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Abstract—The T -odd correlation ξ = q · [pπ × pl]/m3
K in the decays K+ → π0l+νγ (l = e, µ) is in-

vestigated as a function of the parameters of the effective Lagrangian. It is shown that the T -odd
correlation offers a good indicator of new physics in the vector and pseudovector sectors of the model
under consideration. In the scalar and pseudoscalar sectors, investigation of the T -odd correlation gives
no way to improve the current limits on the parameters of various extensions of the Standard Model.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
At present, considerable attention is being given

to experimentally studying T invariance, which is
one of the fundamental symmetries in contemporary
physics. Of particular interest are measurements of
quantities that are suppressed in the Standard Model,
since effects of new physics may manifest themselves
in such quantities. By way of example, we can men-
tion the transverse polarization of the muon in the
decays K+ → π0µν and K+ → µνγ [1, 2]. In these
processes, the muon has no transverse polarization in
the Standard Model at the tree level. In the Standard
Model, the transverse polarization of the muon is sup-
pressed because it is due to final-state electromag-
netic interactions. The Standard Model prediction for
the transverse polarization of a lepton is as small
as 5× 10−6 in the decay K+ → π0µ+ν [3, 4] and
amounts to 6× 10−4 in the decay K+ → µ+νγ [5, 6].
In some extensions of the Standard Model, a nonzero
polarization is generated at the tree level [7, 8].

The transverse polarization of the muon in the
decay K+ → π0µ+ν was measured recently in the
KEK–E246 experiment [1]:

PT = (−1.12 ± 2.17(stat.)± 0.90(syst.))× 10−3.
(1)

Unfortunately, we cannot present a similar result for
the decay K+ → µ+νγ because data processing has
not yet been completed. The expected value of the
polarization is estimated at 1.5× 10−2 [2].

In studying CP violation, proper attention is also
being given to the T -odd correlation ξ = q · [pπ ×
pl]/m3

K in K+ → π0l+νγ decays. In the differential
distribution of the decay width in ξ, a nonzero asym-
metry with respect to ξ = 0 would be signal of T
violation. As in the case of the transverse polariza-
tion of the muon, the T -odd correlation is generated
1063-7788/04/6705-1003$26.00 c©
by final-state electromagnetic interactions within the
Standard Model and is therefore zero at the tree level.
Within the Standard Model, this effect was previously
considered in [9]. It would be of interest to compare
the Standard Model value of the asymmetry with its
values obtained in various extensions of the Standard
Model, and we address precisely this issue here.

Additionally, this study is motivated by the plans
to study the T -odd correlation in the future OKA
experiment [10], where it is natural to expect up to
about 106–107 events of the decay K+ → π0e+νeγ
and up to about 105–106 events of the decay K+ →
π0µ+νµγ.

The present article is organized as follows. In
Section 2, we introduce a model-independent La-
grangian, express the asymmetry in terms of this
Lagrangian, and discuss the Standard Model con-
tribution to the asymmetry. Further, we consider
the SU(2)L × SU(2)R × U(1) left–right symmetric
model in Section 3 and scalar models in Section 4.
The results of our study are discussed in the Conclu-
sion.

2. MODEL-INDEPENDENT APPROACH
TO STUDYING THE T -ODD CORRELATION

The model-independent Lagrangian for four-
fermion interactions can be represented in the form

L =
GF√

2
sin θC(s̄γα(1− γ5)uν̄γα(1− γ5)l (2)

+ gss̄uν̄(1 + γ5)l + gps̄γ5uν̄(1 + γ5)l
+ gv s̄γ

αuν̄γα(1− γ5)l + gas̄γ
αγ5uν̄γα(1 − γ5)l),

where GF is the Fermi constant; θC is the Cabibbo
angle; and gs, gp, gv, and ga are, respectively, the
2004 MAIK “Nauka/Interperiodica”



1004 BRAGUTA et al.
scalar, the pseudoscalar, the vector, and the axial-
vector coupling constant. With the aid of the La-
grangian in (2), we can express the matrix element
for the decay K(p)→ π0(p′)l(pl)ν(pν)γ(q) as

T =
GF√

2
V ∗
useε

∗
α

(
((1 + gv)V αβ (3)

− (1− ga)Aαβ)ν̄(1 + γ5)γβ l

+ (1 + gv)Fβ ν̄(1 + γ5)γβ
(
pα

pq
− pαl

plq
− q̂γα

2(plq)

)
l

+ (gsFα
s + gpF

α
p )ν̄(1 + γ5)l

+ gsf ν̄(1 + γ5)
(
pα

pq
− pαl

plq
− q̂γα

2(plq)

)
l

)
,

where Vus is an element of the Cabibbo–Kobayashi–
Maskawa matrix; εα is the photon polarization vector;
and the tensors V αβ , Aαβ , F β , Fα

s , Fα
p , and f are

given by

V αβ +
pα

pq
F β (4)

= i

∫
d4xeiqx〈π0(p′)|TJα(x)(s̄γβu)(0)|K(p)〉,

Aαβ = i

∫
d4xeiqx〈π0(p′)|TJα(x)(s̄γβγ5u)(0)|K(p)〉,

Fα
s +

pα

pq
f

= i

∫
d4xeiqx〈π0(p′)|TJα(x)(s̄u)(0)|K(p)〉,

Fα
p = i

∫
d4xeiqx〈π0(p′)|TJα(x)(s̄γ5u)(0)|K(p)〉,

F β = 〈π0(p′)|(s̄γβu)(0)|K(p)〉,

f = 〈π0(p′)|(s̄u)(0)|K(p)〉,
Jα being the electromagnetic current. By means of
Ward identities [11], we can show that the tensors in
(4) satisfy the relations

qαV
αβ = 0, (5)

qαA
αβ = 0,

qαF
α
s = 0,

qαF
α
p = 0.

Taking these relations into account, we can introduce
the following parametrization:

Vαβ = V1

(
gαβ −

Wαqβ
qW

)
(6)
PH
+ V2

(
p′αqβ −

p′q

qW
Wαqβ

)

+ V3

(
p′αWβ −

p′q

qW
WαWβ

)

+ V4

(
p′αp

′
β −

p′q

qW
Wαp

′
β

)
,

Aαβ = iεαβρσ(A1p
′ρqσ + A2q

ρW σ)

+ iεαλρσp
′λqρW σ(A3Wβ + A4p

′
β),

F β = C1p
′
β + C2(p− p′)β ,

Fα
s = S

(
pα − pq

p′q
p′α
)
,

Fα
p = iP εαλρσpλp

′
ρqσ,

W = pl + pν.

In the calculations, we use the expressions obtained
for the form factors Vi, Ai, and Ci within chiral per-
turbation theory to order p4 [11]. The form factors S
and f can be related to the known expressions for
Vi and Ci by using Ward identities. The derivation of
the respective relations is given in the Appendix along
with the derivation of an expression for the form factor
P .

In seeking possible CP-odd effects, we are inter-
ested in the distribution of the K+(p)→
π0(p′)l+(pl)ν(pν)γ(q) partial decay width with re-
spect to the kinematical variable ξ = q · [pπ ×
pl]/m3

K in the K+-meson rest frame,

ρ(ξ) =
dΓ
dξ

. (7)

Obviously, the function ρ(ξ) can be represented in the
form

ρ = feven(ξ) + fodd(ξ),

where feven(ξ) and fodd(ξ) are, respectively, an even
and an odd function of ξ. The function fodd(ξ) can be
written as

fodd = g(ξ2)ξ. (8)

After integration of the function ρ(ξ) over the entire
range of ξ, only the function feven(ξ) makes a nonzero
contribution to the total width.

To analyze data on K+ → π0l+νlγ decays, it is
convenient to introduce the quantity

Aξ =
N+ −N−
N+ + N−

, (9)

where N+ (N−) is the number of events in which ξ >
0 (ξ < 0). Obviously, the numerator of Aξ depends
only on fodd(ξ).

Since the form factors Vi, Ai, and Ci are real-
valued, the distribution ρ(ξ) in the tree approximation
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004



T -ODD CORRELATION 1005
of the Standard Model is symmetric with respect to
the straight line ξ = 0; that is, the number of K+ →
π0l+νlγ events for ξ > 0 is equal to that for ξ < 0;
therefore, Aξ = 0. This can be explained as follows:
in the tree approximation of the Standard Model,
the form factors Vi, Ai, and Ci are real-valued; the
square of the matrix element for the decay processes
in question is expressed in terms of only the scalar
products of final-particle momenta; and there are no
contributions linear in ξ. For this reason, ρ(ξ) is an
even function of the variable ξ.

Within the Standard Model, ξ-odd terms are
due to final-state electromagnetic interaction, which
gives rise to imaginary parts in some form factors;
in turn, they generate a nonzero contribution to the
function fodd(ξ) and to the asymmetryAξ. The contri-
bution of the final-state interactions was considered
in [9] in the one-loop approximation. The calculations
on the basis of the unitarity relations for the S-matrix
yield

Aξ = 1.14 × 10−4 (K+ → π0µ+νµγ), (10)

Aξ = −0.59 × 10−4 (K+ → π0e+νeγ).

This result indicates that the value of Aξ can be used
in searches for new physics since the Standard Model
contribution to the asymmetry of K+ → π0l+νlγ de-
cays is strongly suppressed.

We now consider the asymmetry Aξ of the matrix
element for K+ → π0l+νγ decays as given by the
Lagrangian in (2). In the K+-meson rest frame, the
square of the decay amplitude (3) can be represented
in the form

|T |2 = |Teven|2 + (Im(gv)Cv + Im(ga)Ca (11)

+ Im(gs)Cs + Im(gp)Cp)m4
Kξ,

where |Teven|2 is the ξ-even contribution to the square
of the matrix element; the last term is an odd contri-
bution; and Ca, Cv, Cs, and Cp are kinematical fac-
tors that depend only on the scalar products of the
momenta of the particles involved in the decay pro-
cess being considered. We do not present here the
expressions for Ca, Cv, Cs, and Cp because they are
rather cumbersome. From (11), it can be seen that
the asymmetry does not vanish if the imaginary parts
of the parameters of the Lagrangian in (2) are different
from zero.

It should be noted that one can derive a relation
between the kinematical factors Ca and Cv from
expression (3) for the matrix element in question.
Assuming that, in the model under consideration,
Im(gv) = −Im(ga) and Im(gs) = Im(gp) = 0, we
conclude that the asymmetry Aξ vanishes because
the matrix element (3) differs from the matrix element
within the Standard Model only by a common phase
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
factor; that is, Cv − Ca = 0 in this model. Since the
kinematical factors Cv and Ca are independent of the
structure of a model, the equality Cv = Ca must be
valid in any model.

Upon integrating expression (11) over the phase
space, one can obtain the asymmetry Aξ. Here, we
perform this integration numerically over the photon
energy regionEγ > 30 MeV and the region θγl > 20◦

of lepton–photon opening angles in the kaon rest
frame, these kinematical cuts being typical of the
current and planned kaon experiments. As a result,
we obtain

Aξ = −(2.9× 10−6Im(gs) + 3.7× 10−5Im(gp)
(12)

+ 3.0 × 10−3Im(gv + ga))

for K+ → π0e+νeγ and

Aξ = −(3.6× 10−3Im(gs) + 1.2× 10−2Im(gp)

+ 1.0 × 10−2Im(gv + ga))

for K+ → π0µ+νµγ.
It should be noted that, in the asymmetry of the

decay K+ → π0e+νeγ, the contributions of the pa-
rameters Im(gs) and Im(gp) are strongly suppressed
in relation to the analogous contributions for the de-
cay involving a muon in the final state. This is because
the kinematical coefficients of these parameters are
proportional to the final-lepton mass.

3. SU(2)L × SU(2)R × U(1) MODELS

In this section, we consider extensions of the
Standard Model that are based on SU(2)L ×
SU(2)R × U(1) symmetry [12]. In such models, each
fermion generation furnishes both an SU(2)L and an
SU(2)R doublet. Fermion masses are generated via
the Higgs mechanism. Therefore, one must introduce
at least one Higgs multiplet. We introduce a Φ(2,2,0)
Higgs multiplet,

Φ =


φ0

1 φ+
1

φ−
2 φ0

2


 . (13)

The vacuum expectation values in this multiplet can
be written as

Φ =


k 0

0 k′


 . (14)

In general, the vacuum expectation values k and k′

are complex. Additional Higgs multiplets are required
for ensuring the breakdown of SU(2)L × SU(2)R ×
U(1) symmetry to U(1). The most straightforward
4



1006 BRAGUTA et al.
way for such symmetry breaking is to introduce two
doublets δL(2,1,1) and δR(1,2,1),

δL =


δ+

L

δ0
L


 , δR =


δ+

R

δ0
R


 . (15)

For a large mass scale MR to be generated, it is
necessary that the vacuum expectation value 〈δ0

R〉 =
vR be considerably greater than k, k′, and 〈δ0

L〉 = vL.

Another possible scenario of a spontaneous break-
down of SU(2)L × SU(2)R × U(1) symmetry in-
volves the triplets ∆L(1,3,2) and ∆R(3,1,2),

∆L,R =


∆+/

√
2 ∆++

∆0 −∆+/
√

2




L,R

, (16)

whose vacuum expectation values are

∆L,R =


 0 0

vL,R 0


 . (17)

In just the same way as in the model involving two
Higgs doublets, fulfillment of the condition vR �
k, k′, vL is necessary for the generation of a large
mass scale. Sometimes, it is required that the La-
grangian of the gauge theory under study be invariant
under the transformations

ΨL ↔ ΨR, δR ↔ δL, ∆R ↔ ∆L, Φ↔ Φ+.
(18)

This implies, in particular, that the fermion couplings
to the SU(2)L and SU(2)R bosons are equal.

In the models under study, CP violation is due to
the Cabibbo–Kobayashi–Maskawa matrices, which
appear both in the left (KL) and in the right (KR)
sector of the theory. The effects of CP violation are
much richer in this theory than in the Standard Model
because the analog of the Cabibbo–Kobayashi–
Maskawa matrix in the right sector involves N(N +
1)/2 CP-odd phases, where N is the number of
generations. Here, we neglect neutrino masses and,
hence, lepton mixing angles, assuming that the lep-
ton mixing matrices are diagonal. Depending on the
parameters of the model, there are two mechanisms of
CP violation. The first is spontaneous CP violation
occurring if the vacuum expectation values k, k′, vR,
and vL are complex and if the Yukawa couplings to
fermions (elements of the matrix Φ) are real. In the
case of CP violation through the second mechanism,
the Yukawa couplings are complex, while the vacuum
expectation values are real. The latter mechanism
is realized in the Standard Model. In general, either
mechanism or both of them can be operative.
PH
Irrespective of the content of the Higgs sector
responsible for symmetry breaking, the interaction
between quarks and charged gauge bosons can be
represented in the form [13]

L =
gL√

2
W µ

L ŪγµK
LPLD (19)

+
gR√

2
W µ

RŪγµK
RPRD + h.с.,

where gR and gL are the coupling constants in,
respectively, the right and the left sector of the model
under study; UT = (u, c, t) and DT = (d, s, b) are
physical quark states; and PL,R = (1∓ γ5)/2. The
states WR and WL are not physical, but they can be
reduced to physical states by means of the unitary
transformation
WL

WR


 =


 cos η − sin η

eiω sin η eiω cos η




W1

W2


 , (20)

where η is the mixing angle and ω is a phase. In what
follows, the phase factor is included in the matrixKR.
With the aid of (19) and (20), the effective Lagrangian
for the process s→ uµνµ can be recast into the form

L = −GF√
2
gR
gL

(KR
su)

∗ξ(s̄(1− γ5)γαu)(ν̄(1 + γ5)γαl).

(21)

Comparing this expression with the Lagrangian in
(2), we find that the parameters ga and gv of the
Lagrangian under consideration are given by

gv = ga = −gR
gL

(KR
su)

∗

sin θc
η. (22)

In the following, we assume that the input La-
grangian of the model is invariant under the transfor-
mations in (18), this leading to the relation gR = gL.
We also assume that the mixing matrices KR and
KL satisfy the relation |(KR)ij | = |(KL)ij |. This
relation holds if the vacuum expectation values of the
Higgs fields are real; that is, CP violation is due to
the complex-valuedness of the Yukawa couplings. In
this case, KL = KR [14]. The equality |(KR)ij | =
|(KL)ij | also holds in models featuring a spontaneous
violation of CP symmetry. In this case, the matrix of
Yukawa couplings is real and symmetric, while the
vacuum expectation values are complex, which leads
to the relation KL = (KR)∗ [15]. With the aid of the
above relation, the matrix KR can be represented in
the form

KR = eiγ


 e−iδ2 cos θC e−iδ1 sin θC

−e−iδ1 sin θC eiδ2 cos θC


 . (23)
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Given the explicit form of the matrix KR, the imagi-
nary parts of ga and gv can be written as

Im(ga) = Im(gv) = −η sin(γ − δ1). (24)

Experimental data obtained at low energies make
it possible [16] to set the following constraints on
the parameters of the model: MR > 715 GeV and
η < 0.013. Taking into account these constraints and
the relation |Im(ga)| = |Im(gv)| < η, we obtain upper
bounds on Aξ:

|Aξ | < 2.6 × 10−4 (K+ → π0µ+νµγ), (25)

|Aξ| < 0.8× 10−4 (K+ → π0e+νeγ).

Such values of the asymmetry can be observed ex-
perimentally only upon accumulating up to about
107 events of the decay K+ → π0µ+νµγ and up to
about 108 events of the decay K+ → π0e+νeγ.

4. MODELS INVOLVING SCALAR
INTERACTION

In this section, we consider models where
Im(ga) = Im(gv) = 0. In this case, a nonzero asym-
metry is entirely due to nonvanishing values of
the parameters Im(gs) and Im(gp). This feature is
characteristic of some leptoquark and multi-Higgs
models [7, 8, 17].

It should be noted that the decay K+ → π0e+νeγ
is inappropriate for studying such models. This can
be explained by the fact that the kinematical factors
Cs and Cp in (11) are proportional to the lepton mass;
therefore, both scalar and pseudoscalar contributions
to the asymmetry are strongly suppressed. Moreover,
the fact that, in the multi-Higgs models, Yukawa
couplings are proportional to the fermion mass leads
to an additional suppression of the asymmetry there.

Of the two decays under study, only K+ →
π0µ+νµγ is of interest in connection with the models
being considered. In order to set a limit on the
asymmetry of this decay, we first consider the decay
K+ → π0µ+νµ. A model-independent analysis of the
transverse polarization of the muon in this decay [7]
allows one to conclude that this physical quantity is
not sensitive to variations in the coupling constants
gv , ga, and gp.

A limit on Im(gs) can be obtained from an anal-
ysis of the matrix element for the decay K(p)+ →
π0(p′)µ+(pµ)νµ(pν):

M =
GF

2
sin θC(f+(p + p′)λ (26)

+ f−(p − p′)λ)ū(pν)(1 + γ5)γλv(pµ).

The value of Im(χ) = Im(f−/f+) can be extracted
from the data on the transverse polarization that were
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obtained in the KEK–E246 experiment [1]. The result
is

Im(χ) = (−0.28 ± 0.69(stat.) (27)

± 0.30(sys.))× 10−2.

Making use of the effective Lagrangian (2), we find
that Im(χ) and Im(gs) are related by the equation

Im(χ) = Im(gs)
m2

K

mµms
. (28)

From (27) and (28), we can readily obtain the
constraint |Im(gs)| < 6.7× 10−4. To set a limit on the
constant Im(gp), we assume that Im(gp) ∼ −Im(gs).
This relation is valid in any model if the u-quark
mass is neglected. Within this approach, it is not
necessary to consider the internal structure of the
models under consideration. Making use of the above
constraints on the model parameters, we obtain the
following bound on the asymmetry Aξ in the decay
K+ → π0µ+νµγ:

|Aξ| < 6.0 × 10−6. (29)

This indicates that, for this asymmetry to be observed
experimentally, it is necessary to accumulate not less
than 1010 events.

5. CONCLUSION

For the models specified by the effective La-
grangian (2), the asymmetry Aξ of K+ → π0l+νγ
decays has been evaluated within chiral perturbation
theory to order p4.

It has been shown that the scalar and pseudoscalar
sectors make a nonzero contribution to the asymme-
try Aξ. However, the contribution of the scalar inter-
action to the asymmetry of the decayK+ → π0e+νeγ
is strongly suppressed because the kinematical fac-
tors responsible for the dependence of Aξ on Im(gs)
and Im(gp) are proportional to the lepton mass. In
the case of a final-state muon, the asymmetry de-
pends rather strongly on the scalar interaction. Nev-
ertheless, the contribution of the scalar interaction
to the asymmetry can hardly be observed because
data obtained from the KEK–E246 experiment lead
to stringent constraints on the respective coupling
constant. To observe an asymmetry as small as

|Aξ| < 6.0 × 10−6,

which is two orders of magnitude smaller than the
Standard Model contribution to the correlation, one
needs some 1010 events of the decay.

The KEK–E246 experiment provides rather strin-
gent constraints only on the scalar and pseudoscalar
coupling constants, but it furnishes no information
4
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about the vector or pseudovector interactions. Limits
on the parameters of these interactions could be ob-
tained in the planned OKA experiment. Our results
reveal that the asymmetry Aξ is highly sensitive to
the parameters of the vector and pseudovector in-
teractions in the effective Lagrangian. The respective
effects can be sought in the K+-meson decays pro-
ducing an electron or a muon in the final state. With
allowance for the constraints on the parameters of the
SU(2)L × SU(2)R ×U(1) model, we have found that
the asymmetry Aξ can be constrained as

|Aξ| < 2.6× 10−4, K+ → π0µ+νµγ,

|Aξ| < 0.8× 10−4, K+ → π0e+νeγ,

where the limits are somewhat greater than the re-
spective Standard Model contributions to the T -odd
correlation.

Our results give sufficient grounds to believe that
the planned OKA experiment would open new pos-
sibilities for studying the vector and pseudovector
sectors of the model under consideration, provided
that the statistical level will be enhanced by an order
of magnitude. In this case, the asymmetry Aξ would
offer an efficient indicator of new physics.
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APPENDIX

Within chiral perturbation theory, we consider the
QCD Lagrangian involving external sources [18];
that is,

L = LQCD + q̄γµ(vµ + γ5a
µ)q (A.1)

− q̄(s− iγ5p)q,

where LQCD is the massless QCD Lagrangian; qT =
(u, d, s) are quark fields; and vµ, aµ, s, and p are 3× 3
Hermitian matrices. It is straightforward to show that
the Lagrangian in (A.1) is invariant under the local
SU(3)L × SU(3)R transformations

qL → gLqL, qR → gRqR, (A.2)

s+ ip→ gR(s + ip)g+
L ,

lµ = gLlµg
+
L + igL∂µg

+
L ,

rµ = gRrµg
+
R + igR∂µg

+
R ,
PH
lµ = vµ − aµ, rµ = vµ + aµ.

The effective Lagrangian of chiral perturbation
theory is constructed on the basis of the symmetry in
(A.2) as an expansion in powers of external momenta;
that is,

Leff = L2 + L4 + . . . , (A.3)

where L2 and L4 are O(p2) and O(p4) terms, re-
spectively. Note that L2 is invariant under the trans-
formations in (A.2), whereas the invariance of L4 is
violated by a chiral anomaly [11, 18]. At the same
time, the effective Lagrangian is invariant under the
transformations

vµ ± aµ → g(vµ ± aµ)g+ + ig∂µg
+, (A.4)

s + ip→ g(s + ip)g+,

g ∈ SU(3).

The generating functional is also invariant under the
transformations in (A.4):

Z[v′, a′, s′, p′] = Z[v, a, s, p]. (A.5)

In chiral perturbation theory, Ward identities are de-
rived from this invariance by employing the transfor-
mation g = 1 + iα+O(α2) ∈ SU(3). This yields [11]〈

α∂µ
δZ

δvµ

〉
= i

〈 ∑
I=v,a,s,p

[α, I]
δZ

δI

〉
, (A.6)

where the angular brackets 〈 〉 imply an evaluation of
the respective trace.

Let us consider the matrix element
〈0|Ta3

µ(x)a4+5i
ν (y)V 4−5i

α (z)V em
β (w)|0〉, where a3

µ(x)
and a4+5i

ν (y) are the axial-vector currents corre-
sponding to the π0 and K+ mesons, respectively;
V 4−5i(z) is the vector current for the s̄→ ū tran-
sition; and V em

β (w) is the electromagnetic current.
The divergence ∂αz of this matrix element can be
calculated by using the Ward identities. For this
purpose, we must substitute λ4 − iλ5 for α into (A.6)
and then apply, to Eq. (A.6), the linear operator

Â =
δ

δa3
µ(x)

δ

δa4+5i
ν (y)

δ

δV em
α (z)

. (A.7)

The functional derivatives here must be evaluated at
vµ = aµ = p = 0 and s = M , where M is the quark
mass matrix. The resulting expression can be repre-
sented in the form

∂αz 〈0|Ta3
µ(x)a4+5i

ν (y)V 4−5i
α (z)V em

β (w)|0〉 (A.8)

= i(mu −ms)〈0|Ta3
µ(x)a4+5i

ν (y)s4−5i(z)V em
β (w)|0〉

+ 〈0|Ta3
µ(x)a4+5i

ν (y)V 4−5i
β (z)|0〉δ(w − z)

+ 〈0|Ta4+5i
ν (y)a4−5i

µ (z)V em
β (w)|0〉δ(z − x)
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Feynman diagram contributing to the form factor P .

− 1
2
〈0|Ta3

µ(x)a3
ν(z)V

em
β (w)|0〉δ(z − y)

−
√

3
2
〈0|Ta3

µ(x)a8
ν(z)V

em
β (w)|0〉δ(z − y).

Using reduction formulas, we can express the ma-
trix element for the K+ → π0 transition in terms of
the vacuum expectation values from formula (A.8).
The last three terms in (A.8) do not contribute to the
ultimate expression because they do not involve π0

and K+ pole terms simultaneously. In view of this,
expression (A.8) can be recast into the form

∂yν 〈π0|TV em
µ (x)V 4−5i

ν (y)|K+〉 (A.9)

= 〈π0|V 4−5i
µ (y)|K+〉δ(x − y)

+ i(mu −ms)〈π0|TV em
µ (x)S4−5i(y)|K+〉.

In terms of the notation in (4), the required relation
between the scalar and the vector form factor has the
form

V µνWν +
(
Fµ − F νqν

pq
pµ
)

= (mu −ms)Fµ
s .

(A.10)

The expression for f can be derived in a similar way,

F ν(pν − p′ν) = (mu −ms)f. (A.11)

A nonzero contribution to the form factor P is
entirely due to the anomalous terms in the effective
Lagrangian of chiral perturbation theory. The anoma-
lous term contributing to P has the form [1]

Lanom(Φ3γ) = −i e
√

2
4π2f3

π

εµνρσAσ〈Q∂µΦ∂νΦ∂ρΦ〉,
(A.12)

where Φ is the matrix of the pseudoscalar-meson
octet, Q = 1/3 × diag(2,−1,−1), and fπ =
93.2 MeV. The Feynman diagram making a nonzero
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
contribution to the form factor P is shown in the
figure. The respective expression for the form factor
has the form

P =
√

2
4π2f2

π

1
W 2 −M2

K

M2
K

ms + mu
, (A.13)

where W = p− p′ − q.
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Abstract—We consider the inclusive and associated production of J/ψ mesons under BELLE conditions.
In the framework of QCD perturbation theory and nonrelativistic bound-state formalism, the different
production mechanisms are analyzed in detail. The calculations are compared with recent experimental
data, and significant disagreement is found in a few cases. For these channels, the predictions of a
nonperturbative model are also explored. We find that the J/ψ polarization has a strong dependence on
the production dynamics, so that it may serve as a sensitive indicator in future experimental studies.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the J/ψ production mechanisms
in hadron–hadron and electron–hadron collisions
has been an intensively discussed subject in high-
energy physics over the last decade. A complemen-
tary topic is the production of J/ψ particles (as
well as other quarkonia states) in e+e− annihilation.
In comparison with other reactions, the latter case
shows at least two interesting features. First, the
theoretical calculations are not subject to the un-
certainties coming from the parton distributions in
the initial beams. Hence, attention can be focused
on the J/ψ formation mechanism on its own. In
particular, this provides much better conditions for
the inspection of basic theoretical inputs, such as
the applicability of the perturbation approach and the
nonrelativistic heavy-quark bound-state formalism.
Another remarkable feature of the e+e− annihilation
processes is that the production of two heavy-quark
pairs (say, the associated production of J/ψ and D
mesons) is not suppressed in comparison with the
production of a single quark pair (say, the inclusive
J/ψ production).

In the present paper, we give theoretical predic-
tions on the inclusive and associated production of
J/ψ mesons and compare them with the data [1,
2] collected recently by the BELLE Collaboration at
KEK. The collaboration reports the measurement of a
number of cross sections: the inclusive production of
J/ψ mesons, the associated production of J/ψ and D
mesons, and the associated production of J/ψ and ηc

∗This article was submitted by the author in English.
**e-mail: baranov@sci.lebedev.ru
1063-7788/04/6705-1010$26.00 c©
mesons. The measurements have been carried out at
the invariant beam energy

√
s = 10.6 GeV.

The outline of the paper is as follows. In Sec-
tion 2, we explain the theoretical framework which
is based on the standard perturbation theory and
nonrelativistic bound-state formalism. Here, we also
discuss the main sources of theoretical uncertainties.
The numerical results are displayed in Section 3.
The conclusions are summarized in Section 4. The
technical details and the explicit expressions for the
matrix elements used in calculations are collected in
the Appendix.

2. THEORETICAL BACKGROUNDS

At the quark level, the processes of interest may be
interpreted as

e+ + e− → γ∗ → J/ψ + g + g, (1)

e+ + e− → γ∗ → J/ψ + c + c̄, (2)

e+ + e− → γ∗ → J/ψ + ηc. (3)

The presence of the final-state gluons in reaction (1)
is motivated by the necessity to get rid of the energy
excess (as

√
s > mψ), where at least two gluons are

needed to meet the color and charge parity conser-
vation. The production of unbound charmed quarks
in reaction (2) is assumed to be followed by frag-
mentation, which results in the formation of charmed
hadrons. The fragmentation probabilities may be re-
garded as model parameters, or they can be taken
from independent experimental measurements. On
the contrary, in the case of reaction (3), the formation
of the hadronic final state is already completed at
the quark level, and no fragmentation is needed. The
corresponding Feynman diagrams are displayed in
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Feynman diagrams representing the production of J/ψ particles via the color-singlet (a–c) and color-octet (a–f)
mechanisms. Diagram (g) represents the nonperturbative model with pointlike ψcc coupling (see the text).
Fig. 1. The full gauge-invariant set comprises six di-
agrams of the type (a) for reaction (1), four diagrams
of the type (b) for reaction (3), and four diagrams of
the type (c) for reaction (2).

The evaluation of the relevant matrix elements
(see Appendix) has been performed in accord with
the standard Feynman rules. To guarantee the proper
spin and angular orbital momentum structure of the
quarkonium states under consideration, the color-
singlet spin projection operators [3] have been in-
troduced in the amplitudes of the processes (1)–(3).
The gauge invariance of the matrix elements has been
explicitly tested by substituting the virtual photon
momentum for its polarization vector.

The most important theoretical uncertainties refer
to the value of the meson wave function Ψψ(0) and to
the choice of the renormalization scale µ2 in the run-
ning coupling constant αs(µ2). One can also consider
the production of P-wave states (followed by their
radiative decay χc → ψγ) and take into account the
hypothetical color-octet contributions. Now we will
discuss these uncertainties in more detail.

The value of the J/ψ-meson wave function is
thought to be known [4] from the experimentally mea-
sured leptonic decay with Γll̄:

|Ψψ(0)|2 = Γll̄
m2
ψ

16πα2e2
c

(
1− 16αs

3π

)
.

PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
Here, the effect of including or neglecting strong
radiative corrections (the second term in the above
formula) approaches a factor of 2. This brings the
largest theoretical uncertainty. In calculations, we ac-
cept the choice with radiative corrections, |Ψψ(0)|2 =
0.07 GeV3, and ascribe the same value to the wave
function of the ηc meson.

Although the possible definitions of the renormal-
ization scale µ may be formally very different (say,√
s/2 or mψ, or the two-body invariant mass of J/ψ

meson with a coproduced particle, etc.), they lead to
rather close numerical values of µ. Typically, in the
kinematic conditions under study, they range from 3
to 5 GeV, and so the variations in the strong coupling
constant do not exceed 15% (producing an effect for
the cross section of about 30%). In calculations, we
set αs = const = 0.25.

As far as the contributions from P waves are con-
cerned, they only can be important for the process (2).
In general, the production of P waves is suppressed
in comparison with that of S waves by the inequality
|Ψ′

P (0)|2/m2
ψ � |ΨS(0)|2, although this suppression

is partly compensated by the large number of spin
degrees of freedom in the χc family. Besides the effect
of the wave function, the contributions from P-wave
states to the processes (1) and (3) are subject to an
additional suppression owing to the radiation of extra
4
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gluons (which is required by the color and charge par-
ity conservation). When estimating the contributions
from χc states, we take |Ψ′

χ(0)|2 = 0.006 GeV5, as is
predicted by the potential model [5].

Last, we discuss the hypothetical color-octet pro-
duction channels which are represented by Feynman
diagrams shown in Figs. 1d–1f. Using the standard
spectroscopic notation for the cc̄ states, we write

e+ + e−γ∗ → 3P 8
J + g, (4)

e+ + e−γ∗ → 3S8
1 + q + q̄, (5)

e+ + e−γ∗ → 3P 8
J + q + q̄. (6)

The color-octet production scheme [6] implies that
the cc̄ quark pair is perturbatively created in a hard
subprocess as an octet color state and subsequently
evolves into a physical quarkonium state via emitting
soft (nonperturbative) gluons, which may be inter-
preted as a series of classical color-dipole transitions:
3P 8

J → J/ψ + g, 3S8
1 → J/ψ + g + g. The nonper-

turbative transition probabilities are regarded as free
parameters, which are assumed to obey a definite
hierarchy in powers of v, the relative velocity of the
quarks in the bound system under study. This free-
dom is commonly used to estimate the color-octet
parameters by adjusting them to experimental data.
Only the diagrams of Fig. 1d, which contribute to
the subprocess (4), may be expected to be of any
importance in the present kinematic conditions. In
comparison with all other production channels (both
color-singlet and color-octet), these diagrams are of
formally leading order in αs, which partly compen-
sates the suppression by powers of v. In our nu-
merical estimates, we use the nonperturbative matrix
elements taken from [7] and set the light-quark mass
equal to 300 MeV.

As an alternative to the nonrelativistic treatment
of bound states, we also consider a nonperturbative
model proposed in [8]. This model does not rely on the
concept of the quarkonium wave function; instead, a
pointlike charmed quark–meson interaction is intro-
duced in the form Lψcc = gψccc̄γµcε

µ
ψ, with εψ being

the J/ψ-meson polarization vector. The interaction
strength is regulated by the coupling constant αψ,
which has been set by the authors of [8] as high as
αψ = g2

ψcc/(4π) = 1/4. The relevant Feynman dia-
gram is displayed in Fig. 1g.

3. RESULTS AND DISCUSSION

We start the discussion by recalling the exper-
imental results reported by BELLE: σexp(e+e− →
J/ψX) = 1.47 ± 0.1 ± 0.11 pb [1], σexp(e+e− →
J/ψD∗+X) = 0.53+0.19

−0.15 ± 0.14 pb [2], σexp(e+e− →
PH
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Fig. 2. The energy dependence of the cross sections
corresponding to different production mechanisms: (solid
curve) color-singlet J/ψ + g + g channel (1); (dash-
dotted curve) color-singlet J/ψ + ηc channel (3); (thick
dashed curve) color-singlet J/ψ + c+ c̄ channel (2);
(thick dotted curve) color-octet 3P 8

J + g channel (4);
(upper and lower thin dotted curves) color-octet 3S8

1 +
q + q̄ and 3S8

1 + c+ c̄ channels (5); (thin dashed curve)
predictions of the nonperturbative model of [8] for the
J/ψ + c+ c̄ channel, rescaled by a factor of 10−2.

J/ψD0X) = 0.87+0.32
−0.28±0.20 pb [2], and

σexp(e+e− → J / ψηc)Br(ηc → ≥ 4 charged) =
0.033+0.007

−0.006 ± 0.009 pb [2].

According to the Lund model [9], cc̄ fragmen-
tation produces charmed mesons at the rate 0.26
per event for D∗+ and 0.59 per event for D0, where
both numbers include feed-down from higher states
(in particular, D∗+ → D0π+). Assuming that these
rates apply to cc̄ fragmentation in e+e− → J/ψcc̄,
the authors calculate [2] σexp(e+e− → J/ψcc̄) =
0.87+0.21

−0.19 ± 0.17 pb. Subtracting this number from
the inclusive J/ψ cross section, one obtains
σexp(e+e− → J/ψgg) ≈ 0.60 pb.

Our theoretical predictions are based on the
following parameter settings: charmed-quark mass
mc = mψ/2 = 1.55 GeV; light-quark mass mq =
300 MeV; color-singlet wave functions |Ψψ(0)|2 =
|Ψη(0)|2 = 0.07 GeV3, |Ψ′

χ(0)|2 = 0.006 GeV5 [5];
color-octet wave functions |Ψ[3S8

1 ](0)|2 = 0.7 ×
10−3 GeV3, |Ψ′

[3P 8
0 ]

(0)|2 = 0.6 × 10−3 GeV5 [7];

strong coupling constant αs = 0.25; prompt ψcc
coupling constant αψ = 1/4 [8].

The results of our calculations are summarized
in the table and in Figs. 2–4. The table presents
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 3. (a) Double differential distribution d2σ/ds1ds2 on the two-body invariant masses s1 = (pψ + pc)
2 and s2 = (pψ +

pc̄)
2. Left panel, predictions of the standard perturbation theory; right panel, predictions of the nonperturbative model of [8].

(b) Double differential angular distribution d2σ/d cosϕ1d cosϕ2, with ϕ1 and ϕ2 being the angles between the momentum
of the J/ψ meson and the momenta of the accompanying charmed quarks measured in the e−e+ c.m. system. Left panel,
predictions of the standard perturbation theory; right panel, predictions of the nonperturbative model [8].
the theoretical predictions for the different produc-
tion mechanisms considered at

√
s = 10.6 GeV. The

energy behavior of the production cross sections is
displayed in Fig. 2. The estimated size of the non-
charm-associated production cross section σ(ψgg) is
in reasonable agreement with its experimental value.
We also agree with the analyses of the color-singlet
contributions presented by other authors [10, 11].
The contributions from the color-octet mechanisms
are not important at the considered energies. This
statement is supported by the experimental measure-
ments. In particular, the collaboration points out [1]
that “the color-octet J/ψg signal predicted in [6] is
not observed.”

The results on the associated production of J/ψ
and ηc mesons are rather inconclusive, because the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
probability for ηc decay to yield a total charged multi-
plicity greater than four is unknown. The sum of the
measured [12] branching fractions amounts to not too
large a quantity, Br(π+π+π−π−) +
Br(π+π−K+K−) + Br(K+K+K−K−) = 1.2% +
2.1% + 2.0% = 5.3%, although the list of the decay
channels is, of course, incomplete. One can, however,
hardly expect the overall branching ratio Br(ηc →
≥ 4 charged) to be as large as 40%, which is nec-
essary to make the theoretical and experimental
numbers compatible with each other.

A serious discrepancy is seen in the associate pro-
duction of J/ψ and open charm states. The theoreti-
cal estimates lie below the data by a significant factor,
thus indicating an unresolved problem. In contrast,
the predictions of nonperturbative approach of [8] lie
4
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Fig. 4. (a) The differential cross section dσ/d|pψ| and the fraction of longitudinally polarized J/ψ mesons as functions of
the J/ψ absolute momentum |pψ| measured in the e−e+ c.m. system. (b) The differential cross section dσ/d cosϕ1 and the
fraction of longitudinally polarized J/ψ mesons as functions of the angle between the momentum of the J/ψ meson and
the momentum of the accompanying charmed quark measured in the e−e+ c.m. system. (c) The differential cross section
dσ/d cos θψ and the fraction of longitudinally polarized J/ψ mesons as functions of the angle between the momentum of J/ψ
meson and the momentum of the initial electron measured in the e−e+ c.m. system. Notation of the curves is the same as
in Fig. 2. For ease of presentation, the contributions from subprocesses (1), (5) and the model [8] are shown rescaled by the
factors 1/2, 10, and 10−2, respectively.
above the data by one order of magnitude. The size

of the latter contribution on its own is not indicative
because it is determined by the artificial coupling

constant αψ, but the difference in the production dy-
P

namics is clearly seen in the energy dependence of the
corresponding cross sections, as is shown in Fig. 2.

Important information of the production dynamics
can also be obtained from the differential cross sec-
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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tions and interparticle correlations. Shown in Fig. 3
are the double differential distribution d2σ/ds1ds2

on the two-body invariant masses s1 = (pψ + pc)2

and s2 = (pψ + pc̄)2, and the double differential an-
gular distribution d2σ/d cosϕ1d cosϕ2, with ϕ1 and
ϕ2 being the angles between the momentum of the
J/ψ meson and the momenta of the accompanying
charmed quarks measured in the e+e− c.m. system.

According to the standard perturbation theory
(Fig. 3a, left panel), the production events tend to
concentrate in the upper left and lower right cor-
ners of the Dalitz plot, where one of the invariant
masses s1 or s2 is large and the other one is small.
On the contrary, in the nonperturbative approach
of [8] (Fig. 3a, right panel), the events are mostly
concentrated near the lower left boundary of the
phase space. The distributions on the angles ϕ1

and ϕ2 (Fig. 3b) are rather similar in both cases.
However, these angular observables may be useful
in discriminating some other production models. In
particular, in the fragmentation approach of [13], the
production of J/ψ + c+ c̄ states in the kinematic area
ϕ1 < 0, ϕ2 < 0 is strongly suppressed if not forbidden
completely.

The double differential distributions
d2σ/dEψd cos θψ has been considered earlier in [6] for
the processes (2) and (4) and in [14] for the processes
(1) and (2). The shape of the J/ψ angular distri-
bution at the endpoint of the energy spectrum was
considered in [6] as a signal of the hypothetical color-
octet subprocess (4).1) For completion, we show in
Fig. 4 the distribution of the J/ψ total momentum
dσ/d|pψ |, the distribution of the angle between the
momentum of J/ψ meson and the momentum of the
accompanying charmed quark dσ/d cosϕ1, and the
distribution of the angle between the momentum of
the J/ψ meson and the momentum of the initial elec-
tron dσ/d cos θψ for all the mentioned subprocesses
(1)–(6).

In addition to that, we find it extremely instructive
to consider the J/ψ spin alignment, as it is known to
be a sensitive probe of the production dynamics [15].
Polarization of J/ψ mesons can be accessed by mea-
suring the angular distribution of positive or negative
leptons appearing in the decay J/ψ → l+l−:

dΓll/d cos θl ∼ 1 + α cos2 θl (7)

(where θl is the angle between the lepton 3-momen-
tum in the J/ψ rest frame and the J/ψ direction in
the c.m. frame of the colliding beams). The parame-
ter α is connected with the fraction of longitudinally

1)As we have mentioned already, this signal was not found at
BELLE.
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J/ψ production channels and their partial contributions
to σtheor

J/ψ at
√
s = 10.6 GeV (the parameter settings are

explained in the text)

Subprocess Diagram Cross section, pb

Color-singlet channels

J/ψ + g + g a 0.476

J/ψ + ηc b 0.083

J/ψ + c + c c 0.120

χc + c + c c 0.018

Color-octet channels
1S8

0 + g d 0.006
3P 8

J + g d 0.028
3P 8

J + q + q e 0.002
3S8

1 + q + q f 0.005
3S8

1 + g + g a 0.006
3P 8

J + c + c c + e 0.001
3S8

1 + c + c c + f 0.003

polarized J/ψ mesons h0 = σhel=0/σincl by the iden-
tity α = (1− 3h0)/(1 + h0). In addition to the results
presented in [15], we show the behavior of the variable
h0 as a function of |pψ|, ϕ1, and θψ. One can see
that the J/ψ polarization depends distinctively on the
production channel.

4. CONCLUSION

We have considered the inclusive and associated
production of J/ψ mesons under conditions of the
BELLE experiment at KEK. In the framework of
QCD perturbation theory and nonrelativistic bound
state formalism, the different contributing mecha-
nisms were analyzed in detail. The theoretical calcu-
lations were compared with experimental data.

The estimated size of the non-charm-associated
production cross section σ(ψgg) is found to be in
reasonable agreement with its measured value. Ex-
perimental data show no need for color-octet contri-
butions, and the peculiar color-octet signal predicted
in the literature is not observed. This accords with
our theoretical estimates, which show that the color-
octet contributions are of only minor importance un-
der present conditions.

On the contrary, a serious discrepancy is seen in
the associated production of J/ψ and open-charm
mesons. This may be taken as an indication that the
production of J/ψ particles in this channel is probably
dominated by other, nonperturbative, mechanisms. In
4
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order to discriminate between the possible models,
a more detailed analysis of the event kinematics is
required. The measurement of the interparticle cor-
relations and J/ψ polarization properties may shed
more light on the production dynamics.

APPENDIX

We list the analytic expressions for the matrix ele-
ments and differential cross sections of all considered
processes. We start with the matrix elements of the
process (1). The corresponding Feynman diagram is
displayed in Fig. 1a. Let q1, q2, k1, k2, and pψ be
the 4-momenta of the incoming electron, incoming
positron, outgoing gluons, and the outgoing J/ψ me-
son, respectively; ε1, ε2 and εψ the gluons and the J/ψ
meson polarization vectors; mc the charmed-quark
mass; q1 + q2 = q; and s the invariant energy squared,
s = (q1 + q2)2. Let also pc and pc̄ be the momenta
of the charmed quark and charmed antiquark which
constitute the J/ψ meson: pc + pc̄ = pψ, 2mc = mψ.
We also introduce the projection operators J(S,L) [3]
which guarantee the proper spin and orbital angular
momentum of the quarkonium state under consider-
ation:

J(ηc) ≡ J(S = 0, L = 0) (A.1)

= γ5(p̂c + mc)/m
1/2
ψ ,

J(ψ) ≡ J(S = 1, L = 0) (A.2)

= ε̂ψ(p̂c + mc)/m
1/2
ψ ,

J(χc) ≡ J(S = 1, L = 1) (A.3)

= (p̂c̄ −mc)ε̂S(p̂c + mc)/m
3/2
ψ .

States with various projections of the spin momen-
tum onto the quantization axis are represented by the
polarization vector εS . In calculations, the polariza-
tion vector ε(Sz) was defined as an explicit 4-vector.
In the frame where the z axis is oriented along the
quarkonium momentum vector, pψ = (0, 0, |pψ |, Eψ),
the polarization vector reads

ε(±1) = (1,±i, 0, 0)/
√

2, (A.4)

ε(0) = (0, 0, Eψ , |pψ|)/mψ .

Then, for the matrix elements of the process (1),
we have

M1(ψgg) = ū(q2)γµu(q1) (A.5)

× tr{ε̂1(p̂c + k̂1 + mc)γµ(−p̂c̄ − k̂2 + mc)

× ε̂2J(ψ)}s−1[2(pck1)]−1[2(pc̄k2)]−1,

M2(ψgg) = ū(q2)γµu(q1) (A.6)

× tr{ε̂1(p̂c + k̂1 + mc)ε̂2(−p̂c̄ + q̂ + mc)
P

× γµJ(ψ)}s−1[2(pck1)]−1[s− 2(pc̄q)]−1,

M3(ψgg) = ū(q2)γµu(q1) (A.7)

× tr{γµ(p̂c − q̂ + mc)ε̂1(−p̂c̄ − k̂2 + mc)

× ε̂2J(ψ)}s−1[s− 2(pcq)]−1[2(pc̄k2)]−1.

Expressions for the matrix elements of the other three
diagrams Mi, i = 4, 5, 6, can be obtained from the
above formulas by the replacement pc ↔ pc̄, mc →
−mc.

The differential cross section has the form

dσ(ψgg) =
α2
sα

2e2
c

4s2
|Ψψ(0)|2 2

3
1
4

(A.8)

×
∑
spin

6∑
i=1

|Mi(ψgg)|2ds1ds2d cos(θ)dφ,

where we have explicitly shown the color factor 2/3,
ec is the electric charge of the charmed quark, s1 =
(pψ + k1)2, s2 = (pψ + k2)2, and θ and φ are the az-
imuthal and polar angles of the J/ψ meson in the
e+e− c.m. system.

Now we turn to the process (2) shown in Fig. 1c.
In addition to the definitions which we have already
made, let p1 and p2 be the 4-momenta of the unbound
charmed quark and charmed antiquark accompany-
ing the J/ψ meson. Then, we have for the matrix
elements

M1(ψcc̄) = ū(q2)γµu(q1)ū(p1) (A.9)

× γµ(p̂1 − q̂ + mc)γνJ(ψ)γνu(p2)

× s−1[s− 2(p1q)]−1[2m2
c + 2(pc̄p2)]−1,

M2(ψcc̄) = ū(q2)γµu(q1)ū(p1) (A.10)

× γν(q̂ − p̂c + mc)γµJ(ψ)γνu(p2)

× s−1[s− 2(pcq)]−1[2m2
c + 2(pc̄p2)]−1.

Expressions for the matrix elements of the other two
diagrams can, again, be obtained from the present
formulas by replacing the quarks with antiquarks and
vice versa: pc ↔ pc̄, p1 ↔ p2, mc → −mc.

Then, the differential cross section is

dσ(ψcc̄) =
α2
sα

2e2
c

4s2
|Ψψ(0)|2 16

9
1
4

(A.11)

×
∑
spin

4∑
i=1

|Mi(ψcc̄)|2ds1ds2d cos(θ)dφ

with the explicitly shown color factor 16/9, s1 =
(pψ + p1)2, s2 = (pψ + p2)2, and θ and φ being the
azimuthal and polar angles of the J/ψ meson in the
e+e− c.m. system. For the production of P waves,
the factor |Ψψ(0)|2 must be replaced by |Ψ′

χ(0)|2/m2
χ

together with using the spin projection operator (10)
in the expressions forM1−M4.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Now consider the process (3) shown in Fig. 1b.
Let pc1 and pc̄1 be the 4-momenta of the charmed
quark and antiquark forming the J/ψ meson, and pc2
and pc̄2 be the momenta of the charmed quark and
antiquark forming the coproduced ηc meson. Then,

M1(ψηc) = ū(q2)γµu(q1) (A.12)

× tr{J(ψ)γνJ(ηc)γν(q̂ − p̂c1 + mc)γµ}
× s−1[s − 2(pc1q)]−1[2m2

c + 2(pc̄1pc̄2)]−1,

M2(ψηc) = ū(q2)γµu(q1) (A.13)

× tr{J(ψ)γνJ(ηc)γµ(p̂c2 − q̂ + mc)γν}
× s−1[s − 2(pc2q)]−1[2m2

c + 2(pc̄1pc̄2)]−1.

Expressions for the matrix elements of the other two
diagrams can be obtained from the symmetry relation
between the charmed quarks and antiquarks: pc1 ↔
pc̄1, pc2 ↔ pc̄2, mc → −mc.

The differential cross section reads

dσ(ψηc) =
8π3α2

sα
2e2
c

s2
|Ψψ(0)|2|Ψη(0)|2 (A.14)

×
√

s(s− 4m2
ψ)

16
9

1
4

∑
spin

4∑
i=1

|Mi(ψη)|2d cos(θ)

with 16/9 being the color factor and θ being the
azimuthal angle of the J/ψ meson in the e+e− c.m.
system.

For the color-octet subprocesses (4)–(6) shown in
Figs. 1d–1f, we have

M1(3P 8
J g) = ū(q2)γµu(q1) (A.15)

× tr{ε̂g(q̂ − p̂c̄ + mc)γµJ(χc)}
× s−1[s− 2(pc̄q)]−1,

M1(3S8
1qq̄) = ū(q2)γµu(q1) (A.16)

× tr{γν(q̂ − p̂c̄ + mc)γµJ(χc)}ū(p1)γνu(p2)

× s−1[s− 2(pc̄q)]−1[(p1 + p2)2]−1,

M1(3P 8
J qq̄) = ū(q2)γµu(q1)ū(p1) (A.17)

× γν(q̂ − p̂2 + mq)γµu(p2)tr{γνJ(ψ)}
× s−1[s− 2(p2q)]−1m−2

ψ ,

where p1, p2, mq, and eq are the 4-momenta, the
mass, and the electric charge of the coproduced
quarks q and q̄. Expressions for the other matrix el-
ements (one additional diagram for each subprocess)
can be obtained by the usual permutation of quarks
and antiquarks.

The differential cross sections read

dσ(ψg) =
2π2αsα

2e2
c

m2
ψs

2
|Ψ′

3P 8
J
(0)|2 (A.18)
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× (s−m2
ψ)2

1
4

∑
spin

2∑
i=1

|Mi(3P 8
J g)|2d cos(θ),

dσ(ψqq̄) =
α2
sα

2

4s2

1
4

∑
spin

2∑
i=1

[e2
q |Ψ[3S8

1 ](0)|2 (A.19)

× |Mi(3S8
1qq̄)|2 + e2

c |Ψ′
[3P 8

J ](0)|
2

× |Mi(3P 8
J qq̄)|2/m2

ψ]ds1ds2d cos(θ)dφ,

with Ψ[3S8
1 ](0) and Ψ′

[3P 8
J ]

(0) being the fictitious

color-octet wave functions, which are connected to
the nonperturbative transition matrix elements:

〈0|O(3S8
1 → J/ψ)|0〉 =

9
2π
|R[3S8

1 ](0)|2

=
9
2π

4π|Ψ[3S8
1 ](0)|2,

〈0|O(3P 8
J → J/ψ)|0〉 =

9
2π
|R′

[3P 8
J ](0)|

2

=
9
2π

2π|Ψ′
[3P 8

J ](0)|
2.

For the sake of uniformity, we consistently use the
notation in terms of Ψ(0) and Ψ′(0) for both color-
singlet and color-octet contributions.

Finally, in the nonperturbative approach of [8], the
process (2) is represented by the Feynman diagram
shown in Fig. 1g. The matrix element is given by

M1(ψcc̄) = ū(q2)γµu(q1)ū(p1) (A.20)

× ε̂ψ(q̂ − p̂2 + mc)u(p2)s−1[s − 2(p2q)]−1

(where the diagram with quark–antiquark permuta-
tion has to be added also), and the differential cross
section is

dσ(ψcc̄) =
αψα

2e2
c

16πs2

1
4

(A.21)

×
∑
spin

2∑
i=1

|Mi(ψcc̄)|2ds1ds2d cos(θ)dφ.

Here, αψ = g2
ψcc/(4π) stands for the nonperturbative

ψcc coupling constant.
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Abstract—Masses and interactions of light mesons are described in the framework of the model with the
chiral invariant SU(2)× SU(2) four-quark interaction. The nonlocal kernel of the interaction is chosen
in the form that ensures the absence of ultraviolet divergences in the Feynman diagrams and poles in the
quark propagator. Within this model, we demonstrate that, in the chiral limit, the pion mass equals zero
and the Goldberger–Treiman relation is fulfilled. The sigma-meson mass and the widths of strong decays
σ → ππ, ρ→ ππ are estimated. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Chiral symmetry is one of the basic symmetries
of hadron interactions [1]. The phenomenological
Lagrangians successfully describing interactions of
light baryons and mesons were constructed forty
years ago [2]. At that time, the Nambu–Jona-Lasinio
(NJL) model was proposed, where the authors at-
tempted to explain the origin of the nucleon mass by
spontaneous breaking of chiral symmetry [3].
In 1976, this model was used for construction of

the chiral-symmetric four-quark interaction that, af-
ter bosonization, leads to the phenomenological me-
son Lagrangians obtained earlier [4]. This model was
developed in [5, 6] and, after that, was widely utilized
by many authors [7]. The quark NJL model can be
successfully used to obtain not only the phenomeno-
logical Lagrangians but also the mass spectrum of
mesons, the relations between the strong coupling
constants in the scalar–pseudoscalar and vector–
axial-vector sectors. In this model, it is also possible
to describe the breaking of the SU(3) symmetry tak-
ing into account the mass difference of strange and
u, d quarks. This explains the inequality of the weak
decay constants fπ and fK and the differences of the
strange- and nonstrange-meson masses. Including
the gluon anomalies in the consideration allows us
to solve the UA(1) problem and to describe the mass
difference of the η, η′ mesons [6].
However, the NJL models have some defects.

They contain ultraviolet (UV) divergences and do
not provide quark confinement. Usually, UV diver-
gences are removed by using the cutoff parameter Λ

∗This article was submitted by the authors in English.
**e-mail: dorokhov@thsun1.jinr.ru
***e-mail: aradzh@thsun1.jinr.ru
****e-mail: volkov@thsun1.jinr.ru
1063-7788/04/6705-1019$26.00 c©
taken at an energy scale of the order of 1 GeV. The
physical meaning of this cutoff is connected with the
separation of the energy–momentum region, where
spontaneous breaking of the chiral symmetry and
bosonization of quarks take place. Unfortunately, this
procedure is not unique and can be realized in different
ways. However, it is worth noting that, as a rule, the
different schemes of UV cutoff lead to close results.
Right after the discovery of the nontrivial classical

solutions in QCD, instantons [8], it was recognized
that they might be important in hadron physics. In-
deed, it was shown, in particular, that the instanton-
induced nonlocal quark–quark interaction provides
a mechanism explaining the spontaneous breaking
of chiral symmetry [9] and the UA(1) problem [10].
Later on, within the realistic instanton liquid model of
QCD vacuum [11], the main features of the spectrum
of light mesons and baryons were described [12]. The
instanton-induced quark–quark interaction, being
nonlocal, naturally regularizes the UV divergences
in an analytical form. So, in the instanton model,
the UV cutoff results from the internal nonlocal
structure of the nonperturbative QCD vacuum. At
the same time, the model does not explain the quark
confinement. This problem becomes essential in the
description of hadrons with masses exceeding the
sum of constituent quark masses.
There are many works devoted to the construction

of nonlocal quark models providing quark confine-
ment [13–20]. In these models, the dynamical quark
mass depends on momentum. One of the models of
this kind is considered here. The nonlocal four-quark
interaction is taken in a separable form motivated
by the instanton model. However, a more general
space–spin–flavor structure of the quark interaction
is allowed than follows from the quark zero-mode ar-
guments. Namely, the four-fermion couplings in dif-
ferent channels are fixed directly from themesonmass
2004 MAIK “Nauka/Interperiodica”
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spectrum. Further, we use one of the simplest ansätze
for the nonlocal kernel, which allows us to obtain
the dynamically generated quark propagator without
poles. Our model is close to the model [17]. However,
our choice of the nonlocal kernel is motivated by the
existence of the nonlocal quark condensate in QCD.
The paper is organized as follows. In Section 2, we

consider a nonlocal four-quark interaction and, after
bosonization, derive the gap equation for dynamical
quark mass. The nonlocal kernel is defined in Sec-
tion 3. In Section 4, the masses and couplings of the
scalar and pseudoscalar mesons are obtained and the
main parameters of the model are fixed. The verifi-
cation of the Goldberger–Treiman relation is given.
In Section 5, calculations of the ρ-meson coupling
constant, gρ, and the decay width ρ→ ππ are given.
The axial-vector meson, a1, and the π–a1 mixing are
also considered. The last section is devoted to the
discussion of our results.

2. SU(2) × SU(2) QUARK MODEL
WITH NONLOCAL INTERACTION

The SU(2) × SU(2) symmetric action with the
nonlocal four-quark interaction has the form

S(q̄, q) =
∫

d4x

{
q̄(x)(i∂̂x −mc)q(x) (1)

+
Gπ

2
(Jσ(x)Jσ(x) + Jaπ(x)Jaπ(x))

− Gρ

2
Jµaρ (x)Jµaρ (x)− Ga1

2
Jµaa1 (x)Jµaa1 (x)

}
,

where q̄(x) = (ū(x), d̄(x)) are the u and d quark
fields; mc is the diagonal matrix of the current quark
masses; and Gπ, Gρ, and Ga1 are the coupling con-
stants of the scalar–pseudoscalar, vector, and axial-
vector quark currents, respectively. The nonlocal
quark currents JI(x) are expressed as

JI(x) =
∫ ∫

d4x1d
4x2f(x1)f(x2) (2)

× q̄(x− x1)ΓIq(x + x2),

where the nonlocal function f(x) normalized by
f(0) = 1 characterizes the space dependence of the
quark condensate. In (2), the matrices ΓI are defined
as

Γσ = 1, Γaπ = iγ5τa,

Γµaρ = γµτa, Γµaa1 = γ5γµτa,

where τa are the Pauli matrices and γµ and γ5 are the
Dirac matrices.
In this article, we mainly consider the strong in-

teractions. The electroweak fields may be introduced
PH
by gauging the quark field by the Schwinger phase
factors (see, e.g., [17, 21, 22]). This method is used in
derivation of the Goldberger–Treiman relation.
After bosonization, the action becomes

S(q, q̄, σ, π, ρ, a) =
∫

d4x

{
− 1

2Gπ
(3)

×
(
σ̃(x)2 + πa(x)2

)
+

1
2Gρ

(ρµa(x))2

+
1

2Ga1

(aµa1 (x))2 + q̄(x)(i∂̂x −mc)q(x)

+
∫ ∫

d4x1d
4x2f(x− x1)f(x2 − x)

× q̄(x1)(σ̃(x) + πa(x)iγ5τa

+ ρµa(x)γµτa + aµa1 (x)γ5γµτa)q(x2)

}
,

where σ̃, π, ρ, and a1 are the σ-, π-, ρ-, and a1-meson
fields, respectively. The field σ̃ has a nonzero vacuum
expectation value 〈σ̃〉0 = σ0 �= 0. In order to obtain
a physical scalar field with zero vacuum expectation
value, it is necessary to shift the scalar field as σ̃ =
σ + σ0. This leads to the appearance of the nonlocal
quark mass m(p2) instead of the current quark mass
mc:

m(p2) = mc + mdyn(p2) (4)

= mc − σ0f
2(p2) = mc + (mq −mc)f2(p2),

wheremq is a dimensional parameter, which plays the
role of the constituent quark mass. These relations
result from the solution of the gap equation

m(p2) = mc + iGπ
2Nc

(2π)4
f2(p2) (5)

×
∫

d4kf(k2)2Tr [S(k)]

that one derives from the action, Eq. (3), by using〈
δS
δσ

〉
0

= 0. (6)

Nc is the number of quark colors. In the leading order
of the 1/Nc expansion, the quark propagator S(p)
with dynamical mass is given by

S(p) = (p̂ −m(p2))−1. (7)

3. DYNAMICAL QUARK MASS

Let us recall that, in the instanton model, the
nonlocal function f(p2), defining the kernel of the
nonlocal four-quark interaction, is expressed in terms
of the profile function of the quark zero mode. In [17],
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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taking the same separable form of the kernel, the
function f(p2)was chosen in theGaussian form. This
choice also removes UV divergences, but in addition
provides the quark confinement. Here, we follow a
different ideology. Namely, similar to [13], we demand
absence of pole singularities in the scalar part of the
quark propagator1)

m(p2)
m2(p2) + p2

≡ 1
2
Q(p2). (8)

Note that the left side of (8) coincides with the nonlo-
cal quark condensate if the quark propagator is taken
in the form (7) [23]. The function Q(p2) is considered
as an entire function in the complex p2 plane, decreas-
ing in the Euclidean domain at p2 →∞. In particular,
in this work, the Gaussian function is used:

Q(p2) =
1
µ

exp
(
− p2

Λ2

)
, (9)

where µ and Λ are arbitrary parameters. At each p,
Eq. (8) has the following solutions:

m±(p2) = Q−1(p2)
(
1±

√
1− p2Q2(p2)

)
. (10)

Then, three different situations occur:
(i) There is some region of real p2 where

p2Q2(p2) > 1. This situation leads to the appearance
of complex values of the quark mass. We do not
consider this case further.
(ii) The relation p2Q2(p2) < 1 is fulfilled in the

whole domain of real p2. Then, from two possible
solutions, we can use only the solutionm−(p2) which
decreases at p2 →∞:

m(p2) = m−(p2) (11)

= Q−1(p2)
(
1−

√
1− p2Q2(p2)

)
.

(iii) The function p2Q2(p2) equals 1 at a single real
point p2

0. In this case, the continuous mass function is

m(p2) = Q−1(p2)

×
(
1− sgn(p2 − p2

0)
√

1− p2Q2(p2)
)
.

The last case is defined by conditions

p2Q2(p2)|p2=p20
= 1, (p2Q2(p2))′|p2=p20

= 0, (12)

which constrains the model parametersmq and Λ as

p2
0 =

Λ2

2
, µ2 =

Λ2

2e
, mq = 2µ, (13)

where e is the base of exponent. As a result, only one
parameter remains free. This is due to equivalence of

1)In this section, we use the Euclidean metric.
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the third case to the choice of normalization condition
m(p2 = p2

0) =
√

p2
0.

If the current quark mass mc is nonzero, Eqs. (9)
and (10) are modified as follows:

mdyn(p2)
m2(p) + p2

=
1
2
Q(p2),

mdyn±(p2) = Q−1(p2)−mc (14)

±
√

(Q−1(p2)−mc)2 − (p2 + m2
c),

and Eq. (13) becomes

p2
0 =

Λ2

2
ε, ε =

(
1− m2

c

Λ2
− mc

Λ

√
2 +

m2
c

Λ2

)
,

(15)

µ2 = Λ2 exp (−ε)
(
1− ε

2

)
, (16)

mq = µ

(
1 +

√
1− 2

mc

µ

)
.

We checked that, in the second case, the model
with Gaussian nonlocality (9) predicts σ-mesonmass
and decay widths σ → ππ, ρ→ ππ that are in dis-
agreement with experiment. The third case allows us
to construct the scheme where not only the main low-
energy theorems are fulfilled, but also better agree-
ment with experimental data is achieved. Therefore,
the present work is devoted to investigation of this
case.

4. PSEUDOSCALAR AND SCALAR MESONS

Let us consider the scalar and pseudoscalar
mesons. The meson propagators are given by

Dσ,π(p2) =
1

−G−1
π + Πσ,π(p2)

=
g2
σ,π(p2)

p2 −M2
σ,π

, (17)

where Mσ,π are the meson masses, gσ,π(p2) are the
functions describing renormalization of the meson
fields, andΠσ,π(p2) are the polarization operators (see
Fig. 1) defined by

Πσ,π(p2) = i
2Nc

(2π)4
(18)

×
∫

d4kf2(k2
−)f2(k2

+)tr [S(k−)Γσ,πS(k+)Γσ,π] ,

where k+ = k + p/2, k− = k− p/2. The meson mas-
sesMσ,π are found from the position of the pole in the
meson propagator

Πσ,π(M2
σ,π) = G−1

π , (19)
4
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Fig. 1. Meson polarization operator. The thick lines are
mesons. All loops in Figs. 1, 3–6 consist of constituent
quarks (thin lines).

and the constants gσ,π(M2
σ,π) are given on the meson

mass shell by (see also Fig. 2)

g−2
σ,π(M

2
σ,π) =

dΠσ,π(p2)
dp2

|p2=M2
σ,π

. (20)

In the chiral limit, the pion constant gπ(0) is given
by [24]

g−2
π (0) =

Nc

4π2m2
q

(21)

×
∞∫
0

duu
m2(u)− um(u)m′(u) + u2m′2(u)

(u + m2(u))2
.

4.1. Pion Mass

Describing the pion properties, we can consider
only the lowest order of the expansion in small p2.
Indeed, in our model, M2

π 
 m2
q,Λ

2 (see numerical
estimates of mq, Λ in Section 4.3 below). In this
approximation, one gets

M2
π = g2

π(0)


 1

Gπ
− Nc

2π2

∞∫
0

duu
f4(u)

u + m2(u)


 .

(22)

On the other hand, the constant Gπ is defined by the
gap equation (mq ≡ m(0))

1
Gπ

=
1

mq −mc

Nc

2π2

∞∫
0

duu
f2(u)m(u)
u + m2(u)

(23)

=
Nc

2π2

∞∫
0

duu
f4(u)

u + m2(u)
+ mc

1
m2
q

Nc

2π2

×
∞∫
0

duu
mdyn(u)

u + m2
dyn(u)

+ O(m2
c).

As a result, the pion mass equals

M2
π = −2mc

g2
π(0)
m2
q

(24)
PH
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Fig. 2.Momentum dependence of the meson strong cou-
pling constants.

×


− Nc

4π2

∞∫
0

duu
mdyn(u)

u + m2
dyn(u)


+ O(m2

c).

It is worth noting that the expression in the parenthe-
ses represents the quark condensate in the chiral limit
mc = 0. Hence, the Gell-Mann–Oakes–Renner re-
lation is reproduced:

M2
π ≈ −2

g2
π

m2
q

mc〈q̄q〉0. (25)

4.2. Goldberger–Treiman Relation

For description of the decay π → µν, the external
weak field must be introduced. We use the method
consisting in the replacement of the quark fields in
the interaction part of the Lagrangian by the quark
fields with Schwinger factors depending on the ex-
ternal weak field. This procedure ensures the gauge
invariance of the interaction with respect to the weak
field. The amplitude of the process π → µν has the
form

Aµ(π→µν)(p) = ipµFπ, (26)

where Fπ is the weak pion decay constant, Fπ =
93 MeV [25]. The diagrams 1–3 of Fig. 3 give the
following contributions:

F (1)
π =

Nc

p2
gπ (27)

×
∫

d4k

(2π)4
f(k2

+)f(k2
−)tr[iγ5S(k−)p̂γ5S(k+)],

F (2)
π = i

Nc

p2
gπ

∫
d4k

(2π)4
tr[S(k)]f(k2)(f((k + p)2)

+ f((k − p)2)− 2f(k2)),
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 3.Weak pion decay. Dashed lines denote a weak external field. Circles are nonlocal vertices.
F (3)
π =

mqNc

p2
gπ

∫
d4k

(2π)4
f(k2

+)f(k2
−)

× tr[iγ5S(k−)γ5S(k+)](f(k2
+)− f(k2

−))2,

which in the chiral limit at p2 = 0 are reduced to

F (1)
π =

gπ
mq

Nc

8π2

∞∫
0

duu
m(u)(2m(u) − um′(u))

(u + m2(u))2
,

F (2)
π + F (3)

π =
gπ
mq

Nc

8π2

×
∞∫
0

duu
um′2(u)− 2m(u)m′(u)− um(u)m′′(u)

u + m2(u)
.

Summing all terms, integrating by parts the term
with m

′′
, and using (21), one obtains the Goldber-

ger–Treiman relation:

Fπ = F (1)
π + F (2)

π + F (3)
π =

gπ
mq

Nc

4π2

×
∞∫
0

duu
m2(u)− um(u)m′(u) + u2m′2(u)

(u + m2(u))2
,

Fπ =
mq

gπ
. (28)

4.3. Numerical Estimates

First, let us consider the chiral limitmc = 0. Three
model parametersmq,Λ, andGπ are defined from (5),
(13), and (28):

Λ = 406MeV, Gπ = 63GeV−2, mq = 348MeV
(29)

(in this case gπ(0) = 3.7). If mc �= 0, by using also
Eq. (25) withMπ = 140MeV, one obtains very simi-
lar numbers

Λ = 400MeV, Gπ = 61 GeV−2, (30)

mq = 346MeV,mc = 14.5MeV

(in this case gπ(Mπ) = 3.6).
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4.4. Sigma Meson

By using the parameters (30), we get Mσ =
450 MeV and gσ(Mσ) = 3.8. The amplitude of the
decay σ → ππ, described by the diagram in Fig. 4,
is equal to A(σ→π+π−) = 1.5 GeV. Then, the total
decay width is Γ(σ→ππ) = 120 MeV. Comparing
these results with experimental data, one finds that
Mσ is in satisfactory agreement with experiment;
however, the calculated decay width is smaller than
the experimental one [25].

5. VECTOR AND AXIAL-VECTOR MESONS

The propagators of the vector and axial-vector
mesons have transversal and longitudinal parts:

Dµν
ρ,a1 = T µνDT

ρ,a1 + LµνDL
ρ,a1 , (31)

where T µν = gµν − pµpν/p2, Lµν = pµpν/p2, and

DT
ρ,a1 =

1
G−1
ρ,a1 + ΠT

ρ,a1(p
2)

=
g2
ρ,a1(p

2)
M2
ρ,a1 − p2

, (32)

DL
ρ,a1 =

1
G−1
ρ,a1 + ΠL

ρ,a1(p
2)

.

Here,ΠT
ρ,a1 andΠL

ρ,a1 are the transversal and longitu-
dinal parts of the polarization operator Πµν

ρ,a1(p2):

Πµν
ρ,a1(p

2) = i
2Nc

(2π)4

×
∫

d4kf2(k2
−)f2(k2

+)Tr [S(k−)Γρ,a1S(k+)Γρ,a1 ] .
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Fig. 4. Decays σ → ππ, ρ→ ππ.
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Fig. 5. Transition loop describing π–a1 mixing.

The constants Gρ,a1 are fixed by physical meson
masses,

G−1
ρ,a1 = −ΠT

ρ,a1(Mρ,a1),

and numerically equal to Gρ = 6.44 GeV−2, Ga1 =
0.739 GeV−2. Note that there is no pole in the lon-
gitudinal part of the vector-meson propagators.

The constants gρ,a1(M
2
ρ,a1) are equal to

g−2
ρ,a1(M

2
ρ,a1) = −

dΠT
ρ,a1(p

2)
dp2

|p2=M2
ρ,a1

. (33)

5.1. ρMeson and Decay ρ→ ππ

From Eq. (33), we obtain gρ(Mρ) = 1.2. The de-
cay ρ→ ππ is described by a triangle diagram similar
to the diagram inFig. 4. The amplitude for the process
is

Aµ(ρ→ππ) = g(ρ→ππ)q
µ, (34)

where q = q1 − q2. We obtain g(ρ→ππ) = 5.6 and the
decay width Γ(ρ→ππ) = 130 MeV, which is in quali-
tative agreement with the experimental value 149.2 ±
0.7MeV [25].

5.2. Axial-Vector Meson and π–a1 Mixing

For the a1-meson constant, we obtain ga(Ma1) =
0.5. The longitudinal component of the a1-meson field
is mixed with the pion, as is illustrated in Fig. 5. The
amplitude describing this mixing is

Aµ(π→a1)(p
2) = iC(π→a1)p

µ. (35)

The value of the constant C(π→a1) is 80MeV. The ad-
ditional renormalization of the pion field is described
by the ratio (see Fig. 6)

C2
(π→a1)

g2
a1(0)(G

−1
a1 + ΠL

a1(0))
≈ C2

(π→a1)Ga1 ≈ 0.005.

(36)

As one can see, this ratio is small and the effect of the
π–a1 mixing can be neglected.
PH
 

π π

 

a

 

1

Fig. 6. Diagram describing additional renormalization of
the pion field.

6. DISCUSSION AND CONCLUSION

In this work, we have considered one of the possi-
bilities of construction of the nonlocal chiral quark
model providing absence of UV divergences and
quark confinement. These features of the model are
specified by the nonlocal kernel, which appeared in the
four-quark interaction. Such a structure of the four-
quark interaction can be motivated by the instanton
model [22, 24]. A similar model was considered
in [17], where the nonlocal form factor was chosen
in the Gaussian form that exponentially decreases in
the Euclidean domain of momenta. Recently, in [23],
it was demonstrated that the functions defining the
nonlocal kernel are related to the nonlocal quark
condensate. From this point of view, it looks more
natural to require that, not a form factor, but a scalar
part of the quark propagator m(p2)/(p2 + m2(p2))
should be an entire function. Let us note that this
idea is close to the method proposed in [13], where the
confinement is provided by demanding the absence of
poles in the quark propagator.
As has been shown in [23], assuming that

m(p2)/(p2 +m2(p2)) is a decreasing function of p2 in
the Euclidean region leads to three different possibil-
ities for the dynamical quark mass m(p2) at different
values of the parameters mq and Λ (see Section 3).
One of them has complex-valued masses on the real
axis, and we did not consider it. The second possibility
is connected with such a choice of parameters when
the function p2Q2(p2) < 1 in the whole domain of real
p2. Then, the solution m−(p2) can be used, where
the mass function has a zero at zero quark virtuality.
In this case, the main requirements of chiral models
are fulfilled. However, in this version of the model,
the mass of the sigma meson and the strong decay
widths of the σ and ρ mesons are in disagreement
with experimental data.
Therefore, in the present work, we studied the third

possibility, when the function p2Q2(p2) = 1 at some
point p2 = p2

0. In this case, m(p2) is the combination
of the solutions m+(p2), m−(p2). This mass func-
tion is nonzero at p2 = 0 and drops monotonically
with increasing p2. In this case, one can predict a
scalar meson mass and decay width ρ→ ππ which
are closer to experimental values. However, the decay
width σ → ππ remains too small.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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It is useful to compare some results obtained
in this model with analogous results obtained in
the framework of the local NJL model [6]. Let us
start with the π–a1 mixing. In the local NJL model,
the amplitude describing the π–a1 mixing equals
AµNJL(π→a1) = i

√
6mpµ, where m = 280 MeV is the

constituent quark mass. Therefore, the coefficient
CNJL

(π→a1) in the NJL model equals 680 MeV. This
value is one order of magnitude larger than that in the
present model. As a result, it leads to the noticeable
additional renormalization of the pion field in the
local NJL model g̃NJLπ = gNJLπ Z

1/2
NJL, where ZNJL =(

1− 6m2/M2
a1

)−1 ≈ 1.4, while in the present model
Z = 1.004. Therefore, in the local NJL model, the
π–a1 mixing plays a more important role.
Let us compare also the amplitude of the decay

width σ → ππ in these models. In the local NJL
model, this amplitude equals ANJL(σ→π+π−) = 4mg =
2.8 GeV (here, g = 2.5). This amplitude is twice as
large as that in the present model. However, after
taking into account π–a1 mixing, this amplitude
takes the form ANJL(σ→π+π−) = 4mgZ−1

NJL = 2 GeV.
This leads to a noticeable decrease in the decay width,
which becomes smaller than experimental data.
The failure of the models to describe the σ me-

son is expectable. Similar problems appeared in the
QCD sum rule method. In the scalar channel with
vacuum quantum numbers, the corrections from dif-
ferent sources may be valuable. Indeed, it was shown
recently that the 1/Nc corrections in this channel are
rather big [26], and thus we cannot trust the results of
the model in this case.
In conclusion, let us summarize themain results of

this work. The pseudoscalar, scalar, vector, and axial-
vector sectors of the model have been considered. It
was shown that the low-energy theorems are fulfilled.
The masses and strong coupling constants of the
mesons were calculated. The strong coupling con-
stants of the mesons were shown to decrease notice-
ably with increasing p2 in the physical domain (see
Fig. 2). The π–a1 mixing was considered, and it was
found that this mixing could be neglected. Among
satisfactory predictions of the model, there are the
decay width ρ→ ππ and the mass of the σ meson.
However, the width of decay σ → ππ is significantly
below the experimental value [25].
In the future, we plan to describe the electromag-

netic interactions in the framework of this model, ver-
ify the vector meson dominance, calculate the elec-
tromagnetic pion radius, and consider the processes
π0 → γγ, γ∗ → γπ (here γ∗ is a virtual photon),
the polarizability of the pion, and the ππ scattering
length.
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ELEMENTARY PARTICLES AND FIELDS
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New Spectral Representation and Evaluation of fffπ and the Quark
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Abstract—New spectral representations for fπ and chiral condensate are derived in QCD and used for
calculations in the large-Nc limit. Both quantities are expressed in this limit through string tension σ
and gluon correlation length Tg without fitting parameters. As a result, one obtains 〈q̄q〉 = −Ncσ

2Tga1,
fπ =

√
NcσTga2, with a1 = 0.0823, a2 = 0.30. Taking σ = 0.18 GeV2 and Tg = 1 GeV−1, as known from

analytic and lattice calculations, this yields 〈q̄q〉(µ = 2 GeV) = −(0.225 GeV)3, fπ = 0.094 GeV, which is
close to the standard values. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Chiral symmetry breaking (CSB) is known to oc-
cur in QCD at large Nc if confinement is preserved
in this limit [1]. Lattice calculations for Nc = 2, 3
indicate that confinement and CSB coexist in the
confinement phase at T ≤ Tc and disappear simulta-
neously above Tc [2]. At larger Nc, it was found on
the lattice that the 1/Nc corrections to all observables
studied are not large [3], suggesting that a smooth
limit at large Nc is possible.

In the framework of the field correlator
method (FCM) [4], the dynamics of confinement
and deconfinement is associated with the set of field
correlators D

(n)
µ1ν1,...,µnνn(x1, . . . , xn) =

〈Fµ1ν1(x1) . . . Fµnνn(xn)〉,1) of which the lowest one,
D(2)(x1, x2) ≡ D(2)(x1 − x2), plays the dominant
role [5]. Moreover, D(2)(x) was calculated on the
lattice [6] and its confining part, D(x), was shown
to disappear exactly above Tc [7].

In [8, 9], CSB was also found as a consequence
of confinement, and in [9, 10] the effective chiral La-
grangian (ECL) was derived from the 4q interaction
term usingD(x) as a kernel.

The resulting ECL in [9, 10] has a general struc-
ture which can be reduced to the expressions derived
in the framework of the instanton model [11] or the
NJL model [12], when the corresponding kernels are
introduced there.

∗This article was submitted by the author in English.
1)Parallel transporters are omitted here for simplicity.
1063-7788/04/6705-1027$26.00 c©
In the case of confinement, the effective quark
mass operator M(x) in QCD obtained in [9, 10] con-
tains the effect of the scalar confining string connect-
ing the quark to the nearest antiquark. Moreover, all
invariant quark Green’s functions can be expressed
at large Nc through the string spectrum, as was done
in [10] in the PS channel.

The phenomenon of CSB was shown in [9, 10]
as occurring due to the spontaneous creation of the
scalar string (similar to the creation of the scalar
condensate in nonconfining models [12, 13]), which
generates CSB and chiral Nambu–Goldstone (NG)
fields {see Eqs. (50)–(54) in [9] and Eqs. (21)–(24)
in [10]}.

Since confinement is present in our formalism (in
the form ofM(x)), one can ask the question how con-
finement fits in the chiral picture of the NG spectrum,
and, in particular, how CSB modifies the lowest PS
states computed in FCM (or in any quark model) tak-
ing into account confinement and disregarding CSB.
Two such lowest states, π(0) and its first radial ex-
citation π(1) with masses m(π(0)) ≡ m0

∼= 0.4 GeV
and m(π(1)) ≡ m1

∼= 1.35 GeV, have been computed
in FCM (see Appendix 3). It was shown in [10] that
the ECL obtained there with account of confinement
has a remarkable property: the PS spectrum of con-
finement transforms due to CSB in such a way that
π(0) becomes a NG pion with the mass satisfying
the Gell-Mann–Oakes–Renner (GOR) relation [13],
while the first radial excitation shifts only slightly.

In deriving that property, it was essential that all
basic quantities in the ECL and, in particular, the pion
self-energy operator can be expressed as a spectral
2004 MAIK “Nauka/Interperiodica”



1028 SIMONOV
decomposition in the confinement (stringlike) spec-
trum states, which is possible in the large-Nc limit.

In this paper, we follow this line to obtain a more
fundamental relation, namely, to calculate the quark
condensate 〈q̄q〉 and the pion decay constant fπ us-
ing new spectral representations for these quantities.
Since in the latter all masses and coupling constants
are expressed via D(x), i.e., via the string tension
σ and the gluon correlation length Tg , we have an
expression for 〈q̄q〉 and fπ in terms of σ and Tg. The
most important role in the spectral representations
is played by the lowest PS meson π(0)—the “to-be
pion”—which is the quark model analog of the pion
with mass m0 shifted by the hyperfine interaction
from the ρ-meson mass. In Appendix 3, we derive the
mass m0 and the corresponding wave function in the
framework of FCM in terms of σ and αs.

Having established the connection of 〈q̄q〉 and
fπ with σ, Tg [〈q̄q〉 = −Ncσ

2Tga1, fπ =
√
NcσTga2,

with a1 = 0.0823, a2 = 0.30 (explained in the text
below)], it is easy to understand that, at the decon-
finement transition when σ vanishes at T = Tc, also
〈q̄q〉 and fπ vanish in agreement with lattice data [2].

Some specification with respect to the notion of
“magnetic confinement” [14] is needed at this point,
since the magnetic counterpart of D(x) and the cor-
responding spatial string tension stay nonzero above
Tc. This topic will be studied elsewhere.

The paper is organized as follows. In the next sec-
tion, the ECL is written together with the appropriate
expressions for 〈q̄q〉 and fπ. In Section 3, the spectral
representations for these quantities are derived, with
coefficients depending on eigenfunctions of the q̄q
system in the PS channel. Section 4 is devoted to the
discussion of results in comparison to lattice data and
to the concluding remarks. Four appendices are in-
cluded in the paper, containing, respectively, the eval-
uation of M(0), derivation of spectral representation,
P

explicit calculation of eigenvalues and eigenfunctions
in the pseudoscalar spectrum, and the contribution of
the small-distance region.

2. THE EFFECTIVE CHIRAL LAGRANGIAN

The quadratic part of the ECL for pions was de-
rived in [10] and has the form

W (2)(φ) =
Nc

2

∫
φa(k)φa(−k)N̄ (k)

d4k

(2π)4
, (1)

where the notation of [10] has been used, φa =
2πa/fπ, and

N̄(k) =
1
4

[G(MM)(k) + tr(ΛMS)] (2)

= (m2
π + k2)

f2
π

4Nc
+ O(k4),

G(MM)(k) ≡ −
∫

tr(Λ(y, x)γ5MS(x) (3)

× Λ(x, y)γ5MS(y))eik(x−y)d4(x− y),

Λ(x, y) = (∂̂ + m + MS)−1
x,y. (4)

Here and below, the trace is taken over flavor and
Lorentz indices.

As was shown in [10], the two terms in the square
brackets in (2) cancel for k2 = m = 0, and one ob-
tains the GOR relation for the pion mass [13]:

mNctrΛ ≡ m|〈ψ̄ψ〉M| (5)

=
1
2
(mu + md)|〈ūu + d̄d〉| = m2

πf
2
π .

To calculate the quark condensate, defined in the
Minkowskian spacetime, one can write 〈ψ̄ψ〉M =
−NctrΛ and use the identical transformation
trΛxx = tr
〈

1
(MS + m + ∂̂)

(MS + m− ∂̂)
1

(MS + m− ∂̂)

〉
(6)

=
∫
〈tr(γ5Λ(x, y)γ5(MS + m)Λ(y, x))〉d4y ≡ −

∫
G(M)(x, y)d4y ≡ −G(M)(k = 0).
Hence trΛxx reduces to the zero-momentum compo-
nent of the qq̄ Green’s function in the PS channel,
which differs from (3) only by vertex operators.

To define fπ, one needs the first term in the k2

expansion of G(MM)(k) (3) [cf. Eq. (2)], so that one
has

G(MM)(k)−G(MM)(0) =
k2f2

π

Nc
+ O(k4). (7)
H

As was argued in [10], both G(MM)(k) and G(M)(k)
have spectral representations in the large-Nc limit,
with the same set of poles mn, n = 0, 1, 2, . . . ,m0 ≡
m(π(0)),

G(MM)(k) = −
∞∑
n=0

(c(M)
n )2

k2 + m2
n

, (8)
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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G(M)(k) = −
∞∑
n=0

cnc
(M)
n

k2 + m2
n

.

In the next section, we shall determine the coeffi-
cients cn, c

(M)
n , andmn for the lowest states, and now

we define 〈q̄q〉 and fπ in terms of spectral sums (8).
From (6) and (7), one has

〈ψ̄ψ〉M = −2Nc

∞∑
n=0

cnc
(M)
n

m2
n

, (9)

f2
π = 2Nc

∞∑
n=0

(c(M)
n )2

m4
n

.

The coefficients cn and c
(M)
n differ by the presence

of the vertex operatorMS ≡M(0) in the latter, which
is a constant computed in Appendix 1; therefore, one

has c
(M)
n = M(0)cn, and, limiting oneself to the first

term in the sum (9), one obtains

|〈ψ̄ψ〉M| ≥ m2
0f

2
π

cn

c
(M)
n

=
m2

0f
2
π

M(0)
. (10)

Inserting M(0) = 148 MeV from Appendix 1 and
|ψ̄ψ| = (225 MeV)3, fπ = 94MeV, one obtainsm0

∼=
437 MeV, which is close to the value m0 = 400 MeV
calculated in Appendix 3. On the other hand, the
sum (9) for 〈ψ̄ψ〉 converges more slowly than that for
fπ, and therefore one has inequality in (10) due to the
presence of higher terms in 〈ψ̄ψ〉.

3. CALCULATION OF 〈q̄q〉 AND fπ

The integration region in the spacetime integrals
in (3), (6) can be split into two parts: |x− y| > Tg
and |x− y| ≤ Tg. In the first (long-distance) region,
the relativistic local potential-type dynamics sets in
at spacetime distances exceeding Tg [15, 16] and the
result can be expressed in terms of the spectrum,
as will be done below in this section. The second
region can be treated in the OPE formalism [17] and
is considered in Appendix 4. It is shown there that
the contribution of this region is parametrically small
in the parameter σT 2

g � 1. Only the long-distance
contribution is calculated in this section below.

We start with the calculation of fπ, and to this end
we write the qq̄ Green’s function G(MM)(k) in terms
of c.m. and relative coordinates as follows (another
derivation is given in Appendix 2):

−G(MM)(k) =
∫

d4X (11)

×G(MM)(r12 = 0;R = 0, r′12 = 0,R′ = X, T )eik·X
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
= M2(0)
∑
n

|ϕn(0)|2

× dP
(2π)3

dTdXe−E(P )T−iP·X+ik·X

= M2(0)
∑
n

|ϕn(0)|2
∞∫
0

e−E(k)T dT

= M2(0)
∑
n

|ϕn(0)|2√
m2
n + k2

.

Expanding (11) in k2 and comparing to (7), one
finds f2

π ,

f2
π = NcM

2(0)
∞∑
n=0

|ϕn(0)|2
m3
n

. (12)

Comparing (9) and (12), one finds

c(M)
n =

√
mn

2
M(0)ϕn(0), (13)

cn =
√

mn

2
ϕn(0).

In a similar way, one computes 〈q̄q〉 from (6) and
finds

−〈q̄q〉 = NcM(0)
∞∑
n=0

|ϕn(0)|2
mn

. (14)

Here, ϕn(r) is the 3D spin-singlet wave function
of the qq̄ system, as obtained, e.g., in the relativis-
tic Hamiltonian method of FCM [15] or else in the
Bethe–Salpeter equation with the kernel not depend-
ing on relative time, as is discussed in Appendix 2.

The accuracy of the method with respect to cal-
culation of |ϕn(0)|2 can be checked by comparison
of the predicted leptonic width with experiment, as is
done in Appendix 3. Taking into account both color
Coulomb and confining interaction, one has

|ϕn(0)|2 = µn

(
σ +

4
3
αs

〈
1
r2

〉)
/(4π), (15)

where µn is the constituent energy (mass) computed
through σ [15]; we refer the reader to Appendix 3 for
the details of calculation of mn and |ϕn(0)|2.

As is shown in [16] and discussed in Appendix 3,
the masses m2

n, µ
2
n grow linearly with n in the large-

Nc limit; hence, the sum (14) for 〈q̄q〉 is formally
diverging if the spectrum of radially excited mesons
extends to infinitely large masses. In fact, the exper-
imental spectrum can be followed up to mass values
around mcont

∼= 2.5 GeV, where resonances become
very wide and strongly mix between themselves and
4



1030 SIMONOV
with hybrids, forming the continuum of states. Fol-
lowing the ideology of the QCD sum rules [17], one
could replace this continuum by perturbative dia-
grams, which do not contribute to 〈q̄q〉. Therefore,
we shall keep the first three terms in the sum (14)
over n (the term with n = 3 gives a negligible con-
tribution). As was mentioned in the beginning of
this section, the relativistic potential description of
G(MM)(r12,R, r12,R′, T ) is possible only for time
T � T0, while, for T < T0, T0 ∼ Tg, one should use
the properties of the q̄q Green’s function G̃, as given
by the OPE [17]. As is discussed in Appendix 4, the
region of small times and relative distances, covered
by the OPE treatment, gives a contribution to 〈q̄q〉
proportional to O(σ5/2T 4

0 /T
2
g , σm) and therefore can

be disregarded for light quarks and small T0 < Tg. As
a result, one should exclude from the integration over
dT in (11) the region (0, T0), which brings about the
following factor in (14) instead of 1/mn,

1
mn
→ e−mnT0

mn
, (16)

and in (12),

1
m3
n

→ e−mnT0

m3
n

(1 + mnT0). (17)

Retaining for 〈q̄q〉 the first three terms in the sum
(14) and two terms in (12), one has

−〈q̄q〉 = NcM(0)
{

ϕ2
0(0)e

−m0T0

m0
(18)

+
ϕ2

1(0)e
−m1T0

m1
+

ϕ2
2(0)e

−m2T0

m2

}
,

f2
π = NcM(0)

{
ϕ2

0(0)e
−m0T0

m3
0

(1 + m0T0) (19)

+
ϕ2

1(0)e
−m1T0

m3
1

(1 + m1T0)
}
.

Using (A.25), (A.27), and (A.30), one has

ϕ2
0(0) =

0.109 GeV3

4π
, (20)

ϕ2
1(0) =

0.097 GeV3

4π
, ϕ2

2(0) =
0.115 GeV3

4π
;

m0 = 0.4 GeV, m1 = 1.35 GeV,

m2 = 1.85 GeV.

For a reasonable estimate, we set T0 = Tg =
1 GeV−1 and the value M(0) = 0.148 GeV from
Appendix 1 and obtain

−〈q̄q〉 = (0.195 GeV)3, fπ = 0.094 GeV. (21)
PH
One can check that the behavior of (18) for 〈q̄q〉 at
small T0 is smooth; e.g., when changing T0 from Tg =
1 GeV−1 to 0.5 Tg, the result changes by roughly
10%.

To check the sensitivity to the change of Tg ,
we have taken Tg = 1/1.5 GeV−1 and recalculated
all quantities; e.g., from (A.7), one has M(0) =
0.12 GeV. The resulting values are not changed much
from (21),

−〈q̄q〉
(
Tg =

1
1.5

GeV−1

)
= (0.189 GeV)3, (22)

fπ = 0.076 GeV.

It is remarkable that fπ in (21) is very close to the
value obtained from the pion decay and used in the
chiral perturbation theory [18], fπ = 93 MeV. At the
same time, |〈q̄q〉| is somewhat less than the standard
value (240 MeV)3, and we discuss in the concluding
section the scale dependence and comparison with
existing lattice measurements.

4. DISCUSSION AND CONCLUSIONS

The quark condensate and fπ are given by
Eqs. (18), (19), and (22), where all quantities can be
expressed through m,σ, and Tg, since ϕ2

n(0), mn,
and M(0) are expressed through these quantities,
while T0 can be taken in the region of plateau and,
e.g., equal to Tg. In this way, one obtains [m = 0,
σ = 0.18 GeV2, T0 = Tg = 1 GeV−1, and Eq. (21)
for 〈q̄q〉]

fπ ∼= 0.094 GeV, −〈q̄q〉 ∼= (0.20 GeV)3. (23)

Several corrections should be added to these results.
First of all, the short-distance contribution to 〈q̄q〉
is of relative order

√
σTg ∼ 0.45 and can substan-

tially increase the result. Another essential point is
the value of Tg, which increases in the presence of
dynamical quarks, and can be smaller if gluelump da-
ta [19] are taken into account, Tg = 0.7 GeV−1. This
influences significantly the value of M(0); however,
an independent check can be made, since M(0) also
enters the strong decay matrix element, and the value
M(0) = 0.148 GeV is reasonably close to the phe-
nomenological value known from the 3P0 model [20].

We are now in position to compare (23) with the
lattice data. There, the computation was done in the
quenched case for Wilson fermions [21] and also for
the overlap action [22]. Before using the evaluation
coefficient for 〈q̄q〉, one can compare the result (23),
which does not contain any scale µ or any evolu-
tion corrections, with the so-called renormalization
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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group invariant (RGI) lattice measurements, which
yield [21]

−〈q̄q〉RGI
lat = [(206 ± 44± 8± 5) MeV]3. (24)

This value is in reasonable agreement with (23). As
the next step, we take the evolution coefficient for 〈q̄q〉
computed in [23] (nf = 0, Nc = 3)

CMS
s (µ) = [αs(µ)]−4/11{1− 0.219αs − 0.1054α2

s}.
(25)

For µ = 2 GeV, taking αs ≈ 0.3, and identifying 〈q̄q〉
in (23) with 〈q̄q〉RGI, one obtains for the long-distance
contribution to the condensate

〈q̄q〉(µ = 2 GeV) ∼= 〈q̄q〉RGICMS
s (26)

∼= −(225 MeV)3.

This value, given in the abstract of the paper, is
obtained without inclusion of the coefficient used on
the lattice [21] to calculate the transition from the
lattice RGI result to the MS scheme; this coefficient
is anyhow close to unity.

The lattice value at µ = 2 GeV for Wilson quarks
in [20] is

〈q̄q〉MS(µ = 2 GeV) = −[242± 9 MeV)]3 (27)

and differs from the result [22]: −(282(6) MeV)3 ×(
a−1

1766 MeV

)3

. An independent estimate from the

QCD sum rules yields [24]

〈q̄q〉(µ = MN ) = −[225± 9 MeV]3. (28)

As a result, one can see that our long-distance contri-
bution to 〈q̄q〉, Eq. (26), is somewhat smaller than the
lattice data (27), but is certainly in the same ballpark,
and the evaluation of the short-distance contribution
is important to improve the accuracy of calculation.

At the same time, the resulting value fπ (23) is
in good agreement with the standard value, obtained
from the pion decay and used in the chiral perturba-
tion theory [18].

The method used above can be easily applied to
the case of nonzero quark mass m and the SU(3)
flavor group to calculate 〈s̄s〉, fK , etc., which will be
published elsewhere [25].
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APPENDIX 1

Calculation of the Vertex Mass M(0)

One starts with the definition of the nonlocal mass
operator MS(u, v) given in [9, 10] {see, e.g., Eq. (24)
in [10]}:

MS(u, v) = (γµΛ(u, v)γµ)scJ(u, v). (A.1)

The mass operator enters in the gauge-invariant
Green’s functions [see, e.g., Eq. (3)] via the quark
propagator Λ(x, y) (4), where MS(z, u) enters at all
intermediate points and also at initial and final points
(x + x̄)/2 and (y + ȳ)/2, where the nonlocal pion
φ(x, x̄) is emitted. According to the prescription given
in [10], we choose the set of contours C(z) for all
intermediate points z in the Green’s function G((x +
x̄)/2, (y + ȳ)/2), which minimizes the mass eigen-
values. One simple choice is to take the contours
C(z) from z along the shortest path to the x4 axis
passing through (x + x̄)/2 and (y + ȳ)/2 and along
x4 axis to the origin at the point (x + x̄)/2.

When MS is situated at the initial or final point of
the qq̄ Green’s function, i.e., at the points MS(x, x̄)
or MS(y, ȳ), where the qq̄ or pion is created or anni-
hilated, then it is convenient to choose points x, x̄ on
the axis 1 with the origin at (x+ x̄)/2. In this way, one
obtains for x1 > 0, x̄1 ≡ y1 < 0, y4 ≡ x̄4

J(x, y) =

x1∫
0

du

0∫
y1

dvD(u− v, x4 − y4). (A.2)

It is convenient to use for D the Gaussian form,

D(x, x4) = D(0)e−(x2+x2
4)/(4T

2
g ) (A.3)

=
σ

2πT 2
g

e−(x2+x2
4)/(4T 2

g ),

which yields

J(x, y) =
σ

π
e−(x4−y4)2/(4T 2

g )(1− e−(x−y)2/(4T 2
g )).

(A.4)

Now one has to estimate the scalar part of the
quark Green’s function Λ(x, y) in (A.1), for which
in [8] it was found that it behaves as a smeared δ
function with the smearing radius equal to 1/

√
σ {see

Eq. (24) in the second reference of [8]}. We simplify
this form, taking

Λ(x, y) =
(σ
π

)3/2
e−(x−y)2σ; (A.5)∫

Λ(x, y)d(x − y) = 1.
4
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To obtain the localized form of the vertex function

MS(x) ≡M(0) =
∫

M
(0)
S (x, y)d4(x− y), (A.6)

we substitute into (A.6) J(x, y) from (A.4) and
Λ(x, y) from (A.5) to get finally

M(0) =


1−

(
4T 2

g σ

4T 2
g σ + 1

)3/2

 2σTg√

π
(A.7)

≡ η
2σTg√

π
.

In the limit σT 2
g → 0, one obtainsM(0) ≈ 2σTg/

√
π,

i.e., exactly the value which appears in the strong de-
cay vertex of the string in [20]. This is not surprising,
since in both cases M(0) is a mass corresponding to
a piece of the string with a length of the order of Tg ;
hence, M(0) ∼ σTg. The factor η in (A.7) describes
the attenuation due to the nonlocality of Λ(x, y) at
small |x− y| for light quarks. For heavy quarks, this
factor tends to zero, since the localization of Λ(x, y)
becomes stronger; indeed, the quark Green’s function
Λ for m→∞ is proportional to δ(3)(x− y) (see [8]).
Effectively, for nonzero m, this can be described via
replacing η in (A.7) by the factor

η → η(m) =

[
1−

(
4Tg(σTg + m)

4Tg(σTg + m) + 1

)3/2
]
.

(A.8)

For light quarks and σ = 0.18 GeV2, Tg =
1 GeV−1, the factor η ≡ η(0) is ∼ 1− 0.27 = 0.73,
and from (A.7) one gets M(0) ≈ 0.148 GeV.

APPENDIX 2

Derivation of the Spectral Representations,
Eqs. (12) and (13)

Consider the qq̄ Green’s function of the type given
in Eq. (6):

GΓ(x, y) = 〈tr(ΓΛ(x, y)ΓΛ(y, x))〉, (A.9)

where Γ = γ5, γµ, . . ., and the qq̄ Green’s function in
the 4× 4 spinor representation:

G
(qq̄)
αβ,γδ(x, x̄; y, ȳ) = 〈Λαβ(x, y)Λγδ(ȳ, x̄)〉. (A.10)

Following the standard procedure from [26], one
can introduce the c.m. and relative coordinates, i.e.,

X =
x + x̄

2
, Y =

y + ȳ

2
, (A.11)

r = x− x̄, r′ = y − ȳ,
PH
and define

G(qq̄)(x, x̄; y, ȳ) (A.12)

=
∫

d4PeiP (X−Y ) dε

2π
e−iεr0GP (r, r′, ε, r′0).

Here, GP satisfies an equation

(E − E2 −H1)(E2 −H2)GP = β1β21̂, (A.13)

where E = E1 + E2 = P0, E1 − E2 = 2ε, and

Hi = miβi + p ·αi + βiMS . (A.14)

At this point, one can exploit the property of Hi

that it does not depend on relative time r0, and there-
fore one can integrate in (A.12) over dε with the
result [26, 27]

GP

∣∣∣∣r0 = 0
r′0 = 0

= β1β2 (A.15)

×
∞∫

−∞

dε/2π
(E1 −H1)(E2 −H2)

= iβ1β2
1

E − Ĥ
,

Ĥ ≡ H1 + H2.

As the result, one obtains∫
d4(X − Y )G(qq̄)(x, x̄; y, ȳ)

∣∣
r0=r′0=0

(A.16)

=
〈
r
∣∣∣∣ iβ1β2

Ĥ

∣∣∣∣ r′
〉

=
∑
n

〈r|n〉 iβ1β2

En
〈n|r′〉.

One can now express GΓ, with Γ = γ5, as∫
d4(X − Y )GΓ(x, y) = i

∞∑
n=0

ψn(0)ψ+
n (0)

En
,

(A.17)

where we have defined the relativistic wave function
ψn(r) ∼ γ5〈r|n〉, ψ+

n (r) ∼ β1β2〈n|r〉, satisfying the
Hamiltonian equation

Ĥψn(r) = Enψn(r). (A.18)

As is known from dynamical calculations with the
Bethe–Salpeter equation [28] with the scalar con-
fining kernel, the dominant role in ψn(r) is played
by the 1S0 component ϕn(r) of the wave function,
which satisfies the relativistic Schrödinger equation
with hyperfine interaction, discussed in Appendix 3.
Therefore, one can identify ψn(r)→ ϕn(r), En →
mn, and Eq. (6) with the help of (A.17) goes over
to Eq. (14).
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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APPENDIX 3

Calculation of the Masses mn and ϕn(0) through σ
in FCM

The mass eigenvalue m̄n of the spin-averaged

state (3m(ρ)
n + m

(π)
n )/4 for L = 0 can be written

as [15, 16]

m̄n = M0(n) + ∆SE + ∆C, (A.19)

where M0(n) is the eigenvalue of the spinless Salpe-
ter equation, which can be written as

M0(n) = 4µ0(n) = 4
〈√

p2 + m2
〉
n
. (A.20)

For m = 0, µ0(n) is expressed through
√
σ and

dimensionless coefficients a(n)—zeros of Airy func-
tions [15]:

µ0(n) =
√
σ

(
a(n)

3

)3/4

, (A.21)

a(0) = 2.338, a(1) = 4.088.

Taking into account nonzero m, one finds µ0(n)
from the equation

1 =
m2

µ2
0

+
σ2/3

3µ4/3
0

a(n). (A.22)

For large m�
√
σ, the solution of (A.22) is

µ2
0(n) ∼= m2

[
1 +

a(n)
3

(
2σµ

m2(m + µ)

)2/3
]
.

(A.23)

The term ∆SE is the self-energy correction [19],
which can be written as

∆SE(n) = −4ση(m)
πµ0(n)

, (A.24)

and η(m) is computed through m; for m = 0, η(m =
0) = 0.9–1.0.

Taking all contributions into account, one obtains
for the light quarks (m = 0)

m̄0 = 0.652 GeV, (A.25)

m̄2
n = m̄2

0 + Ω0n, n = 0, 1, 2, . . . ,

where Ω0 is computed solely through σ and is equal
to Ω0

∼= 1.6 GeV2, which is close to the experimental
slope Ωexp(L = 0) = 1.64 ± 0.11 GeV2 (see [16] for
references and discussion).

Now we take into account the hyperfine interac-
tion which produces the HF splitting between ρ and
π states:

∆HF = ∆Pert
HF + ∆NP

HF, (A.26)
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∆Pert
HF =

8αs(µHF)|Rn(0)|2
9µ2

0(n)
.

Here, Rn(0) =
√

4πϕn(0) is the radial meson wave
function, which can also be found from the leptonic
width of the ρ meson. One has

|R0(0)|2 = µ0(0)
(
σ +

4
3
αs〈r−2〉

)
(A.27)

=

{
0.091 GeV3, αs = 0,
0.109 GeV3, αs = 0.3.

These values can be checked vs. the leptonic width
of ρ,

Γe+e− =

{
6.36 keV, αs = 0,
7.62 keV, αs = 0.3,

while Γexp
e+e− = (6.85 ± 0.11) keV.

Thus, one obtains ∆Pert
HF from (A.26),

∆Pert
HF =

{
0.26 GeV, αs = 0,
0.24 GeV, αs = 0.3.

The nonperturbative part ∆NP
HF is expressed

through the correlator D(x) [20] and depends on the

accepted value of G2 ≡
αs
π
〈F a

µνF
a
µν〉,

∆NP
HF
∼= 50 MeV

(
G2

0.012 GeV4

)
. (A.28)

We take two values of G2 = Gst
2 = 0.012 GeV4 and

G2 = 2Gst
2 . Thus, one obtains for the lowest mass of

PS state in the qq̄ approach (no chiral effects)

m0 = m̄0 −
3
4
∆HF (A.29)

=
[
0.652 − 3

4
(0.3−0.35)

]
GeV = 0.39−0.43 GeV.

As a result, we accept the following values for m0

and m1 [the latter is calculated in the same way using
(A.25) and ∆HF(n = 1)]:

m0 = 0.4 GeV, m1 = 1.35 GeV. (A.30)

APPENDIX 4

Small Distance Contribution to 〈q̄q〉
To separate the small-distance contribution, we

start from Eq. (6), where we take into account the
nonlocal structure of MS(u, v) and set m = 0,

trΛxx =
∫

d4ud4y (A.31)

× tr(γ5Λ(x, y)γ5MS(y, u)Λ(u, x)).
4
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In the limit where one retains the most singular
part—the free part of Λ(x, y)—one has

Λ(x, y) ≈ Λfree(x, y) (A.32)

=
1

2π2

(
x̂− ŷ

(x− y)4
+

m

2(x− y)2

)
+ . . . .

From (A.1), one can derive the behavior of
MS(y, u) at small |y − u| ≤ T0, Tg,

MS(y, u) ∼ σ

T 2
g

c|y − u|2Λ(y, u), (A.33)

where the coefficient c is of the order of unity.
The nonperturbative part of Λ(x, y) is not singular

(modulo logarithms) and is proportional to σ3/2 [cf.
Eq. (A.5)] (apart from the OPE part of Λ, which
has m〈q̄q〉 and 〈F 2〉 terms and is even less singular
at small x). Finally, inserting (A.33), (A.32) into
(A.31) and integrating in the region |x− y|, |y −
u|, |u − x| ≤ T0, one can write the short-distance
contribution to (A.31) as

trΛxx(small distance ≤ Tg) = O

(
σm, σ5/2 T

4
0

T 2
g

)
.

(A.34)

As can be seen from (18), the long-distance part is
O(σ2Tg) and is dominant at σT 2

g → 0, T0 ≤ Tg.
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Abstract—A calculation of multiloop superstring amplitudes is considered, the equivalence of popular
approaches to determining these amplitudes being discussed. A calculation of poorly defined integrals over
singular configurations is clarified. Amplitudes obtained by a correct method do not involve divergences in
any order of perturbation theory. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In calculating multiloop amplitudes of the Ra-
mond–Neveu–Schwarz superstring [1–11], the fact
that supersymmetric transformations are not split—
that is, fermion states are mixed to boson ones—
plays an important role. An amplitude is calculated
at preset reference fields of a zweibein eam and a two-
dimensional gravitino φm, where m is the vector index
on the string world sheet and a is the vector index
in the tangent space. Owing to local symmetries,
including supersymmetry, the amplitude does not de-
pend on either eam or φm. Two basic approaches to
calculating amplitudes rely on different descriptions
of the string world sheet.

Within the supercovariant approach [7–11], which
is manifestly supersymmetric on the string world
sheet, the quantities eam and φm have a conformally
flat form—that is, eam = eδam and φm = γmι. Here,
γm is the two-dimensional Dirac matrix and ι is
a two-dimensional spinor. The spin structures are
defined by means of supergroups of the Schottky type
on a (1|1) complex supermanifold [12]. Generally, a
transformation of this supergroup depends on three
boson and two Grassmann (odd) complex parame-
ters. At nonzero odd parameters, this transformation
mixes bosons and fermions. Not all of such super-
conformal extensions of ordinary spin structures [13]
can be used in superstring theory [14]. Supergroups
appropriate for all of the spin structures, including
the Ramond sector, were constructed in [11, 15–17].
The integration measures were calculated with the
aid of the relations presented in [10, 11] and derived
from the requirement that the relevant amplitude be
independent of the choice of the reference zweibein
and gravitino field. The group of local symmetries of a
(super)string is overly wide for each of the integration
measures to be unambiguously defined by these rela-
tions, apart from a factor independent of moduli. This
factor is established from the requirement that the
1063-7788/04/6705-1035$26.00 c©
amplitude be factorized as handles move away from
each other (this leads to a factorization at the poles
associated with intermediate single-particle states).
The respective calculation does not employ explicit
super Beltrami differentials. Within the theory of a
closed and oriented string, local amplitudes involving
an arbitrary number of loops were calculated in [11] in
an explicit form that is convenient for investigations.

In describing [1–6] a supermanifold by specifying
a Riemann surface, the zweibein is chosen to be
conformally flat, but the Klein group is split—that is,
fermions are not mixed to bosons upon going around
noncontractible cycles. Grassmann moduli are car-
ried by the two-dimensional-gravitino field, which
cannot therefore have a conformally flat form every-
where on the Riemann surface. In this case, two-
dimensional supersymmetry is not manifest. Never-
theless, the amplitude must not depend on the choice
of a two-dimensional-gravitino field φm. As a rule, the

gravitino field φm is chosen as φm = φ
(0)
m , where

φ(0)
m =

2n−2∑
s=1

λ(m)
s φsm, γmφ(0)

m = 0, (1)

λ(+)
s ≡ λs, λ(−)

s ≡ λs.

Here, λ
(m)
s stands for Grassmann moduli and φsm

depends on coordinates and, in general, on boson
moduli. For the simplest choice [2] of super Beltrami
differentials, the amplitude appears to be dependent
on φsm. Under different assumptions, a two-loop
amplitude was recently considered in the studies
of D’Hoker and Phong [6], where the integration
measures are invariant under those supersymmetric
transformations for which the local parameter of a
transformation is the sum of terms proportional to
Grassmann moduli. Since the transformations being
discussed are able to change φsm, the integration
measures are independent of φsm. Additionally, the
integration measures are modular forms and their
2004 MAIK “Nauka/Interperiodica”
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GSO projection vanishes. The same is expected for
one-, two-, and three-point functions for massless
states.

In fact, the amplitude must not depend on the

gravitino field taken in the general form φm = φ
(0)
m +

φ
(1)
m , where φ

(1)
m does not depend on Grassmann mod-

uli but depends on boson moduli and on alien Grass-
mann numbers (not moduli). The reduction φm →
φ

(0)
m requires a transformation of the general form

involving alien Grassmann quantities. Therefore, φ(0)
m

independence is not a sufficient criterion that the
amplitude is calculated correctly. Indeed, local ampli-
tudes are determined by the requirement that the inte-
gral of a local amplitude with respect to ordinary and
Grassmann moduli be independent of local variations
of the fields eam and φm. Within the supersymmetric
scheme, this was shown in [10, 11]. In the present
study, we propose a similar calculation, relying on
the description in [1–6]. We will see that, for different
choices of boson and fermion moduli and for different
eam and φm, local amplitudes are related by the Ja-
cobian of the corresponding transformation. Thereby,
we establish a relationship between the schemes used
in [1–6] and in [7–11], which has so far remained
unclear. We will obtain a condition necessary for the
super Beltrami differentials to be consistent with two-
dimensional supersymmetry. This condition restricts
the choice of super Beltrami differentials in schemes
where supersymmetry is not manifest. Neither in [2]
nor in [6] do the super Beltrami differentials satisfy
the above restriction. For two- and three-loop ampli-
tudes, one can take, for moduli, elements of a period
matrix on a supermanifold. It is this choice that was
made in [6]. The amplitude is then indeed represented
by an integral not featuring surface terms, the local
amplitude having “good” properties [6]. Nevertheless,
the expression that is obtained here for the amplitude
differs strongly from that proposed in [6]. The afore-
mentioned properties of a local amplitude are caused
by the fact that, for the above choice of moduli, the
group of modular transformations on a supermanifold
is split. This choice of moduli is possible only for the
surfaces of genus 2 and 3, where the moduli and the
period matrix are in one-to-one correspondence.

On a supermanifold of genus n > 3, the modular
group is not split at any choice of moduli. Therefore,
the local amplitude is not covariant under modular
transformations on a Riemann surface. In the inte-
gral, the above modular symmetry is restored owing
to surface terms that are always present in this case.
In schemes where supersymmetry is not manifest on
the string world sheet, surface terms compensate, in
addition, the dependence of the local amplitude on the
field of the two-dimensional gravitino. The integral
must be calculated carefully because of the presence
PH
of singularities in the integrand. Indeed, we see that
the integral in question with respect to boson and
Grassmann variables can converge or diverge, de-
pending on the choice of integration variables. In this
case, the integration procedure must be formulated
on the basis of the requirement that local symme-
tries of the amplitude be preserved. Within the super-
covariant scheme, such a procedure was developed
in [18]. The amplitudes are then obtained to be finite.
Moreover, the one-, two-, and three-point amplitudes
for massless states vanish. A similar procedure could
also be developed in schemes where supersymmetry
is not manifest.

In fact, the amplitude can be calculated by using
different choices of moduli and different methods for
describing supermanifolds. In order to calculate the
interaction amplitude explicitly, one must express (in
any case with the exception of that of hyperellip-
tic surfaces) 1-differentials and the period matrix in
terms of the parameters of the Klein group whose
transformations correspond to rounds about noncon-
tractible cycles. In general, such expressions can be
obtained in terms of the parameters of the Schottky
groups rather than in terms of the parameters of non-
free groups. Therefore, local amplitudes are naturally
obtained in terms of the Schottky variables, but we
will see that they can also be expressed in terms
of theta-like functions [2]. For local amplitudes in-
volving an arbitrary number of loops (n > 1), explicit
expressions, which are convenient for investigations,
were given in [11] within the supercovariant scheme;
however, this can hardly be accessible within the de-
scription proposed in [2–6].

2. SUPER BELTRAMI DIFFERENTIALS

Within schemes of the type in [2–6], the amplitude
An involving n loops is given by an integral of the
local amplitude B̂L,L′({q′M , q′M}; {φ}) with respect to
boson and fermion moduli {q′N , q′N}; that is,1)

B̂L,L′({q′M , q′M}; {φ}) =
∫

(DΩ)(d2ΛM )V expSφ,

(2)

An =
∫

(d2q′N )
∑
L,L′

B̂L,L′({q′M , q′M}; {φ}),

where summation is performed over the spin struc-
tures L and L′ of right- and left-handed fields and
(DΩ) is the product of the differentials of matter fields
and ghost fields that is multiplied by the phase space.
Additionally, integration is performed with respect to
the global parameters ΛM and Λ̄M that are dual to the

1)An overbar everywhere denotes complex conjugation.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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corresponding moduli. Further, we have M = (m,α),
where m numbers boson (m = 1, . . . , 3n− 3) moduli,
while α ∈ {αi} numbers fermion (i = 1, . . . , 2n −
2) moduli. We will use the gravitino field in the
form (1), so that φm is specified by its components
φ± and q′αi ≡ λi. In general, the local amplitude

B̂L,L′({q′M , q′M}; {φ}) is dependent on φm, although
An is expected to be independent of the gravitino field
φm. We denote by V the product of the interaction
vertices that is integrated over the supermanifold.
The supermanifold is parametrized by the coordinate
t = (z|ϑ), where ϑ is the Grassmann partner of the
local coordinate z. The transformation t→ Γs(t) of
the Klein group, where

t→ Γs(t): z → gs(z; {qm}), (3)

ϑ→ ±
√

∂zgs(z; {qm})ϑ, ∂z =
∂

∂z
,

corresponds to the round about the noncontractible
cycle s. Since we admit various choices of mod-
uli, it is not assumed that qm and q′m must coin-
cide with the Schottky moduli. In general, we have
q′m �= qm = qm({q′n, λi}) (for example, this is so for
the choice made in [6]—see Section 3.) Also, q′m is
a function of the Schottky moduli and the fermion
moduli λi. Matter fields form the scalar supermulti-
plets XN (t, t̄), where N = 0, . . . , 9. The ghosts form
the (3/2)-superfield B(t, t̄) and the (−1)-superfield
C(t, t̄). Further, we have2)

Sφ =
∫

d2t

[
B(t, t̄)Υ(+)

N
 (t, t̄; {q′M
′}) (4)

− B̄(t, t̄)Υ(−)
N
 (t, t̄; {q′M
′})

]
ΛN


+ S(φ)
m (X) + S

(φ)
gh (B,C; B̄, C̄),

where S
(φ)
m (X) is the matter action functional,

S
(φ)
gh (B,C; B̄, C̄) is the ghost action functional, and

the so-called super Beltrami differentials

Υ(±)
N
 (t, t̄; {q′M
′}) appear owing to ghost zero modes;

also, M = M±, q′M+ = q′M , q′M− = q′M , ΛM+ =
ΛM , and ΛM− = Λ̄M . Additionally, we have

S
(φ)
gh (B,C; B̄, C̄) (5)

=
∫

d2z

π
dϑdϑ

[
BD̂

(φ)
+ C − B̄D̂

(φ)
− C̄

]
,

2)Summation over dummy indices is implied everywhere in this
article, with the exception of the cases of doubly repeated
(L,L′) or indices in the arguments of functions. The cases
where this is not so are indicated explicitly unless they are
obvious.
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S(φ)
m (X) = −2

∫
d2z

π
dϑdϑD

(φ)
+ XND

(φ)
− XN ,

where

D
(φ)
− = D +

1
2
φ+

[
ϑ

∂

∂ϑ
+ ϑϑ

∂

∂z

]
, (6)

D
(φ)
+ = D(t) +

1
2
φ−

[
ϑ

∂

∂ϑ
− ϑϑ

∂

∂z

]
,

D(t) = ϑ∂z + ∂ϑ, D̂
(φ)
− = D

(φ)
− − (∂zφ+)ϑϑ,

D̂
(φ)
+ = D

(φ)
+ + (∂zφ−)ϑϑ.

For the sake of simplicity, S
(φ)
m (X) is given under

the assumption that φsm in (1) do not overlap one

another. We write Υ(±)
N
 (t, t̄; {q′M
}), which is dual to

the boson modulus (N = n) or the fermion modulus
(N = α), as

Υ(+)
N
 (t, t̄; {q′}) = ϑϑ

∂φ−
∂q′N


(7)

− r
(+)
M
′(t, t̄; {qM ′
′′})

∂qM
′

∂q′N


,

Υ(−)
N
 (t, t̄; {q′}) = ϑϑ

∂φ+

∂q′N


− r
(−)
M
′(t, t̄; {qM ′
′′})

∂qM
′

∂q′N


,

where {q′} ≡ {q′M
}, {qM
} = {qM , qM}, and

{qM} = {qm, λi}. We will show that r(±)
N
 (t, t̄; {qM
})

must admit the representation

r
(+)
N
 (t, t̄; {qM
}) = D̂

(φ)
+ v

(+)
N
 (t, t̄; {qM
}), (8)

r
(−)
N
 (t, t̄; {qM
}) = D̂

(φ)
− v

(−)
N
 (t, t̄; {qM
}),

where v
(±)
α
 (t, t̄; {qM
}) does not have discontinuities

upon rounds about any noncontractible cycle and the

discontinuity v
(±)
n
 (t, t̄; {qM
}) is determined by the

corresponding transformation (3). Additionally, we
have

v
(+)
n
 (Γs(t),Γs(t); {qM
}) (9)

= v
(+)
n
 (t, t; {qM
})

∂gs(z; {qm})
∂z

− ∂gs(z; {qm})
∂qn


,

where the discontinuity in question is given by the last
term on the right-hand side of (9). It follows from here

that v
(+)
n− (t, t; {qM
}) does not have discontinuities.

The discontinuity of the function v
(−)
n
 is given by

the complex-conjugate expression. From (8), it then
immediately follow, among other things, that (d2t =
4
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d2zd2ϑ) ∫
d2tχ̂(φ+)

α (t)r(+)
n+ (t, t̄; {qM
}) = 0, (10)∫

d2tχ̂
(φ+)
N (t)r(+)

α
 (t, t̄; {qM
}) = 0,

where the integral is taken over the Riemann surface

and the ghost zero mode χ̂
(φ+)
M (t) is calculated in

terms of the Green’s function Ĝ
(+)
(φ) (t, t′) by the for-

mula

χ̂
(φ+)
M (t) =

∫
d2t1χ̂M (t1)D(t1)Ĝ

(+)
(φ) (t1, t), (11)

D̂
(φ)
+ Ĝ

(+)
(φ) (t, t′) = −Ĝ

(+)
(φ) (t, t′)[D̂(φ)

+ ]T

= δ2(z − z′)δ2(ϑ− ϑ′).

Here, the operator D̂(φ)
+ acts on (t̄, t) and the operator

[D̂(φ)
+ ]T acts on (t̄′, t′). In general, Ĝ

(+)
(φ) (t1, t) also

depends on (t̄1, t̄), while the zero mode χ̂
(φ+)
M (t) of

the operator [D̂(φ)
+ ]T transposed to the operator D̂

(φ)
+

also depends on t̄. At φ− ≡ 0, the function Ĝ
(+)
(φ) (t, t′)

reduces to Ĝ(t, t′), while χ̂
(φ+)
M (t) reduces to χ̂M (t),

where

Ĝ(t, t′) = −G̃b(z, z′)ϑ′ + ϑG̃f (z, z′), (12)

χ̂m(t′) = −ϑ′χ̃m(z′), χ̂α(t′) = χ̃α(z′).

Here, G̃b(z, z′) and G̃f (z, z′) are, respectively, 2- and
(3/2)-tensors in the z′ plane, while χ̃m(z′) and χ̃α(z′)
are, respectively, 2- and (3/2)-zero modes. Further,
we can write

Ĝ
(+)
(φ) (t, t′) = Ĝ(t, t′) (13)

−
∫

d2t̃Ĝ(t, t̃)[D̂(φ)
+ − D̄]Ĝ(+)

(φ) (t̃, t′),

where D̂
(φ)
− and D ≡ D(t̃) are defined in (6). Since

the kernel of this equation is proportional to φ−,
it can be solved by iterations. Owing to the pres-
ence of zero modes, both functions G̃b(z, z′) and
G̃f (z, z′) have discontinuities in the z plane, this

leading to discontinuities in Ĝ
(+)
(φ) (t1, t). Calculating

v
(+)
N+(t, t; {qM
}) in (8) in terms of the Green’s func-

tion, we can show that the first of the equations
in (10) is caused by the fact that the discontinuities

of the function v
(+)
N+(t, t; {qM
}) do not involve terms

proportional to ϑ. The second equation is caused

by the absence of discontinuities in r
(+)
α
 (t, t̄; {qM
}).
PH
The constraints in (10) are due to the fact that the
relations ∫

d2tχ̂
(φ+)
M (t)r(+)

N+(t, t̄; {qM ′
}) (14)

=
∫
s

dtχ̂
(φ+)
M (t)[v(+)

N+(t, t; {qM
})]s

[here, dt = dzdϑ], which follow directly from (8), can-
not be satisfied only by choosing moduli. For the

aforementioned discontinuities [v(+)
N+(t, t; {qM
})]s of

the functions v
(+)
N+(t, t; {qM
}) upon a round about the

cycle s, the matrix whose elements (MN) are formed
by the integrals in (14) with respect to t is indeed de-
generate. In (14), the integral for each s is calculated
along a noncontractible cycle that corresponds to the
same handle and which is dual to the cycle s. We
imply that summation is performed over cycles s. The

analogous relations for r
(−)
N−(t, t̄; {qM ′
}) involve zero

modes of the operator [D̂(φ)
− ]T . The Green’s functions

and zero modes in (12), which are specified in terms of
the Schottky parameters, are considered in [17]. They
can also be expressed in terms of vacuum correla-
tion functions [2–6] that depend on arbitrary points
(see Appendix А). In this case, G̃b(z, z′) is expressed
in terms of the correlation function G2(z′, z; {pm}),
which depends on 3n− 3 points {pm}. The func-
tion G̃f (z, z′) is expressed in terms of the correlation
function G3/2(z′, z; {pα}), which depends on 2n− 2
points {pα}. From Eqs. (A.1) and (A.3), it follows,
among other things, that the unphysical poles [2]
in {pm} and {pα} for the corresponding correlation
functions coincide with those zeros of the determi-
nants in (A.1) and (A.3) (det Ã and det Â, respec-
tively) for which the positions of the points being
discussed do not coincide with one another. Since the
quantity r

(+)
α
 (t, t̄; {qM
}) does not have discontinu-

ities, it can be set to zero, as was done in [2–4], but
the first of the equalities in (10) is not satisfied in [2–
4]. In [6], both constraints in (10) do not hold (see also
the next section).

As usual, that part of the contribution from
r+
M
(t1, t1; {qM
}) to B̂L,L′({qM , qM}; {φ}) which is

orthogonal to ghost zero modes can be eliminated
by a shift of the superfield C. This shift is given by
an integral involving that component of the ghost
Green’s function which is orthogonal to the above
ghost zero modes. Upon integration by parts, the re-
mainder reduces to integrals of expressions involving

only [v(+)
N
 (t, t̄; {qM
})]s along noncontractible cycles.

Therefore, B̂L,L′({qM , qM}; {φ}) is independent of a

particular choice of v(±)
Mj (t, t̄; {qN
}), and the explicit
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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expression for v
(±)
Mj (t, t̄; {qN
}) is not required for

calculating the amplitude.
In order to derive Eqs. (7) and (8), we proceed from

an integral [19] with respect to all fields, including
the zweibein field and the field of the two-dimensional
gravitino. In so doing, we map [10, 11] Riemann
surfaces onto the complex plane w, choosing the
same Klein group w→ K(n)(w) for all surfaces of
given genus n. For the sake of simplicity, one can
choose the split group. The integral is divided by
the volume of the group G of local symmetries of
the amplitude. This group contains the transforma-
tions of two-dimensional reparametrization and two-
dimensional supersymmetry; local Lorentz transfor-
mations in the tangent space; Weyl transformations;
and, finally, shifts of the gravitino field by γmι. The
zweibein ẽam(w,w) and the gravitino field φ̃m(w,w)
are expressed in terms of reference fields and the set
of gauge functions {Φ}. After that, we go over from
integration with respect to ẽam(w,w) and φ̃m(w,w) to
integration with respect to {Φ} and moduli that char-
acterize the properties of the surface. At first, we will
use globally defined transformations. The Klein group
will not then change and, hence, will remain the same
for all surfaces of given genus. In this case, the refer-
ence fields {eam(w,w; {qP , qP }), φm(w,w; {qP , qP })}
depend on the (3n− 3|2n − 2) complex moduli qP
that are specified apart from modular transforma-
tions. Locally, the reference fields in question can have
an arbitrary form, this being convenient for deriving
Ward identities (see next section). The Jacobian J of
the transformation is given by the superdeterminant

J = sdet


 δẽam/δΦ, ∂ẽam/∂qP , ∂ẽam/∂qP

δ̃φm/δΦ, ∂φ̃m/∂qP , ∂φ̃m/∂qP


 . (15)

As usual, the Jacobian is written as an integral with
respect to the ghost fields and the global parameters
ΛP and Λ̄P , which are dual to qP and qP . It is use-
ful [10, 20] to combine the zweibein and the gravitino
field into the superzweibein EA

M (f, f̄) ≡ EA
M ({fN}),

where f = (w|θ̂) and fN = (f, f̄). Here, M or N
numbers components (vector and spinor ones) on the
string world sheet, while A numbers components in
the tangent space. Denoting original fN by fN

1 , one
can find that the change of the superzweibein under
the G-group transformation specified by the set {Φ}
of local functions is given by

EA
M ({fN

1 }) =
∂fN1

∂fM
1

EB
N1

({fN})UA
B ({fN}, {Φ}),

(16)

where UA
B ({fN}, {Φ}) is a local matrix and fN

1 ≡
fN
1 ({fN}, {Φ}). The derivatives with respect to
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the Grassmann coordinates are calculated from the
left. Strictly speaking, we imply, in (16), the su-
perzweibein according to [10] rather than according
to [20]. In contrast to [20], the superzweibein accord-
ing to [10] retains its form under the transformations
of the full group G; therefore, it is more convenient
for calculations. It does not involve an additional
scalar field that is present in [20]. The final results are
identical in both schemes, that in [10] and that in [20].
Although there is no fully covariant connection with
respect to G, there exist two fully covariant differential
operators D̃ and Da

b , which are what is really needed
in superstring theory. The first operator acts on a su-
perscalar, while the second gives the variation of the
superzweibein under an infinitesimal transformation
of the group G. In this case, we have3)

D̃ = EM ∂

∂fM
, Da

b = ρbρ
a

(
D̃ − 2

s
∂M (sEM )

)
,

(17)

where

∂M =
∂

∂fM
.

Here, s = sdet(EA
M ) and EM ≡ EM ({fN}) is the

spinor component in the tangent space of the inverse
superzweibein EM

A and the derivatives are calculated
from the left. Upon integration with respect to {Φ},
the amplitude is given by an integral that is similar to
that in (2); that is,

B̃L,L′({qM , qM}; {eam, φm}) (18)

=
∫

(DΩ)(d2ΛM )V exp S̃,

An =
∫

(d2qM )
∑
L,L′

B̃L,L′({qM , qM}; {eam, φm}),

S̃ =
∫

d2wd2θ̂s

[
(D̃ρ0XN )D̃XN (19)

+ B̂a

(
Da

bC
b + ρaC̃

)
+B̂aρbρ

a

× EM ({fN}; {qR
′})
∂Eb

M ({fN}; {qR
′})
∂qM


ΛM


]
.

Here, EM
A ({fN}; {qR
}) = (EM

a ({fN}; {qR
}),
EM ({fN}; {qR
})) is the inverse superzweibein and

3)As in [10], we use the matrices ρ0, ρ1, ρ3, and ρ± = (ρ1 ±
ρ0)/

√
2. In addition, we have ρ0 = −iσ2, ρ1 = σ1, and ρ3 =

σ3, where σ1, σ2, and σ3 are the Pauli matrices. For any
Majorana spinor η, we define (η̂)α = ηβ(ρ

0)αβ .
4



1040 DANILOV
B̂a and (Ca, C̃) are the (3/2) and (–1) ghost super-
fields. Other definitions are given in (17) and in Foot-
note 3. The derivatives with respect to the Grassmann
moduli are calculated from the right. Upon integra-
tion with respect to C̃, we have B̂aρ

a = 0. The last
term in the bracketed expression on the right-hand
side of (19) bears a resemblance to super Beltrami
differentials, but the zweibein in (19) may have an
arbitrary form, while the Klein group on the w plane
does not depend on qM . Therefore, qM appears only
in the reference zweibein and the gravitino field. A
transition to the conformally flat zweibein is accom-
plished by means of the appropriate transformation
fM → tM , where fM depends on qm and, possibly,
on Grassmann moduli. Since a local gravitational
anomaly is absent for the critical superstring being
considered, the above transformation changes only
the last term in the bracketed expression on the
right-hand side of (19) because it involves derivatives
with respect to moduli—namely, this term acquires
the addition −Da

b [v
M
R
({tN}; {qN
})Eb

M ({tN})]ΛR
,
where the operator Da

b is given in (17) and

vM
R
({tN}; {qN
}) (20)

=
∑
P

ε(RP )
∂fP ({tN}; {qN
})

∂qR


∂tM

∂fP
.

Here, ε(RP ) = 1 if both R and P are boson (fermion)
components. Otherwise, we have ε(RP ) = −1. In the
derivation, we use the relation∑

M,N

[
ε(M(N + R))EMvN

R
∂MEa
N (21)

− ε(MR)EMvN
R
∂NEa

M

]
−
∑
M

2
s
(∂MsEM )va

R
 = 0.

It is sufficient to verify formula (21) for eam = eδam
and φm = 0 since its right-hand side is covariant
under local transformations of the group G (if use is
made of the superzweibein according to [10]). Upon
integration with respect to C̃ and the correspond-
ing redefinition of fields and global parameters, one
obtains expression (2) involving the quantities given
by formulas (4), (7), and (8). Apart from factors,

v
(±)
R
 (t, t̄; {qM
}) is equal to vM

R
({tN}; {qN
}), where
the vector index is M = ±. In contrast to the trans-
formations of the Klein group on the supermanifold
f , the transformations t→ Γs(t) (3) depend on qm.
A variation of the quantity vM

R
({tN}; {qN
}) under
this transformation is obtained directly from (20); as
a result, we have formula (9). Bypassing (18) and
(19), one can also derive formula (2) directly from an
integral with respect to fields, including the zweibein
field and the fields of two-dimensional gravitino. In
P

this case, the derivatives with respect to qM
 in the
Jacobian arise because the transformation fM

1 → tM

depends on {qM
}.
The gravitino field φm in (2) can be reduced to a

given field φ̂
(0)
m by means a local group-G transfor-

mation that preserves a conformally flat form of the
zweibein and the Grassmann moduli independence
of the transformations of the Klein group. The boson
moduli then acquire Grassmann additions that de-
pend on φm. Therefore, the dependence on φm dis-
appears only upon integration with respect to moduli
under the condition that the integral is globally in-
variant under the transformation being discussed. In
this case, one can also go over to the supercovariant
description according to [7–11, 17], reducing φm to
zero. Thus, the two descriptions are equivalent.

3. LOCAL AMPLITUDE AND INTEGRATION
DOMAIN

The integral in (2) with respect to fields re-
quires a regularization ensuring that the superstring
amplitude does not depend on local variations of
reference fields. This integral can also be obtained
by solving the Ward relations that are similar to
those in [10, 11] and which were derived from the
requirement δ⊥An = 0. Here, δ⊥An is a variation of
the amplitude in (18) under infinitesimal transverse
variations δ⊥eam and δ⊥φm of the zweibein eam and
the two-dimensional-gravitino field φm. In this case,
we have ema δ⊥eam = ema εabδ⊥ebm = 0 and γmφm = 0,
where ε−+ = −ε+− = 1. The phase space in (18)
depends on eam and φm, but it is invariant under
the above variations. Therefore, the variation δ⊥An
of the superstring amplitude (18) is due only to the
variation of the functional in (19). Going over to the
conformally flat zweibein, we obtain the relations
for B̂L,L′({qM , qM}; {φ}) in (2). Since δ⊥eam and
δ⊥φm are arbitrary, the relations are local in t = (z|ϑ).
Further, we have

B̂L,L′({qM , qM}; {φ}) (22)

= ẐL,L′({qM , qM}; {φ})〈V 〉φ,
where 〈V 〉φ is the vacuum expectation value of V in
(2) and ẐL,L′({qM , qM}; {φ}) is a vacuum function.
For the sake of simplicity, we set q′m = qm [see (2)
and (3)]. As before, we have {qα} = {λi}. In (1),
we set φs− = πδ2(z − z(s)) and φs+ = πδ2(z − z′(s)),
assuming that all z(s) and z′(s) differ from one another.
Concurrently, the δ functions can be smoothed if this
is necessary. The specified points can depend on bo-
son moduli. In order to calculate the integral under
consideration, it is sufficient to assume that δ⊥eam and
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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δ⊥φm are nonzero at points that are different from
z(s) and z̄′(s). The derivation of the required equations
is similar to the derivation of equations in [10], the
results being

χ̂
(φ+)
N (t)

∂

∂qN
ln ẐL,L′({φ}) = 〈T 〉φ −

∂

∂qN
χ̂

(φ+)
N (t),

(23)

χ̂
(φ+)
N (t)

∂

∂qN
〈V 〉φ = 〈TV 〉φ − 〈T 〉φ〈V 〉φ;

T = −(DXN )∂zXN +
3
2
B∂zF (24)

+ (∂zB)F − 1
2
(DB)(DF ),

χ̂
(φ+)
N (t) = −〈B(t, t)ΛN 〉φ,

F (t, t̄) = C(t, t̄)− v
(+)
N
 (t, t̄; {qM
})ΛR
, (25)

along with the analogous equations for the deriva-
tives with respect to the complex-conjugate moduli
qN . Here, ẐL,L′({φ}) ≡ ẐL,L′({qM , qM}; {φ}) is the

same as in (22), χ̂(φ+)
N (t) are given in (11), and F (t, t)

has discontinuities that are calculated according to
(9). The derivatives with respect to {qα} are calcu-
lated from the right. All of the derivatives with respect
to the moduli are calculated under the condition that
the zweibein remains conformally flat. In the presence
of the gravitino, the correlation function 〈XX〉φ for
scalar superfields, the correlation function 〈CB〉φ
for ghost superfields, and the zero modes 〈BΛM
〉φ
are calculated in a standard way by supplementing
expression (4) with the term [XX̃ + BC̃ + B̃C +
LR
ΛR
 + c.c.], which contains the sources X̃ , B̃, C̃,
and LR
 of the corresponding fields (X,B,C,ΛR
).
The terms that are linear in C or in the nonzero modes
of the field B are removed by shifts of the fields (B,C)
with the aid of that component of the Green’s function

G(φ+)(t; t1) which is orthogonal to χ̂
(φ+)
N (t1). As

usual, the dependence on the sources is singled out
in the form of an exponential of [−X̃ 〈XX〉φX̃ −
B̃〈CB〉φC̃ − LM
〈ΛM
B〉φC̃]. By using 〈CB〉φ and
〈BΛM
〉φ, one can calculate 〈FB〉φ, where F ≡
F (t, t̄) is defined in (25). In contrast to 〈CB〉φ,
neither 〈FB〉φ nor 〈BΛN 〉 depend on the choice of

the function v
(±)
Mj (t, t̄; {qN
}). For a δ-function field

φ−, the required correlation function 〈FB〉φ involves
an ambiguity, which can be removed if one first takes
a smoothed field φ−. If {λi = 0}, then

−〈F (t)B(t′)〉φ=0 ≡ G(t, t′) (26)

= −G̃b(z, z′)ϑ′ + ϑG3/2(z
′, z; {z(i)}),
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where {z(i)} is the set of points at which φ− �= 0;
for information about G3/2(z′, z; {z(i)}), see the text
after formula (14) and Appendix А. The correlation
function for scalar superfields is given by the Green’s

function for the operator D(φ)
− D

(φ)
+ [see (6)]. Here, the

holomorphicGreen’s functions, as well as superscalar
functions and their periods, are constructed for the

operator D
(φ)
+ . For φm ≡ 0, they are given in [1, 7,

11] in terms of the Schottky variables. In calculating
T , one discards the singularity at coinciding argu-
ments in the correlation functions in (24). Because
of the superfield F , the quantity T has a discontinu-
ity under the transformation in (3). This discontinu-
ity is canceled by the discontinuity of the derivative

−∂qN χ̂
(φ+)
N (t). As a result, the right-hand side of the

first equality in (23) does not have discontinuities in
the z plane.

Equations (23) are analogous to the correspond-
ing equations in [10, 11], but, there, the vacuum
correlation functions and zero modes are calculated
on the nonsplit supermanifold [10, 11, 17] specified by
the transformations t̃→ Γ̃s(t̃) of the super Schottky
groups. Here, t̃ = (z̃|ϑ̃) is a coordinate on this super-
manifold and the spin structures L and L′ are defined
on the aforementioned supergroups. Concurrently,
the Schottky multiplier k̃s and two limiting points
(ũs|µ̃s) and (ṽs|ν̃s) on the supermanifold correspond
to each handle. Further, (3|2) of (ũs, ṽs|µ̃s, ν̃s) moduli
are fixed owing to SL(2) symmetry and, hence, do not
enter into the set of (3n − 3|2n − 2) complex moduli
{q̃M}. The amplitude is given by an integral of the
type in (2) of the local amplitude BL,L′({q̃M , q̃M}) ≡
BL,L′ , where

BL,L′ = Z̃L,L′({q̃M , q̃M})〈V 〉, (27)

Z̃L,L′({q̃M , q̃M}) = det−5[ω̃({q̃M};L)

+ ω̃({q̃M};L′)]ZL({q̃M})ZL′({q̃M}).
Here, 〈V 〉 is the integral of the vacuum expec-
tation value of the product of interaction vertices
over the supermanifold. Further, Z̃L,L′({q̃M , q̃M})
is a vacuum function, ZL({q̃M}) being a holomor-
phic function of qM . For all even spin structures,
the quantities BL,L′ were derived in [11]. Here,
ω̃({q̃M};L)/(2πi) is the period matrix on the su-
permanifold. Since fermions are mixed to bosons,
the matrix ω̃({q̃M};L) depends on the Grassmann
moduli and on L. The substitutions t̃→ t and q̃M →
qM preserve a conformally flat zweibein, but the
generating transformations t→ Γs(t) of the Klein
group become independent of Grassmann moduli;
therefore, there appears a gravitino field. Further, we
4
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have ω̃({q̃M};L) = ω({qM};L)/(2πi)—that is, the
period matrix on the supermanifold coincides with
the period matrix ω({qM};L)/(2πi) calculated for

the superscalar functions of the operator D
(φ)
+ in (5).

In [6], it was referred to as “the super period matrix.”
We take t̃(t) that is holomorphic everywhere, with the
exception of poles at the points z = z(i), this leading
to the appearance of the δ-like gravitino field that does
not vanish at the points z = z(i). In this case, one
has [12, 17]

z̃ = z + f(z) + [1 + f ′(z)]ϑξ(z), (28)

ϑ̃ =
√

1 + f ′(z)

[(
1 +

1
2
ξ(z)ξ′(z)

)
ϑ + ξ(z)

]
,

∂f(z)
∂z̄

+ [1 + f ′(z)]ξ(z)
∂ξ(z)
∂z̄

= 0,

where f(z) and ξ(z) are, respectively, a boson and a
fermion function; f ′(z) = ∂zf(z); and ξ′(z) = ∂zξ(z).
Owing to the last relation in (28), the zweibein
remains conformally flat, as follows from (16) and
from the explicit form of the superzweibein according
to [10] or [20]. Upon the transformation in (28),
the supertensor of rank p acquires the known factor
[D(t)ϑ̃]−p. In addition, the ghost zero modes are
transformed by the matrix ∂qm/∂q̃N . In the same
way as in [17], the modular transformation leads
to 〈FB〉 → 〈FB〉φ + an extra term that generates
an addition to T . This addition is canceled by that

addition to ∂qN χ̂
(φ+)
N (t) which emerges from the fact

that transformation (28) depends on the moduli.
As a result, there arise Eqs. (23). Concurrently,
Eqs. (22) and (27) are related by the Jacobian Ĵ of
the transformation (q̃M , q̃M)→ (qM , qM ):

ẐL,L′({qM , qM}; {φ}) = Ĵ Z̃L,L′({q̃M , q̃M}), (29)

〈V 〉φ = 〈V 〉.
In order to calculate t̃(t) and q̃M ({qN}), we use
the method developed in [17] for the modular trans-
formations. In this case, both t̃(t) and q̃M ({qN})
are calculated in [17] by using the set of equations
Γ̃s(t̃(t)) = t̃(Γs(t)). By way of example, we consider
surfaces of genus 2. For the sake of definiteness, we
fix ũ1, ṽ1, µ1, ν1, and ũ2 by the equalities ũ1 = u1,
µ1 = 0, ṽ1 = v1, ν1 = 0, and ũ2 = u2. Furthermore,
we define q̃m = qm − δqm. We then have

δqm =
λ1λ2

4

[
G̃f (z(1), z(2))χ̃m(z(1)) (30)

− G̃f (z(2), z(1))χ̃m(z(2))

−
∮

2
dzχ̃m(z)[P1(z)G̃f (z, z(2))
PH
− P2(z)G̃f (z, z(1))]
]
,

Pi(z) = 2
z − v2

u2 − v2
χ̃µ2(z(i))− 2

z − u2

u2 − v2
χ̃ν2(z(i)),

µ2 = λ1χ̃µ2(z(1)) + λ2χ̃µ2(z(2)),

ν2 = λ1χ̃ν2(z(1)) + λ2χ̃ν2(z(2)).

Here, the functions G̃b(z, z′), G̃f (z, z′), χ̃m(z), and
χ̃α(z) at α = (µ2, ν2) are the same as in relations
(12), (A.1), and (A.3). Integration is performed in
the positive direction along the contour surrounding
both Schottky circles of handle 2 and, for a handle
of the Ramond type, the cut between the points u2

and v2, which exists in this case [11, 17]. Further-
more, δqm does not have discontinuities in the z(1)

and z(2) planes, this being ensured by the choice

of the Green’s function G̃f (z, z(2)). For the above

choice, G̃f (z, z(2)) does not have discontinuities
upon the rounds about A1 and B1 cycles. Moreover,
G̃f (z(s), z(i))− Pi(z) does not have discontinuities
in the z(s) plane upon the rounds about A2 and B2

cycles. The latter follows from the fact that the dis-
continuity of the integral in (30) upon the round about
A2 and B2 cycles in the z(i) plane arises because of

the pole of the function G̃f (z, z(i)) at z = z(i) and
coincides with the discontinuity of the polynomial
−Ps(z(i)). Integrals of this type are discussed in detail
in [17]. The derivation of formulas (30) is analogous
to the calculation developed in [17] for modular
transformations. If we use Schottky moduli, then δqm

is (δv2, δk1, δk2). If the period matrix ω
(0)
rs /(2πi) on

a Riemann surface is used for moduli, then qm →
qij , where i ≤ j, and χ̃m(z)→ χ̃ij(z) = Ji(z)Jj(z).
Here, Jr(z) is a scalar function with periods ω

(0)
rs . As

above, we identify q′m in (2) with qm.

From (29), it is obvious that the local amplitude in
(22) depends on the points z(i) and z′(i) of the gravitino
field. On the other hand, the superstring amplitude
represented by an integral of the local amplitude (27)
does not involve the gravitino field. In fact, the z(i)-
and z′(i)-dependent terms in (29) are total derivatives
in moduli space, which, upon integration by parts,
are canceled by the surface terms in the integral. In
the integral of (27), the surface terms are caused by
the fact that expression (27) is covariant [17] under
modular transformations [17] on the nonsplit super-
manifold [12]. In general, this supermodular transfor-
mation [17] is a globally defined holomorphic variation
of the coordinate t̃ that is accompanied by a holomor-
phic variation of the moduli {q̃M} and the change in
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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the spin structure. Therefore, integration of expres-
sion (27) with respect to {q̃M} is performed over the
fundamental region of the supermodular group—that
is, the group of supermodular transformations being
discussed. The boundary of the region is formed by
the moduli that are related by supermodular transfor-
mations mixing fermion moduli to boson ones. In just
the same way as the ordinary modular transforma-
tion [21], the supermodular transformation specifies
a new basis of noncontractible cycles. Therefore, the
period matrix ω̃({q̃M};L) in (27) is varied in the same
way as the matrix ω(0)({qm}) is varied [21] under the
corresponding modular transformation on a Riemann
surface. In this case, the boundary of the funda-
mental domain is determined by a set of conditions
of the type Gi(ω({qM};L), ω({qM};L′)) = 0, where
the functions Gi were obtained by a superconformal
extension [18] of the functions that determine the
boundary in [21]. Thus, the superstring amplitude is
given by the product of the integral of expression (27)
and O({Gi}), where

O({Gi}) =
∏
i

?(Gi), (31)

Gi ≡ Gi(ω({qM};L), ω({qM};L′)),

ω({qM};L′) = ω̃({q̃M};L′), and ?(x) = 1 for x > 0
and ?(x) = 0 for x < 0. This step function is taken
in the sense that it is expanded in Grassmann pa-
rameters contained in x. It is this circumstance that
obviously leads to surface terms in the integral. Oth-
erwise, integration is performed over the fundamental
domain [21] of the ordinary modular group. A shift
of the integration variables that is proportional to
the Grassmann parameters changes surface terms as
well. As a result, the integral does not depend on the
choice of integration variables. Moreover, the same
integral over any other fundamental domain can be
obtained by means of supermodular transformations.
Therefore, the integral does not depend on the funda-
mental domain over which it is calculated (provided
that the singularities are integrated correctly—see the
next section), as it must. By applying the transforma-
tion q̃M → qM , one obtains the integral in (2), where
q′m = qm. As above, the quantityω({qM};L)/(2πi) in
(31) is calculated as periods of superscalar functions

for the operator D(φ)
+ in (5). For a δ-like gravitino field,

we denote this matrix byω
(+)
rs ({qM}; {z(i)};L)/(2πi).

In particular, a matrix of genus 2 is obtained to be

ω(+)
rs ({qM}; {z(i)};L) = ω(0)

rs ({qm}) (32)

− λ1λ2

2
[∂z(1)Jr(z(1))]Rf (z(1), z(2);L)[∂z(2)Js(z(2))],
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where, as before, ω
(0)
rs ({qm})/(2πi) is an ordinary

period matrix; Jr(z) have the periods ω
(0)
rs ({qm});

and the Green’s function Rf (z, z′;L) is a (1/2)-
tensor in each of the arguments, this Green’s function
satisfying the condition Rf (z, z′;L)→ (z − z′)−1 for
z → z′.

The second equality in (23) is satisfied if the known
expression from [1] is used for the interaction vertices.
The vacuum function in (22) has the form

ẐL,L′({qM , qM}; {φ}) (33)

=
ΞL({qm}; {z(i)})ΞL′({qm}; {z′(i)})

det5[2Reω(0)({qm})]
× Z̆L,L′({qM , qM}; {z(i), z

′
(i)}),

where ω(0)({qm})/(2πi) is identical to that in (32)
and Z̆L,L′({qM , qM}; {z(i), z

′
(i)}) is a function such

that Z̆L,L′({qM , qM}; {z(i), z
′
(i)}) = 1 if {λi = 0}.

Here, Z̆L,L′({qM , qM}; {z(i), z
′
(i)}) and 〈V 〉φ are cal-

culated by expanding the expression exp[S(φ)
m (X) +

S
(φ)
gh (B,F ; B̄, F̄ )] in powers of φm. The quantity
〈V 〉φ can also be calculated by using the correla-
tion function for scalar superfields in the gravitino
field φm. The result obtained in this way is then
expanded in powers of φm. We can see that the
supercurrent caused by ghosts is calculated in terms
of the correlation function (26) rather than in terms
of (B,C). An ambiguity in G3/2(z(j), z(s); {z(i)}) is
removed by calculating this correlation function for
a smoothed gravitino field. The same result can be
obtained by applying the above transformation to
the amplitude in (27), which does not involve the
ambiguity being discussed. We note that, under the
transformation in question, the initial and final moduli
are related by the transformation in (30). In order to
isolate each of the derivatives ∂ ln ẐL,L′({φ})/∂qN
in (23), both sides of the first equation in (23) are
multiplied by an appropriate polynomial in t, and the
result is integrated over noncontractible cycles. This
derivation (which is omitted here) is analogous to the
derivation in [10, 11, 17]. As a matter of fact, Eq. (23)
is used to calculate ΞL({qm}; {z(i)}) in (33). In this
case, we have

ΞL({qm}; {z(i)}) (34)

= Ξ′
L({qm}; {pn}; {z(i)})/det[χ̃m(pn)],

ΞL({qm}; {z(i)}) = Z ′
L({qm})/det[χ̃α(z(i))].

Here, Z ′
L({qm}) was calculated in [11, 17] in terms of

the Schottky parameters {in the notation used in [17],
4
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Z ′
L({qm}) is equal to Z0(m)Z0(gh)H , where H is cal-

culated for zero Grassmann parameters—see (B5)–
(B7) in [17]} and is independent of the localization
points of the Beltrami differentials. The zero modes
χ̃m(z) and χ̃α(z) were determined above. Apart from
a constant factor, the quantity Ξ′

L({qm}; {pn}; {z(i)})
is the product of the corresponding chiral deter-
minants in [2], which have the localization points
{pn} and {z(i)}. Indeed, it is shown in Appendix B
that Ξ′

L({qm}; {pn}; {z(i)}) obeys the same equations
with respect to variations of the metric as the above
product of the chiral determinants, which was ob-
tained in [2] in terms of theta functions and functions
related to them. As was mentioned above, vacuum
correlation functions (in particular, see Appendix А)
can also be expressed both in terms of functions that
are relative to theta functions and in terms of the
Schottky parameters. Thus, the local amplitude in
(22) can be written in the above two forms. It differs
from the amplitude in [2] by the contribution caused
by ghosts and also by the presence of surface terms,
which are absent in [2].

The surface terms can be eliminated from only
two- and three-loop amplitudes. For this, it is nec-
essary to make the substitution of moduli qr →
q′r in such a way as to remove the dependence
on Grassmann parameters in the period matrix
ω({qM};L)/(2πi) on the supermanifold. We then
have ω({qM};L) = ω(0)({q′m}), where, as above,
ω(0)({q′m})/(2πi) is the ordinary period matrix. In
particular, it follows from (32) that, for a surface of
genus 2, we have

∑
r

δq′r
∂ω

(0)
mn({q′s})
∂q′r

=
1
2
[∂z(1)Jm(z(1))] (35)

×Rf (z(1), z(2);L)[∂z(2)Jn(z(2))],

qr = q′r + λ1λ2δq
′
r,

where q′m, which are new boson moduli, do not involve
Grassmann parameters. In the local amplitude, only
the term λ1λ2λ1λ2B̃L,L′ , which is proportional to
λ1λ2λ1λ2, contributes to the integral. We will show
that B̃L,L′ does not depend on the localization of
the gravitino field. Indeed, the quantity B̃L,L′ can
be expressed in terms of (27) by using the change
of variables q̃m → q′m, (µ2, ν2)→ (λ1, λ2). The result
can be written as

B̃L,L′ = B
(11)
L,L′ +

∂

∂q′m

∂

∂q′n

[
Km(L)Kn(L′)B(00)

L,L′

]
(36)

− ∂

∂q′m

[
Km(L)B(01)

L,L′

]
− ∂

∂q′n

[
KnB

(10)
L,L′

]
,

PH
Km =
δqm − λ1λ2δq

′
m

det[χ̃α(z(i))]
,

BL,L′ = B
(00)
L,L′ + µ2ν2B

(10)
L,L′

+ µ2ν2B
(01)
L,L′ + µ2ν2µ2ν2B

(11)
L,L′ .

Here, B(jl)
L,L′ is independent of (µ2, ν2), BL,L′ is given

by (27), (µ2, ν2) is expressed in terms of (λ1, λ2)
according to (30), and the relation between q̃m and
q′m can be seen from (30) and (35). In (36), only
the quantity Km can depend on z(1) and z(2). It can
easily be seen, however, that the residue at the point
z(1) → z(2) on the right-hand side of (35) is equal to
[∂z(2)Jm(z(2))][∂z(2)Jn(z(2))] and is canceled by the

residue of the expression [∂q′rω
(0)
mn({q′s})]χ̃r(z(2)). If

we choose ω
(0)
mn for moduli, the tensor zero modes

are indeed [∂z(2)Jm(z(2))][∂z(2)Jn(z(2))] [see the text
after Eq. (30)]. Therefore, the quantity [δq′m − δq̂m]
remains finite at z(1) = z(2). Further, the expression
[δqm − δq̂m] is antisymmetric in its arguments and
is a (3/2)-tensor in each of them. Therefore, the z(1)

and the z(2) dependence of this expression is isolated
in the form of the factor det[χ̃α(z(i))]. Thus, Km does

not depend on z(1) and z(2). Therefore, B̃L,L′ does not
depend on the points z(1) and z(2) either. We denote by

Ẑ
(0)
L,L′({q′M , q′M}) the vacuum function in terms of the

variables q′m. By using (27), one can easily find that
this vacuum function is the product of a factorized
expression and an ordinary nonholomorphic factor;
that is,

Ẑ
(0)
L,L′({q′M , q′M}) (37)

=
ZL({q′M}; {z(i)})ZL′({q′M}; {z′(i)})

det5[2Reω(0)({q′m})]
,

ZL({q′M}; {z(i)})

= ΞL({q′m}; {z(i)})[1− λ1λ2Z
(0)
L ({q′m})],

where ΞL({q′m}; {z(i)}) is defined in (33) and is cal-
culated by means of (34). Since the modular group is
now split, the amplitude in (36) has correct modular
properties. In particular, the function

Z =
∑
L

ΞL({q′m}; {z(i)})Z
(0)
L ({q′m})/det[∂ω(j)/∂q

′
m]

is invariant under modular transformations. Here,
ω(1) = ω11({q′r}), ω(2) = ω22({q′r}), ω(3) =

ω12({q′r}), and Z
(0)
L ({q′m}) is identical to that in (37).

Furthermore, one can verify that the quantity Z is
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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not singular for ks → 0 or v2. In the limit v2 → u2, it
transforms into the product of vacuum functions on a
torus and, hence, vanishes. Therefore, we have Z ≡ 0
identically. Nevertheless, the function in (37) differs
from the corresponding expression in [6]. In order to
reveal this distinction, we note that B̃L,L′ in (36) can
also be expressed in terms of (22) with the aid of the
transformation in (35). In particular, we obtain

Z
(0)
L ({q′m}) = 5Rf (z(1), z(2);L)∂z(1)∂z(2) (38)

×Rb(z(1), z(2)) + W̃L(z(1), z(2))− W̃L(z(2), z(1))

+
∂δq′m
∂q′m

+ δq′m
∂

∂q′m
ln ΞL({q′m}; {z(i)}),

W̃L(z(1), z(2)) = G̃b(z(2), z(1)) (39)

×
[
∂zG3/2(z, z(1); {z(i)})

]
z=z(2)

− 1
2

[
∂zχ(1)(z)

]
z=z(2)

∂z(1)G̃b(z(2), z(1)),

where ΞL({q′m}; {z(i)}) is defined in (34) and
Rb(z, z′) is the scalar holomorphic Green’s function.
The fermion Green’s function Rf (z, z′;L) is the same

as in (32), and G̃b(z, z′) is the same as in (12).
The quantities δq′m are given by (35). The function
G3/2(z, z(1); {z(i)}) is defined asG3/2(z, z′; {z(i)})+
χ(1)(z)/(z′ − z(1)) in the limit z′ → z(1), while
G3/2(z, z′; {z(i)}) is the same as in (26) and (A.3).
The zero modes χ(i)(z) are χα(z) in (A.3) at α = (i).
From (38), it can be seen, among other things, that

the quantity Z
(0)
L ({q′m}) is expressed in terms of

G̃b(z(1), z(2)) rather than in terms of G2(z(2), z(1))—
the latter takes place for the corresponding quantity

in [6]. If ω
(0)
mn are chosen for moduli, then the zero

modes χ̃m(pn) in ΞL({q′m}; {zi}) [see (34)] are equal
to [∂z(2)Jm(z(2))][∂z(2)Jn(z(2))] [see text at the end of
the paragraph after Eq. (30)]. The derivatives with re-
spect to the moduli are calculated under the condition
that the metric remains conformally flat (generally,
they differ from the derivatives in [2], which were
calculated by integrating the derivatives with respect
to the metric). In this case, ∂q′mΞL({q′m}; {z(i)}) is
expressed in terms of the right-hand side of the
first equation in (23), while the quantity ∂q′mδq′m is
calculated within the method proposed in [11]; first,
the discontinuities of the sought function ∂q′mδq′m are
calculated with respect to the variables z(1) and z(2),
whereupon the function itself is reconstructed on the
basis of these discontinuities. All of the derivatives are
calculated at fixed z(1) and z(2). We omit the explicit
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expressions for the derivatives being discussed. One
can verify that expression (38) does not have a pole at
z(1) = z(2), is antisymmetric in its arguments, and is
a (3/2)-tensor with respect to each of them. In order
to prove that expression (38) depends on z(1) and
z(2) through the factor det[χ̃α(z(i))], it is necessary
to show, in addition, that there are no poles at the
points where det[χ̃α(z(i))] = 0 and z(1) �= z(2). This
seriously complicates a direct verification [with the
aid of (38)] of the z(1) and z(2) independence of (37).
From (7) and (35), one can see that relations (10)
do not hold for the super Beltrami differentials in [6].
In calculating B̃L,L′ directly from the integral with
respect to fields, it should be borne in mind that corre-
lation functions and zero modes have “correct” prop-
erties under the transformation z → gs(z; {qr}) in (3).
The quantities qr expressed in terms of the new mod-
uli q′r acquire additional terms that are proportional to
Grassmann moduli. Therefore, any given correlation
function K(z, z′; {q′r}) has the form K(z, z′; {q′r}) =
K0(z, z′; {q′r}) + λ1λ2δq

′
r∂q′rK0(z, z′; {q′r}). Here,

K0(z, z′; {q′r}) is an ordinary correlation function,
which changes in a correct way under the trans-
formation z → gs(z; {q′r}). In just the same way as
was done above, the derivatives in the expression
being discussed are calculated by the method pro-
posed in [11, 17]. The zero modes are calculated
analogously. Additionally, it should be recalled that,
now, the discontinuities of the super Beltrami differ-
entials depend on the Grassmann moduli. Finally, the
boundary of the fundamental domain in the z plane
now depends on the Grassmann moduli (since qr =
q′r + λ1λ2δq

′
r). In the integral with respect to the co-

ordinates of the vertices involved, surface terms there-
fore appear instead of the surface terms in the integral
over the moduli space—the latter are absent now.
Additionally, the local amplitude in (22) acquires the
factor det[χ̃α(z(i))]det[χ̃α(z′(i))]. The dependence on

z(1) and z(2) in expression (22) for 〈V 〉φ/det[χ̃α(z(i))]
disappears only upon integration with respect to the
coordinates (z(i)|ϑi) of the interaction vertices. All of
the properties being discussed manifest themselves
in one form or another in specifying a surface of
genus 2 as a hyperelliptic surface through branch
points. As in [6], expression (39) takes a simpler
form if z(1) and z(2) are chosen in such a way that
Rf (z(1), z(2);L) = 0, and, hence, δq′m = 0.

4. INTEGRATION OF SINGULARITIES

In the general case of n > 3, it is impossible to
choose moduli in such a way that the modular group
would be split. In this case, a local amplitude does
4
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not possess good modular properties on a Riemann
surface. Even upon summation over spin structures,
it has singularities in the region of degeneracy of
this Riemann surface, since, in general, there are
no reasons for the vanishing of the sum over the
spin structures of zero-, one-, two-, and three-point
functions of massless states. Indeed, the spacetime
supersymmetry prescribes the vanishing of only the
corresponding total amplitudes [22]. The aforesaid
refers to the supercovariant local amplitude (27) as
well. The same integral with respect to ordinary and
Grassmann variables can be finite or divergent, de-
pending on the choice of integration variables. This
can be illustrated by the following simple example:

I =
∫

dxdydαdβdᾱdβ̄

|z − αβ|p ?(1− |z|2). (40)

Here, z = x + iy, α and β are Grassmann variables,
p characterizes the strength of a singularity, and ? is
a step function [see (31)]. For the sake of simplicity,
we restrict the integration region by the condition
|z|2 ≤ 1. Integrals of this type do indeed appear in (2).
In particular, the integration measures in (22) and
in (27) involve singularities of the type in (40) at
p = 2 [11, 17]. Upon integration with respect to the
Grassmann variables, we arrive at the integral

I = p2

∫
dxdy

4|z|p+2
?(1− |z|2), (41)

which diverges at z = 0 if Rep > 0. On the other
hand, we can go over in (40) to the new variable
z̃ = z−αβ. In this case, the Grassmann variables are
present only in the step function ?(|z̃ + αβ|2). Upon
integration with respect to the Grassmann variables,
expression (40) therefore reduces to an integral along
the circle |z|2 = 1, and this integral is finite for any p.
Eventually, we have

I = −
∫

dx̃dỹdαdβdᾱdβ̄

|z̃|p αβᾱβ̄ (42)

×
[
δ(|z̃|2 − 1) + |z̃|2 dδ(|z̃|

2 − 1)
d|z̃|2

]
= −πp

2
.

Thus, the integral in (40) depends on the choice of
integration variables, at least if Rep > 0 (see [18] for
a more detailed discussion). It is common practice
to calculate an integral over the vicinity of a singular
point by using a cutoff that eliminates a small region
Vε → 0 containing the singular point. Specifically, the
integral in (41) is calculated with the cutoff ?(|z|2 −
ε), while that in (42) is calculated with the cutoff
?(|z̃|2 − ε). Of course, ε→ 0 in both cases. It is obvi-
ous from the aforesaid that, by choosing appropriate
variables in the vicinity of singular points, one can
remove divergences even in an integral for each spin
P

structure (L,L′). In fact, the calculation must rely on
the requirement that all local symmetries of the am-
plitude be retained. Such a procedure was proposed
in [18] within the supercovariant scheme in terms of
the Schottky variables. There, the divergences in the
Schottky multipliers are canceled locally in the sum
over appropriate spin structures in the same way as
in [7]. If only one handle is separated from the others,
the divergence disappears upon summation over the
spin structures of this handle, mainly because of the
vanishing of the zero-, one-, two-, and three-point
functions on a torus. Thus, singularities are present
only if the supermanifold of genus n > 1 degenerates
into the sum of supermanifolds of genera ni > 1, not
more than three interaction vertices being on each of
the above degenerate supermanifolds of lower gen-
era. Therefore, the divergences at the limiting points
{us, vs} of the generating Schottky transformations
are not canceled locally even in the sum over spin
structures. In this case, however, the integral con-
verges if one performs integration consecutively with
respect to the variables of each handle. By way of
example, we consider two degenerate handles. First,
we perform integration with respect to the limiting
points associated with handle 1 at fixed limiting points
(u2, v2). This integral with respect to spin struc-
tures of handle 1 converges owing primarily to the
aforementioned vanishing of zero-, one-, two-, and
three-point functions on the torus. For the analo-
gous reason, the result does not have a nonintegrable
singularity with respect to the variables of handle 2.
Therefore, the result of the preceding calculation can
be integrated with respect to the limiting points of
handle 2, this yielding a finite expression. In general,
the implementation of a similar procedure leads to a
finite result at each step. It can be shown that such
a calculation preserves all local symmetries of the
amplitude. Concurrently, the total vacuum amplitude,
the constant for the dilaton–vacuum transition, and
the total two- and three-point amplitudes of massless
boson states vanish. We are going to discuss the
details of the corresponding calculations in a forth-
coming publication. A similar procedure can also be
proposed within a scheme featuring the gravitino field.
In this case, however, the presence of the gravitino
field complicates the expressions for local amplitudes.
In view of this, it is impossible in general obtain
the above local amplitudes in a form that could be
appropriate for calculating the respective integrals.
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APPENDIX A

The product of the Green’s functions G̃b(z, z′)
and G̃f (z, z′) used in this study and the factor π are,

respectively, the Green’s functions −G
(b)
gh (z, z′) and

G
(f)
gh (z, z′) used in [17] {see formulas (33) in [17]},

while πχ̃m(z) and πχ̃α(z) are, respectively, χ̃
(0)
Rs

(z)

and χ̃
(0)
Fs

(z) in [17]. The function G̃b(z, z′) and the
correlation function G2(z′, z; {p}), where {p} ≡
{pm}, are related by the equations

G̃b(z, z′) = G2(z′, z; {p}) (A.1)

−
∫
s

G2(z̃, z; {p})
dz̃

2i
P s

m(z̃)χ̃m(z′),

G2(z′, z; {p}) = G̃b(z, z′)− G̃b(z, pj)χ
(j)
2 (z′; {p}),

χ
(j)
2 (z; {p}) =

∫
s

χ
(j)
2 (z̃; {p})dz̃

2i
P s

m(z̃)

× χ̃m(z) ≡ Ã−1
jmχ̃m(z),

Ã−1
jmÃml = δjl, Ãjm = χ̃m(pj),

G2(p, z; {p}) = 0, (z′ − pj)G(z, z′; {p}) (A.2)

→ χ
(j)
2 (z; {p}) for z′ → pj ∈ {p};

χ
(j)
2 (pl; {p}) = δjl, pl ∈ {p};

P s
m(z) ≡ ∂qmgs(z; {qn})/∂zgs(z; {qn}).

Upon the transformation z → gs(z; {qn}), the func-
tion G̃b(z, z′) acquires the additional term
[∂qmgs(z; {qn})]χ̃m(z′) [17]. In order to obtain the
first equality in (A.1), the function G̃(z, z′) is written
as an integral of −G2(z̃, z; {p})G̃(z̃, z′) along the
contour around z̃ = z. By deforming the contour,
the integral is reduced to the sum of integrals along
noncontractible cycles. Upon the round about the
cycle s, the function G̃b(z, z′) develops a discontinuity
because gs(z; {qn}) lies off the fundamental region
in the z plane if the point z lies within this region.
The relation between the corresponding zero modes
ensures the absence of poles in G̃(z, z′) at the points
z = p ∈ {p}. In the above way, one can obtain the
relations

G3/2(z
′, z; {p′α}) = G̃f (z, z′)− G̃f (z, p′β)χβ(z′),

(A.3)

χβ(z′) = Â−1
ββ′χ̃β′(z′),

Â−1
ββ′Âβ′α = δβα, Âαβ = χ̃α(p′β).
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The corresponding inverse relations are omitted for
the sake of brevity. We present the useful relation [17]∫

s

dz

2i
χ̃m(z)P s

n(z) = δmn,

where δmn is a Kronecker delta. In this case, each in-
tegral is calculated along a contour surrounding one
of the two Schottky circles for handle s. This circle is
chosen in such a way that the boundary of the second
circle is obtained upon applying the transformation
z → gs(z; {qn}) to the boundary of the first circle.

APPENDIX B

According to formulas (A.4), (33), and (34), it
follows from Eqs. (23) that

∂

∂qm
lnΞ′

L({qm}; {pn}; {z(i)}) (A.5)

=
∫
s

dz

2i
P s

m(z)
[
〈T (z)〉 − ∂

∂qn
χ̃n(z)

−W (z)
]
+Ã−1

jn

∂

∂qm
χ̃n(pj),

where 〈T (z)〉 is that contribution to 〈T (t)〉 which is
proportional to ϑ; the matrix Ãjm is given in (A.1);

and W (z) is the contribution of ∂qαχ̂
(φ+)
α (t) at λi = 0,

W (z) =
3
2

∑
i

[
∂z(i)G̃b(z(i), z) (A.6)

+
∂

∂z
χαi(z)

∣∣∣∣
z=z(i)

G̃b(z(i), z)
]
.

The zero (3/2) modes χαi(z) in (A.6) are normalized
by the condition χαi(z(k)) = δik. The last term in
(A.5) is nothing but ∂qm[ln det χ̃r(ps)]. The quan-
tity ∂qmχ̃n(z) can be represented as the integral∫

∂qmχ̃n(z′)G̃(z′, z)dz′/2i with respect to z′ along
the contour going around the point z. The contour is
deformed in such a way that it surrounds the Schottky
circles. As a result, ∂qmχ̃n(z) is expressed in terms
of the sum of integrals of the discontinuities of the
function ∂qmχ̃n(z′)G̃(z′, z); that is,

∂χ̃n(z)
∂qm

=
∫
s

dz′

2i

[
P s

m(z′) (A.7)

×
(

∂χ̃n(z′)
∂z′

G̃(z′, z) + 2χ̃n(z′)
∂G̃(z′, z)

∂z′

)

+ P s
m(z′)

(
∂χ̃n(z′)

∂z′
P s

r (z′)χ̃r(z)
4
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+ 2χ̃n(z′)
∂P s

r (z′)
∂z′

χ̃r(z)
)

+
∂χ̃n(z′)
∂qm

P s
r (z′)χ̃r(z)

]
,

where the integration contours are defined in the same
way as in (A.4). In (A.7), we consider that, upon
the transformation in (3), the function G̃b(z, z′) ac-
quires [17] the additional term [∂qmgs(z; {qn})]χ̃m(z′),
while χ̃n(z) is a 2-tensor. Therefore, we have

∂χ̃n(z′)
∂qm

∣∣∣∣
z′=gs(z)

[
∂gs(z)
∂z

]2

−∂χ̃n(z)
∂qm

(A.8)

= −2χ̃n(z)
∂P s

m(z)
∂z

− P s
m(z)

∂χ̃n(z)
∂z

,

where gs(z) ≡ gs(z; {qn}) and P s
m(z) is given

by (A.2). Upon calculating the difference
P s

r (z′)∂qmχ̃n(z′)− P s
m(z′)∂qr χ̃n(z′) on the basis

of (A.2), we see that, after the substitution of formula
(A.7) into the last term on the right-hand side of
(A.5), the contribution of the last two terms on the
right-hand side of (A.7) is canceled by the second
term in the integral in (A.5). We then obtain

∂

∂qm
lnΞ′

L({qm}; {pn}; {z(i)}) (A.9)

=
∫
s

dz

2i
P s

m(z)

[
〈T (z)〉 −W (z)

+ Ã−1
jn

(
∂χ̃n(z)

∂z
G̃(z, pj) + 2χ̃n(z)

∂G̃(z, pj)
∂z

)]
.

By employing the correlation function in (26) to cal-
culate T , one can verify that, under the transforma-
tions z → gs(z; {qm}), the bracketed expression on
the right-hand side of (A.9) is a 2-tensor. Therefore,
formula (A.9) is equivalent to the formula

χ̃m(w)
∂

∂qm
ln Ξ′

L({qm}; {pn}; {z(i)}) (A.10)

=
∮
s

dz

2i

[
〈T (z)〉 −W (z) + Ã−1

jn

(
∂χ̃n(z)

∂z
G̃(z, pj)

+ 2χ̃n(z)
∂G̃(z, pj)

∂z

)]
G̃(z,w),

where each integration contour goes, in a positive
direction, around both Schottky circles for a given
handle and w �= pj is an arbitrary point on the z plane.
The integral in (A.10) is determined by the sum of the
residues of the Green’s function at the poles z = w
and z = pj ; that is,

−χ̃m(w)
∂

∂qm
ln Ξ′

L({qm}; {pn}; {z(i)}) (A.11)
PH
= 〈T (w)〉v + W (w)

− Ã−1
jn

(
∂χ̃n(z)

∂z
G̃(z,w) + 2χ̃n(z)

∂G̃(z,w)
∂z

)
z=pj

,

where 〈T (z)〉v is the vacuum expectation value of the
energy–momentum tensor according to the calcu-
lation in [2] with the correlation function G2(z′, z).
Furthermore, Ξ′

L({qm}; {pn}; {z(i)}) is represented
by an integral with respect to matter fields and ghosts.
In this integral, the correlation function for a scalar
field is identified with the sum of holomorphic and
antiholomorphic Green’s functions (having disconti-
nuities) for the scalar Laplacian, while the Beltrami
and super Beltrami differentials associated with 2
and (3/2) zero modes have the form δ(z − pi) and
δ(z − z(i)). In order to calculate the derivative of the
integral in question with respect to qn, we consider
the expression for the integral corresponding to the
moduli qn + δqn, where δqn → 0. In this integral, we
make a change of variable z → z + δz(z), choosing
δz in such a way that qn + δqn → qn. The required
quantity δz is calculated from the condition gs(z) +
δqn∂qngs(z) + δz(z)∂zgs(z) = gs(z) + δz(gs(z)), the
result being δz = −G̃(z,wj)ã−1

jn δqn, where ãnj =
χn(wj). Upon the above substitution, the two-
dimensional metric develops the transverse compo-
nent ∂z̄δz(z) = −δ2(z − pj)ã−1

jn δqn. A variation of
the integral in question in response to a variation of
the moduli reduces to the emergence of the trans-
verse components of the metric and an additional
term caused by the change in the contribution of
the Beltrami and super Beltrami differentials. All
terms on the right-hand side of (A.11), with the
exception of the first one, are due to the change in
the contribution to the integral from the Beltrami and
super Beltrami differentials. The first term is nothing
but the derivative taken with respect to the metric
and considered in [2]. It follows that Eq. (A.11) and,
hence, Eq. (A.5) are equivalent to the equations for
the chiral determinants in [2].
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Abstract—An intensive cosmological production of vector W and Z bosons is considered within a
cosmological model that involves a relative scale of measurement. Field-theory models are studied in which
cosmic microwave background radiation and baryon matter may appear as products of the decay of such
primordial bosons. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Is modern theory able to explain the origin of
observed matter in the Universe by its cosmological
production from a vacuum [1–11]? As is well known,
the answer to this question is associated with the
problem of particle creation in the vicinity of a cos-
mological singularity. Thus far, it has been common
practice to assume that the number of product pairs
is by far insufficient for explaining the total amount of
observed matter [7].

We recall that the cosmological creation of mas-
sive particles is calculated by going over to conformal
variables [7], for which the limit of zero scale factor
(point of a cosmic singularity) means the vanishing
of masses. Vector bosons are the only particles of
the Standard Model that have a singularity at zero
mass [12, 13]. In this limit, the normalization of the
wave function for massive vector bosons is singular in
mass [12, 13]. The absence of themassless limit in the
theory of massive vector bosons is well known [14]. In
calculations in the lowest order of perturbation theory,
this leads to a divergence of the number of product
longitudinal bosons [7, 11].

There exist two opinions concerning the removal
of this singularity. In [7, 15], the divergence of the
number of particles is removed by means of a stan-
dard renormalization of the gravitational constant.
However, it is also indicated in the monograph of
Grib et al. [7] that the number of product particles
is determined by the imaginary part of loop Feynman
diagrams; since, in quantum field theory, it is the real
parts of these diagrams that are subjected to renor-
malizarion, this means that the above divergence of
the number of particles does not belong to the class
of divergences in quantum field theory that are re-
moved by means of a conventional renormalization of

*e-mail: proskur@thsun1.jinr.ru
1063-7788/04/6705-1050$26.00 c©
physical quantities. Indeed, the physical origin of this
divergence is that the problem of a cosmological cre-
ation of particles from a vacuum is treated within an
idealized formulation. The point is that the quantum
production of particles in a finite volume for a system
featuring interaction and exchange effects may lead
to a set of Bose particles having a specific statistical
distribution with respect to energy such that it is able
to ensure the convergence of the respective integral of
the momentum distribution.

In the present study, we analyze physical condi-
tions and models for which the number of product
vector bosons may be quite sufficient for explaining
the origin of matter in the Universe. Such cosmolog-
ical models include conformal cosmology [16], where
conformal quantities of the general theory of relativity
and of the Standard Model are defined as observ-
ables [17] for which there are relative reference units
of intervals.

The ensuing exposition is organized as follows.
Section 2 is devoted to discussing various versions of
the formulation of the Cauchy problem for the cosmo-
logical production of vector particles in field theory.
In Section 3, we study possible implications of such
a production in the context of validating the tem-
perature of cosmic microwave background radiation
within the Standard Model, the baryon–antibaryon
asymmetry of the Universe [18, 19], and a small con-
tribution of visible baryon matter [20] to the evolution
of the Universe. In the Conclusion, we discuss the
results obtained by calculating the composition of
matter in the Universe within the Standard Model.

2. PROBLEM OF COSMOLOGICAL
PARTICLE CREATION

2.1. Theory
Let us consider cosmological particle creation in

the conformally invariant version of the general theory
2004 MAIK “Nauka/Interperiodica”
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of relativity [9, 21–24]. We have

Stot[w|F ] = SD[w|e,Q] + SSM[yhw|f, e], (1)

where, for the action of the general theory of relativ-
ity, we take the Penrose–Chernikov–Tagirova action
functional for a scalar field (dilaton) w,

SD[w|e,Q] =
∫
d4x (2)

×
[
|e|w2

(
∂µQ∂

µQ− R(e)
6

)
+ w∂µ (|e|∂µ)w

]
,

in the space specified by the interval

ds2 =
(
eλµdx

µ
)2 =

(
e0µdx

µ
)2 − (eiµdxµ)2 . (3)

Here, eλµ is the Fock vierbein, R(e) is the curvature,
andQ is an additional field that does not interact with
matter [11] and which yields the observed regime of
cosmological evolution. In the StandardModel action
functional featuring the set of fields f , the Higgs
massMHiggs is replaced by the dilaton multiplied by a
constant yh ∼ 10−17, (yhw). The theory specified by
the action functional (1) is invariant under conformal
transformations, including scale transformations for
the set of all fields [w|F ] with the transformation
parameter Ω,

(n)FΩ =(n)F × (Ω)n, wΩ = w/Ω, (4)

where (n) is a conformal weight. This invariance in-
dicates that the action functional (1) involves an extra
degree of freedom.

2.2. Absolute Variables
It is common practice to assume [24] that the

action of the general theory of relativity and the Stan-
dard Model arises from the action functional (1) as a
consequence of choosing the “absolute” variables as

(n)F(a) = (n)F × (w/ϕ0)n, w(a)(x
0, xi) = ϕ0, (5)

with the result that the dilaton w(x0, xi) is replaced
by the parameter ϕ0 that is related to the Planck
mass by the equation ϕ0 = MPl

√
3/(8π) and which

did not appear in the original action functional (1).
Upon the spontaneous scale-invariance breaking as-
sociated with this, the symmetry of the action func-
tional (1) under the transformations in (4) becomes
the symmetry of the physical variables in (5), which
are invariant under the same scale transformations
in (4). Owing to the above spontaneous breakdown of
scale invariance, the extra degree of freedom charac-
terized by a negative probability is removed from the
action functional in (1), but, instead, the dimensional
“absolute” Planck mass parameter MPl appears in
the equations of motion. This parameter specifies ini-
tial data concerning the emergence of the Universe in
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
the so-called Planck era. In the theory involving such
a spontaneous breakdown of symmetry, the homoge-
neous approximation of the metric,

e(a)0µdx
µ = dt, e(a)iµdx

µ = a(t)dxi, (6)

for the variables in (5) leads to standard cosmological
models, including the inflationary model [25], where
the initial data of the Planck era are considered as
fundamental quantities of the equations of motion.

Within this approach, there arise problems of
cosmological initial data, the horizon, time and en-
ergy, homogeneity, singularity, and the quantumwave
function for the Universe, and attempts are made to
solve these problems at the level of the homogeneous
approximation via the inflationary expansion of abso-
lute space [25].

In [22, 23], some arguments are adduced that indi-
cate that, in all probability, all these problems, includ-
ing the emergence of the Planck era, stem from an
incorrect formulation of a spontaneous breakdown of
the symmetry of (5) in eliminating degrees of freedom
of negative probability from the theory specified by the
action functional in (1).

We recall that, within a gauge theory, a formu-
lation where all degrees of freedom that are charac-
terized by a negative probability are removed prior
to quantizing the theory being considered is referred
to as a “fundamental method” [26–28], in contrast
to a “heuristic method” [29], where all degrees of
freedom are treated on equal footing. In [23], it was
shown that, within relativistic string theory, these two
methods lead to different spectra.1)

Experience gained in applying the fundamental-
quantization method [26, 27] to string models [23, 31]
and to non-Abelian theories [28] shows that, upon a
spontaneous breakdown of the gauge symmetry of the
theory being considered, there arise Goldstone modes
that are associated with this symmetry breaking and
which cannot be removed by any gauge transfor-
mations without significantly changing the physical
content of the theory, including the spectrum of its
elementary and collective excitations.2)

1)The heuristic formulation of a conformally invariant the-
ory [30] leads to conformal anomalies and the Virasoro al-
gebra, tachyons (particles for which the masses squared are
negative) appearing in the theory; at the same time, there
arises the Born–Infeld model featuring a positive energy
spectrum free from tachyons if extra degrees of freedom that
are characterized by a negative probability are eliminated at
the level of the classical theory [31].

2)In the non-Abelian theory of strong interactions, the anal-
ogous Goldstone mode leads to an extra contribution to
the η0-meson mass, while averaging over the topological
degeneracy of initial data may lead to zero probabilities of the
production of color states of quarks and gluons [28].
4
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In [9, 16, 21], a spontaneous breakdown of the
scale invariance of the theory being considered is
formulated in terms of conformal variables, the Gold-
stone mode corresponding to this symmetry breaking
being taken into account.

2.3. Conformal Variables

The choice of “relative” (r) variables,
(n)F(r) =(n) F × (w/ϕ(x0))n, (7)

w(r)(x
0, xi) = ϕ(x0),

leaves the dilaton zero mode as a homogeneous
variable ϕ(x0) with a constant volume of three-
dimensional hyperspace, V(r) =

∫
d3x|ē(r)| ≡ const,

[11, 21] in the reference frame specified by the
embedding of a three-dimensional hyperspace into
the four-dimensional manifold spanned by e00 = N ,
eij = ēij , and ei0 = Ni, where N and Ni are referred
to as, respectively, the lapse function and the shift
vector [32]. In this reference frame, an variableϕ plays
the role of a cosmic scale factor and an evolution
parameter in the world space of the field variables
[ϕ|F ], while the canonical momentum defined as
the derivative of the Lagrangian Ltot for the action
functional (1) with respect to the time derivative of
the dilaton field (∂0ϕ),

Pϕ =
∂Ltot[ϕ|e(r)]
∂(∂0ϕ)

(8)

= −2∂0ϕ

∫
d3x
|ē(r)|
N
≡ −2V(r)

dϕ

dη
,

is the localized energy of the Universe [23]; here,
dη = N0(x0)dx0 is the invariant integral for the aver-
aged lapse functionN−1

0 (x0) =
∫
d3x|ē(r)|N−1/V(r),

while the bar over e(r) is, as we have seen above,
denotes the spatial components of the vierbein for the
constant volume V(r) =

∫
d3x|ē(r)|.

In terms of the conformal variables in (7), the
problems of the theory that are solved in terms of
the absolute variables in (5) with the aid of inflation
are solved within the exact theory by means of the
zero mode of the dilaton as the evolution parame-
ter. In particular, the evolution of ϕ with respect to
the time interval explains the problem of the horizon
as a consequence of simultaneously varying particle
masses and parameters of the system of fields over
the entire space. The averaging of the exact equation
δStot/δN = 0 of the theory for the lapse function N
in terms of the variables in (7) over a specific spatial
volume housing measured objects yields the equation
of the evolution of the Universe,

ϕ′2 = ρ, (9)
P

where ρ =
∫
d3x|e|[T 0

0 − ϕ2(R0
0 −R/2)], T 0

0 and R0
0

being the components of, respectively, the Einstein
energy–momentum and the Ricci tensor.

We note that, in the exact theory specified by
the action functional in (1), Eq. (9) is the analog of
the Friedmann equation, which was derived in the
approximation of homogeneity in the general theory
of relativity. Thus, the approximation of a homoge-
neous universe coincides with the result obtained by
averaging the exact equation δStot/δN = 0 over the
volume. Solving Eq. (9), we arrive at an analog of the
Friedmann relation between the conformal time and
density, η(ϕ0, ϕI) = ±

∫ ϕ0

ϕI
dϕ/
√
ρ.

Within the Hamiltonian formalism, where the
time derivatives of the fields are replaced by the
corresponding canonical momenta Pϕ = −2V(r)ϕ

′,
Eq. (9), which describes the evolution of the Uni-
verse, has the meaning of a Hamiltonian constraint,
P 2
ϕ/(4V(r)) = V(r)ρ. The Hamiltonian V(r)ρ as a

generator of the conformal time evolution of fields
can be represented as the sum of the Hamiltonian for
a uniform scalar field, V(r)ρQ, and the Hamiltonian
for local field variables,Hfield: V(r)ρ = V(r)ρQ +Hfield,
where ρQ is the density of the uniform scalar field.

In terms of the conformal variables in (7), the
Planckmass as the “absolute” parameter of the equa-
tions of motion becomes a “random” current value of
the field evolution parameter ϕ(x0). In terms of the
variables in (7), both the hypothesis of the Planck
era and the problem of describing evolution from the
Planck era (10−43 s) on the basis of the inflationary
model of the Universe lose physical meaning.3)

Within the conformal variables (7), there arises the
problem of studying the quantum creation and evolu-
tion of a relativistic universe in the limit of infinitely
low masses (ϕ(η)→ 0) and indefinitely high values
of the Hubble parameter (H(η)→∞). The variables
in (5) and those in (7) provide two different cosmolo-
gies and two different formulations of the problem of
studying the origin of the Universe and matter.

2.4. Conformal Cosmology
In the approximation of homogeneity, the con-

formal variables in (7) correspond to directly mea-
sured quantities of observational cosmology. We re-
call that, in describing the cosmic evolution of the

3)The variables in (5) arise from (7) upon the substitution
(n)F(r) = (n)F(a)(ϕ/ϕ0)

−n. This transformation converts
the variable ϕ with initial cosmological data ϕ(η = 0) = ϕI
and H(η = 0) = HI into its current value ϕ(η = η0) = ϕ0,
with the result that one of the ordinary (random) values of the
variable ϕ becomes, for the equations of motion, the absolute
parameterϕ0 =

√
3/(8π)MPl, which is related to the Planck

mass.
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energy of photons emitted by atoms in a cosmic ob-
ject, use is made of the conformal interval (dxi)2 =
dt2/a2(t) = dη2 of photons propagating along the
light cone ds2 = 0 toward an observer. The redshift of
spectral lines, which is a directly measurable quantity
in observational cosmology, depends on the confor-
mal time η = η0 − r at the instant of photon emission
by atoms of cosmic objects that occur at the “coordi-
nate distance” r =

√
(xi)2 from the Earth. In terms

of the conformal coordinates, we find that the volume
of the Universe does not increase, while all masses,
including the Planck mass, are scaled by the cosmic
factor a(η):

m(r)(η) = m0a(η), (10)

[MPl

√
3/(8π)]a(η) = ϕ0a(η) = ϕ(η).

In terms of the conformal time, which is associated
with the observed time, the square-root regime of
the evolution of the Universe in the era of primordial
nucleosynthesis,

a(t) = ã(η) =
√

1 + 2H0(η − η0) (11)

= 1− rH0 +O(r2),

means that, in the era of chemical evolution, the
Universe was filled with a free uniform scalar field
[see Eq. (15) below] rather than with radiation. The
evolution according to Eq. (11) is prescribed by a rigid
equation of state such that pressure coincides with
the energy density.

In [16], it was shown that, in terms of the confor-
mal variables, data on the dependence of the redshift
on the distance to supernovae [17] and data on nucle-
osynthesis correspond to the same rigid equation of
state associated with Eq. (11).

The identification of the conformal variables in (7)
with observable quantities leads to a different picture
of the evolution of the Universe [11, 16, 21] in relation
to the analogous identification of the variables in (5),
as is done in conventional cosmology. The tempera-
ture history of a hot universe as rewritten in terms of
the conformal variables in (7) appears as the evolu-
tion of elementary-particle masses in a cold universe
with a constant temperature of cosmic microwave
background radiation. That the cosmic-microwave-
background-radiation temperature TCMBR is inde-
pendent of the redshift z is, at first glance, in glar-
ing contradiction with the observation [33] that 6 <
TCMBR(z = 2.3371) < 14 K. In this observation, the
temperature was deduced from the relative popula-
tion of various energy levels (their energies being
denoted byEi), which follows fromBoltzmann statis-
tics. However, the argument of the Boltzmann fac-
tors, which is equal to the ratio of the temperature
to the mass, features the same dependence on the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
factor z in a cold universe as well [16]. Therefore, this
ratio can be interpreted as the z dependence of en-
ergy levels (that is, mass) at a constant temperature.
The abundances of chemical elements are determined
primarily by Boltzmann factors as well, which are
dependent on functions of the mass-to-temperature
ratio, which are invariant under conformal transfor-
mations [34].

2.5. Initial Data of Quantum Cosmology

As a rule, quantum cosmology is defined as the
homogeneous approximation of the metric,

ds2
(r) = [(dη)2 − (dxi)2], dη = N0(x0)dx0, (12)

with the shift function N0(x0) inheriting the symme-
try group of the general theory of relativity in the form
of invariance under reparametrizations of the coordi-
nate time, x0 → x̃0 = x̃0(x0). Cosmological models
featuring this symmetry group, which were first de-
scribed at a mathematically rigorous level by DeWitt,
Wheeler, and Misner [35, 36] in the late 1960s, do not
differ in any respect from the relativistic mechanics of
a particle in the special theory of relativity. There is a
direct correspondence between the Minkowski space
of variables in the special theory of relativity and the
space of field variables in the theory being considered,
where the dilaton field ϕ plays the role of the timelike
variable of Minkowski space.

In the particular case where the uniform scalar field
Q(η) is dominant, we arrive at a simple cosmological
model of the Universe [11]; that is,

Suniv = V(r)

∫
dx0

N0

[
−
(
dϕ

dx0

)2

+ ϕ2

(
dQ

dx0

)2
]

(13)

=
∫

dx0

{
− Pϕ

dϕ

dx0
+ PQ

dQ

dx0

+N0V(r)[(Pϕ/(2V(r)))
2 − (PQ/(2ϕV(r)))

2]
}
,

where PQ = 2V(r)ϕ
2Q′ and Pϕ = 2V(r)ϕ

′ are canon-
ical momenta. A variation of the action functional
with respect to the shift function N(x0) leads to a
constraint equation for these two momenta,

P 2
ϕ − P 2

Q/ϕ
2 = 0 ⇒ Pϕ = ±PQ/ϕ, (14)

its solution being

PQ = 2V(r)HIϕ
2
I = const, ϕ2 = ϕ2

I(1 + 2HIη),
(15)

where ϕ2
IHI = PQ/2V(r) is an integral of the motion.

As was shown in [16], the resulting evolution law (15)
4
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for the scale factor is compatible with the evolution of
supernovae in terms of conformal variables [17].

Upon the quantization of the theory specified by
the action functional in (13), the Wheeler–DeWitt
equation for the wave function Ψ,[

P̂ 2
ϕ − P̂ 2

Q/ϕ
2
]
Ψ = 0,

arises as the direct analogy of the Klein–Gordon
equation in the quantum general theory of relativity.
Like that solution to the Klein–Gordon equation for
a relativistic particle which describes the creation and
annihilation of positive-energy particles, the solution

Ψ = A+
Pϕ≥0Ψ

+[PQ|ϕ]e{iPQ(Q−QI)}θ(ϕ− ϕI)

+A−
Pϕ≤0Ψ

−[PQ|ϕ]e{−iPQ(Q−QI)}θ(−ϕ)

to the Wheeler–DeWitt equation depends on the ini-
tial data QI and ϕI . In order to get rid of negative
energies and to create a stable quantum system, a
causal quantization is postulated in quantum field
theory in such a way that positive-energy excitations
move in the forward direction along the time axis,
while negative-energy excitations move in the back-
ward direction with respect to time. The analogous
interpretation where the coefficient A+ is treated as
the creation operator for the Universe and where the
coefficient A− is treated as the annihilation operator
for the anti-Universe solves the problem of a cosmic
singularity of the Universe at positive energy, since,
for positive energies, the wave function does not in-
volve the singularity point ϕ = 0; this singularity ap-
pears in the negative-energy wave function, which
is treated as the amplitude of the probability for the
annihilation of the anti-Universe.

The quantum general theory of relativity loses the
geometric interval of time and information about how
the metric depends on the time interval—in particu-
lar, it loses the Hubble law describing the dependence
of the scale on the time interval [see Eqs. (15)]. In [22],
it was proposed to make a canonical transformation
(known as the Levi-Civita transformation) from the
original variables to a new world space of variables.
In terms of these variables, the cosmic scale (dilaton)
becomes a geometric interval of time with cosmic ini-
tial data ϕ(η = 0) = ϕI and H(η = 0) = HI in (15),
which are random values of variables fitted to experi-
mental data.

In this case, the conformal variables in (7) natu-
rally lead to the concept of particles [9], which has
been used and is being presently used in almost all
of the studies devoted to the cosmological creation of
particles [7].
P

2.6. Definition of a Particle in Quantum Field Theory

In quantum field theory, the concept of a parti-
cle can be associated only with those field variables
that are characterized by a positive probability and
a positive energy. Negative energies are removed by
causal quantization, according to which the creation
operator at a negative energy is replaced by the anni-
hilation operator at the respective positive energy. All
of the variables that are characterized by a negative
probability can be removed according to the scheme
of fundamental operator quantization [26]. The re-
sults obtained by applying the operator-quantization
procedure to massive vector fields in the case of the
conformally flat metric (12) are given in [9, 11, 13].

In order to determine the evolution law for all fields
v, it is convenient to use the Hamiltonian form of the
action functional for their Fourier components vIk =∫
d3xeik·xvI(x); that is,

Stot =

x0
2∫

x0
1

dx0

{∑
k

[
p⊥
k ∂0v⊥

k + p||
k∂0v

||
k

]
(16)

− Pa∂0a+N0

[
P 2
a

4V(r)ϕ
2
0

− V(r)ρtot

]}
,

where p⊥
k and p||

k are the canonical momenta for,
respectively, the transverse and the longitudinal com-
ponent of vector bosons and ρtot is the sum of the
conformal densities of the scalar field obeying the rigid
equation of state and the vector field,

ρtot(a) =
ϕ2

0H
2
0

a2
+ ρv(a), (17)

ρv(a) = V −1
(r) (H⊥ +H ||), (18)

H⊥ andH || being the Hamiltonians for a free field,4)

H⊥ =
∑
k

1
2

[
p⊥
k

2 + ω2v⊥
k

2
]
, (19)

H || =
∑
k

1
2

[(
ω(a, k)
Mva

)2

p||
k
2 + (Mva)2v

||
k
2

]
.

Here, the dispersion relation has the form ω(a, k) =√
k2 + (Mva)2; for the sake of brevity, we have also

introduced the notation p||
k
2 ≡ p||

k · p
||
−k.

4)In quantum field theory, observables that are constructed
from the above field variables form the Poincaré algebra [13,
26, 28]. Therefore, such a formulation, which depends on the
reference frame used, does not contradict the general theory
of irreducible and unitary transformations of the relativistic
group [37].
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Within the reparametrization-invariant models
specified by action functionals of the type in (16)
with the Hamiltonians in (19), the concepts of an ob-
servable particle and of cosmological particle creation
were defined in [9]. We will illustrate these definitions
by considering the example of an oscillator with a
variable energy. Specifically, we take its Lagrangian
in the form

L = pv∂0v−N0
1
2
[p2

v + ω2v2 − ω] + ρ0(N0 − 1).

(20)

The quantity Hv = [p2
v + ω2v2]/2 has the meaning

of a conformal Hamiltonian as a generator of the
evolution of the fields v and pv with respect to the
conformal-time interval dη = N0dx

0, where the shift
function N0 plays the role of a Lagrange multiplier.
The equation forN0 introduces the density ρ0 = Hv−
ω/2 in accordance with its definition adopted in the
general theory of relativity. In quantum field the-
ory [3, 9], the diagonalization of precisely the confor-
mal Hamiltonian

Hv =
1
2
[p2

v + ω2v2] = ω

[
N̂part +

1
2

]
(21)

specifies both the single-particle energy ω =√
k2 + (Mva(η))2 and the particle-number operator

N̂part =
1
2ω

[p2
v + ω2v2]− 1

2
(22)

with the aid of the transition to the symmetric vari-
ables p and q defined as

pv =
√
ωp = i

√
ω

2
(a+ − a), (23)

v =

√
1
ω
q =

√
1
2ω

(a+ + a).

In terms of the symmetric variables p and q, the
particle-number operator takes the form

N̂part =
1
2
[p2 + q2]− 1

2
= a+a. (24)

Upon going over to these variables in the Lagrangian
in (20), we arrive at

L = p∂0q − pq∂0∆⊥ −N0ω[N̂part + 1/2], (25)

where ∂0∆⊥ = ∂0ω/(2ω) and where there appears
sources of cosmic particle creation in the form pq =
i[(a+)2 − a2]/2. Here, we give a derivation of these
sources for transverse fields, whereas, for longitudinal
fields [see Eq. (19)], the analogous diagonalization of
the Hamiltonian leads to the factor ∂0∆|| = ∂0ϕ/ϕ −
∂0ω/(2ω).
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In order to diagonalize the equations of motion in
terms of the above new variables, it is necessary to
apply, to the phase space, the rotation transformation

p = pθ cos θ + qθ sin θ, q = qθ cos θ − pθ sin θ
(26)

and the squeezing transformation

pθ = πe−r, qθ = ξe+r. (27)

As a result, the Lagrangian in (25) assumes the form

L = π∂0ξ + πξ[∂0r − ∂0∆ cos(2θ)] (28)

+
π2

2
e−2r[∂0θ −N0ω − ∂0∆ sin(2θ)]

+
ξ2

2
e2r[∂0θ −N0ω + ∂0∆ sin(2θ)].

The equations of motion that are obtained from this
Lagrangian,

ξ′ + ξ[r′ −∆′ cos 2θ] (29)

+ πe−2r[∂0θ −N0ω − ∂0∆ sin(2θ)] = 0,

π′ − π[r′ −∆′ cos(2θ)] (30)

− ξ · 2e2r[∂0θ −N0ω + ∂0∆ sin(2θ)] = 0,

take a diagonal form,

ξ′ + ωbπ = 0, −π′ + ωbξ = 0, (31)

if ωb = e−2r[ω − θ′ −∆′ sin(2θ)] and if the rotation
parameter θ and the squeezing parameter r satisfy the
equations5)

[θ′ − ω] sinh(2r) = −∆′ sin(2θ) cosh(2r), (32)

r′ = ∆′ cos(2θ).

By solving these equations, we can find, according
to (24), the time dependence of the number of par-
ticles produced in cosmic evolution. The result is

N̂part =
cosh(2r)− 1

2
+ cosh(2r)N̂q-part (33)

+ sinh(2r)
π2 − ξ2

2
,

where N̂q-part = [π2 + ξ2 − 1]/2 = b+b is the number
of quasiparticles defined as variables that diagonalize

5)For transverse and longitudinal bosons, these equations co-
incide with the equations derived in [7] for the coefficients of
the Bogolyubov transformation b = αa+ βa+, α′ − iωα =
∆′β, by using the Wentzel–Kramers–Brillouin method {see
Eqs. (9.68) and (9.69) in [7] on page 185 in the Russian
edition of this monograph}, where it is necessary to make
the change of variables specified by the equations ∆′ =

ω(1)/2, α∗ = exp[iθ − i
∫
dηω]coshr, and β = exp[−iθ +

i
∫
dηω]sinhr.
4
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the equation of motion. Since the equation of mo-
tion is diagonal, the number of quasiparticles is an
integral of the motion—that is, a quantum number
that characterizes the quantum state of the Universe.
These states include the physical vacuum |0〉sq of
quasiparticles (that is, the squeezed vacuum, which is
labeled with the subscript “sq” in order to distinguish
it from the vacuum of ordinary particles),

bς |0〉sq = 0
(
b =

1√
2
[ξ + iπ]

)
. (34)

In the squeezed-vacuum state, the number of quasi-
particles is equal to zero:

sq〈0|N̂q-part|0〉sq = 0. (35)

In this case, the expectation value of the particle-
number operator (33) in the squeezed-vacuum state
is

sq〈0|N̂part|0〉sq =
cosh(2r(η)) − 1

2
= sinh2r(η).

(36)

The time dependence of this quantity is found by
solving the Bogolyubov equation (32). The origin of
the Universe is defined as the conformal-time in-
stant η = 0, at which the number of particles and
the number of quasiparticles are both equal to zero.
The resulting set of Eqs. (32) becomes closed upon
specifying the equation of state and initial data for
the number of particles. In just the same way, the
number of particles characterized by an arbitrary set
of quantum numbers ς,

Nς(η) = sq〈0|N̂ς |0〉sq = sinh2rς(η), (37)

and produced from the squeezed vacuum by the time
instant η can be determined by solving an equation of
the type in (32).

Thus, it is the conformal quantities of the theory,
such as the energy ωk =

√
k2 +M2

v a
2, the number

N̂part of particles, and the conformal density

ρv =
∑
k

sq〈0|N̂k part|0〉sqωk/V(r),

that are associated with observables, in just the same
way as the conformal time in observational cosmology
is associated with the observed time [16].

3. PHYSICAL IMPLICATIONS

3.1. Calculation of the Distribution Function

Let us consider the example where the above set
of equations is solved for the evolution law (11) in the
case of the rigid equation of state,

a(η) = aI
√

1 + 2HIη (a2
IHI = H0),
PH
where aI = a(0) andHI are initial data at the matter-
production instant. We introduce the dimensionless
variables of time and momentum (τ and x, respec-
tively) and the coefficient γv according to the formulas

τ = 2ηHI =
η

ηI
, x =

q

MI
, γv =

MI

HI
, (38)

where MI = Mv(η = 0) are initial data for the mass.
In terms of these variables, the single-particle energy
has the form ωv = HIγv

√
(1 + τ) + x2.

The Bogolyubov equations (32) can then be repre-
sented as[

γv
2

√
(1 + τ) + x2 − dθ

||
v

dτ

]
tanh(2r||v ) (39)

= −
[

1
2(1 + τ)

− 1
4[(1 + τ) + x2]

]
sin(2θ||v ),

d

dτ
r
||
v =

[
1

2(1 + τ)
− 1

4[(1 + τ) + x2]

]
cos(2θ||v ),

[
γv
2

√
(1 + τ) + x2 − d

dτ
θ⊥v

]
tanh(2r⊥v )

= −
[

1
4[(1 + τ) + x2]

]
sin(2θ⊥v ),

d

dτ
r⊥v =

[
1

4[(1 + τ) + x2]

]
cos(2θ⊥v ).

Wesolved these equations numerically at positive val-
ues of themomentum x = q/MI , considering that, for
τ → +0, the asymptotic behavior of the solutions is
given by r(τ)→ const · τ and θ(τ) = O(τ). The dis-
tributions of longitudinal [N ||(x, τ)] and transverse
[N⊥(x, τ)] vector bosons are given in the figure for
the initial dataHI = MI(γv = 1).

From the figure, it can be seen that, for x > 1, the
longitudinal component of the boson distribution is
everywhere much greater than the transverse com-
ponent, this demonstrating a more copious cosmo-
logical creation of longitudinal bosons in relation to
transverse bosons. A slow decrease in the longitudi-
nal component as a function of momentum leads to
a divergence of the integral for the density of product
particles [2]:

nv(η) =
1

2π2

∞∫
0

dqq2
[
N ||(q, η) + 2N⊥(q, η)

]
→∞.

(40)
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Longitudinal (�||) and transverse (�⊥) components of the boson distribution versus the dimensionless time τ = 2ηHI and the
dimensionless momentum x = q/MI at the initial dataMI = HI (γv = 1).
3.2. Thermalization of Bosons
The divergence of the integral in (40) stems from

idealizing the problem of the production of a pair
of particles in a finite volume for a system where
there are simultaneous interactions associated with
the removal of fields having a negative probability and
where identical particles affect one another (so-called
exchange effects). It is well known [38] that, in this
case, one deals with the production of a set (rather
that a pair) of particles, which acquires, owing to the
aforementioned interactions, the properties of a sta-
tistical system. As a model of such a statistical sys-
tem, we consider here a degenerate Bose–Einstein
gas, whose distribution function has the form (we use
the system of units where the Boltzmann constant is
kB = 1)

F (Tv, q,Mv(η), η) (41)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
=
{

exp
[
ωv(η)−Mv(η)

Tv

]
− 1
}−1

,

where Tv is the boson temperature. We set apart the
problem of theoretically validating such a statistical
system and its thermodynamic exchange, only as-
suming fulfillment of specific conditions ensuring its
existence. In particular, we can introduce the notion
of the temperature Tv only in an equilibrium system.
A thermal equilibrium is thought to be stable if the
time within which the vector-boson temperature Tv is
established, that is, the relaxation time [39]

ηrel = [n(Tv)σscat]
−1 (42)

[as expressed in terms of their density n(Tv) and
the scattering cross section σscat ∼ 1/M2

I ], does not
exceed the time of vector-boson-density formation
4



1058 BLASCHKE et al.
owing to cosmological creation, the latter time being
controlled by the primordial Hubble parameter, ηv =
1/HI . From (42), it follows that the particle-number
density is proportional to the product of the Hubble
parameter and the mass squared (this product being
an integral of the motion in the present example); that
is,

n(Tv) = n(Tv, ηv) � CHHIM
2
I , (43)

where CH is a constant. The expression for the den-
sity n(Tv, η) in Eq. (43) assumes the form

nv(Tv, η) =
1

2π2

∞∫
0

dqq2F (Tv, q,M(η), η) (44)

×
[
N ||(q, η) + 2N⊥(q, η)

]
.

Here, the probability of the production of a longitudi-
nal and a transverse boson with a specific momen-
tum in an ensemble featuring exchange interaction
is given (in accordance with the multiplication law
for probabilities) by the product of two probabilities,
the probability of their cosmological creation, N ||,⊥,
and the probability of a single-particle state of vec-
tor bosons obeying the Bose–Einstein distribution
in (41).

A dominant contribution to the integral in (44)
from the region of high momenta (in the above ide-
alized analysis disregarding the Boltzmann factor,
this resulted in a divergence) implies the relativistic
temperature dependence of the density,

n(Tv, ηv) = CTT
3
v , (45)

where CT is a coefficient. A numerical calculation
of the integral in (44) for the values Tv = MI = HI ,
which follow from the assumption about the choice
of initial data (CT = CH), reveals that this integral
is weakly dependent on time in the region η ≥ ηv =
H−1
I and, for the constant CT , yields the value

CT =
nv

T 3
v

=
1

2π2

{
[1.877]|| + 2[0.277]⊥ = 2.431

}
,

(46)

where the contributions of longitudinal and trans-
verse bosons are labeled with the superscripts || and
⊥, respectively.

On the other hand, the lifetime ηL of product
bosons in the early Universe in dimensionless units,
τL = ηL/ηI , where ηI = (2HI)−1, can be estimated
by using the equation of state a2(η) = a2

I(1 + τL) and
the W -boson lifetime within the Standard Model.
Specifically, we have

1 + τL =
2HI sin2 θ(W)

αQEDMW (ηL)
=

2 sin2 θ(W)

αQEDγv
√

1 + τL
, (47)
P

where θ(W) is the Weinberg angle, αQED = 1/137 is
the fine-structure constant, and γv = MI/HI ≥ 1.

From the solution to Eq. (47),

1 + τL =

(
2 sin2 θ(W)

γvαQED

)2/3

� 16

γ
2/3
v

, (48)

it follows that, at γv = 1, the lifetime of product
bosons is an order of magnitude longer than the
Universe relaxation time:

τL =
ηL
ηI
� 16

γ
2/3
v

− 1 = 15. (49)

Therefore, we can introduce the notion of the
vector-boson temperature Tv, which is inherited by
the final vector-boson-decay products (photons).
According to currently prevalent concepts, these
photons form cosmic microwave background ra-
diation in the Universe. Indeed, suppose that one
photon comes from the annihilation of the products
of W±-boson decay and that the other comes from
Z bosons. In view of the fact that the volume of the
Universe is constant within the evolutionmodel being
considered, it is then natural to expect that the photon
density coincides with the boson density [11]:

nγ = T 3
γ

1
π2
{2.404} � nv. (50)

On the basis of (43), (45), (46), and (50), we can
estimate the temperature Tγ of cosmic microwave
background radiation arising upon the annihilation
and decay ofW+ and Z bosons. This yields

Tγ �
[

2.431
2.404 · 2

]1/3

Tv = 0.8Tv, (51)

where the vector-boson temperature Tv = [HIM
2
I ]1/3

is an invariant quantity within the model being con-
sidered. This invariant can be estimated at

Tv = [HIM
2
I ]1/3 = [H0M

2
W ]1/3 (52)

= 2.73/0.8 K = 3.41 K,

which is a value that is astonishingly close to the ob-
served temperature of cosmic microwave background
radiation. In the present case, this directly follows,
as is seen from the above analysis of our numeri-
cal calculations, from the dominance of longitudinal
vector bosons with high momenta and from the fact
that the relaxation time is equal to the inverse Hubble
parameter. The inclusion of physical processes, like
the heating of photons owing to electron–positron
annihilation [40], amounts to multiplying the photon
temperature (51) by (11/4)1/3 = 1.4; therefore, we
have

Tγ(e+ e−) � (11/4)1/3 · 0.8Tv = 2.77 K. (53)
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We note that, in other models [41], the fluctuations
of the product-particle density are related to primary
fluctuations of cosmic microwave background radia-
tion [42].

3.3. Inverse Effect of Product Particles
on the Evolution of the Universe

The equation of motion ϕ′2(η) = ρtot(η), with the
Hubble parameter defined as H = ϕ′/ϕ, means that,
at any instant of time, the energy density in the Uni-
verse is equal to the so-called critical density; that is,

ρtot(η) = H2(η)ϕ2(η) ≡ ρcr(η).

The dominance of matter obeying the extremely rigid
equation of state implies the existence of an approxi-
mate integral of the motion in the form

H(η)ϕ2(η) = H0ϕ
2
0.

On this basis, we can immediately find the ratio of the
product-vector-boson energy, ρv(ηI) ∼ T 4 ∼ H4

I ∼
M4
I , to the density of the Universe in the extremely

rigid state, ρtot(ηI) = H2
Iϕ

2
I . The result is

ρv(ηI)
ρtot(ηI)

=
M2
I

ϕ2
I

=
M2
W

ϕ2
0

= y2
v = 10−34. (54)

This value indicates that the inverse effect of product
particles on the evolution of theUniverse is negligible.

3.4. Baryon–Antibaryon Asymmetry of Matter
in the Universe

It is well known that, because of a triangle
anomaly, W - and Z-boson interaction with left-

handed fermion doublets ψ(i)
L , i = 1, 2, ..., nL, leads to

a nonconservation of the number of fermions of each
type (i) [43, 44],

∂µj
(i)
Lµ =

1
32π2

trF̂ ∗
µν F̂µν , (55)

where F̂µν = −iF a
µνgW τa/2 is the strength of the

vector fields, F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAbµA

c
ν .

6)

Taking the integral of the equality in (55) with
respect to the four-dimensional variable x, we can find
a relation between the change∆F (i) =

∫
d4x∂µj

(i)
Lµ in

6)In each of the three generations of leptons (e, µ, τ ) and color
quarks, we have four fermion doublets—in all, there are
nL = 12 of them. Each of 12 fermion doublets interacts with
the triplet of non-Abelian fields A1 = (W (−) +W (+))/

√
2,

A2 = i(W (−) −W (+))/
√

2, andA3 = Z/ cos θ(W), the cor-
responding coupling constant being g = e/ sin θ(W).
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the fermion number F (i) =
∫
d3xj

(i)
0 and the Chern–

Simons functional NCS =
1

32π2

∫
d4xtrF̂ ∗

µν F̂µν [19]:

∆F (i) = NCS �= 0, i = 1, 2, ..., nL. (56)

The equality in (56) is considered as a selection rule—
that is, the fermion number changes identically for all
fermion types:NCS = ∆Le = ∆Lµ = ∆Lτ = ∆B/3;
at the same time, the change in the baryon charge
B and the change in the lepton charge L = Le +
Lµ + Lτ are related to each other in such a way that
B − L is conserved, while B + L is not invariant.
Upon taking the sum of the equalities in (56) over all
doublets, we obtain ∆(B + L) = 12NCS.

We can evaluate the expectation value of the
Chern–Simons functional (56) (in the lowest order
of perturbation theory in the coupling constant) in the
Bogolyubov vacuum b|0〉sq = 0. Specifically, we have

NCS = NW +NZ

≡ −
∑

v=W,Z

ηLv∫
0

dη

∫
d3x

32π2 sq〈0|trF̂ v
µν

∗F̂ v
µν |0〉sq,

where ηLW and ηLZ are the W - and the Z-boson
lifetime, respectively, and NW and NZ are the contri-
butions of primordial W and Z bosons, respectively.
The integral over the conformal spacetime bounded
by three-dimensional hypersurfaces η = 0 and η =
ηL is given by

Nv = −βv
V0

2

ηLv∫
0

dη

∞∫
0

dk|k|3 sin(2θv)sinh(2rv),

where v = W,Z;

βW =
4αQED

sin2 θ(W)

; βZ =
αQED

sin2 θ(W) cos2 θ(W)

;

and θv and rv are specified by relevant solutions to the
Bogolyubov equations. Upon a numerical calculation
of this integral, we can estimate the expectation value
of the Chern–Simons functional in the state of pri-
mordial bosons. At the vector-boson-lifetime values
of τLW = 15 and τLZ = 30, this yields the following
result at nγ � nv:

NCS

V(r)
=
NW +NZ

V(r)
(57)

=
αQED

sin2 θ(W)

T 3

(
4 · 1.44 +

2.41
cos2 θ(W)

)
= 1.2nγ .

On this basis, the violation of the fermion-number
density in the cosmological model being considered
can be estimated as [16]

∆F (i)

V(r)
=
NCS

V(r)
= 1.2nγ , (58)
4
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where nγ = 2.402T 3/π2 is the number density of
photons forming cosmic microwave background ra-
diation.

According to Sakharov [18], this violation of the
fermion number is frozen by CP nonconservation,
this leading to the baryon-number density

nb = XCP
∆F (i)

V(r)
� XCPnγ , (59)

where the factorXCP is determined by the superweak
interaction of d and s quarks (d+ s→ s+ d), which is
responsible for CP violation experimentally observed
inK-meson decays [45].

From the ratio of the number of baryons to the
number of photons, one can deduce an estimate of the
superweak-interaction coupling constant: XCP ∼
10−9. Thus, the evolution of the Universe, primary
vector bosons, and the aforementioned superweak
interaction [45] (it is responsible for CP violation
and is characterized by a coupling-constant value of
XCP ∼ 10−9) lead to baryon–antibaryon asymmetry
of the Universe, the respective baryon density being

ρb(η = ηL) � 10−9 × 10−34ρcr(η = ηL). (60)

In order to assess the further evolution of the baryon
density, one can take here the W -boson lifetime
for ηL.

Upon the decay of the vector bosons in question,
their temperature is inherited by cosmic microwave
background radiation. The subsequent evolution of
matter in a stationary cold universe is an exact replica
of the well-known scenario of a hot universe [34],
since this evolution is governed by conformally invari-
ant mass-to-temperature ratios (m/T ).

Formulas (47), (54), and (60) make it possible
to assess the ratio of the present-day values of the
baryon density and the density of the scalar field Q,
which plays the role of primordial quintessence in the
model being considered. We have

Ωb(η0) =
ρb(η0)
ρcr(η0)

=
[
ϕ0

ϕL

]3

=
[
ϕ0

ϕI

]3 [ϕI
ϕL

]3

, (61)

where we have considered that the baryon density in-
creases in proportion to the mass and that the density
of the primordial quintessence Q decreases in inverse
proportion to the mass squared. We recall that the
ratio [ϕ0/ϕI ]3 is approximately equal to 1043 and that
the ratio [ϕI/ϕL]3 is determined by the boson lifetime
in (48) and by the equation of state ϕ(η) ∼ √η. On
this basis, we can estimate Ωb(η0) at

Ωb(η0) =
[
ϕ0

ϕL

]3

× 10−43 (62)
P

∼ 1043

[
ηI
ηL

]3/2

× 10−43 ∼
[

αQED

sin2 θ(W)

]
∼ 0.03,

which is compatible with observational data (see [20]).
Thus, the general theory of relativity and the

Standard Model, which are supplemented with a free
scalar field (Q) and which are considered as the result
of a spontaneous breakdown of the scale symmetry
of a conformally invariant theory in a specific refer-
ence frame with the initial data ϕI = 104 GeV and
HI = 2.7 K, do not contradict the following scenario
of the evolution of the Universe within conformal
cosmology [16]:

η ∼ 10−12 s, creation of vector bosons from a
“vacuum”;

10−12 < η < 10−11–10−10 s, formation of ba-
ryon–antibaryon asymmetry;

η ∼ 10−10 s, decay of vector bosons;
10−10 < η < 1011 s, primordial chemical evolution

of matter;
η ∼ 1011 s, recombination or separation of cosmic

microwave background radiation;
η > 1017 s, terrestrial experiments and evolution of

supernovae.

4. CONCLUSION

Within the conformal formulation of the general
theory of relativity and the Standard Model, we have
investigated conditions under which the origin of
matter can be explained by its cosmological creation
from a vacuum. We have presented some arguments
in support of the statement that the number of product
vector-boson pairs is sufficient for explaining the total
amount of observed matter and its content, provided
that the Universe is considered as a conventional
physical object that is characterized by a finite volume
and a finite lifetime and which is described by a
conformally invariant version of the general theory
of relativity and the Standard Model featuring scale-
invariant equations where all masses, including the
Planck mass, are replaced by the dilaton variable and
where the spatial volume is replaced by a constant.
In this case, the energy of the entire Universe in the
field space of events is described by analogy with the
description of the energy of a relativistic quantum
particle in Minkowski space: one of the variables
(dilaton in the case being considered) becomes an
evolution parameter, while the corresponding canon-
ically conjugate momentum assumes the role of
energy [22, 23]. This means that measured quantities
are identified with conformal variables that are used
in observational cosmology and in quantum field
theory in calculating cosmological particle creation
from a vacuum [6, 7, 9, 22]. Within the errors of
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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observation, this identification of conformal variables
with observables is compatible with data on the
chemical evolution of matter and data on supernovae,
provided that cosmic evolution proceeds via the
regime dominated by the density of a free scalar field
Q [11, 16].

Thus, the identification of conformal coordinates
and variables used in observational cosmology and in
quantum field theory with measured quantities is a
first condition under which the origin of matter can
be explained by its cosmological creation from a vac-
uum. This is possible within a conformally invariant
unified theory, where the Planck mass, which is an
absolute quantity in the general theory of relativity,
becomes an ordinary present-day value of the dilaton
and where the Planck era loses its absolute meaning.

The construction of a stable vacuum of pertur-
bation theory by eliminating (through the choice of
gauge-invariant variables) unphysical fields whose
quantization leads to a negative normalization of the
wave function in this reference frame is a second
condition.

Finally, the elimination of divergences in summing
the probabilities of product particles over their mo-
menta by thermalizing these particles in the region
where the Boltzmann H-theorem is applicable is a
third condition.

Under these conditions, it has been found in
the present study that, in describing the creation
of vector bosons from a vacuum in terms of con-
formal variables, one arrives at the temperature
(M2

WH0)1/3 ∼ 2.7 K of cosmic microwave back-
ground radiation as an integral of the motion of the
Universe and at the baryon–antibaryon asymmetry
of the Universe with the superweak-interaction cou-
pling constant XCP = nb/nγ and the baryon density
of Ωb = αQED/sin2 θ(W) ∼ 0.03, these results being
in satisfactory agreement with the corresponding
observed values and being compatible with the most
recent data on supernovae and nucleosynthesis.
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FUTURE PUBLICATIONS
Independent Production of π−Mesons in pppppp Interactions
A. I. Golokhvastov

It is shown that experimental data on the multiparticle production of π− mesons in pp interactions
at
√
s ≤ 30 GeV do not involve significant indications of the existence of any correlations between π−

mesons, apart from those that are associated with momentum conservation and with interference. The
multiplicity distributions in rapidity intervals, the forward–backward correlation, and the two-particle rapidity
and transverse-momentum correlations do not contradict the independent production of π− mesons. No
constraints on the multiplicity distributions of particles follow from the independent production of these
particles.

Isotopic Dependence of the Shape of Se Nuclei in the Representation of Collective Models
O. I. Davidovskaya, I. E. Kashuba, and Yu. V. Porodzinsky†

The energy structure of low-lying excited states in the nuclei of even selenium isotopes is considered
on the basis of a soft-nucleus model. The nuclei are treated as nonaxial rotors, longitudinal and transverse
vibrations of their surface being taken into account in the approximation of a quadrupole deformation featuring
an admixture of an octupole deformation. The parameters of a phenomenological collective model for the
72,74,76,78,80,82Se nuclei are found both in the case of β vibrations (longitudinal vibrations) and in the presence
of additional γ vibrations (transverse vibrations) of the nuclear surface.

Proton Structure Functions over the Entire Kinematical Region
A. A. Petrukhin and D. A. Timashkov

A new approach to describing inelastic charged-lepton scattering on a proton is proposed. The approach
is based on combining the results obtained by theoretically studying the limiting cases of this process. The
proton structure function is obtained in an analytic form that involves virtually no free parameters and which is
in good agreement with experimental data over the entire kinematical region.

Diffractive Splitting of Tritons by Incident Protons
V. K. Tartakovsky, A. V. Fursaev, and B. I. Sidorenko

General expressions that are obtained in the present study for the differential cross sections describing the
two- and three-body diffractive dissociation of tritons that is induced by intermediate-energy incident protons
are used to calculate the energy distributions of neutrons and protons originating from this process and of
scattered protons. The results are basically in satisfactory (but sometimes only qualitative) agreement with
data from relevant coincidence experiments.

Double-Differential Cross Sections for Neutron Emission from Pb, W, Zr, Cu, and Al Nuclei
Bombarded by 0.8-, 1.0-, and 1.6-GeV Protons

Yu. V. Trebukhovsky, Yu. E. Titarenko, V. F. Batyaev, E. I. Karpikhin, R. D. Mulambetov, S. V. Mulambetova,
G. N. Smirnov, K. A. Lipatov, A. B. Koldobsky, V. M. Zhivun, Yu. V. Nekrasov, V. S. Barashenkov, H. Kumavat,

S. G. Mashnik, and R. E. Prael

The results are presented of experiments that are aimed at determining the double-differential cross sections
for the production of secondary neutrons from Pb, W, Zr, Cu, and Al targets exposed to protons of energy
0.8, 1.0, and 1.6 GeV. The spectra of neutrons at angles of 15◦, 30◦, 60◦, 90◦, 120◦, and 150◦ are measured
by means of a time-of-flight spectrometer in a beam extracted from the U-10 synchrotron installed at the
Institute of Theoretical and Experimental Physics (ITEP, Moscow). Product neutrons were recorded by
5MAB-1F6BC501A/5L liquid scintillation detectors and NE110 solid-state scintillators. Experimental data
1063-7788/04/6705-1063$26.00 c© 2004 MAIK “Nauka/Interperiodica”
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obtained in this way are compared with the results of simulations performed with the aid of high-energy
transport codes СЕМ97, LAHET, and CASCАDE.

Radiative Decays of the φMeson and Nature of Light Scalar Resonances
N. N. Achasov

We show, on gauge-invariance grounds, that a new threshold phenomenon is discovered in the radiative
decays φ→ γa0 → γπ0η and φ→ γf0 → γπ0π0. This enables us to conclude that the production of light
scalar mesons a0(980) and f0(980) in these decays is caused by four-quark transitions, resulting in strong
restrictions on the large-Nc expansions of the decay amplitudes. The analysis shows that these constraints
give new pieces of evidence in favor of the four-quark nature of the a0(980) and f0(980) mesons.

Doorway States for One-Nucleon Transfer Reactions and Nuclear Correlation Energy
B. L. Birbrair and V. I. Ryazanov

Correlation effects are found to make a dominant contribution to nuclear binding energies. This result is
obtained within a simple renormalizable model for multiparticle forces between nucleons.

Single-Spin Asymmetry of Inclusive γγγ Production in p↑pp↑pp↑p Interactions at 200 GeV/c
Yu. V. Kharlov, D. A. Morozov, S. B. Nurushev, and A. N. Vasiliev

From the data of the Fermilab polarization experiment E704, the analyzing power AγN of inclusively
produced photons was extracted. It is small, on the order of 2 to 4%. The analyzing power of “leading”
photons (fastest in π0 → γγ decay) is twice as high as AγN under the assumption of a specific model for the xF

dependence of AγN . A Monte Carlo simulation is performed in order to see effects at a higher statistical level
than in the E704 experiment. This simulation showed that the process of inclusive photons may be used as
a basis for future polarimetry at polarized colliders. An example of one local photon polarimeter at RHIC is
discussed.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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NUCLEI
Experiment
Investigation of the Excitation of Metastable States of 197Pt and 197Hg
in (γ,n) and (d,2n) Reactions

V. A. Zheltonozhsky1), V. M. Mazur2), and Z. M. Bigan2)

Received November 28, 2002; in final form, June 19, 2003

Abstract—The isomeric ratios of the 197m,gPt and 197m,gHg yields in the respective (γ, n) reactions are
measured for the first time in the energy range 8–17 MeV. The isomeric ratios σm/σg for 197m,gHg in the
(d, 2n) reaction are measured in the energy range 8–50MeV. The experimental data are compared with the
results of theoretical calculations. The effect of the structure of low-lying states and of the yrast line on the
behavior of σm/σg is revealed. c© 2004 MAIK “Nauka/Interperiodica”.
Nuclei of A ∼ 190, which include those of plat-
inum and mercury isotopes, lie between strongly de-
formed nuclei of rare-earth elements and the region of
spherical nuclei in the vicinity of A = 208. Analyzing
the entire body of data on the spectra of low-energy
excitations, one can find that the shape of these
nuclei undergoes rather complicated variations. The
quadrupole moment of platinum isotopes changes
sign, which, despite the fact that this quadrupole
moment is 2 to 2.5 times less than that of nuclides
from the rare-earth region (that is, the shape of
platinum nuclei is close to spherical), is indicative of
a transition to an oblate shape [1]. Mercury isotopes
also seem to have an oblate shape. To a considerable
extent, the spectrum of low-energy excitations of
these nuclei is formed by the 3p1/2, 2f5/2, 3p3/2,
and 1i13/2 single-particle (hole) states. It is the last
one of these that is responsible for the existence
of the Jπ = 13/2+ isomeric level. Investigation of
processes leading to the population of metastable
states in the aforementioned isotopes and of the
energy dependence of their isomeric ratios can shed
additional light on the nontrivial nature of the nuclei
within this mass region.

Although the excitation of a giant dipole reso-
nance (GDR) was systematically investigated for a
wide range of nuclei [2, 3], its properties for platinum
and mercury isotopes have not yet received adequate
study.

No systematic research into the decay of a giant
E1 resonance via the (γ, n) channel with the exci-
tation of isomeric states has so far been performed

1)Institute for Nuclear Research, National Academy of Sci-
ences of Ukraine, pr. Nauki 47, Kiev, 03680 Ukraine.
e-mail: zhelton@kinr.kiev.ua

2)Institute for Electron Physics, National Academy of Sci-
ences of Ukraine, Uzhgorod, Ukraine.
1063-7788/04/6705-0875$26.00 c© 2
for the 197Pt and 197Hg nuclei. To date, there have
been only a few studies in which the isomeric yield
ratio d = Ym/Yg [that is, the ratio of the yield of the
isomeric level (Ym) to that of the ground-state level
(Yg)] in (γ, n)m reactions on targets of natural iso-
topic composition was measured at the same energy
for the bremsstrahlung-spectrum endpoint energy of
Emax
γ = 30 MeV [4, 5].
The comprehensive survey of the results obtained

by studying the isomeric cross-section ratios σm/σg
for the 197Hg nucleus in reactions induced by various
particles is given in [6]. The isomeric ratios in the
respective (d, 2n) reaction at energies in the range
7–20 MeV were explored there most thoroughly. The
measurements reported in [6] were performed with a
NaI(Tl) spectrometer; therefore, it was very difficult
to single out the contribution of KX radiation from
Au (EKβ1′ = 78 keV) and Hg (EKβ1′ = 80 keV) and
the contribution of the 77-keV γ transition. For the
respective (d, 2n) reaction, wemeasured σm/σg in the
energy range where such measurements have already
been performed and at higher energies. For the 197Hg
and 197Pt nuclei, the (γ, n) reaction was studied in the
range 8–17 MeV.

DESCRIPTION OF THE EXPERIMENT

The isomeric ratio σm/σg for 197m,gHg in the
(d, 2n) reaction wasmeasured at theU-240 cyclotron
installed at the Institute for Nuclear Research (Kiev,
National Academy of Sciences of Ukraine). The
deuteron energy was varied by means of aluminum
foils. The measurements were performed with a semi-
conductor spectrometer equipped with a Ge detector
of volume 100 cm3 and resolution 1.1 keV at the
412-keV γ line. Foils from natural Au 50 mg/cm2

thick were irradiated. The yield of 197m,gHg was
004 MAIK “Nauka/Interperiodica”
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determined by Kα emission from Au and Hg and by
77- and 134-keV γ transitions (Fig. 1). The σm/σg
values were calculated by using the relations given
below. Figure 2 and Table 1 display our data.

We studied the reactions 198Pt(γ, n)197m,gPt and
198Hg(γ, n)197Hg in a bremsstrahlung-photon beam
extracted from the M-30 microtron installed at the
Institute for Electron Physics (Uzhgorod, National
Academy of Sciences of Ukraine). The reaction yields
were measured in the energy range 8–17 MeV. The
threshold for the (γ, n) reaction was 7.8 MeV and
8.3 MeV for the 198Pt and 198Hg isotopes, respec-
tively. For targets, we employed samples from natu-
ral mercury (HgO) of weight 4 g pressed into thin-
walled Capron containers 30 mm in diameter and
0.5-mm-thick metallic-platinum plates of dimension
20 × 20 mm2. The induced activity of the irradiated
samples was measured by using the semiconductor
spectrometer with the detector of volume 100 cm3.
The procedure of our measurement was described in
more detail in [7].

Nuclei of 197Pt and 197Hg from the relevant (γ, n)
and (d, 2n) reactions are unstable. Figure 1 shows the
diagrams of their decays and their quantum features
[8, 9]. In both cases, the 197Au isotope appears to
be the product of these decays. Since the ground
states of the isotopes under study are unstable, we
calculated the isomeric yield ratio by the formula [10]

d = Ym/Yg (1)

=
λg − λm{(

c
Ng

Nm

ϕm
ϕg

(λg − λm)− pλm

)
λg
λm

fm(t)
fg(t)

}
+ pλg

,

where

fm,g = [1− exp(−λm,gtirr)]exp(−λm,gtcool)
× [1− exp(−λm,gtmeas)],
ϕm,g = ξm,gκm,gαm,g.

Table 1. Isomeric ratios σm/σg for 197m,gHg in the (d, 2n)
reaction

Ed, MeV σm/σg Ed, MeV σm/σg

8.0 0.40(4) 35.0 1.61(16)

13.0 0.60(6) 39.3 1.59(16)

15.7 0.74(7) 44.9 0.85(8)

25.0 0.53(5) 50.0 0.73(7)

30.6 1.06(10)

Note: The accuracy in determining the energy is ∆Ed ≈
0.3 MeV.
P

Here, ξm,g is the detector photoefficiency in recording
the γ lines from the decay of, respectively, the isomeric
(m) and the ground (g) state; κm,g are the corrections
for the self-absorption of the corresponding lines;
αm,g are the intensities of the γ lines corresponding
to the decays of, respectively, the isomeric and the
ground state; λm,g are the decay constants for the
corresponding states;Nm,g are the numbers of pulses
in the corresponding photopeaks; tirr, tcool, and tmeas
are the irradiation time, the time of cooling, and the
time of measurements; c is a correction for pulses that
were missed and for overlapping pulses; and p is the
branching fraction.

Figure 3 and Table 2 present the measured values
of the isomeric yield ratio d = Ym/Yg. The relative
statistical uncertainty was 1 to 2% and 0.2% atEmax

γ

of 9 to 10 MeV and 16 MeV, respectively. With al-
lowance for the accuracy in measuring the efficiency
of the semiconductor spectrometer, the uncertainty in
determining d for the respective (γ, n) reactions does
not exceed 5%.

DISCUSSION OF THE RESULTS

From the data on the isomer yield in the vicin-
ity of the threshold, it was found that the thresh-
old for the reaction 198Pt(γ, n)197m,gPt is 8.90 ±
0.15 MeV; it is 0.9 MeV greater than the energy
threshold of the (γ, n)m reaction for this nucleus
(7.6 ± 0.4 MeV). Accordingly, the threshold for the
reaction 198Hg(γ, n)197mHg is 9.70 ± 0.15 MeV,
which is 1.1 MeV greater than the calculated energy
of the (γ, n)m threshold [11].

The existence of so appreciable a threshold for the
population of the metastable state is caused by a rel-
atively large spin difference ∆J between the ground
state of the parent nucleus and the isomeric level
of the product nucleus. For the metastable state to
be populated by a γ-ray cascade, there must be at
least five dipole transitions or fast neutrons (of energy
about 1 MeV) that are able to change the angular
momentum of the daughter nucleus.

Above the (γ, n)m threshold, the isomeric ratio of
the yields increases dramatically and approaches a
plateau at 16 to 17MeV, reaching the sizable values of
d = 0.171 ± 0.010 and d = 0.104 ± 0.006 at Emax

γ =
16 MeV for 197Pt and 197Hg, respectively.

The points in Fig. 4 represent the cross sections
σm for the excitation of the isomeric states in the
reactions 198Pt(γ, n)197mPt and 198Hg(γ, n)197Hg.
The cross sections were calculated from the yields
with the aid of the Penfold–Leiss inverse matrix [12,
13] with a step of ∆E = 1 MeV. The solid curves in
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 1. Diagram of decays of the 197Pt and 197Hg isobars (the energies of the levels are given in keV).
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Fig. 4 show the results obtained by approximating the
cross section σm by the Lorentzian distribution

σm(E) =
σ0E

2Γ2
0

(E2 − E2
0)2 + E2Γ2

0

,

where the cross-section value σ0 at the maximum of
σm(E), the energyE0 at this point, and the resonance
half-width Γ0 are used as adjustable parameters, their
fitted values being given in Table 3, along with those
of the parameters σ1, E1, and Γ1 of the Lorentzian
distributions corresponding to the total photoneutron
cross sections σn used to estimate the isomeric ratios
[2, 3].

A comparison of the features of the cross sections
σm and σn shows that the σm values are considerably
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
smaller than the σn values and that the maxima of the
former are somewhat shifted to higher energies.

We have calculated the isomeric ratios within the
statistical cascade–evaporation model (CEM) [14,
15]. The scheme of the calculations was the following.
A dipole photon of energy E is absorbed by the nu-
cleus. A neutron of orbital angular momentum l and
energy ε escapes from the product compound nucleus
of spin–parity (Jc, πc), which goes over to a state of
spin–parity (Jf , πf ).

The reduced probability of the emission of such a
neutron from the compound nucleus is calculated by
the formula

P (Jc, πc;Jf , πf ) (2)
4
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γ of the bremsstrahlung spectrum.
= Bρ(Jf )
Jf+s∑

S=|Jf−s|

Jc+S∑
l=|Jc−S|

Tl(ε)ωl(πc, πf ),

where B is a constant, s is the spin of the emitted
particle, Tl(ε) is the barrier-penetrability factor [16],

Table 2. Isomeric ratios of the 197m,gPt and 197m,gHg
yields in the (γ, n) reactions

Eγ , MeV
d = Ym/Yg

197m,gPt 197m,gHg

9.5 0.007 –
10.0 0.014 0.003

10.5 0.023 0.008

11.0 0.03 0.016

11.5 0.043 0.023

12.0 0.059 0.032

12.5 0.069 0.041

13.0 0.085 0.052

13.5 0.101 0.068

14.0 0.119 0.079

14.5 0.137 0.088

15.0 0.151 0.093

15.5 0.162 0.099

16.0 0.171 0.104

16.5 0.176 0.109

17.0 0.182 0.112
PH
and ωl(πc, πf ) = [1 + (−1)lπcπf ]/2 is the coefficient
used to take into account the parity of the states. For
the energy ε of the neutron, we took its mean energy
εn. The level density was calculated on the basis of the
Fermi gas model [17–19], which yields

ρ(U, J) = ρ(U)ρ(J) (3)

= ρ(U)exp[−(J + 1/2)2/2σ2],

where ρ(U) and ρ(J) are, respectively, the energy-
and the spin-dependent part in the expression for
the level density and σ is the spin-cutoff parameter,
which, according to [18], can be calculated by the
formula σ2 = 0.0889

√
aUA2/3 (here, a is the level-

density parameter; A is the mass number; and U is
the excitation energy, by which we mean the effective
excitation energy [14]).

The product daughter nucleus of spin–parity
(Jf , πf ) is deexcited by a cascade of dipole γ transi-
tions, the last of these populating either the isomeric
or the ground state. The mean transition energy is
given by

E = 4
√
U/a− σ/a2. (4)

Consistent calculations do not lead to perfect
agreement with experimental data. For photons of
energy in the range 14–16 MeV, reasonable agree-
ment is attained by setting the spin-cutoff parameter
to σ = 3.4 for 198Pt and to σ = 3.0 for 198Hg.

From the cross sections σm obtained for the re-
actions 198Pt(γ, n)197mPt and 198Hg(γ, n)197mHg,
we calculated the isomeric cross-section ratios R =
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Table 3. Parameters of the Lorentzian functions used to approximate the cross sections σm

Nucleus
σm σn

E0, MeV σ0, mb Γ0, MeV E1, MeV σ1, mb Γ1, MeV
198Pt 13.96± 0.05 114.3± 4.7 2.72± 0.14 13.58 514 4.45
198Hg 14.0± 0.07 71.95± 4.2 3.45± 0.28 13.72 541 4.61
σm/(σm + σg) = σm/σn. In the region of the cross-
section maximum, they are 0.15 ± 0.02 and 0.11 ±
0.01 at Eγ = 13 MeV and 0.23± 0.02 and 0.14 ±
0.015 at Eγ = 14 MeV.

It is evident from the measured values of d (Fig. 3)
and the calculated values ofR that the isomeric ratios
for 197Hg are almost 1.5 times less than those for
197m,gPt. We note that a similar trend is also observed
in the respective (n, γ) reactions induced by ther-
mal neutrons—that is, R = 0.057 ± 0.007 and R =
0.034 ± 0.003 for 197Pt and 197Hg, respectively. It is
impossible to explain this difference if (γ, n) and (n, γ)
reactions are described in terms of statistical pro-
cesses. However, an analysis of the diagrams of 197Pt
and 197Hg levels revealed that a 13/2− state is excited
in 197Hg at 1381 keV and that this state decays to
the ground state via a cascade of E2 transitions,
bypassing the 13/2+ isomeric state. There is no such
state in the 197Pt nucleus. The role of this state can be
assessed under the assumption that the I = Im high-
spin state, which decays to the ground (1/2−) state,
occurs at the same energy as the 13/2+ isomer. The
role of energy can be taken into account through the
mean energy and the number of cascade transitions
required for populating these states. By using formula
(4), it was found thatRrel = R(Pt)/R(Hg) varies from
0.8 to 0.5 as the excitation energy E∗ of the residual
nucleus varies from 3 to 8 MeV. This is in good
agreement with the experimental values for (n, γ) and
(γ, n) reactions, where Rrel varies from 0.73 to 0.60 if
E∗ varies from 3 to 6.5 MeV.

Figure 3a shows the isomeric ratios of the yields
versus E∗. It follows from this figure that the Rrel
value also tends to 0.5 at high excitation energies. In
the vicinity of the threshold, the values of the isomeric
ratios of the 197Pt and 197Hg yields are close to each
other. Obviously, this is because the 13/2+ isomeric
states cannot be populated via cascade transitions
if the energy of the residual nucleus is below 2 to
3 MeV. Semidirect processes involving the emission
of fast neutrons having an energy of 1 to 2 MeV are
most probably observed at such energies. Naturally,
the role of 13/2− states (1381 keV) appears to be
insignificant for such processes.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
Thus, it should be noted that different energies of
excited positive- and negative-parity states of high
orbital angular momentum (I > 5/2) in the nuclei
being considered can lead to a drastic change in the
population of the isomers. It is of crucial importance
to obtain additional information about the structure
of excited states in the energy region around 1.5MeV,
and the existence of new high-spin states can exert
a significant effect on theoretical calculations of iso-
meric ratios.

The ratios σm/σg for (d, 2n) reactions were cal-
culated on the basis of the STAPRE code [20].
If only the statistical channel is considered in the
same manner as above for (γ, n) reactions, σm/σg
is described properly over the region extending up to
15MeV, the spin-cutoff parameter being here σ ≈ 3.5
(Fig. 2). At the same time, a minimum observed
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at Ed ∼ 25 MeV and a reduction in σm/σg with
increasing energy cannot be described within this ap-
proach. In order to explain this dependence of σm/σg ,
it is necessary to consider the influence of factors that
are disregarded in the statistical approach. In our
opinion, the inclusion of the yrast line is of greatest
importance, this being equivalent to changing Q of
the reaction, especially for isomeric states.

The relation between the contributions of statisti-
cal (primarily E1) and collective E2 transitions ac-
companying the deexcitation of high-spin states in
the vicinity of the yrast line and the possible inter-
pretation of a bypass of the yrast trap were stud-
ied by many authors. In our calculations, we used
the cascade–evaporation model developed in [21].
Only equilibrium processes are considered within this
model; however, a coefficient f that is usually referred
to as the “bypass fraction” and which is used in
various codes under this name is introduced in order
to take into account the role of the yrast line. The
coefficient f indicates that some fraction of γ deex-
citation can go over from the cascade that populates
the high-spin isomer to the low-spin one. In general,
the bypass fraction is thought to correlate with the
magnitude of configuration mixing since the spins of
the isomeric states are associated with single-particle
states and since, in the vicinity of the yrast line,
nuclear spins are determined by collective rotational
motion. But in the present case, f can characterize
a transition of collective motion to single-particle
motion and vice versa. It is clear that the problem of
obtaining such data is of interest in itself; moreover,
the value of f may be indicative of the existence of
yrast traps having a preset spin.

Figure 2 shows the isomeric ratios σm/σg calcu-
lated on the basis of the cascade–evaporation model
with allowance for the coefficient f . It is evident that
good agreement with experimental data is achieved
everywhere, with the exception of the region around
25 MeV. A minimum observed in this region can also
be associated with the opening of the preequilibrium
channel. Figure 2 also shows σm/σg calculated with
allowance for preequilibrium but without the coeffi-
cient f . Evidently, it is precisely preequilibrium that
can cause the minimum observed in σm/σg. It also
follows from our calculations that a combination of
the equilibrium and the preequilibrium channel de-
scribes the experimental value only if the coefficient
f is taken into account. However, it should be noted
that a nonmonotonic behavior of σm/σg may also
be due to the influence of the competition between
particle channels on the statistical γ cascade in the
vicinity of the yrast line. This influence results in
that, within the evaporation model, the multiplicity of
the γ cascade may decrease with increasing angular
PH
momentum introduced in the nucleus, in which case
the energy dependence of σm/σg becomes nonmono-
tonic. In order to obtain deeper insight into all of these
processes, we need experimental data on the behavior
of σm/σg for various incident particles over a broader
energy range.
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Abstract—The excitation of discrete levels in 54Fe and 56Fe nuclei by means of (e, e′) reactions is studied
at excitation energies of up to 8 MeV over the momentum-transfer range between 0.6 and 1.7 fm−1.
An unconventional procedure of multipole analysis is used in experimental-data processing. Data on the
reduced probability of transitions and their multipolarity are obtained for 12 low-lying levels of 54Fe and
10 levels of 56Fe. Five levels in 54Fe and three levels in 56Fe are observed for the first time in (e, e′)
reactions. There is no information about two of them in the present-day database on discrete levels.
c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This article reports on the results of an inves-
tigation into static and dynamical properties of the
excitation of discrete levels in 54Fe and 56Fe nuclei
by means of (e, e′) reactions at an incident-electron
energy of about 225 MeV. The range of the excitation
energies under study is between 0 and 8MeV. Similar
studies were performed in [1–7].

Analysis of those studies indicates that the results
obtained previously contain a number of contradic-
tions. For example, Peterson et al. [2] observed 2+

states at about 3.5 and 5.0MeV in 56Fe, but Bellicard
and Barreau [1] did not find these states. At the same
time, 3− and 4+ states at 3.1 and 5.05 MeV, respec-
tively, were observed in [1], but they were absent in [2].
In 54Fe, 2+ and 3− states were identified equally well
by two experimental groups ([1] and [5, 6], respec-
tively), but totally different results were obtained there
for 4+ states. The 4.1- and 7.2-MeV levels observed
in [1] were not identified in [5, 6], while the 2.5-MeV
level unnoticed in [1] was studied thoroughly in [5, 6].

Analysis of those studies did not reveal any draw-
backs in the experimental procedures used there. It
is the method used in [1–7] to assess the position
of a particular excitation level that can be subjected
to question. The point is that a discrete level was

1)University of São Paulo, 05315-970 São Paulo, SP, Brazil.
2)Federal Center of Technological Education, CEFET-PR,
Curitiba, PR, CEP 80230-901, Brazil.

*e-mail: denyak@kipt.kharkov.ua
1063-7788/04/6705-0882$26.00 c©
separated directly in the spectrum of scattered elec-
trons in those studies. The momentum-transfer de-
pendence of the form factor for an individual level
was then used to determine the multipolarity of the
respective transition and its reduced probability. The
theoretical form factor for a specific multipolarity was
fitted to the experimental values of the form factor
for each excitation state that was singled out in the
way outlined above. The form factor corresponding
to a single multipolarity and complying best of all
with the experimental data was chosen on the basis of
four to five fits, whereby the spin and the parity were
determined for the excited nuclear state in question.

If the energy resolution does not allow one to sepa-
rate excited levels directly in the spectrum of scattered
electrons, they are interpreted as a single level within
this approach. The multipolarity assigned to this level
corresponds to the strongest level among those that
were not separated in energy. Usually, this multipo-
larity is of a lower order, since higher multipoles man-
ifest themselves at higher momentum transfers—that
is, at smaller cross sections for (e, e′) reactions. Thus,
levels of high multipolarity are unintentionally re-
moved upon data processing. This tendency must be
the most pronounced if measurements are performed
at lowmomentum transfers, as was the case in [1–7].

We used a different approach in this study. The
measured range of excitation energies was broken
down into bins of width about 0.2 MeV. The form
factor was plotted versus momentum transfer for each
bin. The theoretical dependence represented as the
sum of form factors corresponding to multipole or-
ders of 2 to 6 was fitted to the experimental values
2004 MAIK “Nauka/Interperiodica”
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obtained for the form factor. As a result, we found the
contribution of each multipolarity to the spectrum of
scattered electrons as a function of nuclear excitation
energy. We identified excited levels by this spectrum
and determined their quantum numbers. The range
of momentum transfers was extended toward higher
values up to 1.7 fm−1. This made it possible to inves-
tigate states of high multipolarity more precisely.

EXPERIMENTAL PROCEDURE AND DATA
PROCESSING

The experiment was performed in an electron
beam from the LUE-300 linear electron accelerator
at the Kharkov Institute for Physics and Technology.
A detailed description of the basic parts of the setup
can be found in [8].

The application of an energy-compression system
[9] made it possible to reduce the energy spread of
the beam to 0.33%. In our case, this corresponded to
0.7–0.8 MeV.

A system for recording charged particles that is
based on a 30-channel two-layer proportional cham-
ber and a Cherenkov detector was used as a mul-
tichannel detector. The system of coincidences be-
tween signals from the two layers of the chamber
and the Cherenkov detector was used to suppress
the background. Loads on the recording system did
not exceed one pulse per accelerator spill. The time
resolution was about 25 ns, while the dead time was
200 ns.

The targets were disks from isotopically enriched
iron (99.7% for a 56Fe target; 94.6% 54Fe and 5.1%
56Fe for a 54Fe target). The target thickness was
0.411 and 0.349 g/cm2 for 56Fe and 54Fe, respec-
tively. The nonuniformity of the disk thicknesses did
not exceed 1%.

Fourteen spectra of scattered electrons for each
of the isotopes under study were obtained from the
measurements. The spectra covered the excitation-
energy range ε = 0–8 MeV. They were measured at
scattering angles in the range θ = 30◦–90◦, which
corresponds to the momentum-transfer range q′ =
0.6–1.7 fm−1.

Elastic and quasielastic scattering on 12C was
measured concurrently with the spectra of scattering
on 54Fe and 56Fe. Since scattering on 12C has re-
ceived adequate study, it was used to obtain absolute
values of the detection efficiency in measuring the
spectra for 54Fe and 56Fe.

A precise value of the incident-electron energy
was calculated by using the position of the elastic-
scattering peak for the 12C nucleus. In doing this,
allowances were made for the energy losses by target-
atom ionization and for the shift of the elastic peak
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
due to the kinematics of the collisions in question.
The incident-electron-energy value refined in this
way was Ee = 226.0 ± 0.1 MeV.

The relative efficiency of the electron-counter
channels was determined from the quasielastic con-
tinuum in the spectrum of scattering on 12C.

The absolute detection efficiency was determined
as the ratio of the experimental and theoretical values
of the form factor for elastic scattering on 12C. The
theoretical form factor was calculated on the basis
of the shell model by using a Gaussian distribution
of the charge in the proton, this model producing
results that comply well with experimental data. The
parameters of the distribution were taken from [10].

After introducing corrections for the efficiency and
energy calibration, the spectra of electrons scattered
on 54Fe and 56Fe were subjected to the procedure
of radiation unfolding. In doing this, the corrections
for Schwinger radiation, radiative losses, and losses
caused by interaction with atomic electrons were
taken into account in accordance with the calcula-
tions from [11].

The elastic peak was approximated by a Gaus-
sian function and was subtracted from the radiation-
unfolded spectra. The half-width of the peak and its
position and amplitude were used as adjustable pa-
rameters. The spectrum obtained upon subtraction
was linearly interpolated within an interval of width
about 0.2 MeV.

For a scattering angle of θ = 50◦, Fig. 1 shows
an example of the spectrum obtained for 54Fe after
radiation unfolding, subtraction, and interpolation.

The spectra obtained by interpolation were used
to plot the form factors from the 0.2-MeV bins ver-
sus momentum transfer for each value of the exci-
tation energy. The resulting form factors were ana-
lyzed within the Helm phenomenological model [12].
The parameters of the ground-state charge distribu-
tion were determined from data on elastic scattering.
All calculations were performed with allowance for
the Coulomb distortion of the incident-electron wave
(that is, within the improved Born approximation).
The experimental form factor was represented as the
sum of the theoretical ones corresponding to the mul-
tipole orders of λ = 2, 3, 4, 5, 6. The reduced probabil-
ities for each multipolarity were used in this procedure
as adjustable parameters. Figure 2 shows an example
of this fit for 54Fe. The λ = 1 multipole was not used
in data processing since, in our experiment, the range
of the momentum transfers did not cover the region of
the E1-multipole maximum.
4
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Fig. 1. Differential cross section for electron scattering
on 54Fe as a function of excitation energy at a scattering
angle of θ = 50◦: (a) data measured in the experiment,
(b) results obtained by radiation unfolding, and (c) results
obtained after elastic-peak subtraction and interpolation.

RESULTS AND DISCUSSION

From an analysis of multipolarities, we obtained
the dependence of the reduced transition probabilities
on the nuclear excitation energy for each multipolarity
(Figs. 3, 4). The resulting structure of excited states
appeared to be richer than in previous studies, espe-
cially for transitions of multipolarity above E2. Ta-
bles 1 and 2 list our data along with the results known
to date. In order to determine the reduced probability
for an individual level, we constructed least squares
fits to our experimental data in terms of Gaussian
functions. The position, the amplitude, and the half-
width of the peaks were adjustable parameters in
this case. The half-width of the peaks was varied in
the range 0.35–0.45 MeV, which corresponds to the
energy resolution of the experiment.
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States of the 56Fe Nucleus

We identified four states at 0.8, 2.4, 3.4, and
4.9 MeV in the E2-strength distribution. In the rele-
vant (e, e′) reaction, the 56Fe nucleus was previously
studied in [1–4, 7]. In [1, 2], the excitation of the
nucleus was studied up to 6MeV.Only 2+ states were
investigated in [3, 4, 7], those at ε = 0.846 MeV in [3,
4] and at ε < 3 MeV in [7]. The 3.4- and 4.9-MeV
excited states were observed in [2], but they were
not found in [1]. The reason behind this discrepancy
was that 3− and 4+ states were identified in this
energy region in [1]. The authors of [1] were unable
to separate two 2+ states from the background of
intense states characterized by higher multipolarities
and close excitation energies because the resolution
there was poorer than in [2] and because their pro-
cedure for data processing was based on isolating
a level in the primary spectrum with a subsequent
determination of its multipolarity. Our procedure
involving the partition into bins allowed us to observe
these levels despite the fact that the energy resolution
in our experiment was identical to that in [1]. By and
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Table 1. Energy positions, transition multipolarities, and reduced transition probabilities for excited levels in the 56Fe
nucleus

Elev, MeV B(Eλ), fm2λ e2 q′, fm−1 Reference

E2

0.8± 0.1 706± 49 0.6–1.7 Our study

0.85± 0.1 720± 70 0.6–1.1 [1]

0.88± 0.2 945± 45 0.6–2.4 [3]

0.85± 0.05 1250± 270 0.25–1.07 [2]

0.85± 0.1 678± 48 0.7–2.1 [4]

2.4± 0.2 35± 8 0.6–1.7 Our study

2.7± 0.1 112± 17 0.8–1.1 [1]

2.65± 0.05 37± 10 0.4–0.6 [2]

2.96± 0.05 21± 11 0.4–0.6 [2]

3.4± 0.1 47± 10 0.6–1.7 Our study

3.37± 0.05 41± 10 0.4–0.6 [2]

3.60± 0.05 17± 7 0.4–0.6 [2]

3.80± 0.05 10± 5 0.4–0.6 [2]

4.9± 0.1 127± 21 0.6–1.7 Our study

4.73± 0.05 19± 9 0.4–0.6 [2]

5.23± 0.05 36± 18 0.4–0.6 [2]

E3

3.0± 0.1 2170± 350 0.6–1.7 Our study

3.1± 0.1 3600± 300 0.8–1.1 [1]

4.5± 0.1 8040± 665 0.6–1.7 our study

4.45± 0.1 10370± 930 0.8–1.1 [1]

4.51± 0.05 16600± 4200 0.4–0.6 [2]

7.2± 0.2 5570± 470 0.6–1.7 Our study

E4

3.2± 0.1 (131± 13)× 103 0.6–1.7 Our study

5.1± 0.1 (172± 17)× 103 0.6–1.7 Our study

5.05± 0.1 (110± 17)× 103 0.9–1.1 [1]

6.6± 0.2 (102± 19)× 103 0.6–1.7 Our study

E5

2.6± 0.2 (89± 36)× 104 0.6–1.7 Our study
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Table 2. Energy positions, transition multipolarities, and reduced transition probabilities for excited levels in the 54Fe
nucleus

Elev, MeV B(Eλ), fm2λe2 q′, fm−1 Reference

E2
1.4± 0.1 769± 54 0.6–1.7 Our study
1.4± 0.1 533± 24 0.64–1.16 [1]

1.41± 0.05 600± 23 0.21–0.86 [6]
1.41± 0.05 ∼720± 40 0.72–1.73 [5]
1.4± 0.1 532± 32 ∼0.7–2.0 [4]

3.1± 0.1 143± 16 0.6–1.7 Our study
2.9± 0.1 225± 19 0.64–1.08 [1]

2.96± 0.05 175± 19 0.40–0.86 [6]
3.16± 0.05 48± 17 0.50–0.86 [6]

5.1± 0.1 66± 13 0.6–1.7 Our study

7.1± 0.2 56± 22 0.6–1.7 Our study
E3

3.5± 0.2 1730± 280 0.6–1.7 Our study

4.8± 0.1 2520± 430 0.6–1.7 Our study
4.85± 0.1 4390± 280 0.64–1.16 [1]
4.79± 0.05 6800± 1000 0.40–0.86 [6]
4.79± 0.05 ∼9400± 700 0.64–1.73 [5]
4.85± 0.1 4563± 410 ∼0.7–2.0 [4]

6.5± 0.2 3810± 440 0.6–1.7 Our study
6.4± 0.1 6110± 335 0.76–1.08 [1]

6.30± 0.05 11800± 1600 0.40–0.86 [6]

7.4± 0.2 4070± 610 0.6–1.7 Our study
E4

2.35± 0.1 (66± 9)× 103 0.6–1.7 Our study
2.54± 0.05 (136± 6)× 103 0.70–1.72 [6]
2.54± 0.05 ∼(110± 7)× 103 0.89–1.73 [5]

4.3± 0.1 (95± 8)× 103 0.6–1.7 Our study
4.1± 0.1 (89± 8)× 103 0.87–1.17 [1]

5.1± 0.1 (93± 12)× 103 0.6–1.7 Our study

7.0± 0.1 (57± 12)× 103 0.6–1.7 Our study
7.2± 0.1 (173± 20)× 103 0.76–1.08 [1]

E5
2.7± 0.1 (1.6± 0.2)× 106 0.6–1.7 Our study
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 3. Reduced probability of the excitation of the 56Fe
nucleus for various multipolarities of transitions as a
function of excitation energy.

large, the reduced probabilityB(E2) that we obtained
for all levels is in good agreement with previous
results (see Table 1). The observed distinction is most
probably associated with the use of different models in
this and previous studies in describing the form factor.

Two E3 states at 3.1 and 4.5 MeV were observed
in [1], while only the 4.5-MeV state was observed
in [2]. Moreover, the 3.1-MeV state was not found in
a more recent study characterized by a higher energy
resolution; this can obviously be explained by a poor
statistical accuracy of the experiment reported in [2].
It follows from [1] that the intensity of the 3.1-MeV
level is one-third as great as that of the 4.5-MeV
level. The B(E3) value obtained in [2] for the
4.5-MeV level was determined to within 4000 fm2λe2;
thus, the uncertainty of this reduced probability
is approximately equal to the B(E3) value for the
3.1-MeV level. Probably, this is the reason why the
3.1-MeV level was not observed in [2]. We found both
these states and a 7.2-MeV state in addition. The
reduced probability of the 3.1- and 4.5-MeV levels
is in agreement with the results presented in [1, 2].
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Fig. 4. As in Fig. 3, but for the 54Fe nucleus.

The 7.2-MeV state was not observed previously in
the relevant (e, e′) reaction. However, the ENSDF
database3) of excited levels in nuclei indicates that
there is a 3− state at 7.48 MeV in this energy region;
in addition, there are many levels of unknown spin and
parity. This state could not be found in [1, 2], because
the region of excitation energies studied there was
below 7 MeV.

Only one E4 state at 5.05 MeV was observed
in [1], but no E4 state was found in [2], probably,
because of a rather lowmomentum transfer. We iden-
tified three E4 states at ε = 3.2, 5.1, and 6.6 MeV.
The B(E4) value for the 5.1-MeV state is close to
that obtained in [1]. Probably, the 3.2-MeV state
corresponds to the known level at 3.12 MeV (from
the ENSDF database). This state could not be found
in [1], since it merges with the E3 state at 3.1 MeV.
There are no known 4+ levels in the energy range cor-
responding to the 6.6-MeV state; however, there are
many levels there for which the spin and parity have
yet to be determined. The excitation-energy region up
to 6 MeV was studied in [1]; therefore, the 6.6-MeV
state could not be found there.

3)“Evaluated Nuclear Structure Data File” (ENSDF) is a
database that is maintained at the Brookhaven National
Laboratory (www.nndc.bnl.gov).
4
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States of the 54Fe Nucleus

For the most part, two peaks are observed in the
E2-strength distribution; they can be associated with
the excitation of the previously observed states at 1.4
and 3.1 MeV. The reduced probability B(E2) for the
former is in fairly good agreement with the previ-
ous results, although the procedures used to obtain
these data differ considerably in all of these studies.
The B(E2) value that we obtained for the state in
the vicinity of 3.1 MeV is somewhat lower, which is
caused by additional E3 and E5 transitions found
in this region of the excitation energies. The levels
at 5.1 and 7.1 MeV were not observed previously in
the relevant (e, e′) reaction; probably, they could not
be separated from the 4.8-MeV E3 and 7.2-MeV
E4 levels in the primary spectra. While the level
at 5.1 MeV is isolated quite reliably, the data that
we obtained on the E2-strength distribution in the
region around 7.1 MeV are most likely a piece of
evidence that there may exist a state there, since
the reduced probability found for this state is only
2.5 times greater than its uncertainty. According to
the database maintained at the Brookhaven National
Laboratory, there are, however, 2+ levels in this en-
ergy region, at 5.08 and 7.11 MeV; in addition, there
are a number of levels there whose spin and parity
have not yet been identified.

Previously, only two states, those at 4.8 and
6.4 MeV, were found in the E3-strength distribution
in the excitation-energy region extending up to
8 MeV. In addition to them, our analysis revealed
two more states, at 3.5 and 7.4 MeV. The separation
of these states from the background of the intense
3.0- to 3.2-MeV E2 transitions and the 7.2-MeV
E4 transition became possible only owing to the
application of our bin-by-bin fitting procedure instead
of attempts at separating peaks in the primary spec-
trum. The total value of B(E3) for the two highest
states at 6.5 and 7.4 MeV is in good agreement with
previous data, but the width of this summed peak
is evidently larger than our experimental resolution.
There is a 3− state at 7.49 MeV in the energy region
subjected to analysis here (see ENSDF). The state
at 4.8 MeV appeared to be weaker in our study
than in the previous studies; this is because of the
additional 5.1-MeV E4 transition that we observed
in this energy region.

Two E4 states were identified at 4.1 MeV and
7.2 MeV in [1]. No states at 4.1 MeV and 7.2 MeV
were observed in [5, 6], but a 2.54-MeV state, which
remained unnoticed previously, was revealed and
investigated in detail (up to 1.7 fm−1). Probably, this
state was not found in [1], because, in the case of low
momentum transfers, it was not seen in the primary
spectra against the background of the highly intense
PH
E2 states at 1.4 and 2.9 MeV. It is incomprehensible
why the 4.1- and 7.2-MeV states were not observed
in [5]. Our analysis revealed four states at 2.35, 4.3,
5.1, and 7.0 MeV. It is evident from Table 2 that
B(E4) appeared to be in good agreement only for one
state, that at 4.3 MeV. The B(E4) value obtained in
our study for the lowest of the E4 states is consid-
erably less than that in [5, 6], because we identified
an additional E5 state at 2.7 MeV in this region.
The 5.1-MeV state has already been mentioned in
discussing E3 transitions. The discrepancy between
the values of the reduced probability for the 7.0-MeV
state is explained by the 7.2-MeV E2 and 7.4-MeV
E3 states identified in our study. The 5.1-MeV state
was not observed previously in the relevant (e, e′)
reaction. However, there is a 4+ state at 4.95 MeV
in this energy region (see ENSDF); in addition, there
are many levels whose spin and parity have yet to
be identified, as in the case of the newly revealed E3
states. This state could not be observed in [1] because
of an insufficient energy resolution (the 5.1-MeV
state merges with the 4.85-MeV E3 state).

New States

Several states identified in our study were not
observed previously in the (e, e′) reactions; moreover,
there are no levels corresponding to these states in
the database maintained at the Brookhaven National
Laboratory.

For 54Fe, these are the E3 state at 3.5 MeV and
the E5 state at 2.7 MeV. The values of the reduced
probabilities of these states are more than three times
as great as the experimental uncertainty. Thus, we
can say that these states do indeed exist at a confi-
dence level exceeding 99%. The E3 state at 3.5 MeV
could correspond to the known state at 3.34 MeV
(see ENSDF), but this level has a positive parity in
the database. There is only one high-spin level in the
vicinity of the E5 state revealed in our study: this is
the 6+ level at 2.95MeV (see ENSDF). We could not
find anyE6 state. In our opinion, it is unlikely that the
known 6+ level manifested itself as an E5 state in our
data because of an imperfection of the experimental
procedure or data processing. First and foremost, it
is evident from Fig. 2 that the momentum-transfer
range overlaps the maximum of the E6 transition.
Therefore, the actual E6 strength must not be ab-
sorbed by E5 in fitting the theoretical form factors
to the experimental data in the range of high mo-
mentum transfers q′. It is more likely that the whole
cross-section fraction that was not described by the
theoretical E2–E5 form factors is accumulated in
the form factor corresponding to E6 transitions. In
addition, an adequate description of all levels observed
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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previously gives every reason to believe that the data-
processing procedure used in our study does not lead
to a redistribution of the reduced probability between
different multipoles.

The reduced probability for the 2.6-MeV E5 state
in 56Fe is only 2.5 times greater than its uncertainty;
therefore, we cannot say that this E5 state was iden-
tified. Our result can be considered only as a piece of
evidence that there is a level in this energy region.

CONCLUSION

Thus, we have obtained information about the
reduced probability and the multipolarity of transi-
tions for 12 low-lying states of the 54Fe nucleus and
10 states of the 56Fe nucleus. The bin-by-bin fitting
procedure applied to the scattered-electron spectrum
instead of a conventionally used analysis of individual
peaks has permitted us to remove the contradictions
that arose in comparing the results of previous stud-
ies. Five levels in the 54Fe nucleus and three levels in
the 56Fe nucleus were identified for the first time in the
relevant (e, e′) reactions; there is no information about
two of them in the present-day database of discrete
levels. For the most part, the reduced transition prob-
abilities agree with the results of previous studies; in
the cases where this is not so, the discrepancy can be
explained by the existence of transitions of a different
multipolarity.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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Abstract—The energy distributions of neutrons accompanying the fission of 232Th are measured by
the time-of-flight technique at the bombarding-neutron energies of En = 14.6 and 17.7 MeV. The data
obtained in this way are compared with the results of previous investigations. An excess of soft neutrons
that was observed in the experimental spectra of neutrons from 238U fission at En = 13.2, 14.7, 16.0, and
17.7 MeV in relation to the results of the calculations based on the model of two sources is also present
in the spectra for 232Th. The discrepancy between the results of the calculations and experimental data
disappears as soon as one assumes the presence of a third source that is related to neutron emission from
nonaccelerated fragments. c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Systematic experimental and theoretical (compu-
tational) investigations of the emission of secondary
neutrons from (n, xn′f) fission reactions revealed
changes in the shape of the spectra of prompt fission
neutrons upon going over from bombarding-neutron
energies of En = 2.9 and 5.0 MeV to higher energies
in the region En > 13 MeV [1–8]. In experiments
devoted precisely to studying the spectra of prompt
fission neutrons, a relative method of measurements
was implemented consistently and was shown to be
an efficient tool for overcoming various difficulties
that arise in solving the problem being considered
(suppression of the instability associated with long-
term measurements of the spectra of prompt fission
neutrons, determination of the detection efficiency for
secondary neutrons, etc.). For this purpose, measure-
ments for the induced fission of the nuclide being
studied and measurements for spontaneous 252Cf
fission, which had received quite a comprehensive
study, were performed simultaneously under condi-
tions that were as close as possible. The features
of prompt neutrons from the latter fission process
have the status of neutron references [9, 10]. For the
252Cf nucleus, the shape of the spectra of prompt
fission neutrons, NCf(E) = µ0(E)NM(E,TCf) with
TCf = 1.42 MeV, is rather close to that of a Maxwell
distribution NM(E,TCf). Modest deviations from it
are taken into account quite correctly by means of a
correction shape function µ0(E).

At the energies of En = 2.9 MeV [2–5] and
5.0 MeV [8] [which are below the emission-fission

*e-mail: svirin@ippe.obninsk.ru
1063-7788/04/6705-0890$26.00 c©
threshold—that is, the threshold for (n, n′f ) re-
actions], prompt fission neutrons originate from
fully accelerated excited fragments produced in the
fission of the compound nucleus A (target nu-
cleus plus one neutron). In this case, the measured
ratiosRi(E,En) = Ni(E,En)/NCf(E) of the prompt-
fission-neutron spectra Ni(E,En), i = 232Th,
235,238U, 237Np, which are being studied, to the
analogous spectrum for the spontaneous fission of
252Cf change nearly in direct proportion to the energy
E. This implies that the shape of the prompt-fission-
neutron spectra Ni(E,En) themselves is close to
that of a Maxwell distribution NM(E,Ti). The slope
of the dependence Ri(E,En) is determined by the
temperature difference TCf− Ti between the spectrum
of prompt fission neutrons for 252Cf and the analogous
spectrum for the isotope under study. The smaller this
difference, the more accurate the linear approximation
in question.

With increasing excitation energy

E∗ ≥
x∑
i=1

BA+1−i
n +BA−x

f

(where Bn is the neutron binding energy and Bf is
the height of the fission barrier, these quantities being
taken at the mass-number values indicated in the
superscripts), the emission here becomes a multi-
particle process, while fission appears to be energet-
ically feasible upon the emission of one (x = 1) or
several (x = 2, 3, ...) prefission neutrons. Thus, we
see that, in emission fission, there are two sources of
secondary neutrons: these are fully accelerated fission
fragments for postfission neutrons and excited fissile
2004 MAIK “Nauka/Interperiodica”
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nuclei, which emit prefission neutrons prior to under-
going disintegration.

Spectra measured by the same method in two
energy regions, below the emission-fission threshold
at En = 2.9 MeV [2–5] and 5.0 MeV [8] and well
above this threshold atEn = 13.2 MeV [8], 14.7 MeV
[2–5], and 16.0 and 17.7 MeV [6], make it possible
to compare the “pure” spectra of prompt fission neu-
trons from fully accelerated fragments with spectra
that receive contributions both from pre- and from
postfission neutrons. The shape of the distributions
R(E,En) at En = 2.9 and 5.0 MeV is close to that
of a linear function and serves as a reference shape,
against which effects associated with the emission of
prefission neutrons at En > 13 MeV manifest them-
selves most clearly. The reason responsible for one
of such effects was understood immediately [1–3]—
it is associated with the fact that the spectrum of
preequilibrium neutrons is cut off at the threshold for
the fission of the residual nucleus А− 1 formed upon
the emission of the first neutron. This effect manifests
itself as a maximum in the distribution R(E,En)
against the background of the nearly linear depen-
dence of the postfission component, the position of
this maximum being given by

E = Emax = En −BA−1
f . (1)

The maximum in question would not have been
observed if neutron emission had been determined
by the equilibrium mechanism, in which case the
evaporation spectrum is soft, the yield of neutrons
being low, a few orders of magnitude less than that
of preequilibrium neutrons in the vicinity of the above
maximum.

Under the assumption of two sources of prompt
fission neutrons, the distributions R(E,En) for En >
13 MeV were calculated within the statistical ap-
proach, the contribution of nonequilibrium neutrons
being taken into account on the basis of the exciton
model of preequilibrium decay [2, 3, 5, 7, 8]. The
results of those calculations comply with experimen-
tal data only at neutron energies in the region E ≥
2 MeV. In response to variations in the bombarding-
neutron energy, a maximum at high energies in the
distribution R(E,En) is shifted along the energy (E)
scale according to (1), this being consistent with the
qualitative interpretation of features associated with a
nonequilibrium emission of prefission neutrons.

At low energies (E < 2 MeV), there is an anoma-
lously high yield of soft neutrons in experimental dis-
tributions in relation to the results of the calculations.
The softness of the spectrum of anomalous neutrons
(they are anomalous in the sense that their spec-
trum is not reproduced theoretically within the tradi-
tional approach based on the model of two sources of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
prompt fission neutrons) makes it possible to observe
them against the background of the spectrum that
features pre- and postfission neutrons and which is
harder. By including in the calculation a third source
that is associated with the system of fragments prior
to their separation (that is, fragments that have al-
ready been formed, but which are still in contact—
nonaccelerated fragments [7, 8]), it is possible to ex-
plain the low-energy anomaly and to remove the dis-
crepancy between experimental data and the results
of the calculations, as was done for 238U at En =
13.2 MeV [8] and 14.7, 16.0, and 17.7 MeV [7].

With the aim of additionally confirming the ex-
istence of special features observed in the shape
of the spectra of prompt fission neutrons for En >
13 MeV and testing the model description outlined
above, neutron emission from the fission reaction
232Th(n, xn′f ) at En = 14.6 and 17.7 MeV was
investigated in the experiment reported in the present
article. From the practical point of view, these da-
ta are of importance for the FENDL library (for
thermonuclear facilities) and for the Russian library
BROND-3.

EXPERIMENTAL PROCEDURE

Our experiment was conducted in a continuous
neutron beam from the KG-2.5 cascade genera-
tor installed at the Institute of Physics and Power
Engineering (Obninsk). Neutrons of energy En =
14.6 and 17.7 MeV were obtained in the reaction
Т(d, n)4Не on solid-state ТТi targets. The spectra
of fission neutrons were measured by a time-of-flight
spectrometer over the secondary-neutron-energy
range 0.25–13 MeV. The spectrometer included a
detector of fission fragments (multilayer ionization
chamber), a shielded neutron detector, and electron-
ics that ensured the accumulation and preliminary
sorting of experimental information. The measure-
ments were performed over a flight base of length
1.7 m at an angle of 90◦ with respect to the primary-
neutron beam. In measuring the spectrum of prompt
neutrons with the aid of a four-section multilayer ion-
ization chamber, the same methodological approach
as in [2, 3] was employed in the present experiment.
Three sections of the chamber contained the 232Тh
isotope being studied, 12 layers in each section.
Fissile-substance layers 2 mg/cm2 in thickness and
100 mm in diameter were deposited onto the two sides
of an aluminum foil 0.05 mm thick. The total weight
of the isotope under study was 5.65 g. The fourth,
“monitoring,” section consisted of two single-sided
layers of the same nuclide, each containing 252Сf
nuclei uniformly distributed over its thickness. Each
section of the chamber was connected to an individual
time channel, and signals from the ionization fission
4
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Fig. 1. Experimental ratios R(E,En) of the spectra of
fission neutrons from the 232Th + n reaction to the spec-
trum of neutrons from the spontaneous fission of 252Cf
at the primary-neutron energies of En = (open boxes)
14.3 MeV [11], (closed circles) 14.6 MeV (our study),
and (open circles) 14.7 MeV [3] in Fig. 1a and at En =
17.7 MeV (our study) in Fig. 1b.

chamber were used to fix the time instants of fission
events. A more detailed description of the ionization
chamber containing 232Тh layers was given in [2, 3].

The neutron detector consisted of a stilbene crystal
of diameter 63 mm and height 39 m and a FEU-
30 multiplier phototube. At a primary neutron energy
of En ≈ 18 MeV, the shielding of the neutron de-
tector from background radiation presents a serious
problem. In our experiment, the very possibility of
detecting the effect depended on the quality of the
shielding. In view of this, the question of whether
the background from scattered neutrons and photons
can be suppressed was thoroughly explored by select-
ing the geometry of the shielding and by combining
its individual components, as well as by choosing a
shielding material.

A primary treatment of the instrumental spectra of
neutrons was begun by summing the results obtained
from individual measurements of the effect plus back-
ground for each section of the chamber. In order to
obtain a pure effect, the magnitude of the background
was determined by its average value over some time-
scale interval behind the position of a gamma peak.
P

In summing the neutron spectra from the individual
sections, we took into account the distinctions be-
tween the lengths of the flight base for each chan-
nel of fission-event detection. The minimum neu-
tron energy that could be recorded was determined
by the detector threshold Ethr = 250 keV. Informa-
tion obtained at secondary-neutron energies in ex-
cess of E = 350 keV could be considered to be reli-
able. The upper boundary of the outgoing-neutron-
energy range over which the spectra of prompt fission
neutrons were measured was determined primarily by
the statistics of counts and by the background condi-
tions of the experiment. The characteristic numbers
of counts for fission events and for accompanying
neutrons per minute (nf and nn, respectively) were
nf ≈ 3× 104 and nn ≈ 5. The number of neutrons
recorded over the total time of the measurements was
7× 104. The statistical error of the time-spectrum
points changed from 1.5% atE ≈ 1 MeV to 30% at a
neutron energy close to the upper boundary. The total
error in the ultimate results of the measurements was
somewhat larger because of errors in various correc-
tions that were introduced during data processing.

EXPERIMENTAL RESULTS

As in [6–8], the results of the present experiment
are given in Fig. 1 in the form of the directly mea-
sured ratios of the spectra of prompt fission neutrons,
N(E,En), for 232Th fission induced by neutrons of
energy En = 14.6 and 17.7 MeV to the spectrum of
neutrons, NCf(E), from the spontaneous fission of
252Cf:

R(E,En) = N(E,En)/NCf(E). (2)

Data processing was performed in such a way that
both spectra were normalized as

∞∫
0

N(E,En)dE =

∞∫
0

NCf(E)dE = 1

with allowance for the contribution from neutrons
of energy below the detection threshold, Е ≤ Ethr =
0.25 MeV. This correction does not introduce signif-
icant uncertainties in experimental results—specifi-
cally, in the mean energy and the mean number of
fission neutrons (Ē and ν̄, respectively)—since the
fraction of undetected neutrons is small, so that it is
straightforward to extrapolate the ratio in question to
E = 0.

In Fig. 1a, the ratio R(E,En) that we obtained at
En = 14.6 MeV is contrasted against the results of
earlier measurements at En = 14.7 MeV [3]. Within
the errors (which are much greater in the present
measurements than in [3]), the results of the two
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004



NEUTRON EMISSION FROM THE REACTION 232Th(n, xn′f ) 893
experiments are in satisfactory agreement with each
other. Also given here are the data for 232Th at En =
14.3 MeV that were obtained by Vasil’ev et al. [11]
over a narrower range of secondary-neutron energies
(0.25–5 MeV). It can be seen that the distributions
R(E,En) obtained in the aforementioned three ex-
periments have similar shapes. That the shapes of
the distributions obtained in the different experiments
are consistent, this being so even in the low-energy
region Е < 2 MeV, where an anomalously high yield
of soft neutrons was observed, gives every reason to
believe that this effect does indeed exist.

From Figs. 1a and 1b, it can be seen that the ratios
R(E,En) obtained at the primary-neutron energies
of En = 14.6 (14.7) and En = 17.7 MeV are similar.
In the high-energy section, both distributions exhibit
a maximum that is associated with the cutoff of the
spectrum of preequilibrium neutrons at the threshold
for the fission of the residual nucleus of mass num-
ber A− 1 (232Th). The position of the maximum in
the distributions is given by relation (1). At En =
17.7 MeV, the maximum in the high-energy part of
the distribution R(E,En) is shifted toward higher
secondary-neutron energies E in relation to the po-
sition of the maximum at En = 14.6 (14.7) MeV. Ac-
cording to (1), the magnitude of this shift corresponds
to the difference of the two primary-neutron energies.
It should be borne in mind that, because of a low yield
of prompt fission neutrons at high energies E and
because of the background conditions of the experi-
ment, it is very difficult to measure the shape of the
distributionR(E,En) in the vicinity of the maximum,
and the higher the value of En, the more serious the
difficulties involved in such measurements. For the
above energies of primary neutrons, the experimental
values of the mean energy and the mean multiplicity
of secondary neutrons accompanying the fission of
232Th are given in Table 1.

In the low-energy section, the distribution
R(E,En) exhibits a rise for E < 2 MeV. Within the
traditional concept of two neutron sources in the
emission-fission process, this rise must be associ-
ated with the evaporation component of prefission
neutrons. It will be shown below that, for the 232Th
nucleus, the experimental distributions at En =
14.6 (14.7) and 17.7 MeV feature an excess of soft
neutrons in relation to the results of the calculations
based on the model of two sources.

ANALYSIS OF THE SPECTRUM
OF NEUTRONS ORIGINATING

FROM THE EMISSION-FISSION PROCESS

The experimental energy distributions of neutrons
from the reaction 232Th(n, xn′f) were analyzed on
the basis of the same approach as that used in [7]
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
Table 1. Experimental values of the mean energy and the
mean multiplicity of neutrons accompanying the fission of
232Th

Ēn, MeV Ēexpt, MeV ν̄expt

14.6 1.87± 0.04 4.06± 0.10

14.7 [3] 1.84± 0.03 3.92± 0.09

17.7 1.95± 0.04 4.33± 0.13

in studying the emission of secondary neutrons ac-
companying 238U fission over a wide range of En
values (between 2.9 and 17.7 MeV). With allowance
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Fig. 2. RatiosR(E,En) of the neutron spectra studied in
the reaction 232Th(n, xn′f) to the spectrum of neutrons
from the spontaneous fission of 252Cf: (points) experi-
mental data, (solid curves) results of the calculation on
the basis of (3) (1) without and (2) with allowance for the
contribution of neutrons from nonaccelerated fragments,
(thin solid curves) description with the calculated cutoff
function fi(E,En) (10), (thick solid curves) description
based on the parametrization of fi(E,En) in the form of a
step function with a smoothed edge, and (dashed curves)
component of postfission neutrons from fully accelerated
fragments.
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for three sources of fission neutrons, the calculated
spectrum of prompt fission neutrons can be written
as

dν̄(E,En)
dE

=
dν̄faf(E,En)

dE
(3)

+
dν̄pre(E,En)

dE
+
dν̄naf(E,En)

dE
.

Here, each term is associated with one of the three
neutron sources, which come into play as the energy
of bombarding neutrons becomes higher. The first
term in (3) corresponds to the differential yield of
postfission neutrons from fully accelerated fragments.
In a general form, it can be represented as a superpo-
sition of two Maxwell distributions; that is,

dν̄faf(E,En)
dE

(4)

= α

xmax(En)∑
x=0

ν̄fA−xNM(E, βTx)
σfA−x
σf

.

The mean multiplicity ν̄fA−x in (4) was determined
for each fission chance (x = 0, 1, 2) by means of the
systematics of ν̄f from [12] and its extrapolation to
the region above the threshold for emission fission,
En > BA−1

f . The estimate Tx = (2/3)Ēfx was based
on the semiempirical Terrell formula [13]

Ēfx = a+ b
√
ν̄fA−x + 1, (5)

where the parameters take the values of a = 0.75 MeV
and b = 0.65 MeV [14], which are universal for all
nuclei. The expression on the right-hand side of (4)
involves the ratio σfA−x/σf , whose denominator is
the total fission cross section

σf (En) =
xmax(En)∑
x=0

σfA−x(En) (6)

and whose numerator is the cross section σfA−x for
the fission of the residual nucleus A− x formed upon
the emission of x neutrons, the latter cross section
being also referred to as that for (x+ 1)th-chance fis-
sion. Experimental information can be obtained only
for the total fission cross section. The partial compo-
nents σfA−x for 232Th are determined by decompos-
ing the total cross section σf into separate chances.
Here, we relied on the same method as that used in
analyzing the chance structure of the cross section
for 238U fission [7, 15]. The constant α is introduced
in order to construct a fit to experimental data and
to compensate for an inevitable uncertainty in the
description of ν̄fA−x; as was indicated above, this de-
scription is based on an extrapolation of the system-
atics of ν̄f from [12] to the region En > BA−1

f —that
is, to the region of the second and third plateaus of
P

the fission cross section. Since similar uncertainties
are inherent in the use of the systematics of T (En)
from [13], the quantities Tx in (4) were varied within
3% by means of the constant β.

According to currently prevalent concepts, which
have a sound experimental basis [16–19], excited
fission fragments accelerated owing to their mutual
Coulomb repulsion are the only source of secondary
neutrons below the threshold for emission fission
(En < BA−1

f ). In expression (3), underlying the cal-
culation of the spectrum, there therefore remains only
the first term,

dν̄(E,En)
dE

=
dν̄faf(E,En)

dE
. (7)

Concurrently, we must set xmax(En) = 0 in (4). For
this case, the results of relevant experiments and of
their analysis for the reaction 232Th(n, f ) at En =
2.9 MeV [2, 3] are given in Fig. 2. The observed shape
of the distribution R(E,En) (2) for postfission neu-
trons is rather close to that of a linear dependence. It is
described well by the ratio of the Maxwell distribution
for the 232Th nucleus being studied to that for the
spontaneous fission of 252Сf:

R(E,En) =
NM(E,T )
NM(E,TCf)

(8)

= (TCf/T )3/2exp
[
−TCf − T

TCfT
E

]
.

The slope of the corresponding line is deter-
mined by the temperature difference between the
neutron spectrum for californium and that for the
nucleus under study (232Th): TCf = 1.42 MeV and
T = 1.285 MeV.

As was indicated in [20], the emission of post-
fission neutrons has but a small effect on the ob-
servables of the fission process—for example, on the
mass–energy distributions of fission fragments. The
emission of prefission neutrons at En > BA−1

f leads
to more serious consequences, having a strong ef-
fect on the entire fission process. There appear new
possibilities, which are often referred to as fission
chances—that is, new reactions in which nuclei of
lower mass and lower excitation energy undergo fis-
sion. This creates considerable difficulties for study-
ing the energy dependence of the observables of the
fission process. The emission-fission process corre-
sponds to precisely this situation.

Distortions introduced in the shape of the postfis-
sion-neutron distribution (7) will then be determined
by the quantity dν̄pre(E,En)/dE. For the energies
of En = 14.6 (14.7) and 17.7 MeV, at which, in the
present experiment, A (233Th), A− 1 (232Th), and
A− 2 (231Th) nuclei undergo fission, the differential
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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yield of prefission neutrons consists of three compo-
nents and has the form [7]

dν̄pre(E,En)
dE

=
3∑
j=1

dν̄prej(E,En)
dE

(9)

= N11(E,En)
σfA−1(En)
σf (En)

+N12(E,En)
σfA−2(En)
σf (En)

+N22(E,En)
σfA−2(En)
σf (En)

,

where

Nxi(E,En)

=
dσnx(E,En)

dE
fi(E,En)

/∫
E

dσnx(E,En)
dE

× fi(E,En)dE
are the normalized (to unity) spectra of coincidences
between first-chance neutrons (x = 1) and events of
the fission of A− 1 (i = 1) and A− 2 (i = 2) nuclei
and between second-chance neutrons (x = 2) and
events of the fission of A− 2 (i = 2) nuclei. The
“cutoff” function fi(E,En) is the fission probability
(fissility) for the A− i (i = 1, 2) nucleus as expressed
in terms of the emitted-neutron energy E; that is,

fi(E,En) = PfA−i

(
Ui (10)

= E∗ −
i∑

x=1

BA−x+1
n − E

)
,

where E∗ = En +BA
n is the excitation energy of the

primary compound nucleus of mass number A (in
our case, this is 233Th). At excitation energies in
the region Ui ≤ BA−i

f , the fission of A− i nuclei
is energetically impossible (effects of tunnel fission-
barrier penetrability apart). The spectrum of first-
chance neutrons (x = 1) and the spectrum of first-
(x = 1) and second-chance (x = 2) neutrons are cut
off at, respectively, the energy E = E1 = En −BA−1

f

and the energyE = E2 = En−BA−1
n −BA−2

f . In [7],
the function fi(E,En) was simulated by a smoothed
step function. Along with a step function, we use
here a more realistic approximation obtained for the
function fi(E,En) (10) on the basis of a calculation
of the fission probabilities for A− 1 and A− 2 nuclei.
By way of example, the cutoff function f1(E,En) at
En = 14.7 MeV is shown in Fig. 3 for these two ver-
sions. No correction that would take into account the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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Fig. 3. Cutoff function f1(E,En) at En = 14.7 MeV:
(solid curve) result of the calculation by formula (10)
and (dashed curve) parametrization in terms of a steplike
dependence.

smearing of the upper boundary of the distributions
fi(E,En) was introduced.

The results obtained by describing the experimen-
tal distributions within the traditional approach of two
neutron sources [in this case, dν̄naf(E,En)/dE = 0
in (3)] are represented by the solid curves 1 in Fig. 2.
The effect stemming from the cutoff of the hard com-
ponent of first-chance (preequilibrium) neutrons at
the threshold for the fission of A− 1 nuclei (232Th)
and manifesting itself in the measured distributions
R(E,En) as a maximum at the neutron energy in (1)
is by and large reproduced by the results of the cal-
culations. Low statistics and unfavorable background
conditions of the experiment give no way to measure,
to a satisfactory precision, the shape of the distri-
bution in the vicinity of the high-energy maximum
at En = 17.7 MeV. Here, we can only state that the
experimental and the calculated distributions are in
qualitative agreement. Measurement of the distribu-
tions R(E,En) for emission fission at lower primary-
neutron energies in the rangeEn = 7–10 MeV, where
one can determine, to a high statistical accuracy,
the shape of prefission-neutron distributions against
the background of the postfission component, would
make it possible to answer the question of which
version of f1(E,En) complies with experimental data
better.

In just the same way as the distributionsR(E,En)
measured for 238U at En = 13.2 MeV [8] and 14.7,
16.0, and 17.7 MeV [7], the experimental distribu-
tions for 232Th at 14.7 MeV [3] and 17.7 MeV exhibit
an anomalously high yield of soft (E < 2 MeV) neu-
trons, which is not reproduced by calculations that
are based on the model of two neutron sources. At
first glance, it may seem that the anomalous yield
of soft neutrons has some bearing on the emission-
fission process, but, in fact, this is not so. Recently, we
4
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Table 2. Calculated values of the mean yield and the mean energy (in MeV) for various components of the spectra of
neutrons from 232Th fission

En = 14.7 MeV [3] En = 17.7 MeV

ν̄faf 2.706 Ēfaf 2.127 ν̄faf 2.974 Ēfaf 2.061

ν̄pre 1 0.376 Ēpre 1 2.430 ν̄pre 1 0.420 Ēpre 1 3.010

ν̄pre 2 0.148 Ēpre 2 0.878 ν̄pre 2 0.252 Ēpre 2 1.840

ν̄pre 3 0.148 Ēpre 3 0.676 ν̄pre 3 0.252 Ēpre 3 1.160

ν̄pre 0.672 Ēpre 1.702 ν̄pre 0.924 Ēpre 2.186

ν̄faf+pre 3.378 Ēfaf +pre 2.042 ν̄faf+pre 3.898 Ēfaf+pre 2.091

ν̄naf 0.546 Ēnaf 0.526 ν̄naf 0.432 Ēnaf 0.699

ν̄ 3.924 Ē 1.831 ν̄ 4.330 Ē 1.952

Note: Quoted in the table are the values of the mean yields and mean energies for (ν̄faf, Ēfaf) postfission neutrons from fully

accelerated fragments, (ν̄pre =
3∑
j=1

ν̄prej =
σfA−1

σf
+
σfA−2

σf
+
σfA−2

σf
, Ēpre =

3∑
j=1

Ēprej ν̄prej/ν̄pre) prefission neutrons and (ν̄prej , Ēprej)

their components, [ν̄faf+pre = ν̄faf + ν̄pre, Ēfaf+pre = (Ēfafν̄faf + Ēpreν̄pre)/ν̄faf+pre] the sum of post- and prefission neutrons, and (ν̄naf, Ēnaf)
neutrons from nonaccelerated fragments; also, ν̄ = ν̄faf + ν̄pre + ν̄naf and Ē is given by (13).
have analyzed the shape of the distribution R(E,En)
for the 238U nucleus at En = 7 MeV. This analysis
revealed that the shape calculated on the basis of
the two-source model is in excellent agreement with
experimental data over the entire range of secondary-
neutron energies at which the measurements were
performed (E = 0.14–15 MeV). The energy of 7 MeV
(beginning of the second plateau of the fission cross
section) is approximately 1 MeV higher than the
emission-fission threshold. At the same time, the ex-
perimental distribution at En = 13.2 MeV [8] (end
of the second plateau of the fission cross section)
displays an excess of soft neutrons in relation to the
results of the calculation within the same approach of
two sources.

In order to explain the low-energy anomaly in the
spectra of prompt fission neutrons for 238U at En ≥
13.2 MeV [7], the model underlying the calculations
was supplemented with a third source of secondary
neutrons that is associated with a dinuclear system
of already formed fission fragments that are not yet
separated—that is, with nonaccelerated fragments.
It was assumed that, in such a system, a statistical
equilibrium had been established with respect to all
degrees of freedom and that the lifetime of the system
was sufficient for a fragment to emit Ai (i = 1, 2)
neutrons, provided that its excitation energy satisfies
the condition

E∗
i0 = C(En +BA

n )
Ai
A

> BAi
n . (11)

The coefficientC specifies that fraction of the exci-
tation energy of the compound nucleus A which was
PH
transferred to internal degrees of freedom of already
formed fragments by the instant of their separation.
We bear in mind that the assumption that there exists
a long-lived dinuclear system does not have a solid
physical validation, but it enables us to derive, within
the statistical model, a relation for calculating the
spectrum of neutron emission (and to compare the
results of such a calculation with experimental data).
Specifically, we have

dν̄naf(E,En)
dE

=
σfA
σf

∑
Ai

Y (Ai)
∫
E∗
i0

G(E∗
i0, 〈E∗

i0〉)

(12)

×


∑
Zj

P (Ai, Zj)N(E,Ai, Zj , E∗
i0)


 dE∗

i0,

where Y (Ai) is the mass distribution of fission
fragments; G(E∗

i0, 〈E∗
i0〉) is the excitation-energy

distribution; P (Ai, Zj) is the charge distribution
of fission fragments at fixed values of Ai (as a
rule, a few isobaric nuclei correspond to them);
and N(E,Ai, Zj , E∗

i0) is the normalized (to unity)
spectrum of neutrons from fragments characterized
by fixed values of Ai, Zj , and E∗

i0 (for more details,
see [7]). In describing the experimental distributions
R(E,En), the coefficient C in (11) was an adjustable
parameter [note that the hardness of the spectrum
in (12) and the integrated yield of neutrons are
both dependent on this coefficient]. In the region
En ≥ 13.2 MeV, a satisfactory description of the
anomalously soft component in all of the distributions
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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under study for the 238U nucleus was attained in [7, 8]
at a single value of the coefficient C (C = 0.53).

The solid curves in Fig. 2 represent the results
obtained by analyzing the ratios R(E,En) measured
experimentally for 232Th at the bombarding-neutron
energies of En = 14.7 MeV [3] and 17.7 MeV (in
order to avoid encumbering the figure, we did not
present there the data at En = 14.6 MeV). The spec-
tra of neutrons from nonaccelerated fragments [see
Eq. (12)] were calculated for 232Th with the same
value of C = 0.53 as for 238U. It can be seen that
the excess of soft neutrons (those of energy in the
region Е < 2 MeV) in experimental distributions in
relation to the description within the model of two
sources (curve 1) is faithfully reproduced by the cal-
culation that takes into account three sources of sec-
ondary neutrons (curve 2). The spectra of neutrons
from nonaccelerated fragments originating from the
fission of compound nuclei 233Th are given in Fig. 4
for the primary-neutron energies of (curve 1) 14.7
and (curve 2) 17.7 MeV. For 232Th fission, Table 2
gives the calculated values of the mean multiplic-
ities and the mean energies of neutrons for vari-
ous components of their spectrum. From Fig. 4 and
from Table 2, it can be seen that the mean multi-
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
plicity of neutrons originating from nonaccelerated
fragments, ν̄naf (En), is lower at the higher energy
of En = 17.7 MeV than at 14.7 MeV. This apparent
contradiction is clarified if we notice that the ratio
σfA/σf , which directly appears in (12), is less at 17.7
than at 14.7 MeV. The first-chance-fission cross sec-
tion σfA decreases with increasing En. The emission
of neutrons from nonaccelerated fragments formed in
the fission of A− 1 and A− 2 nuclei (second and
third chance, respectively) is energetically impossible
at theEn values considered here. As can be seen from
Table 2, the mean energy Ēnaf(En) for the spectrum
of neutrons from nonaccelerated fragments increases
with increasing En. The trend toward a decrease
in the soft-neutron multiplicity ν̄naf(En) upon going
over from En = 14.7 MeV to En = 17.7 MeV clearly
manifests itself in the experimental distributions in
Fig. 2 as well.

MEAN ENERGIES OF NEUTRONS IN 232Th
FISSION

The values of Ē(En) for the prompt-fission-
neutron spectrum (3), which involves three compo-
nents, are determined by the relation
Ē(En) =
ν̄faf(En)Ēfaf(En) + ν̄pre(En)Ēpre(En) + ν̄naf(En)Ēnaf(En)

ν̄faf(En) + ν̄pre(En) + ν̄naf(En)
. (13)
Below the emission-fission threshold (En <
BA−1
f ), ν̄pre(En) = ν̄naf(En) = 0 in (13), so that the

mean energy is given by

Ē(En) = Ēfaf(En); (14)

that is, it is determined by the postfission component
exclusively, for which there is the well-known sys-
tematics developed by Terrell [13], who proposed the
parametrization of the mean energy in the form (5).
In this systematics, the quantities En, Z, and A,
which are three basic features of the nuclear-fission
process that are of interest in practice, are replaced
by the mean yield of neutrons from fully accelerated
fragments, ν̄faf(En, Z,A), which depends on them.

Above the emission-fission threshold, a source of
prefission neutrons comes into play, with the result
that the mean energy for the two-component spec-
trum of prompt neutrons assumes the form

Ē(En) =
ν̄faf(En)Ēfaf(En) + ν̄pre(En)Ēpre(En)

ν̄faf(En) + ν̄pre(En)
.

(15)

The systematics proposed in [21] (see Fig. 5) relies
on the ideas developed in [13] and takes into account
the contribution of prefission neutrons. It combines
the results obtained by theoretically calculating the
spectra of fission neutrons and their mean energy with
allowance for the multichance character of emission
fission. This systematics contains two types of cal-
culated curves for the mean energy: Ē(En) (15) for
the two-component spectrum of neutrons accompa-
nying the fission process (solid curve in Fig. 5) and,
separately, Ēfaf(En) for the spectrum of neutrons be-
longing to the postfission component (dashed curve
in Fig. 5); naturally, the two curves coincide below the
(n, n′f ) threshold.

Experimental information about the spectra of fis-
sion neutrons was basically obtained by two meth-
ods. One of these, a more straightforward and more
consistent method, employs detectors of fission frag-
ments. A neutron is recorded in coincidence with
a fission event. An implementation of this method
for fast primary neutrons is a challenging task, but
this eventually ensures a high quality of time and
amplitude features, a low detection threshold, and
a broad interval of measured energies of secondary
neutrons. In the present study and in [1–4, 6, 8, 22],
use was made of multilayer ionization chambers for
4
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Fig. 4. Differential yield of neutrons from nonaccelerated
fragments formed upon the fission of 233Th compound
nuclei [see Eq. (12)] at the primary-neutron energies of
En = (curve 1) 14.7 and (curve 2) 17.7 MeV.

fission-fragment detectors and a relative method of
measurements; this made it possible to obtain reliable
and high-quality experimental data on the spectra of
prompt fission neutrons and on the mean energies
Ē(En) (closed circles and closed boxes in Fig. 5).

The value of Ē(En) = 1.881 MeV is given in Fig. 5
(closed triangle) according to measurements for the
spectrum of neutrons from the fission of 232Th at
En = 14.3 MeV [11], these measurements being per-
formed by the time-of-flight method with the aid of
a pulsed source of primary neutrons and a fission
chamber. This value differs somewhat from the mean
energy presented for 232Th at En = 14.3 MeV in the
systematics from [21] (2.255 MeV) and borrowed
from an original study of the authors of that system-
atics. The reason behind this discrepancy was previ-
ously discussed in [6] for 238U. In [11], the spectra of
fission neutrons were approximated by the distribu-
tion

N(E) = α
E

T 2
e−E/T (16)

+ (1− α)
e−ω/Tf√
πωTf

e−E/Tf sinh
2
√
ωE

Tf
,

where the authors of those studies associated the
first term with prefission neutrons and the second
term with postfission neutrons from fully accelerated
fragments. According to [11], a fit to the experimental
spectrum of fission neutrons for 232Th leads to the
P

following values of the parameters in (16): T = 0.38±
0.04 MeV, Tf = 1.17 ± 0.02 MeV, and α = 0.25 ±
0.02. The mean energy for the distribution in (16) is

Ē = αĒI + (1− α)ĒII, (17)

where ĒI = 2T and ĒII = ω + (3/2)Tf (ω =
= 0.5 MeV). The systematics in [21] gives the value of
ĒII = 2.255 MeV. It is natural to associate this value
with the mean energy of the postfission component
and compare it with the dashed curve in Fig. 5. As
to the value of Ē(En) = 1.881 MeV from [11], it
complies with our results in Table 1.

The systematics constructed for Ē(En) within the
traditional approach of two sources of neutrons [see
Eq. (15)] accompanying the fission of actinide nuclei
yields mean-energy values (solid curve in Fig. 5)
that lie much higher than their experimental coun-
terparts at En = 14.3, 14.6, 14.7, and 17.7 MeV.
By estimating the mean energies on the basis of an
analysis of the experimental distributions of prompt
fission neutrons at En = 14.6, 14.7, and 17.7 MeV
with allowance for two sources according to Eq. (15)
(horizontal dash 1 in Fig. 5, a value on the solid curve
corresponding to it in the aforementioned systemat-
ics) and with allowance for three sources according
to Eq. (13) (horizontal dash 2 in Fig. 5), one can see
that only the calculation that takes into account three
sources is able to reproduce experimental data. The
horizontal dash 3 in Fig. 5 (a value on the dashed
curve corresponds to it in the systematics) shows the
level of the mean energy of the postfission component
of neutrons from fully accelerated fragments.

The second method for obtaining experimental da-
ta on the basis of the spectra of fission neutrons [23–
27] (open symbols in Fig. 5) employs metallic fissile
targets and a pulsed source for a time reference. Here,
there is no fission-fragment detector, which is present
in the first method; therefore, there is no selection
of events that are directly associated with a fission
event. The measured distribution involves, in addition
to fission neutrons, neutrons from elastic and in-
elastic scattering, their spectrum being concentrated
within the range 0 ≤ E ≤ En. At primary-neutron
energies in the region En ≤ 2 MeV, secondary neu-
trons of energy in the region E < Emin (Emin > En)
are discriminated. The measured spectrum of fission
neutrons lies in the energy region E ≥ Emin; that
is, in the low-energy region E < Emin, we have no
experimental information that would exert a sizable
effect on the sought value of the mean energy Ē(En).
In view of this, it is necessary to introduce corre-
sponding corrections in estimating the experimental
values of Ē(En) on the basis of the fission-neutron
spectrum. There are indirect data, including the val-
ues of Ē(En) for En > 2 MeV, which were obtained
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 5. Mean energies of neutrons originating from the
fission of 232Th target nuclei versus the primary neutron
energy En. Points represent experimental data obtained
in measurements with a fission chamber {(closed circles)
our study, (closed boxes) [2, 3], (closed triangles) [11],
and (closed diamonds) [22]} and in measurements with
a sample {(open circles) [23], (open diamonds) [24], (open
boxes) [25], (open triangles) [26], and (open inverted tri-
angles) [27]}. The results quoted in the systematics from
[21] are shown by the solid curve for the sum of pre- and
postfission neutrons and by the dashed curve for postfis-
sion neutrons. Also displayed in this figure are the results
of the present analysis at En = 14.7 and 17.7 MeV for
(dash 1) the case where the contribution of neutrons from
nonaccelerated fragments is disregarded, (dash 2) the
case where this contribution is included, and (dash 3) the
component of postfission neutrons.

from an analysis of the total neutrons spectrum, fea-
turing elastically and inelastically scattered neutrons
as well, this analysis resorting to theoretical models
and alien parameters. However, these data are hardly
reliable.

That the second source of neutrons (prefission
ones) comes into play is clearly manifested in a sharp
reduction of the total mean energy Ē(En) (solid curve
in Fig. 5) upon going over fromEn = 6 MeV toEn =
7 MeV. In addition to the hard spectrum of postfission
neutrons, there then arises the contribution from the
soft spectrum of prefission neutrons, which is con-
centrated in the energy range 0 ≤ E ≤ En −BA−1

f ,
their integrated yield in the region around the second
chance of the fission cross section being given by
ν̄pre(En) = σfA−1(En)/σf (En). A modest decrease
in the mean energy for postfission neutrons (dashed
curve in Fig. 5) is caused by the emergence of the
second, softer, component in the postfission-neutron
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
spectrum (4) (xmax(En) = 1). Our measurements of
2001 and 2002 for the spectrum of fission neutrons for
238U at En = 6 and 7 MeV confirm a decrease in the
mean energy upon going over from 6 to 7 MeV.

CONCLUSIONS

(i) We have measured the energy distributions of
neutrons from 232Th fission induced by bombarding
neutrons of energy En = 14.6 and 17.7 MeV. The
data at 17.7 MeV have been obtained for the first
time. Within the experimental errors, the distribu-
tions R(E,En) measured anew at En = 14.6 MeV
agree with previous data reported in [2, 3] for En =
14.7 MeV.

(ii) The shape of the distributions R(E,En) at
En = 14.6 (14.7 [2, 3]) and 17.7 MeV has the same
special features in the soft and in the hard section
as those observed previously in similar measurements
for 235U [2, 3] and 237Np [4] at En = 14.7 MeV and
for 238U at En > 13 MeV [2, 3, 6, 8]. The appear-
ance of a maximum in the hard part of R(E,En) in
the vicinity of the energy E = Emax = En −BA−1

f is
due to the fact that the spectrum of preequilibrium
neutrons is cut off at the threshold for the fission of
the A− 1 residual nucleus formed upon the emission
of the first neutron. In the low-energy section of the
distributions, there is an anomalous excess of soft
neutrons in relation to the results of the calculation
within the traditional approach relying on the model of
two sources of neutrons accompanying the emission
fission of heavy nuclei.

(iii) In just the same way as in describing the spec-
tra of neutrons from 238U fission at En > 13 MeV [7,
8], good agreement between the calculated and the
experimental distributions over the entire secondary-
neutron-energy range subjected to measurements,
including the low-energy section E < 2 MeV, has
been attained upon taking into account, in our model
calculation, the emission of neutrons from nonaccel-
erated fragments.

(iv) The experimental values of the mean energy
of secondary neutrons in emission fission via the
232Th + n reaction atEn = 14.6, 14.7, and 17.7 MeV
are well below the theoretical predictions based on
the model of two sources [previously, similar re-
sults were obtained for Ē(En) in the 235U + n and
237Np + n reactions at En = 14.7 MeV and in the
238U + n reaction at En > 13 MeV]. The inclusion
of additional neutron emission from nonaccelerated
fragments leads to agreement between the calculated
and experimental values of the above mean energies.
4
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in Н–Т Mixture*
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Abstract—Amethod for measurement of the muon-catalyzed fusion (µCF) parameters in an H–Tmixture
is proposed. The kinetics of the µ-atomic and µ-molecular processes preceding the pt reaction in the
ptµ molecule is described. Analytical expressions are obtained for the yields and time distributions of
γ quanta and conversion muons formed in nuclear fusion reactions in ptµ molecules. It is shown that
information on the desired parameters µCF can be found from the joint analysis of the time distributions
of γ quanta and conversion muons to be obtained in experiments with the H–T mixture at three (or more)
appreciably different atomic concentrations of tritium. The experiments with the H–Tmixture at the meson
facility PSI (Switzerland) were optimized to gain precise information about the desired µCF parameters.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of the reaction between light nu-
clei at ultralow energies (∼keV) is very important for
verification of fundamental symmetries in strong in-
teractions [1–3], the contribution of meson exchange
currents [4–7] and solution of some astrophysical
problems [8–10].

It is necessary to emphasize the importance of
studying muon-catalyzed fusion (µCF) in an Н–Т
mixture in order to obtain information about the char-
acteristics of the pt reaction in the ultralow energy
range (∼keV).1)

The pt reaction is one of the least known of all
processes of µCF in the mixture of hydrogen isotopes.
It is very important to gain information on reaction
characteristics of all muonic processes in the Н–
Т mixture (e.g., the rate of muon transfer from pµ
atom to triton, the rate of transition between hyperfine
levels of tµ atoms, the rate of formation of the ptµ
molecule, and the rate of nuclear synthesis in it) to in-
terpret correctly the results of experiments in the triple
mixture of hydrogen isotopesН–D–T and to describe
the kinetics of all processes occurring in the mixture.
From the theoretical point of view, the experiments
investigating µCF processes in an Н–Т mixture will

∗This article was submitted by the authors in English.
**e-mail: bystvm@nusun.jinr.ru
***e-mail: gerasimo@nusun.jinr.ru
1)In nuclear fusion reactions, in the muonic molecules of hy-
drogen isotopes, the astrophysical range of energies (∼keV)
is realized [11–14].
1063-7788/04/6705-0901$26.00 c©
allow one to test an algorithm describing a three-
body system of particles interacting according to the
Coulomb rule.

With classical accelerators, it is practically impos-
sible to study the pt reaction in direct collision at very
low energies (∼keV) because the cross sections of it
and intensities of proton (triton) beams are very small
[11–14].

At present, there are only two experiments [15, 16]
that investigate characteristics of µCF in an Н–Т
mixture.2) Only one [15] was performed with an Н–Т
mixture, and the second [16] with triple mixture Н–
D–T (no doubt, exact measurements of the parame-
ters of muon-catalyzed fusion of the pt reaction can
be achieved only with the double mixture Н–Т).

In this paper, we give a detailed description of the
kinetics of µCF for what is essential for data analysis
of experimental results with an Н–Т mixture. An
additional aim of this paper is to choose optimal con-
ditions of the experiment for precision investigation of
muonic processes in an Н–Т mixture.

2. KINETICS

The scheme of µ-atomic and µ-molecular pro-
cesses in an Н–Т mixture after the negative muons

2)Recently, at the TRIUMF meson facility, an investigation of
the processes of muonic atom (pµ, dµ, tµ) interaction with a
hydrogen lattice at a temperature of 3 K has been performed.
Preliminary results of the ptµ-molecule formation rate have
been obtained [17, 18].
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Kinetics of the muonic processes in Н–Т mixture.
are stopped is shown in Fig. l. As a result of the muon
transfers from pµ atom to tritium nuclei,

pµ+ t→ tµ+ p+ 183 eV, (1)

tµ atoms are formed with a kinetic energy of about
45 eV (the scheme in Fig. l corresponds to a very low
tritium concentration in the Н–Т mixture (≤1%),
which allows one to neglect direct capture of the
muon by tritium).

The ground state of the tµ atom is split into two
hyperfine structure levels with F = St + Sµ being the
total spin of the tµ atom (St = Sµ = 1/2 are the
spins of triton and muon, respectively) equal to F = 1
[(StSµ) ≡ (↑↑)] and F = 0 [(StSµ) ≡ (↑↓)]. The en-
ergy of hyperfine splitting of the tµ atom is equal to
0.24 eV. The initial population of hyperfine levels is
assumed statistically to be

η = 3/4 (F = 1), η = 1/4 (F = 0).

In the collision of tµ atoms with H2 or HT
molecules,

tµ+ H2 → ((ptµ)+pe)+ + e−, (2)

tµ+ HT→ ((ptµ)+te)+ + e−, (3)

the ptµmolecule is formed by the electric dipole tran-
sition El in excited state (J, ν) (where J and ν are
P

rotational and vibrational quantum numbers of the pt
system in ptµmolecule, respectively).

Upon the collision of the tµ atom with a triton
in the T2 or HT molecule, the formation of a ttµ
molecule is possible,

tµ+ T2 → ((tµt)+te)+ + e−, (4)

tµ+ HT→ ((tµt)pe)+ + e−, (5)

due to El dipole transition.
The competitive processes to the formation of a

ptµ molecule are free muonic decay (µ→ e− + νµ +
ν̃e), ttµ molecule formation [processes (4) and (5)]
and the tµ atom transition between hyperfine levels:

tµ(F = 1) + t
λ10−→ tµ(F = 0) + t, (6)

tµ(F = 0) + t
λ01−→ tµ(F = 1) + t. (7)

The transition (7) is possible only when the en-
ergy of the tµ atom fulfills the condition Etµ > ∆E =
0.24 eV (∆E is the energy of hyperfine splitting of the
ground state of the tµ atom). The probability of the
transition of a tµ atom between hyperfine levels due
to the collision of a tµ atom with a proton,

tµ(F = 1) + p

λ10−→
λ01←−

tµ(F = 0) + p, (8)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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according to [19, 20] is very small (because of the
small rate of spin-flip reactions due to spin–spin in-
teractions compared to the rate of charge-exchange
reactions).

The transition of a ptµ molecule from the state
with (Jν) = (10) to the ground state (Jν) = (00) pro-
ceeds very quickly (∼10−11 s) and the energy differ-
ence between two states is carried out by a conversion
electron.

The ground state of the ptµ molecule is split into
three sublevels with total momentum J = I + S =
3/2, 1/2, 1/2* [21, 22] (see Fig. 2).

The binding energy of the ground state of the ptµ
molecule (in the nonrelativistic case) equals ε00 =
214 keV.

As can be seen from Fig. 2 and Table l, the prob-
ability of the formation of a ptµ molecule in the state
with total momentum J and nuclear spin I = 1 in the
collision of a tµ atom in the orthostate with a proton
is smaller than that during the collision of a tµ atom
in the parastate (see Appendix A).

The populations of the states with different J , J,
I, and S (S is the total spin of ptµ molecule) depend
on the relations between the rate of loss of energy by
the tµ atom (due to elastic and nonelastic collisions
with H2, HT, and T2 molecules) and the rates of
processes (6), (7) (λ10, λ01), and also on the relation
between the above-mentioned rates and the rate of
ptµ-molecule formation.

The whole set of nuclear reactions occurring in the
ptµmolecule in different states is

ptµ→




4He + µ+ γ (19.76 MeV), (9a)
4Heµ(1s) + γ (19.77 MeV), (9b)
4Heµ(2p) + γ, (9c)
4Heµ(n > 2) + γ, (9d)
4He + µ (19.22 MeV), (9e)
4Heµ+ e+ + e−, (9f)
4Heµ+ γ + γ. (9g)

The production of 19.8-MeV γ quanta (M1 tran-
sition) is possible only from the state of a ptµmolecule
with the total nuclear spin I = 1 [reactions (9a)–
(9d)].

Nonradioactive transitions (9e) and (9f) proceed
dominantly via the monopole E0 transition. The
probability for the reaction channel (9g) is negligibly
small.

The values of the partial rates for the different ptµ
decay channels can be written as [21]

λptf,i(J) = ρ(W 0
JK

i
0 +W 1

JK
i
1), (10)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
 

5

65

–134

(J

 

ν

 

)

 

≡

 

(00)

 
ε

 

J

 

ν

 
J

 
, meV

 
J

 

3/2

1/2

 

*

 

1/2

 
W

 

J

 
1

 

0

0.967

0.033

 
W

 

J

 
0

 

1

0.033

0.967

Fig. 2. Scheme of the energy sublevels of ptµ-molecule
ground state [21]: W 0

J and W 1
J are the probabilities that

the sum of spins of proton and triton in the ptµ molecule
(I = Ip + It) in the state with angular momentum J
equals 0 and 1, respectively.

where i ≡ γ, µ, e+, e−, 2γ; ρ is the density of the
probability that the distance between the proton and
triton in the ptµmolecule equals 0; andKi

0,K
i
1 are pt

reaction constants for theS wave in the nuclear states
with I = 0 (singlet) and I = 1 (triplet), respectively.

For the theoretical description of the pt reaction,
the resonant model of the existence of 4He nuclei in
excited state 0+ near the threshold of this reaction
is used. It is seen from Fig. l that transitions (6),
(7) change the populations of the state of the ptµ
molecule (the population of the state with J = 3/2
decreases; therefore, together with the ptµ-molecule
formation, the process of thermalization of tµ atoms
proceeds), which can change not only the yield of
the reaction products (9), but also the ratio between
the partial probabilities for different channels of the
reaction.

Below, the kinetics of the ptµ cycle is presented
under the assumption that the rates of all muonic
processes in the Н–Т mixture do not depend on
energy and that thermalization of tµ atoms occurs
sufficiently fast. The expected average time of ther-
malization of tµ atoms (according to ourMonte Carlo
calculations) ttherm ≈ 10–30 ns (depending on the
density of the target) is considerably smaller than
characteristic times of all other muonic processes in
the Н–Т mixture.

The yields and time distributions of γ quanta with
energy 19.8 MeV and the conversion muons with
energy 19.2 MeV, formed in the pt reaction, can be
described by the following expressions:

dNγ

dt
= Aγ1e

−λ1t +Aγ2e
λ2t +Aγ3e

−λ3t +Aγ4e
−λ4t,

(11)

dNµ

dt
= Aµ1e

−λ1t (12)

+Aµ2e
−λ2t +Aµ3e

−λ3t +Aµ4e
−λ4t +Aµ5e

−λ5t,

Nγ =
Aγ1
λ1

+
Aγ2
λ2

+
Aγ3
λ3

+
Aγ4
λ4

, (13)
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Table 1. The population of ptµmolecule levels formed in the collision of a tµ atom in the parastate (F = 0) or orthostate
(F = 1) [22] with a proton [εJν is the energy of the stationary state of the ptµmolecule (Jν) in the nonrelativistic case; εJJν
is the energy of the stationary state of the molecule ptµ (Jν) with total momentum J deduced from εJν ; aJJν(↑↓), aJJν(↑↑)
are the populations of the state (J, ν,J) of the ptµmolecule created in the collision of a tµ atom in the parastate (F = 0)
or orthostate (F = 1), respectively, with a proton]

J ν εJν , eV J εJJν , eV aJJν(↑↓) aJJν(↑↑)
1/2∗ 0.0046 0.1120 0.2960

0 0 −214.0 1/2 −0.1344 0.8880 0.0373

3/2 0.0649 0 0.6667

0.0053 0.0256 0.1026

1/2 −0.1249 0.3076 0.0086

0.0555 0.0001 0.1111

1 0 −99.0 0.0083 0.0548 0.2039

3/2 −0.1262 0.6119 0.0183

0.0608 0 0.2222

5/2 0.0594 0 0.3333
Nµ =
Aµ1
λ1

+
Aµ2
λ2

+
Aµ3
λ3

+
Aµ4
λ4

+
Aµ5
λ5

, (14)

λ1 = λ0 + λppµϕCp + λptϕCt, (15)

λ2 = λ0 + λptµϕCp + λttµϕCt + λ10ϕCt, (16)

λ3 = λ0 + λptµϕCp + λttµϕCt, (17)

λ4 = λ0 + λptf (I = 1) , (18)

λ5 = λ0 + λptf (I = 0) , (19)

λ0 = 0.455 × 106 s−1,

Cp + Ct = 1,

where Aγ1–Aγ4 , A
µ
1 –Aµ4 are the normalized coeffi-

cients given in Appendix B; Nγ and Nµ are the yields
of γ quanta and conversion muons, respectively;
λ0 = 0.455 × 106 s−1 is the free muon decay rate;
λpt, λ10, λptµ are the rates of the muon transition
from pµ atom to triton, of the transition of tµ atom
from the state with F = 1 to the state with F =
0, and of the ptµ molecule formation, respectively
(the above values are reduced to liquid hydrogen
density, n0 = 4.25 × 1022 cm−3); λppµ, λttµ are the
ppµ- and ttµ-molecule formation rates; λptf (I = 0) =

λptf,µ(I = 0) + λptf,ee(I = 0), λptf (I = 1) = λptf,γ(I =

1) + λptf,µ(I = 1) + λptf,ee(I = 1) are the total rates of
nuclear synthesis in the ptµmolecule for the total spin
PH
of proton and triton equal to 0 and 1, respectively;
λptf,µ(I = 0), λptf,µ(I = 1) are partial rates of nuclear
synthesis in the ptµ molecule with muon production
for the total spin of proton and triton equal to 0 and
1, respectively, and λptf,γ(I = 1) is the rate of nuclear
synthesis in the ptµ molecule in the state I = 1 with
γ-quanta production; λptf,ee(I = 0), λptf,ee(I = 1) are
the rates of nuclear synthesis in the ptµmolecule with
the formation of an electron–positron pair for the total
spin of p and t equal to 0 and 1, respectively; Cp and
Ct are atomic concentrations of protium and tritium
in the Н–Т mixture; and ϕ is the density of the Н–Т
mixture reduced to liquid hydrogen density.

The measurement of the synthesis rate in the ptµ
molecule with the production of conversion muons,
λptf,µ(I = 0), is very important and will allow one to
verify the validity of the hypothesis of the existence
of a threshold resonance in the fusion channel (and
to check the charge distribution in the system with
A = 4).

Having time distributions of γ quanta with en-
ergy 19.8 MeV [reactions (9a)–(9d)] and conver-
sion muons with energy 19.2 MeV [reaction (9e)]
or electron–positron pair [reaction (9f)] for different
tritium concentration Ct, using Eqs. (11)–(19), one
can derive unknown parameters: λpt, λ10, λptµ, λ

pt
f

(I = 1), and λptf,µ (I = 0). We assume that the values
of parameters λppµ, λttµ are known (the value λppµ
was taken as an average from [18, 23–27], λttµ from
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Table 2. The experimental and theoretical values of the parameters of the µCF process in the Н–Т mixture

Experiment Theory

Н–Т [15] Н–D–T [16] Н–Т [17] Н–Т [18] [14] [21]

λpt [109 s−1] 9.3± 1.5 5.86± (0.10)stat

λ10 [109 s−1] 6.0± 0.5 1.0± 0.2

λptµ [106 s−1] 7.5± 1.3 5.8± 0.4 0.4

λptf (I = 1) [104 s−1] 6.5± 0.7 7.0± 1.2 ≈ 1800 7

λptf (I = 0) [102 s−1] (15± 4)× 102 8.6

λptf,γ(I = 1) [106 s−1] 0.07

λptf,ee(I = 1) [102 s−1] 2.4

λptf,ee(I = 0) [102 s−1] 3.6

λptf,µ(I = 1) [s−1] 0.35

λptf,µ(I = 0) [102 s−1] 103–104 5± 1

λptf,µ(I = 1)

λptf (I = 1)
10−5 5× 10−6

λptf,µ(I = 0)

λptf,ee(I = 0)
≈ 1 0.73
[28], and the remaining parameters were taken from
[21, 22].

This approach is valid because the yields and time
distributions of the products from different channels
of the pt reaction require the same µCF parameters,
which, on the one hand, can guarantee correct in-
terpretation of the results and correct estimation of
systematic errors and, on the other hand, can increase
the accuracy of measured parameters.

3. OPTIMIZATION AND DESCRIPTION
OF RESULTS

The existing theoretical and experimental parame-
ters describing the ptµ cycle are presented in Table 2.

There also exist some other theoretical estimates
of the above parameters not shown in the table:

λpt = 7.5× 109 s−1 [20], (7.0–8.0) × 109 s−1

at T = 300–30 K [29], 5.8 × 109 s−1 [30],
5.5× 109 s−1 [31], 5.7 × 109 s−1 [32];

λ10 = 0.89× 109 s−1 [20],
0.91 × 109 s−1 [33], 1.3× 109 s−1 [34];

λptµ = 6.5× 106 s−1 [35], 6.38 × 106 s−1 [36];
λptf (I = 1) = 0.5× 106 s−1 [37],3)

3)This value was obtained according to the formula λptf (I =

1) = (4/3)K0ρ0, using pt reaction constants K0 from [37]
and [38] and ρ0 from [39].
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
0.13 × 106 s−1 [39]4), 0.008 × 106 s−1 [42].4)

As is shown, there is a big difference between ex-
perimental and theoretical values of some parameters
like λpt, λ

pt
f (I = 1), and λptf (I = 0). Regarding the

rate of ptµ molecule formation (λptµ), there is strong
disagreement between theory and experiment.

It is shown from Table 2 that it is necessary to
measure fundamental characteristics of µCF in the
Н–Т mixture to explain the nature of the difference
between theoretical and experimental values. Figure 3
shows the yield of γ quanta and conversion muons
per one muon stopped in the Н–Тmixture [calculated
according to formulas (13) and (14)] as a function of
the tritium concentration Ct for a density of the Н–Т
mixture equal to the density of liquid hydrogen,ϕ = 1.
Comparing obtained dependences with correspond-
ing values from papers [16], one can notice differences
not only in shape but also in absolute values of the
conversion muon yield for the same values of Ct. The
reason for such discrepancies is not clear.

According to [16], the maximum values of the γ-
quanta and conversion muon yields, calculated per
onemuon stopped in theН–Тmixture, equalNmax

γ ≈
4)The estimate of these values was obtained using the
cross section σ(n, γ) = 55 ± 3 µb of the mirror reaction
3He(n, γ)4He [40, 41].
4
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Fig. 3. The yields of γ quanta (triangles) and conversion
muons (circles) from pt fusion as a function of tritium
concentration.

0.11 (forCt ≈ 6× 10−2) andNmax
µ = 0.015 (forCt =

3× 10−3); in the present paper, Nmax
γ ≈ 0.10 (Ct ≈

8× 10−2),Nmax
µ ≈ 2.0× 10−4 (Ct ≈ 3× 10−3).

The ratio between yields of the conversion muons
and γ quanta as a function of tritium concentration
is shown in Fig. 4. The distinguishing feature of this
dependence is that the ratio Nµ/Nγ is practically
constant for a tritium concentration larger than 0.2.
Such behavior of the Nµ/Nγ ratio can be explained
by the existence of the Gershtein–Wolfenshtein effect
predicted [43] and verified before for muon-catalyzed
fusion in an H–Dmixture [24].

There are seven unknown parameters εγ , εµ,
λptf,µ(I = 0), λptf (I = 1), λ10, λptµ, λpt in expressions
(11)–(14), and to determine them with sufficient
accuracy, three exposures of the muon beam in the
Н–Т mixture for three tritium concentrations are
required. Really, there are six unknown parameters,
but the quantity λptf (I = 1) is determined from the

slope of the exponent with index λ4: λ
pt
f (I = 1) =

λ4 − λ0 [see expression (18)].
According to [21], the partial rates of nuclear M1

transition in a ptµ molecule with emission of a con-
version muon (λptf,µ(I = 1)) and electron–positron

pair (λptf,ee(I = 1)) are negligible in comparison with

λptf,γ(I = 1). Therefore, the following ratio is valid:

λptf,γ(I = 1) + λptf,µ(I = 1) + λptf,ee(I = 1)

= λptf (I = 1) ≈ λptf,γ(I = 1).

The accuracy of estimating these parameters
depends on the statistics of detected events in the
PH
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Fig. 4. Ratio between yields of conversion muons (Nµ)
and γ quanta (Nγ) as a function of tritium concentration.

experiment. In principle, the rates of the processes
λptf,γ(I = 1), λ10, λptµ, λpt can be estimated from
the slopes of exponents with indices λ1, λ2, λ3,
λ4 [expressions (15)–(18)]. The value λptf,µ(I = 0)
cannot be experimentally found from the slope of
the exponent with index λ5(λ5 = λptf (I = 0) + λ0)

because the value λptf (I = 0) is very small (λptf (I =
0) = 5× 102 s−1 [21]) compared to λ0(λ5 ≈ λ0).
Therefore, the value λptf,µ(I = 0) can only be found
by analyzing the factor Aµ5 before the exponent with
index λ5 ≈ λ0 in expression (12).

Below, as an example of Н–Т experiment opti-
mization, the performance of an experiment using
the muon channel µE4 of the PSI meson facility
(Switzerland) will be considered. As a target, it is
supposed to use liquid hydrogen with tritium con-
centration Ct less than 10%. This value of tritium
concentration is dictated by safety conditions.

The optimization of the planned experiment re-
quires finding three tritium concentrations and corre-
sponding times of the exposures, on the muon chan-
nel, so that the errors of the determination of unknown
parameters will be minimal (this means that the sum
of the squares of the relative errors of the desired
parameters is minimal in the interval Ct = 0–0.1).

As input data, the following values were used:
Nµstop = 104 s−1 [44];

εγ = 2× 10−5; εµ = 5× 10−4;
λptµ = 7.5× 106 s−1 [16];

λptf,γ(I = 1) = λptf (I = 1) = 7× 104 s−1 [16, 21];

λptf,µ(I = 0) = 5× 102 s−1 [21];

λttµ = 1.8 × 106 s−1 [28];
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 5. The time distributions of pt fusion γ quanta
for three different values of tritium concentrations: (1)
Ct = 5 × 10−4, (2) Ct = 6 × 10−2, (3) Ct = 1 × 10−1.
The curves are the result of fitting of the simulated time
spectra; the indicated bars are the statistical errors.

λpt = 9.3 × 109 s−1 [16]; λ10 = 1.0× 109 s−1 [16];
ϕ = 1.0; Ct = 0–0.10.

For the purpose of choosing optimal experimental
conditions, it was assumed that the total time of ex-
posure for three different tritium concentrations was
700 h.

The time for each of three exposures is determined

as t1 : t2 : t3 =
√
n

(3)
γ :

√
n

(2)
γ :

√
n

(1)
γ , where n(1)

γ ,

n
(2)
γ , n(3)

γ are the yields of γ quanta per one second in
the exposures 1, 2, 3, respectively.

As a result of the combined χ2 analysis of the
calculated six time distributions of γ quanta and con-
version muons (theMonte Carlo method was used for
each of the three exposures to obtain the simulated
experimental time distributions of γ quanta and con-
version muons), we have found three optimal values
of tritium concentrations:5) Ct = 5× 10−4, 6× 10−2,
1× 10−1.

Figures 5 and 6 show the calculated time distribu-
tions of the detected γ quanta with energy 19.8 MeV
and conversion muons for three chosen tritium con-
centrations. Figure 7 shows the calculated parameter
errors as functions of the statistics of detected events.

These parameter error dependences correspond to
the approximation of the simulated γ-quanta and
conversion muon experimental time distributions by
expressions (11)–(14) with unknown parameters εγ ,
εµ, λptµ, λ10, λpt, λ

pt
f,γ(I = 1). It should be pointed

5)Theminimumofχ2 for different combinations of three tritium
concentrations corresponds to the chosen set of three Ct.
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out that, in such case, the λptf,µ(I = 0) was fixed and

equal to 5× 102 s−1 [21].

As can be seen, a sufficient total time of statis-
tics gathering for determination of parameters λptµ,
λptf,γ(I = 1), λpt with accuracy of∼10% is∼300 h.

As for the transition rate between hyperfine levels
of tµ atom λ10 (curve 2 in Fig. 7), the uncertainty of
this magnitude is∼100% for the same time gathering
statistics. For the statistics gathering time of 600 h,
the accuracy of λ10 determination is 75%.

From the proceeding, it may be seen that the result
of joint analysis of γ-quanta and conversion muon
time distributions obtained at three chosen tritium
concentrations is weakly sensitive to the value of λ10.

More precise measurement of λ10 is possible by
substantially increasing the collection statistics and
the range of variation of Н–Т mixture density and
tritium concentration.

The next step of the µCF parameter error calcu-
lation has been done setting εγ and εµ, which are
known with an accuracy of 5% from additional ex-
periments. The results of these calculations are pre-
sented in Fig. 8. As can be seen, the possibility of
determining, for the first time, information about the
fusion rate λptf,µ(I = 0) appeared. This circumstance
is very important for correct description of the pt-
reaction mechanism. The relative errors of other µCF
parameters in the Н–Т mixture for optimization with
known parameters εγ and εµ are less than the cor-
responding values from previous optimization at the
same gathering times of statistics.
4
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Fig. 8. The dependences of the µCF parameter relative
errors on statistics gathering time (εγ and εµ are known
from additional experiment). Curves 1–4 correspond to
Fig. 7; curve 5 shows ∆λptf,µ(I = 0)/λptf,µ(I = 0).

From the presented analysis of the µCF kinetics
in the Н–Т mixture, one can conclude that, from the
experiment performed for three different tritium con-
centrations, the unknown parameters of µCF (λptµ,
λptf,γ(I = 1), λpt) can be obtained with sufficient
accuracy. Simultaneous measurement of yields and
time distributions of γ quanta and conversion muons
will allow one to find not only the ratio of probabilities
for the radiation and nonradiation channel of the
pt reaction, but also their exact values. Thus, the
possibility exists to measure the fusion rate occurring
in the ground state of the ptµmolecule due toE0 and
M l transitions with the conversion of muons and γ
quanta, respectively.
P

The measurement of γ-quanta and conversion
muon detection efficiencies in additional experiments
will allow one to obtain the value of λptf,µ(I = 0) and to
decrease the relative errors of µCF parameters such
as λptµ, λ10, λpt, λ

pt
f,γ(I = 1).

In addition, the accuracy of λ10 can be improved
due to the measurement and joint analysis of γ quan-
ta, conversion muons, and Auger electrons emitted
upon deexcitation of ptµ molecules formed in the
(Jν) = (10) state.
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APPENDIX A

The Probabilities of ptµ Formation

WF=0
ptµ (J = 1/2∗; I = 1)

= a
1/2∗

00 (↑↓) ·W 1
1/2∗ = 3.7× 10−3;

WF=0
ptµ (J = 1/2; I = 1)

= a
1/2
00 (↑↓) ·W 1

1/2 = 8.59 × 10−1;

WF=0
ptµ (J = 1/2; 1/2∗; I = 1)

= WF=0
ptµ (J = 1/2∗; I = 1)

+WF=0
ptµ (J = 1/2; I = 1) = 8.62 × 10−1;

WF=1
ptµ (J = 1/2; I = 1)

= a
1/2
00 (↑↑) ·W 1

1/2 = 3.6× 10−2;

WF=1
ptµ (J = 1/2∗; I = 1)

= a
1/2
00 (↑↑) ·W 1

1/2∗ = 9.8× 10−3;

WF=1
ptµ (J = 1/2; 1/2∗; I = 1)

= WF=1
ptµ (J = 1/2; I = 1)

+WF=1
ptµ (J = 1/2∗; I = 1) = 4.58 × 10−2;

WF=1
ptµ (J = 3/2; I = 1)

= a
3/2
00 (↑↑) ·W 1

3/2 = 6.67 × 10−1;
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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WF=1
ptµ (J = 3/2; 1/2∗; 1/2; I = 1) = 7.13 × 10−1;

WF=1
ptµ (J = 1/2; I = 0)

= a
1/2
00 (↑↑) ·W 0

1/2 = 1.22 × 10−3;

WF=1
ptµ (J = 1/2∗; I = 0)

= a
1/2∗

00 (↑↑) ·W 0
1/2∗ = 0.286;

WF=0
ptµ (J = 1/2; I = 0)

= a
1/2
00 (↑↓) ·W 0

1/2 = 2.93 × 10−2;

WF=0
ptµ (J = 1/2∗; I = 0)

= a
1/2∗

00 (↑↓) ·W 0
1/2 = 0.108,

whereWF
ptµ(J, I) is the probability of a ptµ formation

in the state with total angular momentum J and
nuclear spin I in the collisions of a tµ atom with a
spin F and an H2 molecule.

APPENDIX B

The Coefficients Aγ1–Aγ4 and Aµ1–Aµ5

Aγ1 = A

(
1

λ1 − λ2

k + l +m

λ1 − λ4

+
1

λ1 − λ3

n+ p

λ1 − λ4

(
1
3
− λ10ϕCt
λ1 − λ2

))
,

Aγ2 = − A

(λ1 − λ2)(λ2 − λ4)

×
(

(k + l +m)− λ10ϕCt
λ2 − λ3

(n+ p)
)
,

Aγ3 = − A

λ1 − λ3

n+ p

λ3 − λ4

(
1
3

+
λ10ϕCt
λ2 − λ3

)
,

Aγ4 =
A

λ1 − λ4

×
(
k + l +m

λ2 − λ4
+

n+ p

λ3 − λ4

(
1
3

+
λ10ϕCt
λ2 − λ4

))
,

A =
3
4
NµstopλptϕCtλptµϕCpλ

pt
f,γ (I = 1) εγ ,

k = WF=1
ptµ (J = 3/2; I = 1) = 6.67 × 10−1,

l = WF=1
ptµ (J = 1/2; I = 1) = 3.6 × 10−2,

m = WF=1
ptµ (J = 1/2∗; I = 1) = 9.8 × 10−2,
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n = WF=0
ptµ (J = 1/2; I = 1) = 8.59 × 10−1,

p = WF=0
ptµ (J = 1/2∗; I = 1) = 3.7 × 10−3,

Aµ1 = A1

(
1

λ1 − λ2

(
λptf,µ (I = 1)

λ1 − λ4
(k + l +m)

+
λptf,µ (I = 0)

λ1 − λ0
(r + s)

)

+
(

1
3
− λ10ϕCt
λ1 − λ2

)
1

λ1 − λ3

×
(
λptf,µ (I = 1)

λ1 − λ4
(n+ p) +

λptf,µ (I = 0)

λ1 − λ0
(t+ u)

))
,

Aµ2 = − A1
λ1 − λ2

(
λptf,µ (I = 1)

λ2 − λ4
(k + l +m)

+
λptf,µ (I = 0)

λ2 − λ0
(r + s)− λ10ϕCt

λ2 − λ3

×
(
λptf,µ (I = 1)

λ2 − λ4
(n+ p) +

λptf,µ (I = 0)

λ2 − λ0
(t+ u)

))
,

Aµ3 = − A1
λ1 − λ3

×
(
λptf,µ (I = 1)

λ3 − λ4
(n+ p) +

λptf,µ (I = 0)

λ3 − λ0
(t+ u)

)

×
(

1
3

+
λ10ϕCt
λ2 − λ3

)
,

Aµ4 =
A1λptf,µ (I = 1)

λ1 − λ4

[
1

λ2 − λ4
(k + l +m)

+
1

λ3 − λ4
(n+ p)

(
1
3

+
λ10ϕCt
λ2 − λ4

)]
,

Aµ5 =
A1λptf,µ (I = 0)

λ1 − λ0

×
[

r + s

λ2 − λ0
+

t+ u

λ3 − λ0

(
1
3

+
λ10ϕCt
λ2 − λ0

)]
,

A1 =
3
4
NµstopλptϕCtλptµϕCpεµ,

r = WF=1
ptµ

(
J =

1
2
; I = 0

)
= 1.22 × 10−3,

s = WF=1
ptµ (J = 1/2∗; I = 0) = 0.286,

t = WF=0
ptµ

(
J =

1
2
; I = 0

)
= 2.93 × 10−2,
4
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u = WF=0
ptµ (J = 1/2∗; I = 0) = 0.108,

where Nµstop is the number of muons stopped in the
Н–Т mixture, and εγ , εµ are the efficiencies of the
detection of γ quanta from reactions (9a)–(9d) and
conversion muons from (9e), respectively.
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NUCLEI
Theory
Single-Particle Levels and Spin–Orbit Splitting in the Vicinity
of the Doubly Magic Nucleus 48Ca

V. I. Isakov*

Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, 188300 Russia
Received March 5, 2003

Abstract—On the basis of a detailed analysis of available experimental data, the spectrum of single-particle
states and the isotopic dependence of spin–orbit splitting are determined for nuclei in the vicinity of the
doubly magic nuclide 48Ca. The spectrum of excited states of the isobaric nucleus 48Sc is calculated.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The energy spectrum of mean-field single-particle
states is among the most important features of a
nucleus that underlie all microscopic descriptions of
nuclear structure and which determine, among other
things, the shell properties of nuclei. One of the meth-
ods for determining single-particle energies consists
in calculating them within mean-field models, which
may be based on either a phenomenological approach
employing a mean nuclear potential of the Woods–
Saxon type, or an approach relying on self-consistent
calculations of the Hartree–Fock type, or the ap-
proximation of meson–nucleon phenomenology like
that in the Walecka model and its further modifica-
tions. Alternatively, single-particle energies can be
extracted from experimental data. Here, however, one
must take into account the problem that, in actual
nuclei, single-particle modes are mixed with more
complex excitation modes, with the result that there
occurs a redistribution of the single-particle strength
(so-called configuration mixing). This effect is rather
small in nuclei of the magic nucleus ± nucleon type
if the single-particle energy gap between the shells
is large (as is the case for “good” magic nuclei like
132Sn and 208Pb), but the spreading of single-particle
states over levels belonging to the quasiparticle plus
phonon type may occur here as well. In the case of a
small energy gap, configuration mixing may become
very strong. Here, stripping (pickup) reactions char-
acterized by a sizable cross section excite not only
single-particle states peculiar to, for example, nuclei
of the magic nucleus ± nucleon type but also levels
whose quantum numbers Jπ correspond to single-
particle levels of a shell below (above) the energy
gap. In any case, an additional averaging procedure is

*e-mail: visakov@thd.pnpi.spb.ru
1063-7788/04/6705-0911$26.00 c©
required for extracting single-particle levels from ex-
perimental data. The energies of single-particle levels
in 208Pb and 132Sn nuclei were found in [1] by using
such a procedure, and it was shown that neutron
spin–orbit splitting in those nuclides, where N > Z,
is more pronounced than that in the analogous proton
orbitals.

On the basis of a proper theoretical treatment of
available experimental data on direct reactions of one-
nucleon transfer, we determine here the spectrum of
single-particle levels in the vicinity of the neutron-
rich nucleus 48Ca, where configuration-mixing ef-
fects are much stronger than in the 208Pb and 132Sn
nuclei, but where the shells are much weaker, and
confirm the conclusions drawn in [1] that concern the
isospin dependence of spin–orbit splitting. The re-
sults obtained here also agree well with those from [2],
where this dependence was analyzed for the charge-
exchange reaction 48Ca(p, n)48Sc.

2. GENERAL RELATIONS
FOR DETERMINING SINGLE-PARTICLE

MEAN-FIELD ENERGIES
FROM EXPERIMENTAL DATA ON DIRECT

REACTIONS OF ONE-NUCLEON TRANSFER

Below, we give a consistent validation of the
procedure for determining single-particle energies
from experimental data on the basis of, for exam-
ple, the Hamiltonian for pair forces in the second-
quantization representation. We have

Ĥ =
∑
i,k

〈i|t̂|k〉a+
i ak (1)

+
1
4

∑
i,k,m,�

a〈ik|ϑ̂|m�〉aa+
i a

+
k a�am,
2004 MAIK “Nauka/Interperiodica”
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where a〈ik|ϑ̂|�m〉a = 〈ik|ϑ̂|�m〉 − 〈ik|ϑ̂|m�〉 is the
antisymmetric matrix element for the pair interaction
ϑ̂(x1x2) = ϑ̂ (r1, σ̂1, τ̂1, r2, σ̂2, τ̂2), while t̂ is the
single-particle kinetic-energy operator. We further
introduce the auxiliary quantity

Q̂α = {aα, [Ĥ, a+
α ]} ≡ aαĤ · a+

α (2)

− aα · a+
αH + Ha+

α · aα − a+
αH · aα,

where [Ĝ, F̂ ] and {Ĝ, F̂} are, respectively, the com-
mutator and anticommutator of the operators Ĝ and
F̂ . On one hand, we average Q̂α taken in the form (2)
over the ground state |A; (0)〉 of an even–even nu-
cleus containing A particles, expanding intermediate
states in a complete set of wave functions for the
systems of (A+ 1) and (A− 1) particles. On the other
hand, we calculate directly Q̂α by means of (1) with
a subsequent averaging. As a result, we arrive at the
exact relation∑

a∈(A+1)

[BA(gr.st.)−BA+1(gr.st.) (3)

+ Eexc
a ]s(+)

aα +
∑

a′∈(A−1)

[BA−1(gr.st.)

−BA(gr.st.)− Eexc
a′ ]s(−)

a′α = 〈α|t̂|α〉+ 〈A; (0)|
×
∑
i,k

a〈αi|ϑ̂|αk〉aa+
i ak|A; (0)〉,

where

s(+)
aα = |〈A + 1; (a)|a+

α |A; (0)〉|2, (4)

s
(−)
a′α = |〈A− 1; (a′)|aα|A; (0)〉|2.

Here, |A; (0)〉 is the vector of the ground state
of an initial even–even nucleus; |A + 1; (a)〉 and
|A− 1; (a′)〉 are, respectively, the vectors of {a} and
{a′} states of the nuclei containing (A + 1) and
(A− 1) nucleons with allowance for fragmentation
effects; Eexc

a,a′ are the corresponding excitation ener-
gies (Eexc

a,a′ = 0 for the ground states); and BA,A±1

are the binding energies in the ground states of the
corresponding nuclei. In (3) and (4), the values of Jπ

for the {a} and {a′} states are identical to those for
the single-particle state {α}.

The quantities s(+)
aα and s

(−)
a′α represent the spectro-

scopic factors of states, specifying the fraction of the
single-particle state {α} in the complex states {a} or
{a′}. They are normalized by the relation∑

a∈(A+1)

s(+)
aα +

∑
a′∈(A−1)

s
(−)
a′α = 1, (5)
PH
which is exact and which follows from the anticom-
mutation relation for the single-particle fermion op-
erators,

a+
αaβ + aβa

+
α = δαβ . (6)

It should be noted that, in the literature, use is often
made of the spectroscopic factors s̃

(±)
a(a′)α = (2jα +

1)s(±)
a(a′)α normalized to (2jα + 1). In the present

study, we everywhere employ the normalization con-
dition (5).

We now consider the expression on the right-hand
side of Eq. (3). This expression has the meaning of
a single-particle energy. We will discuss this issue in
more detail. We introduce the field operators Ψ+ =∑

β ϕ
∗
β(x)a+

β , where ϕβ(x) are functions of a com-
plete single-particle set, which is considered to be
arbitrary for the time being. The second term in the
expression on the right-hand side of Eq. (3) can then
be recast into the form∫ ∫

dx1dx2[ρα(x1x1)ρ(x2x2) (7)

− ρα(x1x2)ρ(x2x1)]ϑ̂(x1x2),

where
ρα(x1x2) = ϕ∗

α(x1)ϕα(x2), (8)

ρ(x1x2) = 〈A; (0)|Ψ+(x1)Ψ(x2)|A; (0)〉.
Here, the quantities ρα and ρ, which are diagonal in
the indices x1 and x2, are, respectively, the density
of the single-particle state {α} and the exact matter
density of the core nucleus. It can easily be seen
that, in terms of a diagram technique, expression (7)
represents the diagonal matrix element of the “single-
particle” mass operator Σ̂s.p. for the single-particle
Green’s function G whose (x, t) representation has
the form

G(x, t;x′, t′) (9)

= −i〈A; (0)|T̂ {Ψ(x, t),Ψ+(x′, t′)}|A; (0)〉,
where Ψ(x, t) are field operators Ψ(x) in the Heisen-
berg representation and T̂ is the chronological-
ordering operator. The mass operator corresponding
to (7) can be represented as the sum of two dia-
grams in Fig. 1, whose form is similar to that of the
mass operator in the Hartree–Fock approximation.
However, the single-particle Green’s function G(ε),
which is the Fourier transform of (9) with respect to
the variable (t− t′) and which is depicted by a thick
line in Fig. 1, is exact since the quantity ρ(x1x2) is
defined as an average over the “true” ground state
of the system containing A particles. Actually, this
means that the definition of ρ(x1x2) according to
(8) involves, in addition to diagrams similar to those
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 1. Mass operator corresponding to (7).

in Figs. 2a and 2b (appearing in the Hartree–Fock
approximation), diagrams belonging to the types in
Figs. 2c and 2d, corresponding to certain effects
beyond the approximation in question, and reflecting
the contribution of ground-state correlations. It is
appropriate to mention here the study of Birbrair
and Ryazanov [3], who derived relation (3) from
Dyson’s equation and the spectral expansion of the
single-particle Green’s function. Here, it is important
that the single-particle energy corresponding to the
mass operator independent of the input energy of the
Green’s function Gα(ε) appeared on the right-hand
side of the formula analogous to (3) in [3]. It can
easily be shown that the mass operator corresponding
to expressions (7) and (8), which is displayed in
Fig. 1, does not depend on ε, so that it does not
involve fragmentation effects and corresponds to
“true” single-particle states {α} diagonalizing the
operator t̂ + Σ̂s.p..

If, instead of the “true” ground state |A; (0)〉 of
nucleus A, we use the ground-state vector of the
Hartree–Fock approximation (that is, the Slater
determinant), |A; (0)〉HF—it corresponds to a Fermi
step of height equal to unity in the space of occu-
pation numbers nα =HF 〈A; (0)|a+

α aα|A; (0)〉HF (see
Fig. 3a)—and if, for {α}, we use the Hartree–Fock
eigenfunctions, then a+

i |A; (0)〉HF = 0 for εi < εF
and ak|A; (0)〉HF = 0 for εk > εF. The right-hand
side of Eq. (3) will then take the form

〈α|t̂|α〉+
∑

i; εi<εF

a〈αi|ϑ̂|αi〉a ≡ εα(HF). (10)

However, the left-hand sides of (3) and (5) will involve
only s(+) or s(−) components.

It should be noted that the actual ground state
involves correlations; even in the absence of su-
perfluidity, the respective particle distribution nα,
which is displayed in Fig. 3b, has a jump at ε = εF,
this jump R < 1 being equal to the residue of the
Green’s function G (Migdal’s theorem, [4]). As a
result, a+

i |A; (0)〉 �= 0 for εi < εF and ak|A; (0)〉 �= 0
for εk > εF, while expressions (3) and (5) involve both
s(+) and s(−) terms.

In treating experimental data, the single-particle
factors s are determined by analyzing direct reac-
tions of single-particle stripping and pickup. We now
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 2.Contributions to the mass operator independent of
ε that are (a, b) taken into account and (c, d) disregarded
in the Hartree–Fock approximation.

consider this point in more detail. Suppose that the
target nucleus is an even–even nucleus featuring
the quantum numbers Jπ = 0+ and T = Tz = T0 =
(N − Z)/2. Summation in (3) and (5) covers all pos-
sible states (complete set)—in particular, all possible
isospin states. By explicitly including isospin vari-
ables, we can reduce expressions (4) to the form

s(+)
aα =

∣∣〈A + 1; (a, Tf , Tzf )|a+
α,t= 1

2
tz

(11)

× |A; (g.s., T0, Tz = T0)〉
∣∣2

=
[
C
TfTzf
1
2
tz,T0T0

]2

S(a, α, Tf , T0),

s
(−)
a′α =

∣∣〈A− 1; (a′, Tf , Tzf )|aα,t= 1
2
tz (12)

× |A; (g.s., T0, Tz = T0)〉
∣∣2

=
[
C
TfTzf
1
2
−tz,T0T0

]2

S(a′, α, Tf , T0),

where the quantities S are independent of the isospin
projection.

3. DETERMINATION OF THE ENERGIES
OF SINGLE-PARTICLE STATES

IN THE VICINITY OF THE 48Ca NUCLEUS

The diagram describing the excitation of the lev-
els of interest in the vicinity of the 48Ca nucleus
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Fig. 3. Particle distribution nα (a) in the absence and (b)
in the presence of ground-state correlations.
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Fig. 4. Diagram of the excitation of levels in the vicinity of the 48Ca nucleus in single-particle-transfer reactions.
can be represented in the form displayed in Fig. 4,
where T< = T0 − 1/2 and T> = T0 + 1/2. This figure
shows that, in order to determine the energies of
single-particle orbitals, it is necessary, in analyzing
data on reactions of proton stripping and neutron
pickup, to take into account in (3) highly excited
analogous states of T = T>, for which experimen-
tal information is not always available. By employ-
ing isobaric symmetry, one can borrow, however, the
corresponding isospin-reduced spectroscopic factors
S(a, α, T>, T0) from the reactions involving neutron
stripping and proton pickup and leading to low-lying
states of the neighboring isobaric nuclei. At the same
time, it should be borne in mind that the contribution
of transitions to the analogous states of final nuclei
is suppressed by the factor 1/(2T0 + 1), which is
equal to 1/45 for the target nucleus 208Pb, but which
increases considerably for light nuclei (1/9 for 48Ca).
Another distinction of the region around A ∼ 48 from
the regions around A ∼ 208 and A ∼ 132 is that, in
the 48Ca nucleus, the shells are relatively weak, which
is manifested in that direct reactions of one-nucleon
transfer excite, in odd nuclei, low-lying states whose
quantum numbers Jπ are typical of single-particle
states belonging to “alien” shells on the other side of
the Fermi surface. The aforesaid indicates that both
the T> states of odd nuclei and ground-state correla-
tions must be taken into account in determining εα in
the vicinity of the 48Ca nucleus.

Since we are interested primarily in spin–orbit
splitting, we will consider in detail the procedure for
PH
determining the energies of {1d} levels, clarifying one
important point in advance.

The quantities s(±) appearing in expressions (3)
and (5) are determined by analyzing experimental
data on direct nuclear reactions. In doing this, there
arises a natural uncertainty associated both with
experimental errors and with the accuracy of a theo-
retical description (usually, within the distorted-wave
Born approximation) of stripping (pickup) processes;
as a result, the right-hand side of (5) may become
different from unity even in a complete experiment.
In actual calculations, we therefore modified ex-
pression (3) by means of the substitution s

(±)
i(i′) →

s
(±)
i(i′)/(

∑
k s

(+)
k +

∑
k′ s

(−)
k′ ), going over to normalized

s factors. It should be noted that the electronic
database from [5] and references therein (if necessary)
were used as a main source of experimental data in
determining the spectroscopic factors. The nuclear
binding energies were borrowed from [6].

We now consider the neutron hole state {ν1d5/2}.
Figure 4 shows that a correct determination of single-
particle energies here requires taking into account not
only low-lying but also highly excited isobaric analo-
gous states in 47Ca at excitation energies higher than
12 MeV (in the 47Ca nucleus, the lowest T> state,
which is the isoanalog of the 1/2+ ground state of
the 47K nucleus, has the energy of 12.73 MeV). From
experiments, it follows that the {ν1d5/2} state of the
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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47Ca nucleus is strongly fragmented. Up to the exci-
tation energy of 11 MeV, the respective (3He, α) re-
action exhibits 46 5/2+(T = T<) levels characterized

by
∑

i′ s
(−)
i′ = 0.607 and

∑
i′ s

(−)
i′ Ei′ = 4.798 MeV.

The lowest 5/2+ isoanalog of the 47K nucleus has
E = 16.12 MeV and s(−) = 0.06 and corresponds to
the 5/2+ level of 47K at E = 3.43 MeV. At the same
time, the reaction 48Ca(d,3He)47K exhibits a variety
of other low-lying (E < 9 MeV) 5/2+ states that
are hardly seen, because of a small cross section (in
particular, due to the isotopic factor of 1/9), as higher
5/2+ isoanalogous states of the 47Ca nucleus. We
can rescale the energies of low-lying 5/2+ states of
the 47K nucleus to those of the 5/2+ isoanalogous
states in the 47Ca nucleus, assuming that the rel-
ative values of s(−) for various isoanalogs in 47Ca
are identical to those for low-lying 5/2+ states in
47K. After the normalization to the well-known ex-
perimental value of s(−) for the 5/2+ state at E =
16.12 MeV, we then obtain the following values for the

T> levels in the 47Ca nucleus:
∑

k′ s
(−)
k′ = 0.231 and∑

k′ s
(−)
k′ Ek′ = 4.272 MeV. As a result, we arrive at

εν1d5/2 = −20.76 MeV, with the contribution of high-
lying isoanalogous states being quite significant, so
that their inclusion is necessary (this shifts the level
down by about 3 MeV). We will now clarify the role
of ground-state correlations [terms involving s(+) in
(3) for the case of hole nuclei]. By way of example, we
indicate that the reaction 48Ca(d, p)49Ca proceeding
via the excitation of a “particle” nucleus reveals three
5/2+ states peculiar to a neutron “hole” shell; for

them,
∑

i s
(+)
i = 0.129 and

∑
i s

(+)
i Ei = 0.691 MeV.

Upon the inclusion of these states, the energy of
the {ν1d5/2} single-particle state becomes higher:
εν1d5/2 = −17.97 MeV. This demonstrates that even
a rather small contribution from ground-state corre-
lations leads to a significant shift of single-particle
energies, always toward the energy gap between the
shells. It is worth noting that, upon the inclusion
of the T = T> states and of ground-state correla-

tions, we obtain
∑

i s
(+)
i +

∑
i′ s

(−)
i′ = 0.967, which is

very close to unity. Therefore, the value of εν1d5/2 =
−17.97 MeV seems quite reasonable.

We now proceed to determine the energy of the
{ν1d3/2} neutron orbital. In contrast to the 5/2+

levels, the {ν1d3/2} state in 47Ca is fragmented
rather weakly. The neutron-pickup reaction exhibits
only one 3/2+ level at E = 2.58 MeV in the low-
lying part of the spectrum (s(−) = 0.90) and one
isoanalogous level at 13.09 MeV (s = 0.045); this is
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
the isoanalog of the 3/2+ state at 0.36 MeV in 47K.
At the same time, yet another 3/2+ state at 3.93 MeV
(s = 0.18) is observed among low-lying levels of 47K.
Upon rescaling to the 47Ca nucleus with respect to
isofactors and energy, this corresponds to s = 0.02
and E = 16.66 MeV. Thus, we arrive at

∑
i′ s

(−)
i′ =

0.965 and
∑

i′ s
(−)
i′ Ei′ = 3.244 MeV. As a result,

we obtain εν1d3/2 = −13.31 MeV without allowance
for ground-state correlations. We now consider the
contribution of these correlations. In the reaction
48Ca(p, x)49Sc, a 3/2+ resonance at 15.876 MeV is
observed according to data reported in [5, 7, 8]; this
resonance is treated as the isoanalog of the 3/2+ level
of the 49Ca nucleus. Considering that a close excited
3/2− state in 49Sc at E = 11.56 MeV is an isoanalog
of the ground-state of the 49Ca nucleus, we can easily
determine the energy of the 3/2+ level in 49Ca under
consideration; it appears to be about 4.32 MeV, which
is close to the value of E = 4.282 MeV obtained for
the 3/2+ level of the 49Ca nucleus (the spectroscopic
factor being 0.017) in [9] from an analysis of the
reaction 48Ca('d, p)49Ca. At a similar energy, this level
appears in the compilation of Burrows [8], but not in
[5] or in [7]. For the {ν1d3/2} state, we eventually

obtained the values of
∑

i′ s
(−)
i′ +

∑
i s

(+)
i = 0.982

and εν1d3/2 = −13.09 MeV. Thus, the magnitude of
spin–orbit splitting for the {1d} neutron orbital in
48Ca is 4.88 MeV, which is much larger than the
estimate (3.6 MeV) presented in [10].

We now consider the {π1d3/2} proton state.
Experimental data (see, for example, [11]) indicate
the excitation of only two low-lying 3/2+ states at
E = 0.36 (s = 0.97) and 3.93 MeV (s = 0.185) in the
proton-pickup reaction on 48Ca, this corresponding

to
∑

i′ s
(−)
i′ = 1.155 and

∑
i′ s

(−)
i′ Ei′ = 1.076 MeV. At

the same time, the proton-stripping reaction on 48Ca
results in the excitation of a set of low-lying 3/2+ lev-
els among the T< states of the 49Sc nucleus; for them,∑

i s
(+)
i = 0.0525 and

∑
i s

(+)
i Ei = 0.262 MeV. Tak-

ing additionally into account the existence of the 3/2+

level at 4.272 MeV in the 49Ca nucleus (see above),
for which s = 0.017 in the neutron-stripping reac-
tion, we reveal the corresponding isoanalogous level
3/2+ in 49Sc at E = 15.88 MeV (s(+) = 0.017/9 =
0.0019). Thus, the total contribution of ground-state

correlations corresponds to
∑

i s
(+)
i = 0.0544 and∑

i s
(+)
i Ei = 0.292 MeV, while the energy of the

proton {1d3/2} level is −16.18 MeV (−16.73 MeV
without allowance for ground-state correlations). It
should be noted that, for the proton {1d3/2} orbital,
4
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the experimental value of
∑

i s
(+)
i +

∑
i′ s

(−)
i′ is 1.209;

that is, it exceeds unity. We will discuss this issue
below.

The proton {1d5/2} orbital is the last {1d} or-
bital. Here, the proton-pickup reaction excites nine

T = T< 5/2+ states for which
∑

i′ s
(−)
i′ = 0.663

and
∑

i′ s
(−)
i′ Ei′ = 3.933 MeV (the corresponding

isobaric analogs were taken into account in con-
sidering 5/2+ states in 47Ca). The contribution
of ground-state correlations is controlled by six
T = T< 5/2+ levels in 49Sc at energies lower than

12 MeV; for these levels,
∑

i s
(+)
i = 0.0233 and∑

i s
(+)
i Ei = 0.209 MeV. In addition, it should be

borne in mind that the neutron-stripping reaction
excites three low-lying 5/2+ states of 49Ca that
have already been taken into account in analyzing
the contribution of ground-state correlations to the
energy of the {ν1d5/2} neutron orbital in 47Ca.
The counterparts of these levels in 49Sc are three
high-lying isoanalogous levels whose energies after
rescaling are 16.03, 16.23, and 17.68 MeV, with the
first and the last one being observed in the 49Sc
spectrum at very close energies; however, their s
factors were not measured in the proton-stripping
reaction on 48Ca because of the smallness of the
corresponding isofactor. Rescaling, according to
isotopic relations, the s factors of the 49Ca to those

of the 49Sc nucleus, we obtain
∑

i s
(+)
i = 0.0143 and∑

i s
(+)
i Ei = 0.240 MeV for these levels. As a result,

we have επ1d5/2 = −20.43 MeV, while the spin–orbit
splitting of the {1d} proton orbital is 4.25 MeV, which
is considerably smaller than corresponding neutron
spin–orbit splitting.

The energies of other single-particle orbitals in
the vicinity of the 48Ca nucleus were determined in a
similar way. The corresponding values are presented
in Table 1, where the results obtained by calculating
the single-particle spectrum with a potential of the
Woods–Saxon type are also given for the sake of
comparison. The parameters of this potential are close
to those in [1], and the potential itself has the form

Û(r, σ) = V0

(
1− 2β

T3 · t3
A

)
f(r) (13)

+ V�s

(
1− 2β�s

T3 · t3
A

)
1
r

df(r)
dr

l̂ · ŝ

+
(

1
2
− t3

)
UCoul,

f(r) =
[
1 + exp

(
r −R

a

)]−1

, R = r0A
1/3,
PH
where UCoul is the potential of a uniformly charged
sphere of radius Rc = rc0A

1/3, t3 = +1/2 for the
neutron, and t3 = −1/2 for the proton. We note that,
according to [1, 2], the parameter β�s, which appears
in (13) and which controls the isospin dependence of
spin–orbit splitting, lies within the interval between
about−0.6 and −1.0.

In all of the cases, with the exception of that of
the {π2p1/2} and {π2p3/2} proton orbitals, the total
experimental strength of single-particle states, which
is determined by formulas (4), (11), and (12), is about
unity, the spin–orbit splitting of the 1f proton or-
bital being much smaller than the neutron one. The
{π2p} orbital also deserves a dedicated discussion.
The compilation of experimental data concerning the
proton-stripping reactions on 48Ca in [5] suggests
an extremely strong fragmentation of the {π2p1/2}
state: up to an excitation energy of about 12 MeV,
there are 55 T = T< = 7/2 1/2− states whose total

strength is
∑

i s
(+)
i = 2.04, which is twice as great

as the value following from the sum rule. In addi-
tion, three very close T = T> = 9/2 1/2− levels at
an energy of 13.5 MeV are observed with the total

value of
∑

i s
(+)
i ∼ 0.1, which correspond to the com-

ponents of the energy-split isoanalog of the excited
1/2− state of the 49Ca nucleus at E = 2.02 MeV,
where s(+) = 0.91. Upon rescaling in the isofactor to
the 49Sc nucleus, this leads precisely to a value of
about 0.1 for s(+). At the same time, the total strength
of transitions to the {π2p3/2} level—this strength
receives contributions predominantly from low-lying
3/2− components—is less than unity (0.682) accord-
ing to [5]. Concurrently, we have επ2p1/2 = −2.0 MeV
and επ2p3/2 = −4.55 MeV, while the proton spin–
orbit splitting ∆(π2p) = 2.55 MeV is larger than that
for neutrons (∆(ν2p) = 1.78 MeV).

It should be borne in mind, however, that, in the
original study of Fortier et al. [12], {π2p} states
were identified by the angular distribution alone,
so that those authors actually determined only the
value of � = 1 but not the spin of the level. It is
worth noting that the � = 1 proton states in the 49Sc
nucleus are distributed within the interval of width
about 10 MeV, which is much larger than the spin–
orbit splitting of the {π2p} level. Therefore, it is
reasonable to assume that 1/2− and 3/2− states—
apart from those that are reliably identified by Jπ

values and which are rather low-lying and include the
main components of the single-particle strength and
apart from isoanalogs whose spins were determined
reliably—are distributed uniformly over the spectrum.
In this case,

∑
s = 1.062 and ε ≈ −3.4 MeV for the

{π2p3/2} state and
∑

s = 1.38 and ε ≈ −2.4 MeV
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Table 1. Single-particles levels of the 48Ca nucleus (ε is given in MeV)

Level εexpt εtheor(WS1) εtheor(WS2) εtheor(WS3)

Neutrons

1g9/2 ∼0.6 0.32 0.18 0.39

1f5/2 −1.20 −1.97 −1.84 −2.23

2p1/2 −2.86 −2.90 −2.85 −2.77

2p3/2 −4.64 −5.07 −5.09 −5.01

1f7/2 −10.23 −9.22 −9.32 −9.64

1d3/2 −13.09 −14.03 −13.94 −14.51

2s1/2 −13.28 −14.48 −14.48 −14.68

1d5/2 −17.97 −18.56 −18.62 −19.02

Protons

1g7/2 – 9.18 9.00 9.19

2d5/2 – 3.78 3.82 3.44

1g9/2 – 0.52 0.66 1.05

2p1/2 −2.4 −3.07 −3.12 −3.10

1f5/2 −3.20 −3.58 −3.70 −2.99

2p3/2 −3.4 −5.22 −5.19 −5.18

1f7/2 −9.40 −10.09 −9.99 −9.35

2s1/2 −14.92 −15.87 −15.87 −15.45

1d3/2 −16.18 −16.32 −16.39 −15.46

1d5/2 −20.43 −20.28 −20.22 −19.46

Note: In the calculations, we used the mean-field potential (13) at V0 = −51.5 MeV, V�s = 33.2 MeV fm2, r0 = 1.27 fm, rc0 =
1.25 fm, and β = 1.39. Here, WS1, WS2, and WS3 label, respectively, the case where a = 0.6 fm and β�s = −0.6, the case where
a = 0.6 fm and β�s = −1.0, and the case where the diffuseness-parameter values are a(ν) = 0.55 fm and a(π) = 0.67 fm and where
β�s = −0.6.
for the {π2p1/2} level. Thus, the sum rule (3) holds
to a much higher accuracy, while the proton spin–
orbit splitting [∆(π2p) ≈ 1 MeV] is smaller than the
spin–orbit splitting for neutrons.

Yet another comment is in order here. As can be
seen from the above, the {π1d5/2} proton orbital is

characterized by
∑

i s
(+)
i +

∑
i′ s

(−)
i′ = 0.701, which

is also smaller than unity. It could be assumed in
this connection that the 3/2+ level at 3.93 MeV in
the 47K nucleus is in fact the 5/2+ state character-
ized by s(−) = 0.185 · 4/6 = 0.122. This would lead,
on one hand, to a decrease in the total strength of
the {π1d3/2} state to a value of 1.024 and, on the
other hand, to an increase in the strength for the
{π1d5/2} orbital to 0.823. Concurrently, the spin–
orbit splitting of the {1d} proton orbital would in-
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
crease somewhat (up to 4.80 MeV), but it would still
remain smaller than that for neutrons. However, there
are no sufficiently strong experimental arguments in
favor of this assumption since the level in question
was identified not only by the angular distribution of
the cross section but also by the angular distribution
of the analyzing power [13]. Therefore, the problem
of the excess of the strength for the {π1d3/2} state
and its deficit for {π1d5/2} remains open at present.
Probably, it is related to the theoretical description of
nucleon-transfer reactions and the possible contribu-
tion of multistep mechanisms of such reactions [11].

Summarizing all that was said in this section, we
would like to emphasize that an analysis of avail-
able experimental data concerning direct reactions
furnishes compelling arguments in favor of the state-
ment that, in the vicinity of the 48Ca nucleus, the
4
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Table 2. Experimental and calculated spectra of levels in
the 48Sc nucleus (E is given in MeV)

Jπ Eexpt Etheor (version 1) Etheor (version 2)

6+
1 Ground state Ground state Ground state

5+
1 0.13 0.18 0.20

4+
1 0.25 0.18 0.22

3+
1 0.62 0.56 0.65

7+
1 1.10 0.42 0.44

2+
1 1.14 0.89 1.07

1+
1 2.52 2.04 2.36

0+
1 6.67 4.88 6.41

1+
2 5–14 9.44 9.95

spin–orbit splitting of the {1f}, {1d}, and {2p} neu-
tron orbitals is larger than that of the analogous pro-
ton orbitals. However, it should be noted that this
statement is fully valid only for f5/2−f7/2 splitting. In
the case of the {1d} orbital, we additionally invoked
data on T> states, employing the (quite reliable) con-
cept of isobaric symmetry, while, in determining the
splitting of the {2p} proton orbital, we assumed that
the distribution of 1/2− and 3/2− levels over the “sta-
tistical” part of the spectrum is uniform. However,
we can refer here to the result reported in [2], where
the potential (13) was generalized by means of the
substitution T3 · t3 → T̂ · t̂, with T̂ and t̂ being the
isospin vector operators for the core and the nucleon,
respectively. In [2], it was shown that negative values
of β�s, which, in the case of N > Z, correspond to
larger spin–orbit splitting for neutrons than for pro-
tons, provide, for β�s values between about −0.6 and
−1.0, a good description of polarization phenomena
in the reaction 48Ca('p, n)48Sc proceeding via the ex-
citation of the 0+ isoanalogous state at 6.67 MeV in
48Sc. Thus, the above results agree well with those
reported in [1, 2].

4. SPECTRUM OF THE ISOBARIC
PARTICLE–HOLE NUCLEUS 48Sc

To conclude this study, we present the results ob-
tained by calculating the spectrum of excited states
in the odd–odd nucleus 48Sc, which was mentioned
above. The calculations were performed on the basis
of the random-phase approximation in the charged
particle–hole channel. Previously, this approximation
was successfully used in describing the particle–hole
nuclei 208Bi, 208Tl, 132Sb, and 132In (see [14, 15],
PH
where all of the required formulas can be found). We
started from pair effective interaction

ϑ̂ = exp
(
− r2

r2
00

)(
V + Vσσ1 · σ2 (14)

+ VT Ŝ12 + Vττ1 · τ2 + Vτσ(σ1 · σ2) · (τ1 · τ2)

+ VτT Ŝ12τ1 · τ2

)
,

which was introduced previously. The parameters in
(14) were set to V = −9.95, Vσ = 2.88, VT = −1.47,
Vτ = 5.90, Vτσ = 4.91, VτT = 1.51 (all of these values
are given in MeV), and r00 = 1.8 fm (interaction
version 1). We also used a basis consisting of 13
proton and 11 neutron orbitals closest to the Fermi
surface (and involving a set of quasistationary states),
with the energies of the orbitals corresponding to the
WS1 parameter set in (13). The calculated energies
of levels in the 48Sc nucleus are given in Table 2,
along with relevant experimental data. For all of the
levels presented in Table 2 (with the exception of the
1+
2 state), the leading configuration is π1f7/2ν1f7/2.

As far as the 1+
2 state is concerned, it corresponds

to a Gamow–Teller resonance that manifests it-
self as a rather wide peak in the energy range 5–
14 MeV, with its maximum being at about 10 MeV;
its leading configuration is 0.97π1f5/2ν1f7/2 + 0.22
π1f7/2ν1f7/2, with B(GT; 0+

1 → 1+
2 ) ∼ 19. At the

same time, the 1+
1 level is characterized by the

structure 0.97π1f7/2ν1f7/2 − 0.22π1f5/2ν1f7/2 and
by a value of B(GT; 0+

1 → 1+
1 ) ∼ 5. For the 0+

1
state, the calculated value of the reduced probability
is B(F; 0+

1 → 0+
1 ) � 7.99, which saturates almost

completely the sum rule for a transition of the Fermi
type; thus, this state is indeed the isoanalog of the
ground state of the core nucleus 48Ca (see preceding
section). Also presented in Table 2 is the result
of the calculation employing a somewhat modified
interaction (version 2), where [compare with (14)]
Vτ = 7.9 MeV and Vτσ = 5.9 MeV. In this case,
the agreement with experimental data on energies
becomes better, while the values of B(F) and B(GT)
undergo virtually no changes. It should be noted
that, while the calculated energies of the levels are by
and large in good agreement with experimental data,
the energy calculated for the 7+

1 state proves to be
underestimated, but it is close to the energy 0.39 MeV
of a low-lying level whose spin is not identified. It
should be emphasized, however, that experimental
data cast some doubt on the existence of this level,
while the 7+

1 state at 1.10 MeV was observed in a few
independent studies.

It should also be noted that the calculated en-
ergies of other levels in 48Sc, which are not quoted
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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in Table 2 and which are associated with high-lying
(for example, π1f5/2ν1f7/2) particle–hole configu-
rations appear to be above 3.5 MeV. In addition to
the possible level at 0.39 MeV, other states manifest
themselves in experiments from an energy value as
low as some 1.5 MeV. Evidently, they are of more
complex nature and are caused by a weak magicity
of the core nucleus 48Ca, as was mentioned above in
discussing the spectroscopic factors of odd nuclei in
the vicinity of the 48Ca. These levels can be explained
in terms of pairing correlations in the ground state of
the 48Ca nucleus. This problem will be considered in
a dedicated publication.

5. CONCLUSION

On the basis of a detailed analysis of available
experimental data on direct reactions of one-nucleon
transfer, we have determined the spectrum of single-
particle states in the vicinity of the neutron-rich nu-
cleus 48Ca and have shown that, here, the spin–
orbit splitting of neutron orbitals is more pronounced
than that for protons. This feature of the spin–orbit
splitting is peculiar to N > Z nuclei and is confirmed
by the results of an analysis of polarization effects
in the direct reaction 48Ca('p, n)48Sc proceeding via
the excitation of the isoanalogous state of the final
nucleus; also, the feature in question is consistent
with the isotopic dependence of spin–orbit splitting
in nuclei close to 208Pb and 132Sn.
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Abstract—A version of a semimicroscopic description of dipole nuclear vibrations is formulated in such
a way that the deformation, the configuration, and the isospin splitting of a giant dipole resonance are
taken simultaneously into account. This model is used to describe the main structural features of the
cross sections for photoabsorption on 12,13,14C, 14,15N, and 16,17,18O nuclei. c© 2004 MAIK “Nau-
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1. INTRODUCTION

Recently, we proposed a semimicroscopic model of
dipole nuclear vibrations that describes the deforma-
tion and the configuration splitting of a giant dipole
resonance [1]. This model was successfully used to
describe the gross structure of a giant dipole reso-
nance in the light self-conjugate nuclei 12C, 24Mg,
and 28Si. In [2], this model was modified by taking
into account the isospin splitting of dipole states ac-
cording to formulas presented by Goulard and Fal-
lieros [3], this making it possible to describe the gross
structure of photoabsorption cross sections for a large
number of spherical, deformed, and transition nuclei
over the mass range 10 � A � 240.

However, the approach formulated in [2] is not
self-consistent since isospin effects are described
there with the aid of the formulas derived in [3]
rather than within the semimicroscopic model itself.
Additionally, the degree to which these formulas are
applicable in the region of light nuclei is not clear.

In view of this, we developed a self-consistent
version of the model where the deformation, the con-
figuration, and the isospin splitting of a giant dipole
resonance in light nuclei (A � 40) are treated within
a unified semimicroscopic approach. In the present
study, this model is applied to analyzing the main
structural features of the photoabsorption cross sec-
tions for 12,13,14C, 14,15N, and 16,17,18O nuclei. We
also consider the question of whether this model is
applicable to medium-mass and heavy nuclei.

*e-mail: orlin@depni.npi.msu.su
1063-7788/04/6705-0920$26.00 c©
2. FUNDAMENTALS OF THE MODEL

2.1. Semimicroscopic Description of Isovector
Dipole Nuclear Vibrations without Isospin

Conservation

The existence of collective dipole excitations in a
nucleus can be explained [4] by the coupling of single-
particle nucleon excitations to the isovector dipole
field that they generate; that is,

Fµs =
A∑
k=1

(2tµxs)k (1)

=
∑
α>β

(〈α|2tµxs|β〉a+
α aβ

+ (−1)µ〈α|2t−µxs|β〉∗a+
β aα),

where xs (s = 1, 2, 3) stands for the projections of the
nucleon radius vector r onto the axes of the intrinsic
coordinate frame;

tµ =



−(tx + ity)/

√
2 for µ = +1

tz for µ = 0
+(tx − ity)/

√
2 at µ = −1

(2)

are the spherical components of the nucleon isospin;
a+
α , a

+
β , . . . are the operators of nucleon creation in

the single-particle states |α〉, |β〉, . . . (by these, we
will henceforth imply the eigenstates of the Nilsson
shell Hamiltonian [5, 6]); and aα, aβ , . . . are the cor-
responding nucleon-annihilation operators.

The dipole field (1) can generate excitation quan-
ta characterized by the isospin τ = 1, the isospin z
projection µ = 0,±1, and the direction of vibrations
(s = 1, 2, 3). These quanta are associated with the
normal modes of isovector vibrations of the nucleon
system in the case where no account is taken of the
2004 MAIK “Nauka/Interperiodica”



SEMIMICROSCOPIC DESCRIPTION OF THE GROSS STRUCTURE 921
vector coupling between the isospin of a quantum and

the isospin T0 =
∣∣∣∣N − Z

2

∣∣∣∣ of the neutron excess in

a nucleus. Vibrations for which µ = 0 correspond to
an ordinary photoresonance. They are generated by
∆Tz = 0 dipole transitions. Modes characterized by
µ = ±1 correspond to charge-exchange vibrations of
the nucleon system that involve the transformation of
one proton into a neutron, or vice versa (∆Tz = ±1).
Only for deformed nuclei, in which the degeneracy
of s vibrations in energy is partly or completely re-
moved, is it of importance to take into account the
direction of vibrations. In the following, we restrict
our consideration to axisymmetric nuclei, for which
we must distinguish between vibrations along the
nuclear symmetry axis 3 and vibrations in a direction
orthogonal to it (for example, along axis 1 or 2).

In order to take into account the configuration
splitting of dipole states (see the review devoted to
this issue in [7]), it is necessary to double the spec-
trum of possible collective excitations: each of the µs
modes must additionally be broken down into two
parts corresponding to dipole transitions between the
valence and the outer shell of a nucleus (vibrations of
type 1) and dipole transitions between its inner shell
and the valence shell (vibrations of type 2).

The quasiboson operators of creation and absorp-

tion (c(0)+µsi and c
(0)
µsi, respectively) of free quanta of

such excitations (the subscript i numbers configu-
ration modes) can be introduced by means of the
relations

Fµs =
2∑
i=1

Fµsi, (3)

Fµsi =
∑
α>β

(i)
(〈α|2tµxs|β〉a+

α aβ (4)

+ (−1)µ〈α|2t−µxs|β〉∗a+
β aα)

= f
(0)
µsic

(0)+
µsi + (−1)µf (0)∗

−µsic
(0)
−µsi,

where the sum
∑

α>β
(i) is taken over all single-

particle E1 transitions of type i and

f
(0)
µsi =


∑
α>β

(i)
|〈α|2tµxs|β〉|2




1/2

(5)

is the amplitude of the probability for the excitation of

c
(0)+
µsi |T0T0〉 vibrations (|T0T0〉 ≡ |T = T0, Tz = T0〉
is the ground state of a nucleus), their energy being [4]

ε
(0)
µsi = �ωsi + µ

(
V1

N − Z

2A
− ECoul

)
. (6)
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Here, �ωsi stands for the energy of free (single-
particle) photovibrations in the direction along (s = 3)
and in the direction orthogonal (s = 1 or 2) to the
nuclear symmetry axis for dipole transitions of the
type i, V1 ≈ 94.8 MeV is the nuclear-symmetry
potential from the Weizsäcker semiempirical mass
formula [8], and ECoul ≈ 1.2(Ze2/R) is the mean
Coulomb energy of a single proton (R ≈ 1.2A1/3 fm
is the equivalent radius of a nucleus).

As was shown in [1, 2], the energies �ωs1 and �ωs2
can be approximated by the expressions

�ωs1 ≈ 41A−1/3 (7)

×




√
1− 4

3
δ′ [MeV] at s = 3√

1 +
2
3
δ′ [MeV] at s = 1 or 2,

�ωs2 ≈
(

A

Acore

)1/3

�ωs1,

where δ′ is the deformation parameter in the Nilsson
potential and Acore is the number of nucleons in the
inner shells of a nucleus (that is, in the nuclear core).

Free dipole vibrations cannot be considered as
normal vibrations of the nucleon system in the vicin-
ity of the equilibrium position since, by exciting the
isovector single-particle potential, they effectively in-
teract with one another via dipole–dipole forces. Tak-
ing this into account, we write the vibrational Hamil-
tonian of a nucleus for vibrations along a fixed s axis
in the form [1]

H(s) = H1(s) + H2(s) + H12(s), (8)

where

Hi(s) =
∑
µ

ε
(0)
µsic

(0)+
µsi c

(0)
µsi +

1
2

κi(s)
∑
µ

F+
µsiFµsi

(9)

is the Hamiltonian describing normal vibrations only
for dipole transitions of type i = 1 or 2 and

H12(s) = κ12(s)
∑
µ

F+
µs1Fµs2 (10)

is the operator taking into account the interactions of
these types of dipole vibrations.

If we disregard the configuration splitting, the
coupling constant κ(s) unified for all dipole tran-
sitions can be calculated theoretically by studying
the coupling between fluctuations of the isovector
component of the mean nuclear field and dipole
excitations of the nucleon-density distribution. In this
way, it was found in [4] that

κ(s) ≈ V1

4A〈x2
s〉
, (11)
4



922 ISHKHANOV, ORLIN
where V1 is the aforementioned nuclear-symmetry
potential [see formula (6)] and 〈x2

s〉 is the mean value
of the square of the nucleon coordinate xs in a nu-
cleus.

Expression (11) takes into account the effect of
the nuclear-surface deformation on dipole vibrations,
since, in an axisymmetric deformed nucleus, the fol-
lowing relation holds [4, 5]:

〈x2
1〉 : 〈x2

2〉 : 〈x2
3〉 ≈ 1 : 1 :

1 +
2
3
δ′

1− 4
3
δ′
. (12)

From data on electron scattering, it follows that
the mean value of the square of the radius vector for
all nucleons is

〈r2〉 = 〈x2
1〉+ 〈x2

2〉+ 〈x2
3〉 ≈

3
5
(1.2A1/3)2 [fm2].

(13)

With the aid of relations (12) and (13), expression
(11) can be reduced to the form

κ(s) ≈ 0.868V1A
−5/3θs(δ′) [MeV fm−2], (14)

where the factor

θs(δ′) =




1− 2
3
δ′

1 +
2
3
δ′

at s = 3

1− 2
3
δ′

1− 4
3
δ′

at s = 1 or 2

(15)

describes the dependence of the dipole–dipole cou-
pling constant on the nuclear deformation.

The simple calculations performed in [4] without
isolating configuration and isospin modes revealed
that the use of expression (14) in estimating the
constant of dipole–dipole forces makes it possible
to reproduce the energy of a giant dipole resonance
in heavy nuclei correctly, but this leads to strongly
overestimated values of this quantity in the region
of light nuclei. This may be explained by the fact
that the isovector dipole field specified by Eq. (1)
disregards surface effects. In actual nuclei having
finite dimensions, the dipole field must additionally
involve the radial factor dρ(r)/dr, which character-
izes the rate at which the nuclear density changes at
the periphery, and this weakens somewhat the mass
dependence of the dipole–dipole coupling constant:
A−5/3 → A−4/3 [9]. This circumstance can be taken
into account by employing formula (14) with different
values of the parameter V1 in different mass regions.
P

By way of example, we indicate that, since an ordi-
nary value of V1 is appropriate for heavy nuclei (A ∼
100−200), this value must be reduced approximately
by a factor of 101/3 for light nuclei (A ∼ 10–20).

According to (3) and (4), the free modes

c
(0)+
µsi |T0T0〉 are nothing but superpositions of par-
ticle–hole (1p1h) configurations of a nucleus. In the
vibrational Hamiltonian specified by Eqs. (8)–(10),
we used three different constants of dipole–dipole
forces in describing three different versions of the
interaction of 1p1h configurations belonging to type 1
and type 2—that is, 1 � 1, 2 � 2, and 1 � 2. The
reasons for this are as follows:

(i) We can see from (14) that the dipole–dipole
coupling constant is proportional to A−5/3. Since the
dipole field is determined by formula (1), this mass
dependence can be used for the constants κ1(s) and
κ12(s). For the κ2(s), however, it is more correct to
choose the A

−5/3
core dependence since outer (valence)

nucleons have only a slight effect on dipole excitations
of nucleons that belong to the filled inner shell (see
the analysis of data on the quasielastic knockout of
nucleons in [1]).

(ii) One can assume that intergroup interaction
(1 � 2) is weaker in general than intragroup inter-
action (1 � 1 or 2 � 2) because the spatial over-
lap of mixed configurations is smaller (especially if
transitions of type 2 lead to the formation of deep
hole states). For long-range dipole–dipole forces, this
effect can be taken into account by reducing the con-
stant κ12(s).

On the basis of the above considerations, we rep-
resent the constants κ1(s), κ2(s), and κ12(s) (mea-
sured in MeV fm−2 units) in the form

κ1(s) ≈ 0.868V A−5/3θs(δ′), (16)

κ2(s) ≈ 0.868V A
−5/3
core θs(δ′),

κ12(s) ≈ 0.868V ′A−5/3θs(δ′),

where V and V ′ (V ′ � V ) are model parameters,
which are measured in MeV.

Let us diagonalize the Hamiltonian in (8) in two
steps. At first, we find the eigenstates of the Hamil-
tonians H1(s) and H2(s); then, we take into account
the interaction of these states with each other.

The first step can be realized with the aid of the
linear canonical transformation

c+µsi = Xµsic
(0)+
µsi − Yµsic

(0)
−µsi, (17)

where the coefficients Xµsi and Yµsi satisfy the or-
thogonality conditions

XµsiX
∗
µsi − YµsiY

∗
µsi = 1, (18)

XµsiY−µsi −X−µsiYµsi = 0.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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The Hamiltonian in (8) then reduces to the form
(see also [4])

H(s) =
∑
µi

εµsic
+
µsicµsi (19)

+ κ12(s)
∑
µ

F+
µs1Fµs2 + const,

where c+µsi and cµsi are, respectively, the creation and
annihilation operators for normal vibrations (with µ =
0,±1) associated with the HamiltonianHi(s);

εµsi = K + 0.5[(ε(0)
µsi − ε

(0)
−µsi) (20)

+ κi(s)((f
(0)
µsi)

2 − (f (0)
−µsi)

2)]

is the energy of these vibrations;

K ≡ [(�ωsi + κi(s)(f
(0)
0si )

2)2 (21)

− (κi(s)f
(0)
µsif

(0)
−µsi)

2]1/2;

Fµsi = fµsic
+
µsi + (−1)µf∗

−µsic−µsi (22)

is the operator in (4) in the representation of the
eigenstates of the Hamiltonian Hi(s); and fµsi is
the amplitude of the probability for the excitation of
vibrations of the type c+µsi|T0T0〉, this amplitude being
related to the amplitude f (0)

µsi by the equation

f2
µsi = 0.5((f (0)

µsi)
2 − (f (0)

−µsi)
2) (23)

+ K−1
[
�ωsi(f

(0)
0si )

2 + κi(s)((f
(0)
0si )

4 − (f (0)
µsif

(0)
−µsi)

2)
]
.

The second step in reducing theHamiltonian in (8)
to a diagonal form is realized with the aid of the
transformation

ĉ+µsa =
2∑
i=1

(Xµs(ai)c+µsi − Yµs(ai)c−µsi), (24)

where the coefficientsXµs(ai) and Yµs(ai) satisfy the
orthogonality conditions

2∑
i=1

(Xµs(ai)X∗
µs(a

′i)− Yµs(ai)Y ∗
µs(a

′i)) = δaa′ ,

(25)
2∑
i=1

(
Xµs(ai)Y−µs(a′i)− Yµs(ai)X−µs(a′i)

)
= 0.

The eigenenergies ε̂µsa of the Hamiltonian H(s)
are determined as the roots of the secular equation(

1
κ12(s)

)2

(26)
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=

[
f2
µs1

ε̂µsa − εµs1
−

f2
−µs1

ε̂µsa + ε−µs1

]

×
[

f2
µs2

ε̂µsa − εµs2
−

f2
−µs2

ε̂µsa + ε−µs2

]
,

where a = 1, 2 and ε̂µs1 ≤ ε̂µs2.
The dipole operator (1) can be recast into the form

Fµs =
2∑
a=1

(
f̂µsaĉ

+
µsa + (−1)µf̂∗

−µsaĉ−µsa
)
, (27)

where f̂µsa are the amplitudes of the probability for the
excitation of the normal vibrations ĉ+µsa|T0T0〉. These
amplitudes can be found from the relations

f̂2
µsa =

∣∣∣∣ Aµsa(1)Aµsa(2)
Aµsa(1)Bµsa(2) + Aµsa(2)Bµsa(1)

∣∣∣∣ (28)

×
[√
|Aµsa(1)| +

√
|Aµsa(2)|

]2

,

Aµsa(i) =
f2
µsi

ε̂µsa − εµsi
−

f2
−µsi

ε̂µsa + ε−µsi
(29)

(i = 1, 2),

Bµsa(i) =
f2
µsi

(ε̂µsa − εµsi)2
−

f2
−µsi

(ε̂µsa + ε−µsi)2
(30)

(i = 1, 2).

Finally, the expressions

|Xµs(a1)|2 − |Yµs(a1)|2 (31)

=
Aµsa(2)Bµsa(1)

Aµsa(1)Bµsa(2) + Aµsa(2)Bµsa(1)
,

|Xµs(a2)|2 − |Yµs(a2)|2

=
Aµsa(1)Bµsa(2)

Aµsa(1)Bµsa(2) +Aµsa(2)Bµsa(1)

determine the contribution of type-1 and type-2 con-
figurations to the dipole states ĉ+µsa|T0T0〉.

2.2. Inclusion of Isospin Conservation
for Photoresonances in Light Nuclei

In light nuclei, proton and neutron transitions
of type i (i = 1, 2) proceed between the same main
shells. In this case, the individual terms in the isovec-
tor operator Fµs that appear in the expansions in (3),
(22), and (27) are also isovector quantities.

From this, it does not follow, however, that the
states ĉ+µsa|T0T0〉 found for light nuclei are isospin
eigenstates. Only the µ = +1 states having the
4
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isospin T = T0 + 1 possess this property. The re-
maining states are not eigenfunctions of the isospin
operator T for the nuclear system being consid-
ered. In particular, the states ĉ+0sa|T0T0〉, which de-
scribe photoresonances, involve components whose
isospins are T< ≡ T0 and T> ≡ T0 + 1; that is,

ĉ+0sa|T0T0〉 = f̂−1
0sab̂

+
0sa|T0T0〉 (32)

= f̂−1
0sa

{
−

√
T0

T0 + 1
(b̂+sa|T0〉)T0T0

+
1√

T0 + 1
(b̂+sa|T0〉)T0+1T0

}
,

where

b̂+µsa ≡ f̂µsaĉ
+
µsa (33)

is an isovector operator that creates unnormalized
eigenstates of vibrations (we note that, in contrast
to the operator b̂+µsa, the operator ĉ+µsa is not an
isovector) and the symbol ( )TTz denotes the vector
composition of the isospins of the operators and
states enclosed by parentheses into the resulting
isospin TTz (for example, we have (b̂+sa|T0〉)T0T0 =∑

µTz
(1µT0Tz|T0T0)b̂+µsa|T0Tz〉).

The states (b̂+|T0〉)T0T0 and (b̂+|T0〉)T0+1T0 (in
order to avoid encumbering the presentation, we
henceforth suppress the subscripts s and a) describe
the T< and T> components of the photoresonance
in (32). By using the usual technique of vector
composition and the commutation relations between
the operator b̂+µ and the total-isospin operator T =
{Tx, Ty, Tz}, we can represent the normalized wave
functions for these states in the form

|Ψ<〉 = C
−1/2
< (b̂+|T0〉)T0T0 (34)

= C
−1/2
<

{
−

√
T0 + 1
T0

b̂+0 |T0T0〉

+
1√

2T0(T0 + 1)
T−b̂

+
+1|T0T0〉

}
,

|Ψ>〉 = C
−1/2
> (b̂+|T0〉)T0+1T0 (35)

= C
−1/2
>

1√
2(T0 + 1)

T−b̂
+
+1|T0T0〉,

where T− = Tx − iTy is the operator lowering the z
projection of the isospin of states by unity and

C< =
T0 + 1
T0

f̂2
0 −

1
T0

f̂2
+1, C> = f̂2

+1 (36)

are normalization factors.
PH
As might have been expected, the T> component
of the photoresonance can be obtained from the µ =
+1 modes by a mere rotation in isospin space. With
the aid of relations (33)–(36), one can easily calculate
the energies of the states |Ψ<〉 and |Ψ>〉 and the
probabilities of their excitation. In calculating the en-
ergies of these resonances (E< and E>), it should be
borne in mind that, in photovibrations, the Coulomb
energy of a nucleus undergoes virtually no changes.
This can be taken into account by eliminating the
mean Coulomb energy ECoul in formula (6). The en-
ergies ε+1 and ε̂+1 [see relations (20), (26)] will then
accordingly increase by this quantity. The formulas
given below for the energies E< and E> take into
account this correction explicitly; that is,

E< = 〈Ψ<|(H − E0)|Ψ<〉 (37)

=

ε̂0 −
1

T0 + 1

(
f̂+1

f̂0

)2

(ε̂+1 + ECoul)

1− 1
T0 + 1

(
f̂+1

f̂0

)2 ,

E> = 〈Ψ>|(H −E0)|Ψ>〉 = ε̂+1 + ECoul,

where E0 is the energy of the ground state |T0T0〉.
The probabilities of the E1 excitation of the

states |Ψ<〉 and |Ψ>〉, into which the photoresonance
ĉ+0 |T0T0〉 splits, are determined by the relations

M2
< = 〈Ψ<|F0|T0T0〉2 = f̂2

0 −
1

T0 + 1
f̂2
+1, (38)

M2
> = 〈Ψ>|F0|T0T0〉2 =

1
T0 + 1

f̂2
+1.

From (37) and (38), we find that

E<M
2
< + E>M

2
> = ε̂0f̂

2
0 . (39)

Therefore, the total oscillator strength of the states
|Ψ<〉 and |Ψ>〉 is exactly equal to the oscillator
strength of the splitting resonance ĉ+0 |T0T0〉.

2.3. Application of the Model to Medium-Mass
and Heavy Nuclei

In rather heavy nuclei, valence protons and neu-
trons are in different main shells of a nucleus. In
this case, the individual components of the expan-
sions in (3), (22), and (27) cannot be considered as
isovector quantities, whence it follows that the pro-
cedure for separating the T< and T> components of
photoresonances that was described in the preceding
subsection becomes meaningless.

However, the configuration splitting plays a rel-
atively modest role in such nuclei. Therefore, it can
be disregarded for a first approximation, whereupon
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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the aforementioned difficulties in taking into account
isospin conservation in nuclei featuring a large neu-
tron excess are removed. To demonstrate this, we note
that, if the µs modes are not separated into two con-
figuration components, formulas (20)–(23), where
the subscript imust be discarded everywhere, will de-
termine the energies εµs of normal µs vibrations of the
nucleon system that are generated by the isovector
operator b+µs = fµsc

+
µs and the probabilities f

2
µs of their

excitation [4]. At the same time, the T< and T> com-
ponents of photoresonances can be separated with
the aid of formulas (37) and (38), where the substi-
tutions ε̂0, ε̂+1 → ε0, ε+1 and f̂0, f̂+1 → f0, f+1 must
be made (it should be recalled that the subscript s is
omitted in these formulas).

The results obtained from such calculations for the
features of the isospin splitting of photoresonances
(E> − E<, M2

>/M
2
<) can also be used in approxi-

mately describing the isospin splitting of each of the
0si resonances that were calculated within the pro-
cedure described in Subsection 2.1. This procedure
(which is well justified in the case of small configura-
tion effects) makes it possible to take simultaneously
into account all main kinds of giant-dipole-resonance
splitting over the mass range being discussed.

For heavy nuclei, it is straightforward to obtain
analytic estimates for the quantities E> − E< and
M2
>/M

2
<. We will assume that the nucleus being

considered is of a spherical shape and set V = V1

[compare with (14) and (16)]. Upon substituting the
quantities ε0, ε+1, f0, and f+1 from formulas (20)–
(23) into formulas (37) and (38) (in accordance with
the above comments) and considering that [4]

1
2
((f (0)

+1 )2 + (f (0)
−1 )2) ≈ (f (0))2 (40)

≈ �
2

2M
A

�ω1
≈ 0.5A4/3 [fm2],

1
2
((f (0)

−1 )2 − (f (0)
+1 )2) = 〈T0T0|[F−1, F+1]|T0T0〉

= 〈T0T0|
A∑
k=1

(2tzx2
1)k|T0T0〉 ≈ (N − Z)〈x2

1〉

≈ 0.6T0A
2/3 [fm2],

we obtain

E> − E< ≈
V1

2A
(T0 + 1) [MeV],

M2
>

M2
<

=
Edip − E<

E> − Edip
(41)

≈ 1
T0

1− 2.4T0A
−2/3(1−∆)

1 + 2.4A−2/3(1−∆)
,
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where �ω1 ≈ 41A−1/3 MeV is the energy of single-
particle vibrations along the x1 axis, Edip = ε0 is the
energy of a nonsplit photoresonance (energy of a gi-
ant dipole resonance), and ∆ = (0.006 MeV−1)V1 ×
T0A

−2/3 is a dimensionless quantity.

ForA >∼ 100 nuclei, the best fit to the giant-dipole-
resonance energy is obtained at V1 ≈ 120 MeV for
T0A

−2/3 ranging between 0.4 and 0.6. This makes it
possible to recast relations (41) into the form

E> − E< ≈
60
A

(T0 + 1) [MeV],

S>
S<

E<
E>

=
Edip − E<

E> − Edip
≈ 1

T0

1− 1.5T0A
−2/3

1 + 1.5A−2/3
, (42)

where S< = E<M
2
< and S> = E>M

2
> are the oscilla-

tor strengths of the T< and T> components of a giant
dipole resonance.

We note that expressions (42) coincide with the
formulas derived in [3].

2.4. Estimating Dipole-State Widths

This problem was considered in [2, 10]. Below, we
use the main results of these considerations.

The total width of an arbitrary dipole state can be
represented as the sum of the emission width Γ↑ and
spreading width Γ↓:

Γ = Γ↑ + Γ↓. (43)

Following [2], we approximate the emission width
by the expression

Γ↑ ≈
2∑
i

qi〈kP 〉i
(

�
2�2

µ

)〈
ϕ2(�)∫ �

0 ϕ2(r)r2dr

〉
i

,

(44)

where the factor qi specifies the fraction of configura-
tions of type i in the dipole state being considered, k =√

2µe is the momentum of the emitted nucleon, e =
E − e−1 −Bnucl is its kinetic energy, E is the energy
of the dipole state, e−1 is the energy of the remaining
hole, Bnucl is the nucleon-separation energy, µ is the
reduced nucleon mass, P is the barrier penetrability,
� is the radius of the nucleonic reaction channel, ϕ(r)
is the radial function for a particle, and the symbol 〈 〉i
denotes averaging over configurations of type i that
enter into the dipole state.

We represent the spreading width in the form [10]

Γ↓ ≈ GI(A)(E − δTT>ECoul)2, (45)
4



926 ISHKHANOV, ORLIN
where G is a constant, E is the energy of the reso-
nance in question, T is its isospin, ECoul is the mean
Coulomb energy per proton [see Eq. (6)],

I(A) =
1

1 + π2

(
a

R0

)2


1− 3

a

R0

1 +
π2

3

(
a

R0

)2

1 + π2

(
a

R0

)2




(46)

is the factor that takes into account the effect of the
diffuseness of the nuclear surface on the probabil-
ity of a collision between a particle or a hole and a
nonexcited nucleon, R0 is the distance between the
center of the nucleus and the locuswhere the nuclear-
matter density ρ decreases by a factor of 2, and a is the
diffuseness parameter of the nuclear surface.

As can be seen from (45), the spreading widths of
the T> photoresonances are assumed to be propor-
tional to the square of the energy ε̂+1, Γ↓

> ∝ (E> −
ECoul)2 = (ε̂+1)2, because these resonances are the
isobar analogs of the µ = +1 charge-exchange reso-
nances.

Formulas (43)–(46) involve four parameters: �,
R0, a, andG. We set the radius of the reaction channel
to � = 1.6A1/3 fm and choose (on the basis of data
on electron scattering) the value ofR0 = 1.07A1/3 fm.
The two remaining parameters (G and a) were varied
in such a way as to obtain the best fit to the ex-
perimental widths of the dipole peaks in magic and
deformed nuclei over the mass range 16 � A � 240.
The resulting values are G = 0.081 MeV−1 and a =
1.59 fm.

3. APPLICATION TO DESCRIBING
THE GROSS STRUCTURE OF GIANT
DIPOLE RESONANCES IN THE MASS

RANGE 12 ≤ A ≤ 18

The model considered above was used to describe
the gross structure of the cross sections for photoab-
sorption on 12,13,14C, 14,15N, and 16,17,18O nuclei.

The following computational scheme was em-
ployed. First, the energies E< and E> and the os-
cillator strengths S< = E<M

2
< and S> = E>M

2
> of

normal E1 vibrations were calculated on the basis of
the formalism developed in Section 2. After that, the
results obtained for the dipole states, whose number
varied from four (inN = Z nuclei) to eight (inN �= Z
nuclei), were approximated by Lorentzian curves
whose widths were estimated by formulas (43)–(46).

In order to take into account the effect of exchange
forces, we introduced a scale factor that ensures a
P

normalization of the integrated photoabsorption cross
section according to the condition

Sint = (1 + α)60
NZ

A
[MeV mb], (47)

where α = 0.2 is an exchange parameter.
In calculating single-particle states |α〉 [see

Eq. (1)], we employed the spheroidal Nilsson poten-
tial [6] involving the deformation parameter

δ′ ≈ δ

/(
1 +

2
3
δ

)
, (48)

where δ is the parameter of the quadrupole nuclear
deformation,

δ =
3
4

Q0

Z〈r2〉 . (49)

Here,Q0 is the intrinsic quadrupole moment and 〈r2〉
is the mean square of the radius of the nuclear-charge
distribution.

The parameters δ were estimated on the basis of
data on electric quadrupole moments for the ground
and excited states of nuclei [11]. From these data, it
follows that, for 12C, 14N, 17O, and 18O nuclei, the
parameter δ is, respectively, δ = +0.4(2), −0.16(5),
−0.10(5), and +0.4(2) (in parentheses, we give the
error in the last figure of the estimate with allowance
for the uncertainty in data on 〈r2〉). In order to obtain
better agreement with experimental data, these esti-
mates were varied within the experimental errors. The
ultimate values of the parameter δ that were used in
the calculations are given in column 2 of the table.

We varied the free model parameters V and V ′.
This was done differently for nuclei belonging to the
end of the 1p and the beginning of the 1d2s shell. For
the 12,13,14C and 14,15N nuclei, we first fixed the pa-
rameter V ′ and then selected the value of the param-
eter V in such a way that the calculation reproduced
the correct position of the centroid of the giant dipole
resonance [10]; that is,

Edip ≈ 86A−1/3

√√√√√ 1 + π2ξ2

1 +
10
3
π2ξ2 +

7
3
π4ξ4

[MeV],

(50)

where ξ ≡ a0/R0, a0 = 0.55 fm, and R0 =
1.07A1/3 fm. After that, we chose a different value
of the parameter V ′ and repeated the procedure
for constructing a fit to the giant-dipole-resonance
energy. This procedure for varying the parameters
made it possible to find, for the parameter V ′ (< V ),
an optimum value that takes effectively into account
the influence of the weakening of the spatial overlap
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 1. Structure of a giant dipole resonance in carbon
isotopes (the excitation energy of a nucleus is plotted
along the abscissa): (points) experimental photoabsorp-
tion cross sections [12], (solid curves) theoretical cross
section, and (dash-dotted curves) isospin components of
this cross section forN �= Z nuclei. The histograms rep-
resent (in arbitrary units) the distribution of the oscillator
strengths of dipole states. The solid-line and dashed-line
columns correspond, respectively, to longitudinal and to
transverse dipole vibrations. The thin and thick lines of
the contours correspond, respectively, to T< and to T>
resonances. The unshaded part of the columns represents
the contribution to a dipole state from configurations of
type 1, while the shaded part shows the contributions
from configurations of type 2.

of type-1 and type-2 single-particle dipole configura-
tions for nuclei from the last one-third of the 1p shell.
For the 16,17,18O nuclei, it was assumed, in fitting the
giant-dipole-resonance energy, that V ′ = V , since,
when the filling of the shell begins, both types of
dipole configurations are localized in the same spatial
region—in the vicinity of the nuclear surface. The V
and V ′ values used in the calculations are given in
columns 3 and 4 of the table.

4. DISCUSSION OF THE RESULTS

The main results of the calculations are presented
in Figs. 1–3 and in the table (columns 5–9).

Figures 1–3 give (points) experimental photoab-
sorption cross sections [12] along with (curves and
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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Fig. 2. Structure of a giant dipole resonance in nitrogen
isotopes. The notation is identical to that in Fig. 1.
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Fig. 3. Structure of a giant dipole resonance in oxygen
isotopes. The notation is identical to that in Fig. 1.

histograms) the results of the calculations performed
within the model formulated above. The solid curves
correspond to the theoretical photoabsorption cross
section. Two dash-dotted curves (for N �= Z nuclei)
4
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Parameters used in the calculations and resulting features of the configuration, the deformation, and the isospin splitting
of a giant dipole resonance [given in parentheses are the estimates of the giant-dipole-resonance splitting that are based
on the formulas presented by Danos and Okamoto [13] (column 7) and by Goulard and Fallieros [3] (columns 8, 9)]

Nucleus δ V , MeV V ′, MeV E2 − E1, MeV S2/S1 E⊥ − E||, MeV E> − E<, MeV S>/S<
12C 0.2 44 20 5.8 0.31 5.3(4.3) – –
13C 0.3 44 20 5.2 0.22 6.6(6.2) 4.8(6.9) 1.6(1.8)
14C 0.3 45 20 4.0 0.14 6.0(6.1) 6.4(8.6) 0.74(0.82)
14N −0.2 51 20 5.1 0.15 −5.8(−4.8) – –
15N −0.2 52 20 3.3 0.08 −5.0(−4.7) 4.3(6.0) 1.6(1.8)
16O 0.0 58 58 – – – – –
17O −0.15 52 52 3.0 11.6 −4.2(−3.6) 4.2(5.3) 1.4(1.8)
18O 0.6 42 42 6.3 6.4 12.4(11.0) 9.2(6.7) 0.62(0.84)
represent the contribution to this cross section from
the T< and T> components. The histograms show
the distribution of the oscillator strengths of dipole
states (in arbitrary units). The solid- and dashed-
line columns correspond, respectively, to longitudi-
nal and to transverse dipole vibrations. The thin and
thick lines of the contours correspond, respectively,
to T< and T> resonances. The unshaded part of the
columns represents the contribution to the dipole
state from configurations of type 1, while the shaded
part of the columns shows contributions from config-
urations of type 2.

One can see from these figures that the gross
structure of the cross sections for photoabsorption
on the nuclei being considered is affected by all three
types of giant-dipole-resonance splitting.

The configuration splitting of a giant dipole res-
onance manifests itself most clearly in N = Z nuclei
(12C, 14N). However, it can easily be singled out in the
structure of the cross sections for photoabsorption on
13,14C and 17,18O nuclei. In the doubly magic nucleus
16O, it is of course absent, while, in the 15N nucleus,
it is difficult to observe configuration splitting be-
cause of a small strength of type-2 dipole transitions
there (and because of their weak interaction with
type-1 transitions). In columns 5 and 6 of the table,
we present the energy spacings (E2 −E1) between
the centroids and the ratio (S2/S1) of the oscillator
strengths for two configuration components of a giant
dipole resonance. From these data, one can see that
the role of the configuration splitting becomes more
pronounced as we move away from the doubly magic
nucleus 16O. For the nuclei being discussed, yet an-
other feature of the configuration splitting of a giant
dipole resonance is worthy of special note: two config-
uration components of a giant dipole resonance mix
only slightly in the 12,13,14C and 14,15N nuclei, which
PH
belong to the end of the 1p shell; on the contrary, they
mix strongly in the 17,18O nuclei, which belong to the
beginning of the 1d2s shell (compare Figs. 1 and 2
with Fig. 3), where mixing occurs predominantly in
the T< dipole states.

The results of our calculations also show that the
set of structural features of the cross sections for
photoabsorption on light nuclei arise owing to the
deformation splitting of a giant dipole resonance. A
static nuclear deformation leads to the splitting of
the main peak corresponding to photoabsorption on
a 12C nucleus (it should be noted that the splitting of
the type-1 configuration component plays a dominant
role here) and to the emergence of two maxima asso-
ciated with photoabsorption on 14,15N and 18O nuclei
(see histograms in Figs. 2, 3). Deformation splitting
strongly correlates with other types of giant-dipole-
resonance splitting. For example, the aforementioned
maxima of photoabsorption on a 15N nucleus can
be associated not only with different directions of
dipole vibrations but also with different isospin modes
of a giant dipole resonance. From a comparison of
Figs. 1 and 4, one can see that the inclusion of config-
uration splitting significantly affects the results con-
cerning the deformation splitting of the giant dipole
resonance in the 12C nucleus. The calculation per-
formed in the present study gives a somewhat larger
spacing E⊥ − E|| between the centroids of the trans-
verse and the longitudinal component of a giant dipole
resonance than that which follows from formulas of
the Danos–Okamoto model [13] (see column 7 in the
table), although the predicted ratio of the strengths
of these components has the same value in these two
models: 2 : 1. The observed discrepancy between the
estimates of the deformation splitting of a giant dipole
resonance is explained to a considerable extent by the
fact that, in the Danos–Okamoto model, the ratio
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 4. Results of the calculation performed for the 12C
nucleus without taking into account configuration split-
ting. The notation is identical to that in Fig. 1.

of the energies of transverse and longitudinal dipole
vibrations is given by

E⊥
E||

= 0.911
a

b
+ 0.089 (51)

≈ 0.911

√√√√√√1 +
4
3
δ

1− 2
3
δ

+ 0.089,

where a and b are, respectively, the longitudinal and
the transverse semiaxis of the nuclear spheroid of
revolution. At the same time, the ratio of the cor-
responding energies within the present semimicro-
scopic model is

E⊥
E||
≈ �ω1

�ω3
=

√√√√√√1 +
2
3
δ′

1− 4
3
δ′
≈

√√√√√√1 +
4
3
δ

1− 2
3
δ
, (52)

where ωs are the single-particle frequencies of vibra-
tions along the symmetry axes s = 1, 2, 3 of a nucleus
in the Nilsson potential [5].

From the data in Figs. 1–3, it follows that, in the
carbon, nitrogen, and oxygen isotopes, the increase
in the giant-dipole-resonance width with increasing
neutron excess can be caused by the isospin splitting
of the giant resonance. This is also corroborated by
the data presented in columns 8 and 9 of the table,
where the present results for the energy spacings
E> − E< between the centroids of the T< and T>
components of giant dipole resonances and the ratio
of their intensities, S>/S<, are contrasted against
their counterparts calculated by the formulas pre-
sented by Goulard and Fallieros [3] [see (42)].

As can be seen from these data, formulas (42)
predict a somewhat larger contribution to the dipole
sum from the T> component of a giant dipole res-
onance and, for all nuclei, with the exception of the
18O nucleus, a greater value of the energy splitting
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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Fig. 5. Results of the calculation performed for the 17O
and 18O nuclei, where the isospin splitting of dipole
states was taken into account according to the formulas
presented by Goulard and Fallieros [3]. The notation is
identical to that in Fig. 1.

E> − E< in relation to the respective results of our
calculation. In [2], formulas (42) of the present article
were used to take into account the isospin splitting of
each state of the µ = 0 mode (see Subsection 2.1).
Figure 5 shows the results of such calculations for
the 17,18O nuclei. A comparison of this figure with
Fig. 3 reveals that this method for taking into account
isospin splitting is rather accurate for the 18O nu-
cleus, which has a large deformation, but that it poorly
describes experimental data in the case of the weakly
deformed nucleus 17O—it leads to an overly strong
splitting of the giant dipole resonance (this negative
result cannot be compensated by any choice of the
deformation parameter δ).

A comparison of experimental and theoretical data
shows that, by and large, the model developed in
Section 2 describes well the main features of the
cross sections for photoabsorption on light nuclei.
However, it is obvious that this model is unable to
reproduce all nuances of giant-dipole-resonance for-
mation, because it ignores the coupling of the intro-
duced coherent 1p1h excitations to more complicated
configurations and the fact that these excitations can
be spread over noncollective 1p1h states. In partic-
ular, it seems that this explains the deficiency of the
theoretical cross sections at high nuclear excitation
energies (see Figs. 1–3).

To conclude the discussion, we return once again
to the question concerning the choice of the param-
eter V ′. It was mentioned in Section 3 that, for the
12,13,14C and 14,15N nuclei, use was made of a rela-
tively small value of this parameter, V ′ = 20MeV, and
4
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Fig. 6. Calculation performed for the 12C, 15N, and 17O
nuclei with V ′ values different from those used to obtain
the data in Figs. 1–3: V ′ = V for the 12C and 15N nuclei
and V ′ = 20 MeV for the 17O nucleus. The notation is
identical to that in Fig. 1.

that the value of V ′ = V ∼ 40−60 MeV (see table)
was taken for the 16,17,18O nuclei. This was justified
by special features of the interaction of type-1 and
type-2 dipole configurations in these nuclei. Figure 6
illustrates the results of the calculations with totally
different values of the parameter V ′. As can be seen
from this figure, the agreement with experimental
data becomes significantly poorer if we do not take
correctly into account the degrees of the spatial over-
lap of type-1 and type-2 configurations.

5. CONCLUSIONS

The analysis performed in this study makes it pos-
sible to draw the following conclusions:

(i) The simple semimicroscopic model of isovec-
tor dipole vibrations that has been formulated in the
present study takes explicitly into account the main
P

modes of dipole excitations and enables us to explain
satisfactorily the gross structure of a giant resonance
over the mass range 12 ≤ A ≤ 18.

(ii) For light nonmagic nuclei, the main features
of the structure of photoabsorption cross sections are
determined by the concerted effect of the deformation,
the configuration, and the isospin splitting of giant
dipole resonances.

(iii) By and large, the simple formulas presented in
Subsection 2.4 describe fairly well the widths of dipole
states, although they cannot explain the emergence of
comparatively narrow photoabsorption peaks in such
nuclei as 14C and 15N (see Figs. 1, 2).
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Abstract—Within the interacting-boson model, phase transitions between different nuclear shapes are
considered in the space of three control parameters. Depending on the values of these parameters, the
equilibrium shape of a nucleus can be spherical, axially deformed, or nonaxial. It is shown that the phase
transition from an axisymmetric to a nonaxial deformation is a second-order phase transition. Within the
Bohr–Mottelson model, an approximate solution is found that describes a nucleus in the vicinity of the
critical point of a phase transition from a spherical to nonaxially deformed shape. The results obtained
for the energies and E2-transition probabilities are close to experimental data for the 134Ba nucleus.
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In the Bohr–Mottelson model, the properties of
low-lying collective quadrupole excitations of nuclei
are associated with vibrations of the nuclear surface.
The description of these properties requires numer-
ically solving complicated differential equations or
numerically diagonalizing the Hamiltonian matrix, as
is done in the interacting-boson model. Only in the
particular cases of a harmonic vibrator, an axial rotor,
or a β-deformed γ-unstable nucleus, the respective
dynamical symmetries within the interacting-boson
model being U(5), SU(3), or O(6), is it possible
to obtain an analytic solution. However, the ma-
jority of the nuclei belong to a so-called transition
region between the limits of dynamical symme-
tries. These transition regions—more precisely, the
regions of phase transitions between the limiting
symmetries—have always attracted considerable at-
tention.

In recent years, considerable advances have been
made in developing methods for analyzing the prop-
erties of nuclei at the critical points of relevant
phase transitions. Simple analytic solutions were
found for the critical points of U(5)−SU(3) [1]
and U(5)−O(6) [2] transitions. A detailed analy-
sis of phase transitions between nuclei of differ-
ent shapes was performed within the interacting-
boson model [3, 4]. An analysis of experimental
data revealed that there exist nuclei whose prop-
erties are very close to those that are predicted for
nuclear systems localized at the critical points [5,
6]. However, the studies in question did not ad-
dress the possibility of transitions to nonaxial nu-
clei, but such transitions are of interest, since, in
some regions of the nuclide chart, the existence of

*e-mail: jolos@thsun1.jinr.ru
1063-7788/04/6705-0931$26.00 c©
nonaxially deformed nuclei or at least nuclei that
are soft with respect to a transition to nonaxial
deformations cannot be ruled out, especially in view
of the extension of the range of nuclei under study
owing to the appearance of radioactive beams. The
objective of the present study is to include non-
axial shapes in the analysis of phase transitions
between different nuclear shapes. Our considera-
tion will be performed within the interacting-boson
model since this model is especially convenient in
dealing with systems involving a finite number of
particles.

The geometric shape of a nucleus in the ground
state can be conveniently described in terms of three
Euler angles specifying the orientation of a deformed
nucleus in the laboratory frame and in terms of the
deformation parameters β and γ. A coherent state
|N,β, γ〉 can be constructed by using these param-
eters as [7]

|N,β, γ〉 =
1√

N !(1 + β2)N
(B+)N |0〉, (1)

where

B+ ≡ s+ + β

(
cos γ · d+

0 (2)

+
1√
2

sin γ(d+
2 + d+

−2)
)
.

Here, s+ is the monopole-boson creation operator,
d+
µ is the quadrupole-boson creation operator, N is

the total number of monopole and quadrupole bosons,
and |0〉 is the boson vacuum.

Averaging the Hamiltonian over the state spec-
ified in (1), we obtain the nuclear-deformation en-
2004 MAIK “Nauka/Interperiodica”
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ergy E(N ;β, γ),

E(N ;β, γ) = 〈N,β, γ|Ĥ |N,β, γ〉, (3)

where Ĥ is the nuclear Hamiltonian.
We take this Hamiltonian in the form

Ĥ = ηn̂d −
1− η

N
Q̂χ · Q̂χ (4)

+
∑
r

cr((d+d+)l(r)d
+)r · ((d̄d̄)l(r)d̄)r,

where n̂d = d+ · d̄ is the operator of the number of
d bosons and Q̂χ = (d+s+ sd̄)2 + χ(d+d̄)2 is the
quadrupole operator.

The dot symbol between the operators in (4) de-
notes a scalar product. The first two terms in (4)
are standard. The parameter η takes values in the
region 0 ≤ η ≤ 1, while the parameter χ varies within
the range −

√
7/2 ≤ χ ≤

√
7/2. The last term was

taken from [8]. Owing to the inclusion of this term in
the Hamiltonian, the deformation energy can have a
minimum that corresponds to a nonaxial form. The
coupling constants cr (r = 0, 2, 3, 4, 6) are defined
below.

Averaging the Hamiltonian in (4) over the state
specified in (1) and requiring that the constants cr
obey the constraints

1
5
c2 −

1
7
c3 +

3
49
c4 +

14
55
c6 = 0, (5)

2
35
c0 +

1
7
c3 +

3
35
c4 −

8
385

c6 (6)

= ζ(1− η)
1

N(N − 1)
,

PH
we obtain the deformation energy E(N, η, χ, ζ;β, γ)
in the form

E(N, η, χ, ζ;β, γ) = −5(1− η) (7)

+
1

(1 + β2)2

{
(Nη − (1− η)(4N + χ2 − 8))β2

+
(
Nη + (1− η)

(
4− 2N + 5

7
χ2

))
β4

+ 4(N − 1)(1 − η)

√
2
7
χβ3 cos 3γ

+ ζ(N − 2)(1 − η)
β6 cos2 3γ

1 + β2

}
.

We assume that the parameter ζ is positive. In con-
trast to what occurred in the case considered in [4],
the last term depends on three control parameters η,
χ, and ζ rather than on two parameters. Therefore,
a three-dimensional space of control parameters is
required for considering nonaxial shapes of nuclei.

An analysis of the points of stationarity of
E(N, η, χ, ζ;β, γ) revealed that, at small values of η,
the deformation energy E(N, η, χ, ζ;β, γ) has a min-
imum that corresponds to a nonaxial deformed shape
of a nucleus, provided that the control parameters η,
χ, and ζ satisfy the following two conditions:

Nη < (1− η)
(

4N + χ2 − 8− 8(N − 1)2χ2

7(N − 2)ζ

)
,

(8)
(
(1− η)

(
4N + χ2 − 8− 8(N − 1)2χ2

7(N − 2)ζ

)
−Nη

)3/2

4(1− η)(N − 1)
(

2− 1
7
χ2

)√
Nη + (1− η)

(
4N − 4N + 3

7
χ2 +

8(N − 1)2χ2

7(N − 2)ζ

) > 2
N − 1
N − 2

√
2
7
χ2

1
ζ
. (9)
The parameters η, χ, and ζ can vary within certain

boundaries that determine a triangular prism. The

base of this prism lies in the ζ = 0 plane and is an

extended Casten triangle [4] (see figure). Thus, con-

ditions (8) and (9) determine a surface in the space

of control parameters. This surface separates the pa-

rameter region where there exists a nonaxial deformed

minimum from the region where there is no nonaxial

deformation.
Condition (8) imposes an upper bound on η,

η <

4N − 8 + χ2 − 8(N − 1)2χ2

7(N − 2)ζ

5N − 8 + χ2 − 8(N − 1)2χ2

7(N − 2)ζ

, (10)

while condition (9) imposes a lower bound on ζ . For
N →∞, the latter takes the form

ζ

(
1− 2χ2

7ζ

)
> 8

√
χ2

7
. (11)
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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From (11), one can see that the lower bound on ζ
is determined predominantly by the quantity χ. By
way of example, we indicate that, at χ close to zero
and η satisfying the condition in (10), the nonaxial
deformed minimum appears at ζ values close to zero.
At |χ| =

√
7/2, the minimum value of ζ that ensures

the emergence of a nonaxial minimum is ζ ≈ 4.18.
Thus, nuclei featuring a nonaxial deformation or nu-
clei that are soft with respect to deviations from axial
symmetry are most likely to appear, as might have
been expected, in the region around χ ≈ 0. These are,
for example, the isotopes of Ba, Pt, and Os.

If the conditions of the emergence of a nonaxial
deformedminimum are not satisfied, then such amin-
imum is localized at γ = 0 (χ < 0) or γ = π/3 (χ >
0). The constraint imposed on η by the requirement
that an axisymmetric minimum exist has the form

Nη < (1− η)

{
4N + χ2 − 8 (12)

− 8(N − 1)2χ2

7(N − 2)ζ
+ 3βminζ(N − 2)

×
∣∣∣∣∣ β3

min

1 + β2
min
− 2

(N − 1)
(N − 2)

√
2
7
χ2

1
ζ

∣∣∣∣∣+ ζ(N − 2)

×
(

β3
min

1 + β2
min
− 2

(N − 1)
(N − 2)

√
2
7
χ2

1
ζ

)2}
,

where βmin is the value of the parameter β at the
minimum. Comparing (12) with the condition in (8),
one can see that, as η increases from zero, the con-
dition in (8) ceases to be valid at some value of η,
but the constraint in (12) holds. This means that,
with increasing η, a deformed nonaxial minimumgoes
over to a deformed axisymmetric minimum. As will be
shown below, this is a second-order phase transition.
In this case, a deformed axisymmetric and a deformed
nonaxial phase do not coexist. The distinction be-
tween these two phases disappears along the transi-
tion line. As η increases further (χ �= 0), there appears
a minimum at β = 0, but the minimum at nonzero β
still exists. The depths of these minima become equal
at η = ηcrit [4].

Let us consider in detail the transition from an
axisymmetric to a nonaxial nuclear shape. Under the
condition that there exists a nonaxial deformed mini-
mum, we have

E(N, η, χ, ζ;β, γmin) (13)

= Nη − (1− η)
(

1 +
2N + 5

7
χ2

)
− 1

1 + β2

×
{
Nη + (1− η)

(
4N − 4N + 3

7
χ2

)
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+ (1− η)
8(N − 1)2χ2

7(N − 2)ζ

}
+

1
(1 + β2)2

2(1− η)

× (N − 1)
(

2− 1
7
χ2

)
.

If the deformed minimum is axisymmetric (that is, if ζ
is not very large), then

E(N, η, χ, ζ;β, γ = 0 or π/3) (14)

= Nη − (1− η)
(

1 +
2N + 5

7
χ2

)

− 1
1 + β2

{
Nη + (1− η)

(
4N − 4N + 3

7
χ2

)

+ (1− η)
8(N − 1)2χ2

7(N − 2)ζ

}
+

1
(1 + β2)2

2(1− η)

× (N − 1)
(

2− 1
7
χ2

)
+ (1− η)ζ(N − 2)

×
(

β3

1 + β2
− 2

(N − 1)
(N − 2)

√
2
7
χ2

1
ζ

)2
1

1 + β2
.

A detailed consideration revealed that, if

β3

1 + β2
< 2

(N − 1)
(N − 2)

√
2
7
χ2

1
ζ
, (15)

then there exists only an axisymmetric deformed min-
imum. By equating the derivative of expression (14)
with respect to β to zero, one can obtain the position
of this minimum with respect to β.

If

β3

1 + β2
> 2

(N − 1)
(N − 2)

√
2
7
χ2

1
ζ

(16)

[this condition is equivalent to (9)], then a nonaxial
deformed minimum appears instead of an axisymmet-
ric deformed minimum. The position of this minimum
can be found by equating the derivative of expres-
sion (13) with respect to β to zero. At the point of the
4
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phase transition from an axisymmetric deformation to
a nonaxial deformation, we have

β3

1 + β2
= 2

(N − 1)
(N − 2)

√
2
7
χ2

1
ζ
. (17)

From a comparison of (13) and (14), one can see that
the deformation energy at the phase-transition point
is a continuous function of the control parameters.
Since Eqs. (13) and (14) differ by the term that is
quadratic in(

β3

1 + β2
− 2

(N − 1)
(N − 2)

√
2
7
χ2

1
ζ

)
, (18)

the first derivatives of the deformation energy with
respect to the control parameters are also continu-
ous at the phase-transition point. However, the sec-
ond derivatives undergo a discontinuity at this point.
Therefore, the transition from an axisymmetric to a
nonaxial deformation is a second-order phase transi-
tion.

Let us consider the behavior of nuclei in the vicin-
ity of the critical point in η at ζ values ensuring the
appearance a nonaxial minimum. For this purpose,
we use the Bohr–Mottelson equation{

− �
2

2B

[
1
β4

∂

∂β

(
β4 ∂

∂β

)
(19)

+
1
β2

(
1

sin 3γ
∂

∂γ

(
sin 3γ

∂

∂γ

)

− 1
4

3∑
k=1

Î2
k

sin2

(
γ − 2π

3
k

)
)]

+ V (β, γ)− E

}
Ψ(β, γ, θi) = 0,

where θi are three Euler angles, B is the mass coeffi-
cient, Îk stands for the components of the angular-
momentum operator, and the index k numbers the
axes of the intrinsic coordinate frame. The potential
V (β, γ) has the form

V (β, γ) = u(β) +
1
2
Dβ6 cos2 3γ. (20)

We assume that the stiffness coefficient D is so large
that it is legitimate to consider only small-amplitude
vibrations about the point γ = π/6. Equation (19)
then approximately takes the form{

− �
2

2B

[
1
β4

∂

∂β

(
β4 ∂

∂β

)
(21)

+
1
β2

(
∂2

∂x2
− 9DB

�2
β8x2 − I(I + 1) +

3
4
I2
1

)]
P

+ u(β)− E

}
Ψ(β, x, θi) = 0,

where x = γ − π/6, while I is the total angular mo-
mentum. From (21), it is clear that one can factor out
the dependence on the variables x and θi in the total
wave function; that is,

Ψ(β, x, θi) = f(β) exp
(
−Bω

2�
β4x2

)
(22)

× 1√√
πn!2n

Hn

(
xβ2

√
Bω

�

)
DI
MK(θi),

where ω = 3(D/B)1/2; Hn is a Hermite polynomial,
n = 0, 1, 2, . . .; DI

MK is a Wigner function; and K is
the angular-momentum projection onto the intrinsic-
coordinate-frame axis 1 corresponding to a minimum
of the moment of inertia. From the point of view of
the interacting-boson model, the assumption that the
minimum with respect to γ is localized at γ = π/6
corresponds to χ = 0. But at χ = 0, a nonaxial min-
imum appears even at small values of ζ . An increase
in ζ leads only to an increase in the energy of the 0+

τ
state.

The equation for the function f(β) has the form{
− �

2

2B
1
β4

∂

∂β

(
β4 ∂

∂β

)
(23)

+
1
β2

�
2

2B

(
I(I + 1)− 3

4
K2

)
+ u(β)

+ �ω

(
n+

1
2

)
β2 − E

}
f(β) = 0.

Following [2], we approximate the effective potential
energy as a function of β by a square-well potential;
that is,

u(β) + �ω

(
n+

1
2

)
β2 = �ω

(
n+

1
2

)
〈β2〉, (24)

β ≤ βw;

u(β) + �ω

(
n+

1
2

)
β2 →∞,

β > βw,

where βw is the maximum value of β. We then have

f(β) = β−3/2ClIKJν(klIKβ), (25)

where ν =
√
I(I + 1)− 3

4
K2 +

9
4
; klIK = xlIK/βw ,

xlIK being the lth root of Jν(z), l = 1, 2, 3, . . .; and
ClIK = (

√
2/βw)J

′
ν(xlIK). The energy of a state

characterized by the quantum numbers lIKn has the
form

ElIKn =
�2

2Bβ2
w

x2
lIK + �ωn〈lIKn|β2|lIKn〉. (26)
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Table 1. Ratios of the energies of low-lying states according to our calculations (Th), along with the experimental data
for 134Ba and with the results obtained in the limit ofE(5) symmetry

E(4+
1 )/E(2+

1 ) E(6+
1 )/E(2+

1 ) E(2+
2 )/E(2+

1 ) E(0+
β )/E(2+

1 )

Th 2.35 3.98 1.84 3.91

134Ba 2.31 3.66 1.93 3.57

E(5) 2.20 3.59 2.20 3.03

Table 2. Ratios of the E2-transition probabilities according to our calculations (Th), along with the experimental data
for 134Ba and with the results obtained in the limit ofE(5) symmetry

B(E2; 4+
1 → 2+

1 )
B(E2; 2+

1 → 0+
1 )

B(E2; 2+
2 → 2+

1 )
B(E2; 2+

1 → 0+
1 )

B(E2; 0+
β → 2+

1 )

B(E2; 2+
1 → 0+

1 )

B(E2; 0+
β → 2+

2 )

B(E2; 0+
β → 2+

1 )

Th 1.59 1.62 0.75 0
134Ba 1.56(18) 2.2± 0.7 0.42(12) 0.18(8)

E(5) 1.68 1.68 0.86 0
The quadrupole-moment operator, which is used in
calculating the probabilities ofE2 transitions, has the
form

Q2µ = e2β

(
D2
µ0 cos γ +

1√
2
(D2

µ2 +D2
µ−2) sin γ

)
,

(27)

where e2 is an effective charge. But we did not use
such an effective charge because we calculated only
the ratios of the E2-transition probabilities.

The results obtained by calculating the ratios of
the energies of several low-lying states and the ratios
of theE2-transition probabilities are given in Tables 1
and 2, respectively, along with results derived in the
limit of E(5) symmetry [2] and with experimental
data for 134Ba. The 134Ba nucleus is chosen for a
comparison since it is the closest to the transition
region with respect to the deformation parameter β
and since it is simultaneously γ-unstable [9].

One can see from Tables 1 and 2 that our results
are in good agreement with the data for 134Ba. At the
same time, our results are similar to those obtained in
the limit of E(5) symmetry, although there are small
distinctions. For example, the ratio E(2+

2 )/E(2+
1 )

in the 134Ba nucleus is closer to our results, while
E(6+

1 )/E(2+
1 ) is better described in the limit of E(5)

symmetry. ThisE(5) symmetry assumes that the po-
tential energy is independent of γ, while, in our cal-
culations, it is assumed that the deformation energy
at given β has a minimum at γ = π/6. Therefore, it is
difficult to choose between these two assumptions on
the basis of the existing data for 134Ba.We note that it
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
is of importance to take into account the finiteness of
the number of valence nucleons, since the results ob-
tained in the interacting-boson model forN = 5 differ
slightly from those obtained in the Bohr–Mottelson
model in the limit of E(5) symmetry. However, our
results must be compared with the limit ofE(5) sym-
metry of the Bohr–Mottelson model because both
models are based on the same Hamiltonian.

In summary, we have considered phase transi-
tions between different nuclear shapes in the space of
three control parameters η, χ, and ζ , relying on the
interacting-boson model. Depending on the values of
these parameters, the equilibrium shape of a nucleus
can be spherical, axisymmetrically deformed, or non-
axial. It has been shown that, at χ ≈ 0, a small in-
crease in the parameter ζ may lead to the appearance
of a nonaxial minimum. By using the Hamiltonian
of the Bohr–Mottelson model, we have further con-
sidered the case where the deformation energy has a
minimum at γ = π/6, but where the system in ques-
tion is still β-unstable. In this case, the results for
the energies and the probabilities ofE2 transitions are
close to those obtained in the limit of E(5) symmetry
(β and γ instability), although they differ slightly from
the latter. At the same time, our results are close to
experimental data for 134Ba. Therefore, the inclusion
of a nonaxial deformation in the consideration extends
the possible region of various phase transitions. The
inclusion of nonaxiality can also be useful in interpret-
ing experimental data for nuclei that are considered as
γ-unstable objects.
4
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NUCLEI
Theory
Relativistic Treatment of Bremsstrahlung in the Process pp→→→ ppγ
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Abstract—A relativistic quasipotential formalism for describing electromagnetic processes involving nu-
cleons that takes into account an explicit coupling to theN∆ (1232MeV) andNN∗ (1440MeV) channels
is developed. On one hand, this formalism is a relativistic generalization of the Lomon–Ray approach to
describing nucleon–nucleon scattering within a framework explicitly including isobar degrees of freedom;
on the other hand, it relies on the formalism developed by Lev [F.M. Lev, hep-ph/9403222] within relativistic
quantum mechanics for constructing the electromagnetic-current operator for interacting particles. The
formalismmakes it possible to obtain a consistent description of a two-nucleon system in the energy region
extending up to 1 GeV. It is applied to describing the reaction pp→ ppγ over a kinematical region in which
corrections associated with a virtual delta isobar are of importance. The sensitivity of this reaction to the
type of the short-range component of the nucleon–nucleon potential and the possibility of discriminating
between the Moscow potential and meson-exchange potentials on the basis of experimental data are
confirmed. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Constructing the nucleon–nucleon interaction is
one of the most important problems in theoretical nu-
clear physics. Much effort has been undertaken over
the past fifty years in order to describe this interaction
in terms of a relevant potential. The long-range part
of the nucleon–nucleon interaction is well explained
by the meson-exchange mechanism proposed long
ago by Yukawa, but its short-range part is still being
described phenomenologically [1]. Moreover, there
are radically different approaches to describing the
short-range part of the nucleon–nucleon interaction.
Although the quark structure of nucleons is generally
recognized, work on refining meson-exchange poten-
tials is still being continued [2–4]. In this connection,
much hope is placed on so-called effective-field the-
ory [1]. The advocates of this theory assume that one
can quite clearly single out energy regions where dif-
ferent mechanisms of the nucleon–nucleon interac-
tion are operative—in particular, they believe that the
use of the meson-exchange mechanism is legitimate
up to an energy of 300 to 400MeV. A repulsive core at
a distance of about 0.5 fm between pointlike nucleons
is a feature peculiar to meson-exchange potentials.
For this reason, we classify such potentials among
those that involve a repulsive core, including in this

*e-mail: knyr@fizika.khstu.ru
**e-mail: khokhlov@fizika.khstu
1063-7788/04/6705-0937$26.00 c©
class potentials possessing this property that were
obtained from quark calculations [5].

Yet, this point of view is not prevalent, since there
are reasons to believe that more fundamental quark–
gluon degrees of freedom must manifest themselves
even in this energy region [6]. Numerical calculations
of the parameters of the nucleon–nucleon potential
are much more cumbersome in quark models than
in meson-exchange models; for this reason, meson-
exchange potentials provide a much better descrip-
tion of the properties of the deuteron and the scatter-
ing of two nucleons. Calculations of the parameters of
the nucleon–nucleon potential within quark models
yield rather contradictory results because of the un-
wieldiness of such calculations and the impossibility
of using a reliable quark–quark interaction. In par-
ticular, the wave function for two nucleons at short
distances between them may die out sharply at some
parameters of gluon exchange between quarks, this
corresponding to a repulsive core in meson-exchange
potentials. This result confirms effective-field theory
and, obviously, justifies the use of meson-exchange
models at low energies.

However, there are calculations within the quark-
model approach [7, 8] that predict, on the basis of
the symmetry properties of a six-quark system, the
existence of channels featuring a strong attraction
in nucleon–nucleon systems. For example, it was
2004 MAIK “Nauka/Interperiodica”
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shown that, in the case of a colormagnetic qq interac-
tion of λλσσ symmetry, such an attraction is caused
by the excitation of an s4p2[42]X [42]CS quark config-
uration in the S and D waves. Such configurations
become energetically favorable if the strength of qq
interaction is sufficiently great. On the basis of these
ideas, the model of the phenomenological Moscow
nucleon–nucleon potential (Moscow potential) was
developed in [9, 10]. The wave-function node asso-
ciated with the aforementioned excited quark config-
urations is a feature characteristic of this potential.
Thus, the Moscow potential does not have a repul-
sive core; on the contrary, it has a depth of about 1
to 2 GeV at internucleon distances less than 1 fm.
Within the Moscow potential model, extra bound
states that could arise owing to this are forbidden
by the Pauli exclusion principle for the correspond-
ing six-quark states. This approach provides a good
description of the properties of the deuteron and the
properties of low-energy nucleon–nucleon scatter-
ing [9–12]. Also, the differential cross sections and
polarizations for nucleon–nucleon scattering in the
region extending up to an energy of 5 to 6 GeV were
described on its basis for the first time. Yet another
spectacular piece of evidence in favor of the Moscow
potential was obtained quite recently. It was shown
in [13] that, by using the same central potential of the
Moscow type (that is, that which has a depth about
2 GeV and which involves forbidden states), one can
obtain nucleon–nucleon phase shifts for all S and P
states, along with the deuteron binding energy. In
doing this, the tensor component of the interaction
is described by a meson-exchange potential. In this
model, the number of free parameters is severalfold
smaller than in the pioneering studies reported in [11,
12] and is smaller than in traditional meson-exchange
models [2–4] by a factor of a few tens. Obviously,
this agreement between the potentials for all S and
P waves, which has never been observed for meson-
exchange potentials, cannot be accidental.

Of course, the problem of experimentally discrim-
inating between these two types of nucleon–nucleon
potentials (as was indicated above, they display to-
tally different types of behavior at short distances) is
of great importance. In the momentum representa-
tion, the fact that potentials of the two types behave
differently in coordinate space at short distances is
reflected in the difference in the off-shell behavior of
the T matrix. Upon appropriately fitting free parame-
ters, which are present in all models of the nucleon–
nucleon interaction, by no means can this difference
be traced in two-nucleon systems, but it is expected
to manifest itself in one way or another in any of
the more complicated systems of particles. Numerous
investigations revealed that distinctions between po-
tentials involving a repulsive core are virtually imma-
P

terial and do not show up in either the properties of the
triton, reactions of deuteron photo- and electrodisin-
tegration, bremsstrahlung from proton–proton scat-
tering, or the properties of more complex nuclei [14].
Moreover, it can be stated that these distinctions are
not of fundamental importance, since, to a consid-
erable extent, they are of a purely phenomenological
origin. On the other hand, the distinction between
potentials having a repulsive core and the Moscow
potential is of a conceptual character, because the
underlying microscopic pictures are totally different in
these two cases.

Among numerous processes listed above, we
chose bremsstrahlung in proton–proton scattering
as a tool for studying the short-range behavior of the
nucleon–nucleon potential. In relation to the others,
it possesses the following properties convenient for
the purposes of our investigation. First of all, it
involves three particles, but only two of these interact
strongly—it is sufficient to take into account the in-
teraction with the third one (photon) in the first order
of perturbation theory in electromagnetic interaction.
Second, this reaction is unaffected by three-body
nucleon–nucleon forces. Previously, it was assumed
that effects caused by meson-exchange currents
and by virtual-delta-isobar emission associated with
them are also inoperative in this reaction, at least
for energies below the threshold for this channel.
However, this assumption was disproved by the
calculations reported in [15]. According to the results
of those calculations, such effects come into play
from an energy of 280 MeV, effects associated with
the emission of a virtual delta isobar being dominant
there.

Only popular meson-exchange potentials, like the
Bonn, Nijmegen, and Paris potentials, were stud-
ied in calculations performed for the reaction pp→
ppγ. All of these calculations lead to the conclu-
sion that available experimental data on the reaction
pp→ ppγ are insufficient for discriminating between
these potentials both because of large experimental
uncertainties stemming from a low probability of this
process in relation to proton–proton scattering and
because of the dependence of the results on model
assumptions for this reaction that are not fixed by
a specific choice of potential [16]. The results of the
calculations performed in [17–19] confirm these con-
clusions. At the same time, the important conclusion
that, by studying hard bremsstrahlung from the reac-
tion pp→ ppγ at proton-beam energies in the range
350–500 MeV, one can efficiently distinguish be-
tween meson-exchange potentials and the Moscow
potential was drawn from the calculations in [17–19].

In the present study, we pursue further the analy-
sis of nucleon–nucleon potentials at short distances
on the basis of the reaction pp→ ppγ, substantially
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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refining and extending the relativistic quasipotential
formalism developed in [19] for describing the reaction
pp→ ppγ with allowance for the N∆(1232 MeV)
and NN∗(1440 MeV) isobar reaction channels. The
need for employing a relativistic formalism from an
energy of Elab = 280 MeV was demonstrated in [19].
The ensuing exposition is organized as follows. In
Section 2, we give, among other things, a description
of a two-proton system within the pointlike form of
relativistic quantum mechanics, taking explicitly into
account coupling to isobar reaction channels, and
also obtain the electromagnetic-current operator for
a two-nucleon system, explicitly including coupling
to isobar channels, whereby we generalize the for-
malism developed by Lev in [20] for constructing the
operator of an electromagnetic current for interacting
particles. In Section 3, we compare the results of our
calculations for the reaction pp→ ppγ with other the-
oretical results and with experimental data and draw
conclusions concerning the potentials under study.

2. DESCRIPTION OF THE FORMALISM
USED

The relativistic quantum mechanics of systems
that consist of a fixed number of particles is based on
the conjecture that, at not very high energies, rela-
tivistic effects can be taken into account by assuming
that the number of particles is constant, but that it is
the Lorentz rather than the Galilei group that is the
group of invariance for the system being considered.
In [17–19], it was shown that, in just the same way as
in the nonrelativistic case, the total wave function for
a system of two nucleons can be represented as the
product of two wave functions, that which describes
the motion of the system as a discrete unit and that
(χ(r)) which describes the relative motion of the con-
stituent nucleons.

In [19], it was shown that use can be made of
a relativistic quasipotential equation for the function
χ(r); that is,

[4(m2 + q2) + V ]χ = M2χ (1)

or
(
q2

m
+

V

4m

)
χ = Eχ,

where

E =
M2 − 4m2

4m
. (2)

Here, M2 is the operator of the square of the mass
of a two-nucleon system, m is the nucleon mass,
V is the nucleon–nucleon potential, and q is the
momentum operator of one of the nucleons in the c.m.
frame. Hereafter, we employ the system of units where
� = c = 1. A complete formal similarity of the present
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
formulation to nonrelativistic theory is achieved in the
representation of the relative quasicoordinate r, which
is related to the operator q by the conventional equa-

tion q = −i ∂
∂r

. Thus, Eq. (1) is a relativistic equation

for eigenvalues and eigenfunctions of the operator of
the mass squared, on one hand, and formally coin-
cides with the nonrelativistic Schrödinger equation,
on the other hand.

In order to describe isobar degrees of freedom of
the nucleon–nucleon system, we generalize the rel-
ativistic quasipotential formalism developed in [19],
employing the Lomon–Ray approach [21]. Here, the
potential V in Eq. (1) already includes coupling to
proton–isobar channels.

Upon expanding the relative-motion wave func-
tion χ(r) in partial waves in order to describe the
nucleon–nucleon system with allowance for the N∆
and NN∗ channels within the above approach, we
arrive at the set of equations[

d2

dr2
− li(li + 1)

r2
− 2µiVii + k2

i

]
χi (3)

= 2µi
∑
i�=j

Vijχj ,

[
d2

dr2
− lj(lj + 1)

r2
− 2µjVjj + k2

j + iµjΓj

]
χj (4)

= 2µj
∑
i�=j

Vjiχi.

Equation (3) represents a singlet or two coupled
triplet nucleon–nucleon channels. Equation (4) de-
scribes one or two isobar channels. The reduced mass
in the ith channel is

µi =
m

(1)
i m

(2)
i

m
(1)
i +m

(2)
i

, (5)

where mi is the nucleon mass (938.5 MeV) or the
mass of an isobar (1232 and 1440 MeV), and li is the
orbital angular momentum in the ith channel.

As in [21], the channel wave numbers are de-
scribed here by the relativistic expression

k2
j =

s

4
−

(
m

(1)
j

)2
+

(
m

(2)
j

)2

2
(6)

+

[(
m

(1)
j

)2
−

(
m

(2)
j

)2
]2

4s
,

where s = 2mN (2mN + Elab) is the square of the
total invariant mass of the two-nucleon system. It is
this relation between the wave number and the mass
of the system that enables us to use Eqs. (3) and
4
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(4) as the quasipotential Eq. (1) written for partial
waves in the c.m. frame. The relativistic invariance
of the description is guaranteed by expressing the
generators of the Lorentz group [22] for the system in
terms of the mass operator corresponding to Eq. (1).

In the nucleon–isobar channel, the asymptotic
expression for the wave function has the form of a
spherical Hankel function of a complex argument. For
example, the asymptotic expression corresponding to
the S wave is

χr→∞ = e−kRreikIr, (7)

kR(I) = ± 1√
2

([
k4
j + (µjΓj)

2
]1/2
∓ k2

j

)1/2

, (8)

where the upper and the lower sign refer to kR and
kI , respectively, and the case of kR ≥ 0 and kI ≤ 0
corresponds to a damped diverging wave of finite ra-
dius, which is determined by the lifetime of the isobar
involved and the degree of virtuality of its excitation.

The isobar widths Γj were borrowed from [21]. The
notation Vij is used for a symmetric interaction po-
tential. For the potential in the proton–proton chan-
nel, we took here the nucleon–nucleon potentials
under study (Moscow, Paris [2], and Nijmegen [3]
potentials). The off-diagonal elements that describe
coupling to nucleon–isobar channels and the poten-
tials in nucleon–isobar channels were borrowed from
[21].

In [19], the amplitude for the reaction pp→ ppγ
was derived in the form

Ai→f =

√
8π
k

(2π)3
√
MiMf 〈χf | ε∗µjµ(h) |χi〉 , (9)

where k is the momentum (energy) of the emitted
photon in the reference frame in which the sum of
PHY
the 3-velocities of the centers of mass of the initial
and the final nucleon–nucleon system (Gi and Gf ,
respectively) is equal to zero

Gi +Gf = 0. (10)

The vector h is the three-dimensional vector de-
fined as h = Gi in this reference frame (under the
Lorentz transformations, it undergoes Wigner rota-
tions); Mi and Mf are, respectively, the initial and
the final mass of the two-nucleon system; and εµ is
the polarization 4-vector. The vector j(h) has the
meaning of an electromagnetic-current operator in
the same reference frame.

Using the transverse gauge

εµ = (0, ε), (ε · k) = 0 (11)

and taking into account the relation

h =
2
√
MiMf

(Mi +Mf )2
k, (12)

we find that the component j0 (h) and the terms in
j(h) that are parallel to h do not contribute to the
amplitude. For a system of noninteracting particles,
the expression for the operator j(h) was obtained in
[20] for the case where the initial- and final-state
particles are of the same nature. Since we describe
a general case where the electromagnetic-interaction
operator induces N ↔ ∆(N∗) transitions, we gener-
alize the formalism developed in [20] to the case where
the electromagnetic-interaction operator changes its
nature—in particular, its mass. As a result, the struc-
ture formula for the operator j(h) with allowance for
electromagnetic nucleon–isobar transitions has the
form
j(h) =



jNN→NN (h) jNN→N∆(h) jNN→NN∗(h)

jN∆→NN (h) jN∆→N∆(h) jN∆→NN∗(h)

jNN∗→NN (h) jNN∗→N∆(h) jNN∗→NN∗(h)


 . (13)
The explicit expressions for the operators ji→f (h)
are derived in Appendix 1.

Expression (12) makes it possible to estimate the

quantity h: h <
k

4mN
, where mN is the proton mass

and k is the photon energy in the reference frame
determined by the condition in (10). At k ≈ 500 MeV,
we find that h < 0.125; therefore, terms of order h2
and terms of higher orders can be disregarded un-
der the kinematical conditions being considered. We
note that the value of k ≈ 500 MeV corresponds to a
photon energy of about 1000 MeV in the laboratory
frame.

The differential cross section for the reaction
pp→ ppγ in the laboratory frame can be expressed in
terms of the transition amplitude Ai→f in a standard
way [17].
SICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 1. (a) Phase shifts and (b) inelasticity parameters
for proton–proton scattering versus the incident-proton
energy in the laboratory frame: (solid curve) data of
the partial-wave analysis from [24], (dash-dotted curve)
results of the calculation with the Nijmegen potential,
(long-dashed curve) results of the calculation with the
Moscow potential [10], (short-dashed curve) results of
the calculation with the Moscow potential in the MP92
version [9], and (dotted curve) results of the calculation
with the Paris potential. In Fig. 1a, the dash-dotted and
the short-dashed curve merge, while, in Fig. 1b, this
occurs for the dash-dotted and the dotted curve.

3. RESULTS OF THE CALCULATIONS
AND DISCUSSION

The present study has two objectives, that of
determining the contribution of isobar channels to
the cross section for the reaction pp→ ppγ and
that of clarifying the question of whether the pos-
sibility of discriminating between meson-exchange
potentials and the Moscow potential by analyzing
hard bremsstrahlung in the process pp→ ppγ over a
wide incident-proton-energy region (extending up to
1 GeV in the laboratory frame) survives upon taking
into account isobar reaction channels.

In general, the standard parameters of the meson-
exchange potentials used in the present study and
of the Moscow potential were fitted to experimental
data on nucleon–nucleon scattering without explic-
itly taking into account coupling to nucleon–isobar
channels; therefore, the potential parameters must be
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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Fig. 2. (a) Radial parts φ(r) of the wave functions
(in arbitrary units) in the pp(3P1) channel for the Ni-
jmegen potential (solid curve) without and (dashed curve)
with allowance for coupling to the p∆ channel at the
incident-proton energy of Elab = 280 MeV. (b) Radial
parts φ(r) of the wave functions (in arbitrary units) in
the p∆(3P0) channel at the incident-proton energies of
Elab = (solid curve) 280, (dashed curve) 500, and (dotted
curve) 1000 MeV. In the pp(3P1) channel, use was made
of the Nijmegen potential. The radial parts of the wave
functions are normalized by the asymptotic condition
φ(r) → sin(kppr − Lπ/2 + δL(kpp)) in the pp channel,
where L is the orbital angular momentum in this channel
and δL(kpp) is the phase shift in the same channel as a
function of the wave number kpp.

somewhat modified upon the inclusion of isobar re-
action channels in the consideration in order to avoid
effects of double counting. Such a modification of the
parameters of the meson-exchange potentials and of
theMoscow potential was accomplished in [23] by fit-
ting the phenomenological short-range part of these
potentials to experimental data on elastic proton–
proton scattering for energies up to 300 MeV in the
laboratory frame. In the present study, we perform
calculations for the reaction pp→ ppγ over a broad
region of incident-proton energies (which extends up
to 1 GeV in the laboratory frame) without addition-
ally fitting the potential parameters because, within
available computing facilities, the time required for
implementing this procedure would be overly long.
Nevertheless, the calculations with the standard pa-
rameters of the meson-exchange potentials and the
Moscow potential make it possible to answer the
questions formulated at the beginning of this section.

At energies around and above the inelasticity
threshold, the main contribution to the amplitude for
the reaction pp→ ppγ comes from transitions be-
tween 3PJ partial waves (at least under the kinemati-
cal conditions considered here). In order to prove that,
upon taking into account isobar degrees of freedom,
the potentials in question nevertheless describe satis-
4
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Fig. 3. Ratio dσtot/dσ of the total differential cross sec-
tions for the process pp→ ppγ to the differential cross
section obtained by taking into account only transitions
from the pp to the pp channel. Given in the figure are the
results of the calculation with the Nijmegen potential in
the pp channel at the angles of θ1 = 12.4◦ and θ2 = 12.0◦

between the momenta of scattered protons.

factorily waves that are of importance for the reaction
being studied, we have calculated the corresponding
phase shifts and inelasticity parameters for proton–
proton scattering versus the incident-proton energy.
From Fig. 1, where the results of our calculations for
the 3P0 partial wave are given along with the data
from a partial-wave analysis, it can be seen that, by
and large, there is qualitative agreement with these
data for all of the potentials used. For the remaining
partial waves, 3P1 and 3P2, the situation is similar.

We have investigated the effect of isobar degrees of
freedom on the wave functions for the pp system. By
way of example, the radial parts of the wave functions
in the pp(3P1) channel for the Nijmegen potential
are given in Fig. 2a without and with allowance for
coupling to the p∆ channel at the incident-proton
energy of Elab = 280 MeV. From this figure, it can
be seen that the p∆ channel introduces virtually no
changes in the asymptotic part of the wave func-
tion, but it changes its internal part significantly—
for example, a node appears in the internal part of
the wave function in the case of the Nijmegen po-
tential. The radial parts of the wave functions in the
p∆(3P0) channel (in the corresponding pp channel,
use is made of the Nijmegen potential) are displayed
in Fig. 2b at the energies of Elab = 280, 500, and
1000 MeV for the purpose of illustration. (For the
remaining potentials and p∆ channels, the behavior
of the wave functions is similar.) From this figure, one
PH
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Fig. 4. Differential cross section for the reaction pp→
ppγ as a function of the photon emission angle for the
case of coplanar geometry (that is, the emitted photon
travels toward the angle θ2) at θ1 = 12.4◦, θ2 = 12.0◦ ,
and Elab = 280 MeV: (a) results of the calculation for the
Nijmegen potential without allowance for isobar reaction
channels (dash-dotted curve), results of the calculation
for the Paris potential without allowance for isobar re-
action channels (dotted curve), and results of the cal-
culation for the Nijmegen potential in the pp channel
with allowance for isobar reaction channels (long-dashed
curve), results of the calculation for the Paris potential in
the pp channel with allowance for isobar reaction chan-
nels (short-dashed curve); (b) results of the calculation
for the Moscow potential with dispersion without al-
lowance for isobar reaction channels (dash-dotted curve),
results of the calculation for the Moscow potential MP92
without allowance for isobar reaction channels (dotted
curve), results of the calculation for the Moscow poten-
tial with dispersion in the pp channel with allowance for
isobar reaction channels (long-dashed curve), and results
of the calculation for the Moscow potential MP92 in the
pp channel with allowance for isobar reaction channels
(short-dashed curve). The displayed experimental data
(points with error bars) were borrowed from [25].

can see that, with increasing energy, the amplitude
of the wave function in this channel grows, which
must increase the contribution of the p∆ channel to
the cross section for the process being studied. With
increasing energy, there arise, however, oscillations,
and this, on the contrary, may reduce the contribution
of the p∆ channel to the reaction cross section (in the
pp channel, the oscillations of the wave function also
grow with increasing energy). This competition leads
to the energy dependence of the ratio of the total dif-
ferential cross section to the cross section that takes
into account only transitions from the pp to the pp
channel. This ratio is shown in Fig. 3 for theNijmegen
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 5. Differential cross section for the process pp→ ppγ as a function of the photon emission angle according to our
calculations with allowance for isobar reaction channels for coplanar geometry (that is, the emitted photon travels toward
the angle θ2) at (a) θ1 = 27.8◦ , θ2 = 28.0◦, and Elab = 280 MeV; (b) θ1 = 26◦, θ2 = 26◦, and Elab = 389 MeV; and (c)
θ1 = 27.8◦ , θ2 = 28.0◦ , and Elab = 500 MeV: (dash-dotted curves) results of the calculations for the Nijmegen potential in
the pp channel, (solid curves) results of the calculations for the Moscow potential with dispersion in the pp channel, (long-
dashed curves) results of the calculations for the Moscow potential MP92 in the pp channel, and (dotted curves) results of the
calculations for the Paris potential [2] in the pp channel. The displayed experimental data (points with error bars) were borrowed
from [25] (Fig. 5a) and [26] (Fig. 5b).
potential. It can be seen that, with increasing energy,
the contribution of the p∆ channel grows, as might
have been expected, but the rate of its growth then
becomes lower.

The differential cross sections for bremsstrahlung
in the process pp→ ppγ are given in Figs. 4–6 ac-
cording to calculations for five values of the incident-
proton energy. In Figs. 4a and 4b, the results of the
present calculations that take into account isobar
channels are contrasted against the results of the pre-
vious relativistic calculations from [19], where such
channels were disregarded. The first regularity that
stands out here is that isobar reaction channels affect
the results for the Paris and the Nijmegen potential
quite differently (see Fig. 4a). Whereas the results for
the Paris potential changed insignificantly, the differ-
ential cross section for the reaction in question for
the Nijmegen potential increased quite sizably. Both
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
potentials belong to the class of meson-exchange
potentials and lead to nearly identical wave functions
if coupling to isobar reaction channels is disregarded.
Coupling to isobar reaction channels changed the
internal part of the wave function for the Nijmegen
potential substantially. As can be seen from Fig. 2a,
this change consists in the appearance of a node at
approximately r = 0.6 fm. This node means that, for
this 3P1 partial wave, the Nijmegen potential yields
a wave function of the same type as the Moscow
potential. For other partial waves, this effect is not
observed.

A similar situation is observed for two potentials
of the Moscow type (see Fig. 4b). While the results
for the Moscow potential MP92 [9] changed quite
moderately (in absolute values), the differential cross
section for the Moscow potential with dispersion [10]
underwent a considerable change upon the inclu-
4
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Fig. 6. As in Fig. 5a, but for Elab = (a) 700 and
(b) 1000 MeV.

sion of isobar reaction channels, toward much better
agreement with experimental data. It should be noted
that theMoscow potential with dispersion features no
tensor interaction; however, coupling between partial
waves in the pp channel that are characterized by
even J (total angular momentum) and odd L (orbital
angular momentum) arises there owing to isobar re-
action channels.

From Figs. 3 and 4, it can be seen that the contri-
bution of isobar reaction channels to the cross section
for bremsstrahlung radiation in the reaction pp→
ppγ is significant, amounting to about 10% for all of
the potentials.

In Figs. 5 and 6, the results of the calculationswith
allowance for isobar reaction channels are given for a
broad energy region. These results demonstrate that,
with increasing incident-proton energy, the results of
the calculations with the different potentials differ ever
more strongly, but the results for the two potentials
of the Moscow type become relatively closer to each
other, displaying a characteristic angular dependence
of the cross section (previously, such a dependence
was observed in [17]). The calculations with the Ni-
jmegen potential yield larger values of the cross sec-
tion for the reaction pp→ ppγ than the calculations
with the Paris potential. The cross sections in ques-
tion appear to be highly sensitive to kinematical con-
ditions. For all of the potentials, the contribution of
isobar reaction channels to the reaction cross section
is about 10% (in just the same way as for Elab =
280 MeV).

Thus, our calculations have led to the following
important conclusions:
P

(i) The contribution of isobar reaction channels to
the reaction pp→ ppγ is significant, and it is nec-
essary to take them into account in calculating this
reaction from the incident-proton energy of Elab =
280 MeV.

(ii) The cross section for bremsstrahlung in the
process pp→ ppγ is highly sensitive to the type of
potential and makes it possible to discriminate be-
tween meson-exchange potentials and the Moscow
potential. In [18, 19], this statement was proven for
incident-proton energies of up to 500MeV, but, in the
present study, it has been extended to incident-proton
energies as high as 1 GeV in the laboratory frame.

(iii) The results of the calculations in Figs. 4 and 5
demonstrate that none of the potentials used is able to
describe the entire body of available experimental data
simultaneously. In order to improve this description
and to refine the results of our calculations of the cross
sections for the reaction pp→ ppγ, it is necessary to
fit the parameters of nucleon–nucleon potentials with
allowance for coupling to nucleon–isobar channels in
describing data on elastic proton–proton scattering
over an energy region extending at least up to 1 GeV.
We are going to do this in our future studies, since,
at present, the required potentials are not available in
the literature.
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APPENDIX 1
Wewill derive explicit expressions for the operators

ji→f (h) in (13), relying on the results reported in the
review article by Lev [20] and in [19].

For a particle of 4-momentum p, we define the
Lorentz transformation associated with a boost g as
p→ L(α(g))p, where [22]

α(g) =
g0 + 1 + σ · g√

2(g0 + 1)
. (A.1)

Here, g is the 4-velocity and σ = (σx, σy, σz) are
the Pauli matrices. The transformation in question is
realized in the following way [22]: we introduce σ0 =
1 0

0 1


 and associate the matrix p̆ =

∑3
µ=0 σ

µpµ

with the 4-vector p. The components of this 4-vector
are then expressed in terms of the above matrix as
follows:

p0 =
1
2
(p̆11 + p̆22), p1 =

1
2
(p̆12 + p̆21), (A.2)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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p2 =
1
2i

(−p̆12 + p̆21), p3 =
1
2
(p̆11 − p̆22).

The transformation

p̆→ α(g)p̆α(g)+, (A.3)

together with formulas (A.2), describes the action of
the boost p→ L(α(g))p.

Further, the Poincaré group transformation char-
acterized by a 4-shift a and a 4-rotation ' is defined as
[22]

U(a, ')ϕ(g) = exp(i ·mg′a) (A.4)

×D(s;α(g)−1'α(g′))ϕ(g′),

where a and ' are elements of the Poincaré group
that correspond to a spacetime translation and a
4-rotation, respectively; ϕ(g) is a normalizable spinor
function; s is the particle spin; g′ = L(')g, L(') being
the Lorentz transformation corresponding to '; and
D(s;u) is an operator realizing a representation of
the SU (2) group and corresponding to the element
u of this group. In our case of spin-1/2 particles, we
are dealing with the fundamental representation [22];
that is,

D(s;α(g)−1'α(g′)) = α(g)−1'α(g′). (A.5)

We specify the operator ' by going over to a two-
particle system. Here, we have the particle 4-momen-
ta pi = migi(i = 1, 2) and the 4-velocity G of the
center of mass. In the c.m. frame, the particle mo-
menta are given by [22]

qi = L[α(G)]−1migi, q1 = q = −q2. (A.6)

Bearing in mind that the reaction pp→ ppγ is the
main subject of our analysis and choosing the co-
ordinate frame specified by Eq. (10), we obtain a
general expression for the current corresponding to
the pointlike form of dynamics:

jµ(h) =
∑
i=1,2

L

(
L[α(f)]

qi

mout
i

, L[α(f ′)]
di

min
i

)µ
ν

(A.7)

×D


sk;α

(
qk

mout
k

)−1

α(f)−1α(f ′)α
(
dki
min
k

)


×D

[
si;α

(
qi

mout
i

)−1

α(f)−1

× α

(
L[α(f)]

qi

mout
i

, L[α(f ′)]
dki
min
i

)
α(fi)

]
jνi (hi)

×D

[
si;α(f

′
i )

−1α

(
L[α(f)]

qi

mout
i

, L[α(f ′)]
di

min
i

)
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× α(f ′)α
(

di
min
i

)]

× min
i wi(q)
wi(di)

(
mout
i Min(di)

min
i Mout(q)

)3/2

Ii(h).

In this formula, k = 2 if i = 1; k = 1 if i = 2; and

f = L(G,G′)−1G, f ′ = L(G,G′)−1G′ (A.8)

are the 4-velocities of the centers of mass in the initial
and the final state in the reference frame specified
by Eq. (10). We also have f2 = f ′2 = 1, f + f′ = 0,
and f0 = f ′

0 = (1 + f2)1/2; L(G,G′) = L(α(G,G′))
and α(G,G′) = α((G +G′)/|G +G′|); and d1 =
(w1(d1),d1), d2 = (w2(d2),d2), d12 =
L[α(f ′)−1α(f)]q2 = (w2(d1),−d1), and d21 =
L[α(f ′)−1α(f)]q1 = (w1(d2),d2), where d1 and d2

are defined by the formulas

Ij(h)χ(q)

=



χ(d1) = χ

(
q− 2h

1− h2 {w1(q)− h · q}
)
, j = 1,

χ(d2) = χ

(
q+

2h
1− h2 {w2(q)− h · q}

)
, j = 2;

fi and f ′
i are given by formulas (A.8) with the

substitution of G for L[α(f)qi/min
i ] and of G′ for

L[α(f ′)di/mout
i ]; hi = fi/f0

i ; m
in
i and mout

i are the
masses of the ith particle in, respectively, the input

and the output channel; win
i (q) =

√(
min
i

)2 + q2 and

wout
i (q) =

√(
mout
i

)2 + q2 are the energies corre-
sponding to these masses; and Min(q) and Mout(q)
are the mass operators in, respectively, the input and
the output channel.

Expression (A.7) differs only slightly from the cor-
responding expression obtained in [20] for the case
where electromagnetic interaction does not change
the nature of a particle (mass); since the derivation
of this expression is analogous to the corresponding
derivation given in [20], we do not present it here.

The diagonal elements of the matrix of currents
in (13) can be obtained from the expressions for
single-particle currents; that is,

j0i (hi) = eFe,i, (A.9)

ji(hi) = − ie(
1− h2

i

)1/2
Fm,i[hi × si],

where e is an elementary charge and si, Fe,i, and Fm,i
are, respectively, the spin operator, the electric form
factor, and the magnetic form factor of the ith particle
(i = N,∆, N∗).
4
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The off-diagonal elements were obtained from the
transition currents [24]. We have

j0N→I(hi) = j0I→N (hi) = 0, (A.10)

jN→I(hi) = −ifγNI
mπ

[
hi × S+

i

]
T+

3i ,

jI→N(hi) = jN→I(hi),

where I means an isobar (∆ or N∗); fγNI/mπ is
the transition magnetic moment; and S±i and T±i are,
respectively, the standard spin and isospin transition
operators defined in the spherical basis êλ as〈

3
2
s∆

∣∣S+
∣∣ 1
2
s

〉
=

∑
λ

(
3
2
s∆|1λ

1
2
s

)
ê∗λ.

Here,
(

3
2
s∆|1λ

1
2
s

)
is a Clebsch–Gordan coefficient;

an asterisk means a complex conjugation; the opera-
tor S− is the Hermitian conjugate of the operator S+;
and the operators T± are defined analogously, but they
act in isospin space. We neglect electric transitions
because the smallness of the corresponding empirical
amplitudes at the resonance point implies that their
contribution must be small [27]. An overbar means
the Hermitian conjugation of an operator.

The derivation of the expressions for the transition
operators jNN→NN (h) in the first order in the quantity
h = |h| is given in [19]. The derivation of the remain-
ing elements of the operator j(h) in the same order
of smallness is similar, a slight complication being
associated with the fact that the masses of particles in
channels and in the initial and the final state are now
different. The inclusion of the interaction leads to the
emergence of an addition ∆j(h) to the operator j(h),
this addition being fixed by the conditions proposed in
[20], which have the form

∆j0(h) = ∆j⊥(h) = 0 (A.11)

[∆j⊥(h) is that component of the vector ∆j(h) which
is orthogonal to h], and by the continuity equation.
All this leads to the following relation for the matrix
element ∆j(h):

〈χf |∆j(h)|χi〉 (A.12)

=
Mi −Mf

Mi +Mf

〈
χf

∣∣∣∣ ∂j0(h)∂h

∣∣∣∣
h=0

∣∣∣∣χi
〉

;

that is, it is expressed in terms of the known time
component of the operator j(h) for noninteracting
particles.

Thus, the diagonal elements of the matrix of cur-
rents in (13) can be represented as

jNI→NI(h) =
(
Fe,pe

wp
I1(h)−

Fe,Ie

wI
I2(h)

)
q

(A.13)
P

−
(
Fe,pe

mpwp
+

Fe,Ie

mIwI

)
(h · q)q

+ i

(
mpFm,pe

wp
+
mIFm,Ie

wI

)
[S× h]

+ i

(
mpFm,pe

wp
− mIFm,Ie

wI

)
[T× h]

+ i

(
Fm,pe

mp(wp +mp)
+

Fm,Ie

mI(wI +mI)

)

× [q× h](q · S) + i

(
Fm,pe

mp(wp +mp)

− Fm,Ie

mI(wI +mI)

)
[q× h](q · T)

+ i

(
Fm,pe

mpwp
+

Fe,pe

wp(wp +mp)
+
Fm,Ie

mIwI

+
Fe,Ie

wI(wI +mI)

)
(h · [q× S])q

+ i

(
Fm,pe

mpwp
+

Fe,pe

wp(wp +mp)
− Fm,Ie

mIwI

− Fe,Ie

wI(wI +mI)

)
(h · [q× T])q

+
Mi −Mf

Mi +Mf

(
Fm,p
mp
− Fe,p
wp +mp

− Fm,I
mI

+
Fe,I

wI +mI

)
[q× S]

+
Mi −Mf

Mi +Mf

(
Fm,p
mp
− Fe,p
wp +mp

+
Fm,I
mI
− Fe,I
wI +mI

)
[q× T],

where wi ≡ wi (q).

For the proton–proton channel, I = p and ex-
pression (A.13) reduces to the expression obtained
previously in [19] for the current in the proton–proton
channel.

A more complicated expression is obtained for the
off-diagonal elements:

jNN→NI(h) = f1
NN→NI(q

2)[S+
2 × h]T+

3 (A.14)

+ f2
NN→NI(q

2)(h · [q× S+
2 ])qT+

3

+ f3
NN→NI(q

2)[q× h](q · S+
2 )T+

3

+ f4
NN→NI(q

2)[q× S+
2 ](h · [q× S2])T+

3

+ f5
NN→NI(q

2)(h · [q× S2])[q× S+
2 ]T+

3

+ f6
NN→NI(q

2)[q× S+
2 ](h · [q× S1])T+

3

+ f7
NN→NI(q

2)[q× S+
2 ]T+

3 .
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The expression for jNI→NN (h) has a similar form
(upon the replacement of S+

2 by S−2 and of the fac-
tors f iNN→NI by the factors f

i
NI→NN ). The currents

jNN∗→N∆(h) and jN∆→NN∗(h) are disregarded be-
cause it is obvious that their contribution to the cross
section is small.

We note that, in the proton–isobar channels, the
indices 1 and 2 correspond to the proton and the
isobar, respectively; therefore, the first particle always
remains a proton. Like the operator S+

2 , the operator
T+

3 acts on the second particle; the operators S+
2 and

S2 do not commute.
In this study, the factors f iNN→NI(q

2) and
f iNI→NN (q2) were obtained in an analytic form, but
the expressions for them are very cumbersome and
are not presented here for this reason.

APPENDIX 2

The technique for calculating matrix elements for
various components of the relativistic current op-
erator in the proton–proton channel was described
previously in [19]. For the diagonal transitions (pI →
pI), it is similar. As for nondiagonal transitions, the
most complicated operator appearing in the matrix
elements can be represented in the form

(h · [∇× S2]) · [∇× S+
2 ]k (A.15)

=
2
3

[[
[∇×∇](0) × [S2 × S+

2 ](0)
](0)
× h

](1)

k

+
√

3
3

[[
[∇×∇](0) × [S2 × S+

2 ](1)
](1)
× h

](1)

k

−
√

3
5

[[
[∇×∇](0) × [S2 × S+

2 ](2)
](2)
× h

](1)

k

−
√

5
3

[[
[∇×∇](2) × [S2 × S+

2 ](0)
](2)
× h

](1)

k

+
√

15
3

[[
[∇×∇](2) × [S2 × S+

2 ](1)
](1)
× h

](1)

k

−
√

5
3

[[
[∇×∇](2) × [S2 × S+

2 ](2)
](0)
× h

](1)

k

+
√

35
3

[[
[∇×∇](2) × [S2 × S+

2 ](2)
](2)
× h

](1)

k

.

The left-hand side of this equality is expressed
in terms of the usual scalar and vector products of
vector operators in the spherical basis. Its right-hand
side involves the sum of the tensor products of tensor
operators. The superscript in parentheses stands for
the tensor rank of an operator. It is omitted on rank-1
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
tensors like ∇, S2, S
+
2 , and h on the right-hand side

of the equality. The subscript k numbers components
of rank-1 tensors defined in a standard way. Expres-
sion (A.15) makes it possible to expand the reduced
matrix elements of the complicated operator (h · [∇×
S2]) · [∇× S+

2 ] in terms of the sums of the products
of reduced matrix elements of the simplest operators
entering into the complicated one [on the right-hand
side of (A.15), the operators acting in coordinate and
in spin space prove to be separated].

A similar representation was used in calculating
matrix elements for the remaining vector operators.
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Abstract—The polarization properties of elastic scattering are studied experimentally for pp interaction at
1 GeV. The respective experimental results are presented for the spin-transfer parameter Kn00n and the
polarization Pn000 at c.m. angles of 22.5◦, 27.5◦, 32.5◦, and 42.5◦ and for the analyzing power A000n at
c.m. angles of 22.5◦ and 27.5◦. The experiment employed an unpolarized proton beam from the accelerator
of the Petersburg Nuclear Physics Institute, a polarized proton target, and a high-resolution magnetic
spectrometer. The data from this experiment are analyzed and compared with the predictions of partial-
wave analyses. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experiments that study proton–proton scattering
at intermediate energies are aimed at reconstruct-
ing the elastic-scattering matrix M—that is, five
complex-valued amplitudes specifying this matrix,
which can be represented in the form

M(σ1, σ2) = a + bσ1nσ2n (1)

+ c(σ1n + σ2n) + eσ1mσ2m + fσ1lσ2l,

where σi are the spin operators (Pauli matrices) of the
first and second protons. The amplitudes a, b, c, e, and
f appearing in expression (1) for the matrix M are
functions of the energy E and the scattering angle θ
(hereafter, θ is taken in the c.m. frame).

A partial-wave analysis employing an expansion
of the above amplitudes in the singlet–triplet rep-
resentation in terms of Legendre polynomials is an
efficient method for reconstructing the above scat-
tering matrix. Linear combinations of the partial-
wave interaction amplitudes appear as coefficients
in this expansion. Different authors choose different
forms for partial-wave amplitudes—that is, different
parametrizations of the S matrix. The form chosen
here is identical to that which was previously used,
for example, in [1–3] and in which partial-wave am-
plitudes for states characterized by the total spin

1)DAPNIA/SPP, CEA/Saclay, F-91191 Gif-sur-Yvette,
France.
*e-mail: chestnov@mail.pnpi.spb.ru
1063-7788/04/6705-0949$26.00 c©
S, the total angular momentum J , and the orbital
angular momentum L are described in terms of the
phase shifts δ(2S+1LJ), mixing parameters εJ being
additionally introduced for mixed states that differ by
orbital angular momenta at the same value of the total
angular momentum. The phase shifts are complex-
valued quantities with positive imaginary parts, while
the mixing parameters are real-valued.
Several partial-wave analyses were performed ear-

lier at an energy of 1 GeV (see [3–6]). Differences
in the parametrization of the S matrix, in the volume
of the experimental data subjected to analysis and in
the energy range that they cover, in the normalization
conditions, etc., lead to distinctions between solu-
tions obtained in different analyses for the parame-
ters under comparison; however, there is qualitative
agreement in the description of the main features of
the interaction (see Section 6).
At the present time, an extensive program of

investigations into proton scattering has been per-
formed, which involve a complete set of orientations of
the beam- and target-proton polarizations. In the en-
ergy region around 1 GeV, more than 17 independent
observables (see Section 6) were measured if they are
rescaled to the angular range 0◦ ≤ θ ≤ 90◦ (hereafter,
this is done for all experimental data). For the bulk
of data, the actual angular range is 40◦ < θ ≤ 90◦.
Only the differential cross section and polarization
(analyzing power) were measured for θ < 30◦. We
can expect (disregarding correlations between the
parameters in the functional to be minimized—see
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the experimental setup: (PPT) polarized proton target, (C) collimator, (DL) doublet of quadrupole lenses,
(M) magnet, (S) scintillation counters, (PC) proportional chambers, (AT) analyzing target, and (MT) monitor target. The
coordinate axes x and z are also shown.
Section 6) that the scarcity of experimental data at
small angles would lead to a significant uncertainty in
the phase shifts for high angular momenta.
Previously, some polarization parameters of elastic

pp scattering at energies in the vicinity of 1 GeV
were measured in the angular region θ ≥ 30◦ [2, 3,
7–11]. These included the depolarization parameter
Dn0n0 measured in a polarized proton beam from the
synchrocyclotron of the Petersburg Nuclear Physics
Institute (PNPI, Gatchina) and the spin-transfer pa-
rameter Kn00n measured in an experiment with an
unpolarized beam and a polarized proton target.
Measurement of polarization parameters at small

angles requires solving some additional experimental
problems. First, the recoil protons have low energy
in this angular region, and this generates difficul-
ties in separating correlated pp coincidences. Second,
the use of solid-state polarized proton targets, where
the concentration of polarized protons is approxi-
mately 10% of the total number of nucleons, leads to
the growth of the contribution to the background at
small angles from accompanying channels of proton–
nucleus interactions.
PH
At energies close to 1 GeV, the depolarization and
spin-transfer parameters were previously measured
in the angular interval 4.8◦ ≤ θ ≤ 23.8◦ at LAMPF
[12] by using a polarized beam of energy 800 MeV
and a liquid-hydrogen target. Events of elastic pp
scattering at a fixed angle were separated on the basis
of the scattered-proton momentum.
In the present experiment, we studied the polariza-

tion properties of elastic pp scattering for the interac-
tion of an unpolarized beam accelerated to an energy
of 1 GeV with a polarized target. Specifically, we
measured the spin-transfer parameter Kn00n and the
polarizationPn000 at angles of 9◦, 11◦, 13◦, and 17◦ in
the laboratory frame (this corresponds to c.m. angles
of 22.5◦, 27.5◦, 32.5◦, and 42.5◦) and the analyzing
power A000n at c.m. angles of 22.5◦ and 27.5◦. The
elastic-scattering channel was separated from the
background produced by other channels according
to the scattered-proton momentum measured by a
high-resolution magnetic spectrometer (MAP) [13],
proportional chambers being placed at the spectrom-
eter inlet in order to reconstruct the interaction vertex
in the target. The main difficulty in the experiment
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Table 1. Experimental values of the polarization parameters

θ A000n Pn000 Pqe Kn00n

22.5◦ 0.335 ± 0.010 0.336 ± 0.014 0.303 ± 0.018 0.284 ± 0.054
27.5◦ 0.361 ± 0.008 0.367 ± 0.020 0.339 ± 0.021 0.333 ± 0.070
32.5◦ – 0.410 ± 0.021 – 0.401 ± 0.033
42.5◦ – 0.427 ± 0.021 – 0.552 ± 0.029
was to eliminate the effect of the background from
protons scattered on the nucleons of the polarized-
target nuclei. We solved this problem owing to a high
momentum resolution of the spectrometer and the
optimization of the data-processing algorithm.

2. EXPERIMENTAL SETUP

A detailed description of the experimental setup
used and the methodology of data processing were
given in [14]. Figure 1 displays the layout of the
setup. A proton beam accelerated at the PNPI syn-
chrocyclotron to 1 GeV and formed by a system of
quadrupole lenses and collimators was incident on a
polarized proton target (PPT) based on propanediol
[15]. The target operated in the quenched-spin mode.
The beam intensity of about 108 s−1 was chosen on
the basis of the estimated polarization-relaxation time
(200–300 h), which decreased owing to the heating
of the target material as the result of the ionization
losses of beam protons. The target polarization PT in
the experiment was within the range 0.6–0.8. Here-
after, we use the notation U and D for, respectively,
the positive and the negative orientation of the target
polarization vector with respect to the vector orthog-
onal to the scattering plane.
In order to determine the contribution of protons

scattered by the complex nuclei of the polarized tar-
get, we performed measurements with a carbon sam-
ple that was equivalent in the stopping power—the
background target (BT).
Events of elastic scattering on target protons were

separated by the scattered-proton momentum mea-
sured by the magnetic spectrometer, the angular po-
sition of the spectrometer being fixed to a precision
of ±0.05◦. The trajectories of scattered protons that
traversed the magnetic field of the polarized proton
target were reconstructed from the track coordinates
measured by the proportional chambers PC01 and
PC02, while the trajectories of the protons after the
spectrometer magnetic field were determined from the
coordinates measured in the proportional chambers
PC12 and PC34.
The coincidence signal from the scintillation

counters C1, C2, and C3 was a trigger for the system
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
of information readout from the proportional cham-
bers. For a further polarization analysis, a central part
of the beamwas singled out with the aid of the counter
C3. A signal from the scintillation counter C11, which
recorded recoil protons, participated in the formation
of the trigger signal only in measurements at angles
of 32.5◦ and 42.5◦.
After an analyzing target (AT), the protons were

detected by two proportional chambers (PC5, PC6).
For the analyzing target, we used a carbon sample
17 cm thick (29 g/cm2).
The scintillation counters CM1, CM2, and CM3,

which detected the protons scattered by a polyethy-
lene monitor target (MT) in the vertical plane, were
used to monitor the beam intensity.

3. RECONSTRUCTION OF PROTON
TRAJECTORIES

The rectilinear spatial trajectories of the protons
after they traversed the spectrometer magnetic field
were considered in the Cartesian coordinate frame
where the z axis was aligned with the proton mo-
mentum, the x frame was chosen in the horizontal
plane (see Fig. 1), and the y axis was directed upward.
The trajectory projections onto the horizontal and the
vertical plane were reconstructed independently. The
parameters of these straight lines were determined by
the least-squares method on the basis of four coordi-
nates in the planes of the chambers PC12 and PC34.
A spatial trajectory was described in terms of four
parameters: α and x0 in the xz plane and β and y0 in
the yz plane, where α and β are the slopes of the lines,
while x0 and y0 are their coordinates at z = 0. The
trajectories of the protons after the analyzing target
were reconstructed from the coordinates measured
by the chambers PC5 and PC6. The slopes α56 and
β56 of the trajectories were calculated as the ratios of
the difference of the coordinates in the chambers PC5
and PC6 to the distance between the corresponding
planes of the chambers.
The resulting parameters of the trajectories before

and after the analyzing target were then used to find
the coordinates of the point of analyzing pC scatter-
ing, the minimum distance between the trajectories,
4
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Fig. 2.Momentum spectra of protons scattered at an angle of θ = 22.5◦ on the polarized proton target for various versions of
corrections: (a) the spectrum is reconstructed without allowance for the interaction coordinate in the polarized proton target;
(b) the spectrum is reconstructed with allowance for the interaction coordinates. The points represent the measured spectrum
from the polarized proton target, while the dashed curve shows the normalized spectrum from the background target; the solid
curve corresponds to a normal distribution. The width of the normal distribution is given in the figure.
and the polar and azimuthal scattering angles ϑ and
ϕ:

tan2ϑ = ∆α2 + ∆β2, tanϕ = ∆β/∆α, (2)

∆α = α56 − α, ∆β = β56 − β.

If a track coordinate was unknown in one of the
planes of the chambers PC5 and PC6 (for example, in
the xz plane of the coordinate frame), the scattering
angles were reconstructed by using the z coordinate
in the other plane (in the yz plane). From the analysis,
we excluded events where (a) the chambers PC5 and
PC6 detected more than one particle, (b) the scat-
tering point was beyond the analyzing target (less
than 5% of the total number of events), and (c) the
minimum distance between the trajectories exceeded
4.5 mm (less than 5% of the total number of events).

The chambers PC01 and PC02 were used to recon-
struct the x and y coordinates of the interaction point
in the polarized proton target: they were taken to be
equal to the values of the corresponding coordinates
in the plane that contains the target center and which
is orthogonal to the spectrometer axis.
PH
4. MOMENTUM SPECTRA OF PROTONS

The propanediol target contains both free protons
and carbon and oxygen nuclei. In the angular range
under study, protons elastically scattered by nuclei are
reliably separated in the momentum spectra (here-
after, spectra) from protons elastically scattered by
hydrogen. At the same time, protons from elastic pp
scattering (pp channel) and those scattered on in-
tranuclear nucleons (quasielastic channel) fall within
the same momentum interval; therefore, it is neces-
sary to separate the contribution of the elastic channel
from the quasielastic background.

This contribution was determined from an analysis
of the proton spectra. Figure 2 shows the spectra at
θ = 22.5◦ in the region around the peak of elastic
pp scattering. Along the abscissa, we plotted the
relative proton momentum ν = (p0 − p)/p0, where p
is the current value of the proton momentum, while
p0 is the momentum corresponding to the maximum
of the distribution. The points represent the spec-
trum measured with the polarized target. The dashed
curve corresponds to the spectrum measured with
the background target and normalized in such a way
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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that, taken together with a normalized normal dis-
tribution (solid curve), it provides the best fit to the
distribution for the polarized proton target. The nor-
malization factors and the parameters of the normal
distribution were found by the least-squares method,
as is described in Section 5 below. Figure 2a dis-
plays the spectrum reconstructed without taking into
account the interaction point in the polarized proton
target. The spectrum in Fig. 2b was reconstructed
with allowance for the interaction point. It is clear
from Fig. 2 that, upon taking into account the inter-
action coordinate determined with the aid of the inlet
chambers, the width of the momentum distribution
(FWHM) decreases from 0.0056 to 0.0034, which,
in our case, corresponds to the energy-distribution
width 4.9 MeV.
Figure 3 displays the spectra measured at various

scattering angles (the region of the pp peak, U po-
larization). We can see that, at angles of 22.5◦ and
27.5◦, the quasielastic channel makes a significant
contribution, but that, at angles of 32.5◦ and 42.5◦,
its contribution is negligible owing to the appearance
of signals from the counter C11 (see Fig. 1 and Sec-
tion 2).

5. RESULTS OF THE MEASUREMENTS
The analyzing powerA000n was determined from

the proton spectra measured at different signs of the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
target polarization (D and U measurements) and
from the spectra measured with the background tar-
get. Owing to the normalization method, the analyz-
ing power was calculated at angles of θ = 22.5◦ and
27.5◦, in which case the intensities of the pp and the
quasielastic channel are commensurate.
Each spectrum was approximated by the expres-

sion

S(ν) = npp exp
(
−(ν − ν0)

2/2σ2
)

+ nqeSqe(ν),
(3)

where npp and nqe are the normalization factors for,
respectively, the elastic and the quasielastic channel;
ν0 and σ2 are, respectively, the position of the center
of the distribution and its variance; and Sqe(ν) is the
spectrum measured with the background target.
The parameters npp, ν0, σ, and nqe were deter-

mined by minimizing the functional

χ2(npp, ν0, σ, nqe) =
∑
i

(
N(νi)− S(νi)

∆N(νi)

)2

, (4)

where N (νi) and ∆N (νi) are, respectively, the num-
ber of measured events at the point νi of the spectrum
and its statistical error. Summation is performed over
all νi values in the range being considered.
We used two methods to calculate the analyzing

power.
4
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In the first case, the contributions of the scattering
channels were found by minimizing the functional in
(4) separately for opposite signs of target polarization.
The asymmetry A000n was calculated according to
the expression

A000n =
1− r

rPTU + |PTD|
, (5)

r = ID/IU , Ij = nppjσj/(nqejSqe). (5a)

Apart from an insignificant factor, Ij is the elastic-
scattering-channel intensity normalized to the quasi-
elastic-channel intensity (j ∈ {D,U}). For Sqe, we
took the total number of events in the spectrum from
the background target in a specific range of ν. For
this normalization of the elastic channel, the error
in determining the pp scattering angle and the error
in beam monitoring in the measurements of U and
D spectra did not contribute to the error in A000n.
The relative statistical error in the quantity Sqe for the
collected number of events was about 0.002.
In the second approach, the analyzing power was

determined from all spectra directly. In contrast to
(3), the normalization factors nppj for each spectrum
involved A000n explicitly; that is,

nppj = npp(1 + A000nPTj), (6)

where j stands for the indices (numbers) of the mea-
sured spectra, which differ by the magnitude and sign
of the target polarization PT .
The analyzing power A000n in (6) was determined

by minimizing a functional that was similar to (4)
and which involved it as a free parameter. Summation
included the indices j of the measured spectra as well.
The minimization code determined the value ofA000n
and estimated its error.
Table 1 displays the values of A000n for the angles

of 22.5◦ and 27.5◦. The values in the table are the
averages of the results calculated by the above two
methods. The displayed error is the statistical error
of the second method. The systematic error in A000n

due to the uncertainty in taking into account the
contribution of the quasielastic channel amounted to
0.01. The relative error caused by the uncertainty in
the degree of the target polarization was 2%.

The polarization Pn000 and the parameter
Kn00n were determined from the azimuthal distri-
bution of protons scattered on the analyzing target.
Figure 4 shows the azimuthal distributions for the
scattering angle of θ = 22.5◦. In general, this distri-
bution has the form

I(ϕ) = I0(1 + ε cosϕ + δ sinϕ), (7)

where I0 is a factor that describes the intensity
of unpolarized-beam scattering, ε is the left–right
asymmetry, and δ is the up–down asymmetry.
PH
The left–right asymmetry ε is defined in terms of
the sought parameters as

ε = ApC

(
α1(Pn000 + Kn00nPT )

1 + Pn000PT
+ α2Pqe

)
, (8)

where ApС is the carbon analyzing power; α1 and
α2 are the contributions of, respectively, the pp and
the quasielastic channel in the chosen section of the
spectrum, α1 + α2 = 1; and Pqe is the polarization of
quasielastically scattered protons.
The parameters α1 and α2 in (8) were found

from the spectra accumulated simultaneously with
the distributions I(ϕ): α1 ∼ nppσ and α2 ∼ nqeSqe
[see (5a)]. Since there were no free protons in the
background target, α1 = 0.
The carbon analyzing power АpС was determined

as the weighted average value in the angular range
4◦ ≤ ϑpC ≤ 17◦, where the distributions with respect
to ϕ were accumulated with the weights equal to
the differential cross section for the corresponding
scattering angle. In this procedure, we used data pre-
sented in [16].
In general, the parameters were found byminimiz-

ing the functional

χ2(Kn00n, Pn000, Pqe, δ) (9)

=
∑
j

∑
k

(
Nj(ϕk)− Ij(ϕk)

∆Njk

)2

.

In (9), summation over j is summation over the az-
imuthal distributions accumulated for scattering on
the polarized proton target at various PT and for
scattering on the background target; summation over
k is summation over discrete values of the angle ϕ;
and Nj(ϕk) and ∆Njk are, respectively, the number
of events in the interval ϕk and its statistical error. We
sought the parameters Kn00n, Pn000, Рqe, and δ. An
investigation of the stability of the resulting solution
revealed that the values ofKn00n depend on the width
of the momentum range where the azimuthal distri-
butions (7) were analyzed—that is, on the elastic-
channel contribution α1. Most likely, this dependence
is due to the correlation between the parameters in the
functional in (9).
In order to reduce the effect of the correlation be-

tween the parameters on their values, we determined
Pn000 and Kn00n from the azimuthal distributions
obtained only with the polarized proton target in a
narrow momentum interval around the pp peak, as-
suming that Pn000 = Pqe. We tested the stability of
the solution with respect to variations in the width of
the momentum interval: we determined the parame-
ters Pn000 andKn00n at the angles of 22.5◦ and 27.5◦

for various widths of the momentum interval—that is,
for various values of α1. At a small contribution of the
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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elastic channel (for estimates, we can set α1 < 0.5),
Kn00n approached the value of 0.4, while, at large
α1, it was close to 0.3. For the parameters Pn000

and Kn00n, we took their values for the middle of the
momentum interval and quoted them in Table 1.
The up–down asymmetry considered as a crite-

rion of the possible instrumental asymmetry was δ =
(0.0011–0.0030) ± 0.0033 for various versions. The
value of χ2 was 0.99–1.09 per point.
The parameters Pn000 and Kn00n for the angles of

32.5◦ and 42.5◦ were determined under the assump-
tion that α1 = 1. They are given in Table 1.
The values of Pqe in Table 1 were obtained from an

analysis of the azimuthal distributions measured with
the background target and with the polarized proton
target off the pp peak, where α1 ≈ 0.
Table 1 also presents the statistical errors in the

parameters obtained by minimizing the above func-
tional. The relative errors in Kn00n, Pn000, and Pqe
due to the uncertainty in the analyzing power are 5%.
The relative error in Kn00n due to the uncertainty
in the target polarization is 2%. The error caused
by the uncertainty in the calculated elastic-channel
contribution α1 does not exceed 0.005 for the angles
of 22.5◦ and 27.5◦. The assumption that α1 = 0.9
leads to the increase of 0.030 and 0.040 in Kn00n for
the angles of θ = 32.5◦ and 42.5◦, respectively.
The polarization Pqe proved to be less than the

corresponding values of Pn000 and A000n. However,
this difference cannot be considered to be significant
in view of the systematic and statistical errors, and the
hypothesis that Pn000 = Pqe, which was used to ob-
tain the values of Pn000 andKn00n, can be considered
to be justified.

6. DISCUSSION: PARTIAL-WAVE ANALYSIS
OF THE DATA

The present data were used to refine the PNPI
[3] and the Saclay–Geneva [4] solutions for phase
shifts (the latter solution was obtained at the energy
of 995 MeV).
In refining the PNPI solution, we employed the

experimental-data set in Table 2 with references to
the database in [6], the compilation from [17], and
the original studies reported in [18–24]. The data set
also includes the real parts of the amplitudes F1, F2,
and F3 from [25], these differing from the amplitudes
a(0◦), b(0◦), and f(0◦) in the scattering matrix (1)
only by kinematical factors. We calculated the kine-
matical variables for each experimental point at its
energy. The kinetic energy averaged over all points
was 990 MeV. The differential cross sections and po-
larization were normalized on the basis of a compar-
ison with the predictions of the partial-wave analysis
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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in [3], where they were normalized according to aver-
aged values. We increased the statistical error in the
differential cross sections by taking the mean square
of this error and 0.01I0 and the statistical error in the
polarization (analyzing power) by takingmean square
of this error and 0.02Pn000(0.02A000n). The statistical
errors in higher rank polarization parameters (Y) were
increased by taking the mean square of their error
and 0.02Y for polarized beams or targets and the
mean square of their errors and 0.04Y for analyzing
scattering in order to take into account, respectively,
the experimental uncertainties in the beam or target
polarization and the carbon analyzing power.

As before, the analysis was performed for Lmax =
7. We assumed the imaginary parts of the phase shifts
for L ≥ 6 to be equal to zero and fixed them. There-
fore, there were 32 free parameters for 414 experimen-
tal points. We sought solutions, starting from random
initial values of the parameters in the vicinity of the
4
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Table 2.Database of the PNPI partial-wave analysis

No Observables Number of points θ, deg Energy, MeV References

1 σtot, σin 2 0 970 B-25, B-26 [17]

2 ∆σL 2 0 995, 1012 A-164 [17]

3 ∆σT 4 0 933, 1033 [18]

1021 [19]

1047 B-248 [17]

4 I0 39 3.7–8.0 992 DB [6]

24 6.5–16.7 992 [20]

9 25.55–93.15 959 R-9 [17]

24 43.66–89.57 960 K-70 [17]

19 22.33–88.57 992 DB [6]

28 35.8–89.0 991 DB [6]

4 93 984–1002 DB [6]

20 51–89 1003 W-7 [17]

5 P,A000n 10 30–85 970 [4]

10 41.4–81.7 985 DB [6]

22 42.9–86.9 995 DB [6]

14 36–88 999 DB [6]

2 36 989 DB [6]

6 22.5–42.5 1000 Our data

6 Dn0n0 13 30–135 970 [2, 3]

6 49.9–81.1 995 DB [6]

7 Kn00n 6 49.2–81.2 995 [21]

4 22.5–42.5 1000 Our data

8 Ds0k0 13 30–120 970 [3]

9 Ds0s0 10 30–120 970 [3, 8]

10 D0s0k 6 50.9–81.5 995 DB [6]

6 50.9–81.9 995 DB [6]

11 K0sk0 6 50.9–81.5 995 DB [6]

12 A00nn 12 35–98 970 [3, 9]

23 42.9–86.9 995 DB [6]

13 A00kk 6 66.11–82.32 995 DB [6]

22 42.9–89.6 995 DB [6]

14 A00sk 14 50.4–87.9 995 DB [6]

15 Ms0kn 3 70–110 970 [3, 10]

16 N0nkk + αK0kk0 5 52.4–81.5 995 [22]

17 N0skn + αN0ssn + βN0kkn 3 51.5–77.5 995 [23]

18 K0sk0 + αK0ss0 + βK0kk0 4 53.9–77.5 995 [23]

19 N0snk + αK0ss0 5 50.9–77.9 995 [24]

20 K0nn0 + αN0nsk + βK0ks0 + γN0knk 5 50.9–73.9 995 [24]

Note: DB [6] is the database presented [6]. The values of the coefficients α, β, and γ in rows 16–20 are quoted in the corresponding
articles.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Table 3. Solutions of the partial-wave analyses (parameters in deg)

Parameters
PNPI solution Saclay–Geneva solution

Re Im Re Im

δ(1S0) −44.688± 1.670 0 −47.321± 1.072 0

δ(3P0) −47.264± 2.831 0.736± 2.751 −49.057± 0.827 0

δ(3P1) −53.530± 2.915 1.728± 1.580 −56.719± 1.038 6.886± 0.696

δ(3P2) 9.629± 1.655 18.985± 1.978 13.374± 0.720 19.029± 0.878

ε2 −3.832± 0.882 – −4.877± 0.753 –

δ(1D2) 3.166± 1.110 17.982± 1.945 −5.397± 0.780 16.479± 1.065

δ(3F2) −7.542± 1.241 2.864± 0.890 −6.826± 0.508 4.227± 0.478

δ(3F3) −12.707± 0.563 12.660± 1.058 −12.961± 0.403 7.873± 0.464

δ(3F4) 9.110± 0.557 0.619± 0.593 9.612± 0.212 0

ε4 −2.169± 0.309 – −2.014± 0.209 –

δ(1G4) 4.385± 0.363 2.805± 0.539 0.217± 0.289 2.795± 0.275

δ(3H4) −0.059± 0.423 2.690± 0.516 −0.212± 0, 221 3.148± 0.304

δ(3H5) −3.175± 0.547 1.148± 0.398 −1.559± 0.318 2.514± 0.217

δ(3H6) 2.536± 0.203 0 2.543± 0.104 0

ε6 −0.899± 0.179 – −1.487 –

δ(1I6) 1.081± 0.140 0 0.722 0.588

δ(3J6) 0.831± 0.221 0 0.654 0.116

δ(3J7) −2.648± 0.398 0 −1.514 0.249

δ(3J8) 0.356± 0.137 0 0.377 0

ε8 – – 0.763 –

δ(1K8) – – 0.433 0.082

δ(3L8) – – 0.287 0.018

δ(3L9) – – −0.792 0.030

〈χ2〉 1.07 0.96
required solution [3]. Upon 100 trials, we arrived at
a single solution characterized by 〈χ2〉 = 1.07 per
degree of freedom. Table 3 displays this solution with
the errors in the parameters.
The Saclay–Geneva solution [4] was refined by

varying the phase shifts and mixing parameters for
orbital angular momenta of L ≤ 5 at fixed parameters
of higher states up to Lmax = 9. The real parts were
fixed at the values obtained in the one-pion-exchange
(OPE) model, while the imaginary parts were calcu-
lated from the dispersion relations (see [4]).
Table 3 also shows the solution found in this way.

It differs from the original one within the statistical
errors in the adjustable parameters. The largest dif-
ference is observed for the real part of the phase shift
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
δ(3P0). The value of 〈χ2〉 for this solution remained
equal to the value (0.96) obtained before the inclusion
of our data. The average contribution of our four
points of Kn00n to the value of χ2 is 1.091, and this
can be considered as an indication of a satisfactory
description.

This PNPI solution differs from the original one
mainly within the errors of the parameter. The largest
difference is observed for the real parts of the phase
shifts for the 1D2 and 1G4 states. The phase shift
δ(1D2) remained positive, which is at odds with the
Saclay–Geneva and Arndt et al. [6] solutions, but is
in agreement with the solution in [5]. This difference
can be explained by the fact that the PNPI analysis
4
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Fig. 5. (a) Angular dependences of the (�) analyzing power A000n and (•) polarization Pn000 and (b) angular dependence
of the spin-transfer parameter Kn00n. The curves represent the predictions of the (solid curve with the error corridor) PNPI,
(dashed curve) Saclay–Geneva, and (dotted curve) SM94 solutions. The closed symbols represent our experimental data.
Other displayed data were borrowed from (◦) [7] and from (×) [21].
(as well as that in [5]) used the PNPI polarization data
of the Leningrad period [3, 7–11], some of these data
referring to the low-energy edge of the energy range
covered by the experimental set.
Figure 5 displays the experimental data, along

with the predictions of the PNPI (solid curve with the
error corridor) and Saclay–Geneva (dashed curve)
partial-wave analyses and the SM94 prediction (dot-
ted curve), which describes our data better than other
solutions [6].
In Fig. 5a, our data on A000n and Pn000 are con-

trasted against the predictions of partial-wave anal-
P

yses. It is clear that our data are described well by
all solutions (the contribution to χ2 from each of six
points is less than unity).

Figure 5b shows our data on Kn00n, along with
data obtained in previous studies: Kn00n(45◦) =
Dn00n(135◦) from [7] and K0nn0(49.2◦) from [6, 21].
It cannot be said that our value of Kn00n(42.5◦)
contradicts the data of earlier measurements at close
angles because of large statistical errors in the data.
The total contribution of four newly measured points
to the value of χ2 amounts to 7.2 in the PNPI solution
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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(the solution from [3] predicted the contribution equal
to 17.0); the main contribution (5.1) comes from the
value of Kn00n(22.5◦); the contribution of our points
is 4.4 in the Saclay–Geneva solution (in the original
solution, the functional in question is 7.2) and is 11.2
in the SM94 solution.

If the real parts of the amplitudes F1, F2, and
F3 are used for experimental points or if the phase
shifts in higher partial waves are fixed at their model
values, the predictive base of partial-wave analyses
becomes narrower. It would be more interesting to
compare model predictions and the results of partial-
wave analyses. In order to perform such a compari-
son, we sought solutions in the PNPI analysis with-
out using the real parts of the amplitudes F1, F2, and
F3. The solutions obtained at the levelχ2

min–1.01χ2
min

featured a large scatter in the predictions of the real
part of F3—that is, in the real part of the amplitude
f(0◦) in the matrix M (1). The scatter value was as
large as 50% of the calculated value of ReF3 [25];
the analogous scatter for the other amplitudes was
15% for F1 and 25% for F2. This may be due to the
correlation between the parameters of the minimized
functional, the scarcity of experimental data at small
angles, and a small relative fraction of observables (in
available data) that characterize the spin components
in the scattering plane.

The point Kn00n(22.5◦) in the PNPI solution
makes an enhanced contribution to χ2, and this may
be a consequence of the disregard of a systematic
error. Such an error may stem from an instrumental
asymmetry of the polarimeter. Because of different
values of PT and different contributions of the pp
channel to proton beams that are formed by the
scattering of protons on the polarized proton target
having different signs of PT (U and D polarizations)
and which are analyzed by the polarimeter, the in-
strumental asymmetry affects not only the sought
parameter Pn000 but also Kn00n. At the same time, it
is natural to expect that the extension of the angular
range studied experimentally would require including
higher harmonics in the expansion of the amplitudes
in order to describe the data (for example, up to
Lmax = 9, as in the Saclay–Geneva analysis and in
other analyses). The PNPI solution was also obtained
for the version where Lmax = 9, and this provided a
better description of Kn00n. The total contribution to
χ2 from fourKn00n points is 4.0, the contribution from
Kn00n(22.5◦) being 3.1. However, the solution did
not reduce the value of 〈χ2〉; moreover, the deviations
of the resulting parameters [with the exception of
the phase shift δ(3L9)] from the original values were
within the statistical errors in the parameters. In
addition, the scatter of the predictions for the real
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
parts of the amplitudes F1, F2, and F3 proved to be
substantially larger.

7. CONCLUSIONS

(i) For elastic pp scattering at an energy of 1 GeV,
we have measured the spin-transfer parameterKn00n

and the polarization Рn000 at c.m. angles of 22.5◦,
27.5◦, 32.5◦, and 42.5◦ and the analyzing power
A000n at c.m. angles of 22.5◦ and 27.5◦.
(ii) The existing solutions of partial-wave analyses

failed to describe the parameter Kn00n in the angular
region θ < 50◦ satisfactorily; our data have enabled us
to improve the solution.
(iii) By including our data, we have corrected the

PNPI and Saclay–Geneva solutions. In the resulting
solutions, the phase shifts differ from the original
values mainly within the statistical errors in the pa-
rameters.
(iv) While new data do not affect the phase shifts

significantly, the amplitudes in the scattering ma-
trix may change significantly because of the corre-
lations between the parameters. Our investigation of
the PNPI solutions by means of random searches
has revealed a large scatter of the predictions for
the real part of the forward-scattering amplitude f .
In order to obtain less ambiguous solutions in the
partial-wave analysis, it is necessary to have small-
angle measurements of polarization parameters that
describe the spin components in the scattering plane.
These may be, for example, A00ij and Di0j0, where
i, j = s, k (k, s).
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Fiz. 43, 559 (1986) [JETP Lett. 43, 722 (1986)];
V. G. Vovchenko et al., Yad. Fiz. 50, 1005 (1989)
[Sov. J. Nucl. Phys. 50, 625 (1989)].

12. M. L. Barlett et al., Phys. Rev. C 30, 279 (1984).
13. N. P. Aleshin et al., Preprint No. 1971, PIYaF (Pe-

tersburg Nuclear Physics Institute, Gatchina, 1994).
14. V. A. Andreev et al., Preprint No. 2475, PIYaF (Pe-

tersburg Nuclear Physics Institute, Gatchina, 2002).
15. N. S. Borisov et al., Preprint No. 13-10253, OIYaI

(Joint Institute for Nuclear Research, Dubna, 1976);
PH
Preprint No. 13-10257, OIYaI (Joint Institute for Nu-
clear Research, Dubna, 1976).

16. O. Ya. Fedorov, Preprint No. 484, LIYaF (Leningrad
Nuclear Physics Institute, Leningrad, 1979).

17. J. Bystricky and F. Lehar, Nucleon–Nucleon Scat-
tering Data (Karlsrue, 1978).

18. F. Perrot et al., Nucl. Phys. B 278, 881 (1986).
19. W. P. Madigan et al., Phys. Rev. D 31, 966 (1985).
20. A. V. Dobrovolsky et al., Nucl. Phys. B 214, 1 (1983).
21. C. D. Lac et al., Nucl. Phys. B 315, 284 (1989).
22. C. D. Lac et al., Nucl. Phys. B 315, 269 (1989).
23. C. D. Lac et al., Nucl. Phys. B 321, 269 (1989).
24. C. D. Lac et al., Nucl. Phys. B 321, 284 (1989).
25. W. Grein and P. Kroll, Nucl. Phys. B 137, 173 (1978);

Nucl. Phys. A 377, 505 (1982).

Translated by M. Kobrinsky
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004



Physics of Atomic Nuclei, Vol. 67, No. 5, 2004, pp. 961–984. Translated from Yadernaya Fizika, Vol. 67, No. 5, 2004, pp. 983–1005.
Original Russian Text Copyright c© 2004 by Glushkov.

ELEMENTARY PARTICLES AND FIELDS
Experiment
Could Primary Particles of Ultrahigh Energy Be Neutral?
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Abstract—Results are presented that were obtained from an analysis of the nuclear-physics and astro-
physical features of extensive air showers of energy in the region E0 ≥ 1015 eV that were recorded at the
Yakutsk array and other arrays over the world. It is shown that, at some values of E0, different data sets
display local irregularities that are correlated in energy and which are interpreted as a manifestation of
neutral particles of an extragalactic origin. The directions of their arrival point to the Supergalaxy plane
(Local Supercluster of galaxies). c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the composition of primary cos-
mic radiation of ultrahigh energy in the region E0 ≥
1015 eV is one of the most difficult problems in as-
trophysics. Since the discovery of a knee in the spec-
trum of extensive air showers at E0 ≈ 3× 1015 eV
by a group from Moscow State University more than
40 years ago [1], a great number of relevant exper-
iments have been performed, but there is still no
unambiguous understanding of this phenomenon. A
clarification of its nature would greatly contribute to
solving the problem of the origin of cosmic rays of
ultrahigh energies up to about 1020 eV.

There exists the opinion that, at energies in the
range 3× 1015 < E0 ≤ 1017 eV, the composition of
primary cosmic radiation is significantly enriched in
heavy nuclei (see, for example, [2, 3]), but that, in
the range 1017 < E0 ≤ 1018 eV, it undergoes a sharp
reverse change, toward an increase in the fraction
of protons [4]. The heaviest composition is assumed
to correspond to E0 ≈ 1017 eV. This picture can be
explained within the diffusion model [5], which also
ensures agreement with the shape of the energy spec-
trum of primary cosmic radiation in the region around
the aforementioned knee.

Important information about the origin of cosmic
rays is contained in their anisotropy. A harmonic
analysis of the distribution of the arrival directions
of extensive air showers with respect to the right
ascension [6] is one of the basicmethods for assessing
the anisotropy of the global flux of primary cosmic
radiation. The application of this method at the Hav-
erah Park array [7] resulted in discovering, at E0 ≈

*e-mail: a.v.glushkov@ikfia.ysn.ru
1063-7788/04/6705-0961$26.00 c©
1017 eV, a statistically significant anisotropy that was
first confirmed at the Yakutsk array [8] but was then
disproved [9]. The AGASA (Akeno Giant Air Shower
Array) group found a significant anisotropy [the am-
plitude of its first harmonic being about (4± 0.06)%]
at E0 ≈ (8–20) × 1017 eV [10]. This anisotropy is
caused by an increased flux of primary cosmic ra-
diation from the region in the vicinity of the Galaxy
center. This result was confirmed and refined by an
Australian group at the SUGAR (Sydney University
Giant Air Shower Recorder) array [11].

The aforementioned (and many other) results are
based on the assumption that primary cosmic ra-
diation of ultrahigh energy consists predominantly
of charged particles (protons and nuclei of various
cosmic elements). They are strongly mixed by the
magnetic field of the Galaxy, so that their distribution
over the celestial sphere is nearly isotropic. Under
such conditions, it is difficult to reveal local sources
of primary cosmic radiation.

However, these ideas are not unquestionable, be-
cause there are still no direct measurements of the
composition of primary cosmic radiation of ultrahigh
energy and because conclusions drawn from data on
extensive air showers are ambiguous and contradic-
tory. It was previously reported in [12, 13] that, in
the arrival directions of primary cosmic radiation of
energy in the region E0 ≥ 4× 1017 eV, there is a
considerable number of groups of showers in nar-
row solid angles. Their distribution over the celestial
sphere has a small-scale ordered structure that can-
not be explained by random statistical processes. In
the opinion of the present author, this may be due to
a distribution of extragalactic pointlike sources of pri-
mary cosmic radiation that generate neutral particles.
Recently, this hypothesis was additionally confirmed
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Mean depth of the shower maximum and (b) its fluctuations versus primary energy: (open circles) generalized
experimental results from [21], (closed triangles) data from [4], (closed circles) estimates of σ(Xm) on the basis of relation (3)
for a mixed composition featuring protons and iron nuclei that is supplemented with the values obtained in this study for 〈lnA〉
(see Fig. 2a below), (solid lines) results of the calculations from [23] for primary protons (p) and iron nuclei (Fe) on the basis of
the QGSJET model [24], and (dashed lines) extrapolation of the results.
in [14–20]. Presented below are new experimental
results favoring this point of view.

2. DEPTH Xm OF THE SHOWER MAXIMUM
AND ITS FLUCTUATIONS

Let us first consider a traditional method accord-
ing to which the composition of primary cosmic radi-
ation is estimated by using the features of the spatial
development of extensive air showers. The depth Xm
of the shower-development maximum is one of the
PH
extensive-air-shower parameters that are the most
sensitive to the composition of cosmic rays. We have

XA
m
∼= X0

m + ER(lnE0 − lnA) (1)

= Xp
m − ER lnA [g/cm2],

where A is the atomic weight of primary particles;
ER = ∂Xm/∂ lnE0; XA

m and Xp
m are the depths of

the maxima of showers that are generated by primary
nuclei and primary protons, respectively; and X0

m is
a constant that depends on the model chosen for
describing the development of extensive air showers.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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From relation (1), one can find lnA; in the case of
a mixed composition, we have 〈lnA〉 =

∑
Wi lnAi,

where Wi is the fraction of nuclei whose atomic
weight is Ai. Since the parameter X0

m is known
insufficiently well, estimates of lnA on the basis of ex-
perimentally measured values of Xm are uncertain to
a considerable extent. Estimates of relative changes
in the composition of primary particles versus E0 are
more precise:

∂ lnA/∂ lnE0 = 1− (1/ER)(∂XA
m/∂ lnE0). (2)

For a broad range of primary energies, the re-
sults obtained in [21] for the depths of the shower
maxima by averaging Xm values measured at var-
ious arrays worldwide are shown by open circles in
Fig. 1a. These data (107 values) were supplemented
by 132 Xm values found in [21] by the method of
model-independent parameters [22] from lateral dis-
tributions of charged particles and from the fraction
of muons among the total number of charged parti-
cles (electrons and muons) according to various data
obtained worldwide. The two data sets (107 and 132
values) comply with each other.

The closed triangles in Fig. 1a represent experi-
mental data reported in [4], which were obtained at a
hybrid facility that consisted of the High-Resolution
Fly’s Eye Air Fluorescence Detector (HiRes) and the
Michigan Muon Array (MIA). The HiRes records
the ionization fluorescence of extensive air showers
in the vicinity of the cascade-curve maximum and
therefore sees Xm directly. As to the MIA, it is used
to improve the accuracy in determining this param-
eter. The data in question are consistent with those
considered above, especially when E0 is increased
by a factor of 1.5 in the HiRes/MIA experiment (for
the normalization with respect to E0, see Section 3
below).

The solid lines in Fig. 1 show the dependences
Xm(E0) found for primary (p) protons and iron (Fe)
nuclei [23] according to the QGSJET model [24].
They correspond to the case where the rate of the
shift of the shower maximum is ∂Xm/∂ logE0 =
58 g/cm2. The dashed lines represent extrapolations
of the calculations to the region of lower primary
energies.

It can be seen that the experimental dependence
Xm(E0) is of a rather complicated character. At indi-
vidual points, there are local irregularities, which are
especially pronounced at energies of E0 ≈ 5× 1015

and 7× 1016 eV and at energies above 3× 1018 eV.
By and large, the composition of primary cosmic
radiation gradually becomes lighter with increasing
energy. By using relation (1) for the QGSJET model
and the data in Fig. 1a, one can estimate 〈lnA〉. The
resulting values are given in Fig. 2a.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
Let us consider fluctuations of the depth of the
shower maximum, σ(Xm). The open circles in Fig. 1b
represent values obtained in [21] by averaging nu-
merous data obtained worldwide. They also include
the σ(Xm) values found additionally in [21] from
fluctuations of the lateral distributions of electrons
and muons by the aforementioned method of model-
independent parameters on the basis of data from
various facilities operating worldwide.

Near the aforementioned irregularities, the fluc-
tuations of the depth of the shower maximum are
less than in neighboring energy regions. From the
relation [25]

σ2(Xm) ∼= (σp(1− η〈lnA〉))2 (3)

+ (σ(lnA))2((ησp)2 + ER2),

where σp represents fluctuations of the depth of the
maximum of showers generated by primary protons,
(σ(lnA))2 =

∑
Wi(lnAi)2 − 〈lnA〉2, and η = 0.1–

0.2 (its specific value depends on the choice of model
for describing the development of extensive air show-
ers), it follows that, in the case of a pure composition
(σ(lnA) = 0), small fluctuations σ(Xm) are possible
for A� 1 nuclei; at A = 1, they are achieved via a
decrease in σp (for example, owing to an increase in
the cross section for inelastic nuclear interactions in
air).

We will make use of relation (3) and the QGSJET
model in order to estimate the possible fluctuations
σ(Xm) on the basis of 〈lnA〉 values that we obtained
(see Fig. 2a). For the sake of simplicity, we will con-
sider the version of a mixed composition featuring
protons and iron nuclei. From the relation

〈lnA〉 =W1 ln(1) +W2 ln(56), (4)

we then derive the weight functionsW1 = 1−W2 (for
p) andW2 = 〈lnA〉/ ln(56) (for Fe) shown in Fig. 2b
by, respectively, open and closed circles. At η = 0.15,
we obtain the σ(Xm) values represented by closed
circles in Fig. 1b.

It can be seen that the fluctuations σ(Xm) of
the depth of the shower maximum that were ob-
tained from the dependence Xm(E0) for the above
two-component composition (p+ Fe) and those that
were measured directly agree within the errors. More-
over, the local irregularities atE0 ≈ (6–8)× 1015 and
(6–8)× 1016 eV are also in accord in these two inde-
pendent results, this being, in all probability, indica-
tive of a nonaccidental origin of these irregularities.

The closed boxes in Fig. 2a represent data ob-
tained in the KASKADE experiment [3]. These data
are in a glaring contradiction with the estimates pre-
sented here and with the result reported in [4].
4
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3. ENERGY SPECTRUM OF PRIMARY
COSMIC RADIATION

The energy spectrum of cosmic rays of ultrahigh
energy can shed additional light on the problem of the
composition of primary cosmic radiation. In Fig. 3,
the differential energy spectrum of extensive air show-
ers that was obtained at the Yakutsk array [26] is
shown by open circles. This spectrum includes only
those events that are characterized by zenith angles
in the region θ ≤ 45◦ and which were selected by
master triangles where the spacings between the sta-
tions involved were 500 m. The crosses in this figure
represent the spectrum [27] measured at the Akeno
array [28], which consists of 156 scintillation detec-
tors of area 1 m2 that are arranged within a circle of
radius 1 km. The Akeno spectrum is superimposed on
our spectrum by increasing the energy corresponding
to the data in [27] by a factor of 1.32, the points being
concurrently shifted above by 2 log(1.32) = 0.35. The
closed triangles in Fig. 3 represent the spectrummea-
sured in the HiRes/MIA experiment [4]; this spec-
trum was also rescaled to the energy region of the
spectrum from [26] by increasing the energy of the
data in [4] by a factor of 1.5.

Here, we can see a series of local splashes of the
intensity of primary cosmic radiation that are indi-
cated by arrows. The first of these, at E0 ≈ (6–7)×
1015 eV, correlates in energy with the irregularities in
Figs. 1 and 2 and, in all probability, has a common
origin with them. The peaks that follow this one, those
at E0 ≈ (6–7)× 1017 and (6–7)× 1018 eV, are also
statistically significant (not less than three standard
deviations). All three peaks can be attributed to a
fast change in the composition of primary cosmic
radiation toward an overwhelming dominance of pro-
tons. It is difficult to explain this phenomenon within
the diffusion model of cosmic-ray propagation in the
Milky Way Galaxy.

4. ANISOTROPY OF PRIMARY COSMIC
RADIATION

Many experiments devoted to studying the com-
position of primary cosmic radiation of ultrahigh en-
ergy lead to contradictory results. The problems that
arise in this connection lie in the uncertainty of the
very approach to solving them rather than in method-
ological features of one experiment or another, be-
cause the majority of the methods for determining
the composition of primary cosmic radiation are in-
direct. They are based on a comparison of the ob-
served features of extensive air showers with their
calculated counterparts that are found by using some
model concepts of the development of these showers
and a specifically preassigned composition of primary
P

cosmic radiation. Here, one encounters some kind of
a vicious circle: in order to choose a correct model, it
is necessary to know the composition of primary par-
ticles, but, in order to determine this composition, it is
necessary to have a correct model of the development
of extensive air showers.

In view of this, investigations of the anisotropy of
primary cosmic radiation—in particular, searches for
local sources—play a very important role here, since
the arrival directions of cosmic rays do not depend
on any model concepts concerning the development
of extensive air showers. In [12–20], it was shown
that, at E0 > 1017 eV, some part of primary cosmic
radiation has a small-scale ordered structure asso-
ciated with the distribution of extragalactic pointlike
sources of primary cosmic radiation, which are likely
to generate neutral particles.

4.1. Harmonic Analysis

Let us first investigate the anisotropy of the global
flux of primary cosmic radiation. We consider exten-
sive air showers that are characterized by energies in
the region E0 ≥ 1017 eV and zenith angles satisfying
the condition cos θ ≥ 0.6 (θ ≤ 53◦) and which were
recorded at the Yakutsk array over the period between
1974 and 2002. Selected for the present analysis are
only those showers for which the arrival directions
were found on the basis of data from four or more
stations and whose axes were within the array central
circle of radius R ≤ 1000 m. The primary-particle
energy E0 was determined from the relations

E0 = (4.8 ± 1.6) × 1017(ρs,600(0◦))1.0±0.02 [eV], (5)

ρs,600(0◦) (6)

= ρs,600(θ) exp((secθ − 1) · 1020/λρ) [m−2],

λρ = (450 ± 44) (7)

+ (32 ± 15) log(ρs,600(0◦)) [g/cm2],

where ρs,600(θ) is the charged-particle density mea-
sured by ground scintillation detectors at the distance
ofR = 600 m from the shower axis. The total number
of showers selected in this way is 105 012.

We have used the traditional method of a harmonic
analysis in terms of the equatorial coordinates [6] and
examined the behavior of the first harmonic. The part
of the sky viewed by the Yakutsk array was broken
down into 24 sectors (with a step of ∆α = 15◦ with
respect to right ascension). The harmonic-analysis
method consists in choosing the best values for the
amplitude A1 and the phase ϕ1 of the function

f(α) = f0(1 + А1 cos(α− ϕ1)) (8)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 2. (a) Average atomic weight for a mixed composition of primary particles as a function of their energy: (open circles)
〈lnA〉 values obtained from the data in Fig. 1a and from relation (1), (closed boxes) data from [3], and (closed triangles) data
from [4]; (b) estimates obtained for the fractions of protons (p) and iron nuclei (Fe) for a two-component composition of primary
cosmic radiation by using the values of 〈lnA〉 (open circles in Fig. 2a) and relation (4).
by minimizing the quantity

χ2 =
n∑
i=1

(fi −Ni)2/fi, (9)

whereNi is the number of showers in the ith spherical
sector ∆αi and f0 =

∑n
i=1Ni/n.

The anisotropy was studied in the intervals h =
∆ logE0 = 0.2 (they are referred to here as bins) by
consecutively shifting them along the energy scale
by 0.1h. This was done in order to perform a more
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
detailed analysis of the behavior of the phase ϕ1,
since there are some indications in [21, 29–31] that,
at specific values of E0, this phase may undergo
fast changes. It is the opinion of the present au-
thor (see [21]) that these changes are not accidental,
reflecting the actual scenario of the propagation of
primary cosmic radiation in space.

The amplitude A1 of the first harmonic is a mea-
sure of the global anisotropy of primary cosmic ra-
diation. If it exceeds sizably (at a level above three
4
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Fig. 3.Differential energy spectrum of cosmic rays: (open
circles) experimental data from the Yakutsk array for
studying extensive air showers [26], (closed triangles) da-
ta of the HiRes/MIA experiment [4], and (direct crosses)
Akeno data [27, 28]. The arrows indicate statistically sig-
nificant peaks (those at a level of three standard deviations
and above that).

standard deviations) the amplitude of the adequate
isotropic flux, it is assumed that the phase ϕ1 reflects
the actual anisotropy.Wewill first examine the behav-
ior of the phase of the first harmonic, irrespective of its
amplitude, postponing the analysis ofA1 as a function
of E0 to further stages of our investigation.

In Fig. 4b, the open circles show the dependence
of ϕ1 on the mean energy in a bin. It can be seen
that, at some specific values of the energy, the phase
of the first harmonic has stable and close values,
which, at regular intervals, undergo fast variations
about the dashed line, which was borrowed from the
review article quoted in [21] and which characterizes
the behavior of ϕ1 according to world-averaged data.

The crosses in Fig. 4b represent the phase ϕ1

as a function of energy according to the results ob-
tained at the AGASA array [10] from an analysis of
114 000 showers having zenith angles in the region
θ ≤ 60◦. Before proceeding to compare the results
that come from the two arrays in question, we note
that they scan different parts of the sky. This can
clearly be seen from Fig. 5, where the unshaded re-
gion around the North Pole of the Earth corresponds
to the sky zone viewed by the Yakutsk array (in terms
of the galactic coordinates) for cos θ ≥ 0.6, while the
shaded region is the complementary part of the sky,
that which is viewed by the AGASA array for cos θ ≥
0.5. The circles in Fig. 5 show the magnetic fields in
the Milky Way Galaxy [32], the open and the closed
ones corresponding to the field orientations toward
and away from an observer, respectively; the diame-
ters of the circles are proportional to the field strength.
P

The chart is plotted in such a way that equal areas in
the figure correspond to sky parts of identical area.

The AGASA data in Fig. 4b also indicate that
there is some regularity in the behavior of the phase
ϕ1 (including its variations), although the authors
of [10] did not pay any special attention to this. They
only indicated that, for 8× 1017 < E0 < 2× 1018 eV,
the amplitude A1 ≈ 0.04 significantly exceeds the re-
spective random value for the isotropic flux. The phase
ϕ1 ≈ 295◦ of this amplitude (arrow 1 in Fig. 5) cor-
responds to the direction toward the outlet of the
Orion arm at a galactic longitude of lG ≈ 50◦. In [10],
however, this phase was associated with the Galaxy
center, from which an excess flux of primary cosmic
radiation originates, according to data reported there.
Unfortunately, the Yakutsk array does not “see” the
Galaxy center.

At first glance, the data from the Yakutsk ar-
ray are poorly consistent with the AGASA da-
ta. However, this statement is true only partly.
In the region E0 ≥ 8× 1018 eV, the two arrays
show approximately identical E0 dependences of
the phase ϕ1. The discrepancy at lower energies
is likely to be due to the fact that, in Fig. 4b,
each point of the AGASA data corresponds to the
anisotropy for the total flux of primary cosmic ra-
diation for an energy value exceeding the value
being considered. Under such conditions, the relevant
peaks and dips can be strongly smoothed. Upon
taking into account this circumstance, the distinction
between the estimates of energy at the two arrays by
a factor of about 1.32, and their different geographical
positions (AGASA lies 27◦ to the south and surveys
a much greater part of the sky), it becomes clear that
there is some correlation between the data.

For the peaks and dips in Fig. 4b, we will now
perform a more detailed analysis, paying special at-
tention to the possibility of their accidental formation.
We will consider the hypothesis of an isotropic dis-
tribution of showers in 24 angular spherical sectors.
We will make use of the values that the functional
in (9) takes in accordance with the distribution of χ2

for (n− 3) degrees of freedom. For χ2 > χ2
1−p, where

χ2
1−p is that tabular value of χ

2 which corresponds to
a specific confidence level p, this hypothesis can be
rejected with the confidence probability β = 1− p.

Figure 4d shows χ2 values (for the phases ϕ1

given in Fig. 4b) versus the mean energy in a bin.
A comparison of the calculated values of χ2 with the
tabular values χ2

1−p makes it possible to reject the
hypothesis that the peaks and dips in Fig. 4b are of
a random origin. Some of them have a significance
level not lower than four standard deviations (with the
confidence probability being β ≥ 0.99996), whence it
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 4. (a) Amplitude and (b) phase of the first harmonic
versus the energy of primary cosmic radiation; (c) expo-
nent k in the formula p(≥A1) = ехр(−k) for estimat-
ing the probability of obtaining a random value of the
amplitude of the first harmonic in the region ≥A1 (A1

are measured values); and (d) χ2 values calculated by
formula (9) and tabular values of χ2

1−p for the confidence
probabilities of β = 1 − p = 0.97 (2σ), β = 0.998 (3σ),
and β = 0.99996 (4σ). The closed boxes and open circles
represent experimental results obtained in the present
study on the basis of data from the Yakutsk array for
exploring extensive air showers, while the direct crosses
correspond to the AGASA data [10]. In Fig. 4a, curves 1
and 2 (Yakutsk array) and curve 3 (AGASA) represent
the expected values of the amplitude of the first harmonic
in the case where the flux of primary cosmic radiation is
isotropic; in Fig. 4b, the dashed curve shows the behavior
of the phase ϕ1 according to world-averaged data [21].

follows that, at the energy values being considered,
there is a strong local anisotropy, which is periodically
weakened down to a nearly isotropic distribution of
the arrival directions of primary cosmic radiation.

Let us now highlight some important special fea-
tures of the results being discussed. For E0 < 5×
1017 eV, the phases are concentrated in the vicinity of
the value of ϕ1 ≈ 125◦, which specifies a direction ly-
ing beyond a random one at a statistical-significance
level not less than three standard deviations (Fig. 4d)
and which has no bearing on the Galaxy plane, from
which one could expect an anisotropy of the flux of
charged particles of primary cosmic radiation within
the diffusion model of their propagation. This direc-
tion points to the outlet of one of the middle-latitude
magnetic arms of the Galaxy (arrow 2 in Fig. 5) or
even possibly to the plane of the Local Supercluster
of galaxies (Supergalaxy plane). The dip of the phase
in Fig. 4b at E0 ≈ 1017.3–17.4 eV (ϕ1 ≈ 90◦) is also
indicative of the effect of the Supergalaxy plane (see
Fig. 5).1)

In the interval E0 ≈ 1017.7–17.8 eV, there is yet
another significant peak (Fig. 4d). It correlates with
the peak at similar energies in the energy spectrum of
primary cosmic radiation (see Fig. 3). The phaseϕ1 ≈
40◦ in Fig. 4b points to the line of intersection of the
Galaxy and Supergalaxy planes (arrow 3 in Fig. 5).
The two planes are nearly orthogonal in space.

The dip of the phases in Fig. 4b in the energy
range E0 ≈ 1018.25–18.45 eV manifests itself in the
data from both arrays. Of course, it must become a
subject of a dedicated study. At the present stage, we
may indicate once again that, according to the data
from the Yakutsk array, the phase ϕ1 ≈ 90◦ points to
the Supergalaxy plane.

1)In the following, we use the notationE0 ≈ 1017.3–17.4 eV.
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Finally, the energy range E0 ≈ 1018.6–18.9 eV,
where the flux of primary cosmic radiation changes
global direction, possibly two times (arrows in
Fig. 4d)—from ϕ1 ≈ 90◦ in the intervals E0 ≈
1018.6–18.7 and 1018.8–18.9 eV to ϕ1 ≈ 150◦ at E0 ≈
1018.7–18.8 eV—also deserves attention. These peaks
are especially significant in Fig. 4d. They correlate
with the peak in the differential energy spectrum in
Fig. 3. It should be noted that, for E0 ≥ 5× 1018 eV,
the arrival directions of primary cosmic radiation
correlate with the Supergalaxy plane, exceeding the
isotropic flux by four to five standard deviations [15–
17]. In [14, 19], it was indicated that there is a
relationship between the arrival directions of primary
cosmic radiation of such energies and the large-scale
structure of the Universe.

Let us now consider the amplitude of the first
harmonic, A1. It is contrasted against the amplitude
∆A1 for the isotropic flux where the number of events,

N =
n∑
i=1

Ni,

is equal to the actual number of showers. The ampli-
tude ∆A1 can be found from a Monte Carlo simula-
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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tion or analytically [6]:

∆A1
∼= 1.25

√
2/N. (10)

From relation (10), it follows that, even in the absence
of an actual anisotropy, an experiment will inevitably
exhibit nonzero amplitudes whose values would in-
crease with decreasing number N of showers. This
occurs as the energy E0 of the showers subjected
to the analysis becomes higher; that is, a random
distribution can mimic the expected (on the basis
of physical considerations) energy dependence of the
amplitude of the first harmonic.

The question of the distribution of the parameters
characterizing the observed vector of the anisotropy
that arises because the data set at small N is insuffi-
ciently wide was considered by Linsley [6], who intro-
duced the coefficient k = N(A1/2)2 and the formula

p(≥A1) = ехр(−k) (11)

for estimating the probability that the observed value
A1 can be obtained in the case of an isotropic flux.

For the amplitude values corresponding to the
phases ϕ1 in Fig. 4b, Fig. 4a shows the results of
measurements (circles) and the results of the calcula-
tion (curve 1) on the basis of relation (10). The mea-
sured and calculated data of the AGASA group [10]
are represented by the crosses and by curve 3, re-
spectively. The values of the coefficient k are given in
Fig. 4c.

It can be seen that, in the energy range E0 ≈
(3–20)× 1017 eV, a sizable anisotropy was observed
at the AGASA facility, its amplitude being maximal at
E0 ≈ 1018 eV. On the contrary, very small values of
the amplitude A1 were obtained at the Yakutsk array
in this energy region. This situation was not due to
low statistics of showers, as can clearly be seen from
the example of the histogram in Fig. 6a for E0 =
1017.7–17.8 eV showers, where the measured distribu-
tions proved to be anomalously “flat” [here, the graph
of the sine function (8) is virtually indistinguishable
from a horizontal line]. At the same time, the data
in angular sectors display many large deviations from
this approximation, which lead to great values of χ2

that are highly improbable for a random distribution
(see Fig. 4d).

Therefore, it is natural to reject the hypothesis
according to which the data from the Yakutsk array
in the above energy range may be due to fluctua-
tions of the isotropic flux of primary cosmic radia-
tion. In all probability, the reason here is different. In
my opinion, the anomalously flat distribution of the
arrival directions of primary cosmic radiation arose
because of a superposition of two fluxes traveling in
opposite directions and having approximately equal
amplitudes, as can clearly be seen in Fig. 7, where
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
this hypothesis was simulated. There, histogram 1
represents the original distribution taken for actual
showers of energy in the range E0 = 1016.8–16.9 eV
and slightly modified in such way that the phase of
the first harmonic points to the Supergalaxy plane.
We will assume that this distribution for a phase
of ϕ1 ≈ 90◦ reflects roughly a global anisotropy of
extragalactic primary cosmic radiation. We denote
by NSG the total number of respective events. For
this distribution, the first row of the table gives the
parameters of the anisotropy vector.

Histogram 2 in Fig. 7 is obtained from histogram 1
upon a shift of 180◦ in the right ascension. For this
distribution, the parameters of the anisotropy vector
are listed in the second row of the table. They are
compatible with the AGASA data; therefore, we as-
sume that this vector gives a rough characterization
a global anisotropy of galactic primary cosmic radi-
ation. We denote by NG the total number of events
there.

The total flux of galactic and extragalactic ra-
diation, NΣ, is determined here by summing his-
tograms 2 and 1 with weights satisfying the normal-
ization conditionWG +WSG = 1,

NΣ =WGNG + (1−WG)NSG. (12)

More specifically, the weights WG and WSG are de-
fined as the fractions of galactic and extragalactic
primary cosmic radiation. In Fig. 7, histogram 3 illus-
trates the version whereWG = 0.55, in which case the
fraction of galactic primary cosmic radiation exceeds
slightly the fraction of its extragalactic counterpart.
For this flux, the parameters of the anisotropy vector
are given in the third row of the table. They are seen
to be compatible with our experimental data given
above.

Histogram 4 corresponds to the version where
WG = 0.45—that is, the version in which the frac-
tion of galactic primary cosmic radiation is slightly
less than the fraction of extragalactic primary cos-
mic radiation. In this case, the distribution is also
characterized by an anomalously small value of the
coefficient k, but the phase ϕ1 ≈ 67◦ points here to
the Supergalaxy plane.

The last two versions of the simulations demon-
strate that slight changes in the equilibrium between
oppositely directed global fluxes shift the phase of the
first harmonic toward the stronger flux. Concurrently,
χ2 values remain quite large (at a level of three stan-
dard deviations), and this contradicts the hypothesis
that histograms 3 and 4 are of a random character.

In attempting to employ the results of the above
simulation to interpret the anisotropy of data from the
Yakutsk array and from AGASA for E0 ≈ (3–20) ×
1017 eV, the following pattern may emerge. Let us
4
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assume that primary cosmic radiation does indeed
consist of a galactic and an extragalactic component.
In this case, the AGASA facility, which has a larger
angle of survey of the sky (see Fig. 5), will record
predominantly the galactic component. As amatter of
fact, it is “dazzled” by a direct flux of cosmic rays from
the Galaxy center. The Yakutsk array, which is situ-

Parameters of the first harmonic in simulating the
anisotropy of the (1) extragalactic, (2) galactic, and (3, 4)
total fluxes

WG A1, % ∆A1, % ϕ1, deg χ2 k

1 0 10.6 3.1 96 58.8 9.1

2 1 12.2 3.1 285 58.1 11.7

3 0.55 2.0 3.1 302 41.2 0.3

4 0.45 1.1 3.1 67 41.3 0.1
P

ated withinmuch higher latitudes, “sees” only a slight
“gleam” of this component. The anisotropy of the
galactic component is neutralized by the anisotropy
of extragalactic particles. At some energies, the latter
outweighs the former; therefore, the phase of the first
harmonic in Fig. 4b periodically undergoes strong
variations.

Let us now consider the anisotropy of E0 ≤ 3×
1017 eV primary cosmic radiation. We will make use
of the data reported in [33], which were obtained at
the Yakutsk array over the period between 1983 and
1988. The showers in question were selected by nine
scintillation detectors within a central circle of radius
R ≤ 250 m (independently of the master array). In
this region, the number of extensive air showers de-
creases fast with decreasing energy; in view of this, we
took, for our analysis, only cos θ ≥ 0.9 events, for the
surveyed part of the sky to be invariable. The shower
energy was determined from the relation

E0 = 6.8× 1010Ns(0◦)0.86, (13)

whereNs(0◦) is the total number of charged particles
in vertical events.

In all, 29 235 showers were selected in this way.
They were analyzed for a global anisotropy by the
sliding-bin method outlined above (with a step of
h = 0.2). The results of this harmonic analysis are
represented by closed boxes in Fig. 4.

Here, a statistically significant local anisotropy at
energies in the range E0 ≈ (7–8)× 1015 eV, where
there is a peak in the differential energy spectrum (see
Fig. 3), immediately attracts attention. This astro-
physical phenomenon is accompanied by the nuclear-
physics irregularity that is observed in the longitudi-
nal development of extensive air showers (see Figs. 1,
2) and which is difficult to explain by the replacement
of one group of nuclei by another within the diffusion
model of the origin of primary cosmic radiation. The
phase of the first harmonic, ϕ1 ≈ 180◦, turned away
from the Galaxy disk, but it unambiguously points to
the Supergalaxy center (see Fig. 5).

In the range E0 ≈ (6–8)× 1016 eV, there is also
a local irregularity that manifests itself in a sharp
decrease in the amplitude (see Fig. 4a) and in that
the phase takes the value of ϕ1 ≈ 90◦ (see Fig. 4b). In
all probability, some processes other than those in the
range E0 ≈ (6–8)× 1015 eV occur here. We cannot
rule out the possibility that they are of the same
nature (superposition of fluxes traveling in opposite
directions) as those in the example in Fig. 7.

Figure 4 shows that, at energies in the range
E0 ≈ (3–50) × 1015 eV, there is a sizable anisotropy
of the global flux of primary cosmic radiation, the
phase of the first harmonic being ϕ1 ≈ 180◦. In the
energy range E0 ≈ (1–3)× 1017 eV, data from the
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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two independent experiments in question agree with
each other even in some individual details. The dis-
crepancies between them are explained by different
numbers of showers there.

4.2. Cluster Analysis

From the aforesaid, it follows that, in some in-
tervals of the energy E0, one can observe phases of
the first harmonic that are likely to be indicative of
an extragalactic origin of part of the primary cosmic
radiation. Previously, it was reported in [12–20] that
an analysis of the arrival directions for cosmic rays
of energy in the region E0 ≥ 1017 eV makes it pos-
sible to single out a considerable number of groups
of showers in narrow solid angles. Their distribution
over the celestial sphere has an ordered structure that
cannot be explained by random statistical processes.
We will now indicate some important special features
of the small-scale anisotropy of primary cosmic radia-
tion that seem to have some bearing on the aforemen-
tioned irregularities of the development of extensive
air showers.

4.2.1. Events in the Energy Region E0 ≥ 3× 1018 eV.

Let us first examine extensive air showers of en-
ergy in the region E0 ≥ 3× 1018 eV that are charac-
terized by zenith angles of θ ≤ 45◦ and which were
recorded at the Yakutsk array over the period be-
tween 1974 and 2000. The present analysis deals with
showers whose arrival directions were determined on
the basis of data from not less than five stations and
whose axes were within the array central circle of
radius R ≤ 1700 m. Here, we will consider the data
sample used previously in [17].

The analysis has been performed for two data sets,
that for E0 = (3–5)× 1018 eV (2033 showers) and
that for E0 > 5× 1018 eV (1267 showers). For each
shower, all “neighbors” were found within an angu-
lar spacing of d ≤ 3◦ around its arrival direction. If
there were n ≥ 3 showers within this circle, then the
average of their coordinates was calculated and was
further used as the coordinates of new points (they
are referred to as nodes). Within this procedure, any
isolated group of showers (that is, a group that is
offset by a distance in excess of d from showers that
do not belong to this group) forms one node.

Suppose that there is some connection between
nodes and local sources of primary cosmic radia-
tion. We will analyze the correlations of these nodes
with the Galaxy and Supergalaxy planes. The devia-
tions nσ = (Nobs −Nran)/σ of the observed number
of nodes (Nobs) involving ≥7 showers from the ex-
pected one (Nran) (in units of the reference quantity
σ =
√
Nran) versus the latitude of the shower arrival
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
are shown in Fig. 8 in galactic (G) and supergalactic
(SG) coordinates (with a step of ∆b = 5◦). The Nran
values were determined from a Monte Carlo simu-
lation of an isotropic primary cosmic radiation. This
was done by replacing, for each shower, the measured
values of the arrival time and azimuth (in the hori-
zontal reference frame associated with the array) by
random values.

In galactic coordinates (Fig. 8a), the northern–
southern asymmetry of the arrival directions is clearly
seen for extensive air showers of energy in the region
E0 > 5× 1018 eV (an excess comes from southern
latitudes)—previously, this effect was discovered at
the Yakutsk array [34]. The mean latitudes of the
measured and the calculated distribution are 〈bobs〉 =
17.7◦ ± 2.4◦ and 〈bran〉 = 25.1◦, respectively. In the
vicinity of the Galaxy plane (bG = −5◦ to 0◦), there
is a significant (four standard deviations) excess of
events. Statistically significant peaks are also ob-
served at latitudes of bG ≈ 35◦ and 65◦.

On the contrary, Fig. 8a′ shows no asymmetry
with respect to the Supergalaxy plane (〈bobs〉 =
12.8◦ ± 2.4◦ and 〈bran〉 = 12.0◦), but, in the vicinity
of it (bSG = −10◦ to + 20◦), there is an intense peak
(shaded region), which is especially distinct against
the background of the adjacent dips. A comparison
shows that the areas under this peak and the afore-
mentioned peak in the vicinity of the Galaxy plane
differ by a factor of about 6. This can be interpreted as
an indication that E0 > 5× 1018 eV primary cosmic
radiation comes predominantly from extragalactic
sources.

We note that some excess of primary cosmic radi-
ation in the vicinity of theGalaxy plane was also found
in the studies that were reported in [35, 36] and which
are based on an analysis of E0 > 8× 1018 eV data
from the Yakutsk array for investigating extensive
air showers. Relying on these results, the author of
those studies conjectured that the bulk of primary
cosmic radiation having energy in the above region
consists of iron nuclei generated by pulsars in the
Galaxy. In my opinion, this conclusion is dubious for
the following reasons. First, this conclusion is at odds
with the data in Figs. 1 and 2. Second, it is in glaring
contradiction with the results of a global investigation
into the lateral distribution of electrons and muons in
extensive air showers at the Yakutsk array [37–41]—
these results rule out completely a heavy composition
of primary cosmic radiation in the energy regionE0 >
5× 1018 eV. Third, the peak in Fig. 8a in the latitude
band ∆bG = −5◦ to 0◦ is caused, to some extent, by
events that also correlate with the Supergalaxy disk,
from the region where the two disks intersect (see the
dashed arrow 3 in Fig. 5). All of this was disregarded
4
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by the author of [35, 36], so that his conclusions seem
erroneous.

In the energy region E0 = (3–5)× 1018 eV, the
role of the Galaxy in the generation of primary cosmic
radiation becomes more pronounced, which is sug-
gested by an increased excess of events in the region
of its disk (bG = −5◦ to + 5◦) in Fig. 8b in relation
to what we have in Fig. 8a. Concurrently, the afore-
mentioned northern–southern asymmetry disappears
(〈bobs〉 = 23.2◦ ± 1.5◦ versus 〈bran〉 = 24.2◦). The role
of the Supergalaxy seems to become much less im-
portant in this energy region, but we cannot rule it
out completely at this stage; in Fig. 8b′, a statisti-
cally significant, albeit weaker, excess of events sur-
vives in the vicinity of the Supergalaxy plane (bSG =
−10◦ to − 5◦).

4.2.2. Events in the Energy Range E0 ≈ 1017.7–17.8 eV.

Let us consider showers that are characterized by
energies in the range E0 ≈ 1017.7–17.8 eV and zenith
angles satisfying the condition cos θ ≥ 0.6 and which
were recorded at the Yakutsk array over the period
between 1974 and 2001. Our analysis will be per-
formed for extensive air showers whose arrival direc-
tions were found on the basis of data from four ormore
stations and whose axes are within the array central
PH
circle of radiusR ≤ 1000 m. In all, 7426 showers were
selected in this way (see Fig. 6). In Fig. 4d, they form
a statistically significant peak. We will now examine
the small-scale anisotropy of these events.

We took seven independent data samples contain-
ing approximately the same number of events, about
1000, the only difference between these samples being
that the axes of the showers entering into the different
samples intersected different annular areas within the
central area of the array. Each of the seven samples
was analyzed individually for the presence in it of
local groups of showers (nodes) over the celestial
sphere. This was done in just the same way as in the
preceding case.

Figure 9 shows the distributions of the deviations
nσ = (Nobs −Nran)/σ (similar to those in Fig. 8)
in galactic (G) and supergalactic (SG) coordinates
versus the latitude of the shower arrival (with a step
of ∆b = 3◦). The upper panels display a sample that
consists of 1812 showers entering into nodes, while
the lower panels present the corresponding results for
the remaining 5614 showers not belonging to nodes.
For the showers in the nodes (in both coordinate
systems), we have here the values

χ2 =
n∑
i=1

(nσi)2 ≈ 110–150,
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 9. Distributions of the deviations nσ = (Nobs −Nran)/
√
Nran of the observed number of E0 = 1017.7–17.8 eV showers

(Nobs) from the expected one (Nran) versus the latitude of the shower arrival in galactic (G) and supergalactic (SG) coordinates
(with a step of ∆b = 3◦): (a, a′) results for 1812 showers entering into nodes (see Fig. 6c) and (b, b′) results for the remaining
5614 showers not belonging to nodes (see Fig. 6b). The shaded regions correspond to significant values near the Galaxy and
Supergalaxy planes.
which are enormous for n = 50 degrees of freedom.
The probability of such random outputs is less than
10−5. In the vicinity of the Supergalaxy plane, we can
see a statistically significant (about five and a half
standard deviations) peak, which, in many respects,
is similar to the peak in Fig. 8a′. On the contrary, the
Galaxy plane manifests itself in Fig. 9a only as a dip
(shaded area there). We note that a similar but more
significant (9.2σ, where σ is a standard deviation)
peak is also observed in the Galaxy disk for E0 ≈
1017.1–7.6 eV [18].

These results can be interpreted as an indica-
tion of an extragalactic origin of the primary-cosmic-
radiation fraction contained in the nodes. In all prob-
ability, the Galaxy only absorbs this radiation, though
more intensely in the disk. Other significant peaks
and dips in Figs. 9a and 9a′ are likely to be in-
dicative of a complicated and nonuniform structure
of the space housing the sources of primary cosmic
radiation that form nodes.

As to the showers in Figs. 9b and 9b′, the pattern
here changed sharply. The measured and expected
distributions for random quantities are close to each
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
other (χ2 = 47–59). This result unambiguously indi-
cates that the primary-cosmic-radiation fraction se-
lected in this way possesses a high degree of isotropy.
The fraction of these particles in the total flux is
5614/7426 ≈ 0.75.

Within the harmonic-analysis method, we will
return once again to a global anisotropy of E0 =
1017.7–17.8 eV primary cosmic radiation. Figure 6a
shows the original distribution of all 7426 showers in
24 sectors. That part of the showers which did not
enter into the nodes (Fig. 6b) form a distribution that
exhibits but a slight distinction between the fluxes in
different time zones (χ2 ≈ 37.5); as a result, the phase
ϕ1 ≈ 211◦ ± 136◦ was found for them with a large
uncertainty. As before, these data are indicative of a
high degree of isotropy of primary cosmic radiation.
But the showers in the nodes in Fig. 6c are in strong
contradiction with the hypothesis of an isotropic
distribution. For example, the scatter of data around
the approximating curve constructed with the aid of
Eq. (8) leads to χ2 ≈ 154.8 for n = 24 degrees of
freedom, the respective probability of a random output
being less than 10−5.
4
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Fig. 10. Distributions of the deviations nσ (similar to those in Fig. 9) in the E0 = 1017.2–17.3 eV set for (a, a′) 1962 showers
entering into nodes and (b, b′) the remaining 5261 showers not belonging to nodes.
We would like to highlight some important de-
tails of these distributions. The peak in Fig. 6a at
α ≈ 180◦–195◦ is indicative of an excess (3.4σ) ra-
diation from the Supergalaxy disk in the vicinity of
the center (CSG in Fig. 5). It fully goes over to the
peak in Fig. 6c, where the excess of events is already
(162 − 81)/

√
81 = 9σ. As to the peak in Fig. 6a at

α ≈ 270◦–285◦, it goes over to the peak in Fig. 6b,
where the excess is (294 − 235)/

√
235 = 3.8σ, and

possibly points to the Galaxy center.

4.2.3. Events in the Energy Range E0 ≈ 1017.2–17.3 eV.

Let us consider yet another energy interval, E0 ≈
1017.2–17.3 eV; there, the distributions of the standard
deviations nσ (Fig. 10) are similar in many respects
to the distributions in Figs. 8 and 9. Here, use is
made of 7223 showers whose zenith angles satisfy
the condition cos θ ≥ 0.6 and whose arrival directions
were determined on the basis of data from not less
than four stations, their axes lying within the array
central circle of radius R ≤ 1000 m. This data sample
was also broken down into seven independent sub-
samples featuring approximately the same number of
events, about 1000, and was analyzed for the presence
of correlations between the nodes and the Galaxy and
Supergalaxy disks.

In Figs. 10a and 10a′, the χ2 values for 1962
showers entering into the nodes are seen to be
P

enormous in both coordinate frames, χ2 ≈ 120–150.
Here, there is, in the Supergalaxy plane, a strong
excess (about 4.6σ) of events, which is especially
pronounced against the background of dips on the
two sides of it. As before, the Galaxy plane manifests
itself only as a dip of about three standard deviations
(shaded region).

For the remaining showers (their number is 5261),
which do not enter into the nodes, the distributions
of nσ are shown in Figs. 10b and 10b′. The pattern
here is identical to that in Figs. 9b and 9b′. The
measured distributions are quite close to those that
are expected for random quantities (χ2 = 47–52),
this being indicative of a rather high isotropy of the
primary-cosmic-radiation fraction selected in this
way. The fraction of these particles in the total flux
is 5261/7223 ≈ 0.73.

We will now additionally analyze the small-scale
anisotropy of showers entering into the nodes (those
in Figs. 10a, 10a′). We have investigated nodes for
their intersection of multiplicity m ≥ 2 in any of the
seven subsamples (under the condition that their cen-
ters are within an angular distance of d ≤ 3◦). If such
nodes were found, the arrival directions of all show-
ers entering into such nodes were mutually averaged
anew, and the resulting larger node (we refer to it
as a cluster) was taken for a further analysis. As a
matter of fact, we used here the method of multiple
matching of nodes upon superimposing a few similar
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004



COULD PRIMARY PARTICLES OF ULTRAHIGH ENERGY BE NEUTRAL? 975

 

90

–90

60 60

30 30

3600

–30 –30

–60–60

 

α

 

 = 270

 

α

 

 = 0

 

α

 

 = 90

 

δ

 

 = 30

 

δ

 

 = 0

 

α

 

 = 180

 

δ

 

 = –60

 

δ

 

 = –30

 

30024018060

Fig. 11. Chart representing the disposition of clusters of 1156E0 = 1017.2–17.3 eV showers in supergalactic coordinates (also
shown are equatorial coordinates). The clusters includem ≥ 3 nodes from any of the seven data samples under the condition
that each of these nodes contains n ≥ 5 showers, their centers lying within the d = 3◦ circle.
charts onto one another. This is an analog of the
multiple-matching method, which has successfully
been used in order to select ultrahigh-energy cosmic
rays incident on the Earth by master detectors at
arrays for studying extensive air showers.

Figure 11 shows the chart of the disposition
of clusters (for events in the energy range E0 ≈
1017.2–17.3 eV) including m ≥ 3 nodes from any
of the seven subsamples under the condition that
there are n ≥ 5 showers in each of these nodes. The
clusters are displayed in supergalactic coordinates
(for the sake of convenience, equatorial coordinates
are also shown there). The longitude is reckoned in
the counterclockwise direction from the line pointing
to the anticenter. The equatorial coordinates of the
North Pole of the Supergalaxy are α = 286.2◦ and
δ = 14.1◦.

It can be seen that many clusters form isolated
local groups between which there are large voids.
In all, clusters contain 1156 showers, the maximum
number of showers in a cluster being 26. At different
values of the primary-cosmic-radiation energy, one
can also observe [16–20] an ordered structure of the
distribution of clusters over the celestial sphere. By
and large, the picture is similar to the cell-like struc-
ture of the distribution of galaxies in the Universe
(see, for example, [42, 43]).

4.3. On the Structure of the Supergalaxy
The Supergalaxy is one of the elements of the cell

structure of theUniverse. As an individual large-scale
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
formation, it was singled out for the first time by de
Vaucouler [44]. Its disk is a flattened aggregate of field
galaxies, small groups, and large clouds [45].

The structure of the Supergalaxy is clearly seen in
Fig. 12, which displays, in supergalactic coordinates,
the distribution of 2502 galaxies that are charac-
terized by brightness values not exceeding 14m and
which are quoted in the catalogs in [46, 47]. The
thick line represents the Galaxy disk. Presented in
this figure are objects whose declination satisfies the
condition δ ≥ 30◦, which makes it possible to com-
pare the topologies of clusters and galaxies over the
common part of the sky. Unfortunately, some galaxies
are not seen because of light absorption in the vicinity
of the Galaxy disk; therefore, the region of overlap of
the data in Figs. 11 and 12 is narrowed considerably.

We would like to list once again some common
structural features of the Supergalaxy and the distri-
butions in Figs. 8–10. The distribution of the galaxies
that are displayed in Fig. 12 is shown in Fig. 13a
versus their supergalactic latitude (with a step of
∆bSG = 3◦). The Nran curve represents the expected
distribution of the galaxies for an isotropic disposition
in space with allowance for the decrease in their num-
ber in the region of the Galaxy disk (see Fig. 12). This
distribution was obtained by “smearing,” with the aid
of the Monte Carlo method, the actual coordinates of
each galaxy in the parts of the sky that are adjacent
to it and which have dimensions of ∆α = ±30◦ and
∆δ = ±4◦.
4
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Fig. 12. Disposition of 2502 galaxies whose brightness does not exceed 14m (at declinations in the region δ ≥ 30◦) over the
celestial sphere from the catalogs in [46, 47]. The thick line shows the Galaxy plane.
Figure 13b shows the distribution of the standard
deviations nσ = (Nobs −Nran)/

√
Nran, which bears

a striking similarity to the distributions in Figs. 8–
10. In addition to the peak in the Supergalaxy plane,
other, finer, details are also similar. In all probability,
this means that a fraction of primary cosmic radia-
tion can indeed be formed in the Supergalaxy. At the
present stage of investigations, it is hardly possible to
pinpoint sources that generate this fraction of primary
cosmic radiation.

4.4. Quasars as Possible Sources of Primary Cosmic
Radiation

Searches for pointlike sources of primary cos-
mic radiation are among the most difficult prob-
lems in ultrahigh-energy astrophysics. This prob-
lem stemmed largely from the fact that it was not
addressed rather than from the paucity of relevant
data. The point is that the opinion a priori preva-
lent among researchers (see above) is that primary
cosmic radiation consists predominantly of protons
and nuclei of various chemical elements, these being
strongly mixed by the magnetic field of the Galaxy
and therefore having a nearly isotropic distribution
over the celestial sphere. Under such conditions, it
is difficult to find any pointlike sources of primary
cosmic radiation.

But in fact, the situation may differ from that to
some extent. It was indicated above that part of the
primary cosmic radiation in the energy region E0 ≥
PH
1017 eV may consist of neutral particles. In [18–21],
it was reported that quasars may be sources of such
particles. Below, we will consider this issue in greater
detail.

4.4.1. Events in the Energy Range E ≥ 5× 1018 eV.

First, we will analyze the most powerful showers
that are characterized by energies and zenith an-
gles satisfying the conditions E0 ≥ 5× 1018 eV and
θ ≤ 60◦, respectively; whose arrival directions were
determined on the basis of data from not less than
four stations; and whose axes intersected the array
central circle of radius R ≤ 1700 m. We will consider
the correlation between their arrival directions and the
nearest quasars. We took 199 quasars from the cata-
log in [48] that have redshifts of z ≤ 0.3 and declina-
tions of δ ≥ 0◦ and which are visible from the Yakutsk
array for studying extensive air showers. Because of
strong light absorption, the catalog in [48] contains
virtually no data concerning the equatorial region of
the Galaxy (|bG| ≤ 30◦); for this reason, we excluded,
from the analysis, all quasars and showers from this
part of the sky.

In Fig. 14, the measured distribution of minimum
angular spacings dmin between the arrival directions
of 379 showers and 199 quasars is represented by
points. The smooth curve there corresponds to the
distribution expected for random events. In the angu-
lar range 0.5◦–1.5◦ (shaded region), there is a statis-
tically significant excess of the measured number of
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 14. Distributions of the minimum angular spacings
between 379 E0 ≥ 5 × 1018 eV, θ ≤ 60◦ showers and
199 z ≤ 0.3 quasars [48]: (points) experimental data and
(smooth curve) distribution expected for random shower
directions obtained by means of a simulation.

events over the expected one—by (58− 33)/
√

33 ≈
4.4σ. In the angular range 0.5◦–1.0◦, this excess
has a stable character. For example, it is observed in
groups of 90–100 events in breaking down the 379
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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showers into four independent samples. If we consider
z ≤ 0.15 and 0.15 < z ≤ 0.3 quasars separately (92
and 107 objects, respectively), we find that, in the an-
gular range 0.5◦–1.0◦, the number of observed coin-
cidences exceeds the expected one approximately by
3.2σ in either group. In this angular range, the num-
ber of excess events constitutes (58 − 33)/

√
379 ≈

0.06 of the total number of the showers in question.

4.4.2. Events in the Energy Range E0 = 1017.7–17.8 eV.

We analyze the angular correlation between the
nodes of theE0 = 1017.7–17.8 eV showers presented in
Fig. 9 and the nearest quasars. As above, we exclude,
from our analysis, all quasars and showers from the
part of the sky in the equatorial region of the Galaxy
(|bG| ≤ 30◦)—that is, we take only objects that have
declinations of δ ≥ 20◦ and which are visible from the
Yakutsk array for studying extensive air showers. We
consider all seven independent sets of showers and
find the angular spacings dmin between the nodes
and quasars. We construct the ultimate distribution
(Jobs) as the sum of these distributions. Further, we
repeat this procedure once again (from the isolation of
4
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Fig. 16. Angular correlations kσ between the nodes
of primary cosmic radiation in the energy range E0 =
1016.9–17.2 eV and quasars with redshifts of z ≤ 03 [48]:
(a) results for showers entering into nodes and (b) results
for showers not belonging to nodes.

nodes)—as was done in deriving the data presented
in Fig. 9—in order to determine the distribution ex-
pected for an isotropic flux (Jran). Random directions
can be found on the basis of actual showers upon
replacing, for them, the measured right ascension by
that whichwas calculated by theMonte Carlomethod
in the angular range from 0◦ to 360◦.

Figure 15a gives the angular correlation func-
tions kσ = (Jobs − Jran)/σ (σ =

√
Jran) for 662 show-

ers entering into nodes and 108 quasars with redshifts
of z ≤ 0.3 [48], while Fig. 15b presents the inter-
sections of the above 662 showers and 102 quasars
with redshifts of 0.3 < z ≤ 0.6. In both figures, one
can see statistically significant peaks for dmin ≤ 1.5◦

(shaded regions), which contain 3 and 9% of events,
respectively. In all probability, these are conservative
estimates of the fraction of primary cosmic radiation
that has the energies specified above and which may
originate from quasars. It seems that some events
were not included in these estimates because of ex-
perimental errors.

4.4.3. Events in the Energy Range E0 = 1016.9–17.2 eV.

It was shown in [20] that, in the energy rangeE0 =
1016.9–17.2 eV, one can also observe a considerable
number of nodes that partly correlate with the above
quasars. We present some results of this investigation
supplementing the pattern as a whole.
P

Figure 16 gives the angular correlation functions
kσ = (Jobs − Jran)/σ similar to those displayed in
Fig. 15, but for showers and quasars with declinations
of δ ≥ 30◦. The measured distributions Jobs and those
expected for random events, Jran, were derived as
the sum of 18 (= 3× 6) original distributions of the
minimum angular spacings dmin between the nodes
of three groups of showers in the energy ranges
E0 = 1016.9–17.0, 1017.0–17.1, and 1017.1–17.2 eV and
74 quasars with redshifts of z ≤ 0.3 [48]. The nodes
were obtained individually in six independent samples
of showers on the basis of their distances from the
axis in the same way as in the preceding case (in
the energy range E0 = 1017.7–17.8 eV). We took only
events whose zenith angles satisfied the condition θ ≤
45◦. Figures 16a and 16b correspond, respectively, to
showers contained within nodes and to the remaining
showers not belonging to these nodes.

It can be seen from Fig. 16a that a statistically
significant peak is observed for dmin ≤ 1◦ (shaded
region), the fraction of events contained in it being
(139− 103)× 100%/3130 ≈ 1.2%. There are no sig-
nificant peaks in Fig. 16b. In all probability, this in-
dicates that some primary-cosmic-radiation fraction
having energies in the regionE0 ≥ 1017 eV and form-
ing nodes of showers can be generated by quasars.

In Fig. 16а, a significant peak (5σ) at dmin ≈
5.3◦ also deserves particular attention. The frac-
tion of events contributing to it is (241 − 177) ×
100%/3130 ≈ 2%; that is, it is twice as great as
the fraction of events contributing to the peak at
dmin ≤ 1◦. In Fig. 15, one can also see significant
peaks at dmin ≈ 11.7◦. Previously, similar peaks at
dmin ≈ 5.5◦ and 9.5◦ were found in the distribution
of minimum angular spacings for E0 ≥ 1019 eV
showers [17]. We cannot rule out the possibility that
all of them are associated with an ordered (in one
way or another) large-scale structure of the matter
distribution in the Universe.

4.5. Does the Universe Have a Cubic Structure?

Let us consider yet another intriguing feature of
the arrival directions of primary cosmic radiation, that
which was indicated in [14,19]. In Fig. 17, the dis-
tributions of (a) the arrival directions of 583 E0 ≥
1019 eV showers and (b) 175 z ≤ 0.3 quasars of
brightness in the range 15.7m–19.7m [48] are shown
versus their supergalactic latitude. All events were
taken for declinations of δ ≥ 0◦.

From Fig. 17a, it can be seen that increased
fluxes of primary cosmic radiation come from the
Supergalaxy disk (|∆bSG| ≤ 2◦) and from the regions
symmetrically situated at angles of ±bSG ≈ 6.5◦.
In Fig. 17b, increased concentrations of quasars
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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(peaks 1 and 2) are observed in adjacent regions.
This can be considered as an additional indication
that quasars may be considered as one of the sources
of ultrahigh-energy primary cosmic radiation. In [49,
50], it was shown that Seifert galaxies with z ≤ 0.009
and lacertides (BL Lac objects) with z > 0.1 may also
be such sources. Objects of all of these three types are
so-called active-core galaxies, which are among the
most powerful sources in the Universe.

Observations reveal—and theoretical calculations
confirm—the presence of large voids in the Universe
that have dimensions of 100 to 130 Mpc and which
are separated by comparatively thin (20 to 30 Mpc)
layers [45, 51]. Up to 60–80% of galaxies are con-
centrated within these layers, showing a trend toward
aggregating into prolate and oblate superclusters, in-
cluding the Supergalaxy (of diameter about 50 Mpc),
which is considered here. In all probability, many
superclusters touch one another, forming a cell struc-
ture of the Universe [45, 51]. This may be a structure
of the type of a “three-dimensional chessboard” [52]
or even some kind of a giant quasicrystal [53], with
the bulk of matter being concentrated in its sites.
The formation of sites is logically explained within
the adiabatic (“pancake”) theory of Zel’dovich [54] as
the last stage of the concentration of matter in the
evolutionary chain of the expanding Universe: “bright
surfaces”–“bright lines”–“bright drops.”

Let us try to understand the origin of peaks 1
and 2 in Fig. 17 within the scenario of an ordered
distribution of matter in the Universe. For the sake
of simplicity, we assume that quasars are situated in
the sites of a cubic lattice. We also assume that the
Supergalaxy plane lies in one of the planes of this
lattice. We consider in space only those sites that,
in equatorial coordinates, have declinations of δ ≥ 0◦;
moreover, we exclude, from the data sample being
considered, all sites that, in galactic coordinates, lie
within the latitude band bG ≤ 30◦. This is done in
order to render the actually surveyed and simulated
regions of the sky as close as possible.

The distances to the sites are given by

r = сz/H0, (14)

where c is the speed of light andH0 = 75 (km/s) Mpc
is the Hubble constant. We will measure these dis-
tances in x = r/L units, where L is the lattice con-
stant.

Let us consider two versions, that of a steady-state
universe and that of an expanding universe.

In the first case, we set L = 120 Mpc. Since we
consider only z ≤ 0.3 quasars, it follows from rela-
tion (14) that the farthest objects from the Earth
occur at a distance of r = 1200 Mpc, which, in units
of the number of sites, corresponds to x = 10. In [55],
it was shown that the distribution of quasars features
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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Fig. 17.Distributions of (a)E0 ≥ 1019 eV showers char-
acterized by zenith angles in the region θ ≤ 60◦ and
recorded at the Yakutsk array, (b) quasars with redshifts of
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state and (d) expanding universe versus their supergalac-
tic latitudes (with a step of∆bSG = 2◦). Numerals in plain
text indicate the total number of events; 1 and 2 label
peaks in the vicinity of the Supergalaxy plane.

a cosmological periodicity, which we will roughly take
into account by introducing triangle functions with
weights of 1, 2, and 4 for vertices at, respectively,
x = 2, 4.5, and 7.5 and with zero weight at x = 1, 3,
6, and 10.

In the expanding universe, the lattice constant
corresponding to the instant of photon emission by a
quasar with a redshift z is [43]

L(z) = 120/(1 + z) [Mpc]. (15)

In our case, we have L = 92.3 Mpc for the farthest
quasars, which occur at a distance of r = 1200 Mpc.
As photons move from the farthest sites to an ob-
server, the lattice constant increases gradually to
120 Mpc; although the linear coordinates of sites
change, their projections onto the celestial sphere
remain unchanged [43].
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In Fig. 17c (steady-state universe) and Fig. 17d
(expanding universe), the distributions of the num-
bers of sites occurring at distances between 240 and
1200 Mpc are shown versus their supergalactic lati-
tude (with a step of ∆bSG = 2◦). In just the same way
as in Figs. 17a and 17b, peaks at ±bSG ≈ 6.5◦ are
also seen here. In Fig. 17c, they are narrower than in
Fig. 17d, but this distinction disappears if the sites
are slightly smeared around their centers in a random
way. By and large, all distributions in Fig. 17 are
similar.

The analogous pattern is observed for primary
cosmic radiation characterized by much lower en-
ergies and concentrated largely into clusters. In
Fig. 18a, the distribution of 2969 showers in clusters
(common for five groups of showers with energies in
the ranges E0 = 1017.1–17.2, 1017.2–17.3, 1017.3–17.4,
1017.4–17.5, and 1017.5–17.6 eV) is shown versus the
latitude of their arrival in supergalactic coordinates.
This distribution, which was borrowed from [18], was
obtained in the case of the coincidence of the angular
coordinates for 10 to 18 sites from 35 independent
samples (each containing about 1000 showers), the
fraction of these events in the total flux of primary
cosmic radiation being (2969/36 825) × 100% ≈ 8%.
The smooth curves in Fig. 18 represent the expected
distributions for random events.

It can be seen that the distribution in Fig. 18a
is similar in many respects to the distribution in
Fig. 17a, especially in what is concerned with peaks
PH
1–3. However, it has additional significant peaks sit-
uated symmetrically with respect to the Supergalaxy
plane. In principle, all peaks in Fig. 18a are compat-
ible with the above hypothesis of a cubic structure of
the distribution of matter (more precisely, sources of
primary cosmic radiation) in the Universe. This can
be seen in Fig. 18b, which shows the distribution of
the number of sites occurring at distances between
840 and 960 Mpc versus the latitude of their arrival in
supergalactic coordinates.

We have considered here a steady-state universe
where the cell size is L = 120 Mpc. The sites were
smeared in a random way according to a normal law
around their centers, the standard deviation being
25 Mpc (this is an approximate Supergalaxy radius,
which is possibly typical of other superclusters of
galaxies). Only events in which δ ≥ 30◦ (as in actual
experiments) were included in the ultimate analysis.
It should be noted that this is one of the possible
versions rather than the only one. All of them lead to
similar results if one considers a space volume of 500
to about 1200 Mpc—what is the most important is
that sites must lie within a relatively narrow (about
100 Mpc) spherical layer.

5. DISCUSSION OF THE RESULTS

Results presented in Figs. 14–18 can be inter-
preted as an indications that quasars with redshifts
z ≤ 0.3 are the possible sources of primary cosmic ra-
diation with energies in the region E0 ≥ 8× 1016 eV.
In all probability, peaks 1 and 2 in Figs. 17 and 18—
they are adjacent to the Supergalaxy plane at an-
gles±bSG ≈ 6.5◦—reflect the ordered structure of the
matter distribution in the Universe. If this structure
is similar to some extent to a cubic lattice, then the
Supergalaxy plane is likely to be approximately par-
allel to one of the three principal planes of the present
lattice.

Of course, the Supergalaxy plays some role in
the origin of cosmic rays with energies in the region
E0 ≥ 8× 1016 eV. This is suggested by the data in
Figs. 4 and 8–13. At present, it is difficult to assess its
contribution to the total flux of extragalactic radiation
observed on the Earth. In all probability, other clus-
ters and superclusters of galaxies may also be local
sources of primary cosmic radiation.

It should be emphasized once again that, in my
opinion, primary particles entering into nodes and
clusters must be electrically neutral. Because of mo-
tion in the magnetic field of the Galaxy, charged par-
ticles would lose a connection in direction with the
sources of their formation and could not reveal the
specific structure shown in Figs. 4–11 and 13–18.

In Figs. 9а and 10а, we have already paid attention
to sizable dips (shaded regions), which we interpreted
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 19. Distributions of the directions of E0 = 1016.9–17.2 eV showers (а) entering into nodes and (b) not belonging to them
versus the latitude of their arrival in galactic coordinates: (histograms) experimental data and (curves) distributions expected
for an isotropic flux. Numerals indicate the numbers of showers.
as indications of the possible partial absorption of
extragalactic primary cosmic radiation in the Galaxy
disk. We return once again to this issue and consider
the sample of E0 = 1016.9–17.2 eV showers (see Sub-
section 4.4.3). This is the energy region where there
are serious contradictions in estimating the composi-
tion of primary particles (see Fig. 2а).

In Fig. 19, the distributions of the directions of
(Fig. 19а) 7104 showers entering into nodes and
(Fig. 19b) the remaining 7214 showers not belonging
to them are shown versus the latitude of their ar-
rival in galactic coordinates [20]. These distributions
were obtained as the sum of 18 (= 3× 6) original
distributions (with a step of ∆bG = 1.5◦). As in the
preceding cases (see Fig. 16), the nodes were found
individually for three samples of different energies
(E0 = 1016.9–17.0, 1017.0–17.1, and 1017.1–17.2 eV) in
six independent shower samples characterized by the
distances from the axis. The curves represent distri-
butions that are expected for random events.

There are significant distinctions between the two
samples presented in Fig. 19а and 19b. First, the
measured distribution (histogram) in Fig. 19а dif-
fers strongly, according to the χ2 criterion, from that
which is expected for random events. By way of exam-
ple, we indicate that, for n = 80 degrees of freedom,
we have the value ofχ2 = 161, which corresponds to a
random-output probability of less than 10−5. Second,
a statistically significant deficit of events (shaded dip)
at a level of |259–350|/

√
350 ≈ 4.8σ is observed in

the latitude band −4.5◦ to 0◦. The distribution in
Fig. 19b is totally different—in particular, it does not
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 20
feature the aforementioned dip. The distribution in
Fig. 19b leads to the value of χ2 = 93 at n = 90 and
is indicative of an isotropic flux of primary cosmic
radiation.

The result in Fig. 19а can be considered as
yet another indication of an extragalactic origin of
the primary-cosmic-radiation fraction contained in
nodes. In all probability, the Galaxy only absorbs
this radiation, though most strongly in the disk. The
mean shift of the dip from the generally accepted
Galaxy plane is −2.1◦. This shift is likely to be due
to the fact that the Sun is somewhat shifted, to the
north hemisphere, with respect to the Galaxy plane
considered here rather than situated strictly in the
symmetry plane of the actual disk. If this is indeed
so, then the primary-cosmic-radiation flux coming
from southern latitudes at small angles to the disk
will be absorbed more strongly in relation to the
flux at the same angles from northern latitudes. This
assumption is consistent with the neutral-hydrogen
distribution in the Galaxy disk, where, according to
data from [56], there is also a −1.4◦ shift of the plane
of the maximum hydrogen concentration from the
generally accepted plane.

Suppose that the dip in Fig. 19а is associated
with a relatively stronger absorption of extragalactic
primary cosmic radiation in theGalaxy disk in relation
to its high latitudes. In this case, we can roughly esti-
mate the absorption range of unknown extragalactic
particles (for the sake of brevity, we refer to them asA
particles) on the basis of the relation

N = N0exp(−〈l〉/λA), (16)
04
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where N0 ≈ 350 and N ≈ 259 are, respectively, the
expected and the measured number of events in
the band of Galaxy latitudes between −4.5◦ and 0◦

(Fig. 19а) and 〈l〉 is the mean thickness (in g/cm2)of
the Galaxy disk in the sector of our observations.
From (16), we obtain

λA ≈ 3.3〈l〉.
In order to find the value of 〈l〉, we assume that neutral
hydrogen plays the main role in the weakening of
primary cosmic radiation, since the contribution of
dust (about 1%) is negligible [56]. From Fig. 5, it can
be seen that, in the Galaxy disk, primary cosmic ra-
diation comes to us from the sector ∆lG ≈ 60◦–180◦.
Within this sector, the path r from the observer to the
external boundary of the Galaxy changes from about
10 to 5 kpc (〈r〉 ≈ 8 kpc). According to data from
[56], the mean hydrogen concentration in the latitude
band |bG| ≤ 10◦ decreases from ρ ≈ 0.5 cm−3 (at a
distance of about 10 kpc from the Galaxy center) to
ρ ≈ 0.1 cm−3 at about 15 kpc (〈ρ〉 ≈ 0.25 cm−3).
From here, we obtain

〈l〉 ≈ 〈r〉〈ρ〉mp ≈ 10−2 g/cm2
,

where mp = 1.67× 10−24 g is the proton mass. The
sought range is

λA ≈ 3.3 × 10−2 g/cm2
.

The resulting range of unknownA particles proved
to be approximately 1000 times shorter than the range
ofE0 ∼ 1017 eV protons with respect to nuclear inter-
actions; nevertheless, these particles can arrive with-
out losses almost from the very horizon of the visible
Universe. Assuming that the age of the expanding
Universe is T ≈ 13 billion years and that its mean
matter density is ρ0 ≈ 10−30 g/cm3,we obtain

lT = ρ0cT ≈ 1.23 × 10−2 g/cm2
,

where c is the speed of light. From (16), the attenu-
ation factor is exp(−lT /λA) ≈ 0.7. In the Earth’s at-
mosphere, A particles begin to interact at an altitude
hA above sea level. This altitude can be found from
the barometric formula

λA = p0exp(−hA/h0), (17)

where p0 = 1020 g/cm2 is the air pressure at sea level
and h0 = 6.85 km; it follows that hA ≈ 71 km.

These particles initiate the development of exten-
sive air showers much earlier than particles of the
usual composition of cosmic rays. If one takes, by
way of example, protons of energy E0 ∼ 1017 eV, they
travel, in the Earth’s atmosphere, a mean path of
about 50 g/cm2 to the first event of nuclear interac-
tion; for iron nuclei, it is approximately two to three
times shorter.
PH
After the first interaction, mysterious A particles
seem to disappear, giving way, in the development
of extensive air showers, to a normal cascade of
secondary particles. Otherwise, showers initiated
by them would differ strongly from ordinary ones
and would reveal themselves readily. Because of so
short a range to the first nuclear interaction, showers
from A particles are expected to cause an enhanced
development of extensive air showers, with a higher
maximum of the cascade curve in relation to the case
of primary protons. In view of this, showers from A
particles could be misinterpreted as showers from
iron nuclei. We cannot rule out the possibility that
one of the primary-cosmic-radiation components
that is presented in Fig. 2b as iron reflects roughly
the contribution of these particles, because, as was
mentioned above, the majority of the methods for
determining the composition of primary cosmic ra-
diation are indirect: they are based on a comparison
of the observed features of extensive air showers with
their counterparts calculated on the basis of model
concepts of the development of extensive air showers
for some specifically presumed composition of pri-
mary cosmic radiation. Here, it is quite possible that
the effect of any new primary particles characterized
by very short ranges with respect to interactions can
be erroneously treated by researchers in terms of an
increase in the fraction of heavy nuclei.

6. CONCLUSION

Upon a generalization of the results presented
above, there arises the following pattern. In the re-
gion of energies higher than that of the Khristiansen
knee (E0 ≥ 3× 1015 eV), primary cosmic radiation
is likely to consist of two components, one of these
being, in all probability, of an extragalactic origin.
This is suggested by the data in Figs. 4–19. Of
course, the Supergalaxy plays a nontrivial role in the
origin of ultrahigh-energy cosmic rays (at least for
E0 ≥ 8× 1016 eV). Pieces of evidence for this can
be found in Figs. 4 and 8–13. The results presented
in Figs. 14–18 can be interpreted as an indication
that quasars with redshifts of z ≤ 0.3 may be one
of the possible sources of primary cosmic radiation
with energies in the region E0 ≥ 8× 1016 eV. Peaks
1 and 2 in Figs. 17 and 18—they are adjacent to the
Supergalaxy plane at angles of±bSG ≈ 6.5◦—reflect,
in all probability, the ordered structure of the matter
distribution in the Universe.

Within d ≤ 3◦ solid angles, the extragalactic com-
ponent forms many nodes and clusters. Most likely,
primary particles entering into the nodes and clusters
are electrically neutral; otherwise, their motion in the
magnetic field of the Galaxy would lead to the dis-
appearance of their connection with their sources in
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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direction, so that these particles could not disclose the
aforementioned structure of the matter distribution in
the Universe.

In all probability, these particles have a very short
range with respect to nuclear interaction (λa ≈ 3.3 ×
10−2 g/cm2) and cause an earlier development of
extensive air showers in relation to the case of the
usual composition of primary cosmic radiation. Their
fraction in the total flux of primary cosmic rays at
E0 ≈ 1017 eV is 7104/14 318 ≈ 0.5, which is about
two to three times higher than in the adjacent energy
range E0 ≈ 1017.2–17.8 eV.

So fast an increase in the fraction of neutral par-
ticles at E0 ≈ 1017 eV can be misinterpreted as a
considerable change in the composition of primary
cosmic radiation toward its higher weight. We cannot
rule out the possibility that unknown neutral particles
hypothesized here can manifest themselves sizably in
the energy region E0 < 1017 eV as well, but further
investigations are necessary in order to clarify this
point conclusively.

The remaining showers, which do not belong to
nodes and clusters, are distributed almost isotrop-
ically over the celestial sphere. In all probability,
this part of the primary cosmic radiation consists
of charged particles (protons and nuclei of various
chemical elements) propagating through Galaxy via
diffusion. One of their powerful sources is situated in
the vicinity of the Galaxy center [10,11].

Within different energy intervals, the contributions
of the components conjectured here are strongly dif-
ferent. It is highly probable that such a change in the
composition of primary cosmic radiation is especially
pronounced in the energy ranges E0 ≈ 1015.7–15.9,
1016.7–16.9, 1017.7–17.9, and 1018.7–18.9 eV, where
one observes correlated astrophysical and nuclear-
physics anomalies in the development of extensive air
showers.
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ELEMENTARY PARTICLES AND FIELDS
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Near-Threshold Radiative 333π Production in e+e−e+e−e+e− Annihilation*
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Abstract—We consider the π+π−π0γ final state in electron–positron annihilation at c.m.s. energies
not far from the threshold. Both initial- and final-state radiations of the hard photon are considered,
but without interference between them. The amplitude for the final-state radiation is obtained by using
the effective Wess–Zumino–Witten Lagrangian for pion–photon interactions valid for low energies. In
real experiments, energies are never so small that ρ and ω mesons would have a negligible effect. So a
phenomenological Breit–Wigner factor is introduced in the final-state radiation amplitude to account for
the vector mesons’ influence. Using radiative 3π production amplitudes, a Monte Carlo event generator
was developed which could be useful in experimental studies. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The new Brookhaven experimental result for the
anomalous magnetic moment of themuon [1] aroused
considerable interest in the physics community, be-
cause it was interpreted as indicating new physics be-
yond the Standard Model [2]. However, such claims,
too premature in our opinion, assume that the the-
oretical prediction for the muon anomaly is well un-
derstood at the level of necessary precision. Hadronic
uncertainties become the main concern [3]. Fortu-
nately, the leading hadronic contribution is related
to the hadronic corrections to the photon vacuum
polarization function, which can be accurately cal-
culated provided that the precise experimental data
on the low-energy hadronic cross sections in e+e−

annihilation are at our disposal.

In recent years, few high-statistics experimental
data were collected in the ρ−ω region in Novosibirsk
experiments at the VEPP-2M collider [4]. In this
region, the hadronic cross sections are dominated
by the e+e− → 2π and e+e− → 3π channels. The
former is of uppermost importance for reduction of
errors in evaluation of the hadronic vacuum polar-
ization contribution to the muon g-2. Considerable
progress was reported for this channel by the CMD-
2 Collaboration [5]. The e+e− → 3π channel, which
gives a less important but still significant contri-
bution to the hadronic error, was also investigated

∗This article was submitted by the authors in English.
1)Laboratory of Particle Physics, Joint Institute for Nuclear
Research, Dubna, Moscow oblast, 141980 Russia.

2)Budker Institute of Nuclear Physics, pr. Akademika
Lavrent’eva 11, Novosibirsk, 630090 Russia.

3)Laboratory of Theoretical Physics, Joint Institute for Nuclear
Research, Dubna, Moscow oblast, 141980 Russia.
1063-7788/04/6705-0985$26.00 c©
in the same experiment in the ω-meson region [6].
Such high precision experiments require accurate
knowledge of various backgrounds. Among them, the
e+e− → 3πγ channel provides an important back-
ground needed to be well understood. This experi-
mental necessity motivated our investigation of the
three-pion radiative production presented here. In ad-
dition to being of interest as an important background
source, this process could be of interest by itself,
because a detailed experimental study of the final-
state radiation will allow one to get important infor-
mation about pion–photon dynamics at low energies.
However, such experimental investigation will require
much higher statistics than is available in VEPP-2M
experiments and maybe would be feasible only at φ
factories, where the low-energy region can be reached
by the radiative return technique, as was recently
demonstrated in the KLOE experiment [7].

2. INITIAL-STATE RADIATION

Let Jµ be the matrix element of the electromag-
netic current between the vacuum and the π+π−π0 fi-
nal state. Then the initial-state-radiation (ISR) con-
tribution to the e+e− → π+π−π0γ process cross sec-
tion is given at O(α) by the standard expression [8]

dσISR(e+e− → 3πγ) (1)

=
e6

4(2π)8(Q2)2

{
Q2

4E2
J · J∗

(
p+

k · p+
− p−
k · p−

)2

− Q2

2E2

(p+ · J)(p+ · J∗) + (p− · J)(p− · J∗)
(k · p+)(k · p−)

− J · J∗

2E2

(
k · p+

k · p−
+
k · p−
k · p+

)
+
m2
e

E2
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Initial-state radiation diagrams and particle 4-momenta assignment.
×
(
p+ · J
k · p−

− p− · J
k · p+

)(
p+ · J∗

k · p−
− p− · J∗

k · p+

)}
dΦ

≡ e6

4(2π)8
|AISR|2dΦ,

where dΦ stands for the Lorentz invariant phase
space

dΦ =
dk
2ω

dq+

2E+

dq−
2E−

dq0

2E0

× δ(p+ + p− − k − q+ − q− − q0)
and Q2 = (q+ + q− + q0)2 = 4E(E − ω) is the pho-
ton virtuality, E being the beam energy and ω being
the energy of the γ quantum. Particle 4-momentum
assignment can be read from the corresponding dia-
grams presented in Fig. 1. The current matrix element
Jµ has a general form

Jµ = εµνστ q
ν
+q

σ
−q

τ
0F3π(q+, q−, q0). (2)

For theF3π form factor, which depends only on invari-
ants constructed from the pion 4-momenta, we will
take the expression from [9]

F3π =
√
3

(2π)2f3
π

[
sin θ cos ηRω(Q2) (3)

− cos θ sin ηRφ(Q2)
]
(1− 3αK − αKH) .

Here, αK ≈ 0.5, fπ ≈ 93MeV is the pion decay con-
stant, η = θ− arcsin(1/

√
3) ≈ 3.4◦ characterizes the

departure of the ω−φmixing from the ideal one, and

H = Rρ(Q2
0) +Rρ(Q2

+) +Rρ(Q2
−),

where
Q2

0 = (q+ + q−)2, Q2
+ = (q0 + q+)2,

Q2
− = (q0 + q−)2.

The dimensionless Breit–Wigner factors have the
form

RV (Q2) =
[
Q2

M2
V

− 1 + i
ΓV
SV

]−1

,

Rρ(Q2) =

[
Q2

M2
ρ

− 1 + i

√
Q2Γρ(Q2)
M2
ρ

]−1

,

PH
where V = ω, φ and for the ρ meson the following
energy-dependent width is used:

Γρ(Q2) = Γρ
M2
ρ

Q2

(
Q2 − 4mπ2

M2
ρ − 4mπ2

)3/2

.

The last term in (1) is completely irrelevant for
VEPP-2M energies if the hard photon is emitted at
large angle. Thus, we will neglect it in the following.

3. FINAL-STATE RADIATION
To describe final-state radiation (FSR), we use

the effective low-energy Wess–Zumino–Witten La-
grangian [10]. The relevant piece of this Lagrangian
is reproduced below:

L = f2
π

4
Sp[DµU(DµU)+ + χU+ + Uχ+] (4)

− e

16π2
εµναβAµtr[Q{(∂νU)(∂αU+)(∂βU)U+

− (∂νU+)(∂αU)(∂βU+)U}]

− ie2

8π2
εµναβ(∂µAν)Aαtr

[
Q2(∂βU)U+

+Q2U+(∂βU) +
1
2
QUQU+(∂βU)U+

− 1
2
QU+QU(∂βU+)U

]
.

Here, U = exp (i
√
2P/fπ), DµU = ∂µU +

ieAµ[Q,U ], Q = diag(2/3,−1/3,−1/3) is the quark
charge matrix, and terms with χ =
Bdiag(mu,md,ms) introduce explicit chiral sym-
metry breaking due to nonzero quark masses. The
constant B has dimension of mass and is determined
through the equation Bmq = m2

π, mq = mu ≈ md.
The pseudoscalar meson matrix P has its standard
form

P =




1√
2
π0 +

1√
6
η π+ K+

π− − 1√
2
π0 +

1√
6
η K0

K− K̄0 − 2√
6
η


 .
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 2. Interaction vertexes relevant for final-state radiation.
It is straightforward to get from (4) the relevant inter-
action vertices shown in Fig. 2.

Using these Feynman rules, one can calculate
the γ∗ → π+π−π0γ amplitude originating from the
diagrams shown in Fig. 3. The result is

Aµν(γ∗µ → 3πγν) =
ie2

4π2f3
π

Tµν , (5)

where (Q = q+ + q− + q0 + k is the virtual photon 4-
momentum)

Tµν = εµναβQ
αkβ

(
1− (q+ + q−)2 −m2

π

(Q− k)2 −m2
π

)
(6)

+ εµναβ(Q+ k)αqβ0

+ εµλαβQ
αqβ0

(
(2q− + k)νqλ+
2q− · k

+
(2q+ + k)νqλ−
2q+ · k

)

− ενλαβkαqβ0

(
(2q− −Q)µqλ+
Q2 − 2q− ·Q

+
(2q+ −Q)µqλ−
Q2 − 2q+ ·Q

)
.

ATOMIC NUCLEI Vol. 67 No. 5 200
The tensor Tµν is gauge invariant,

QµTµν = kνTµν = 0.

Note that our result for Aµν(γ∗µ → 3πγν) is in agree-
ment with the known result [11, 12] for the γ∗γ∗ → 3π
amplitude (these two amplitudes are connected by
crossing symmetry, of course).

If J (γ)
µ is the amplitude of the transition γ∗µ →

π+π−π0γ, then the FSR contribution to the e+e− →
γ∗ → π+π−π0γ process cross section is given by [8]

dσFSR =
e2

(2π)8 · 64E4

×
∑
ε

{
Re[(p+ · J (γ))(p− · J (γ)∗)]

E2

− J (γ) · J (γ)∗
}
dΦ ≈ 1

(2π)4 · 64E4

×
∑
ε

[
|J (γ)

1 |2 + |J
(γ)
2 |2

]
dΦ,
4
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Fig. 3. γ∗ → π+π−π0γ transition diagrams.
where the sum is over the photon polarization ε and

the z axis was assumed to be along p−, but J
(γ)
µ =

ενAµν(γ∗ → 3πγ). Thus, we can perform the polar-
ization sum by using

∑
ε εµε

∗
ν = −gµν . By introduc-

ing gauge-invariant real 4-vectors t1 and t2 via t1µ =
T1µ, t2µ = T2µ, the result can be cast in the form (note
that the norm of gauge-invariant 4-vector is always
negative)

dσFSR(e+e− → 3πγ) (7)

=
e4

(2π)8 · 64E4

1
(2π)4f6

π

[−t1 · t1 − t2 · t2] dΦ.

However, for the photon virtualities of real experimen-
tal interest, vector meson effects can no longer be
neglected. Therefore, we replace (7) by

dσFSR(e+e− → 3πγ) (8)

=
e4

(2π)8 · 64E4

1
(2π)4f6

π

[−t1 · t1 − t2 · t2]KBWdΦ

≡ e6

(2π)8
|AFSR|2dΦ,

where we have introduced a phenomenological Breit–
Wigner factor

KBW

= 3
∣∣sin θ cos ηRω(4E2)− cos θ sin ηRφ(4E2)

∣∣2 .

P

This factor is similar to the one presented in ISR [see
Eq. (3)] and tends to unity as E → 0. It gives about
an order-of-magnitude increase in σFSR for energies
2E = 0.65–0.7 GeV.

4. MONTE CARLO EVENT GENERATOR

Although what follows can be considered as text-
book material [13], we will nevertheless give a some-
what detailed description of the Monte Carlo algo-
rithm for reasons of convenience.

An important first step is the following trans-
formation of the Lorentz invariant phase space. Let
Rn(p2;m2

1, . . . ,m
2
n) be the n-particle phase space

Rn(p2;m2
1, . . . ,m

2
n) =

∫ n∏
i=1

dqi
2Ei

δ

(
p−

n∑
i=1

qi

)
.

Inserting the identity

1 =
∫
dk1dµ

2
1δ(p − q1 − k1)δ(k2

1 − µ2
1),

we get

R4(p2;m2
1,m

2
2,m

2
3,m

2
4)

=
∫

dq1

2E1
R3((p− q1)2;m2

2,m
2
3,m

2
4)

=
∫

dq1

2E1
dk1dµ

2
1R3(k2

1 ;m
2
2,m

2
3,m

2
4)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004



NEAR-THRESHOLD RADIATIVE 3π PRODUCTION IN e+e− ANNIHILATION 989
× δ(p − q1 − k1)δ(k2
1 − µ2

1).

However (note that (p − q1)0 = E2 + E3 + E4 > 0),∫
dq1

2E1
dk1δ(k2

1 − µ2
1)δ(p − q1 − k1)

=
∫

dq1

2E1

dk1

2k10
δ(p − q1 − k1) = R2(p2;m2

1, µ
2
1).

Therefore,

R4(p2;m2
1,m

2
2,m

2
3,m

2
4) (9)

=
∫
dµ2

1R3(µ2
1;m

2
2,m

2
3,m

2
4)R2(p2;m2

1, µ
2
1).

But [13]

R2(p2;m2
1, µ

2
1) =

∫
λ1/2(p2;m2

1, µ
2
1)

8p2
dΩ∗

1,

where λ stands for the triangle function and Ω∗
1 de-

scribes the orientation of the q1 vector in the p-
particle rest frame.

It is more convenient to integrate over q-particle
energy E∗ instead of mass µ, the two being intercon-
nected by the relation µ2 = p2 + q2 − 2

√
p2E∗ in the

p-particle rest frame.
Using the relation [13]

λ1/2(p2;m2, µ2)

2
√
p2

= µ
√
γ̄2 − 1,

where γ̄ is the γ factor of the “particle” (subsystem)
with the invariant mass µ, after repeatedly using (9),

R4 =
∫
1
2

√
γ̄2
1 − 1dE∗

1dΩ
∗
1

1
2
µ1

√
γ̄2
2 − 1dE∗

2dΩ
∗
2

× 1
2
|p∗

3|dΩ∗
3,

where p∗
3 momentum is in the rest frame of the (3, 4)

subsystem and E∗
2 , Ω

∗
2, γ̄2 are in the rest frame of the

(2, 3, 4) subsystem.
Now it is straightforward to rewrite the differential

cross section in the following form:

dσ(e+e− → 3πγ) = α3

2π2
|A|2fdΦ∗, (10)

where |A|2 = |AISR|5 + |AFSR|2 (we do not take into
account interference between ISR and FSR; this in-
terference integrates to zero if we do not distinguish
between negative and positive π mesons),

f = µ1(ωmax − ωmin)(E∗
0max − E∗

0min) (11)

×
√
(E∗2

− −m2
π)(γ̄2

1 − 1)(γ̄2
2 − 1),

and

dΦ∗ =
dω

(ωmax − ωmin)
dϕ

2π
d cos θ
2

(12)
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× dE∗
0

(E∗
0max − E∗

0min)
dϕ∗

0

2π
d cos θ∗0
2

dϕ∗
−
2π

d cos θ∗−
2

.

The upper and lower limits for energies are

ωmax =
s− 9m2

π

2
√
s

, E∗
0max =

µ2
1 − 3m2

π

2µ1
,

E∗
0min = mπ.

The minimal photon energy ωmin is an external ex-
perimental cut. Finally, |AISR|2 and |AFSR|2 can be
read from the corresponding expressions (1) and (8),
respectively.

According to (10), we can generate e+e− →
π+π−π0γ events in the c.m.s. frame by the following
algorithm:

Generate the photon energy ω as a random num-
ber uniformly distributed from ωmin to ωmax. Calculate
for the S1 = (π+π−π0) subsystem the energy Ē1 =
2E − ω, invariant mass µ̄1 =

√
4E(E − ω), and the

Lorentz factor γ̄1 = Ē1/µ̄1.
Generate a random number ϕ̄1 uniformly dis-

tributed in the interval [0, 2π] and take it as the
azimuthal angle of the S1-subsystem velocity vector
in the c.m.s. frame. Generate another uniform random
number in the interval [− cos θmin, cos θmin] and take
it as cos θ̄1, θ̄1 being the polar angle of the S1-
subsystem velocity vector in the c.m.s. frame. This
defines the unit vector n1 = (sin θ̄1 cos ϕ̄1,
sin θ̄1 sin ϕ̄1, cos θ̄1) along the S1-subsystem veloc-
ity; θmin is the minimal photon radiation angle—an
external experimental cut.

Construct the photon momentum in the c.m.s.
frame k = −ωn1.

Generate the π0-meson energy E∗
0 in the S1 rest

frame as a random number uniformly distributed
from E∗

0min to E
∗
0max. Calculate for the S2 = (π+, π−)

subsystem the energy Ē2 = µ̄1 − E∗
0 , invariant mass

µ̄2 =
√
µ̄2

1 +m2
π − 2µ̄1E∗

0 , and the Lorentz factor
γ̄2 = Ē2/µ̄2.

Generate a random number ϕ̄2 uniformly dis-
tributed in the interval [0, 2π] and take it as the az-
imuthal angle of the S2-subsystem velocity vector in
the S1 rest frame. Generate another uniform random
number in the interval [−1, 1] and take it as cos θ̄2, θ̄2
being the polar angle of the S2-subsystem velocity
vector in theS1 rest frame. This defines the unit vector
along the S2-subsystem velocity in the S1 rest frame
n2 = (sin θ̄2 cos ϕ̄2, sin θ̄2 sin ϕ̄2, cos θ̄2).

Construct q∗
0 = −

√
E∗2

0 −m2
πn2—the π0-meson

momentum in the S1 rest frame.
Generate ϕ∗

− and cos θ∗− in the manner analogous
to what was described above for ϕ̄2 and cos θ̄2; con-
struct the unit vector along the π−-meson velocity in
4
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the S2 rest frame n3 = (sin θ∗− cosϕ∗
−, sin θ∗− sinϕ∗

−,
cos θ∗−).

Construct the π−-meson 4-momentum in the S2

rest frame E∗
− = µ̄2/2, q∗

− =
√
E∗2

− −m2
πn3.

Construct the π+-meson 4-momentum in the S2
rest frame E∗

+ = µ̄2/2, q∗
+ = −q∗

−.

Transform π0-meson 4-momentum from the S1
rest frame back to the c.m.s. frame.

Transform π−- and π+-mesons’ 4-momenta first-
ly from the S2 rest frame to the S1 rest frame and then
back to the c.m.s. frame.

For the generated 4-momenta of the final-state
particles, calculate z = |A|2f .

Generate a random number zR uniformly dis-
tributed in the interval from 0 to zmax, where zmax
is some number majoring |A|2f for all final-state 4-
momenta allowed by 4-momentum conservation.

If z ≥ zR, accept the event, that is, the generated
4-momenta of the π+, π−, and π0 mesons and the
photon. Otherwise, repeat the whole procedure.

5. SOFT- AND COLLINEAR-PHOTON
CORRECTIONS

We assume that the photon in the e+e− → 3πγ
reaction is hard enough, ω > ωmin, and radiated at
large angle θ > θmin so that it could be detected by
experimental equipment (a detector). In any process
with accelerated charged particles, soft photons are
emitted without being detected because a detector
has finite energy resolution. Even moderately hard
photons can escape detection in some circumstances.
How important are such effects? Naively, every pho-
ton emitted brings an extra factor α to the amplitude
and so a small correction is expected. But this argu-
ment (as well as perturbation theory) breaks down for
soft photons.When an electron (positron) emits a soft
enough photon, it remains nearly on the mass shell,
thus bringing a very large propagator to the ampli-
tude. Formal application of perturbation theory gives
an infinite answer to the correction due to soft-photon
emission because of this pole singularity. It is well
known [14] how to deal with this infrared divergence.
In real experiments, very low energy photons never
have enough time and space to be formed, because of
the finite size of the laboratory. Thus, we have a natu-
ral low-energy cutoff. A remarkable fact, however, is
that the observable cross sections do not depend on
the actual form of the cutoff because singularities due
to real and virtual soft photons cancel each other [15].
The net effect is that the soft photon corrections,
summed to all orders of perturbation theory, factor
out as some calculable, so-called Yennie–Frautschi–
Suura, exponent [14].
PH
Collinear radiation of (not necessarily soft) pho-
tons by highly relativistic initial electrons (positrons)
is another source of big corrections that should also
be treated nonperturbatively. Unlike soft photons,
however, the matrix element for radiation of an
arbitrary number of collinear photons is unknown.
Nevertheless, there is a nice method (the so-called
structure functions method) [16] that enables one
to sum leading collinear (and soft) logarithms. The
corrected cross section, when radiation of unnoticed
photons with total energy less than ∆E � E is
allowed, looks like [16]

σ̃(s) =

∆E∫
0

dω

ω
σ(4E(E − ω)) (13)

× β
(ω
E

)β [
1 +

3
4
β +

α

π

(
π2

3
− 1
2

)]
,

where β =
2α
π

(
ln (s/m2

e)− 1
)
and we have omitted

some higher order terms.
In our case, the hard photon is well separated

(because of ω > ωmin, θ > θmin cuts) from the soft
and collinear regions of the phase space. Thus,
Eq. (13) is applicable and it indicates that the soft
and collinear corrections to the cross section of the
process e+e− → 3πγ do not exceed 20%when∆E ∼
ωmin = 30MeV, θmin = 20◦, and E = 0.7GeV. Such
corrections are irrelevant for the present VEPP-2M
statistics but may become important in future high-
statistics experiments.

6. NUMERICAL RESULTS
AND CONCLUSIONS

In Fig. 4, numerical results are shown for
σ(e+e− → 3πγ) with ωmin = 30MeV, θmin = 20◦.
As expected, the cross section is small, only few
picobarns, for energies 0.65–0.7 GeV.

This figure shows also that FSR contributes sig-
nificantly at such low energies. Thus, if future φ-
factory experiments produce high enough statistics in
this energy region, the study of FSRwill become real-
istic. FSR and ISR give different energy and angular
distributions for the photon as illustrated by Figs. 5
and 6. This fact can be used for the FSR separation
from somewhat more intensive ISR.

Let us note, however, that the model considered
here is not valid in the φ-meson region—very far
from the threshold. At that, the status of uncertain-
ties in the ISR and FSR contributions is different.
We believe that the ISR amplitude remains accurate
enough even in the φ-meson region. This belief stems
from the fact that all relevant vector-meson effects
are already included in the ISR amplitude (3). The
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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Fig. 4. ISR and FSR contributions to the e+e− → 3πγ
cross section.

situation with the FSR amplitude is different. Our
phenomenological Breit–Wigner factor mimics only
some part of the vector-meson effects. To estimate
the corresponding uncertainty in σFSR, let us try some
other choices for KBW which also have the correct
low-energy limit. If in the expression for the KBW
factor we make the change

Rω(4E2)→ 1
2
[
Rω(4E2) +Rρ(4E2)

]
,

σFSR will be lowered by ∼ 5% for 2E = 0.65 GeV
and by ∼ 25% for 2E = 0.7 GeV. In the FSR ampli-
tude, the ρ meson contributes via a number of vari-
ous diagrams. For example, the γ∗ → ρ→ ρ+ρ− →
π+π−π0γ intermediate state, which has no counter-
part in the ω-meson contribution, gives the following
piece of the Tµν tensor:

T (3ρ)
µν = −αK

2
Rρ(4E2) {A1µν − 2A2µν − 2A3µν} ,

where
A1µν = εναβλ(Q− 2q0)α

× kβ[(q+ + q0 − q− − k)µqλ−Y−
+ (q− + q0 − q+ − k)µqλ+Y+],

A2µν = εναβλQ
αkβ[(q+ − q0)µqλ−Y−

+ (q− − q0)µqλ+Y+],

A3µν = εµνβλk
β [Q · (q+ − q0)qλ−Y−

+Q · (q− − q0)qλ+Y+],

Y± =
M2
ρ

[(q∓ + k)2 −M2
ρ ][(q∓ + q0)2 −M2

ρ ]
.

If we include this contribution and, in addition, ensure
that the remaining part of the FSR amplitude (6) also
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
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takes

KBW = |Rρ(4E2)|2

in the role of the phenomenological Breit–Wigner
factor, the FSR cross section will be lowered by ∼
10% for 2E = 0.65 GeV and by ∼ 35% for 2E =
0.7 GeV.

This uncertainty in the FSR magnitude is irrele-
vant for the present VEPP-2M statistics. For future
high-precision experiments, a systematic inclusion of
all relevant vector-meson effects in the FSR ampli-
tude is desired.
4
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Abstract—The history of the development of the theory of neutrino-flavor and neutrino-spin oscillations in
electromagnetic fields and in a medium is briefly surveyed. A new Lorentz-invariant approach to describing
neutrino oscillations in amedium is formulated in such a way that it makes it possible to consider the motion
of a medium at an arbitrary velocity, including relativistic ones. This approach permits studying neutrino-
spin oscillations under the effect of an arbitrary external electromagnetic field. In particular, it is predicted
that, in the field of an electromagnetic wave, new resonances may exist in neutrino oscillations. In the case
of spin oscillations in various electromagnetic fields, the concept of a critical magnetic-field-component
strength is introduced above which the oscillations become sizable. In considering neutrino oscillations in
movingmatter, it is shownwithin the Lorentz-invariant formalism that the relativistic motion of matter sig-
nificantly affects the character of neutrino oscillations and can radically change the conditions under which
the oscillations are resonantly enhanced. Possible new effects in neutrino oscillations are discussed for the
case of neutrino propagation in relativistic fluxes of matter. c© 2004 MAIK “Nauka/Interperiodica”.
1. DEVELOPMENT OF THEORY
OF NEUTRINO OSCILLATIONS

The neutrino presents one of the most impor-
tant problems in contemporary elementary-particle
physics, because it possesses unique properties (hav-
ing zero charge and, in all probability, a low mass,
the neutrino interacts with other elementary particles
very weakly) and plays a key role in the structure
of weak-interaction models. So far, the experimental
properties of this particle have been studied insuffi-
ciently because of difficulties in detecting neutrinos.
In particular, it should be recalled that, despite con-
siderable advances made in this field over the past few
years, the range of problems that have yet to be solved
is not exhausted by the problem of the neutrino mass.
These include the presence of mixing and oscillations
of various neutrino flavors, the possibility of a nonzero
magnetic moment, and the role of neutrinos in as-
trophysics and cosmology (relic neutrinos, the con-
tribution of neutrinos to dark matter in the Universe,
neutrinos from supernovae and in gamma splashes,
the neutrino flux from the Sun, atmospheric neutri-
nos, etc.). It is worth noting that a definitive answer to
these open questions would make it possible to pave
the way toward a further generalization of the theory
of particle interactions.

Many of the aforementioned problems could be
solved upon definitively proving the existence of
neutrino mixing and neutrino oscillations. We would
like to recall basic steps in the development of the

*e-mail: studenik@srd.sinp.msu.ru
1063-7788/04/6705-0993$26.00 c©
theory of neutrino oscillations. The fundamental idea
of the possibility of neutrino oscillations was put
forth by Pontecorvo [1], who considered the mixing
of electron-neutrino and electron-antineutrino states
and transitions between them in a vacuum. Imme-
diately after the discovery of muon neutrinos, the
idea of neutrino oscillations was further developed
in the studies of Sakata and his colleagues [2], who
analyzed oscillations between different flavor states
of the neutrino in a vacuum. In more recent studies
performed by Pontecorvo, together with Gribov [3]
and Bilenky [4], the idea of oscillations was reinforced
by calculations of the time evolution of a neutrino
beam; as a matter of fact, a formalism was developed
there that is presently used in analyzing data on
neutrino oscillations from numerous experiments.

A further development of the theory of neutrino
oscillations is associated with the study of Wolfen-
stein [5], who considered the effect that neutrino in-
teraction withmatter throughwhich neutrinos propa-
gate exerts on neutrino oscillations. The most impor-
tant result was obtained byMikheev and Smirnov [6],
who predicted the possibility of a resonance enhance-
ment of neutrino oscillations as neutrinos propagate
inmatter of variable density. This phenomenon, which
is referred to as the Mikheev–Smirnov–Wolfenstein
effect, is presently used as a basis for providing the
most probable explanation of the deficit of the solar-
neutrino flux.

The next significant step in the development of the
theory of neutrino oscillations was made by Voloshin,
2004 MAIK “Nauka/Interperiodica”
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Vysotskiı̆, and Okun’ [7], who investigated neutrino-
spin oscillations in a transverse magnetic field (see
also [8–10]) and, on this basis, analyzed the prob-
lem of solar neutrinos. Lim and Marciano [11] and,
independently, Akhmedov [12] indicated that spin–
flavor neutrino oscillations in matter can be reso-
nantly enhanced (analog of the Mikheev–Smirnov–
Wolfenstein effect for the case of flavor oscillations).

Below, we discuss a further development of the
theory of spin and flavor neutrino oscillations for the
case where neutrinos propagate in various electro-
magnetic fields and in media moving at arbitrary
speeds, employing the results obtained at the De-
partment of Theoretical Physics at Moscow State
University over the past eight years.

2. NEUTRINO OSCILLATIONS
IN A TRANSVERSE ELECTROMAGNETIC

FIELD

Let us consider two neutrino flavors (for example,
νe and νµ). These are superpositions of two mass
eigenstates ν1 and ν2; that is,

νe = ν1 cos θ + ν2 sin θ, (1)

νeµ = −ν1 sin θ + ν2 cos θ,

where θ is the vacuum neutrino-mixing angle. The
change in the flavor composition of a neutrino beam
propagating through matter consisting of electrons,
protons, and neutrons and in the presence of a ro-
tating magnetic field that is transverse with respect
to the direction of neutrino motion, B = B⊥e

iφ(t)

(the angle φ(t) specifies the direction of the field in
the plane orthogonal to the neutrino momentum), is
described by an equation of the Schrödinger type; that
is,

i
d

dt
ν(t) = Hν(t), (2)

where the HamiltonianH involves four terms,

H = HV +Hint +HF +Hφ̇. (3)

Here, HV describes vacuum oscillations, Hint de-
scribes the effect of neutrino–matter interactions on
oscillations, the contribution HF is responsible for
spin oscillations in the transverse magnetic field, and
the last term Hφ̇ takes into account the effect of
magnetic-field rotation.

Let us consider the case of two Dirac neutri-
nos and introduce the basis ν = (νeL , νµL , νeR , νµR).
The corresponding Hamiltonian then has the form
PH
(see [13–15])

HD =




V −
νe

∆m2
ν

4Eν
s µeeB µeµB

∆m2
ν

4Eν
s V −

νµ µµeB µµµB

µeeB µµeB −∆m2
ν

4Eν
+
φ̇

2
0

µeµB µµµB 0
∆m2

ν

4Eν
+
φ̇

2



,

(4)

where

V −
νe = −∆m2

ν

4Eν
c+ V 0

νe −
φ̇

2
, (5)

V −
νµ =

∆m2
ν

4Eν
c + V 0

νµ −
φ̇

2
.

The above Hamiltonian was derived on the basis of
the Standard Model Lagrangian that additionally in-
volves an SU(2)-singlet right-handed neutrino and
which takes into account neutrino interaction with a
magnetic field via the flavor-diagonal magnetic mo-
ments µee and µµµ. Also, we assume that there can
exist flavor-nonconserving electromagnetic neutrino
interactions via the off-diagonal transition magnetic
moments µeµ and µµe. The Hamiltonian in (4) corre-
sponds to the case of the sterile and nonmixed neu-
trinos νeR and νµR . In the case of two Majorana neu-
trinos, the analogous expression for the Hamiltonian
in the corresponding basis ν = (νe, νµ, ν̄e, ν̄µ) can be
found, for example, in [13].

We assume that a primary neutrino beam consists
of left-handed electron neutrinos νeL exclusively. By
using the Hamiltonian in (4), we can then consider
various types of neutrino transitions, νi → νj , and the
corresponding neutrino oscillations νi ↔ νj caused
by the effect of a magnetic field in the presence of a
medium:

νeL → νeR , νeL → νµR . (6)

The probability of finding a neutrino of the νj type at a
distance x from the source of νi neutrinos is given by
the general formula (see, for example, [16])

P (νi → νj) = sin2(2θeff) sin2 πx

Leff
, i �= j. (7)

At the same time, the probability that a neutrino
preserves its initial flavor has the form

P (νi → νi) = 1− P (νi → νj). (8)

From the form of the Hamiltonian in (4), it follows
that the effective mixing angle θeff and the effective
oscillation length Leff are determined by the relations

sin2(2θeff) = (2µ̃B)2
/[(∆m2

ν

2E
A (9)
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−
√

2GFneff + φ̇)2 + (2µ̃B
)2]

,

Leff = 2π (10)

×
[(∆m2

ν

2E
A−
√

2GFneff + φ̇
)2

+ (2µ̃B)2
]−1/2

.

We note that the effective mixing angle θeff and the ef-
fective oscillation length Leff depend on the character
of magnetic-field rotation (it is specified by the quan-
tity φ̇) along the direction of the neutrino trajectory
(see also [17]). For the various neutrino-conversion
processes (6), the quantities µ̃, A, and neff are given
by

µ̃ =

{
µ, νeL → νeR ,

µeµ, νeL → νµR ,
(11)

A =




1
2
(cos 2θ − 1), νeL → νeR ,

1
2
(cos 2θ + 1), νeL → νµR ,

(12)

neff = ne −
1
2
nn, νeL → νeR,µR , (13)

where µ is the electron-neutrino magnetic moment
and µeµ is the so-called transition moment.

We can now formulate a criterion that, on the
basis of preset features of neutrinos, matter, and the
magnetic field, makes it possible to find out whether
the corresponding neutrino oscillations are signifi-
cant. The probability in (7) can become a value on
the order of unity if the following two conditions hold
simultaneously.

(i) The amplitude of the oscillations sin2(2θeff)
must be “far” from zero [or, at least, sin2(2θeff) ≥
1/2].

(ii) The neutrino-path length x in a medium must
be longer than half the effective length of oscillations,
Leff—that is, x ≥ Leff/2.

In accordance with the above criterion, at least one
of the following relations must hold:

∆m2
ν

2E
A−
√

2GFneff + φ̇ = 0 (µ̃B �= 0), (14)

2µ̃B ≥
∣∣∣∣∣∆m2

ν

2E
A−
√

2GFneff + φ̇

∣∣∣∣∣. (15)

If the condition in (14) is valid, there occurs a reso-
nance enhancement of neutrino-spin oscillations [11,
12] that is similar to the Mikheev–Smirnov–Wolfen-
stein effect in the case of flavor oscillations. If the
“more lenient” condition (15) is valid, the enhance-
ment of oscillations may occur in a nonresonance
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
way. If we consider the condition in (15) and assume
that a strict equality holds in it, we can obtain the
critical magnetic-induction value [18]

Bcr =
∣∣∣∣ 1
2µ̃

(∆m2
νA

2E
−
√

2GFneff + φ̇
)∣∣∣∣ , (16)

which determines the region of magnetic-induction
values (B ≥ Bcr) at which the probability amplitude
in (7) is not small—that is, sin2(2θeff) ≥ 1/2. In de-
riving numerical estimates, it is convenient to take the
critical field in a different form,

Bcr ≈ 43
µ0

µ̃
(17)

×
∣∣∣∣∣A∆m2

ν

1 eV2

MeV
Eν

− 2.5× 10−31 neff

1 cm−3
+ 2.5

1 m
Lφ̇

∣∣∣∣∣,
where µ0 is the Bohr magneton.

The use of the criterion specified by conditions (i)
and (ii) in analyzing neutrino oscillations in the con-
vective zone of the Sun, in the explosion of a superno-
va, in neutron stars, and in other astrophysical media
makes it possible to obtain [13] constraints on the
neutrino magnetic moment and on the magnetic-field
induction (see also [7, 17, 19] and references therein).
As a characteristic example of how this criterion oper-
ates, we will consider νeL ↔ νeR neutrino oscillations
in themagnetic field of a neutron star and assume that
this process does not make a significant contribution
to the evolution of the star at the given characteristics
of the neutrino and the given magnetic field. For this
formulation of the problem, the above criterion makes
it possible to obtain information about the neutrino
magnetic moment µν and (or) about the induction B
of the magnetic field and the dimensions of the region
where it exists.

Let us consider a neutrino having a magnetic mo-
ment of µν ∼ 10−18µ0 and assume that condition (i)
of the criterion holds [see also formula (9)]—that is,
a strong magnetic field, B ≥ Bcr, exists over a region
of characteristic size, say, R ≈ 1 km. It follows that,
for νeL ↔ νeR oscillations to be immaterial, it is nec-
essary that condition (ii) of the criterion be violated:
x < Leff/2. In other words, the characteristic range of
neutrinos over the region where the strong magnetic
field is operative must be shorter than half the effective
length of the oscillations. Since the relation Leff ≈
LB = π/(µνB) holds in a strong magnetic field, we
arrive at the conclusion that, at a length scale of
max{x} = R ≈ 1 km, the magnetic field of this object
must satisfy the inequality B ≤ 5× 1015 G.

We will now discuss the constraint that can be
obtained for the neutrino magnetic moment from the
requirement that νeL ↔ νeR oscillations be immate-
rial. Suppose that, at a characteristic length scale of
4
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R ≈ 1 km, the magnetic-field induction is B ≈ 5×
1012 G [we note that this value corresponds to the
critical magnetic-field induction Bcr (16) at charac-
teristic values of the matter density of a neutron star].
It follows that, for condition (ii) of the criterion to be
satisfied in just the same way as in the above case,
the effective oscillation length Leff ≈ π/(µνB) must
be much longer than the scale of R ≈ 1 km. There-
fore, the type of neutrino oscillations that is being
discussed here will not be noticeable in the presence
of a magnetic field whose induction isB ≈ 5× 1012 G
over a scale of R ≈ 1 km, provided that the neutrino
magnetic moment is constrained by a value of µν ∼
10−15µ0.

3. NEUTRINO OSCILLATIONS
IN AN ARBITRARY ELECTROMAGNETIC

FIELD

In studying the regularities of neutrino oscillations
in strong magnetic fields, we found, approximately six
years ago, that neutrino oscillations in external fields
had ever been considered in the literature only for a
constant magnetic field B⊥ transverse with respect
to the direction of neutrino motion. This is because,
usually, the effect of the longitudinal component of
the magnetic field, B0‖, was not taken into account
since, in the particle rest frame, this magnetic-field
component is suppressed with respect to the trans-
verse component in the same reference frame by the
factor γ = (1− β2)−1/2: B0⊥ = γB⊥ (where β is the
neutrino speed). Additionally, we note that, in all
of the investigations performed to that instant for
neutrino-flavor oscillations in matter, it was assumed
that matter can move only at nonrelativistic speeds. It
is this approximation that was used in investigating
neutrino oscillations in moving media in supernova
explosions [20] and on the Sun [21].

The first attempt at considering neutrino-flavor
oscillations in matter moving at a relativistic velocity
was undertaken in [22]. In that study, the authors
tried to develop a Lorentz-invariant formalism for de-
scribing neutrino-flavor oscillations and showed that
the effective neutrino potential in matter can signif-
icantly depend on the speed of matter with respect
to the detector used. In the studies of our group,
further investigations into neutrino oscillations within
this Lorentz-invariant approach were continued only
in 1999 (see [23] and references therein) by con-
sidering oscillations in an arbitrary electromagnetic
field. In order to describe the evolution of the spin
Sµ of a neutral particle that has a nonzero mag-
netic and a nonzero electric dipole moment (µ and
PH
ε, respectively), we choose, as a starting point, the
Bargmann–Michel–Telegdi equation [24]

dSµ

dτ
= 2µ

{
FµνSν − uµ(uνF νλSλ)

}
(18)

+ 2ε
{
F̃µνSν − uµ(uνF̃ νλSλ)

}
,

which is known in QED. This equation describes the
evolution of a neutral particle moving in a given elec-
tromagnetic field Fµν at a constant velocity β(uµ =
(γ, γβ)). The spin vector satisfies the ordinary condi-
tions S2 = −1 and Sµuµ = 0. Upon generalizing this
equation to the case of a massive neutrino that partic-
ipates in weak interactions with medium particles, we
obtained an equation for the neutrino-spin 3-vector,
S; that is,

dS
dt

=
[
S×

(2µ
γ

B0 +
2ε
γ

E0 +
(
V − δm2A

2E

)
n
)]
,

(19)

where E is the neutrino energy. Although the original
Eq. (18) describes the evolution of the spin of a par-
ticle having a given mass, its generalization in (19)
takes into account the possibility of a change in the
neutrino flavor upon the reversal of helicity, as is seen
from the presence of the term that is proportional
to the difference δm2 of the squares of the neutrino
masses. The time derivative on the left-hand side
of (19) is calculated in the laboratory frame, while the
quantities B0 and E0 are the vectors of the magnetic
and electric fields in the neutrino rest frame; that is,

B0 = γ
(
B⊥ +

1
γ
B‖ +

√
1− γ−2

[
E⊥ × n

])
, (20)

E0 = γ
(
E⊥ +

1
γ
E‖ −

√
1− γ−2

[
B⊥ × n

])
,

where

F⊥ = F− n(F · n), F‖ = n(F · n) (F = B,E)
(21)

are the transverse and longitudinal (with respect to
the direction of neutrino motion) field components in
the laboratory frame (n = β/β).

Two parameters—A = A(θ), which depends on
the vacuum neutrino-mixing angle, and V = V (neff),
which depends on the difference of the effective neu-
trino potentials in a medium—are determined by the
type of neutrino transitions. The explicit form of these
parameters for specific processes of neutrino oscilla-
tions and for various compositions of matter can be
found in [13, 19].

By using the equation of spin evolution, we derived
an effective Hamiltonian that determines neutrino os-
cillations for the two-level system ν = (νR, νL) in the
presence of electromagnetic fields that are specified by
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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the componentsB‖,⊥(t) andE‖,⊥(t) in the laboratory
frame. The result is

H = (σ · n)

(
δm2A

4E
− V

2
− 1
γ

(
µB‖ + εE‖

))

(22)

− µσ ·
(
B⊥ +

[
E⊥ × n

])
− εσ ·

(
E⊥ −

[
B⊥ × n

])
.

Here, we neglected effects of order 1/γ2 and of higher
orders. The above Hamiltonian takes into account
the direct interaction of neutrinos with an electro-
magnetic field. We note that an indirect effect of an
electromagnetic field on neutrinos (that which was
considered, for example, in [25]) through polarization
of matter by the longitudinal component of the field
is taken into account in the neutrino potential V in
matter.

The Hamiltonian in question now makes it pos-
sible to consider neutrino-spin precession in arbi-
trary preset configurations of electromagnetic fields,
including those that involve strong longitudinal com-
ponents. Below, we discuss a few specific examples
and obtain the corresponding resonance conditions
for neutrino oscillations.

In order to demonstrate the possibility of analyzing
neutrino oscillations in new configurations of elec-
tromagnetic fields, we consider, by way of example,
neutrino-spin oscillations νL ↔ νR arising in matter
under the effect of a superposition of the field of a
plane electromagnetic wave and a longitudinal mag-
netic field. We introduce the unit vector e3 parallel
to the neutrino-velocity vector β. We denote by φ
the angle between the vector e3 and the direction of
electromagnetic-wave propagation. For the sake of
simplicity, we further disregard effects associated with
the electric moment ε of the neutrino. In this case, the
effective-magnetic-field induction in the neutrino rest
frame has the form

B0 = γ
[
B1(cos φ− β)e1 (23)

+B2(1− β cosφ)e2 −
1
γ
B1 sinφe3

]
,

where the vectors e1, e2, and e3 form a triplet of
unit mutually orthogonal vectors. In the case of an
electromagnetic wave having a circular polarization
and propagating in matter, one can easily obtain

B1 = B cosψ, B2 = B sinψ, (24)

where B is the magnetic-field amplitude in the labo-
ratory frame and the phase of the wave at the point of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 5 200
neutrino location at a fixed instant of time t is given
by

ψ = gωt
(
1− β

β0
cosφ

)
, (25)

with ω being the electromagnetic-wave frequency.
This phase depends on the velocity of the wave in
matter, β0 (β0 ≤ 1). The values of g = ±1 correspond
to the two possible types of circular polarization of the
electromagnetic wave.

In the adiabatic approximation, the probability of
the transition νL → νR has the form

PνL→νR(x) = sin2(2θeff) sin2 πx

Leff
, (26)

sin2(2θeff) =
E2
eff

E2
eff + ∆2

eff
, (27)

Leff =
2π√

E2
eff + ∆2

eff

,

where

Eeff = 2µB(1− β cosφ) (28)

[here, O(γ−1) terms are omitted] and

∆eff = V − δm2A

2E
− gω

(
1− β

β0
cosφ

)
+ 2

µB‖
γ

.

(29)

From the above formulas, one can obtain the condi-
tion for the resonance enhancement of neutrino oscil-
lations; that is,

V − δm2A

2E
− gω

(
1− β

β0
cosφ

)
+ 2

µB‖
γ

= 0.

(30)

Thus, we predict the existence of a new type of reso-
nances in νL ↔ νR neutrino oscillations arising un-
der the effect of a superposition of the field of an
electromagnetic wave and a longitudinal magnetic
field. If, in the above consideration, one discards the
longitudinal magnetic field, there immediately arise
the probability of neutrino oscillations in the field of a
circularly polarized wave and the corresponding res-
onance condition for this case. We note that the case
of a linearly polarized wave was considered in [26].

If the resonance condition (30) does not hold, we
can, in the same way as in the case of neutrino
oscillations in a transverse magnetic field, formulate
a criterion that oscillations in the combined electro-
magnetic field being considered are significant. In
particular, this means that, on the basis of the expres-
sion for the probability of oscillations in the field of an
electromagnetic wave and in a longitudinal magnetic
field [see Eqs. (26)–(29)], we can introduce, for the
4
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magnetic field of an electromagnetic wave, the critical
strength,

B̃cr =
1

2µ(1− β cosφ)
(31)

×
∣∣∣∣∣V − δm2A

2E
− gω

(
1− β

β0
cosφ

)
+ 2

µB‖
γ

∣∣∣∣∣,
above which the corresponding oscillations will be
sizable, provided that neutrinos are subjected to the
effect of this field for quite a long time.

In conclusion, we would like to emphasize the
circumstance that, with the aid of the formalism de-
veloped in this section for describing neutrino-spin
oscillations in arbitrary electromagnetic fields, one
can consider neutrino-flavor oscillations in matter in
the presence of an arbitrary electromagnetic field.

4. NEUTRINO-SPIN OSCILLATIONS
IN MOVING MATTER

Within the approach to neutrino-spin oscillations
that was proposed above, attention was given pri-
marily to describing the effect of various configura-
tions of electromagnetic fields. At the same time, we
restricted ourselves to considering the simplest case
of immobile and unpolarized matter in simulating
the effects of a medium. We now proceed [27] to
extend our Lorentz-invariant approach to neutrino-
spin oscillations in an arbitrary electromagnetic field
to the general case, that where matter through which
neutrinos propagate can move at an arbitrary speed
(including a relativistic speed) and can be polarized.
It should be noted that matter-polarization effects
in neutrino oscillations were considered previously,
for example, in [25, 28]; however, the approach used
there was insufficient for obtaining correct results
if matter moves at a relativistic speed. Within the
approach that we present below, one can reproduce
the corresponding results from [25, 28] in the case of
an immobile or a slowly moving medium.

As a starting point, we will again take the Barg-
mann–Michel–Telegdi Eq. (18), which describes the
evolution of spin in QED, and construct its general-
ization appropriate for describing the spin of a neu-
trino that participates both in electromagnetic and in
weak interactions with the particles of moving and
polarized matter. The Lorentz-invariant generaliza-
tion of Eq. (18) can be obtained upon replacing the
electromagnetic-field tensor Fµν = (E,B) as

Fµν → Fµν +Gµν , (32)

where the tensor Gµν describes all nonelectromag-
netic interactions involving neutrinos. In order to de-
rive the explicit form of the tensor Gµν , we consider
that the sought equation of neutrino-spin evolution
P

must be linear in the neutrino spin, the electromag-
netic field, and features of matter (we assume that
matter consists of fermions of different types: f =
e, n, p, . . .) such as the fermion currents

jµf = (nf , nfvf ) (33)

and the fermion polarizations

λµf =

(
nf (ζf · vf ), nfζf

√
1− v2

f (34)

+
nfvf (ζf · vf )
1 +

√
1− v2

f

)
.

Here, we have used the following notation: nf , vf ,
and ζf (0 ≤ |ζf |2 ≤ 1) are, respectively, the concen-
tration of type-f fermions, the velocity of the reference
frame in which the mean momentum of f fermions is
zero, and the mean value of the polarization vector of
f fermions in this reference frame. The calculation of
the mean value of the polarization vector ζf involves
the procedure of two-step averaging. First, one cal-
culates the quantum-mechanical expectation value
of the relativistic spin operator for fermion quantum
states in a given electromagnetic field, whereupon one
calculates the expectation value with the statistical
distribution for the ensemble of type-f fermions.

In the most general case where a neutrino can
interact with a medium consisting of fermions of dif-
ferent types f , the antisymmetric tensor Gµν has the
form

Gµν = εµνρλg(1)
ρ uλ − (g(2)µuν − uµg(2)ν), (35)

where

g(1)µ =
∑
f

ρ
(1)
f jµf + ρ

(2)
f λµf , (36)

g(2)µ =
∑
f

ξ
(1)
f jµf + ξ

(2)
f λµf ;

that is, summation is performed over the types f
of fermions entering into the composition of mat-

ter. The explicit form of the coefficients ρ
(1),(2)
f and

ξ
(1),(2)
f is fixed in specifying the model of neu-
trino interaction with particles of matter. In an
ordinary two-component representation [where the
electromagnetic-field tensor has the form Fµν =(
E,B)], the tensor Gµν is given by

Gµν = (−P,M), (37)

where

M = γ
{
(g(1)

0 β − g(1))− [β × g(2)]
}
, (38)

P = −γ
{
(g(2)

0 β − g(2)) + [β × g(1)]
}
.
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The use of the two-component representation for the
tensors Fµν and Gµν makes it possible to see from
the outset that the substitution in (32) implies the
corresponding shifts of the vectors B and E; that is,

B→ B + M, E→ E−P. (39)

We note that these expressions are very similar in
form to the relations for the vectors of the correspond-
ing fields in electro- andmagnetostatics of dielectrics.

Upon realizing the scheme outlined above, we
arrive at the following equation that describes the
evolution of the spin 3-vector S in a given electro-
magnetic field Fµν and which takes into account the
neutrino–matter interactions (they are specified by
the tensor Gµν):

dS
dt

=
2µ
γ

[
S× (B0 + M0)

]
+

2ε
γ

[
S× (E0 −P0)

]
.

(40)

Here, the time derivative on the left-hand side is cal-
culated in the laboratory frame andB0 and E0 are the
vectors of the strengths of, respectively, the magnetic
and the electric field in the neutrino rest frame. The
vectors M0 and P0 take into account the effect of
neutrino–matter interaction and, in the neutrino rest
frame, can be expressed in terms of the quantities
defined in the laboratory frame; that is,

M0 = γβ
(
g
(1)
0 −

β · g(1)

1 + γ−1

)
− g(1), (41)

P0 = −γβ
(
g
(2)
0 −

β · g(2)

1 + γ−1

)
+ g(2). (42)

By way of example, we consider the problem of
νeL ↔ νeR spin oscillations in the propagation of neu-
trinos through moving and polarized matter consist-
ing only of electrons (electron gas). If we assume that
neutrino interactions are described by the Standard
Model supplemented with an SU(2)-singlet right-
handed neutrino νR, the effective Lagrangian aver-
aged over matter electrons can be written in the form

Leff = −fµ
(
ν̄γµ

1 + γ5

2
ν
)
, (43)

where

fµ =
GF√

2

(
(1 + 4 sin2 θW)jµe − λµe

)
. (44)

For the coefficients ρ(1),(2)
e (for the sake of simplicity,

we assumed that the neutrino electric dipole moment

vanishes, so that ξ(i)
e = 0), we obtain

ρ(1)
e =

GF

2µ
√

2
(1 + 4 sin2 θW), ρ(2)

e = − GF

2µ
√

2
.

(45)
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Using formulas (36) and (41) and explicitly isolating
the longitudinal (with respect to the direction of neu-
trino propagation) and the transverse component of
the vector M0, we obtain

M0 = M0‖ + M0⊥, (46)

M0‖ = γβ
n0√
1− v2

e

{
ρ(1)

(
1− ve · β

1− γ−2

)
− ρ(2)

(47)

×
(
ζe · β

√
1− v2

e +
(ζe · ve)(β · ve)
1 +

√
1− v2

e

)
1

1− γ−2

}
,

M0⊥ = − n0√
1− v2

e

(48)

×
{

ve⊥

(
ρ(1) + ρ(2) ζe · ve

1 +
√

1− v2
e

)

+ ζe⊥ρ(2)
√

1− v2
e

}
,

where n0 is the invariant electron concentration spec-
ified in the rest frame of the medium. From this ex-
pression, it follows that the effect of neutrino–matter
interaction on neutrino-spin oscillations significantly
depends on the neutrino velocity β, the matter veloc-
ity ve, the matter polarization ζe, and the correlations
of these three vectors. In particular, one can easily
see that the effect of the medium can be annihilated
owing to the relativistic motion of the matter along
the direction of neutrino propagation, provided that
1− β · ve ≈ 0.

5. NEUTRINO-FLAVOR OSCILLATIONS
IN MOVING MATTER

Let us now proceed to consider neutrino-flavor os-
cillations in moving and polarized matter [29]. Within
the Lorentz-invariant approach developed here, we
will show that the motion of matter through which
neutrinos propagate can lead to a significant change
in the probability and other features (effective mixing
angle and oscillation length) of neutrino-flavor oscil-
lations in the case where matter moves at a relativis-
tic velocity. For the sake of simplicity, we will again
consider oscillations between two flavor states—for
example, νe ↔ νµ—and assume that matter consists
of fermions of only one type (suppose that these are
electrons: f = e) that can move as a discrete unit at a
relativistic velocity. The possibility of a generalization
to other types of flavor oscillations and to another
composition of matter is obvious.

The matter effect on neutrino-flavor oscillations
arises as the result of forward elastic scattering on
the particles of the ambient medium. In our case, the
4
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difference ∆V = Ve − Vµ of the effective potentials for
two flavor neutrinos arises owing to electron-neutrino
interaction with electrons of the medium via charged
currents (the contributions of neutral currents are
significant in the case of neutrino oscillations between
active and sterile states). The corresponding part of
the effective neutrino Lagrangian can be represented
in the form

Leff = −fµ
(
ν̄γµ

1 + γ5

2
ν

)
, (49)

where

fµ =
√

2GF(jµe − λµe ). (50)

This additional term in the Lagrangian leads to a
modification of the Dirac equation for the neutrino,

(γ0E − γ · p−m)ψ = (γµfµ)ψ. (51)

It follows that the effective neutrino energy in a
medium (dispersion relation) has the form

Eeff =
√

(p− F)2 +m2 + f0. (52)

In the case where the interaction is indeed weak—
that is, where the condition |f | � t0 =

√
p2 +m2

is satisfied—the effective electron-neutrino energy in
moving and polarized matter takes the form

Eeff =
√

p2 +m2 (53)

+ U

{
(1− ζe · ve)(1 − β · ve) +

√
1− v2

e

×
[
ζe · β −

(β · ve)(ζe · ve)
1 +

√
1− v2

e

]}
+O(γ−1),

where U =
√

2GFn0/
√

1− v2
e and n0 is the invariant

medium-electron concentration (for our case of νe ↔
νµ oscillations and a one-component medium).

We can now solve the problem of calculating the
probability of the νe → νµ transition in moving and
polarized matter. In the adiabatic approximation, this
probability has the form

Pνe→νµ(x) = sin2(2θeff) sin2 πx

Leff
, (54)

where x is the distance traveled by a neutrino in
matter from the point of its production to the point
of its detection and Leff and θeff are, respectively, the
effective mixing angle and the effective oscillation
length, the last two quantities being given by

sin2(2θeff) =
∆2 sin2(2θ)(

∆ cos(2θ)−A
)2

+ ∆2 sin2(2θ)
,

(55)
PH
Leff =
2π√(

∆ cos(2θ)−A
)2

+ ∆2 sin2(2θ)
. (56)

Here, ∆ = δm2
ν/(2|p|), with p being the neutrino

momentum, and θ is the vacuum mixing angle. The
effect of interaction with matter on neutrino oscilla-
tions, as well as the effects of the motion and polar-
ization of matter, is described by the quantity A,

A =
√

2GF
n0√
0− v2

e

{
(1− β · ve)(1 − ζe · ve)

(57)

+
√

1− v2
e

[
ζe · β −

(β · ve)(ζe · ve)
1 +

√
1− v2

e

]}
.

Thus, the neutrino-oscillation probability Pνe→νµ(x),
the effective mixing angle θeff, and the effective oscil-
lation length Leff significantly depend on the velocity
ve of the medium (electrons in our case) and its po-
larization, as well as on the correlations between the
three vectors β, ve, and ζe. Therefore, the condition

δm2
ν

2|p| cos(2θ) = A (58)

of the resonance enhancement of neutrino oscillations
will also significantly depend on themotion and polar-
ization of matter and on the neutrino speed.

It is obvious that, for immobile (or slowly moving)
matter, the resonance condition (58) becomes coinci-
dent with theMikheev–Smirnov–Wolfenstein condi-
tion upon taking into account the limiting value of A
for ve � 1. A more detailed analysis of the effective
neutrino potentials in various moving and polarized
media is given in [29].

The general conclusion that must be particularly
emphasized is as follows: In the case of a relativis-
tic motion of matter, the condition of the resonance
enhancement of neutrino oscillations can be satisfied
even if, for the specific features of the neutrino (vac-
uum mixing angle θ, difference δm2

ν of the masses
squared, and energy |p|) and the invariant matter
concentration n0, the resonance is impossible in im-
mobile matter. On the contrary, the condition of the
resonance enhancement of oscillations can be vio-
lated upon taking into account the relativistic motion
of matter (as well as upon taking into account the
effects of matter polarization).

6. CONCLUSION

We have considered neutrino-spin oscillations in
matter and in a transverse magnetic field and in-
troduced the concept of the critical magnetic-field
strength above which the corresponding oscillations
YSICS OF ATOMIC NUCLEI Vol. 67 No. 5 2004
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become sizeable even if the condition of their reso-
nance enhancement does not hold. We have proposed
a Lorentz-invariant approach to neutrino-spin and
neutrino-flavor oscillations in matter and in electro-
magnetic fields. This approach makes it possible to
describe oscillations under the effect of arbitrary elec-
tromagnetic fields. In particular, we have predicted
the existence of new types of neutrino-spin oscil-
lations (and obtained the corresponding resonance
conditions) in the field of an electromagnetic wave
and for a superposition of the field of an electromag-
netic wave and a longitudinal magnetic field. For the
example of spin oscillations in this electromagnetic-
field configuration, which is rather complicated, we
have also determined the critical field-strength value
above which the oscillations become sizeable.

Our Lorentz-invariant approach to describing
neutrino oscillations makes it possible to take into
account the effects of the motion and polarization of
matter in neutrino-spin and neutrino-flavor oscilla-
tions for arbitrary (including relativistic) speeds of
motion of matter. In particular, it has been shown
that, irrespective of the type of neutrino transitions,
the effects of matter in the resonance condition for
oscillations are suppressed in the case of a relativistic
motion of matter along the direction of neutrino
propagation. In the case of a relativistic motion of
matter antiparallel to the neutrino momentum, the
effects of matter are enhanced. These new regularities
of neutrino oscillations in the presence of matter must
manifest themselves under actual astrophysical con-
ditions where neutrinos propagate through relativistic
jets of matter.

The possibly strong dependence of the features of
neutrino-spin oscillations on the speed of motion of
matter must be taken into account in determining the
critical magnetic-field strength (16). By way of exam-
ple, we indicate that, if one considers νeL ↔ νeR neu-
trino oscillations in moving matter and in a transverse
magnetic field B⊥ that is constant along the neutrino
trajectory, the critical magnetic-field strength deter-
mined with allowance for the motion of matter has the
form

Bcr =
1√
2
GFn0(1− β · ve)

µ
√

1− v2
e

. (59)

For the sake of simplicity, we assumed here that mat-
ter consists of electrons exclusively, their invariant
concentration being n0, and also neglected the pos-
sible effects of the polarization of particles of matter.
It is obvious that, in the case of a relativistic motion of
matter along the direction of neutrino propagation, we
have Bcr ≈ 0. Therefore, the probability amplitude for
neutrino-spin oscillations will tend to unity, in which
case the oscillations can be significant even in a rather
weak transverse magnetic field.
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The possible emergence of neutrino-spin oscil-
lations (for example, νeL ↔ νeR) owing to neutrino
interaction with matter under the condition that there
exists a nonzero transverse current component or
polarization of matter (that is, M0⊥ �= 0) is the most
important new effect that follows from the investi-
gation of neutrino-spin oscillations in Section 4. So
far, it has been assumed that neutrino-spin oscilla-
tions may arise only in the case where there exists a
nonzero transverse magnetic field in the neutrino rest
frame. It should be noted here that, in [30], it was also
shown that neutrino-spin oscillations in matter will
always arise (even without an external electromag-
netic field and in the case of unpolarized and immobile
matter), provided that the primary neutrino state is
not fully polarized along (parallel or antiparallel) the
direction of neutrino motion.

Let us estimate numerically parameters that are
determined by the neutrino properties, the strength
and the structure of a magnetic-field, and the fea-
tures of the ambient medium and at which νeL ↔ νeR
neutrino-spin oscillations may arise owing precisely
to neutrino interaction with particles of the medium.
In the general case of an arbitrary motion of matter
and an arbitrarily oriented constant magnetic field,
the probability of oscillations is determined by for-
mula (7), where [see Eq. (27)]

sin2(2θeff) =
E2
eff

E2
eff + ∆2

eff
,

Leff =
2π√

E2
eff + ∆2

eff

with

Eeff = µ
∣∣∣B⊥ +

1
γν

M0⊥

∣∣∣, (60)

∆2
eff =

µ

γν

∣∣∣M0‖ + B0‖

∣∣∣. (61)

From the analysis performed in Section 2 for the
probability of oscillations in a transverse magnetic
field, it follows that the situation of interest is that
in which the quantity ∆eff is much smaller than Eeff,
which, in turn, is so great that the effective oscillation
length Leff takes a value compatible with character-
istic dimensions of astrophysical objects and media
where one can expect the occurrence of the processes
being considered. An analysis of the longitudinal and
the transverse component of the vector M0 shows
that, under the condition γν � γe (neutrino is a more
relativistic particle than electrons of the medium),
the desired relation between ∆eff and Eeff cannot be
attained without taking into account the effects of a
magnetic field. In this connection, the possibility of an
additional compensation of the contribution of M0‖
4
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owing to a sufficiently strong longitudinal magnetic
field B‖ is of interest. We consider the case where
the main contribution to Eeff comes from the ve⊥-
dependent term in M0⊥. For Eeff and ∆eff, we then
have the estimates

Eeff ≈
n0GF

2
√

2γν
, ∆eff ≈

∣∣∣ n0GF

2
√

2γe
− µ

γν
B‖

∣∣∣. (62)

From the requirement Eeff > ∆eff, it follows that the
amplitude of neutrino oscillations will be large (in
excess of 1/2) if the longitudinal magnetic field is

B‖ ≈
γν
γe

n0GF

2
√

2µ
. (63)

At a characteristic medium-particle concentration of
n0 ∼ 1023 cm−3 and a neutrino magnetic moment of
µ ∼ 10−10µ0 (on the order of magnitude, this value
corresponds to modern experimental accelerator con-
straints on the magnetic moments of the electron and
the muon neutrino [31]), this estimate for the longi-
tudinal magnetic field leads to a value of B‖ ∼ 108 G.
It follows that, under the above conditions, neutrino-
spin oscillations become significant owing to neutrino
interaction with moving matter.

To conclude this article, we would like to indicate
yet another new effect recently predicted in [30] within
the development of our Lorentz-invariant approach
to describing neutrino-spin oscillations. A neutrino
moving in matter and (or) in an electromagnetic field
can emit electromagnetic radiation owing to spin pre-
cession. This radiation, which is referred to as neu-
trino spin light, leads to the self-polarization of the
neutrino spin (analog of the Sokolov–Ternov effect
for electrons in a magnetic field [32]): in the process of
radiation in matter or in an external field, active left-
handed neutrinos νL are converted into right-handed
neutrinos νR. Neutrino spin light may efficiently arise
in the dense matter of various astrophysical objects or
the early Universe.
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