 . Note that

under the conditions~88!, the second inequality in~85! may
hold, but only at high frequencies,v1,2@mv i

3 . For example,
at v i50.1, the frequenciesv1,2 are much higher than 0.5
keV, and only at the limit of validity of the Born approxima
tion, wherev i;Z31022, will we have v1,2@0.53Z3 eV,
i.e., we wind up at optical frequencies.
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Now we examine the last case, where the velocities
electron oscillations in the waves are small compared to
velocity of translational motion:

h1,2!v i . ~89!

Here we can ignore the energies of the emitted and abso
photons of both waves: u l uv1 /mv i

2&h1 /v i!1 and
usuv2 /mv i

2&h2 /v i!1. The energy conservation expressi
~86! then assumes the standard form

pf
2

2m
2

pi
2

2m
1v850, ~90!

while the differential cross section~87! can be factored, i.e.
it assumes the form~68!, whereds* is the nonrelativistic
limit of spontaneous bremsstrahlung by an electron scatt
by a nucleus in vanishing external fields.

5. SPONTANEOUS INTERFERENCE BREMSSTRAHLUNG IN
THE PLANE PERPENDICULAR TO THE WAVE
POLARIZATION VECTOR

We examine spontaneous bremsstrahlung by an elec
scattered by a nucleus in the interference region for lin
polarization of both waves:

d1
25d2

250, D50, e1x5e2x[ex ~91!

@the first possible case; see text following~45!#. Let the scat-
tering of the electron and the emission of the spontane
photon take place in the plane perpendicular to the polar
tion vector of both waves~the yz plane!. Then ex–k8
5ex–pi5ex–pf50. In this case the conditions~44! and ~45!
hold, i.e., the Bunkin–Fedorov quantum parameters and
corresponding phases vanish. Thus, in the given region
arbitrary wave intensities, the Bunkin–Fedorov parame
are small if the angles between the pre- and post-scatte
electron momenta and the polarization vector@w i , f

5/(pi , f ,ex)#, and between the momentum of the sponta
ous photon and the polarization vector@c85/(k8,ex)#, are
close top/2:

Uw i , f2
p

2U! v1,2

mv i , fh1,2
&1,

~92!Uc82
p

2U! v1,2Ei , f

mv8h1,2
&1.

The amplitude of spontaneous bremsstrahlung by an elec
scattered by a nucleus under the conditions~92! is deter-
mined by the expressions~52!–~60! with allowance for~91!.
Note that the noninterference region, in which the main m
tiphoton parameters are the Bunkin–Fedorov quantum
rameters, is given by conditions complementary~92!.

We first consider spontaneous bremsstrahlung at rela
istic electron energies under the conditions~92!. Here multi-
photon processes are determined by the functi
Jl 12s1 ,l 22s2

of ~46!, and the main multiphoton paramete
are the quantum parametersa1 anda2 @see~26! under con-
ditions ~91!#. Hence, in the interference region, in addition
electron scattering by the nucleus and emission of a spo
neous photon, the main processes will be stimulated, co
f
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lated emission~absorption! of equal numbers of photons o
both waves or of numbers that differ by 1@l 6&a6 ; see text
following Eqs. ~51!#. Consequently, the fraction of the en
ergy emitted or absorbed by the electron in the initial or fin
state from both waves is of orderl 6(v16v2)/Ei , f&z int ,
wherez int is the classical interference parameter that de
mines the constants of the motion of the process in the reg
given by ~92!,

z int5j1j2v i , ~93!

where the parametersj1,2 are given by~62!.
We characterize moderately strong fields for the interf

ence region~92! by a condition on the classical interferenc
parameter,z int!1. For the product of the wave intensitie
this condition becomes

h1h2!H 1 if Ei , f;m,

S Ei , f

m D 2

if Ei , f@m.
~94!

Note that whenh1,2,1, the conditions~94! are less stringen
than the analogous conditions in the noninterference reg
~63!. Allowing for ~94!, in the expressions for the squares
the 4-momenta~50! and ~51! we can ignore the energies o
photons of combination frequencies in comparison to
electron energy. Hence,q̃i

2Þm
*
2 and q̃f

2Þm
*
2 , with the re-

sult that the range of moderately strong fields given by~94!
is the nonresonance region. Ifh1;h2 under the conditions
~94!, then p̃i , f5pi , f , and the 4-momenta~50! and ~51! as-
sume the form~64!. Note that if we use~52! and ~53! to
obtain the cross section, terms proportional toh1,2

0 , h1,2
2 ,

h1h2 , and higher powers of the wave intensities emerge
ds l 1 l 2

(0) , and terms proportional toh1,2
2 , h1h2 , and higher

powers of wave intensities inds l 1 l 2

(1) . By virtue of ~94!, the

amplitudeHl 1 l 2

(1) of ~53! can therefore be ignored, while i

the amplitudeHl 1 l 2

(0) in ~53! we can ignore the functionBrr 8
(0)

of ~59! and the 4-vectorDrr 8
(1) of ~60!, and sum overs1 and

s2 . As a result,

Sl 1 l 2

(1) 50, Sl 1 l 2

(0) 5Jl 1 l 2
~b1 ,b2 ;0,0,a1 ,a2!S* , ~95!

whereS* is the amplitude of spontaneous bremsstrahlung
an electron scattered by a nucleus in a vanishing exte
field,22 and the functionsJl 1 l 2

are given by the expressio
~46! in whose arguments~25! and ~26! we must putp̃15pi

and p̃25pf and allow for~91!:

b j5
h j

2m2

8v j
S 1

k f
2

1

k i
D , j 51,2, ~96!

a65
h1h2m2

2~v16v2! S 1

k i
2

1

k f
D , k i , f5Ei , f2n–pi , f . ~97!

If we use~95!, we can easily obtain an expression for t
differential cross section of spontaneous bremsstrahlung
relativistic electron scattered by a nucleus in the field of t
moderately strong waves@the conditions~94!# in the inter-
ference region given by~92!:

ds l 1 l 2

(0) 5uJl 1 l 2
~b1 ,b2 ;0,0,a1 ,a2!u2ds* , ~98!
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whereds* is the differential cross section of spontaneo
bremsstrahlung by an electron scattered by a nucleus
emission of a photon of given frequency and direction a
with the ejection of the final electron in a given direction~in
a vanishing external field!.22 Note that in the differential
cross section~98! the integer indicesl 6 denote the emission
~absorption! of equal numbers (s56 l ) of photons of both
waves. This is what makes~98! so different from the expres
sions ~68! and ~70! for the noninterference region, wher
there is no such correlation of the indicesl ands. Equation
~98! shows that in moderately strong fields@see~94!#, the
differential cross section becomes the product of the pr
ability of correlated emission~absorption! of equal numbers
of photons of both fields and the cross section of sponta
ous bremsstrahlung by an electron scattered by a nucleus
vanishing external field. What is important is that the giv
correlation of the numbers of photons of both waves in
interference region cannot be removed, i.e., the cross se
~98! cannot be represented as the product of the probabil
of emission~absorption! in each of the two waves separatel
in contrast to the situation in the noninterference region@see
~70!#.

Note that at wave intensities complementary to~69!, i.e.,

h1,2
2 *H v1,2/m if Ei;m,

v1,2Ei /m2 if Ei@m,
~99!

h1h2*H v1,2/m if Ei;m,

v1,2Ei /m2 if Ei@m,

the quantum parameters are such thatb1,2*1 and a6*1,
with the result thatg1,2@a6*1 andg1,2@b1,2*1 @see~61!,
~67!, ~96!, and ~97!#. Hence, at field intensities satisfyin
~99! and~63! we can easily show30 that the differential cross
section~68! in the noninterference region is much smal
than the corresponding cross section~98! in the interference
region:

ds ls

ds l 1 l 2

(0) 5
uI lsu2

uJl 1 l 2
u2

;~g1g2!21!1 ~100!

if l 1; l !g1 and l 2;s!g2 .
Thus, if we adjust the measuring device so it detects~in

the plane perpendicular to the polarization vector of
waves! the spontaneous photon and the final electron sim
taneously, we find that spontaneous bremsstrahlung
multiphoton correlated emission~absorption! of equal num-
bers of photons of both waves can dominate spontane
bremsstrahlung by an electron scattered by a nucleus in
field of both waves in the noninterference region. The diff
ential cross section~98! can be summed over all emissio
and absorption processes. The result is similar to that for
noninterference region, i.e., under summation all essent
quantum contributions completely cancel@see~71!#:

ds5 (
l 152`

`

(
l 252`

`

ds l 1 l 2

(0) 5ds* . ~101!

Now we examine the range of nonrelativistic electr
energies under the conditions~72!. Here the fraction of the
energy of photons of combination frequencies emitted or
s
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sorbed by the electron in the initial or final states from bo
waves is of order 2l 6(v16v2)/mv i , f

2 &z int , where in the
nonrelativistic limit ofz int @see Eq.~93!# we have

z int5
h1h2

v i
. ~102!

Under the conditions~72!, the interference amplitude give
by ~52! and ~53! becomes much simpler, and after we ha
done calculations similar to those in the relativistic case,
amplitude assumes the form of the nonrelativistic limit~95!:

Sl 1 l 2

(1) 50, Sl 1 l 2

(0) 5Jl 1 l 2
~b1 ,b2 ;0,0,a1 ,a2!S

*
v!1 ,

~103!

whereS
*
v!1 is formally similar to the nonrelativistic limit of

the amplitude of spontaneous bremsstrahlung by an elec
scattered by a nucleus in a vanishing external field22 with
allowance for energy and momentum conservation in
form

pf
2

2m
2

pi
2

2m
1bn–~pf2pi !1v81 l 1~v11v2!

1 l 2~v12v2!50,

q5pf2pi1k8, ~104!

where

b5
1

4
~h1

21h2
2!. ~105!

The parametersb1,2 anda6 in the functionsJl 1 l 2
of ~103!

are

b1,25h1,2
2 n–~pf2pi !

8v1,2
, a65h1h2

n–~pi2pf !

2~v16v2!
. ~106!

Energy conservation in the form~104! holds for wave inten-
sities

h1,2
2 *v i , ~107!

i.e., when the velocities of electron oscillations in the wav
are much greater than the electron velocity of translatio
motion (h1,2@v i). The reasoning and calculations that mu
follow are the same as for the nonrelativistic limit in th
noninterference region@see Eqs.~78!–~84!#. The result is an
expression for the differential cross section of spontane
bremsstrahlung in the interference region~92! for the cases
of one and two roots of the energy conservation express
~104!, respectively:

ds l 1 l 2

(0) 5
1

p2 Z2r 0
2a0Tl 1 l 2

~v1!
dv8

v8
dVk8dV, ~108!

ds l 1 l 2

(0) 5
1

p2 Z2r 0
2a0@Tl 1 l 2

~v1!

1Tl 1 l 2(v2)#
dv8

v8
dVk8dV, ~109!

where the velocitiesv1,2 are given by~80!, and
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Tl 1 l 2
~v f !5uJl 1 l 2

~b1 ,b2 ;0,0,a1 ,a2!u2

3
~mv f !

2

v iAbf
21ci

~q–n8!2

q4 . ~110!

Here in the expression forci in ~79! we must replacelv1

with l 1(v11v2) and sv2 with l 2(v12v2). Equations
~106! show that in the intensity range~107! the values of the
quantum parameters are such thatb1,2;a6*mv i

2/v1,2@1
and g1,2;b1,2h1,2

21@b1,2. Hence, in the given intensity
range, multiphoton processes have photon numb
l 6;mv i

2/v1,2h1,2@1. Note that the differential cross se
tions ~108! and ~109! in the interference region are muc
greater than the corresponding cross sections~82! and~83! in
the noninterference region.

We now turn to the intensity range

h1,2
2 !v i . ~111!

Under these conditions,z int5h1h2v i
21!1, i.e., we are deal-

ing with moderately strong fields. We can therefore negl
the energies of the emitted and absorbed photons, and
set bf50 andci5v i . As a result, the energy conservatio
expression~104! assumes the standard form~90!, and the
expression for the differential probability can be found fro
~108!:

ds l 1 l 2

(0) 5uJl 1 l 2
~b1 ,b2 ;0,0,a1 ,a2!u2ds

*
v!1 , ~112!

where ds
*
v!1 is the nonrelativistic limit of spontaneou

bremsstrahlung by an electron scattered by a nucleus in
ishing external fields. We see that for intensities~111! the
differential cross section becomes the product of the pr
ability of correlated emission~absorption! of equal numbers
of photons of both waves and the cross section of spont
ous bremsstrahlung by an electron scattered by a nucleus
vanishing external field. The differential cross section c
easily be summed over all emission and absorption p
cesses. As a result, all the essentially quantum contribut
completely cancel@see~71!#. We also note that for field in-
tensities

h1,2
2 *

v1,2

mv i
, h1h2*

v1,2

mv i
, ~113!

b1,2*1 anda6*1, and henceg1,2@a6*1 andg1,2@b1,2

*1 @see~61! and ~106!#. For wave intensities satisfying th
conditions ~113! and ~72!, we can thus easily show@see
~100!# that the nonrelativistic limit of the differential cros
section~68! in the noninterference region is much smal
than the corresponding cross section~112! in the interference
region, i.e., the latter can be dominant.

6. SPONTANEOUS INTERFERENCE BREMSSTRAHLUNG
FOR ELLIPTICAL WAVE POLARIZATION

In this section we examine spontaneous bremsstrah
by an electron scattered by a nucleus in the interference
gion ~43! with both waves being elliptically polarized, i.e., i
the general case@see text following formula~45!#. Here Eqs.
~44! and ~45! are valid, i.e., the Bunkin–Fedorov quantu
parameters and the corresponding phases vanish. With
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waves having arbitrary wave intensities, the Bunkin
Fedorov quantum parameters in this region are small if
angles between the vectorsgi @see~23!# and the directions of
propagation of the two waves are small:

c j!
v1,2

mv i , fh1,2
&1. ~114!

Equations~43! lead to four conditions on the kinematic
of electron scattering and spontaneous-photon ejection a
bitrary wave intensities:

gj
2~ p̃f ,q̃i !5~n–gj~ p̃f ,q̃i !!2,

~115a!
gj

2~ q̃i ,p̃i !5~n–gj~ q̃i ,p̃i !!2, j 51,2,

for the amplitude of process a~Fig. 1!, and

gj
2~ q̃f ,p̃i !5~n–gj~ q̃f ,p̃i !!2,

gj
2~ p̃f ,q̃f !5~n–gj~ p̃f ,q̃f !!2, j 51,2, ~115b!

for the amplitude of process b. Note thatkjgj50 and there-
fore g05gz , so the conditions~43! can be written in the
Lorentz-invariant form

gj
2~ p̃2 ,p̃1!50, ~116!

where the 4-momentap̃1,2 assume the four possible sets
values in~115a! and~115b!. We also note that the first equa
tions in ~115! correspond to the amplitude of electron sc
tering by the nucleus in the field of the waves@see~9! and
~16!#, while the second equations correspond to the am
tude of photon emission by the electron in the field of t
waves@see~9! and~17!#. Substituting the explicit form of the
vectorsgj from ~23! together with the corresponding mo
mentap1 and p2 into ~115!, we find that the kinematics o
electron scattering and spontaneous-photon ejection for
amplitudes of a and b is the same. Here the scattering of
electron and the emission of the spontaneous photon occ
a single plane formed by the initial electron momentum a
the direction of propagation of both waves. The correspo
ing azimuthal angles are equal, while the polar angles
given by

af5ai , ai , f5
upi , f u
k i , f

sinu i , f ~117!

for electron scattering, and

cot
u8

2
5ai , u85/~n,k8! ~118!

for the exit angle of the spontaneous photon. In~117!, the
k i , f are given by~97!. Note that the relations~117! and~118!
coincide, respectively, with the conditions in the interferen
region for stimulated bremsstrahlung and inverse bre
strahlung by an electron scattered by a nucleus in the fiel
two waves,11 and for spontaneous photon emission by
electron in the field of two waves.20

We first consider spontaneous bremsstrahlung in the
terference region~114! at relativistic electron energies and
moderately strong fields,z int!1, i.e., under the conditions
~94!. Then the reasoning in Sec. 5@see text between formula
~92! and~95!# is valid. Hence, we can ignore the correctio
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associated with the correlated emission and absorption
photons of both waves, and the expressions~50! and~51! for
the 4-momentabecome~64!, i.e., energy conservation re
quires that

Ef5Ei2v8. ~119!

Analyzing the kinematic conditions~117!, we see that

v f5
upf u
Ef

5
ai

sinu f1ai cosu f
, k f5

tanu f

ai1tanu f
Ef .

~120!

Combining the expression for the final electron velocity
~120! with ~119! and doing simple transformations, we o
tain an equation for the scattering angle of the electron:

ai S 1

v f
11D tan2

u f

2
22 tan

u f

2
1ai S 1

v f
21D50, ~121!

where

v f5A12S m

Ei2v8D
2

. ~122!

Solving Eq.~121!, we obtain two possible scattering angl
for the final electron:

tan
u f

2
5

1

ai~v f
2111!

3F16A~vmax8 2v8!~2Ei2vmax8 2v8!

~Ei2v8!22m2 G ,

~123!

where

vmax8 5Ei2mA11ai
2 ~124!

is the maximum frequency of the spontaneous photon.
solution~123! shows that the radiative spectrum in the inte
ference region~114! is bounded from above byvmax8 , in
contrast to the spectra in the interference region~92! and the
noninterference region~see Sec. 4!, where the maximum fre-
quency of the spontaneous photon isEi2m. Note that the
upper limit ~124! of the frequency of the spontaneous phot
depends heavily on the energy and incidence angles of
initial electron. If we consider it a function of the polar ang
of the initial electron, it has minimum value 0 at the pol
angle

u i* 5arccosv i ~125!

~u i* is the critical angle, at which the electron ceases to e
photons!, and a maximum valueEi2m at u i50,p ~Fig. 2!.
Hence, asu i→u i* ~from both the right and left!, emission
rapidly decreases (vmax8 →0), and in a narrow range of angle
near the critical angle@(u i2u i* )2!1# it essentially vanishes
(vmax8 /m!1). As we will shortly show, we then have forwar
electron scattering without emission or absorption of phot
of both waves@see text following Eq.~137!#. Thus, the elec-
tron emits photons if its polar incidence angle lies in t
range

0<u i,u i* or u i* ,u i<p, ~126!
of

e
-

he

it

s

which is not very close to the critical angle. Note that t
critical angleu i* increases with decreasing initial electro
velocity, taking values fromu i* 'A2(12v i)!1 ~for ul-
trarelativistic electron energies! to u i* 'p/2 ~for nonrelativ-
istic electron energies!.

We now ascertain the angles at whichthe spontane
photon emerges. From~118! we see that the exit angle of th
spontaneous photon depends heavily on the energy and
dence angles of the initial electron~Fig. 3!. If we consider
the exit angle of the spontaneous photon as a function of
polar angle of the initial electron, at the critical ang
u i5u i* it has a minimum value~at which there is no emis
sion! equal to

umin8 52 arcsin
m

Ei
52u i* . ~127!

FIG. 2. Maximum frequency of the spontaneous photon~in units of electron
rest energy! vs. polar incidence angle of the initial electron@Eq. ~124!#.
Curve 1 corresponds to electron velocityv i50.8 and curve2, to v i50.5.
The minimum is at the point where cosui5vi . The horizontal dashed lines
correspond to the maximum frequency of the spontaneous photons fo
corresponding electron velocities in a vanishing external field.

FIG. 3. Exit angleu8 vs. polar incidence angleu i of the initial electron@Eq.
~118!# for various initial electron velocities. The straight dashed lines c
respond to nonrelativistic electrons withv i50.01 ~line 1! and ultrarelativis-
tic electrons withv i50.999~line 4!. The solid curves correspond to electro
velocitiesv i50.5 ~curve2! andv i50.8 ~curve3!.
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Hence, for a given energyEi of the initial electron and vari-
ous incidence angles~126!, the exit angle of the spontaneou
photon satisfies

umin8 ,u8<p, ~128!

i.e., has a lower bound determined by the energy of the
tial electron. It is important to note here that to each direct
of exit of the spontaneous photon there corresponds a
cific upper bound of the emission spectrum. This depende
can easily be obtained from~118! and ~125!:

vmax8 5Ei2
m

sin~u8/2!
, ~129!

where for a given energy of the initial electron the exit an
u8 can be chosen to be in the range~128!. Combining~118!,
~124!, and ~129!, we see that by continuously varying th
polar incidence angle of the initial electron~with given en-
ergy!, we can continuously change the upper bound of
frequency and exit angle of the spontaneous photon~Fig. 4!.

The frequency of the spontaneous photon has an u
bound, so the energy of the final electron is bounded fr
below:

Ef min5Ei2vmax8 5mA11ai
2. ~130!

Obviously, at the critical angleu i5u i* ~wherevmax8 50!, the
minimum energy~130! has a maximum~Fig. 5!. Hence, the
energy of the final electron lies in the range

Ef min<Ef<Ei . ~131!

What are the angles at which the final electron exi
Figure 6 shows the dependence of the exit polar angle of
final electron on the frequency of the spontaneous photo
given energy and polar incidence angle of the initial electr
We see that to each frequency there correspond two pos
exit angles of the electron, and as the frequency of the sp
taneous photon increases, the exit angle of the final elec
first varies only slightly, but then near the maximum fr

FIG. 4. Maximum frequency of the spontaneous photon~in units of electron
rest energy! vs. polar exit angle of the spontaneous photon@Eq. ~129!#.
Curve1 corresponds to the electron velocityv i50.9 andumin8 551.7°; curve
2, to v i50.8 andumin8 573.7°; and curve3, to v i50.5 andumin8 5120°.
i-
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quency the variation of the exit angle of the electron b
comes significant. Note that this tendency becomes stron
as the electron energy increases.

Let us find the exit angle of the final electron
v85vmax8 . If we allow for ~123!, we see that

cotu f5ai . ~132!

Taking ~132! and ~118! into account yields

u f5
1

2
u8. ~133!

This equation relates the exit angles of the final electron
the spontaneous photon emitted at the maximum freque
for arbitrary energies and angles of the initial electron. N
that the diagram representing the dependence of the
angle of the final electron on the incidence angle of the ini
electron@Eq. ~132!# has exactly the same shape as the co
sponding diagram for the exit angle of the spontaneous p

FIG. 5. Minimum energy of the final electron~in units of the electron rest
energy! vs. polar incidence angle of the initial electron@Eq. ~130!#. Curve1
corresponds to the electron velocityv i50.8 and curve2, to v i50.5. The
maximum is at the point where cosui5vi .

FIG. 6. Exit polar angle of the final electron vs. frequency of the sponta
ous photon~in units of vmax8 ! @Eq. ~123!#. The dashed curve corresponds
the initial parametersv i50.5 andu i525° and the solid curve, tov i50.5
andu i5150°.
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ton ~Eq. ~118!; see Fig. 3!, the only difference being that it is
scaled down along the vertical axis by a factor of two.

In the moderately strong fields given by~94!, the differ-
ential cross section of spontaneous bremsstrahlung for
relativistic case has the form

ds l 1 l 2

(0) 5uJl 1 l 2
~b1 ,b2 ;x1 ,x2 ,a1 ,a2!u2ds* , ~134!

whereds* is the differential cross section of spontaneo
bremsstrahlung by an electron scattered by a nucleus
vanishing field,22 which amounts to emission of a photon
given frequency~with upper boundvmax8 ! and direction@see
~118!#, and escape of the final electron in the given direct
@see~123!#. Here the functionsJl 1 l 2

are given by~46!; their
arguments are

b j5
~12d j

2!h j
2m2

8v j
F ai1tanu f

~Ei2v8!tanu f
2

1

k i
G , j 51,2,

~135!

a65
h1h2ud7um2

2~v16v2! F 1

k i
2

ai1tanu f

~Ei2v8!tanu f
G . ~136!

When both waves are circularly polarized (d1
25d2

251), the
quantum parameters and the functionsJl 1 l 2

become the
Bessel functionsJl 6

of integer order. Hence the expressio
~134! for the differential cross section becomes much s
pler:

ds l 6

(0)5Jl 6

2 ~a6!ds* , ~137!

where the plus and minus signs correspond to oppo
~d152d251, whereuponud2u52 andud1u50! and identi-
cal (d15d251, yieldingud2u50 andud1u52! polarizations
of the waves, and the indexl 6 corresponds to correlate
emission and absorption of equal numbers of photons of b
waves (s56 l ). From ~134! and ~137! it follows that in
moderately strong fields@the conditions~94!#, the differential
cross section of spontaneous bremsstrahlung in the inte
ence region~114! becomes the product of the cross section
spontaneous bremsstrahlung by an electron scattered
nucleus in a vanishing field and the probability of correla
emission~absorption! of equal numbers of photons of bot
waves. When both waves are circularly polarized, the la
is given by the square of a Bessel function, and the quan
interference parametera6 is the multiphoton parameter
Note that the probabilities~134! and ~137! cannot be repre-
sented as a product of probabilities of emission~absorption!
of photons of each wave separately.

We emphasize that when the incidence angle of the
tial electron (u i5u i* ) is critical (vmax8 50), we havevmax8
50, and from~123! or ~127! and ~133! it follows that the
electron is then scattered in the forward direction (u f5u i).
Bearing this in mind,~135! and ~136! imply that a65b1,2

50 here, i.e., the only processes that occur are those wit
emitted~absorbed! photons (l 650). Hence examining mul-
tiphoton correlated emission~absorption! of equal numbers
of photons of both waves has meaning only if the inciden
angle of the initial electron is not close to the critical ang
andvmax8 ;m. For given initial electron energy and polar in
cidence angles not close to the critical angle~125!, the dif-
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ferential cross sections~134! and~137! determine the multi-
photon correlated emission~absorption! of equal numbers of
photons of both waves, with the emission spectrum of
spontaneous photon bounded from above by the freque
vmax8 ~124!, and the correlated exit of the spontaneous pho
and final electron in the plane specified by the initial electr
momentum of the wave vector at given angles~118!
~bounded from above byumin8 ! and~123!, respectively. Here,
irrespective of the energy and incidence angle of the ini
electron, the spontaneous photon of maximum frequency
its at twice the exit angle of the final electron given by~133!
~the exit angles of the final electron are bounded from ab
in this case byp/2!. Most importantly, for wave intensities
satisfying the conditions~99! and~63!, the differential cross
sections~134! and~137! in the interference region are muc
greater than the corresponding cross sections~68! in the non-
interference region@see text near Eqs.~99! and ~100!#.

We now consider ultrarelativistic energies of the initi
electron,Ei@m. Here ai'cot(ui/2), and ~124! and ~130!
yield expressions for the maximum energy of the sponta
ous photon and the minimum energy of the final electron

vmax8 5Ei2
m

sin~u i /2!
, Ef min5

m

sin~u i /2!
. ~138!

Note that these expression were obtained under the ass
tion that u i

2@m2/Ei
2 , i.e., far from the critical angleu i*

'm/Ei . We also note that for frequencies of the sponta
ous photon far from the maximum frequency in~138!, in the
main region of the emission spectrum the final electron s
ters into a narrow cone along the wave vector and in
direction of the initial electron momentum:

u f55 u i6
m2 sinu i

2Ei
2~12v8/vmax8 !2 'u i ,

m2 tan~u i /2!

2Ei
2~12v8/vmax8 !2 !1.

~139!

Here the spontaneous photon scatters into a narrow con
the direction of the initial electron momentum@see ~118!;
ai

215tan(ui/2)1(12v i)/sinui'tan(ui/2)#:

u85u i6
m2

2Ei
2 cotu i cosu i'u i . ~140!

But if the spontaneous photon is emitted at the maxim
frequency,

u f5
1

2
u i , ~141!

which also follows from~133! and ~140!. Thus, in the ul-
trarelativistic case, the energy and incidence angle of
initial electron affect only the vertex angle of the narrow e
cone of the spontaneous photon and the final electron. H
the spontaneous photon is always emitted into a narrow c
about the initial electron momentum, while for the final ele
tron, which may be either ultrarelativistic or nonrelativist
@see~138!#, there are three alternative exit geometries:

a! the final electron exits in a narrow cone along t
initial electron momentum;
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b! the final electron exits in a narrow cone along t
wave vector;

c! the final electron exits at the angle given by~141!.
Note that the first two cases, described by~139!, apply if

the frequency of the spontaneous photon is not near the
per bound, i.e.,

S 12
v8

vmax8 D 2

@
m2

Ei
2 , ~142!

while case~c!, described by~141!, apply if the inequality
when the opposite of~142! holds, i.e., when the spontaneo
photon is emitted at the maximum frequency. The differe
tial cross section of spontaneous bremsstrahlung by an e
tron scattered by a nucleus is given by the expressions~134!
and ~137! with allowance for~139!–~141!. These expres-
sions hold in the cases considered if the angles between
momentum of the spontaneous photons and the momen
the ultrarelativistic initial and final electrons are not ve
small,

~u82u i , f !
2@h1h2

m2

v8Ei , f
!1, ~143!

and if the angle between the wave vector and the momen
of ultrarelativistic final electron is not very small,

u f
2@h1h2

m2

Ef
2 !1. ~144!

Combining~139!, ~140!, ~143!, and~144!, we obtain a con-
straint on the product of the field intensities:

h1h2!
m2v8

Ei
3 . ~145!

Note that this inequality is much more stringent than
corresponding conditions~94!, which characterize moder
ately strong fields. Nevertheless, under the condition~145!
the following inequalities hold:a6*1 and b1,2*1 @see
~135! and~136!#. Hence, the differential cross sections~134!
and ~137! can be, in the ultrarelativistic limit of electro
energy, much greater than the corresponding cross sectio
any other geometry@see~100!#. Thus, if we adjust the mea
suring device so it simultaneously detects~in the plane de-
termined by the initial electron momentum and the wa
vector! the spontaneous photon in a narrow cone along
momentum of the ultrarelativistic initial electron@condition
~140!# and a frequency spectrum bounded from above by
frequencyvmax8 given by ~138!, and the final electron a
anglesu f given by ~139! @under the conditions~142!# or by
~141! ~where v85vmax8 !, we find that spontaneous brem
strahlung with multiphoton correlated emission~absorption!
of equal numbers of photons of both waves may domin
over spontaneous bremsstrahlung by an ultrarelativistic e
tron scattered by a nucleus in the field of both waves in
noninterference region.

We now examine the nonrelativistic limit of electron e
ergies@the conditions~72!#. We begin with the kinematics o
emission of a spontaneous photon and exit of the final e
tron. The condition~118! shows than in the nonrelativisti
limit of electron velocities,ai'v i sinui!1, with the result
p-
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that irrespective of the energy and incidence angle of
initial electron, the spontaneous photon exits in a narr
cone pointing opposite to the wave vectork1 :

u85p22v i sinu i'p. ~146!

The interference condition~117! becomes

v f sinu f5v i sinu i . ~147!

We limit ourselves to such wave intensities that the squa
velocity of electron oscillations in the field of both waves
much less than the squared velocity of the electron’s tra
lational motion~the condition~111!; note that here the ve
locities of oscillations and translational motion of the ele
tron may be of the same order of magnitude:h1,2;v i!. In
this case we are dealing with moderately strong fields (z int

5h1h2v i
21!1). Hence we can ignore the energies of em

ted and absorbed photons of combination frequencies,
the law of energy conservation in~104! assumes the standar
form ~90!, which yields

v f5v iA12
2v8

mv i
2. ~148!

Hence, we find from~117! that the scattering angles of th
electron obey the relation

sinu f5sinu iYA12
2v8

mv i
2. ~149!

Bearing in mind that the left-hand side of Eq.~149! cannot
be greater than unity, we obtain an upper bound on the
quency of the spontaneous photon:

vmax8 5
1

2
mv i

2 cos2 u i . ~150!

Note that a similar result follows from the nonrelativist
limit ~124!. The dependence of the exit angle of the fin
electron on the frequency of the spontaneous photon at g
incidence angles of the initial electron@see~149!# is similar
to such a dependence in the relativistic case~see Fig. 6!.
What is important is that the critical incidence angle of t
initial electron~at this anglevmax8 50! is u i* 5p/2, so that as
noted earlier for relativistic energies, we must select the
cidence angle of the initial electron far from the critic
angles, i.e., whenv8;mv i

2/2. If the spontaneous photon i
emitted at the maximum frequency~for any incidence angle
of the initial electron!, the electrons exit at an angl
u f5p/2 @this follows from ~149!#.

The expression for the differential probability in th
given case can be found from~134!–~136!:

ds l 1 l 2

(0) 5uJl 1 l 2
~b1 ,b2 ;x1 ,x2 ,a1 ,a2!u2ds

*
v!1 ,

~151!

whereds
*
v!1 is the differential cross section of spontaneo

bremsstrahlung by nonrelativistic electrons in a vanish
field,22 which amounts to emission of a photon of given fr
quency~with an upper boundvmax8 ! and direction@see~146!#
and is accompanied by exit of the final electron in the giv
direction @see~149!#. Here the functionsJl 1 l 2

are given by
~46! and their arguments are
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b j5
~12d j

2!h j
2mv i

8v j
FA12

2v8

mv i
2 cosu f2cosu i G , j 51,2,

~152!

a65
h1h2ud7umv i

2~v16v2! Fcosu i2A12
2v8

mv i
2 cosu f G . ~153!

When both waves are circularly polarized (d1
25d2

251), the
quantum parametersb1,2 vanish and the expression~151! for
the differential cross section becomes much simpler:

ds l 6

(0)5Jl 6

2 ~a6!ds
*
v!1 . ~154!

From ~151! and ~154! it follows that for field intensities
given by ~111! the differential cross section of spontaneo
bremsstrahlung becomes the product of the probability
correlated emission~absorption! of equal numbers of pho
tons of both waves by the cross section of spontane
bremsstrahlung by an electron scattered by a nucleus
vanishing external field. Here the differential cross sectio
can easily be summed over all processes of emission
absorption of photons of the waves. As a result, the summ
balances the important quantum contributions perfectly@see
~71!#. We also note that for wave intensities satisfying t
inequalities~113!, b1,2*1 anda6*1, with the result that
g1,2@a6*1 andg1,2@b1,2*1 @see~61! and~106!#. Hence,
for wave intensities satisfying the conditions~113! and~72!,
we can easily show@see~100!# that the nonrelativistic limit
of the differential cross section~68! in the noninterference
region is much smaller than the corresponding cross sec
~151! in the interference region. Thus, if we adjust the me
suring device so it simultaneously detects~in the plane de-
termined by the initial electron momentum and the wa
vector! the spontaneous photon in a narrow cone opposit
the wave vectork1 @the condition~146!# and a frequency
spectrum bounded from above by the frequencyvmax8 given
by ~150!, and the final electron at angles~149! or u f5p/2
~whenv85vmax8 !, we find that spontaneous bremsstrahlu
with multiphoton correlated emission~absorption! of equal
numbers of photons of both waves can dominate spont
ous bremsstrahlung by a nonrelativistic electron scattered
a nucleus in the field of both waves in the noninterferen
region.

7. CONCLUSION

We have studied spontaneous bremsstrahlung by
electron scattered by a nucleus in the field of two light wa
propagating in the same direction. The following results ha
been achieved.

1. Spontaneous bremsstrahlung by an electron scatt
by a nucleus in the field of two waves depends heavily on
kinetics of the scattered electron and the spontaneously e
ted photon. Hence, two kinematic regions can be identifi
the noninterference region~if the conditions ~43! are not
met!, in which the main multiphoton parameters are t
Bunkin–Fedorov quantum parameters~24!, and the interfer-
ence region~if the conditions ~43! hold! where by the
f
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quantum interference parametersa6 @Eq. ~26!# act as multi-
photon parameters.

2. In the noninterference region with moderately stro
fields @j1,2!1; see~63!#, the differential cross section is th
product of the cross section of spontaneous bremsstrah
by an electron scattered by a nucleus in a vanishing field
the probability of emission~absorption! of definite numbers
of photons of the first and second waves@see~68!#. For the
nonrelativistic limit of electron energies we have found t
condition for the applicability of the dipole approximatio
@see ~88!#, which differs from the one commonly used i
such problems.

3. We have discovered a spontaneous interfere
bremsstrahlung effect for equal linear polarizations of bo
waves. The effect occurs in the scattering of the electron
emission of a spontaneous photon in the plane perpendic
to polarization vector of the waves. In this case the electr
in the course of deceleration by the nucleus and spontane
emission of a photon, emits~absorbs! equal numbers of pho-
tons of both waves in a correlated manner. In moderat
strong fields@z int!1; see~94!#, the differential cross section
is the product of the cross section of spontaneous bre
strahlung by an electron scattered by a nucleus in a vanish
field and the probability of correlated emission~absorption!
of equal numbers of photons of both waves@Eq. ~98!# @which
is given by the square of the absolute value of the functio
Jl 1 l 2

in ~46!#. The latter factor cannot be represented as

product of probabilities of emission~absorption! of photons
of each of the waves separately, as it can in the noninter
ence region. For wave intensities satisfying~63! and~99! ~in
the relativistic case! or ~72! and ~113! ~in the nonrelativistic
case!, the differential cross section in the interference regi
is much greater than the corresponding cross section in
noninterference region.

4. We have also discovered a spontaneous interfere
bremsstrahlung effect in the general case~for elliptical po-
larization of both waves!, which occurs in the scattering o
an electron and emission of a spontaneous photon in
plane specified by the initial electron momentum and t
wave vector at given angles@see~117! and~118!#. Here, due
to interference, the electron spontaneously emits equal n
bers of correlated photons of both waves. The given eff
has been analyzed in moderately strong fields (z int!1). We
have also found that the frequency of the spontaneous ph
has an upper bound,vmax8 @see~124!#, which depends on the
energy and polar incidence angle of the initial electron. T
exit angles of the electron and spontaneous photon are hi
correlated and depend heavily on the energy of the ini
electron@see~133!#. Finally, we have shown that the differ
ential cross sections with correlated emission~absorption! of
equal numbers of photons of both waves, with emission o
spontaneous photon of given energy and in a given direct
and with the scattering of the electron to a given angle~cor-
related with the exit angle of the spontaneous photon!, can be
much greater than the corresponding cross section in
other geometry.
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Resonances and dichroism in the scattering of an electron in an intense laser field
by the Coulomb potential

L. P. Rapoport and A. S. Kornev* )

Voronezh State University, 394693 Voronezh, Russia
~Submitted 22 March 1999!
Zh. Éksp. Teor. Fiz.116, 1241–1249~October 1999!

We use a new type of Hamiltonian representing the electron–proton interaction in an intense
laser field for anab initio calculation of the differential scattering cross section. We
give the diagrams of the results of calculations of the shapes and widths of the resonances in the
cross section of electron scattering by the ‘‘field-dressed’’ Coulomb potential. The
resonances emerge because of re-emission of photons by the electron. We also give the angular
distribution of the scattered electrons as a function of circular dichroism for different
values of the laser field strength and frequency. ©1999 American Institute of Physics.
@S1063-7761~99!00810-0#
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1. INTRODUCTION

The theoretical and experimental investigation of t
scattering of electrons by atoms in the presence of an inte
laser field has attracted much attention, since it introdu
new parameters into the scattering process such as the
ton energy\v, the field intensityI , the field’s polarization,
and statistics~see the reviews in Refs. 1–3 and the literatu
cited therein!. However, the calculation of the electron–ato
scattering cross sections in the presence of an intense r
tion field is extremely complicated and can be done ea
only in the Born approximation. The key issue of more a
curate calculations is the formula for the cross section
electron scattering in an intense field by the Coulomb pot
tial, which in the absence of a light field is given by an exa
analytic formula. An exact solution for the cross sections
photoionization and scattering in a circularly polarized fie
is known for a short-range delta-function potential.4,5

The differential cross section of elastic and inelas
electron scattering by the Coulomb potential in the prese
of a strong circularly polarized electromagnetic field we
considered by Dimou and Faisal.6 Since the variables in the
corresponding time-dependent Schro¨dinger equation do no
separate, the problem was solved by direct numerical i
gration of the system of equations for the strongly coup
channels.

In the present paper we solve the same problem by u
a new representation~via the unitary transformation
method! for the Hamiltonian of the interaction between i
tense circularly polarized light and an electron in the Co
lomb field. This representation is in the form of a multipo
expansion with the field parametera05eF/mv2 (F is the
field strength, andv is the field’s frequency! taken into
account.7 In this case the system of equations of the meth
of strongly coupled channels can be analytically integra
with respect to the anglesu andf, which results in equations
that are one-dimensional. Such equations can be co
niently integrated by numerical methods.

We study the resonances~shape and position! that
6641063-7761/99/89(10)/5/$15.00
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emerge in the differential scattering cross section as a fu
tion of the electron energy. Due to the coupling betwe
elastic and inelastic channels, there emerges an interfer
term caused by energy dissipation, which leads to dichro
in the position and shape of the resonances in the scatte
cross section as a function of the electron energy. We b
the angular distribution of the scattered electrons for left- a
right-hand circularly polarized light. We also show that in
strong field, depending on the number of photons involved
the process, the angular distribution of the scattered elect
differs ~not only qualitatively but also quantitatively! from
the effect of dichroism on the angular distribution of scatt
ing calculated by perturbation-theory techniques.8 Finally,
we discuss the effect of the field strengthF on the position
and shape of the resonances.

2. UNITARY TRANSFORMATIONS OF THE INTERACTION
HAMILTONIAN OF AN ELECTRON IN AN INTENSE
LASER FIELD SCATTERED BY THE COULOMB POTENTIAL

Let us consider the time-dependent Schro¨dinger equation
in a light field described by a vector potentialA(t) that de-
pends only on time~the dipole approximation; everywher
we use the system of units in which\5e5m51):

i
]C~r ,t !

]t
5F2

1

2
¹22

A~ t !

2
–p̂1

1

2c2 A2~ t !2
Z

r GC~r ,t !.

~1!

We assume that the field is circularly polarized:

A~ t !52A0~ex sinvt1hey cosvt !, ~2!

whereA05Fc/v, with c the speed of light, andh561 for
left- and right-hand circular polarizations, withF the field
strength, andv the frequency of the field. The wave vector
directed along thez axis.

We write the solution of Eq. ~1! in the form
F5Û(t)C, whereÛ†5Û21 is a unitary operator. Then fo
F we obtain an equation of type~1! with the operator
© 1999 American Institute of Physics
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Ĥ85 i S ]Û

]t
D Û†1ÛĤÛ†, ~3!

whereĤ is the operator of the right-hand side of Eq.~1!.
We transform the HamiltonianĤ via two unitary opera-

tors applied successively:7 ÛK–H ~see Refs. 9 and 10! and
Û rot . The analytic expressions for these operators are

ÛK–H5expH i E t

dt8FA~ t8!

c
–p̂2

1

2c2 A2~ t8!G J ~4!

and

Û rot5exp$2 ihvtL̂z%, ~5!

where L̂z52 i ]/]f is the operator of the projection of an
gular momentum in a spherical system of coordinates.

Applying the first transformation, we obtain the Ham
tonian~1! in a reference frame that oscillates at the freque
of the field:

Ĥvib5ÛK–HĤÛK–H
† 52

1

2
¹22

Z

ur2a~ t !u
, ~6!

wherea(t)5c21* tdt8 A(t8).
The second transformation by the operator~5! trans-

forms the new Hamiltonian into a rotating reference fram

Ĥ rot5Û rotĤvibÛ rot
† 52

1

2
¹22

Z

ur2a0u
1hvL̂z , ~7!

wherea05a0ex , with a05F/v2.
The operator~7! does not depend on time, so that Eq.~1!

with the operatorĤ rot given by formula~7! becomes a time-
independent Schro¨dinger equation with an exact quasiener
E. What is important is thatĤ rot has the same asymptot
behavior as r→` as the Hamiltonian of Eq.~1! at
A(t)50. The field parametera0 determines the dynamics o
the electron in the field and the quasienergy spectrum in
system consisting of the field and the atom.

In the operatorĤ rot @Eq. ~7!#, the potentialZur2a0u21 is
the generating function of the Legendre polynomials. If
introduce the unnormalized spherical harmonicsCLM( r̂ ) and
CLM(â0) ~these differ from the functionsYLM by the factor
A4p/(2L11); r̂5r /r and â05a0 /a0), we can write this
function in the form of a series:

Z

ur2a0u
5Z(

L50

`

(
M52L

L

jL~r ,a0!CLM~ r̂ !CLM* ~ â0!, ~8!

where

jL~r ,a0!5
r ,

L

r .
L11 , r ,5min~r ,a0!, r .5max~r ,a0!.

Now we employ the inverse unitary transformatio
Û rot

215Û rot
† @see Eq.~5!# and return to the oscillating refer

ence frame. We obtain
y

:

e

Ĥvib
(h)~r ,a0 ;t !52

1

2
¹22Zj0~r ,a0!

2Z(
L51

`

(
M52L

L

jL~r ,a0!CLM~ r̂ !CLM* ~ â0!

3exp$ ihMvt%. ~9!

In ~9! we wrote the term with the centrally symmetr
part of the interaction potential (L50) explicitly, i.e., the
potential

j0~r ,a0!5H 1

a0
, r ,a0 ,

1

r
, r .a0 ,

which describes a ‘‘field-dressed’’ proton. The part of t
sum in ~9! with M50 corresponds to the time-independe
noncentrally symmetric potential. The remaining part of t
potential ~with uM u>1) is a multipole expansion that ha
monically depends on time.

3. SOLUTION OF THE SCHRÖDINGER EQUATION BY THE
METHOD OF STRONG CHANNEL COUPLING

The time-dependent Schro¨dinger equation that we mus
solve with the Hamiltonian~9! has the form

i
]F~r ,t !

]t
5H 2

1

2
¹22Zj0~r ,a0!

2Z(
L51

`

(
M52L

L

jL~r ,a0!CLM~ r̂ !CLM* ~ â0!

3exp$ ihMvt%J F~r ,t !. ~10!

We seek a solution of Eq.~10! in the form of a quasien-
ergy and partial-wave expansion:

F~r ,t !5 (
n52`

`

(
l 8m8

exp$2 iEt1 invt%

r
Fnl8m8~r !Yl 8m8~ r̂ !.

~11!

Substituting~11! into ~10!, we obtain

(
n52`

`

(
l 8m8

~E2nv!exp$ invt%Fnl8m8~r !Yl 8m8~ r̂ !

5 (
n52`

`

(
l 8m8

H 2
1

2

d2

dr2 1
l 8~ l 811!

2r 2 2Zj0~r ,a0!

2Z(
L51

`

(
M52L

L

jL~r ,a0!CLM~ r̂ !CLM* ~ â0!exp$ ihMvt%J
3exp$ invt%Fnl8m8~r !Yl 8m8~ r̂ !. ~12!

Since the right-hand side of Eq.~12! is an expansion in
spherical harmonics, we can integrate over angles and re
~12! to a one-dimensional system of equations. Multiplyi
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~12! into Ylm* ( r̂ ), integrating over the solid angledV, and
equating the coefficients of the like factors exp$invt%, we
obtain a system of equations forFnlm(r ):

H d2

dr2 2
l ~ l 11!

r 2 12Zj0~r ,a0!1kn
2J Fnlm~r !

52 (
n8 l 8m8

Vnlm
n8 l 8m8~r ,a0 ,h!Fn8 l 8m8~r !, ~13!

where

Vnlm
n8 l 8m8~r ,a0 ,h![2Z(

L51

`

jL~r ,a0!~21!m@~2l 11!~2l 8

11!#1/2CL,m2m8
* ~ â0!S l 8 L l

0 0 0D
3S l 8 L l

m8 m2m8 2mD dn8,n1h(m82m) ,

~14!

kn
252~E2nv!,

CLM* ~ â0!5CLM* S 1

2
p,0D

5H ~21!(L1M )/2J~L,M ! if L1M is even,

0 if L1M is odd,

J~L,M !5A~L2M21!!!

~L2M !!!

~L1M21!!!

~L1M !!!

~see Ref. 11!,

with (m1

l 1
m2

l 2
m3

l 3 ) the 3jm-symbol. The radial dependence of th

channel coupling ‘‘potential’’Vnlm
n8 l 8m8(r ,a0 ,h) for several

values ofn, l , andm is depicted in Fig. 1.
We see that the right-hand side of Eq.~13! mixes the

different channels, each of which is characterized by
numbern of photons of polarizationh absorbed (n,0) or
emitted (n.0) by an electron with orbital angular mome
tum L and its projectionM on thez axis. The ‘‘potentials’’

Vnlm
n8 l 8m8(r ,a0 ,h) given by Eq.~14! consist of a finite numbe

of terms for each set (n,l ,m) and (n8,l 8,m8), are expressed
in terms of 3jm-symbols, and therefore can be calc

lated exactly. Figure 1 shows that theVnlm
n8 l 8m8(r ,a0,h) are

alternating-sign quantities, a property that significantly i
proves the convergence of the sum on the right-hand sid
Eq. ~13!. In what follows we denote the set of quantum nu
bers (n,l ,m) by a single channel symboli , and byni we
mean the value ofn in channeli , etc.

It is convenient to seek a solution of the system of eq
tions ~13! in the form of a combination of linearly indepen
dent solutions in a limited number of channels~to a given
accuracy!. Let Fi

( j )(r ) be thej th solution in thei th channel.
If ki

2.0, thei th channel is open, but ifki
2,0, thei th channel

is closed. When selecting the boundary conditions
solutions of Eq. ~13!, one must bear in mind tha

Vnlm
n8 l 8m8(r ,a0 ,h)→0 as r→0 and r→`, and the channels
e

-
of
-

-

r

cease to be coupled. Thus, the asymptotic behavior of
wave function of open channels is given by the expressi

Fi
( j )~r !ur→`5

d i j Fl i
~2Z/ki ,kir !1Ki j

(h)Gl i
~2Z/ki ,kir !

Aki

,

i , j 51,...,nopen, ~15!

where F and G are the Coulomb wave functions with th
asymptotic behavior

Fl i
~r !ur→`} sinS kir 2

p l i

2
1

Z

ki
ln~2kir !1s l i D ,

Gl i
~r !ur→`} cosS kir 2

p l i

2
1

Z

ki
ln~2kir !1s l i D , ~16!

s l i
5argG(li112iZ/ki) is the Coulomb scattering phas

nopen is the number of open channels involved; a
K5$Ki j % is the real-valued reactionK matrix, related to the
complex-valued scatteringS matrix by the formula

Si j 5@~ I 1 iK !~ I 2 iK !21# i j ,

with I the identity matrix.
The boundary conditions selected for closed chann

(ki
2,0) are represented by exponentially decaying functio

as r→`:

Fi
( j )~r !ur→`5d i j exp$2uki ur %,

i 51,...,ntot , j 5nopen11,...,ntot , ~17!

where ntot is the total number of channels involved in th
process.

FIG. 1. Curves representing the radial dependence ofa0Vnlm
n8 l 8m8(r ,a0,h) for

a proton atn5 l 5m50 and h521. Curve1: n8521 and l 85m851;
curve 2: n850, l 852, andm850; curve 3: n851, l 853, andm8521;
curve 4: n8521, l 853, andm851; curve 5: n8572, l 852, andm85
62; and curve6: n851, l 851, andm8521.
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Near zero the boundary conditions for a state in a c
trifugal potential are

Fi
( j )~r !ur→05d i j r

l i11, i , j 51,...,ntot . ~18!

Knowing theS matrix, we can find the scattering ampl
tude. We denote the momentum of an incoming electron
k0 and that of an electron whose scattering is accompa
by an exchange ofN photons, bykN8 . Then the scattering
amplitude in open channels is12

f 0→N
(h) ~ k̂0 ,k̂N8 !5 f C~u!dN,01 f rad

(N,h)~ k̂0 ,k̂N8 !, ~19!

where

f rad
(N,h)~ k̂0 ,k̂N8 !5 (

l 0 ,m0
l ,m

i l 02 l 11

2Ak0kN8
@~2l 011!~2l 11!#1/2

3exp$ i ~s l 0
1s l !%Cl 0m0

* ~ k̂0!

3Clm~ k̂N8 !@dN,0d l l 0
dmm0

2SNlm,0l 0m0

(h) #, ~20!

f C(u) is the scattering amplitude in a purely Coulomb fie

~for N50,)12 u5(k0 ,k08̂) is the scattering angle
k̂05k0 /k0 , and k̂N8 5kN8 /kN8 .

The differential elastic scattering cross section for
electron (N50), corresponding tof 0→N

(h) ( k̂0 ,k̂N8 ), in an in-
tense laser field of polarizationh is given by the formula

FIG. 2. Differential elastic electron–proton scattering cross section i
laser field, referred to the Rutherford scattering cross section, at diffe
values of frequencyv and a fixed value of the field paramete
a050.1795 a.u. The direction of the momentum of the incoming electro
specified by the anglesu05p/2 andw050 and that of the scattered elec
tron, by the anglesu85w85p/2. The electron energyE is 0.2 Ry. A reso-
nance is observed at the 1s level in the field of the ‘‘dressed’’ atom
(E1s520.9688 Ry).

FIG. 3. Differential elastic electron–proton scattering cross section i
laser field, referred to the Rutherford scattering cross section, as a fun
of the electron energy atF50.01 a.u. and v50.472 Ry56.419 eV
(a050.1795 a.u.). The geometry is the same as in Fig. 2. Resonance
observed at the 2s and 2p levels in the field of the ‘‘dressed’’ atom
(E2s520.2461 Ry andE2p520.2500 Ry).
-

y
d

n

ds (0)

dV
5u f C~u!u21u f rad

(0,h)~ k̂0 ,k̂08!u2

12 Re@ f C* ~u! f rad
(0,h)~ k̂0 ,k̂08!#. ~21!

The differential cross section of inelastic processes relate
stimulated bremsstrahlung (E.0) or absorption (E,0) is
given by the formula

ds (N)

dV
5

kN8

k0
u f rad

(N,h)~ k̂0 ,k̂N8 !u2. ~22!

4. RESULTS OF CALCULATIONS

The numerical calculations of the cross sections of
elastic scattering of an electron by the Coulomb potentia
the presence of a laser field were done for different ener
E of the incident electron and different frequenciesv and
strengthsF of the field. The scattering plane was chos
perpendicular to the direction of light propagation. As sho
by Manakov,8 this is the optimum geometry for observin
dichroism in the angular distribution of scattered electron

Figure 2 depicts a resonance as a function of the
quencyv for h521. Obviously, there can be no resonan
if we do not allow for the inelastic channel.

Figures 3–5 depict the energy spectra and the ang
distributions of the scattered electrons for different numb
of photons involved in the process and different values of
polarization indexh561 ~circular dichroism!. Figure 3 de-
picts the differential elastic electron–proton scattering cr
section as a function of the electron energyE. Resonances
are observed at certain values ofE, v, and F, and their
position and shape were found to depend on the energy
els of the ‘‘dressed atom,’’ i.e., on the energy spectrum in

a
nt

s

a
on

are

FIG. 4. Angular distribution of electrons (E50.2218 Ry) elastically scat-
tered in a plane perpendicular to the direction of the laser beam. Hereu is
the scattering angle. The other parameters and notation are the same
Fig. 3. The number of photons involved isn50 and61.

FIG. 5. Angular distribution of elastically scattered electron with the nu
ber of photons involved isn50, 61, and62. The notation and parameter
are the same as in Fig. 4.



.
,

b
e

ti
e
ig
f

u

d

s
ve
th
to
t

ial
is
o
, n

s
n

h
ro
s
ne
ar
a
n

i.e.,
an-

ld

ut
in

ion-

ree

and
. 7
re-

us-

668 JETP 89 (4), October 1999 L. P. Rapoport and A. S. Kornev
potential2Zj0(r ,a0), and on the direction of polarization
Here the resonances at the 2s and 2p levels are resolved
since the potential of the ‘‘dressed’’ atoms lifts the Coulom
degeneracy. Figure 3 also shows that the width and shap
the resonances at the levels 2s and 2p strongly depend on
the polarization of the light.

Figures 4 and 5 depict the dependence of the differen
scattering cross sections on the electron scattering angl
different polarizations. The channels that are involved in F
4 aren50 and61. In this case the angular distribution o
the electrons forh561 differs from the similar distribution
calculated by perturbation-theory techniques8 only quantita-
tively ~i.e., the shape of the curves is different!. For the chan-
nels involved in the process with an exchange ofn50, 61,
and 62 photons the difference is not only quantitative b
also qualitative: the curves for differenth intersect~see Fig.
5!. The corresponding points of intersection in Figs. 3 an
are indicated by small circles.

As the field strengthF grows ~but the frequencyv re-
mains fixed!, the number of channels involved in the proce
increases~in our case satisfactory convergence was achie
at l max53 and unmaxu52) and so does the resonance wid
Here the ‘‘center of gravity’’ of the resonance is shifted
higher electron energies. This is quite obvious since a
fixed frequency the value of the parametera0 is proportional
to F, and as a0 increases the depth of the potent
2Zj0(r ,a0) decreases, which raises the levels of the d
crete spectrum. There is reason to believe that in ultrastr
fields (a0*50), where the bound states become crowded
resonances will be observed.

At a fixed field strengthF, the widths of the resonance
of the scattering cross section as a function of the freque
v increase with the ‘‘depth’’ of the levels.

Let us examine more thoroughly the effect of the lig
polarization on the cross section of various multiphoton p
cesses. As noted by Manakov,8 for all multiphoton processe
the general structure of circular dichroism can be determi
on the basis of arguments involving the space–time inv
ance of the process. Specifically, the dependence of the
plitude of a quantum transition on the light polarizatio
of
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manifests itself in all cases where there is interference,
coupling between the given transition and the inelastic ch
nels in the total amplitude of the process~channels of light
energy dissipation!. In our case, Eq.~21! is a clear indication
of this. Here dichroism is not determined by the fie
strength. In particular, Manakov8 did his calculations for a
weak field in a perturbation-theory setting. It goes witho
saying, however, that exact studies of polarization effects
an intense laser field, studies that do not use perturbat
theory techniques, are important.

Polarization effects have yet to be studied in free–f
transition of electron–atom systems in a strong field~stimu-
lated bremsstrahlung and absorption!. However, circular di-
chroism plays an important role in scattering processes
will certainly be detected in experiments, since, as Ref
indicates, extending this theory to complicated atoms
quires no serious modifications.
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Photoinduced chirality of hydrogen peroxide molecules
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The feasibility of using nonlinear optical techniques to control the chiral states of molecules is
examined with the hydrogen peroxide molecule as an example. Raman excitation of
optical activity owing to a transition among states with different chiral symmetries is proposed,
along with an experimental scheme for detecting the corresponding photoinduced optical
rotation in hydrogen peroxide vapor. ©1999 American Institute of Physics.
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1. INTRODUCTION

One of the most intriguing mysteries of nature is t
chiral purity of the biological world. For example, with en
viable consistency, nature chooses levorotatory helical D
molecules and dextrorotatory sugar molecules, although
levo- and dextro-configurations are energetically equivale1

Research on the chiral purity of the biological world and,
a whole, on the nature of the chiral symmetry of molecul
the construction of chiral properties and their experimen
study, and attempts at controlling chirality are curren
among the most pressing areas of modern physics.2–4 In par-
ticular, the physical consequences of the existence of a
versal mechanism for breaking of chiral symmetry5,6 owing
to the failure of reflection symmetry as the result of a we
interaction through neutral currents7,8 are the subject of on
going discussion. Besides the spontaneous breakdown of
ral symmetry, there is practical interest in research on
feasibility of deliberately controlling changes in the chir
symmetry, induced, for example, by light. If this is possib
then in optics we have at our disposal a powerful arsena
experimental methods, both for exciting and for probing m
lecular systems,9 which may be used in setting up an expe
ment on photoinduced chirality.

In this paper we study the feasibility of exciting chiral
asymmetric states of the hydrogen peroxide molec
(H2O2) by means of a laser pulse with specially selec
parameters. The hydrogen peroxide molecule~Fig. 1a! is the
simplest chiral molecule whose geometry is not invari
under the spatial inversion (x,y,z)→(x,y,2z). After this
transformation, the initial position of the atoms of the mo
ecule cannot be recovered by a rotational transition, since
torsional angles6u1,2 are inequivalent. The choice of direc
tion of the vectornO from one oxygen atom of the molecu
to the other makes it possible to assign a definite sign to
torsion angle/HOOH after choosing between the right- an
left-handed coordinate systems. According to theoretical
culations and experiment,10–13 the equilibrium torsion angle
in the gaseous phase isu.6120°, where a positive sign
corresponds to the so-calledd-state ~‘‘dextro’’ or right-
6691063-7761/99/89(10)/8/$15.00
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handed! indicated in Fig. 1a and a negative sign, to the s
called l-state~‘‘levo’’ or left-handed!.

Let us examine qualitatively what happens when a ch
H2O2 molecule interacts with an electromagnetic field. T
existence of reflection symmetry between the minima of
torsional potential means that the eigenstates of the torsi
Hamiltonian are split as a result of tunneling through t
lower barrier and are described by even and odd wave fu
tions cS , cA ~tunneling through the upper barrier and th
additional splitting owing to it are negligible13!. The rela-
tively large splittingDE0511.4 cm21 corresponds to a lack
of stationary chirally asymmetric states, which, prior to t
establishment of equilibrium, oscillate at the tunneling fr
quency relative to the stationary statescS andcA . Thus, in
the H2O2 molecule, in principle it is possible only to obtai
an oscillatory optical rotation effect, as opposed to hea
molecules, for which the period of these oscillations can c
respond to arbitrarily long times and the initial chiral
asymmetric state is stable.

The Hamiltonians for the interaction of the molecu
with an electromagnetic field

ĤI52( dkE~r k!

in the dipole (HD) and quadrupole (HQ) approximations
have a qualitative difference owing to the fact that in t
dipole approximation@for E(r k)→E(r0)] the contributions
of the protons add, while in the quadrupole approximat
@E(r k)→(r k2r0)¹E(r0)# they subtract, so thatHD is an
even function, whileHQ is odd. For the corresponding off
diagonal matrix elementsHD

12 andHQ
12 of theS→A transition

for the dipole and quadrupole Hamiltonians, we obtain

HD
1250, HQ

12Þ0. ~1!

This implies that the quadrupole interaction excites prec
sion between states of a chiral molecule that are split ow
to thed↔ l tunneling transition between the right- and le
handed chiral configurations, while the dipole interacti
only produces a modulation in the energy of the eigensta
which therefore oscillates at the frequency of the excit
field. The existence of the quadrupole contribution offers
© 1999 American Institute of Physics
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FIG. 1. ~a! Geometry of an H2O2 molecule in thed-
configuration. The wave vectork of the laser fieldE
is directed along thez axis, nO is a vector in the
direction of the O–O bond,u1,2 are the torsion
angles relative to thexnO plane, the equilibrium va-
lence angles areuH'100°, andaO'1.461 Å and
aH50.964 Å are the lengths of the O–O and O–
bonds, respectively.~b! Model function for the tor-
sional potentialV as a function of the torsion angle
u and the position of the lowest energy levels fo
the symmetric~dots! and antisymmetric~continuous
line! states.
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opportunity, in principle, to selectively excite thed- or l-
enantiomers using a fundamental quantum optical effec
the coherent precession of a two-level system driven b
coherent electromagnetic field pulse.

In this paper we discuss the conditions under which t
photoinduced chirality effect~optical activity! can be de-
tected experimentally. The excitation mechanism is first d
cussed using a single-photon model, and then a more re
tic scheme of two-photon excitation using two lasers w
orthogonal polarizations is proposed. As the following ana
sis shows, if a molecule is initially oriented along thez axis,
then in principle a laser pulse of some duration can be u
to bring it from an initialS- or A-state uniformly distributed
across thed- and l-configurations, and which has no optic
activity, into a state with a definite configuration and a si
corresponding to rotation of the plane of polarization of t
incident field. This photoinduced chirality effect can be o
served experimentally in its purest form in hydrogen per
ide vapor, since the interpretation of data for the liquid ph
is made more complicated by the strong intermolecular
teraction.

Let us estimate the order of magnitude of the effect i
single-photon excitation scheme. The condition for compl
orientation of the dipole moment of the molecules along
z axis under the influence of a field of strengthE is EeaH

@kT, which corresponds toE@106 V/cm at room tempera-
ture. If we do not require 100% orientation of the molecul
then much lower fields can be used to obtain a substant
lower degree of orientation,̧5EeaH /kT, which can never-
theless be used to establish experimentally the presenc
one or the other chiral configuration of the molecules
measuring the optical activity of the medium. In the fr
quency range of the electronic susceptibility, it can be e
mated to lowest order by assuming that¸ describes the frac
tion of the molecules strictly oriented in a given directio
while the remainder of the molecules is not oriented alo
the field. Then, for an upper bound estimate, on multiply
this small factor¸ by the characteristic magnitude of th
specific rotation@a#;102 deg•cm3/g•dm for materials with
the most distinct optical activity, we obtain;1021
a
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deg•cm3/g•dm for resonant excitation of optical activity a
E'103 V/cm. A 1-mm thick layer of the vapor at standar
temperature and pressure yields a rotation angle of the o
of 1021 sec. This value is at the limit of sensitivity for linea
polarization spectroscopic techniques. Thus, even neglec
the other complicating factors in a single-photon excitat
scheme with initial orientation of the molecules by a const
electric field, observing the laser induced optical rotation w
be difficult.

Another important point is the finite lifetimet r of the
chiral state owing to intermolecular collisions. It should
least be longer than the time the field propagates in the ac
region,tc5L/c>10210 s21, and a lower bound estimate i
t r5(N vs)21, whereN is the concentration of the mol
ecules,v is the thermal speed, ands is the collision cross
section. For atmospheric pressure and room temperature
obtaint r;1029 s21.tc .

The biharmonic excitation scheme using two laser pul
proposed here satisfies this restriction, and furthermore
be used to efficiently induce a given chiral state in the
cited molecules.

2. THEORETICAL MODEL FOR PHOTOINDUCED CHIRALITY
OF H2O2 MOLECULES

2.1. Reduced model for the dynamics of a free molecule

For an approximate description of the dynamics of m
ecules in a laser radiation field, it is appropriate to simpl
the complete Hamiltonian by taking advantage of the sm
ratio of the masses of the protons and oxygen atoms. T
the dynamics of the protons can be treated in the adiab
approximation with respect to the coordinates of the oxyg
atom, and the dynamics of the latter reduces, in the simp
case, to averaging over the direction of the unit vectornO

5(sinq cosw, sinq sinw, cosq), which specifies the orien
tation of the O–O-bond. Here the average over
z-direction ~Fig. 1a! can be taken considering only the rot
tional dynamics of the protons relative to the O–O bon
given that the potential of the proton bond depends only
the torsion angleu5u22u1 .
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Given these considerations, the characteristic Ham
tonian in the reduced model, which accounts for the rotat
of a molecule relative to the O–O bond as a whole and
torsional vibrations, has the form

Ĥ5ĤH1Ĥu , ~2!

where

ĤH52
\2

4mHr H
2

]2

]ũ2
, ~3!

Ĥu52
\2

mHr H
2

]2

]u2
1V~u!, ~4!

where ũ5(u11u2)/2, mH is the proton mass, andV(u) is
the torsional potential. The vibrations of the valence ang
/HOO are neglected here for simplicity.

Besides the uncertainty in the direction ofnO mentioned
above, the initial state of the molecule with respect to
average angleũ includes an uncertainty associated with t
rotation of the molecule relative to that direction, which co
responds to the third rotational degree of freedom of
molecule and supplements the two angles that specify
direction of nO. Here the corresponding frequencies of t
transitions between the levels for free rotation about
O–O axis are

vn→n1157.84•~n11/2! cm21,

and are a factor of four less than the corresponding frequ
cies of free internal rotation in view of Eqs.~3! and ~4!,
which largely determines the form of the torsional poten
U(u).

2.2. Photoexcitation of rotational degrees of freedom of the
molecule

In a field

E~ t !5E1u1~ t !cos~v1t1w1!

with envelopeu1(t) and frequencyv1@vn→n11 , the quan-
tum features of the resulting excitation are unimportant a
the response is described by the classical equation

J
d2ũ

dt2
5

]

]ũ
E~ t !d,

whereJ is the moment of inertia of the molecule. To zero
order in the deviation, in the expression for the force on
right-hand side of the equation and for pulses that are not
short, with durationst1@1/v1 , the response in the form o
the change in the angleũ at frequencyv1 is given by

Dũ.2
]

]ũ

E1~ t !d

Jv1
2

. ~5!

This change leads to a modulation at frequencyv1 in the
quadrupole Hamiltonian acting on the internal rotation, a
therefore to partial orientation of the molecule, which sho
up as a loss of symmetry in the quadrupole Hamiltonian
particular, when the O–O axis of a molecule is orient
l-
n
e
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e
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e
e

e

n-

l

d

e
o

d
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n
d

along thez axis, i.e.,q50, and the fieldE1 is oriented along
they axis, the rotational symmetry reduces to a uniform d
tribution over the angleũ; the quadrupole moment has
dependence of the form sinũ. Here the orientation shows u
in Eq. ~5!, which takes the form

Dũ.
E1d

2Jv1
2

u1~ t !cosũ cos
u

2
cos~v1t1w1!, ~6!

with cosũ having the same angular dependence as the
rivative of the quadrupole Hamiltonian for the fieldE2ix, so
that

DĤQ5~]ĤQ /]ũ !Dũ}cos2 ũ.

An order of magnitude estimate in the visible range i

Dũ;10210AI 1, ~7!

where I 1 is the intensity of the fieldE1 in W/cm2 and the
angle is in radians. This estimate reaches order unity onl
fields stronger than the intra-atomic fields.

The dynamics of the torsional vibrations correspond
to the HamiltonianĤu are largely quantum mechanical ow
ing to the relatively small mass of the proton compared to
heavier atoms. This shows up in the tunneling between thd-
and l-states of the local potential minima~Fig. 1b!, which
leads to the formation of superposition eigenstatescS andcA

that are split in energy and have equally representedd- and
l-configurations, as well as to a nonrigidity of the molecu
configuration owing to the quantum mechanical indeterm
nacy of the wave functions with respect to the torsion ang

The form of the torsional potential of the H2O2 molecule
and the eigenenergies of the torsional potential have b
studied both byab initio computational techniques and b
analyzing experimental spectroscopic data. Figure 1b sh
the potential function and structure of the eigenlevels.14 An
estimate of the uncertainty in the local states with respec
the torsion angle using the formula for position fluctuatio
in the ground state of a harmonic oscillator yields

su'@\/~mHr H
2v0!#1/2'20°.

The HamiltonianĤ I for interaction with a laser field in
the dipole approximation, allowing only for the displaceme
of the proton charges, is

ĤD52ELeaH Ree~e11e2!, ~8!

whereaH is the H–O distance,e1,2 are the corresponding un
vectors for the directions of the proton bonds,e is the polar-
ization vector of the laser field, ande is the proton charge
The quadrupole component of the interaction Hamilton
depends on the choice of the coordinate center. The displ
ment of the center leads to an additional dipole term whi
however, is small and can be discarded, since it describes
same qualitative features of the interaction as the main dip
contribution. Thus, the coordinate center must be chose
in Fig. 1 in order to obtain the simplest form of the Ham
tonian. The corresponding expression is
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ĤQ52ELdQ52
knOaO

2
ELeaH Re@ ie~e22e1!#, ~9!

whereaO is the O–O distance. This choice of the coordina
center on the O–O line for light propagating along that li
~i.e., kinO) means that the dependence of the quadrup
HamiltonianHQ on the torsion angle is determined solely
the odd function sin(u/2).

To calculate Eqs.~8! and ~9!, one must represent th
polarization vector of the field in the forme5(ex ,ey,0),
where the coefficientsex and ey are, in general, complex
numbers, and calculate the corresponding coefficients,

CHk
5~nxnHk

!, SHk
~nynHk

!,

wherenx andny are the unit vectors along thex andy axes
and nHk

are the unit vectors along the O–Hk bonds (k
51,2). In this notation, the Hamiltonians~8! and~9! take the
form

ĤD52ELeaH Ree2 iwL@ex~CH1
1CH2

!

1ey~SH1
1SH2

!#,

ĤQ52
kLaO

2
ELeaH Reie2 iwL@ex~CH2

2CH1
!

1ey~SH2
2SH1

!#, ~10!

wherekL is the modulus of the wave vector of the laser fie
wL is the phase of the laser field, and the rotation anglesu1,2
ol
e

le

,

of the hydrogen bonds serve as coordinate operators.
projection coefficients of the proton dipole moments in thex
or y directions of the laser polarization vectore are calcu-
lated according to the formulas

CHk
5nxO~nOOH1

' ,dH!O~nO,uk!O~nnxnO

' ,p/2

2/nxnO!nx ,

SHk
5nyO~nOOH2

' ,dH!O~nO,uk!O~nnxnO

' ,p/2

2/nxnO!nx

as the scalar product of the vectorsnx,y and the vectors ob-
tained ~a! by rotating the vectornx initially by an angle
p/22/nxnO in the plane ofnxnO until reaching a perpen
dicular to thenO axis, which is used as a basis axis f
reading the torsion angles,~b! by rotating nx around the
O—O axis by the torsion angleuk , and~c! by a subsequen
rotation ofnx in the OOHk plane by an angledH5uH2p/2
until the unit vector alongnHk

is obtained.
Given the nonzero value ofdH , the analytic expression

for these coefficients end up being very cumbersome, so
we give them only for the approximationdH50, i.e., for
directions of the hydrogen bonds orthogonal to the O
axis.1! The resulting relative error is less than;10% because
dH'10° is small. The three-dimensional rotation matrix f
a rotationa about then axis is
O~n,a!5S nx
21ny

2 cosa1nz
2 cosa nxny2nxny cosa2nz sina nxnz2nxnz cosa1ny sina

nxny2nxny cosa1nz sina ny
21nx

2 cosa1nz
2 cosa nynz2nynz cosa2nx sina

nxnz2nxnz cosa2ny sina nynz2nynz cosa1nx sina nz
21nx

2 cosa1ny
2 cosa

D .
ion
e
nts
es-
odd
Hence, the coefficients can finally be written in the form

CH1
5A12sin2 q cos2 w cosu1 ,

CH2
5A12sin2 q cos2 w cosu2 ,

SH1
5~16Acos2 q1sin2 w sin2 q!21@22 sin~2w2u1!

1sin~2w22q2u1!28 sin~q2u1!1sin~2w

12q2u1!22 sin~2w1u1!1sin~2w22q1u1!

18 sin~q1u1!1sin~2w12q1u1!#,

SH2
5~16Acos2 q1sin2 w sin2 q!21@22 sin~2w2u2!

1sin~2w22q2u2!28 sin~q2u2!1sin~2w

12q2u2!22 sin~2w1u2!1sin~2w22q1u2!

18 sin~q1u2!1sin~2w12q1u2!#. ~11!

For the sum of the coefficients that determine the dip
potential we obtain
e

CH1
1CH2

5C1 cos~u/2!, SH1
1SH2

5S1 cos~u/2!,
~12!

C152A12sin2 q cos2 w cosũ,

S152~16Acos2 q12 sin2 w sin2 q!21@22 sin~2w2 ũ !

22 sin~2w1 ũ !1sin~2w2 ũ22q!1sin~2w1 ũ

22q!18 sin~ ũ2q!18 sin~ ũ1q!1sin~2w2 ũ

12q!1sin~2w1 ũ12q!#,

which depend on the torsional angle via the even funct
cos(u/2). Here ũ5(u11u2)/2 is the average rotation angl
of the hydrogen bonds. For the differences of the coefficie
determining the quadrupole potential, we obtain an expr
sion that depends on the torsion angle in terms of the
function sin(u/2):

CH2
2CH1

5C2 sin
u

2
, SH2

2SH1
5S2 sin

u

2
,
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C2522A12sin2 q cos2 w sinũ,

S25~16Acos2 q12 sin2 w sin2 q!21@~2 cos~2w2 ũ !

22 cos~2w1 ũ !2cos~2w2 ũ22q!1cos~2w1 ũ

22q!18 cos~ ũ2q!18 cos~ ũ1q!2cos~2w2 ũ

12q!1cos~2w1 ũ12q!. ~13!

For a simplified analysis of the interaction of the rot
tional motion of a molecule about the O–O axis and
torsional vibrations, the numerical parameters of the t
sional potentialU(u) are important. The corresponding va
ues of the frequency splitting of the levels,14 DE0511.44
cm21, DE15116.34 cm21, andDE25206.57 cm21, exceed
the characteristic free rotation frequencies of the molecul
a whole for n>1; this means that it is possible to stud
transitions between the eigenstates of the torsional Ha
tonianĤu directly in terms of the classical rotational coord
nateũ.

3. PHOTOEXCITATION DYNAMICS IN A TWO-LEVEL
MODEL

If it is assumed that the frequencies of the transit
between the eigenstates of the torsional HamiltonianĤu

greatly exceed the rotation frequency of the proton bon
then laser excitation is possible for a negligibly small dev
tion of the orientation anglesq andw of the molecule and a
small deviation of the rotational angleũ. Here it is possible
to excite the symmetric/antisymmetric statescS andcA into
a coherent superposition CAcA1CScS . For
S2A-transitions with high enough transition energyDEn ,
which is nonzero because of tunneling between thed- and
l-states, it can be estimated as

DE}exp~22AmHaH
2DVDu/\!,

whereDV andDu are the characteristic height and width
the potential barrier. When the excitation frequency is c
sen to be the resonant transition frequencyv05DEn /\, only
the resonant matrix elements will be significant in the Ham
tonians~10! and the torsional dynamics of the molecule c
be examined in a two-level approximation.

Given the form~10! for the Hamiltonian, we have

ĤD}cosu, ĤQ}sinu.

We show the form of the 232 matrix for the single-photon
interaction HamiltonianĤL for the total HamiltonianĤI

5ĤD1ĤQ for the case of linear polarizationex51, ey50.
~Here there is no advantage in using circular polarization
the quadrupole approximation, because the polarization d
not appear in the dependence of the quadrupole momen
the coordinateu for this transition.! Given the representatio
of the interaction Hamiltonian in terms of the Pauli matric
for this transition, we obtain

ĤI →V12ŝ
11V21ŝ

25V12~ t !ŝ1~ t !

5V12~0!cos~vLt1w̃L!~cos~vLtŝ1!1sin~vLtŝ2!!,
e
r-

as

il-

s,
-

-

-

n
es
on

whereV125V21 because the eigenfunctionsck are real. After
averaging over the oscillations in the field and the atom
polarization of the components at frequencies 2vL in the
rotating wave approximation,15 we obtain

ĤL5S 0
1

2
QSASe

2 i w̃L

1

2
QSASe

i w̃L 0
D , ~14!

where, with Eqs.~10!, ~12!, and~13!, we obtain

Q5kLaOELeaHA12sin2 q cos2 w sinũ, ~15!

where w̃L is the initial phase of the laser field, which als
includes a phase contribution, determined by Eq.~10!, to the
polarization of the field and the orientation of the molecu
and

SAS5E
2p

p

cA~u!sin
u

2
cS~u!du ~16!

is a dimensionless matrix element describing the tunne
effect.

As a result, the Hamiltonian~14! is described by the
matrix

ĤV5S 2
\d

2

Q

2
SASe

2 i w̃L

Q

2
SASe

i w̃L
\d

2

D , ~17!

where d5vL2v12 is the detuning of the laser field. Thi
operator can be expressed in terms of the Pauli matrices

ĤV5
\

2
~Vŝ!, V5~2d,QSAScosw̃L ,sinw̃L!. ~18!

The temporal evolution operator corresponding to the ope
tor ~17!,

U~ t !5T expF ~2 i /\!E ĤVdtG
can be calculated analytically for~a! a rectangular pulseEL

5const, or~b! zero offsetd50, using the equations

a) U~ t !5cosS V

2
t D Î 2 i sinS V

2
t D F2

d

V
ŝ3

1
QSAS

V
~ŝ1 cosw̃L1ŝ2 sinw̃L!G , ~19a!

b) U~ t !5cosS F

2 D Î 2 i sinS F

2 D ~ ŝ1 cosw̃L1ŝ2 sinw̃L!,

~19b!

where V5AV0
21d2 is the total Rabi frequency,V0

5QSAS is the Rabi frequency, andF5*V(t)dt is the angle
of the laser pulse.

For d50, in accordance with Eq.~19b!, the initial inco-
herent states, represented in the form

r̂05 Î /21wŝ3/2 ~21<w<1!,
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transform into the states

r̂ t5
1

2
@ Î 1w~ ŝ3 cosF2ŝ1 sinF sin~vLt1w̃L!

2ŝ2 sinF cos~vLt1w̃L!!#, ~20!

where, besides the transformation~19!, we have included
free precession at the laser frequency, which is applicabl
the standard form for the theory of the interaction16 and the
rotating wave approximation to the operators for the phys
quantities. The components withŝ1 andŝ2 describe the con-
tribution of the coherent superposition of the statescS and
cA . In particular, for the lower initial state, which corre
sponds tow51 for vLt1w̃L5p/2, a p/2-pulse, for which
F56p/2 and cosF561 in Eq. ~20! andF/256p/4 and
cos(F/2)561/A2 in Eq. ~19b!, produces a jump from the
initial cS state into the chiral statesc1,25(cS6cA)/A2,
which correspond to the density matrices (Î 7ŝ1)/2. Thus,
for fixed angles

Q5~q,w,ũ !

it is possible to bring a molecule into ad- or l-state with
100% probability by an appropriate choice of parameters
general, however, the resulting transformation of the s
must be averaged over the anglesQ.

This averaging can be accomplished using a stand
superoperator technique.17 For the result~20! of the excita-
tion of an incoherent initial state, upon averaging only ov
the sign of the parameterQ, which depends on the orienta
tion angleũ of the hydrogen bonds along thex axis, which
enters into the factor sinF in Eq. ~20!, we obtain the follow-
ing structure for the density matrix:

r̂ t5~ Î 2wŝ3 cosF!/2.

This means that when there is no preferred orientation of
molecules inũ, the density matrix transforms incoherentl
i.e., diagonal density matrices transform into diagonal ma
ces. As a result of this transformation, the symmetry of
state,Sor A, does not change, but the squared modulus of
wave function preserves reflection symmetry under the tra
formationu→2u. Therefore, in order for reflection symme
try to be disrupted, the molecules must be oriented befo
hand.

3.1. Excitation of initially oriented molecules

If there is an inhomogeneity in the distribution of th
anglesũ owing to the existence of a preferred orientation
the molecules, then the excitation of incoherent states
contain a coherent component associated with the excita
of chiral states that differ fromcA andcS . The scalar char-
acteristic of the degree of chirality is the average

x52S ^c l ur̂uc l&2
1

2D522S ^cdur̂ucd&2
1

2D , ~21!

where

c l ,d5
1

2
@cS6cA#
in
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describe, respectively, left- and right-handed chiral sta
which correspond to degrees of chiralityx561 for r̂

5uc l ,d&^c l ,du. For a stater̂(t) excited by a rectangular lase
pulse of durationtp with phaseF5Vtp , the corresponding
dependence of the degree of chirality of the excited state
the detuningd and phasesF, w̃L can be calculated analyti
cally.

For zero frequency offset, the analytic dependence of
degree of chirality on the angle and phase of the laser p
has the form

x52sinF sinw̃L .

The qualitative dependence for nonzero offset is shown
Fig. 2a. The important point is the dependence of the ef
on the phase of the laser field.

4. EXPERIMENTAL SCHEME FOR OBSERVING
PHOTOINDUCED CHIRALITY IN H2O2

Given the features of the hydrogen peroxide molec
analyzed above, we propose the following experiment
observing photoexcited optical activity as an indicator of t
breakdown of reflection symmetry.

As a working two-level system, the most appropriate
theS2A-transition withn51, which corresponds to a wave
lengthl.86 mm and frequencyv125116.34 cm21, which
is substantially greater than the corresponding frequency
n50 ~11.44 cm21). To create a population in this transitio
it is easiest to use Raman excitation by two lasers tune
the frequency of theS2S-transition n50→n51. Since
only dipole-active transitions are used here, we can obtain
essentially complete saturation regime in the active volu
of the medium, so that in this stage there are no import
limitations and we can start withnS;1 for estimating the
initial population on this transition.

In view of the oscillations in the degree of chirality ex
cited in this scheme, it seems appropriate to use a laser
frequencyv1 for probing and another frequencyv2 , which
differs by the frequencyv12v25v12 of the precession in
the degree of chirality, for detection. This can be done e
ciently using two crossed polarizers. Detection of nonz
polarization of the output field perpendicular to the pro
field corresponds to detection of the rotation effect. Here
probe field can be simultaneously employed to create an
fect analogous to the orientation by an electrostatic field
scribed in Sec. 1. According to Eq.~6!, it leads to an angular
displacement by this frequency. Therefore, the quadrup
Hamiltonian corresponding to excitation by the other la
field at frequencyv2 and with a polarization direction alon
the x axis receives a correction at the resonant freque
v12,

DQ5
E1E2e2aH

2

8Jv1
2

kLaOA12sin2 q cos2 w

3cos2 ũu1~ t !u2~ t !. ~22!

Here an additional dependence on the torsional angle of
form cos(u/2) should be included in the matrix element~16!,
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FIG. 2. ~a! Degree of chiralityx of the ex-
cited state as a function of the relative de

tuningd/V0 and phasew̃L of the laser field.
~b! Layout of an experiment with two-
frequency excitation. Radiation from one o
the lasers is also used as the probe radiati
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which reduces to the substitution sin(u/2)→(sinu)/2; this
matrix element is also nonzero, while the additional tim
dependence of the form cos(v1t1w1) reduces to replacing th
laser frequency,vL→v12v2 , and the phase,w̃L→w1

2w2 . Equation~22! yields the order of magnitude estima

DQtp /\;1024AI 1I 2tp ,

where the pulse durationtp is in seconds and the intensitie
I 1 andI 2 are in W/cm2. Thus, in order to obtain the effect o
a p/2-pulse for pulse lengths;1 ns, the average geometr
intensities of the pulses employed must be of orderI 0

5104/tp;1013 W/cm2. This quantity only yields an uppe
bound on the laser power to be used, which may actually
bounded by the substantially lower intensities correspond
to smallDQtp /\.

The minimum measured rotation anglewmin , in conjunc-
tion with the expected angular rotationa5Dw/DL, deter-
mines the lengthL of the active region. Fora, we can pro-
ceed from the estimatea5kL

2aO(«21), where «21
;1024 is the characteristic dispersion in the visible f
H2O2 vapor at atmospheric pressure produced by suita
heating of the cell. This estimate is based on the assump
that for the chiral state of the molecule, the order of t
specific rotation compared to the linear polarization eff
contains a small parameterkLaO;1023. The corresponding
minimum length of the active region isL5wmin /a, which
for wmin of order 1 arcsec yieldsL;1022 cm. It is important
to note that this is precisely of the same order as the wa
length corresponding to free precession at this transition
this way, propagation effects on the frequency of the tran
tion are relatively unimportant. The corresponding minimu
laser beam waist in the active region18 w0

25lLL/p corre-
sponds to pulsed laser powers

WL5I 0w0
2 ,

which for these parameters is of order 107 W.
The geometry of a two-frequency experimental layou

shown in Fig. 2b. Light at either of the two frequenciesv1,2

can be used to detect the optical rotation effect. In t
scheme, averaging over orientation shows up only as un
tainty in the Rabi frequency owing to the cos2 ũ dependence
which, as opposed to the electrostatic orientation meth
does not lead to a drop in the response of the same ord
magnitude as the effect itself. In order for the exciting field
e
g

le
on
e
t

e-
In
i-

s

s
r-

d,
of
t

frequencyv2 not to interfere with detection of the effect a
the same frequency, the beams must be slightly skewe
that this does not have a significant effect on the field dis
bution in the active region.

5. CONCLUSION

The above analysis indicates the feasibility of controll
excitation and detection of molecular states with disrup
reflection symmetry by optical methods. Introducing t
techniques of nonlinear optics into the study of chiral sta
would signify the emergence of an efficient source of n
information on the dynamic parameters of molecules wh
determine the conformational properties of chiral states.

This work was initiated by Prof. N. I. Koroteev, wh
devoted the last years of his short life to studying the puz
of chiral purity in nature. One of his major ideas was
apply the methods of nonlinear optics to research on
problem. He hoped that in this way, not only could ne
highly sensitive methods for nonlinear optical diagnostics
media with chiral symmetry be developed, but also t
mechanisms for controlled regulation of chirality might b
understood. His untimely passing precluded his doing so,
his ideas continue to live on in the work of his success
and students. We respectfully dedicate this paper to
memory of N. I. Koroteev.

This work was partly supported by the Russian Fund
Fundamental Research, Grant No. 96-15-96460, for the
A. Akhmanov and R. V. Khokhlov School on Nonlinear Op
tics and Laser Physics.’’ We also thank V. I. Tyulin fo
providing the latest data on the potential for internal rotat
of the hydrogen peroxide molecule, and A. Yu. Chikish
for discussing the design of a possible experiment.

* !E-mail: grishan@comsim1.ilc.msu.su
1!As necessary, the numerical calculations can be carried out using e

formulas.

1V. A. Avetisov and V. I. Goldanski�, Usp. Fiz. Nauk166, 874 ~1996!.
2A. I. Kita�gorodski�, Introduction to Physics@in Russian#, Nauka, Moscow
~1973!.

3D. C. Walker, ed.,Origins of Optical Activity in Nature, Elsevier, Am-
sterdam~1979!.

4W. Thiemann, ed.,Generation and Amplification of Chirality in Chemica
Systems, Reidel, Dordrecht~1981!.



.,

ta-

676 JETP 89 (4), October 1999 B. A. Grishanin and V. N. Zadkov
5B. Ya. Zel’dovich, D. B. Saakyan, and I. I. Sobel’man, JETP Lett.25, 94
~1977!.

6R. A. Hegstrom, D. W. Rein, and P. G. C. Sandars, Chem. Phys.73, 2329
~1980!.

7S. Weinberg, Phys. Rev. Lett.19, 1264~1967!.
8A. Salam, inProc. of the Eighth Nobel Symposium~1968!, p. 367.
9S. A. Akhmanov and N. I. Koroteev,Methods of Nonlinear Optics in
Light Scattering Spectroscopy@in Russian#, Nauka, Moscow~1981!.

10Y. Amako and P. A. Gogue`re, Can. J. Chem.40, 765 ~1962!.
11R. L. Redington, W. B. Olson, and P. C. Gross, J. Chem. Phys.36, 1311

~1962!.
12W. R. Busing and H. A. Levy, J. Chem. Phys.42, 3054~1965!.
13V. I. Tyulin, P. A. L. Bachi-Tom, and V. K. Matveev, Vestn. Mosk. Univ

Ser. 2, Khimiya39~2!, 75 ~1998!.
14P. A. L. Bachi-Tom, Candidate’s Dissertation in Chemical Sciences@in
Russian#, Moscow State Univ., Moscow~1998!.

15A. Allen and J. Eberly,Optical Resonance and Two-level Atoms, Wiley,
New York ~1975!.

16L. D. Landau and E. M. Lifshitz,Quantum Mechanics. Nonrelativistic
Theory, 3rd ed., Pergamon, New York~1977!.

17B. A. Grishanin,Quantum Electrodynamics for Electrical Engineers@in
Russian#, Izd. MGU, Moscow~1981!.

18W. Demtroeder,Laser Spectroscopy: Basic Concepts and Instrumen
tion, Springer-Verlag, New York~1981!.

Translated by D. H. McNeill



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 4 OCTOBER 1999
Negative magnetic viscosity in two dimensions
A. V. Chechkin* )

National Academy of Science of Ukraine, Institute for Single Crystals, 310001 Kharkov, Ukraine
~Submitted 12 February 1999!
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The occurrence of ‘‘negative viscosities’’ is studied within the framework of two-dimensional
magnetohydrodynamics MHD. We use assumptions which are typical when studying the
effects of smaller-scale fields on larger-scale ones, namely, the small-scale MHD fields are
assumed to be sufficiently weak, jointly stationary, homogeneous, and maintained by
external sources. The criteria of large-scale field generation due to negative viscosities are
derived for various special forms of isotropic small-scale fields as well as anisotropic ones; the
latter can be regarded as MHD stochastic analogs of the known Kolmogorov flow.
© 1999 American Institute of Physics.@S1063-7761~99!01010-0#
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1. INTRODUCTION

Problems of pattern formation and self-organizati
have been extensively studied in various hydrodynamic m
els of fluids and plasmas for at least three decades. Eff
called ‘‘negative viscosity’’ belong to this wide class of th
phenomena. This term was introduced by geophysicists
specialists in hydrodynamics in the 1950s, when analyz
large-scale geophysical processes.1,2 However, it is still not
well known, and even seems paradoxical. Therefore, le
discuss its origin in more detail.

We first consider the classical theory of gases. In t
framework, starting with the Boltzmann equation, one c
derive hydrodynamic equations. The equation for momen
transport has the form

]v i

]t
1~v¹!v i52

1

r

]p

]xi
2

1

r

]p i j

]xj
. ~1.1!

Here r, rv are the mass and momentum densities, resp
tively, xi5x,y,z; p is pressure~here it is the ideal gas pres
sure!, and p i j is the viscosity tensor which describes irr
versible ‘‘viscous’’ momentum transport. An explicit form
of this tensor is obtained by invoking the smallness of
Knudsen number Kn5 l m f p /L, wherel m f p is the mean free
path andL is an external scale~scale of inhomogeneity!. In
the first order of Kn, that is, in the 13-moment approximati
of the Grad method,3 one has

p i j 52hS ]v i

]xj
1

]v j

]xi
2

2

3
d i j

]vk

]xk
D , ~1.2!

whereh is the dynamical viscosity, which is of the order
rv thl m f p , v th is the thermal velocity, andh is always posi-
tive; this is in agreement with the intuitively obvious fa
that irreversible momentum transport proceeds from regi
of higher velocity to those of lower velocity.

We now proceed with the thermodynamics of irreve
ible processes. In this framework the equation for mom
tum transport retains the form~1.1! ~where the pressurep is
determined by the motion of particles and their interactio!.
The form of the viscous tensor, however, cannot be de
6771063-7761/99/89(10)/12/$15.00
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mined from the kinetic equation, but instead has to be es
lished from general principles.4 Specifically,~i! viscous mo-
mentum transfer appears when different parts of the fl
move with different velocities, sop i j must depend on the
space derivatives of the velocityv; ~ii ! it is assumed that
these derivatives are not too large; thus, viscous momen
transfer depends on the first derivatives only; and~iii ! p i j

must tend to zero when the fluid rotates uniformly as a wh
at some angular frequencyV. Since linear combinations o
the type

]v i

]xj
1

]v j

]xi

tend to zero whenv is equal to@V3x#, only those linear
combinations are contained inp i j . Finally, below we as-
sume an incompressible fluid,r5const, and thus

]vk

]xk
50.

Therefore, the viscous tensor retains the form~1.2! ~without
the last term in brackets!, whereh, of course, does not obe
the simple gas law, but is instead a function of pressure
temperature. Assuming that the change in viscosity along
fluid is negligible, one can replace the term2(1/r)]p i j /]xj

in Eq. ~1.1! with nDv i , wheren5h/r is the kinematic vis-
cosity andD is the Laplacian. The positivity ofh stems from
the second law of thermodynamics for irreversible proces
the entropyS of a closed~isolated! system cannot decreas
dS>0, whereas entropy production in a local equilibriu
approximation has the same sign ash; see the detailed deri
vation in Ref. 3.

We now turn to turbulent processes that occur in op
hydrodynamic systems. It is assumed for the turbulence
fluid that Eqs.~1.1! and~1.2! are also valid for the stochasti
velocity and pressure fields. Thus, we can define mean
fluctuating quantities

v5 v̄1vT, p5 p̄1pT,
© 1999 American Institute of Physics
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where the bar denotes statistical averaging, and a supers
T denotes fluctuating~i.e., turbulent! components. In this pa
per we also use angle brackets^...& to indicate statistical av-
eraging in correlation functions. For the mean fields one
the equation

S ]

]t
1

]

]xj
v̄ j D v̄ i52

1

r

] p̄

]xi
1nD v̄ i2

1

r

]

]xj
p i j

turb, ~1.3!

where

p i j
turb5r^v i

Tv j
T&

are the Reynolds stresses.
Based on the analogy with the kinetic theory of gas

Boussinesq proposed to approximate the Reynolds stre
as

^v i
Tv j

T&52n turbS ]v i

]xj
1

]v j

]xi
D , ~1.4!

wheren turb is the turbulent kinematic viscosity. In contrast
the kinematic viscosityn, which describes the physical prop
erties of the gas~fluid!, the turbulent kinematic viscosity
describes the statistical properties of turbulent flows. An
portant fact is thatn turb need not be positive, because there
no thermodynamic basis for its positivity. Indeed, we c
speculate that when an external force~source! is added to the
right hand side of Eq.~1.1!, such that momentum~energy! is
pumped into the small-scale component of the turbule
from this source~not from the mean flow!, the momentum
~energy! of fluctuations will be transferred to the mean flow
Assuming thatn turb does not depend onx, Eq. ~1.3! can be
rewritten as

S ]

]t
1

]

]xj
v̄ j D v̄ i52

1

r

] p̄

]xi
1~n1n turb!D v̄ i , ~1.5!

where the sumn1n turb can be negative, and thus large-sca
instability occurs, accompanied by an increase in the m
flow.

Approximation ~1.3! assumes the locality of the turbu
lent mechanism of momentum transport. It implies a sm
ratio of the characteristic scale of turbulent fluctuations~vor-
tices! to the scale of the mean flow~by analogy with the
Knudsen number!. Experimental data5 suggest that in many
cases the scale of turbulent fluctuations is of the order of
of the mean flow, and the gradient approximation~1.4! be-
comes inadequate. In such cases, the contragradient tran
is also observed frequently,6 but this case is much more in
volved from a theoretical standpoint. Thus, in this paper
restrict ourselves to the case in which the scales of fluc
tion are much smaller than those of the mean quantities.
also note that in Ref. 7 the peculiarities of numerical sim
lation of nonlocal momentum and thermal turbulent transp
are discussed in detail.

In Ref. 2 a qualitative analysis~with an accent on em
pirical data analysis! is carried out on a set of geophysic
and astrophysical processes and laboratory experiment
which negative viscosity effects have already been detec
or, can at least be suspected:
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1! differential rotation of the Earth’s atmosphere;
2! differential rotation of the Sun photosphere;
3! differential rotation of disks of spiral galaxies;
4! flows in some laboratory experiments;
5! Gulf Stream near American coast.
One can conclude that negative viscosity phenomena

ubiquitous; they occur in systems possessing various ph
cal and geometrical properties, and on a very different ra
of scales, ranging from laboratory flows a few centimeters
diameter to galaxies that are kiloparsecs in diameter. I
worthwhile to note that a similar problem also occurs in
tokamak plasma, where the peaked profiles inH-mode re-
gime can be attributed to negative turbulent dissipative co
ficients and contragradient transport.

A review of the examples above suggests a neces
condition for maintenance of a~quasi!stationary regime with
negative viscosity effects prevailing: turbulence must not
‘‘passive’’ 2 in the sense that it is not fed by the kinet
energy of the mean flow, but instead has another sourc
energy, e.g., a thermal source, as occurs in Earth’s at
sphere. Therefore, in papers dealing with a quantitative
scription of negative viscosity, the problem is formulated
follows. Suppose that we have a source giving rise to de
ministic flows or stationary turbulence in a hydrodynam
medium. In the former case, the explicit form of the det
ministic flows ~or, at least, their symmetry properties! is as-
sumed to be known, whereas in the latter case their statis
properties are known. The characteristic scale~s! of the given
motion is assumed to be much smaller than the outer sca
the system of interest. The question is: can these small-s
motions act as a negative turbulent viscosity upon large-s
ones? From a theoretical standpoint, this implies the app
ance of a negative dissipative factor in the equation for
mean flow, and its growth is understood as a manifestatio
long-wavelength instability in a system of small-scale flo
or vortices, the energy of small-scale motion being const
~it is mathematically convenient to treat the small-scale m
tion as being generated by an external source!. This formu-
lation is an example of inverse cascade problems in hyd
dynamic systems. A similar~but not identical! example is
related to the description of anomalous flows of the turbul
kinetic energy through the spectrum toward small wa
numbers via local interaction between turbulent modes,
to the formation of stationary turbulent spectra.8,9

A number of analytic studies of the effects~character-
ized by the effective viscosity! of smaller-scale motion on
larger-scale motion have begun since the late 1950s, whe
Kolmogorov proposed to study stability of a plane period
flow sustained by a one-dimensional space-periodic exte
source in a viscous incompressible fluid.10 This problem was
first considered in Ref. 11, where the criterion of large-sc
instability of one-dimensional space-periodic flow w
found. Many subsequent papers are devoted to various
pects of the theory of Kolmogorov flow and its ‘‘relatives
in fluids; see, e.g., Refs. 12–15 and references therein. B
regarded as an ‘‘elementary object’’ of realistic turbulen
with many degrees of freedom, Kolmogorov flow appears
be very useful in systematic studies of the peculiarities of
transition to turbulence, of the inverse cascade proces
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two-dimensional~2D! turbulent flow, and in coherent struc
ture generation. Experimentally, a 2D flow subject to pe
odic forcing was studied in a thin layer of an electrolyte16

Two-dimensional hydrodynamic flows also attract consid
able attention because the direct numerical solution of
fluid equations is a simpler problem than the solution of
problems.17

For plasmas an analogous problem was considere
Ref. 18 where the stability of a gradient-drift wave was stu
ied and coherent nonlinear structures formed as the resu
instability were found.

Kolmogorov flow instability can be regarded as a simp
manifestation of the negative viscosity effect when t
small-scale basic flow is one-dimensional and spa
periodic. Other basic forms of small-scale motion in flui
~isotropic time-independent14 and d-correlated in time19!
have also been considered. A possible occurrence of
negative viscosity effect was studied in Ref. 20 for coher
wave motion, as well as for the small-scale Rossby tur
lence and gradient drift-wave turbulence. We also ment
the emergence of negative viscosity in a ferrofluid in an
ternating magnetic field.21,22

Electrically conducting fluids exhibit a wide variety o
turbulent phenomena. Here the concept of negative visc
ties ~both kinematic and magnetic! can also be useful fo
understanding the peculiarities of self-organizing proces
In Refs. 23 and 24 it was pointed out that in a low-b plasma
such as in a tokamak, small-scale magnetic turbulence ac
a negative effective magnetic viscosity on large-scale m
netic field perturbations. This leads to amplification of t
large-scale field, and is a very likely mechanism in explos
magnetic phenomena, such as disruptions in tokamaks
solar flares. The reduced MHD equations25 were taken as a
starting point in these papers. It was found that the turbu
magnetic viscosity becomes negative if the magnetic ene
of small-scale turbulence exceeds the kinetic ener
whereas the turbulent kinematic viscosity is positive. T
problem was reconsidered in Ref. 19. It was found that in
MHD, the conclusions are the same as in Refs. 23 and
but for reduced MHD the results are inconsistent with tho
obtained in these articles. Furthermore, the role of cro
correlations and anisotropy of fluctuations remains uncle

A more recent review,26 as well as numerica
simulations27,28 ~performed for freely decaying, not forced
turbulence!, do not shed light on the problem of interes
Thus, it seems reasonable to study negative viscosity eff
in MHD in more detail. In this paper we consider the pro
lem in the context of 2D MHD, and based on the formulati
of negative viscosities presented above.

This paper is organized as follows. In Sec. 2 we obt
general equations governing the evolution of large-sc
MHD fields, and demonstrate explicitly how the negati
magnetic viscosity term can appear in the equation for
mean magnetic potential. In Secs. 3–5, we study the in
ence~characterized by the turbulent viscosities! of various
small-scale fields on large-scale fields. Specifically, in S
3, small-scale turbulence is generated by a stationary w
noise source; the transition to the results of Ref. 19 is de
onstrated. In Sec. 4, more general forms of isotropic sm
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scale turbulence with correlation times spanning a bro
range are used, and the transition to the results of Refs
and 24 is shown. Finally, in Sec. 5 we consider stocha
analogs of Kolmogorov flow for magnetohydrodynamics.
Secs. 3–5 the criteria for large-scale field growth are a
derived. The results are summarized in Sec. 6. A deta
derivation of the equations governing the evolution of larg
scale MHD fields is presented in the Appendix.

2. EQUATIONS FOR LARGE-SCALE FIELD EVOLUTION
AND THE ORIGIN OF THE NEGATIVE MAGNETIC VISCOSITY
TERM

We study a 2D incompressible conducting fluid with v
locity field v(x,t)5@ez¹c#z and magnetic fieldB(x,t)
5@ez¹a#z , both in thexy plane,x5(x,y); c is the stream
function, a is the magnetic potential,¹[ex]/]x1ey]/]y,
@ ...#z implies z-projection of the vector product. The 2D
MHD equations can be written as26

]

]t
W1v¹W5B¹ j 1nDW,

]

]t
a1v¹a5B¹ j 1hDa. ~2.1!

Here W5¹2c is the vorticity, j 5¹2a is the current,¹2

[D5]2/]x21]2/]y2, and n, h are the kinematic and the
magnetic viscosities, respectively. In~2.1! the density of the
fluid is assumed to be unity, and the magnetic field has
dimension of velocity. Furthermore, it is normally assum
that the kinematic and magnetic viscosities are of the sa
order. For our purposes it is convenient to rewrite~2.1! as

]Dc

]t
1@¹c3¹Dc#z5@¹a3¹Da#z1nD2c,

]a

]t
1@¹c3¹a#z5hDa. ~2.2!

Now we dividec anda into mean and fluctuating~turbulent!
components:

c5c̄1cT, a5ā1aT,

where the bar denotes statistical averaging, andT signifies
‘‘turbulent.’’ Below we also use angle brackets^...& for the
statistical averaging.

From Eqs.~2.2! we obtain

S ]

]t
2nD DDc̄52^@¹cT3¹DcT#z&1^@¹aT

3¹DaT#z&2@¹c̄3¹Dc̄#z

1@¹ā3¹Dā#z , ~2.3!

S ]

]t
2hD D ā52^@¹cT3¹aT#z&2@¹c̄3¹ā#z , ~2.4!

whereas for the fluctuating components we obtain, by s
tracting Eqs.~2.3! and ~2.4! from ~2.2!,
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S ]

]t
2nD DDcT1@¹cT3¹Dc̄#z1@¹c̄3¹DcT#z

1~@¹cT3¹DcT#z2^@¹cT3¹Dc̄#z&!

5@¹aT3¹Dā#z1@¹ā3¹DaT#z1~@¹aT

3¹DaT#z2^@¹aT3¹DaT#z&!, ~2.5!

S ]

]t
2hD DaT1@¹cT3¹ā#z1@¹c̄3¹aT#z

1~@¹cT¹aT#z2^@¹cT3¹aT#z&!50. ~2.6!

To derive a closed set of equations forc̄, ā it is necessary to
express the quantities

Q152^@¹cT3¹DcT#z&, ~2.7!

Q25^@¹aT3¹DaT#z&, ~2.8!

Q352^@¹cT3¹aT#z& ~2.9!

in terms of c̄, ā @see Eqs.~2.3! and ~2.4!#. Since we are
interested in calculating turbulent viscosity~but not in the
problems related to the evaluation of the turbulent spectru!,
we use an approach developed in Ref. 20 to study nega
viscosity in Rossby and drift-wave turbulence, and rese
bling an approach previously used in the dynam
problem.29,30 It also resembles the ‘‘quasilinear approxim
tion’’ frequently employed to calculate the turbulent tran
port coefficients in magnetized inhomogeneous plasmas.31 In
so doing, we assume~in accordance with the discussion
Sec. 1! that the mean quantities vary on spatial and tempo
scales that are larger than the characteristic scales of
fluctuating fields; that the statistical properties of the sm
scale fields are known; and that quadratic terms incT andaT

can be neglected in Eqs.~2.5! and ~2.6!. Thus, instead of
Eqs.~2.5! and ~2.6! we obtain

S ]

]t
2nD DDcT1@¹cT3¹Dc̄#z1@¹c̄3¹DcT#z

5@¹aT3¹Dā#z1@¹ā3¹DaT#z1Fc , ~2.10!

S ]

]t
2hD DaT1@¹cT3¹ā#z1@¹c̄3¹aT#z5Fa ,

~2.11!

where the stochastic sourcesFc(x,t) and Fa(x,t) which
maintain the stationary level of MHD fluctuations, are fo
mally added to the right-hand side of the equations. We t
solve Eqs.~2.10! and ~2.11!, insert the solutions into Eqs
~2.7!–~2.9! and then into Eqs.~2.3! and~2.4!, and obtain the
evolution equations for the mean fieldsc̄, ā. Because we
invoke a two-scale approximation for our problem, we intr
duce the ‘‘slow’’ variableX and the ‘‘fast’’ variablex. The
mean quantities depend on the slow variable only, wher
the fluctuating components depend on both fast and s
variables. We also have
ve
-

-

al
he
l-

n

-

as
w

U ]

]XU'uK u!U ]

]xU'uku,

whereK andk are large-scale and small-scale wave vecto
respectively.

We seek solutions of Eqs.~2.10! and~2.11! in powers of
K, that is,

cT5c~0!~x,t !1c~1!~x,X,t !1...,

aT5a~0!~x,t !1a~1!~x,X,t !1...,

where the termsc (0), a(0) are sustained by external source
whereasc (1), c (2) , etc. appear because of the interacti
between small- and large-scale components. Assuming
the small-scale fluctuations are jointly stationary and hom
geneous~which, in turn, implies that both fields are statio
ary and homogeneous!, we introduce their correlation an
cross-correlation functionsCcc , Caa , Cca as well as their
space-time spectral functionsĈcc , Ĉaa , Ĉca , e.g., as

^c~0!~x,t !a~0!~x8,t8!&5Cca~x2x8,t2t8!

5E dk dv

~2p!3 Ĉca~k,v!

3exp@2 iv~ t2t8!1 ik~x2x8!#.

The properties of the spectral functions of zeroth-ord
quantities are listed in Appendix, along with a detailed de
vation of Q1,2,3. Here we present the final result. For th
evolution of the mean quantitiesc̄, ā instead of Eqs.~2.3!
and ~2.4!, we have

S ]

]t
2nDsDDsc̄5«kl«mnH d lnp

~1!
]3c̄

]Xk]Xm]Xp
1d lnp

~2!

3
]3ā

]Xk]Xm]Xp
1n ln

~1!
]2Dsc̄

]Xk]Xm

1n ln
~2!

]2Dsā

]Xk]Xm
1n lnpr

~1!
]4c̄

]Xk]Xm]Xp]Xr

1n lnpr
~2!

]4ā

]Xk]Xm]Xp]Xr
J , ~2.12!

S ]

]t
2hDsD ā5«kl«mnH h ln

~1!
]2ā

]Xk]Xm
1h ln

~2!
]2c̄

]Xk]Xm
J , ~2.13!

where Ds[]2/]X21]2/]Y2,«mn is the unit antisymmetric
tensor of the second rank, and

d lnp
~1! 5E dkdv

~2p!3 2ik lknkpH Ĉaa

2 iv1hk22
Ĉcc

2 iv1nk2J ,

d lnp
~2! 52E dkdv

~2p!3 2ik lknkpH Ĉca

2 iv1hk22
Ĉca*

2 iv1nk2J ,

n ln
~1!5E dkdv

~2p!3 klknH Ĉaa

2 iv1hk22
Ĉcc

2 iv1nk2J ,
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n ln
~2!52E dkdv

~2p!3 klknH Ĉca

2 iv1hk22
Ĉca*

2 iv1nk2J ,

n lnpr
~1! 5E dkdv

~2p!3

4klknkpkr

k2 H Ĉcc

2 iv1nk2

1
nk2

~2 iv1nk2!2 Ĉcc2
hk2

~2 iv1hk2!2 ĈaaJ ,

n lnpr
~2! 5E dkdv

~2p!3

4klknkpkr

k2 H hk2

~2 iv1hk2!2 Ĉca

2
Ĉca*

2 iv1nk22
nk2

~2 iv1nk2!2 Ĉca* J ,

h ln
~1!5E dkdv

~2p!3 klknH Ĉcc

2 iv1hk22
Ĉaa

2 iv1nk2J ,

h ln
~2!5E dkdv

~2p!3 klknH Ĉca

2 iv1nk22
Ĉca*

2 iv1hk2J .

The reality of all coefficients in Eqs.~2.12! and ~2.13! is
easily demonstrated using the properties~A9! of the space-
time spectral functions.

The resulting equations enable us to study the influe
~characterized by the turbulent viscosities! of various forms
of small-scale fields on large-scale fields. However, in or
to make the results more transparent, in this Section we
demonstrate explicitly how negative magnetic viscos
originates in Eqs.~2.4! and ~2.10!. For this purpose it is
convenient to assume that the fieldaT is given. Then the
smallness of large-scale gradients enables us to derive
Eq. ~2.10! the following relation between the small-sca
Fourier-componentsĉT(k,v), âT(k,v):

ĉT~k,v!5«mn

ikn

2 iv1nk2

]ā

]Xm
âT1~other terms!. ~2.14!

Here we explicitly write the term that derives from@¹ā
3¹DaT#z in Eq. ~2.10!. Further, we note that the terms e
tering intoQ352^@¹cT3¹aT#z& include

2 K F]cT

]X
3

]aT

]x G L ,

which, after insertingĉT from Eq. ~2.14!, gives rise to the
term

2«kl«mn

]2ā

]Xk]Xm
E dkdv

~2p!3

klkn

2 iv1nk2 ^~ âT!2&k,v ~2.15!

on the right-hand side of Eq.~2.4!; here ^(âT)2&k,v is the
spectrum of the small-scale magnetic potential. Assum
isotropy and integrating over azimuthal angle ink-space, one
can easily show that the term~2.15! can be rewritten as

2nTDsā, ~2.16!

where

nT5E kdk dv

8p2

nk4

v21n2k4 ^~ âT!2&k,v . ~2.17!
e

r
so

m

g

Equations~2.16! and~2.17! reveal a term of negative viscos
ity type in the equation for the mean component of the m
netic potential.

3. SMALL-SCALE ISOTROPIC TURBULENCE GENERATED
BY STATIONARY WHITE NOISE SOURCE

It is mathematically convenient to treat small-scale t
bulence as being generated by a stationary white n
source, to keep the statistical properties as simple as
sible. This kind of the source, possessing zero cro
correlations, was considered in Ref. 19, so we are able
only to compare the results but also to clarify the role
cross-correlation terms. We define the properties of
sourcesFc , Fa in Eqs.~2.10! and ~2.11! as follows:

^Fc&5^Fa&50,

^Fc~x,t !Fc~x8,t8!&5C~x2x8!d~ t2t8!,

^Fa~x,t !Fa~x8,t8!&5A~x2x8!d~ t2t8!, ~3.1!

^Fc~x,t !Fa~x8,t8!&5H~x2x8!d~ t2t8!.

Since fluctuationsc (0), a(0) are related to the sourcesFc ,
Fa by Eqs.~A4!, we find for the space-time spectral fun
tions of the small-scale turbulence

Ĉcc~k,v!5
Ĉ~k!

k4~v21n2k4!
,

Ĉaa~k,v!5
Â~k!

v21h2k4 , ~3.2!

Ĉca~k,v!52
Ĥ~k!

k2~ iv1nk2!~ iv1hk2!
,

whereĈ, Â, Ĥ are the spatial Fourier transforms ofC, A, H,
respectively, e.g.,

Ĉ~k!5E dkC~k! exp~2 ikk!.

It is also useful to express space-time spectral functions~3.2!
in terms of spatial functions,

Ĉca~k!5E
2`

` dv

2p
Ĉca~k,v!.

Integrating overv in Eqs. ~3.2!, we express the sources i
terms of spatial spectral functions and obtain

Ĉcc~k,v!5
2nk2

v21n2k4 Ĉcc~k!,

Ĉaa~k,v!5
2hk2

v21h2k4 Ĉaa~k!, ~3.3!

Ĉca~k,v!5
~n1h!k2

~2 iv1nk2!~ iv1hk2!
Ĉca~k!.

We then insert Eqs.~3.3! into the coefficients of Eqs.~2.12!
and ~2.13! and integrate overv:
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d lnp
~1! 50,

d lnp
~2! 52E dk

4p2 i
klknkp

k2 S Ĉca~k!

h
2

Ĉca* ~k!

n
D ,

n ln
~1!5E dk

4p2 i
klkn

2k2 S Ĉaa~k!

h
2

Ĉcc~k!

n
D ,

n lnpr
~1! 5E dk

4p2 i
klknkpkr

k4 S 3Ĉcc~k!

n
2

Ĉaa~k!

h
D ,

n ln
~2!52E dk

4p2

klkn

2k2 S Ĉca~k!

h
2

Ĉca* ~k!

n
D , ~3.4!

n lnpr
~1! 5E dk

4p2 i
klknkpkr

k4 S Ĉca~k!

h
2

3Ĉca* ~k!

n
D ,

h ln
~1!5E dk

4p2 i
klkn

k2~n1h!
~Ĉcc~k!2Ĉaa~k!!,

h ln
~2!50.

We note that if we setĈca50, then Eqs.~2.12! and
~2.13! together with Eqs.~3.4! appear to be in complet
agreement with Eqs.~2.15! and ~3.12!–~3.15! of Ref. 19 af-
ter some easy transforms. In this Section we assume isot
of the small-scale spectra; the spatial spectral function
Eqs. ~3.4! therefore depend onk[uku. Integrating over the
azimuthal anglew in k-space in Eqs.~3.4! using the subsid-
iary integrals

E
0

2p

dwkmkn5pk2dmn ,

E
0

2p

dwkkklkmkn5
pk4

4
~dkldmn1dknd lm1dkmd ln!,

Eqs.~2.11! and ~2.12! take the form

S ]

]t
2nDsDDsc̄5n turbDs

2c̄1dn turbDs
2ā, ~3.5!

S ]

]t
2hDsD ā5h turbDsā,

where

n turb5
1

8 S ^~c~0!!2&
n

1
^~a~0!!2&

h D ,

dn turb52S 1

n
1

1

h D ^~c~0!a~0!!&
8

, ~3.6!

h turb5
1

2~n1h!
~^~c~0!!2&2^~a~0!!2&!,

^(c (0))2&, ^(a(0))2& are the stream-function and magnet
potential variances of the small-scale fields, respectively

^~c~0!!2&5E dk

4p2 Ĉcc~k!,

and
py
in

^~c~0!a~0!!&5E dk

4p2 Ĉca~k!.

It follows from Eqs.~3.5! and~3.6! that for the case of small
scale turbulence generated by a stationary white no
source, the turbulent viscosity is always positive, the tur
lent magnetic viscosity is negative if

^~a~0!!2&.^~c~0!!2&, ~3.7!

and if cross-correlations vanish, the large-scale magn
field grows if uh turbu is large enough that (h1h turb) becomes
negative, while the large-scale velocity field does not gro
The existence of nonzero cross-correlations leads to amp
cation of both large-scale fields when (h1h turb) becomes
negative; the latter conclusion is unaffected by the sign
cross-correlationŝ(c (0)a(0))&.

4. MORE GENERAL FORMS OF ISOTROPIC SMALL-SCALE
TURBULENCE

To provide a more general treatment of the isotro
case with zero cross-correlations, we define space-time s
tral functions as follows:

Ĉcc~k,v!5
2g1k

v21g1k
2 Ĉcc~k!,

Ĉaa~k,v!5
2g2k

v21g2k
2 Ĉaa~k!, ~4.1!

Ĉca~k,v!50.

Thev-dependent part of the spectrum is taken in the Lore
zian form here. This form is frequently used in the literatu
however, we choose it for convenience only. It can be ea
verified that the results are changed only by a factor of or
unity if one chooses other shapes, for example, the Gaus
shape or the rectangular one. Inserting Eqs.~4.1! into Eqs.
~2.12! and~2.13! and integrating overv andw in the coeffi-
cients, we arrive at Eqs.~3.5!, where

n turb5E dk k3

4p H nk2

~g1k1nk2!2 Ĉcc~k!

1
g2k

~g2k1hk2!2 Ĉaa~k!J ,

h turb5E dk k3

4p H Ĉcc~k!

g1k1hk22
Ĉaa~k!

g2k1nk2J , ~4.2!

whereasdn turb50. Forg1k5nk2, g2k5hk2 we naturally ob-
tain n turb, h turb of Sec. 3; see Eqs.~3.6!. Here we consider
two special cases.

1. Long correlation times of the small-scale fluctuation
g1k ,g2k!nk2,hk2. In this limit

n turb5
^~c~0!!2&

2n
,

h turb5
^~c~0!!2&

2h
2

^~a~0!!2&
2n

, ~4.3!
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and n turb coincides with that obtained in Ref. 14 for time
independent random basic flow~which, in fact, corresponds
to g1k→0! in the ordinary fluid,B50. In the case consid
ered, the turbulent magnetic viscosity is negative if

^~a~0!!2&.
n

h
^~c~0!!2&, ~4.4!

whereasn turb is always positive.
2. Short correlation times,g1k ,g2k@nk2,hk2.
Assuming that

g1k'g2k'1/tc ,

wheretc is the correlation time, which is independent ofk,
we obtain from Eqs.~4.2!

n turb5
tc

2
^~B~0!!2&,

h turb5
tc

2
~^~v~0!!2&2^~B~0!!2&!, ~4.5!

where^(v(0))2& and^(B(0))2& are the velocity and magnetic
field variances, respectively. In this limit the turbulent v
cosities are the same as those obtained in Ref. 24. From
second equation, it follows that the turbulent magnetic v
cosity is negative if

^~B~0!!2&.^~v~0!!2&, ~4.6!

whereasn turb is again always positive.
Now we consider the role of cross-correlations. Wher

the general form~4.1! of the space-time spectral function
Ĉcc , Ĉaa is natural and widely used, it is not so easy, in t
author’s opinion, to choose an analogous general form of
cross-correlation spectrum. We therefore restrict attentio
time-independent isotropic fluctuations~special case 1; se
above! of c (0), a(0):

Ĉcc~k,v!52pd~v!Ĉcc~k!,

Ĉaa~k,v!52pd~v!Ĉaa~k!, ~4.7!

Ĉca~k,v!52pd~v!Ĉca~k!.

Inserting Eqs.~4.7! into Eqs.~2.12! and ~2.13!, we have

S ]

]t
2nDsDDsc̄5n turbDs

2c̄1dn turbDs
2ā,

S ]

]t
2hDsD ā5h turbDsā1dh turbDsc̄, ~4.8!

wheren turb andh turb are given by Eqs.~4.3!, whereas

dn turb52
^~c~0!a~0!!&

2n
,

dh turb5
^~c~0!a~0!!&

2 S 1

n
2

1

h D . ~4.9!

Since we want to illustrate the role of cross-correlatio
we consider the simplest casen5h. This is the usual as
sumption in numerical simulations; see, e.g., Ref. 28. Eq
tions ~4.8! then take the form of Eqs.~3.5!. In this case, both
he
-

s

e
to

,

a-

large-scale fields grow ifh1h turb,0, regardless of the sign
of the cross-correlationŝ(c (0)a(0))&, just as in the case o
d-correlated sources; see Sec. 3.

5. STOCHASTIC ANALOGS OF KOLMOGOROV FLOW FOR
MAGNETOHYDRODYNAMICS

In this Section we consider specific examples of ani
tropic time-independent fields, which can be regarded
magnetohydrodynamic stochastic analogs of Kolmogo
flow. In particular, we choosec (0) anda(0) to be

c~0!~x,t !5A1 cos~k0x1a!,

a~0!~x,t !5A2 cos~k0x1w1a!, ~5.1!

whereA1 andA2 are the constant amplitudes of the zero
order stream function and magnetic potential, respectivelya
is a random phase, uniformly distributed in@0;2p#; andw is
a constant phase. The spectral functions are

Ĉcc~k,v!52p3A1
2d~v!@d~k1k0!1d~k2k0!#,

Ĉaa~k,v!52p3A2
2d~v!@d~k1k0!1d~k2k0!#, ~5.2!

Ĉca~k,v!52p3A1A2d~v!$cosw@d~k1k0!1d~k

2k0!#1 i sinw@d~k1k0!2d~k2k0!#%.

It follows from Eqs. ~5.1! and ~5.2! that the zeroth-order
fields so chosen are jointly homogeneous; that one is abl
consider various forms of cross-correlations by varyingw;
and that if there are different random phases~say,a andb!
in Eqs.~5.1!, then there are no cross-correlations. Thus, E
~5.1! enable one to study a set of interesting consequen
Here we consider only the simple case,

w50, k05k0ex . ~5.3!

Inserting Eqs.~5.2! and~5.3! into Eqs.~2.12! and~2.13!, we
obtain

S ]

]t
2nDsDDsc̄52S A1

2

2n
2

A2
2

2h D ]2

]Y2 Dsc̄

1S 4A1
2

n
2

2A2
2

h D ]4c̄

]X2]Y22A1A2

3S 4

n
2

2

h D ]4ā

]X2]Y2 1
A1A2

2

3S 1

n
2

1

h D ]2

]Y2 Dsā, ~5.4!

S ]

]t
2hDsD ā5

A1A2

2 S 1

n
2

1

h D ]2c̄

]Y2 1S A1
2

2h
2

A2
2

2n D ]2ā

]Y2 .

Examples resulting from subsequent simplifications are
follows.

1. A250. There is no small-scale magnetic field. Equ
tions ~5.4! reduce to

S ]

]t
2nDsDDsc̄52

A1
2

2n

]2

]Y2 Dsc̄1
4A1

2

n

]4c̄

]X2]Y2 ,
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S ]

]t
2hDsD ā5

A1
2

2h

]2ā

]Y2 . ~5.5!

It follows from Eqs.~5.5! that the ‘‘turbulent’’ magnetic vis-
cosity is always positive, and thus no large-scale magn
field is generated. The growth rate for large-scale pertur
tions of the stream function is

g52nK21
A1

2

2n
Ky

22
4A1

2

n

Kx
2Ky

2

K2 , ~5.6!

whereK is the wave vector of large-scale perturbations,K2

5Kx
21Ky

2. The growth rate~5.6! naturally coincides with
that of Kolmogorov flow in an ordinary fluid; the latter ha
been calculated via the multi-scales expansion techniqu
Ref. 14. The most ‘‘dangerous’’~that is, those that appea
first when the amplitude of the small-scale field increas!
are the large-scale perturbations with a wave vector, perp
dicular to that of the small-scale field, i.e.,Kx50. Such per-
turbations grow if

A1.A1min5&n. ~5.7!

The criterion~5.7! is derived for an ordinary fluid in Ref. 11
for a regular small-scale velocity field.

2. A150. There is no small-scale velocity field. Equ
tions ~5.4! take the form

S ]

]t
2nDsDDsc̄52

2A2
2

h

]4c̄

]X2]Y2 1
A2

2

2h

]2

]Y2 Dsc̄,

S ]

]t
2hDsD ā52

A2
2

2n

]2ā

]Y2 . ~5.8!

The second equation signals the onset of negative mag
viscosity. The most dangerous are large-scale magnetic
perturbations with a wave vector perpendicular to that of
small-scale field,Kx50. The instability criterion is then

A2.A2min5A2nh. ~5.9!

A large-scale velocity field with only aKy-component does
not grow. However, it can be shown thatc̄ grows if its wave
vector makes an acute angle with thex axis. This special case
is studied in detail in Ref. 32 using multiple-scale metho

3. A15A25A. We note that equal amplitudes~or ener-
gies! of the magnetic and velocity fields are frequently ch
sen att50 in numerical simulations of freely decaying ma
netohydrodynamic turbulence; see Refs. 27 and 28. Ta
c̄, ā in the form

c̄5R exp~gt1 iK xX1 iK yY!,

ā5P exp~gt1 iK xX1 iK yY!, ~5.10!

and inserting Eqs.~5.10! into Eqs.~5.4!, we obtain a linear
system with unknownP andR. The equation for the growth
rate then follows by equating the determinant to zero:

ag21bg1c50, ~5.11!

where

a5K2,
ic
a-

of

n-

tic
ld
e

.

-

g

b5~n1h!K422LK2Ky
21L1Kx

2Ky
2,

c5nhK62L~n1h!K4Ky
21L1hK2Kx

2Ky
2,

L5
A2

2 S 1

n
2

1

h D , L152A2S 2

n
2

1

h D .

Introducing polar coordinates

Kx5K cosu, Ky5K sinu

we obtain an equation for the neutral curveg50 in terms of
A, u:

A2

2n2 @12~Prm!224~22Prm!cos2 u# sin2 u51, ~5.12!

where Prm5n/h is the magnetic Prandtl number. Instabili
is possible for

Prm,1

and

ucosuu,
1

2 F12~Prm!2

22Prm
G1/2

.

The most dangerous perturbations are those withKx50 @as
can be seen by comparingA2(u) with A2(p/2) estimated
from Eq. ~5.12!#. In this case, the instability criterion is

A.Amin5
&n

A12~Prm!2
, ~5.13!

whereas the growth rate takes the form

g5H L2
n1h

2
1AL21

~n2h!2

4 J K2. ~5.14!

Because both large-scale fields increase, this case is of i
est for subsequent nonlinear analysis and numerical sim
tion, which will be the subject of future research.

6. RESULTS

In this paper, in the framework of 2D magnetohydrod
namics, we have studied the possible occurrence of la
scale mean velocity and magnetic fields generated by sm
scale random fields. The latter are assumed jointly station
homogeneous, and maintained by an external source.

The random fields lead to negative dissipative factors
the equations for the mean fields, which is why the te
‘‘negative viscosity’’ is used. Viscous damping of large
scale fields is thus replaced by growth, which is limited d
to nonlinear effects in the amplitudes of the large-sc
fields. This picture, being simplified, though, is fruitful fo
studying the effects of smaller-scale fields on large-sc
ones.

Our results are as follows.
1. Using a two-scale expansion, we obtain equatio

that describe the evolution of the mean stream function
the mean magnetic potential in the presence of small-s
MHD fluctuations. These expressions enable us to study
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evolution of large-scale MHD perturbations with the a
sumption that the statistical properties of the small-sc
fields are known.

2. With our approach we easily demonstrate how a ne
tive magnetic viscosity term can appear in the equation
the mean magnetic potential.

3. The general expressions also enable us to recover
vious results on the eddy~turbulent! viscosity of the ordinary
fluid and on turbulent viscosities in the presence of sm
scale MHD fluctuations.

4. For isotropic small-scale fluctuations, we estimate t
bulent viscosities and find criteria for the onset of negat
magnetic viscosity, as well as for the growth of large-sc
MHD fields, in three cases:

~i! fluctuations are generated by white noise source;
~ii ! fluctuations possess long correlation times;
~iii ! fluctuations possess short correlation times~in com-

parison with characteristic dissipation times associated w
molecular kinematic and magnetic viscosities!.

In particular, it is shown when the cross-correlatio
among small-scale fields vanish, the turbulent viscosity
always positive, whereas the turbulent magnetic visco
can be negative, thus giving rise to the growth of large-sc
magnetic perturbations. When cross-correlations are no
nishing, both large-scale fields can be amplified.

5. We also consider how large-scale fields are influen
by anisotropic small-scale random fields, which can be
garded as stochastic analogs of Kolmogorov flow. We fi
that

~i! if there is only a small-scale velocity field, the grow
rate of the large-scale velocity field corresponds to that o
Kolmogorov flow, whereas no magnetic field is generate

~ii ! if there is a small-scale magnetic field only, then t
large-scale field increases fastest for perturbations transv
to the small-scale anisotropic ones;

~iii ! finally, if the random anisotropic fields are of equ
amplitude, then both large-scale fields grow; again,
growth rate is greatest for large-scale perturbations tra
verse to the small-scale ones.

This paper was supported by the ‘‘Chaos-2’’ Project
the National Academy of Sciences of Ukraine, and
Project INTAS 93-1194. Information support provided b
Project INTAS LA-96-09 is also acknowledged.

APPENDIX

Derivation of Q1 , Q2 , Q3

In this Appendix, the termsQ1 , Q2 , Q3 @see Eqs.~2.7!–

~2.9!# are expressed in terms of the mean componentsc̄, ā
and space-time spectral functions of the fluctuating com
nentscT, aT obtained from Eqs.~2.10! and ~2.11!. Taking
the approach outlined in Sec. 2, we introduce slow and
spatial variablesX andx. The spatial operators are then wr
ten in the form
-
le

a-
r

re-

l-

-
e
e

th

is
ty
le
a-

d
-

d

a

rse

e
s-

f
y

-

st

¹→ ]

]x
1

]

]X
, D→D12

]2

]xp]Xp
1Ds ,

D2→D212DDs14
]2

]xp]Xp
D14

]2

]xp]Xp
Ds

14
]4

]xp]Xp]xr]Xr
. ~A1!

We start by derivingQ3 since it has a simpler form tha
Q1 andQ2 . According to Eqs.~2.9! and~A1!, this term can
be written

Q352^@¹cT3¹aT#z&

5Q3
~00!1Q3

~01!1Q3
~10!1Q3

~11!1Q3
~02!1Q3

~20!

1O~K3,K4...!, ~A2!

where

Q3
~00!52«mnK ]c~0!

]xm

]a~0!

]xn
L 50

due to homogeneity of the turbulence,

Q3
~01!52«mnK ]c~0!

]xm
S ]

]xn
1

]

]Xn
Da~1!L ,

Q3
~10!52«mnK S ]

]xm
1

]

]Xm
Dc~1!

]a~0!

]xn
L , ~A3!

and the remaining terms in Eq.~A2! have a similar structure
which is now obvious. We retain only those terms in E
~A2!, that are of orderK, K2. As will be seen below, it is just
these terms that give rise to negative magnetic viscosity

To calculate the terms in Eq.~A2!, it is necessary to
derive expressions forc ( i ) and a( i ), i 50,1,2. In the zeroth
approximation, Eqs.~2.10! and ~2.11! yield

S ]

]t
2nD DDc~0!5Fc~x,t !,

S ]

]t
2hD Da~0!5Fa~x,t !. ~A4!

Before solving the equations in various orders of a
proximation, we introduce correlation functions and Four
spectra of the zero-order fields. Since we assume joint
mogeneity and stationarity of the small-scale fields, we h

Ccc~x2x8,t2t8![^c~0!~x,t !c~0!~x8,t8!&,

Caa~x2x8,t2t8![^a~0!~x,t !a~0!~x8,t8!&, ~A5!

Cca~x2x8,t2t8![^c~0!~x,t !a~0!~x8,t8!&.

Using the Fourier transform over the fast variablesx, t,

c~0!~x,t !5E dkdv

~2p!3 ĉ~0!~k,v! exp~2 ivt1 ikx!, ~A6!

the corresponding space-time spectral functions are defi
as

Cca~k,t!5E dkdv

~2p!3 Ĉca
~0!~k,v! exp~2 ivt1 ikk!. ~A7!
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Since the small-scale fluctuations are stationary and ho
geneous,

^ĉ~0!~k,v!â~0!~k8,v8!&

5~2p!3d~v1v8!d~k1k8!Ĉca~k,v!. ~A8!

The properties of the spectral functions are

~ i! Ĉcc* ~k,v!5Ĉcc~k,v!5Ĉcc~2k,2v!,

~ ii ! Ĉca* ~k,v!5Ĉca~2k,2v!5Ĉac~k,v!, ~A9!

where the asterisk denotes the complex conjugate. The p
erties~ii ! stem from the reality ofCca(k,t) and the condi-
tion

Cca~k,t!5Cac~2k,2t!.

It is also useful to introduce the spectra of the fie
v(0)(x,t) andB(0)(x,t) for the Fourier components

v̂ i~k,v!52 i« i j kj ĉ~k,v!, B̂i~k,v!52 i« i j kj â~k,v!,
~A10!

where« i j is the unit antisymmetric tensor of the second ra
Since

^v̂ i
~0!~k,v!v̂ j

~0!~k8,v8!&

5~2p!3d~v1v8!d~k1k8!^v i
~0!v j

~0!&k,v , ~A11!

where ^v i
(0)v j

(0)&k,v is the space-time spectral tensor of t
zero-order velocity field, we obtain with the help of Eq
~A10! and ~A11!

^~v0!2&k,v5k2Ĉcc~k,v!,

^~B~0!!2&k,v5k2Ĉaa~k,v!,

^~v~0!B~0!!&k,v5k2Ĉca~k,v!. ~A12!

Now we return to Eqs.~2.10! and ~2.11!. In the first
approximation we have

S ]

]t
2nD DDc~1!1«mn

]c̄

]Xm

]

]xn
Dc~0!5«mn

]ā

]Xm

]

]xn
Da~0!,

S ]

]t
2hD Da~1!1«mn

]c

]xm

]ā

]Xn
1«mn

]c̄

]Xm

]a~0!

]xn
50. ~A13!

Taking the Fourier transform, we obtain

ĉ~1!~k,v!5«mn

ikn

2 iv1nk2

3S ]ā

]Xm
â~0!~k,v!2

]c̄

]Xm
ĉ~0!~k,v! D ,

â~1!~k,v!5«mn

ikn

2 iv1hk2

3S ]ā

]Xm
ĉ~0!~k,v!2

]c̄

]Xm
â~0!~k,v! D . ~A14!

In the second approximation we have from Eqs.~2.10! and
~2.11!
o-

p-

.

S ]

]t
2nD DDc~2!12

]3c~1!

]t]xp]Xp
24n

]2

]xp]Xp
Dc~1!

1«mn

]c̄

]Xm

]

]xn
Dc~1!5«mn

]ā

]Xm

]

]xn
Da~1!,

S ]

]t
2hD Da~2!22h

]2a~1!

]xp]Xp
1«mn

]c~1!

]xm

]ā

]Xn

1«mn

]c̄

]Xm

]a~1!

]xn
50. ~A15!

Taking the Fourier transform, we obtain

ĉ~2!~k,v!52
vkp

k2

1

2 iv1nk2

]ĉ~1!

]Xp

1
4inkp

2 iv1nk2

]ĉ~1!

]Xp

2«mn

ikn

2 iv1nk2 S ]c̄

]Xm
ĉ~1!2

]ā

]Xm
â~1!D ,

â~2!~k,v!5
2ihkp

2 iv1hk2

]â~1!

]Xp
1«mn

ikm

2 iv1hk2

3S ]c̄

]Xn
â~1!2

]ā

]Xn
ĉ~1!D . ~A16!

We do not calculate terms of third and fourth orde
since they do not contribute toQ1,2,3, as will be seen below
Furthermore, since we are interested in negative visco
effects~linear in the mean quantitiesc̄,ā!, we neglect terms
nonlinear inc̄,ā in ĉ (2),â(2), namely, the last terms on th
right-hand side of Eqs.~A16!. These can be taken into ac
count in the same manner as the linear terms, and this
done for the more straightforward case in Ref. 20. Howev
in this paper we do not consider nonlinear effects in
mean quantities.

Now we are ready to calculate all terms in Eq.~A2!.
Note that the termQ3

(11) need not be taken into account b
cause it is nonlinear inc̄ and ā. Then, it can easily be see
by explicitly writing the termsQ3

(20) andQ3
(02) that they yield

zero to the second order inclusive. Therefore, only the s
Q3

(01)1Q3
(10) has to be evaluated; see Eqs.~A3!. Using Eqs.

~A14! and the properties~A5!–~A9! of the zero-order spec
tral functions, we obtain to orderK2:

Q3
~01!52«kl«mnE dkdv

~2p!3

klkm

2 iv1hk2

3H Ĉcc

]2ā

]Xk]Xn
2Ĉac

]2c̄

]Xk]Xn
J ,

Q3
~10!52«kl«mnE dkdv

~2p!3

klkn

2 iv1nk2

3H Ĉaa

]2ā

]Xk]Xm
2Ĉca

]2c̄

]Xk]Xm
J ,



e

tiv

s
t

s-

q.

e

687JETP 89 (4), October 1999 A. V. Chechkin
and then obtain Eq.~2.13! with the right hand side being th
sumQ3

(01)1Q3
(10) .

Now we calculate

Q152^@¹cT3¹DcT#z&5Q1
~00!1Q1

~01!1Q1
~10!1Q1

~02!

1Q1
~20!1Q1

~03!1Q1
~30!1Q1

~04!1Q1
~40!1Q1

~11!

1Q1
~12!1Q1

~21!1Q1
~13!1Q1

~31!1O~K5,K6,...!,

~A17!

where

Q1
~00!52«mnK ]c~0!

]xm

]

]xn
Dc~0!L 50

due to homogeneity of the turbulence, and

Q1
~01!52«mnK ]c~0!

]xm
S ]

]xn
1

]

]Xm
D

3S D12
]2

]xp]Xp
1DsDc~1!L ,

Q1
~10!52«mnK S ]

]xn
1

]

]Xm
Dc~1!

]

]xn
Dc~0!L . ~A18!

The remaining terms in Eq.~A17! have similar structure. We
retain only terms of orderK1,...,K4. We naturally expect
that among these are terms that give rise to the effec
viscosity term in the equation for the mean flow.

As in the case ofQ3 , we omit all nonlinear terms in
c̄,ā, which can be taken into account on the same basi
the linear terms. Then, starting with expressions similar
those in Eq. ~A18! it can be easily verified thatQ1

(03)

1Q1
(30)50 to order K4; the same conclusion holdsQ1

(04)

1Q1
(40) . Thus, we only need to calculate

Q1
~01!1Q1

~10!1Q1
~02!1Q1

~20! .

It is convenient to divide this sum into two terms,Q1
(01)

1Q1
(10) andQ1

(02)1Q1
(20) , and evaluate them separately. U

ing Eqs.~A14! and the properties~A5!–~A9!, we have for
the first sum

Q1
~01!1Q1

~10!5«kl«mnH d1lnp
~1!

]3c̄

]Xk]Xm]Xp

1d1lnp
~2!

]3ā

]Xk]Xm]Xp
1n1ln

~1!
]2

]Xk]Xm
Dsc̄

1n1ln
~2!

]2

]Xk]Xm
DsāJ , ~A19!

where

d1lnp
~1! 52E dkdv

~2p!3

2ik lknkp

2 iv1nk2 Ĉcc ,

d1lnp
~2! 5E dkdv

~2p!3

2ik lknkp

2 iv1nk2 Ĉac ,

n1ln
~1! 52E dkdv

~2p!3

klkn

2 iv1nk2 Ĉcc ,
e

as
o

n1ln
~2! 5E dkdv

~2p!3

klkn

2 iv1nk2 Ĉac .

Using Eqs.~A16! and the properties of Eqs.~A5!–~A9!, we
also obtain

Q1
~02!1Q1

~20!5«kl«mnH n1lnpr
~1!

]4c̄

]Xk]Xm]Xp]Xr

1n1lnpr
~2!

]4ā

]Xk]Xm]Xp]Xr
J , ~A20!

where

n1lnpr
~1! 5E dkdv

~2p!3

4klknkpkr

k2 H 1

2 iv1nk2

1
nk2

~2 iv1nk2!2J Ĉcc ,

n1lnpr
~2! 52E dkdv

~2p!3

4klknkpkr

k2 H 1

2 iv1nk2

1
nk2

~2 iv1nk2!2J Ĉac .

Q2 is evaluated in exactly the same way asQ1 . As a result,
terms withd2lnp

(1) , d2lnp
(2) , n2ln

(1) , n2ln
(2) appear in the sumQ2

(01)

1Q2
(10) , which differ from their counterparts in Eq.~A19!

by the interchange ofn andh, Ĉcc and 2Ĉaa , and2Ĉac

and2Ĉca . Then, for the sumQ2
(02)1Q2

(20) we obtain

Q2
~02!1Q2

~20!5«kl«mnH n2lnpr
~1!

]4c̄

]Xk]Xm]Xp]Xr

1n2lnpr
~2!

]4ā

]Xk]Xm]Xp]Xr
J , ~A21!

where

n2lnpr
~1! 52E dkdv

~2p!3

4klknkpkr

k2

hk2

~2 iv1hk2!2 Ĉaa ,

n2lnpr
~2! 5E dkdv

~2p!3

4klknkpkr

k2

hk2

~2 iv1hk2!2 Ĉca .

Finally, summing the termsQ1
(01)1Q1

(10) , Q2
(01)1Q2

(10) ,
Q1

(02)1Q1
(20) , and Q2

(02)1Q2
(20) , and introducing d lnp

(1)

5d1lnp
(1) 1d2lnp

(1) , d lnp
(2)5d1lnp

(2) 1d2lnp
(2) , n ln

(1)5n1ln
(1)1n2ln

(1) , etc.,
we obtain the final expression for the right-hand side of E
~2.12!.
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The paper presents results of experiments performed on the Pico facility in which foils were
heated by laser radiation, and anomalously fast burn-through of foils by a structured laser beam
was detected. Comparison with two-dimensional calculations has allowed us to suggest a
tentative mechanism for the effect under investigation. The targets in the experiments were thin
aluminum foils of thickness 3 to 40mm. The flux density of laser radiation on the target
surface varied between 1013 and 1014 W/cm2. We detected a strong dependence of the transmitted
energy on the foil thickness and the shortening of the transmitted laser pulse. Penetration of
laser radiation through foils with thicknesses considerably larger than 3mm has been observed,
although it was stated in earlier publications@V. V. Ivanov, A. K. Knyazev, A. V. Kutsenko,
et al., Kratk. Soobshch. Fiz. FIAN No. 7–8, 37~1997!#; A. É. Bugrov, I. N. Burdonskii, V. V.
Gol’tsov et al., Zh. Éksp. Teor. Fiz.111, 903 ~1997! @JETP84, 903 ~1997!# that, at the
laser radiation parameters used in our experiment, the evaporated layer of the foil could not be
thicker than 2mm. Two-dimensional calculations have allowed us to interpret this effect
in terms of local ‘‘piercing’’ of the target at spots on the target surface where the radiation intensity
has its peaks. The possibility of reducing these peaks by using a symmetrizing prepulse is
discussed in the paper. ©1999 American Institute of Physics.@S1063-7761~99!01110-5#
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1. INTRODUCTION

An important part of research into the interaction b
tween laser radiation and matter is experiments in whic
laser beam of high intensity is focused on a thin-foil targ
which can be fabricated from materials of differing densit
and atomic numbers.

The primary goal of such experiments is investigation
heating and stability of compression of shells to be used
laser-driven thermonuclear fusion. Such experiments are
ten performed not only on spherical thin shells, but also
plane foils with a view to simulating various processes t
are of great importance in thin-shell targets. It is remarka
that such experiments can be performed on facilities ge
ating radiation of energy considerably lower than that
quired for spherically symmetrical heating of shell targe
Thus, one can study such complex and important proce
as absorption and reflection of laser light by an ablator sh
simulated by a foil or a combination of foils of differen
compositions and thicknesses, burn-through of a target
and development of instabilities, generation of x-rays a
fast particles in targets, and, finally, acceleration of the tar
shell.1,2

An important advantage of relatively simple one-bea
laser facilities in simulation of processes in thermonucl
targets is the possibility of controlling the variation of th
laser spot pattern on the target, which is almost impossibl
experiments in facilities utilizing multiple laser beam
6891063-7761/99/89(10)/7/$15.00
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where the pattern of laser radiation intensity on the targe
largely determined by the interference between the la
beams, which usually have a high degree of coherence
particular, this interference between coherent beams ge
ates small-scale peaks of radiation intensity on target
faces, which can cause catastrophically fast developmen
hydrodynamic instabilities disrupting the process of plas
compression. Single-beam experiments with foils simulat
shell targets, in which the laser spot pattern is controllab
allow one to study effects of inhomogeneities on the heat
and acceleration of foils and model processes in the de
opment of instabilities in plasmas, and also to investig
techniques suggested for suppressing instabilities not o
through variations in the spatial distribution of the laser fie
intensity, which is very difficult, even though it is possibl
in the case of spherically symmetrical irradiation of a targ
but mostly through changes in the time distribution of t
laser radiation intensity or target configuration.

An important component of such research is the study
energy balance in a target irradiated by laser radiation,
the relationships among the radiation incident on the
surface, the radiation scattered by the target, and the tr
mitted radiation downstream of the target. This paper rep
on experiments conducted in the Pico facility1,3,4 designed
for heating thin foils by laser radiation with an inhomog
neous far-field pattern~on the target surface!, which allows
one to detect anomalously fast burn-through of foils. Af
that, comparison between experimental data and theore
© 1999 American Institute of Physics
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FIG. 1. Diagram of experimental facility:~1! target; ~2!
focusing system;~3! stage of target alignment;~4!, ~5! sys-
tem for monitoring target position at the focal point;~6!,
~7!, and ~8! system conducting transmitted radiation;~9!,
~10!, and ~11! calorimeters;~12! coaxial photocells;~13!
optical filters;~14! beam splitters;~15! multichannel X-ray
microscope;~16! and~17! fast attenuators;~18! delay lines
for matching pulses from photodiodes;~19! frame synchro-
nization unit; ~20! objective lens forming far-field image
~21! microscope;~22! and ~23! CCD videocameras;~24!
package of full-reflection mirrors.
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calculations enables one to identify plausible mechanism
the observed effects and to suggest methods for limiting
impact of inhomogeneities in the radiation intensity on t
process of burn-through detected in experiments.

2. EXPERIMENTAL FACILITY

A schematic of the experimental facility is shown in Fi
1. The targets exposed to laser radiation are fabricated f
aluminum foils. The foil thickness varies between 3 to
mm. The targets are irradiated by a beam from a Nd gl
laser generating nanosecond pulses. The pressure of th
sidual gas~air! on the target ranges between 1022 and
6•1026 Torr. The FWHM of the laser pulse is 2 ns. Th
output laser pulse energy varies between 2–20 J, which
lows us to obtain a power density on the target surface fr
1013 to 1014 W/cm2. The laser beam divergence is 2a5(5 –
8)•1024 rad, and the energy contrast ratio isKE5104–105.
The FWHM of the spectral line isdl530 Å .

For these experiments on the Pico facility designed
simulation of processes in thermonuclear targets, we h
developed a special technique for studying laser plasma
erated in heating foils. The facility includes a system
accumulation and processing of data on the laser energy
tribution in space and time in the zone of interaction. T
system is based on a set of calorimetric devices and coa
photoelectric cells and an automatic system monitoring
pattern of the laser spot on the target surface. The diagno
technique allows us to monitor concurrently the energy b
ance in a target and the process of foil burn-through w
coordinate and time resolution, along with the pattern of
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laser spot on the target surface. This combination of diagn
tic devices ensures correct interpretation of experime
data.

The calorimetry employs a multichannel system of t
Pico facility monitoring the laser radiation energy5,6 and
based on using the long thermal time constant of calorime
sensors for intermediate storage of detected signals and
sequent readout by a common measuring device. The l
radiation detectors are five calorimeters VChD-2, VChD
VChD-5, VKDS, and KDS~developed by the Design Burea
of the Lebedev Institute of Physics! operating in the energy
range 1025 to 102 J with an uncertainty in absolute measur
ments of 6–8%. The total number of calorimetric chann
used in this technique is 18~eight on the path of the lase
beam and ten in the vacuum chamber of the tested targ!.
The calorimeters placed in the chamber~in particular, those
labeled by9, 10, and11 in Fig. 1! are used for measuring th
energy distribution in the far-field pattern of the laser be
making the plasma and for measuring the intensity of in
dent radiation passing through the plasma in the case
burn-through~bleaching! of the target and of radiation sca
tered ~reflected! by the plasma in different directions. I
measuring the energy transmitted through a burnt-thro
foil, we use a special system for screening light detect
from spurious background radiation~that generated in the
plasma and scattered laser light!, which includes lens6,
light-screening tube7, and a narrow-band (dl'5 Å for
l51.06mm! optical interference filter. The minimum energ
detected by the calorimetric system is 0.1 mJ, the uncerta
of absolute measurements is 7–9%, the uncertainty of r
tive measurements is 1.5–3% at a resolution of the A
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691JETP 89 (4), October 1999 Ivanov et al.
circuit of 2.5mV/bit. Fast measurement of the intensities
incident and transmitted energy with a time resolutiont
'0.2 ns are performed using coaxial photocells.

The pattern of the laser spot focused on the target in
near and far fields is imaged by a dedicated automatic sys
for remotely controlled measurements developed for di
nostic devices of the Pico facility. A schematic of the syst
for measuring laser radiation parameters is given in Fig
The beam pattern is monitored prior to entering the tar
chamber close to its input window. Far-field measureme
are performed by a DDC-4M camera22 built around a CCD
detector array, and in the near field by camera23 built
around an LI 427 vidicon with a memory time of;5 min.
The intensity of measured laser beams is attenuated to
required level by optical filters13, including interference fil-
ters placed in front of the objective lenses of the camera

The relative averaged values for the distributions
power density in the laser beam are related to the meas
ments of laser power and energy averaged over one p
using calorimeter11. A videosignal from each camera is fe
to a dedicated input card for image processing. The
cards are installed in one 486DX2-66 personal compute
16-bit slots of the system bus and have different addre
for interrupt processing.

Images generated by camera22 are input via and pro-
cessed by an Intel Smart Videorecorder Pro card at a rat
25 frames per second in the Intel Indeo Video 3.2 form
with 3203240 pixels and 255 grades of gray. The laser pu
is matched to the frame sync pulse from the video cam
using synchronization system19 built around TTL compo-
nents. The videosignal from camera23 is fed to a BW-03
Candella image input card, and the format of the out
frame is 2563256 pixels with 64 grades of gray. Since th
camera has its own memory unit, it does not require a cir
for synchronization with the laser because it is synchroni
with the laser by the software when a signal is detected in
background operation mode of Windows 3.1. Recorded
ages of the laser beam are stored in the form of BMP fi
and processed using Mathcad 6.0 PLUS.

3. RESULTS OF EXPERIMENTS

By processing far-field images of the laser beam,
could record a specific far-field pattern of the laser radiati
i.e., in the focusing plane on the target surface. The la
field on the target surface does not have a uniform distri
tion over the beam cross section, but has areas of hig
energy concentration with characteristic sizes of less than
mm. The number of such spots~‘‘speckles’’! with higher
energy densities on the target surface was ten to twelve
varied from measurement to measurement. Measuremen
density with a high spatial resolution gave peak power d
sities in these regions about a factor of 10–20 higher than
average power density in the focused laser spot. A plaus
cause of this pattern is the specific properties of the la
field in high-power multistage laser systems due to the h
degree of coherence of the output radiation.

With a view to modeling processes in thin-shell therm
nuclear laser-driven targets, in these experiments we m
f
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sured the fraction of incident laser energy scattered b
target and transmitted through the target using the calorim
ric system and coaxial photocells. Such measurements h
allowed us to study processes of foil explosion excited by
laser, along with propagation of shocks and thermal wave
targets.

Figure 2 gives the measurement data for the fractiona
of the laser energy transmitted through the target (Etr) with
respect to the energyEinc incident on the target as a functio
of the power densityq for foils of different thicknesses. Fig
ure 3 shows measurements of the fractiona of transmitted
energy versus the foil thicknessd. The numbers next to the
experimental points indicate the power density on the tar
surface expressed asq•1013 W/cm2. It was found that for
aluminum foils of thicknesses larger than 12mm the fraction
of transmitted energy is less than 0.4%, whereas for foils
a thickness of 3mm this fraction is up to 5% of the inciden
energy. A strong dependence of the transmitted energy
the foil thickness and a relatively small narrowing of th
laser pulse~10–15%! have been detected in this region
small fractions of transmitted energy. At larger foil thick
nesses, the onset of the transmitted pulse is delayed
respect to the incident pulse because a fraction of the latt
absorbed.

FIG. 2. Fractiona of laser energy transmitted through foils of differen
thicknesses as a function of power densityq on the target. (h) a3; (s) a6;
(n) a40 ; (,) a12 .

FIG. 3. Fraction of laser energy transmitted through a foil as a function
the foil thickness. Numbers near the points denote the power density on
target surface expressed asq•10213 W/cm2.
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4. THEORETICAL MODEL AND DISCUSSION OF
EXPERIMENTAL RESULTS

As follows from previously published results,7 the
evaporation ratedm/dt of the material per unit of the surfac
area is a function of the power densityq and wavelengthl of
the laser radiation is

dm/dt @g/cm2
• s#'1.43•105

3~10214q@W/cm2#!1/3~l @mm# !24/3;

it follows that, forq<1014 W/cm2 andl51.06mm an alu-
minum layer of thickness 1.5mm can evaporate in a tim
t53 ns.

Using the one-dimensional Diana code,8 which incorpo-
rates complex equations of state9 and ionization kinetics,10

we numerically simulated the heating and acceleration
aluminum foils under the conditions of the experiments p
formed on the Pico facility and described in the previo
section. The calculations were performed in Cartesian co
dinates. The real shape of the laser pulse was replaced
an isosceles triangle with a width of 4 ns. We varied t
maximum power densityqm on the target surface and the fo
thicknessd. More than fifty versions of calculations hav
been performed. The power density was varied over
range qm51013–1015 W/cm2, and the foil thickness was
1–20mm.

Our one-dimensional calculations show that a foil can
‘‘bleached’’ owing to evaporation of its external layers on
if its thickness is 2–4mm at power densitiesqm51013–1014

W/cm2, which is in accordance with the formula give
above. Nonetheless, in experiments we observed bleac
of foils with considerably larger thicknesses. A plausib
mechanism of this local bleaching of a target can be g
dynamic puncturing of solid fractions of a target in the r
gion of ‘‘hot spots’’ with subsequent disruption of th
target.11

The next series of calculations simulating inhomog
neous laser heating and acceleration of foils was perform
using the NATSI code12 based on the Euler equation an
numerically solving the two-dimensional gas-dynamic a
heat equations in cylindrical coordinatesr, z, andt. Incident
laser radiation propagates along thez axis and is absorbed b
the inverse bremsstrahlung mechanism. The radiation
penetrating to the critical surface is fully absorbed in t
region. Since we considered laser beams with power de
ties of 1013–1014 W/cm2, the calculations were based o
Spitzer’s classical model of thermal conductivity. Generat
of spontaneous magnetic fields was neglected. The flu
laser power propagating from the right-hand side~in the
negativez direction! was determined by the formula

q1~r ,t !5q1~ t !q2~r !,

whereq1(t) is a pulse shaped like an isosceles triangle w
a base of 4 ns and

q2~r !5exp@2~r /Rf !
2#/C1 ,

i.e., the power distribution in the transverse direction
Gaussian. HereC1 is a normalizing constant such that
f
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R05200mm is the transverse size of the calculation area a
Rf570 mm is the effective radius of the laser beam. T
laser pulse energy was set at 10 J and the aluminum
thickness~whose initial density is 2.7 g/cm3 and the charge
of emitted ions is 12! was varied.

Figure 4a shows our two-dimensional calculations a
compares them to the experimental data. It is clear that b
through of a foil under a smooth radiation front with
Gaussian distribution is possible only when the foil thickne
d,d* '3 mm.

In order to determine the foil burning rate as a functi
of the incident laser energy, we have also performed ca
lations at laser pulse energiesEL520 J andEL550 J at fixed
Rf570 mm. It was found that the density on the beam a
was close to the critical value at the termination of the la
pulse only at a pulse energy as high as 50 J, i.e., the l
beam could penetrate to the back surface of the foil~Fig. 4c!.
Figure 4b shows distributions of plasma density on ther
50) axis at the conclusion of the laser pulse (t54 ns! cal-
culated at pulse energies of 10 and 50 J. One can clearly
that the plasma density drops to approximately the criti
value only in the second case. Figure 4c shows also tha
this time the density peak has traveled through a dista
Lz5500 mm.

Thus, in the case of a small Gaussian intensity distri
tion in the focusing plane, a ‘‘threshold’’ effect should hav
been detected in investigating the burning rates of foils w
different thicknesses, namely, ford,d* the foil burns
through and ford.d* no laser light should have been tran
mitted to the back surface of the foil~certainly, the paramete
d* should be different for different laser facilities, and in th
specific cased* should be approximately 3mm!.

In our experiments only a small fraction of laser ener
was transmitted for foil thicknesses substantially larger th
3 mm. In order to explain this phenomenon, we have to ta
account of nonuniform hydrodynamic effects. In the regi
where laser radiation is absorbed, a cone-shaped shock
is generated, and the latter propagates both along the b
axis and in the transverse direction. This shock front se
rates the plasma layers, which allows the radiation to p
etrate into deeper layers of the target. A similar mechan
of laser piercing or ‘‘boring’’ of aluminum foils with thick-
nesses of 200–300mm by a KrF laser was investigated in th
case of a single Gaussian beam of a variable radiusRf ~Ref.
11!.

If a laser spot on a surface contains speckles, s
speckles can penetrate through thicker layers than an a
aged laser beam with a smooth intensity distribution over
cross section because, at a fixed intensity of absorbed l
radiation, a larger force driving the plasma is generated
speckle of a smaller transverse dimension.

The dashed vertical line in Fig. 4a is an approxima
boundary between two regions of two different regimes
radiation transmission through foils. The burning~evapora-
tion! regime is realized on the left of the dashed line, and
microscopic piercing regime on the right of the dashed li
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FIG. 4. ~a! Fraction of energy transmitted through a foil as a function of foil thicknessd (Etr andEinc are the transmitted and incident energies generated
the laser!. Comparison between experimental data~points! and calculations~solid line!. The vertical dashed line divides regions of burn-through~on the
left-hand side! and piercing~on the right-hand side! regimes. The plasma density distributions along the optical axis are two-dimensional calculations a
energies~b! 10 J and~c! 50 J.
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In order to numerically simulate the microscopic pierci
regime in a foil by speckles in a laser spot, we performe
series of two-dimensional calculations. The foil thickne
was set to 4mm, the laser radiation distribution over th
beam cross section was assumed to be Gaussian, butRf and
the pulse energy were varied so that the laser beam inte
was constant and equal to the radiation intensity in the
periments averaged over the laser spot~i.e., the pulse energy
in the calculations was determined by the formulaEL
a
s

ity
x-

510(Rf /70)2, where the radius is expressed in micromet
and the pulse energy in joules!.

Calculations were performed forRf55, 10, and 20mm.
We modeled the impact of an isolated speckle on the burn
of a foil with a fixed thickness. Figure 5 shows these calc
lations. The upper set of curves plasma density shows c
tours when the foil is burnt through on the beam axis~at
r 50). For Rf520 mm the aluminum layer has not bee
bleached at the end of the pulse; forRf510 mm bleaching is
e
-

s

n
n

e

FIG. 5. Two-dimensional calculations
for speckles with effective radiiRf510,
20, and 5 mm at the time of burn-
through~when the plasma density on th
axis becomes equal to the critical den
sity!. The upper part of the graph plot
lines of equal density for three times:~a!
3.5 ns,Rf510 mm; ~b! 4 ns,Rf520 mm
~in this case, the target has not bee
pierced since the density is higher tha
the critical value!; ~c! 2.5 ns,Rf55 mm.
Plasma density as a function of distanc
along the axis (r 50) at times ~d! t
53.0 ns,Rf510 mm; ~e! t53.5 ns,Rf

510 mm; ~f! t54 ns, Rf520 mm; ~g!
t52.5 ns, Rf55 mm is plotted in the
lower part of the graph.
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observed att53 –3.5 ns. The graph shows density distrib
tions at the time 3 ns, when the density is higher than
critical value, and att53.5 ns, when the density has alrea
dropped below the critical value. In the case ofRf55 mm,
the layer has been bleached by the timet52.5 ns. Note that
by this time the density peak has traveled through a dista
approximately equal to ten radiiRf of the focused laser spo

Two-dimensional calculations are difficult, therefore,
large set of one-dimensional calculations by the Diana c
has been performed for differentd andqm . The calculations
are plotted in Fig. 6, where one can see the distanceLz

through which the density peak travels as a function ofd and
qm . The ‘‘dips’’ on the calculated surface arise because t
foils are fully heated owing to their thermal conductivity an
‘‘explode,’’ as a result of which the density peak moves ov
a smaller distance then in the case of a piece of solid s
with a larger initial thickness. Assuming that a foil is di
rupted if the density peak moves through a distance~10–
20)Rf , whereRf is the speckle radius, we can estimate t
parameters of speckles that should bleach a foil with a gi
thickness.

A distribution of laser radiation can be smoothed on
target surface if, for example, a symmetrizing prepulse
used.13–15In order to demonstrate the symmetrizing prepu
effect, we have performed the following calculations w
the NATSI code: the laser pulse consisted of two parts w
similar shapesq1(t), i.e., each had a shape of an isosce
triangle with a base width of 4 ns, but shifted with respect
one another by 3.6 ns~i.e., the peak of the first pulse was s
at t52 ns and that of the second att55.6 ns!. In the first
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FIG. 6. DistanceLz through which foil has traveled by the end of the las
pulse as a function of the power densityqm and foil thicknessd.
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FIG. 7. Calculations for burn-through of a foi
in the presence of a laser prepulse. The graph illustra
the case of a speckle withRf510 mm. The plasma
density distributions along the axis are given
times 7.2 and 7.6 ns~the pulse termination!. The
laser power density is defined by the formu
q(t,r )5q1(t)q2(r ), whereq1(t) is shown in the picture

and q25$
(1/C1)exp@2(r/Rf)

2#, t.3.6 ns

1/C2 , t,3.6 ns
, whereC1 and C2 are

normalizing constants determined by the conditio
*0

R0q2rdr 51.
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pulse, the value ofq2 was constant, and that in the seco
was a Gaussian withRf510 mm. The energy of the firs
pulse wasE151.25 J and distributed uniformly over a su
face with sizeR05100 mm, and the energy of the secon
pulse wasE250.2 J, as in the previous case of a sing
speckle discussed in this section. Thus, the power densi
the first pulse was a factor of about 16 lower than in
focused spot of the speckle (r ,Rf510 mm!. Thus, the ef-
fect of a defocused prepulse on the foil piercing by a spec
with an effective radius of 10mm was simulated. Figure 7
shows lines of equal density and its distribution at times
and 7.6 ns. The time 7.2 ns corresponds to the time 3.5 n
the calculation without a prepulse~Fig. 5a!. One can clearly
see that with a prepulse the foil had not bleached even a
end of the laser pulse, whereas in the absence of a prepu
had been pierced by the time 3.5 ns.

Such experiments are presently in the schedule of w
to be performed on the Pico facility.

In conclusion, note that our calculations have not
taken into account generation of spontaneous magn
fields.16–18This effect can give rise to larger inhomogeneiti
in the target heating because magnetization impedes the
conductivity in the transverse direction.

5. CONCLUSIONS

The analysis of experiments on burn-through of th
foils on the Pico facility based on one- and two-dimensio
computer simulations has allowed us to investigate ano
lously deep penetration of laser radiation into foils of re
tively large thicknesses~i.e., when the mass of evaporate
material per unit area is much larger than expected for s
foils!. The cause of this phenomenon is in the complex p
tern of the laser spot, which consists of speckles with diff
ent intensities, and the effect of these speckles is microsc
piercing of the metal layer.

Our investigations have demonstrated that, using r
tively simple calorimetric measurements of the fraction
energy transmitted through foils of various thicknesses
comparing them to numerical calculations, one can ana
the effect of inhomogeneities in the laser spot on local p
etration of laser radiation through a target and even on pa
destruction of the latter. This analysis seems to be of con
erable importance for research into laser-driven therm
nuclear fusion performed by facilities with multiple las
beams. The point is that, in addition to inhomogeneities
isolated laser beams, which can be monitored in principl
the output, the interference pattern generated by sev
beams on the target surface can be fairly complicated.
heating inhomogeneity is very difficult to monitor in th
in
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region. Owing to the effect of microscopic piercing d
scribed in this paper, additional undesirable entropy can
fed into the target, which can result in preheating of therm
nuclear fuel, prevent high compression of fuel materials, a
disrupt the internal structure of the target~at present the tar-
get for laser-driven thermonuclear fusion is a multilayer
shell whose inside surface is coated with deuterium-triti
ice!. With the help of the techniques reported in this pap
one can investigate penetration of laser radiation into a
get, which gives rise to inhomogeneities in the power den
and heating conditions.

In addition, using two-dimensional numerical calcul
tions we have shown that partial symmetrization of the ab
tion pressure is possible when a laser prepulse is used.

* !E-mail: mikh@lpi.ac.ru
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No. 4, 168~1997!.

7F. Dahmani and T. Kerdja, Phys. Rev. A44, 267 ~1991!.
8N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeevet al., in Topics in Atomic
Science and Technology. Methods and Programs for Numerical Solu
of Problems of Mathematical Physics, No. 2, 38~1982!.

9V. Ya. Karpov, A. P. Fadeev, and G. V. Shpatkovskaya, IPM Prepr
USSR Academy of Sciences, No. 147~1982!.

10Z. Amad, Yu. A. Zakharenkov, I. G. Leboet al., Zh. Éksp. Teor. Fiz.100,
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Two-dimensional mesoscopic dusty plasma clusters: structure and phase transitions
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A two-dimensional mesoscopic cluster of ‘‘dusty plasma’’ particles, which can be interpreted as
a system of microparticles in an rf gas discharge, is investigated. The ground-state
configurations and corresponding eigenfrequencies and eigenvectors are found for clusters ofN
52240 particles in a harmonic confining potential. It is shown that a change in the
Debye screening lengthR of the particle charge in the plasma can cause structural transformations
of the ground state of the system, manifested as first-order or second-order phase transitions
with respect to the parameterR. The disorder~‘‘melting’’ ! of the clusters is analyzed in detail by
Monte Carlo simulation and molecular dynamics. By varying the characteristic range of
particle interaction in a cluster, it is possible to modulate its thermodynamic properties and the
character of the phase transitions, thereby causing a controlled transition of the system
into the fully ordered, orientationally disordered, or fully disordered state. The possibility of
dusty plasma clusters coexisting in different states is discussed. ©1999 American Institute of
Physics.@S1063-7761~99!01210-X#
a
ve
te
; o
t
c

tio
st
ar

-
le
ch
i-
th
o

m
ro
nd
ew
st
of
es
tu
a
o

th
iv

th
s-

im-
tive

d
par-
he
ccu-
m
f
ic

d

ual

ye

nce
the

lus-

qua-
1. INTRODUCTION

Small charged ‘‘dust’’ particles in a neutralized plasm
constitute a highly prevalent system, which can be obser
in a variety of scales and media, e.g., dust clusters in in
stellar space and in the upper layers of the atmosphere
dered structures in a gas discharge of the kind used in
industrial treatment of various materials, etc.; the list of su
systems goes on indefinitely. Lately a great deal of atten
has been devoted to the experimental study of ‘‘du
plasma,’’ a system of carbon, silicon, or polymer microp
ticles in an rf gas discharge,1–4 a laminar, weakly ionized
thermal plasma jet,3,5 and even in a microgravity environ
ment without the use of electric traps for partic
confinement.4 One of the reasons for the interest in su
artificially produced objects is the possibility of making d
rect observations, by laser interferometry for example, of
types and dynamics of formation of ordered structures
‘‘dust’’ particles. Worldwide in situ investigations of dusty
plasma crystals and liquids in a number of laboratories1–3 not
only have important bearing on our understanding of plas
physics, but are also a powerful tool for studying the p
cesses of melting, annealing, and formation of various ki
of defects in the crystalline phase. In addition, the last f
years have witnessed great scientific and practical intere
the study of microclusters, which are intriguing by virtue
their strong structural sensitivity to the number of particl
extraordinary structural transformations as the tempera
increases, etc.6–11 The fascination with systems containing
small number of particles is further reinforced by a wealth
experimental and theoretical information indicating that
clusters can preserve their individuality inside a mass
body and thereby influence its properties.

The objective of the present study is to investigate
static and thermodynamic properties of small ‘‘dust’’ clu
6961063-7761/99/89(10)/8/$15.00
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ters in a plasma. In ongoing experiments small particles
mersed in a plasma acquire a substantial, usually nega
charge2Ze, Z;103 because of the higher mobility an
temperature of plasma electrons. Debye screening of the
ticles’ charge modifies their Coulomb interaction, and t
interaction between particles can be described quite a
rately ~see Refs. 12 and 13 for a discussion of this proble!
by the Yukawa pair potential.1! Using the parameters o
experiments1,2 with polymer particles having characterist
dimensions 331024 cm in a low-pressure (;1 torr) argon rf
discharge (;10 MHz) plasma, estimating the electron an
ion temperatures of the plasma asTe'1700 K and Ti

'300 K, respectively, and assuming approximately eq
densities of plasma electrons and ionsne'ni;109 cm23, we
can obtain the following expression for estimating the Deb
screening length:

R5S 4pe2ni

kbTi
1

4pe2ne

kbTe
D 21/2

,

i.e., we have

R'AkbTi /4pe2ni'1022 cm,

which is a quantity of the same order as the average dista
between the dust particles. For a few-particle cluster all
particles are situated in a single layer~the electrode sheath!,
and we have a two-dimensional~2D! cluster ofN dust par-
ticles in the plasma; an expression for the energy of the c
ter can be written in the form

E5~Ze!2 (
i , j

exp~2ur i j u/R!

ur i j u
1a (

i 51

N

ur i u2. ~1!

We assume here that the particles are confined by the
dratic external force potentiala.
© 1999 American Institute of Physics
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FIG. 1. Lowest nonzero eigenfrequencyvmin of a dusty
plasma cluster ofN510 particles. Insets: ground configu
rations of the system in three different ranges of the cont
parameterg.
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We note that in recent experiments aimed at the ob
vation of small dust clusters2 the investigated system ha
been essentially quasi-2D, consisting of vertical chains
dust particles. Chains of this kind can form14–16 not only by
virtue of the Yukawa potential, but also as a result of dipol
dipole interaction between particles, presumably caused
the negative charge of a dust particle focusing the stream
positive ions incident on the electrode from the plasma d
charge cloud.2,12,13 These short~20 particles or less! chains
are capable of moving only in the horizontal plane, formi
a cluster with a characteristic shell structure, which manife
orientational and total melting effects. We also note that
direct experimental determination of the interaction poten
between two particles has yielded only Yukawa interacti
i.e., dipole–dipole interaction at the investigated distan
has provided a smaller contribution.17 Clearly, in the 2D case
discussed here, the addition of dipole–dipole interact
does not produce any new qualitative phenomena.
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Introducing dimensionless units for the distancer 0

5(Ze)2/3/a1/3 and the energyE05ar 0
2, we can express the

cluster energy in the form

E5(
i , j

exp~2gur i j u!
ur i j u

1(
i 51

N

ur i u2. ~2!

Consequently, the thermodynamic state of a cluster o
given number of particles is governed by two dimensionl
parameters: the reciprocal screening lengthg5r 0 /R and the
dimensionless temperature of the systemQ5kbT/E0 . The
characteristic particle interaction range 1/g can be controlled
by varying the Debye screening lengthR, which is a func-
tion of the density and temperature of the plasma. The tra
lational particle temperature2! can be measured on the bas
of the virial theorem from observations of the particle vibr
tions~or from the ‘‘Doppler’’ contour of scattered radiation!.
-
FIG. 2. System ofN533 particles: energies and configu
rations of the lowest local minimumE(1), measured from
the global minimum energyE, for a cluster in the vicinity
of phase transition.
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FIG. 3. System ofN537 particles: a! lowest nonzero
eigenfrequencyvmin and mutual orientational order param
eter of different shells of the cluster as a function ofg ; b!
region of strong screening of the particle charge in t
plasma. The eigenfrequencies and lowest nonzero
quency forg.19 correspond to motion of the cluster as
whole in a harmonic potential.
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In this paper we investigate the properties of 2D du
plasma clusters~2! as functions of the control parameterg
and the temperatureQ. For a series of clusters containin
N,40 particles we determine the structures of the dust c
ters, the spectra of harmonic vibrations, and the ground-s
energies~Sec. 2!. The variation of the Debye screenin
length ~the parameterg! induces structural transformation
of the ground state at certain values of the parameterg* ; this
effect can be regarded as the occurrence of various type
phase transitions with respect to the parameterg. In the ex-
amples of clusters containingN510, 33, and 37 particles w
show that the investigated systems can undergo a serie
first-order and second-order phase transitions over a w
range ofgP@0,30#. We use molecular-dynamics and Mon
Carlo techniques in a canonical ensemble to analyze the
modynamic properties of small dusty plasma systems
various types of disorder~melting! phenomena~Sec. 3!. We
show that the thermodynamic state of small clusters of d
particles can be controlled not only by the temperature of
cluster, but also by the Debye screening length, i.e., by
density and temperature of the plasma in which the parti
y
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are immersed. Slight variations in the parameters of the
periment can give rise to major changes in the cluster st
ture and the ‘‘phase transition’’ temperatures and can e
cause certain types of disorder effects to disappear.

2. CONFIGURATIONS FOR GLOBAL MINIMA

We use a modified Newton method7 and a combined
‘‘random search1gradient descent’’ method8 to find con-
figurations that produce a global minimum in the system~2!.
The global minimum configurations shown below~see Figs.
1–3 and Table I! have been found by the two methods ind
pendently, improving the reliability of the results. Of cours
none of the existing methods used to seek the minimum
function of many variables is in a position to guarantee t
the resulting configuration will correspond to a global min
mum. To cope with this difficulty, we have analyzed up
200 arbitrarily distributed configurations. The same appro
can also be used to investigate local minima and the reg
of convergence to them~relative weights of the loca
minima!.



he
a
v

r
an
he
ic
s

e
ex
ic
th
tu
b
e
a
o
-

s

a

th
et
e

te
ng
te

n-
fr

e

a

r
ing
lgo-
n-

ion

u-

luster

nd

lls
ses:

n
er-

ch

em

s-

ns
the
g
and

is

-

uc-
ns.
st-
f
ore
ell
To
ely,
m-

al

ult

i-

699JETP 89 (4), October 1999 Astrakharchik et al.
In the limit of weak screening of particle charges in t
plasma,g!1, the model~2! describes a Coulomb cluster in
harmonic confining potential, a system that has been hea
investigated both experimentally18,19and by numerical simu-
lation methods.6,7,20 In particular, previous Coulomb cluste
calculations have shown that finite systems of not too m
particles are conveniently classified according to their s
structure~see Table I!. Depending on how the concentr
shells are filled, a system is assigned to one of the period
a table of the same sort as Mendeleev’s periodic table.

The presence of the parameterg characterizing the rang
of the particle interaction potential in a cluster can be
ploited to investigate the short-range influence of the part
interaction potential on the structure and properties of
ground states of clusters. The fact that the cluster struc
depends on the parameters of the interaction potential
comes obvious from an inspection of the table, which giv
certain ground-state configurations of 2D clusters in a h
monic trap~in the order of increasing long-range influence
the pair interaction potential!: dipole clusters, Coulomb clus
ters, and logarithmic clusters. In the investigated case
‘‘dust clusters’’ the ground state of the system undergoe
structural transformation as the parameterg ~or Debye
screening length 1/g! is varied, and each pointg* at which
some type of structural change occurs can be regarded
point of a particular order of phase transition.

The transition order can be determined from a plot of
energy of the system as a function of the control param
g: A discontinuity of thenth derivative of the ground-stat
energyE(g) with respect tog at a pointg* corresponds
formally to an nth-order phase transition at the pointg* .
The order of phase transition at a point where the sys
configuration changes can also be deduced by investigati
set of 2N eigenfrequencies of normal modes of the clus
v i(g), i 51,2N, in the vicinity of the global minimum of
E(g); specifically, a discontinuity of one of those freque
cies implies a first-order phase transition, whereas zero
quency of a particular motion~mode ‘‘softening’’ of the cor-
responding motion! can be interpreted as a second-ord
transition at the given point.9

Figure 1 shows the results of calculations of the norm
frequencies of the dynamical matrix of a cluster ofN510

TABLE I. Distribution of particles among the shells of$N1 ,N2 ,...% ground
states of clusters ofN particles in a harmonic confining potential with d
pole, Coulomb, and logarithmic interactions.

N 1/r 3 1/r 2 ln r

9 2,7 2,7 1,8
10 3,7 2,8 2,8
11 3,8 3,8 2,9
- - - -
32 1,6,12,13 1,5,11,15 4,11,17
33 1,6,12,14 1,6,11,15 5,11,17
34 1,6,12,15 1,6,12,15 1,5,11,17
- - - -
36 1,6,12,17 1,6,12,17 1,6,12,17
37 1,6,1,13,16 1,7,12,17 1,6,12,18
38 2,8,13,15 1,7,13,17 1,6,12,19
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particles for various values of the screening parameteg
P@0,10#. The normal-mode spectrum and the correspond
eigenvectors are found by means of the Householder a
rithm. The lowest nonzero frequency clearly exhibits disco
tinuous behavior at the pointsg'1.4 andg'8.2. An exami-
nation of the cluster ground-state configurations shows~see
Fig. 1! that as the short-range influence of the interact
potential increases with increasingg, the distribution of the
particles among the shells initially~at g'1.4! undergoes the
change typically associated with the transition from Co
lomb interaction to dipole interaction ($2,8%→$3,7%). The
subsequent decrease in the screening length takes the c
~at g'8.2! into a more closely packed state~with configu-
ration $2,8%!, which is typical of a system of rigid spheres.

Figure 2 shows the results of calculations of the grou
configurations of a cluster ofN533 particles. At the point
g* '3.751 the occupation numbers of the two outer she
change as the short-range influence of the potential increa
$1,6,11,15%→$1,6,12,14%. The first-order phase transitio
point g* can be determined as the point at which the en
gies of the ground and lowest excited~metastable! states be-
come equal. This approach is illustrated in Fig. 2, whi
shows plots of the ground-state energyE(g) and the energy
of the lowest local minimumE(1)(g) in the vicinity of a
phase transition of a cluster ofN533 particles. It is evident
from the figure that the configurations producing the syst
with a global minimum in the system before transition~say,
$1,6,11,15% for g,g* ! form a metastable branch of the sy
tem in the immediate vicinity of the pointg* after transition.

A very interesting pattern of structural transformatio
with variation of the screening length was expected on
part of a cluster ofN537 particles. In the correspondin
dipole system one particle is situated between the second
third shells, forming an ‘‘interstitial defect’’~analogous to a
Frenkel defect in a crystal!, and the partition of the ground
configuration into shells is not unique.8 An investigation of
this cluster for various values of the parameterg shows that
four phase transitions take place in the intervalgP@0,1.6#
@see Fig. 3a#: two second-order transitions~at g'0.78 and
g'1.22, where the lowest normal-mode eigenfrequency
zero! and two first-order transitions~at g'0.52 and g
'1.34!. It is evident from Fig. 3a that the occupation num
bers of the outer shells change atg'0.52!. A similar struc-
tural transformation at the pointg50.52 is encountered for a
cluster ofN537 particles. Such abrupt changes in the str
ture of the clusters are typical of first-order phase transitio
However, an examination of the region of the second fir
order phase transition atg'1.34 reveals that the structure o
the cluster does not undergo any distinct changes. A m
detailed analysis shows that in this region the third sh
rotates relative to the fourth shell, as is evident in Fig. 3b.
describe these orientational transformations quantitativ
Fig. 3 shows plots of the mutual orientational order para
eter gs1s2

of different pairs of shells$s1 ,s2% @see Eq.~4!

below#, which is highly sensitive to any change in the mutu
orientation of the shells.

A further increase in the parameterg ~decrease in the
range of the particle interaction potential! produces two more
first-order transitions, which are shown in Fig. 3b. As a res
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of the first such transition~at g'7.015! one of the particles
is interposed between the second and third shells~see Table
I and the discussion above!. The corresponding structura
transformation can be written as

$1,7,13,16%→$1,6,1̄,12,17%.

For g'19 the cluster acquires a very distinct faceting a
goes over to the most symmetric state$1,6,12,18% with the
closest packing. The subsequent increase in the short-r
influence of the interaction potential does not produce
more structural changes in the system. Curiously, in
given interval ofg the normal modes having the lowest no
zero frequencyvmin @see Fig. 3b# correspond to a twofold-
degenerate vibration of the entire cluster as a whole i
harmonic trap with frequencyvmin5&.

The results of investigations of Coulomb and dipo
clusters have shown that by far the majority of the grou
configurations of these systems are parts of a crystal la
with hexagonal symmetry.8,19 In describing and analyzing
the properties of such configurations, it is helpful to intr
duce ‘‘crystal shells’’ (Crc) in the form of concentric groups
of lattice sites of an ideal 2D crystal withc particles located
at their center.3! An investigation of finite dusty plasma sys
tems has shown~see Figs. 1–3! that the changes in the clus
ter configurations as the parameterg is increased~i.e., as the
long-range influence of the interaction potential decreas!
takes place in the direction along which the maximum nu
ber of crystal shells is filled.

We close this section with the observation that a char
teristic feature of all the first-order phase transitions we
served in clusters withN,40 and over a wide range of th
control parameterg is an abrupt change in the structure
the cluster. This distinctive attribute shows up as a chang
the occupation numbers of the neighboring shells of the s
tem, as occurs in the cases of clusters withN510 andN
533 particles considered above~see Figs. 1 and 2!. How-
ever, structural changes can also take place in such a
that the occupation numbers of shells far apart from o
another change simultaneously at a first-order phase tra
tion point. This is precisely the situation in the intervalsg
'7.015 andg'19 for a system ofN537 particles; see Fig
3b. Another interesting example of such structural trans
mations is found in a cluster ofN526 particles, whose be
havior is similar to the pattern of changes in a cluster ofN
510 particles: As the short-range influence of the parti
interaction potential decreases, two first-order transitions
cur in succession with simultaneous changes in the num
of particles in the first and third shells:$3,9,14%→$4,9,13%
for g'1.6 and$4,9,13%→$3,9,14% for g'12.

3. PHASE TRANSITIONS

An important distinguishing feature of small clusters
the possibility of such systems exhibiting two types of d
order effects:6,10 intershell disorder~orientational melting of
shellss1 and s2 at a temperatureQs1s2

! and radial disorder
~total melting at a temperatureQ f!. An analysis of the eigen
frequencies shows that for clusters with small values of
lowest eigenfrequenciesvmin the corresponding eigenvecto
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are mainly directed along the tangents to the shells and
respond to mutual rotation of the latter.7 Such clusters will
have low intershell disorder temperaturesQs1s2

, when shells
s1 ands2 rotate relative to one another, losing mutual orie
tational order.4!

It is obvious that the change in the structure of the cl
ters as the control parameterg is varied should alter the
orientational and total disorder temperatures. It is also p
sible for the orientational melting effect to vanish altogeth
when the cluster has a ‘‘well-packed’’ structure. The resu
of our calculations, given below, confirm this hypothesis.

Orientational disorder in clusters is usually investigat
by measuring the mean-square relative angular displa
ments of two shells, which is analogous to mean-square
placements@see Eq.~5! below#. In this approach the orienta
tional melting temperatureQs1s2

of shells s1 and s2 is
defined as the temperature at which the mean-square an
displacement changes abruptly. We use a slightly differ
procedure to determine the orientational melting tempe
ture, defining it as the point at which the mutual orientation
order parameter of shellss1 ands2 becomes equal to zero.8

We determine this quantity as follows. For each shell nu
bereds and containingNs particles we consider a comple
variablecs such that

cs5
1

Ns
(
i s

exp~ jNsw i !, j 2521. ~3!

The sum in Eq.~3! spans all particles belonging to the give
shell. We then define the mutual orientational order para
eter as

gs1s2
5cs1

cs2
* . ~4!

Clearly, the quantitŷ gs1s2
& vanishes at the point of mutua

disorder~rotation! of shellss1 ands2 . The degree of angula
order of particles within shells can be characterized by th
quantity^gss&5^ucsu2&. We note thatcs and^gs1s2

& are ana-
logs of the orientational parameterc6 and the correlation
function g6(r ) in unbounded 2D systems, where the vanis
ing of the correlation function,g6(r )→0 in the limit r
→`, in the absence of translational order is indicative of t
mutual orientational disorder of distant parts of the syste

Figure 4a shows the temperature dependence of the
modynamic averagêg21& of the mutual orientational orde
of a two-shell cluster ofN510 particles for various values o
the parameterg. It is evident from the figure that the chang
of the system configuration$2,8%→$3,7% ~which takes place
for g'1.4; see Fig. 1! causes the orientational disorder tem
perature to drop sharply: fromQ21'1.331024 to Q21'0.7
31025.

In the rangeg.8.2, where the cluster is fully packe
~see Fig. 1!, orientational melting does not occur, and
increase in the temperature results in the exchange of
ticles between shells, which takes place atQ f'1023. This
behavior is evident from the temperature dependence of
mean-square radial displacementsur

2 of particles in the sys-
tem:
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FIG. 4. Two-shell cluster ofN510 particles: a! thermodynamic
average of the mutual orientational order parameter of the first
second shells for various values of the parameterg ; b! mean-
square displacements as a function of the temperature,ur

2(Q).
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The corresponding dependence is shown in Fig. 4b. A
shown are analogous curves for systems withg51 and g
52. It is evident from the figure that even a slight variati
of the control parameterg can produce an order-of
magnitude change in the total melting temperature in
system.

A variation of the parameters of the interaction poten
changes the structure of the isoenergetic surface of the
tem, which governs the type and characteristic features o
occurring phase transitions. At certain values of the con
parameterg, therefore, it is possible for the system to acqu
very interesting thermodynamic properties associated w
the distinctive features of such a structure.

Figure 5 shows the temperature dependence of the m
square radial displacements~5! of a four-shell cluster ofN
533 particles forg53.76. The plot has a series of platea
in various temperature intervals. Careful inspection sho
that the intervals of abrupt increase inur

2 correspond to the
successive disorder of different pairs of shells of the clus
The exchange of particles between the third and fourth sh
sets in at a temperatureQ3,4'1024, and exchange betwee
o

e

l
s-

he
l

th

n-

s

r:
lls

the second and third shells begins atQ2,3'0.005. Total
melting of the cluster takes place atQ f'0.01.

Interesting information about the nature of the proces
involved as the temperature increases can be obtained
investigating the distribution of the system among the lo
minima r(E~loc!). To estimate the corresponding histogra
we have run several hundred iterations of the gradient
scent method in each step of the measurements as a mea
determining the nearest local minimum in whose vicinity t
system resides, along with the energy of this minimumE~loc!.
The inset to Fig. 5 shows distributions of a system ofN
533 particles forg53.76 among the local minima at tem
peraturesQ51024 ~ordered state! and Q5831023 ~par-
ticle exchange between the fourth and third shells!. In the
fully ordered state the system is always situated in the vic
ity of the global minimum of the energyE564.795946,
which corresponds to a$1,6,12,14% structure. At Q58
31023 the lowest local minimumE(1)564.795975 is occu-
pied with finite probability; in the vicinity of this minimum
the configuration of the system can be written as$1,6,11,15%
~see Fig. 2!.

Looking over these results in conjunction with the abo
results of searching for the global minimum~see Fig. 2!, we
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FIG. 5. Four-shell cluster ofN533 particles: mean-square
radial displacements as a function of the temperatu
ur

2(Q). Inset: histograms of the distribution of particle
among the local minimar(E~loc!) in the ordered state~at
Q51024! and at the temperatureQ5831023 at which
particle exchange between the third and fourth shells ta
place.
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can conclude that the first disorder, which is plainly evide
on the graph of radial displacementsur

2(Q) in the tempera-
ture intervalQP@1024,1023#, corresponds to a finite prob
ability of occupation of the$1,6,11,15% state, which is meta-
stable for the given value of the parameterg. Such a
redistribution of the particles among the shells requires th
potential barrier be overcome, and this fact in combinat
with the large relative contributions of ‘‘ground’’ and ‘‘ex
cited’’ states, permits the indicated temperature range to
regarded as the range of dynamical realization of two clu
forms: $1,6,12,14%↔$1,6,11,15%.21

4. CONCLUSIONS

In this paper we have investigated a finite system
‘‘dusty plasma’’ particles, which is manifested physically
microparticles in the column of a dc glow discharge or in
weakly isolated, low-pressure rf discharge plasma. For v
ous Debye screening lengthsR we have determined th
ground-state configurations of clusters consisting ofN<40
particles, along with the eigenfrequencies and correspon
eigenvectors of their normal modes. As the screening len
varies, the clusters undergo structural transformations, w
appear as first-order or second-order phase transitions
respect to the parameterR. The coordinates of the cluste
particles change abruptly at the first-order transition poin
either by changing the distribution of particles among
shells or as the rotation of pairs of shells relative to o
another. At a second-order transition point one of the nor
modes softens~vanishes!, and the positions of the particle
vary continuously.

An investigation of the phase transitions in the syst
has shown that by varyingR ~e.g., by varying the density o
temperature of the plasma! it is possible to modulate the
thermodynamic properties of the system to the extent that
orientational and total disorder temperatures change by
ders of magnitude. We have also found that the orientatio
rotation of different shells of the system can cease for cer
Debye screening lengths, when an increase in tempera
immediately leads to particle exchange between shells.
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An analysis of the variation of the distribution amon
the local minima as the temperature is varied shows that
certain values ofR, in the vicinity of phase transition points
melting in a number of clusters takes place by a multista
mechanism, the disorder of different regions of the clus
occurring in different temperature intervals. The pheno
enon of dynamical realization of different cluster forms c
be observed in this case.
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1!In the latest experiments the transverse dimensions of the particle ‘‘clo

in the plasma are much greater than the Debye shielding lengthR; conse-
quently, even though the Yukawa potential is associated with the th
dimensional shielding of particle charges by the plasma, it is fully justifi
in application to the ‘‘two-dimensional’’ clusters discussed in the pres
article.

2!The translational particle temperature, which is a measure of the kin
motion of massive dust particles, can obviously differ significantly fro
the temperature of the particles themselves, which depends on the pl
ion and electron temperatures.

3!Obviously, considering the isotropy of the confining potential, we are p
marily interested in a finite number of the most symmetric crystal she
which can be divided into the following groups by the number of sites
the center:Cr1, Cr2, Cr3, Cr4.

4!In contrast with systems of large numbers of particlesN.40, we note that
orientational melting in small clusters can take place for all pairs of she
i.e., melting temperaturesQ21, Q32, Q43,... canexist. Previous calcula-
tions of Coulomb, dipole, and logarithmic clusters have shown that o
orientational melting of the outer shell is possible in large clusters.
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We analyze the motion of an aerosol particle in a gas mixture in which the molecules of one of
the components have been selectively excited as to velocity by resonant optical radiation.
We derive expressions for the force with which the gas acts on the particle and for the velocity
of particle motion in the Knudsen regime. We also examine the dependence of the force
and velocity of photophoresis on the offset of the radiation frequency from the center of the
absorption line and on the concentration and mass ratios of the molecules of the absorbing
and buffer gases. ©1999 American Institute of Physics.@S1063-7761~99!01310-4#
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1. INTRODUCTION

Studies of phenomena related to the effect of opti
radiation on submicrometer particles are of fundamental
portance in astrophysics and the physics of the atmosph
and are of interest in connection with the analysis and cle
ing of gas–dust flows.

In the theory of radiometric photophoresis,1 which re-
sults from nonuniform heating of an aerosol particle th
absorbs light, the spectral composition of the light is of
terest because it is related to the absorptivity of the parti
and accordingly to the temperature field at the particle s
face. The light interacts with the particle but not with the g

Also of interest is the study of the motion of aeros
particles in the field of optical radiation whose frequency
close to the frequencies of the quantum transitions of
molecules comprising the gas. In this case the light is
sorbed by the gas.

Because of the Doppler effect, the radiation is absor
selectively as to molecular velocity. This gives rise to ligh
induced fluxes of matter and energy.2 The difference in the
scattering of excited and unexcited molecules by the part
surface and the difference in the transport cross section
their interaction lead to the emergence of a resonant ph
phoresis force on the particle.3,4

Photophoresis of a particle in a one-component ga
studied in Refs. 3 and 4. There the radiation is taken in
form of a traveling light wave whose frequency is close
that of an electronic or vibrational–rotational transition
the molecules of the surrounding gas. This leads to a drif
the aerosol particle due to the difference in the scattering
excited and unexcited molecules by the particle surface.
obtain the velocity distribution functions of excited and u
excited particles, Derjaguin and Roldughin3 used the 13-
moment approximation of Grad,5 in which a distribution
function is approximated by a finite number of its momen
Thus, the distribution functions of excited and unexcit
molecules depend on quantities averaged over the velo
space and neglect significant singularities over a nar
range of velocities, which is determined by the condition
selectivity of the absorbed light.2 The assumption that fa
7041063-7761/99/89(10)/9/$15.00
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from the particle the gas is spatially homogeneous was u
in Ref. 4. There only the accommodation mechanism of p
tophoresis was examined. This mechanism emerges du
the difference in the momentum accommodation coefficie
of the excited and unexcited molecules of the gas. The b
mechanism, which is due to the difference in the transp
characteristics of the molecules in the ground and exc
states, was not considered in Ref. 4.

If the aerosol particle is immersed in a mixture of
light-absorbing gas and a buffer gas, there is sure to be
additional factor that determines photophoresis. The to
momentum transferred to the aerosol particle also prove
be unbalanced because of the difference in the masses o
molecules comprising the gas mixture, in which the mac
scopic fluxes of the absorbing and buffer gases travel in
posite directions.2 It is also obvious that the value of th
photophoresis force depends on the concentration of
components of the gas mixture.

In the present paper we study the photophoresis mo
of a particle that does not absorb light or absorbs it homo
neously. The particle is immersed in a binary gas mixture
which the molecules of the absorbing gas are excited se
tively as to velocity by resonant optical radiation. We exa
ine the Knudsen regime, in which the particle is mu
smaller than the mean free path of the molecules.

2. STATEMENT OF THE PROBLEM

We examine a spherical aerosol particle suspended
binary gas mixture. The system is in thermodynamic equi
rium at temperatureT0 .

We irradiate the system with a monochromatic traveli
light wave propagating along thez axis ~Fig. 1!.

Let the radiation be absorbed by the molecules of one
the components in an electronic or vibrational–rotatio
transition from the ground staten to the first excited statem.
The frequencyv of the radiation is slightly offset fromvmn ,
the center of the absorption line, i.e.,V5v2vmn

3(uVu!v,vmn).
Due to the Doppler effect, the radiation is absorbed

lectively as to molecular velocity by molecules whose velo
© 1999 American Institute of Physics
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ity projectionvz in the direction of light propagation is clos
to the resonant valuev res5V/k, wherek is the magnitude of
the wave vectork. The effective resonant velocity rangeDv
is determined by the condition thatk–Dv;G, whereG is the
homogeneous halfwidth of the absorption line. The m
ecules that absorb radiation become excited. As a result
velocity distribution of the unexcited molecules of the a
sorbing gas in the rangeDv has a Bennett dip, while the
corresponding fraction of molecules are in the excited st
forming a Bennett peak.6 The position of the Bennett pea
and dip is determined by the sign and magnitude of the of
V of the radiation frequency from the center of the abso
tion line.

If excited and unexcited vapor molecules interact diff
ently with the surface of the aerosol particle and the m
ecules of the buffer gas, the decay rate of the Bennett p
and smoothing rate of the Bennett dip will differ. As a resu
the overall velocity distribution function for the molecules
the active gas will be non-Maxwellian. At finite offsetsV,
this leads to light-induced drift of the absorbing gas.2

Resonant interaction between light and the absorbing
destroys the state of equilibrium. If the excited and unexci
molecules have different transport characteristics, ma
scopic fluxes of excited and unexcited molecules of the
sorbing gas as a whole and of the buffer gas emerge in
gas mixture collinear with the wave vectork. These macro-
scopic fluxes experience different resistances when flow
around the particle because the excited and unexcited
ecules of the absorbing gas and the molecules of the bu
gas interact with the particle surface differently and ha
different transport characteristics and masses. Thus, the
transfers an unbalanced momentum to the particle, i.e., t
is a force on the particles~the photophoresis force!. The
symmetry of the problem implies that this force is parallel
the z axis ~see Fig. 1!.

The subscripts 1 and 2 label quantities that refer to
absorbing and buffer gases, respectively, and the subsc
m andn label quantities that refer to excited and unexcit
molecules. The absorbing gas consists of molecules with
same massm1 but differing effective diameters,dnÞdm .

If the velocity distribution functions for the excited (f m)
and unexcited (f n) molecules of the absorbing gas and f
the molecules of the buffer gas (f 2) are known, the photo-
phoresis force can be calculated:

FR52pr 0
2E

0

p

du sinu (
i 5m,n,2

miE v rvzf idv. ~1!

When the absorbing molecules are approximated b
two-level model, the velocity distribution functionsf m , f n ,
and f 2 satisfy the equations of motion6,7

FIG. 1. Problem geometry.
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] f m

]t
1v–¹ f m5

x~v!Gm~ f n2 f m!

2
2Gmf m1Sm , ~2!

] f n

]t
1v–¹ f n52

x~v!Gm~ f n2 f m!

2
1Gmf m1Sn , ~3!

] f 2

]t
1v–¹ f 25S2 . ~4!

HereSi5Sim1Sin1Si2 ( i 5m,n,2),

x~v!5
4

Gm
G2

G

G21~V2k–v!2 , G5UdmnE0

2\ U, ~5!

where G is the homogeneous halfwidth of the absorpti
line, Gm is the rate of radiative decay of the excited lev
x(v) is the probability of absorption per unit time for mo
ecules with a given velocityv ~the absorption rate for suc
molecules!, dmn is the dipole matrix element of them–n
transition,E0 is the amplitude of the electric field of the ligh
wave, Si j are Boltzmann integrals corresponding to col
sions between molecules of speciesi and j , and\ is Planck’s
constant.

To specify the boundary conditions for Eqs.~2!–~4! we
must specify the distribution functionsf i

1(r0 ,v) ( i
5m,n,2) for molecules emitted from the particle surfac
Generally, the temperature at the surface differs from
equilibrium temperatureT0 , a fact that can be explained b
the absorption of light by the particle. We assume that
particle either does not reflect light, or does reflect it but w
its temperature remaining uniform. In that event, no rad
metric photophoresis takes place. Henceforth we assume
the particle temperature is that of the gas mixture,T0 .

Let the fraction« i of molecules of speciesi be reflected
by the particle surface diffusely with a Maxwellian distribu
tion f i

s corresponding to the temperatureT0 and number den-
sity nis , while the fraction (12a i) is elastically reflected.
Then, ignoring inelastic collisions with the surface, for mo
ecules of speciesi we have

f i
1~r0 ,v!5« i f i

s1~12« i ! f i
2~2~v–n!n!,

i 5m,n,2, v–n.0,

f i
s5nisS mi

2pkBT0
D 3/2

expH 2
v2

v̄ i
2J , v̄ i5S 2kBT0

mi
D 1/2

, ~6!

where n5r0 /r is the outward-directed unit normal to th
particle surface~Fig. 1!, f i

2(v) is the distribution function of
the molecules incident upon the surface,mi is the mass of a
molecules of speciesi , andkB is Boltzmann’s constant.

In ~6!, the unknown number densitiesnis of the mol-
ecules reflected from the surface of the aerosol particle
be found from the nonpercolation conditions

Ni
15uNi

2u, i 5m,n,2. ~7!

HereNi
1 and uNi

2u give the number of molecules of specie
i incident upon and reflected by unit surface area per u
time:

Ni
15E

n–v.0
v r f i

1~r0 ,v!dv,
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Ni
25E

n–v,0
uv r u f i

2~r0 ,v!dv. ~8!

The distribution functionf i
2 of the molecules inciden

upon the particle can be found by solving the equations
motion ~2!–~4!.

We limit ourselves to analysis of the Knudsen regime,
which the mean free path of molecules is much greater t
the particle radius. We can then neglect the perturbation
the distribution functions for the molecules incident upon
particle due to collisions with emitted molecules.

If we assume that the transverse size of the light beam
much greater than the particle radius and the mean free
of the molecules, the intensity of the light will be positio
independent, and the distribution functions produced by
termolecular collisions, i.e., far from the particle, will b
spatially homogeneous. Then in Eqs.~2!–~4!, which the dis-
tribution functionsf i

2 of the incident molecules must satisf
we can neglect spatial derivatives.

Let the light be continuous and the state of the gas tim
independent. Then in the equations of motion~2!–~4! we can
neglect time derivatives.

We examine the case of small values ofx(v), which is
common for vibrational–rotational transitions, while fo
electronic transitions this case applies to low light intensiti

Note that forx(v)!1 the state of the system is close
equilibrium, so that the molecular velocity distribution fun
tions can be written as perturbed Maxwellian distribution

f i~v!5 f i0@11hi~v!#,

f i05ni S mi

2pkBT0
D 3/2

expH 2
v2

v̄ i
2J , ~9!

whereni is the number density of molecules of speciesi .
Under these assumptions, the linearized variants of E

~2!–~4! assume the form

1

2
Gmx~v!S nn

nm
21D2Gm~11hm!1Lmm1Lmn1Lm250,

~10!

2
1

2
Gmx~v!S 12

nm

nn
D1

nm

nn
Gm~11hm!1Lnm1Lnn

1Ln250, ~11!

L2m1L2n1L2250, ~12!

whereLi j are the linearized collision integrals.

3. MOLECULAR VELOCITY DISTRIBUTION FUNCTIONS

We consider only elastic collisions between molecul
and for the linearized collision integralsLi j we make ap-
proximations that ensure accurate values for the first 13
ments ofLi j ~see Ref. 8!:

Li j 52g i j hi1Ai j , ~13!

whereg i j is the effective collision rate of molecules of sp
cies i and j , which is independent of the molecular veloc
ties, andAi j is the approximating inverse-collision integra
f

n
of
e

is
th

-

-

.

s.

,

o-

We write an expression forAi j with allowance for the
fact that the mean free path of the molecules is much gre
than the particle radius. Hence the equations of motion~10!–
~12! describe distribution functions produced only by the
teractions of the molecules with each other and with lig
Then, far from the particle, the vector fluxes of matter a
energy, which enter into the approximating inverse-collisi
integral Ai j ~Ref. 8!, are collinear with thez axis. We also
allow for the fact that far from the particle there are no ta
gential stresses in the gas, but there is light-induced ani
ropy of the partial pressures,7 i.e., pxx

i 5pyy
i Þpzz

i . However,
the term in the complete expression forAi j ~Ref. 8! that
contains the stress tensor is proportional to 3 cos2 u21, so
integrating it with respect to the angleu in the expression~1!
yields no contribution to the forceFR . Hence the term inAi j

containing the stress tensor can be neglected.
Due to selective cooling and heating of the compone

of the gas mixture,7 the temperatures of these compone
differ, but they are spatially homogeneous.9 Hence the terms
that take into account this difference in temperatures of
gas components contribute nothing to the photophor
force and can be neglected in the expression forAi j .

Thus, we can simplify the expression forAi j in Ref. 8:

Ai j 52ciz@g i j ui2~ui2Ami /mj uj !n i j
(1)

2~Hi2~mj /mi !
3/2H j !n i j

(2)#

1
8

5
cizS ci

22
5

2D F ~g i j 2n i j
(5)!Hi1n i j

(6)H j

2
5

8
~ui2Ami /mjuj !n i j

(2)G , ~14!

where

ui5
Ui

v̄ i
5

1

p3/2E cizhi exp$2ci
2%dci ,

i , j 5m,n,2, ci5
v

v̄ i
, ~15!

Hi5
1

2v̄ i p0
i S qi2

5

2

kBT0

mi
j i D

5
1

2p3/2E cizS ci
22

5

2Dhi exp$2ci
2%dci . ~16!

Here Ui is the velocity of thei th component of the gas
mixture,qi and j i are the thermal and diffusive flux of thei th
component,p0

i is the equilibrium partial pressure of thei th
component, and the expressions for the ratesn i j

(k) are given in
Appendix A.

The solution of Eqs.~10!–~12! with allowance for~13!
and ~14! takes the form

hm5
Gm

Gm1gm
S 1

2

nn

nm
x~v!211

Am

Gm
D , ~17!
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hn5
Gm

Gm1gm

gm

gn
S 2

1

2
x~v!1

nm

nn
D

1
Gm

Gm1gm

nm

nn

Am

gn
1

An

gn
, ~18!

h25
A2

g2
. ~19!

Here we have introduced the notation

Ai5 (
j 5m,n,2

Ai j , g i5g im1g in1g i2 , ~20!

whereg i is the effective collision rate of molecules of sp
cies i in the gas mixture.

The unknown macroscopic quantitiesui andHi in Eqs.
~17!–~19! can be calculated using~15! and ~16!. Here we
must bear in mind that in an approximation linear inx(v) the
concentration of the excited molecules is low, i.e.,nm!nn

and nn'n1 . Furthermore, in~14! we can neglect second
order terms, which are proportional to the raten i j

(2) and de-
termine thermal diffusion and diffusive heat transfer~the Du-
four effect!, if the gas mixture is nonuniform in temperatu
and concentration.

Under such conditions we obtain

um5
Gm

Gm1nmn
(1)1nm2

(1)

n1

nm

C0

p3/2 ,

C05E c1zx~v!exp$2c1
2%dc1 , ~21!

Hm5
Gm

Gm1nmn
(5)1nm2

(5)

n1

nm

C1

4p3/2 ,

C15E c1zS c1
22

5

2Dx~v!exp$2c1
2%dc1 . ~22!

The quantitiesC0 andC1 , which depend on the offse
and broadening parametersx5V/kv̄1 andy5G/kv̄1 , have a
simple form in the presence of inhomogeneous (y!1) and
homogeneous (y@1) spectral-line broadening. For interm
diate values ofy we have done a numerical calculation~see
Appendix B!.

The dimensionless drift velocity of the absorbing gas
from the particle is

u15
1

n1
~nnun1nmum!

5
nmum

n1

n2

n21~m1 /m2!3/2n1

nn2
(1)2nm2

(1)

nn2
(1) . ~23!

In accordance with momentum conservation for the gas m
ture as a whole, the expression for the dimensionless velo
of the buffer gas is

u252S m1

m2
D 1/2n1

n2
u1 . ~24!

For theHi we obtain
r

-
ity

H15
l2

lnl22nn2
(6)n2n

(6)

nmHm

n1
S Dn2

n2n
(6)

l2
~nn2

(6)2nm2
(6)! D ,

~25!

H25
n2n

(6)

l2
S H12

nmHm

n1

nn2
(6)2nm2

(6)

nn2
(6) D , ~26!

where

ln5n2n
(5)1nnn

(5)2nnn
(6) , l25n2n

(5)1n22
(5)2n22

(6) ,

Dn5~nn2
(5)2nm2

(5)!1~nnn
(5)2nmn

(5)!1~nmn
(6)2nnn

(6)!.

For the gas mixture as a whole we have

H5
n1H11n2H2

n
, n5n11n2 . ~27!

Thus, Eqs.~9! and ~17!–~26! completely determine the
velocity distribution functions of the molecules incide
upon an aerosol particle.

4. FORCE AND VELOCITY OF PHOTOPHORESIS

Using the distribution functionsh(v) given by Eqs.
~17!–~19! and the adopted boundary conditions~6!, we ob-
tain an expression for the photophoresis force~1!:

FR54pr 0
2p1S G«D«1Gg

Dg

gn
1Guu11GHH D . ~28!

Here

G«52
p1/2

6

nm

n1
um ,

Gg52
1

2p

Gm

Gm1gm
S 10p1/2

3
C01

16

15
p1/2C11

C̄2

p1/2D
Gu52

1

6p1/2H 20F S m1

m2
D 1/2

21G1pF S m1

m2
D 1/2

p«221G J ,

GH5
8

15p1/2

n

n1
, ~29!

C̄25E
0

p

du sinuE
c1r,0

c1rc1zx~v!exp~2c1
2!dc1 ,

Dg5gn2gm , D«5«n2«m , ~30!

with p15n1kBT0 the partial pressure of the absorbing gas
The calculation ofC̄2 as a function of the parameter

x5Vkv̄1 andy5G/kv̄1 is carried out in Appendix B.
In Eq. ~28!, the kinetic coefficientGs characterizes the

surface mechanism of photophoresis, which is related to
difference in the condensation coefficients for excited a
unexcited molecules of the absorbing gas. The differenc
scattering of excited and unexcited molecules by the surf
leads to unbalanced momentum transfer to the particle.

The kinetic coefficientGg characterizes the contributio
related to the differing collision rates of excited and une
cited vapor molecules. A change in the collision rate is
lated to a change in the effective diameters of molecu
participating in optical excitation. This leads to a change
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the mean free path. The difference in the mean free path
molecules in the ground and excited states leads to a s
tion in which oppositely directed fluxes of excited and une
cited molecules experience differing resistances when fl
ing around the particle. As a result, the photophoresis fo
acquires a frequency-dependent component.

The third and fourth terms in the expression~28! for the
photophoresis force, which are proportional to the velocity
light-induced drift andH, also reflect the differing collision
rates of molecules of the absorbing gas in the ground
excited states. However, numerical estimates show that
contribution of the fourth term in~28! does exceed 3% in al
cases, and for low buffer-gas concentrations, i.e.,
n2!n1 , it is less than 1%.

The photophoresis forceFR accelerates an initially stati
particle, and does so as long as the dragFc of the gas mix-
ture is less~in absolute value! than FR . The condition
uFcu5FR leads to an expression for the terminal velocityU f

of the aerosol particle.
According to Waldmann,10 the drag in the free-molecul

regime with allowance for the low concentration of excit
molecules,nm!nn , is

Fc52
8p1/2

3
r 0

2m1n1v̄1aU f ,

a511«n

p

8
1

n2

n1
S m2

m1
D 1/2S 11«2

p

8 D . ~31!

Thus, the terminal particle velocityU f with respect to
the center of mass of the gas mixture is

U f5
3p1/2

4a
v̄1S G«D«1Gg

Dg

gn
1Guu11GHH D . ~32!

If we take the effective rates of collisions of thei – j type
to be in the formg i j 5n i j

(1) and assume that the interactin
molecules are hard elastic spheres, the expressions fo
dimensionless velocity of light-induced driftu1 and the ki-
netic coefficientG« become

u15
Gm

Gm1gm

n2

n21~m1 /m2!3/2n1

C0

p3/2

gn22gm2

gn2
,

G«52
Gm

Gm1gm

C0

6p
. ~33!

Assuming that the values of the effective diameters
excited and unexcited molecules of the absorbing gas
close, i.e., (dn2dm)/dn!1, we obtain

Dg

gn
5A

Dd

dn
,

gn22gm2

gn2
5

Dd

dn2
,

Dd5dn2dm , di j 5
di1dj

2
, ~34!

where

A5
Am1/2n1dn

21Am12n2dndn2

Am1/2n1dn
21Am12n2dn2

2
, m125

m1m2

m11m2
. ~35!
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Then the expression~29! for the photophoresis force ca
be written

FR54pr 0
2p1S G«D«1Gd

Dd

dn
D , ~36!

where

Gd5AGg1Gu

Gm

Gm1gm

n2dn /dn2

n21~m1 /m2!3/2n1

C0

p3/2. ~37!

The second term in parentheses in~36! reflects the bulk
mechanism of photophoresis, which is related to the differ
transport properties of the excited and unexcited molecu
of the absorbing gas.

The particle velocity is

U f5 v̄1S m«D«1md

Dd

dn
D , ~38!

wherem« andmd are the kinetic coefficients characterizin
respectively, the surface and bulk mechanisms of pho
phoresis velocity:

m«5
3p1/2

4a
G« , md5

3p1/2

4a
Gd . ~39!

The expressions for the kinetic coefficientsG« and Gd

become much simpler for inhomogeneous and homogene
line broadening.

4.1. Inhomogeneous broadening

Such broadening (y!1) is typical of rarefied gases. In
this case we obtain

G«52
2pG2

3~Gm1gm!kv̄1
x exp~2x2!, ~40!

Gg52
2G2

~Gm1gm!kv̄1

3F2

3 S 13

5
p3/221D x2

2p3/221

3
x31¯G . ~41!

The term in the expression~29! for Gg containingC̄2

provides a contribution of at most 5%. Neglecting it, w
obtain instead of~41!

Gg52
4p3/2G2

15~Gm1gm!kv̄1
~1318x2!x exp~2x2!. ~42!

The coefficientGd then becomes

Gd52
2p1/2G2

~Gm1gm!kv̄1
FA

2p

15
~1318x2!

2Gu

2n2dn /dn2

n21~m1 /m2!3/2n1
Gx exp~2x2!. ~43!

4.2. Homogeneous broadening

In this case (y@1) for uxu!y we obtain

G«52
2p1/2G2

3~Gm1gm!G

x

y2 ,
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FIG. 2. Dependence of the modified kinetic coefficien
G«* ~a! andGd* ~b! on the offset and broadening param
eters~x and y, respectively! at n1'n2 , m1'm2 ; and
dn5d2 .
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Gg52
2G2

3p1/2~Gm1gm!G
~10p3/224!

x

y2 ,

Gd52
2G2

~Gm1gm!G FA
10p3/224

3p1/2

2Gu

2n2dn /dn2

n21~m1 /m2!3/2n1
G x

y2 . ~44!

5. DISCUSSION

The kinetic coefficientsG« andGd , which characterize
the surface~accommodation! and bulk mechanisms of pho
tophoresis of an aerosol particle, are proportional to the
diative intensity, and depend on the ratio of the rate of rad
tive decay of the excited level,Gm , to the intermolecular
collision rategm , the frequency offsetV from the center of
the absorption line, the component concentrations, and
molecular mass ratio.

Figure 2 depicts the dependence of the modified kin
coefficients on the offset parameterx5V/kv̄1 and the broad-
ening parametery5G/kv̄1 :

G«* 5S 8G2

kv̄1~Gm1gm! D
21

G« ,

Gd* 5S 4G2

kv̄1~Gm1gm! D
21

Gd .

As in the phenomenon of light-induced drift,2 the direc-
tions of the force and velocity of photophoresis depend
the sign of the offsetV, i.e., the kinetic coefficientsG« and
Gd and hencem« and md are odd functions ofV ~Fig. 2!.
Here, in the case of inhomogeneous broadening, the ph
phoresis velocity peaks atV'kv̄1 . When uVu.3kv̄1 , the
effect is negligible, since the condition for resonance is
satisfied and only a few molecules are excited via light
sorption.

The kinetic coefficientsG« and Gd are positive if the
offset parameterx5V/kv̄1 is negative. Conversely, whe
x.0 bothG« andGd are negative.

Thus, the directions of the surface component of
force and velocity of photophoresis are determined by
signs of the difference of the coefficients of accommodat
of the unexcited and excited molecules,D«5«n2«m , and
the frequency offsetV. If D«.0, the direction of the surface
a-
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he

ic

n

to-

t
-

e
e
n

component coincides with the direction of light propagati
when V,0, and is opposite the direction of light propag
tion whenV.0.

To explain this result, we examine a specific case
which the accommodation coefficient of the molecules t
have absorbed light decreases,D«.0, and the frequency off-
set is positive,V.0. This leads to a situation in which op
positely directed fluxes of excited and unexcited molecu
are generated. The first flux is collinear with the wave vec
(um.0), while the second flux travels in the opposite dire
tion (un,0). In view of the fact that«n.«m , the flux of the
unexcited molecules experiences greater resistance w
flowing around the aerosol particle than the flux of the e
cited molecules. The resultant force on the particle points
the same direction as the flux of unexcited particles, i
opposite the direction of light propagation.

The directions of the bulk component of the force a
velocity of photophoresis are determined by the signs of
difference of the effective diameters of the unexcited a
excited molecules,Dd5dn2dm , and the frequency offse
V. If Dd.0, the direction of the bulk component coincide
with the direction of light propagation whenV,0 and is
opposite that direction whenV.0.

By way of explanation, letV be positive and the cros
section of molecular collisions increase as a result of opt
excitation. This reduces the mean free path of molecules
have absorbed light. Then the flux of excited molecul
pointing in the same direction as the wave vector, exp
ences a greater resistance when flowing around the par
than the flux of molecules in the ground state, so the aero
particle is dragged in the direction of light propagation.

We now consider the dependence of the forceFR and
velocity U f of an aerosol particle on the ratios of the numb
densities,z5n2 /n1 , and the masses,b5m1 /m2 , of the mol-
ecules of the absorbing and buffer gases. Figure 3 depicts
results of numerical calculations of theU f vs. z dependence.
Clearly, as the concentration of the buffer gas increase
some given number density of the mixture (n5n11n2

5const), the velocity of the aerosol particle decreases.
Combining~38! and~39!, we obtain an approximate ex

pression for the photophoresis velocity at a given pressur
the gas mixture:

U f~z!'
U f~z50!

11b21/2z
, ~45!



ce

r
se
y

t

ifi
de

d
a

re

is

he

u
th

uir
he
ese
lly

m-

,
e

e

-

e
l

s
d

ious
-

n-

l-

ir-

co

ss

710 JETP 89 (4), October 1999 V. G. Chernyak and O. V. Klitenik
whereU f(z50) is the photophoresis velocity in the absen
of a buffer gas. Note that Eq.~45! provides a satisfactory
approximation to the results of numerical calculations.

The dependence of the photophoresis velocity on the
tio of molecular masses of the absorbing and buffer ga
b5m1 /m2 , is shown in Fig. 4. Clearly, the particle velocit
increases monotonically withb for b<20. For a low-mass
absorbing gas and high-mass buffer gas (m1!m2), the pho-
tophoresis velocity is proportional toAm1 /m2. For a heavy
absorbing gas and a light buffer gas, on the other hand,
photophoresis velocity is independent ofb, and is equal to
the particle velocity in a pure absorbing gas.

We now make some numerical estimates for a spec
system under typical experimental conditions. We consi
two cases: an aluminum particle of radiusr 0;1 mm im-
mersed in sodium vapor, and the same particle immerse
an equimolar mixture of sodium vapor and the inert gas
gon; in both cases the temperature isT05700 K. The satu-
rated vapor pressure is 306 Pa.11

The molecular characteristics of Na and Ar a
m153.82310226kg, m256.64310226kg, d153.0 Å, and
d253.4 Å; the mean velocity of the sodium molecules
v̄1'711 m s21.

The source of light is a tunable dye laser emitting in t
vicinity of the D1 andD2 lines of sodium. The wavelengthl
is 600 nm.

In this case the frequency of the incident light turns o
to be much greater than the electron collision rate in

FIG. 3. Dependence of the photophoresis velocity on the ratio of the
centrations of the buffer and absorbing gases forx50.75, m1'm2 ,
gm!Gm , dn'd2 , «n5«251, andD«5Dd/dn520.1.

FIG. 4. Dependence of the photophoresis velocity on the ratio of the ma
of the molecules of the buffer and absorbing gases forx50.75, z51, gm

!Gm , dn'd2 , «n5«251, andD«5Dd/dn520.1.
a-
s,

he

c
r

in
r-

t
e

metal, and less than the plasma frequency. Langm
screening12 therefore takes place, i.e., light is reflected by t
particle with essentially no absorption. Hence, under th
conditions the model of a nonabsorbing particle usua
adopted in theoretical studies is realized.

Let the radiative power be 10 mW and the beam dia
eter about 1 mm. At that intensity the Rabi frequencyG is
approximately 108 Hz. The radiative decay rate isGm56
3107 Hz ~see Ref. 13!. Finally, the Doppler broadening
kv̄1'7.33109 Hz, corresponds to inhomogeneous lin
broadening,G/kv̄1'0.01.

1. Pure gas(n250). In this case the collision rate of th
excited molecules and the Knudsen number Kn aregm

'7.13106 Hz and Kn'100, which corresponds to the free
molecule regime.

Numerical estimates of the kinetic coefficients yield

G«520.042x exp~2x2!,

Gd520.030~1318x2!x exp~2x2!.

Let x5V/kv̄150.8 and D«5Dd/dn520.1. Then
G«'20.016 andGd'20.228. For the photophoresis forc
we obtain FR'9.3310211N. Note that the gravitationa
force on the particle in question isMg'1.1310214N, i.e.,
about 0.01% of the photophoresis force.

Assuming«n51, the velocity acquired by the particle i
thenU f'0.03v̄1'20 m s21, which is about 6% of the spee
of sound.

2. Equimolar mixtureNa1Ar (n15n2). The numerical
values of the main parameters are the same as in the prev
case. Then Eq.~38! yields an estimate for the particle veloc
ity, U f'7 m s21.

This work was supported by the Russian Fund for Fu
damental Research~Grant No. 99-01-00143!.

APPENDIX A

The expressions for the ratesnab
(k) that enter into Eq.~13!

have the form8

nab
(1)5

16

3

mab

ma
nbVab

(1,1) ,

nab
(2)5

64

15S mab

ma
D 2

nbS Vab
(1,2)2

5

2
Vab

(1,1)D ,

nab
(5)5

64

15S mab

ma
D 3 ma

mb
nbFVab

(2,2)1S 15

4

ma

mb

1
25

8

mb

ma
DVab

(1,1)2
1

2

mb

ma
~5Vab

(1,2)2Vab
(1,3)!G ,

nab
(6)5

64

15S mab

ma
D 3S ma

mb
D 3/2

nbF2Vab
(2,2)1

55

8
Vab

(1,1)

2
5

2
Vab

(1,2)1
1

2
Vab

(1,3)G .
Here mab5mamb /(ma1mb) is the reduced mass of mo
ecules of speciesa andb, and theVab

( l ,r ) are the Chapman–
Cowling integrals,14 which depend on the shape of the pa

n-

es
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wise potential between molecules of speciesa and b. In
particular, for the molecular model of hard spheres of dia
eterda we have14

Vab
( l ,r )5S kBT

2pmab
D 1/2~r 11!!

2 F12
11~21! l

2~ l 11! Gpdab
2 ,

dab5
da1db

2
.

APPENDIX B

Here we find the dependence ofC0 , C1 , and C̄2 ,
which enter into Eqs.~21!, ~22!, and~30!, on the offset and
broadening parametersx5V/kv̄1 andy5G/kv̄1 . Let

FIG. 5. Dependence of the quantitiesI 0 ~a!, I 1 ~b!, andI 2 ~c! on the param-
etersx andy.
-

C05
4G2

Gmkv̄1
I 0~x,y!, C15

4G2

Gmkv̄1
I 1~x,y!,

C̄25
4G2

Gmkv̄1
I 2~x,y!.

For inhomogeneous broadening (y!1) we have the ap-
proximate expression

x~v!5
4G2

Gm
pd~V2k–v!.

Simple calculations yield

I 0~x,y!5p2x exp~2x2!,

I 1~x,y!5p2xS x22
3

2Dexp~2x2!,

I 25
p3/2

3
~22x1x31¯ !.

For homogeneous broadening (y@1) with x/y!1, to
within terms linear inx/y,

x~v!5
4G2

GmG F12S x2c1z

y D 2G , c1z5
vz

v̄1
,

I 05p3/2
x

y3 , I 150, I 252
4p

3

x

y3 .

The results of numerical calculations ofI 0 , I 1 , and I 2 for
various values of the parametersx andy are plotted in Fig. 5.
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Experimental indication of macroscopic polarization parallel to the tilt plane in
free-standing films of ferroelectric liquid crystals 8SI * and DOBAMBC
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Optical reflectivity and x-ray studies have been conducted on free-standing films and bulk
samples of ferroelectric liquid crystals near the smectic-A–smectic-C* transition. A tilt plane
rotation with respect to the direction of an applied electric field is found in the ferroelectric
films above the bulk transition temperature. Whereas the macroscopic polarization is perpendicular
to the tilt plane at low temperature, it is parallel to the tilt plane at elevated temperature.
The temperature dependence of the average tilt angle is measured. ©1999 American Institute
of Physics.@S1063-7761~99!01410-9#
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The smectic-C* (SmC* ) phase in a free-standing film i
a subject of much interest.1–8 In this phase the direction o
the long molecular axis is tilted with respect to the norma
the smectic layers. In the ferroelectric SmC* phase, sponta
neous polarization is perpendicular to the tilt plane and to
c-director ~c is parallel to the tilt plane and the layer!. Re-
cently, the first observation of longitudinal~i.e., parallel to
the tilt plane! polarization has been reported in free su
pended films of an antiferroelectric smectic phase9 and ferro-
electric phase.10,11

In this paper we demonstrate an unusual behavior of
well-known ferroelectric compounds 8SI* and DOBAMBC
in SmC* free-standing films the polarization can be para
to the tilt plane, i.e., the molecular tilt plane is parallel to
electric field. The temperature dependence of the tilt angl
determined for structures with transverse and longitud
polarization.

Our samples were the compounds~S!-4-~28-methylbutyl!
phenyl 4-~n-octyl!biphenyl-4-carboxylate (8SI* ) and
p-decyloxybenzylidenep-aminocinnamic acid 2-methylbuty
ester~DOBAMBC!. In the bulk sample of 8SI* the follow-
ing phase sequence was observed: SmI * – (66 °C) – SmC* –
(82 °C) – SmA– (134 °C) – Ch–~140 °C!–I. DOBAMBC
showed transition temperatures SmI * –~73 °C!–SmC* –
~90.5 °C!–SmA–~115 °C!–I.

Thick freely suspended films were prepared by draw
the liquid crystal in the smectic state over a 6-mm hole i
glass plate. Thin films were prepared by layer-by-lay
thinning.12–14 In a free-standing film the smectic layers a
aligned parallel to the film surface. An electric field of 3
20 V/cm in the plane of the film was used to align the
direction in the SmC* state. The incident beam was linear
polarized and was perpendicular to the film surface. An e
tric field could be applied in two mutually perpendicular d
rections@parallel (Ei) and perpendicular (E') to the plane of
7131063-7761/99/89(10)/4/$15.00
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polarization of the light#. For thick films, the layer numberN
was determined from the spectral dependence of the op
reflection in the SmA phase15

I ~l!5
~n221!2 sin2~2pnNd/l!

4n21~n221!2 sin2~2pnNd/l!
, ~1!

whered is the interlayer spacing. In the SmA phase,n5n0

~n0 is the ordinary index of refraction!. For thin films, the
number of layers was determined from the relative intens
of reflections for films with a different number of layers:

I ~l!.N2p2d2~n221!2/l2. ~2!

In the SmC* phase, two values of the optical reflectio
~I p andI 0! have been measured@for the plane of polarization
of the light oriented parallel (I p) and perpendicular (I 0) to
the tilt plane#. For our calculations of the average tilt angleu
we used the value of the birefringence in the SmA phase
measured by Musevicet al.16 X-ray diffraction studies on
bulk samples were made using a curved linear positi
sensitive multidetector~l51.5406 Å!.

Figure 1 shows optical reflection intensities (I i ,I') from
2- and 20-layer films: the electric field was applied para
(Ei) and perpendicular (E') to the direction of polarization
of the light. As previously observed,1,2 the SmC* – SmA
transition temperature is a function of film thickne
~T'112 °C for N52; T'97 °C for N520!. For two-layer
film the observed change in intensity, when the direction
the electric field is switched (Ei↔E'), corresponds quanti
tatively to our conventional view of the SmC* phase: the
ferroelectric polarization is perpendicular to the tilt plan
Since the refractive indexnp ~polarization of the light is
parallel to the tilt plane! is greater thann0 , the larger value
of the reflection intensity~Fig. 1, N52, T581 °C and
T5106 °C! corresponds to the direction perpendicular to t
field @see Eqs.~1! and ~2!#. At low temperatures, all films
© 1999 American Institute of Physics
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FIG. 1. Optical reflection intensity for thin (N
52) and thick (N520) ferroelectric films in an
electric field applied parallel (Ei) and perpen-
dicular (E') to the direction of polarization of
the light ~l5600 nm!. For thick film (N520),
the change in reflection intensity when the d
rection of the electric field is changed is differ
ent at low (T582 °C) and high (T584 °C)
temperatures (8SI* ).
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show the same change in the reflected intensities~Fig. 1,
N520, T582 °C!. Quantitatively different behavior is ob
served for thick SmC* films at high temperature~Fig. 1,
N520,T584 °C!. The reflection intensityI' is less thanI i .
This means that the tilt plane andc-director are oriented in
the E-field direction.

Figure 2 provides additional evidence for anomalo
field-induced orientation of thec-director. The wavelength
lm of the reflectivity minimum for thick films depends o
the index of refraction: the larger value oflm corresponds to
the larger value ofn @lm52Nnd; see Eq.~1!#. At the tem-
peratures belowTi'91 °C ~Fig. 2a, DOBAMBC!, the wave-
length of reflectivity minimumlm for the fieldE' is greater
than lm for Ei ~c-director oriented perpendicular to th
E-field!. At Ti'91 °C, the reflection spectra belonging
E'- and Ei-field exchange position~Fig. 2b!. This inter-
s

change of the spectra indicates that at temperatures a
Ti'91 °C the c-director is parallel to the field.

We observed anomalous orientation in ferroelectric fil
with thickness between 12 and some hundreds of layers.
N.40-layer films,Ti was nearly the same as the bulk tra
sition temperature (SmC* – SmA). In thinner films,Ti was
shifted to higher temperatures, but could not be precis
determined because of temperature hysteresis. Figur
shows the temperature dependence of the relative optica
flection intensitiesI' /I i for films 2, 5, and 20 smectic layer
thick. An anomalous orientation~c-director is parallel to the
field! corresponds toI' /I i,1. The arrows show the behav
ior of the relative intensitiesI' /I i in the temperature rang
for hysteresis~on heating and cooling!. At temperatures
above 90 °C, the anomalous orientation is observed in a v
weak electric field~,10 V/cm! without a transition between
a-

n-
n
.

FIG. 2. Reflection spectra at the temperature below~a! and
above~b! the bulk transition temperature. The relative loc
tion of the reflectivity minimal for E'- andEi-field direc-
tions differs for temperatures below and above the bulk tra
sition ~DOBAMBC!. In the figure, the intensities are show
with respect to the intensities in the minima of the curves
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the two orientations. The temperature range of hysteresis
be reduced by turning an electric field on and off. At hi
enough fields, no perfectly oriented film is observed beca
of convection instability.16 This precludes determining th
E-field threshold of reorientation in the temperature ran
for hysteresis.

Our results can be interpreted with the aid of Fig.
Here we indicate the smectic layers in the SmC* phase~a!,
SmA phase~d!, and the layer structure above the bulk tra
sition temperature (b,c;Tc.Tb). The possibility of spatial
variation of the tilt angle across the film thickness~Figs. 4b
and 4c! is related to the surface ordering of the smec
layers.1–8 At high temperatures~Fig. 4c!, only some surface
layers are tilted. When a free-standing film is cooled,
layers become tilted~Fig. 4b! because of the diverging cor
relation lengthj of the SmC* ordering.

The variation of the tilt angle across the film must pl
an important role for the analyses of the origin of the sp
taneous polarization above the bulk transition tempe
ture.10,11The change in molecular tilt angle impliesS-shaped
bending of the liquid crystal directorn ~Fig. 4b!. This should
lead to macroscopic flexoelectric polarization. The polari
tion density in a nematic liquid crystal is given by17

Pf5e1~n div n!1e3@~curl n!n#, ~3!

wheree1 ande3 are the flexoelectric constants.
In smectic liquid crystals, other kinds of deformatio

can cause flexoelectric polarization. However, for our e
mate we use Eq.~3!. For a bend deformation, the secon

FIG. 3. Temperature dependence of the optical reflection intensitiesE' /Ei

for films with 2, 5, and 20 smectic layers~l5600 nm!. Arrows show the
behavior of the intensity for a thick film (N520) in the temperature rang
of hysteresis~on heating and cooling!, 8SI* .

FIG. 4. Orientation of molecules in a smectic film: SmC* phase~a!, S-like
orientation of the director near the bulk SmC* – SmA transition temperature
~b!, S- andC-like orientation well above the bulk transition temperature~c!,
SmA phase~d!.
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term is dominant. Usinge3510211C/m17 and a variation of
the tilt angle from the surface layer to the center of the fi
Du'0.3 rad, we obtain from Eq.~3! that Pf51024 C/m2

(N520). Our estimate shows that above the bulk transit
temperature, the flexoelectric polarization in the tilt planePf

and the bulk ferroelectric polarization in the SmC* phase
P0

18 are of the same order of magnitude.
With increasing temperature, two effects take pla

first, P0 decreases andPf can be greater thanP0 ; second,
the tilt angle at the center of the film becomes zero~or
small!. The top and bottom parts of the film, from the poi
of view of the molecular tilt, are not~or weakly! coupled to
each other and can be oriented independently. WhenPf

.P0 , a C-shaped orientation~Fig. 4c! is favored in an elec-
tric field. Reversal of the molecular tilt at the bottom of th
film results in reversal of the ferroelectric (P0) and flexo-
electric (Pf) polarization~Fig. 4c!. For Pf@P0 the net po-
larization is parallel to thec-director, and, aS↔C transition
leads to a 90 °C reorientation of the tilt planes with respec
the direction of theE-field.

Optical reflectivity is a convenient vehicle for determi
ing of the average molecular tiltu.11 The valueI p /I 0 de-
pends on the reflectionnp index in the tilt plane@Eqs. ~1!,
~2!# and on the layer spacing in the SmC* phasedC @Eq.
~1!#. Considering the molecules to be rigid rods,dC can be
taken as

dC5dA cosu, ~4!

wheredA is the layer spacing in the SmA phase. Near the
temperature of the bulk phase transition,dA was determined
to be 3.0 nm~x-ray data, 8SI* , 83 °C!. Using results derived
for uniaxial crystals,15 as in the case of ellipsometri
studies,3 the relation betweenu andnp is taken to be

cos2 u5
n0

2~ne
22np

2!

np
2~ne

22n0
2!

. ~5!

When n0 , ne , anddA are known,I p /I 0 alone is suffi-
cient to determine the average tilt angleu. It should be un-
derscored thatI p /I 05I' /I i for the usual orientation and
I p /I 05I i /I' for anomalous orientation. Equations~1!, ~4!,
and~5! @or ~2! and~5! for thin films# enable one to determin
u. The values of the average tilt angleu resulting from the
I' /I i values ~Fig. 3! are shown in Fig. 5. Figure 5 als
shows the temperature dependence ofu obtained from our
x-ray measurements on a bulk sample. At low temperatu
the data for 20-layer film are in good agreement with m
surements of the bulk sample. For the 20-layer film t
change in the orientation of molecules is observed at an
erage angle ofu.5 °C. It is clear that the tilt angle is quite
small at the center of the film. On the other hand, compar
the data for films with 2 and 5 smectic layers~Fig. 5!, it is
obvious that the tilt angle is nonzero at the center of
5-layer film at all temperatures. This is the reason why we
not observe anomalous orientation in thin films.

In an electric field, Galerne and Liebert19 observed the
orientation of SmO films floating on the free surface of drop
lets in the isotropic phase. Unlike the SmC* , the SmO phase
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has a herringbone arrangement of molecules. In this case
weak dipole moment results from the reduced polarizabi
of the aliphatic tips of the first-layer molecules in conta
with air.19 In SmC* films the polarizationPf could originate
from the flexoelectricity.

Adapting the conclusions of Ref. 1 about the SmC* or-
der to our model we can distinguish ‘‘low’’ and ‘‘high’’
temperatures. At ‘‘low’’ temperatures the tilt angle is no
zero throughout the film~dN!2j, net polarization perpen
dicular to the tilt plane!. At ‘‘high’’ temperatures the tilt
angle is zero at the center of the film~net polarization paral-
lel to the c-director!. The crossover temperatureT* is de-
fined by 2j(T* );dN. We can speculate thatTi is defined
by T* (Ti;T* ).

In summary, we report an observation of an anomal
orientation of ferroelectric films of 8SI* and DOBAMBC in
an electric field. Above the bulk transition temperature
net ferroelectric polarization in thick films is parallel toc and
the tilt plane. The applied field orients the tilt plane paral
to the electric field. A novel method for determining the t
angle in ferroelectric films is described.

FIG. 5. Temperature dependence of the average tilt for the film thickne
5, and 20 smectic layers. The filled-square symbols are x-ray data for
samples (8SI* ).
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Spin-wave susceptibility of partially randomized ferromagnetic superlattices
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This paper is a theoretical investigation of the effect of inhomogeneities in the period of a
ferromagnetic superlattice on the high-frequency superlattice susceptibility. The calculations are
done for a model in which the uniaxial magnetic anisotropy is taken as the physical
parameter that characterizes both the ideal superlattice and a partially randomized superlattice. It
is found that as the inhomogeneities become more intense, the two resonance peaks
corresponding to the splitting of the spectrum at the edge of the Brillouin zone of the superlattice
broaden, move closer to each other, and finally merge into one. The height of this peak
increases and the peak width decreases as the intensity of the inhomogeneities increases further.
The effect of inhomogeneities on the susceptibility differs dramatically in the two limits of
short- and long-wave inhomogeneities: in the latter case~in contrast to the former! the dependence
of the separation of the susceptibility peaks on the intensity and correlation properties of the
inhomogeneities is nonmonotonic. The possibility of observing these effects in spin-wave
resonance experiments involving multilayer magnetic films is also discussed. ©1999
American Institute of Physics.@S1063-7761~99!01510-3#
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1. INTRODUCTION

The problem of propagation of waves in partially
completely randomized multilayer structures~one-dimen-
sional superlattices! has lately received much attentio
There are several approaches in developing a theory: mo
ing stochastization by a random arrangement of layers of
different materials;1 computer simulation of random devia
tions of the surface between layers from their initial perio
arrangement;2 and introduction of a doubly periodic depe
dence~with incommensurate periods! of physical parameters
on the coordinate along the superlattice axis3 ~only some
typical papers on this subject have been cited here, s
there are many publications devoted to each approach!.

One approach has been developed in our two pap
Refs. 4 and 5. A brief discussion of the results obtained
one-dimensional inhomogeneities described by a correla
function with an exponential decay of correlations can
found in Ref. 4. In Ref. 5, we systematically develop
method for one-, two-, and three-dimensional inhomoge
ities of the sublattice period. Our approach differs fro
methods used earlier in that we do not postulate the corr
tion properties of the superlattice—we derive them fro
very general assumptions concerning the nature of stoch
spatial modulation of the sublattice period. We then find
spectrum and decay of waves by studying the avera
Green’s function containing the correlation function esta
lished earlier. The theory is developed for spin, elastic, a
electromagnetic waves.

During recent years extensive experimental research
been in progress in which spin-wave resonance is obse
in multilayer ferromagnetic films.6,7 As is known, the spin
wavelengthls in thin films is determined by a size effec
7171063-7761/99/89(10)/6/$15.00
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which allows generating spin waves withls&d, whered is
the thickness of the ferromagnetic film, by using electrom
netic fields with a wavelengthl@d. This makes it possible
to meet the conditions in which both the frequency and
wavelength of the generated wave coincide with the co
sponding parameters of the edge of the superlattice Brillo
zone. It is at this edge that the spectrum of spin wave
most sensitive to inhomogeneities in the superlattice str
ture. Since the physical parameter observed in the exp
ments is the high-frequency magnetic susceptibility, it wou
be interesting to theoretically study this characteristic o
multilayer system. In the present paper we investigate
high-frequency susceptibility of a superlattice for a mod
system, whose correspondence to a real system is discu
below. We assume that the initial superlattice is a magn
structure with a harmonic dependence of uniaxial magn
anisotropy along thez axis, with the direction of the anisot
ropy axis remaining constant and parallel to thez axis. This
is the simplest model for a theoretical study. It also provid
the possibility of demonstrating the main features of t
modification of the spin-wave spectrum in superlattices.

2. HIGH-FREQUENCY SUSCEPTIBILITY

The dynamics of a ferromagnetic system is described
the Landau–Lifshitz equation

Ṁ52g~M3Heff!, ~1!

whereM is the magnetization,g is the gyromagnetic ratio
andHeff is the effective magnetic field.

In the geometry corresponding to spin-wave resonan
the external magnetic fieldH is directed along the reciproca
superlattice vectorq parallel to thez axis, i.e., perpendicula
© 1999 American Institute of Physics
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to the magnetic film, while the high-frequency fieldh lies in
thexy plane of the film. Accordingly, the components of th
effective magnetic fieldHeff are

Heff
x 5a

d2Mx

dz2 1hx , Heff
y 5a

d2M y

dz2 1hy ,

Heff
z 5a

d2Mz

dz2 1Hi1b~z!Mz , ~2!

wherea is the exchange parameter,b is the magnetic anisot
ropy parameter, andHi5H24pMz is the internal constan
magnetic field, which allows for the demagnetizing field
the film. If we take into account the symmetry of the curre
problem, all dynamic demagnetizing fields vanish.

We write the anisotropy parameterb(z) in the form

b~z!5b@11gr~z!#, ~3!

where b is the average value of anisotropy,g is its rms
fluctuation, andr(z) is the centered (^r&50) and normal-
ized (̂ r2&51) function describing a superlattice with a st
chastically modulated period.

Linearizing Eq.~1! in the usual manner (Mz'M and
Mx ,M y!M ), we obtain an equation for the resonant circ
lar projectionsm5Mx1 iM y andh5Hx1 iH y :

¹2m1~n2er~z!!m52
\

a
, ~4!

where we have introduced the notation

n5
v2g~H1bM24pM !

agM
, e5

gb

a
, ~5!

with v being the frequency of the external electromagne
field. At frequencies used in spin-wave experiments (v/2p
;1010Hz), the wavelength (l;1 cm) is much greater tha
the thickness of films being studied (d;1025 cm). Hence
the amplitudeh of the high-frequency field on the right-han
side of Eq.~4! may be assumed constant~time-independent!.
For such a field to excite standing spin waves in the film,
magnetic moment must be at least partially fixed at the s
faces of the film. We assume that this moment is comple
fixed at the surfaces:

m~z!uz56d/250; ~6!

the origin of thez axis is chosen at the center of the film
Such conditions may be created by depositing additional
ers of a magnetically hard alloy on both surfaces of the fi

Kittel8 was the first to solve for the spectrum of sp
waves in a thin homogeneous film~see, e.g., Gurevich an
Melkov’s monograph9!, essentially by solving Eq.~4! with
the boundary conditions~6! at e50. The spectrum is given
by the expressions

n5kn
2 , kn5

pn

d
, ~7!

with the field h exciting only symmetric vibrations
m;cosknz corresponding to an odd number of half-wav
that fit into the film thickness, i.e.,n51,3,5,... .
f
t

-

c

e
r-
ly

y-
.

To investigate Eq.~4! for eÞ0, we expandm, r, h in the
eigenfunctions of the unperturbed problem:

m~z!5 (
n52`

1`

mn cosknz, etc. ~8!

Then for the Fourier transforms of the correspondi
functions,mn , rn , andhn , we obtain the equation

~n2kn
2!mn5e (

l 52`

1`

mlrn2 l1
hn

a
, ~9!

where the Fourier transforms of the high-frequency field
given by the expression

hn5H 2h

pn
sin

pn

2
, nÞ0,

0, n50.

~10!

We see that the equation does not contain the term in
series withl 5n, sincer(z) is a centered function. Subst
tuting the formal solution of Eq.~9! into the right-hand side
of the same equation and averaging over the ensembl
random realizations of the functionr(z), we obtain

~n2kn
2!^mn&5e2(

lÞn
(
l 1Þ l

^mlr l 2 l 1
rn2 l&

n2kl
2 1

hn

a
. ~11!

Now we decouple the correlator on the right-hand s
of the equation in the approximation of the first nonvanish
perturbative term~the Bourret approximation10!,

^mlr l 2 l 1
rn2 l&'^ml&^r l 2 l 1

rn2 l&, ~12!

and use an identity valid for all homogeneous random fu
tions ~see, e.g., Ref. 11!,

^r l 1
r l 2

&5^ur l 1
u2&d l 1l 2

. ~13!

This leads us to a solution of the form

^mm&5
hn

a H n2kn
22e2(

lÞn

^urn2 l u2&
n2kl

2 J 21

. ~14!

Experimenters measure the response, averaged ove
film volume, of the system to the high-frequency field:

m̄5
1

d E2d/2

d/2

m~z!dz5 (
n52`

1`

8 S 2

knd
sin

pn

2 Dmn , ~15!

where the prime on the sum indicates the absence of the
with n50.

Thus, the average susceptibility observed in spin-wa
experiments is the sum of partial susceptibilities,

x5
^m̄&
h

5 (
n52`

1`

8 xn , ~16!

where

xn5S 2

pn
sin

pn

2 D 2 1

a H n2kn
22e2(

lÞn

^urn2 l
2 u&

n2kl
2 J 21

. ~17!
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The study of an expression containing a sum over d
crete kn poses a serious problem. We therefore limit o
selves to the study of the continuous analog of this exp
sion ~replacing summation by integration!:

x~n,k!5a~k!H n2k22e2E S~k2k1!dk1

n2k1
2 J 21

, ~18!

where a(k)5a21(2/kd)2sin2(kd/2). Here we must bear in
mind that this expression describes the frequency dep
dence ofx only near the discrete values of the wave numb
k5kn . The functionS(k) is the spectral density of the ran
dom functionr(z) and is related to the superlattice corre
tion function K(r ) via the Fourier transform~the Wiener–
Khinchin theorem!

K~r ![^r~z!r~z2r !&5E S~k!exp$ ikr %dk. ~19!

So far we have not made any assumptions concern
the functionr(z), except that it is a centered and normaliz
homogeneous random function. In accordance with Ref
we write

r~z!5& cos@q~z2u~z!!#, ~20!

whereq5uqu is the wave number of the initial superlattic
andu(z) is a random function describing the inhomogene
of the period of this superlattice.

Thus, we will examine a model in which the physic
parameter characterizing the superlattice has, in this in
state~at u(z)[0), a harmonic dependence onz. A method
for finding the correlation function of such a superlattice w
developed in Ref. 5. It amounted to a generalization to
case of partially randomized superlattices of the theory
stochastic frequency~or phase! modulation of a periodic ra-
dio signal, well-known in radiophysics.11,12 The correlation
properties of the superlattice are expressed in this metho
terms of the stochastic characteristics of the functionu(z)
~more precisely, of the derivativedu/dz). Here the shape o
the correlation functionK(r ) of the superlattice is indepen
dent, in the limits of long- and short-wave inhomogeneiti
of the shape of the correlation functions modulating the
tial inhomogeneitiesdu/dz. At the same time, the shape o
K(r ) is extremely sensitive to the correlation length of t
inhomogeneities. The correlation function obtained in Re
for the two limits, long- and short-wave inhomogeneitie
corresponding to a random shift in the boundaries separa
the layers, has the form

K~r !5cos~qr !H expH 2
kc1

2 r 2

2 J , p0!1,

exp$2kc2r %, p0@1,

~21!

wherep05ki /sq, andkc15sq and kc25(sq)2/ki are the
effective correlation wave numbers of the superlattice, w
s andki the rms fluctuation and the correlation wave numb
of the random functiondu/dz. Thus, irrespective of the
shape of the correlation function modeling the properties
the initial inhomogeneitiesdu/dz, the correlation function of
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the superlattice has a Gaussian decay of correlations
long-wave inhomogeneities and an exponential decay
short-wave inhomogeneities.

Using the Fourier transform to express the spectral d
sity S(k) corresponding to the correlation function~21! and
substituting the result into~18!, we obtain a formula for the
superlattice susceptibility:

x5
a~k!

n2k22~L2/4!F~L21L1!
, ~22!

whereL5e&, and the functionsF andL6 are determined
for each limit, p0@1 and p0!1, by different expressions
We begin with the limitp0@1, corresponding to short-wav
inhomogeneities. Then

F512
ikc2

An
, L65

1

~An2 ikc2!22~k6q!2
, ~23!

By equating the denominator in~22! to zero we obtain
the dispersion equation for averaged spin waves in the su
lattice ~this equation has been studied in Refs. 4 and 5!. The
qualitative behavior of the results is schematically depic
in Fig. 1. At the edge of the Brillouin zone, corresponding
k5kr[q/2, the spectrum of the initial ideal (kc250) super-
lattice exhibits a gap,Dn[n12n25L ~the solid curve in
Fig. 1!. As kc2 increases, the gap decreases~the dashed
curve! according to

Dn5AL22G2
2, ~24!

where G25qkc25s2q3/ki is the parameter characterizin
the decay due to inhomogeneities. WhenG2.L, the disper-
sion relation for the averaged waves is continuous and h
point of inflection atk5kr ~the dot–dash curve in Fig. 1!.

We study the dependence of the susceptibility~22! on
the frequencyn at the edge of the Brillouin zone (k5kr).
Here we can limit ourselves to the two-wave approximat
and discard the nonresonant termL1 . The susceptibility be-
comes

FIG. 1. Dispersion relation for the superlattice near the edge of the Brillo
zone~for more details see the main body of the text!.



th
e

a
rt

e

es

f t
re

sing
pec-
ce

re-

the

n-

y
sing
ak

e-
ions

nd

s-
t

720 JETP 89 (4), October 1999 Ignatchenko et al.
x5
a~kr!~n2nr2kc2

2 22ikc2An!

~n2n r !~n2n r2kc2
2 22ikc2An!2~L2/4!~12 ikc2 /An!

.

~25!

The frequency dependence of the imaginary part of
susceptibility,x9, is depicted in Fig. 2 for four values of th
ratio G2 /L. Clearly, for small values ofG2 there are two
narrow peaks~the solid curve!. As G2 increases~the dashed
curve!, the height of the peaks decreases, the widths incre
and the peaks move closer to each other, and at a ce
value ofG2 they merge into one broad resonance peak~the
dot–dash curve!. A further increase inG2 leads to a decreas
in the peak width as the peak becomes higher~dotted curve!.
Figure 3 depicts the decrease in the separation of the r
nance peaks,Dnm , with increasingG2 ~the solid curve!. For
the sake of comparison, we also give the dependence o
gap widthDn in the spectrum of the average waves cor
sponding to~24! ~the dashed curve!. Clearly, the separation

FIG. 2. The imaginary part of susceptibility,x9, for the case of short-wave
inhomogeneities atG2 /L50.15~solid curve!, 0.3 ~dashed curve!, 0.8 ~dot–
dash curve!, and 2.5~dotted curve!.

FIG. 3. Separation of the resonance peaks in the susceptibility,Dnm ~solid
curve!, and the gap in the spectrum,Dn ~dashed curve! in the presence of
short-wave inhomogeneities.
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of the peaks,Dnm , is always less thanDn and the two peaks
merge into one at values ofG2 less thanG25L, which
corresponds to the collapse of the gap in the spectrum. U
these diagrams, we can determine the gap width in the s
trum, Dn, by observing the separation of the resonan
peaks,Dnm .

The imaginary part of the susceptibility can be rep
sented by the sum of two resonances~if we neglectkc2

2 in
~25! and allow for the smallness ofkc2 /kr):

x95
G2a~kr !

Dn F Dn1n r2n

~n2n r2Dn/2!21G2
2

1
Dn2n r1n

~n2n r1Dn/2!21G2
2G , ~26!

whereG25G2/2 is the width of the resonance peaks, andDn
is determined by~24!.

The separation of these resonance peaks is given by
formula

Dnm52AL22G2
22L. ~27!

The expressions~26! and ~27! provide a good approxi-
mation to the exact curves in Figs. 2 and 3.

If G2@L, i.e., when there is only one well-resolved ce
tral peak,x9 can be expressed as

x95
G28a~kr !

~n2n r !
21G28

2 , ~28!

where the parameterG285L2/4G2 acts as the effective deca
constant. The value of this decay decreases with increa
G2 , with the result that the height of the resonance pe
increases~Fig. 2!.

Now we turn to long-wave one-dimensional inhomog
neities, corresponding to the Gaussian decay of correlat
@the upper line in Eq.~21!#. Here

F5~2kc1
2 n!21/2,

L65D~u6!1D~v6!1 i
Ap

2
~exp$2u6

2 %1exp$2v6
2 %!,

~29!

whereD(x)5exp(2x2)*0
x exp(t2)dt is Dawson’s integral, and

u65
An2uk6qu

kc1&
, v65

An1uk6qu

kc1&
. ~30!

If we examine the susceptibility near the right-ha
boundary of the Brillouin zone, we can neglect the termL1

in the two-wave approximation, with the result that the su
ceptibility becomes~from now on we drop the subscrip
‘‘ 2’’ in u2 andv2)
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x5
a~kr !

n2k22~L2/4kc1A2n!@D~u!1D~v !1 i ~Ap/2!~exp$u2%1exp$v2%!#
. ~31!
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The frequency dependence of the imaginary part of
expression~i.e., x9) is depicted in Fig. 4 for four values o
the parameterG15qkc15sq2, which characterizes the de
cay, due to long-wave inhomogeneities. Clearly, in addit
to the features common to both short-wave~Fig. 2! and long-
wave ~Fig. 4! inhomogeneities, there is an important diffe
ence between these two limits. Quantitatively, this differen
manifests itself in the height and width of the resonan
peaks for the same values ofG1 /L andG2 /L for long- and
short-wave inhomogeneities. Qualitatively, the differen
amounts to the fact that for long-wave inhomogeneities,
increase inG1 first leads to an increase in the separation
the peaks, and only after that do the peaks move close
each other and merge into a single central resonance. A s
lar effect was obtained in Ref. 5 for the gap in the spectr
in the presence of long-wave inhomogeneities. Figure
shows that for the case of long-wave inhomogeneities,
peaks move closer to each other and finally merge at va
of G1 at which the gapDn is still only weakly modified by
the inhomogeneities.

We studied the expression~31! numerically, but in the
two limits the susceptibility is given by simple formulas.
particular, whenG1 is small, we haveu@1, and for Daw-
son’s integral we have the simple expression

D~u!'
1

2u S 11
1

2u2D . ~32!

Ignoring the nonresonant terms containingv, we obtain a
formula for the imaginary part of the susceptibility as a su
of two susceptibilities:

FIG. 4. The imaginary part of the susceptibility,x9 ~in relative units!, for
the case of long-wave inhomogeneities atG1 /L50.15 ~solid curve!, 0.3
~dashed curve!, 0.8 ~dot–dash curve!, and 2.5~dotted curve!.
is

n

e
e

e
n
f
to
i-

5
e
es

x95
G1a~kr !

Dn F n2n r

~n2n r2Dn/2!21G1
2

1
n r2n

~n2n r1Dn/2!21G1
2G , ~33!

where the gapDn and the widthG1 of the resonance peak
are now given by the formulas

Dn5AL214G1
2,

~34!

G15S p

2 D 1/2 L224G1
2

8G1
expH 2

L214G1
2

8G1
2 J .

An increase inG1 moves the resonance peaks apart,
that Eq.~33! corresponds to the initial section of the curv
for Dnm in Fig. 5.

When the decay is large, Dawson’s integral can be
glected in the denominator of~31!. Then only an imaginary
quantity is left as a factor ofL2, and the imaginary part o
the susceptibility is given by an expression similar to~28! in
which G185Ap/2L2/4G1 replacesG28 .

3. DISCUSSION

What are the limitations that the simplifying assum
tions used in our calculations impose on the comparison
the results obtained in this paper with the data of spin-w
experiments in thin films with a multilayer structure?

The calculations of the effect of inhomogeneities on t
high-frequency magnetic susceptibility of the superlatt

FIG. 5. Separation of the resonance peaks in the susceptibility,Dnm ~solid
curve!, and the gap in the spectrum,Dn ~dashed curve! in the presence of
long-wave inhomogeneities.
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were done here for a model in which uniaxial magnetic
isotropy acts as the physical parameter characterizing
the ideal superlattice and a partially randomized superlatt
In real superlattices the magnetization may also be suc
parameter, as well as the exchange parameter and the o
tation of the anisotropy axis. The calculations are differ
for each of these inhomogeneity parameters. However,
comparison of the results obtained in calculations of the
fect on the dispersion law of the averaged spin waves
superlattice with anisotropy inhomogeneities and excha
inhomogeneities4 show that the modifications of the spe
trum at the edge of the Brillouin zone do not differ too mu
in these two cases. Hence we can expect that the differe
will not be too large for the high-frequency susceptibility f
the inhomogeneities of the various physical parameters
ther, with the result that basically onlyL will need to be
redefined.

In spin-wave experiments only discrete values of
wave vector,kn5pn/d, n51,3,5, can be observed. Cons
quently, the dispersion relation of the waves, depicted sc
matically in Fig. 1, can be obtained only at distinct, fair
distant, points, and generally among these there is n
single one that coincides with the edge of the Brillouin zo
kr5q/2. Note that our investigation of the frequency depe
dence ofx9 in this paper was done fork5kr , so a compari-
son of the results of calculations is valid only with the da
of an experiment in which coincidence ofkr with one of the
wave numbers from the set$kn% is achieved only by specia
selection of the film thicknessd and the superlattice perio
l 52p/q.

In the present paper, as in Ref. 5, we used a mode
which the physical parameter characterizing the superla
varies along thez axis of the initial ideal superlattice by th
harmonic lawr(z)5& cosqz. This corresponds to the limi
of smooth boundaries between the layers of the superlat
with the thickness of the ‘‘boundary’’ being equal to th
thickness of the ‘‘layer.’’ On the other hand, experiments
done with multilayer structures, in which the boundary-
layer thickness ratio is usually much less than unity. In t
case the functionr(z) for the initial superlattice is much
closer in shape to a train of rectangular pulses of differ
polarity than to a harmonic function. A theoretical study
the modification of the dispersion law and decay due to
homogeneities has been carried out for all odd Brillou
zones of a superlattice in Refs. 13–15. It was found that
results obtained for this model differ substantially from tho
obtained for the model of Ref. 5 with a harmonicr vs. z
dependence for all Brillouin zones except the first. For
first Brillouin zone the modification is determined by the fir
-
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harmonicr;cosqz in the Fourier expansion ofr(z), so that
the results for the two limiting models differ only by th
numerical normalization factor 8/p2. Since the experimenta
investigations of spin-wave resonance and the theore
calculations ofx9 in the present paper were done for the fi
Brillouin zone, the discrepancy in the models conside
here should not have a strong influence on the precision
the comparison of theory and experiment.

Our calculations were done on the assumption that
intrinsic decay of the spin system is much weaker than
decay due to the inhomogeneities in the sublattice per
Only in this situation can the effects described in this pa
manifest themselves, and by comparing the theoretical
sults and the experimental data one can determine the
gap in the spectrum of spin waves~using the diagrams in
Figs. 3 and 5! and measure the parameter that determine
correlation properties of the inhomogeneities.
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Spontaneous and field-induced magnetic phase transitions in the intermetallic
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The magnetic properties of the intermetallic compounds Gd12xYxMn2Ge2 (0<x<0.5)
~tetragonal crystal structure of the type ThCr2Ge2) have been measured in fields up to 40 T in
the temperature range 4.2–120 K on free powders~whose particles are free to rotate in a
magnetic field!, fixed powders, and polycrystalline bulk samples. The temperature dependence of
the crystal structure parameters of some of these intermetallic compounds was determined
from x-ray diffraction measurements. It was found that the temperatures of magnetic disordering
of the gadolinium magnetic subsystem and the transition of the manganese subsystem from
the ferromagnetic to the antiferromagnetic state decrease as the gadolinium content is decreased,
so that in compositions withx,0.3 this transition is a first-order phase transition, and with
further decrease of the gadolinium content it becomes second-order. In intermetallic compounds of
this system withx50.3 and 0.4 another spontaneous first-order transition is observed at
lower temperatures. In a magnetic field the magnetization of all the investigated intermetallic
compounds except for the compositionx50.5 undergo a metamagnetic transition. The
T–x, H –x, andH –T magnetic phase diagrams are constructed. The experimental data are
interpreted with allowance for the fact that according to the results of previous studies, the Mn–Mn
exchange interaction is antiferromagnetic, and thus the examined intermetallic compounds
are two-sublattice ferrimagnets with negative exchange interaction in one of the sublattices.
Calculations performed within the framework of this model in the Yafet–Kittel
approximation, which assumes that the sublattice with negative exchange can be divided into two
sub-sublattices, permit a quantitative description of the experimental results in most cases.
© 1999 American Institute of Physics.@S1063-7761~99!01610-8#
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1. INTRODUCTION

The ternary intermetallic compounds RMn2Ge2 ~R is a
rare earth or yttrium! have tetragonal crystal structure of th
type ThCr2Si2 ~space groupI4/mmm). This structure con-
sists of alternating layers R–Ge–Mn–Ge–... perpendic
to the tetragonal axis. The magnetic properties of these c
pounds are determined by the two magnetic subsyst
formed by atoms of the rare earth and manganese. It foll
from numerous studies~see, for example, the review in Re
1! that the largest interaction is the intraplanar Mn–Mn f
romagnetic exchange interaction, which is the main fac
determining the magnetic ordering temperature of the m
ganese subsystem~350–450 K!. The exchange interactio
between the manganese atoms in neighboring planes i
order of magnitude weaker. The interplanar rare ear
7231063-7761/99/89(10)/11/$15.00
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-
s
s

-
r

n-

an
–

manganese exchange is of roughly the same magnitude.
rare earth–rare earth interaction is another order of ma
tude smaller.

It also follows from the experimental data that the inte
planar Mn–Mn exchange interaction constant depe
strongly on the interatomic distances~mainly on the distance
between the manganese atoms in a layer! and changes sign
from positive to negative as the crystal structure parametea
decreases below some critical valueac'4.045 Å. Therefore,
the natural magnetic ordering of the manganese subsyste
ferromagnetic in the majority of intermetallic compounds
this system with light rare earths, for whicha.ac , and an-
tiferromagnetic in intermetallic compounds of this syste
with heavy rare earths, sincea,ac for the latter.

The foregoing features of the exchange interactions
the intermetallic compounds RMn2Ge2 lead to the result tha
© 1999 American Institute of Physics
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FIG. 1. Temperature dependence of the magne
zation of the substituted compound
Gd12xYxMn2Ge2: 1—experimental data in a field
of 0.83 T;2—theoretical dependence of the spo
taneous magnetization for a free powder. Valu
of the spontaneous magnetization~large filled
circles! are also shown, derived from measur
ments in strong magnetic fields~see text and Fig.
4!. For the composition withx50, values of the
spontaneous magnetization are shown~empty
circles! for the single crystal from Ref. 8.
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different types of spontaneous magnetic phase transit
arise in the magnetically ordered region.

In SmMn2Ge2 and in some mixed intermetallics a tra
sition of the manganese subsystem from the ferromagnet
the antiferromagnetic state is observed when the tempera
is lowered. This transition is due to the change in sign of
interplanar Mn–Mn exchange, which in turn is due to th
mal expansion.1,2

With the emergence of magnetic ordering in the ra
earth subsystem, the manganese subsystem changes fro
antiferromagnetic state to the ferromagnetic state, due to
rare earth–manganese exchange interaction. Such trans
have been detected in intermetallics of Gd, Dy, Tb, an
number of mixed compounds.1,3 Since the rare earth–
manganese exchange interaction with heavy rare earth
antiferromagnetic, these compounds are two-sublattice fe
magnets in their ground state.

Recently, in intermetallic compounds of light rare eart
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whose manganese subsystem is ferromagnetic at room
perature and lower temperatures, a transition to the ant
romagnetic state was observed when the temperature
creased above room temperature.2,4 The nature of this
transition is as yet unclear.

Phase transitions in the intermetallics RMn2Ge2 induced
by a magnetic field have received considerably less attent
In Ref. 5 it was shown that in a single crystal of an interm
tallic compound of gadolinium at temperatures below t
magnetic ordering point of the gadolinium subsyste
('95 K) a first-order phase transition takes place in a m
netic field, induced by the field. A similar result was o
tained recently on polycrystalline samples in Ref. 6 in whi
some of the authors of the present paper participated.
field-induced magnetic transition was interpreted as be
due to a breakdown of ferromagnetic ordering in the man
nese subsystem; however, no quantitative analysis
given.
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FIG. 2. Temperature dependence of th
parameters a ~dark circles! and c
~empty circles! of the crystal structure
of the intermetallic compounds
Gd12xYxMn2Ge2 for x50 ~a! and 0.4
~b!. The arrows indicate the tempera
tures of spontaneous magnetic pha
transitions, determined from the mag
netic measurements.
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In light of this, we have undertaken a study of low
temperature spontaneous and field-induced magnetic p
transitions in the intermetallic compounds Gd12xYxMn2Ge2.
Substitution of gadolinium by nonmagnetic yttrium chang
the magnetic moment of the gadolinium subsystem and,
cordingly, the energy of the Gd–Mn exchange interacti
which allows one to delineate the dependence of the m
netic behavior on these parameters. At the same time, in
system to first order it is possible to neglect the depende
of the Mn–Mn exchange on the interatomic distances si
the crystal structure parameters of gadolinium and yttri
intermetallics are similar. We have also attempted a theo
ical interpretation of our experimental results.

The paper is organized as follows. After describing t
samples and experimental techniques, we present the ex
mental data for free powders, whose particles are free
rotate in a magnetic field. Next we lay out the theoreti
model that we have used to analyze the experimental res
By comparing the experimental data for free powders w
our theoretical calculations we determine the parameters
scribing the magnetic behavior of the investigated interm
tallic compounds and construct theoretical magnetic ph
diagrams and the temperature and field dependence o
magnetization for free powders and compare them with
experimental results. Then, within the context of the theo
ical model, we analyze the results of our experimental st
ies of fixed powders and polycrystalline samples, as wel
the available experimental data in the literature for sing
crystal GdMn2Ge2. In the Conclusion we present a critic
analysis of the theoretical model and its applicability to t
magnetic behavior of the investigated system.

2. SAMPLES AND MEASUREMENT TECHNIQUES

Polycrystalline samples of the intermetallic compoun
Gd12xYxMn2Ge2 (0<x<0.5) were melted together in
cold-hearth arc furnace in an atmosphere of spectrally p
argon from the initial ingredients. The samples were
nealed for one week at 750 °C in vacuum. The single-ph
character of the samples was monitored by x-ray diffract
measurements.

All magnetic measurements were made in the temp
ture range 4.2–120 K. The magnetization was measure
static fields up to 0.83 T on a magnetometer, and also by
induction method on fixed and free powders in pulsed fie
up to 40 T with a pulse duration of 30 ms. The measureme
se
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on powders whose particles, having diameters of
230mm, were free to rotate in a magnetic field followed th
technique developed in Ref. 7. We also measured the m
netization of some bulk samples in pulsed fields up to 25
with a pulse duration of 10 ms. The temperature depende
of the crystal structure parameters for compositionsx50 and
x50.4 in the temperature range 10–300 K.

3. EXPERIMENTAL RESULTS

Figure 1 shows the temperature dependence of the m
netization of intermetallic compounds Gd12xYxMn2Ge2 for
various values ofx measured in a static field of 0.83 T
Although the measurements were performed on free pow
whose particles could reorient in the applied field, und
these conditions total reorientation of the particles was
achieved. This is indicated by the fact that the magnetiza
in a field of 0.83 T is significantly less than the saturati
magnetization.

The investigated compounds can be divided into th
groups according to the temperature dependence of the m
netization. The magnetization of compositions with low y
trium content (x50, 0.1, 0.2! decreases monotonically as th
temperature is raised and fall abruptly when a certain te
perature is reached. Measurements of the temperature de
dence of the lattice parameter of GdMn2Ge2 show that a
discontinuous change in the lattice parametera occurs at this
temperature, i.e., a first-order phase transition is obser
~Fig. 2a!.

FIG. 3. MagneticT–x phase diagram of the intermetallic compoun
Gd12xYxMn2Ge2. The points are experimental data for second-order (s)
and first-order (d) phase transitions. The calculated phase diagrams
represented by dashed~second-order phase transitions! and solid~first-order
phase transition! lines. See Fig. 8 for notation of the phases.
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FIG. 4. Field dependence of the magnetization of free powd
of the intermetallic compounds Gd12xYxMn2Ge2 in fields up to
40 T at 4.2 K. The dots correspond to experimental points, a
the lines, to the calculated field dependence of the magnet
tion. The bottom graph plots the experimental values of
H –x phase diagram at 4.2 K: the points plot experimental v
ues of theHc fields of the metamagnetic transitions; the line
plot the calculated dependence for the T→T8 ~solid! and Fi→T
~dotted! transitions.
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The magnetization of compositions withx50.3 and 0.4
behaves differently. It varies weakly at low temperatur
and when a certain temperature is reached grows abru
The jump in the parametera at this temperature~see Fig. 2b!
indicates that growth of the magnetization is due to a fi
order phase transition. Further increase in the tempera
leads to a monotonic decrease of the magnetization u
some temperature, above which the magnetization is s
and varies only weakly, i.e., a second-order phase trans
takes place at this temperature. Note that at this transitio
small anomaly is also observed in the temperature dep
dence of the lattice parametera(T) ~Fig. 2c!. Finally, the
magnetization forx50.5 decreases monotonically as t
temperature is increased and undergoes a second-order
transition at 40 K.

The T–x magnetic phase diagram of the intermetall
Gd12xYxMn2Ge2 is shown in Fig. 3. The points correspon
ing to magnetic phase transitions were determined from
,
ly.
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maxima of the first derivative of the magnetization with r
spect to the temperature in a field of 0.83 T.

The field dependence of the magnetization of the inv
tigated intermetallics at 4.2 K in fields up to 40 T, record
on free powders, is shown in Fig. 4. It can be seen that
magnetization for compositionsx,0.5 undergoes a meta
magnetic transition in a magnetic field, accompanied by s
nificant hysteresis. The field corresponding to this transiti
Hc , defined as the mean field of the magnetization jump
the external field is increased and decreased, decrease
early with increase of the yttrium contentx and, as can be
seen by extrapolation, is equal to zero forx'0.5 ~see the
bottom graph!. The spontaneous magnetizationMs at 4.2 K,
determined from the data plotted in Fig. 4 by linear extrap
lation of the magnetization curves to zero field from the fie
region H,Hc , decreases linearly asx increases tox50.4
and grows abruptly as the compositionx50.5 is approached
~Fig. 5!. This figure also plots the spontaneous magnetiza
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that we measured for fixed powders and bulk polycrystall
samples of GdMn2Ge2, and values of the spontaneous ma
netization of single crystals of this compound taken fro
Refs. 5 and 8. It can be seen that the value ofMs for the free
powder is close to the values for the single crystal, while
value for the fixed powder and the bulk polycrystallin
sample is significantly lower. This indicates that under

FIG. 5. Dependence of the spontaneous magnetization of the interme
compounds Gd12xYxMn2Ge2 on the yttrium concentration at 4.2 K
h—measurements for free powders;3—measurements on fixed powde
and bulk polycrystalline samples;D and ¹—data for a single crystal from
Refs. 5 and 8, respectively. The solid line plots the calculated depend
Ms(x).
e
-

s

e

conditions of our experiments the particles of such a pow
are ‘‘free,’’ and able to reorient in an applied field so as
minimize their magnetic energy.

As follows from Fig. 6, which plots magnetizatio
curves of GdMn2Ge2 at different temperatures, the field co
responding to the metamagnetic transition,Hc , decreases as
the temperature is raised and tends to zero at the temper
of the spontaneous first-order phase transition for this co
pound. The critical fields of the metamagnetic transition
the intermetallic compound of this system withx50.2 de-
pend on the temperature in a similar way. Figure 7 plots
temperature dependence ofHc for intermetallics of this sys-
tem with the compositionsx50 and 0.2.

4. MODEL

As was noted in the Introduction, intermetallic
RMn2Ge2 with magnetic rare earths have two magnetic su
systems: the rare-earth subsystem and the manganese
system. If R is a heavy rare earth, then the exchange in
action between the manganese and the rare-earth subsy
is negative and at low temperatures they are two-sublat
ferrimagnets. It is necessary, however, to take into acco
that in intermetallics with heavy rare earths and yttrium t
interplanar Mn–Mn exchange is also negative. Thus, the

llic

ce
he

the
FIG. 6. Field dependence of the magnetization of t
intermetallic compound GdMn2Ge2 at different tem-
peratures. The point symbols are experimental data,
lines are calculated dependences.
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romagnetic ordering of the manganese subsystem is ind
by the rare earth–manganese exchange interaction and
alized only if this interaction is greater than the interplan
Mn–Mn exchange. A decrease in the R–Mn exchange
lead to destruction of collinear ferromagnetic ordering of
manganese subsystem, and the emergence there of no
linear structures due to competition between the nega
R–Mn and Mn–Mn interactions. Application of an extern
field alters the magnitude of the effective field acting on
manganese subsystem; therefore, it can also cause a ch
in the magnetic state of this subsystem and the intermet
compound as a whole.

The theory of ferrimagnets with negative exchange
teraction in their sublattices was first considered by Ya
and Kittel9 within the framework of the theory of Ne´el fer-
rimagnetism. However, the authors limited their treatmen
spontaneous magnetic structures~in zero field! and ignored
magnetic anisotropy. We analyze our experimental result
terms of the Yafet–Kittel model, but with magnetic aniso
ropy also taken into account, and we also consider the
havior of such a ferrimagnet in an external magnetic fie
Since we are interested in the low-temperature properties~at
temperatures much less than the magnetic ordering temp
ture of the intermetallics, which, as was indicated above
determined by the intraplanar Mn–Mn exchange interact
and is roughly 350–450 K!, we take the manganese mome
to be independent of temperature and the magnetic field
addition, we consider only the case in which the result
moment of the manganese subsystem is less than the mo
of the gadolinium subsystem. Taking into account that Gd
anS ion with zero orbital angular momentum, we ascribe t
magnetic anisotropy of the compounds Gd12xYxMn2Ge2 to
the manganese subsystem, where according to the ex
mental data of Refs. 5 and 8 we assume that the easy ax
the manganese subsystem is thec axis of the crystal. Thus
we are considering here only some special case of the m
netic behavior of a ferrimagnet with negative exchange
one of its subsystems. In general, when these approxima
are not invoked, the emergence of magnetic phase diagr
more complicated than the one presented below is poss

In line with the Yafet–Kittel model we assume that th
manganese subsystem in the intermetallics Gd12xYxMn2Ge2

divides into two sublattices with angular momentaM28 and

FIG. 7. Temperature dependence ofHc for the intermetallic compounds
Gd12xYxMn2Ge2 with x50 and 0.2. Point symbols—experimental da
curves—calculated dependences.
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M29 of identical magnitude (M285M295M2), which in
general are oriented at some angle with respect to each o
and to the magnetic moment of the gadolinium subsys
(12x)M1 ~triangular magnetic structure!. In addition, de-
pending on the sign and magnitude of the magnetic ani
ropy and the direction of the magnetic field, the magne
moments can orient differently relative to thec axis of the
crystal. The magnetic energy of the intermetalli
Gd12xYxMn2Ge2 in the Yafet–Kittel model can be written in
the form

E52l12~12x!M1~M281M29!2l22M28M29

2
1

2
l11~12x!2M1

21¸~M28c
2

1M29c
2

!

2H@~12x!M11M281M29#. ~1!

Here the first term describes the exchange interaction of
gadolinium and manganese subsystems (l12,0), the second
term describes the Mn–Mn exchange (l22,0), the third
term describes the exchange interaction in the gadolin
subsystem, and the fourth term describes the magnetic
isotropy of the manganese subsystem (M2c is the component
of the magnetization in the direction of the tetragonal ax!,
and the last term is the Zeeman energy.

From the conditions of equilibrium we find that forl22

,0 in zero external field four different magnetic phases
possible in the system under consideration~Fig. 8!.

In the first phase the magnetic moments of the two m
ganese sub-sublattices are parallel to one another and
parallel to the magnetic moment of the gadolinium sublatt
so that a collinear ferrimagnetic structure is formed~Fi!. In
the two other phases the magnetic moments of the ma
nese sublattices make an angle with respect to each othe
with the magnetic moment of the gadolinium sublattice
that a triangular magnetic ordering arises. These phases~we
denote them T and T8) differ in the orientation of the mag
netic moment of the gadolinium sublattice relative to t
crystallographic axes: in the first it is parallel, and in t
second it is perpendicular to thec axis of the crystal. Finally,
the fourth phase~AF! corresponds to antiferromagnetic o
dering in the manganese sublattice. The energies of
phases depend on the magnitudes of the exchange int
tions of the subsystems and the magnetic anisotropy ene

FIG. 8. Possible spontaneous magnetic phases of a ferrimagnet with n
tive exchange interaction in one of its sublattices.
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As these parameters are varied, transitions occur from
phase to another. Thus, for example, for a large enough v
of the Gd–Mn exchange in comparison with the Mn–M
exchange, the Fi phase is stable. A decrease in the magn
of the Gd–Mn exchange interaction leads to a second-o
phase transition to the triangular T phase. Further decrea
the magnitude of the Gd–Mn exchange leads to an incre
in the angle between thec axis and the magnetic moments
the manganese subsystem, which leads to growth of the m
netic anisotropy energy and stimulates a first-order transi
to the triangular T8 phase, since in this phase the angle b
tween the easy axis~tetragonal axis of the crystal! and the
manganese momentM2 is less than in the T phase, and co
sequently it is also less than the magnetic anisotropy ene
The AF phase in zero fieldH50 is realized only in the cas
of zero Gd–Mn exchange interaction, i.e., when the ga
linium subsystem is disordered.

Let us start with a detailed consideration of the behav
in a field of a free powder whose particles rotate in the fi
in such a way that the energy is minimized. This case is
most interesting for comparison with the experimental d
since the parameters describing the exchange interactio
the investigated intermetallics are most simply determin
from such measurements.

In this case, four different magnetic phases are poss
in a field: Fi, T, T8, shown in Fig. 8, and the ferromagnet
phase F, in which the magnetic moments of the gadolini
and manganese subsystems are parallel to each other a
thec axis of the crystal. In addition, in the Fi phase, as in
ordinary two-sublattice ferrimagnet, the emergence of an
gular phase is possible in which the magnetic moments
the gadolinium and manganese subsystems are oriente
some angle relative to one another and to the external fi
However, in the intermetallics under consideration, as
calculations show, the emergence of the angular phase is
energetically favored.

At absolute zero, where it is possible to ignore the d
pendence of the moment of the gadolinium subsystem on
field, expression~1! easily yields the angular stability of th
various magnetic phases for the system Gd12xYxMn2Ge2:

422k<bm~12x!22h ~2!

for the Fi phase,

2412k<bm~12x!22h<422k ~3!

for the T phase,

2422k<bm~12x!22h<412k ~4!

for the T8 phase, and

2412k>bm~12x!22h ~5!

for the F phase. Here we have introduced the notation

m5
M1

M2
, h52

H

l22M2
, k52

K

l22M2
2 5

2¸

l22
,

b5
2l12

l22
~6!
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(K is the uniaxial anisotropy constant of the manganese s
system!.

Comparing the energies of the various phases, we
that for free powders with weak magnetic anisotropyk
,2/3), as the field is increased the following sequence
phase transitions should be observed: Fi→T→T8→T→F.
The critical fields of these transitions are given by

h5
1

2
@bm~12x!2412k# ~7!

for the first-order phase transition Fi→T,

h5
1

2
Abm~12x!2~822k2! ~8!

for the first-order phase transition T→T8,

h5
1

2
Abm~12x!1~822k2! ~9!

for the first-order re-entrant phase transition T8→T, and

h5
1

2
@bm~12x!1422k# ~10!

for the second-order phase transition T→F.
If the uniaxial anisotropy constant is increased, then

2/3,k,2 the T phase becomes energetically unfavored
the following sequence of phase transitions should be
served: Fi→T8→F, while fork.2 the two triangular phase
are energetically unfavored and in a field only metamagn
transitions from the Fi phase to the AF phase and from
latter to the F phase occur. So as not to encumber this pa
we do not give the formulas for the fields corresponding
the phase transitions in these cases, since they are not
ized in the system under consideration.

The magnetization in the different phases is described

mt5m~12x!22 ~11!

for the Fi phase,

mt5m~12x!S 12
b

422kD1
2h

422k
~12!

for the T phase,

mt5m~12x!S 12
b

412kD1
2h

412k
~13!

for the T8 phase, and

mt5m~12x!12 ~14!

for the F phase.
The above formulas allow one to compare the theoret

and experimental magnetization curves of the investiga
system Gd12xYxMn2Ge2, as well as the phase diagrams
this system at low temperatures. Note that in the fie
achieved in the present work, only the first two phase tr
sitions occur, and to observe the two other phase transit
measurements in stronger magnetic fields are needed.
measurements are being performed at the present time.

At higher temperatures, where it is necessary to take
account the field and temperature dependence of the ma
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tization of the subsystems, the free energies of the var
phases must be calculated numerically. Such a calcula
was carried out according to the scheme proposed in Re
and 10. The total free energy of the system was calcula
for all possible magnetic phases as a function of tempera
and magnetic field as the sum of the internal energy and
entropy term. The magnetization in a given field at a giv
temperature was calculated for the phase possessing m
mum energy under these conditions. This made it possibl
calculate the theoretical dependence of the magnetizatio
the field and temperature and to determine the temperat
of the transitions between the various magnetic phases
compare these results with the experimental data.

Note that at comparatively high temperatures it is p
sible to describe the magnetic properties of the investiga
intermetallic compounds by representing the contribution
the gadolinium subsystem to the total energy of the interm
tallic compound within the framework of the Landau theo
of phase transitions in the form of the expansion

«5
a

2
m21

b

4
m4. ~15!

It turns out, however, that calculations within the framewo
of the Landau theory are less accurate, since this approx
tion assumes that the moment of the gadolinium subsyste
small, which does not always follow from experiment.

5. COMPARISON OF THE EXPERIMENTAL DATA FOR FREE
POWDERS WITH THE RESULTS OF CALCULATIONS

To calculate the theoretical phase diagrams and ma
tization curves, it is necessary to know the magnetic m
ments of the gadolinium and manganese subsystems, th
rameters of the exchange interactions describing th
subsystems and of the interaction between them, and als
uniaxial magnetic anisotropy constant of the manganese
system. For the moment of gadolinium we used the va
7mB ~as for the trivalent ion!, and we took the moment o
manganese to be 1.8mB according to the available data in th
literature for single-crystal GdMn2Ge2 ~Ref. 8!. The values
of l12, l22, andK were determined from our experiment
data for the critical field of the metamagnetic transition
GdMn2Ge2 at 4.2 K (Hc527 T) and the critical concentra
tion (xc50.5), for whichHc50, and also the magnitude o
the initial magnetic susceptibility of GdMn2Ge2 in the direc-
tion of the hard axis~perpendicular to the tetragonal axi!
from Ref. 5 (x50.62mB /T•formula unit). We assumed tha
Hc and xc correspond to a first-order transition from the
phase to the T8 phase, and in the calculation of the aniso
ropy constant we took account of deformation of the fer
magnetic structure when the field was oriented parallel to
hard axis~for a more detailed treatment, see, e.g., Ref.
and also the following section of the present paper!. Thus,
the exchange parameters and anisotropy constants are
by

bm~12xc!5A2~42k2!,

2hc5bm2A2~42k2!,
us
on
. 8
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x85
~m22!2

2k
1

m

b
, ~16!

wherex852xl22.
The values l12527.7 T/mB• form. unit and l22

5210.9 T/mB• form. unit, found using formulas~16! and
the above experimental data, are close to the values obta
in Ref. 8 from an analysis of the temperature dependenc
the magnetization of GdMn2Ge2, whereas the value of the
anisotropy constantK515.8mB• T/form. unit found by us
differs from the values given in Ref. 8, which ignored defo
mation of the magnetic structure for magnetization along
hard axis and assumed that a large part of the anisotrop
due to the gadolinium subsystem.

We determined the value of the parameterl11 describing
the exchange interaction in the gadolinium subsystem
comparing the numerically calculated temperature of
first-order magnetic phase transition in GdMn2Ge2 with the
experimentally determined value~97 K!. In line with the data
in the literature, we assumed that at this temperature
gadolinium subsystem transitions to the paramagnetic s
and the manganese subsystem becomes antiferromag
The value of l11 turns out to be equal to 2.2 T
mB• form. unit.

Utilizing the determined parameter values, we calcula
the temperature and field dependence of the magnetizatio
the intermetallics Gd12xYxMn2Ge2 and also theT–x, Hc–x,
andHc–T magnetic phase diagrams of this system. They
plotted in Figs. 1, 3–7 along with the experimental data.

Let us first analyze the data for spontaneous magnet
tion and magnetization in weak fields. As can be seen fr
the figures, most of the peculiarities in the concentration a
temperature dependence of the magnetization of the inv
gated samples detected experimentally are described w
the framework of the proposed model. It follows from Fig.
that the temperature dependence of the magnetization
GdMn2Ge2, calculated theoretically, is in good agreeme
with our experimental data and with the temperature dep
dence of the spontaneous magnetization of a single cry
taken from Ref. 8. The first-order temperature phase tra
tion, experimentally observed in this compound and in co
positions withx50.1 and 0.2~Fig. 1! and due to demagne
tization of the gadolinium subsystem and the onset
antiferromagnetic order in the manganese subsystem, is
described well in the proposed model. The growth of t
spontaneous magnetization at 4.2 K of a composition w
x50.5 compared with the magnetization of compositio
with x50.3 and 0.4 is explained by the fact that this inte
metallic compound in the ground state is found in the8
phase, in which the magnetization is greater than in the
and T phases~Fig. 1!. The peculiarities of the temperatur
dependence of the magnetization of compositions withx
50.3 and 0.4, according to the the developed model, are
to the fact that as the temperature is raised, a first-order p
transition from the T phase to the T8 phase takes place, ac
companied by a jump in magnetization. With a further i
crease in temperature in these compositions, as in the c
position withx50.5, a second-order phase transition of t
manganese subsystem to the antiferromagnetic phase o
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along with demagnetization of the gadolinium subsyst
~the AF phase!, see Fig. 1. The experimentalT–x diagram,
as Fig. 3 shows, is in satisfactory agreement with the th
retical calculations.

Figures 4 and 6 compare some experimental and th
retical field dependences of the magnetization of the in
metallic compounds Gd12xYxMn2Ge2. It can be seen that th
theoretical values of the fields corresponding to the me
magnetic transitions, calculated theoretically, like the fie
corresponding to the first-order transition from the T phase
the T8 phase, are in good agreement with the experime
values.~So as not to clutter the figures, we do not show
theoretically calculated hysteresis loops. Note, however,
the theoretical width of the hysteresis loop, determined fr
the lability loss fields of the T and T8 phases, is significantly
greater than that experimentally observed.! Further evidence
of the good agreement of theory with experiment is seen
comparing the theoretical and experimental dependence
Hc(x) at 4.2 K ~see the inset to Fig. 4 forx50.5) and the
temperature dependence ofHc shown in Fig. 7. At the same
time, the theoretically calculated magnitude of the magn
zation jump at the metamagnetic transition is considera
less than the experimentally observed value. Also, the th
retically predicted change in the slope of theM (H) curve
due to the second-order phase transition from the Fi phas
the T phase is not seen in the experimental curves.

6. MAGNETIZATION OF SINGLE CRYSTALS AND
POLYCRYSTALLINE SAMPLES

Above we described experimental data for free powd
whose particles are free to rotate in a magnetic field. Na
rally, the behavior of fixed samples~single crystals and poly
crystalline samples!, whose orientation does not change ov
the course of the experiment, should differ from the ma
netic behavior of free powders. It is interesting to analy
how the model developed above describes the magn
properties of such samples.

Calculations based on the Yafet–Kittel model@formula
~1!# show that the for a field aligned with thec axis of the
crystal, the problem reduces to a consideration of the ant
romagnetic manganese subsystem in the effective field e
to the sum of the external field and the exchange field w
the gadolinium subsystem. As the field is increased,
following sequence of phases should be observ
Fi→T→AF→T→F if the anisotropy is small (k,2) and
Fi→AF→F if k.2. As follows from the above argumen
the examined system Gd12xYxMn2Ge2 is weakly anisotropic
(k,2). In addition, estimates show that in the investiga
range of magnetic fields, only Fi→T and T→AF phase tran-
sitions are possible. We therefore restrict our discussion
these transitions.

The field corresponding to the second-order phase t
sition Fi→T is given by formula~7!, and the magnetization
in these phases is described by formulas~11! and ~12!, re-
spectively. The field corresponding to the first-order tran
tion T→AF is

h5
1

2
bm~12x!2Ak~22k!, ~17!
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and the magnetization in the AF phase is

mt5m. ~18!

Estimates obtained using these formulas and the param
values determined above from measurements in free pow
yield 24 T for the field corresponding to the transition Fi→T
and 38 T for the field corresponding to the transition T→AF
for GdMn2Ge2 at 4.2 K.

For magnetization aligned with the hard axis~field per-
pendicular to thec axis of the crystal! in fields exceeding the
technical saturation field, when the magnetization of the
dolinium subsystem is oriented perpendicular to the tetra
nal axis of the crystal, the problem also reduces to a con
eration of the behavior of a uniaxial antiferromagnet in
effective field. In this case, the sequence of second-o
transitions Fi8→T8→F8 is possible when the field is in
creased~the prime denotes phases in which the magnet
tion of the gadolinium subsystem is oriented perpendicula
the tetragonal axis of the crystal!. The fields corresponding
to these transitions are given by

h5
1

2
@bm~12x!62~21k!#, ~19!

where the minus sign pertains to the transition Fi8→T8, and
the plus sign corresponds to the transition T8→F8. As cal-
culations show, for GdMn2Ge2 at 4.2 K, the transition from
the Fi8 phase to the T8 phase should take place in a field
roughly 2 T, and the ferromagnetic phase F8 arises in fields
of roughly 100 T. Since according to the data of Ref. 5 t
saturation field in this compound~greater than 8 T! is sig-
nificantly greater than the field corresponding to the tran
tion from the Fi8 phase to the T8 phase, it is clear that the Fi8
phase is not realized for the magnetization aligned with
hard axis and the T8 phase arises in the technical saturati
field.

Theoretical estimates and numerical calculations sh
that when the magnetic moments of the gadolinium and m
ganese magnetic subsystems rotate from the tetragonal
to the plane perpendicular to it, a distortion of the colline
ferrimagnetic structure takes place; however, the mangan
subsystem remains in the ferromagnetic state if the magn
moment of the gadolinium subsystem is noncollinear w
the direction of the field. At some critical field, the mome
of the gadolinium subsystem undergoes a jumplike rotat
to the direction of the field accompanied by the emergenc
the T8 phase, i.e., a first-order phase transition takes pla
accompanied by a jump in the magnetization. In Fig. 9
numerically calculated magnetization curve of a GdMn2Ge2

single crystal at 77 K for the field oriented perpendicular
the tetragonal axis is compared with the experimental dep
dence of the magnetization of the single crystal on the fi
taken from Ref. 5. It can be seen that the transition to the8
phase is a first-order phase transition. As can be seen f
this figure, the experimental field dependence and the th
retically calculated field dependence of the magnetization
quite close, although the numerical values of the field cor
sponding to the first-order phase transition differ.

The data obtained above on the theoretical field dep
dence of the magnetization of a GdMn2Ge2 single crystal in
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various directions afford a qualitative understanding of
magnetic properties of polycrystalline samples of this co
pound. Figure 10 plots the field dependence of the magn
zation for two different polycrystalline samples o
GdMn2Ge2 at 4.2 K ~Ref. 6!. It can be seen that a smeare
metamagnetic transition is observed in fields of roug
15–35 T. Note that details of the transition are different
different samples, probably because of a different degre
texture. Comparison with the calculated dependences
M (H) for a single crystal suggests that this transition is
sociated with the metamagnetic transitions in various cr
tallographic directions of the crystal described above, and
smearing is due to differences in the orientation of the cr
tallites relative to the direction of the field.

7. CONCLUSION

Comparison of the experimental data on the magnet
tion for the mixed intermetallics Gd12xYxMn2Ge2 with the
theoretically calculated magnetic characteristics in
Yafet–Kittel model for ferrimagnets with negative intra
sublattice exchange shows that this simple model adequa
describes the majority of the experimental data. With its h
it is possible to explain the metamagnetic transitions

FIG. 9. Experimental~1! and theoretical~2! field dependence of the mag
netization of GdMn2Ge2 at 77 K. The field is oriented perpendicular to th
tetragonal axis. Magnetic structures in weak and strong fields are indic

FIG. 10. Theoretical field dependences of the magnetization of a GdMn2Ge2

single crystal at 4.2 K in various crystallographic directions@field perpen-
dicular~1! and parallel~2! to thec axis# and experimental field dependence
of the magnetization~triangles! for two polycrystalline samples of
GdMn2Ge2 at this temperature.
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served both in free powders and in single crystals of
intermetallics Gd12xYxMn2Ge2 in a magnetic field, and also
the nature of the spontaneous magnetic phase transitions
peculiarities of the field and concentration dependence of
magnetization of these compounds. Moreover, the pre
model provides a quantitative description of the experimen
T–x andH –x magnetic phase diagrams of this system,
temperature dependence of the fields corresponding to
metamagnetic transition, etc.

However, it cannot be said that this model provides
completely accurate description of the magnetic propert
We have already noted that the theoretically calculated m
netization jump accompanying a metamagnetic transition
substantially smaller than the value experimentally observ

We were not able to experimentally detect the T pha
~it is possible, however, that this is because it is realized
narrow range of fields and temperatures and the magn
parameters of this phase are similar to those of the Fi ph
and are therefore hard to distinguish experimentally!.

In the experimental dependences of the magnetizatio
free powders at low temperatures in fields less than the m
magnetic transition, a paraprocess is observed, wherea
cording to the present model, the susceptibility of the pa
process should be significantly lower.

In addition, to describe the experimental data using t
model, it is necessary to assume that the intrinsic magn
ordering in the gadolinium subsystem is ferromagnetic (l11

.0), although in many other type 1-2-2 intermetallics t
gadolinium subsystem is ordered antiferromagnetically.12

Possibly, all these differences are due to the approxim
nature of the model, since it takes into account only e
change interactions between atoms of manganese in ne
boring planes and ignores long-range interactions, altho
they are probably important for a description of long-peri
magnetic structures observed in the manganese subsyste
some RMn2Ge2 intermetallics.13

In addition, the first-order transition in temperature
the intermetallics Gd12xYxMn2Ge2 is accompanied by a sig
nificant magnetoelastic anomaly~see Fig. 2!, and as our mea-
surements have shown, magnetostriction at the metamag
transition in GdMn2Ge2 also has order of magnitude 1023.
Therefore, it is necessary, in principle, to take the magne
elastic energy into account in the calculations. It is possi
to estimate the contribution of the magnetoelastic energy
comparing the change in the exchange energy at the tra
tion of the manganese subsystem from the ferromagneti
the antiferromagnetic state,DEe52l22M2

2, with the change
in the elastic energy at this transition,DEel5c11«

2/2, where
« is the magnitude of the relative elastic deformation at t
transition ('1023), and c11 is the corresponding elasti
modulus~since data on the elastic properties of the examin
intermetallics are lacking, we have adopted the stand
value forc11: 531011dyn/cm2). These estimates show tha
in the intermetallics Gd12xYxMn2Ge2 the magnetoelastic in
teraction makes a small contribution~on the order of a few
percent! to the change in the energy at the transitions of
manganese subsystem from the ferromagnetic to the ant
romagnetic state. However, this transition can be substa
in other intermetallics of type 1-2-2, e.g., in SmMn2Ge2, in

d.
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which the change in the exchange energy at
ferromagnetic–antiferromagnetic transition according to
estimates is at least an order of magnitude smaller tha
gadolinium intermetallics.

Finally, we have considered the phase transitions in
system of intermetallic compounds Gd12xYxMn2Ge2 as
purely magnetic. It is possible, however, that a change ta
place in the electronic state of the manganese subsyste
these transitions. This is indicated, in particular, by the f
that the magnetic moment of manganese in RMn2Ge2 inter-
metallics with light rare earths, in which the manganese s
system is ordered ferromagnetically, exceeds 3mB , which is
significantly greater than in intermetallics with heavy ra
earths~where it is not greater than 2.4mB), in which this
subsystem is antiferromagnetic~see, e.g., Ref. 14!. This
problem requires additional study.
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Nonlinear domain-wall dynamics in a system of two magnetic layers
A. K. Zvezdin

General Physics Institute, Russian Academy of Sciences, 117942 Moscow, Russia

V. V. Kostyuchenko* )

Institute of Microelectronics of the Russian Academy of Sciences, 150007, Yaroslavl’
~Submitted 22 January 1999!
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The nonlinear dynamics of the magnetization in a spin-valve structure is investigated. Equations
describing the dynamics of the magnetization in such a structure are obtained. The stability
of the solution corresponding to a motionless flat domain wall is investigated. The nonlinear
domain-wall dynamics are investigated in the approximation of a strong exchange
interaction between the magnetic layers and in the approximation of a large magnetostatic
energy. In the former case the nonlinear dynamical equations are shown to be similar to the
equations describing the dynamics of the magnetization in a weak ferromagnet, and in
the latter case they are similar to the equations of motion of a magnetic vortex~i.e., a vertical
Bloch line! in a domain wall. ©1999 American Institute of Physics.
@S1063-7761~99!01710-2#
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1. INTRODUCTION

The dynamical equations for antiferromagnets
known to differ significantly from the equations derived b
Landau and Lifshitz1 for a ferromagnet~see, for example
Ref. 2!. This difference is especially clear in the case
nonlinear magnetization dynamics~see Refs. 3 and 4 and th
references therein!. It is noteworthy that the dynamics o
topological kink solitons~domain walls! in weak ferromag-
nets have been thoroughly studied by both theoretical
experimental methods.4 The research performed in this are
has revealed many interesting phenomena in the physic
nonlinear waves and magnetic phenomena.

Systems consisting of several magnetic layers with
antiferromagnetic interaction between the layers are clo
related to two-sublattice magnets in a certain sense. An
vestigation of phase transitions in magnetic sublattices
are associated with changes in the magnetization throug
the sublattice showed that the two-sublattice approxima
is valid in the limit of a large number of layers.5 However, it
should be noted that superlattices with a finite number
layers can undergo phase transitions that are associated
changes in the magnetization only near the surface, i.e.,
face spin-flop transitions.6–9 In order to avoid the need to
take into account the surface-related effects, we shall c
sider a structure in which the two-sublattice approximation
sure to be valid, i.e., a system of two magnetic layers.

However, there is a fundamental difference between
dinary two-sublattice antiferromagnets and multilayer m
netic structures. In ordinary antiferromagnets there is a cl
cut hierarchy of energy scales:J@K@h, where J is the
exchange energy,K is the anisotropy energy, andh is the
Zeeman energy. In multilayer magnetic structures all of th
quantities can be of the same order. The study of the s
properties of these materials has already shown that this
7341063-7761/99/89(10)/6/$15.00
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ference leads to a richer phase diagram for the phase tra
tions ~see, for example, Refs. 10 and 11!. It is natural to
expect that this difference also leads to significant change
the dynamical properties. This conclusion is supported
particular, by the theoretical investigations of the doma
wall structure in a classical antiferromagnetic spin chain p
formed in Ref. 12 in the continuum approximation.

In this paper we systematically examine the domain-w
dynamics in a system consisting of two magnetic layers w
an antiferromagnetic interaction between the layers. In Se
we derive equations describing the dynamics of the mag
tization in such a system from the expression for the L
grangian density in a single-sublattice ferromagnet. The s
tem of equations obtained in Sec. 2 is similar to t
dynamical equations for a two-sublattice antiferromagnet

This system of equations allows an exact static soluti
which has the form of a Nee´l wall in each layer. The ex-
change interaction between the layers leads to coupling
the Neél walls in such a manner that the angle between
magnetization vectors in the layers does not depend on
coordinates directed along the layers and is equal top. A
schematic representation of the structure under considera
is shown in Fig. 1. Such a domain-wall structure is sta
only for a small value of the biquadratic exchange ene
between the layers. If the energy of the biquadratic excha
interaction between the layers exceeds the Heisenberg
change energy, a domain wall with a constant angle betw
the magnetization vectors in the layers no longer satisfies
condition for a minimum of the thermodynamic potentia
i.e., spontaneous violation of the domain-wall symmetry o
curs. The condition for stability of a symmetric domain wa
is explored in detail in Sec. 3.

As a domain wall moves, the dynamical moments a
pearing because of rotation of the magnetization vector a
center cause deviation of the magnetization vectors from
© 1999 American Institute of Physics



y

ifi
m
iz
ar

ye
th
e
ru
y
ag
th
o
c
r
r
x

ve

if-
e
ic
by
r-
u
pa
er
om

i-
ter
n-
of

the
are
s

de-
ys-
his
fer

(
ple
e

neti-
e-
t-

of

e,

o-

f
s

ma

a

all.

735JETP 89 (4), October 1999 A. K. Zvezdin and V. V. Kostyuchenko
plane of each layer. A description of the domain-wall d
namics for the system under consideration in general form
hardly possible, since its dynamical properties vary sign
cantly, depending on which physical mechanism is do
nant. In this paper we shall examine two limiting cases, v
strong exchange coupling between the layers and a l
magnetostatic energy.

The case of strong exchange coupling between the la
is considered in Sec. 4. A schematic representation of
structure of a domain wall in motion for this case is pr
sented in Fig. 2. Like magnetic charges appear in this st
ture near the surfaces of the nonmagnetic intermediate la
Their interaction leads to an additional increase in the m
netostatic energy. From the standpoint of the physics of
phenomenon, the situation is the same as in the case
domain wall in a two-sublattice antiferromagnet. The fa
that the dynamical equations derived in Sec. 4 are simila
the equations describing the domain-wall dynamics fo
weak ferromagnetic supports this conclusion. In this appro
mation a domain wall is a soliton~kink! of the sine–Gordon
equation. Expressions for its thickness and velocity are gi
in Sec. 4.

The picture of the domain-wall dynamics is entirely d
ferent, if the magnetostatic energy dominates, as, for
ample, in layered Fe/Cr/Fe or Co/Cu/Co systems, in wh
the magnetostatic energy exceeds the exchange energy
order of magnitude~see, for example, Ref. 13 and the refe
ences therein!. In this case the magnetic charges on the s
faces of the nonmagnetic layer have different signs and
tially compensate the increase in the magnetostatic en
caused by the deviation of the magnetization vectors fr

FIG. 1. Schematic representation of the structure of a motionless do
wall.

FIG. 2. Schematic representation of the structure of a moving domain w
Case of a strong exchange interaction between the layers.
-
is
-
i-
.,
ge

rs
e

-
c-
er.
-
e

f a
t
to
a
i-

n

x-
h
an

r-
r-
gy

the midplane of the magnetic layer in the domain wall~see
Fig. 3!. Such a structure of a domain wall in motion is rem
niscent of the distribution of the magnetization near its cen
as a Bloch line moves. This qualitative argument is co
firmed by the calculations performed in Sec. 5. In the case
a small deviation of the magnetization from the planes of
layers, the equation describing the domain-wall dynamics
similar to the equations of motion of vertical Bloch line
interacting with one another~see, for example, Ref. 14!. If
the uniaxial anisotropy is small, the system of equations
scribing the dynamics of such a formation reduces to a s
tem of coupled sine–Gordon equations. However, in t
case the velocity of the domain wall and its thickness dif
from those obtained in Sec. 4.

2. BASIC EQUATIONS

We assume that the thickness of each magnetic layerd)
is less than the thickness of a domain wall in a bulk sam
(d!D). Let the z axis be directed along a normal to th
surface of the layers. Then the dependence of the mag
zation on thez coordinate within each layer can be n
glected. Within this approximation, the problem of calcula
ing the dependence of the magnetizationM (x,y,z,t) on the
three spatial coordinates and time reduces to the problem
calculating the dependence of the two quantitiesM1(x,y,t)
and M2(x,y,t) on only two spatial coordinates and tim
whereM i is the magnetization in thei th magnetic layer.

To investigate the domain-wall dynamics in such a tw
layer structure, we start from the variational principle

dE LSdSdt50. ~1!

It is convenient to express the Lagrangian densityLS in the
angular variablesu i andw i , which specify the orientation o
the magnetization in thei th magnetic layer. The polar angle
u i are measured from thez axis, and the azimuthal anglesw i

are measured from thex axis in thexy plane.
In the angular variablesu i andw i the Lagrangian density

LS has the form

in

ll.

FIG. 3. Schematic representation of the structure of a moving domain w
Case in which the magnetostatic energy dominates.
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LS5(
i 51

2 FM

g
ẇ i cosu i12pM2 cos2 u i2MH sinu i cosw i

1
1

2
K sin2 u i sin2 w i1

1

2
A@~¹u i !

21sin2 u i~¹w i !
2#G

1
1

2
J1@cosu1 cosu21sinu1 sinu2 cos~w12w2!#

1
1

2
J2@cosu1 cosu21sinu1 sinu2 cos~w12w2!#2,

~2!

whereg is the gyromagnetic ratio,M is the magnetization in
each ferromagnetic layer,H is the external magnetic field
parallel to thex axis,K is the uniaxial anisotropy constant,A
is the inhomogeneous exchange constant, andJ1 andJ2 are,
respectively, the constants of the Heisenberg and biquad
exchange interactions between the magnetic layers. The
lation ~2! was obtained from the expression for the Lagran
ian density for a single-sublattice ferromagnet with cons
eration of the exchange interaction between the magn
layers.

A system of equations which describes the domain-w
dynamics follows from~2!:

1

2
K sin2 u1 sin~2w1!1MH sinu1 sinw11

M

g
u̇1 sinu1

2A¹~sin2 u1~¹w1!!2
1

2
J1 sinu1 sinu2 sin~w1

2w2!2J2 sinu1 sinu2 sin~w12w2!@cosu1 cosu2

1sinu1 sinu2 cos~w12w2!#50, ~3!

1

2
sin~2u1!@K sin2 w11A~¹w1!224pM2#2A¹2u1

2MH cosu1 cosw12
M

g
ẇ1 sinu11

1

2
J1

3@2sinu1 cosu21cosu1 sinu2 cos~w12w2!#

1J2@cosu1 cosu21sinu1 sinu2 cos~w12w2!#

3@2sinu1 cosu21cosu1 sinu2 cos~w12w2!#50.

~4!

The equations foru2 and w2 have a similar form to within
accuracy to interchange of the indices 1↔2.

The system of equations~3! and ~4! has a very large
number of diverse types of solutions. In this paper we c
sider the case where the angle between the magnetiz
vectors in the layers is close top. A necessary condition fo
this is the condition of stability of the antiferromagnet
phase for a homogeneous sample~i.e., in the absence of do
main boundaries!. This condition has the form~see, for ex-
ample, Ref. 10!

H,A2K~J122J2!1K2/M . ~5!
tic
re-
-
-
tic

ll

-
ion

3. INVESTIGATION OF THE STABILITY OF THE EXACT
STATIC SOLUTION

The case where the angle between the magnetiza
vectors in the layers maintains a constant value equal top is
very important. This condition is satisfied by the exact sta
solution of the system of equations~3! and~4!, which corre-
sponds to a motionless domain boundary,

u1
05u2

05
p

2
, w1

05w2
02p52 arctanFexpS y

D D G , ~6!

whereD5AA/K. It is not difficult to see that the condition
H50 must be satisfied for such a solution to exist. We s
stituteu i5u i

01du i andw i5w i
01dw i into ~3! and~4!. Then,

in the linear approximation with respect todu i anddw i the
system of equations~3! and ~4! can be represented in th
form

dq

dt
5D̂q, ~7!

whereq5$dw1 ,dw2 ,du1 ,du2%,

D̂5
g

M 3
0 0 K2P̂24pM2 2

J1

2
1J2

0 0 2
J1

2
1J2 K2P̂24pM2

P̂ 2
J1

2
1J2 0 0

2
J1

2
1J2 P̂ 0 0

4,

P̂5KN̂1
J1

2
2J2 , N̂52

]2

]y82 1122 sechy8, y85
y

D
.

The solution of the system of equations~3! and~4! is stable
if the real parts of the eigenvalues of the operatorD̂ are
nonpositive. The eigenfunctions and eigenvalues ofN̂ are
well known ~see, for example, Ref. 15!. The discrete spec
trum is described by the eigenfunctionf b5sechy8 with the
eigenvaluevb50, and the continuous spectrum is describ
by the eigenfunction

f x5
~x1 i tanhy8!exp~ ixy8!

A11x2

with the eigenvaluesvx
2511x2. Using these data, we ca

easily calculate the eigenvalues ofD̂. The eigenvalues cor
responding to the discrete spectrum are

l1,250, l3,456A~J122J2!~K24pM2!, ~8!

and the eigenvalues corresponding to the continuous s
trum are

l1,2~x!56$2KA11x2@K~12A11x2!

12J22J124pM2#%1/2,

l3,4~x!56A2$@K~12A11x2!24pM2#@J122J2

1KA11x2#%1/2. ~9!
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Since the inequalityK,4pM2 usually holds in thin
magnetic layers, the condition for the stability of the so
tions of ~3! can be written in the formJ1.2J2 .

Thus, when the biquadratic exchange energy is sm
(J1.2J2) the angle between the magnetization vectors
the adjacent layers is a constant and does not depend o
coordinates in the domain-wall plane. IfJ1,2J2 , the angle
between the magnetization vectors in the adjacent layers
function of the coordinate perpendicular to the domain-w
plane, and the trajectory of the magnetization in the dom
wall has a significantly more complicated form.

Since the inequalityJ1@J2 usually holds except in som
special cases, we shall assume below thatJ250 and, there-
fore, the static domain wall described by~3! and~4! is stable.

4. CASE OF A STRONG EXCHANGE INTERACTION
BETWEEN LAYERS

In the dynamical case the presence in Eqs.~3! and~4! of
the terms proportional tou̇ i sinui and ẇ i sinui , which are
associated with rotation of the magnetization vector at
kink center, causes the magnetization vector to deviate f
the plane of the magnetic layer. The influence of this d
namical factor is counteracted by two static factors. One
them is associated with the antiferromagnetic interaction
tween the layers and acts to orient the magnetization vec
in the layers in an antiparallel configuration. The other fac
is associated with the magnetostatic energy, which hind
deviation of the magnetization vectors from the planes of
layers. Thus, the magnetization dynamics are determine
which of these two factors predominates. In this section
consider the case whereJ1@4pM2 andJ1@K, i.e., the case
of strong exchange coupling between the layers. In this s
ation the angle between the magnetization vectors in the
jacent layers is close top. Therefore, it is convenient to g
over to angular variables

H u15u1«,

u25p2u1«, H w15w1b,

w25p1w2b,
~10!

where«,b!1. The Lagrangian densityLS in the lowest or-
der with respect to« andb is given by the expression

LS5
2M

g
~ḃ cosu2«ẇ sinu!14pM2 cos2 u1J1~«2

1b2 sin2 u!22MH~« cosu cosw2b sinu sinw!

1K sin2 u sin2 w1A@~¹u!21sin2 u~¹w!2#, ~11!

and the dynamical equations can be represented in the

«5
MH

J1
cosu cosw1

M

gJ1
ẇ sinu, ~12!

J1b sinu1MH sinw1
M

g
u̇50, ~13!
-

ll
n
the

a
ll
in

e
m
-
f

e-
rs
r
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e
by
e

u-
d-

rm

2
2M

g
~ḃ sinu1«ẇ cosu!24pM2 sin~2u!

1K sin~2u!sin2 w1J1b2 sin~2u!

12MH~« sinu cosw1b cosu sinw!1A sin~2u!

3~¹w!222A¹2u50, ~14!

K sin2 u sin 2w12MH~« cosu sinw1b sinu cosw!

1
M

g
~«̇ sinu1«u̇ cosu!22A¹~sin2 u¹w!50.

~15!

If the external magnetic field is weak, we can s
u.p/2 in Eqs.~12!–~15!. ~A stricter condition for the appli-
cability of this approximation will be obtained below.! Then,
from Eqs.~12! and~13! we obtain the following expression
for « andb:

«5
M ẇ

gJ1
, b52

MH

J1
sinw. ~16!

Substituting~16! into ~15!, we obtain an equation forw:

D̃2S 1

c2 ẅ2¹2w D1
1

2
sin~2w!50, ~17!

where c5gA2AJ1/M and D̃5D/A12(MH)2/KJ1. Equa-
tion ~17! is a sine–Gordon equation, whose exact multiso
ton solutions are well known. The following solution of th
moving kink type corresponds to a domain wall:

w562 arctanFexpS 6
y2vt

D̃A12v2/c2D G . ~18!

Let us now examine the question of the applicability
the approximations used in this section in greater detai
follows from the conditions«!1 and b!1 that uMHu/J1

!1 andvM /J1gD̃A12v2/c2!1. The first of these condi-
tions means that the Zeeman energy should be small c
pared with the Heisenberg exchange energy between
magnetic layers. The second condition shows that the
proximation under consideration is inapplicable near the l
iting velocity v;c. Let us now consider the applicability o
the approximationuu2p/2u!1. From~15! we can easily ob-
tain the estimate

Uu2
p

2
U.

M2Hv

J1gD̃A12v2/c2uK24pM21~MH !2/J1u
!1.

~19!

It is not difficult to see that this condition is automatical
satisfied if the previously used approximations are taken
account.

The equations~12!–~15! obtained are similar to the
equations describing the dynamics of the magnetization
two-sublattice antiferromagnet~see, for example, Ref. 16!.
Therefore, the approximation considered above can be ca
the antiferromagnet approximation.



te
ia
n

m
f

e

th
er

es
i-

s

n-
a

q
o
t

s

-

te

yers

l
ag-
of

ions
. In

s a

he
c-

is
the

y a
e-

nce

g
ith

ndi-
n
is

ge
ne-
e
er

the
wo
s an
flat
the
eak:
en

738 JETP 89 (4), October 1999 A. K. Zvezdin and V. V. Kostyuchenko
5. CASE OF PREDOMINANCE OF THE MAGNETOSTATIC
ENERGY

Let us now consider the case of a weak exchange in
action between the layers. If the thickness of the intermed
layer between the magnetic layers amounts to tens of a
stroms, the exchange interaction between the layers is s
compared with the magnetostatic energy. For example,
the Fe/Cr/Fe system we haveJ1 /(4pM2);0.1 ~see, for ex-
ample, Ref. 13!, i.e., a situation which is the reverse of th
situation considered in the preceding section arises.

The magnetostatic energy hinders any deviation of
magnetization vector from the planes of the magnetic lay
Since it dominates in the case under consideration, in~2! it is
convenient to go over to the variables

a i5p/22u i . ~20!

Sincea i!1, the expression for the Lagrangian density~2!
can be simplified by leaving only the terms having the low
order with respect toa i in each summand. In this approx
mation the Lagrangian density equals

LS5(
i 51

2 H M

g
a i ẇ i12pM2a i

21
1

2
K sin2 w i

1
1

2
A@~¹w i !

21~¹a i !
2#2MH cosw i J

1
1

2
J1 cos~w12w2!, ~21!

and the equations of motion have the form

2
M

g
ȧ i1

1

2
K sin~2w i !2A¹2w i1MH sinw i

5
1

2
J1 sin~w i2w i 61!, ~22!

M

g
ẇ i14pM2a i2A¹2a i50, i 51,2. ~23!

If the terms on the right-hand side of Eq.~22! are dis-
carded, the equations obtained are similar to the equation
motion of a vertical Bloch line in a flat domain wall~see, for
example, Ref. 17!. Therefore, the approximation under co
sideration is conveniently called the Bloch line approxim
tion.

In the case of a large value for the magnetization, E
~22! and ~23! can be reduced to a system of sine–Gord
equations. In fact, if the magnetostatic energy exceeds
anisotropy energy (4pM2/K@1), the values ofa i are small
and the terms;A¹2a i can be neglected. Then

a i52
ẇ i

4pMg
. ~24!

Substituting~24! into ~22!, we obtain the system of equation
r-
te
g-
all
or

e
s.

t

of

-

s.
n
he

D2S 1

c1
2 ẅ i2¹2w i D 1

1

2
sin~2w i !1

MH

K
sinw i

5
J1

K
sin~w i2w i 61!, ~25!

where c152gApA. The solutions of this system of equa
tions was investigated in Ref. 18.

6. DISCUSSION OF RESULTS

In magnetic multilayers with a nonmagnetic intermedia
layer of small thickness~of the order of several monolayers!
the strength of the exchange interaction between the la
can amount toJ5J1d;0.1 erg/cm2. Thus, for materials with
a large value for the magnetization~like Fe or Co!, i.e., with
M>103 G, we haveJ1!2pM2. In this case the vertica
Bloch line approximation can be used to describe the m
netization dynamics. If, on the other hand, the thickness
the magnetic layers is small, the relationK!4pM2 also
holds, and the system of coupled sine–Gordon equat
~25! can be used to describe the magnetization dynamics
this case the limiting velocityc1 is determined by the
strength of the exchange interaction within a layer and ha
valuec1;104 cm/s for Fe and Co withA.1026 erg/cm3.

In the case of magnetic layers with a small value for t
magnetization (M<100 G) and a strong exchange intera
tion between the layers (J;0.1 erg/cm2) the situation is re-
versed:J1@2pM2. The weak-ferromagnet approximation
then valid, and the dynamics of the magnetization in
spin-valve structure correspond to~16! and~17!. Under these
conditions the magnetization dynamics are described b
sine–Gordon equation. The expression for the limiting v
locity c of a solitary wave can be represented in the form

c5c1AJ1 /2pM2. ~26!

SinceJ1@2pM2, the limiting domain-wall velocity is sev-
eral times greater in this case than in the case of domina
of the magnetostatic energy.

The ratio J1 /2pM2 decreases both with increasin
thickness of the nonmagnetic intermediate layer and w
increasing thickness of the magnetic layers, and the co
tion for applicability of the weak-ferromagnet approximatio
is violated. Thus, the weak-ferromagnet approximation
valid only for thin layers with a large value for the exchan
energy between the layers and a small value for the mag
tization in the layers. It can be violated fairly easily. Th
vertical Bloch line approximation has a significantly broad
range of applicability.

7. CONCLUSION

In this paper we have derived equations describing
nonlinear dynamics of the magnetization in a system of t
magnetic layers. The system of equations obtained allow
exact static solution, which corresponds to a symmetric
domain boundary. This solution is shown to be stable if
biquadratic exchange interaction between the layers is w
J1.2J2 . In the case of strong exchange coupling betwe



y
m
a
n
m

un

o

ii,

er,

.:

n.

739JETP 89 (4), October 1999 A. K. Zvezdin and V. V. Kostyuchenko
the layers the domain-wall dynamics are described b
sine–Gordon equation. If the magnetostatic energy do
nates in the system, the dynamical behavior of the dom
wall is reminiscent of a magnetic vortex, and the equatio
of motion are similar to the equations describing the dyna
ics of a vertical Bloch line in a domain wall.
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On the optimal void fraction in the thermodynamics of a simple liquid
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The free energy of a crystal containing a given void fraction is derived in terms of the truncated
interparticle Lennard–Jones potential. The free energy is minimized over the void fraction
at constant pressure and temperature. It is shown that for all pressures the optimal void fraction
remains less than 1% as the temperature is raised. However, at some temperature it grows
suddenly and reaches values of the order of the percolation level for voids in a crystal,;0.125.
At this point, the crystal transitions to the liquid state takes place. The derived dependence
of the transition temperature on the pressure—the melting curve—is in good agreement with
experimental data on the melting of solidified inert gases. ©1999 American Institute of
Physics.@S1063-7761~99!01810-7#
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1. INTRODUCTION

At present it is commonly assumed1–4 that the main rea-
son for the difference between the liquid state and the c
talline state is the existence in a crystal of a definite fract
of voids. Thus, using molecular dynamics methods, the
thors of Refs. 1 and 2 have investigated the size distribu
of voids and their influence on the thermodynamic prop
ties. The presence of voids leads to a decrease in the dep
the total potential energy curve and the number of nea
neighbors, and to an increase in the mean distance betw
nearest neighbors. Since voids can arrange themselve
various ways, an additional negative contribution to the f
energy arises, the so-called configurational component.
der certain conditions, it can compensate the decrease in
depth of the potential well; thus, the state of a crystal wit
definite void fraction becomes thermodynamically more
vorable than the pure crystalline state.

On the basis of the equations of state of a liquid, ba
on the experimental data in Refs. 4–7, it became possibl
show that the configurational component scaled to the t
perature in the existence range of the liquid state is es
tially constant and its value, depending on the data, lies
the range 0.720.8, which is near ln 2~Refs. 6 and 7!. This
means that if the configurational component is generated
voids, then the void fraction in a liquid should vary on
slightly. This contradicts the elementary theory of the form
tion of vacancies in a crystal,8,9 according to which the va
cancy fraction should depend exponentially on the temp
ture.

The present paper considers the thermodynamics
crystal containing a definite void fraction. Calculations a
performed for molecular crystals with a face-centered cu
lattice, interacting via a short-range potential. As is w
known, in this case all thermodynamic quantities can be r
resented as dimensionless functions of the massm, tempera-
ture T, depth of the intermolecular potentialD, and equilib-
rium intermolecular distanceR. As a consequence, the law o
corresponding states applies. The class of materials sat
7401063-7761/99/89(10)/6/$15.00
s-
n
u-
n
-
of

st
en
in

e
n-
the
a
-

d
to
-

n-
in

y

-

a-

a

ic
l
p-

fy-

ing these requirements is a broad one, and includes lique
and solidified inert gases, condensed states of such gas
N2, O2 , CO, CH4, fullerite, etc. It is also important tha
there is a rich body of experimental information on the th
modynamic properties of this group of materials, which c
serve as a test for theoretical models.

To start with, this paper considers the influence of vo
on the basic characteristics of a crystal: the close pack
parameter, the number of nearest neighbors, and the dist
between them. An expression is then written down for
configurational component. Then, with the help of the tru
cated Lennard–Jones potential, an expression is written
the potential energy of the crystal in the presence of vo
and then used to derive an extrapolation formula for
maximum frequency of vibrations—the Debye temperatu
The corresponding Gru¨neisen coefficient is found an
thereby the contribution of the vibrations to the free ener
The free energy is minimized with respect to the void fra
tion at constant pressure and temperature. It is shown th
fixed pressure, up to some temperature its values remain
than 1%. The thermodynamic potential has a clearly defi
minimum at this void fraction. Starting at certain temper
tures, the void fraction grows abruptly and when a cert
maximum temperature is reached it exhibits the opposite
havior. The thermodynamic potential as a function of t
void fraction at this value of the temperature is monoto
cally decreasing, but has a horizontal plateau. A jump occ
in the void fraction here, from small values to values exce
ing the percolation threshold. At this point the crystal me
The optimal void fraction at the transition temperature d
pends weakly on the pressure, and its values are close to
percolation level. Accordingly, the configurational comp
nent of the free energy varies only weakly, and its valu
correspond to values obtained earlier on the basis of a tr
ment of the experimental data. The dependence of the t
sition temperature on the pressure gives the melting cu
The latter is found to be in good agreement with experim
tal data on the melting of solidified inert gases. It is al
shown that the transition from the crystalline to the liqu
© 1999 American Institute of Physics
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state becomes thermodynamically favorable at pressurep
>0 and temperaturesT.0.58D, in complete agreemen
with the experimental data.

2. CRYSTAL PARAMETERS IN THE PRESENCE OF VOIDS

Let some number of voids with relative fractionn be
present in a molecular crystal with a face-centered cubic
tice ~fcc!. As long as the number of voids is small and th
are isolated from one another, their influence on the prop
ties of the crystal is small. Qualitative changes arise wh
the void fraction reaches the percolation level. For a fa
centered crystal the percolation level along bonds is given
the well-known formula10

nc5
d

~d21!Z
51/8, ~1!

whereZ512 is the number of nearest neighbors andd is the
dimensionality. We will estimate some parameters of
crystal for this void fraction.

First and foremost, we consider the close packing
rameter, defined as the fraction of the total volume of
crystal occupied by spheres centered on lattice sites and
ing radii equal to half the mean distance between nea
neighbors. As is well known, in a molecular crystal with
fcc lattice this parameter isfk5p/3A250.74. In the pres-
ence of voids~for the above void fraction! it is smaller:f l

5fk(12nc)57p/24A2.0.6479. This latter value is ver
near the random close packing parameter, which, accor
to the data presented in Ref. 3, isfc50.644. Many authors
have noted that this packing parameter already characte
the structural properties of a liquid.

In a fcc lattice, each atom hasZ512 nearest neighbors
In a crystal with voids, they are less numerous, withZn

512(12nc). For nc51/8, we obtainZn510.5. This latter
value of the number of nearest neighbors in the first coo
nation sphere is in good agreement with the values given
example, in Ref. 11, based on the data of numerous exp
ments. Note that the value (12nc) can be treated as th
probability of finding a particle at a given point, andnc as
the probability of finding a void.

The presence of voids also somewhat alters the dista
between nearest neighbors in a crystal. The volume per
ticle increases by a factor of 1/(12nc). However, in the
calculation of the mean distance between nearest neighbo
is necessary to take into account the close-range order, w
is preserved in a system with voids. The increase in
distance may be associated with a decrease in the numb
nearest neighbors in the second coordination sphere. In a
lattice there are six such neighbors, and in the shell of sec
neighbors, 6nc voids arise. This leads to an increase in t
relative volume per nearest neighbor by

g~n!511
6n

12
511

n

2
. ~2!

For nc51/8, formula~2! yieldsg(1/8).1.063. The spe-
cific volumes of the liquid and solid phases of Ar and N
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near zero temperature have a similar relationship. Inform
tion about these quantities was obtained in Ref. 7 by proc
ing a set of experimental data.

The arrangement of the voids throughout the crystal
be realized in any of a number of ways. The configuratio
component of the free energy is proportional in the us
way to the logarithm of that number, and serves as a mea
of disorder in the system. We write it as

Fc52kT ln
@N~11n!#! ~2Z!Nn

N! ~Nn!!
, ~3!

whereN is the number of particles, 2Z524 is the statistical
weight of a void, equal to the number of sites that the
nearest neighbors surrounding the void can occupy~each
neighbor can be found in two positions!.

Using Stirling’s formula, we obtain

Fc52TN lnF ~11n!11n24n

nn G52TN ln s~n!. ~4!

Note thats(1/8).2.166 and lns.0.77. Values of the
configurational component close to this value were obtai
by various arguments in Refs. 4–7.

Thus, when the void fraction in a crystal reaches t
percolation level, we obtain many parameters already typ
of the liquid state. We now proceed now to a more consist
construction of the thermodynamics of a crystal with void

3. FREE ENERGY OF A SYSTEM WITH VOIDS

Let the particles interact via a Lennard–Jones poten
We take into account only the interaction with nearest nei
bors. As the analysis in Ref. 11 shows, such an approxi
tion effectively takes into account the short-range nature
the potential and leads to better agreement with experim
Thus we write the potential energy per unit mass in the pr
ence of voids as

U5
ZnD

m F1

2 S v0g

v D 4

2S v0g

v D 2G , ~5!

wherev is the specific volume andv0 is the specific volume
at zero temperature and pressure. This quantity can be
pressed in terms of the parameters of the potential:v0

5R3/mA2.
As can be seen from formula~5!, we have taken into

account the decrease in the number of nearest neighbors
the increase in the distance between them. In a crystal w
out voids,Zn512 andg51, and formula~5! goes over to the
usual expression for the potential energy of a crystal wit
fcc lattice, given for example in Ref. 9. The determination
the functionsZn and g presents a problem. On the basis
arguments presented in the preceding section, we as
these functions in the form

Zn512e2an512f , ~6!

g~n!5~11n!/~11a1n!, ~7!

wherea anda1 are adjustable parameters determined belo
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We take account of vibrations of the atoms about th
equilibrium positions in the Debye approximation. Then t
free energy per unit mass can be written in the form

F5
T

m F3 ln~12e2Q/T!2D S Q

T D G2
T

m
s1U, ~8!

whereQ is the Debye temperature andD(x) is the Debye
function.

For small specific volumes, the maximum frequency
vibrations, or equivalently the characteristic~Debye! tem-
peratureQ, is related to the potential energy:

Q5hS 3

4pmv D 1/3

fAv2

m

d2U

dv2
. ~9!

Substituting the potential~5! in formula ~9!, we obtain

Q5hS 3

4pmv D 1/3

f 3/2A24
D

m F5S v0g

v D 4

23S v0g

v D 2G .

~10!

Formula~10! is only applicable to smallv, and does not
possess the necessary extrapolation properties. In the li
state, the radicand in formula~10! vanishes, or even become
negative. In addition, it should decrease but remain fin
Taking this into account below, we extrapolate the radica
as follows:

5S v0g

v D 4 1

11~3a2/5!~v/v0g!2
55S v0g

v D 4

f 1 , ~11!

wherea2 is some constant.
On the other hand, the limiting expression for the Deb

temperature7 that ensures that the free energy~7! goes over
at largev and high temperatures to the corresponding
pression for the free energy of an ideal gas is well know
This can serve as a basis for the following interpolation f
mula for the characteristic temperature:

Q5S 3

4p D 1/3 h

~mv !1/3Am
H S 4ps~n!

3 D 1/3A T

2p

1 f 3/2A120DS v0g

v D 4

f 1 J . ~12!

In the vicinity of the condensed state, the temperat
term in formula~12! is negligible, and formula~12! yields
results similar to formula~10!. As the volume increases, th
situation reverses, and the temperature term becomes
dominant term. The parameterQ/T!1, the potential energy
in expression~8!, can then be neglected, and this express
becomes

F5
T

m F lnS Q

T D 3

21G2
T

m
ln s~n!. ~13!

Retaining only the temperature term, we see that exp
sion ~13! corresponds to the free energy of an ideal gas w
all the necessary constants.

It is convenient to transform to dimensionless variabl
We express the energies and temperature in terms of
potential depth, i.e.,F85F/D, U85U/D, T85T/D, etc.,
ir
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and for the specific volumes we introduce the quantityv8
5v/v0 ~below we drop the primes!. Then the Debye tem-
perature takes the form

Q5B~1/v !1/3H S 4ps~n!

3 D 1/3A T

2p
1

f 3/2g2

v2
A120f 1 J ,

~14!
where

B5S 4•21/3

3p D 1/3 h

RADm
~15!

is the de Bour parameter. For argonR53.76 Å, D
512.2 meV ~Ref. 11!, and the de Bour parameterB
50.107.

Analysis of expression~14! shows that as long as th
void fraction is small, the characteristic temperature depe
on it weakly. In what follows, we neglect this dependenc
Note that the weak sensitivity of the characteristic tempe
ture to the void fraction confirms its conjectured6,7 continu-
ous behavior in the transition from the solid to the liqu
state.

Thus, we have constructed an expression for the f
energy of a crystal containing voids. This energy is e
pressed in terms of the parameters of the interparticle in
action potential. We have modeled the dependence of
interaction potential and the characteristic temperature on
void fraction. These dependences contain three variable
rameters.

From the free energy it is possible to obtain expressi
for various thermodynamic functions. Thus, the pressure
dimensionless units has the form

p5
3TG~v,T!

v
D S Q

T D1
24f

v F S g

v D 4

2S g

v D 2G . ~16!

The quantityG in formula ~16! is the Grüneisen coefficient,
defined by

G~v,T!52
] ln Q~v,T!

] ln v
. ~17!

The Grüneisen coefficient, defined in this way, depen
on the specific volume and the temperature. Figure 1 p

FIG. 1. Dependence of the Gru¨neisen coefficient on the specific volume
various temperatures: curve1 corresponds toT50.1, 2 — 1, 3 — 2.
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the dependence of the Gru¨neisen coefficient on the volum
for three values of the temperature. These dependences a
line with the existing picture of the behavior of the Gru¨n-
eisen coefficient in the low-density regime. It follows fro
formulas~14! and ~17! that for smallv the Grüneisen coef-
ficient approaches 7/3. For smallv, regardless of the tem
perature, the Gru¨neisen coefficientG→1/3, which ensures
that formula~16! goes over to the pressure of an ideal g
Numerical values of this quantity near the maximum areG
52.422.9 and are found to be in agreement with experim
and with calculations relying on other methods.6,7

4. DETERMINATION OF THE OPTIMAL VOID FRACTION

The void fraction enters into the free energy~8! as a
parameter. The equilibrium state is determined by minim
ing the thermodynamic potentialG(v,T,n) with respect to
that parameter at constant pressure and temperature

S ]G

]n D
p,T

50. ~18!

Using the usual thermodynamic relationG5F1pv and
assuming constant pressure, we find that this expressio
equivalent to

S ]F

]n D
v,T

50. ~19!

The derivative in Eq.~18! can be calculated explicitly:

S ]F

]n D
v,T

52TL~n!1Q~v,n!50, ~20!

where

L~n!5 lnS 24~11n!

n D , ~21!

Q~v,n!512f Fw1S g

v D 4

2w2S g

v D 2G , ~22!

w152
d ln g~n!

dn
2

a

2
, w252

d ln g~n!

dn
2a. ~23!

The two equations~20! and ~16! contain three un-
knowns:T, v, andn. Starting with Eq.~20!, we obtain an
explicit expression for the temperature:

T5
Q~v,n!

L~n!
. ~24!

Substituting this expression into the formula for the pr
sure~16!, we obtain an equation containing onlyv andn ~at
given p). This latter equation was solved numerically.

5. RESULTS OF CALCULATIONS AND THEIR DISCUSSION

A liquid can exist as a stable phase at temperatures
pressures exceeding the corresponding values at the t
point. For the substances considered here, the characte
unit of pressure, expressed in terms of the parameters o
potential, isD/R3, which for argon, for example, is 367 atm
For argon the pressure at the triple point ispt50.69 atm, and
e in

.

t

-

is

-

nd
le
tic

he

the corresponding dimensionless pressure is very sm
;1.931023. The temperature at the triple point is we
known to beTt50.58D.

We first consider the temperature dependence of the
timal number of voids at zero pressure~Fig. 2!. This depen-
dence has a temperature maximum atT.0.58, n50.125.
The curve consists of two branches, with positive and ne
tive slope, respectively. It is easy to show that the low
branch corresponds to states of stable equilibrium~minima
of G), and the upper—to states of unstable equilibriu
~maxima of G). At low temperatures the void fraction i
small, and up to temperatures of order 0.5 essentially
mains less than 0.01. However, as the temperature
proaches its maximum, it rises abruptly, and at its maxim
the void fraction reachesnm.0.125. The maximum tem
perature corresponds to the experimental value of the t
perature at the triple point.

It was possible to achieve this accuracy by specia
choosing the values of the adjustable parameters in
model. The results plotted in Fig. 2 were obtained fora
50.94, a150.484, anda257. Recall that the first two are
associated with the dependence of the parameters of the
tential on the void fraction. Note that the values of these t
constants differ only slightly from the values used in Sec
(a51 anda150.5). The third constant determines the ra
of falloff of the characteristic temperature, and affects t
behavior of the Gru¨neisen coefficient, which we discussed
connection with Fig. 1.

To understand how the thermodynamic potential b
haves as a function of the void fraction atp50 and various
temperatures, the appropriate curves were constructed
are plotted in Fig. 3. The upper curve corresponds toT
50.51. As can be seen, for a small void fraction the cu
has a minimum, and with increasing void fraction, a ma
mum appears, in complete agreement with Fig. 2. A crys
with such a small void fraction differs only slightly in it
properties from a solid. Here the equilibrium void fraction
at most 1%. Near the minimum of the thermodynamic pot
tial the crystal is in a state of stable equilibrium. If it
somehow induced to leave that state, it returns to the e
librium state after the influence is removed. Consequently

FIG. 2. Temperature dependence of the optimal void fraction atp50, nc is
the void fraction corresponding to the percolation level.
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744 JETP 89 (4), October 1999 V. S. Vorob’ev
is possible to speak of the elastic properties of the crys
But such a reaction to an external influence will take pla
only so long as the action is not so strong as to reach
maximum ofG. If the latter occurs, it is possible to speak
a loss of elastic properties and to say that the flow thresh
has been reached. When the influence is removed, the
fraction can then even increase.

At T50.58, corresponding to the maximum in Fig.
the curve with a minimum and a maximum degenerates
a monotonically falling curve with a horizontal plateau sta
ing at n.0.05 and extending ton.0.23. It can be said tha
the thermodynamic potential is in a state of neutral equi
rium with respect to the void fraction, whereupon the ma
mally disordered state—i.e., the state with the largest v
fraction—is thermodynamically more favorable, since th
state has maximum entropy. This means that a transi
takes place at that temperature from a state with a small
fraction ~less than the percolation threshold! to a state with a
large void fraction~greater than the percolation threshold!,
and the crystal melts.

Figure 3 also displays a curve withT50.65. In this case

FIG. 3. Isotherms of the free energy atT50.58 for various void fractions
for p50 for various temperatures: curve1 corresponds toT50.51, 2 —
0.58,3 — 0.65.
l.
e
e

ld
id

to
-

-
-
id
t
n
id

there is no minimum, which is also consistent with the
sults shown in Fig. 2.

Figure 4 plots isotherms of the free energy atT50.58
for various void fractions. As can be seen, the minimum
the curve withn50 lies somewhat above the remainin
curves. Starting atn.0.05 and extending up ton.0.15, the
minima lie at the same level. The common tangent to th
isotherms, as is well known, determines the phase equ
rium parameters~specific phase volumes and pressure!. In
the given case, it has zero slope and corresponds top50.
This means that atp50 andT50.58 a transition takes plac
from a state with a small number of voids (n.0.05) corre-
sponding to the solid state, to a state with a large numbe
voids (n.0.15). The latter already corresponds to a liqu
Such a transition is thermodynamically favored: for identic
values of the free energy minimum~or equality of the ther-
modynamic potentials!, the higher-entropy phase will be fa
vored. Of course the entropy increases with the numbe
voids. The values of the relative phase volumes at the tr

FIG. 4. Isotherms of the free energy atT50.58 for various void fractions:
curve1 corresponds ton50.15, 2 — 0.05,3 — 0. The common horizontal
tangent to curves1 and 2 is drawn, corresponding top50. Equilibrium
volumes of the solid (vs) and liquid (v l) phases are indicated.
c-
FIG. 5. Temperature dependence of the optimal void fra
tion at various pressures;nc is the void fraction correspond-
ing to the percolation level.
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745JETP 89 (4), October 1999 V. S. Vorob’ev
sition point are easily found from the plot in Fig. 4. Th
common horizontal tangent to the isotherms touches thn
.0.05 curve atvs.1.15, and then.0.15 curve atv1

.1.23. The corresponding experimental values, taken fr
Ref. 12, are roughly 1.1 and 1.24. It can be seen at once
we have good agreement with the experimental data.

We next consider how the optimal void fraction vari
with pressure. Figure 5 plots calculated values of the v
fraction as a function of temperature at various pressures
can be seen, their form is similar to the form forp50. The
void fraction corresponding to the maximum temperature
a given pressure varies very little, and corresponds roug

FIG. 6. Temperature dependence of the melting pressure~melting curve!.
The solid curve was derived in the present work from the points corresp
ing to the temperature maxima in Fig. 5. Experimental data:j — Ar, s —
Kr, . — Ne, n — Xe.
m
at

d
s

t
ly

to the percolation level. It follows from the foregoing that th
points of maximum temperature at given pressure on th
curves correspond to points on the melting curve. Theref
by constructing the dependence of the pressure on the m
mum temperature, we should obtain the melting curve.

The constructed curve is plotted in Fig. 6, where w
have also plotted experimental data12 on the melting of so-
lidified inert gases. As can be seen, good agreement is
tained.
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Rostov State Teachers’ Training University, 344082 Rostov-on-Don, Russia
~Submitted 16 December 1998!
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We build the distribution function for a system with coexisting self-localized and delocalized
fermions. The distribution function is used to study the behavior of the chemical potential
of the carriers in such a system, which is found to differ substantially from the behavior of the
chemical potential in a system of delocalized fermions. We also find that as the temperature
changes, isostructural first-order phase transitions can emerge in the system of self-localized and
delocalized fermions. These transitions, for which changes in the state of the macroscopic
number of particles are responsible, manifest themselves in the electrical conductivity, in the
contribution of carriers to the specific heat, and in the optical properties of such systems.
Formulas are derived that approximate the dependence of the temperature of such a phase
transition on the binding energy of the self-localized states of carriers and on the
maximum group velocity of phonons participating in the formation of such states. Finally, we
show that the special features of the behavior of the chemical potential of the carriers in
a system with carrier self-localization lead to the possibility of Bose condensation in a system
where bipolaron states are metastable. ©1999 American Institute of Physics.
@S1063-7761~99!01910-1#
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1. INTRODUCTION

The problem of electrical conduction in substances w
strong Fro¨hlich interaction between charge carriers a
phonons was formulated by Landau and Pekar,1 who were
the first to predict spontaneous violation of the spatial hom
geneity of a system accompanied by formation of a la
polaron. Their discovery started a new avenue of researc
solid-state physics, the study of polarons in semiconduct
However, in many ways the predictions of large-polar
theory were found to differ from the experimental resu
~e.g., the presence of large polarons was not detecte
alkali–halide crystals, while in other substances such
larons were observed only at low temperatures, much lo
than the binding energyEpol . This was the reason for a skep
tical attitude toward large-polaron theory. The reasons
the discrepancies between the theoretical predictions and
experimental data were understood only after spatial dis
sion of lattice polarizability had been taken into account.2

In this theory, the dispersion of phonons interacting w
a carrier is taken into account by the formulaV2(k)
5V2(0)1u2k2, whereu is the minimum phase velocity o
phonons and, at the same time, the maximum group velo
of phonons, and it is shown that the band of self-localiz
states of charge carriers is strongly limited in momenta
view of which the average velocity in a carrier in se
localized states cannot exceed the maximum group velo
u of the phonons participating in the formation of su
states. As a result, the energy widthDE of this band is much
less thanEpol ~see Ref. 3!. Hence polarons cannot have larg
values of thermal energy, so they cannot exist at temp
tures comparable to the polaron binding energyEpol .

If in addition to allowing for the spatial dispersion of th
7461063-7761/99/89(10)/7/$15.00
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lattice polarizability we allow for the finiteness of the vo
umeV0 within which a carrier is localized in a polaron, w
conclude that there exists a limit on the polaron density
the system, i.e., a limit at which the polaron density is t
greatest. The volumeV0 can be used to determine the max
mum valuep0 of the momentum of a carrier in a polaron b
the formula (4/3)pp0

35(2p\)3/V0 , with p0@m* u in all
substances with strong electron–phonon interaction~here
m* is the effective carrier mass!. Hence according to the
Pauli exclusion principle, a region of space occupied b
polaron can contain another polaron only if the latter has
average carrier momentum greater thanp0 . However, ac-
cording to what we have just said, the average momentum
a carrier in a polaron cannot be greater thanm* u!p0 .
Therefore, if we allow for carrier spin, the polaron density
the system cannot exceed 2V0

21.
The possibility of self-localization also constrains th

filling of the delocalized states of carriers. Delocalized c
riers with momentap,m* u cannot exist even in the ab
sence of polarons in the system, since the time they nee
transform into self-localized states isV21, whereV is the
frequency of the phonons with which a carrier interacts a
hence becomes self-localized. In other words, in a sys
with strong electron–phonon interaction such carriers wo
decay very rapidly~the timeV21 is of order 10213s).

The Pauli exclusion principle also suggests that a sys
with a polaron density 2V0

21 can have no delocalized carrie
with momentap,p0 , since the entire region withp,p0 of
the single-particle phase space~for the carriers! is already
occupied by self-localized carriers. As the polaron density
the system tends to zero, the number of possible delocal
states of carriers withp,p0 tends to 2VV0

21, whereV is the
volume occupied by the system. Thus, we have an extrem
© 1999 American Institute of Physics
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747JETP 89 (4), October 1999 É. N. Myasnikov and A. É. Myasnikova
unusual situation: the number of states of one kind availa
for particles depends on the number of states of the o
kind occupied by such particles. It is convenient to talk
carriers withp,p0 as ‘‘cold’’ carriers and of carriers with
p.p0 , as ‘‘hot’’ carriers. Then the concentrationn0

52V0
21 can be called the maximum concentration of co

carriers. On the other hand, the possible existence of any
carrier is in no way limited by the occupancy of other stat

These properties of the distribution of the carriers o
the states must be properly reflected in the distribution fu
tion. Until now, no such distribution function has bee
known. In the present paper we set up such a distribu
function and analyze its properties. Also, by using the in
tial mass tensor of a polaron4 we show that this distribution
function makes it possible to study the kinetic properties
systems of self-localized and delocalized fermions.

2. DISTRIBUTION FUNCTION FOR CARRIERS IN A SYSTEM
WITH ONE-PHONON SELF-LOCALIZATION OF THE
CARRIERS

Let the carriers in the system become self-localized a
result of the interaction with one optical phonon branc
Since p0@m* u, any polaron velocityv,u has essentially
no effect on the region of the phase space occupied by
carriers of this polaron. On the other hand, the possibility
different localizations of a polaron in a crystal occupying
volume V is the reason that there are 2VV0

21 different po-
laron states of the carriers~irrespective of the average carrie
momentum! in this crystal. Hence, in analyzing the statistic
properties of carriers with average momentap,m* u in a
system with self-localization, one must take the set of sta
with fixed localization as the basis. In such states the car
momentum and hence the energy will be uncertain to so
extent. To set up the distribution function we employ t
Gibbs method, since it has proved its usefulness in deriv
the classical Fermi–Dirac and Bose–Einstein distribution5

However, the use of a basis that incorporates states
definite localization in constructing the Gibbs distributio
function requires a modification of the method, since in
traditional form every state has a well-defined energy.

We examine the properties of systems in which se
localized and delocalized carriers coexist. The dependenc
the carrier energy in such a system on the carrier’s ave
momentum3,6 is depicted in Fig. 1. As noted earlier, if th
polarons in such a system occupy all 2VV0

21 states, only
delocalized carrier states withp.p0 can be filled. In the
intermediate case, cold carriers with momentap,p0 are par-
tially in the self-localized states and partially in the deloc
ized states. The same can be said of the states of a
fermion in volumeV0 . In the limit, this volume can be oc
cupied by a single self-localized fermion or by a single d
localized fermion or, in the intermediate case, by a partia
localized and partially delocalized fermion. Two alternativ
are possible here: either there are no cold fermions in
volume V0 or only one cold fermion occupies this volum
We examine a volumeV0 that containsN cold fermions as a
subsystem with a variable number of particles by the Gi
method. Then the contribution of the first alternati
le
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(N5N11N250) to the normalization condition has th
form

exp@~V2mN!/T#

4pp0
3/3 F E

0

mu

4pp2dp expS 2
E1

T
N1D

1E
mu

p0
4pp2dp expS 2

E2

T
N2D G , ~1!

whereN1 is the number of self-localized fermions,N150,
andN2 is the number of delocalized cold fermions,N250;
E1(p) is the energy of the self-localized state in which t
average carrier momentum isp ~here the expression fo
E1(p) contains the polaron’s effective ‘‘energy’’ mas
which in turn is a function ofp!; andE2(p) is the energy of
a cold delocalized carrier with momentump, with E2(p)
5Epol1p2/2m. HereEpol is the binding energy of a polaron
and the zero level of the chemical potential coincides w
the bottom of the band of self-localized fermions.

When examining the case withN51, we must bear in
mind that if states of one type are fully occupied, states
the other type are inaccessible. Then the contribution of
case to the normalization condition is

exp@~V2mN!/T#

4pp0
3/3

E
0

1

dN2F ~12N2!E
0

mu

4pp2dp

3expS 2
E1

T D1N2E
mu

p0
4pp2dp expS 2

E2

T D G , ~2!

where the possibility of two limiting states and all interm
diate states of cold fermions is taken into account by
integral with respect toN2 from 0 to 1. Thus, the normaliza
tion condition has the form

expS V

T D H 11
1

2

exp~m/T!

4pp0
3/3 F E

0

mu

4pp2dp expS 2
E1

T D
1E

mu

p0
4pp2dp expS 2

E2

T D G J 51, ~3!

FIG. 1. Dispersion relation for the charge carriers in a medium with o
phonon self-localization of the carriers. The dashed curve indicates
range of states that are occupied if the concentration of self-localized c
ers is less than the maximum concentrationn0 of the carriers.
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which yields the following expression for the average nu
ber of cold fermions inside the volumeV0 :

N̄cold522
]V

]m
5

A exp~m/T!

11~1/2!A exp~m/T!
, ~4!

where

A5
V0

~2p\!3 F E
0

mu

4pp2dp expS 2
E1

T D
1E

mu

p0
4pp2dp expS 2

E2

T D G .
For the average number of hot fermions inside the volu
V0 we have

N̄hot5
2V0

~2p\!3 E
p0

` 4pp2dp

exp@~E2~p!2m!/T#11
, ~5!

which follows from the ordinary Fermi–Dirac distribution
Obviously, the total concentration of fermions in the syst
is the sum of the concentrations of cold and hot carriers

n5 N̄cold/V0 1 N̄hot/V0 , ~6!

which leads to a formula for the chemical potential of t
fermions as a function of their concentrationn and tempera-
ture T.

3. PROPERTIES OF THE DISTRIBUTION FUNCTION OF THE
CARRIERS IN SYSTEMS WITH ONE-PHONON SELF-
LOCALIZATION

Figure 2 depicts the dependence, obtained by using
~4!–~6!, of the chemical potentialm of a system of fermions
on the fermion concentrationn for several temperatures
Here fermion concentration is measured in units of the ma
mum concentration of cold fermions,n0 ~this quantity is also
the maximum concentration of polarons!, which is weakly

FIG. 2. Chemical potentialm of a system of self-localized and delocalize
fermions as a function of the total fermion concentrationn/n0 for different
temperatures: curve1, T50.001 eV; curve2, T50.005 eV; curve3,
T50.01 eV; and curve4, T50.02 eV. Curve5 demonstrates the concentra
tion dependence of the chemical potential of a system of delocalized fe
ons atT50 K.
-

e

s.

i-

dependent on the parameters of the medium~just as the po-
laron volume is!. A typical value is n05331020cm23,
which can be obtained with the following values of the p
rameters of the medium used in plotting the diagram
the reciprocal effective dielectric constantc51/«`21/
«050.27, the maximum group velocity of the phono
u5105 cm•s21, and the effective fermion mass in the cryst
m* 5me . Figure 2 shows that whenn.n0 , the chemical
potentials of systems of free fermions and of systems wh
free and self-localized fermions can coexist coincide. Ho
ever, whenn,n0 , the chemical potential of the system
which self-localization of carriers is possible increases w
temperature, while in a system of delocalized fermions
chemical potential always decreases with increasing t
perature.

Another characteristic feature of systems where s
localized fermions may be present is the fact that the che
cal potential tends to zero asT→0 K, irrespective of the
value of the fermion concentrationn, provided thatn,n0 .
Figure 2 shows that at carrier concentrationsn,n0 and at
temperatures below room temperature~the assumption
adopted in Fig. 2!, the chemical potential of the system
primarily determined by the temperature and is essenti
independent of the concentration. The reason, of course
that at such concentrations (n,n0) and temperatures th
band that becomes chiefly populated is the polaron band,
the number of polarons in a state with the same momen
may become macroscopic. This number is the greatest~and
equal to 2VV0

21) at T50 K, with all the polarons having
zero momentum and minimum energy. In view of the ma
roscopic nature of such degeneracy, we call it condensa
of self-localized fermions in the state with the lowest ener

Figure 3 demonstrates the redistribution of fermio
among the self-localized and free states induced by temp
ture variation for carrier densitiesn50.5n0 and n51.8n0 ,
respectively~the parameters of the medium are the same
in Fig. 2!. We see that even at 50–100 K, which is much le
than the polaron binding energy~for the adopted values o
the parameters, the binding energyEpol50.11 eV), self-
localized fermions disappear from the system, transform

i-

FIG. 3. Temperature dependence of the fermion concentration in each o
states that the fermions can form for two values of the total fermion c
centration n. Curves 1 and 18 correspond to polaron concentrations
n50.5n0 andn51.8n0 , respectively; curves2 and28 show the behavior of
the concentration of cold delocalized carriers atn50.5n0 and n51.8n0 ,
respectively; and curves3 and38 show the behavior of the concentration o
hot fermions.
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into delocalized cold state. Here the temperature at wh
polarons disappear is independent of the carrier concen
tion in the system and is determined solely by the pola
binding energy and the value of the maximum group veloc
of the phonons participating in the formation of the polaro

Figure 3 also shows that below room temperature
fermions appear in the system only if the carrier concen
tion is greater than the maximum concentrationn0 of cold
fermions. This is important since only hot phonons can p
ticipate in the screening of the electron–phonon interac
by charge carriers. In particular, this means that the influe
of screening effects, which~as shown by Iadonisiet al.7!
substantially changes the binding energy of self-localiz
states even at concentrations of about 1020cm23, may actu-
ally become significant only at carrier concentrations of
der 1021cm23.

Figure 4 depicts the binding energy (Epol) dependence
of the temperatureTc at which the polaron density is halved
as well as its dependence on the maximum group velociu
of the phonons.~The concentration of hot fermions turns o
to be negligible at the total concentrationn50.4n0 and the
temperatures used in constructing Fig. 4.! The temperature
Tc can be called the temperature of an isostructural ph
transition, since at this temperature one phase~the macro-
scopic number of self-localized carriers! disappears, just a
liquid disappears in boiling. This phase transition has a n
vanishing latent heat equal to the product of the numbe
polarons and the polaron binding energyEpol . The following
formula approximates the dependence ofTc on u andEpol to
within .5%:

Tc~u,Epol!51.185Epol1.5log(muc/p0), ~7!

where c is the reciprocal effective dielectric constant. T
width of the transition region always turns out to be of ord
Tc .

4. DISTRIBUTION OF FERMIONS IN A MEDIUM WITH MANY-
COMPONENT POLARIZABILITY

The method of building the distribution function in
system with coexisting self-localized and free fermions c
easily be extended to a medium with many-component
larizability ~several phonon branches interacting with t

FIG. 4. Variation of the concentration of polarons and cold delocali
fermions with temperature for different values of the polaron binding ene
Epol and the maximum group velocity of phonons,u. Curves1 and2 cor-
respond to the concentration of carriers in the polaron and cold deloca
states for u5104 cm•s21 and Epol50.11 eV; curves 18 and 28, at
u5104 cm•s21 andEpol50.15 eV; and curves19 and29, at u5105 cm•s21

andEpol50.11 eV.
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charge carriers!. As shown Ref. 2, if the minimum phas
velocities of these phonon branches differ and the bra
with the greatest phase velocity is the one whose interac
with a carrier satisfies the adiabatic condition, the cha
carriers in such a medium can be in several different pola
states. Indeed, if the interaction between a carrier and on
the phonon branches leads to the formation of an s
localized state, the polarizability of the medium due to t
interaction between the other branches and a polaron
added to the polaron, changing its binding energy, effec
mass, and radius.

Let us consider the simplest case of a medium with tw
component polarizability, where the interaction between
carrier and a phonon branch leads to the self-localization
the carrier, and the minimum phase velocity of the phono
belonging to this branch,u2 , is greater than the velocity o
the phonons of the second branch interaction with the car
Two types of polaron can coexist in such a medium. T
polarizability cloud of one of the polarons consists of virtu
phonons from both branches. When the velocity of suc
polaron exceeds the lesser of the two minimum phase p
non velocities (u1), the polaron’s motion leads to emissio
of real phonons of the respective branch.2 This results in the
polaron losing its polarizability cloud formed by phonons
this branch. Thus, a polaron moving with a velocityv, with
u1,v,u2 , has only one polarizability cloud, which consis
of virtual phonons with the minimum phase velocityu2 . We
call such a polaron an ordinary polaron, while a polar
whose velocityv is less thanu1 we call a double polaron
Obviously, the biding energyEDP and the effective mass
mDP of a double polaron are greater than the respective
ues for an ordinary polaron (EOP andmOP), while the vol-
ume is smaller,VDP,VOP .

We examine the normalization condition for the Gib
distribution in a system containing both types of polaron a
free carriers. Obviously, the contribution of the case w
N50 ~as earlier,N is the number of cold fermions in th
volumeV0) does not change. If we neglect the difference
the volumes of ordinary and double polarons~i.e., if we as-
sume thatVOP5VDP5V0), the contribution of the case with
N51 has the form

exp@~V2mN!/T#

~4/3!pp0
3 F1

3 E0

mu1
4pp2dp expS 2

E1

T D
1

1

3 Emu1

mu2
4pp2dp expS 2

E18

T D 1
1

3 Emu2

p0
4pp2dp

3expS 2
E2

T D G . ~8!

If we assume that the zero of energy and the chemical
tential coincides with the bottom of the ordinary-polaro
band,

E18~p!5
pOP

2

2mOP
5

p2mOP

2m2 ,

d
y

ed
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E1~p!5
pDP

2

2mDP
2~EDP2EOP!

5
p2mDP

2m2 2~EDP2EOP!,

E2~P!5EOP1
p2

2m
,

wherep is the carrier momentum. Using the normalizati
condition, we obtain an expression for the concentration
cold fermions in a system with two-component polarizab
ity:

ncold52
2

V0

]V

]m
5

~2/3!B exp~m/T!

11~1/3!B exp~m/T!
, ~9!

where

B5
V0

~2p\!3 F E
0

mu1
4pp2dp expS 2

E1

T D
1E

mu1

mu2
4pp2dp expS 2

E28

T D 1E
mu2

p0
4pp2dp

3expS 2
E2

T D G .

Equation~9! shows that in such a system the cold-fermi
concentration consists of three terms, corresponding to
densities of ordinary and double polarons and of delocali
cold carriers. Adding the concentration of hot carriers@Eq.
~5!#, we obtain the total concentration of fermions in t
system.

Figure 5 depicts the temperature dependence of the
centration of fermions in each of the states that can be r
ized in a medium with two-component polarizability for tw
values of the total carrier concentration,n50.4n0 and
n50.8n0 . The parameters of the medium used in buildi
Fig. 5 have the following values:EDP50.17 eV, EOP

50.11 eV,mDP518me , mOP510me , u15104 cm•s21, and
u25105 cm•s21 ~in our calculations we did not allow for th

FIG. 5. Temperature dependence of the fermion concentration in each o
states that the fermions can form in a medium with two-component po
izability for two values of the total fermion concentrationn: curves1 and
18, a double polaron; curves2 and28, an ordinary polaron; curves3 and38,
cold delocalized carriers; and curves4 and 48, hot fermions ~the
‘‘unprimed’’ and ‘‘primed’’ curves correspond ton50.4n0 andn50.8n0 ,
respectively!.
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dependence of the polaron’s effective mass on the pola
velocity, since the energy mass depends very weakly on
polaron velocity for such values ofu1 and u2 ; see Ref. 3!.
Clearly, the temperature at which there is a redistribution
carriers from one state to the other is independent of
concentrationn of carriers in the systems. Calculations wi
other values of the medium parameters show that, as in
case of a medium with one-component polarizability, th
temperature is determined solely by the values ofu1 andu2

and the band gaps separating the bands of different ca
states. Formula~7! yields accurate (;10%) values of the
temperatureTc at which the concentration of polarons of on
type is halved, provided that for the polaron binding ener
Epol we take the band gap separating the band of the car
whose disappearance temperature is being calculated fro
neighboring~on the energy scale! but shallower band. We
have not depicted the case withn.n0 in a medium with
two-component polarizability, since, as in the case of a m
dium with one-component polarizability, at temperatures
low room temperature~such temperatures are consider
here! it differs only in the emergence of hot carriers with
concentrationn2n0 . Hence, in a system with any number
phonon branches interacting with a charge carrier, hot ca
ers may emerge at temperatures below room tempera
~whenp0

2/2m@T) only if the concentrationn of the carriers
exceeds the maximum concentration of cold fermions,n0 .

Of course, experimentally the presence or absence of
fermions in a system can manifest itself only in the prese
or absence of screening of the electron–phonon interact
which only hot carriers are capable of doing~see Sec. 3!.
However, the ordinary and double polarons and the delo
ized carrier state differ in binding energy, effective ma
lifetime, and especially mobility, which for self-localize
carriers differs substantially from that of delocalize
carriers.6 Hence the transition of a macroscopic fraction
the carriers from one state to another, which occurs when
temperature of the system changes, manifests itself in va
tions of the kinetic coefficients and related quantities. Suc
transition also manifests itself in the optical properties
systems with carrier self-localization; in particular, in th
characteristic variation of the lifetime of states of ligh
induced carriers with temperature.~One must bear in mind
that not only the lifetimes of carriers excited to one of t
polaron bands and to the conduction band are different bu
are the relaxation times of the ordinary and double polar
due to the difference in the frequencies of phonon branch!
For instance, Stevenset al.8 observed such a temperature d
pendence of the lifetime of light-induced carriers.

5. CONCLUSION

Analysis of the distribution function for fermions in
system in which self-localized and delocalized states of
mions coexist leads to the following conclusions concern
the thermodynamic characteristics and the behavior of s
systems.

1. The highest concentration of the self-localized ferm
ons in the system isn052V0

21, where V0 is the polaron
volume.
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2. The chemical potential of the system is independen
the concentrationn of fermions ifn,n0 and the temperature
T→0 K ~due to the ability of self-localized fermions to con
dense in a state with zero momentum and minimum ener!.

3. The chemical potential of a system of self-localiz
and free fermions with a fermion concentrationn,n0 in-
creases with temperature, in contrast to the behavior of
chemical potential of a system of free fermions.

4. First-order phase transitions related to a change in
state of a macroscopic number of carriers can be observe
systems with self-localization. The latent heat is equal to
product of the number of polarons and the polaron bind
energy.

5. The temperature at which polarons of a certain ty
disappear from the system depends on the maximum g
velocity of phonons participating in the formation of the
polarons and is usually much less than the polaron bind
energy.

6. These phase transitions manifest themselves in
electrical conductivity and in the contribution of the carrie
to the specific heat and also in the temperature dependen
the lifetime of the states of light-induced carriers.

These conclusions force us to change the approach to
experimental search for, and study of, polarons.

Allowance for the special features of systems contain
self-localized fermions also leads to a substantial modifi
tion of our ideas about the role that bipolarons play in
electrical conduction of media with strong electron–phon
interaction. In his monograph~see Ref. 1!, Pekar rejected the
possibility that bipolarons might exist. Even in the refin
theory of polarons,9 bipolarons prove to have an advanta
over polarons~in energy! only for an extremely rare set o
parameters of the electron–phonon system. In Ref. 2 it
shown that two-center resonant bipolarons can exist with
sentially the same set of parameters. Allowance for the
that the bipolaron band is bounded in momentum leads
substantial increase in the temperatureT0 of bipolaron con-
densation, so that this temperature can easily be 100 K
carrier concentrations in the 1020– 1021cm23 range.2

The above analysis of the properties of systems of s
localized and delocalized fermions suggests that for a m
common set of parameters, for example, those typica
complex oxides, for which bipolarons are metastable~the
energy per carrier in a bipolaron is greater than in a polaro!,
bipolarons are capable of condensing at temperatures in
100–150 K range and carrier densities in the 1020– 1021cm23

range. This is the result of the above-noted ability of t
chemical potential of a system of self-localized and deloc
ized carriers to increase with temperature. Indeed, the B
nature of bipolarons makes it possible to account for them
adding to~6! the number of carriers in the bipolaron sta
Nbipol , obtained from the ordinary Bose distribution of bip
larons with allowance for the fact that the bipolaron band
bounded in momentum:2

N̄bipol5
2V0

~2p\!3 E
0

Mu 4pp2dp

exp@~Ebipol~p!22m!/T#21
, ~10!

whereM is the bipolaron mass. It turns out that as the te
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perature increases, the chemical potential of carriers in a
tem that atT→0 K and n,n0 is in the polaron band can
reachm5Ebipol(0)/2. The Bose condensate produced in t
process can disappear only at high temperatures, transf
ing into a Bose gas and delocalized states of carriers. Bu
n.n0 , the chemical potential coincides with the bottom
the bipolaron band even atT50 K, so that the temperatur
interval within which a Bose condensate of bipolarons c
exist is 0 K,T,T0 .

By way of example, Fig. 6 depicts a (T0 ,n) phase dia-
gram, whereT0 is the temperature of Bose condensation,
a system of bipolarons for two values of the parameteu
(u523104 cm•s21 and 105 cm•s21) and bipolaron mass
(M530me and 40me ; the value ofM is estimated in accor-
dance with Refs. 4 and 5!. Clearly, the high-temperature se
tion of the curveT0(n) reachesT05100 K at carrier densi-
ties even below the usual values for high-Tc super-
conductors. The possibility of the condensate disappearin
the temperature drops to very low values is due to the c
densation of carriers in polaron states, which are adva
geous in energy.
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Ergodic theorem for an impurity spin subsystem in a paramagnet
F. S. Dzheparov* )

Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
~Submitted 23 March 1999!
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A model for verifying and developing the fundamental ideas underlying the ergodic hypothesis is
proposed. The model describes the dynamics of the spin subsystem formed by impurity
charges with spinI and a smallg factor in a crystal immersed in a strong constant external
magnetic field under conditions where the spin system of the nuclei in the crystal is isolated from
the other degrees of freedom. The additive integral of motion is the projection of the total
spin of the subsystem onto the external field. Attention is focused mainly on the case ofI 51/2.
It is shown that the ergodic hypothesis holds if the correlation radius is finite in the initial
state and that the ergodic hypothesis is violated if the initial state is sharply localized or has global
correlation. The nonergodicity of the8Li– 6Li spin subsystem, which is a convenient object
for experimental investigations of spin dynamics, is revealed. An estimate is obtained for the time
for transition from a sharply localized disturbance of the canonical distribution to a
quasiequilibrium state. ©1999 American Institute of Physics.@S1063-7761~99!02010-7#
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1. INTRODUCTION

The ergodic hypothesis is usually interpreted as follow
The mean value of any observable over a long time inte
is equal to its mean over any of the Gibbs distributions:

lim
t→`

1

t E
0

t

dt f ~t!5^ f &G . ~1!

This hypothesis is one of the most important elements
modern statistical physics. Originally created to substant
equilibrium theory, this hypothesis subsequently made
way into physical kinetics through the conception of loc
equilibrium ensembles.1

One of the most important applications of the ergo
hypothesis stems from the fact that, usually, in deriving
netic equations either it is directly required that their equil
rium solutions be consistent with the Gibbs distribution,2 or
strong hypotheses involve decoupling of the many-part
correlations, which satisfy this requirement, are int
duced.1,3–6

The standard derivation of the Gibbs distribution7 is
based on the hypothesis that macroscopic subsystems
large system are quasi-independent. The literature devote
attempts to directly prove the ergodic hypothesis is vast
frequently very complicated. Opposite views of the degree
which this hypothesis holds~see, for example, Refs. 8–13!
and the very possibility of constructing a theory of irreve
ible processes on the basis of pure~quantum! mechanics
within known interactions13,14 have coexisted for more tha
30 years. The terminological barriers separating phys
from mathematics here are extremely high. Thus, it would
useful to find a simple but inclusive physical process
verifying and developing at least some central ideas of
godic theory.

For this purpose, in this paper we examine the dynam
of impurity nuclear spins in the case where the external c
7531063-7761/99/89(10)/11/$15.00
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stant magnetic field is significantly stronger than the lo
fields induced by the spins at one another, the complete
system of the host and impurity nuclei is isolated from t
other interactions in the crystal, the magnetic moments of
impurity nuclei are smaller, and the distances between th
are greater than in the host. When these conditions are s
fied, the influence of the impurity on the evolution of th
host spins can be neglected, and the fluctuations of the l
fields induced by the host spins at the impurity spins
faster than the processes unfolding in the impurity s
system. A realistic example is provided here by the s
system of107Ag nuclei ~the impurity, with spinI 51/2! and
19F nuclei ~the host! in an AgF crystal enriched with the
109Ag isotope~the natural abundances of the107Ag and109Ag
isotopes are roughly equal, and the interaction of the109Ag
and107Ag spins can be neglected!. The109Ag nuclei could be
selected as the impurity in AgF in a completely analogo
manner. Another example~for which the principal idealiza-
tions discussed below hold somewhat less well! is the
8Li– 6Li spin subsystem in LiF.15 It can be assumed that i
this system there is initially only one polarized nucleus, vi
8Li ( I 52) and that with the passage of time its polarizati
is spread among the surrounding6Li ( I 51) nuclei because
the g factors of the8Li and 6Li nuclei are essentially equal
In this case the observable quantity is the polarization of
b-active 8Li nucleus. This system is convenient for expe
mental studies of many important processes in spin dynam
and statistical physics, since it offers a possibility for obse
ing local properties of the processes owing to the presenc
the b-active nuclei in it, in contrast to standard NMR met
ods, where all the measured quantities are essent
global.15

An analysis of this model would be timely, because
gives a graphic picture of the properties of a ‘‘normal’’ sy
tem, while indications of ‘‘anomalies’’~nonergodicity16–18

and a nondiffusive long-time asymptote19! in the behavior of
© 1999 American Institute of Physics
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some 1d and 2d spin models have been found in seve
studies.

We note that the advantages of spin systems for trea
problems in equilibrium statistical physics were exquisite
demonstrated by Kittel in Ref. 20.

This paper is organized in the following manner. In S
2 the basic model is formulated, the exact master equa
for the diagonal part of the density matrixrD is derived, it is
used to obtain a simpler Markov equation forrD for the case
of a weak interaction within the subsystem, and the relati
ship between the off-diagonal partrN andrD is determined.
In Sec. 3 it is shown that the Markov equation can be bro
up into independent equations that describe the evolutio
m-particle correlations. The stationary solutions of the
equations and their correspondence to the canonical G
distribution are analyzed in Sec. 4. It is demonstrated in S
5 that the stationary solutions of the exact master equa
and the Markov equation coincide for any finite ratio b
tween the strengths of the interaction within the subsys
and the interaction with the thermostat. These results
extended to the case of an exact secular dipole–dipole in
action in Sec. 6. The nonergodicity of the evolution of t
8Li– 6Li system is revealed in Sec. 7. A different, perfec
general view of the role of the initial conditions in exa
quantum-statistical evolution in connection with the ergo
problem is presented in Sec. 8. Some general propertie
the evolution of the off-diagonal part of the density mat
are considered in Sec. 9, and an estimate is obtained in
10 for the ‘‘thermalization’’ time, during which a subsyste
starting from a state containing a sharply localized dist
bance of the canonical distribution approaches a quasie
librium state. To complete the presentation and close
some loose ends, the reversal of evolution is briefly exa
ined in Sec. 12 for both the model studied and the real s
systems represented by it, and the derivation of the sec
Hamiltonian of the dipole–dipole interaction controlling th
processes considered is presented in the Appendix.

2. FORMULATION OF THE MODEL AND DERIVATION OF
THE KINETIC EQUATION

If a spin system is immersed in a strong constant m
netic field aligned parallel to thez axis, the subsystem of th
impurity spinsI k , k51,...,N, is not closed, and its energ
~the sum of the Zeeman and dipolar energies! is not con-
served. However, the subsystem has another additive inte
of motion, viz., thez component of the total spin angula
momentum:

I z5 (
k51

N

I k
z . ~2!

Hence it can be expected that under typical conditio
where the dipolar temperature and the specific heat of
thermostat~the host spins! are infinite, a subsystem of finite
but fairly large volume can start from any physically real
able distribution and, with the passage of time, reach
equilibrium state described by the canonical distribution

rG5exp~F2jI z!. ~3!
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Here, as usual,F andj are determined from the condition
Tr r51 and TrI zr5^I z&.

Accordingly, as the timet increases, the quantum
statistical meanf (t)5Tr( f r(t)) tends to the stationary valu
^ f &G5Tr( f rG), as a result of which relation~1! is satisfied.
The interaction with the thermostat gives rise to phase re
ation, and for this reason the density matrix for a sample
finite volume~with the ‘‘correct’’ choice of the initial con-
ditions, see below! tends to the Gibbs distribution~3! as the
time increases. In this section the evolution of the syst
under consideration differs significantly from the behavior
isolated finite objects, in which~according to the classica
Poincare´ recurrence theorem and its quantum-mechan
analog; see, for example Refs. 6 and 13! the initial state is
reproduced repeatedly and to any accuracy with the pas
of time.

The evolution of our system can be described using
theory developed in Ref. 21.

The mathematical model underlying it employs t
Hamiltonian

H5H01H1 , H05(
j

v j~ t !I j
z , H15

1

2 (
jk

ajkI j
1I k

2 ,

~4!

where I j
15I j

x1 i I j
y , I j

25(I j
1)1, aj Þk5a0r 0

3r jk
23(1

23 cos2 qjk), andaj j 50. Herer jk5r j2r k is the vector join-
ing spins j andk, andq jk is the angle betweenr jk and the
external constant field aligned along thez axis. To fix ideas,
in the treatment of the long-range part of the interaction~if
the distribution of the impurities is three-dimensional! we
shall assume that the sample has a spherical shape and
the macroscopic field from the nuclei is therefore equal
zero. The principal model assumption is that the local fi
v j (t) induced by the thermostat spins at thej impurity spin
is a d-correlated normal stationary random process, i.e.,

^v j~ t !vk~t!&n5
2

T2
d~ t2t!d jk , ~5!

U~ t,t0 ,@a#!5K expS i (
j 51

N E
t0

t

dt a j~t!v j~t!D L
n

5expF2(
j 51

N U E
t0

t dt

T2
a j

2~t!UG .

Here ^...&n denotes averaging over the distribution of loc
fields ~the noise!, anda j (t) is a fairly arbitrary real function.
A discussion of the ways and results of generalizing th
formulas to take into account more realistic~smooth over
time and correlated in space! fluctuations of the local fields
can be found in Refs. 15 and 21.

It follows from the d-correlated nature of the proces
that

U~ t,t0 ,@a#!5U~ t,t1 ,@a#!U~ t1 ,t0 ,@a#!, ~6!

if t>t1>t0 .
We bring the equation of motion for the density matr

r(t)

ṙ52 i ~L0~ t !1L1!r, L0~ t !r5@H0~ t !,r#,
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L1r5@H1 ,r#

into the integral form

r~ t !5V~ t,0!r02 i E
0

t

dt V~ t,t!L1r~t!,

V~ t,t0!5expS 2 i E
t0

t

dt L0~t! D . ~7!

Here r05r(t50), and the superoperatorsL0 , L1 , and V
act, as usual, in a Liouville space, whose vectors are op
tors of the quantum-mechanical Hilbert space.

The operatorsI j
z commute with one another; therefore,

follows from ~5! and ~6! that

^V~ t,t!&n5expS 2
ut2tu

T2
(
j 51

N

Sj D , Sj f 5@ I j
z ,@ I j

z , f ##,

~8!

^V~ t,t0!&n5^V~ t,t!&n^V~t,t0!&n ,

where f is an arbitrary operator andt>t>t0 . We average
~7! over the fluctuations of the local fields under the assum
tion that r0 does not depend on them, and we take in
account, that by virtue of the last of the relations~8!,

^V~ t,t!L1r~t!&n5^V~ t,t!&nL1^r~t!&n . ~9!

The validity of this equality can be demonstrated, for e
ample, by replacingr(t) by an iterative solution of Eq.~7!.
Thus, we have

^r~ t !&n5^V~ t,0!&nr02 i E
0

t

dt ^V~ t,t!&nL1^r~t!&n ,

or, in differential form,

^ṙ&n52~R1 iL 1!^r&n , R5
1

T2
(
j 51

N

Sj , t>0. ~10!

Let the projectorp isolate the diagonal part from an
operator, and letrD5p^r&n . In this caserD is diagonal in
the representation of the eigenvectors of the operatorsI j

z and
their products. Standard transformations22 yield a closed
equation forrD :

lrD5r02M ~l!rD , M ~l!5pL1p̄
1

l1R1 i L̄ 1

p̄L1p,

~11!

wherep̄512p,

L̄15p̄L1p̄, rD~l!5E
0

`

dt rD~ t !exp~2lt !

is the Laplace transform forrD(t). Here it has been take
into account thatp̄r050, pR5Rp50, andpL1p50. In
the generally accepted representation for spin matrices2 the
operatorrD and the superoperatorsL1 andR are real. Hence
for real l the operatorM (l) is also real, i.e.,

M ~l!5ReS pL1p̄
1

l1R1 i L̄ 1

p̄L1p D .
a-

-
o

-

Accordingly, for alll

M ~l!5pL1p̄
1

l1R1L̄1

1

l1R
L̄1

p̄L1p. ~12!

This relation was obtained from the following transformati
of the resolvent:

1

l1R1 iL
5

1

~11 iLG0!~l1R!

5G0

1

11 iLG0
5G0

1

11~LG0!2 ~12 iLG0!

5
1

l1R1LG0L
~12 iLG0!, ~12a!

whereG05(l1R)21.
To leading order inL1

2

M ~l!5pL1p̄
1

l1R
p̄L1p5

1

l12T2
21 pL1

2p,

where it has been taken into account that the operatorL1pr
is an eigenvector of the superoperatorR. To the same accu
racy, rD satisfies the following simpler equation21 in the
limit t@T2 :

ṙD52
1

2 (
jk

wjk@ I j
1I k

2 ,@ I j
2I k

1 ,rD##52ÂrD , ~13!

where wj Þk5ajk
2 T25wk j5n0(123 cosqjk)

2r0
6/r jk

6 and wkk

50.
An analysis of the matrix elementsM (l) ~in the basis

set of operator products introduced below! which are dis-
carded in going from~12! to ~13! shows that they are smal
if phase relaxation is faster than transport among impu
spins, i.e., ife;( jwjkT2!1 ~Ref. 21!.

It follows directly from Eq.~10! that to leading order in
e and for t@T2 the off-diagonal part of the density matri
equals

rN~ t !5p̄r~ t !5R21L1rD~ t !52T2@H1 ,rD~ t !#. ~13a!

3. ISOLATION OF INVARIANT SUBSPACES

We assume that allI k51/2. We use the term ‘‘operato
product of rankm’’ for the operator

Cm~ j 1 ,...,j m!5 ) 8
a51

m

I j a
z ,

where the prime indicates that all thej a are different. The set
of all independent operator products~for example, only those
in which j 1,..., j m) forms a complete orthogonal basis s
in the subspace of diagonal density matrices.

The set of operator products of a fixed rankm forms the

mth invariant subspace of the operatorÂ, since
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ÂCm~ j 1 ,...,j m!5 (
j i¹[m]

(
l 51

m

wj i j l
~Cm~ j 1 ,...,j m!

2Cm~ j 1 ,...,j mu j l→ j i !!. ~14!

Here @m# is the set of numbers j 1 ,...,j m , and
Cm( j 1 ,...,j mu j l→ j i) is the operator productCm( j 1 ,...,j m)
in which spin j l is replaced by spinj i .

We note that in calculating

ÂC~ j 1 ,...,j m!5
1

2 (
kl

wkl@ I k
1I l

2 ,@ I k
2I l

1 ,C~ j 1 ,...,j m!##

it is sufficient to consider the situations in which only one
the indicesk or l belongs to the groupj 1 ,...,j m , and then a
direct calculation of the commutators leads to the relat
~14!. In fact, if bothk and l belong to this group, the corre
sponding contribution equals zero, sinceI k

zI l
z5(I k

z1I l
z)2/2

21/4 and@ I k
1I l

2 ,I k
z1I l

z#50.
The coefficientsKm( j 1 ,...,j m ,t) in the expansion

rD~ t !5
1

Tr 1 H 11 (
m>1

(
j 1, j 2,..., j m

zmCm~ j 1 ,...,j m!

3Km~ j 1 ,...,j m ,t !J , ~15!

where

Km~ j 1 ,...,j m ,t !5^Cm~ j 1 ,...,j m!&

5Tr Cm~ j 1 ,...,j m!rD~ t !,

zm
215Tr~Cm~ j 1 ,...,j m!!2/Tr 1,

satisfy the equation

K̇m~ j 1 ,...,j m ,t !52AmKm~ j 1 ,...,j m ,t !

52 (
j i¹[m]

(
l 51

m

wj i j l
~Km~ j 1 ,...,j m ,t !

2Km~ j 1 ,...,j m ,tu j l→ j i !!, ~16!

which follows directly from~14! and ~15!.
Whenm51, Eq. ~16! coincides with the familiar equa

tion for random walks:

K̇1~ j !52 (
i (Þ j )

wji ~K1~ j !2K1~ i !!. ~17!

We note that if the impurity spins form a regula
d-dimensional sublattice, the long-time asymptote of the
lution of Eq. ~17! will be diffusive for anyd. A comparison
with the existing, exactly solvable one-dimensional23 and
multidimensional24 models, together with the results of nu
merical simulation ford53 ~Ref. 25!, provides a firm foun-
dation for a similar claim for a random impurity distribution
The long-time asymptote of the solutions of Eqs.~16! has
been studied to a significantly lesser extent. It is natura
expect that it is also diffusive in adm-dimensional space.
f

n

-

o

4. ERGODIC PROPERTIES OF SOLUTIONS OF THE KINETIC
EQUATION

Let us turn to the ergodic hypothesis. The single stati
ary state of Eq.~14! corresponds to uniform spreading of th
initial condition to all Nm5N!/(m!(N2m)!) independent
operator products of rankm. In fact, after multiplying Eq.
~16! by Km( j 1 ,...,j m ,t) and performing some standar
transformations, it is found that

d

dt (
j 1,..., j m

Km
2 ~ j 1 ,...,j m ,t !

52 (
j 1,..., j m

(
j i¹[m]

(
l 51

m

wj i j l
~Km~ j 1 ,...,j m ,t !

2Km~ j 1 ,...,j m ,tu j l→ j i !!2.

Hence it follows that ifKm( j 1 ,...,j m ,t) with different j a are
different, the state is not stationary. If they are identical,
state is stationary, as is clear from~16!.

Thus,

Km~ j 1 ,...,j m ,t→`!5Qm ,

Qm5
1

Nm
(

j 1,..., j m

Km~ j 1 ,...,j m ,t50!. ~18!

When the Gibbs state~3! is represented in the form~15!,
we obtain

rG5
1

Tr 1 )
j 51

N

~11z1pI j
z!, p52

1

2
tanh

j

2
,

z15
3

I j~ I j11!
54,

Km
G~ j 1 ,...,j m!5Tr~Cm~ j 1 ,...,j m!rG!5pm. ~3a!

Thus, we still need to compareQm andKm
G .

Let the initial state have the form

r~ t50!5S 11
3p1

0

I 1~ I 111!
I 1

zD Y Tr 1,

p1
05Tr I 1

zr~ t50!, ~19!

i.e., initially only one spin is polarized and, accordingly, a
Km(t50)50, m.1. Then in the limitt→` the density ma-
trix of any large but finite system takes the form

r~ t→`!5r15~11 p̄z1I z!/Tr 1, p̄5p1 /N, ~20!

since the initial polarization is uniformly distributed amon
all the spins. This distribution obviously does not coinci
with the Gibbs distribution described by~3! and ~3a!. It is
important that the states~19! exist in real experiments,15 and
it will be shown below that the evolution of, for example, th
8Li– 6Li system in LiF crystals is likewise not ergodic in th
part which is accessible to measurement.

We note that the initial state~19! can be regarded as
model of the initial state in the theory of correlation fun
tions, since the mean̂I j

z(t)& is proportional to the one-spin
correlation function:
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^I j
z~ t !&5Tr~ I j

zr~ t !!5p1
0z1Tr~ I j

z~ t !I 1
z!/Tr 1.

Let the initial state have the so-called local equilibriu
form

r~ t50!5expS F2(
j 51

N

j j I j
zD 5

1

Tr 1 )
j 51

N

~11z1pj
0I j

z!,

pj
052

1

2
tanh

j j

2
, ~21!

which ideally corresponds to the model of quasi-independ
subsystems. In this case

Km~ j 1 ,...,j m ,t50!5 )
a51

m

pj a
0 .

The Gibbs distribution described by~3! and ~3a! is
clearly a special case of the relation~21! for j j5j and pj

0

5p, whereKm( j 1 ,...,j m)5pm.
The state~21! is an analog of the familiar initial condi

tion traditionally used in the theory of kinetic equations.3,1,5

We assume that

p̄5
1

N ( pj
0;N0. ~21a!

Then it follows from formulas~18! that the state~21! corre-
sponds to

K1~ t→`!5Q15 p̄, ~22!

K2~ j 1 , j 2 ,t→`!5Q25 p̄22
1

N21
~ p̄22 p̄2!

5 p̄22
1

N21
Dp2,

and, in general, ifp̄;N0, then

Km~ j 1 ,...,j m ,t→`!5 p̄m1O~~m21!/N!. ~23!

We ultimately obtain a distribution which is indistin
guishable from the Gibbs distribution to within quantiti
;O@(m21)/N# in the first m operator products, i.e., th
evolution of the system is ergodic in this case. We note t
although the initial state~19! is a special case of Eq.~21!,
opposite conclusions were drawn regarding the ergodicity
the behavior, since the conditionp̄;N0 does not hold in the
case of~19!.

We stress that the distribution~20! can formally be rep-
resented in the form

r15rG1~11O~1/N2!!, rG15exp~F12 p̄1z1I z!,

and the relations~21a!–~23! correspond to

r25rG2~11O~1/N!!, rG25exp~F22 p̄2z1I z!,

wherep̄1;1/N and p̄2;N0. When the expressions are wri
ten in this manner,r1 appears to be far closer to the Gib
distribution thanr2 . We drew the opposite conclusion b
causeKm for m>2, calculated with the distributionrG2 ,
differs from the exact value~23! by an amount of order 1/N,
while the analogous deviation forrG1 is not small.
nt

at

f

The initial distribution~21! is one of the simplest distri-
butions in which the states of different spins are not cor
lated. If the initial states are correlated in a finite volume
radius Rc containing Nc spins, i.e., if, for example,
K2( i , j ,t50)Þpi

0 pj
0 , but K2( i , j ,t50)→pi

0 pj
0 as Rc /r i j

→0, in which case

Q25
1

N2
(
i , j

K2~ i , j ,t50!5 p̄21OS Nc

N D , p̄;N0,

~24!

and, in general,

Qm5 p̄m1O~~m21!Nc /N!, ~25!

then the system is again ergodic to leading order inmNc /N.
However, if the correlations are global, i.e., if forN→`

QmÞQ1
m5 p̄m, ~26!

the ergodicity is violated.

5. NONPERTURBATIVE THEORY: SPECTRAL ANALYSIS OF
THE PROPERTIES OF AN EXACT MEMORY OPERATOR

Our analysis is based on Eq.~13!, which was obtained
by expanding the memory operatorM in powers of e
;( jwjkT2!1. Hence from the formal mathematical stan
point it is not rigorous for finding the asymptote in the lim
t→`.

For a more systematic analysis we consider the supe
erator spectrumM (l) in Eq. ~12!. We represent it as

M ~l!5pL1p̄
1

l1R1M1
p̄L1p,

M15L̄1

1

l1R
L̄1 , R[p̄Rp̄. ~27!

At real nonnegative values ofl the Hermitian superoperato
M1(l) is nonnegative, since for anyf

~fuM1~l!uf!5(
m

u~fuL̄1um!u2
1

l1Rm
>0, ~28!

where the scalar product in the Liouville space is defined
usual, by the relation

~fux!5Tr~f1x!,

and um) is an eigenvector forR. In addition,Rum)5Rmum)
andRm>1/T2 . The eigenvectors ofR can be chosen in the
form

um)5Cm~ j 1 ,...,j m! ) 8
a51

n

I l a

sa, n>1. ~29!

Here, as in the original definition forCm( j 1 ,...,j m), all the
subscriptsj 1 ,...,j m and l 1 ,...,l n of the spins are different
The indicessa take the values1 and2 and label the com-
ponents of the spin operators that are orthogonal to the
ternal field. The eigenvaluesRm5n/T2 depend only on the
elementn of the multi-indexm. The smallest eigenvalue o
the Hermitian superoperatorM05M11R is not smaller than
1/T2 , sinceM1 is nonnegative.

The stationary solutions of the exact kinetic equation
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ṙD52E
0

t

dt M ~t!rD~ t2t! ~30!

coincide with the eigenvectors of the Hermitian superope
tor M (l) @andM (t)# corresponding to zero eigenvalues. T
find these eigenvectors, we consider an arbitrary diago
element

~ f uM ~l!u f !5(
n

u~nuL1u f !u2~l1M0n!21,

wherep f 5 f , and un) andM0n are eigenvectors and eigen
values forM0 . This expression can vanish forl>0 only if
(nuL1u f )50. Because the set ofun) is complete, this condi-
tion requires thatL1u f )50. We expandu f ) in the basis set
Cm( j 1 ,...,j m):

u f )5(
m

(
j 1,..., j m

f m~ j 1 ,...,j m!Cm~ j 1 ,...,j m!.

We also take into account that

L1I k
z5

1

2 (
i

aik~ I i
1I k

22I i
2I k

1!.

Thus, we obtain the equation

L1u f )5
1

4 (
m

(
j 1,..., j m

(
j i¹[m]

(
l 51

m

aj i j l
~ I j i

1I j l

22I j i

2I j l

1!

3Cm~ j 1 ,...,j mu j̄ l !~ f m~ j 1 ,...,j m!

2 f m~ j 1 ,...,j mu j l→ j i !!50, ~31!

where

Cm~ j 1 ,...,j mu j̄ l !5 ) 8
a51(aÞ l )

m

I j a
z .

With consideration of the completeness of the basis
of operator products~29!, we ultimately arrive at the rede
fined system of equations

aj i j l
~ f m~ j 1 ,...,j m!2 f m~ j 1 ,...,j mu j l→ j i !!50,

j lP@m#, j i¹@m# ~32!

with the single nontrivial solutionf m( j 1 ,...,j m)5 f m , which
does depend on the coordinates of the spins. These solu
clearly coincide with the solutions~18! obtained above.

Any operatorOm5( j 1,..., j m
Cm( j 1 ,...,j m) can be rep-

resented as a polynomial ofI z of degreem, and, conversely,
any power (I z)

m can be expanded in operator products
rank k<m as

I z
m5a01 (

n51

m

anOn .

Hence all the stationary solutionsrDS are described by the
general formula

rDS5F~ I z!, ~33!
-

al

et

ns

f

where F(x) is a fairly arbitrary function, which is con-
strained only by the conditions thatrDS be nonnegative, Her-
mitian, and normalized.

In this derivation@as well as in the discussion of th
question of the uniqueness of the stationary solution of E
~16! in Sec. 4# it is significant thatai j is a long-range inter-
action. If the interaction vanishes outside a certain radiusr c ,
isolated clusters, which cannot be coupled by a nonzero
teraction to the surrounding spins, can appear. Minim
clusters can be singled out among them. The stationary
lutions f m( j 1 ,...,j m) can be classified according to the num
bers of the minimum clusters among which the sp
j 1 ,...,j m are distributed. Importance is attached here no
the actual labels of the spins, but only to the fact that th
belong~or do not belong! to specific minimum clusters. The
solution presented above for long-rangeai j corresponds to
the case where there is one minimum cluster—the entire
tem.

We can show for complexl5l11 il2 that all the sin-
gularities of the resolventG(l)5@l1M (l)#21p are lo-
cated atl1<0 and that the singularities atl150 correspond
to l50.

For this purpose we consider the auxiliary resolvent

Z~l!5
1

l1â1 i b̂
5Z11 iZ2 , ~34!

Z15
1

l11â1~l21b̂!
1

l11â
~l21b̂!

,

Z252Z1~l21b̂!
1

l11â
.

Here we have utilized~12a!. Let the operatorsâ and b̂ be
Hermitian, and letâ be nonnegative. The operator coefficie
Z2 ~as well asZ1) is Hermitian, as can easily be verified o

the basis of relations of the formĉ(11d̂ĉ)215(1

1 ĉd̂)21ĉ. It is clear that all the singularities ofZ(l) satisfy
l1<0.

It follows from ~12! and ~34! that

M1~l!5M1
(1)1 il2M1

(2) , ~35!

M1
(1)5L̄1~l11R!@~l11R!21l2

2#21L̄1 ,

M1
(2)52L̄1@~l11R!21l2

2#21L̄1 ,

M ~l!5M (1)1 il2M (2), ~36!

M (1)5pL1YL1p,

M (2)52pL1Y~M1
(2)11!~l11R1M1

(1)!21p̄L1p,

Y5p̄@l11R1M1
(1)1l2

2~M1
(2)11!~l11R

1M1
(1)!21~M1

(2)11!#21p̄,

G~l!5G(1)1 il2G(2), ~37!
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G(1)5p@l11M (1)1l2
2~M (2)11!

3@l11M (1)#21~M (2)11!#21,

G(2)52pG(1)~M (2)11!~l11M (1)!21.

It is clear from~36! on the basis of a treatment similar to th
one given above in deriving~33! that all the eigenvectors o
the operatorM (1) with zero eigenvalues are described
formula ~33! and are zero eigenvectors forM (2) as well.
Hence it follows from~37! that the singularities whichG(l)
can have atl150 also correspond tol250. All the singu-
larities are arranged symmetrically relative to the real a
ensuring the realness ofrD(t).

When the singularities are arranged in this way the
lutions of the exact kinetic equation~30! approach the sta
tionary values~18! with the passage of time under any initi
condition rD(t50) by virtue of the ordinary properties o
the Laplace transformation. The limiting valuesrD(t→`)
can then either coincide or not coincide with the Gibbs v
ues, in exact agreement with the analysis performed abov
Sec. 4.

In discussing the present work, V. I. Oseledets noted
we could have arrived at formula~33! in another way, by
starting out from Eq.~10! and using Evans’ theorem~see
Refs. 26 and 27, Sec. 2.4!, which states that the algebra o
invariant elements of the Liouvillian operatorL defined by
the relation

Lr5@h,r#2 i (
k51

n

~vk
1vkr1rvk

1vk2vk
12rvk!,

whereh15h, is a commutant of the smallest self-conjuga
subalgebra containingh and all thevk .

6. GENERALIZATION TO THE EXACT SECULAR
HAMILTONIAN OF THE INTERIMPURITY INTERACTION

It is natural that the solutions of Eqs.~13! and ~30! at
finite values oft differ in proportion to the small paramete
e. Corrections of the same order of magnitude should a
appear when allowance is made for the so-calledz2z terms
of the dipolar Hamiltonian

H252(
jk

ajkI j
zI k

z , ~38!

which were omitted in~4!, but unquestionably exist in rea
spin dynamics2,21 ~see also the Appendix!. To prove that the
z2z terms do not influence the ergodic properties of
system under consideration, it is sufficient to note that o
M1 varies in response to the replacementH1→H11H2 and,
accordingly, the replacementL1→L5L11L2 in Eq. ~27!,
sincepL25L2p50. After this, the entire spectral analys
and conclusions from the preceding section remain valid

7. NONERGODICITY OF THE EVOLUTION OF THE 8Li-6Li
SPIN SYSTEM

As we have already noted, the initial state~19! is real-
ized in present-day experiments. For example, in typ
b-NMR experiments15 a sample of LiF withN0;1023Li sites
simultaneously containsNI<108 b-active 8Li nuclei, which
,

-

-
in

at

o

e
y

l

initiate the process, andN5cN0;331022N0 impurity 6Li
nuclei, at which transport occurs. The process can be tra
experimentally only while the initial polarization of a sing
8Li nucleus is spread amongND<104 6Li spins. Thus, the
entire observable part of the process is such that the zone
influence of the8Li nuclei do not overlap and the initia
condition ~19! can be used. In this case the indexp1 corre-
sponds to8Li, and pj Þ1 corresponds to6Li. The fact that this
process a! is not ergodic and b! cannot be approximated b
the quasiequilibrium distribution~21! follows directly al-
ready from, e.g., the fact that all the means satisfy

^Cm~ j 1 ,...,j m ,t !&50 ~39!

for even m52n. It is impossible to satisfy this propert
within the quasi-Gibbs distributions~21!. The equality~39!
is a direct consequence of the invariance of the total sec
Hamiltonian of the spin–spin interactions (impurity1host)
in a strong constant external field under rotations byp about
thex or y axis. Of course, the equality~39! also holds in the
model described by~4!, ~5!, and~38! for arbitrary values of
the spinsI k .

8. MORE ON THE ROLE OF THE INITIAL STATE

We also mention another opinion regarding some of
results obtained. The canonical distribution

rG5expS F2 (
k51

K

bkĴkD ~40!

is given by the mean values of theK additive integrals

of motion Jk5Tr( ĴkrG) and the normalization condition
TrrG51. At the same time, the dispersion operato

D̂kl
(2)5D ĴkD Ĵl , where D Ĵk5 Ĵk2Jk , have perfectly defi-

nite mean values, as do all the dispersion opera

of higher ranks, for example, D̂kl,m
(3) 5DD̂kl

(2)D Ĵm ,

D̂kl,mn
(4) 5DD̂kl

(2)DD̂mn
(2) , etc., and they are all integrals of mo

tion. Hence if the mean values of these operators in the
tial state are such that they do not correspond to any can
cal distribution, they significantly restrict the accuracy
which the density matrix can be approximated by a qua
Gibbs or Gibbs distribution ast increases. The existence of
global correlation means that at least one of these dispers
has an anomalously large value with respect toN.

9. EVOLUTION OF THE OFF-DIAGONAL PART OF THE
DENSITY MATRIX

In the general case, where the density matrix has n
zero off-diagonal components in the initial state, the follo
ing representation, which is a direct generalization of~11! is
convenient:

Ĝ~l!5~l1R1 iL !21

5G~l!1pĜ~l!p̄1p̄Ĝ~l!p1p̄Ĝ~l!p̄, ~41!

G~l!5pĜ~l!p5p@l1M ~l!#21,
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M ~l!5pL1p̄
1

l1R1L̄
1

l1R
L̄

p̄L1p, ~42!

p̄Ĝ~l!p52Ḡ~l!iL 1G~l!, ~43!

pĜ~l!p̄52G~l!iL 1Ḡ~l!, ~44!

p̄Ĝ~l!p̄5Ḡ~l!2Ḡ~l!L1G~l!L1Ḡ~l!, ~45!

Ḡ~l!5p̄@l1R1 i L̄ #21, ~46!

whereL5L11L2 and L̄5p̄Lp̄. Formula~34! and the fact
that none of the eigenvalues ofR in the space of off-diagona
density matrices is smaller than 1/T2 clearly indicate that all

the singularities ofḠ(l) are located atl1<21/T2 .
It follows directly from ~41!–~46! that the singularities

of the off-diagonal part of the density matrixrN(l)
5p̄r(l)5p̄G(l)r0 are determined by the singularities

bothḠ(l) andG(l). In addition, all the contributions to th
damping which are slower than exp(2t/T2) are generated

from G(l), while Ḡ(l) determines only the amplitude o
these terms. The representation~13a! illustrates this genera
situation in the case of smalle.

Unlike rD , the off-diagonal part satisfiesrN(t→`)
50. In fact, we haverN(t→`)5 lim lrN(l) when l→
10, and it follows from~44!–~46! that the latter expressio
can be nonzero only by virtue of the multiplier limlG(l),
which, according to the analysis in Sec. 5~together with all
the multipliers to the right of it! has the formF(I z). How-
ever, this multiplier appears in~44! and ~45! only as the
productL1F(I z)[0.

An important class of experimentally observable quan
ties associated with off-diagonal density matrices consist
quantities for which either the off-diagonal initial state or t
off-diagonal operator itself is invariant to interchange~rela-
beling! of the spins. Both these properties are satisfied
once, for example, for the free-induction decay signal

G~ t !5Tr~ I 1~ t !I 2!/Tr 15Tr~ I 1p̄Ĝ~ t !p̄I 2!/Tr 1,

which can be written in the form

G~ t !5
1

h
Tr~ I 1r~ t !!

for r05(11hI2)/Tr 1, whereh is a certain constant. In th
class of observables under consideration, the contributio

p̄Gp and pGp̄ vanishes, andp̄Gp̄ reduces toḠ. Hence
they decay with a rate no slower than exp(2t/T2).

Let us prove this assertion for the case where the

diagonal observablef̃ is invariant under interchange of th
spins and the initial stater0 is arbitrary. We introduce the

~super!operatorŜ for symmetrization with respect to inter
change of the spins. The LiouvillianL5L12 iR, which, ac-
cording to~10!, determines the evolution ofr(t), is invariant

under interchange of the spins, i.e.,@Ŝ,L#50. Thus,

~ f̃ ur~ t !!5~Ŝf̃ ur~ t !!5~ f̃ uŜur~ t !!5~ f̃ uĜ~ t !Ŝur0!, ~47!
-
of

at

of

f-

andr0
s5Ŝr0 can be chosen as the initial state. We separ

r0
s into diagonal (r0D5pr0

s) and off-diagonal (r0N5p̄r0
s)

parts. Taking into account~43! and the fact that any
diagonal operator which is invariant to interchange
the spins can be represented asF(I z), we find that the

matrix element (f̃ uĜ(l)ur0D
s )50, since L1F(I z)50.

According to completely analogous argumen

( f̃ uḠ(l)L1$G(l)L1Ḡ(l)ur0N
s )%50. Here $...% is a certain

function of I z .

10. TIME FOR APPROACHING A LOCAL EQUILIBRIUM
STATE

Local equilibrium states play an important role in phys
cal kinetics, acting as the leading approximation to the ex
statistical operator during a certain ‘‘thermalization’’ timetq

~see, for example, Refs. 1 and 5!. It is natural to assume tha
in our model the rate at which the quasiequilibrium~21! is
established agrees in order of magnitude withWq;( jwjk

and depends weakly on the initial state. However,tq de-
pends significantly on the initial state.

We confine ourselves to a very simple~but experimen-
tally feasible, at least in principle! case, where only one spi
is initially displaced from equilibrium:

r~ t50!5expS F2j1I 1
z2j(

j 52

N

I j
zD

5
1

Tr 1 S 11
3p1

0

I 1~ I 111!
I 1

zD )
j 52

N S 11
3p0

I j~ I j11!
I j

zD .

~48!

We represent the quasiequilibrium state for any momen
time t as

rq~ t !5expS F~ t !2(
j 51

N

j j~ t !I j
zD

5
1

Tr 1 )
j 51

N S 11
3pj~ t !

I j~ I j11!
I j

zD , ~49!

wherepj (t)5K1( j ,t) are defined by Eq.~17!. We set

pj~ t !5p01qj~ t !, qj~ t50!5d j 1q1
05d j 1~p1

02p0!

and compare the value of

K2
q~ i , j ,t !5Tr~C2~ i , j !rq~ t !!

5pi~ t !pj~ t !5~p0!21p0~qi~ t !

1qj~ t !!1qi~ t !qj~ t ! ~50!

with the exact valueK2( i , j ,t), which is specified by Eq.~16!
with the initial condition

K2~ i , j ,t50!5~p0!21p0~qi
01qj

0!. ~51!

It follows from the linearity of Eq.~16! that the termqiqj in
~50! is unconditionally superfluous. The remaining terms c
incide approximately with the analogous terms inK2( i , j ,t).
Thus,tq must satisfy the condition

maxj~qj~tq!!'q1~tq!!p0. ~52!
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When this condition is satisfied, the superfluous~quadratic
with respect toqk) term in ~50! is small compared with the
terms which are linear with respect toqk and convey the
entire significant time dependence. In the limitq1

0@p0 the
inequality ~52! is achieved in the diffusive stage of evolu
tion, whenq1(t);(Wt)2d/2q1

0. When the impurities have a
random spatial distribution and we haved53, the Forster
constantb5(256/243)p3n0(nr0

3)2, wheren is the impurity
number density and the remaining parameters are define
formula ~13!, should be employed15,21 asW. It is clear that
tq→` asp0→0, and in this limit the system becomes no
ergodic, in complete agreement with the results of Sec.

We note one more important consequence of Eq.~16!,
which is that the development of multispin correlations
greatly slowed, if the spinsj 1 ,...,j m form a dense group. In
fact, there are no intragroup interactions in~16!; therefore,
the entire evolution of a dense group is determined by
surface interactions, whose efficiency decreases with incr
ing m due to the decrease in the ratio of the number of sp
on the surface of a group to the number in the bulk.

11. ERGODICITY AND REVERSIBILITY OF MOTION

Spin dynamics is exceptional in that highly impressi
advances have been achieved in devising a systematic m
scopic theory and in understanding macroscopic proce
on its basis. For example, the main causes of the revers
evolution~time reversal! of nuclear spin systems were foun
and realized experimentally back in 1970.28,29Spin diffusion
was subsequently reversed in Ref. 30. It is significant t
nuclear spin systems are thermodynamic in the same sen
which thermodynamics is applicable in general to magn
In particular, paramagnetic, ferromagnetic, and antiferrom
netic states, as well as phase transitions between them,
been discovered in them, in complete agreement with Gib
equilibrium theory.2

We have shown above that the evolution in our mo
system gives rise to Gibbs equilibrium for an extensive
of natural initial conditions. Nevertheless, in accordance w
the general principles of Hamiltonian dynamics, this evo
tion is reversible, as can be demonstrated experimentally
methods similar to those used in Refs. 28–30. They
based on the creation of conditions such that the effec
Hamiltonian coincides with the original one multiplied by
negative numerical coefficient. This can be realized in hom
nuclear systems by applying a fairly strong variable exter
field with an amplitudev1 and a frequencyṽ close to the
Zeeman valuevZ . Let the effective field in the rotating co
ordinate frameveff5Av1

21D2@v l be aligned at the angle
u5arctan(v1 /D) to the constant fieldH5(0,0,H). Here
D5ṽ2vZ , andv l is the so-called local frequency, which
determined in the standard manner.2,29 It characterizes the
root-mean-square value of the spin–spin interactions. Un
these conditions the secular part of the homonuclear dipo
dipole interactionsHsec(z)5H11H2, which is defined by Eq.
~A4! @or ~4! and ~38!#, can be subjected to repeated secul
ization, which effectively reduces to the transformation
in
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Hsec~z!→Hsec8 ~z8!5
3 cos2 u21

2
Hsec~z8!. ~53!

Here Hsec(z8) is distinguished fromHsec(z) by the replace-
ment of thez axis by thez8 axis, which is oriented along the
effective field, in the operatorsI j

zI k
z . The difference between

the directions of thez andz8 axes is easily compensated b
applying pulses of an oscillating field which rotate the sp
system~but not the crystal lattice! as a whole. As a result, i
cos2 u,1/3, many-particle evolution takes place under t
influence of the HamiltonianHsec8 (z8) in the direction oppo-
site to the direction of evolution withHsec(z) and, obviously,
at a slower rate. The value cosu50 was used in Refs. 28–30

The impurity system together with the thermostat co
tains two kinds of spins, viz., impurity spins (I ) and thermo-
stat spins (F). The total secular Hamiltonian of the dipole
dipole interactions is

Hsec~z!5Hsec
I ~z!1Hsec

F ~z!1Hsec
IF ~z!, ~54!

where the first two terms are defined, as in homonucl
systems, by formula~A4!, and the last term is defined b
~A5! and describes the interaction of theI andF spins with
one another. To reverse the many-particle evolution, here
must apply two variable fields with the frequenciesṽ I

5v IZ1D I and ṽF5vFZ1DF @which are close to the reso
nant frequencies of the impurity (v IZ) and the thermosta
(vFZ)# and with the corresponding amplitudesv1I andv1F

and direction anglesu I and uF . The effective Hamiltonian
for describing evolution in the presence of the interact
~54! and the variable fields indicated above is derived
standard methods29,31,32and has the form

Hsec8 ~zI8 ,zF8 !5
3 cos2 u I21

2
Hsec

I ~zI8!

1
3 cos2 uF21

2
Hsec

F ~zF8 !

1cosu I cosuFHsec
IF ~zI8 ,zF8 !. ~55!

Time reversal will clearly occur when

3 cos2 u I21

2
5

3 cos2 uF21

2
5cosu I cosuF,0, ~56!

i.e., when

cos2 u I5cos2 uF5
1

5
, cosu I52cosuF . ~57!

This method of reversing evolution can be implemen
in any nuclear spin system containing two kinds of sp
with significantly different gyromagnetic ratios. We note th
time reversal has already been realized experimentally in
eronuclear systems,33 but for a Hamiltonian for the interac
tion between different kinds of spins that is somewhat d
ferent from~A5!.

If we confine ourselves to the formal framework of th
model previously considered, in which the motion of t
local fields is simulated by a normal random process,
evolution of the impurity spins is reversed when the sign
the spin Hamiltonian is reversed and the trajectories of
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local fields are simultaneously reversed. More precisely,
the motion of the system be described by the Hamilton
H5H0(t)1H11H2 in the time interval 0<t<T, and let
reversal of its evolution be performed fort.T. Such rever-
sal will be achieved if the effective Hamiltonian has the fo
lowing form for t.T:

H52k@H0~T2k~ t2T!!1H11H2#,

wherek.0 is a numerical coefficient@we note thatk,1 is
usually realized in the known methods for reversing s
evolution, that we havek51/5 in ~55!–~57!, and that in Ref.
33 we havek51, but the rate of forward evolution wa
slowed#. In particular, the initial stater0 is reproduced at the
time t5(k11)T/k.

12. CONCLUSION

Our analysis has shown that the same open system
exhibit either ergodic or nonergodic behavior, depending
the initial condition. Hence exact kinetic master equatio
and their approximate forms can have solutions of b
types, provided none of them are treated differently dur
the derivation of these equations.

In the example studied above ergodicity is observed
in the initial state a! the correlations decay fairly rapidly with
increasing distance between the particles and b! the additive
integral of motion satisfieŝI z&;N1; ergodicity is violated,
if in the initial state satisfieŝI z&;N0 or if there are global
correlations. This classification is not general, but, as
whole, the results obtained permit determination of the fi
state for an extensive list of initial conditions.

We note that ergodicity is ensured in the system con
ered by phase relaxation, which stems from the interac
with the thermostat. Phase relaxation can be very effec
even if the interaction causing it is weak, since, unlike lo
gitudinal relaxation~population relaxation!, it does not re-
quire a significant energy expenditure.

We stress once again that, according to our analysis,
quasiequilibrium density matrix~21! will not be a good ap-
proximation for the true density matrixrD(t) if the initial
state is close to~19!. Thus, a theory of correlation function
and a theory of kinetic equations should, generally speak
be constructed on the basis of methods capable of taking
account this property.

I thank B. M. Gurevich, I. P Zvyagin, R. A. Minlos, V
I. Oseledets, Ya. G. Sina�, É. B. Fel’dman, T. N. Khazanov-
ich, V. E. Shestopal, the participants in the All-Mosco
Seminar ‘‘Problems in Magnetic Resonance,’’ and the p
ticipants in the seminar of the Institute of Theoretical a
Experimental Physics on spin dynamics for discussing
work.

APPENDIX A: RELATIONSHIP BETWEEN THE MODEL
HAMILTONIAN „4… AND THE STANDARD DIPOLE–DIPOLE
INTERACTION

The magnetic dipolar interaction of the nuclear spinsS1

and S2 , which are located at the pointsr1 and r2 and are
immersed in the external fieldH5(0,0,H), is described by
the Hamiltonian2
t
n

n

an
n
s
h
g

if

a
l

-
n
e
-

he

g,
to

r-

is

H125HZ1H12
d , ~A1!

HZ52~m11m2!H52(
j 51

2

vZ jSj
z ,

H12
d 5B12@S1•S223~S1•r12!•~S2•r12!r 12

22#,

wheremj5gjbnSj is the magnetic moment,gj is theg fac-
tor, bn is the nuclear magneton,B125g1g2bn

2/r 12
3 , and

vZ j5gjbnH. In a fairly strong magnetic field we hav
B12;«vZ j , where«!1 holds, and the HamiltonianH12

d can
be simplified significantly. For this purpose, it is convenie
to convert the equation of motion

ṙ52 i @H12,r# ~A2!

into the interaction representation using the unitary trans
mationV(t)5exp(iHZt):

ṙ̃~ t !52 i @H̃12
d ~ t !,r̃~ t !#, ~A3!

r̃~ t !5V~ t !r~ t !V1~ t !, H̃12
d ~ t !5V~ t !H12

d V1~ t !.

We use V(t)Sj
1V1(t)5Sj

1 exp(2ivZjt), V(t)Sj
2V1(t)

5Sj
2 exp(ivZjt), andV(t)Sj

zV1(t)5Sj
z , and we express the

Cartesian components of the operatorsSj
a from H12

d (t) in
terms ofSj

15Sj
x1 iSj

y andSj
25Sj

x2 iSj
y . It is now clear that

the operatorH̃12
d (t) can be divided into time-independen

~secular! and rapidly~in comparison toB12! oscillating~non-
secular! parts and that, as is usually the case in the theory
rapidly oscillating interactions, the influence of the nonse
lar part is small compared with the contribution of the sec
lar interaction ifB12t;1 ~see Refs. 2, 29, 31–34!

If vZ15vZ2 , the secular part is

H12
sec5B̄12~3S1

zS2
z2S1•S2!

5B̄12S 2S1
zS2

z2
1

2
~S1

1S2
21S1

2S2
1! D , ~A4!

B̄125
1

2
B12~123 cos2 q12!,

which, according to formulas~4! and ~38!, coincides to
within the notation with the two-spin interaction correspon
ing to the HamiltonianH11H2 .

The Hamiltonian for the interaction of different spin
with significantly different frequenciesvZ1ÞvZ2 is

H12
sec52B̄12S1

zS2
z . ~A5!

In the generally accepted representation for s
operators2 the matricesSj

x and Sj
z are real, andSj

y is purely
imaginary; hence the matrices of the Hamiltonians~A4! and
~A5! are real. The operators~A4! and~A5! are clearly invari-
ant to rotation throughp about any axis orthogonal to thez
axis. This property was utilized in Sec. 7.

In the main body of the text the interaction~A5! was
replaced by a random external field acting on the spins of
subsystem being studied. This replacement, which is a
known as the Anderson–Weiss–Kubo model, was int
duced more than 40 years ago specifically for the case of
fluctuations of the local fields at impurity spins, which w
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considered in this paper, and no contraindications for its
in this region have been reported hitherto. Moreover, it w
shown in Ref. 15 that it gives good results with experimen
verification even in cases where the fluctuation rate of
local fields is comparable to 1/T2 .

The terms of the dipolar Hamiltonian discarded in goi
from ~A1! to ~A4! describe multispin and multiple-quantu
relaxation processes, which have been thoroughly stu
~see, for example, Refs. 31, 34, and 35!. The rates of these
processes decrease with increasing values of the exte
field H no more slowly than 1/H 2, allowing us to neglect
them over a broad range of values ofH and the timet.
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Combined polaron states in magnetooptical effects in a quantum well
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Combined polaron states in a rectangular quantum well in a strong magnetic field perpendicular
to the well plane are discussed. These states are due to interaction between two discrete
electron levels with different Landau quantum numbers~n and n1) and different size-
quantization quantum numbers~m andm1) on the one hand and a confined LO phonon on the other
under conditions of low temperature when the energy difference between the electronic
levelsis equal or close to the energy of the confined LO phonon. The expression for the resonant
magnetic fieldH res at which a combined polaron is formed contains the energy difference
between size-quantized levels, so it is a function of quantum well parameters. The separationDEres

between branches in the energy spectrum of a combined polaron andH res has been
calculated as a function of the quantum well widthd. The resonant fieldH res can be reduced
dramatically in comparison with the casem5m1. The case of size-quantization with
n5n1 has been analyzed. The energy differenceDEres is in the range~1–5!•1023 eV. The
damping of combined polaron states due to the effect of anharmonicity on the LO phonon has been
studied. Interband absorption and features in the reflection spectrum due to interband
transitions have been calculated for an arbitrary ratio between the radiative and ‘‘phonon’’
lifetime of a combined polaron have been investigated. ©1999 American Institute of Physics.
@S1063-7761~99!02110-1#
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1. INTRODUCTION

The polaron shift due to weak interaction between el
trons and LO phonons in a strong magnetic field is calcula
using perturbation theory. However, when the resonant c
dition

vL15 j Ve , j 51,2,3, . . . , ~1!

holds, wherevL1 is the highest frequency of the LO phono
andVe is the electron cyclotron frequency, the coupling b
tween Landau levels becomes resonant, since an electro
the upper Landau level can emit a real LO phonon and g
the lower level characterized by the quantum numbern2 j .
When it is on the leveln2 j the electron can absorb th
previously emitted phonon and transition to the upper lev
then again emit the LO phonon, and so on. All these p
cesses have a considerable effect on the formation of
polaron state~1! and should be taken into account. The sp
trum of the unperturbed electron–phonon system consist
two levels, namely, the electron on thenth Landau level and
the electron on the leveln2 j 5n1 plus the LO phonon,
whose curves plotted versus the electron cyclotron freque
Ve cross at the point whereVe5vL1 / j . Determination of
the polaron state in terms of unperturbed states of
electron–phonon system when condition~1! holds involves
summation of the series in the perturbation theory using
electron–phonon coupling constant, which is equivalen
taking into account multiple processes of LO phonon em
7641063-7761/99/89(10)/11/$15.00
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sion and absorption. When this sum is calculated, the deg
eracy at the crossing pointVe5vL1 / j is lifted, the polaron
spectrum has the shape of two noncrossing branches, an
separation between them at pointVe5vL1 / j is determined
by the electron–phonon coupling constant. Such a pola
state was first detected in interband magnetoabsorption s
tra of bulk InSb.1

Polaron states can be formed in a strong magnetic fi
in both three-dimensional~3D! and quasi-two-dimensiona
~2D! structures. Quasi-two-dimensional systems inclu
quantum wells and inversion layers in metal–dielectri
semiconductor structures. Polaron states have conside
effect on magnetooptical spectra of both 3D and 2D syste
such as spectra of interband light absorption~see, for ex-
ample, the reviews in Refs. 2–4!. The difference between
these two kinds of system is in the electron and hole spec
in the case of three dimensions, these are one-dimensi
Landau bands, in 2D structures these are discrete levels.
difference affects the splitting in the polaron spectrum at
point Ve5vL1 / j , which increases as the system dimensio
ality is reduced: in a 3D structure is it proportional toa2/3

~Ref. 5!, and in the 2D case toa1/2 ~Refs. 6–14!, where
a!1 is Fröhlich’s nondimensional constant of coupling b
tween electrons or holes and LO phonons.

In the case of a quantum well, which is treated in th
paper as an example of a quasi-two-dimensional system
polaron state discussed above is called a double magnet
laron ~in accordance with the number of crossing levels
© 1999 American Institute of Physics
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765JETP 89 (4), October 1999 Korovin et al.
the unperturbed electron–phonon system!. More complex
polaron states, such as a triple magnetopolaron, a quate
etc.,14–17 are also possible. All these states are generated
the same size-quantized level characterized by the quan
numberm. Thus, the resonant condition~1! is independent of
the position of the size-quantization level and hence of
quantum well width.

The energies of the electron and hole levels, howe
are functions of two integers in a quantum well; i.e., t
Landau quantum numbern and the size-quantization numb
m. Therefore, in addition to condition~1!, resonances of a
different type can occur in this system of discrete leve
namely, when the electron–phonon coupling links two el
tron ~hole! levels with bothn andm being different. In this
case, the quantum well widthd, hence the gaps betwee
size-quantized levels, affect resonant magnetic fields. T
paper is dedicated to studying these combined polaron s
and their role in magnetooptical spectra.

2. RESONANT CONDITION FOR COMBINED POLARONS
AND THEIR CLASSIFICATION

In this paper we consider a type I rectangular quant
well with a gap widthEg , with barriers of heightsDEe and
DEh for electrons and holes, respectively. The magnetic fi
vector H is perpendicular to the quantum well plane~it is
aligned, as is usual, with thez-axis!. The vector potentialA0

is expressed in the Landau gauge:

A05A0~2yH,0,0!. ~2!

The energies of electrons,Em,n
e , and holes,Em,n

h , mea-
sured with respect to the bottom of the electron quant
well are expressed by

Em,n
e 5«m

e 1~n11/2! \Ve , ~3!

Em,n
h 5Eg1«m

h 1~n11/2! \Vh ,

Ve(h)5
ueuH

mc(v)c
, ~4!

where e is the electron charge,c is the speed of light in
vacuum, mc(v) is the electron~hole! effective mass, and
«m

e(h)5\vm
e(h) is the size-quantization energy of the electro

~holes!.
The resonant condition for the combined magneto

laron is the condition that the energies of two levels of
electron–phonon system coincide, namely, that of an e
tron on the levelEm,n

e and of an electron on levelEm1 ,n1

e plus

an LO phonon. It is generally accepted that only electro
can interact resonantly with phonons, and it is impossible
the case of holes owing to the difference between the e
tron and hole effective masses. The condition that two lev
of the electron–phonon system with different quantum nu
bersn andm coincide takes the form

Em,n
e 5Em1 ,n1

e 1\vL1 . ~5!

By substituting in Eq.~5! the expression forEm,n
e from

Eq. ~3!, we obtain an expression for the resonant cyclot
frequency in the case of a combined magnetopolaron:
on,
on
m

e

r,

,
-

is
tes

d

s

-
e
c-

s
n
c-
ls
-

n

Ve
res5

vL12~vm
e 2vm1

e !

n2n1
. ~6!

The quantum numbersm andn characterize the purely elec
tronic state of the electron–phonon system, whereasm1 and
n1 refer to an electronic state to which one LO phonon
added.

It is known that energies of levels in a quantum well
a finite depth are determined by the equations

cot t5
t

Abe
22t2

, m51,3,5, . . . ,

tant52
t

Abe
22t2

, m52,4,6, . . . , ~7!

where

t5
kmd

2
, be5

Qed

2
,

Qe5A2mcDEe

\2
, km5A2mc«m

e

\2
, ~8!

andDEe is the barrier height for the electron quantum we
In the limit DEe→` ~an infinitely deep well!, we have
kmd→mp. One can see in Eq.~6! that there are three differ
ent configurations with different relations between the qu
tum numbersm,m1 andn,n1. First, m.m1 andn.n1, sec-
ond,m.m1 andn,n1, and, finally,m,m1 andn.n1. The
configuration withm,m1 andn,n1 is out of question be-
cause it requires thatVe

res is negative. Let us discuss thes
three configurations in detail.

The first configuration requires that

\vL1>«m
e ~d!2«m1

e ~d!. ~9!

Suppose that the equality in condition~9! takes place when
d5dmin(m).dmin8 (m) holds, where

dmin8 ~m!5~m21!pA \2/2mcDEe ~10!

is the value ofd at which the upper levelm is ejected from
the well. It can be derived from Eq.~7!. Since the difference
«m

e (d)2«m1

e (d) decreases monotonically with the quantu

well width d from DEe2«m1

e @dmin8 (m)# to zero, the inequal-

ity ~9! holds in the interval

`.d.dmin~m!. ~11!

For \vL1.DEe2«m1

e @dmin8 (m)# ~a shallow well! condition

~9! also holds atd,dmin(m), i.e., throughout the interval o
d in which there is an upper level in the well.

In the second configuration, the following conditio
should be satisfied:

\vL1<«m
e ~d!2«m1

e ~d!, ~12!

which holds in the interval

dmin8 ~m!,d,dmin~m!, ~13!
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FIG. 1. Energy levels of an unperturbe
electron–phonon system in a quantum we
as functions of the electron cyclotron fre
quencyVe ; vL1 is limiting frequency of the
confined phonon. The solid lines plot curve
for the quantum numberm51, the dashed
lines for m52; A andA8 denote simple po-
larons;1, 2, and3 ~open circles! show data
for combined polarons. The arrows mar
weak polarons; ~a! \vL1.«2

e2«1
e ; ~b!

\vL1,«2
e2«1

e ; n is the Landau quantum
number.
n-

n
n
n

e
fre
o

th
e

o
b

ed
-

st

-

o
pa

er
ac
s

ns
o
y.
si

ss-
via
ing
els

so-
tem
w-

zed

m-
een
y

the
it

n is
e-
ua-

As/
s
d

and

the
since ford.dmin(m) the second configuration does not co
tain a polaron, and ford,dmin8 (m) the mth level is ejected
from the well. Note that the first and second configuratio
cannot be unified because different levels of the electro
phonon system cross one another in different configuratio

In the third configuration the right-hand side of Eq.~6!
is positive, so it can be realized in the interval`.d
>dmin8 (m1). Figure 1 shows energy levels of the unperturb
electron–phonon system as functions of the cyclotron
quencyVe for the two lower size-quantized levels and tw
Landau levels characterized by quantum numbersn50 and
n51. The solid lines represent levels withm51 and the
dashed lines represent levels withm52. The crossing points
correspond to different magnetopolaron states both in
presence and in the absence of resonant coupling betw
levels. The filled circles~A andA8) denote ordinary double
magnetopolarons, in which levels of the electron–phon
system characterized by the same size-quantization num
are involved.14,15,18Combined magnetopolarons are mark
by open circles.14,15,18They correspond to different configu
rations of the quantum numbersm,m1 and n,n1. The num-
berss1, 2, and3 label combined magnetopolarons in the fir
second, and third configurations, respectively. Figure
shows that in the first configuration levelsE2,1

e and E1,0
e

1\vL1 cross one another~Fig. 1a!, and in the second con
figuration ~Fig. 1b! these are the levelsE2,0

e and E1,1
e

1\vL1 .
Conditions~5! and ~6! are radically different from con-

dition ~1! for the double magnetopolaron, in which the res
nant magnetic field is independent of the quantum well
rameters. In the case of the combined magnetopolaron,Ve

res

is a function of both the depth and width of the well; in oth
words, there is a specific resonant magnetic field for e
quantum well. In Fig. 1 there are crossings between level
the electron–phonon system with equal numbersN of
phonons. These polaron states are similar to weak polaro18

when the differenceDN between phonon numbers in tw
states of the electron–phonon system does not equal unit
this case, resonant transitions between levels with emis
s
–
s.

d
-

e
en

n
er

,
1

-
-

h
of

,

In
on

of one phonon are forbidden. In order to calculate anticro
ing splittings, one has to take into account transitions
virtual states. In this situation, the degeneracy at cross
points is lifted, but the separation between the splitted lev
should be of an order ina higher thana1/2. In what follows,
such weak polarons will not be discussed.

To conclude this section, let us consider the case of re
nant coupling between levels of an electron–phonon sys
at all values of magnetic field. This requires that the follo
ing condition be satisfied:

\vL15«m
e 2«m1

e . ~14!

In this case, we have resonant coupling of two size-quanti
levels with equal Landau numbers, i.e.,n5n1. Condition~6!
can be satisfied over a wide range of quantum well para
eters, since the difference of the energy difference betw
size-quantized levels from\vL1 can be compensated for b
varying the magnetic field, whereas condition~14! can be
satisfied only at certain quantum well parameters, and
magnetic field is needed only to form Landau levels, so
can be relatively weak.

3. THE SPECTRUM OF A COMBINED MAGNETOPOLARON

The energy spectrum of a combined magnetopolaro
determined, as is well known, by the poles of the on
particle electron Green’s function. The corresponding eq
tion has the form

«2Em,n
e 2S~m,n,«!50, ~15!

whereEm,n
e is given by Eq.~3! and S(m,n,«) is the mass

operator. In single quantum wells in such structures as Al
GaAs/AlAs and AlSb/InSb/AlSb for quantum well width
d.200 Å, it suffices to take account of only confine
phonons, since the interaction with interface phonons
half-space phonons can be neglected.8,18 The Hamiltonian of
interaction between an electron and phonons confined in
quantum well, which occupies the region 0<z<d, can be
expressed as19
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Hc5(
q

F (
p51,3, . . .

Cq,p cosFpp

d S z2
d

2D G~aq,p1a2q,p
1 !

1 (
p52,4, . . .

Cq,p sinFpp

d S z2
d

2D G~aq,p1a2q,p
1 !Geiq•r,

0<z<d, ~16!

Hc50, z,0, Hc50, z.d.

The parameterCq,p is given by

Cq,p52 \vL1

A8pa l 3/S0d

lAq21~pp/d!2
, ~17!

where the nondimensional constant of coupling between
electron and confined phonon is defined as

a5
e2

2l \vL1
~«`1

212«01
21!, l 5A \

2mcvL1
, ~18!

vL1 is the frequency of the confined phonon, whose disp
sion is neglected,«01(«`1) is the static~high-frequency! di-
electric susceptibility of the quantum well materia
r5r (x,y) andq5q(qx ,qy) are the two-dimensional radius
vector of the electron and the phonon wave vector, resp
tively, aq,p

1 (aq,p) is the operator creating~annihilating! a
confined phonon with wave vectorq and quantum numberp,
which is an analogue of the wave vector componentqz in the
3D configuration, andS0 is the normalizing area.

If two levels of an electron–phonon system cross, it
sufficient to take into account the simplest Feynman diag
~two vertices connected by electron and phonon lines! in the
mass operator. The contributions of diagrams with lar
numbers of vertices are of higher orders in the coupling c
stanta, which is assumed to be small. Using the stand
techniques, we obtain the following expression for the m
operator:

S~m,n,«!5 (
m1 ,n1

(
q,p

uFp~m,m1 ,n,n1 ,q!u

«2Em1 ,n1

e 2\vL11 id
,

d→0, p51,2,3, . . . , ~19!

Fp~m,m1 ,n,n1 ,q![Fp~q!5
1

2
Cq,p$Mm,m1

(1) ~p!

3@11~21!p11#1Mm,m1

(2) ~p!

3@11~21!p!#%I n,n1
~q!.

In deriving Eq.~19!, we have assumed that the temperat
is low enough so that optical phonon states are unpopul
and the resonant interaction is due to emission of phon
The following notation has been introduced in Eq.~19!:

I n,n1
~q!5

1

Lx
E dr exp$ i ~k2k1!x1 iq•r%

3fn~y2yk!fn1
~y2yk1

!, ~20!

Mm,m1

(1) ~p!5E
0

d

dzxm~z!xm1
~z!cosFpp

d S z2
d

2D G ,
e

r-

c-

s
m

r
-

d
s

e
ed
s.

p51,3, . . . ,

Mm,m1

(2) ~p!5E
0

d

dzxm~z!xm1
~z!sinFpp

d S z2
d

2D G , ~21!

p52,4, . . .

The wave functionfn(y2yk) describes the motion of an
electron in the quantum well plane:

fn~y!5
1

A2nn!ApR0

expS 2
y2

2R0
2D HnS y

R0
D , ~22!

where

R0
25c\/ueuH, yk52c\k/eH, ~23!

k is thex component of the electron wave vector,Hn(y) is
the Hermitian polynomial. The electron motion in the pe
pendicular direction is described by the functionxm(z):

xm~z!5Cm~21!(m21)/2

3H cos~kmd/2!exp~kmz!, z<0,

cos@km~z2d/2!#, 0<z<d,

cos~kmd/2!exp@2km~z2d!#, z>0

~24!

for m51,3,5, . . . and

xm~z!5Cm~21!m/2

3H 2sin~kmd/2!exp~kmz!, z<0,

sin@km~z2d/2!#, 0<z<d,

sin~kmd/2!exp@2km~z2d!#, z>0

~25!

for m52,4,6, . . . Thenormalizing constant is

Cm5A 2Km

11Kmd6cos~kmd!6~Km /km!sin~kmd!
, ~26!

Km5AQe
22km

2 , ~27!

the upper signs are applied to evenm, the lower signs to odd
m. The quantitykm , and hence the energy«m

e of a level in
the quantum well, are determined by Eqs.~7! and ~8!.

In the limit kmd→mp of an infinitely deep well,Km

→`, Cm→A2/d, xm(z)→A2/d sin(mpz/d) if 0<z<d, and
xm(z)→0 for z<0 andz>d. By substituting wave functions
~22! in Eq. ~20! for I n,n1

(q), we obtain

uI n,n1
~q!u25

min~n!,n1! !

max~n!,n1! !
uun2n1ue2u@Lmin(n,n1)

un2n1u
~u!#2,

~28!

where

u5 l H
2 q2, l H

2 5
c\

2ueuH
5

R0
2

2
,

Ln
s(u) is the adjoint Laguerre polynomial.

Similarly, using the functionsxm(z) from Eqs.~24! and
~25!, we obtain the expressions forMm,m1

i (p) ( i 51,2)
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Mm,m1

(1) ~p!5CmCm1
ppd~21!(p21)/2

3F6
cos~q1/2!

p2p22q1
2 1

cos~q2/2!

p2p22q2
2G , ~29!

p51,3,5, . . . , theplus sign applies to oddm andm1 and the
minus sign to evenm andm1,

Mm,m1

(2) ~p!5CmCm1
ppd~21!p/2

3F2
sin~q1/2!

p2p22q1
2 6

sin~q2/2!

p2p22q2
2G , ~30!

p52,4,6, . . . , theplus sign applies to oddm and evenm1,
the minus sign to evenm and oddm1. In Eqs.~29! and~30!
we have introduced the notation

q15~km1km1
!d, q25~km2km1

!d, ~31!

where km and km1
are solutions of either the first or th

second equations in~7!, depending on the parities ofm and
m1. For an infinitely deep quantum well

Mm,m1

(1) ~p!56
2p

p
~21!(p1m1m121)/2

3F 1

p22~m1m1!2 2
1

p22~m2m1!2G ~32!

~the plus is used for oddm andm1, the minus for evenm and
m1), and

Mm,m1

(2) ~p!5
2p

p
~21!(p1m1m121)/2

3F2
1

p22~m1m1!2 1
1

p22~m2m1!2G
~33!

for m andm1 with different parities.
Using Eqs.~7! and ~28!, it is convenient to express th

mass operator as

S~m,m1 ,n,n1 ,«!5 (
m1 ,n1

wc~m,m1 ,n,n1!

«2Em1 ,n1
2\vL11 id

, ~34!

where the functionwc(m,m1 ,n,n1) is given by the expres
sion

wc~m,m1 ,n,n1!5
a

2
~ \vL1!2AVc

vL1

min~n!,n1! !

max~n!,n1! !

3F E
0

`

duuun2n1u21/2e2u@Lmin(n,n1)
un2n1u

~u!#2

3Fm,m1

c ~b0Au !G1/2

, b05
d

l H
, ~35!

Fm,m1

c ~x!5 (
p51,3, . . .

@Mm,m1

(1) ~p!#2

x21p2p2

1 (
p52,4, . . .

@Mm,m1

(2) ~p!#2

x21p2p2
. ~36!
The mass operator~34! is a sum over the quantum num
bersm and n1. If the resonant condition~6! is satisfied, it
contains one large term in which the denomina
«2Em1 ,n1

e 2\vL1 is small. This term corresponds to an ele

tronic transition from levelm,n to the level with specified
m1 and n1 through emission of an LO phonon. The rest
the terms are small, since they are proportional to the c
pling constanta!1, and their denominators are far from
zero. Thus, the mass operator is expressed as

S~m,n,«![S~m,m1 ,n,n1 ,«!5
wc~m,m1 ,n,n1!

«2Em,n
e 1l1 id

, ~37!

where

l5«m
e 2«m1

e 1\Ve~n2n1!2\vL1 ~38!

has the sense of the difference between the resonant m
netic field at fixedd and the actual field. By substituting Eq
~37! in ~5!, which describes the spectrum, we obtain a q
dratic equation for the variable«2Em,n

e , whose solution de-
termines two branches of the combined magnetopola
spectrum. The separation between the spectral branch
given by the formula

DE~l!5Al214wc~m,m1 ,n,n1!. ~39!

At the point of the exact resonancel50 and

DEres52Awc~m,m1 ,n,n1!. ~40!

Alongside DEres, it is interesting to calculate the resona
magnetic fieldH res as a function of the well widthd. The
expression forH res is derived from Eqs.~6! and~8!, and for
the polaron in the first configuration it has the form

H res
(1)5H res

(0)H 12
l 2

d2 @~kmd!22~km1
d!2#J ,

wherel is determined by Eq.~18!, km andkm1
by the solution

of Eq. ~7!, and

H res
(0)5

mccvL1

un2n1uueu

is the resonant magnetic field determined by condition~1! for
the double polaron.

For the polaron in the third configuration,

H res
(3)5H res

(0)H 11
l 2

d2 @~km1
d!22~kmd!2#J ,

H res
(1) and H res

(3)→H res
(0) in the limiting case of larged. When

the well width d is diminished,H res
(1) drops andH res

(3) in-
creases.

For the polaron in the second configuration,

H res
(2)5H res

(0)H l 2

d2 @~kmd!22~km1
d!2#21J , n1.n.

Here the fieldH res
(2) is low in the region close todmin(m), at

which point the polaron disappears, and becomes higherd
approachesdmin8 (m). In GaAs, the resonant field for trans
tion n51→n150 is H res

(0)520.8 T. It can be reduced seve
alfold if one takes a larger differencen2n1.
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FIG. 2. SeparationsDEres between branches o
the spectrum of combined magnetopolaron ve
sus the quantum well widthd ~curves1–4! for
an Al0.32Ga0.68As/GaAs/Al0.32Ga0.68As structure
(DEres50.35 eV, \vL150.036 eV, mc /m0

50.067,a50.07). Curves18– 48 plot the reso-
nant magnetic fieldH res calculated by Eq.~6!
~the right-hand scale! for curves 1–4, respec-
tively; ~a! polaron of the first configuration;~1!
transition m52, n51→m51, n50; ~2! m
53, n51→m51, n50; ~3! m54, n51→m
51, n50; ~4! m52, n52→m51, n50; the
dash-dotted line plots«2

e(d)2«1
e(d); ~b! po-

laron in the third configuration:~1! m51,
n51→m52, n50; ~2! m51, n54→m52,
n50.
s
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n
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Curves of DEres as a function of the
quantum well width d calculated for the structure
Al0.32Ga0.68As/GaAs/Al0.32Ga0.68As are plotted in Fig. 2.
EachDEres curve has a corresponding curve of the reson
magnetic fieldH res.

Figure 2a~the case of \vL1>«m
e 2«m1

e ! shows curves

for the polaron in the first configuration (m.m1 , n.n1).
The curves ofDEres rapidly drop to zero around the poin
dmin(m), and the polaron does not exist there. As the qu
tum numberm increases, the pointdmin(m) shifts to the side
of largerd. So, we havedmin(2).180 Å for curve1 in Fig.
2a ~this curve corresponds to the combined polaron1 in Fig.
1a!, dmin(3).320 Å for curve2, and dmin(4).460 Å for
curve3. SinceH res}1/(n2n1), the increase in the numbern
of the initial Landau leveln at fixedn1 leads to a consider
able decrease inH res ~curves18 and48 in Fig. 2a and curves
18 and28 in Fig. 2b!.

Figure 2b shows curves for the polaron of the third co
figuration, when the domain of the curve ofDEres is limited
to dmin8 (m), where the upper level is ejected from the qua
tum well. On curve1, which corresponds to polaron3 in Fig.
1, dmin8 (2).40 Å. The polaron of the second configuratio
exists in a relatively narrow range ofd determined by Eq.
~13!. In the case of the transitionm52, n50→m151, n1

51, this range extends fromdmin8 (2).40 Å to dmin(2)
.180 Å. This range broadens with the numberm. So,
dmin8 (3).80 Å, dmin(3).320 Å for m53 and dmin8 (4)
.120 Å, dmin(4).460 Å for m54. The fieldH res is high
near the lower limit~30.1 T for d5200 Å, m53, n151
→m151, n50) and drops rapidly asd approachesdmin(m)
~3.84 T ford5300 Å!. HereDEres is of the same order as th
value given in Fig. 2.
t

-

-

-

In the case when the resonant condition~14! holds, in
the mass operator~19! we setn5n1. As a result, we have the
expression

S~m,n,«!5(
m1

wc~m,m1 ,n!

«2Em1 ,n
e 2\vL11 id

, ~41!

where we can retain only the largest term corresponding
the small denominator on the right-hand side. The funct
wc(m,m1 ,n) in this case equals

wc~m,m1 ,n!5
a

2
~ \vL1!2

ld

l H
2

3E
0

`

due2u@Ln~u!#2Fm,m1
8 ~b0Au !,

~42!

whereLn(u) is the Laguerre polynomial andFm,m1
8 (b0Au)

5Fm,m1

c /b0 @see Eq. ~36!#. The gap between the two

branches of the combined magnetopolaron spectrum in
case is

DE~l8!5Al8214wc~m,m1 ,n!, ~43!

where

l85\~vm
e 2vm1

e !2\vL1 ~44!

determines the detuning from the resonance due to the
viation of d from the value determined by condition~14!. In
the case of fine tuning

DEres52Awc~m,m1 ,n!. ~45!
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It follows from Eq. ~45! that in the structure
Al0.32Ga0.68As/GaAs/Al0.32Ga0.68As a splitting energy of
about 231023 eV is achieved at magnetic fieldH.3.86 T.
The valuedres that satisfies condition~14! depends sensi
tively on the quantum numberm. For example, we have
dres5191 Å for the transitionm52→m151, dres5329 Å
for m53→m151, anddres5460 Å for m54→m151. The
splitting DEres is considerably smaller at Landau numbe
n.0 owing to the oscillating nature of the functionfn(y)
@Eq. ~22!#. The shape ofDEresas a function of magnetic field
is controlled by the functionwc(m,m1 ,n), whose magnetic
field dependence, as one can see in Eq.~42!, is determined
by the parametersb0 and l / l H .

The magnetopolaron spectrum is described by the sim
formula

«65Em,n
e 2l/26A~l/2!21wc, ~46!

where the plus sign applies to the upper branch and the
nus to the lower branch. Herewc is determined by either the
function wc(m,m1 ,n,n1) in Eq. ~35! or the function
wc(m,m1 ,n) in Eq. ~42!. The form of l is determined ac-
cording to~38! or ~44!.

Consider first the case when the resonant condition~5! is
satisfied. In a real system, there is always an interac
which makes a state unsteady and adds an imaginary c
ponent to the energy. The cause of instability of a pola
state can be the instability of the electronic state or the p
non. The mechanism for instability of the electronic state c
be two-phonon scattering, when the electron emits t
acoustic phonons and makes a transit from leveln51 to
n50. The phonon instability is due to the decay of an L
phonon into two acoustic phonons caused by the lattice
harmonism. Let us discuss the phonon instability mechan
in detail. As was noted above, it suffices to take into acco
the simplest diagram in calculating the mass operator.
LO phonon decay is taken into account by renormalizing
zero-order Green’s function of the LO phonon, i.e., a ver
describing the LO phonon decay into two acoustic phon
should be introduced~three-phonon interaction!. Acoustic
phonons in a quantum well are characterized by their tw
dimensional wave vectorsq in the quantum well plane and
discrete quantum numberp1, which is an analog of the wav
vector componentqz , as in the case of a confined LO ph
non. Let us suppose that the three-phonon interaction
small in comparison with the interaction between electro
and LO phonons. In this case, the correction to the LO p
non Green’s function is calculated by the perturbat
theory. The equation for the polaron spectrum takes the f

«2Em,n
e 2

wc

«2Em,n
e 1l

1
i \g~«!wc

~«2Em,n
e 1l!2

50, ~47!

and the last term on the left-hand side is assumed to be s
in comparison with the other two with respect to the para
eter \g(«)/Awc. The quantity \g(«) determines the in-
stability of the magnetopolaron spectrum. It can be con
niently expressed as
le

i-

n
m-
n
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\g~«!5
p

wc
(

q,p1 ,p2

Fp~q!Fp8
* ~q! \gph~q!. ~48!

The functiongph(q) in the sum in Eq.~48! is the inverse LO
phonon lifetime due to its decay into two acoustic phono

\gph~q!5 (
q,p1 ,p2

Cp,p1 ,p2
~q,q1!Cp8,p1 ,p2

* ~q, q1!

3d~«2Em1 ,n1

e 2\vp1
~q1!2\vp2

~q2q1!!. ~49!

HereCp,p1 ,p2
(q,q1) is the three-phonon vertex andvp(q) is

the frequency of the confined acoustic phonon. In deriv
Eqs.~48! and~49! we have taken into account the conserv
tion of the two-dimensional momentumq, whereas no con-
servation law applies to discrete quantum numbersp. This
explains why the number of sums overp is twice the number
of sums overq. Together with the level broadening, th
three-phonon interaction brings about their shift, which
neglected here owing to its smallness. Equation~47! is
solved by the iteration method. As a result, we obtain a f
mula for the two magnetopolaron branches:

« (6)5Em,n
e 2

l

2
6AS l

2D 2

1wc2
i \g (6)

2
, ~50!

where

g (6)5gF17
l/2

A~l/2!21wc
G ~51!

is the inverse lifetime of the polaron spectrum branches
to the LO phonon decay~the upper signs are for the uppe
branch, and the lower signs are for the lower one!. The pa-
rameterg in Eq. ~51! is

g~«!52l/26A~l/2!21wc,

and, strictly speaking, it should be different for differe
spectrum branches. As one can see in Eqs.~48! and ~49!,
g(«) is a function of« owing to the functiongph(«), where
« is included in the argument of thed-function. In the zero-
order approximation in«, which should be used in this cas

«2Em1 ,n1

e 5l/26A~l/2!21wc1\vL1.\vL1 , ~52!

sinceAwc!\vL1 . Thus, gph(q) is almost constant for al
electronic states, andg(«) is approximately the same for a
branches of the polaron spectrum.

The parametersg (6) sensitively depend on both th
magnetic field and electron quantum numbers. At the re
nance pointsl50 and g (1)5g (2)5g. For l.0 and
l@Awc, g (1)→0, since in this limiting case the uppe
branch of the magnetopolaron spectrum is a purely electro
state characterized by quantum numbersm andn, which can-
not be affected by the phonon lifetime. The lower level
this case contains an electron with quantum numbersm1 and
n1, and its decay rate is controlled by the phonon lifetim
soin this limit we haveg (2)→g. With the opposite sign of
l, the situation is reversed: the damping of the lower bran
vanishes, and the decay rate of the upper branch is de
mined byg, the quantum numbersm andn, and the phonon
lifetime, therefore we have in this limitg (2)→g.
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4. INTERBAND ABSORPTION AND REFLECTION SPECTRA
OF THE QUANTUM WELL

Since the electron and hole motion in type I quantu
wells is quantized in the direction perpendicular to the qu
tum well plane, the spectrum of interband absorption of lig
in a strong magnetic field due to transitions between disc
levels consists of narrow lines. In a a strong magnetic field in
III–V materials, which are considered as a specific exam
in this paper, each level of hole size-quantization is ass
ated with four sets of Landau levels, two of which are rela
to the heavy holes and two to the light ones. The wave fu
tions of the heavy holes, which are considered here,
known to have at the center of the Brillouin zone the form

C1(2)5~X6 iY!C↑1~X2 iY!C↓ . ~53!

In the conduction band, there are also two wave functi
with different spin orientations, namely,ucC↑ and ucC↓ .
HereC↑ andC↓ are the spin-dependent wave functions a
uc is the fast oscillating Bloch function of the conductio
band,X andY are the Bloch functions of the valence ban
The momentum matrix elements relating statesC1(2) and
ucC↑(↓) are equal and expressed by

pcv5
1

A2
pcv~ex1 iey!, ~54!

where ex and ey are unit vectors aligned with thex and y
axes, and the constant

pcv52 i \E
cell

drX*
d

dx
uc52 i \E

cell
drY*

d

dy
uc

can be chosen to be real.
The electron and hole discrete levels are broadened

various interactions in the quantum well. The broadening
absorption lines is determined by both homogeneous and
homogeneous mechanisms, which are beyond the scop
this paper. Therefore, our discussion is limited to the mec
nism of phonon damping of magnetopolaron states descr
in Sec. 3. The convenience of this mechanism~from the the-
oretical viewpoint! is that it broadens either electron or ho
states because the resonant condition~5! or ~14!, which de-
termine the region where the magnetopolaron exists, ca
be satisfied for both electrons and holes at the same t
When an electron–hole pair is generated, there is alwa
probability of its annihilation, and this process leads to
diative damping, which is determined byg r . If the inequal-
ity

g r!g ~55!

holds, the absorption can be calculated in the approxima
linear in the intensity of interaction with the electromagne
wave.

Since in the accepted model hole levels are not bro
ened, the absorption at low temperatures is known to be
portional to iReGg(G), whereGg(G) is the retarded one
particle electron Green’s function, which is expressed as

Gr~G!5\FG2
wc

G1l
1

iwc \g

~G1l!2G21

, ~56!
-
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te

le
i-
d
c-
re

s

d

.

by
f
n-
of

a-
ed

ot
e.
a

-

n

d-
o-

where

G5\v l2Emh ,n
h 2Eme ,n

e , ~57!

v l is the frequency of the incident electromagnetic wave, a
g is determined by Eq.~48!. It is convenient to characteriz
the light absorption by the fractionA of absorbed energy
which is a nondimensional parameter equal to the abso
value of energy absorbed in the quantum well material
vided by the incident flux of energy in the barrier. In th
dipole approximation and given that condition~55! holds,A
is simply related to the Green’s function:

A5g r Re@ iGr~G!#, ~58!

where

g r5
2e2

n0\c

pcv
2

m0
2

ueuH
\c

^mhume&

vg1vmh ,n
h 1vme ,n

e
. ~59!

Here ^mhume& is the overlapping integral between the ele
tron wave functionxme

and the similar hole wave function

xmh
, vg1vmh ,n

h 1vme ,n
e is the frequency of the interban

transition between levelsmh ,n and me ,n; n0 is the refrac-
tion index of the barrier material. In this section we are us
the quantum numbersme and mh for electrons and holes
instead of the quantum numberm. In deriving Eq.~58!, we
have neglected the difference between the refraction ind
of the barrier and quantum well and assumed that the ba
occupies the entire space except the region 0<z<d. The
light wave is also assumed to be incident normally on
quantum well plane and circularly polarized.

The function Re@ iGr(G)# describes two peaks of the in
terband absorption due to the transition from the vale
band level with quantum numbersmh ,n to the two branches
of the magnetopolaron spectrum in the conduction ba
Consider the shape of the absorption spectrum in the s
approximation that was used in calculating the spectrum~48!
of the damped magnetopolaron. The quantity Re@ iGr(G)#
can be expressed as a sum of two terms, each of w
describes a Lorentzian. The expression for the fractionA of
absorbed energy is

A~G!52@ \g r
(1)D (1)1 \g r

(2)D (2)#, ~60!

D (6)5Re
i

G2G (6)1 i \g (6)/2

5
\g (6)/2

~G2G (6)!21~ \g (6)/2!2
, ~61!

G (6)5~2l6Al214wc !/2. ~62!

The parameterg r
(6) is the radiative decay rateg r renormal-

ized by the magnetopolaron state:

g r
(6)5g rF16

l

Al214wc
G . ~63!

For l50 ~accurate tuning to the resonance!
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G (6)56Awc, g (6)5g, D (6)5
g/2

~G7Awc!
21~g/2!2

,

i.e., we have two Lorentzians with peaks at pointsG
56Awc. The separation between the peak tops equals
between the magnetopolaron branches at pointl50. For
l.0 and l@2Awc we haveg r

(1)→g r and g r
(2)→0. The

cause of this behavior ofg r
(1) is that the state on the uppe

branch transforms to then51 state at largerl. At the same
time, g r

(2) drops, since then50 state becomes dominant o
the lower branch of the spectrum and the interband transi
to this branch is forbidden. The situation is reversed in
regionl,0: g r

(1)→0 andg r
(2)→g r . The ratio

A~G (1)!

A~G (2)!
5

~l1Al214wc!
2

~2l1Al214wc!
2

~64!

increases as we move into the regionl.0, i.e., if the mag-
netic field is higher than the resonant value, the peak co
sponding toG5G (1) dominates. In magnetic fields belo
the resonance (l,0), the peak corresponding toG5G (2)

dominates.
The conditionl,0 signifies that the linear approxima

tion fails at largeulu. If the resonant condition~14! is satis-
fied, the absorption is also determined by Eqs.~60!–~63! and
~51! with wc expressed by Eq.~42! and l8 from Eq. ~44!
substituted forl. The replacement ofl with l8 radically
changes the magnetic field dependence ofA. Specifically,
sincel8 does not vary with the magnetic field, varying th
magnetic field at a fixed well widthd should not increase on
peak amplitude and decrease the other, but they will cha
similarly.

Over recent years, the interest in studies of optical
flection spectra of low-dimensional systems has increa
and this technique has proved an efficient tool for investig
ing their electronic properties.20–23This section considers re
flection of a plane, monochromatic wave of the optical ran
normally incident on the quantum well plane from the side
negativez. The light wavelength is assumed to be mu
larger than the well width. The light reflection is an effect
higher order ing r , and the approximation linear ing r is
insufficient for calculations. Let us introduce a nondime
sional transmissivityT, which equals the absolute value
the energy flux after of the quantum well~on the right-hand
side of the well! divided by the incident energy flux befor
the well ~on the left-hand side of the well!. The perturbation
series in terms of the interaction with the optical wave
duces to a geometric progression, whose sum yields forT the
formula

T5
1

~11a!21b2 , ~65!

where a54pRex(v1), b54pImx(v1), and x(v1) is the
dielectric susceptibility of the well material. If there is
fixed resonant frequencyv0, thenx(v1) is expressed by the
well-known formulax(v1)51/@4p(v2v01 ig/2)# ~we ne-
glect the nonresonant component 1/@4p(v2v02 ig/2)#).
Then
at

n
e

e-

ge

-
d,
t-

e
f

-

-

a5a05
g rg/4

~v l2v0!21~g/2!2 ,

b5b05
~g r /2!~v l2v0!

~v l2v0!21~g/2!2 . ~66!

The parametera for the magnetopolaron state is determin
by Eq. ~60!:

a5A~G!/25\g r
(1)D (1)1\g r

(2)D (2), ~67!

and the parameterb, by analogy with Eq.~66!, is

b5\g r
(1)D1

(1)1 \g r
(2)D1

(2) , ~68!

where

D1
(6)5Re

1

G2G61 ig (6)
5

G2G (6)

~G2G (6)!21~ \g (6)/2!2
.

~69!

Let us consider, along withA andT, the fraction of en-
ergy reflected back to the region of negativez. These quan-
tities are related by the obvious equation

A1R1T51. ~70!

If we reject condition~55!, the absorptionA, after summing
the perturbation series in terms of interaction with ligh
takes the form

A5
2a

~11a2!21b2 , ~71!

and, according to Eqs.~65! and ~70!,

R5
a21b2

~11a2!21b2 . ~72!

By substitutinga from Eq. ~67! andb from Eq. ~68! in ~71!
and ~72!, we obtain exact expressions, which hold for
ratios betweeng r andg:

A5
2

Z H \g r
(1)

2

\g (1)

2 F ~G2G (2)!21S \g (2)

2 D 2G
1

\g r
(2)

2

\g (2)

2 F ~G2G (1)!21S \g (1)

2 D 2G J , ~73!

R5
1

Z H F\g r
(1)

2
~G2G (2)!1

\g r
(2)

2
~G2G (1)!G2

1F\g r
(1)

2

\g (2)

2
1

\g r
(2)

2

\g (1)

2 G2J , ~74!

where

Z5@~G2G (1)!21~\g (1)1\g r
(1)!2/4#

3@~G2G (2)!21~\g (2)1\g r
(2)!2/4#. ~75!

In the limit g (6)@g r
(6) , expression~73! for A transforms to

~60! andR is quadratic ing r . The ratioJ between the peak
intensityG5G (1) and the peak intensityG5G (2) in the ap-
proximationg,g r,2Awc ~when the peak widths are smalle
than the separation between them! is the same forA andR:
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J5
@l1Al214wc1~g r /g!~2l1Al214wc!#

2

@2l1Al214wc1~g r /g!~l1Al214wc!#
2

. ~76!

In the case of a resonance described by condition~5!, the
detuning l is determined by Eq. ~38!, and wc

5wc(m,m1 ,n,n1) @Eq. ~35!#. In the case of condition~14!,
l is replaced byl8 and wc5wc(m,m1 ,n) @Eq. ~42!#. If
g5g r , then J51 holds for alll or l8. If g5” g r , then J
51 holds only at the pointl(l8)50.

The magnetic field dependence ofJ is determined by the
resonance condition. First consider the detuning from con
tion ~5!. If we haveg.g r , then in the regionl.2Awc(l
.0) we have J→(g/g r)

2.1, i.e., the right-hand pea
G5G (1) dominates in the spectrum. Forl,0 we haveulu
.2Awc, J→(g r /g)2 and the left-hand peakG5G (2) is
dominant. Ifg,g r holds, then, on the contrary, forl.0 the
left-hand peak dominates, and forl,0 the right-hand peak
is higher. When the frequency is detuned from condit
~14!, the limiting cases forJ are the same, but the paramete
l8 andwc5wc(m,m1 ,n) vary with d at fixed magnetic field
H. If d is fixed, the dependence ofJ on H is weaker and is
controlled by the H-dependence of function wc

5wc(m,m1 ,n) and constantg r given by Eq.~59!.
Figure 3 shows curves ofA and R versusG/ \vL1 for

two values ofl8 in condition ~14!. Curves1 and 2 plot
parameters of absorption spectra, curves3–5 refer to reflec-
tion spectra. In the case of an exact resonance,l850, curves
1, 4, and5 are symmetrical about the pointG50 ~the inset
shows peaks corresponding toG.0). If l8.0, the right-
hand peak dominates~curves2 and 3!. In the case of reso
nance condition~14!, the parametersA and R are slower
functions of magnetic field than in the case of condition~5!.
This is illustrated by the inset to Fig. 3, where curve5 cor-
responds toH56 T, i.e., the magnetic field twice as high a
for curve4. Curves1–4 can be used for describingA andR

FIG. 3. Intensities of interband absorption,A ~curves1 and2!, and reflec-
tion, R ~curves3–5!, of light at two values ofl8 in Eq. ~14! in the case of
m52, m151, n50 for the same structure as in Fig. 2. Curves1, 2, and4
plot the data forH54.8 T, wc(2,1,0)52.2631023 eV, l850; curve3 for
l8/2Awc(2,1,0)50.5; and curve5 for l850, H59.6 T, wc(2,1,0)53.18
31023 eV.
i-

n

versus frequency in the case of condition~5! if only we sub-
stitute wc5wc(m,m1 ,n) for wc5wc(m,m1 ,n,n1) and l8
for l.

5. DISCUSSION

The main conclusion that follows from the results d
scribed above is that the separation between the
branches of the combined magnetopolaron is within
31023–431023 eV, which is slightly less than the respe
tive difference for the double polaron, 331023–631023

eV,18 but can be detected in experiments.
In the case of a combined polaron one can considera

reduce the resonant magnetic fieldH res in comparison with
that for the double polaron. WhereasH res drops with j 5n
2n1 in the latter case@Eq. ~1!#, it follows from condition~6!
that in the combined polaron\Ve drops, first withj, sec-
ond, when the difference\vL12(«m

e 2«m1

e ) is lowered. This

is the case of the first version of condition~6!. For example,
for transitionm52, n52→m151, n50, the level splitting
of 2.831023 eV ~Fig. 2a! takes place atH res52.80 T, and in
the case of the double polaron~transition n52→n150)
H res510.4 T. On the other hand, in the case of the th
version of condition~6!, H res becomes very high~Fig. 2b!,
since\vL12(«m

e 2«m1

e ) rises.

At the lowest level of size-quantizationm51, a double
polaron can exist at all widths of the quantum well. Since
combined polaron is related to two levels of siz
quantization, it cannot exist in the range of well wid
d,d8(m), whered8(m) is the well width at which the uppe
level of size-quantization is ejected. The widthd8(m) grows
with m. The lower boundary of the region where a combin
polaron of the first configuration can exist also moves u
wards. Figure 2 shows that atm151, when an electron goe
to the lowest size-quantized level,d(m52)5180 Å, d(m
53)5320 Å, andd(m54)5460 Å. At smallerd the po-
laron of the first configuration cannot exist, and the polar
of the second configuration turns up, which persists in
region d8(m),d,d(m). At d close tod(m), H res is low.
For example, ifd5300 Å ~the transitionm53→m151),
H res53.84 T.

The calculations of the level splittingDEres given above
are valid only if the crossing point of two selected levels
not superposed by a crossing point between another pa
levels. For example, the gap between points1 andA or 3 and
A ~Fig. 1! should be larger than the splitting at points1 and
A or 3 andA. This condition is expressed by the inequality18

DEres~d!!«2
e~d!2«1

e~d!. ~77!

Figure 2a plots the difference«2(d)2«1(d) as a function of
the quantum well width~dash-dotted line!. One can see tha
there is a fairly wide region ofd where level splittings at
crossing points can be treated independently of other cr
ing points.

This paper takes account of only confined phonons,
though interaction with interface and barrier phonons a
takes place. Interaction between electrons and holes on
one side and interface phonons on the other can be negle
when the penetration depth of interface phonons is neglig
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in comparison with the quantum well widthd. Since the
penetration depth is of orderl H , the application domain o
Eqs. ~35! and ~42!, which take into account only confine
phonons, is defined by the conditionl H!d. Sincel H→` as
H→0, the results do not apply to the region of low magne
fields ~Fig. 2!. By comparing them with previously reporte
calculations,18 we find that the theory neglecting interfac
phonons does not apply to the region on the left of the pe
on curves ofDEres(d). Since the phonon frequency in th
barrier is notably different fromvL1 , interaction with
phonons in the barrier is nonresonant and can be neglect18

In calculating the polaron spectra, we have assumed
the conduction band is parabolic and have not taken acc
of excitonic effects. Since only two electron levels are
volved in the formation of a combined polaron, the nonpa
bolicity can only vary the resonance condition~5!. The Cou-
lomb interaction between electrons and holes in a str
magnetic field in a relatively narrow quantum well can
treated as a weak perturbation.24 The small correction to the
energy of an electron–hole pair due to excitonic effects
been calculated.24 This correction is a function of the vertica
component of the electron–hole pair quasi-momentumK ,
i.e., the Coulomb interaction breaks the condition that ene
levels of an electron–hole pair are discrete. Even so,K50
when an electron–hole pair is generated by light with a w
vector normal to the quantum well plane, i.e., the Coulo
interaction does not lead to a radical modification either,
only shifts a discrete level, thus changingH res.

24
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Kinetic properties of a system of spatially separated excitons and electrons in the
presence of a Bose condensate of excitons
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A system of interacting, spatially separated excitons and electrons is examined in the presence of
a Bose condensate of excitons. The kinetic properties of the system that are governed by
the interaction of excitations in the exciton subsystem with electrons are investigated. It is shown
that a nonequilibrium distribution of excitations in the exciton subsystem gives rise to an
induced electron current. Experimental observation of the kinetic phenomena described can
provide new information on the exciton phase state. ©1999 American Institute of
Physics.@S1063-7761~99!02210-6#
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1. INTRODUCTION

The transition of an exciton system into the superflu
phase was considered in the three-dimensional case in R
1–5 and in quasi-two-dimensional structures in Refs. 6
7. Interesting experiments, in which the transport propert
statistics, and photoluminescence of excitons were stud
have been carried out to detect the condensation and su
fluid properties of excitons.8–14 The experimental data ma
attest to realization of the Bose–Einstein condensation
superfluidity of excitons in Cu2O as the temperature i
lowered,11,13 although this is a subject of debate.12–14

A magnetic field has a significant influence on the ph
diagram15–17 and spectra18 of excitons in isolated and
coupled quantum wells. The study of the properties of ex
tons in strong magnetic fields in coupled quantum wells
shown that there are dramatic changes in the photolumi
cence intensity and decay time, as well as an increase in
magnetodiffusion of the excitons, which possibly attests
their superfluidity.19 The availability of alternative method
for detecting the Bose condensation and superfluidity of
citons would be of great interest in connection with the d
bate regarding the interpretation of the experimental data
dicated above~see, for example, Ref. 20!. One interesting
method for investigating the kinetic properties of a system
spatially separated excitons and electrons, which can pro
additional information regarding the phase state of the e
ton subsystem and phase transitions in it, is based on
effects. One special feature of the system under consi
ation is the fact that the phase state of the exciton subsys
can be studied by performing a simpler investigation of
response of the electron subsystem. In other words, the tr
port properties of excitons and the changes in them u
phase transitions can be investigated by measuring the
rent or voltage in the electron subsystem. Another prope
of systems of spatially separated quasiparticles interac
with one another is the possibility of controlling the motio
of the quasiparticles of one subsystem by altering the par
eters of state of the quasiparticles in the other subsystem~for
7751063-7761/99/89(10)/6/$15.00
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example, controlling the motion of electrons using a flow
excitons!.

The kinetic properties of a two-layer system of electro
and excitons at temperatures above the temperatureTKT of
the Kosterlitz–Thouless transition, at which there is no lo
condensate or superfluidity in the exciton system, were c
sidered in Ref. 21. In the present paper we examine the
netic properties of this system under conditions allowing
existence of a Bose condensate of excitons. The treatme
performed for two- and three-dimensional systems of s
tially separated electrons and excitons.

We assume that the exciton system is dilute, i.e.,N1a0
d

!1, wherea05(d21)e\2/2me2 is the exciton radius andd
is the dimensionality of the system (d52,3). In this case the
excitons can be considered Bose particles in an approxi
tion. In fact, the characteristic value for the exciton radius
a0;10250 Å. Therefore, the conditionN1a0

d!1 holds at
values of the exciton density up toN1.1012cm22 for d52
andN1;1018cm23 for d53.1! We shall consider a nonequ
librium system of excitons, in which there is a directed flo
of excitons. One method for obtaining a system of excito
with nonequilibrium characteristics is to create excitons
one region of the sample using laser radiation. This gives
to chemical potential and temperature gradients in
sample, which cause excitons to flow. The interaction
tween spatially separated excitons and electrons in the p
ence of an exciton flux causes the appearance of an ind
electron current.21 The analogous drag effects in electron a
electron–hole systems were considered in Refs. 25–46.
shall calculate the current in the electron subsystem in
case where the appearance of this current is associated
the scattering of quasiparticle excitations in the exciton s
system on electrons. The kinetic properties of such a sys
will be investigated using the kinetic equations for the ele
trons and quasiparticles in an exciton Bose gas.

2. INTERACTION OF QUASIPARTICLE EXCITATIONS WITH
ELECTRONS

Let us first consider the interaction of an isolated excit
and an isolated electron. For simplicity we assume that
© 1999 American Institute of Physics
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exciton and electron are separated by a spatial barrie
thicknessD, such thatD.a0 . Then the polarization energ
for the interaction of the exciton and electron can be writ
in an approximation in the form

W~r ,D !52
g

~r 21D2!2 , ~1!

whereg5(21/32)e2a0
3/e0 for d52 andg5(9/4)e2a0

3/e0 for
d53, ande0 is the static dielectric constant of the medium
In the momentum representation Eq.~1! takes the form~here
and below we shall use the system of units in which\5kB

51!

W~q,D !52g~pq/D !K1~qD!, d52,

W~q,D !522pgqK0~qD!, d53. ~2!

Here Kn(z) is the modified Bessel function of the seco
kind.

In a many-particle system of excitons and electrons
bare interactionW(q,D) should be replaced by the effectiv
interactionWeff(q,D). For a two-component system of inte
acting particles the effective interaction has the form

Weff~q,D !5
W~q,D !

11P1V11P2V21P1P2~V1V22W2!
.

~3!

HereVi is the energy of the interaction between particles
speciesi , andP i is the polarization operator for particles o
speciesi ( i 51,2). In our casei 51 corresponds to excitons
and i 52 corresponds to electrons. When the condit
N1a0

d!1 is satisfied, the contribution of the electrons to t
effective interaction will dominate, providing a basis to ta
into account only this contribution in~3!:

Weff~q,D !5
W~q,D !

11P2V2
. ~4!

At a low exciton density,N1a0
d!1, the exciton-electron

Hamiltonian can be written in the form

Ĥ125
1

Ld (
p1 ,p2 ,p18 ,p28

W~ up12p18u,D !ap
18

1
cp

28
1

cp2
ap1

, ~5!

whereap
1 and ap are the exciton creation and annihilatio

operators,cp
1 andcp are the electron creation and annihil

tion operators, andL is equal to the dimensions of the sy
tem. Starting out from~5!, we can obtain the Hamiltonian fo
the interaction of quasiparticle excitations in a system of
citons with electrons. For this purpose, we use the Bogo
ubov transformations47–49

ap5upbp1vpb2p
1 , ap

15upbp
11vpb2p ,

up5~12Lp
2!21/2, vp5Lpup ,

Lp5~«1~p!2j~p!!/m1 , «1~p!5~j2~p!2m1
2!1/2,

j~p!5p2/2m11m1 , ~6!
of

n

.

e

f

n

-
-

wherebp
1 andbp are the creation and annihilation operato

of the quasiparticle excitations,m1 is the exciton effective
mass, andm1 is the exciton chemical potential. Substitutin
ap

1 andap from ~6! into ~5!, we obtain

Ĥ125
1

Ld (
p1 ,p2 ,p18 ,p28

W~ up12p18u,D !$up1
up

18

1vp1
vp

18
%bp

18
1

cp
28

1
cp2

bp1
. ~7!

In ~7! we have taken into account only the terms which lea
the number of quasiparticles unchanged~the terms which do
not simultaneously satisfy the momentum and energy con
vation laws have been omitted!.

Let us now consider the transport relaxation time of t
excitationst1(p) in the case of scattering on impurities. F
the Hamiltonian of elastic interactions of excitons with im
purities we have

Ĥ15
1

Ld (
p,p8

V~p,p8!ap
1ap8 , ~8!

whereV(p,p8) is the matrix element for the interaction of a
exciton with impurities. Replacing the exciton operators
~8! by the operators for quasiparticle excitations defined
formulas~6! and retaining only the terms which satisfy th
requirement of elastic collisions, we obtain

Ĥ15
1

Ld (
p,p8

V~p,p8!$up
21vp

2%bp
1bp8 . ~9!

Using the Hamiltonian~9!, for the reciprocal of the transpor
relaxation time we write

1

t1~p!
52pE uV~p,p8!$up

21vp
2%u2d~«1~p!

2«1~p8!!~12cos~p,p̂8!!
dp8

~2p!d . ~10!

We transform the expression~10! using the equalities (up
2

1vp
2)25(j(p)/«1(p))2 and d(«1(p)2«1(p8))

5(«1(p)/j(p))d(«1
0(p)2«1

0(p8)), where «1
0(p)5p2/2m1 .

As a result, we find that the exciton relaxation time is rela
to the exciton relaxation time in the normal phasetn(p) by
the expression

t1~p!5
«1~p!

j~p!
tn~p!, ~11!

where

1

tn~p!
52pE uV~p,p8!u2d~«1

0~p!

2«1
0~p8!!~12cos~p,p̂8!!

dp8

~2p!d .

In the case of excitations with a small quasimomentu
where m1@«1

0, the dispersion law will have an acoust
form: «1(p)5cp, wherec5(m1 /m1)1/2. In this case, from
~11! we havet1(p)5(p/m1c)tn(p).
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3. KINETIC EQUATIONS

To describe the nonequilibrium processes in the str
tures under consideration, we utilize the system of kine
equations for the quasiparticle-excitation distribution fun
tion n and the electron distribution functionf . We consider
the stationary regime, in which the functionsn(r ,p) and
f (r ,p) do not depend on time. The kinetic equations have
form50,51

]n

]r
•

]«̃1

]p
2

]n

]p
•

]«̃1

]r
5I 1~n!1I 12~n, f !, ~12!

] f

]r
•v1

] f

]p
•ṗ5I 2~ f !1I 21~ f ,n!. ~13!

The terms on the right-hand sides of these equations hav
following meanings:I 12 andI 21 are the collision integrals o
the quasiparticles with electrons;I 1 I 2 are the collision inte-
grals of quasiparticles and electrons with impurities~allow-
ance for only the impurity scattering is justified at low tem
peratures, which we are considering here!. The kinetic
equation ~12! contains the quasiparticle excitation ener
«̃1(p)5«1(p)1p•vs , wherevs is the rate of superfluid mo
tion of excitons. However, the influence of the superflu
motion of the excitons on the phenomena under consi
ation will be significant forvs;c, which is unlikely under
real conditions; therefore, thep•vs term in the quasiparticle
excitation energy will not be taken into account below.

Let us consider an exciton subsystem in which there
temperature gradient. In this case directed motion of the q
siparticle excitations occurs and, in turn, gives rise to
induced current in the electron subsystem. LetT1(r ) be the
temperature of the exciton subsystem andT2 be the tempera-
ture of the electron subsystem. We represent the distribu
functionsn and f in the following form:

n5n01n0~11n0!g1 , f 5 f 01 f 0~12 f 0!g2 ,

where n05(exp(«1(p)/T1)21)21, f 05(exp((«22m2)/T2)
11)21, «25p2/2m2 , m2 is the electron chemical potentia
andm2 is the electron effective mass. We use thet approxi-
mation for I 1(n) and I 2( f ):

I 1~n!5~n02n!/t1 , I 2~ f !5~ f 02 f !/t2 ,

wheret1(p) andt2(p) are the relaxation times of the qua
siparticle excitations and electrons. Substitutingn and f in
the form just indicated into~12! and ~13!, we obtain linear-
ized equations:

«1

T1
2

]«1

]p
•¹T152

g1

t1
, ~14!

I 21~g2 ,g1!5
f 0~12 f 0!g2

t2
. ~15!

Here the linearized collision integralI 21 has the form
-
c
-

e

the

r-

a
a-
n

n

I 21~g2 ,g1!5(
s28

E w~p1p2 ;p18p28!n0~11n08! f 0~12 f 08!

3~g181g282g12g2!d~«11«22«182«28!

3
dp18

~2p!d

dp28

~2p!d . ~16!

In deriving Eq.~14! we neglected the termI 12, which is only
a perturbation with respect toI 1 .

The equality~14! yields an expression forg1 :

g1~p!52
t1~p!«1~p!

T1
2

]«1~p!

]p
•¹T1

52
c2t1~p!

T1
2 p•¹T1 . ~17!

In a first approximationI 21(g2 ,g1) can be replaced by
I 21(0,g1). Then Eq.~15! is greatly simplified, and we at onc
obtaing2 :

f 0~12 f 0!g2~p2!5t2~p2!(
s28

E w~p1p2 ;p18p28!

3n0~11n08! f 0~12 f 08!~g182g1!d

3~«11«22«182«28!
dp18

~2p!d

dp28

~2p!d , ~18!

where w(p1p2 ;p18p28) is the probability of a collision be-
tween a quasiparticle and an electron. With consideration
the results in Sec. 1, we can write the following express
for the collision probabilityw in the Born approximation

w~p1p2 ;p18p28!52puWeff~q,D !$up1
up

18
1vp1

vp
18
%u2,

~19!

whereq5p182p15p22p28 .
Using Eq.~17!, we have the following expression for th

electron currentj2 :

j252
e

m2
(
s2

E p2f ~p2!
dp2

~2p!d

52
e

m2
(
s2

E p2f 0~12 f 0!g2~p2!
dp2

~2p!d

52b21¹T1 , ~20!

where

b215
4p

d

ec2

m2T1
2 E Weff

2 ~q,D !$u~p1!u~ up11qu!

1v~p1!v~ up11qu!%2n0~p1!~11n0~ up1

1qu!! f 0~p2!~12 f 0~ up22qu!!t2~p2!p2

3@t1~p1!p12t1~ up11qu!~p11q!#d~«1~p1!

1«2~p2!2«1~ up11qu!2«2~ up2

2qu!!
dp1

~2p!d

dp2

~2p!d

dq

~2p!d . ~21!
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We transform the expression~21! using the equalities

d~«1~p1!1«2~p2!2«1~ up11qu!2«2~ up22qu!!

5E
2`

`

djd~«1~p1!2«1~ up11qu!1j!d~«2~p2!

2«2~ up22qu!2j!, ~22!

n0~p1!~11n0~ up11qu!!5@n0~ up11qu!2n0~p1!#

3@exp$~«1~p1!2«1~ up1

1qu!!/T1%21#21, ~23!

f 0~p2!~12 f 0~ up22qu!!5@ f 0~ up22qu!2 f 0~p2!#

3@exp$~«2~p2!2«2~ up2

2qu!!/T2%21#21. ~24!

As a result, we obtain

b215
p

d

ec2

m2T1
2 E dq

~2p!d Weff
2 ~q,D !

3E
2`

`

dj
exp~j/2T12j/2T2!

sinh~j/2T1!sinh~j/2T2!

3E $u~p1!u~ up11qu!1v~p1!v~ up11qu!%2@n0~ up1

1qu!2n0~p1!#~t1~ up21qu!~p11q!

2t1~p1!p1!d~«1~p1!2«1~ up11qu!1j!
dp1

~2p!d

3E @ f 0~ up21qu!2 f 0~p2!#t2~p2!p2d~«2~p2!

2«2~ up21qu!2j!
dp2

~2p!d . ~25!

In the case of equality between the temperatures of
exciton and electron subsystems (T15T25T), the expres-
sion ~25! can be written in a symmetric form. For this pu
pose we note that

F~q,j!5E dp1

~2p!d $u~p1!u~ up11qu!1v~p1!v~ up1

1qu!%2@n0~ up11qu!2n0~p1!#~t1~ up11qu!

3~p11q!2t1~p1!p1!d~«1~p1!2«1~ up11qu!

1j!52F~q,2j!, ~26!

and

E @ f 0~ up21qu!2 f 0~p2!#t2~p2!p2d~«2~p2!2«2~ up2

1qu!2j!
dp2

~2p!d 5
1

2 E @ f 0~ up21qu!2 f 0~p2!#

3$t2~p2!p2d~«2~p2!2«2~ up21qu!2j!1t2~ up2
e

1qu!~p21q!d~«2~p2!2«2~ up21qu!1j!%
dp2

~2p!d .

~27!

Equations~26! and~27! are easily obtained via the following
changes in the integration variables:p1→p182q and p18
→2p1 , p2→p282q andp28→2p2 .

Now, performing the replacementj→2j in the second
term in the curly brackets in Eq.~27! and taking into accoun
that F(q,j) is an odd function with respect toj, we obtain
the following expression forb21:

b215
p

d

ec2

m2T2
E dq

~2p!d Weff
2 ~q,D !

3E
0

` F~q,j!C~q,j!

sinh2~j/2T!
dj, ~28!

where

C~q,j!5E @ f 0~ up21qu!2 f 0~p2!#~t2~ up21qu!~p21q!

2t2~p2!p2!d~«2~p2!2«2~ up21qu!1j!
dp2

~2p!d .

~29!

Let us now examine the case where equilibrium betwe
the exciton subsystem and the lattice is established aft
time significantly shorter than the lifetime of the excitons,
that the lattice temperature and the temperature of the e
ton subsystem are equal. In this case we shall consider
exciton subsystem at times greater than the time for the
tablishment of equilibrium with the lattice but smaller tha
the lifetime of the excitons. We shall obtain an express
for the induced electron current caused by the presence
spatially inhomogeneous distribution of excitations.

We represent the excitation distribution function in t
following form:

n5n11n1~11n1!f1 , ~30!

where the first term of the expansion, i.e., the functionn1 ,
already corresponds to a nonequilibrium state of the exc
tions:

n1~mqp!5~exp~@«1~p!2mqp~r !#/T1!21!21. ~31!

The parametermqp5mqp(r ) is determined by the externa
conditions. The excitation densityNqp is a function ofmqp

and is defined by the expression

Nqp5E n
dp

~2p!d 5E n1~mqp!
dp

~2p!d . ~32!

It is shown below thatf1 is an odd function of the momen
tum p; hence in~32! the integral ofn1(11n1)f1 with re-
spect to the momentum vanishes.

We assume that there is a small gradient ofmqp in the
excitation subsystem. We find the induced electron curren
the response to¹mqp :

j252a21¹mqp . ~33!
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If we express the electron current in terms of the excitat
concentration gradient in the formj252ã21¹Nqp , we ob-
tain the relation between the coefficientsa21 and ã21: a21

5(]Nqp /]mqp)ã21.
We linearize Eqs.~12! and ~13! for the case under con

sideration in analogy to what was done above, except
now we definen by Eq. ~30!, we takef in the form f 5 f 0

1 f 0(12 f 0)f2 , and setI 15(n12n)/t1 .
As a result of the linearization, we obtain the equatio

1

T1

]«1~p!

]p
•¹mqp52

f1

t1
, ~34!

I 21~f2 ,f1!5
f 0~12 f 0!f2

t2
. ~35!

From ~34! we obtain an expression forf1 :

f152
t1~p!

T1

]«1~p!

]p
•¹mqp52

tn~p!

m1T1
p•¹mqp . ~36!

After some transformations, which are analogous to
ones previously performed during the derivation of the
pression forb21, in the present case fora21 we obtain

a215
p

d

e

m1m2T1
E dq

~2p!d Weff
2 ~q,D !

3E
2`

`

dj
exp~j/2T12j/2T2!

sinh~j/2T1!sinh~j/2T2!

3E $u~p1!u~ up11qu!1v~p1!v~ up11qu!%2@n1~ up1

1qu!2n1~p1!#~tn~ up11qu!~p11q!

2tn~p1!p1!d~«1~p1!2«1~ up11qu!1j!
dp1

~2p!d

3E @ f 0~ up21qu!2 f 0~p2!#t2~p2!p2d~«2~p2!

2«2~ up21qu!2j!
dp2

~2p!d . ~37!

In the case ofT15T25T, for a21 we have

a215
p

d

e

m1m2T E dq

~2p!d Weff
2 ~q,D !

3E
0

` F̃~q,j!C~q,j!

sinh2~j/2T!
dj, ~38!

where

F̃~q,j!5E $u~p1!u~ up11qu!1v~p1!v~ up1

1qu!%2@n1~ up11qu!2n1~p1!#~tn~ up11qu!

3~p11q!2tn~p1!p1!d~«1~p1!

2«1~ up11qu!1j!
dp1

~2p!d . ~39!
n

at

s

e
-

Thus, we have obtained expressions for the linear
sponse of the electron subsystem to a disturbance within
quasiparticle subsystem in which temperature and concen
tion gradients are created.

4. DISCUSSION OF RESULTS

We have considered a system of interacting excitons
electrons, in which there is a Bose condensate of excito
Under conditions where the exciton system is in a noneq
librium state, the mutual scattering of the quasiparticle ex
tations and electrons gives rise to an induced electron
rent. The value of the induced electron current sho
increase with the number of excitations. At low temperatu
the principal excitations in the exciton system are excito
with an acoustic spectrum«1(p)5cp. The concentration of
excitations of this type increases with temperature accord
to Nqp;T1

d . Thus, an increase in the induced electron curr
with increasing exciton temperature should be expected.

At sufficiently low values of the temperaturesT1 andT2

and small values ofD, a bound state of an exciton and a
electron can form.52,53 The number of such bound pair
should rise asT1 andT2 are lowered. Thus, such a proce
can cause the induced electron current to increase with
creasing temperature.

An experimental investigation of the induced electr
current caused by the nonequilibrium state of an exciton s
tem can serve as an independent method for studying
phase state of the exciton system and the phase transitio
it.
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We show that the ground state of a periodic long-range Josephson array frustrated by a magnetic
field is a glass for sufficiently large Josephson energies despite the absence of quenched
disorder. Like superconductors, this glass state has non-zero phase stiffness and Meissner response;
for lower Josephson energies the glass ‘‘melts’’ and the ground state loses its phase
stiffness and becomes insulating. We find the critical scaling behavior near this quantum phase
transition: the excitation gap vanishes as (J2Jc)

2, and the frequency-dependent magnetic
susceptibility behaves asx(v)}Av ln v. © 1999 American Institute of Physics.
@S1063-7761~99!02310-0#
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1. INTRODUCTION

Glass formation in the absence of intrinsic disorder i
long-standing problem, but recent years have witnessed r
progress1–7 in the qualitative understanding of this phenom
enon. Mostly this progress is due to the solution of perio
models that assume a mapping between the periodic m
and the appropriate random model.1–3 The validity of this
assumption is still an open question in the general case, b
was shown that at least one periodic model allows dir
study of the phase transition5 and non-ergodic behavior be
low the transition7 without any reference to a disordere
model. This model describes a long-range Josephson arr
a magnetic field, and another reason for the interest in
model is that it can be realized experimentally~cf. Refs. 6
and 8 for a discussion of experimental conditions!.

All these results were obtained in the framework of cla
sical statistical mechanics; the glass formation in regu
quantum systems has not been addressed. The goal o
paper is to fill this gap. The problem of glass formation
disordered quantum systems is discussed in a numbe
papers,9–12 which studied critical behavior near the quantu
vitrification transition9,10 and the properties of the glass
phase itself11 using the replica approach. They found that t
glass phase transition atT50 indeed exists; further, i
strongly resembles the classical~high-T! phase transition in
the same system. The main difference is in the critical ex
nent of the correlation function, which decays faster than
the classical critical point:D(t)5^Sj (0)Sj (t)&}t21 at
T50 ~cf. D(t)}t21/2 at non-zeroT!. A surprising result ob-
tained in Ref. 11 is that at zero temperature, no replica s
metry breaking~RSB! is needed for the description of th
glassy state, i.e. the replica-symmetric solution is stable
T50. Since RSB is usually believed to be a signature
non-ergodicity, this result means either absence of n
ergodic behavior atT50 or violation of the usual relation
7811063-7761/99/89(10)/7/$15.00
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between RSB and non-ergodicity. We believe that the la
case is more likely because of the following. The no
ergodicity affects the full thermodynamic averaging only
higher metastable states contribute to the partition sum.
more likely that in a typical situation the gap between t
ground state and the next state remains finite atT→0, so in
this limit only the ground state contributes to the full the
modynamic average and the RSB does not occur, altho
the system retains its non-ergodic behavior; note that a s
lar phenomenon is believed to occur in the classicalT50
limit.13 We feel that in order to clarify this important que
tion, an approach that is free from the ambiguities of t
replica method should be employed.

Understanding quantum glass formation in a system w
a regular Hamiltonian is important for the general problem
quantum computation.14 The reason is that a quantum com
puter is also a quantum system with an exponential num
of states, and the process of computation can be viewed a
almost adiabatic change of the external parameters, resu
in a different state. The crucial issue is how to ensure t
such a process does not lead to the collapse of the de
matrix due to coupling to the environment. This issue is r
evant to the spin glass system as well, and one can le
about decoherence in a generic large system with an e
nential number of states by addressing it.

Here we study the quantum version of a long-range
sephson array in a frustrating magnetic field, as suggeste
Refs. 4–7. We consider here only the problem of glass
mation, approaching the glass from the ‘‘liquid’’~i.e., insu-
lating! side. We show that the quantum version of this pro
lem can be described by the same dynamical equations a
quantum disorderedp-spin model studied in Ref. 15. Thus
we explicitly prove that this frustrated quantum system c
be mapped onto a quantum disordered system, in comp
analogy with the situation for classical problems. Further,
provide a direct numerical proof that the transition in th
© 1999 American Institute of Physics
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model is indeed continuous as conjectured in Ref. 15 and
calculate the anomaly of the diamagnetic response assoc
with this transition.

Another~more physical! justification of the model is the
following. It is well established, both experimentally16,17and
theoretically18 that usual nearest-neighbor Josephson arr
made of small superconducting islands exhibit a zerT
superconductor—insulator transition as the ratio of the
sephson couplingEJ between superconductive islands to t
Coulomb energy costEC5(2e)2/2C for the transfer of the
Cooper pair between the islands decreases. At small va
of x5EJ /EC , the ground state is an insulator with nonze
Coulomb gap in the excitation spectrum. At nearly critic
values ofx'xcr , the transition between insulating and s
perconducting states can be triggered by application o
weak magnetic field, producing frustration of the Joseph
interaction. Moreover, this transition can be spli16

into a sequence of two different transitions: superc
ductor→metal→insulator. Although the main qualitative fea
tures of these phenomena are understood, there is sti
quantitative theory that describes quantum phase transit
in two-dimensional short-range systems, especially in
presence of frustration. Therefore, in our attempt to study
origin of a quantum glass state, we have to turn to the s
plest ~theoretical! model of a Josephson array with lon
range interaction, which consists of long superconduct
wires ~instead of islands!, which will enable us to employ
some version of mean-field theory and reduce the problem
a zero-dimensional quantum theory with an interaction t
is non-local in time.

The system that we study is a stack of two mutua
perpendicular sets ofN parallel thin superconducting wire
with Josephson junctions at each node, located in an exte
transverse fieldH. Macroscopic quantum variables of th
array are the 2N superconducting phases associated w
each wire~e.g., the phase of the superconducting order
rameter at the center of each wire!. We will always assume
that excitations within individual wires can be neglected,
that the whole wire is characterized by a single phasefm . In
the absence of an external field the phase differences w
be zero at each junction, but this is not possible at finiteH, so
the phases are frustrated. Here we assume that the Jose
currents are sufficiently small so that the induced fields
negligible in comparison withH ~this imposes an importan
constraint on experimental realization of this network!.6

The array can therefore be described by
Hamiltonian1!

H5HJ1HC52EJ(
m,n

cosS fn2fm2
2e

\c E A•dlD
1

~2e!2

2 (
m,n

Ĉm,n
21 ]

]fm

]

]fn
, ~1!

where HJ and HC represent the Josephson and Coulo
parts of the Hamiltonian, andĈm,n is the capacitance matrix
There are several different contributions toĈ: self-
capacitances of the wiresCl ~with respect to the substrate!,
the junction capacitancesCJ , and the mutual capacitances
e
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wires Cll . Below we assume that the self-capacitance is
largest of all:Cl@Cll , NCJ ~the factorN accounts for the
fact that there areN junctions along each wire!. These con-
ditions enable us to neglect all mutual capacitances and
sider the matrixCm,n to be diagonal, with eigenvaluesCl .

It is convenient to rewrite the Hamiltonian in terms
‘‘spin’’ variables sm5eifm. Choosing the Landau gauge fo
the vector potential and introducingJ0 via EJ5J0 /AN so
that the transition temperature remains constant in the l
N→` at fixedJ0 , we obtain

H52(
m,n

2N

sm* J mnsn1
EC

2 (
n

Qn
2, ~2!

whereQn[2 i ]/]fn is the charge operator conjugate to t
phasefn , EC54e2/Cl , andJ mn is the coupling matrix

Ĵ 5S 0 Ĵ

Ĵ† 0
D ~3!

with

Jjk5
J0

AN
exp~2p ia jk/N!, 1<~ j ,k!<N,

where j (k) is the index labeling the horizontal~vertical!
wires; sm5eifm, where thefm are the superconductin
phases of the 2N wires, anda5NHl2/F0 is the flux per unit
strip ~l is the inter-node spacing andF0 is the flux quantum!.

Because every horizontal~vertical! wire is coupled to
every vertical ~horizontal! wire, the connectivity in this
model is high~N! and it is accessible to a mean-field trea
ment~its classical version was developed in Refs. 19 and!.
For 1/N!a,1 there exist many metastable solutions th
minimize the Josephson~‘‘potential’’ ! part of the Hamil-
tonian~2!; these minima are separated by barriers that sc4

with N. A similar ~classical! long-range network with disor-
der was previously found to display a spin glass transitio19

for a@1/N; in the absence of short-range phase cohere
between wires~a@1!, it is equivalent to the Sherrington–
Kirkpatrick model.20 Physically this glassy behavior occu
because the phase differences associated with the coupl
Jjk , acquire random values and fill the interval~0, 2p! uni-
formly. For the periodic case, this condition is satisfied in t
‘‘incommensurate window’’ 1/N!a<1, for which the mag-
netic unit cell is larger than the system size, so that
simple ‘‘crystalline’’ phase is inaccessible.4

There are thus no special field values for which there
only a few minima of the potential energy, in contrast to t
situation fora.1. Below we consider the case 1/N!a!1
only. As follows from previous studies,4–7 the characteristic
energy scale related to the potential energyHJ is of the
order of the glass transition temperature of the classical
tem, TG'J0 /Aa. The zero-T transition we study here is
driven by the competition between Josephson and Coulo
energies, the scale of the latter beingEC54e2/Cl . Thus, we
expect that the quantum transition occurs atJ0 /Aa;EC .
Our goal is to show that such a~continuous! phase transition
indeed occurs, and to study the critical behavior near
transition point. Below, in the main part of the paper, w
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measure all energies in units ofEC , and return to physica
units only in the final expression for the critical behavior
the ac diamagnetic susceptibility.

2. QUANTUM LOCATOR EXPANSION

We develop a diagram technique for the Hamiltoni
that is ~2! very similar to the one employed previously5 for
the classical Langevin dynamics of the same array. The
is to treat the Coulomb part of the Hamiltonian as the ze
level approximation, and construct an expansion in pow
of the Josephson coupling constantJ0 , keeping all terms of
lowest order in the coordination number 1/N. Thus, our ap-
proach can be considered a quantum version of
Thouless–Anderson–Palmer21 method.

The diagram technique for the Matsubara Green func

Gm,n~t!52^Ttsm~t!sn
†~0!&, s~t!5e2tHsetH ~4!

is closely related to the one developed in Ref. 5. The Dy
equation for the frequency-dependent matrix Green func
reads~note that in our unitsEC51!

Gv5
1

G̃v
212~JJ†!G̃v

, ~5!

where we have introduced the local Green functionsG̃v that
is irreducible with respect to theJi j lines. The matrix (JJ†) i j

depends only on the ‘‘distance’’i 2 j and acquires a simple
form in Fourier space:

~JJ†!p5~J0
2/a!u~ap2upu!;

therefore in this representation

Gv~p!5
u~ap2upu!

G̃v
212

J0
2

a
G̃v

1
u~ upu2ap!

G̃v
21

. ~6!

Diagrammatically, Eq.~5! and the equation for the irreduc
ible functionG̃v are represented by the graphs shown belo

Note that the equation forG̃ is written in the lowest non-
trivial order in a. Indeed, it is seen from Eq.~6! that the
nontrivial part of the Green function, which contains critic
slowing down, is of relatively small weight;a. It is this
long-time part ofGv that enters into the three-line diagra
and makes it proportional toa3; more complicated diagram
either contain even higher powers ofa, or are small and go
as 1/N. Since the second diagram contains single-site fu
tions only, the whole system of equations can be written
the form
ea
-

rs

e

n

n
n

.

l

c-
n

G~v!5~12a!G̃~v!1Ĝ~v!,

Ĝ~v!5
aG̃~v!

12J0
2G̃2~v!/a

, ~7!

G̃~v!5G̃0~v!1S~v!,

S~v!5S J0
2

a D 3

x3
2E Ĝ3~ t !exp~ ivt !dt. ~8!

Here x3;1, as in Ref. 5, is the static value of four-poin
vertex denoted by a square box in the diagram~we assume
that, as in Ref. 5, the main critical anomaly is contained
the two-point Green function alone!. Equations~7! and ~8!
must be solved with obvious initial condition

G~ t50!5E dv

2p
G~v!51. ~9!

A similar normalization condition in the classical proble
was sufficient to determineG̃(v50) exactly.4 The same cal-
culation is difficult in the present quantum problem, and
will not carry it out here. Instead, we use general proper
of the functionG̃0(v), namely: i! G̃0(0);1, and ii! G̃0(v)
is analytic at lowv, and has a characteristic frequency sc
of the order of 1. In doing so, we do not determine the ex
position of the phase transition~i.e., the critical valueJc of
the coupling strengthJ0!, but we demonstrate the existenc
of a continuous transition and find the form of critical sca
ing.

We first analyze equations~7!–~9!, omitting the term
containingS, and using the simplest interpolation

G̃0~v!5~l1v2!21.

Then initial condition~9! yields an equation forl:

15
1

2Al
1

a

4Al2g
, ~10!

whereg5J0 /Aa. Thusl;1 as long asg<1. On the other
hand, atg@1 the solution is

l2g[a'~a/4!2.

The value ofa determines the asymptotic decay rate of t
Green function

G~ t !5
a

Aa
exp~2utuAa! ~11!

with S being neglected. It will be seen below thata;a and
thusl;1 near the phase transition pointg5gc ~we will also
see thatS;a, and thus it is much smaller than thev2 term at
high frequenciesv@a1/2!. This means that the parametera
can be considered a smooth function ofg in the vicinity of
gc . Clearly, this conclusion does not depend on the mode
G̃0(v) used in the above analysis.

Now we reintroduceS~v! into the equations forĜ(v)
and focus on its low-frequency behavior atv<Aa:

Ĝ~v!5
a

a22S~v!1v2 , ~12!
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S~v!5g̃6E Ĝ3~ t !exp~ ivt !dt, ~13!

where

g̃5gx3
1/3;g.

Strictly speaking, Eqs.~12! and~13! do not form a complete
set, sincea should be determined with the use of Eq.~9!
which contains high-frequency contributions. However,
this high-frequency region@which produces the main contr
bution to the normalization condition~9!# the contribution of
S~v! can be neglected and thusa can be treated as an exte
nal control parameter that governs the transition.

The Green function defined by Eqs.~12! and ~13! ac-
quires a singularity when 2S(0)5a. To find the form of this
singularity, we make use of the scaling ansatzG(t)5qt2n

and neglect thev2 term in the denominator of Eq.~12!. Then
we find n51/2 andq;g̃21a1/4. This critical-point solution
matches the short-time asymptotic behavior~11! at
t;a21/2. The estimation ofS~0! that follows from the above
scaling ansatz,

S~v50!'g̃6q3E
Aa

` dt

t3/2'g̃3q3a1/4

yields S(0)'a at g̃;1 anda;a, as expected. These es
mates show that second-order phase transition with crit
slowing down can indeed occur in the above range of par
eters. In the next section we study the vicinity of the critic
point in more detail.

3. GREEN FUNCTION NEAR THE T50 TRANSITION POINT

To study the form of the critical singularity, it is conve
nient to define universal scaling functionsJ ~v! and s~v!
that do not contain the small parametera!1, and a param-
eterb, which measures proximity to the critical point:

Ĝ~v!5J ~ṽ !, aS~v!5s~ṽ!, ṽ5v/Aa,

b5~a22S~0!!/a. ~14!

Equations~12! and ~13! acquire then the following form:

J ~ṽ !5
1

b12~s~0!2s~ṽ!!
,

s~ṽ!5g̃6E J 3~ t̃ !exp~ i ṽ t̃ !d t̃. ~15!

Exactly at the critical pointb50, the solution of Eq.~15! is

J ~ṽ !5S p

8 D 1/4

g̃23/2uṽu21/2. ~16!

Consider now the vicinity of the critical point, 0,b
!1. It is clear from the form of the solution~16! that a
similar result should be valid atṽ@b2. Next we focus on the
long-time, low-v region,ṽ!b2, and look for the purely ex-
ponential solution

J ~ t̃ !5J 1exp~2 t̃ /t0!. ~17!
al
-

l

This type of asymptotic solution is known to exist in th
classical version of the same model~cf. Refs. 5 and 7!. In the
present problem one can show, considering the anal
structure of~15!, that atb.0 the singularity ofJ (ṽ) closest
to the real v axis is necessarily a simple pole at som
ṽ5 i /t0 ; the next singularity may exist atṽ>3i /t0 . Solv-
ing ~15! with the ansatz~17! in the regiont̃ @t0 determines
parameterst0 andJ 1 as functions ofb:

t05
A32/27

g̃3

1

b2
, J 15A27

2
g̃3b. ~18!

This solution is similar to the one found in Ref. 5; howeve
an important difference is that in the present case the fa
J 1 scales to zero at the critical pointb50.

The full solution in the vicinity of the transition poin
should contain both~16! and ~18! as asymptotic solutions
and can be written in the form

J ~ t̃ !5
1

A t̃

f S t̃

t1

D 1J 1 expS 2
t̃

t0

D , ~19!

where f (x) is some scaling function that approaches a c
stant atx50 and decays rapidly asx→`; t1<t0/3. To con-
firm an existence of this type of solution, we solved Eqs.~15!
numerically for several values ofb!1. The results of this
computation are shown in Fig. 1. Clearly, all three functio
J ~v! coincide in the high-v region, where they are close t
the square-root asymptotic behavior~16!. The low-frequency
parts~for v<0.08! of these solutions can be made to coi
cide by a proper rescaling of their arguments,v* 5Lv. Fig-
ure 2 demonstrates the linear relationship betweenb22 and
the scaling coefficientL, as suggested by Eqs.~18! and~19!.

These results confirm the existence ofT50 critical be-
havior of the type of Eq.~19!.

4. CRITICAL BEHAVIOR AT T > 0

The above results refer to the zero-T phase transition
controlled by the single parameterg5J0 /Aa. We found that
this phase transition is a continuous one, and the corresp
ing critical behavior differs considerably from the behavi
found in an analogous classical model.5 In particular, at the
T50 critical point g5gc , there is no ‘‘plateau’’ solution
with approximately constantG(t) at t→`, which is known
to be a distinctive property of regular classical glasses. N
we consider low but non-zero temperaturesT5b21, and
find out how ‘‘classical’’ critical scaling ‘‘grows up’’ from
the ‘‘quantum’’ background; we also find the low
temperature shape of the phase transition curve in the~T,g!
plane.

The Green function is now defined at discrete frequ
ciesvn52pnT, and Eqs.~12! and~13! can be written in the
form

Ĝ~vn!5
a

a22S~vn!1v2 ,

SM~vn!5g̃6E
0

b

Ĝ3~ t !exp~ ivnt !dt. ~20!
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FIG. 1. Low-frequency asymptotic behavior ofG̃(v) for variousb
at T50.
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It will be convenient now to perform analytic continuation
Eqs.~20! and rewrite them in terms of real-time correlatio
function

D~ t !5^@S~ t !,S~0!#1&

and response function

x~ t !5 i @S~ t !,S~0!#2u~ t !.

The functionsG(vn), D(v) andx~v! are related as follows

G~2 iv1h!5x~v!, h→10,

D~v!5Im x~v!coth~v/2T!. ~21!

After analytic continuation Eqs.~20! can be written

x~v!5
a

ã22S~v!
, S~v!58g̃6E

0

`

D2~ t !x~ t !

3~exp~ ivt !21!dt, ã5a22S~v50!, ~22!

where we omitted thev2 term, which is irrelevant in the
vicinity of the critical point. Equations~22! form ~together
with the fluctuation-dissipation relation@second of Eqs.
~21!#! a complete set that determines the critical singula
at T.0. Formally, Eqs.~22! coincide with the correspondin
‘‘classical’’ equations from Ref. 5, the only difference bein
the form of the fluctuation-dissipation relation.

We now consider the low-temperature regionT!Aa.
As long as we are interested in the long-time behav
t@1/T, the correlation and response functions are related
the classical FDT: D(v)52T/v Im x(v). Characteristic
times relevant to~22! also belong to classical regio
t@1/T. Therefore the correlation function at the transiti
point has the same critical behavior as in the classical c

lim
t→`

D~ t !5q.

However, the parametera[l2g is determined by the
‘‘quantum’’ frequency rangev@T, i.e., by Eq.~10!. Substi-
tuting this expression into~22! yields
y

r
y

e:

q}a1/4T1/2 ã}a3/4T1/2. ~23!

In the short-time domaint!T21, the zero-T critical solution
with D(t)}a1/4t21/2 is valid. Equation~23! demonstrates
how the ‘‘classical’’ solution with nonzero limt→`D(t)
grows up with the temperature increase.

5. DIAMAGNETIC RESPONSE NEAR THE TRANSITION
POINT

Correlation and response functionsD(t) and x(t) are
not directly measurable in our system, but they can be u
to calculate a measurable physical quantity, the dynamic
magnetic susceptibilityxM(v), as was done previously fo
the classical problem.5 The total magnetic moment induce
by a time-dependent external magnetic field is

M5
1

2 S 2e

\cD l 2 (
mn

Sm
†

J̃ mnSn , ~24!

where J̃ mn5 imnJ mn .5 Then the magnetic susceptibilit
xM can be found via the Kubo formula,xM(t2t8)
5 i @M(t),M†(t8)#u(t), which leads to the expression

FIG. 2. The relation between scaling parameterL and proximity to the
transition pointb at T50.
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xM~v!5S 2e

\cD 2

l 2E
0

`

~eivt21!Re Tr J̃ x̂~ t !J̃ D̂~ t !dt. ~25!

Here we omit the term containing the irreducible four-sp
correlator~of the order of 1/N!, and take into account tha
M(H50)50. Note, that Eq.~25! formally coincides with
the classical formula for magnetic response.5 The matrix
functions D̂(t) and x̂(t) contain elements~denoted by
superscript~0!! belonging to the same~horizontal or vertical!
sublattice of our array, as well as ‘‘off-diagonal’’ elemen
(with superscript~1!) that describe correlation of phases
wires of different type~horizontal/vertical!. These functions
are related by

x̂~v!~1!5JG̃~v!x̂~v!~0!.

Thus, the expression for magnetic susceptibility has the fo

xM~v!5S 2e

\cD 2S l 2

12D
2

N5
J0

2

a2 I ~v!, ~26!

where

I ~v!5E S d~ t2t1!2
J0

2G̃2~ t2t1!

a
D

3x~ t1!D~ t1!~eivt21!u~ t !dt dt1 . ~27!

Near the transition point, only the long-time parts of t
functionsx(t) andD(t) in ~27! are relevant, and this expres
sion can be reduced to the form

I ~v!5~S~v!2S~0!!E x~ t !D~ t !eivtdt, ~28!

where the first factor came from the first brackets in~27!;
note that this vanishes in the limitv→0.

Using the solution~16!, we obtain at the quantum critica
point J5Jc

I ~v!5
a

2p
S ap

8g̃6D 1/4

Aiv ln v. ~29!

Near theT50 transition point at high enough freque
cies

v@~J/Jc21!2a23/2,

Eq. ~29! still holds. In the opposite case of low frequencie

I ~v!5
8Jc

3a3

81~Jc2J!3

v2a1/2

g
. ~30!

Note that the parameterg̃ ~which is known only up to factors
of order 1! does not enter into the low-v asymptotic behavior
of I (v).

Making use of Eqs.~26!, ~29! and~30!, and returning to
the original units of frequency, we finally obtain the ac d
magnetic susceptibility near the quantum transition point

xM~v!'S 2e

\cD 2

l 4N5
~JcCl !

1/2

2e
AivCl

e2 lnS vCl

e2 D ,

v@
Cl~J2Jc!

2

e2a5/2 , ~31!
m

,

-

xM~v!5S 2e

\cD 2S l 2

12D
2

N5
2Cla

7/2

81e2Jc

Jc
3

~Jc2J!3 v2,

v!
Cl~J2Jc!

2

e2a5/2 . ~32!

These expressions are valid at frequenciesv@T/\, other-
wise the ‘‘classical’’ asymptotic behavior of the Green fun
tions should be used and will lead to frequency dependen
like those in Ref. 5.

6. CONCLUSIONS

We have shown that a regular frustrated long-range
sephson array has a quantum~zero-temperature! phase tran-
sition between the Coulomb-dominated insulator phase a
superconductive state. This transition happens when
nearest-neighbor Josephson coupling exceeds the cr
value:

Ji j ;N21/2Aae2/Cl ,

whereCl is the self-capacitance of an individual wire.
We found that quantum critical behavior of the model

J→Jc is different from that of an analogous classic
system:5 at the quantum critical point

D~ t !}t21/2,

while at the classical critical point

q5 lim
t→`

D~ t !.

However, at any non-zero temperature a ‘‘classical’’ type
asymptotic behavior is recovered at the longest tim
t@\/T, leading toq}T1/2. Near theT50 critical point, the
gap in the excitation spectrum decreases ast0

21}(Jc2J)2.
Near the phase transition, the effective inductanceJ of

the array, defined by

J}]2xM~v!/]v2uv→0 ,

diverges as (Jc2J)23; this shows that the glass state h
macroscopic phase rigidity~cf. also Ref. 19!. Right at the
critical point we find unusual frequency behavior of the co
plex diamagnetic susceptibility:

xM~v!}Aiv ln v.

The frustrated nature of couplings in our array and co
parison with previous results7 in the classical version of the
same model indicates that the high-J state is a quantum
glassy superconductor. TheT50 nonergodic properties~ir-
reversibility, aging! remain an open question; note here th
a recent study15 of nonequilibrium glassy behavior in
p-spin spherical quantum model assumed strongly diss
tive ~overdamped! dynamics, whereas the dynamics releva
to a Josephson array atT50 must be underdamped.
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We study the critical behavior of the effective conductivity of a two-phase, highly inhomogeneous
medium with a finite ratio of phase conductivities. We find the critical exponents above and
below the percolation threshold and at the percolation threshold itself, and establish the criteria for
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1. INTRODUCTION

The physics of nonlinear composites near the percola
threshold is currently the focus of a great deal of attent
~see, e.g., the proceedings of the ETOPIM conference1!.
The special role that nonlinearity plays in highly inhomog
neous media is related to the fact that in such media
distribution of fields and currents is highly nonuniform
which leads to deviations from Ohm’s law.

There are roughly two types of nonlinearity: weak a
strong. In the first, for weak fields and currents, the curre
field relation for the phase with a weak nonlinearity is clo
to the linear Ohm’s law:j5s0E1xuEu2E, where j is the
current density,E is the electric field,s0 is the ‘‘ordinary’’
ohmic conductivity, andx is a constant characterizing th
deviation from linearity; it is assumed thatxuEu2!s0 . The
literature devoted to the study of the effective properties
two-component composites near the percolation thresh
for weakly nonlinear phases is vast~see, e.g., the literatur
cited in the review by Bergman and Stroud2 and in Ref. 3!.

In contrast to the current–field relation for a mediu
with weak nonlinearity, the relation for a medium wit
strong nonlinearity is far from linear even in very wea
fields:

j5suEubE. ~1!

To simplify matters, in~1! we have denoted the coefficien
characterizing the properties of the medium by the same
ter s as for ordinary conductivity, and we even call it co
ductivity. Note, however, that only whenb51 dpes this co-
efficient becomes the ordinary ohmic conductivity.

When studying the effective properties of randomly
homogeneous medium, we must first do two things: a! find
the current–field relation for the medium as a whole, and!
7881063-7761/99/89(10)/9/$15.00
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determine the dependence of the parameters of the curr
field relations on the concentrations of the phases.

Here we study the standard percolation problem: T
medium consists of two phases with very different propert
~in our case, conductivity!, with the concentrationp of the
highly conducting phase~which we call the ‘‘black’’ phase!
being close to the percolation thresholdpc , or t[(p
2pc)/pc!1.

Kenkel and Straley4 were the first to study the effectiv
properties of percolation media with the law~1!. They exam-
ined the situation above the percolation threshold (p.pc) in
which the second phase is an insulator, i.e., only the ‘‘blac
phase conducts, and found that the volume average of
current is related to the volume average of the field^E&:

^ j &5s1t t(b)u^E&ub^E&, p.pc . ~2!

Thus, since all finite resistors in the medium adhere to
same current–field relation~1!, the medium as a whole natu
rally has the same parameterb in ~2!. According to Ref. 4,
the critical exponentt(b), which characterizes the change
in the current~under a constant field! as the percolation
threshold is approached, is given byt(b)5(d222b)n
1(11b)zR , wheren is the critical exponent of the correla
tion length,d is the dimensionality of the problem, andzR is
close to unity for all values ofd.

Blumenfeldet al.5,6 found thatzR is essentially indepen
dent of b; according to the nodes–links–blobs~NLB!
model,7 zR51. In percolation structure models8,9 it is as-
sumed thatzR5a15t2n(d22), wheret is the conductivity
critical exponent above the percolation threshold in the lin
case. On the basis of these models, the analytic expres
t(b)5t1@ t2n(d21)#b was obtained in Ref. 10. It wa
found that this expression is in good agreement with
numerical and model ideas.4–6
© 1999 American Institute of Physics
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Ohtsuki and Keyes11 studied the opposite case, i.e., t
first phase~‘‘black’’ resistors! is a perfect conductor, so tha
the potential drop across it can be neglected. The mediu
below the percolation threshold and the entire potential d
is across the second phase~‘‘white’’ resistors!, with a
current–field relation of type~1!. In this case, instead of~2!
we have

^ j &5s2utu2q(B)u^E&ub^E&, p,pc , ~3!

where, according to Ref. 11q(b)5zG2(d222b)n, with
zG a quantity characterizing what is known as sing
disconnected bonds~SDCB! of the poorly conducting phas
~see Refs. 11–13!. If we put zG5a25q1n(d22) ~Refs. 8,
9, 11, and 13!, we obtainq(b)5q1nb ~Ref. 10!, whereq is
the critical exponent of conductivity below the percolati
threshold in the linear case. The two phases were accou
for simultaneously~s1Þ` ands2Þ0! in Ref. 10, where in
particular it was shown that at the percolation threshold~in
the smearing region!

^ j &5~s1
q(b)s2

t(b)!1/[t(b)1q(b)] u^E&ub^E&. ~4!

Scaling expressions for a two-phase medium were
cussed by Hon-Chor Leeet al.,14 who also gave results o
computer modeling. There are also many papers devote
the analysis of highly nonlinear media using variants of
effective medium methods~see, e.g., Refs. 15–19!, using
nonlinear fractal resistor networks~see, e.g., Refs. 5 and 20!,
and using series expansion methods~see, e.g., Refs. 6 an
21!.

In all of the work cited above, it was assumed that eith
both phases have the same current–field relation,
b15b2 , or that one phase is a perfect conductor (s15`) or
insulator (s250). It is obvious, however, that for two
phase, nonlinear media with finite phase ratios, the c
b15b2 is more the exception than the rule. For instance,
a medium consisting of a mixture of nonlinear and line
phases,b1Þ0 and b250. Below we consider the genera
case in whichb1Þb2 , i.e., both phases are highly nonline
but have differing current–field relations. In particular, th
can signify that one phase is highly nonlinear while the ot
is linear with finite conductivity.

In Sec. 2 we deal with a special case of phase nonlin
ity in the percolation region. This makes it possible, on
one hand, to introduce the main concepts~the critical local
field, restrictions on the average fields, and the smearing
gion! and, on the other, to avoid cumbersome expressio
Section 3 is devoted to the two-dimensional case with ‘‘
ciprocal’’ nonlinearity of the phases@see Eq.~34!#, for which
the Dykhne method provides a way to obtain exact result
the percolation threshold. In Sec. 4 we generalize the pe
lation approach to thed-dimensional case and arbitrary no
linearity of the phases. Finally, in Sec. 5 we allow for fie
strengths close to local critical values, where the method
the self-consistent field~of the Bruggeman–Landauer type!
can be applied, and fields far stronger than critical, wh
one can again use the percolation approach.
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2. SPECIAL CASE OF A THREE-DIMENSIONAL TWO-PHASE
NONLINEAR MEDIUM

To avoid cumbersome calculations, we begin with t
special case of ‘‘opposite’’ nonlinear current–field relatio
for the phases~Fig. 1!:

E5r1u j u2j , j5s1uEu22/3E, ~5!

j5s2uEu2E, E5r2u j u22/3j , ~6!

wheres15r1
21/3 andr25s2

21/3 are constants characterizin
the phase conductivities.

To determine the effective properties of the medium,
use the second stage of the hierarchical model of a perc
tion structure~see, e.g., Refs. 9, 22–25!, which allows for
percolation in each phase both above and belowpc ~Fig. 2!.

The resistors of the bridge and the layer~they are the
same both above and below the percolation threshold! can be
written in the form of voltage–current relations:

U15
N1

a0
5s1

3 J1
3 , U25

a0

s2N2
J2

1/3, ~7!

whereU1 and U2 are the potential drops across the brid
and the layer, respectively;J1 andJ2 are the currents, anda0

is the minimum size in the system~the size of a ‘‘unit’’
resistor!. In ~7! we have allowed for the fact that the curren

FIG. 1. Current–field relations for the first and second phases~curves1 and
2, respectively!.

FIG. 2. Hierarchical model of a percolation structure:1—the bridge, which
is a collection ofN1 singly-connected bonds~SCB! of the highly conduct-
ing, or ‘‘black,’’ phase, withN15utu2a1, wherea5zR5t2n(d22); and
2—the layer, which is a collection ofN2 singly-disconnected bonds~SDCB!
of the poorly conducting, or ‘‘white,’’ phase, withN25utu2a2, where
a25zG5q1n(d22).
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flowing through unit resistors in the bridge are the same
are equal to the total current through the bridge, and
potential drops across the resistors of the layer are the s
and are equal to the total drop across the layer:

N15utu2a1, N25utu2a2. ~8!

Above the percolation threshold, the main current flo
in this case through the principal element of the percolat
structure, the bridge. The layer yields a correction, which
be found by allowing for the fact that in this caseU15U2

2Uj andJ11J25Jj ~Fig. 2!, whereUj is the potential drop
over dimensions of the order of the correlation lengthj, and
Jj is the current through a cross-sectional area of orderj2:

Jj5S a0
5s1

N1
D 1/3

Uj
1/3F11

s2

s1

N2N1
1/3

a0
8/3 Uj

8/3G , p.pc . ~9!

Analogously, we can find the correction to the conductiv
of the system below the percolation threshold provided
the bridge:

Uj5S a0

s2N2
D 1/3

Jj
1/3F11S s2N2

a0
D 1/3 N1

a0
5s1

3 Jj
8/3G , p,pc .

~10!

Note that both~9! and~10! hold only under certain con
ditions. Strong inhomogeneity means that the local cond
tivity of the ‘‘black’’ phase is greater than that of th
‘‘white’’ phase, and in our case this is possible only if th
local fieldsEloc and currentsj loc are much less than the re
spective critical valuesEc and j c , determined by the inter
section of the local current–field relations~Fig. 1!:

Eloc!Ec , j loc! j c , ~11!

where~5! and ~6! yield

Ec5~s1/s2!3/8, j c5~s1
9/s2

1/8!3/8. ~12!

The local electric field strength in the percolation structu
peaks where the ‘‘black’’ phases are separated by the t
nest layer of the ‘‘white’’ phase,Emax5U2 /a0, and the larg-
est local current is at the bridge,j max5J1 /a0

2, wherea0
2 is the

cross-sectional area of the bridge. Passing to fields and
rents averaged over the volume,u^E&u5Uj /j and
u^ j &u5Jj /j2, and allowing for the fact that essentially th
entire potential dropUj across a volume of the medium wit
a characteristic sizej amounts to the potential drop acro
the layer, i.e.,Uj'U2 , and that essentially the entire curre
flowing through the correlation volume,Jj , is concentrated
at the bridge,Jj'J1 , we obtain expressions forEmax and
Jmax:

Emax5u^E&uutu2n, j max5u^ j &uutu22n. ~13!

Using ~12! and~13!, we can write the conditions~11! in the
form

u^E&u!S s1

s2
D 3/8

utun, u^ j &u!S s1
9

s2
D 1/8

utu2n. ~14!

Note that the closer the system is topc , the smaller the value
of t and the more stringent the conditions~14!.
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In addition to the restrictions~14! related to the strong
inhomogeneity of the two-phase medium, there are other
strictions directly related to the percolation structure. A
cording to the hierarchical model, above the percolat
threshold the principal element of the correlation volume
the bridge, while the layer provides first-order correction
Q1@Q2 , whereQi is the energy dissipation in bridge an
layer. SinceU15U2 for p.pc ~Fig. 2!, this condition be-
comes

J1@J2 , ~15!

which can be combined with~7! to yield

U2!a0S s1

s2
D 3/8

utu(3a21a1)/8, p.pc ~16!

According to the hierarchical model,a15t2n(d22) and
a25q1n(d22), so that in the three-dimensional ca
(d53) the exponent oft is (3q2t14n)/3. Note that ex-
pression~16! is simply the requirement that the second te
in square brackets in~9! be small compared to unity.

A similar restriction exists for the case in whic
p,pc . Here the principal element is the layer, and the co
dition Q2@Q1 with allowance forJ15J2 ~Fig. 2! yields

U2@U1 , ~17!

which can be combined with~7! to yield

J1!a0
2S s1

9

s2
D 1/8

utu(3a11a2)/8, p,pc , ~18!

with (3a11a2)/85(3t2q22n)/8 in the three-dimensiona
case. This condition means that the second term in sq
brackets in~10! is much less than unity.

Passing to currents and fields averaged over the volu
u^ j &u5Jj /j2 and u^E&u5Uj /j, allowing for the fact that
j5a0utu2n, and using~9! and ~10!, we obtain

^ j &5s1t t̃ u^E&u1/3 ^E&
u^E&u F11

s2

s1
t2w̃u^E&u8/3G , p.pc ,

~19!

^ j &5s2t2q̃u^E&u3
^E&

u^E&u

3F123S s2

s1
utu2w̃u^E&u8/3D 3G , p,pc , ~20!

where

t̃ 5
5n1a1

3
, q̃5n1a2 , w̃5 t̃ 1q̃5

8n1a113a2

3
.

~21!

If we now expressa1 anda2 in terms oft, q, andn, in the
three-dimensional case (d53) we obtain

t̃ 5
4n1t

3
, q̃52n1q, w̃5

t13q110n

3
. ~22!

Substitutingn50.88, t52.0, andq50.73 ~see Ref. 7!, we
obtain the numerical values of the critical exponen
t̃ 51.84, q̃52.49, andw̃54.33.
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The conditions~16! and ~18! can be written in terms o
fields and currents averaged over the volume, and they
mediately follow from the requirement that the second ter
in ~19! and ~20! be small:

u^E&u!~s1/s2!3/8t (t13q110n)/8, p.pc , ~23!

u^ j &u!~s1
9/s2!1/8t (3t1q114n)/8, p,pc . ~24!

At first glance it would appear that the conditions f
p.pc and p,pc are different, but if, for example, we tak
condition ~24! and replaceu^ j &u with u^E&u ~from ~20! it fol-
lows that u^ j &u's2utu2q̃u^E&u3), we obtain condition~23!.
Thus, the requirement that the second terms in~19! and~20!
be small actually leads to a single condition, which can
written either for the average field@condition~23!# or for the
average current@condition ~24!#. In addition to the require-
ment thatutu be much less than unity, these conditions me
that the system is in the critical region but outside the sme
ing region26 ~an analog of the smearing region of a pha
transition in the theory of second-order phase transitions27!.

Upon a further decrease int, the conditions~23! and
~24! break down. This occurs whenutu'D, whereD is the
size of the smearing region. The value ofD can be found
either by assuming that the second terms in~19! and ~20!
become approximately equal to unity or by assuming that
terms in ~19! and ~20! are equal~this is also the approac
taken in the linear case!:

s1D t̃ u^E&u1/3's2D2q̃u^E&u3. ~25!

In either case we have

D5S s2

s1
D 3/(t13q110n)

u^E&u8/(t13q110n). ~26!

Since in the critical regionutu!1, D must, of course, be
much less than unity. From~26! it immediately follows that

u^E&u!~s1/s2!3/8, ~27!

and sinceutun,1, it is clear that if the condition~14! is met,
the condition~27! is sure to be met.

Thus, the range of applicability of the hierarchical mod
in the problem with a strong nonlinearity is limited by th
conditions~14!, ~23!, and~24!.

Substituting the expression~26! for t into ~19! or ~20!,
we obtain the first term of the current–field relation in t
smearing region:

^ j &5~s1
3(q12n)s2

t14n!1/(t13q110n)

3u^E&u(3t1q114n)/(t13q110n) ^E&
u^E&u

. ~28!

Substituting the numerical values of the critical expone
yields (3t1q114n)/(t13q110n)'1.47. Thus, in the
smearing region the ‘‘transconductance’’ assumes an in
mediate value between the corresponding values above
below pc .
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3. EXACT SOLUTION OF THE TWO-PHASE PROBLEM

It is easy to write the expressions for the current–fie
relations above, below, and inside the smearing region
the two-dimensional case:

^ j &5s1t (a112n)/3u^E&u1/3 ^E&
u^E&u

[s1t (t12n)/3u^E&u1/3 ^E&
u^E&u

, p.pc , ~29!

^ j &5s2t2(a212n)/3u^E&u3
^E&

u^E&u

[s2t2(q12n)u^E&u3
^E&

u^E&u
, p,pc . ~30!

Here, to simplify matters, we have limited ourselves to t
first term, and of course the critical exponents refer to
two-dimensional case:t5q51.33 andn54/3 ~Ref. 7!.

In the smearing region,~29! and ~30! yield

D5S s2

s1
D 8/(a113a218n)

u^E&u8/(a113a218n)

[S s2

s1
D 3/4(t12n)

u^E&u2/(t12n). ~31!

Surprisingly, the current–field relations for such a tw
dimensional system with nonlinear characteristics of
phases@Eqs. ~5! and ~6!# are linear in the smearing region
Indeed, substituting~31! into ~29! or ~30!, we immediately
obtain

^ j &5~s1
3s2!1/4^E&. ~32!

The condition for the validity of~32! is the same as in the
three-dimensional case,~27!.

Using the method proposed by Dykhne,28 we can rigor-
ously prove that at the percolation threshold (p5pc) the
system with the local current–field relations~5! and ~6! is
linear. To this end we examine the two-phase Dykh
medium,28 whose phases occupy geometrically equival
positions, i.e., interchange of the phases does not alter
properties of the medium as a whole, and in particular
current–field relations do not change. Examples of such
dia include a randomly inhomogeneous medium at the p
colation threshold (p5pc), and a medium with a specia
arrangement of phases, e.g., a chessboard, in which the b
and white squares correspond to the ‘‘black’’ and ‘‘white
phases. As shown in Ref. 28, the effective conductivity
such media in the linear case is independent of the ac
structure. According to Dykhne,28 by using the transforma
tions

j ~r !5L~n3Ẽ~r !!, E~r !5
n3 j̃ ~r !

L
, ~33!

wheren is a unit vector normal to the two-dimensional m
dium, we can pass from the basic medium with the lo
laws

E~r !5r1u j ~r !u2j ~r !, rPO1 ,
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FIG. 3. Network variant of the Dykhne medium~a!. The
bonds depicted by solid lines are the resistors of the i
tial medium and by dotted lines, the resistors of the
ciprocal medium. Each bond corresponds to a resis
given by ~5! or ~6!. Here resistors of one type in th
initial network intersect the resistors of the other type
the reciprocal network, and vice versa. If the reciproc
network coincides with the initial one, the network
self-dual. The black and write rectangles are two resist
corresponding to one another in a self-dual network. F
ure 3~b! depicts a section of the network in~a!.
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j ~r !5r2uE~r !u2E~r !, rPO2 , ~34!

to the reciprocal medium with the laws:

j̃ ~r !5L4r1uẼ~r !u2Ẽ~r !, rPO1 ,

Ẽ~r !5L24s2u j̃ ~r !u2 j̃ ~r !, rPO2 . ~35!

Here O1 and Õ1 are the regions with the first~‘‘black’’ !

phase, andO2 andÕ2 are the regions occupied by the seco
~‘‘white’’ ! phase in the basic and reciprocal media, resp
tively.

The requirement of reciprocity~the ‘‘white’’ phase in
the initial medium becomes the ‘‘black’’ phase with th
tilde, and the ‘‘black’’ phase in the initial medium becom
the ‘‘white’’ phase with the tilde! fixes the value ofL:

L45s2/r1 . ~36!

By using the averaged transformations^ j &5L(n3^Ẽ&) and
^E&5l21(n3^ j̃ &) with L from ~36! we pass from the vol-
ume average of the current–field relation for the initial m
dium,

^ j &5se~ u^E&u2,u^ j &u2!^E&, ~37!

to that of the reciprocal medium,

^ j̃ &5
L2

se~ u^ j &u2/L2,L2u^E&u2!
^E&. ~38!

Since the initial medium and the medium with the tilde e
hibit the same effective properties, we ought to have
c-

-

-

se~ u^E&u2,u^ j &u2!5
L2

se~ u^ j &u2/L2,L2u^E&u2!
. ~39!

We write the functional equation~39! in terms of the more
convenient quantitiesx5u^E&u2 andy5u^ j &u2:

f ~y/L2,L2x! f ~x,y!5L2. ~40!

Now we can find the different solutions of this equation, e.

f ~x,y!5 x/y , f ~x,y!5L exp$b~L2x2y!%,... . ~41!

Substituting these solutions into~37! yields the linear Ohm’s
law ~32!.

Our result, the linearization of a highly nonlinear loc
medium at the percolation threshold by a two-dimensio
two-phase medium, holds in the case of the network var
of the Dykhne medium~see Fig. 3 and the caption to it!. The
network analog of the transformation~33! can be written
~Fig. 3!

i ab5Lũgd , uab5L21 ĩ gd , ~42!

wherei ab and ĩ gd are the currents in the bondsab andgd
of the initial and reciprocal media, anduab and ũgd are
potential drops across these bonds.

Given the symmetry specified in the caption to Fig. 3
resistor of the network is determined uniquely and is ind
pendent of the network size. Figure 4 shows two example
networks with such symmetry. Here, irrespective of the n
work size, there is at least one resistor that maps onto its
the resistor3 in Fig. 4. Recall that there are always places
on

on

n

FIG. 4. Self-dual 232 and 333 networks:1 desig-
nates resistors with the voltage–current relati
u5r 1i 3 and are depicted by black rectangles;2 des-
ignates resistors with the current–voltage relati
i 5g2u3 and are depicted by white rectangles; and3
the resistorr 35L5(r 1 /g2)1/4. In the linear case,
both networks yield the Dykhne result;28 a numerical
calculation yields the linear current–voltage relatio
I 5LU between the terminalsA andB.
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Dykhne media~points if one is dealing with a continuou
problem and resistors if a network problem is involved! at
which the two phases merge. In the ‘‘chessboard’’ reali
tion of the medium such places are the corners of
squares. More details about the behavior of the current d
sity and field strength near these corners can be foun
Refs. 29 and 30.

Three networks were chosen for a numerical verificat
of ~32!, the minimum network and the two that follow
~Fig. 4!. The numerical run shows, to high accuracy, that
entire medium is linear, i.e., it yields a linear current–fie
relation between the terminalsA and B ~Fig. 4!. Note that
since circuits consisting of nonlinear resistors with stric
monotonically increasing current–field relations can be in
more than one regime,31 the solutions of the Kirchhoff equa
tions for the networks depicted in Fig. 4 are unique.

The foregoing is also true of the more general~but of
course still special! current–field relations for the phases:

j5s2uEug21E, E5r1u j ug21j . ~43!

Furthermore, it can be shown that the relationship
tween the average field and average current in a t
dimensional medium is linear,̂j &5L^E&, if the current–
field relations for the phases exhibit a certain symme
property: the current–field relation for one phase can be
tained via a specular reflection of that for the other ph
through an oblique straight lineu j u5LuEu with appropriately
chosen scales on the axes. Here two conditions must be
both current–field relations must be single-valued monoto
cally increasing functions, and the disposition of the pha
nust be geometrically equivalent.

4. GENERALIZATION TO ARBITRARILY STRONG
NONLINEARITIES

We now examine thed-dimensional case, in which th
local current–field relations for the first and second pha
are, respectively,

E5r1u j ug21j , j5s1uEu(12g)/gE, ~44!

j5s2uEub21E, E5r2u j u(12b)/bj , ~45!

wherer151/s1
g , andr251/s2

1/b . Hereg andb are the pa-
rameters that specify the strong nonlinearity.

In particular, withg51/b ands2 /s1Þ0 we obtain the
case considered in Ref. 10, where both cases have the
current–field relations. The necessary calculations are
ried out as in Sec. 2, so here we simply give the result.

Above and below the percolation threshold,

^ j &5s1t t̃ u^E&u1/g ^E&
u^E&u F11

s2

s1
t2w̃u^E&ub21/gG ,

p.pc , ~46!

^ j &5s2t2q̃u^E&ub
^E&

u^E&u F12S s2

s1
upu2w̃u^E&ub21/gD gG ,

p,pc , ~47!

where the conductivity critical exponentst̃ and q̃ have the
form
-
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t̃ 5
a12n1ng~d21!

g
5

t1n~d21!~g21!

g
, ~48!

q̃5a21nb2n~d21!5q1n~b21!, ~49!

and the so-called scaling critical exponent is

w̃5 t̃ 1q̃5
a11ga21n~bg21!

g

5
t1gq1n@~g21!~d21!1g~b21!#

g
. ~50!

Note that the second term in square brackets in~46! coin-
cides with the expression in parentheses in~47!, which
means that there is a unique scaling exponent. This, in
ticular, implies that the problem has a unique smearing
gion D, whose value is determined by the condition that t
second term in~46! or ~47! is of order 1:

D5S s2

s1
u^E&ub21/gD 1/w̃

. ~51!

Substituting this into ^ j &5s1t t̃ u^E&u1/g^E&/u^E&u or
^ j &5s2t2q̃u^E&ub^E&/u^E&u yields the current–field relation
in the smearing region:

^ j &5~s1
q̃s2

t̃ !1/w̃u^E&u(1/w̃)(b t̃ 1q̃/g) ^E&
u^E&u

. ~52!

So as not to complicate the discussion, the criteria of ap
cability of the percolation approach for the general case~they
are similar to the criteria for the special case~11!, ~14!, ~16!,
~18!, etc.! are given in the Appendix.

Note that the linearization of the system in the tw
dimensional case at the percolation threshold, Eq.~32!, is
more the exception than the rule, and occurs only for s
cially selected local laws of the type~5!, ~6!, or ~43!. In the
parameter space (g,b), the linearization regions of the sys
tem are the same in the two- and three-dimensional ca
The shape of this region can easily be obtained by setting
exponent of̂ E& in ~52! to unity ~Fig. 5!.

In contrast to the linear case, the smearing region~51!
now depends on the field applied to the sample, so th
change in̂ E& can initiate a transition of the system from on

FIG. 5. The range of values ofg and b within which the current–field
relation for the entire medium in the smearing region in the thr
dimensional case becomes linear. In the two-dimensional case, this ran
the straight lineg5b.
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region to another, for example, from~46! or ~47! to ~52!.
Such a transition changes the shape of the current–field
lation. Note that even if one phase is linear, e.g.,g51, the
current–field relation in the smearing region fails to matc
single current–field relation for the phases constituting
medium.

5. BEYOND REGIONS WITH E!Ec AND j ! j c

The aforesaid holds under certain conditions~see the
Appendix!, i.e., for fields and currents that are small co
pared toEc and j c . In this section we investigate the beha
ior of the system nearu^E&u5Ec .

It can easily be shown that atu^E&u5Ec the system be-
comes homogeneous. To prove this, we consider the netw
variant of the problem. For the sake of definiteness we
sume that the terminals on aj3j3j sample are arrange
from left to right and a fixed potential dropUj is maintained
across the terminals. To each resistor positioned along
terminals we apply a voltageUc (Uc5Eca0). Then all the
resistors through which the current flows become identi
At each of these elements of the medium the field strengt
Ec , and the average field strengthu^E&u is also equal toEc .
Such a distribution of fields satisfies the boundary conditi
for any concentrationp of the ‘‘black’’ phase. Since the
solution of the problem~the regime in which the medium
operates! is unique for monotonic current–field relations,31

the proposed distribution of fields~E5^E& andu^E&u5Ec! is
the true distribution.

In the continuum variant of the medium, the local law
~44! and ~45! in the phases are the same atu^E&u5Ec :
e-

tio

a

e-

a
e

-

rk
s-

he

l.
is

s

E~r !5Eck0 , j ~r !5 j ck0 , ~53!

wherek0 is the direction of̂ E& independent of the coordi
nates. Thus, these fields and currents~53! satisfy the equa-
tions ~div j50 and curlE50! and the boundary condition
at the phase boundary~Etu15Etu2 and jnu15 jnu2!. Since the
solution is unique,~53! is also the solution of the problem a
the pointu^E&u5Ec .

Nearu^E&u5Ec , the medium is weakly inhomogeneou
so that to determine the effective characteristics we can
the effective-average approximation. Huiet al.16 used this
approximation to describe conductivity in systems with

j ~r !5xauEuaE, j ~r !5sbE. ~54!

In our notation,a11→g, b→1, xa→s1 , and sb→s2 .
According to Ref. 16,̂ j &5se(^E&)^E&, where

se5
~122p!~s22s1^uEug21&1!

2

2
A~122p!2~s22s1^uEug21&1!214s2s1^uEug21&1

2
.

~55!

Here ^¯&1 designates averaging over the first phase, anp
is the concentration of the nonlinear~first! phase; it is as-
sumed that ^uEug21&1'(^uEu2&1)(g21)/2 for the average
fields, and that the average field^uEu2&1 can be found from
the self-consistency conditions:
^uEu2&15
u^E&u
2p H 2~122p!1

2s22~122p!2~s22s1^uEu2&1
(g21)/2!

A~122p!2~s22s1^uEu2&1!(g21)/214s2s1~^uEu2&1!(g21)/2J . ~56!
al
ws
truc-
e
in

of
ar
of
We introduce a parameter« that characterizes the small d
viation of the field strength fromEc :

^uEu2&15Ec
2~11«!2. ~57!

Then to first order in« we obtain

u^E&u5EcF11S g21

4
~12p!21D «G . ~58!

Substituting~57! and ~58! into ~55! yields the concentration
dependence of the effective conductivity nearEc :

se5s2S 122
g21

~12p!~g21!22
p

u^E&u2Ec

Ec
D . ~59!

Of course, this expression is valid when the second term
the parentheses is small compared to unity. This condi
imposes additional restrictions on the values ofg and p, in
addition to the requirement thatu^E&u be close toEc , i.e.,
that (u^E&u2Ec)/Ec be much less than unity. For instance,
in
n

t

g52 the concentration dependence ofse is valid for any
value ofp, while atg54 it is valid only for values ofp far
from 0.5.

How does the system behave whenuEu@Ec? We assume
that local fields can only increase as the average fieldu^E&u
increases. This means that whenu^E&u@Ec , the elements of
the ‘‘black’’ and ‘‘white’’ phases across which the potenti
drop is the greatest and through which the main current flo
exchange places. Thus, we have the same percolation s
ture as whenu^E&u!Ec , only now the bridges consist of th
‘‘white’’ phase and the layers of the ‘‘black’’ phase, and
~46!, ~47!, ~51!, and~52! we must interchanges1 ands2 and
replacep with 12p.

6. CONCLUSION

We have come to the conclusion that in the problem
the effective conductivity in a two-phase, highly nonline
medium with a finite phase ratio there are three regions
fields. For the first and third regions~I, uEu!Ec ; III,
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uEu@Ec! it is possible to use a percolation-like approach, a
in a certain sense the medium is highly inhomogeneous
the second, intermediate, region~II, uEu'Ec) the medium is
weakly inhomogeneous and self-consistent field methods
ply. At the pointuEu5Ec the system becomes homogeneo
and the effective conductivity can be found exactly. We b
lieve that such homogenization must lead to a sharp decr
in the level of flicker noise, which, being the second mom
of Joule heating, increases with the degree of inhomogen

We are grateful to P. M. Hui for sending copies of im
portant publications and to A. M. Satanin for helpful discu
sions. This work was partially supported by the Internatio
Science and Education Program~Projects QSU082187 an
PSU082057!.

APPENDIX

The restrictions@similar to~23! and~24!# imposed on the
expressions~46! and~47! by the requirement that the princ
pal element of a percolation structure above the percola
threshold be a bridge and below the threshold, a layer, h
the form

u^ j &u!S s1
b

s2
1/g tb t̃ 1q̃/gD 1/(b21/g)

, ~A1!

u^E&u!S s1

s2
tw̃D 1/(b21/g)

. ~A2!

As in ~46! and ~47!, the expressions transform into one a
other whenu^ j &u is replaced byu^E&u, or u^E&u by u^ j &u.

The restrictions imposed on~46! and~47! by the require-
ment that the local fields and currents be weak in compar
to the critical valuesj c andEc can be written in the form of
conditions for the average fields and currents:

u^ j &u!S s1
b

s2
1/gD 1/(b21/g)

tn(d21), ~A3!

u^E&u!S s1

s2
D 1/(b21/g)

utun. ~A4!

These conditions are similar to~14!, where ~A3! follows
from the restriction on the maximum local current density
the bridge, and~A4! from the restriction on the maximum
local field in the layer. In this form,~A3! and ~A4! are ap-
plicable both above and below the percolation thresho
However,~A3! can be written as a restriction on the avera
field, and~A4! as a restriction on the average current dens

u^E&u!S s1

s2
D 1/(b21/g)

t2g[ t̃ 2n(d21)], p.pc , ~A5!

u^E&u!S s1

s2
D 1/(b21/g)

utu(1/b)[ q̃1n(d21)], p,pc , ~A6!

u^ j &u!S s1
b

s2
1/gD 1/(b21/g)

t t̃ 1n/g, p.pc , ~A7!

u^ j &u!S s1
b

s2
1/gD 1/(b21/g)

utu2q̃1bn, p,pc , ~A8!
d
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In the smearing region, the requirement thatD be small
yields

u^E&u!S s1

s2
D 1/(b11/g)

, ~A9!

which is similar to the inequality~27!. If we use the average
current density,~A9! can be combined with~52! to obtain

u^ j &u!S s1
b

s2
1/gD 1/(b11/g)

. ~A10!

The conditions that are imposed on~52! in the smearing
region by the requirement that the local fields and curren
small compared to the critical values@which are similar to
~A3!–~A8!# coincide with ~A9! and ~A10! if expressed in
terms of the average field and currents.
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An experimental study is made of the effect of the finite correlation time of controlling
multiplicative noise on the hypersensitivity to weak ac signals in systems withon-off intermittency.
It is shown that the gain has a maximum for an optimal choice of correlation time and
intensity of the controlling noise. ©1999 American Institute of Physics.
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1. INTRODUCTION

A novel phenomenon, namely hypersensitivity to ac s
nals induced by white multiplicative noise, has be
shown1–3 theoretically and experimentally to occur in th
case of a simple nonlinear system withon-off intermittency,
an overdamped Kramers oscillator. Real stochastic p
cesses, however, always have a finite correlation time,
white noise is an abstraction. Thus, a study of the effec
colored noise on the hypersensitivity is a natural step in
study of this interesting phenomenon.

In this paper the effect of the correlation time of contro
ling multiplicative noise on the hypersensitivity phenomen
in a nonlinear system which displayson-off intermittency is
investigated experimentally in an analog electronic circui

Previous papers1–3 examined an overdamped Krame
oscillator with controlling multiplicatived-correlated noise.
We recall the basic results in brief. Consider the stocha
differential equation for this system:

dx

dt
5@l1bh~ t !#x2Ux31E~ t !, ~1!

whereh(t) is a d-correlated Gaussian random process w
intensityb, andE(t) is a periodic zero-mean signal. This
the equation for a massless particle in a biquadratic pote
with a potential barrier whose height is modulated by wh
Gaussian noise. In the adiabatic approximation, when
time to establish a stationary probability densityF(x) is
much shorter than the period of the signalE(t), we can write
F(x) in the form

F~x!5Cuxua21u~sgn~E~ t !x!!f~x,x1 ,b!, ~2!

whereu is the Heaviside step function,C is a normalization
constant, and the form of the functionf(x,x1 ,b) is deter-
mined by the form of the nonlinearity in the potential, lea
ing to a cutoff ofx(t) at the characteristic scale lengthx1 of
the system.

Clearly, the main parameter governing the dynamics
this kind of system isa:

a52l/b2. ~3!
7971063-7761/99/89(10)/4/$15.00
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The conditionuau!1 is the condition foron-off intermit-
tency for the system~1!, where the system is suddenly e
cited from the laminar phase to a cutoffx1 determined by the
size of the system, and then returns to the laminar ph
Here the stationary probability density has the power-l
form

F~x!;uxua21. ~4!

Note the characteristic features of the solution~2!: first,
it has a power-law dependence of the probability dens
over a wide rangeA0;exp(21/uau),x,x1 for uau!1,
which is typical of theon-off-effect,4–6 and second, it is sen
sitive to the sign of the signalE(t) for signal amplitudesA
.A0. We emphasize thatA0 is exponentially small in the
parameter 1/uau.

The expression for the gain whenuau!1 has the form

I 5
^ux~ t !u&

A
;H ~1/A!ln~1/A!, z!1,

uau/A12uau, z@1, a,0,
~5!

where

z5uau ln~1/A!. ~6!

Thus, in theon-off intermittency region, a stochastic sy
tem controlled by external multiplicative noise can ampl
an ultraweak ac signal up to a cutoff determined by the ty
cal dimensions of the system with a gainI;1/A, whereA is
the signal amplitude.1–3

It can be shown that in the case of ‘‘colored’’ dichoto
mous noise, the parametera is given by:

a5
lg

D22l2
'

lg

D2
, l!D, ~7!

where 1/g is the correlation time for the noise,D is the noise
amplitude, andl is a term linear in the dynamic variable i
Eq. ~11!. F(x) has the power-law form~4! in the on-off
intermittency region. Sinceon-off intermittency is observed
when uau!1, it can be seen from Eq.~7! that the transition
to the ‘‘white’’ noise limit requires a simultaneous reductio
© 1999 American Institute of Physics
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in l, so that for a finite value ofl and sufficiently largeg,
the system will not be hypersensitive and the gain will d
crease. Ifl remains constant, the noise intensityD must
increase to maintainon-off intermittency~and hypersensitiv-
ity!.

2. EXPERIMENT

Figure 1 shows the analog circuit employed in the e
periment. It consists of a capacitor and nonlinear elem
with conductivityG(t) and control voltageVn(t) connected
in parallel, the latter being implemented with an operatio
amplifier and switch. The controlling voltageVn(t) consisted
of dichotomous~telegraphic! nose. The input rectangular sig
nal E(t), with zero mean, amplitudeA, and periodT, was fed
through the resistorR.

The current–voltage characteristic of the circuit
shown in Fig. 2. It is clear that the controlling telegraph
noise changes the sign of the conductivity of the circuit.

Let us write the Kirchhoff equation for our circuit:

FIG. 1. Analog electronic circuit used in the experiment. The operatio
amplifier is a KR544UD1 and the relayK is an RÉS49.

FIG. 2. Static current–voltage characteristic of the electronic circuit sho
in Fig. 1. ForuVu,V0'5 V, multiplicative noise modulates the conductivit
of the circuit. At uVu.7 V, the branches of the current–voltage charact
istic coincide.
-

-
nt

l

E~ t !2V~ t !

R
5C

dV

dt
1I ~V!, ~8!

whereV(t) is the unknown~output! voltage,CdV/dt is the
current through the capacitor,I (V) is the current through the
nonlinear element with fluctuating conductivity, andE(t) is
the input signal.

Since Eq.~2! implies that the main contribution to th
stationary probability densityF(V) comes from lowV(t),
while the role of the nonlinearity reduces to a cutoff at high
voltagesV(t)'V1, whereV1 is determined from the condi
tion I (V1)50, the behavior of the system in the linear regi
is of interest. We rewrite Eq.~8! for uV(t)u,V0. Then, for
the currentI (V) we can write

I ~V!5~G01g~ t !!V5@G01g0j~ t !#V, ~9!

whereg(t) is the fluctuating conductivity, which takes va
ues6g0 at random. Its correlation function is

^g~0!g~ t !&5g0
2^j~0!j~ t !&5g0

2 exp~2g0utu!. ~10!

Substituting Eq.~9! in Eq. ~8! and transforming to dimen
sionless timet5t/RC, we obtain

dV

dt
5@l1Dj~t!#V1E~t!, ~11!

with

^j~0!j~t!&5exp~2gutu!, l52RuG0u,

D5Rg0 , g5RCg0 . ~12!

Clearly, noise enters Eq.~11! multiplicatively, i.e., it is mul-
tiplied by the variableV.

In our case, the current–voltage characteristic of Fig
yields l'20.09 andD'0.27.

Figure 3 shows the output voltageV(t) when a rectan-
gular signal of amplitudeA550 mV and frequencyf s50.3
Hz is applied to the input of the circuit for different values
g. It is clear that the system reacts to a small input signal
‘‘surging’’ to the cutoff uV1u'5 V, and thereby amplifies it
This behavior is typical ofon-off intermittency, where a sys
tem that is in a laminar phase is excited to cutoff and ag
undergoes a transition to the laminar phase. It is also c
that forg, f s , switching does not occur for every change
sign in the signal~adiabaticity breaks down!, and the funda-
mental harmonic of the signal is essentially absent from
spectrum. Increasingg leads to switching at each half perio
of the signal, and therefore to further amplification.

Beyond the scaling dependence~4! for the stationary
probability density,on-off intermittency is characterized by
power-law probability density FOR the length of the lamin
phase,4–6

PL~L !}L23/2, ~13!

whereL is the length of the laminar segment.
The laminar phase was determined experimentally in

following way: the generatedV(t) contained a maximum
spike Vmax'V1'5 V; the laminarity thresholdp was speci-
fied in fractions ofVmax and the laminar phaseV(t) was

l

n

-
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defined by the conditionV(t),pVmax. Figure 4 shows a
histogram ofPL(L) at constant input voltageE(t)5E515
mV for a laminarity thresholdp50.1, which is in good
agreement with the theoretical dependence~13!. Deviations
from Eq. ~13! occur over characteristic times of 1/g ~a re-
duction inPL for L;1/g) and 1/l ~an exponential decreas
at largeL;1/ulu). Measuring the variationPL(L) provides
another way to estimate the parametersg andl. From Fig. 4
we obtaing;1 and ulu;0.1, which agrees with a direc
measurement ofg from the spectrum of the controlling
noise, and with the valueulu50.09 derived from the
current–voltage characteristic in Fig. 2.

Figure 5 shows a plot of the gain as a function ofg. The
gain is defined by

K~A!5ASV~ f s!D f /A, ~14!

whereSV( f s) is the spectral intensity of the first harmonic
the output signal andD f 50.03 Hz is the spectral bandwidt
for the measurement ofSV( f ).

For g, f s , the adiabaticity condition for the signal rela
tive to the noise is clearly violated, so the gain is reduc
For largeg, according to Eq.~7! the parametera approaches

FIG. 3. Output voltageV(t) for a rectangular signal of amplitudeA550
mV and frequency 0.3 Hz~0.0018 in dimensionless units! applied to the
circuit, for g51.14 ~a!, 0.065~b!, and 0.0068~c!.
.

unity and the gain also falls off. Thus, it is possible to choo
an optimal correlation time for the controlling noise so as
maximize the gain .

3. CONCLUSIONS

In this paper we have shown experimentally that one
observe hypersensitivity to weak ac signals in a system w
on- off intermittency when a multiplicative noise driver wit
finite correlation time 1/g and sufficiently high intensityD is
applied to it. Here the signal gain is greatest within an op
mal range of noise correlation times.

The author thanks S. L. Ginzburg and M. A. Pustov
for sustained interest and useful discussions.
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FIG. 4. Distribution of the length of the laminar phase for constant in
signalE(t)5E515 mV and laminar threshold ofp50.1, for g51.14. The
straight line has slope23/2.

FIG. 5. Gain as a function ofg for a rectangular input signal of amplitud
A510 mV and period 3.3 s~dimensionless signal frequency 0.0018!.
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A simple nonlinear stochastic system, an overdamped Kramers oscillator with multiplicative
colored noise, is studied analytically and by numerical simulation. It is shown that in the region
whereon-off intermittency occurs, the system becomes hypersensitive to weak external
periodic signals. ©1999 American Institute of Physics.@S1063-7761~99!02610-4#
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1. INTRODUCTION

It is now generally recognized that in a number of s
chastic systems noise can lead to effects that at first gla
defy common sense. One widely known example of suc
phenomenon is stochastic resonance, where noise mak
system amplify an external~as a rule, periodic! signal.1 An-
other class of such phenomena is known as noise-indu
transport, where a stochastic system with an asymmetric
tential and colored noise operates as a ratchet, and the
of matter is driven by noise.2 These systems call to min
Maxwell’s demon. Yet another example is noise-induc
phase transitions in systems with multiplicative~parametric!
noise.3 Here, adding noise to a small multiplicative bifurc
tion parameter leads to the development of a phase state
does not exist in the absence of the noise.

Recently we observed yet another unusual phenome
that illustrates the constructive role of noise in nonlinear s
tems. It turned out that a nonlinear system~a Kramers oscil-
lator! with multiplicative white noise acted upon by an u
traweak periodic signal in theon-off intermittency regime is
capable of amplifying that signal by many orders
magnitude.4 We referred to this phenomenon as nois
induced hypersensitivity.

For further clarification of the physics of this phenom
enon, however, it must be borne in mind that white noise
an abstraction, since any real physical noise process is
ored, i.e., has a finite correlation timet. In a theoretical
treatment of the problem in its general form, it is necess
to provide for a limiting transition to white noise, where ast
decreases, the noise amplitude increases ast21/2. In fact this
condition is essentially never satisfied, and therefore
white noise approximation is inapplicable. In addition, t
finite correlation time must be taken into account when t
time is comparable to the period of the external signal. Th
in this paper we carry out a theoretical and simulation stu
of a Kramers oscillator with multiplicative colored nois
from the very outset.

Since it is known that a stochastic differential equati
with colored Gaussian noise does not have an ex
solution,3 we carry out a theoretical analysis for dichotomo
colored noise, and numerical simulation for Gaussian c
8011063-7761/99/89(10)/9/$15.00
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ored noise as well. The results in these two cases are es
tially identical. We determine the dependence of the gain
a periodic signal on the amplitude and correlation time of
colored noise and show that the hypersensitivity pheno
enon shows up over a wide range of these parameters.
signal gain increases by many orders of magnitude w
both the amplitude and correlation time of the noise incre
from zero to their optimum values. Here the dependence
the gain on these parameters is the same for different ty
of noise, both Gaussian and dichotomous~telegraphic!.

This paper is organized as follows: in Sec. 2 we descr
our model and derive the basic equations for a one-part
probability density function. In Sec. 3 we briefly review th
main results of Ref. 4 for white noise, and determine
one-particle probability density function and its moments
colored dichotomous noise in the adiabatic approximation
Sec. 4 we present results from a numerical simulation
white, colored dichotomous, and colored Gaussian no
Here we find the range of system parameters within wh
hypersensitivity occurs. The conclusions are presented
Sec. 5.

2. BASIC EQUATIONS

We study the stochastic differential equation for an ov
damped Kramers oscillator with multiplicative noise in th
periodic field of a rectangular signal,

dx

dt
5lx1z~ t !x2Ux31AR~ t !,

~1!

R~ t1T!5R~ t !5H 1, 0,t<T/2,

21, T/2,t<T.

Here l, U, and A are constant parameters, andz(t) is a
random variable with autocorrelation function

^z~ t !z~ t8!&5D2e2gut2t8u. ~2!

If z(t) is a Gaussian random function, then it satisfies
Ornstein–Uhlenbeck condition,
© 1999 American Institute of Physics
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dz

dt
52gz1DA2g j~ t !,

~3!
^j~ t !j~ t8!&5d~ t2t8!,

wherej(t) is white noise.
For dichotomous noise,z(t) can be written in the form

z~ t !5S~ t !D, S~ t !561, ~4!

whereS(t) is a random quantity that changes sign with pro
ability g/2 per unit time. Thenz(t) is an discontinuous vari
able, which must be described in the following way. W
introduce the discrete timetk5kDt and write the mapping

Sk115
1

2
~j1,k2j2,k!1

1

2
~j1,k1j2,k!Sk

5H j1,kSk , Sk51,

j2,kSk , Sk521,
~5!

f ~j6,k!5
g

2
d~j6,k11!Dt1S 12

g

2
Dt D d~j6,k21!.

Here j1,k and j2,k are two random independent quantiti
whose values are determined by the distributionf (j). If the
corresponding value if negative, thenS(t) changes sign. In
the limit Dt→0, we obtain random telegraphic~symmetric
dichotomous! noise. Taking

D25gb2/2, g→` ~6!

in Eq. ~2!, we obtain

^z~ t !z~ t8!&5b2d~ t2t8!,

which means that both Gaussian and dichotomous colo
noise transform into Gaussian white noise. Equation~1! is to
be interpreted here in the sense of Stratonovich.

In the case of white noise, Eq.~1! determines a one
dimensional Markov process, for which one can write t
Fokker–Planck equation

]F~x,t !

]t
52

]

]x H F S l1
b2

2 D x2Ux31AR~ t !GF~x,t !J
1

b2

2

]2

]x2
@x2F~x,t !#. ~7!

For colored noise,x(t) and z(t) determine a two-
dimensional Markov process for which there is a tw
dimensional Fokker–Planck equation. For Gaussian nois
takes the form

]F~x,z,t !

]t
52

]

]x
$@~l1z!x2Ux31AR~ t !#F~x,z,t !%

1g
]

]z
@zF~x,z,t !#1gD2

]2

]z2
F~x,z,t !. ~8!

Since the latter equation does not admit of a potential5 it
has no exact solution.

For dichotomous noise the variablez(t) can take on only
two values, so instead of the partial differential equation~8!,
we obtain two ordinary differential equations,3
-

ed

e

-
it

]F~x,D,t !

]t
52

]

]x
$@~l1D!x2Ux31AR~ t !#F~x,D,t !%

1
g

2
@F~x,2D,t !2F~x,D,t !#,

]F~x,2D,t !

]t
52

]

]x
$@~l2D!x2Ux31AR~ t !#F~x,

2D,t !%1
g

2
@F~x,D,t !2F~x,2D,t !#.

~9!

3. SOLUTION OF THE EQUATIONS IN THE ADIABATIC
APPROXIMATION

We now solve Eqs.~7! and~9! in the adiabatic approxi-
mation ~the characteristic relaxation time of the system
much less than the period of the signal!, and then estimate
the switching times for the output signal. This estima
makes it possible to determine whether the adiabatic
proximation is appropriate.

We begin with Eq.~7!. For small signal amplitudes
~henceforth we assume thatA'10210) its solution in the
adiabatic approximation has the form4

F~x,t !5Cuxua21u~R~ t !x!expH 2
2AR~ t !

b2x
2

Ux2

b2 J ,

a52l/b2, ~10!

whereu is the Heaviside step function. The asymptotic for
of the normalizing factorC for small a is

C5H a, a.0, z@1,

@ ln~1/A!#21, z!1,

uauAuau, a,0, z@1,

z5uau ln~1/A!, uau!1, U/b2;1. ~11!

The solution~10! has two interesting properties. Firs
F(x)}u(x) for R(t).0 andF(x)}u(2x) for R(t),0. This
means that when the sign of the input signal changes,
output signal also changes sign after some timeT0 , which
we estimate below. The solution~10! was obtained subject to
the condition T@T0 . Its detailed derivation is given
elsewhere.4 Second, in the case of an ultraweak signal,
distributionF(x) has a scaling form over a wide range ofx:

F~x!5Cuxua21u~R~ t !x!, A!x!x0'b/AU. ~12!

From Eq. ~11! it is then clear that forz;1, i.e., for a
signal amplitude

A05exp~21/uau!,

crossover occurs, i.e., foruau!1 an ultraweak signalA0

!A!x0 changes the density function in a fundamental w
Horsthemke and Lefever3 only considerA!A0 ; when l
,0 the functionF(x) approachesd(x), i.e.,F(x)→d(x). In
contrast, here we study the regionA0!A!x0 for small ab-
solute values ofa. That is precisely the region in which th
effects of interest can be detected. To see them immedia
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we calculate the moments ofF(x,t). Given the explicit form
of R(t) in Eq. ~1!, in the adiabatic approximation we obta
for small z

^x~ t !&5
b

2
Ap

U

1

ln~1/A!
R~ t !,

^x2~ t !&5
b2

2U

1

ln~1/A!
,

~13!
^x~ t !&2

^x2~ t !&
5

p

2 ln~1/A!
!1,

I 5
^x~ t !&
AR~ t !

5A p

4U

b

A ln~1/A!
.

Here I is the signal gain.
This expression forI holds only in the adiabatic approx

mation. In general the gain is defined by

I 25
1

T E
0

T ^x~ t !&2

A2
dt. ~14!

Since ln(1/A) is a very slowly varying function, the firs
moment is of orderx0 , while the gain is enormous.~For b
50.7, U51, and A510211, I 52.53109.) Note thatx(t)
fluctuates strongly, and the standard deviation is large c
pared to the mean. However, since^x(t)& is an ac quantity
and ^x2(t)& is not, the signal can easily be detected us
standard spectral techniques.

We termed the foregoing phenomenon, which is induc
by strong multiplicative noise, ithypersensitivity to variab
weak signals.

Based on simple physical considerations, we now e
mate the signal switching timeT0 when the sign ofR(t)
change. When the sign ofR(t) switches, the trajectoryx(t)
changes sign only whenuxu reachesA. We must therefore
determine from Eq.~10! the probability thatx lies in the
regionuxu<A, i.e., that it will be ready to pass through zer
T0 is obviously inversely proportional to that probabilit
i.e.,

T0
21}E

0

A

F~x!dx}CAa,

T0}H A2a/a, a.0, z@1,

ln~1/A!, z!1,

1/uau, a,0, z@1.

~15!

Clearly, adiabaticity fails here (T0 becomes large! for
positivea. For a,0 andz@1 it is always satisfied, while
for z!1 there is crossover to nonadiabatic behavior. T
numerical simulations shown below demonstrate this clea

We now proceed to the case of dichotomous noise,
to the solution of Eq.~9! in the adiabatic approximation. I
has been shown3 that for a constant input signal (R(t)51),
it is possible to find a stationary solution of Eq.~9!. Going to
an adiabatically varying signal, we write down the solutio
for positive and negative input signals separately. ForR(t)
51, Eq.~9! yields the following closed set of expressions f
the probability density functionF(x)5F(x,D)1F(x,2D):3
-

g

d

i-

e
y.
.,

s

F~x!5C
g~x!

D2g2~x!2 f 2~x!

3expF2
g

2 E dzS 1

f ~z!2g~z!D
1

1

f ~z!1g~z!D D G ,
F~x,D!5

g~x!D2 f ~x!

2g~x!D
F~x!,

F~x,2D!5
g~x!D1 f ~x!

2g~x!D
F~x!, ~16!

f ~x!5lx2Ux31A, g~x!5x.

Above all, we note that for the limiting transition t
white noise~6! this yields the standard solution of Eq.~7!:3,5

F~x!5
C

g~x!
expF 2

b2 E f ~x!

g2~x!
dxG . ~17!

In addition, there are three constants with the same
mensions in the problem,D, l, andg. We are interested in
smalll, so in the following we takeulu,D. We assume no
other relationships among these constantsa priori. Then, af-
ter the integrals are evaluated, the solution~16! takes the
form

F~x!5CxS x1
A

D1l D 212g/2~D1l!

3S x2
A

D2l D 211g/2~D2l!

3S D1l

U
2x2D 211g/4~D1l!

3S D2l

U
1x2D 212g/4(D2l)

,

F~x,D!5
CU

2D S x1
A

D1l D 212g/2(D1l)

3S x2
A

D2l D g/2(D2l)

3S D1l

U
2x2D 211g/4(D1l)

3S D2l

U
1x2D 2g/4(D2l)

,

~18!

F~x,2D!5
CU

2D S x1
A

D1l D 2g/2(D1l)

3S x2
A

D2l D 211g/2(D2l)

3S D1l

U
2x2D g/4(D1l)

3S D2l

U
1x2D 212g/4(D2l)

,
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FIG. 1. Potential curves for Eq.~1! with two values of the
dichotomous noise in Eq.~4! andA50.
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R~ t !511.

Following Ref. 3, it can be shown thatF(x) and F(x,
6D) are specified on the interval (A/(D2l),
A(D1l)/U ), which is referred to as the support ofF(x).

It is clear from Eq.~18! that for smallg andz5D there
is a singularity only atx5A(D1l)/U, and whenz52D
only at x5A/(D2l), i.e., asg→0 there is a very strong
correlation betweenx andz, which is perfectly natural.

Then, for a negative input signal we have

F~x!5C•~2x!S 2x1
A

D1l D 212g/2(D1l)

3S 2x2
A

D2l D 211g/2(D2l)

3S D1l

U
2x2D 211g/4(D1l)

3S D2l

U
1x2D 212g/4(D2l)

,

~19!

R~ t !521, xPS 2AD1l

U
,2

A

D2l D
and similarly forF(x,6D).

Equations~18! and ~19!, therefore, transform into on
another whenx goes into2x under reflection, which implies
reflection symmetry of the probability density function abo
zero. Thus, in the following we mainly consider just positi
input signals.

We initially takeA50 in Eq. ~18!. Then

F~x!5Cx211aS D1l

U
2x2D 211g/4(D1l)

3S D2l

U
1x2D 212g/4(D2l)

,

F~x,D!5
UC

2D
x211aS D1l

U
2x2D 211g/4(D1l)

3S D2l

U
1x2D 2g/4(D2l)

, ~20!
t

F~x,2D!5
UC

2D
x211aS D1l

U
2x2D g/4(D1l)

3S D2l

U
1x2D 212g/4(D2l)

,

a5
lg

D22l2
, xPS 0,AD1l

U D .

It is clear from Eqs.~18! and ~20! that for g5gc54(D
1l), the character of the probability density functio
changes. Forg,gc there is a singularity in the function
F(x) and F(x,D) at x5x05A(D1l)/U ~i.e., the system
spends a lot of its time nearx0), and forg.gc it vanishes.
Furthermore, it is clear from Eq.~20! that over a wide range
A!x!x0 the probability density function has the form
F(x)}xa21, as in the case of white noise, only with a
otherwise determined parametera. ~In the white noise limit,
these two definitions coincide.! It also follows from Eq.~20!
that for all the functionsF(x) and F(x,6D), there is the
same singularity atx50, while for x5x0 the functionsF(x)
andF(x,D) are singular andF(x,2D) goes to zero. In ad-
dition, for a,0 the normalizing integral diverges, i.e., th
finiteness of the signal amplitudeA must be taken into ac
count.

The factorC can be expressed in terms of hypergeom
ric functions. However, it is clear that since the singularity
x50 is cut off by the boundary of the support ofF(x), a
reasonable estimate ofC can be obtained by simply taking

C215B21 E
A

x0
xa21dx5B21

x0
a2Aa

a
,

where B is a constant independent ofA. For smalla, we
have

C5H Ba, a.0, z@1,

B/ ln~1/A!, z!1,

BuauAuau, a,0, z@1.

~21!

This expression coincides with the normalization~11!.
Since the hypersensitivity effect is related to the depende
of C on a, it is clear that introducing colored dichotomou
noise does not alter the physics, and only affects the de
mination ofa. Nevertheless, it is interesting that in the ca
of strongly correlated noise, i.e., wheng decreases,a also
decreases, that is, hypersensitivity is induced as well.
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FIG. 2. Time behavior of multiplicative telegraphic~a! and Gauss-
ian ~b! noise and the corresponding output signal of a system w
parametersg50.0005, D50.2, l520.05, A510211, T58192,
andU51.
.
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Let us examine the case of smallg separately. As can be
seen from Eq.~17!, wheng→0 all the exponents go to unity
In order to understand the structure of the response, le
consider the caseA50, i.e., Eq.~20!. The main factors in
these formulas arexa21 and (x02x)211g/4(D1l). We there-
fore examine just these, i.e., we write the model probabi
density function~for positivel):

F~y!5Cya21~12y!«21,

«5
g

4~D1l!
, a5

lg

D22l2
, y5

x

x0
, ~22!

C5
G~a1«!

G~a!G~«!
——→
a,«→0

a«

a1«
.

Averaging an arbitrary functionf (y) with respect to the
distribution ~22!, we obtain
us

y

^ f ~y!&5
a«

a1« (
n50

`
f (n)~0!

n!

G~a1n!G~«!

G~a1n1«!
——→
a,«→0

f ~0!

1
a

a1« (
n51

`
f (n)~0!

n!
5

«

a1«
f ~0!

1
a

a1«
f ~1!. ~23!

It is clear from Eq.~23! that as the parametersa and«
approach zero,

F~y!→ «

a1«
d~y!1

a

a1«
d~y21!, ~24!

i.e., the probability density vanishes in Eq.~22!, and there-
fore in Eq. ~19! for g→0, it consists of two smeared-ou
delta functions. Physically, this is obvious, since for smalg
the system is mainly in thex50 andx5x0 states, to which
it relaxes exponentially. However, if we simply examine t
adiabatic approximation with respect to the noise correlat
time, then, instead of Eq.~24!, we obtain F(x)5@d(x)
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FIG. 3. Averageŝ x(t)& over 500 periods of the signal fo
different values ofg: ~a! telegraph input noise,~b! Gaussian
input noise. The remaining parameters are as in Fig. 2.
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1d(x2x0)#/2. This means that the adiabatic approximati
with respect to the correlation time is not correct, but E
~24! is.

The reason for this behavior is clear from the followin
considerations. When the noise switches fromz5D to z
52D, the system relaxes exponentially to zero fromx
5x0 , and when it reverses direction, relaxation begins
very small x, so that the system is greatly delayed foruxu
!1. This is clear in Fig. 1, which shows the potential f
different levels of noise. Forz5D a potential barrier appear
at x50, where the system is delayed, and forz52D the
barrier vanishes, so the system rapidly relaxes to the un
potential minimum. The inequivalence of switching also fo
lows from Eqs.~18! and ~20! for F(x,D) andF(x,2D). In
addition, the smearing out of the delta functions in Eqs.~20!
and ~22!, as well as in Eq.~18!, is far from standard.

We now calculate the moments of the distribution in t
.

t

ue

adiabatic approximation with respect to the period of t
signal (T@T0). Given that their magnitudes are determin
by the regionuxu@A, we can use Eq.~20! ~and the analogous
formula for R(t)521). Then, given Eq.~21!, by analogy
with Eq. ~13! for z!1 we obtain

^x~ t !&;
x0

ln~1/A!
R~ t !, ^x2~ t !&;

x0
2

ln~1/A!
,

^x~ t !&2

^x2~ t !&
;

1

ln~1/A!
, I 5

^x~ t !&
AR~ t !

;
x0

A ln~1/A!
~25!

and analogous expressions for the other asymptotes. C
paring Eqs.~25! and ~13! we see that colored dichotomou
noise also initiates hypersensitivity to a weak ac signal. T
significant difference from white noise here is that the co
dition for hypersensitivity (uau!1) is not only satisfied at
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FIG. 4. a! Signal gain and signal-to-noise ratio (SNR)
as functions of the reciprocal of the correlation time f
colored noise. Notation:1! telegraphic noise,l
520.05; 2! Gaussian noise,l520.05; 3! telegraphic
noise,l50.02; 4! Gaussian noise,l50.02. The values
of D, A, andT are the same as in the preceding figure
b! I andSNRas functions of the noise amplitudeD for
Gaussian white noise~6! ~1, l520.05), for colored
telegraphic noise~2, l20.05; 3, l50.02), and for col-
ored Gaussian noise~4, l520.05; 5, l50.02). For
colored noiseg50.0005. For white noise,D was cal-
culated from its intensityb using Eq. ~6! with g
50.0005.
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small l, but also at smallg, i.e., for long noise relaxation
times t. This, of course, is true only fort!T. Otherwise,
the signal cannot switch and a new class of phenomena~in
particular, nonergodicity! occurs, which we shall not discus

We conclude this section by considering the coupl
between the hypersensitivity phenomenon andon-off inter-
mittency. We showed previously4 that the system of Eqs.~1!
with white noise manifestson-off intermittency. The phe-
nomenon essentially entails giant fluctuations of the phys
quantities, which, with similar probabilities, can take fini
values~the burst phase! or become vanishingly small ove
long quiet periods~the laminar phase!. This behavior is as-
sociated with the scaling character of the probability den
function F(x) for A!x!x0 . Since all the probability den
sity functions for telegraphic noise have the same sca
behavior, it is natural to expecton-off intermittency in this
case as well. The generally accepted criterion foron-off in-
termittency in a given system is a 3/2 power-law depende
for the distribution of the duration of laminar segments, i.e6

r~ l !} l 23/2. ~26!

In the case of correlated noise, Eq.~26! can be observed only
for l .t51/g.

4. NUMERICAL SIMULATION

We have carried out numerical simulations of proce
~1! for colored telegraphic@Eqs. ~4! and ~5!# and colored
Gaussian@Eq. ~3!# noise. The integration was carried o
using an Eulerian scheme with a time step ofDt50.01. Fur-
ther reductions in the step size have no effect on the sys
characteristics of interest to us, the input signal transit
switching time and the system gain.

The behavior of the system with telegraphic noise
clearly illustrated in Fig. 2a, which shows fragments of t
simulated output signal and the corresponding noise inpu
a long correlation timet51/g52000. The output signa
pulses rapidly follow the noise pulses and their sign is de
mined by the sign of the ultraweak periodic actuating sign
The inequivalence in the noise switching described abo
al

y

g

e

s

m
n

s

or

r-
l.
e,

when the signal cannot rise tox0 , is also clear. For compari
son, we show analogous data for Gaussian colored n
with the same parameters~Fig. 2b!.

Subsequently, the hypersensitivity effect shows up d
tinctly in the ensemble averagêx(t)& ~Fig. 3! and in the
magnitude of the gain~Fig. 4!. The gainI in Eq. ~14! can be
defined in terms of the output spectral densityS(v) as fol-
lows. It is known7 that

S~v!52p(
k

uxku2d~v2kV!1Snoise~v!, ~27!

wherexk is the Fourier coefficient of the periodic functio
^x(t)& andSnoise is the stochastic component. It is clear fro
Eqs.~14! and ~27! that

I 25
1

A2 (
k

uxku2
dv

2pA2 (
i

~Si2Snoise!, ~28!

whereSi is theith harmonic of the signal in the spectrum an
dv is the spectral bandwidth.

It is clear from Fig. 4 that there are ranges of the amp
tude and correlation time of colored noise within which t
gain coefficient has a maximum. This happens because

FIG. 5. Resonance plots ofI (g) for input signal periodsT58192 ~1! and
T5819 ~2!; D50.2, l520.05, A510211.
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relaxation timeT0 ~15! depends on bothD andg. The sys-
tem has maximum sensitivity to a periodic signal when

T0~g,D!;T/2. ~29!

The condition~29! is similar to the condition for an or
dinary stochastic resonance in the classical problem wi
two-well potential,8 which describes a phenomenon of
entirely different character.

The signal-to-noise ratio, defined as

SNR25
Si2Snoise

Snoise
, ~30!

also has a resonant dependence on the noise, which em
sizes the similarity of the effect we are studying to a class
stochastic resonance. Note that in the region where the s
rise in gain takes place, this ratio passes through a minim
which means that there are strong fluctuations in the sys
~this is also clear in the curves forg50.05 in Fig. 3a and
with g50.1 in Fig. 3b!. The reasons for this behavior of th
system are as yet unclear.

Figure 4 illustrates well the universality of the hyperse
sitivity phenomenon for different kinds of noise. This is to
expected, since when the conditionuau!1 for hypersensitiv-
ity is satisfied, the gain depends only ona, as can be seen
from the equations of the previous section.

Figure 5 shows resonance plots ofI for two signal peri-
ods and Fig. 6, for two cutoffsx0 . In our model, x0

}U21/2. It is quite clear that in factI}x0 /A; that is, at the

FIG. 7. The time for the system to reach a threshold ofx51050 for U
5102100 as a function of the reciprocal of the correlation time for telegra
noise. The amplitude of the constant input signal isAR(t)510211, D
50.2, andl520.05.

FIG. 6. Resonance plots ofI (g) for U51 ~1! and U510210 ~2!; T
58192 and the remaining parameters are as in Fig. 5.
a

ha-
l
rp
,

m

-

peak of the resonance curve the output signalx(t) varies
from x;A510211 to x;x05105, i.e., by 16 orders of mag
nitude.

Figure 7 is a plot of the relaxation timeT0 as a function
of g. As Eq. ~15! implies, this dependence is exponenti
Although Eq. ~15! was derived for white noise, only th
scaling form of the probability density function foruxu,x0

was of importance in deriving it, so that Eq.~15! should be
universal, as confirmed by the numerical calculations.

In conclusion, we present results indicative ofon-off in-
termittency in thise system. The distribution of the lengths
the laminar sections was calculated in a separate comp
experiment with a constant signal (R(t)51) and dichoto-
mous noise. The laminar segments were identified in the
culated output signal in accordance with the criterionx
,xthr50.1x0 . The probability density of the durations ca
culated in this manner is shown in Fig. 8. Equation~26! does
indeed apply forl .t, i.e., on-off intermittency occurs in a
system with colored noise as well.

5. CONCLUSIONS

Noise-induced hypersensitivity to weak signals, which
typical of systems withon-off intermittency, is a very wide-
spread phenomenon. It turns out that it can develop unde
influence of both telegraph and Gaussian correlated~colored!
noise, as well as white noise. We have found that the gain
an ultraweak periodic signal in a system with colored mu
plicative noise depends resonantly on both the correla
time and amplitude of the noise.

This work was supported by the Russian Fund for Fu
camental Research~Project No. 99-02-17545!, the state pro-
gram on the ‘‘Physics of Quantum and Wave Process
~subprogram on ‘‘Statistical Physics,’’ Project VIII- 3!, and
the state program on ‘‘Neutron Studies of Matter.’’

FIG. 8. Probability density function for the length of the laminar segme
in the system with telegraph noise,g50.025, D50.2, a constant input
signal AR(t)510211, l520.05, andU51. The laminar threshold isxthr

50.1x0 .
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