JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 5 NOVEMBER 1999

Generalization of the effective mass method for semiconductor structures
with atomically sharp heterojunctions

E. E. Takhtamirov*) and V. A. Volkov"

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 103907 Moscow, Russia
(Submitted 28 June 1999
Zh. Eksp. Teor. Fiz116 1843-187QNovember 1999

The Kohn-Luttinger method of envelope functions is generalized to the case of heterostructures
with atomically sharp heterojunctions based on lattice-matched layers of related
semiconductors with zinc-blende symmetry. For electron states nedr bt in (002)
heterostructures the single-band effective-mass equation is derived, taking into account both the
spatial dependence of the effective mass and effects associated with the atomically sharp
heterojunctions. A small parameter is identified, in powers of which it is possible to classify the
various contributions to this equation. For hole states only the main contributions to the
effective Hamiltonian, due to the sharpness of the heterojunctions, are taken into account. An
expression is derived for the parameter governing mixing of states of heavy and light

holes at the center of the® Brillouin zone. © 1999 American Institute of Physics.
[S1063-776(199)02511-1

1. INTRODUCTION way, has not been discussed to this gatee boundary con-
ditions should hold with the same accuracy as the equations
The Kohn-Luttinger effective-mass mettdds widely  for the envelope functions hold.
used to describe electron states in external fields varying Below we will follow the first approach, in which it is
smoothly over scales of the lattice constantAlthough the  possible to rigorously treat the problem of accurésse Sec.
original method, based on the formalism of envelope func-3).
tions, is applicable only to homogeneous semiconductors, It is well known that two main problems arise along the
various modifications of it have been used to described thpath of constructing a common equation for the envelope
electron states in semiconductor heterostructures. In recefitnctions. The first is the problem of ordering the momentum
years there has been a revival of discussion on the applic@perators in the kinetic-energy operatdue to the noncom-
bility of the effective-mass method to describe electron andnutativity of the momentum operator and the function
hole states in real nanostructureé? Many different modi- mM(r)], on the form of which the derived effective-mass
fications of the effective-mass method have been propose€duations can depend substantiaflfthe second problem is
which apply to the case of a spatially varying effective masdhat the effective potential near a heteroboundary, as a rule,
m(r). There are two ways of constructing the effective-masdS Not & smooth function on scales of the orderaofThis
approximation for heterostructures) Derivation of the ef- _calls into question the validity of using dlfferentla_l equations
fective Hamiltonian for the envelope functions, defined over the method of envelope functions. Let us discuss these
all space. By integrating the effective-mass equatishich problems in the indicated order.
contains this Hamiltonigmear the heteroboundary it is pos- 1.1. Account of the spatial dependence of the effective
sible to obtain boundary conditions on the envelope funcmass

tions (if needed. 2) Derivation or, as is done much more A necessary condition for the applicability of one-band
often, postulation of phenomenologlcal boundary Cond!t'on%quations for the envelope functiof@ne equation is under-

on the envelope functions at the heteroboundary. This apsiooq here, valid near the bottom of the nondegenerate con-
proach makes use of symmetry arguments, continuity of thgction band, or a system of equations for the degenerate
probability flux density, etc(By the way, these arguments, yalence bandused in the effective-mass method is “shal-
as a rule, are insufficient to uniquely determine the boundaryowness” of these states: their energy, measured from the
conditions) The second approach is applicable in the case opand edge, should be small in comparison with the interband
sharp heterojunction&@ll the models in which such bound- energy. Therefore, bearing in mind the one-band version of
ary conditions were obtained dealt with mathematicallythe effective-mass method, we restrict the discussion to het-
sharp heterojunctions between the left-hand and right-hangrostructures consisting of related materials, where the band
materialg. It is implicitly assumed that the envelope function discontinuities are small in comparison with the characteris-
on the left side(on the right sidg of the heteroboundary tic widths of the band gaps; this means, as a rule, that other
satisfies the same equation as in the bulk case for the lefband parameters of the semiconductors differ only slightly.
hand (right-hand material. In this case the very delicate Let us consider the first problem, which arises even for het-
problem of increasing the accuracy aris@ghich, by the erostructures whose chemical composition varies smoothly
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on scales of the order @f. As the zeroth-order potential we Below we will follow the second approach, i.e., we will
choose the potential of the crystalline lattice, continued to alapply the unitary transformation eliminating the small enve-
space, of one of the materials of the struct(ttés is not a  lope functions?’ Since we are considering heterostructures
unique choice, see Ref),7and we treat the difference be- consisting of related materials, the standard effective-mass
tween the potentials of the lattices of the remaining semiconmethod will play the role of a first approximation. An ac-
ductors and the basis potential as a small perturbation. Fotount of the spatial dependence of the effective mass neces-
lowing the approach of Luttinger and Kohn and deriving thesitates treating corrections to the standard theory, where it is
many-bandk-p system of equation¢see, e.g., Ref.)3we  necessary to take into account all corrections of the same
can next attempt to solve the problem of the correct order obrder without increasing the accuracy.
noncommuting operators in the kinetic-energy operator for In order to understand what corrections should be taken
the one-band equations. But here yet another problem ariseisto account, let us turn to the relativistic analogy with the
Reduction of the many-band system of equations to dypothetical Dirac equation containing the inhomogeneous
one-band effective-mass equation is achieved by eliminatingap 2m(r)c?, wherec is the speed of light in vacuursee
the small envelope functions from the many-bdng sys-  Appendix A). The ordinary one-band effective-mass equa-
tem in favor of the large ones by means of some procedurdion is an analog of the nonrelativistic ScHinger equation.
We make a small departure here and make use of a formdtl is important, however, that the effective mass in the two-
analogy between the relativistic Dirac equation and theband approximation is proportional to the local band gap
many-band k-p system of equations for the envelope Egy(r) (this is valid if the effective mass is formed mainly by
functions?® which is most simply seen in the two-band ap-the k-p interaction, and its relative variationsm/m
proximation(the conduction band and the nondegenerate va=6E4/E4. Since the correction to the kinetic energy de-
lence bang In the relativistic theory there are two ap- scribing the spatial dependence of the effective mass will
proaches to deriving an equation for shallow electron statediave a “relativistic” character, the desired equations for the
One of them consists in eliminating the small positron com-heterostructures will be analogous to the Sdimger equa-
ponent of the wave function by the method of substitution. Intion with all relativistic corrections—both the usual origse
this case, we obtain either an exact equation for the electrocontribution of nonparabolicity of the dispersion law, pro-
component, which is not an eigenvalue equatief. 24, portional top*, wherep is the momentum operator; the con-
Ch. 20, Sec. 2Bor an approximate equation whose Hermit- tribution of the spin—orbital interaction; and the so-called
ian nature must be checked separafélfthe second ap- Darwin term, proportional to the second derivative of the
proach is a Foldy—Wouthuysen transformation, an approxipotential energyand a new pseudorelativistic correction de-
mate unitary transformation of the Dirac equatidef. 24,  scribing dm(r). Of course, the present arguments are valid
Ch. 20, Sec. 383 for describing states whose energies, reckoned from the band
In our case the first approach is comparatively simple teedge of any of the materials making up the structure, are of
realize only in the two-band approximatigeee, e.g., Ref. the order of the band discontinuity. The case of a very small
26). In a treatment of the contribution of distant baided  band discontinuity, where the discontinuity is small in com-
this is necessary, in particular, for a valid description of theparison with the energies of the states is quite trivial: de-
contribution of the heavy holgs number of problems arise. pending on the energies of the states under consideration an
Thus, the authors of Refs. 14 and 20 were able to take intaccount of the spatial dependence of the effective mass can
account only a few of the first-order corrections to the “stan-require treating terms with higher and higher powers of the
dard” Kohn-Luttinger equation with position-independent momentum operator. We will not consider such a situation.
effective masgqthe small parameter here is the ratio of theln this sense, introducing a term proportional to the fourth
characteristic band discontinuity to the characteristic interpower of the momentum operator into the effective-mass
band energy However, treating the expression obtained, forequation is a necessary condition for a consideration of its
example, in Ref. 14 for the position-dependent effectivespatial dependence. Note that for homogeneous semiconduc-
mass, it can be shown that the effective mass of the edge odrs an effective-mass equation analogous to the Satger
the conduction band of one of the non-basis semiconductomrsquation with first relativistic corrections was discussed al-
does not contain interband matrix elements of the perturbaready in Ref. 27Sec. 27.
tion potential, obtained using Bloch functions of the band A typical shortcoming of previous works dedicated to a
edge of the basis cryst@ee Sec. 4.1 belowit can be easily generalization of the effective-mass method to electron states
seen that this is equivalent to the poorly justified approach oin heterostructures is that they take account within the frame-
neglecting the difference between the interband matrix elework of perturbation theory of only some of the terms of a
ments of the momentum operator or, what is equivalent, thgiven order. Thus, Refs. 3—22 take account of the spatial
difference between the Bloch functions for the materialsdependence of the effective-mass parameters, but neglect
making up the structure. corrections~p*. In Refs. 3, 7, 10, and 14, dedicated to
Hence it follows that we should give special attention toderiving the one-band equations for the envelope functions
the problem of taking distant bands into account. Efforts adirectly from a many-ban#-p system, the main error, lead-
solving it by direct elimination of the small envelope func- ing to an invalid result, is an incorrect estimate, according to
tions by the method of substitution, in addition to its labori- which the contribution of thé-p interaction termdi.e., the
ousness, lead finally to a non-Hermitian equation, whose saerms#kp,,,» /my, wherem, is the free electron mass and
lution is still in need of a valid interpretation. Pnn is the interband matrix element of the momenjusnof
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order the contribution of the potential energy terthg po- first level of the hierarchy each heteroboundary gives an ad-
tential energy here we mean the difference in the periodiditional 5~function contribution to the potential energy. Only
potentials of the semiconductors making up the structureat the second level of the hierarchy does spatial dependence
also treated in a perturbation-theory conjekt the case of a  of the effective mass appear, along with corrections associ-
smooth heterojunction the correct procedure for deriving theted with weak nonparabolicity of the spectrum and hetero-
one-band effective-mass equation near the bottom of theurface terms of the spin—orbit interaction. At higher levels
conduction band with all the above-indicated contributionsof the hierarchy nonlocal contributions arise, and the one-
taken into account was followed in Ref. 28. band differential effective-mass equations do not exist. Re-
sults are compared with the conclusions of other authors.
Brief reports on the results obtained have been published
elsewherg®3!

The second problem requiring careful study is the non-
smooth nature of actual heterojunctions, where the transition
from one material to the other occurs over scales of the ordezr MANY-BAND K -p SYSTEM OF EQUATIONS FOR
of a. In this case, first, Leibler's many-baridp system, = 0" (oS08 S0 NE i C OF A SHARP (001)
where smoothness of the potential was a necessary conditi

e PO _ YETEROIUNCTION
for validity of the system, is in need of refinement, and sec-

ond, the problem of transforming tospace from the region Let us consider a heterojunction formed from related,

of k space bounded by the first Brillouin zone is more|attice-matched semiconductors with zinc-blende structure.

complicated: It is also necessary to analyze the conse-The Schfdinger equation without relativistic corrections

quences of the unitary transformation eliminating distantwhich will be taken into account belgvand in the absence

bands. It is important to estimate the error that enters at eadsf external potentials has the usual form

step. An estimate of this error either gives us confidence in

the absence of an excess of accuracy or it challenges the (p—+U(r))\If(r)=e\If(r)

validity of the effective-mass approximation. In the works 2mg '

known_ to us _Wh'Ch treat sharp heterojunctions, such an eStHereU(r)EU is the crystal potential of the heterostructure.

mgte IS !ackmg. References 14 and 20, for example, pnl o start with, we will use the following model of this poten-

point to its smallness, and Ref. 19 made some approximgz..,.

tions whose accuracy were not even estimated. ’
Thus, we can formulate the following steps in the con- U=U;+G(2)[U,—U;]=U;+G(2)dU, (D)

struction of an effective-mass approximation for heterostruc-

) - . where U;=U,4(r) and U,=U,(r) are periodic(with the
tures: a obtaining a many-bank-p system of equations for . . : .
. . ., same periog potentials, continued through the entire struc-
the envelope functions taking proper account of possibl

sharpness of the heterojunction; feducing this system to e[ure, of the left-hand and right-hand materials, respectively,

one-band equations with the help of the unitary transforma'Ehe z axis is directed perpendicular to the plane of the het-

tion tok space, transforming tospace and transforming the erojunction,G(z) is the form factor of the heterojunction
resulting equation to differential form) estimating the ac- G(2)|,«-¢=0, G(2)|,~¢4=1;

curacy of these transformations. Following this scheme, step ) . ) , ,
(a) is realized in Sec. 2. The equations include contributionéde the width of t_he tra_nsmo_nal region O_f the heterOJgncnon
associated with the non-smoothness of the heterojunction an 2d (n%n-lone-d|men3|onallty 06G(2) will be taken into
scales of ordea which are treated within the framework of acc?u'nt € OWI o s )

an approach similar to that used in Ref. 27 to describe the tis natural to treat the potentiél(z) oU as a perturba-

short-range part of the impurity potential. Section 3 showd!On- AS the basis for expanding the wave function we use

that a common differential equation over all space for thethe complete orthonormal set of Kohn—Luttinger functions

envelope functions for sharp heterojunctions exists, and itéunoelk '}

accuracy is determined by the procedure of transforming to o

one-band equations inspace. One-band equations are con- q’(f)zz fﬁn,(k’)e‘k Uy edk’, 2
sidered in Sec. 4.{the conduction bandand in Sec. 4.2the n

valence band Section 4.3 is devoted to heterostructureswhereu,,=u,(r) is the periodic Bloch amplitude for the
with superthin layers. It is shown that additional contribu-edgee,o of the nth band of the left-hand crystal at tHé
tions to the “standard” effective-mass equation can be claspoint of the Brillouin zong(in the nonrelativistic limif,

sified by powers of the small paramete,,, wherek is a ( 2

1.2. Account of atomically sharp heterojunctions

characteristic value of the quasimomentum of the state and p—+U1
an, is on the order of the lattice constant. Section 5 constructs Mo

a hierarchical scheme of effective-mass equations,nthe  The sum in Eq(2) is over all bands, and the integral, unless
level of which corresponds to taking account of these addiotherwise stated, is over the Brillouin zone here and in what
tional contributions up tokKa,,)". The zeroth order of the follows;.7 (k) is the envelope function for theth band in
hierarchy =0) corresponds to the “standard” effective- k space. Following the standard procedtivee obtain a sys-
mass equation with position-independent parameters. At thiem ofk-p equations:

Uno= €noUno-
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h2k? /~ ﬁpnn"k/~ 7 ' 1 o i !
eno+2—mo .,%n(k)+§ To.fn,(k) .§(kz—kz+KJ):§J_w G(z)exp(—i(k,—k;+K;)z)dz
+Zf o (KK 700 (K0P = e7,(K); _ 1 ! f”e'
< ) R ot 27 k= kK N

, xexp —i(k,—k.+K:)z)dz
Mo (k k') =2, CM Sk, —k,+Ky) Ptk ke +K5)2)
J

1 (1 k,—k, . )
Xﬁ(k”_k\i"'KHj)- 3 27Tin K]-
_ ' ' _ iK1~ d
Here Pan={Nn|p/n’) and C;‘” —_(n|5Ue' i"n"y, and the XJ' G’ (z)exp —iK,2)
matrix elements of the periodic operatbrare defined as —d
follows: . ,
X[1—i(k,—k})z+...]dz, (6)
’ (277)3 * 3 . . .
(nlf[n") ) ce”UnofUn’od r, and we can write the sum in E¢) in the form of an ex-

pansion in powers ok,—k, :
where(} is the volume of the unit cellk = (k,,k,,0), and

_ _ _ , k,—k.)®
K,; and Ky; are the components of the vectt; of the S e (kKK ) = (k,—kz) Do,
inverse lattice perpendicular and parallel to the plane of the 55 ™! 2 6T 2w
heteroboundary, respectively;(k,) is the Fourier transform (7)
of G(z). Let us analyze the expression for the matrix ele- ) )
ments. 7 (K,K'): The constants in the expansi6r) have the form
, ;1 (d

M (kK= D CM Sk~ K, +K,) 8(k— k() Donw =2, CJ" .—f G'(z)exp —iK;2z)dz,

1(Kj;=0) %0 iKj J g

+ X C" kKK S Ll ey LK.

Ko ’ Dlnn/—;0 G iK _ G (@exp-iK;2)
Xﬁ(kH—kH'-i-KHj). (4) 1
. . . X| ——=—iz|dz,...

The second sum in E@4) describes transfer processes in the K; IZ) z

two-dimensional Brillouin zone, when the projections of any

pair of vectorsk andk’ from the bulk Brillouin zone onto The present approach fundamentally allows one to treat even
the plane of the heterojunction satisfy the conditign- k| mathematically sharp heterojunctions, since the necessary
=Ky;#0. For a heterojunction of arbitrary orientation such convergence of the coefficieni,, is ensured by the prop-
transfer processes exist. However, for the orientation of inerty C}‘“ —0 asK;—= (by the way, a physically realizable
terest to us—th&001) orientation—their contribution to the heterojunction cannot be mathematically discontindious

desired equations for the envelope functions disappeaes Let us consider the corrections associated with sharpness
Appendix B: of the heterojunction. Simple estimates show that terms pro-
portional to Dopnrs Dipnrs... C&n give corrections not

Fky— kL) U e greater in order of magnitude thark,, (ak,)?,... respec-
tively. Our goal is to obtain one-band equations with
position-dependent effective-mass parameters, which is

; 5 achieved by taking account of corrections of ord)e?z()2 to

the standard approximation. Here we have introduced a char-
where we have introduced the notatidg;=(4m/a)j,  acteristic “two-band” lengthA =7 (2m Eg) Y2 For GaAs,
j=*x122,. .. and&Unn,=CS”' . If G(2) is a sufficiently for example A~6 A. We will make use of the smallness of

smooth functiona<d, and we are interested in states with the parametek.d, which will allow us to write down the
k,<2la, wherek, is a characteristic value of the quasimo- final €quation in quite simple forrtsee below. Thus, three
mentum of the state, we can neglect the second term insidé/@ntities having the dimensions of lengdth d, and) in

the brackets in Ec(5) and as a result obtain the well-known combination WlthkZ form three parameters whose smallness
set of equations for the envelope functidrféIn the case of is employed in the present method. In our view, the situation
an atomically sharp heterojunction, on the other hand, it i@<d=N\ is the most realistic, being realized in semiconduc-
possible to proceed in the spirit of the method used in Reftor heterost_rutures with sharp heteroboundaries. Thus, the
27 to describe a short-range impurity potential. We introducgparameteink, can be taken as the main small parameter of
the function G’'(z)=dG(z)/dz, localized on the heter- the problem and the sum in E) can be restricted to terms
oboundary/z|=<d. Then, forj#0 we have with s=0 ands=1.

M (K K") = 8(Kj—K[)

+,—;o CM Z(k,~k;+K))
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As a result, the many-band systemkop equationg3) cnn’
takes the form (kKDY= ;SJ a1 Gi(Z)exp(iK, 1))
1%0;j (2) space
fipan K

ﬁ2k2
0=(eno— €+ Zmo).%n(kH% my (K Xexp(—i(k—k'+K;)-r)dr.

For states withk,|+ |ky|<7/a (see Appendix B we

) , 1 .
+2 f[%(kz—kz)5unn,+z[)0nn, obtain
) My (kK" = 8(kj—k[)

k!
+—— Dlnn' n’ (kz !k )dk, (8) Cnn/ d
2 ! T TE

Here we can distinguish different contributions of the pertur- 120y £ a
bation potential: the contribution of the smooth part is rep- xexp(—i(k,—k;+K,)z)dz
resented by the first term inside the brackets, and the contri-
bution of the discontinuous part is represented by the second , C}‘”'
and third terms. = 5(kH_ kH )j(K%#O) FQ”

d
XJL dz 2D d? rg (I’H,Z)

2.1. Account of the 3 D character of the form factor cell

Let us now consider instead of E(l) a more realistic xexp( —iKy-ry)
form of the heteropotential: X exp(—i(k,— k! +Ky)2).

U=U1+g(r||,z)5U, 9 . . o )

For a smooth heterojunction it is necessary to retain only

where rj=(x,y,0). By definition, g(r,2)[,<_¢=0 and  terms withK,;=0 in the sum and develop the expression in
9(r,2)|,~¢=1, and the functiorg(r|,2) is periodic inr|.  the standard wadysince the equations for the envelope func-
For our case of 4001 heterostructure the unit translation tions in ther representation will include an additional inter-
vectors in the plane of the heteropotential as  face potential. Note that while the smooth p@itz) SU en-
=(1,1,0p/2 and a,=(—1,1,0)0/2. The sites of the two- sures mixing of states of the same crystal symmeétey, the
dimensional inverse lattice with basis vectorb;  |ocal symmetry of the smooth part of the perturbation poten-
=(1,1,0)2r/a and b,=(—1,1,0)2r/a are projections of tial G(z)5U coincides with the symmetry of the bulk crys-
the sites of the three-dimensional inverse lattice onto thea|), this additional potential also ensures mixing of states of

(00D plane. . . - different symmetry. We are interested in the chsé<1,
We expandy(r||,2z) in a 2D Fourier series: and this obviates the necessity of separating effects of this
_ additional potential into contributions of smooth and discon-
g(ry ,Z):EI: Gi(2)expiK;-ry), tinuous parts and allows us to use the expansion
ion indesis defi , , (k.= kp)®
where t_he summatlon mdéxs c_iefmed SO th_at the_vectdﬁ lr/%lrlmr(k,k’):5(k”—k”) _E 22 z Dlnn,, (11)
determine the sites of the indicated two-dimensional inverse s=01,2,... ™
lattice, and
where
1
G|(z):—f g(ry,z)exp(—iK,-r)d?r. C“”
Q)2 [ [ [ D!)n = (K ) Q” f dszD d? rg(r;,z)
i
The integration is over a unit cell of theD2lattice with area e _
ja?/2. DenotingG(z) asGy(z), we obtain for the pertur- xexp(—iK;-r),
bation potential
n c" f f 2
D = dz deryg(ry,z
g(rH,z)6U=G(Z)5U+5UI¢EO G(2)exp(iK;-r)). (10) Inn' J(K”ﬁm) Q) Jq 7)™ 19(ry.:2)

It can be seen that the simple mod#) takes into account Xexp(—iK;-1)(=iz),...
the first term in the sun(10). The functionsG,(z) for | #0 In the expansior(11) it is necessary to keep only the first

are nonzero only foze[—d,d]. Therefore, the left-hand two terms; the terms proportional © ﬂ) . and D‘lnn, can

side of Eq.(3) will include an additional sum of interface giyve contributions of ordek,d and (,d)2, respectively.

contributions: We have shown that taking the three-dimensionality of
| the form factor into accourfisee Eq.9)] causes no special
> f (K KD (K A3k, difficulty for analysis, and we now make an important obser-
n/

vation which will allow us to use the simple modd)). The
where function g(r,z) has lower symmetry tha®(z). Specifi-



JETP 89 (5), November 1999 E. E. Takhtamirov and V. A. Volkov 1005

cally, it is invariant under symmetry transformations from k,— k. 1

the point groupC,, . The complete perturbation potential in + Wsl““') o7 (kK k)d k£+2 f 55“(\\
both models,(1) and (9), on the other hand, possesses the n

same symmetry, both its point-group symmet@,() and —kﬁ)(ﬁk'XU)'BOnn/-7n'(k')d3k'0- (12)

translational symmetry in the plane of the heterojunction.
Information aboutC,, symmetry will be preserved, how- The vectorsSynn, Sipn, and Bo,, have the following
ever, only if the contribution of the discontinuous part of theform:
potentialG(z) U in model(1) is taken into account. There-

fore, using model(9) instead of model1l) does not give SOnn,ZZ ! s
anything qualitatively new, and only leads to renormalization 1#0 4K mge
of some parameters, namely those that are negligibly small Kz ,
for the smooth heterojunction in modél). The expressions g _ fi{n|[V(e™*oU) xp][n")
for these parameters are very complicated, so in what follows nn j#0 4ij(2)c2
we will stick with model(1).

h(n|[ V(e iZsU)x p]|n

/> d )
J G'(z)e idz,
—d

d )
xj G'(z)e 'Kizzdz
—d

h(n|e®iqVsUXxp]n’) (d

- ) oy 7727
2.2. Account of relativistic corrections j#0 4IK7mge -

G’ (z)e Kitdg,
d

Let us now consider relativistic effects. We restrict the #(n|V (e%iZ5U)|n
discussion to the spin—orbital interaction. The remainingBOHn:E - >
relativistic contributions only influence the values of the con- 170 4K jmae
stants that we will obtain. We assume that within the framejere n is the unit vector along thez axis, nG'(2)
work of perturbation theory the characteristic parameter ot VG(z), ande is the Pauli matrix. On the left-hand side of
the spin—orbital interaction and also the difference of thisgq. (12) the fourth term describes the spin—orbital interac-
parameter for the left-hand and right-hand crystals are lesgon in the potential of the basis semiconductor; the fifth,
than or of the same order as the characteristic band discoRjxth, and seventh terms are due to the smooth part of the
tinuity. The expansion of the total wave function, as be‘(ore’perturbation potential. The terms proportional 8, ,
is given by expressiof2). Omitting intermediate manipula- Sy » andBg,, are due to the sharpness of the potential. In
tions, we give the resulting, quite lengtikyp system of  Ref. 28, in a consideration of the state of the conduction
equations which take into account the spin—orbit interactiorhang in heterostructures with smooth heteroboundaries, we

/> d )
f G'(z)e Kizdz
—d

2)2 7iPrn - k neglected the sixth and seventh terms on the left-hand side of
€no— €t 5 Ta(k)+ 2, m—"7“'(k) Eg.(12) as small. We noted that in second-order perturbation
0 n’ 0 theory they, together withik-p,, /mg, give a correction
2 " N , only of order (\k,)?m/my, which in this case is of order the
+ = MUnn | £k ky) 7o (ke K dg effective mass is small in comparison withy,. For the hole
states, on the other hanth/m, is able not to be a small
> ﬁ<”|[VU1><I0]|”'>'0'7 " parameter.
n' 4m(2)c2 o (K) We do not considek-linear contributions of the spin—
’ orbital interacticE due to the potentidl, . They give correc-
+ E fin|[VoU ? plin’)- o tions of order §k,)? (third-order corrections, along with two
o 4mgc? terms of the formAk-p,, /mg) similar to the contribution
responsible for removing the spin degeneracy in the conduc-
Xf G(k,—K))T (K} K dk, tiqn band of the bulk semiconductcj_wg neglect terms of
this ordey, and for the valence band it is well known that to
#(n|[nésUXp]n'y-o [ , first order the contribgtion of these terms is small, apd to
+> ArmZcZ i(k,—k3) second order, along withk -p,,,, /mg they only renormalize
; mgC .
n the effective-mass parameters.
X G(k,— k)T ik} k) dK, _As fpr the con_tributions frpm the_ s_harpne_ss of the het-
5 erojunction potential to the spin—orbit interaction, the terms
S f AX(N|[VoUxk']In >.05(k —K) proportional toSy,, can give corrections of ordeak,,
o 4m§c2 1= wh_ile the termsS;,,,» and Bg,,» can give terms of order
1 (ak,)?.
X Gky—K.). 7 (K" )3k + 2 J (Z_DOnn’ It is trivial to generalize to the case of many heterojunc-
n' ™ tions. In this case it is convenient to choose the coordinates

Ko K/ 1 of the heteroboundaries so that the distances between them
+ %Dlnn’>'7n'(k£ 1k\|)dk£+z j (z_sOnn, be integer mu.ItipIes 08/2, so that the phase fa_ctor of each
™ n’ ™ of the expansions of the typ&) are equal to unity.
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3. PROBLEM OF TRANSFORMATION OF THE EFFECTIVE- =<1/K, the potential can be replaced bydafunction. We

MASS EQUATIONS FROM QUASIMOMENTUM SPACE obtain an envelope function with a discontinuous derivative
TO COORDINATE SPACE and error of orderK,/K)?2.

In the following section we obtain the one-band Above, in Eq.(13), we tacitly assumed that the Hamil-
effective-mass equations for the conduction band and the vdonianH(k; k;) is defined for alk, andk; belonging to the
lence band. But first of all, we must discuss a problem arisBrillouin zone. Since our goal is to obtain the one-band
ing in the method of envelope functions and associated witduations, we must take one more circumstance into account.
the boundedness df space. Let us consider the following In k space near thE point there exists a regioh; in which
one-band equation for the envelope functioi(k,) in k the spectrum of states of the conduction band of the bulk

space: material can be written in the form of a series in powers of
the quasimomentuntfor states of a degenerate band the
f H(k, k) f(k.)dk.=ef(k,), (13) spectrum is determined by a matrix whose elements are such

series. The series converges ftk| < 1/2\, as follows from
wherek, andk, are bounded by the Brillouin zone. Using the two-band approximatiofsuch an estimate is valid if the
the transformatior(13) to go over to the coordinate repre- effective mass is formed mainly by thep interaction). This
sentation we obtain, generally speaking, an integral equations the region described by the Hamiltonian of the one-band
The problem consists in the accuracy with which it is pos-equation. There is also a regidy, where the interaction of
sible to obtain a differential equation inspace. Let us con- states of isolated bands with distant bands is not described by
sider an equation similar to E¢L3), but in whichk, andk, this series. In our case of sharp heterojunctions the envelope

belong to the entire inverse space: functions in thek representation fall off according to a
e power law; therefore we should also provide a valid descrip-
J H(k,,k.)g(k.)dk,=eg(k,). (14) tion of the regionA ,, which will be done elsewhere in con-

nection with the problem of intervalley mixing of states in

The Fourier transform of Eq14) with the system of equa- heterostrgct'ures. Herg we qnly mention that if the ratio of the
tions (12) taken into account gives a differential equation in Characteristic band discontinuity to the energy gap between
ther representation. If the functiog(k,) vanishes fok, not ~ the interesting states in the regidn, and the states in the
in the Brillouin zone, they are also solutions of E#3) and regionA, is a small parametap<<1, then the error incurred
we have solved our problem exactly. In general this is not soY neglecting the region, will be less than or of order
But in order for Egs.(13) and (14) to be approximately w(ak,)?. Thus, the effective radius ik space determining
equivalent, it is necessary thgtk,) be small fork, not in  the accuracy of reducing the integral equation to a differen-
the Brillouin zone. In the theory of smooth perturbations thistial equation is in fact not determined by the size of the
smallness is ensured by exponentially decaying envelopBrillouin zone along thé, axis, but depends on which bands
functions in thek representation; however, in the case ofare taken to be distant and are “eliminated” by the unitary
discontinuous perturbations the envelope functions are ddgransformation. In our case, this radius is of the order nf 1/
creasing functions df, with only a power-law falloff. Thus, Below we will obtain an equation for the conduction
if the envelope function possesses one discontinuity, its Fousand, leaving out details of the unitary transformatiorkto
rier transform satisfiegy(k,) < (89/9)(k,) ! for large k,  space and at once carrying out the transformation tor the
(where the exponential contributions associated with the efrepresentation. Formally, the final equation is a fourth-order
fects of smooth fields have decayghkere (5g/Q) is a typical  differential equation, and the envelope function satisfying it
relative discontinuity of the function in space. If we con- in the case of a discontinuous potential, the most unfavorable
sider, for example, the standard effective-mass equdtionsase for accuracy, has a discontinuous second derivative with
with discontinuous potentials, then the second derivatives ofharacteristic discontinuity of the order of the second deriva-
the corresponding envelope functions will be discontinuousive itself. It is possible to proceed otherwise. Reducing the
with characteristic relative discontinuity of the order of unity fourth-order differential equation to a physically equivalent
(again, for states whose energies, measured from the basécond-order equatidfiwe obtain a discontinuous envelope
edge of the left-hand or right-hand material, is of the order ofunction with characteristic relative discontinuity of order
the band discontinuity and the error incurred by using dif- (i )2, This means that for a single heterojunction or a wide
ferential equations will be of ordek{/K)3, whereK is the  quantum well the accuracy of the obtained effective-mass
radius of the Brillouin zone along the, axis. equation is limited as a result of having to take account of all
In the case_of a quantum well of widthit is possible to  terms up to orderE)\)‘?’. In the case of a narrow quantum
treat two casek,L =1 andk,L<1. In the first case the error well, on the other hand, even fdr~X\ the effective-mass
is of the same order as for a single heterojunction; in theequation should include only first-order corrections associ-
second case it can be of the ordé&gl() “1(k,/K)3. Thisis ated with effects of sharpness of the heterojunction, and con-
an upper estimate. For a symmetric quantum well in the considering all remaining orders, including those leading to spa-
duction band, for example, the error depends on the sign dfal dependence of the effective-mass parameters, will yield
the product of the values of the envelope function on thean excess of accuracy. In such a case the short-range poten-
heteroboundaries, and for states of the secddds@bband it  tial formalism, already used above to obtain the expansion
is more. In the limiting case of a narrow quantum well, (11), is convenient. This will be taken up in Sec. 4.3.
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4. ONE-BAND EQUATIONS second sum, and in expressi¢h7), of the terms withn
#1. Thus it is necessary to be careful when using the method
of direct elimination of small envelope functions.

The relation of the envelope function of the conduction

bandF.(r) with the total wave function is given by
The transformation from a many-band system of equa-

tions for the envelope functions to a single-band equation is
realized in the standard way’ For smooth heterojunctions
the one-band equation for the envelope functions forahe

4.1. Conduction band

4.1.1. Smooth heterojunction

W(r)=uco{1+2Rmy(I'(2) AU+ €co—€) }Fc(r)

+>

+ 60U, ['(2)

band (conduction bandwas derived in Ref. 28. In the
representation it has the form

1
€coFc(r)+ 5mal(Z)pmﬁl(Z)pmal(Z)Fc(f)

+r(z)Auch(r)+aop“Fc(r)JrBo(pﬁP?

+pZp2)Fo(r) + n(pxn)- o' (2)Fo(r) = eF(r).
(15)

The product of the discontinuity in the conduction baxid
and the modified form factor of the heterojunctibiiz) is
given by

B , 18Ucn)?
I'(2)AU=G(2)8Ucc+ Y, ——
n

€c0™ €no

G?(2),

so that in all small correction§&(z) can be replaced by

I'(z). The position-dependent effective mass is given by

m(z)=my[1+my(u;—p)I(2)],

Uno {MHIIOICXV

n (€0~ €no) img

, (nlpal)I[pglc)
+ > —mo(ecoz_—elo)papg Fe(r). (18

l,a,B
Here
1, Kelpynyl?
R—EE 7
n Mo(€co— €no)

and the term Rmy(I'(2) AU+ e,o— €) inside the braces in
expressior(18) comes from the term- Rp? treated as a per-
turbation using the standard effective-mass equation. In the
brackets in expressiofi8) we neglected the term

A(n|[VU;X |<J]IC>-UJr A(n|[VsUxp][c)- o
4mac? 4mgc?

T'(2)

(19

since the largest contribution to the matrix eleme(its)
comes from the region of the potential near the atomic nuclei
in which the spin—orbital interaction operator can be written

andm, is the effective mass of the edge of the conductionin the form of a product of operators of the electron spin and
band of the left-hand material, andnf, is the effective mass the orbital angular momentum, and the functiog, is
of the conduction band of the right-hand material we have spherically symmetri¢the orbital momentum is zeyo

1/m2: 1/m1+ Mo~ Uq.
The parameters,; and B, are defined as follows:
M
! 2(po—p1)’
The parameterg; and u, are given by
s 2elpdm U
! n mé( €c0™ Eno)z
< Aclpyn)(npyll) 8U
nl mg( €co— €no)(€co— €10) |
’ 2<C|px|n>5unl<||pxlc>
n,| m(z)(eco_ €no)(€co—€10)

o

2a1+ ﬂl: —-1.

(16)

M2= 17

In Eqg. (15 ay and B, are the nonparabolicity parameters of
the bulk spectrum. Finally, the last parameter entering into

the equation is

o BRI AILY U By
7 nl 4imgcz(€c0_fno)(6co_€|0) .

In the Introduction it was pointed out that an invalid
expression for the effective mass of the edge of the conduc-

In Ref. 28 it was shown that fd(,d<1 Eq.(15) can be
replaced by an equivalent equation where the Heaviside step
function 6(z—z,) replaces the functioi'(z), and the coor-
dinatez, assigning the position of the mathematically sharp
heterojunction can be chosen arbitrarily within the limits
—d=zy=d. The method used in Ref. 28 for this transfor-
mation is not the most convenient. There is a simpler way of
transforming to a mathematically sharp heterojunction based
on the following chain of identities, valid for operators act-
ing on smooth functions:

I'(z)= if“colk eikzzfmr(z')e*ikzz’dz'
27T — z

—oo

1 A ik,(z—zp) d
—0(z—zo)+zf_wdkze 22720 f_d(l“(z)
—0(2' —zp))e %7 ~2)d 7' ~ 9(z— z,)

+6(z—zg)

Jlddl“(z)dz—(d—zo) +6"(z—zp)

o \2
fd I'(z)(zp—2z)dz+ @}
—d

X

tion band of a non-basis semiconductor was obtained in ReBettingzy=0, instead of Eq(15) we obtain a more conve-
14 by direct elimination of the small envelope functions. nient form of the effective-mass equation for a smooth

This corresponds to the absence in express$i@ of the

heterojunction:
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Comparing expressiof21) with the Hamiltonian of Eq(20),

we see that for the conduction band taking the sharpness of
the heterojunction into account does not alter the form of the
one-band equation and simply renormalizes the constants
used in it. If we take Eqgs(20) and (21) into account, the
desired equation for the conduction band takes the form

[€co— €+ 0(2) AU+ AUcpod(2)]Fc(r)
1
+ Emaz(z)pmﬁz(z) -pM2(2)F (1) + agp*F(r)

+ Bo(PTPZ+PZPS)Fc(r)+ n(pXn)- a8(2)Fo(r)=0.
(20) 1
Here (eco— €+ 0(2)AUc+d18(2) Fo(r) + 5m*(2)pm“(2)

=my[1+ — 112) 0(2)], «
M) =ML M= p2) 6(2)] XpM*(2)Fo(1)+ aop*F o)+ BolpFP2
and the parameteat, not only depends on the materials of 5 5
the heterojunction but also takes into account its finite width +PxPYIFc(r) +da(pXn)- 08(2)F(r)=0. (22
through its dependence df(z): The termpé’(z) in expression(21) was absorbed by the
,u1+2AUCh*2[d2—f‘1d2F(z)zdz] kinetic-energy operator; as a result, i@we obtain

2(po— 1) _ ma+ 20U d? 9 2T (2)2dZ + 4ph 2

The relation 2v,+ 8,=—1 is preserved, and 2(p2— pa)
(here the error incurred in Ref. 29 has been correctaad
2a+ B=—1, withd;=Dg..+AU.pg andd,= n+7%.

Let us discuss the Hamiltonian of E@2). The first term
The transformation to a mathematically sharp heterojunctiotiepresents the potential energy of an electron inctfoand.
described above is dictated only by arguments of conveThe possible existence of a hetero-interface term propor-
nience, and the explicit form of the functidn(z) appears tional to d; was discussed in Ref. 5; it is clear that this
only in integral form in the expressions for the two param-contribution disappears for a mathematically discontinuous
etersa, andpy. heterojunction(in this rather unrealistic case modély and
(9) are identical. The second term is the position-dependent
kinetic-energy operator, which is quadratic in the momen-
tum; such a form was proposed in Ref. 6 more generally.

To include corrections associated with the nonsmoothNote that the parametet is not a universal constant but
ness of the heterojunction in E(R0), it is necessary in the depends both on the materials and on the shape of the tran-
standard proceduté’ to take into account the contributions Sitional region of the heterojunction, as seems natural even
of the termsD gy, D1pp, @ndBgy,y in first-order pertur-  intuitively (see also Ref. 8 If it happens thatn(z) = const,
bation theory(Syec=S;..=0, as follows from zinc-blende i.€., 1= pu,, indeterminate expressions of the forrf drise
symmetry, and the contributions of the tern,,, and in the form of the kinetic-energy operator used here which
Sonn Should still be treated in the second-order theory alongre easily evaluated. Such indeterminate forms do not arise if
with the termsfik-p,, /mg. Utilizing symmetry properties, We use a different, equivalent form of this operator where we
it is not hard to obtain the following additional terkh,,, to ~ Separate out a term analogous to the relativistic Darwin term

ap

o

d
Po= J I'(z)ydz—d.
—d

4.1.2. Sharp heterojunction

the Hamiltonian of Eq(15):

Hapr=Doccd(2) +p o' (2) +7(pXn)- 05(2). (22)

Here

Docc= _E

(c[6U cogK;z)|c)

ﬂjdG’(z)sin(sz)dz,

%o Kj
< Aelpdn)(n]oU sinK 2)lc)
P nj7o iKjmo(€co— €no)
d c|6U cogK;z)|c
xf G'(z)cogK;2)dz+ 2, (cl K210
—d 7o K;
d cogK;z) )
xf G'(2) K—+ZS|n(sz) dz,

7] E (Er h<c|[v(5in(KjZ)5U)Xp]x|n><n|py|c>

3
7o \ A 2K m5c?(€go— €no)

fi{c|V (sin(K;z)8U)[c)| (d |
- 4ijéc2 )J—dG (2)cosK;z)dz

(see Ref. 28

Toop. LY
2—pm'p+ AU
d2 (d
X ?—f I'(z)zdz+p| ' (2).
—d

The third and fourth terms in the Hamiltonian of EQ2)
describe corrections to the weak nonparabolicity and depend
only on the bulk parameters. The fifth term describes the
interface spin—orbital interactiofsee, e.g., Ref. 32whose
strength @,) depends not only on the materials of the het-
erojunction but also on the shape of the transitional region.
The relation between the total wave function and the enve-
lope functions of the conduction band is given by ELp),
where we can sdf (z) = 0(2).

4.1.3. Boundary conditions on the envelope functions

From Eq.(22) it is not hard to obtain boundary condi-
tions imposed on the envelope functions at the heterojunc-
tion; to this end it is necessary to reduce Eg2) to a
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second-order differential equation by employing the small-of little practical value. Therefore we limit ourselves here to
ness of the contribution proportional 1 (Ref. 28. We  a derivation of first-order corrections to the standard equa-

present only the result: tion in the above small parameter.
In the basig|J,j,)} of eigenfunctions of the total angu-
(Fc(r)) _ dp 0 (Fc(r)) lar momentumJ and its projectiorj,, with these eigenfunc-
Fe/l,_ro \day dyp/\Fe(M/] _ tions being combinations of Bloch functiong, 7, and 2
of the top of the valence barttansforming according to the
where representatiol’;s) and the spin, the matrix of the effective
Hamiltonian for the valence barid in this approximation is
2 t 1 f the 6 6 matrix of the standard kinetic- i
dy=1+4mPapAU +mial — — —|, a sum of the matrix of the standard kinetic-energy op
my my eratorT (we neglect the small contribution &flinear bulk
om terms from the spin—orbit interactipmnd the 6<6 matrix
dy = ﬁ—zl(dﬁ dy(pXn)- o), of the potential-energy operatdf:

H=T+V.

and . Lo .
Of course, in the standard approximatidhcontains only

m, ) 1 diagonal discontinuousstep-function potentials. Additional
dp= m_l+4m1aOAUc_mla(m_2_ E : terms appear in the approximation that follows which are
diagonal and nondiagonalfunction potentials.
In the approximation of the standard effective-mass Itis convenient first to find the elements of the potential-

method we have a position-independent effective mass andenergy matrixV in the basig.#’, 7,2}, and then compose

discontinuous(step-function potential. Corrections which from them the necessary linear combinations and transform
are first order in the small parameter of the problem are takep Vv:

into account by including in the standard equation a_ -
sfunction potential proportional tal; (formally, this is a Vzz=Viu=€,0t0U;,G(2)+Dgy,6(2)

Forrection of orderkzd). The complete tlaquationZ). also ~€ 0+ 60U ,,0(2)+(Dgy st podU ,p) 6(2),
includes all corrections of ordenk,)?. It is not possible to 1
take into account smaller contributions in the one-band verg, z

sy ==(A+6AG(2))o,+Dg,,0(2)+S;,,0(2) 0
sion of the method of envelope functions because the un-""7 3I( (2)02+ Doy 82+ 304820

avoidable error arising in the transformation from the many- 1

band system of integral equations to the one-band ~ 2 (A+5A0(2))o,+ Do ,8(2)

differential equation is of the same order. 3i
It is not hard to generalize the above results to the case

of an arbitrary heterostructure. It is easy to do this proceed- +

ing from symmetry arguments for a symmetric quantum well

with two equivalent heterojunctions with coordinates0  where

and z=L, whereL=._/"a/2, where./" is an integer. The g P

effective Hamiltonian is ’ _ 3H{AIIVU.Xp| 7)

podSA
Sooyt 3i ) 8(z)o4,

4mic? ’
1
He'=eo+ AU 0(2)— 6(z— L)} + Em“(z)pmﬁ(z) SA = 31i(.2|[VoUxpl | 2)
4mjc? '
X pm*(2) + aop*+ Bo(P{P2+ PPy + do{ 8(2) Analogously

+68(z—L)}+dx{d(z)— 8(z—L)}(pXn)-o. i
V2 =3(8+380G(2)0y+ S ,28(2) 0y
4.2. Valence band

The distinction between the effective-mass method for ~ I—(A+ SA0(2)) oyt S, ot 'P05A)
the valence band and the effective-mass method for the con- 3 o 3
duction band consists, in principle, simply of the necessity of X 8(2) 0.

considering more elaborate equations in the case of the va- _

lence band. The main points of the problem of deriving theThe remaining elements of can be obtained from those
equation for the hole states with position-dependenshown above by cyclic permutation of the indices.
effective-mass parameters were noted in Ref. 29. The equa- The contribution of the sixth and seventh terms on the
tion for the ¢ band already contains three new parameterseft-hand side of Eq(12), as can be seen, is not included in
which depend on the bulk properties of the materials of thé/ since it is negligibly small for the following reason:
heterostructure and on the properties of the heteroboundary. (21V,U4 =0

For the valence band, there is a larger number of such pa- ‘' 2717

rameters, which may be seen as rendering such an equatiésee Ref. 27, Sec. 21This means that the matrix element
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(21V,0U| 2)=(21V U, 7). 5 (218U cogK;2)|.2)
022~ .
For the Bloch functions of thath band at thd” point of the j#0 Kj
right-hand crystal in the nonrelativistic limifif,) we now d
have ><J’ G'(2)sin(K;z)dz,
—d
, U,/ .Uy,
Tpo=Upo+ >, — 2, 23 (#18U sin(K;2)| 7)
n €0 €no Dosy= -
70 K;

and for the corresponding functions of the edge of the va- )
lence band of the right-hand crystal and 7/ the relation xf "(2)cogK;2)dz, (25)
(#1V,U,| 7)=0 holds. That is, the seventh term on the -d
Ieft_—hgnd side of _Eq(12) gives corrgcthns only of order , h(.%‘[V(cos(sz)(SU)Xp]ZL?/)
(\k,)®, and notA\k,. In our approximation, on the other S0y~ 2K .m2c2
hand, it is necessary in general to neglect the difference be- 1#0 1o
tween the Bloch function8i,,, and u,o. Hence it follows d .
from invariance of the equation under time reversal that the X fﬁdG (z)sin(K;z)dz.
contribution from the sixth term on the left-hand side of Eq.
(12) is negligibly small. Thus, within the framework of thie-p method we have

It is not difficult now to obtain the elements &. We  shown that in(001) 1lI-V heterostructures mixing of heavy

choose the phases the same as was done in Ref. 1 and wr{teh) and light (h) holes takes place at the center of the 2
Brillouin zone(see Ref. 33 and the references cited thegrein

|1>E’§ §> |2>E‘§ _ §> |3>E§ }> which bears no relation to the-linear bulk terms from the
2°2/)° 2" 2) 2 2]’ spin—orbit interaction. This mixing is governed by the pa-
3 1 11 1 1 rametequ,,//, which was estimated in Ref. 33 on the basis
|4>E’_,_ _>' |5>E‘_, _> 6)=|=,— _> of experimental data for GaAs/AlAs heterostructures:

(pairs of states of heavy holes, light holes, and states of the N Ref. 29 it was concluded that the strength of the mix-

split-off band. Thus, the desired potential-energy matrix '”9 of.the heayy and light holes at the F:ente;r of the 2
takes the form Brillouin zone is greater for sharp heterojunctions than for

heterojunctions with smoothly varying chemical composi-
Vil Voo, —iv2Vgoy tion. But this is valid only in mode{1). Generally speaking,
one can draw conclusionsonly about the dependence of the

V= V(T)‘Ty Vgl 0 ' (24) strength of this mixing on the structure of the transitional
iﬁ\/(’ggy 0 Vr 1 region of the heterojunctions.
For a symmetric quantum well with boundarieszat0
where andz=L the elements of the potential-energy matrix can be

easily obtained from symmetry arguments:

Vr,=Er,+AUr (6(2)— 6(z— L))

VFSZ EF8+AUF80(Z)+X15(Z),

Vi =Er +AUr 0(2)+ x28(2),
+x1(8(2)+ 8(z-L)),

Voz%ﬁ(z). Vr,=Er,+AUr (6(2)— 6(z—L))

+ o(z)+o6(z—L)),
Here we have introduced the notation X2((2)+ )

1 1 4 _ _
EF8:6,/U+ §A, AUF8:5U'111'+§6A, VO_ ‘/j (5(2) 5(2 L))

2 2 4.3. Equation for the envelope functions for a narrow well in
Er,=€s0 §A' AUF7_ Uz 3 oA, the conduction band

1 We will devote separate attention to the problem of elec-
x1=Dgs st p05U¢;[+iSé[//+ §p05A, tron states in narrow quantum wells because at present it is
widely held that the effective-mass method is inapplicable in
) such cases. Here we treat only states ofctfiand in a(001)
X2=DosstpodU ., —2iSg )~ 3P0%A. lI-V heterostructure consisting of related isolated quantum
well (or narrow barrier semiconductors for the case when its
The expressions fdDg ;s Doy, andséf// have the width satisfiesL=<\. Hole states are easily treated in an
following form: analogous way. Now the contributions from the steepness of
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the potential begin to play a much greater role than in theion); therefore, it needs to be put into a different form using
case of wide quantum wells. In fact, the estim%Zm the smallness of the term proportionallig and discarding
~ 68U, is valid only when the width of the quantum well is corrections of order Xk,)2. It is necessary to invoke the
greater than or of the order of the characteristic localizatiorapproximate relation
length of the states. For states in a narrow quantum well, on b
the other hand, of coursE/Zm~ 6U.k,L, and the contri- b,5(z) +b,6'(z)~b, 6| z+ b—2
bution to the energy eigenvalue from the terms associated L
with steepness of the potential can be estimated to first ordeand in the term proportional tb;, §(z) can be replaced by
as 8Uck,a, which implies that they must be taken into ac- 6(z+b/b;) for simplicity. We obtain the valid equation

: (28)

count even in the zeroth approximation. p2 b,
Thus, the potential of the heterostructure under consid- €cp— €+ %ﬂtblé z+ oo
eration can be written as !
b
U=U;+P[U,—U;]=U;+P(2)8U, +byo z+b—2 [pxn]-a|F.(r)=0. (29)
1

whereU, andU, are periodic crystal potentials of the “bar- , .
rier” (basig and “well” semiconductor, respectively, and Note that for states of one bafifl we are not interested, for

P(2) is the form factor of the heterostructure. We chobse €Xample, in interband transition a heterostructure with
so thatP(z< —L/2)=P(z>L/2)=0. It is natural to consider ©N€ narrow layer the value &f, does not play a role: in Eq.

P(2) as a local function on the scale of variation of the (26) e can shift the origirz’ =z+b,/b; .

envelope function of the conduction band simd?i< 1. The . We assume that we are dealing with a structure contain-
. . ) ing two narrow layers lying near one anoth{such that the
one-band equation has the following form:

distance between them is of the orden\gf In this case, an
p? ) upper estimate on the error arising from the transformation to
€0 €+ 5 +018(2)+by8'(2) a one-band differential equation i, (this is valid, in par-
ticular, in the case when the constdmt describing the po-
+b48(2)(pXN)- U} F(r)=0, (26) tential .of the first layer is equal to the .constant 'desgribing the
potential of the second layer taken with opposite sigien

we should remove from consideration those terms containing

wherem is the position-independent effective mass, and wi .
have the following expressions for the three parameters sz andbs in Eq.(26)_. We could probably treat both layers as
one local perturbation, thereby decreasing the error, and ob-

(i=123): tain Eq.(26) with one set of parameters of the local pertur-
L2 bation. In the situation for which we obtained an upper esti-
bl:; {c[8U cogK;z)[c) LL,ZP(Z)COS(KJZ)dZ' mate of the error, however, we could not then guarantee the
_ smallness of the paramet&gb,/b; on which Eq.(28) is
b= S fi(clp,In)(n| U sin(K;z)[c) based. If it is not small, then we could not say that Exp)
2 " img(€co— €no) is mathematically correct, which would imply the inapplica-
Lo bility of such an approach. o
> f P(2)sin(K;z)dz— 2 (c|su cos{KJ-z)|c) Thus, taking the a_bove modification into account, we can
~L/2 ] also apply the effective-mass method to electron states in
Lo heterostructures with superthin layers. In this regard the situ-
% f P(z)cogK;2)zdz (27)  ation can arise in which the potential of a thick layer of some
-L/2 semiconductor plays the role of a barrier for the electron
. states while a thin layer of the same material will couple
by= E (2’ h<c|[V(S|n(K31;225U)>< PLn)(nip,c) states andice versadepending on the sign of the parameter
] n 2mgc=(€co— €no) b,. The sign of this parameter, as can be seen from Egs.

. (27), can be different from the sign of the parameter
’ L/2
- ﬁ(c|Vz(Sln(2KJZZ) 5U)|C>) J’ P(2)sin(K;z)dz,  (c|8U]c), which defines the discontinuity in the conduction
4mge 12 band at the heterojunction.

in which the summation index includes zero(the terms
with j =0 represent the contribution of the smooth part of thed. HIERARCHY OF EFFECTIVE-MASS EQUATIONS AND
potentia). The term in the potential energy proportional to PISCUSSION OF RESULTS
b, gives the main contribution, and the two remaining terms  \we have derived a many-bardp system of integral
are corrections of ordekk,. For a symmetric structure, equations(12) which can be used to describe electron states
P(z)=P(—2), the equation simplifies: in heterostructures with atomically sharp variation of their

bo=ba=0 chemical composition. The system contains contributions in

27— M3— Y : : ; ’ :
the form of converging power serieskn—k, which are due

Strictly speaking, Eq(26) is invalid from a mathematical to the sharpness of the heterojunction. For example, such
point of view (it does not have a rigorous nontrivial solu- terms were discarded in Refs. 14, 20, and 19 so that the
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effects of a discontinuous change in the crystal potential of 2) Second level of the hierarchy.
the structure near a heterojunction were in fact neglected. It Equation(22) includes all corrections of ordemE)z.
is specifically the presence of these terms that distinguisheésmaller contributions, of third order and higher, cannot be
the many-band system &f-p equations derived here from taken into account correctly in a one-band version of the
the system obtained by Leibfefor heterostructures with method.
smooth heterojunctions. All of the papers known to us which For hole states we obtainégee Eq(24)] the first-order
use one-band or many-band schemes of the method of enveorrections to the standard equatiome obtained the first
lope functions to describe electron states in heterostructuresiep of the hierarchy of effective-mass equations for the
apply thek-p system of Leibler. Very often the distinction holeg and showed that fof001) heterostructures mixing of
between the Bloch functions for the component semiconducheavy and light holes at the center of th® Brillouin zone
tors of the heterostructure is also neglected, which gives, igoes indeed take place and that contributions from the sharp-
particular, U, =0 for n#n’. Taking into account the ness of the heterojunction potential determine the strength of
terms due to sharpness of the heterojunctionktgemethod  this mixing so that it depends on the microscopic structure of
can also be used to describe intervalley mixing of states ifthe heteroboundaries. In Ref. 20 it is asserted, in particular,
heterostructures, including the problemIof-X, mixing of  that such mixing of heavy and light holes is caused by a
states in(001) heterostructures. difference in the Bloch functions for the component semi-
The most important limitation on the accuracy of the conductors of the heterostructure and it is absent, if one ne-
method of envelope functions employing differential equa-glects such a difference, or, what should be equivalent, if the
tions is the procedure of transforming frdato r space. The  Bloch functions of all the bulk semiconductors comprising
one-band differential equatior(of fourth ordey with  the structure are the same set of functions. If this is indeed
position-dependent effective mass is valid for structures withhe case, then the contribution of these tefemsen without
characteristic width of layerémuch greater tham\, where  taking symmetry arguments into accoumtould be only of

the length was defined in Sec. 2. . order (\k,)2, as can be seen from E@3). In fact, however,

Above we considered in detail how taking account of e gitference in the Bloch functions does not play a substan-
contributions of the sharpness of the interface potentiajg| role. To prove this, consider the idealized situation of a
modifies the equation for states of the conduction band Noo1) homojunction—the problem of hole states in a weak
(001 heterostructures of related, lattice-matched Il1-V seMiput not smooth external potential, saWw(z) = G(2)W,,
conductors, derived in Ref. 28. Formally, the resulting equayhereW, is a constant assigning the jump of the potential,
tion for a sharp heterojunction differs from that for a smoothg 511 in comparison with the band gap. In this case the point
heterojunction only by renormalization of the parameters eNgymmetry of the structureds,) also admits the existence of
tering into it. In the case of the valence band, on the Othanixing of heavy and light holes at the center of th® 2
hand, taking account of the sharpness of the heterojunctiogyjjiouin zone?® and for the coefficient governing this mix-
leads to qualitatively new effectsnixing of heavy and light ing, Do/, instead of formuld25) we have
holes fork =0). o7

For heterostructures with wide layers it is possible to Wo<%‘|5in(KjZ) )
construct a hierarchy of approximations of the one-band DOM=E K
method of envelope functions according to the parameter )70 J

Nk, wherek, is the characteristic value of the quasimomen- % fd
tum of the state. For example, for an isolated heterojunction
we have the following.

0) Zeroth level of the hierarchy for electrons. This is direct proof of our assertion.

In the effective-mass approximation in which small cor- The independent parametersd;, andd, introduced in
rections in the order parameter have been neglected, we hattee present work and appearing in E22), and alsoxy, x2,
the usual equation with position-independent effective masandD, -, entering into the effective potential energy opera-

dG’(z)cos(sz)dz.

and a discontinuougstep-function potential: tor for the valence-band states, depend not only on the bulk
2 properties of the materials of the heterojunction, but also on

€cot () AU+ L Fo(r)=eF(r). (30)  its microscopic structure. All these parameters determine the

2m hetero-interface contribution to the potential energy. At the

same time, it is well knowi{ that as a consequence of the
possible appearance of an electric dipole moment at the in-
terface of two materials the magnitude of the potential jump
at the interface can also depend on the microscopic structure
of the boundary. This is not described in our model of a
heterojunction because we do not take into account the effect
of such a dipole. Including the corresponding discontinuous
p? electrostatic potential in Eq1) and developing it according
€cot 0(2)AUc+d16(2) + 5~ |Fe(r) = eFc(r), to the scheme laid out above also yields the desired effect.
The electron states in heterostructures consisting of thin
whered; is given by the complicated expression in Sec. 4.1layers whose thickness is less than or on the ordex cdin

1) First level of the hierarchy.

First-order corrections are taken into acco(mtre, on
the contrary, the small parameted plays a role; 2 here is
the width of the transitional region of the heterojuncjidy
including a &function potential in Eq(30), which is local-
ized at the heteroboundary:
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be treated only in the approximation quadratic in the momen- k}{010]
tum operator. In this case an account of terms due to the 2zla
sharpness of the potential becomes necessary already in the
zeroth approximation. This is clear from Eq&7). In this

regard, the following situation is possible: as the width of the /

»
~
*

#la

guantum well is decreased, the bound state can disappear or

conversely, a thin layer—nominally a “barrier” layer—of \ ke
some semiconductor can create an attractive potential and 0 rla /12xa [010]
form a bound state.

It is possible that just such a situation was observed in
Ref. 35 and then modeled in Ref. 36.
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or combined into onéquadratic in the momentunkinetic-
energy operator:

APPENDIX A: THE DIRAC EQUATION WITH POSITION-

VARIANT GAP 1 1 1 1
T2 =5 p P '
Let us consider a model Dirac equation with a position- 23m(r) " m(r) "~ {m(r)
2

dependent gapr(r)c or some other equivalent form can be used. For example,

m(r)c? co-p ((P ® Ref. 21 uses the following form for,:

e| e
co-p —m(r)c?|\ ¢p _e(sop)' 1 1 1 N 1 1
. =2lp p p: pl.

where ¢, and ¢, are the electron and positron components >4 ym(r) - ym(r)  Vm(r) Vm(r)

of the wave function, respectively. LeA(r) vary weakly in Thus, in the model Dirac equation with position-dependent

space, i.e.m(r) =M+ om(r) so thatdm(r)/m<1. With the gap the concept of a position-dependent effective mass

he!p Of a Foldy-Wouthuysen u_nltary transformat!on I 'S shows up only within the context of the nonrelativistipia-
quite simple, for example, following the scheme laid out 'ndratic) approximation

Ch. 20, Sec. 33 or Ref. 24, to obtain a one-band equation

describing the states of the electron. Thus, the equation in
which all small terms have been discarded is the ordinary*PP?ENDIX B: REGARDING TRANSFER PROCESSES IN THE

Schradinger equation %’WO-DIMENSIONAL BRILLOUIN ZONE FOR A (001)

HETEROSTRUCTURE
2
(m(r)cz+ L Let us consider the second sum in E¢g), describing

2m transfer processes in the two-dimensional Brillouin zone and
where . is the transformed electron wave function. The Prove that it does not contribute in the case of interest to us
equation, on the other hand, in which all terms of higherof States near the Brillouin zone center(b01) heterostruc-
order thansm(r)/f have been neglectgthe following ap- tures. Since the functiof#(q) isonzero for any, there also

Zbez 6@2 ’

proximation has the form exist nonzero vectors of the inverse latti¢e for which k|
5 5 —k=Ky;. Here kﬁ andk; are components of vectors be-
Hoe= €0, longing to the Brillouin zone. There exits a finite number of
02 pom(r)-p #2V2am(r) vectorsK posse_ssing this property. '_I'herefore, .in general we
H=m(r)c?+ —= — ——+ — should also retain the second sum in expres$bnlLet us
2m 2m 8m now consider the interesting case ofG91) heterostructure.
p* ALV Sm(r)xpl- o The octagon in Fig. 1 represents the projection of the bulk

(A1) Brillouin zone onto thg001) plane, and projections of sites
of the lattice are denoted by asterisks. The function
All terms in Eq.(A1) with the exception of the third which .7 (k; ,k{) on which the operatorZ,, (k,k") acts in Eq.
describes the position-dependent mass can be taken as “ai) is defined only forkﬁ belonging to the projection of the
dinary.” The second, third, and fourth ternfthe fourth is  bulk Brillouin zone onto th€001) plane. But since all sites
the Darwin term can either be written in the following form: Kj; for j#0 lie outside this projection, there exists a region

- 8mic? 4m?
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of k; for which [kj —kj|<Ky;, j#0. This region is defined
by the inequalitylk,| + |ky| <7/a and is indicated in the fig-
ure by the square with diagonalr2a. The area of this re-
gion is one-fourth that of the area of the firdD 2Brillouin
zone (the square with diagonal®a). In the region|k,|
+|ky|<m/a the second sum in expressit4) does not con-
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We study the dynamics of a distributed self-oscillating system of three parametrically coupled
waves, one of which is propagating counter to the other two. We show that an infinite

number of natural modes are self-excited as the bifurcation parameter, which has the meaning of
the pump amplitude, increases without bound. Exact solutions describing steady-state

oscillation regimes are found. We present the results of computer simulation, which show that

for moderate pump amplitudes the transient process terminates when a stationary state
corresponding to the fundamental mode sets in. As supercriticality increases, the oscillations
become chaotic, with the transition to chaos being rapid. We note an analogy that exists between
the dynamics of such a system and the dynamics of a Lorentz syster99@ American

Institute of Physicg.S1063-776(99)02611-9

1. INTRODUCTION It was Ginzburg and Sergeewho pointed out that the dy-
namics can be complex in this case.

Investigations into the complex dynamics of distributed In Sec. 2 we discuss the main equations and find the
self-oscillating systems are an important part of the theory otonditions for self-excitation of self-oscillations. Since the
oscillations and waves. The relationship between such invesystem being studied is distributed, it is characterized by an
tigations and the onset of turbulence in the formation of disinfinite number of natural modes, which are self-excited as
sipative structures is quite obviolid However, direct com- the bifurcation parameter increadbsre the amplitude of the
puter simulation of complex and, especially, chaoticpump wave acts as the bifurcation parametdihe exact
oscillation regimes in specific distributed self-oscillating sys-time-dependent nonlinear solutions corresponding to the fun-
tems, such as devices of vacuum and quantum electroniciamental and higher modes are analyzed in Sec. 3. Section 4
and hydrodynamic flow, pose many difficulties for the re-is devoted to describing the results of computer simulation.
searcher. Hence the search of fairly simple distributed modalVe study in detail a scenario for the transition to chaos. We
systems with complex dynamics becomes crucial, since suclilso discuss the analogy between sequences of bifurcations
models can be studied in detail by numerical and, possiblyin the present system and those in some finite-dimensional
analytical methods. systems, e.g., in the Lorentz system, which is one of the best

Among such models we should like to mention the equaknown and most thoroughly studied models of nonlinear dy-
tions of parametric coupling of three wave packets propagatamics with a small number of degrees of freedom.
ing in a quadratically nonlinear medium, equations that de-
scribe parametric (decay instability in hydrodynamic 2. THE STARTING EQUATIONS: CONDITIONS FOR SELF-
problems, nonlinear optics, plasma physics, etc., andareXCITATION OF SELF-OSCILLATIONS

among the most important standard equations of nonlinear gq the staring equations we take the equation of three-

wave theory:* If some kind of feedback is present, the sys-yave parametric interactid® which in our case assume the
tem becomes self-oscillatory and exhibits complex dynamifgrm

cal behavior. For instance, Burlak and Ishkab@ldetected

dynamical chaos in the case where one of the waves is re- 9AL n IA1 _ *
. — Vl -V = O'lAzA y
flected at the boundaries. ot X
In the present paper we study the problem of three-wave JA IA
coupling in which two wave propagate in opposite direc- _2+V2a_x2:_02A1A3’ (1)

tions, which guarantees the existence of internal distributed 9t
feedback. We believe that this situation is common and can A, A
be realized, in particular, when low- and high-frequency
waves interact,e.g., when optical waves interact with acous-
tic waves or ion-acoustic waves interact with LangmuirHere A; ; i(x,t) are the complex-valued amplitude of the
waves. In electronics, a system of three parametricallydler wave, the pump wave, and the signal wave, respec-
coupled waves one of which is counter-propagating can bévely, v, ;3 are the group velocities of these waves, and
taken as the simplest model of a free-electron laser, a genr, , 3 are the real nonlinear-coupling constants. The “mi-
erator of a counter-propagating wave, in which the electromus” in front of v; is an indication that the signal wave is
beam interacts with the fields of two electromagnetic wavespropagating counter to the idler and pump waves. We exam-

T_VBW:USAZAI .

1063-7761/99/89(11)/6/$15.00 1015 © 1999 American Institute of Physics
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ine the situation where an intense pump wave with an am-

plitude @ =const is input into the system at the poit 0

T. V. Dmitrieva and N. M. Ryskin

and there is no idler wave. We assume that at the right

boundary of the system, in the cross sectienl, there is no
signal wave. Thus, the boundary conditions are

Ai(x=0;t)=0, Ax(x=0;t)=a, As(x=I;t)=0, (2

which corresponds to a distributed parametric generator of
counter wave. Since Eq¢l) are invariant under the trans-
formations

Ai—Arexplieg), Ar—Arexplie,),

As—Azexdi(ex— 1), )

Ay A
T T aE A

IA;  9Ag

r o A ®

Equations(8) with the boundary conditions
4 AulE=0:7)=Ag(£=1;7)=0

coincide with the equations that describe the time-dependent
linear coupling of counter-propagating waves with positive
and negative energies. The theory of such coupling has been
thoroughly described in the literatufeee, e.g., the review by
Trubetskov and Chetverik8u Separating the variables in
(8), we find the general solution as a superposition of natural

where ¢, ,=const, we can assume, without loss of generalmodes:

ity, that « is real. We select the initial conditions in the form

A(xt=0)=ca, |AXt=0)|<a (4)

and are interested in the conditions for self-excitation of the

system by small fluctuations of the idler and signal waves.
We introduce the dimensionless coordingtex/| and
time
_ 2vyvat—(v3—Vy)X
T [(v3+vy)

and the new dependent variables

Al

44

, 9j0k
i 1
Vij

wherei,j,k=1,2,3, withi#j#Kk. Substituting all this in
Egs.(1) and dropping the primes, we get

A, A, .
a7 oz i
11y Re P AA 5
( U)? G - s (5
IAs A .
FrarTa
where
:2V3(V1_V2)
Vo(Vi+Vs)

A1=2 Crexp(kyt)sin va?—Kjél,

As=2, Dpexpkat)sin a?—k3(¢-1)],

where the amplitude€,, and D, can be found from the
initial conditions, and thek,, are the solutions of the tran-
scendental equation

JaZ—k2 cos\a?— K2+ k siny/a?—k2=0. 9

This equation has an infinite number of complex-valued so-
lutions, which is a reflection of the fact that the distributed
system contains an infinite number of natural modes, i.e.,
degrees of freedom.

The condition for the loss of stability of a node with
numbern can be found by puttinge=0 in Eg. (9), which
yields a,= mn+ m/2. Thus, when the parameter exceeds
the valuea,,, self-excitation of theath mode is possible. The
mode withn=0 has the smallest value,= /2, i.e., the
smallest pumping amplitude.

3. STEADY-STATE OSCILLATIONS REGIMES

Let us now find the solutions that describe steady-state
self-oscillating regimes. To this end we pify7=0 in Egs.
(5). This yields a system of ordinary differential equations:

is the dimensionless parameter characterizing the detuning @fith the boundary conditions

the group velocities of the co-propagating waves. The

boundary condition§2) and the initial condition$4) become
A1(§=0;7)=0, Ay({=0;7)=1, A3(é=1;7)=0,

(6)
(7)

Ay(ET=0)=1, |A4&7=0)|<1.

d_§ = aAzA y d_§ = - aA1A3, d—g = - aA2A1
(10
A1(0)=0, A,0)=1, As1)=0. (12)

Note that these equations do not contain the pararoetes.,
stationary solutions do not depend on the detunings of the
group velocities (in the normalization of the variables
adopted herne

Assuming thatA; = a;exp(¢;), wherea; and ¢; are the

In order to derive the conditions for self-excitation of self- real-valued amplitude and phase, and separating the real and

oscillations we start with the initial stage in the developmentimaginary parts irf(10), we arrive at the system of equations
of an instability, when the amplitudes of the signal and idler

waves are small and depletion of the pump wave still has no
effect. PuttingA,=1 in Egs.(5), we obtain

da;

de (12)

aa,as cosd,
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dy/dz Whena>3m/2, there appears an additional solution, ac-
cording to which the pendulum performs three-fourths of a
{ complete revolutionpath 2 in Fig. 1). The solution corre-
¢ 7 14 sponds to the second natural mode. Asincreases, new
I 2/ stationary solutions corresponding to higher modes appear.

The conditions for self-excitation of such modes were found
in Sec. 2. These solutions can be written explicitly:

FIG. 1. Phase portrait of the nonlinear oscillat@6). Pathsl and1’ cor- =2 ; .

. . =Zarcsimmsnz;m)),
respond to stationary solutions for the fundamental mode, and th& piath i 1 n( )
the second mode.

a;=msn(z;m),
a,=dn(z;m), az=mcn(z;m), (17

where sn(--), cn(---), and dn(--) are Jacobi elliptic
da, functions, andn=sir’(¢/2), n=0,1,2 . .., with ¢, deter-
dg - @23 cosP, 13 mined by the equationv=(2n+ 1) K[sir(¢/2)]. Obvi-

ously, in view of the invariance of Eq6) under the trans-
dag (14) formation ¢— —¢, to each solution in (17) there

L D . . .

dé @28, COST, corresponds a solution of opposite polarity. The phase paths
in Fig. 1 that originate in the lower half-plarie.g., the path

d® _ o Q82 | 283 %A sind (159 1) correspond to these new solutions.

dé as a a; ’

where® = ¢,— ¢;— ¢3. The exact solutions of the system

of equations(12)—(15) are well known(see, e.g., Ref.)2 4 RESULTS OF COMPUTER SIMULATION AND DISCUSSION
The unique property of the problem is that the boundary

conditions(11) are set at the different ends of the system. We  The analysis done in Sec. 3 makes it possible to find the

write Eq. (15) as follows: exact solutions describing steady-state oscillation modes.
However, it is still unclear which of these regimes actually
di) - Mta ® sets in as a result of the transient proc&s®l whether such
dé dé ' regimes set in at gll To answer these questions we are

Integration of this equation with allowance for the boundaryf0rceéd to turn to direct numerical integration of the time-
conditions yieldsa, a, a;sin®=0. Since this equality is dePendent equations.

valid for all values of¢, nontrivial solutions correspond to € Solve Egs(5) with the boundary and initial condi-
sin®=0. Thus, in a steady-state regime the phases of thEonS (6% and (7), we use the second-order Lax—Wendorff
interacting waves are found to be synchronized. method? with the time and space step sizes related by the
From Egs.(12) and (13) we can obtain one more con- formula A7=A¢£/2. Calculations show that the selection of
stant of motion: N~100, whereN=1/A¢ is the number of steps in the dif-
) ) ) ) ference scheme in coordinate, ensures good accuracy of the
aj(é) +a3(é)=aj(0)+az0)=1. results(except for the range of parameters for whicke1;

for more details see the text belpwNote that any finite-
difference approximation actually amounts to passing from
the distributed system to a chain NMfelements, which has a

Assuming thaia, =sin(/2) anda,=cos@/2) and substitut-
ing these quantities ifiL4), we arrive at the pendulum equa-

tion large but finite number of degrees of freedom.
d? _ For the sake of simplicity we limit ourselves to the case
d—22+5|n =0, (16)  where the amplitudes of the interacting waves are purely
real. Here we have sih=0, i.e., the phase path belongs to a
wherez= a¢, with the boundary conditions manifold on which stationary solutions are realiZede Sec.

o _ B 3). It can be shown that if this condition was met initially, it
$¥(z=0)= dy(z= 2)/dz=0. will remain valid at any subsequent moment in time, i.e., the
The phase portrait of Eq16) is depicted in Fig. 1. The manifold sin®=0 is invariant.
solutions we are interested in are portions of the phase paths The system in question has two simplifying parameters:
that begin at the vertical axis and end at the horizontal axishe parametew, which measures the extent to which the
Thus, we must find the solution in the form of periodic os- system departs from equilibrium, and the parametaevhich
cillations with a periodl =4« (the pathl in Fig. 1). Allow- is the detuning of the group velocities. First we turn to the
ing for the expression for the period of pendulum oscillationsanalysis of one-parameter dynamics. We describe the se-
(see, e.g., Ref.)7we find thate=K[sir?(/2)], whereK is  quence of bifurcations observed asincreases with a con-
the complete elliptic integral of the first kind, witly,  stant valueu=0.1.
=iy(a). Since K>/2, the solution exists fora> /2, For a< /2 the only stable state of the system is given
which agrees with conditions for self-excitation establishedoy the trivial solutionA; ;=0 andA,=1. In phase space this
in Sec. 2. corresponds to an equilibrium state in the form of a stable
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A3(§=019 A123(8)
1.5 15
a b

1.0t 1.0 2

FIG. 2. Time dependence of the output-signal ampli-
3 tude Az(¢=0) in the process of the establishment of

oscillations(a), and the steady-state distributions of the
wave amplitudegb) atu=0.1 anda=2.0.

0.5} 0.5¢

0 5 10 15 20 T 0 0.2 04 0.6 0.8 £

node, which we denote b@. Self-excitation of oscillations creases(Fig. 3). The oscillations are due to the retarding
occurs ata= /2, which agrees with the results of Sec. 2. nature of the internal distributed feedback, their period is
Here the equilibrium stat® becomes a saddle point and close to the time lag/v,+/v3, which in the normalization
there appear two nontrivial equilibrium sta@s that corre-  of variables adopted here is equal to two. In the process, the
spond to the stationary solutions for the fundamental mOd%quiIibrium state<C* change from nodes to foci. For large
found in Sec. 3. These equilibrium states are symmetric UNanough values of the stationary distributions of the ampli-

der _the trans_formationAl—> —A andAs— _A%' Figure 2_ tudes are close to the solutions that correspond to the motion
depicts the time dependence of the output-signal amplltudglc the pendulum along the separatrisee Sec. B A,

o e ot =18 and Ay~ eclut. AL 156 he maniod s,
P y J close onWs. As a result of this bifurcationV, begins to be

when « is only slightly larger thanr/2. Obviously,C* are h _ N .
equilibrium states of the stable-node type. The saddle-poirﬁlttra,Cted byC anqu bY c N The curves .corres.pondmg
equilibrium stateO has a stable manifolaV, and a pair of to th|§ case are depicted .|n Fig. 4. As the bifurcation param—.
symmetric unstable manifold&™ , with W." attracted taC* eter increases, the transient process becomes more compli-
and W, to C~. Thus, the initial perturbations determine cated, which is due to the distributed nature of the system,

which of the two stable states is realized after the transierit€., the occurrence of an ever-increasing number of natural
process terminates. modes. However, the stationary state corresponding to the

As the control parametar increases, the transient pro- higher modes are found to be unstable, and as a result of
cess acquires an oscillatory character and its duration incompetition only the fundamental mode survives.

A3(§=01 A123(8)
1.5 L5 ]
a b
1.0f 1.0
2
FIG. 3. Time dependence of the output-signal ampli-
tude A3(¢=0) in the process of the establishment of
oscillations(a), and the steady-state distributions of the
wave amplitudegb) atu=0.1 anda=4.0.
3
0.5¢ 0.57
0 5 10 15 20 0 0.2 04 0.6 0.8 ¢
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A3 (E=01 A, 4(§)
3 2
a b
2}
1
1 2
FIG. 4. Time dependence of the output-signal ampli-
tude A3(¢=0) in the process of the establishment of
oscillations(a), and the steady-state distributions of the
0 0 | wave amplitudegb) atu=0.1 anda= 6.0, after which
3 bifurcation of the formation of a separatrix loop oc-
curred.
-1 oy
-1 !
~2t
-3 " ~2

Fi_nally, ata~8.19, the_mo_tion becomes chaotic. Figure A= hA% — 1A, — AsA;,

5 depicts the temporal realization of the process and the pro-

jection of the strange attractor restored by the Packard— A;=hA] —v,A,+AA7,

Takens method. Note that the attractor and the sequence of A — At ALA* (19

. . . 3™ 3 172

bifurcation preceding the appearance of the attractor demon-

strate an analogy with some well-known finite-dimensional

systems, in particular, with the Lorentz sysfem which differ from (18) only in the fact that the second equa-
tion has an additional nonlinearity and that the wave ampli-
tudes are, in general, complex-valued. In E49) the waves

: . . A, , are excited due to a parametric process, with the param-

X=o(Y=X), Y=rX=Y=XZ, Z=-bZ+XY, (18  gh proportional to the amplitude of the pump wave, which
is assumed fixed. The coefficients , determine the linear
decay of the waves. At the same time, the wave patrticipate in

wherer, o, b are parameters, and with equations describinganother resonant interaction, in the process of which a quan-

the decay limitation of parametric instability: tum of waveA, decays into quanta of the waveés ;. This
A3(§= O,T) As(o.f)
3 2
a
2.
1
1
0 FIG. 5. Realization and projection of the phase portrait
0 corresponding to the strange attractor @y 0.1 and o
=10.0.
-1
-1
-2
-3 -2

0 80 160 240 320 r -3 2 -1 _ o0 1 2 3
A3(0,r-Ar)



1020 JETP 89 (5), November 1999 T. V. Dmitrieva and N. M. Ryskin

However, in chaotic regimes, where the wave amplitudes
undergo strong oscillations, states with rapidly varying
phases arise and the synchronization of the phases is vio-
lated. Here the phase path jumps off the manifolddsi#0

and then jumps on. Note that the systéi®) behaves in a
similar manner, as noted by Pikovsk

5. CONCLUSION

Sk Our results prove without any doubt that in a system of

three parametrically coupled waves one of which propagates
counter to the other two, chaotic self-oscillations of a deter-
ministic nature can develop. Of special interest here is the
fact that although the system under investigation is of dis-
FIG. 6. Line of formation of a separatrix lodpurvel) and the boundary of ~ tributed type and is characterized by an infinite number of
transition to chaogcurve2) in the «,u plane. degrees of freedom, its dynamics is close to that of some
finite-dimensional systems, in particular, the Lorentz system,
which is a standard model of nonlinear dynamics. The reason
decay process leads to saturation of the parametric instabils that three unstable stationary states play the main role in
ity. The application of the system of equatiofis9 to a the organization of complex dynamics: the zero s@tand
number of problems in plasma physics has been discussed liye nonzero state8*, which correspond to the lowest natu-
Pikovski et al® ral mode and are symmetric to each other. The higher natural
As in the finite-dimensional systems mentioned earlier, anodes affect only the initial stage in the transient process,
strange attractor appears before the equilibrium st@tes and the corresponding stationary states are not realized.
lose their stability. Thus, within a narrow range of values of ~ Note that the rapidity of the transition to chaos observed
the parameter, stable stationary states and chaotic motionin the given case is not typical of distributed self-oscillating
coexist, and when the value ef increases smoothly the systems with counter-propagating waYeshere a different
transition to chaos is accompanied by hysteresis. This cascenario is more common, namely, a gradual loss of stability
easily be verified by fixing the initial conditions in a form by the steady-state regime through self-modulation due de-
close to a stationary solution. For instance, witk0.1 a  layed internal feedback.
strange attractor is born at~8.19, andC™ lose their sta- The work was sponsored by the Program of Basic Re-
bility at «~8.27. For the Lorentz system, in the most thor-search at Russian Universities.
oughly studied case af=10 andb=8/3, a strange attractor
is born atr ~24.06, and the stationary state loses its stability*’E-mail: ryskin.np.sgu@oda.ssu.runnet.ru
at r~24.74 (the closure of the separatrix loops occurs at
r~13.92).
For other positive values af, the dynamics of the sys- yu. N. Neimark‘and P. S. Land&tochastic and Chaotic Oscillations
tem is similar, although the bifurcation values of the param-zKIUWer sicademic, Dordreci (1992 Hlati -
’ M. I. Rabinovich and D. I. TrubetskoWscillations and Waves in Linear
eters change. Figure 6 depicts the boundary of the transitionand Nonlinear System&luwer Academic, Dordrecht1989.
to chaos and the line of formation of a separatrix loop in the*M. g- VinogrEdO\I/(a, (l\)/i V. RUtlienko, A. P. Sukhorukdwheory of Waves
plane Of. parameters andu. _I—!owever, asi—0, the v;.alu.e.of ‘%n Neissﬁgk Sﬁdak. |§§Egm|§\?,o'2h'. KSp. Teor. Fiz.109 774 (1996
a at which there is a transition to chaos tends to infinity. A [;e7pg2 416 (1996].
similar situation takes place in the Lorentz system whken 5N.S. Ginzburg and A. S. Sergeev, Radiotekh. Elekttbtoscow) 33, 580
tends tob+ 1. Thus, chaotic oscillations are possible only if 6(1988- _ ,
the group velocity of the pump wave is smaller than that of Bé:i.nTr'\uAk:le(tskzcz\é)ar;d(fé;é Chetverikov, Izv. Vyssh. Uchebn. Zaved. Prikl.
the idler wave. Note that in the region where<1 holds one  7g "z sagdeev, D. A. Usilov, and G. M. Zaslaviskilonlinear Physics:
is forced to increase the number of steps in the difference From the Pendulum to Turbulence and Chalarwood Academic, New

scheme substantially to obtain satisfactory accuracy of the,York (1988. _ _ _
calculations D. Anderson, J. Tannehill, and R. Pletch€gmputational Fluid Mechan-

. . . ics and Heat TransferHemisphere, New York1984). .
Studies of the dynamics of the system in the general casep. s. pikovski, M. I. Rabinovich, and V. Yu. Trakhtengerts, Zhksp.

where theA,; are assumed to be complex-valued have shown Teor. Fiz.74, 1366(1978 [Sov. Phys. JETR7, 715(1978].
attracted, in the transient process, to the manifoldbsi0, Physics, USSR Academy of Sciences, Gb(ko82.
i.e., the phases of the coupled waves become synchronizettanslated by Eugene Yankovsky
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ERRATA

Erratum: Nonmonotonic behavior of the superconducting transition temperature
in bimetallic ferromagnet—superconductor structures [JETP 86, 930-942 (May 1998)]

Yu. N. Proshin and M. G. Khusainov

Kazan State University, Kazan, Russia
Zh. Eksp. Teor. Fiz116, 1882 (November 1999

[S1063-776(99)02711-0

Regrettably, the authors of this paper erred in the numerical analysis of(&)s.(37), and (41) for F/S junctions.
Nevertheless, the qualitatively different variants of the behavior of the curvgg) shown in Fig. 1 are obtained but for
somewhat different values of the parameters of the theory.

An accurate numerical solution shows that the values of the parameters in Fig. 1 shouldrbe @5, 2 7;=0.5,
1s=200 A, Nyve=N;v;; b) 04=10, 27=0.7,1,=300A, Ngvs=0.2N;v;; C) 0s=4, 21 7:=3, ;=200 A, Ngvs=N;v;;

d) 04=18, 2 7:=5,1,=300A, Nyvs=0.5N;v;. In addition,ds=500 A andé,,=400A everywhere.

Accordingly, for F/S superlattices phase diagramfigd;) similar to those in Fig. 2 occur for the following values of the
parameters of the theory:) ar;=0.7, 27;=0.5, |;=200A; b 0,=10, 2~=0.5, 1,=200A; 9 ¢,=0.5, Ar=5,
1,=200A; d 0,=2, 21 7;=5,1,=300A. In addition,ds=500A, £,,=400A, andNgvs=N;v;.

These corrections alter neither the main text of the paper nor our results and conclusions.

Translated by M. E. Alferieff

1063-7761/99/89(11)/1/$15.00 1021 © 1999 American Institute of Physics
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Investigation of the antineutrino angular distribution in experiments on the B decay
of polarized neutrons

G. G. Bunatyan*)

Joint Institute of Nuclear Research, 141980 Dubna, Moscow Region, Russia
(Submitted 25 March 1999
Zh. Eksp. Teor. Fiz116 1505-1522November 1999

Since the emission of rays unavoidably accompanigsdecay, the final state after thigzdecay

of a neutron includes a photon along with a proton, an electron, and an antineutrino, i.e.,

four particles, rather than three. Therefore, when only the electron and proton momenta are
detected and the-ray momentum is not detected in an experiment, the antineutrino

momentum cannot be uniquely reconstructed, and only its mean value gveayamomentum
distribution determined from corresponding calculations can be consideredy fys

are significant for finding the asymmetry paramegeof the antineutrino angular distribution

from experiments on thg decay of polarized neutrons, where the electron momentum

p directed along the axis and the projection of the proton moment&ponto thex axis are
detected, and the neutron polarization vedas parallel or antiparallel ta. Since they

rays are not detected in such experiments, the antineutrino kinematics are not uniquely specified
by the observablep and P, and can be reconstructed only on the average, so that the
antineutrino momentum distribution averaged ovey-imy momentum distribution is considered.
Thus, the exact value @ cannot be obtained from these experiments, but the true value

of B can be estimated on the average by considering the itmeast likely) value(B) and the
dispersion(rms deviation AB. The unavoidable uncertainty in the estimateBoaAmounts

to several percent and is thus significant for present-day experiments, which are intended to obtain
the value ofB to a very high accuracy of (0.1-1)%. If electromagnetic interactions are

taken into account, measurements of the electron and proton momentum distributions can also be
used to obtairg,, i.e., the axialB-decay amplitude, to high accuracy. 999 American

Institute of Physicg.S1063-776(99)00111-7

1. INTRODUCTION characteristics oB decay to within~(0.1—1)%, 3there is

no basis to assume that it would be reasonable to neglect the

There has recently been growing interest in achievingy rays in obtaining the value d&.3
highly accurate knowledge of the characteristics of neugon Our professed goal is specifically to represent the influ-
decay, above all the neutron lifetime(Ref. 1) and, in the  ence of the electromagnetic interactions on the electron, pro-
case of polarized neutrons, the asymmetry parameter of then, and antineutrino distributions studied in Ref. 3 and to
electron angular distributioA (Ref. 2 and the correspond- establish the accuracy that can be achieved in describing the
ing parameter for antineutrinoB (Ref. 3 relative to the antineutrino angular distribution in the experiments in Ref. 3.
neutron polarization vectd. The value ofA can be obtained An accurate description of semileptonic processes requires
in a simple manner from the experimentally observed electhe unequivocal establishment of the characteristics of neu-
tron angular distribution, while obtaining the value®fis a  tron 8 decay, particularlyB, to high accuracy with proper
far trickier matter, since there is no way to directly measureallowance for electromagnetic interactions.
the antineutrino angular distribution. The idea behind the ex-
periment in Ref. 3 for obtaining the value Bforiginated in
the distant past. It was back in the nineteen-sixties when
- NEUTRONS WITH ALLOWANCE FOR ELECTROMAGNETIC

method was proposédor determining the value oB by INTERACTIONS
treating experimental data on the electron and proton angular
distributions. It was assumed that the antineutrino kinematics It is presently perfectly clear that exact knowledge of the
can be uniquely reconstructed if the electron and proton moeharacteristics of semileptonic decays is of great importance
menta are given. However, this claim would only be rigor-for the theory of elementary particles, which imposes a series
ously true if there were no emission ¢frays, which, as we of rigorous constraints on the parameters entering into semi-
know (see, for example, Refs. 5%8inavoidably accompa- leptonic interactions. Of course, the validity of the relations
nies B decay. Of course, the need to take into accountthe following from the theory must be carefully verified in order
rays is only a question of the accuracy which is required tdo assess with complete confidence the limits and the accu-
obtain the value oB by processing the experimental data. racy within which the basic principles of the present-day
However, inasmuch as we are dealing with knowledge of theheory are valid. In this sense, in fact, we have no choice but

a. DESCRIPTION OF THE g DECAY OF POLARIZED

1063-7761/99/89(11)/10/$15.00 811 © 1999 American Institute of Physics
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to compare experimental data obtained to high accuracy witthe other parameters appearing in the semiweak interaction
the results of systematic theoretical calculations based on th&). Below we shall consider only neutrghdecay.
description of weak interactions following from general field Thus, if there are experimental data that were obtained to
theory. high accuracy~0.1%, regarding the neutron lifetihand

The effective Lagrangian describing tBalecay of bary- the momentum distribution of the particles in the final
ons with allowance for electromagnetic interactions can bestate?® our task is to systematically calculate these charac-
representedsee, for example, Refs. 9—)lih the form teristics according t¢1)—(3) and then to compare the results
of the calculations with the experimental data and thereby

Lin=LeteiwtLey Loy, @ obtain reliable, highly accurate values |8f,4 and the am-
where plitudesg(q) in (2). When the nucleon mass is assumed to
G be infinite M —x), gy(0) andg,(0) are known to be the
Loen ()= — (D) v4( 1+ +5 SOV o X main factors determining the probability ¢f decay, while
sreiwX) V2 (Y)Y (1+77)4,(20) Vei(x) consideration of otheg amplitudes, the finite nature of,
5 B 5 B theq dependences af,(q) andga(q), and the electromag-
X[Ya9v(A) + GwmO oy T ¥ (¥494(Q) netic interactions(3) causes small corrections to it. Of
+g|Ban)]q,Bi(X) 2 course, the accuracy to which the physical quantity must be

obtained determines the importance of taking into account
is the baryon-lepton\(—A) weak interaction, and, is the  the various corrections. In this study we consider only the
momentum transferred in thé-decay process. The expres- effect of the electromagnetic interactions on the momentum
sion distributions of the particles, especially the antineutrinos, in
— the final state after the decay of polarized neutrons, ignoring
Ley(X) =~ €4e(X) Y the(X) A (X) ) all the other corrections, which may also be important. We
describes the interaction of an electromagnetic field with lep¥ecall that corrections due to the finite value of the nucleon
tons, and similarlyLg,, describes the interaction with bary- mass were thoroughly investigated in Ref. 14.
ons. The notation ir2) and (3) corresponds to the notation When electromagnetic interactions are properly taken
adopted in Ref. 9, but here the indBxspecifies the type of into accounf the probability of the decay of polarized
baryon, and we choose units with=c=1. In addition, neutrons, which is accompanied by the emission of an elec-
Wgi(x) and W (x) are the baryon fields in the initial and tron with energy-momentume(p), an antineutrino in the,
final states, andse, #,, andA, denote the electrotposi-  direction, and ay photon with energy»=Kk less than a cer-
tron), (antjneutrino, and electromagnetic fields, respectively tain given valuek, (ksk,<A—g), can be represented in
As for go(0), by analogy with Ref. 10, we sea(0)  the form
=1 for neutron decayand g\z,(O)=O for the strangeness-
. + 0 + dW(87p1nV7km7§)
conserving decay proces™ —A°+e*+v(v)+y]. Then,
as we know(see, for example, Refs. 9-11he amplitudes
Gis in (2) for various semiweak decays associated with defi-
nite i —f quark transitiongu—d, s—d, b—d) can be rep-

—aw I exel (e k
= WEGXF[‘ A, Km) ]

resented in the form X{Wo(e,p,Km,9v 9a)
Git =G| Vif]. (4) (V- HWye(e,p,km,Ov,9a)
Here Gg=1.16639(2)< 10 °GeV ? can be determined +(n,- YW, (&,p,Km,9v,9a)
from the muon lifetimé? and the Cabibbo—Kobayashi—
Maskawa(CKM) matrix elementd/;; (Ref. 13, which mix (1, V)Wy,(2,P.Kn Gy Ga)}- ®)
different quark states, satisfy the unitarity relation Here & is the neutron polarization vector, and the following
) ) ) notation has been introduced:
[Vud >+ [Vsd >+ [Vpdl*=1, 5)
. . 1 - 2a 2Ky 1 p+te
which should hold exactly within the standard motfe! ﬁ:?;%ln greap ,%:Vln m -1,

Thus, any deviation from the identit$) following from an
e_xpgr_iment, no matter how smtall,_would be pf_fundamen_tal Wa=W2[1+Ea(8,p,km)]+Ca(gv,gA,S,D),
significance and would clearly indicate a definite contradic-

tion in the basic principles of the present-day theory of el- a=0, v¢, vé, v,

ementary particles. The main, decisive contribution to the 0o_ 2 2 0 _

left-hand side of Eq.(5) stems specifically from the Wo=0y+30a,  Wye=20a(Gv—0n),

strangeness-conservingi—d  transition: |V, 4~0.9744 ngz 2ga(gy+da), Wo,=g2-g2,
+0.0010, as can be corroborated, for example, by Refs. 1 5
and 12. In fact, the accuracy to which the valud\sf,| can ~ Gug , , d _

_ ; ; L dw=—mepwiyde —, w, =A—¢,
be established guarantees the accuracy to which the identity 2 4

ne
71_ L
(5) is valid. It can be assumed that a thorough investigation
of neutronB decay will permit the reliable, highly accurate A=M,—M
determination of the CKM matrix elemet¥ 4, as well as

b= ()

n=l =
p» e p
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The exponential function ekg/(e,ky,)] in (6) corrects the
infrared behavior of the decay probability:
dW(e,p,n, ,ky,&—0 as the cutoffy-ray energyk,— 0.
According to the general theoy® this means thaB decay
is impossible without the emission of infrarésbft) y rays.

G. G. Bunatyan 813

is still highly desirable to include other characteristics@f
decay along withrandA, especially the antineutrino angular
distribution relative to the neutron polarization vectér
along with the angular correlations between the electron and
antineutrino escape directions, which appea¢Gnand (10)

For the purposes of the present work there is no need tas the coefficient® anda of (n,-§=cosé, and (,-v)

represent the expressions forand C,® which are multiples
of the fine structure constaat in explicit form.

After plugging in the maximum valu&,=A—¢, the
expression(6) gives the corresponding decay probability,
which takes into account all the rays that are possible for
some given value of. Clearly, the quantities

_ W, e(&,p,Km:9v,9a)
Wo(S,p,km,gV,gA) ,

_ va(sipvkminggA)
W0(87p!km7gV=gA) ’

_ WVV(S!pikm!gV!gA)

a_
WO(E,p,km 1gV 1gA)
describe the asymmetry of the electrak) (and antineutrino

8

=v cosé,,, respectively. The inclusion of these characteris-
tics in the treatment is useful both in rechecking the accuracy
to which the quantitiess, 4, ga, 9;p, andgyym in (2) are
determinedsee Ref. 1§ and in ascertaining just how rigor-
ous the general expressi@B) is. As stated in Ref. 17, ac-
cording to the ideas in Ref. 18, if the experimental valu® of

is known to within~0.1%, it is useful for testing whether
the weak interactions can be left—right symmetric on the
Lagrangian level and whether parity breaking results exclu-
sively from the spontaneous breaking of this symmetry. As
stated in Refs. 17 and 18, if the value®fwere determined

to such high accuracy, it would be possible to find the mag-
nitude of an admixture to the Lagrangié?) with the same
transformation properties &2) but differing from(2) by the
replacementy®>— — »°. Thus, the problem is to verify the
possibility of a contribution of right-handed currents to the

(B) angular distributions, as well as the electron-antineutrincsemiweak interactions and to estimate the bound on the mass

angular correlationsa). Note that if the proton mass were

of the right-handed gauge boson associated with tHe®f.

not assumed to tend to infinity, none of the resultantcourse, this whole idea only makes sense when the value of

effects—proton recoil, thg dependences af, andg,, and
the contribution of the terms witlgyy and g;p in (2—
would alter the general form of the expressi@); the cor-
responding corrections to the quantitié3 were calculated

B is extracted from experimental data to an accuracy of
~0.1%, for which consideration of the electromagnetic in-
teractions is absolutely necesséry.

Obviously, establishment of the value Bfin (6) and

in Ref. 14. Of course, when all the corrections just cited arg10) requires determination of the antineutrino angular dis-

omitted, the quantitie8) take the usual well-known forms

:ZQA(QV_QA)
° gut3ga
:ZQA(QV+ ga) _ 95— 9a )
0 gvt30a 0 gyt+30a’
and the expressio(6) becomes
dn, 5
dW(e,p,n,,&)=dw 477(gVJrCSgA){lﬂL(v-g)AO
+Bo(n,- & +ag(n, V). (10

After the substitutionk,,=A—¢ and the integration of6)
over dpdn,, we obtain the total probability of neutro@
decay,W=1/7. Then the first relation for determining the
quantities appearing if2), particularly|V,4, follows from
the requirement of equality between the calculated lifetime
and the experimentally measured vatu€he experimental
value ofA (Ref. 2 is obtained by studying the electron mo-

tribution, which corresponds to the expressiéhintegrated
over the electron momentudp, in which the terms with the
coefficientsA anda vanish. However, it is totally impossible
to observe the antineutrino angular distribution directly in an
experiment, because there is no way to detect antineutrinos.
An extremely clever and pretty way to successfully cir-
cumvent this problem was apparently found a long time ago
in Ref. 4.

3. ELECTRON AND PROTON MOMENTUM DISTRIBUTIONS
AND THE ANTINEUTRINO ANGULAR DISTRIBUTION

Usually, any time we think about thg-decay process,
we have in mind its description specifically by E¢®)—(10),
but these expressions by themselves are not applicable to
obtainingB from experimental data. To describe the electron
and antineutrino distributions in the final state of fhdecay
of polarized neutrons, the relatio®)—(10) are clearly ob-
tained from the total decay probability by integrating over
the proton andy-ray momenta. Such distributions would cor-

mentum distribution, which corresponds to the expressionsespond to an experiment in which the protons gnchys
(6) and(10) integrated over the antineutrino escape directionemitted are not detected at all, i.e., we would be dealing with

dn,. In that case, of course, the terms with the coefficiénts
anda in (6) and(10) vanish. The relation definingy, is then

a decay probability which includes protons apdays with
all the momenta that are feasible for a givdpdn,. In

obtained by equating the calculated and experimentally obexperiments in which the value #fis obtained, we observe

served values of (8).2

only the electron momentum distribution without detecting

No matter how accurate the experimental measurementie antineutrinos, i.e., taking all feasible antineutrino mo-

of randA (Refs. 1 and Rand their theoretical calculation,

menta into account. This observable distribution is described

even with inclusion of all the corrections discussed above, iby the expressiofb) integrated ovedn,,, which should then
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not observed at all. When the energys fixed, P, varies in
the range

Pl = (A—e)<Py<[p|+(A—e). (11)

For clarity, the quantityP, in (11) and below represents

the x component of the proton momentum with the opposite
: sign, as in Ref. 3, i.e., the quantiB,>0 appears in Fig. 1.

If we momentarily ignore they rays and neglect the kinetic

energy of the proton in view of its large mass, then the an-
! tineutrino energyw o and the cosine of the angle between
l the x axis and the antineutrino escape directisee Fig. 1

are clearly given by

P —
w,=A—g, Yo=c0s0,, =— P . (12)
pv w0

FIG. 1. In the real experiment in Ref. 3 the measurements consisted
of counting the number of events with given valuepaind
P, and a neutron polarization vectéiparallel or antiparallel

contain only the term proportional to{£A. To obtain the to thex axis. What was measured in this experiment is the
value ofB, i.e., the coefficient ofif,- € in (6) and(10), an probability of 8 decay of a polarized neutron when the elec-
experiment in which, conversely, the antineutrino angulatron momentum equalp and the projection of the proton
distribution is measured without regard to the proton, elecinomentum onto thex axis equalsP, regardless of the an-
tron, andy ray momenta would have to be set up. Thus, aftefineutrino andy ray momenta, as well as the projections of
integrating the expressidi6) overdp, the terms withA and  the proton momentum perpendicular to thexis. We can
a vanish, and only the term proportional to,( £ B remains.  thus obtain the electron momentum distribution together with
However, it is known that this desirable experiment is infea-the distribution of the values d?,:
sible, since it is impossible to detect antineutrinos, and for-
mulas(6) and (10) are consequently useless for directly ob- AW, Px,p) =We, Py, p)dp dPy, (13
taining the value oB from experimental data.

In order to have the antineutrino angular distribution atthe contributions of antineutrinos; rays, and protons with
our disposal without detecting the antineutrinos themselvedll feasible momenta being included therein. In EB) and
we need the electron, proton, apdtay angular distributions; below z=+ for neutron polarization parallel to the and
the original neutrons are assumed to be at rest. The electrw — for polarization in the opposite direction.
momentum can be determined in present-day experiments The overall expression for the probability gfdecay of
directly to high accuracy,while a simple method for mea- @ polarized neutron when the electron carries momergum
suring the proton ang-ray momenta is presently impossible @nd thex component of the momentum of the proton equals
in practical terms. Thus, the situation can appear to be hopd2x. @nd the event is accompanied by the emissioty adys
less when we try to determinB from experimental data. With all energieso=k=|k| less than a certain given value
However, despite how complicated this problem seems, thém: k<km<A—e¢, can be derived using the Lagrangian
investigations in Ref. 4 suggest a way to solve it. A method1)—(3) in the same manner &6) was obtained in Ref. 8:
was proposed in those papers and subsequently in Ref. 3, and
a corresponding experiment was carefully developed to re-
construct the antineutrino kinematics and to consequently
obtain the value oB (8) in (6) from measurements of the
electron momentum distribution and the distribution of the  wz(p, p k) =exd #(&,ky) KW 1+ Co(p,Km)]
values of the projection of the proton momentéponto the

W VA
WA Py, p,Km),

dW?(Py,p,Km) =dPy o

X axis, to which the neutron polarization vector is parallel or +Co(Pyx.P.0v,ga) + (VE{WS[ 1
antiparallel(see Fig. 1L The setup of a real experiment was ~
carefully spelled out in Ref. 3, and we merely recall here that +Cye(P.km) 1+ Cye(Py,p.9v.9a)}

in its idealized scheméshown in Fig. 1, which is perfectly

+w8 zyo[1+C, (P, ,p.k
adequate for our purposes, the detected electron momentum e 2¥ol 1+ Ce(P,pikm)]

p is directed strictly along thg axis, the polarization vector +vw zyo[ 1+ C, . (Py P Km) ]
& of the stationary neutron is also strictly parallel or antipar- v !
allel to thex axis, and the projection of the proton momen- +2C(Py,p,9v,9a)}- (14

tum P, onto thex axis is detected in coincidence with the _ _
electron momentunp, while the components of the proton For the purposes of the present work there is no ne~ed to write
momentunP perpendicular t, as well as all theyrays, are  out the detailed explicit expressions for the functiéhsnd
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C, which are multiples of the fine structure constantlf

kn,=A—¢g, the expressioril4) represents the experimental

distribution (13). Instead of using13) directly, it is more
convenient to process the experimental #atasing the
guantity

G. G. Bunatyan 815

_ W;—xp( Px.p)— We_xp( Px.p)
Wl Px,P) + Wy Py,p)

With consideration of14), the quantity defined by15) can
be represented in the form

X (15

N V[WO,(1+Cy) +Cy el + WP, yo(1+Ce,) +vwd,yo(1+C,,) +C

= (16
w[1+Col+Cq
|

Thus, comparing14) with the corresponding experimental
data for(13) and (16) (Ref. 3, we obtain an equatiofin Bozm[wéxp_f0(1+ZAV)_anVyO]-
addition to the ones used in Refs. 1 andd G,q4, ga,-... iN
(2). Thus, the value of 5 obtained in the experiments in Ref.
2 can be verified once agaif. Glawo |

However, in this way the value @, i.e., the coefficient fo 1674 Wo. (19
of (n,-&) in (6) and (10), which we wish to find, cannot
enter into the discussion at all, because integration over aBr as in Ref. 3, in terms o (15):
feasible antineutrino momenta was carried out during the ' '
derivation of(14), and accordingly, the distributiofi3) ob-
served in the experiment in Ref. 3 includes a contribution ~ Bo=[X(1+avye)—Av]/y,. (20

from antineutrinos with all feasible momenta. Thus, we must
find another way that does not empléy4), but properly The value B;=0.9821+0.0040 was given in Ref. 3. Of
takes into account the influence of therays in the process course, we ignored all the uncertainties that inevitably arise
of extracting the value oB from the experimental distribu- in a real experiment because of the sparse statistics, imper-
tion (13) observed in Ref. 3. fect equiipment geometry, etc. This ultimately does not mean
that we must regard the corresponding corrections as being
negligible, but our purpose here is to thoroughly investigate
only the influence of thes rays on obtainind® by processing
the experimental data in Ref. 3. [A7)—(20) we added the
subscript 0 toB to stress that this value would be obtained
Clearly, in a hypothetical simplified case in which the with exclusion of they rays, as in(9) and (10). As we see,
relations(12) are valid, the antineutrino kinematics would be B, turns out to be expressed in termsfgf yqfy, andw,q
uniquely specified by the values pfand P, detected in the [(12) and(19)], which would be known exactly in this case
experiment in Ref. 3. Accordingly, without consideration of for each event with the values Bf andp that were detected
the y rays and under the assumption that the proton mass is the experiment in Ref. 3.
infinite, i.e.,M —oo, the distribution(14) transforms into However, since neutrorB decay, as has been well
d known for a long time, is accompanied by the emissiory of
w - :
dWA(P,,p)=dPy WA(Py,p), rays, the probability of3 decay was measured in the real
2050 experiment in Ref. 3 with given values 8% andp and with
(17) inclusion of y rays with all feasible values of the momentum

k. In describing each individual event the expressionsyfor
while the antineutrino angular distribution takes on the formand  , in (12) undergo the following replacements:

(10). Thus, in this simplified case there would be a one-to-
one correspondence between the distributid®), which de-

4. ESTIMATION OF B FROM THE ELECTRON AND PROTON
MOMENTUM DISTRIBUTIONS

WPy ,p)=w[1+Azv+Bgyoz+ayov],

scribes the experiment in Ref. 3, and the antineutrino angular yo_,y(w)zcosgyxzm' X=C0S0,,
distribution(10), the quantity €-n,) in (10) taking the value @y

of zyy in (17), and the quantitd P,/2w ¢ in (17) replacing

dn,/47 in (10). Then a comparison dfL7) with the experi- Gﬁdwu o

fo—f(w)=

w,0—0,(w)=A—¢e—w,

(21)

mental distribution(13) (Ref. 3 would yield the equation Wo,

167
Wy Px,P) =To(@,0)(1+ZAv)
+fo(w,0)Yo(zBy+av). (18

Accordingly, the coefficient of&-n,) in (10) would be ex-
pressed directly in terms m’réxp (13):

wherew=|k| is the y-ray energy and., is the angle defin-
ing the direction of they rays relative to the axis (see Fig.
1). Thus, to uniquely reconstruct the antineutrino kinematics,
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we would have to know the values af and x associated
with the y rays accompanying each individygidecay event

G. G. Bunatyan

of B-decay events with definite values pfand P, accom-
panied by the emission of rays with all kinematically fea-

with the values op andP, that were detected in the experi- sible values ofw andx, i.e., the integral

ment in Ref. 3.

Of course, for reaBB decay, which is accompanied by the

emission ofy rays, the required coefficie® cannot be ex-
pressed according 1d.9) and(20) in terms off,, fyyo, and

Wéxp(pipx): f dkwéxp(pvpx k) (22

w,0, Which themselves, strictly speaking, do not have rigor-over all feasiblek. The problem is to be able to extract
ous physical meaning. It is then natural to estimate the coefaccurate information regarding the coefficidt(8) in (6)

ficient B in (6) by introducing into the discussion the ex-

pected valuegf) and(yf) of f(w) and f(w)y(w,x) (21),
which replacef, and fyy, in a state with definite values of
P,, p, andz. The values of f) and(yf) must be calculated
by averaging () andf(w)y(w,X) over the momentum dis-
tribution Wzy(Px,p,k) of the y rays accompanying decay
with given values ofP,, p, andz. To estimate the required
value of B [given by (8)] in (6), we must introduce the ex-
pected valugB) in terms of(yf) and(f).

from the  experimentally  observed distribution
ngp(p, P,)dp dP, (13) (Ref. 3. Each individual decay event
with a given value ok appears in the experimental quantity
ngp(p,Px) with its own individual weight and with a prob-
ability Wzy(p, P, ,k)dk of the emission ofy rays with a given
momentumk accompanying3 decay with given values gf
and P,. Thus, (18) can be replaced by a new relation, in
which the experimentally observed quantil\;éxp(p,PX) is
equated to thgg-decay probability averaged with the weight

Recent experiment$iave detected only the total number Wzy( Py,p.K):

JAkWI(Py,p,K) f(w)[1+2Av+2Z(B)?y(w,X)+avy(w,x)]

Wtzaxp(pv Py) =

=(fY3(1+zAv)+{y )4 z(B)*+av), 23)
JdkWi(p,Py k) (B )+ (yHHz(B) +av),
where we have introduced the ordinary averaging notation:
fdk Wi/( Px ,p,k)F(k) féis(uz dwfiidx F(PX ,p,w,X)fg”dqb ny( Px ,p,w,X,d))
= (24)

(F)(Py.p)=

fdkwi/(PX 1p1k)

Here the limits
X1=1—=(A+|p|—e—P)lw=—1,

X;=—1+(A—|p|—e+Py)lw<1

[0~ w? dof2dx[57dd Wi(Py,p,0.X, ¢)

Of course, it would be desirable to calculd®)*(p,P,) di-
rectly with the values ofvg,{(p,P,), from which the value of
By [(19) and(20)] was obtained without consideration of the
v rays in Ref. 3. However, we are unable to calculate
(B)*(p,Py) from Wéxp(p,PX), because these measurement re-

follow simply from the kinematics of the process under con-syits were not explicitly given in Ref. 3. Therefore, we ob-

sideration, the averaged valuesfdfv) andf(w)y(w,Xx) be-
ing independent of the azimuth of the y rays. The value of
P, varies in the rang€ll) for a given electron energy. We
discuss the form of the distributide/(Px ,p,k) and its main
properties somewhat later on. Sirmé/(Px ,p,k) depends on
the neutron polarizationz& +), all the mean value$24)
and (23), in turn, also depend om, being different for the
different polarizationg=+ andz=—.
Thus, we haved23), which replaces the former relation

(18). SinceBy, in (18) is the coefficient oz y,f,, it should be

tain the expected valug)*(p,P,) [and then its dispersion
AB*(p,P,)] from By [(19) and (20)], rather than from the
values ofwg,(p,P,) themselves. The expression @) in
terms of B, can be obtained directly fronil7)—(19) and
(23):

(BY?=2[(1+zAv)(fo—(f)?)
+yofo(av+zBy)]/(yf)*—zav.

As we see, we have obtained two different values of

(25

equal specifically to the asymmetry parameter of the an¢B)* to describe the antineutrino angular distribution for the

tineutrino angular distributioB, (9) in (10), as explained

two different neutron polarizationg= x. Obviously, (25

above. Since we are dealing with the description of a reateduces ta/B)*=By when(f)*=f, and(yf)*=fyyy. Oth-

experiment, the expressid23) defines(B)?, which is the
coefficient of the meariexpected value (yf)? which re-
placesfqyg in (18). Comparing the distributiofi23), which
contains(B)?, and the antineutrino angular distributi¢®),
which containsB (8), we see tha{B)* can be used to esti-
mate the value oB (8) in (6) in the mean, which is now our
goal. According to(23), (B)*(p,P,) can be expressed in
terms of the experimental vaIuesngp(p,PX) (22) (Ref. 3.

erwise, (B)* turns out to be represented in the form of a
function of the expectedimean values of f(w) and
f(w)y(w,x). Thus, in order to assess the accuracy and even
the very possibility of such an estimate Bfusing the mean
value(B)* with complete confidence, we must ascertain the
form that the distributions of (w) andf(w)y(w,x) have in

the vicinity of the most likely(expected values(f) and
(yf), i.e.,, we must investigate the dispersion f¢tv) and
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f(w)y(w,x). Thus, along with the expected valugls and B stated in Ref. 3AB~0.4%, then consideration of thg
(yf) themselves, we must also calculate the rms deviationsays would be superfluous; however, this is not the case in
of f(w) andf(w)y(w,x) from their expected valugs) and  reality.

(yf):

(Af)?=((AF)?)?= ()= ((F)")?,
5. CALCULATION OF (B)? AND AB?; DISCUSSION OF
(Ayf)*=V((A(yf A= V((y)?)*=((yf)»)?  (26) RESULTS

(A(f-yf))y?=(f-yf)>=(H)Xyf)~ The distributionW’(P,,p,k) in (23) and (24) can be

obtained to first order inx according to Ref. 8 for the3

decay of polarized neutrons directly frdi)—(3) in the same
AB?=((AB??)=\(B%)*—((B)?)?, (277 way that the probabilityW,(w) of the emission ofy rays
. » ) ) ] with an energyw was calculated back in Ref. 5 for all fea-

which specifies the accuracy achieved in the estirtieof  gjpje values o, , p, andk/k in the case of the8 decay of

B, can be expressed in the usual mangsee, for example, ynpolarized neutrons. Then, after integrating fhey distri-

Ref. 20 in terms of the quantities i(26) and the derivatives p tion Wf/(Px .p,®,X,¢) over de, which is contained in
a(BY  a(B? (24), calculating the expected valugg? and(fy)*in (23)—
W’ W. (28) (28 reduces to averaging corresponding value$(af) and

f(w)y(w,x) with the function

Thus, the dispersion

Of course, in(26) the expected valued?)?, ((fy)?)?, and

. . 2
(f2y)? are obtained by averagintf(w), [f(w)y(w,x)]?, w?dw dx dpdpr dep W(Py,p,@,X, )
and f?(»)y(w,x) in accordance with{24) with the weight 0
W2 (Py,p.K).
AP P.K) eGql’ 8 1 o,

Thus, the uncertainties in estimating the true valu® of

1
P dx dw dP,dp

in terms of(B)~ stem from the difference betweéB) ™ and T\ ova ) 2m)7 462 [1-xv]?

(B)~ themselves and from the appearance of the dispersion ) 5 5 )
ABE X{(1—x2)ev[v(e+w)(g2+392) +y(w+Vv2e)
The expected valuéB)? is suitable for estimating the Y (02— 021+ 0 (a2 +3a2) + vx(a2 — g2
true value ofB (8) in (6) when the distributions of the values (Gv= g1+ @(gy+ 308 +yx(gy—gn)]

of f(w) and f(w)y(w,x) are “sharp,” i.e., when the ratios X (1= vx)+22ga[ (1= x*)eV[(gy—ga)

Af/{f) and A(fy)/(fy) and, consequentlyAB/(B) for
given values ofP, andp are very smallessentially negli-
gible) compared to the errors entailed in determinBigo a X (1—=vX)[(gy—ga)X+(gyv+aa)Y]]l}- (29
desirable accuracy in Ref. 3. The value of the ratiB/(B) , . ) L .
essentially sets the limit of the accuracy of obtaining theHOWeVer, this expression, in and of itself, is still not appli-
value ofB (8) in (6) by processing the experimental data for c@PI€ directly to the calculation ¢23)—(28) because of the
(13) in Ref. 3. If the distributions of () andf(w)y(w,x) expllt_:lt npnln_tegrable singularity _abﬁo, which leads to

in the vicinity of (f) and(fy) for certain values oP, andp Io_ganthmlc divergence wheii24) is integrated ovedow.

are so spread out thatf/(f)~1 andA(fy)/(fy)~1 and, Since the averaged values tfw) andf(w)y(w,Xx) are not
accordingly,AB/(B)~1, then there will not be any basis for deépendent orx when »—0, we are concerned essentially
estimating the value d8 (8) in (6) in terms of(B)Z. In such onZIy with the _correct behavior of the distribution
a case the antineutrino kinematics and the antineutrino anglf¥»(P,Px;®@,X, ¢) integrated ovedx d¢ at o—0. To sys-

lar distribution(6) cannot be reconstructed from the experi- €matically describe the rays at smalkw, wherea In(A/w)
mentally observetidistribution (13) even in the mean. For =1, i.e., infrared radiation, the processes which involve an

such circumstances and for such value®ofandp there is arbitrarysnumber of “soft” photons must be taken into
no reasonable way to accurately estimate the valu@ (g) account'® In accordance with the method described in Refs.

in (6) using the experimental data in Ref. 3. 9 and 15, the correct behavior of theray distribution at
Thus, we must clearly understand to what limits and to® 0 can be obtained, according to Ref. 8, by making the

what accuracy we are capable of reconstructing the ari©!lowing replacement in29) at w—0:

tineutrino kinematics, having at our disposal only experi- 1 1 (m 1

mentally observetivalues ofwéxp(p, P,) (13) for given val- > m v

X (Ve +w)+(gy+ga)vy(e+w)]+ w?

1o e+p|

m

2a
=— —-1].

(30

w w

ues ofp and P, without detecting they rays. The problem
facing us is therefore to calculate the uncertainties in estimat- It might be appropriate to recall that at such small values
ing B in terms of(B)? and, in essence, to ascertain the physi-of w— 0, wherea In(A/w)=1, we are dealing with the iso-
cal meaning of introducingB)* for given values ofp and  tropic emission of an unspecified, infinite number of “soft”
P,. Of course, if the differenceB™— B, between the cal- photons’*®i.e., the classical emission ¢frays occurs under
culated values oB™ (25) and B, [(19) and (20)] found in  such conditions. Systematic consideration of the emission of
Ref. 3, like the values oAB~ (27), are actually negligible infrared y rays (“‘soft photons”) leads, according to Ref. 8,
for anyp andP, in comparison to the measurement error ofto the multiplier exp#(e,k.,) ] in formulas(6) and(14), and
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TABLE 1. Values of (B)*—Bg)/B, (in percent as a function of: andy, (see the text

Yo

&,
MeV —-0.80 —-0.40 —-0.20 -0.10 —-0.05 0.05 0.10 0.20 0.40 0.80

((B)"—By)/Byg
0.55 0.00 —-0.04 -0.12 -0.28 —0.59 0.66 0.34 0.19 0.10 0.03
0.70 —-0.01 —-0.09 -0.25 —-0.57 -1.20 1.34 0.70 0.38 0.21 0.08
0.80 -0.02 -0.12 -0.33 -0.74 —1.57 1.74 0.91 0.49 0.27 0.11
0.90 -0.02 -0.15 —0.40 -0.90 —-1.90 2.11 1.10 0.59 0.33 0.14
1.00 —-0.03 -0.17 -0.47 -1.05 —2.20 2.45 1.28 0.69 0.39 0.17
1.25 —-0.04 -0.23 —-0.62 ~1.37 —~2.86 3.20 1.66 0.89 0.50 0.24

((B)"—Byg)/Byg
0.55 0.02 0.08 0.17 0.34 0.67 —-0.65 -0.32 -0.15 —-0.06 -0.01
0.70 0.03 0.13 0.29 0.58 1.17 -1.18 -0.58 -0.28 -0.12 -0.02
0.80 0.03 0.15 0.34 0.70 1.40 -1.43 -0.71 -0.34 -0.15 -0.03
0.90 0.04 0.17 0.38 0.79 1.59 —-1.64 -0.81 —-0.40 -0.18 —-0.04
1.00 0.04 0.18 0.42 0.86 1.74 —-1.81 —-0.90 —0.44 -0.20 —-0.05
1.25 0.05 0.21 0.49 1.01 2.03 -2.14 -1.07 —-0.52 ~-0.24 -0.07
then (29) and (30) can also be derived directly by differen- (f(w)y(w))*—=f(0)y(0)=fyy,, (31)
tiating (14) with respect tok,, and then plugging irk,,= A

Z__

—¢ (Ref. 8. (B)*=By

With the distributionWZy(PX,p,k) [(29 and (30)] the
integrals(24) do not diverge, and the values @)*(P,,p)
and AB*(P,,p) can be calculated directly. It is noteworthy Af=A(yf)=AB=0.
that as the fine structure constant: 0, all the values of24)
calculated withWZy(PX,w,p,x,gb) [(29) and (30)] become
equal to the values df(0) found by averaging-(w) at w
=0. In fact, whena=0, the value ob in (30) also vanishes,
and the normalization integral ovdew in the denominator in
(24) diverges logarithmically at the lower limib—0. Ac-
cordingly, if the numerator i24) had a finite value, the
entire expressiof24) would vanish. Expanding the averaged
function in w, F(w)~F(0)+ oF’(0)+..., we seethat all
terms containings make finite contributions to the integral
in the numerator ir{24), while the term withF(0) is exactly pair of values ofy, ande. In these resultsy, varies from

a r_nultlple Of th(.a no.rmallzat|on integral in the denomlnator._0.8 to +0.8, as in Ref. 3. Table | presents the values of
This normalization integral cancels out, and each value of

(24) simply reduces té(0). Thus, ata— 0, we would have (B)* =By
(f(0))*=f(0)=fo, (y(w))*=Y(0)=Y,, Bo

and all the uncertainties would vanish:

Thus, according to its physical meaning, form(@&) would
transform into(19) if « were to vanish, and we would obtain
the result corresponding to the idealized case in whicays
do not enter into the calculation, as assumed in Ref. 3.

The results of the calculation ¢B)* and AB* are pre-
sented in Tables | and II. Table Il shows which valueRyf
corresponds to specific values wf and e. The first row in
each table contains the values yf (12), and the electron
energies(in Mev) are given in the first column. Thus, each
value of the parameters in the tables corresponds to a definite

100, (32

TABLE Il. Same as in Table I, but foAB*/(B)™*.

Yo
&,
MeV —-0.80 —-0.40 -0.20 -0.10 —0.05 0.05 0.10 0.20 0.40 0.80
AB*/(B)*
0.55 0.39 1.53 4.48 10.34 22.01 24.53 12.85 6.96 3.86 1.68
0.70 0.37 2.14 5.92 13.45 28.44 31.82 16.62 9.00 5.05 2.28
0.80 0.41 2.45 6.67 15.05 31.70 35.58 18.54 10.02 5.64 2.64
0.90 0.45 2.70 7.29 16.37 34.39 38.76 20.15 10.87 6.14 2.96
1.00 0.48 2.92 7.82 17.50 36.67 41.51 21.54 11.60 6.56 3.24
1.25 0.57 3.37 8.97 19.74 41.18 47.09 24.34 12.98 7.38 3.82
AB /(B)~
0.55 1.19 3.29 6.47 12.47 24.31 22.99 11.05 5.04 1.96 0.56
0.70 1.01 3.37 7.07 14.04 27.75 27.43 13.38 6.32 2.66 0.65
0.80 0.96 3.40 7.27 14.56 28.85 29.02 14.20 6.77 2.92 0.71
0.90 0.94 3.43 7.40 14.89 29.55 30.13 14.77 7.08 3.10 0.77
1.00 0.93 3.45 7.50 15.13 30.02 30.96 15.18 7.31 3.24 0.83

1.25 0.94 3.51 7.72 15.48 30.68 32.38 15.87 7.61 3.46 0.95
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TABLE Ill. Same as in Table I, but foP, (in MeV).

Yo
&,
MeV -0.80 —0.40 -0.20 —-0.10 —-0.05 0.05 0.10 0.20 0.40 0.80
0.55 -0.39 -0.09 0.05 0.13 0.17 0.24 0.28 0.35 0.50 0.80
0.70 0.00 0.24 0.36 0.42 0.45 0.51 0.54 0.60 0.72 0.95
0.80 0.22 0.42 0.52 0.57 0.59 0.64 0.66 0.71 0.81 1.01
0.90 0.43 0.58 0.66 0.70 0.72 0.76 0.78 0.82 0.90 1.06
1.00 0.62 0.74 0.80 0.83 0.84 0.87 0.89 0.92 0.98 1.10
1.25 111 1.12 1.13 1.14 1.14 1.14 1.15 1.15 1.16 1.18
i.e., the deviations ofB)? (25) from B, (19) in percent. For This result leads us to a clear understanding that there is

example, we conclude from Tables | and Il that Jg=0.2  no significant physical basis to use the experimental data for
ande=1 Mev, B" exceeds8, by 0.69%, while for the cor- small values ofly,|~0.1 to obtain a credible value of the
responding values of andP,, B™ is 0.44% less thai,. asymmetry parametd of the antineutrino angular distribu-
The differences in Table | increase significantly with de-tion. Having at our disposal only the probability of thte
creasing|yy|. It becomes clear from these tables that thedecay of polarized neutrons for given valuespfind P,
differences(B)~—B, and (B)" —(B)~ cannot be consid- without detecting the accompanyingrays, we are able to
ered negligible so long as we are dealing with an accuracy afeconstruct the antineutrino angular distribution only to an
1% or better in the determination &. Thus, the results in approximation, on the average, and accordingly to estimate
Table | are enough convince us that there is no basis tthe value ofB based on the results in the tables to the same
assume that an accuracy 610.4% is achieved in determin- approximation. One can then conclude that the determination
ing B by processing the experimental data in Ref. 3, in whichof B becomes invalid and essentially devoid of any credibil-

vy rays are not taken into account. ity when events corresponding tg,|<0.1 are included in
To continue, the values of the analysis without assigning an appropriate weight to them.
. Processing the experimental data at other than these small
A_B+,1007 (33  values of|y,|, we can claim to obtain a semiquantitative
(B)” estimate ofB to an accuracy of roughly several percent. In

which represent the width B? (dispersiof of the possible the best case it can be assumed that an accuracy better than

distribution of values oB about the expectetinean value 1% can be achieved in reconstructiigfrom the electron

(B)?, are given in Table Il. Of course, having only the ob- and proton momentum_ distributions in Ref. 3 by taking into

servablew?,(p,P,) (13) (Ref. 3 at our disposal, we are not 2cCoUNt only events withy,|~0.8-1.0.

able to estimate the true valueBfto an accuracy better than

AB*(yq,e), as explained above. Howeve.r, as can be S€eR ~ONCLUDING REMARKS

from Table IIl, even the smallest uncertaintia8 for |y,

=0.8 reach~1%, and the values kB rise very quickly We thus have no basis for neglecting the emissiory of

with decreasindy,|, as do the values in Table I. From the rays in finding the value oB, or confirming the very high

data in the tables we conclude that the uncertainties in thaccuracy ot~0.4% in the measurement Bfclaimed in Ref.

estimation ofB due to the large dispersiakB* are far more 3.

significant than those due to the difference betwéBih* It should be clear and should be specially stressed that

and(B) . Thus, it is unreasonable to determine the value othe uncertainties introduced by the undetecjeys in the

B (8) in (6) by processing the experimental data in Ref. 3 forprocess of obtainingg, i.e., the difference$B*™—B~| and

values ofp and P, corresponding to small values pfo|. |B=—B,| and the dispersiotAB?, cannot be eliminated or
Of course, there is nothing surprising in the fact that theeven diminished by improving the statistics in the experi-

guantities in Table | and especially in Table Il increase veryment in Ref. 3 or by skillfully improving any of the existing

rapidly asy,—0. The physical reason for such behavior of experimental equipmenitThe values listed in the tables were

(B) andAB is perfectly clear. In fact, wheyy~0, i.e., when obtained during our analysis, because the antineutrino kine-

|p|~Py, the presence of the termw in y(w) (21) leads to  matics can be reconstructed from the measuremergsaafi

significant values of the ratios/¢yp)/yg and Ayf)/{(yf) P, in Ref. 3 only in the mean, since thgrays were not

for all w, no matter how small. In this case the presence of detected. In any decay event the antineutrino kinematics

rays completely alters the antineutrino kinematics in com-could be uniquely reconstructed if theray momentum were

parison to the kinematics that would be observed in the abdetected along with the values pfandP, . Accordingly, an

sence of electromagnetic interactions. The values(Bf { experiment should be set up to detect triple coincidences in

—Bg)/By andAB*/{B)™, in turn, increase significantly and the decay of polarized neutrons, i.e., events in whicmndx

can even become arbitrarily large || — 0. Of course, un-  (21) of the accompanying rays are detected simultaneously

der these conditions we can say nothing definite about theith p andP, . There would then be a one-to-one correspon-

expectedmean values of these parameters. dence between such an observed triple distribution and the
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The changes in the actigiand thus the vacuum conservation amplitydaghe proper-time
representation are found for an accelerated mirror interacting with scalar and spinor vacuum fields
in 1+ 1 space. They are shown to coincide to within a factoe®fvith changes in the

action of electric and scalar charges accelerated+itl Ipace. This coincidence is attributed to

the fact that the Bose and Fermi pairs emitted by a mirror have the same spins 1 and 0 as

do the photons and scalar quanta emitted by charges. It is shown that the propagation of virtual
pairs in 1+ 1 space can be described by the causal Green’s fundtiényu) of the wave

equation for 3+1 space. This is because the pairs can have any positive mass and their
propagation function is represented by an integral of the causal propagation function of a
massive particle in + 1 space over mass which coincides wkh(z, ). In this integral the lower

limit u is chosen small, but nonzero, to eliminate the infrared divergence. It is shown that

the real and imaginary parts of the change in the action are related by dispersion relations, in which
a mass parameter serves as the dispersion variable. They are a consequence of the same
relations forA(z, ). Therefore, the emergence of a real part in the change in the action is a
direct consequence of causality, according to whiclARBw)#0 only for timelike and

lightlike intervals. © 1999 American Institute of Physids$§1063-776(199)00211-5

1. INTRODUCTION real when one of its particles undergoes internal reflection

o ) . with a frequency change and both particles move in the same
An intriguing symmetry between the creation of particle girection, i.e., to the right in the case of a right-sided mirror

p_airs by an accelerated mirror int1l space and the emis- and to the left in the case of a left-sided mirror. Therefore,
sion of single quanta by a charge accelerated as a mirror iy 5 right-sided mirror, for example, the emission amplitude
3+1 space was discovered in Refs. 1-3. This symmetry i3, |in) of a real pair of particles with the frequencies

confined to coincidence of the spectra of the Bose and Fermji, 5.4 " is related to the virtual-pair creation amplitude
pairs created by the mirror with the spectra of the photon%* by
i ' w

and scalar quanta emitted by electric and scalar charges,
twice the frequenciesm and w’ of the quanta in a pair cre-

n” H _ " ’s *
ated by the mirror are identified with the componekts (outw “’|'”>__Z (oute”|w"in)By,,, (4)
=K%+ k' of the 4-wave vectok® of the quantum emitted by ¢
the charge: where (outw”|w’in) is the amplitude of single-particle

, scattering on the mirror. The energy and momentum of this
20=Ky, 20'=k-. @D real pair equalo+ »” and o+ ", i.e., the pair does not

It was shown in Ref. 3 that the Bogolyubov coefficients have mass, nor do its components.

,32,w and Berv which describe the spectra of Bose and A virtual pair is another matter. According 1d), the

Fermi radiation of a mirror, are related to the Fourier transZeroth and first components of the 4-momentifhof a

forms of the 4-current density,(k, ,k_) and the scalar guantum emitted by a charge are equal to the energy and

charge densitp(k. ,k_), which describe the spectra of pho- momentum of a virtual pair of massless particles created by a

tons and scalar quanta emitted by charfes: mirror:
B \/K j_\/kﬁ i & K=w+w', kl=o-o, (5)
Puota™ ko e Vk, e’ and form the timelike 2-momentum of the pair in+1
1 space. Clearly, the quantity
Boro=gp(ks ko) )
w'w gl m= vk, k_=2Jwo’, (6)

It was also shown tha”, is the source amplitude of a pair being an invariant of Lorentz transformations along axis 1, is
of particles which are only potentially emitted to the right the mass of the virtual pair, and at the same time it equals the
and to the left with the frequenciesandw’. In other words, transverse momenturki=\/k22+ k32 of the massless real

it is the virtual-pair creation amplitude. The pair becomesquantum emitted by the charge.

1063-7761/99/89(11)/9/$15.00 821 © 1999 American Institute of Physics
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The fact that the source amplitu;d#;,w of a virtual pair  compensated by the difference in the mechanism of interac-
of bosons is specified by the currgrit(k, ,k_), while the tion transfer: it is mediated by pairs in+l1 space and by
source amplitudﬁz,w of a virtual pair of fermions is speci- individual particles in 3-1 space.
fied by the scalap(k. ,k_), means that the spin of a boson Section 3 presents a direct calculation of the changes
pair equals 1, while the spin of a fermion pair equals 0. ThusAW¢© in the self-interaction for a concrete, but fairly gen-
the coincidence between the emission spectra of a mirror igral mirror trajectory. The invariant functions of the relative
1+1 space and charges in+3 space can be attributed to Velocity of the trajectory ends obtained fai;" are con-
the coincidence between the angular momentum of a pagistent with the results of Sec. 2.
emitted by the mirror and the spin of a particle emitted by  In Sec. 4 Re\W; is reconstructed from IMW; using

the chargé. dispersion relations, in whiclu appears as the dispersion
The relation(2) can be written in the manifestly invari- Variable. Itis shown that the dispersion relationsAdW; are
ant form a consequence of the same relationsXe(z, ) with a time-
like z as the variable. As a consequence of causality only for
eBz’,‘szaﬁk"j B K K, @) suchz, the values of R&; and ReAV_\lf are nonzero and are
related to ImA\; and ImAW;, respectively, by the dispersion
relations.

and, more specifically, in the form of the scalar product of
the 2-vector current” and the 2-pseudovector polarization
ag of a Bose pair

The fifth section examines other analytic continuations
of iA1/2 onto the real? axis that lead to kernels fakW
whose real parts are not evenzn

A physical interpretation of the results is presented in the

@ 1 0
_ € apK A= — k a. = k ®) sixth, concluding section. The emergence of a causal propa-
b NS 0 Vkik_ ! kok_ gation function characteristic of four-dimensional space-time

in two-dimensional space-time can be attributed to mediation

The spacelike pseudovectay is constructed from the ze- Of the interaction by pairs of differing mass.
roth and first components of the 4-momentlt of the
guantum emitted by the mirror. It is orthogonal to the
2-momentum of the pair, has length 1, and can be repre2. PROPER-TIME REPRESENTATION OF THE CHANGE IN
sented in the comoving frame of the pair by just a spatiallHE ACTION
component, like the current vectpf.

In this paper we find the vacuum conservation amplitudefor
for acceleration of a mirror, which is defined by the change

The following representations were obtained in Ref. 2
the mean numbers of radiated Bose and Fermi particles:

AW in the self-interaction of the mirror due to its accelera- BE o BF

tion. In essence, the problem here is findingARe from the N =72 f_mdu K= (), ©
previously found quantity IMAW, twice the value of which

coincides in a certain approximatidisee below with the KB(u)=f°° dv 1 B f/(u) 10
mean number of real pairs formed by the mirror. Three dif- —ev—f(u)|g(v)—u v—Tfu)]

ferent methods are used for this purpose.

The first(and principal method is considered in Sec. 2, KF(u)=— \/f’(_u)Jm dv | vg'(v) Vf'(u)
and involves transforming the original space-time represen- — v=Ff(u)[g(v)—u v—1f(u)
tation for the mean number of pairs into an proper-time rep- (12
resentation, whose kernel turns out to be the relativisticall

invariant singular even solution (1/2}(2) Ofl the wave o mniotically constant velocitigs, and 3, at the ends and
equation in 3-1 space. Then, the functiob*(z) in the a nonzero Lorentz-invariant relative velocity
expression obtained for the number of pairs is replaced by

the even solutiom(z, ) of the Klein—Gordon equation in B2 P
order to invariantly and symmetrically eliminate the infrared ~ £21= 71— B2B1’
divergence in the integral for the number of pairs using th
small mass parametgrinstead of the large trajectory-length
parametei used in the original expression. The parameter
u, L 1<k, if kis the characteristic acceleration on the tra
jectory. Finally, by treating the function (1/&)(z,x) as the
imaginary part of the kernel definingW, we can recon-
struct a relativistically invariant kernel which is even in
and coincides with the causal Green'’s functidffz, 1) spe-
cific to 3+ 1 space by finding the analytic continuation with B
respect taz?. The resultant changes in the action of a mirror KP(u)~ ia
and a charge differ only by a factor ef, and the interac-

tions are described by the same causal propagation function. KF(u)~ +1( 1 0 ) (14)
Thus, the difference in dimensionality between the spaces is “u sinhé/”

¥t follows from these representations for trajectories with the

f=tanh ! B,,, (12

ethat the mean number of massless quanta emitted is infinite
(there is infrared divergengeln fact, in this case it follows
_Sfrom formulas(10) and(11) for u— *o (more precisely, for
lu/>«"1, i.e., outside the region where the mirror experi-
ences the characteristic acceleration that the functions
KBF(u) exhibit universal behavior, which depends only on

Bo1:

s

smhﬁ_1

c|

eeiﬁ )_

6
tanhg 1) o @9
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The coefficients ofu™?! are relativistically invariant on the and S(u,v) becomes a relativistically invariant function of
portions of the trajectories with asymptotically constant ve-the two-dimensional vector®=x%(7)—x(7')=(x—x")¢
locities. As a result, the mean number of quanta emitted on pining the pointsx®=x“(7) andx’“=x%(7") on the mirror
portion of the trajectory covering the acceleration regiontrajectory:
grows logarithmically as the lengthL2of that portion is

) 1
increased: = +
L S(2)= (x+—x+—|e)(x —X_—i6) ¢.c.
B_ _ B
NP= | o 1)In(LK)+2b (), (15) 1 1 e
8m?|z,z_+iesgn’ T
1
F__— [1_ F S
N 2772(1 sinhﬂ)ln(LK)+2b (6), Lxk>1. (16 =i ;‘FCC =_pL 20
8m?| —z+iesgn’ T A2z?

Let us focus our attention on the fact that the qadth

respect to bothi and §) term in the asymptote d¢®(u) does The individual terms in(20) and their sum are well-known
not contribute to the |ntegra| defmmgB The terms BBF relativistically invariant singular functions in quantum elec-
do not depend ot if Lx>1, but they can depend on the trodynamicgwe use Thirring’s notatiofibut ourD* andA*

specific form of the trajectories. lack the factori):
We note that there are representations N&¥™ which 4
differ from (9)—(11) by mirror symmetry, i.e., by the replace- D~ (z)= 172 2= 1e sgndd)

mentsu=v and f(u)=g(v). The integrand&®F(v) de-

fining them differ fromK®F(u), but are denoted below by 1 i

the same letter, since they are values of the same functional =12 me(2°)8(2%) + 22| (22)
taken for a mirror-symmetrical pair of trajectoriek:(u)

=K[u;g] and K(v)=K[v;f]. As v—+=, KBF(v) have L 1

asymptotes which differ froni13) and (14) by the replace- Di(2)= 2 w272’

mentsu—v and 6— — 6.
The vacuum conservation amplitude of an accelerated® that
mirror is specified by the change in the actiadtw= W|O 1
(i.e., the difference between the actions for the accelerated S(z)=— —[D (2)-D*(29)]=— EDl(Z)- (22
and unaccelerated mirnoand has the form exp{W), where
2 ImAW=N, if the interference effects in the creation of two We stress that these functions are singular solutions of the
or more pairs are neglected. Here we consider a particle anslave equation in 31 space, ifz* is construed to be a
an antiparticle to be nonidentical; otherwise, in the same apfour-dimensional, rather than a two-dimensional, vector.
proximation 2 ImMAW=(1/2)N (see Ref. R Here the presence of these functions, which depend on the
Now the main task is to find R&W. For this purpose, 2-vectorz?, is the result of a deep symmetry between the
we obtain a suitable representation for AW and utilize  creation of a pair by a mirror in+ 1 space and the emission

relativistic invariance and causality arguments. of single quanta by a charge int3lL space.

Let us consider the space-time representation Nor Using
which was the direct “parent” of the representati@—(11)
[see Ref. 2 In this representation dudv=drdr'x_x,=drd7r’ 5(5(75('++5(+5(L)

B_ F 1
v | [ avasuis 5 (K=K
L =d7d7 (=X X “+ & ,5X %' F) (23
S(u,v)= 872 (v—f(u)—ie)(gv)—u—is)  °C in the form of a sum of terms which are even and odd with

(17) respect to the interchange= 7' (a dot denotes differentia-

. - . tion with respect to the proper tijewve obtain
We go over from the independent characteristic variables P proper tim

andv to the moments in proper timeand 7’ of two points > 1 F
on the world trajectory of the mirrax®(7): stf f drdT’(XaX’“—saﬁk“X’B)EDl(z) (24)
0
u=x°(7)=x'(r)=x_(n), -
v=x0(7 )+ x4 ) =x, (7). (18 It is natural to use a manifestly re!ativistic method that
preserves the symmetry under the interchanger’ to
Then eliminate the infrared divergence {24). It consists of re-
F(U)=X0(7) + XX(7) =X (1), placingD*(z) by A%(z,x), which is also even iz and has

the small mass parametgr< x, wherex is the characteristic
g(v)=x(7")—xX(7")=x_(7"), (199 acceleration of the mirror.
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This function factor — f'(u)g’(v) under the integral. Therefore, after the
1 replacement of variabled8), instead of(23) we have
y72

ZAlL =
28 (2= grgNalns) —dudv\F(w)g' (V)= ~drdr'. (29

L w9 +4R (25 "

© 47’s 47751(’us)n,us (25) 1 F

F_"— rAl
(whereJ; andN; are Bessel and Neumann functions, &d N™=3 f f drdr’A%z,p) . (30)

is a regular function o8) is a singular solution of the wave
equation in 3+ 1 space, which depends only on the intervaland the change in the action is
s=+/— 72 between the two points and preserves all the fea-

tures with respect te at s=0. It is called the Hadamard AszEJ’ j drdr Az, ) F- -
elementary function or the fundamental solutiofihe coef- 2 o
ficient of the logarithm, which is called the Riemann _ ) ) BE .
function® is a regular function 0§, which satisfies the same The proper-time representations obtainedXW " dif-
equation as\®. Just these two functions define the imaginaryfer from the changeaW,; andAW, in the self-interactions
and real parts of the change in the action. of electric and scalar charges moving along the same trajec-
Thus, tories as the mirror, but in 81 space, only by the absence
of the factore?.
- 1 F As u—0, the coefficients of Ip~t in the imaginary
NB:f J d7d 7’ (XX *— £ 5% %' F) EAl(Z,M) : parts of the proper-time integral@8) and(31) should coin-
. 0 cide with the coefficients of Ih in the corresponding expres-

(26)  sions forN® andNF [see(15) and (16)], since these coeffi-
cients cannot depend on the method used to eliminate the

- B . . . g
S n t?e Expressions foN® the odd term is insignificant, infrared divergence in the different representations N&r
sinceD~(z) andA*(z,u) are even under the replacement 5.4 forNF.

-z ] ) ) ] Since for an interval between two points on the timelike
'Now regardingN as 'the imaginary part of twlce t.he trajectory

action, we naturally consider (1/8}(z,u) to be the imagi-
nary part of some functioR (z%), which is taken on the real
z? axis and which is analytic in th#® complex plane with a
cut along thez?<0 semiaxis, where Lorentz invariance al-
lows it to still depend on the sign @, and coincides with ~ which differs from the coefficient of the logarithm in Iy
(i/2)A%(z, ) atz2>0. Then the transition frorN® to 2w only by the factorw/2 [see(27) and (25)], ReAW; also dif-
is equivalent to the analytic continuation B{z2) onto the  fers by the same factor from the coefficient ofun® in
real semiaxiz®<0. It is generally knowhthat the boundary ImAW;. Thus, to within terms which vanish at—0, we
value of such a function, which does not depend on the sighave
of 2%, and is therefore even, is the limit from above—¢

ReA(z,0) =~ 5—Ji(19), (32)

2
+0), which is called a causal function: AW, = ma( ) +i| a( H)InK—2+b(0)}, (33
§7
2. Iz .
Af(z,p)=F(z°+ie)= ——-K(ius)
417°S aB(0)=— 1
. 8w?|tanhe )’
o
- 2y _ T
" 27225 8as 0

: (34)

1
aF( 0) = _< 1-——
X[J,(us)—iNy(us)]. (27 8 sinhé

HereK is the modified Bessel function of the second kind, 1N€ functionb(#) can depend on other dimensionless pa-

and s=\—Z?—is. The latter equality was written for? rameters, for example, the velocity changes on portions of
<0, wheres=0 andA, has a real part, which coincides with the trajegtory containing other extreme values of the self-
the Riemann function multiplied byr/2. If z>>0, then acceleration.

s=—i\Z2 A, is purely imaginary, and its imaginary part is . .It is significapt that Rc'A.sza-ra has a finite positive
positive. limit at «— 0, which is positive for6+ 0.

Thus, forAWfB we obtain To cc_)nclgde this section we rec_all that B¢/ is the_
acceleration-induced self-energy shift of the source inte-
s 1 . ar F grated over the proper time and that 2AW; is the mean
AW :Ef f drd7' X ()X (7" )A(Z,p)| - (28) " number of pairs emitted(or particles emitted in the
0 case of nonidentity to the antiparticlesMore precisely,
As shown in Ref. 2, the space-time representatioiNfor — exp(—2 Im AW,;) is the probability of the noncreation of pairs
differs from the representatiofl7) for NB by the additional  during all the time of acceleration.
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3. CHANGE IN THE ACTION IN THE CASE OF Now switching from the integration variablgto z in (37),
QUASIHYPERBOLIC MIRROR MOTION we obtain

It would be interesting to directly calculateW?® for - v2
the special, but very important mirror trajectory AWP=— 82 dy [Sl(A

e
X=£&(t) =V, 7+t2, (35 +SO(A)]—SO(A)}, (40

which can be called quasihyperbolic. Hetey,, are the ve-
locities of the mirror at— *=o0, and« is its acceleration at 5
the turm_ng pomt(=(_)). Thls_ motion is remarkable in that as A=\20, A= //«_2 Q=v2+(1-v2)cosRy, (41)
v.,,—1, it becomes increasingly close to uniformly acceler- K

ated (hyperbolig motion over the increasingly longer time
. o
iz .
e'?K,(iz) V_Ziz .

interval Sn(A)z(_l)nHdeze—iA/zz
0
Voo
[tl=ti=—=(1-v2) 2, (42)

The subtractlod0 in (40) reduced to subtraction of the
smoothly going over to uniform motion outside this interval. agsymptote ¢/2iz) Y2 of the integrand if42) for S,(A). As
This can be seen from the expression for the magnitude afhown in Refs. 8 and 9, the functior®(A) can be ex-

where

the acceleration in the comoving frame pressed in terms of the product of the modified Bessel func-
{2\ -3 tions I,(\/A) and K,(y/A). We also turn attention to the
a=«| 1+ z more compact expressions for the derivatives
1

The spectrum and total radiated energy were found for an SH(A)=(—1)"a| 1 ,(X)Kn(X)— i

electric charge moving along the trajectdBp) in Ref. 7. 2x
To calculateAWB, in (28) instead oft we use the vari-

' =A. 43

ableu, which is defined by the formula x=VA “3

+iK2(x),

It can be seen from formuldd0)—(42) thatAW®B depends on

t= V—msinhu. two dimensionless parameters, namely and v,
K =tanh(/2).
Then To calculate the asymptote of the integ(d0) at \ —0
5 5 we note that the valued —0 will be effective in the first
ve [ 1+vs i i
drdr'x,(1)x(+') = — dx dy?( ; coshx term in this case, and therefore
4
2 S (A)+Sy(A)~—m—iln A vy=1.781.., (44
+ cosh 2y> , (36)
2 and that in the second term the integral can be reduced to the
2 expression
Veo 2 2
(x—x")?= =2 —(coshx—1)[v+(1—vZ)cosky], . .
K f dy s)(A)~—f dAS)(A)In A
B , _u+tu’ o 0
x=u-u', y=——, 4
B . . . +So(0)|n—)\ 212
and AWF can be expressed in terms of an integral of modi- Va(l-vi)
fied Bessel functions 16
=— i|InN—s—————>—-2|. 4
. 1 [=dé ., (= V2 , TN AT VN } “9
AW :_W - € g dy—ze'z[(1+voc)
7= Jo & e K As a result, to within terms that vanish at-0 we obtain
X Ky(iz) +(1-v%)Ko(iz)cosh 5, (37) T [ 0 2) 1)
~ _|_ —_
if we use the representation 8x2| "\ tanho tanho
, 1 (=d¢ [ (x=x)? “ 8(coshf+1)>2
A =X )= 152 jo i Ly " Y2\ (cosho—1)
38 Lo(1—e 2%+ 62
for the causal function and introduce the notation - tanhe . (46)
2
V5 = 1 i
2= 2 V2 (1-v2)cosRy]. (39 Here 6= tar;pllﬁﬂ 2tanh ~v,, and L,(x) is the Euler

2k“E dilogarithm:
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For a quasiuniformly accelerated mirror interacting with 2

ar
a spinor field, instead of40) we obtain Ly(1—e )+ 6°==x| ¢+ 5t (52
AWF=L fx q fwdz The imaginary and real parts &\W8F in (46) and (50)
8 y are positive owing to unitarity and causality. Wheér=0,

) AW vanishes, since the quasihyperbolic trajectory becomes a
><exp(—£+iz)R(iz)—So(A) (47) straight line.
2z ’ The pointd=o for AW2F(,)) is an essential singu-
larity. It physically corresponds to a purely hyperbolic tra-
jectory for whichB,,=1 or —1, according to the sign of.

R(i7) fmdx \/W ) Al;tairf:xed value of\ and §— =, from (40) and (47) we
~Jo (14+c)?—¢° obta

where

1
X exp( —iz coshx), (48) AWEF(g ) =7 Og—2S1dMN)- (53
c=coshfcosh?, s=sinhfdsinhy, Here+ §=|«|(m,— 71)>1, and when the interval{ , 7,) of

proper time approaches infinite length, the relative velocity
B, approachesr1 or —1. Formula(53) was obtained for
and the remaining notation is the same a$4). It is seen  uniformly accelerated charges int3 space in Ref. 12 and
that AWF depends on the two dimensionless paramexers was discussed in detail in Refs. 8 and 9. In those studies it

#=2tanh lv,,,

and 6. defined the classical mass shift of a uniformly accelerated
When A —0, the expression in the large parentheses irtharge:
(48) can be replaced by AW, , «a
costx—1 Amlv(): - {9—7_22 ﬂ Klsl‘o()\). (54)
Jito-s In accordance with unitarity and causality of this func-

) o tion, the imaginary and real parts afm are negative. Atc
This approximation holds for cosé~1 and has the correct —g the functionAm(x) is nonanalytic, and therefore cannot
(zerg value atx=0. Then be reproduced by perturbation theory with respecitor

with respect to the field accelerating the charge.

g [ o —L s
4. DISPERSION RELATIONS FOR AW AND THEIR ORIGIN

It was shown in Ref. 9 that the chang&®(«?) in the
(49 action of point charges moving along timelike trajectories, as
functions of the square of the mass of quanta of their self-
and using(44) and (45), we obtain field with spins=1,0, are analytic in thez> complex plane
with a cut along the positive.®> semiaxis, on whose edges
1 0 0 . . . . . .
AWF~ | 1- — will1— = the imaginary parts of each of the functions coincide, while
8 sinh@ sinh@
8(coshd+1)? }

+So(A)]=So(A) ¢,

the real parts differ in sign. Such functions satisfy the dis-
persion representations (lm<0)

nN———————|— 2
v°A(coshf—1) AW(,uz)— ” © dx xRe_AW(x )
Lo(1—e 20+ ¢? 0 #
sinho (50 2u (= dxImAW(x2)
==— | Tz (55
[ 0 X*—u

to within terms that vanish at— 0.

The formulas obtained foAW®F not only have the which reconstruct the functioAW(u?) in the u? complex
structure (33), but also contain explicit expressions for plane from its real or imaginary part on the lower edge of the
bBF(6). It can also be seen thAW?'F do not depend on the cut. Whenu =i« and x>0, these relations yield the impor-
sign of 6 or B,;, if we take into account thdt,(1—e 2% tant equalities

+ 6% is an odd function o# [see Landen’s formulél.12) in 2
A : ReAW(x 2 © dxIm AW
Ref. 11. We note in this connection that for small values of — f dxxRe ) X M

0 X+ k2 T o X2+ K?
2 2 =ImAW(— «?)>0, (56)
Ly(1—e 2%+ 02=29+§03— ﬁoh..., (51) REAW(— x?)=0. -
and that a®— * o0, to within exponentially small terms we As a consequence of unitarity, W\V(u?) is positive on

have the real semiaxiu®>0. Then, according to the second of
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the representation®5), Im AW(«?) is positive definite over
the entirex? complex plangor in the loweru half-plane.
Here we show that the dispersion relations A0N(u?)

V. I. Ritus 827
It follows from (56) that if ImMAW(x?) is bounded at

zero, then RAW(u?) must vanish asu— +0. If, on the

other hand, Im\W(u?) logarithmically tends to infinity as

are due to the analytic properties of the causal Green’s funge— 0 according to the relation

tion A¢(z, ), which, as we see, specifies not oty (u?)
for the vacuum amplitude of accelerated charges 113

ImAW(u?)=aln u 2+b(u?) (62

space, but alsda W8 F(u?) for the vacuum amplitude of an [a>0, andb(x?) is bounded at zefpit follows from (56)

accelerated mirror in £ 1 space.
We can show that the causal functidn(z,u) for a

that ReAW(?) tends to the positive value RaV(0)=a as
n—0. According to (57), this means that the function

timelike z satisfies the dispersion relations presented. AcReAW(u?) has a discontinuity equal tea on the realu?

cording to formulag2.12.4.28 and(2.13.3.20 from Ref. 13

=dxxJy(sX) = dx XNy(SX)
o —XZTKZ——‘KL TR Kl

(58)

where s, Rex>0. After analytic continuation in« to the
point k=iu+e where x>0 ande— +0, these relations
transform into

fmdxszl(sx)_ _ fwdxle(sx)__ K
o X pZrie Py ptaie  HKalinS)

T .
== [Ja(ks)=iNy(u9)]. (59
After multiplying by —i/4m?s, they form the first pair of
dispersion relation€s5), which, instead oA W(?), contain
the causal functioi27) with a timelike vectorz®, for which
s=+/—7?>0. For spacelike® the intervals= —i+z?, and
A¢(z,p) is purely imaginary.

After multiplication by — 1/4x?s, the original formulas
(58) coincide with the second pair of the relatiof) with
the replacement oAW(u?) by A¢(z, ). The function ap-
pearing on the right-hand side of these relations

K -
—mKl(Ks)zlmAf(z,—lx), (60)
unlike ImMAW(— %), is negative. In addition,
ReA(z,~ik)=0, (61)

as can be seen frof27). This property is a consequence of

causality, according to which Rg(z,u)=0 outside the light

cone, i.e., for spacelike®. In this case the argument of the
Bessel function in27) is real and positive. When we go over

to timelike z* and a purely imaginary negatiye= —i «, this
argument remains real and positive, whence foll¢és.
While satisfying the dispersion relatiori§5) and (56)
with respect to the “dispersion” variable, the function
A¢(z,1), unlike AW(u?), still depends on the parametgr

axis atu®=0.

5. INFLUENCE OF THE BOUNDARY CONDITIONS ON
Re AW

Let us now consider the other boundary value§ (¢?),
which is analytic in thez? complex plane with a cut along
the z°<0 semiaxis and coincides with/R)A%(z, ) on the
z2>0 semiaxis.

The limit F(z2—ig) from below on the real axis is dis-
tinguished from the limit(27) from above by the opposite
sign of the real part. According to this function, free fields
would transport negative energy in+3 space; therefore,
this boundary condition is not considered here.

The other boundary values &f{(z?), which already de-
pend on the sign of°, may be the limitsF(z?*ie sgn?°),
e—+0. They are positive- and negative-frequency func-

tions, or more preciselyr A= (z,u) (Ref. 4:
+A*(z,u)=*e(Z°)ReAs+iImA;. (63)

Such functions naturally vary only the real part of the action
obtained forA¢, so that

1
ReAwi=¢§fdedT'(xax'a

—£,5X %' P)ReA™ (z,u)|§ (64)

differ from ReA\/\l'f3 and are given in the limik—0 by the
expressions

1
ReAWizigjfdeT’saﬂX“X'ﬂa(Zo)é(Zz).
(65

The integrand can be expandedshnears’ = and repre-
sented in the form

£apX" X' Pe(20) 8(2%) = — & (X %P S(1—1'). (66)

. . . . . H 2y
which equals the invariant interval between the two pointdiere the equalityx| 5(x*) = (x) was used(see, for ex-

chosen on the mirror trajectory with the proper timeand

7', i.e., ons=s(7,7'). Integrating the dispersion relations

for A¢ over 7, 7' with the weight (1/2%,(7)x%(7") or 1/2

and performing the subtraction procedure, we obtain the dis- £

persion relations foA W2 or AWF, if, of course, the familiar
conditions for changing the order of integration oxeand 7,
7' are satisfied.

Thus, the dispersion relations falW(u?) are a conse-
guence of the dispersion relations ¥(z, u).

ample, Ref. 14
Then, integrating overr’ and expressing the self-
acceleration

din f’(u)_dtanh‘lﬁ(r)
2dr dr

a( T) = Saﬁxaxﬁ Z(f ’ )3/2:

(67)
in the form of the derivative of the rapidity with respect to
the proper time, we obtain
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RAWB—+1 “d X %P
e t—_g . TSaBX X
=+—tanh‘1,8 :+i (68)
8w AT g
Clearly,
F 1 +
ReAWi=i§ drd7 ReA~(z,u)=0 (69)

because of the oddness of R& with respect taz.

The expressions obtained for B&V-. coincide to within
the factor (8r) ! with the coefficients that are odd ifor
the terms proportional te~! and v~?! in the asymptotic
expansions oK (u) and K(v), respectively[see(13) and
(14) and the comment following E¢16)]. At the same time,
ReAW; coincides to within the factor (8) " with the co-
efficient that is even i for the term proportional tai~—* or
v~ in the asymptotic expansion &f(u) or K(v). We note
that all these coefficients, as well as the functiér{sl) and

V. |. Ritus

accelerated in four-dimensional space-time. In other words,
the two were found to be identical functionals of the source
trajectory.

This coincidence, first, confirms the interpretation given
in Ref. 3 of the Bogolyubov coefficierﬁfu,w as the source
amplitude of a virtual pair of particles potentially emitted to
the right and to the left with the frequenciesandw’, with
the timelike 2-momentum of the paif5), the massm
=2\Jww', and a spin equal to 1 for a boson pair and O for a
fermion pair.

Second, it means that the self-interaction of the mirror
involves the creation and absorption of virtual pairs, rather
than individual particles, and is transmitted from one point of
the trajectory to another by the causal Green'’s function of the
wave equation for four-dimensional, rather than two-
dimensional space-time.

The action integral is formed by virtual pairs with mass
m=2\ww', which takes any positive values. Therefore, it is
natural to expect that the effective propagation function of
such pairs will be the integral of the propagation function of

K(v) themselves, are formed without any involvement of thea massive particle in two-dimensional space-time over the
parametet., which eliminates the infrared divergence of the massm.

space-time integral$9) for the mean number of particles

emitted.
Thus, information on the interaction containedKigu)
and K(v), which determine ImAW, is conveyed to RAW

At the same time, it can be shown that the causal
Green’s functions for spaces of dimensionalitiésand d
+2, being functions of the invariant interval= \—z? be-
tween two points and the mags are related to one another

owing to causality and the boundary conditions. In addition by
ReAW; contains information on the interaction that propa-
gates within the light cone, and R&V.. contains informa-
tion on the interaction that propagates along the light cone
and is therefore local owing to the timelike character of the
trajectory.

Half the sum of the retarded and advanced fields is the
self-field of the sourcé,and half their difference is the ra-
diation field escaping to infinity. Since

1 90
d+2 _ d
ATz, p0)= — -5 Az, )

1 ©
== f 2dmZAﬁd)(z,m) (70)
m

and can be expressed in terms of the modified Bessel func-
tion of the second kind with index specified by the dimen-

1 oot .
ReAfzz(Aret+AadV), sionality of the space-time:

i w2 _d-2
V=

and WKVUIM’S)’

A (z,p)=
ReA+=%(Aret_Aad\l), (71)
The second equality ii70) for d=2 confirms the emer-
ReAW; describes the self-energy shift of the source, andyence of a causal function characteristic of four-dimensional
ReAW, describes the interaction with the radiation field, space-time as an effective propagation function of virtual
i.e., with real quanta. The boundary condition which elimi- pairs with different masses in two-dimensional space-
nates the interaction with virtual quanta or pairs seems unime. Now the small mass parameter which was intro-
natural. duced in Sec. 2 to eliminate the infrared divergence, can be
interpreted as the lower bound of the masses of the virtual
pairs that mediate the self-interaction of a mirror.

A virtual pair can escape to infinity, since one of its
particles is necessarily reflected from the mirror, after which
the pair becomes real and massless. The emission of such

The proper-time representations for the changes in thpairs shapes IMW. Owing to their masslessness, the emis-
self-interaction of a mirror upon acceleration in a two- sion of an arbitrarily large number of soft quanta approach-
dimensional vacuum of scalar and spinor fields can be coring infinity becomes possible on trajectories wif3,# 0,
sidered the most significant results of this work. These rept.e., infrared divergence of IWW; appears. By choosing a
resentations coincided with the representations of th@onvanishing but sufficiently small value pf we eliminate
changes in the self-interaction of electric and scalar chargehe infrared divergence in IdW; and assure ourselves that

6. DISCUSSION AND PHYSICAL INTERPRETATION OF
RESULTS
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ReAW; does not depend gm at u<<| k|. This means that the
main contribution to RAW; comes from virtual pairs with a
mass of ordetx|.

V. I. Ritus 829

*)E-mail: ritus@Ipi.ac.ru

YThe natural system of units, the Heaviside units of charge, and the metrics
of four-dimensional and two-dimensional space with traces 2 and 0 are

used, so thati=c=1, e?/4r=1/137, k,x*=k-x—k%°, and j.=j°

In the general case, where the mean number of pairs=j. For the remaining notation see Refs. 1-3.

created is not small compared to 1, the quantity 2\Miis
no longer equal to the mean number of pairsgrT3). Due

to the interference of two or more pairs during their creation,

it equals
2IMAW==Trin(1=B8*B)|f==Trin(a"a)|;. (72
The latter formula prompted De Wttto consider

W==xiTrina« (73

to be a natural expression fg¥. The matrix formulation of
the Bogolyubov coefficientsr and 8 has been adopted in
these equations. In addition, Tr must be replaced18®) Tr
when the particle and antiparticle are identital.

We are not aware of any specific results for/R& hav-
ing been derived fron(73).
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The electron loss and electron capture cross sections,, ando; ;_,, for boron ions and atoms
traveling at the velocitie¥=1.19 and 1.83 a.u. in £ He, N,, Ne, Ar, and Xe are

measured. The known experimental data on these cross sections at velocities near the cross-
section maximum are analyzed. It is found that the electron loss cross sections can be described by
a formula which was previously derived in the free-collision approximation and takes into

account features of both the ions and the ambient atoms. As the nuclear Zhafgihe ambient

atoms increases, the cross sections vary nonmonotonically, increasing on avezéﬁe As

formula based on the model of independent electrons is proposed for electron capture by ions with
small values of the charge It describes the dependence of the electron capture cross
sectiono; j_; on the mean binding energy of an electron in an ion with the chardge The

total electron capture cross section;_; is proportional to the number of vacancies in

the unfilled electron shell nearest the nucleus. The cross seetigng exhibit substantially
nonmonotonic variation wittz,, increasing on average @3'°. © 1999 American Institute of
Physics[S1063-776199)00311-X

1. INTRODUCTION with a vapor pressure at room temperature of about 8 kPa,

which is sufficient for operation of the ion source. Singly

The objective of the present investigation is to obtain haraed B+ ions which wer lerated in a 72-cm |
new experimental data on the electron loss and electron cap- arge ons which were accelerate a fe-cm cyclo-

ture cross sections for fast atomic particles with outer elec_ror_w_and had energies=35 and 83 _keV/nuc_Ieon, €., ve-
trons having very small binding energies, including negativéomtIes V:1'19 anq 1'83.’ were d|r.ected+|n.t0 a charge-
ions, in various media for the purpose of establishing IaWSexchange dgwce, n Wh'iCh the _primary .BIOHS were
governing the dependence of these cross sections on tﬁréamsformed into beams of mns_ with char_ge =-101, :
nuclear charge of the ambient ato@sand the binding en- and 2. Boron atoms and negative bqron ions were qbtamed
ergy |, of the electrons removed or captured. Since fasfS @ resqlt of the charge e-:gchange 6“5,”5 in a thin hellum
negative ions readily transform into neutral atoms, the stud§arget' Since the pro_baplllty of_forma'uon of th_ese parncles
of their properties is of considerable interest for several areagecreased rapidly with increasing velocky their flux in-

of physics. These data are needed for implementing the if€NSity was corrected by altering the gas pressure in the he-

jection of heavy ions in accelerators, as well as for investi/lum target. To obtain the maximum number of negative B

gating various processes in high-temperature plasmas. |on%,15the gas ?ger in thfﬁ target was increased from 1.5
The cross sections for the loss and capture of one of¢10 0 3x107atoms/cm when the velocity was in-

several electrons by fast atoms, as well as negative and pogjréased by a factor of 1.5. Thus, the number ofiBns in
tive ions, of boron with velocitiea/=1.1%, and 1.8%, the vicinity of the detector varied from 10-50 particles per

(where V,=2.19x 10° cm/9 as they pass through gaseoussecond atv=1.19 to 2-5 particles per s_econd\At: 1.83.
H, He, N,, Ne, Ar, and Xe are measured in the presentThe flux of B’ atoms was set te- 10° particles per second.

work. The analogous cross sections known from the literaln the work with beams of Batoms, the charged compo-

ture for several other ions with outer electrons having mini-Nents B~ and B” were deflected by an electrostatic analyzer.
mal binding energies are analyzed. The data obtained enable B&ams of boron ions with various valuesidiormed as
us to accurately estimate the corresponding cross sections frrésult of charge exchange were alternately directed into the
other ions and media, for which there have not been angollision chamber, which consisted of a cylinder 24 cm long
direct measurements. The ion velociti¥sare henceforth With entrance and exit channels 0.5 cm high, 0.1-0.2 cm
presented in atomic units o, . wide, and 2.6 cm long. The gas pressure ¢f He, N,, Ne,
Ar, and Xe injected into the center of the collision chamber
was determined to within 10% by ionization gauges cali-
brated for the various gases using a McLeod gauge. The
The electron loss and electron capture cross sections faharge distribution of the boron ions after passage through
boron ions and atoms were determined using the experimertthe collision chamber was measured by a detector consisting
tal equipment described in Refs. 2 and 3. The volatile bororof a magnetic analyzer and counters at two or three values of
compound BBg was introduced into the cyclotron ion source the gas pressure in the chamber. The field intensity of the

2. EXPERIMENTAL METHOD

1063-7761/99/89(11)/7/$15.00 830 © 1999 American Institute of Physics
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TABLE I. Electron loss cross sections ; ; , (in units of 10" ¢ cné/atom)

i,i+m H, He N, Ne Ar Kr Xe
V=1.19

-1,0 10.0 6.3 10.0 17.0 30.0 - 70.0

-1,1 2.8 2.5 5.0 10.0 14.0 - 23.0

-1,2 0.2 0.3 1.3 0.75 2.2 - 4.4
0,1 2.3 2.0 5.0 2.2 10.0 14.0 10.0
0,2 0.2 0.3 1.0 0.3 1.3 - 0.8
0,3 - 0.05 0.04 - 0.01 - -
1,2 0.8 1.0 2.0 0.7 3.0 3.2 2.3
1,3 0.015 0.02 0.05 0.02 0.10 0.05 0.03
2,3 0.12 0.18 0.15 0.01 0.3 0.28 0.2

V=1.83

-1,0 4.0 4.0 6.6 11.2 14.0 - 23.0

-1,1 1.6 1.7 3.8 4.0 9.0 - 10.0

-1,2 0.30 0.15 0.64 0.35 2.6 - 1.15
0,1 2.8 3.0 5.6 6.3 13.0 19.0 14.0
0,2 0.20 0.30 1.4 1.1 3.2 - 3.3
0,3 0.002 0.002 0.1 0.035 0.16 - 0.11
1,2 0.7 1.4 2.5 2.3 6.0 5.0 6.3
1,3 0.014 0.022 0.17 0.12 0.43 0.18 0.25
2,3 0.18 0.35 0.54 0.4 1.2 1.1 1.0
2,4 - 0.001 0.003 0.01 - - -

analyzing magnet was such that on average, particles of justached 50-100%, i.e., only an upper limit for the cross
one charge struck the middle part of each counter. The crosections was obtained in certain cases.

sectionso; i+ m ando; j—y, for the loss and capture of one or The electron loss and electron capture cross sections for
several electrons were found for the resulting charge distripositively charged boron ions traveling at these velocities
butions by the method described in Ref. 2. The errors in thevere previously measured in atonild) and molecular ()
cross sections accrued mainly from errors in the thickness diydrogeff and in He, N, and Ar, as well as in Kr, in Refs. 2
the gas layer in the collision chamber {0%) and the sta- and 5-7. All the cross sections ;. , for the negative boron
tistical spread of the results of several series of measur@ens and atoms, as well as the cross sections for positive
ments, and amounted to 10—-15% on average for the crogsron ions in Ne and in Xe, were determined for the first
sections for the loss and capture of one electron, 20—30% fdime. The resulting values of; ; . ,, are listed in Tables | and
the cross sections for the loss and capture of two electrongl,. Since the cross sections measured in the present work and
and about 50% for the cross sections for the loss and captuie Refs. 1, 5 and 6 coincided to within 20—30%, the corre-
of three electrons. At the velocity=1.83 the error ino; sponding mean cross sections are given in the tables.

TABLE Il. Electron capture cross sections; _p, (in units of 10 6 cn’/atom)

i,i—m H, He N, Ne Ar Kr Xe
V=1.19
0-1 0.08 0.05 0.05 0.045 0.09 - 0.1
1,0 1.6 1.0 1.0 0.65 25 2.76 2.8
1, -1 0.005 0.003 0.005 0.0025 0.01 - 0.025
2,1 4.3 4.0 6.2 2.0 10.0 15.0 13.0
2,0 0.35 0.4 0.3 0.1 0.6 0.83 25
3,2 5.5 - - - - - -
3,1 1.3 - - - - - -
4,3 0.06 - - - - - -
V=1.83
1, -1 0.025 0.035 0.025 0.04 0.045 - 0.1
1,0 0.5 0.5 0.50 0.4 0.95 1.6 1.6
1, -1 0.001 0.0016 0.001 0.004 0.01 - -
2,1 15 2.2 2.4 15 5.0 6.6 6.3
2,0 0.04 0.03 0.045 0.04 0.14 0.28 0.3
3,2 2.7 3.2 5.0 35 10.0 11.0 10.0
3,1 0.25 0.25 0.55 0.4 1.3 2.4 2.0
3,0 - - 0.03 - - 0.063 0.06
4,3 5.0 5.0 6.3 6.5 14.0 - -
4,2 0.2 0.3 0.9 0.06 2.0 - -
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3. DISCUSSION OF RESULTS the total ionization cross section are considerably smaller
and amount, on average, t8,=0.25+0.10 for B’ and
R,=0.05+0.01 for B'.

The loss of one or several electrons by a many-electron  The cross sections,, for the loss of individuah! elec-
partiC|e is a result of the loss of individual electrons. The trons from outer $, 231 and 23 subshells were found using
total cross section for the removal of a fixed electron fromformuyla (1) from the experimental cross sectioms; ; , with
the subshell with quantum numbersndl, with the remain-  gjjowance for the possibility of electron loss from the inner
ing electrons in arbitrary states, is called the single-electroRnells. The cross sections for the loss of innsrelectrons
loss cross sectiowr, . When the probability of an Auger were equated to the electron loss cross sections for
transition with filling of an inner-shell vacancy can be ne- hydrogen-like particles with the same electron binding en-
glected,o, can be represented in the fdfm ergy as in the ior{atom) under consideration. The values of

0,5 Were assumed to be equal to the cross sections for the
1) loss of & electrons by lithium-like and beryllium-like ions
with the same electron binding energies. The values, pf
. were taken from Ref. 13.
whereq, andqy are the numbers of electrons in the outer  The values calculated in the Born approximation for the
and inner subshells of the ion, ag=Xmo; . m. The sSUm  ¢ross sectionsrys and o, for the loss ofK electrons by
S characterizes the increase in the charge of the(@om  pygrogen-like and helium-like ions upon the passage of fast
as a result of collisions with ambient atoms of the m9dium-particles though hydrogen, helium, and nitrolfei®and the
In studies of the ionization of ambient atoms by various Parexperimental electron loss cross sectionsfor negative H
ticles, the quantity analogous & is called the total ioniza- jons and 1 atoms!’ negative Li ions® and positive ions
tion cross section, and it coincides with the cross section fop¢ light elements in heavier medfenabled us to establish

3.1. Electron loss cross sections

=00 S— 2 afon

the production of free eIectrqﬁs. the dependence af,, on |, in the rangel,;=(0.1-10)I,
An analysis of the experimental electron loss cross sec¢| —=13.6eV).
tions o i, for ions of light elements with a nuclear charge In the rangel ,<I,, where the Born approximation co-

Z=18 and with a number of electrofé=Z—i from 110 17 jncides with the free-collision approximatidfithe cross sec-
shows® that for a given set of quantum numbents electron tions vary slowly withl ., , the ratioo,./o . differing from
binding energyl,;, and relative velocity of the ion¥, the unity by no more than 209 In the range ,>1, the cross
cross sectionr,, for ions with various numbers of electrons sectionso, decrease rapidly with increasiig . The depen-

N scarcely depends og,,. This enables us to obtain the gence ofo, on I, obtained was used to estimate the con-
values ofor, for some ions from the experimental values of yripytion A of the cross sections for electron loss from the
0i,i+m for other ions. The lack of a dependencegf ondn  inner subshellsSqfo™, to the total ionization cross section
for givennl, |, andV corresponds to the results of calcu- o the boron ionsS =mo ; , o in different media. On aver-

lations based on the independent electron loss model, fofge  the values oA were roughly 20%, 50%, 3-5%, and
which the mean probability and cross section for the removak 14 for B~, BY, B*, and B, respectively.

of each of the electrons do not depend on the presence of the The resulting dependence of the cross sectiopsfor
other electrons in the ion. In that case the cross sections the |oss of the outer2(for B~ ions and B atomsg and 2

for the loss of a single electron and the cross seatign.m  (for B* and B**) electrons during the passage of fast boron
for the loss ofm electrons from the outer subshell with)  atoms and ions through gaseous media with the velocities

electrons have the forhi®** V=1.19 and 1.83 on the nuclear charge of the medium atoms
Z, is presented in Fig. 1. The cross sectiensare propor-
Um:J W,(p)dp tional to Z{. WhenV=1.19, k is greatest for negative B
’ ions (k=~0.5) and decreases tc~0.4 for B’ atoms and to

k~0.2—0.15 for B" and B*" ions. WhenV=1.83, k~0.5
for all ions. Asm, the number of electrons removed, is in-
‘Tivi+m:Cg1j Wii(P)[1—Wpi ()] "dp, @ creased an¥ is diminished, the deviation af;(Z;) from a
monotonic dependence increases significantly. In particular,
wherep is the impact parameteW,,(p) is the probability of whenV=1.83, the cross sectiom, for B>" ions in neon is
removal of a single electron, arﬁg‘=q!/m!(q—m)!. Ex-  approximately one-tenth the corresponding cross sections in
pressions similar t¢2) were obtained for the electron loss nitrogen and argon.
cross sectiongr; ;,, of the K andL shells, and have been As shown in Ref. 6, the values of the veloch,,y, at
used in semiclassical calculations of inner-shell ionizatfon. which electron loss cross sections reach their maximum val-
One special feature of the electron loss cross sections fares, can be found from the relatidfy, ..~ YU;, whereU; is
the negative boron ions is the substantial contribution of thehe mean orbital velocity of the electron being removed. As
multiple-ionization cross sections_; _;,,, (m>1) to the Z, increases, the coefficientincreases fromy~1.3 in he-
total ionization cross sectiof ;. The fraction of this con- lium to y~2 in krypton. Accordingly, the maximum elec-
tribution is specified byRij=1—[0;;-,/S]], which has the tron loss cross sections for'Bions should be observed at
valueR_;=0.50+0.05 for B™ ions. At the same time, forB  V,,,,~0.3. The greatest electron loss cross sections for B
atoms and B ions the contributions of multiple ionization to atoms are achieved #,,,~1.5, and the greatest values for
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FIG. 1. Dependence of the single-electron loss cross seatipfsr boron FIG. 2. Dependence af;U; on Z, for negative B ions (filled pointg and
ions and atoms orZ; at V=1.19 (solid lines and filled poinjsand at  H~ jons (unfilled point3. Solid lines—calculation based on formu(@):
V=1.83 (dashed lines and unfilled pointsThe ion charge is indicated 1—V=1.19; 2—V=1.83.

near the curves.

for B~ ions are, on average, 30—40% less than the corre-
positive B and B ions are achieved af;,,»~2—3. The sponding calculated and experimental values for idns
values ofo; obtained in the present work for boron atoms (Fig. 2).
and ions with the chargds=0, 1, and 2 increase somewhat The electron loss cross sections for the negative ions of
with increasingV, while the values for the negative ions light elements in the range of ion velocitids~1—2 are
decrease. known not only for the hydrogen and boron ions considered,
It was previousl¥® shown in an investigation of the elec- but also for metastable helium ions in the "Hé¢1s2s2p)
tron loss cross sections for negative hydrogen ions and hystate?® Li~(1s?2s?) ions®?? C~(1s%2s?2p®) ions, and
drogen atoms that the dependencerpbn Z, is has a step- O (1s?2s?2p?) ions?3 The orbital velocitiedJ; of the outer
like character. The sharp increase in the electron loss crosdectrons in these particles vary frody~0.077 in He to
sectionso; for hydrogen particles in alkali-metal vapors in 0.35 in O (Ref. 24. The contribution of the cross sections
comparison to the corresponding cross sections in inert gasésr the loss of two electrons to the total ionization cross
results from the weaker screening of the nuclear CoulomisectionS_; for H™, He™, and Li" ions amounts taR_;
field in the alkali-metal atoms by the outer electrons. The=0.20+0.05 on average. At the same time, the cross sec-
following semiempirical formula, which takes into account tions for the loss of two and three electrons for @énd O
the features of both the ions and the ambient atoms, waens, just as for B ions, amount to~0.5 and=~0.3 of the
proposed in Ref. 20 to describe the dependenag oh Z; : cross sections for the loss of one electron, and therefore
2o R_,=0.60+0.05. The value oiV.,, where the electron
7= mapZ IVUiU(2y), © Ios; cross sections peak, should rI]/Z\Xry fram,,~0.2 for he-
whereU;=l;/lq and U(Z,)= JI(Z,)/l, are the mean or- lium ions toV,.~0.7 for carbon and oxygen ions.
bital velocities of the electrons in the ion and an ambient  Apart from the data just enumerated, for negative ions of
atom, andl(Z,) is the ionization potential of the ambient light elements with outer electrons having a very small bind-
atoms. AtV~1-2 the exponent is set to 0.5. ing energy, the electron loss cross sections for metastable
Formula (3), which was obtained in the free-collision HE™(1s2s) (Ref. 22, Li%1s%2s) (Ref. 25, and H(1s)
approximation, is a modified version of the familiar Bohr atoms, as well as the cross sections obtained in the present
formula for the loss of a weakly bound electron in mediawork for B%(1s?2s?2p) atoms, are now known. The values
with Z,=V/2 and is applicable in the range of ion velocities of U; for these particles vary frord;=0.57 for helium at-
V=(1-2)U;, where the cross sections fall off compara- oms toU;=1.0 for hydrogen atoms, and the maxima of the

tively slowly, asv 1. electron loss cross sections are located in the rangg
In accordance with3), the products;U; for identical ~1-2.
values ofU(Z,) andV should be the same for different ions. An analysis of the electron loss cross sectiofigor the

In fact, whenV=1.19, the measured and calculated valuesegative ions and atoms of light elements showed that the
of o;U; for B~ and H™ ions coincide in all media to within cross sectiongr; decrease with increasing orbital velocities
20—-30%(with the exception of the Hions in lithium, where  of the outer electrondJ; in proportion toU; * and that the

the experimental values af;U; are 1.5-2 times the calcu- deviation of the measured cross sections from the values cal-
lated values WhenV=1.83, the measured values @fU; culated from formula3) is at most a factor of 1.5 over the
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a. 107'% cm2/atom I;_1(n) is the mean binding energy of an electron in the
unfilled electron shell with principal quantum numbrethat
is closest to the nucleus in an ion with chaigel, | is the
binding energy of the outer electrons in the ambient atoms,
andl,=uV?/2 is the transport energy of an electron whose
velocity V equals the velocity of a fast particle.

The proportionality between the electron capture cross
section and the number of vacant states corresponds to the
model of independent electroisaccording to which

O'i,ifm: Wagcg]wm, (6)

where W is the mean probability of electron capture and
Cp=p!/m!(p—m)!.
To estimate the charge-exchange cross sections at ion
10° velocities close to the maximum in heavy mefi{& _ /1)
U <Z,], where the effective number of electrons captured from
o _ ambient atomsN=Z*® (Ref. 32, the value ofW can be
FIG. 3. Dependence of the electron loss cross sectigrier ions of light .
elements a¥=1.19 onU; in helium (filled triangles, in nitrogen(unfilled represented in the form

circles, and in argon(unfilled triangle$. Straight lines—calculation based W~ (I i71/| O)Ztllav—s_ (7)
on formula(3).

1 i

10

On the basis of6) and (7) the total single-electron capture
cross sectioro; j_; at ion velocities near the maximum is

entire range ofJ;, which amounts to more than an order of given by

magnitude(from 0.08 to 1.0. Figure 3 presents the data for
helium, nitrogen, and argotthe most measurements were ;i 1=p;_y(n)maj(l;_1/19)Z{*V 2. (8)
performed in these mediaClearly, the greatest deviation henV=1.19, the electron capture cross sectiogs ; for

between the calculated and measured values occurs \é\é’atoms depend weakly afy, varying over the range from

Ui=0.5. Somewhat better agreement with experiment ig &'y, '1 10-17 cri2/atom aszZ, increases from 1 to 54. The
achieved over the full range &f, . if a weaker dependence corresponding cross sections for positivé Bnd B ions

of o3 onU;, specifically oo U; *%, is adopted in Eq(3). are 10—30 times the electron capture cross sections for boron
atoms. The electron capture cross sectiopis_; for boron
3.2. Electron capture cross sections atoms and ions determined from formyB) agree with the
Scrutiny of the experimental data on the charge-measured values to within a factor of 2-3. The greatest dif-
exchange cross sections for atoms and singly charge ions &rence, a factor of 5, was obtained fér=1.19 in neon. In
light element&®?’ revealed that the cross sections for non-neon, however, the experimental values «f;_, exhibit
resonant charge exchange peak at the velogjty,, which substantially nonmonotonic variation, increasingZ#? on

satisfies Massey’s adiabatic criterfdn average(Fig. 4).
According to formula(8), the single-electron capture
Vima=alAE|/h, 4

cross sectionsr; ;_; divided by the number of vacancies
whereAE is the change in the internal energy of the systemp;_1(n) in the unfilled shell nearest the nucleus, i.e., the
a~3x10°8 for single-electron capturd, and a~1.5 values of oc(n)=0;;_1/p;_1(n), should lie on straight
x 10”8 for double-electron captur&.In accordance with this lines corresponding to the linear dependencelon(n).
criterion, the maximum electron capture cross sections foFigure 5 presents the dependenceog{n) on I;_,(n) for
most of the ion—ambient-atom pairs studied fall in the rangeelectron capture by atoms and positive ions of light elements
Vima=0.5— 2. According to the experimental data foriBns ~ with Z<10 in a nitrogen target at=1.19. The experimental
in hydrogert whenV systematically increases, the cross seccross sections were taken from Refs. 2, 17, 21, 22, 25, 30,
tions o ;_, for the ions with charges=1—5 are propor- and 33-35. The values of;(1) ando(2) for electron cap-
tional to V3 over the rangd/=1.5—2. As the velocity in- ture by H atoms with a vacancy in th& shell and for
creases further, the dependence of these cross sections @ectron capture by B C°, and & atoms with vacancies in
V strengthens, and we have;; ,xV~° by the time theL shell are located in the range of small valdes(n)
V>2-3. ~0.3—2eV. The values ofsr.(1) for electron capture to
The investigation of the electron capture cross sectiongacant states in th& shell by H" ions (protong, He*#*
o ;_, for fast positive nitrogen and neon ions in Ref. 30ions, and L#* ions, as well as the values @f.(2) for
revealed that for ions with small values iof which satisfy ~ electron capture by [, BY?", N%2%4 and Né&234% jons,
the condition lie in the range ofl;_4(n) from 5 to 100 eV. Asl,_4(n)
increases, the experimental reduced cross seatigfls) and
li-a(m=I=1/3+3l, ®) o.(2) increase in proportion to,_4(n) asl;_4(ng) varies
the total electron capture cross sectign_, is proportional  over a range of almost three orders of magnit(fdem 0.3 to
to the numbep(n) of vacant states in the ion. In formu(8) 100 eV). The o, determined from formuld8) are approxi-
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o 107'6 cm2/atom g, 107" cm2/atom
10't
ol FIG. 4. Dependence of the electron capture cross sections

10 oij-1 on Z;: a—V=1.19, b—V=1.83. Dashed lines—
calculation based on formul@®). The ion chargeé is indicated
near the curves.

107'F

1072

mately triple the value of;(2), and areessentially identical It has been shown that the experimental electron loss

to o¢(1). For ions with high values ofi, for which  cross sections for boron ions and atoms, as well as the analo-
li_1(n)>1~50eV, the dependence of the reduced crosgous published data for other ions of light elements, are sat-
sectionso (1) ando(2) onl;_;(n) weakens. As shown in isfactorily described by the formula previously obtained in
Ref. 30, the capture of an electron by these ions occurs prehe free-collision approximation, which takes into account
dominantly to excited states of the ion; therefore, the totathe features of both the ions and the ambient atth¥he
cross sectiorr; ;_; depends weakly on the number of elec- single-electron loss cross sectiansvary nonmonotonically,
trons in the ion and is determined by the chargad by the increasing ag}”? on average. At a given ion velocity the

velocity V. values ofo; decrease with increasing orbital veloclty of
the electron being removed as*l. When we go over from
4. CONCLUSION inert gases to alkali-metal vapors, the valuesrpfincrease

by a factor of 1.5.

_The results_ of the present work have enabled us to es A formula based on the model of independent electrons,
tablish the basic behavior of electron loss and electron cap-, . . : - .
. . . . ) ‘which satisfactorily(to within a factor of 2—3 describes the

ture cross sections for ions of light elements in various medi

a )
in the range of ion velocitiey/ where the cross sections dependen_ce of the electron captgre_ Cross sectigps, on

. . the magnitudd; _; of the mean binding energy of an elec-
reach their maximum values.

tron in an ion with chargé—1, has been proposed for ions

with small values of. As|;_; increases, the cross sections
o,(n), 10716 cm/atom increase proportionally td; _,. The total electron capture
F cross sectionr; ;_; is proportional to the number of vacan-
] cies in the unfilled electron shell closest to the nucleus. Also,
the values ofo;;_; exhibit substantially nonmonotonic
variation with Z,, increasing asZ® on the average. As
shown in Refs. 36 and 37 by investigating the charge-
transfer cross sections for positive hydrogen and helium ions
in various media, the nonmonotonic dependence of the cross
sections onZ;, which leads to the systematic alteration of
maxima and minima, results from structural features of the
ambient atoms and the resonant nature of the charge-
exchange cross sections, and can be described qualitatively
by the quantum-mechanical Oppenheimer—Brinkman—
Kramers(OBK) approximation.
107 . ' : A preliminary analysis of data on the cross sections

107! 10° 10 10° oii+m and o ;_p, for the loss and capture of two or more

electrons by boron ions and atoms points to a significantly

FIG. 5. Dependence of the values @f(n)=o;;_1/p;_1(n) on l;_4(n). stronger dependence @j.

The unfilled points show the values @f(1) for ions with aK vacancy, and . . .
the filled points show the values of,(2) for ions with anL vacancy. Solid We express our sincerest thanks to the service techni-

line—calculation based on formul8). cians for the 72-cm cyclotron—Yu. P. Druzhinin, V. A.

10°

107!

10°%
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The interaction of a molecule with a strong laser field is investigated. Raman-type transitions
between rotational levels of a fixed vibrational state of the ground-state term are taken

into account in the “quantum rotator” approximation. An initial problem of the evolution of the
state of a molecule interacting with a pulsed field is solved. The dynamics of the degree of
alignment of a molecule with respect to the direction of polarization of the field during the pulse
is investigated. It is shown that for sufficiently long pulses with a smooth envelope the axis

of the molecule adiabatically follows the time-varying field amplitude, and alignment is maximum
when the field intensity is maximum. It is shown that alignment of molecules can be

substantial only if the second-order composite matrix elements, determining the probability
amplitudes of transitions between rotational levels of a molecule, are much greater than the
dissociation broadening of the levels. The angular distribution of the dissociation products

of a molecule in a strong laser field is investigated. 1@99 American Institute of Physics.
[S1063-776(19900411-4

1. INTRODUCTION broadening and two-photon Raman transitions between rota-
tional levels of a molecule are taken into account in the

It has been found in a number of experimental worksgquantum-mechanical model formulated below. The dynam-

investigating the interaction of molecules with a strong laseiics of reoccupation of the rotational levels of the ground term

field that under certain conditions the angular distribution ofof a molecule, the time-dependent degree of alignment of an

the photodissociation fragments of a molecule is extended imitially isotropic ensemble of molecules, and the angular

the direction of polarization of the fiekf In such experi- distribution of the decay fragments of the dissociated mol-

ments, ordinarily, the object of investigation is a gas of di-ecule are investigated.

atomic molecules with an isotropic distribution of the direc-

tions of the axes. Motion of the dissociation products

predominantly in the direction of polarization of the field 2- FORMULATION OF THE PROBLEM

could be a consequence of field-induced alignment of the  \we consider the interaction of the hydrogen molecular
axes of the molecules in this direction, which in turn could;gy H2+ with a radiation pulse whose electric field we give in
be due to restructuring of the rotational motion of the mol-the form &(t) =&, f(t)cost), where f(t) is the envelope
ecules in a strong light field. normalized to unity at the maximunf,,,=f(0)=1. The

The restructuring of the rotational motion of a molecule tjme-dependent wave functioff (t) of the molecule in the
in a strong light field can occur for various reasons, such age|d satisfies the Schdinger equation

resonant excitation and mixing of the vibrational states of the

molecule®* photodissociation or photoionization broadening ii‘lf=[H —d-g(t)|W

of rotational levels;’ two-photon Raman transitions be- at 0 '

tween the rotational levels of a molecgand so on. In where H, is the Hamiltonian of the free molecule in the

certain special cases the photodissociation of the momcu"”ﬁom—Oppenheimer approximatiod, is its dipole moment
ion Hy by a laser pulse has been investigated numerically "bperator, and: = |e|=1. We seek a solution of this equation

,10,11 . . . .
a two-term modef:'>* However, the reasons and the con-in the form of an expansion in terms of the complete basis of
ditions for field-induced restructuring of the rotational mo- ,.ave functions of the free molecuté:

tion of a molecule as well as the effect of the restructuring on

the angular distribution of the dissociation products were not .
9 P V=3 Counam(®IVNAM)exp—iEqpnt)
I\, VY,

determined.
In Refs. 12 and 13 a molecule was treated as a classical
rigid rotator, and the rotation and orientation of molecules in + E dE Cy £ A m(D[N"ENAM)
a strong light field were investigated in such a model. The n AN B
gp;[éll(;akl)lllty of the classical approach is briefly discussed in X expl —iED), o

In the present paper resonant excitation of the vibrationsvherev is the vibrational quantum numbex, is the projec-
and ionization of molecules is studied. Photodissociatiortion of the electron angular momentum on the axis of the

1063-7761/99/89(11)/8/$15.00 837 © 1999 American Institute of Physics
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molecule,N is the total angular momentum quantum num- FNN’:277(_d‘eolz)g\lkl)z(_d'80/2)|(5k[1|'|E:E N )
ber,M is the projection of the total angular momentum in the N

direction of polarization of the field, and are other term For single-photon dissociatiok=1, the components of the
guantum numbers of the molecule. The first term on thelissociation-width tensol yy: and the polarizability tensor
right-hand side of the Ed1) takes account of the expansion ayys can be expressed in terms of the real and imaginary
in terms of all discrete levels of the coupled terms of theparts of the composite second-order matrix elem
molecule, and the second is an expansion in continuum)states :

of all terms, E is the energy of the continuum statdsy _= e2— — =M@

=EMW+B{YN(N+1) is the energy of the vibrational— g€ 3 T =Myy

rotational states in thath term,E{" are the energies of the (—d- o)y ey —d-£0)er
corresponding vibrational levels, arg™ is the rotational E( f dE+ >, 2 RLE) O ERN
constant of thenth term. We assume the initial state of the i E(E)-En—w+id ‘5—>o
molecule to be one of the vibrational—rotational states of the (4)
electronic ~ ground  term S5y (*¥5):  |gvNM) N _ _
—|g)|v)|NM), where|g) is the electron wave function and where the sum Overis a sum over all intermediate states of
lv) and|NM) are, respectively, the vibrational and angularth® molecule from which the integral over the enefgyf
functions of the nuclear motion. In the present paper wdhe molecule in the repulsive term, the transition to which
assume that in the initial state=1, i.e., the molecule is in corresponds to dissociation, |32 singled out. According to Eq.
the lowest vibrational level of the ground term. For the (4), for k=1Tyy and —ayy &g/4 are of the samesecond
ortho- modification of the molecular Hion, only odd rota- ~ ©rder in the intensity of the field, and, generally speaking,
tional quantum numbersN=1,3,5,... are possible in the &€ comparable in magnitude, and the actual ratio between

ground term, and for the para- modification only even numthe dissociation-width tensor and the amplitudes of the Ra-
bers are possibldy=0,2,4,. . . *!5For a linearly polarized Man transitions depends on the frequency of the field. In the
field the quantum numbeW is an integral of the motion. present case at single-photon transitions from the lowest vi-
Therefore the problem can be solved separately for eachrational level of the molecule, in accordance with the
numberM, whereupon the results can be averaged with reFranck—Condon principle the dissociation widtfy: () of
spect to the distribution function of the unperturbed mol-te 'f"elEN has a maximum near exact resonange wres
ecules over the statéBM). =wX)=U(R) —Ey. Under the same conditions the disper-
We examine single- and multiphoton dissociation of aS'on depegdence of the Stark shift of the levél,
molecule. In accordance with the Franck—Condon principle,~ @nn(®)£5/4, has a form similar to the derivative of
for a k-photon transition to the repulsive ternp@, (%2 }) FNN’£7")1)8 and, therefore, |ayn(w)|€5/4<I'ny (w) near
from the lowest vibrational levelM= 1) of the ground-state @res- ~ CONVersely, far fromw s there exists a region
term Iso4(°S) the frequency of the field must satisfy the where thg shift of a 1|§V3| is relatively large, and
condition w=w®=[U(Rs)—Ex]/k, where U(R,) is the |ann(w)| €545 T g (). For_r;nuluphoyon dissociation
potential energy of the nuclei in the repulsive teRg,is the ~ ©f @ molecule k=2) the probability amplitudes of Raman
equilibrium internuclear distance of the ground term, andransitions once again are of second order in the field inten-
ENEE‘&). sity, while the components of the dissociation-width tensor
Substituting the expansion of the wave functidhinto ~ &€ Proportional to the field Zintensity to the powek and
the Schfdinger equation, we obtain a system of differential therefore, as a ru'¢?‘NN(‘f’)|£0/4>FNN'(“’) in this case.
equations for the probability amplitude, , n  w(t) and Note that there is a difference between situations involv-
Chenam(t). Using the procedure for adiabatic exclusion iNg short and long pulses. If the pulse duration is short com-
of the continuun® we expressC, g s m(t) in terms of pared with the reciprocal of the spacing between the nearest
;- we ENA, . : —gO® i
Cp.vn.am(t) and obtain the following system of equations rptauonal Ievel_s,7-< 1B, whereB,=B;"”, then the rad|a_—
for the probability amplitudes of finding a molecule in the fion spectrum is broadw~1/7>Be, and Raman transi-
vibrational—rotational states of the ground ter@(t) tions between different rotational levels can occur in strong
EC(NM)(t) (where the indexV is dropped to simplify the and weak fields. In contrast, for pulses of long duratien,
equations >1/B,, the spectral width is small w~1/7<B, and Ra-
man transitions in a weak field are forbidden by energy con-
y . servation considerations. However, in a strong field this
iCn(t)=2> Cyr(t)expli(Ey—Ey)t} stricture is lifted and transitions can occur.
N The criterion for a strong field is

N -

1 i
= §2 2 £2k . 1
X| = zann F(eg— 5 f (t); Cane|s (2 Z|aN’N(w)|SS>Be' (5)

wherel' s and ay are, respectively, the tensor of disso- This criterion is a common one, and does not depend on the
ciation widths and the polarizabilityscattering tensor, re-  pulse duration. Although for a short pulse<{1/B,) Raman
spectively. The ionization-width tensor can be determined irtransitions can also occur in weaker fields, they are ineffi-
explicit form as the product ok-photon composite matrix cient in that case. Raman transitions become efficient for
elements of the dipole moment operator large and smalf only if (5) is satisfied. Numerically, for the
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ground state of the molecular hydrogen iod KB) corre-
sponds to field intensitids= 101°W-cm™? or field intensities
£0=3X10°V.cm 1=¢g, whereeg is the threshold inten-

sity for the appearance of the strong-field effects considereg
below. This estimate of g can be easily shown to be correct

either by approximating the polarizability tensegy: () by
the static limit of its diagonal parfayy(w=0)|~5 (in
atomic unitg or by estimatingayy/ (@) by its maximum
frequency  dependence|ayn(®)|ma=15212  for B,
=30cm 119

Considering weak and strong fielpsccording to the cri-

terion(5)], we assume that the field intensity is still bounded

from above by the conditions

|0[NN/|SS<(UE, FNN/<(De, (6)

where w, is the frequency of a vibrational quantum in the

ground term of the moleculew,=2297 cm1.%® Since
|O(NN((‘))|max~1512'13 and I:FNN’(‘1)):|max%10117’19 we find
that (6) holds forl<10*W-cm™~2, which is obviously con-

sistent with the condition for the strong-field regirft. The

A. I. Andryushin and M. V. Fedorov 839

TABLE I.

Dyn+3M (NF1)2—MZ (N+2)2—MZ (N+3)2—M?2
4(N+1)°—1 4(N+2)°—1 4(N+3)*>—-1
(N+1)2—M? [(N+2)2°-=M? (N+1)>°—M?
( 4(N+1)%-1

AN+ D1\ aNT22—1 "

NN+1M

N2—M?2
+M)
\/W (N+1)2-M? N2-M2  (N-1)2-M?
4N?-1 (4(N+1)2—l AN 4(N—-1)%-1
(N—1)>—M? (N=2)2—M? N>°—M?
4(N—1)°—1 4(N—2)°—1 4N°—1

DNNflM

DNN—3M

The solutionsC{"(t) of the system(2) can be used to
find as a function of time the probability density of the
orientation of the molecular axis in any given direction char-
acterized by the angleg and ¢ of a spherical coordinate

condition (6) justifies the possibility of taking account of system_withz axis oriented parallel to the polarization vector
only transitions between rotational sublevels of the lowesPf the fieldeo:

vibrational level of the ground term of the molecule without 2
excitation of the higher vibrational levels. This approxima- P (t,0,¢)=|> C{P ()Y, ,(0,9)| |
tion is reflected explicitly in EqS2), whose right-hand sides N

do not contain a summation over the vibrational states of th'\?vhere as before the quantum numbisrandM characterize
molecule. The region of even stronger fields, wh@s not e initial state of the molecule. If the system under study is

satisfied, is certainly of interest, but such an extension of thg,iia|ly an ensemble of molecules with distribution function
problem falls outside the scope of the present work. p&M) over the quantum numbeis and M, then the time-

Equations(2)—(4) can be further simplified by singling genendent distribution function over the directions of the
out in the matrix elements of the dipole moment the parts,, o< of the molecules in the ensemble is

calculated in terms of the rotational functions of a free mol-
ecule, and assuming that the remaining factors are either
weakly dependent on the rotational quantum number in the
initial and final states and can be approximated by constants.
In this approximation, all components of the ionization-
width tensor and the polarizability tensor are characterized

(10

P(t.6.¢>=% PPN (1, 0,0)

2

cYs (00| . (A1)

only by the constantg, and «, respectively,

I =BoDunied. @y = a0y - @)
For single-photon dissocation the coefficie@t%v,'\,), are
2_p\p2 2_ 2
D(M):N M+(N+1) M
NN"4N?—1  4(N+1)°-1"
D) _ (N?nazx—W)((Nmax—l)z—Mz) s
NN (4Nmax_ 1)(4(Nmax_ 1)2_1) B ( )
8

whereN,.,=maxXN,N’}. For three-photon dissociation of a
molecule, naturally the expressidi) for the polarizability

tensor am), remains the same, and the formula for the

dissociation-width tensor becomes

9

are given in Table I. The con-

M) _~ =(M) 6
FF\JN)'_ﬁODE\IN)/SO'

where the coefficient® |1,

stantsag, By, andB, are not calculated in the present paper,where d-&o/2)gRmnrm

but instead are given phenomenologically.

Using the solutions of the system of equatid@s the
angular distribution function of the dissociation products of
the ensemble of molecules can also be found similarly to Eq.
(11):

2
Pu(0.0)=3, " [ de
NM

> C(EMN’«T)Y;,M(o,@)‘
NI
(12)

HereC™)(t) are the probability amplitudes of finding a mol-
ecule at timd in continnum states of the repulsive term with
energyE and quantum numbers of the angular momentum
and its projectiorN andM:

ci(t) =i ftdt’Z expli (E—Ey/— w)t'}

0 N’

d.gq| ®
-5

(13
2 enmnrm

Cnrm(t’),

) is thek-photon matrix element of

a dipole transition from the state of the ground telgyv
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=1,N’,M) to the continuum statgs,E,N,M); the timeT in nient to characterize each quasienergy state by a rotational

the argument oC(E'\,’\'j) on the right-hand side of E¢12) isthe  quantum numbelN, of the level of the free moleculéﬁ\,o)

moment at which the pulse ceases. into which a given quasienergyy (o) passes in the formal
limit of zero field intensity,e,— 0. The value and desirabil-

3. ROTATIONAL QUASIENERGY STATES OF A MOLECULE :cty Otf. SOIV'?g forlthelquasEnertgﬁﬁ indt?#af'er?eeﬂ{]e"\;?evlz

AND ALIGNMENT EFFECTS WITH THE INTERACTION runctions ot a molecuie are gue to the fact that w :

TURNED ON ADIABATICALLY is turned on sufficiently ;Iowljadlabatlcally, ie., for suffi-
ciently long pulse durationgsee below for estimatgsthe

For a constant, time-independent envelope of the fieldystem always remains in a quasienergy state, satisfying a
f(t)=1, the system of equatiori®) can be transformed to a given initial condition, and its characteristics at any time are
system of equations with constant coefficients for the funcdetermined by the parameters of this quasienergy state, in

tions Ay (t) =exp(—iEnt)Cy(t) which it is only necessary to replaegg by a weakly time-
_ dependent envelopg,f(t) of the light pulse. In other words,
iAn() — EnAn(D) =D Apr(t) in the adiabatic approximation a replacement of the paramet-
N/

ric dependence of anday on e by a dependence anyf(t)
1 i makes it possible to solve the initial problem, i.e., to find the
- ZaNN,sg— 52 e | solutionW (t) =W [eof(t)] of the Schrdinger equation that
k satisfies the initial conditions;z[sof(t)]—>EN0 and ¥,
(14 —|Ng,My,) ast——x.
which obviously has a solution of the formAy(t) If the system is in a quasienergy stakg,, then in par-
=exp(—iyt)ay, whereay is a constant and are complex ticular the probability densitp(” of the orientation of the
guasienergies of the system. The equations for the coeffexis of the molecule in this state can also be determined

X

cientsay have the form using Eq.(10):
ap+2i : _ M
v EN+ —O 4 BOS%DN’N aN P(')’ M)(t101(p)_‘% ag\"y )[80f(t)]
. 2
apt2i .
- OTBOS%(DN,N+2aN+2+ Dn,N—28N-2), X exp{—i(En+ Yt Yau(0,0)| . (16)

(15) For an interaction turned on adiabatically, the quasienergy

. and the corresponding coefficierats"™ in Eq. (16) are cho-
where the approximate formulgg) were used for the polar- sen from the solutions of Eq&l5) and the initial conditions

izability and ionization-width tensors. The single-photon dis- ésof(t)]HENO and\If7—>|No,MNo> ast— —. Assuming

sociation channel is assumed to be open, and in this case tﬁ; ) .. L . . .
” the adiabaticity conditions to be satisfied and, in addition,

constantD) v+ are determined by Eq$3). ™) ) M)
As noted in the Introduction, for single-photon dissocia-| @[> ITinr| (0> Bo), andT'yy, T<1 we solve Eq(15)

tion of a molecule the ratio of the constantg and 8, de- and investigate the dynar_nics of the_ alig_nment of.an en-
pends on the frequency of the external field. Bgre 3, the semble of molecules excited by a field into quasienergy
perturbation of the levels of the molecule in a field is deter-States¥ . , , o
mined mainly by the dissociation broadening, and this case e assume as usual that the object of investigation is an
has been investigated in detail in our previous woi.the ~ quilibrium molecular gas at room temperature. Under these
present paper this case is not studied, since appreciable aligfenditions only rotational states with small of the mol-
ment of molecules in a strong field does not occur withecules are.populated, and for the Qrtho- configuration of the
strong dissociation broadening of the levels. From this standMolecular ion H only the states witiN=1 are populated,
point, the opposite case, where the perturbation of the rotedll three sublevels wittM =1, 0, and =1 being equally
tional levels of a molecule as a result of direct two-photonPOPUlatedp{™ =1/3. In accordance with Eq11) the distri-

Raman transitions is much greater than their dissociatioRution function over directions of the axes of such an en-

broadening,|a(NN,L),|>|F(NN,L),| or a0>/30(730), is much more semble of molecules has the form

interesting. These equatiok5) are equivalent to the equa-
tions for the expansion coefficients of the prolate spheroidal
function of the first kind in spherical harmonits2° -
i : i +P{H(,6,0)] (17)
The solutions of the system of equatioii$) determine 1 10 @) s
the expansion coefficients, of the quasienergy wave func- where the functionsP(lM)(t,a,@) musl be found from Eqgs.

1
P(t,0,0)= 5[PIV(t, 0,0)+ POt 0,0)

tions ¥, in terms of the rotational states of a free molecule(16). In the limit t——o, P(t,0,¢)| . _.=const1/4x

and the field-dependent quasienergjesf the system. The follows from Eq.(17). This explicitly confirms that the dis-
real and imaginary parts of the quasienergies determine thieibution of the molecular axes in the unperturbed state of the
positions and widths of the quasienergy levels. Although theensemble is isotropic.

guasienergy states are a superposition of the rotational states Figure 1 shows the directional distribution function
of a free molecule with differen, it is nonetheless conve- P(6) (17) of the axes of the ensemble of molecules under
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FIG. 2. Average anglé(z,) between the axis of a molecule and the field
intensity with the field turned on adiabaticaligurve 1) and the average

FIG. 1. Angular distribution of the axes of an ensemble of molecules in a€mergence angigy, (&) of the fragments with single-photdiurve2) and
radiation field. The distribution results from adiabatic switching of the in- three-photorn(curve 3) dissociation; dotted curvesé{s,) = o(eg).
teraction. The numbers show the field intengityin units ofeg .

indicates unequivocally that the axes of the molecules are
aligned in the direction of polarization of a strong light field.

t=0. when the field in th lse h hed it ! The alignment of the molecules in the direction of po-
— U when tne Tield in the puise has reached 1is maximu, ;> 4tion of a strong field can largely determine the angular
valueg), calculated for several peak values of the field mten-d

) . directivity of the dissociation fragments of the molecule.
sity, eqg/eg=0, 1, 2, 5, and 10. We note that because of axial y 9

symmetry the distribution functioR does not depend on the for the narrowing of the directional pattern of the molecular

azimuthal anglep (in a plane perpendicular tey). Accord- fragments. As is well know?>?!even in a weak field and

Ny to the figure, as the field Increases the distribution funCWith an isotropic distribution of the directions of the molecu-
tion P(#) becomes narrower and is localized at small value

Yar axes, the directional pattern of the fragments in single-
of 6 and 77— 6, i.e., close to the direction of field polariza- ' P g g

tion. In addition. in a strong field a dip also appears in thephoton dissociation as calculated in first-order perturbation
o " X S theory is governed by the factor , Where 64, is the
distribution function precisely a#=0 and #= 7. This dip y s g y Coty r

b . inal ticeabl the field intensity | angle between the direction of emergence of the fragments
cfeC;srzgs increasingly noticeable as he held INtensity Nynd the field intensity vectas,. For three-photon dissocia-

. . tion the corresponding factor is &, , an extremely nar-
The distribution functiorP () found above can be uEed rowly directed function.
to calculate average values, for example, the average @ngle |y the theoretical model under study the distribution

between the axis of a molecule and the direction of polarizas,ction P(6;,) of the fragments of the molecule over the
tion. prllzthe field and the quantum variance=[6 girections of emergence and the average emergence angle
—(6)°17%, where 6, , determined similarly to Eq18), were calculated using
" " Egs.(13) and(14) for single- and three-photon dissociation.
o= f” 0“P(0)sin6d0/ f” P(#)sinods. (18  The calculation was performed in the adiabatic approxima-
0 0 tion used in the present section. The computed dependence
_ o of the average emergence angle on the peak field intesgity
We note that the integration in E¢L8) extends from O to in the pulse is presented in Fig. 2. As one can see from the

77(2 and nqt from.O tom, since the positipns of the molecule figure, the average emergence ar@ﬁ(%) of the fragments
with the axis making angle¢and = — 6 with £, are assumed of a molecule is always less than the average a@glg))

to be equivalent. It is also interesting to note that in thebetween the axes of the undissociated moleculessgn@or

apsence of a fieldor P=cons} §=1 rad_ andr=~0.4rad. In one- and three-photon ionization, in the weak field limit
this case these values @f and o are independent of the ~26I3 and 6;,=0.450, respectively. In a strong field;,

choice of direction for the quantization axis. — i ) )

Figure 2 shows the average anaeand the quantities ~ ¢ in both cases. This result e_ssenyally suggests achaqge in
— ) ) e the mechanism whereby the directional pattern of the disso-
% o as a function of the peak amplitudg of the field ina  (jation products becomes narrower as the field increases. In a
pulse with the interaction turned on adiabatically. The averyea field the distribution of the axes of the molecules over
age angled(eo) decreases with increasing field, and in thethe anglese is almost isotropic, and the narrowing of the
strong-field limit it reaches a constant value of only severabirectional pattern of the dissociation products results solely
degrees. The relative standard deviation of the aadlem  from the dissociation process itself, i.e., the transition to the
its average value remains more or less constanigontinuum. In a strong field the dominant mechanism be-
o(eg)! 6(eg)=40%. Therefore, in a strong field the averagecomes alignment of the undissociated molecules along the
angle between the axes of the molecules and the direction dield. The degree of directivity of the dissociation products is
go as well as the standard deviationof the average angle essentially the same as the degree of orientation of the axes
are substantially less than their values for a weak field. Thi®f the molecules.

study after the interaction is turned on adiabaticdilg., at

Photodissociation itself can serve as a competing mechanism



842 JETP 89 (5), November 1999 A. I. Andryushin and M. V. Fedorov

6_’,@,, g+ o 4.2. Gaussian pulse
800' !

! The model with the interaction turned on instantaneously

is attractive solely because of its simplicity. It does not cor-

60
: J respond to the envelope of real laser pulses, which is best
40° approximated by a Gaussian functidift) =exd — (t/T)?].
2 For sufficiently long pulse duratioil, the solution of the

problem should correspond to the adiabatically switched
. model studied in the preceding section. However, for values
0 i 23 4 s of T comparable tdl 3= 1/B, the deviations from adiabatic-

ity can be appreciable. In the language of quasienergy func-
FIG. 3. Time-dependence of the average arfly between the axis of the IONS @ deviation from adiabaticity means that on the leading
molecules and the field intensitgurve 1) and the average emergence angle edge of the pulse several quasienergy states of the molecule
(1) of the fragments with single-photon dissociatimurve 2) with the  in the field, and not only one state as in the adiabatic case,
interaction turned on instantaneously with=10e ; dotted curves—(t) become occupied as the field is turned on. Solving the equa-
*a(t). tion for the time-dependent coefficients in the expansion of
the wave function of the molecule in the field of a Gaussian
pulse, it can be shown that the adiabaticity parameter is

-1/4

4. SOLUTION OF THE INITIAL PROBLEM AND ALIGNMENT (6+4Ng)B,T 9

EFFECTS INDUCED BY VARIOUSLY-SHAPED PULSES Ng

|ao+2i,30|85)
(6+4N;)B,

4.1. Square pulse

We consider first the often used model of a square puIséNh'Ch can be interpreted as the number of oscillations of

i.e., the interaction is turned on and off instantaneouslyUnctions of the typey(t) on the leading edge of a Gaussian

Solving Egs.(2) and (4) and assuming once again that ini- p'ulsg. Fome<1 there is not enoug'h time for even one os-
tially the ensemble of molecules is characterized by an isotillation of 6(t) to occur as the leading edge is turned on. In
tropic directional distribution function of the axes of the mol- this case the interaction is turned on abruptly and the process
ecules, we find using Eqé11) and (18) the time-dependent resembles more an instantaneously switched process. Many

average angl@(t) between the axis of a molecule and the quasieqergy states of the molecule become occu.pie(.j as the

polarization direction of the field and the quantum variancdMteraction is turned on. In contrast, fog>1 the switching

o(t) fo this angle. Figure 3 shows the functioﬁst) and timeis long, and many oscillations of the functiét) occur

g(t)"‘a(t) calculated for a square pulse of duratidh during this time, but the amplitude of these oscillations is

:5T_B (WhereTq=1/B,) at peak field strength seven times extremely small, and the switching process is nearly adia-
e

the threshold value for the appearance of strong-field effect§b atic. These behaviors are characterized by the computa-
eo=Teg (see Eq(5) for the definiti_on ofes). As is evident j)nal results presented in Fig. 4, which shows the functions

from the figure, the average angit) undergoes compli- o(t) and?(t)ia(t) calculated in the same model as in all
cated nonharmbnic but periodic oscillations between the inipreceding calculations but for a Gaussian pulse with duration

. — . . ., T1=0.1Tg, Tg, and 5Ty and peak field strengthy=10eg .
tial value #(0)=1 rad=~57° and the minimum value-27 For T=5Tg, according to Eq(19), ny~8, i.e., the pulse is

with Trequencies equal to t.he differences 9f the OC?“piequrned on gradually, essentially adiabatically. The average
guasienergy states. Expanding the funct#gt) in a Fourier angle?(t) decreases with timé to the minimum value,
(integra) series, we find that oscillations with frequencies,ynich is reached at=0. i.e.. at the maximum of the time-
equal to the differences of the quasienergies of the quasiefyependent amplitude,f(t) of the field. For small values of
ergy states of the molecule that are populated initially with, “the deviations from adiabaticity are large. In short and
the interaction turned on instantaneously are represented iBng pulses the quantum varianeeis greater than the am-
the spectrum of the periodic functiof(t). However, the plitude of the oscillations of the average anglg).
large quantum variance of the anglemuch greater than the In contrast to a pulse with a rectangular envelope, in a
amplitude of the oscillations of the average angle, can makg; ssian pulse the dissociation of molecules occurs mainly
it very difficult to observe these oscillations. We note that the,oar the field maximum at= 0. Figure 5 shows as a function
observed large quantum variance of the anglgives a far ¢ the field strength the pulse-averaged angle of the axes of
from obvious possibility of describing the ré)tatlons of amol- 5 ensemble of molecules at the center of the pulse and the
ecule in za_f|qu using the cIassm(.atI.th.eé?;}, where the de-  average emergence angles of the photodissociation products
pendenced(t) is a strictly deterministic function. _ for single- and three-photon decay of molecules in an en-
Since the dissociation of a moleculby assumption, semble for several pulse durations. For very short pulses,
slow, I'y m(T)<1) occurs during the entire time of the in- ny<1, the difference from perturbation theory is small. For
teraction with the field, the oscillations in the time depen-very long pulsesn,>1, the difference from the adiabatic
dence#;,(t) of the average emergence angle of the decagwitching model is small. The angular distribution of the axis
products of the molecule are smoothed out axreases, as of a molecule at the center of a pulse and the angular distri-
is clearly seen in Fig. 3. butions of the fragments of a molecule for single- and three-



JETP 89 (5), November 1999 A. . Andryushin and M. V. Fedorov 843

tribution of the axes of the molecules in the ensemble. Here
0:,(F)~6(F) (Fig. 5. We note that, other conditions being
the same, as the fractidnT of molecules that decay during

a pulse increases, the width of the angular distribution of the
fragments over the emergence angles increases.

— ' 5. CONCLUSIONS

The main results of this work are the conclusion that
substantial alignment of molecules in the direction of polar-
ization of the field is possible and a formulation of the cor-
responding conditions. It was shown that alignment can be
substantial only if the field is turned on adibatically, i.e., if
the duration of a pulse with a smooth envelope is sufficiently
long. Then the alignment is maximum at the maximum of the
field. The second important condition for alignment is that
the dissociation broadening of the rotational levels of a mol-
ecule must be relatively small compared with the perturba-
tion of the levels as a result of direct two-photon Raman
transitions.

The second important result of this work concerns the
angular distribution of the products of dissociation of a mol-
ecule. It was shown that the narrowing of the directional
! , pattern of the dissociation fragments and its orientation in the

-1 0 1 T direction of polarization of the field can be determined by
FIG. 4. Time-dependence of the average amfly between the axis of the two faCtO.rS: the orlentatl_on of the axes of th.e. m(.)leCUIeS n
mol-ect.JIes and the intensity of the field for a Gaussian pulse with pealzhe direction of a strong field and by the tran_smon itself from
intensity £,=10e5 and pulse duratio=0.1Tg (@), T=Tg (b), and T a bound state of the molecule to the continuum of an un-
=5Tg (c); dotted curves—#(t) + o(t); dashed curves#t) in the model  Stable term. If the conditions of alignment of molecules in a
with the interaction turned on adiabatically;4(t)—average angle between bound state as formulated above are not satisfied, then the
the field intensity and the axis of molecules in a quasienergy state with aglirectivity of the dissociation products of the molecules can
adiabatically slowly varying field amplitudeq(t). be determined only by the properties of the transition to the

continuum. Specifically, the directivity of the angular distri-

tion of the fragments along the field increases with the
mber of photons involved in the transition to the repulsive

photon decay are essentially the same as the correspondiﬁﬁ
distributions with the field turned on adiabatically. For suf- . . - o

L . ; term. However, if the strong field satisfies the conditions of
ficiently long pulsesny=1, two regions can be singled out . : . .

in the functionsal — (35 - th ion of substantial alignment of the axes of the molecules in their
|n|t N llJnctlonEGf(_slog, affﬁlSO)’ ind Oir'(e0): t efrehglon 0 1, 20UNd state, then the angular distribution of the dissociation
relatively weak fields, where the properties of the angular, gy cts is essentially the same as the angular distribution of
distribution of the fragments are determined by the orientindy o aves of the molecules

properties of the phototransition to thg continuum of the un- These results can be compared qualitatively with experi-
stable term, and the region of strong fields, where the angu'%ental dat& For example, under the experimental condi-
distribution of the fragments is the same as the angular disﬁons of Ref. 2 the pulse duration was short, so thgt 1

(Cl,, T=100fs,B~1.7 cm %, a~30 a.u). Therefore, in our
view, the directivity of the angular distribution of the disso-

80°[ ciation products of the molecules along the field was deter-
60°kd mined only by the orienting properties of the multiphoton
A transition to the photoionization continuum with formation

T S A— :‘__ <= of a molecular ion and a subsequent transition to the photo-
203 ----:‘_f“.\‘_?_‘_-_-_-_-::. dissociation continuum with decay of the molecules into
fragments. Alignment of the axis of a molecule and the axis

of a molecular ion as a result of Raman-type transitions be-

&lep fore transitions to a state in the continuum was small. This is
indicated by the dependence of the alignment on the pulse

FIG. 5. Average anglé(t) between the axis of a molecule and the direction duration, the field intensity, and the wavelength. According
of the field intensity(1) and the average emergence angle of the fragmentgq the data of Ref. 2, variations in the pulse duration and field

for single-photon(2) and three-photoiB) dissociation for shortsolid lineg . . ; s .
and long(dashed linespulses, for which, respectivelyyy<1 andny>1, mtenSItY had_oply a minor effect on th.e angu"ar distribution
calculated for a Gaussian pulse @0 as a function of the peak field Of the dissociation fragments, and an increase in wavelength

strengthe pas=£o(t=0). narrowed the angular distribution. The latter indicates di-
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We discuss the process of resonant subbarrier internal conversipmayf, where the converted
electron is transferred to one of the atomic orbitals. For the first time we study how this

process is affected by residual interactions: the splitting of the atomic terms in the total angular
momentum of the atom, configuration mixing, and the magnetic interaction between the
electrons of the atom. The calculations are done by the relativistic multiconfiguration Dirac—Fock
method with allowance for the Breit interaction for thel transition with an energy of

35492 eV in multiply charged ions df°Te. We show that allowing for the residual interaction

is obligatory if we want to calculate the conversion rate in the vicinity of a resonance

correctly. © 1999 American Institute of PhysidsS1063-776(99)00511-9

1. INTRODUCTION angular momentum of the atom, take into account the mag-
netic Breit interaction between the atomic electrons, and al-
The use of multiply charged ions in modern acceleratordow for configuration mixing. As expected, allowing for
allows observing processes that are, at least in principle, poshese effects strongly influences the resonant conversion rate.
sible and have been studied theoretically, but are extremely
rare in neutral atoms. One of these exotic processes is the 5| | oWANCE FOR THE MAGNETIC INTERACTION
subbarrier(or discrete or resonaninternal conversion oy  or ELECTRONS AND THE SPLITTING OF TERMS
rays, where the electron iwirtually) transferred to one of |N TOTAL ANGULAR MOMENTUM OF THE ATOM
the discrete levels of the atom. Such a process was consid-
ered in Ref. 1 and 2. Since discrete conversion is definitely a
resonant process, it was suggested in Ref. 2 that resonaf}
conversion could be used to accelerate nuclear transitions
balancing the resonance defect by an external field of las
radiation of appropriate frequency.
A different experimental study of thd 1 transition with
an energy of 35491980.5eV in multiply charged ions of
125Te was carried out at the University of BordeatfXn the
neutral atom this transition occurs primarily due to conver-
sion on theK-shell, and the corresponding internal conver-
sion coefficientay ! is equal to 11.6. As the shell becomes
ionized, the electron binding energy increases, and at ioniza-
tion multiplicity =45 ordinary conversion on thk-shell
becomes impossible. However, the expected decrease in life-
time was not observed in experiments: it remained constant
even atq=46; only with further ionization does the lifetime 1s
exhibit a smooth increase. This experiment stimulated a the-
oretical investigatioh of the process of subbarrier resonant
conversion that occurs &=45. The Feynman diagram of
this process is depicted in Fig. 1. We see that the electron is
(virtually) transferred to one of the states belonging to the

discrete spectrum, which then decays via a radiative electron
(or hole transition. FIG. 1. Feynman diagram for discrete conversion. A hole forms in the 1

. . - shell, and the corresponding electron goes torthestate. The double line
In the present paper we refine the calculation done Iriorresponds to a nuclear transition from the excited*{ state to the

Ref. 4 by allowing for th? reSidU&ﬂ intgraCtionS-_On partiCu- ground @) state. The arrow corresponding to the hole state is directed
lar, we allow for the splitting of atomic terms in the total against the flow of time.

The rate of resonant conversion depends very strongly
R the energy of the intermediate electron state Fig. 1
ence in calculations it is very important to allow for the
litting of atomic levels in the total angular momentum and
for the magnetic Breit interactiofin addition to the Cou-
lomb interaction. The effect of the Breit interaction on the
energy of 5— nstransitions in thé?°Te*" jon is illustrated
by Table I. The first column lists the values of the energies of
1s—nstransitionsh=9-18, calculated by the Dirac—Fock
method for the mediari“average”) level (DF,) without
allowance for the Breit interaction and the total angular mo-

ex* g
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TABLE |. Energies of 5—ns transitions calculated by the RQFmethod without allowance for the splitting in
the total angular momentuthof the atom, by the Df with allowance for the splitting#(J,,J,)), and by the
DF4 method with allowance for the magnetic interactiovii(J;,J,)). The energies are in electronvolts and
are measured from 35000 eV.

ns DF., E(3/2,5/2) E(1/2,312) MI(3/2,5/2) MI(1/2,3/2)
9s 331 320 349 252 283
10s 402 391 419 323 354
11s 454 443 471 375 406
125 493 483 511 414 445
13s 524 513 541 445 476
14s 548 537 563 469 500
158 568 557 585 488 519
16s 584 573 601 504 535
17s 597 586 614 517 548
18s 608 597 625 528 559

mentum of the atom. This approximation corresponds to th€2 eV. Thus, the entire energy of transitions fog states
model used in Ref. 4. The total angular momentliof the  with large values of decreases by roughly 70 eV, which is
method can be taken into account by using the termmuch larger than the level separation.
dependent Dirac—Fock method ([PFor the multiconfigura-
tion Dirac—Fock methodMCDF). Such calculations lift the
degeneracy in the total angular momentdrof the atomic
terms. As a result, the excitats levels split into two dou- What we said in Secs. 1 and 2 readily implies that the
blets, each of which remains almost doubly degenerate. Thete of discrete conversion strongly depends on the level den-
levels of the lower doublet with the angular momedta sity, which usually increases significantly when the mixing
=3/2 and 5/2 differ by roughly 0.1 eV in energy. The levels of configurations is taken into account. As noted earlier, in
of the upper doublet with angular momenlta 1/2 and 3/2  the case at hand the allowance for the interaction of configu-
are separated by a narrower gap).02 eV. rations causes splitting of eaals state into two levels in the
The energies of theslns transitions calculated by the final configurations ($2s22p2,,2psns), and each compo-
different methods are compared in Table I. In addition to thenent of the split levels remains almost doubly degenerate. In
energies obtained by the RFmMethod, the third and fourth the present work the configuration interaction is taken into
columns list the energies of the doublets calculated by thaccount within the MCDF method.
DF,4 method. Since inside each doublet the transition ener-  Using our RAINE package of computer prografmde-
gies do differ by an amount smaller than the accuracy of theised for relativistic calculations of atomic structures and the
data in Table I, these components are paired. The correnteraction of electromagnetic radiation and the nucleus with
sponding values of are listed in the first row of the table. the atomic electrons, we developed a program that realized
The energies of the transitions calculated by theyDtethod  the MCDF method. The main concepts were taken from the
with allowance for the Breit interaction are listed in the fifth theory of Grantt al.® but in our calculations by the MCDF
and sixth columns. method we took for the base functions the Slater determi-
The results presented in Table | show that allowance fonants corresponding to states with a well-defined projection
the residual interaction radically changes the arrangement dfl of the total angular momentuth The energy levels of the
the electron levels. Splitting of the levels is almost constanatom are determined by diagonalizing the Hamiltonian, and
and amounts to 27—-31 eV. This value exceeds the separati@ach level corresponds to an eigenfunction of the operator of
of median levels, so that the levels belonging to neighboringotal angular momentum, i.e., to a definite value of the an-
doublets overlap. The magnetic interaction increases the totglular momentum.
energyE, of the ground state of th&°Te*>" ion (with the There are three types of configuration interacfidfig-
electron configuration 122522p§,22p3,2) by 90.7eV. For ure 2a depicts the Feynman diagram of the mixing ampli-
highly excited states with the electron configurationtude, which occurs due to the one-particle operator of kinetic
1s2s%2p?2pyns, the energyE,, increases by roughly energy and the Coulomb interaction with the nucleus. Figure

3. INTERACTION OF CONFIGURATIONS

k k k 'S
a n's b n's c n's FIG. 2. Three types of configuration interactida)
ns ns ns mixing due to the one-particle operator of kinetic
1s Is Is energy and the Coulomb interaction with the

nucleus;(b) mixing due to the interaction with the
core; and(c) interaction with excitation of the core.

ex g ex* g ex g
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TABLE II. Matrix elements of the two-particle interaction of configurations, tial with a chargeZ—q+ 1, which depends very weakly on
(knsH'[8s k) (Fig. 2b, rows 1-4;M, is the total matrix element of o ghecific configuration of the core. Therefore allowance

two-particle interactionM , is the one-particle matrix eleme(s|H,,d8s) . . . . . .
(Fig. 29; and M is the resulting matrix element. All values of matrix for the given type of interaction gives rise Only to a S“ght

elements are in electronvolts. mixing of configurations with an amplitude of less than
~1%.

kan 6 7 9 However, as noted earlier, calculations by the MCDF
18y 8.518 0.403 7.355 method yield splitting of levels in total angular momentum,
251 13.405 15.9473 12.770 with the value of this splitting being approximately 30eV.
2Py 14.186 16.559 13.183 The level density changes when the interaction represented
2Psr2 7.058 8.252 6.573 by Fig. 2c is taken into account. The typical matrix elements
M ot 43.167 50.161 39.881 of this type are listed in Table Ill. Since they are off-diagonal

in all four states, they prove to be smaller by factor of 10 to
100. Note that the matrix elements with numbers from 3 to 6
Myes 0.280 0.217 0.179 with excitation of the hole statespg), in the core add up
coherently. The total value of such matrix elements amounts
to roughly 6 eV, which is larger by a factor of ten than the
g:natrix elemeniV . of one-particle mixing listed in Table II.
d@nd since the difference of the corresponding energy is

trons, whose states do not change, so that they can be r%o__ughly S0eV, aIIowanc_e for this _interaction can lead to
garded as comprising the core. This interaction also leads {gixing of thege states W't.h an amphtg_de close to 10% and to
mixing of the finalns states in the principal quantum number a corresponding change in the transition energy and the con-

n. The state of the core does not change if one allows for thig(tarspnl ma':nx. elertnentﬁ. Thuﬁf' slthoyg?h the densfngl of thle
type of interaction. Finally, Fig. 2c illustrates two-particle atornic fevels is not reafly as high as in the case of the mul-

. 4+ . . . . 7 _
interaction with more complicated many-particle configura-tIply c?arged fA d t|'on stqd!ed by anakT t ak:., allohw "
tions of the core-excitation type. ance for configuration mixing, as we will show shortly,

The typical matrix elements of the type of interaction of proves to be very important if we want to calculate the rate

Fig. 2a or b for T&" are listed in Table II. The first four of discrete conversion correctly.
rows in the table illustrate the fragmentation of tre<ates

in the 6s, 7s, and & shells, fragmentation that occurs due to
the interaction with the other electrons of tkeandL-shells. The selection rules for the conversibhl transition also

The results show that the interaction matrix elements arallow for transitions in which the electron orbital angular
almost the same for all electrons of theshell and are some- momentuml changes by 2, i.eAl=2. In the case at hand
what larger from the-shell. The magnitude of each matrix this means that there can be transitions of teelkctron not
element is about 10 eV. They add up coherently, yielding, folonly to thens states but also to the discrete statak,, of
instance, =,(k9s|H’|8s ky=39.881eV. However, this shells, transitions wittAJ=0,=1 which are close in energy
value is balanced almost perfectly by the contributions of theo the energy of the nuclear transition. However, we expect
interaction of the type depicted in Fig. 2a, which is approxi-the probability of these transitions to be low due to the small-
mately equal in value but has the opposite sign, as the sixthess of the wave functions of tldeelectrons in the region of
and seventh rows in Table Il show. This perfect balance hathe nucleus. Since the electron wave functions behave at the
a simple physical meaning. The electron in the highly ex-origin as (r)', it is indeed true that in the case of &hl

cited state 8 “detects” basically the nearly Coulomb poten- transition the internal conversion coefficients are at their

M, —42.887 —49.944 —39.702

2b depicts the diagram representing the two-particle intera
tion of the electron and the field generated by the other ele

4. CONVERSION TRANSITIONS TO nd-SHELLS

TABLE IlI. Matrix elements of the interaction of configuratiof$n|H'|n’j’) (Fig. 20. The one-particle states
are specified by the values of the principal quantum number, the orbital and total angular momenta, and the
projection of the total angular momentum.

Configuration Matrix

Number i n i’ n’ element, eV

! L 1 1 _
! 2p322 681, 3 8s10% 2p13 0.184

1 1 1 1 _
2 2p3103 65113 ) 8S113 2p1n3 . 0.106
3 2323 6s1,— 2 8S15 2p1p—3 —0.144

1 1

4 2Paz 2 65127 85107 2P =3 —0.106

1 1 1 1 _
5 2P3p5 75105 L 8S105 2p1123 ) 0.083
6.7 2323 . 6p12*3 8513 281, g —0.401
8 2p32—3 6p1ss . 8y 28— % 0.401

3 1 1 .
o 2P3% 6pi2—3 85125 25103 0.695
10 —0.126

3 3 1 1
2p3p—3 P15 8syp—3 281105
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TABLE IV. Energiesw,, and the discrete conversion Coeffici(-:‘ﬂiigl for Note that a similar situation occurs f3°Th when one

the M1 transitions 5—nd,, calculated by the D method. deals with the de-excitation of the nucleus through the elec-
M1 tron bridge 53— 8s—7p (see Ref. 2 A situation that is the

nds, wne, €V ag-,ev . . . K

opposite of the one discussed above was studied by Strizhov

11dg, 35458 0.481 and Tkalya® who took into account only the contribution to

1204, 35496 0.368 the electron bridge that starts either at thiy §state or at the

13d3, 35526 0.286 .

14d,, 35550 0.223 7s state but passes through the excitedt§ level. As a

15d, 35569 0.175 result, the effect was underestimated by a factor of 1000.

16d,, 35585 0.137 Unfortunately, this serious error of past years found its way

into Ref. 10, with the result that the interpretation of the
experimental data was based on an erroneous theoretical cal-
culation. Indeed, the analysis of subsequent experimental
maximum in the $— nstransition, for which the wave func- datd™2suggested that the UV photon emission observed by
tion of thens electron is finite at the origitsee, e.g., Ref)8  |yin and Kim'® and by Richardsoret al’® is a possible

On the other hand, the wave functions of thetates have a ¢gnsequence of the fluorescence of nitrogen molecules in the

second-order zero near the nucleus and are localized essefy surrounding the radioactive sources rather than the decay
tially outside theK-shell. In Table IV we list the internal of the 3.5-eV level ir?2°Th.

conversion coefficients for transitions to the discrete states of

the nds,-shell. We see that the values of these coefficients

prove to be smaller by a factor of 1000 than the values of the

internal conversion coefficients for transitions to states of the@- RESULTS OF CALCULATIONS OF THE INTERNAL
ns-shells given in Ref. 4see also Table CONVERSION COEFFICIENTS

As noted earlier, as a result of calculations by the MCDF
meth for h electron configuration of the final
TABLE V. Results of calculations by the MCDF method: the energigs 1 62t 202d’2 02 eac ?eCtlo lCOf gu atr? 0 It N | al state,
of the 1s—ns transitions forns levels with different angular momenth S25°2p7,,2P32Ns, four levels form with total angular mo-
the weightsS of the “pure” configurations $2s22p?,2py.ns, the discrete  MeNntal=5/2, 3/2, 1/2, and 3/2. The angular momenta of the
internal conversion coefficientslj 'A ;, and the conversion factoR™*S, levels are ordered according to increasing energy. Using the
data of our calculations by the MCDF method, we estimated

M1 Nk . . . ..
ns J ©@ne s &V S @g"Ay, eV RYS the fractions of the internal conversion coefficients,, re-
1/2 35443.8 0.9967 67.31 0.0230 lated to each of these levels. The results of the calculations
3/2 354439 0.9954 83.74 0.0287  vyield the following distribution of internal conversion coef-
12 ficients among the four levels:
312 35410.6 0.9878 51.03 0.0060
5/2 35410.4 0.9887 200.90 0.0237 Aj_sp=05, Aj_z,=0.127,
1/2 35474.4 0.9899 51.90 0.1309 AJ=1/2: 0.168, AJ=3/2: 0.2009, (1)
3/2 35474.4 0.9934 64.57 0.1633
13s We see that the sum over all fractions is roughly unity,
gg ggiié-é g-ggg‘s‘ 122-3‘(‘) g-giég 3;A;~1. The internal conversion coefficients for the 1
: ' ' ' —nstransitionsn=12—17, are listed in Table V. Note that
1/2 354985 0.9893 40.41 0.6384  the coefficients have been multiplied by the respective frac-
3/2 35498.5 0.9881 50.27 0.7932  tion A
1 h f ordi ion, the coefficiefit i
3/ 35 465.2 0.9817 30.63 0.0333 'Int e case of ordinary conversion, the coefficie t is
5/2 35465.0  0.9800 120.61 0.1289 defmgd as the ratio of the rates of conversion and rgdlatlve
. transitions of the nucleus. When we are dealing with discrete
1/2 35517.8 0.9744 31.56 0.0362 : Nk ; . .
3fo 355179 0.9737 3927 0oaas CoONversion, the coefﬂmerx_td has the dlmens_,lonallty of en
158 ergy on account of the different normalization of the wave
32 354845 0.9645 23.93 03011 function of the conversion electrdrHowever, we can deter-
5/2 35484.5 0.9672 94.21 1.1605  mine the conversion factd®", which is still the ratio of the
172 35533.6 0.9370 2457 oo0l0s rates of conversion and radiative nuclear transitins:
3/2 35533.7 0.9362 30.56 0.0130 1 I
16s R = oMk (2)
3/2 35500.3 0.9255 18.62 0.1785 d 24 (wy— @) 2+ (T/2)2
b4 Nk
5/2 35500.2 0.9305 73.33 0.7223
wherel is the total energy of the hole state, is the energy
1/2 35547.9 0.9472 18.92 0.0045 £ th lear t i - is th f the el
32 35547.9  0.9465 23.54 00057 OF the nuclear transiion, ana,, IS the energy or the elec-
17s tron transition. If, following Ref. 4, we assume that the width
312 35514.6 0.9368 14.34 0.0205 I' of the 1s vacancy is 5eV and allow for the weighBsof
5/2 35514.4 0.9404 56.46 0.0825  the “pure configurations” $2s?2p?,2pa,ns, which are de-
Rt 4.6077 termined in the calculation by the MCDF method, we obtain

the values of the conversion factBf<S listed in Table V.
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The total resonant conversion facty, is obtained by This work was made possible by grants from the Russian
summing over all the final states: Fund for Fundamental Resear@Brants Nos. 96-02-18039
and 99-02-17550 the contract DSWA(USA) No. DSWA
Rii= 2 R™S. (3)  01-98-C-0040, and a grant of the Portuguese Committee for
n

Science in the PRAXIS XXI Program.

Table V shows that the maximum contribution to the

total factor of resonant conversioRie ", is provided by  *g-mail: trzhask@thd.pnpi.spb.ru
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This paper examines the shift of energy levels in a hydrogenlike atom induced by vacuum
polarization effects. The contribution of free polarization is found for the ground state and several
excited states in a closed analytical form. For the first time an expression is derived for the
radiative correction to the energy in the form of an explicit function of the paranZetefThe

results are valid for statesl; with the largest values of orbital and total angular momenta

(I=n—1 andj=1+1/2). The final expression, found in terms of generalized hypergeometric
functions, is a function of three variablesdg, n, and the ratio of the particle masses on

the orbit and in the vacuum loop, i.e., the result is valid for ordinary atoms and for muonic atoms.
Several useful asymptotic expressions are also derived19€9 American Institute of
Physics[S1063-776099)00611-3

1. INTRODUCTION . a (Za)?min? l 2| ,
nl)=—— ————1 | 5In(2«

The diagram that allows for vacuum polarization u(nly T J1—(Za)’In? |3 (210
effects (Fig. 1) is the simplest one, but there is no 2 5] 71l-e¢,
closed analytical expression even for its contribution +§(¢(1)—¢(2—3En))—§ Ty
to the energy levels. Some coefficients in the expansion "
in the strength of the Coulomb interactictn are known 2—3n(1—en)—10nz(1—eﬁ) 1 1
for various energy levels in arelectroni¢ hydrogen- + 6 2 IRk
like atom with a point nucleus.* An analytical N "
expression for muonic atoms has been found only @

in the leading nonrelativisti¢Schralingen approximatior?
There are also some numerical resultsee, e.g., where the relativistic effects are described by the parameter
Ref. 6.

The goal of the present paper is to derive closed analyti- (Zar)?
cal expressions for the corrections to the energy levels €n=1— 1- 2 @
in electronic and muonic atoms. We will discuss the

case of a hydrogenlike atom with an infinitely heavy and where we have introduced the ratio of the atomic mo-

point nuglegs and a b‘?“”d particle _Of mass I mentum (y) to the mass of the particle in the loomy):
real applications the particle may be either an electron

or a muon. We will study the contribution of the free

n

v Zam

polarization of vacuum (the Uehling potentiaj the Kp=—— = ——. ©)
particle in the loop in cases of interest is an electron mn-mn
(my=m).

Note that there are several reasons why this problem i) particular, for muonic atoms we have=1.52/n. Here
so important. First, in some cases the expansion in powers §f€ Used a system of units in whidh=c=1.

Za is not very efficient because terms with high powers Oft' Tglirdihthe .corjec:ion obttainec? int tr:jis paper Is unqufe s
logarithms(e.g., IR(1/Za)~24 and IR(1/Za)~120) arisé ~ onably the simplest quantum-electrodynamics correction,

. . . but the methods developed here can be used when more
and so one is forced to do exact calculationZénor at least

L complicated diagrams are involvéd.

to better understand the structure of the serieZdn The We begin by discussing the general expression for the
calculations done in the present paper make it possible 19 state, then we turn to the asymptotic expressions, and
study the structure of the expansion in powers of this paraMinally determine the Uehling relativistic correction for the
eter. Second, a number of useful asymptotic expressions fQgyels nl; with the largest values of angular momenta (
both electronic and muonic atoms are derived. For instancezn—1 andj=I+1/2). We will conclude the paper with a
for not-too-light muonic atomsl&En—1 andj=1+1/2) we discussion of the results and the possible applications of the
have methods developed here.

1063-7761/99/89(11)/6/$15.00 850 © 1999 American Institute of Physics



JETP 89 (5), November 1999 S. G. Karshenbo m 851

" i (Za)’m
| Ec(1s)=— m (13)
(@ |
: and
X f drrexp{—(2y+\)r}r—2
FIG. 1. Uehling potential for an atom with a particle of massThe mass Fe(N)= 0 (12

of the particle in the loop isn, .

f drrexp{—2yr}r2¢
0

The relativistic effects for the ground state are determined by

the value of the parameter
We begin with the derivation of a convenient represen-  ¢=1-/1—(Za)?
tation for the Uehling potential. Allowing for the polarization

in the momentum representation amounts to the well-knowvhich vanishes in the Schiinger approximation, and they
substitution are also taken into account in the relativistic potential energy

(12). To simplify the expressions, we discard the label 1 for

2. DERIVATION OF THE GENERAL EXPRESSION

1 a (1, v¥(1-Vv3) 1 the ground state and use the notatioand .
——— | dv 3 (4) . . o .
@ 7Jo 1-v2  g2+\2 The radial integration proves to be trivial and yields a
simple result:
where
27 2(1-¢)
Av)= v (5) 2vy+A\

What is not trivial is that the resulting single integral
(the reader will recall that the mass of the patrticle in the loop

is m;). In the coordinate representation the substitution has 1 ) v? K z
the form Ret0= |, VAL 3 T
1 a (1 v3(1—Vv23) exp{—\r ~2e
F_ﬁf av 2 ) ID[r 3 © o[ v (14
° 1=v 1+ ky1—v2

The correction to the energy can be written in the form

of a product,

can be evaluated in closed forth(more precisely, in terms
of the generalized hypergeometric functigh,). It is con-

@ venient to express the results of integration in terms of the
Eu=7EcRe(), (" pase integrals
whereE. is the average potential energy of the Dirac elec- a (Za)’m
tron and Ey(ls)=— — —={ 10— 5| , 15
U( ) T 1—(201)2( 122 3 222] ( )
1 ov3(1-v33)
Rc(K)=f dv ————— Zc(A (V). (8)  where
0 1-v
. . ) KC™2€ 1 b c 1
The potential energy can easily be expressed in terms dfabC:TB a+ 5,1— §+ 5 € 3Fo 576 §+ >
the total energyEp of the bound Dirac particlésee, e.g.,
Ref. 9, Lb,e 1 .3 bc
|<| a|> J | . Gl T aTex
Ec(nly)=(nl;|——|nl; ) =Za —=—Ep(nl;), 9
et o I(Za) P (0=20) 1y o, 13 b ¢
and.7% in (8) can be written in the form of a ratio, B 2 a 22 272°°¢
o exp[—\r} c c 1 3 b ¢ 3
drr?[f2(r)+g?(r)] ———— = sts—€5—5t5—€5
fo [Fo(r)+g(r)] r ><3F22+1 e,2+2 €5 515 6,2,a+2
Re(N)= — 1 (10 )
2r¢2 2,0\ c
[Careem g - 16

Here we have employed the notation adopted in Ref. 10 f0fpe gyajuation of these integrals is given in the Appendix.

the radial part of the larggf(r)] and small[g(r)] compo-

Clearly, the expression is finite if

nents of the Dirac wave function. The above expressions are

valid for all states, and in the case of the level we have

Za<l.

17
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Below we will discuss some asymptotic expressions for o . 4 51 4 1289

(]_5) EU—;(ZQ’) m —1—5+ 4—826¥+ 1—5In(22a)—15—7
3. UEHLING CORRECTION FOR Za<1 X(Za)2+ 57T| + 23m Za)d 26
' (Za)™+ | 2N 74+ 2gg| (29" (26)

We wish to discuss the nonrelativistic limit without mak- ] o
ing any assumptions concerning the size of the parameter This expansion reproduces all the coefflments kn'own so far
Two special cases are important here: an electronic ato$€€ Refs. 1 and 2 and the papers cited thgramd one
(k=Za) and a not-too-light muonic atonk&1.52>1). unknown coefficientwe denote it byAq).

WhenZ is small, the expression for the correction to the
energy can be written

Re(k)=rc(k)—2epe(k)+ 0(62), (18) 4. UEHLING CORRECTION FOR MUONIC ATOMS

where Now we examine the case of large valuescofFirst we
2e=(Za)? (19) note that in muonic atoms this limit is reached for fairly
small values ofZa. In the case of very smalLa (Z
in the nonrelativistic approximation. We will first calculate =1—3, x(H)=1.5, k(He')=3, andx(Li* ")=4.5) the re-
rc and pc and then discuss the corrections to the expressults obtained in Ref. 5 are sufficidthis result is shown in

sions. (20)]. For larger values of we can expand in powers ofd./

In the Schrdinger approximation, the result incorpo- Let us go back tq18) and discuss the terms in it. The ana-
rates only the first term of the expansi@8), which is well lytical result of Ref. 5 represented {20) can easily be ex-
known? panded:

1| 4+k?—2k* 2 11 = 1
I'C(K)=§ —T%(K) rC(K)=§|ﬂ(2K)_§+ Z-FO E . (27)
A+3Kk%2 7 124112 20 The expansion of the second term(ik8) we find directly:
=— , 20
K3 2 3k? 2 72 O( l) (29)
kK)=5——1t0|—
where Pel®)=37 9
arccox  In(x+ [2—1) To obtain the asymptotic expressions, we only need to bear
A K)= 5= > , (21 in mind that the contribution stems from a small domain of
V1=K Vk'—1 integration with respect te near the upper limit=1. In-
with . Z(0)= 7/2. troducing the substitutions

When dealing with the electronic atonk€Za), we V2 oy
note that for small values of the power expansion up to vi0il-—| > — (29
terms of order(Za)’m is of practical interest. With appro- 3 3
priate accuracy, the normalization factor is in (14), we can easily evaluate the integrals with respest to

Ec=—(Za)?m[1+ X(Za)2+ 4 Za)*]. (22)  The result of all this is

When « is small, we have the following expressions for 12 11 7] (2 @° ’
the terms in(18): Re(x)= §In(2;<)— 3+ 2k| 3 9 (Za)

4 S5 12 T 2
_ o2 T 3, a4 " 5 (Za) 1
rC(K) 15K 48 K-+ 3‘,_-_)K 64K , (23) +O((Za)4)+O p >+O(_2) (30)
K
Pc(K)= iln(ZK)— 1 K2_(5_7T|n f+ 47_77) prc The substitution(29) is valid if Z is small andx is large.
15 225 48 2 576 However,(29) can easily be generalized. In particular, when
(24 x>1, we can use the transformation
Finally, VH1-VH3) 2 v v(1—-v)(2+V) -
4 57 ., 12 , 7= —v2  31-y2  3(1+v
Re=—k2— —— k34 ——k*— — kK*— (Za)? 1-v 1-v ( )
15 48 35 64 .
to evaluate the integral
| [ Zincz 2_ (5T K+477T) 3. (25 Lo (1-v3) [ kfI=vE |
1—5n( K) 2—25K Enz 576 K (25 Ibczf q ve(1—ve/3) KN1—vV . (32)
(1-v?)P2 | 1+ ky1—-v?

As a result we arrive at an expansi@ior Z« smal) for the
Uehling correction to the energy level of the ground state inOnly one of these integrals is needed in calculating the con-
an (electronig hydrogenlike atom: tribution of the Uehling potential,
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Rc(K): |22. (33)

In accordance witl{31), we split this integrals into two
parts, |12, The first term reduces to the incomplete beta

function:

2 (1 Y
(H_=
Y 3fodv(1_vz)b/2

P /—zl_v c—2e¢
14 k/1—-V?

2 1dz
_Z b-2 ZC 4 \1-b+c—2e
3K fﬁ Z(l Z)
2
=§Kb*281_5(2—b+c—2e,b—2), (34
where
1
E:1+K\/1—v2, (39
and
6=1+K<1.

Now it is fairly simple to find the necessary asymptotic ex-

pression for the incomplete beta function:
Bi_s(c—2€,00=In(1+x)+[ (1)

c—2e—1

—(c—2¢) ]+ ——

(c—2e—1)(C+2—2¢) ( 1)
- +0|l=].
22 K3

The second term fob=2 can be expanded,

m_j dv v(1-v)(2+v) c—2e€
3(1+v) 1+ ky1—v?
(C—26)(c—1—254)) 1
+ +0| —],
2k2(1-v?) K3
and integrated:
5 T 2\c—2e
@)_ _|Z_Z I
l2c="1g 3'”2) (4 3) P
(c—2€)(c—1—-2¢) 1
- +0| —|. 36
12«2 K3 30
The result is an expression for the base integral
mC—€
= —In(2;<)+ (1//(1) y(c— 26))—— +—
4 kK
1 c¢c—2¢ 2 o 1 3
tH3=g e 29?540 5| @7

which forc=2 yields
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2 2 5
RC_ §In(2/<)+§(¢(1) 2 2¢) —5}

21 1

(39

Formula(30) is reproduced whef is small(i.e., € is smal),
which is a check on the validity af38).

The convergence of the expression is determined by the
value of the argument of thg-function (the logarithmic de-
rivative of thel-function), which must not vanish. This con-
dition again leads to the finiteness of the correction for the
chargeZ, which is given by the inequalit{17).

ml—€

2 kK

1 1-€ 51
3T 2 73

5. UEHLING CORRECTION FOR SOME EXCITED STATES

Now we examine the excited statef with the largest
values of orbital and total angular momenta=f—1 andj
=1+1/2). The wave functions and energy levels of the Dirac
atom prove to be the simplest in this case. In particular, the
normalization factor in7) has the form

(Za)?m/n?

Ec(N)=— —m————, 39
c(n) = (Za) i’ (39
and in the Schidinger approximation
Ec(n)~—(Za)?m/n.
The quantityR(n,ne,, x,) assumes the forrfcf. (14)]
1 dvv? v2
R(n!nen :Kn): fo 1_\/2 1_ ?
1—V2 2n(l En)
x| e T . (40)
1+ k1—v?

Above we examined the case=1 in detail using the
simplified notatione;=¢, «;=«, and R(1,e,«x)=Rc(k).
One of the ways to pass to arbitrary valuesa$ to use the
recurrence relation

1_ 2 )Zn(lén)
1+ k,V1—v?
B 1 9?
(2n—1-2n€,)(2n—2-2ne€y) 942
2(n—1-ne,)
Ji-v2
X| ————= , 41
1+ kp/1—Vv2
which gives rise to the expression
\/1_—\/2 —2n(1—e€p)
1+ Kn\/l—Vz)
I'(2—-2ne,) @2 Vi-v2

2
1+ Kn\/l—V2> - 42

T T(2n—2n€y) 9?72
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This readily yields

2n
Kn

(2n—1-2ne¢,)(2n—2—2n¢,)

R(n,ne,,kp) =

a_zR(n—l,nen,Kn)
2(n—1
20D

(43
&Kﬁ

and

o T(2—2ne)

R(n,ne, , k) = K}, ['(2n—2ne,)
n

P72 R(1ne,,k;)

X
2n-2 2
ﬁK% ) Kn

(44)

In the Schrdinger approximation, the results for the 1

level [see(20)] and for the  and 3 levels were found in

S. G. Karshenbo m

2 «a
EU:EC §;In Kn,

and this is true for all values aZ«. The fact this result
coincides with the result of explicit calculations serves as
additional proof of their validity. Another proof of their va-
lidity is that the results agree with those of numerical calcu-
lations done in Ref. 6 for the ground state. Other confirma-
tion can be found in the present paper: for instance, we
reproduced all known analytical results for the contribution
of the free polarization of vacuum to the energy levels of
electronic and muonic atoms.

Here is a brief discussion of the aspects related to the
accuracy of the calculations. First, we note that the accuracy
can easily be increased. To do this, in the expressions corre-
sponding to the Schdinger approximation we need only

Ref. 5. In the general case for levels with quantum number&eplace the mass of the Dirac particle with the reduced mass

I=n—1 andj=1+1/2 the result assumes the fdrhicf.
(19)]

R(N,N€n, kn) =1 1om(N€n k) = 5 Loom(NEn ky).  (45)

The calculation of the base integrdlg,. [see(16)] is dis-
cussed in the Appendix.

and retain the particle mass only in the relativistic correc-
tions. Another problem is the finite size of the nucleus in
muonic atoms. In this connection it must be noted that the
results obtained in this paper refer to states with large angu-
lar momenta, and the structure of the nucleus has a small
effect on such states. States with large orbital momenta are

For excited states in muonic atoms obeying the conditiorinteresting objects of investigation in muonic atoms. Note,

xk=1.52/n>1 we have the expression

2 2
R(n,nen, kn) =| 3In(2kn) + 3 (4(1) — $(2n(1~€n)))

5

7 n(l—ep)
R R —

+
2 Kn

3 2

[1 n(l-—ep)

5n? )
—?(1—%)

1
~+0
K

n

1
Y

for example, the high-precision measurements of ttg,3
2p3p, transitions in muon®éMg and?®Si, which made it pos-
sible to determine the exact value of the mass of the negative
muon?? A review of the data on §—4f, 4f—3d, and 3—2p
transitions can be found in Ref. 13. The investigation of such
states is of interest in connection with the problem of anti-
proton helium, where only states with large values bave
a fairly long lifetime (see Ref. 1%

The corrections discussed in this paper are those to the
Lamb shift. However, the methods developed here can be
used for hyperfine splittinfj,and we intend to continue our

This expression was derived by a method similar to the usegy,dies in this direction.

in deriving the expressio88) for the ground state.

The author is grateful to U. Jentschura, V. G. Ivanov, H.

We now examine the nonrelativistic expansion for a hy-pjjkhun, and V. G. Shabaev for useful discussions. The work

drogenlike atom with a bound electror {=Za/n). We can
easily write the first two terms:

OZ(ZCL/ 2(1+n)m

EU:__ n

o

2]
(n+1)B E,n

Za(2 385 L
— a( n-+ ) E,n+§ + ...

The first term in the expansion reproduces the well-known

result of Ref. 4.

6. DISCUSSION

There are several points that must be mentioned in dis-
cussing the results. First, we note that for large values of

was partially supported by the Fundamental Metrology Pro-

gram.

APPENDIX DERIVATION OF THE GENERAL EXPRESSION

To integrate in(14), it is convenient to introduce some
base integrals:

_ 1
Re(x)=1l120= 3 1 222,

the logarithmic terms can easily be found without doing ex-wheré?
plicit calculations. Simple considerations associated with a

running coupling constant,

Za—Za(ky)=Za

2«
l+§;|nKn ,

immediately lead to

V2a

1
|abC: fo dv (1—V2)b/2

k1—v2 \°7%
1+ k\1—v? ’

Integration can be carried out for the cas€1:
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| jld v ky1—v? o
= \%
P o (1-v)P2 14 k12

1 1
— EKC*ZefO dt taflIZ(l_t)beZJrc/Zfe

XE ( 1)n n( C—2e ) (1 t)n/2
_chzez (_1)nKn(C_2€)”B
n=0 n!

1l b c /2
X a+§, —§+§_E+n

_2 n
2( 1y E2n 6)

T(1—b/2+c/2— e+ ni2)
“T(at32—bl2+ci2—etnl2)’

1
— C 2€
Sk r a+

where @),=a(a+1)---(a+n—1) is the Pochhammer

symbol.

For further calculations it is convenient to sum the even

and odd terms in the series separately:

a+§

=2
2

oo

XZK

2k(C—26)2k I'(1—b/2+c/2— e+ k)

& (2k)!  T(a+3/2—bl2+cl2—e+Kk)’

1
a+§

(= ;KC+ 17251’1

(C—2€)ps1 T(3/2—b/2+c/2— e+K)

x;" (2k+1)! T(at2-bi2+cl2—etk)’

Using the identities
I'(z+k)=(2)I'(2),
(2k)!1=22(1/2),k!,

(2k+ 1)1 =2%%(3/2)k!,

(2) = 2%X(2/2) (2I2+ 112),,
(2) ks 1= 2%%2(22+ 1) (2I2+ 112),,

we obtain
1 I'(1—b/2+c/2—¢)

1
o C—2€ -
o= T at 3 F e an—biataz—o

oo

(c/2—€), (cl2+1/2— €),
2k
Xk§=:0 ), Kl

L (1-bl2+cl2—e)
(a+ 3/2—b/2+cl2— €),

— Kk 2B a+ll—9+3—€
27 2 2
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. c c 1 1 b c¢
X3 2 E €,§+2 €, —§+§
1 +3 b+c )
€8Tyt Ter )
c—2¢ 1\ T'(3/2—b/2+cl2—€)
= — c+1-2e _
- 7 X F(a+2 T(at2-_bl2tci2—e)
i (c/2+1—€), (c/2+1/2— €),
= (3/2), k!

(3/2—b/2+cl2—€)
(a+2—Db/2+c/l2—€),

c—2e¢ 13 b c

— ct1l-2e 4
> K Ba+2,2 2+2 €

R 8 boe 3.
323 €T &3 T e
b ¢

_2L 2l
o E,K)
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This paper is a theoretical study of the spectral features of the velocity of light-induced drift
(LID) of lithium atoms (Li and °Li) in a binary mixture of noble gases: NeAr, Ne+Kr, and

Ne+ Xe. The spectral shape of the LID signal is predicted to depend strongly on the

fraction ¢ of neon in the buffer mixture in the range=0.8—0.9 €=Ny./Np, whereNy is the

neon concentration, arld, is the total concentration of the buffer partiole¥/hen the

velocity of anomalous LID is treated as a function of the radiation frequency, it is found to have
one, three, five, or seven zeros and to differ substantially from the dispersion-curve-like
behavior with one zero predicted by the standard LID theory with velocity-independent transport
collision rates. The reason for these additional zeros of the drift velocity is the alternating-

sign dependence on the lithium-atom velocity of the relative difference of transport rates of
collisions between buffer particles and excited and unexcited atoms. What is also

established is that the anomalous LID of lithium atoms can be observed at almost all temperatures,
depending on the value @f At a fixed temperature, anomalous LID can be observed only

in a narrow range of values of the fraction of neon in the buffer mixtigs=0.02. The results

make possible highly precise testing in the LID experiments of the interatomic potentials

used in calculations of the velocity spectrum of anomalous LID.1999 American Institute of
Physics[S1063-776(9900711-9

1. INTRODUCTION vast body of data, both experimeritaf® and
s theoretical®?°~?8gathered in anomalous-LID studies. It has

Light-induced drift(LID) in gases is one of the stron- been found that anomalous LID is entirely due to the depen-
gest effects of the action of radiation on the translationadence of transport collision rates on the velooityof the
motion of the particles of the gas. Theoretically, under laseresonant particles, and the anomaly can arise only if the dif-
excitation the drift velocities can reach the value of the therferenceA v(v) of the transport collision rates on the combin-
mal velocity? Experiments have shown that as a result ofing (i.e., affected by radiationlevels changes its sign as a
LID the atoms can move with a velocity of several tens offunction ofv.
meters per second and gather in a layer with a thickness less  When molecules are involved, this behaviorAof(v) is
than 1 mm(see Refs. 4 and)5It has now been experimen- due to inelastic collisional transitions between rotational lev-
tally established that almost two dozen objects, atoms andls, with the result that a regular pattern in the manifestation
molecules, exhibit the LID effedsee, e.g., the reviews cited of anomalous LID of molecules may be present. In Ref. 28 it
in Refs. 6-9. was shown that for all linear molecules with moderate values

The size of the LID effect is proportional to the relative of the rotational constant, anomalous LID can always by
difference of the transport rates of collisions of resonant parebserved under the proper experimental conditions.
ticles in the ground and excited states with buffer particles. The situation with atoms is quite different. The
Until fairly recently, all data on LID experiments could be alternating-sign behavior & v(v), which is necessary if we
described satisfactorily by a LID theory in which the trans-want to observe anomalous LID, is due only to certain fea-
port collision rates were velocity independént® This  tures in the behavior of the potentials of the interaction of
theory yielded a dispersion-curve-like frequency dependencatoms in the combining states and the buffer particles. Hence
of the drift velocityu, (2) with one zero where the detuning to calculate anomalous LID of atoms we must know the
Q of the radiation frequency vanishésee Fig. 4 beloy In  interaction potentials for each specific system of colliding
1992, while studying LID in GH, molecules with Kr acting particles(a resonant particle and a buffer partjcle
as a buffer gas, van der Meet al1* detected an unexpect- The anomalous LID of atoms was theoretically predicted
edly large departure of the frequency dependence of the drith Refs. 25 and 27 for the Li—-Ne and Rb—Kr systems with
velocity u, (Q) from a dispersionlike curve: an anomalous the Li and Rb atoms resonantly excited. So far no consistent
spectral profile of LID velocity with three zeros instead of research into anomalous LID in such systems has been done,
the one zero predicted by the then existing theory. The desince high temperatured -1000 K) are needed if we want
viation from the predictions of the theory was so large thatto observe anomalous LID in them.
effect became known as anomalous LID. Today we have a Among atoms potassium atoms are the only objects for

1063-7761/99/89(11)/8/$15.00 856 © 1999 American Institute of Physics
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2 x10°s™ ! (Ref. 29 is comparable to the Doppler width of
172, 312 the resonant line and so the ground state can be modeled by
two levels,n andl. For ®Li atoms the hyperfine splitting of
the ground state;,=1.434x10°s ! (Ref. 29 is several
times smaller than the Doppler width of the resonant line, but
still we will model the ground state by two levels. Whéri
atoms are involvedthe nuclear spin is 3/2), the statistical
ml m weight of the leveln is g,=3 (the total angular momentum
of the atomF=1), and the statistical weight of the levek
9,=5 (F=2). When®Li atoms (nuclear spin 1 are in-
volved, we havey,=2 (F=1/2) andg,=4 (F=3/2).
The levelm (with the statistical weighty,) models a
2 ! group of levels that are components of the hyperfine struc-
172 n ture of the excited stateéP,,, and?Pg,. Such modeling of
a group of levels by a single level is possible since for the
FIG_. 1 Energy level diagram. Soli_d arrows stand for trans_itio_ns initiat_e_d by7|i and ®Li atoms the hyperfine splitting in these excited
radiation, and dashed arrows designate spontaneous radiative transitions. . . . .
states is very small in comparison to the Doppler width of
the resonant line. The radiation involves only one of the fine

H 2
which anomalous LID has been observed. In 1996, Yahyae€omponents of the excited Sta@l/? or “Pgp.
The lithium atoms comply with the limiting case of

Moayyed and Streattt detected in their experiment the T ) )
anomalous LID of potassium atoms in a buffer medium conStrong collisional coupling between the fine components
P, and?P,, (the Massey parameter is much smaller than

sisting of a mixture of neon and another noble gas. Howeverrf . o y P

no theoretical studies of the anomalous dependence of tH&LY): In the excitation of lithium atoms to stat®y, and to
drift velocity u, on the detuning®) of the radiation fre- stateng,zthe scattering cross sections are almo;t the sime.
quency for such systems have been done, with the result i‘gherefore, in _terms of coII|5|on§ the pair of the fine compo-
still impossible to directly compare the results of that experi-_nents can be mterprete_d as a single Iev_el, and the LID_ve_Ioc-
ment with the anomalous-LID theory. ity considered a function of the detuning of the radiation

In the present paper we find a system that can be treatd@Pduency is the same in the excitations of e and D

theoretically. In this system anomalous LID of atoms is pos_Ilnes of the lithium atoms. This result, i.e., the existence of

sible at almost any temperatufencluding room tempera- universal transport characteristics for the lithium atom in the
2 .

ture). It is found that for’Li or ®Li atoms that are in a buffer _© State, has also been corroborated by LID experiments

mixture of neon and a different noble gas of the Ar, Kr, orinvolving sodium atoms, for which, as for lithium atoms,

Xe type there is always anomalous LID if the fraction of Net,he limiting case of strong collisional coupling between the

atoms in the buffer mixture is selected appropriatélye  11N€ componentéPy, and®Py, holds.

selection is temperature-dependeffhe anomalous spectral The interaction of partlcle_s_ and radiation in steady-state,

profile of the LID velocityu, (Q) can have three, five, or spa_t|ally hom_ogeneous condl'qons are 3clescrlbes by the fol-

even seven zeros instead of the one zero predicted by tH@WiNg equations for the density matrif

ls_tgndartf[i LID theory with velocity-independent transport col- 1, (v)=S_(v)+N[P,(v)+ P,(v)],

ision rates

L mipm(V) +Si(V)=NP;(v),
2. GENERAL RELATIONSHIPS
Pmi(V)

T
— —i1(Qg—k-v)

We will discuss the interaction between of a traveling
monochromatic wave and three-level absorbing particles

placed in a gas mixture with buffer particles. The level dia- =S,i(V)+iG| pi(V)— &pm(v) , (1)
gram for the absorbing particles is depicted in Fig. 1. Here Om

the levelsn and| are the components of the hyperfine struc-\\nare

ture of the ground state, and the levelcorresponds to the

excited electronic state. A particle radiatively relaxes from  NPj(v)=—2RdiG* ppi(V)],

the levelm to the levelsn andl with the rate constantk,,, Bl 2T

andI’,,;, respectively. We will ignore the collisions between |G|2=—, — m g_m’ ®)
the absorbing particles, assuming that the buffer gas concen- 27 4fhw gotg

tration N, is much higher than the concentratidhof the [ =T, T, Qu=0—og, i=nl.

absorbing gas.
This level diagram is a good representation of the reaHere p;(v) is the velocity distribution of the particles at the
structure of the ground and first excited states of lithiumleveli; N=N,+N,;+ N, is the concentration of the absorb-
atoms (Li or SLi). Indeed, the ground levelS,,, of these ing particles N;= [ p;(V) dv); Sn(V), Si(v), andS.,(v) are
atoms is split into two hyperfine components. Ebratoms  the collision integralsw, \, andk are the frequency, wave-
the hyperfine splitting of the ground statey,=5.049 length, and wave vector of the radiatioh,,; is the rate of
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spontaneous relaxation of the excited lewmelthrough the Qi(V)=Q¢—Ami(v), i=n, j=1; i=Il, j=2.

m—i channel;w.; is the frequency of then—i transition; .

andl is the radiation intensity. In the formula for the second I—;}ereil(v) _anc:.l“z(v.) arr]e the hcémogljeneou_; halfwidths of

Einstein coefficienB in (2) we have notet that in the adopted t, € Ia Sorptlllt()nl_ Ines Iln then—n ar? r;:— transitions, r:elsf\rf)vgc-h

three-level model the ratio of the radiative transition rated'Ve!Y- In alkali-metal atoms the homogeneous ha . idths
from the levelm to the hyperfine components and | is L 1(v) andI';(v) are almost the same, so that we will as-

determined by the ratio of the statistical weigffts: sumeFl(v)z_l“z(v)EF(v_)._ .

I/l =g,/g . The probability of radiation absorption For :c‘he _d|a90nal po!hsmn mtggral we use the model of
per unit time,P;(v) (or absorption rate in the m—i_transi- particle “arrival” that is isotropic in velocities:

tion by a particle with a fixed velocity is determined by the S(v)=—vi(V)pi(v)+SP(v), i=n,1,m, (7)
off-diagonal element of the density matrjx,;(v) (or coher- . 2) . .

ence. Note that the last equation i) for the off-diagonal Where the arival tem$(v) is a function of the absolute
elementp.(v) is valid only if we ignore the coherence Valueé of velgglstg,v=|v|, and »(v) in (7) is the transport
pin(V) between the hyperfine componentsand I. For col!|3|on rate>®>>>The colhsmn_a! model7) allows for ave-
lithium atoms this approximation holds only if the radiation 10City dependence of the collision rate and at the same time
intensity is not too high, of<10 W/en? (Ref. 33. makes it poss_,lble t_o solve the problem analytmally._

For atoms of alkali metals in an atmosphere of noble The relationship betweep .the transport collision rate
buffer gases, the cross sections of the collisional transition&i(V) in (7) and the characteristics of an elementary scatter-
n—| and |—n between the component of the hyperfine N9 act are given by the formufa
structure of the ground state are extremely small—six to ten q [~ u2+y2
orders of magnitude smaller than the gaskinetic cross v;(v)= - f u? exp| -—= ] F(uv)oi(u)du, (8
sections** Bearing this in mind, below we will examine the v Vi
case where there is no collisional exchange between the hygnere
perfine components and |, i.e., we will assume that the

diagonal collision integral§;(v) (i=n,I,m) in (1) are due _2uv 2uv | 2uv
only to elastic scattering. Fuv)= V2 cosh V2 _S'nhﬁ’
We integrate with respect to the velociythe second b b b 9)
equation in(1) and note that in elastic collisionsS;(v) dv m Nbvb MM, _ /ZkBT
=0. Combining the resulting equation, we get q= M ﬁ m= M+—Mb Vp= M,

Pn an: 9n (3) with N, and M,, the concentration and mass of the buffer

Po I'mi o particles,M the mass of the particles that absorb radiation,
kg is the Boltzmann constant, is the temperaturey is the

whereP; = [P;(v) dv. This equation shows that the ratio of i ) . ; o
the integral rates of absorption in the-n andm-! transi- relative ve_Iocny of the colliding partl_cles before c_oII|S|on,
tions depends neither on the intensity of the radiation nor th&"d ¢i(u) is the transport cross section of scattering of an
radiation frequency. The ratio characterizes the process GPSOrPing particle in state by a buffer particle. We can
optical pumping of the hyperfine components of the grounda_ssum,e' to a high accuracy, that the transport rates of colli-
state and follows from the absence of collisional exchangé'®"S ;nvolvmg the hyperfine componentsand | are the
between the hyperfine componentand|. sam

In the absence of phase memory in collisions involving 3, (v)=p,(v). (10)
optical transitiongwhich is a natural assumption in nonlin-
ear atomic spectroscopythe off-diagonal collision integral
has the form

The velocity of LID of the absorbing particle is defined
by the relationship
Su(V) =~ [y + AW lpm(V), i=nl, (@) ot Hm
mi mi mi milV), i u. N ji= | vpi(v)dv, (11
where y,i(v) and A,i(v) are the collision broadening and
shift of the levels, respectively. Combinirfd) with the ab-
sorption rateP;(v) specified in(2), we get

wherej; is the partial flux of particles in staie By combin-
ing (1), (7), and(11) with allowance for(10), we arrive at a
formula for the LID velocity:

Bl o]
N Pi(v)_ ?Y|(V) Pi(V) - apm(v) ' (5) u = J’ T(V)V[Pn(V)+ P|(V)] dV,
12
where - b (V) = v(V) (12
Yi(v)= Tj(v) va(WI[Tmtvm(V)]
' I“J-Z(v)+[Qi(v)—k-v]2’ As noted in the Introduction, anomalous LID can arise only
r if the difference of the transport collision rated,v(v)
oy oM _ =vy(v)—v,(v) [or, which is the same, the factat(v)]
Tj(v) >+ Ymi(V), © changes its sign as a function wf Here the absorbing par-
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ticles with both positive values of(v) and negative values (1) = vin(t) (1)
of 7(v) contribute to the drift velocity, . This can cause a To(t)= , y(t)=—
large deviation of the frequency dependencesofrom the (DL +vm(D/F ] kv
dispersion-curve-like dependendas was the case when Q
- e - () — [2keT
7(v) =const), including the occurrence of several additional . (t)= ——~ = . i=n,l
zeros instead of one zero. kv M
In Eq. (18), the quantitiesY;), which are defined i{15),
3. LOW RADIATION INTENSITIES assume the form
To calculate the drift velocity, we will limit ourselves to 2 %
the case of low radiation intensities: (Yi)= ——J texp(—t?) i(t)dt, i=nl. (20
\/;kv 0
I<T'(I'y+vm)/B, (13

For the dimensionless detunimxgof the radiation frequency
where v, andI" are the characteristitaverage values of it is convenient to use if18) the quantity
vn(v) andI'(v). If condition (13) is met, then in(5) we can
ignore the population of the excited leved {(v)=0), and _ Q

the population velocity distributions in the hyperfine compo- X k_V @D
nents i=n,l, can be considered essentially Maxwellian

(pi(v)=N,W(v), where W(v) is the Maxwellian distribu- Where

tion). Here from(5) we find that O=w—wy, ©g=WrOmntW wn- (22

The frequencyw, corresponds to the “center of gravity” of
the transition frequencies,,, and w,,, with allowance for
the statistical weights of the levetsandl. In the region of
“normal” LID [where we can puty(t) = const in(18)], the
drift velocity u; vanishes only at one poink=0 (see Ref.
36 and Fig. 4 beloyw

BI N;
Pi(v)= . WYi(V)W(V)- (14

Combining(3) and (14) and using the normalization condi-
tion N,+N;=N (here we have noted th&{,,<N holds if
the conditiong13) are me}, we find that

N, w(Y)) N, N, When calculating the LID velocity of atoms placed in a
N~ wo(YD+w(Y)' N TN mixture of two different buffer gases, in the formylE) for
(15) To(t) we must put
(Yp)= f V)W(v) dv, Wi:g iigl, i=n,l. vi(t)=vqi(t) +vy(t), i=n,m, (23
n

where the subscripts 1 and 2 denote the type of buffer par-

Plugging (14) and (15) into (12) and integrating over the ticles

directions ofv, we arrive at the final expression for the LID

velocity u, , which we write as 4. ANOMALOUS LID OF LITHIUM ATOMS

uLEEuL, UL = Uou(x), (16) The LID of lithium atoms in noble buffer gases was
k studied numerically via formulag8) and (18)—(23). The
where we have introduced the parametgmwith dimensions  transport collision rates;(t) = v;(tv)=v;(v) for Li—X sys-
of velocity, tems, where X is an atom of a noble gas, were calculated
numerically using8) with the transport cross sectiong(u)
Une 2Bl 17) taken from Ref. 25, where they were calculated using the
0 7-;3/2|<1“m' semiempirical interaction potential of Pascale and

Vandeplanqué’
As noted earlier, the anomalous behavior of LID is com-
pletely determined by the alternating-sign dependence of the

and the dimensionless velocityas a function of the dimen-
sionless detuning of the radiation frequency,

B * 2 factor 7 on the velocityt=v/v. Allowance in(18)—(20) for
u(x)—Wn<Y|>+WI<Yn> fo tro(t)exp(—t5) the dependence of the homogeneous halfwidtland the
frequency detunind); on the velocityt can only refine the
X W YD Fa(t) +wi(Yp) i (1) ] dt. (18)  spectrumu(x) of the velocity of anomalous LID, without
Here we have introduced the following functions of the di-changing it qualitatively. But when there is Doppler broad-
mensionless velocity=v/v: ening of the absorption linéin the limit I'<kv), the effect
of I'(t) andQ;(t) on the spectrunu(x) of the LID velocity
y(t) YA +[t=x(t)]? is usually small and can be ignored.
fi()=xi() (V) N y2(1) +[t+x;()]? Indeed, when there is Doppler broadening of the absorp-
' tion line, the parametey(t) in (19) is small:y(t)<1. This
t+x(t) t—x(t) makes it possible to ignore the fact that the paramgter
()= arctanT+ arctaj ny(—t) (19) is t-dependent, since in the limjt(t)—0 the functions

(19) fi(t) andy;(t) in (19) is in no way dependent on the param-
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FIG. 2. Transport collision rate as a function of the dimensionless veIocityF'G' 3. Relgtive d_ifference of the transport collision ra@s/v, as a func-
t=v/v of lithium atoms afT=300K and a buffer gas pressuPe=1 torr: tion of the dimensionless velocity=v/v at T=2300 K for different systems:

7 . 7 .
curvel, vy(t) for the"Li-Ne system; curve, vy(t) for the’Li-Ne system; ~ SUVe 1, the ‘Li-Ne system,7 curve, the ‘Li-Ar system; curye;, the
curve 3, v, (t) for the "Li—Kr system; and curvel, v, (t) for the "Li—Kr Li—Kr system;'curve4, the Ll—?(e system; and curvé, the ‘Li—(Ne
system. +Kr) system with the neon fractiof=0.875.

v;(t) for lithium atoms in Ar, Kr, or Xe as a buffer gas is the
nonmonotonic dependence on the velotith characteristic
feature of the/Li—Ne system is the decrease in the transport
collision rate within a certain velocity interval in the event of
lithium-atom excitationthe curvesl and?2 in Fig. 2 and the
curvelin Fig. 3). It is this feature that ensures a controllable
(as required by the experimentatependence of the factor
Avlv [and hence the factary(t) in (18)] needed for observ-
ing anomalous LID in the buffer mixture of neon with an-
other noble ga$Ar, Kr, or Xe) by varying the fractior¢ of
neon in the buffer mixture:

etery(t) [in this limit the functiony;(t)] has the shape of a
step beginning at=|x;(t)|, i.e., ¢;(t) = 7 for t=|x;(t)| and
#i(t)=0 for O<t<|x;(t)|). In view of what we have just
said, in calculating the LID velocity in Doppler broadening
conditions we ignored thedependence of the homogeneous
halfwidth of the absorption linel’, and put I'(t)=T
=const in(19). The specific values df =T"/2+ y for dif-
ferent Li—X systems were found from the data of Allard and
Kielkopf®® on collision broadeningy of the absorption line
(y=3.86 MHz/torr for Li—Ne,y=5.31 MHz/torr for Li—Ar,
y=7.00 MHz/torr for Li—Kr, andy=7.96 MHz/torr for Li—
Xe. _ Nne
Thet-dependence of the dimensionless frequency detun- &= N_b

ing x; can affect the function$;(t) and ;(t) in the integral . : . .
(18) for the LID velocity u(x) only if | Qg =Anmi(t). Since whereNy. iS the neon concentratiohy is the concentration

the collision shift A;(t) of the levels is usually several of the other noble buffer ga@, Kr, or Xe), andN is the

times smaller than the collision broadenipgRefs. 38 and :Ot‘? an;:entration qfhﬂ;ﬁ buf:_er gast. TTe _?Itergating-ds_ign
39) and so|A . (t)|<y<T holds, in the event of Doppler actor Av/v may vanish three times at velocities depending

broadening of the absorption liréor y=1“/k7<1) the ef- on the fraction¢ of neon in the buffer mixturésee curves in

foct of x.(t the functiond (t dur (t fests itself Fig. 3 for the buffer mixture Ne Kr; for the buffer mixtures
ect of x;(t) on the functionsf;(t) and;(t) manifests itself o\ A 2nd Ner Xe the corresponding curves are similar to
only if |x;(t)|=y<1, i.e., in a narrow range of detuning near

the zero values ok;(t). In view of this, in calculating the
LID velocity we also ignored the-dependence of the fre-

Np=Npet+ Ny, (26)

ux10
guency detuning$);(t) in (19). 6f 7
At x;(t) =x;=const the dimensionless frequency detun- 4k 3
ing x given by (21) is related to the detunings; by the o
following relationships: 2:
of
W|n o =
Xp=X—OW,, X=X+dw,, oO6=—=, (24 ok 5
kv L
. . . . -4t
where § is the dimensionless distance between the compo- L o
nents of the hyperfine structure of the ground state. '65 _'2 —Il (‘) l 2 3
Figures 2 and 3 depict the transport collision rateand B x

the relative difference of transport collision rates FIG. 4. Dimensionless drift velocity(x) as a function of the dimensionless

Av vy (t)—wu(t) frequency detuning=Q/kv of the radiation forLi atoms in Kr or Ne as a

T E T (25 buffer gas in the case of normal LID &t&=300 K and a buffer-gas pressure
v va(t) P=5 torr. The short vertical lines in the middle of the diagram indicate the

calculated according to qu) for “Li in different buffer frequencies in resonance with time—n and m-| transitions. The dashed

. . . S — curves3 and 4 represent the results of calculations by formula8)—(23)
gases as functions of the dimensionless velotityw/v. A \herey(t) is replaced by ;). Curvesl and3 correspond to théLi—Kr

characteristic feature of the behavior of the collision ratesystem and curve® and4, to the’Li—Ne system.
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FIG. 5. Drift velocity u as a function of the frequency detunimgor Li

X
atoms in Ne as a buffer gas at a pressBre5 torr for different tempera-

tures: curvel corresponds tdl = 1600 K, curve2 to 1250 K, curve3 to

FIG. 7. Drift velocity u as a function of the frequency detunimgor Li
800 K, and curvet to 600 K.

atoms in mixtures of two buffer gases B+ 600 K and pressur® =5 torr:
curve 1 corresponds to’Li—(Ne+Ar) and £=0.765, curve 2 to
"Li—(Ne+Kr) and £=0.865, and curv8 to "Li—(Ne+Xe) and£=0.9. The

vertical lines indicate the frequencies in resonance withnth@ and m-|

transitions.
curve 5). This behavior of the factoA v/v means that the ransiions

anomalous LID of lithium atoms in a buffer mixture can be

observed at almost all.temperature':s by specifying the valughereu= (2ksT/x)/2, andn is a unit vector pointing in an
of the parameteg, which can easily be controlled in the arbitrarily chosen direction. The average transport tat®
experiment.

is related to the diffusion coefficielm; of particles in staté
The results of numerical calculations of the LID velocity by the simple relationshiﬁ):?/Z( )
. . . | 1/

u(x) ?y formulas(18)—(23) are illustrated in Figs. 4-8. . Formula (18) clearly shows that, due to the factor
, . Figure 4 depicts the dependence of the LID velocity ofy o, 2) “the principal contribution to the integral for the
Li atoms on the frequency detuning in a one-componentis velocity u(x) is provided by particles with velocities
buffer gas Ne or Kr al =300 K. In this case the drift veloc- ~1. In the vicinity of t~1 at T=300K, the sign of the
ity spectrumu(x) corresponds to normal LID and is de- factor Av/v for the system&Li—Ne and ‘Li—Kr does not
scribed satisfactorily by a LID theory in which the tranSportchange(see Fig. 3, which is the reason why normal LID is

collision rates are independent of the velodity.e., vi(t) in  jpcaraq.
(19 is replaced by the average transport rate

As the temperature grows, the thermal velogitgind the
region neart=v/v~1 in Figs. 2 and 3 move to the right.
Now for the ‘Li—-Ne system the relative difference of the
transport collision ratesAv/v, in the region wherg~1
holds becomes an alternating-sign functicorve 1 in Fig.

3) and anomalous LID arises, which is illustrated by Fig. 5.
The curvesl, 2, and3 in Fig. 5 correspond to anomalous
LID, with the curvesl and4 outlining the limits of anoma-
lous LID diagrams and the curn&(T= 1250 K) correspond-

(== [ (W av

(27)

ing to the maximum anomalous LID effeéin the ranges
1?“0 where thex are either positive or negative the amplitudes of
/—\\
o 1,", y - 3
; \ AN ux!10
st ; 5 \‘ S .,~’ X
] "\, ,./ /‘\‘\.
S IV s\ . LOp
NS I"\/l/ 0.5
_5_ '\\ .’.,._./ 1 Sr
-10f Vo 0 A
\
-15¢ \\ /l > \/ \./
-3 02 -1 0 1 2 3 -1.0p
X 1 n Y 1 ad
FIG. 6. Drift velocity u as a function of the frequency detuningfor "Li -3 -2 -l 0 ! 2 3

atoms in the buffer mixture NeKr at T=300 K, pressurd®=5 torr, and
different neon fractiong: curve 1 corresponds t&=0.865, curve2 to &

X

FIG. 8. Drift velocity u as a function of the frequency detuningor °Li

=0.875, and curv@ to £=0.81. The vertical lines indicate the frequencies atoms in the buffer mixture NeKr at T=600 K, pressuré=5 torr, and a

in resonance with then—n andm-I transitions.

neon fractioné=0.865.
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the maximum and minimum drift velocities(x) are ap- and the excitedrf)) and unexcitedrf) atoms on the velocity
proximately the same Note that in the case of anomalous v of the resonant atoms. Since the transport collision rates
LID the drift velocity decreases insignificantly in comparison v;(v) are completely determined by the potentials of the in-
to the case of normal LIOfor the curves2 in Fig. 4 and 5 teraction between resonant and buffer particles, the velocity
the maxima ofu(x) differ only by a factor of 1.5 This  spectrum of anomalous LID is highly sensitive to the differ-
feature of anomalous LID in the case at hand is due to thence in the potentials of the interaction of buffer particles
specific behavior of the relative difference of the transportand resonant atoms in thira and n states. This makes pos-
collision rates,Av/v (curve 1 in Fig. 3): as the function sible highly precise testing in the LID experiments of the
Avlv passes through zero, it rather sdamthe intervalAt interatomic potentials used in calculations of the velocity
~1) reaches a plateaulike curve, where it is weakly depenspectrum of anomalous LID and hence relatively simple ex-
dent on the velocityt (Av/v~const). Hence in the case of perimental testing of the accuracy of various theoretical
anomalous LID the regiod v/v~const, which ensures nor- methods used in calculating the interaction potentials.

mal LID, contributes significantly to the integral8) for A good criterion for determining the possibility of
LID velocity, and this results in a small decrease in anomaanomalous LID arising in a one-component buffer gas is the
lous LID. alternating-sign temperature dependence of the difference of

Figure 6 depicts the spectrua(x) of the drift velocity  averaged transport raté7) of collisions, (vy,)—(v,) (or,
of ’Li atoms at different neon fractionsin the buffer mix-  what the same, of the difference of the diffusion coefficients,
ture Net-Kr. We see that at a given temperature, anomalou®,,—D,,, in the excited and ground statesf the resonant
LID can be observed only within a narrow range of values ofatoms and buffer particles. In the case of a binary buffer
the neon fraction in the buffer mixtur&,§~0.02. Numerical  mixture, anomalous LID can occur if the differences of the
analysis demonstrates the same strong sensitivity of anomaveraged transport collision rates;,)—(v,) for the reso-
lous LID to changes in the neon concentration in other buffehant atoms in the two buffer gases have opposite signs.
mixtures, Ne-Ar and Net+Xe. A characteristic feature of Anomalous LID is expected to exist at temperatures in a
the anomalous spectrua(x) of the drift velocity in a buffer  one-component buffer gas and at relative fractions of the
mixture of two gases is the total lack of antisymmetry in thegases in a binary buffer mixture at which the difference
spectrumu(x), in contrast to the cases of normal and anomayy, )—(»,) (or DR,—D,) vanishes. These criteria were
lous LID in a one-component buffer gésee Figs. 4 and)5  ysed in Refs. 19, 25, and 27 and in the present paper to
In a binary buffer mixture, the shape of the velocity spectrumdetermine possible objects to manifest anomalous LID.

u(x) may be quite complicatetsee, e.g., the cun@in Fig. Using the above criteria to analyze the results of calcu-
6). lations of transport characteristics of alkali-metal atoms via
Examples of the spectra of anomalous LID i in  the Pascale—Vandeplanque interaction potefifidtie re-
different binary buffer mixtures are depicted in Fig. 7. sults of these calculations are partially discussed in Ref. 25

If we compare Fig. 4curve2) and Figs. 6 and 7, we see e can conclude that anomalous LID should be expected to
that in the case of anomalous LID 8Ei atoms in buffer manifest itself in the f0||owing cases:

mixtures of two gases the drift velocity decreases in com-
parison to normal LID by a factor of 10 to 20.

The anomalous LID spectrum fdiLi atoms can have
one (curve 3 in Fig. 6), three, or five zerogsee Figs. 5-)¢

For SLi atoms the anomalous LID spectrum can even hav
seven zerosFig. 9. 2. In the excitation of théD, line of Cs atoms in the

mixtures Ner Xe, Het+ Xe, and Kr-Xe at almost all tem-
peratures; and

1. In the excitation of théD, line of Rb atoms in the
mixtures NetKr, Ne+ Xe, Het+ Kr, and Het Xe at almost
all temperaturegdepending on the choice of the buffer-gas
efractions in the binary buffer mixtuyg

5. CONCLUSION . . .
3. In the excitation of theD, line of Cs atoms in the

We have studied the anomalous LID of lithium atoms, mixtures HerAr, He+Kr, He+Xe, and He+Ne at tem-
which in the case of normal LID in noble buffer gases haveperaturesT=300K, and in the following one-component
the simplest dispersion-curve-like antisymmetric spectrunbuffer gases: He at ~300K, Ar at T~1000K, and Kr at
u(x) of the drift velocity, a spectrum which coincides with T~1600 K.
that for two-level particles. Although lithium atoms are de- In contrast to lithium atoms, Rb and Cs atoms satisfy the
scribed by a three-level model, the velocity spectrum of nordimiting case of weak collisional coupling between the fine
mal LID has a simple “two-level” shape due to optical component€P,,, and?Pg,. Hence the transport character-
pumping of the hyperfine components of the ground stateistics of Rb and Cs atoms in the excited sté&teg, and?P5,
since there is no collision exchange between the hyperfinare different(see, e.g., Ref. 40and so are the LID velocity
components in the case of noble buffer gases. The extremspectrum in the cases of excitation®@f andD,, lines.
simplicity of the velocity spectrum of normal LID of lithium The author would like to thank Prof. J. Pascale for send-
atoms makes it possible to easily notice in experiments aning detailed tables listing the potentials of the interaction of
small deviations from the normal drift-velocity spectrum. alkali-metal atoms and atoms of noble gases. The investiga-

The anomalous LID velocity spectrum is extremely sen-tion whose results are presented in this paper was sponsored
sitive to alternating-sign dependence of the differemge by the Russian Fund for Fundamental Resedfetant No.
—v, in the transport rates of collisions of buffer particles 98-02-17924.
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The thermophoretic interaction of macroparticles and its effect on the formation of ordered
structures of macroparticles in plasma was studied. It was shown that coexistence of regions with
a chaotic arrangement of particles and regions of ordered structures is typical of a thermal
plasma with strong interaction of the macroparticles. Computer simulation of a system of strongly
interacting macropatrticles, taking account of the thermophoretic interaction of the particles,

was performed. The results showed that the thermophoretic attractive forces explain the form of the
spatial nonuniformity associated with the grouping of particles in small domains. The
experimentally obtained correlation function was very close to the correlation function obtained

in the computer simulation. €999 American Institute of Physid§1063-776(99)00811-3

1. INTRODUCTION structures with pronounced short-range order over the com-
paratively short lifetimeqof the order of several millisec-

A thermal plasma with macroscopic particles is a low-ondg of a thermal plasma in a laboratory seflp.
temperature plasma containing small liquid or solid particles  Our objective in the present work was to study the non-
of matter. The macroparticles effectively interact with theelectric(thermophoretiginteraction of macroparticles and its
charged components of the plasma and therefore thegffect on the formation of ordered structures in a thermal
strongly influence the properties of the plasma. Thusplasma. This particle interaction mechanism results from the
electron-emitting particles can increase the electron densitsiecoupling of the particle temperature from the temperature
and electric conductivity of the gas phase. However, if theof the ambient gas. In the present work experimental mea-
particles trap electrons, then the opposite effect arises. In tr@urements of the temperature of the gas and macroparticles
limit of an un-ionized gas the presence of macroparticlesn a thermal plasma and numerical simulation of the interac-
completely determines the electrophysical properties of théon of macroparticles in a thermal plasma, taking account of
plasma. Effects associated with the presence of particlethe thermophoretic attractive forces, were performed. In
were observed in the very first experiméritstudying the ~ what follows the results of the analytic calculations of the
plasma of a hydrocarbon flame. interaction between macroparticles and the data from the nu-

An interesting feature of such a plasma is that because aherical simulation of the formation of dust structures with
their relatively large size¢from hundredths of a micron to various types of interactions of the macroparticles are dis-
some tens of microns the particles can carry extremely cussed. The correlation functions obtained in the laboratory
large chargesof the order of 16— 10° electron charggésAs  and in the numerical simulation are compared.

a result, under certain conditions strong interparticle correla-

tion leads to gas—liquid—solid phase transitions and the, |\TERACTION OF MACROPARTICLES IN PLASMA
appearance of spatially ordered structures in the arrangement

of the macroscopic particles, similar to the structures in a A Debye pairwise interaction of macroparticles is ordi-
liquid or solid3~7 Such structures have also been observedarily assumed in plasmig:

for CeO, particles in a thermal plasma at atmospheric dbp

pressuréd=1% The plasma formation was characterized by — ®(r)=®p(r)=—-Zge——, 1)
. . or

large sizes(the plasma volume was about 30%nwhich

corresponded te- 10° particles with density 70cm™3), uni-  where

formity, and a lack of external electric and magnetic fields. Z4e r

These investigations were primarily of a phenomeno- ¢D=—ex;{ - —.
logical character, having set aside a number of questions
concerning the mechanism of particle interaction and theédererp is the Debye radiuspp is the Debye potentiak is
anomalous value of the kinetic energy of the partiél¥s. the elementary charge, a is the charge of a macropar-
The interaction between the macroparticles plays a large rolticle in units of the elementary charge. This expression for
in the dynamics of the formation of ordered structures in agpp pertains to the case of interest, wiy<rp (Rq is the
dusty system, for example, accompanying the formation ofadius of a macroparticle

@

1063-7761/99/89(11)/8/$15.00 864 © 1999 American Institute of Physics



JETP 89 (5), November 1999 Fortov et al. 865

At short distances the electric interaction force is the T
Ngs=Ng \/ =
ds g Tds

Coulomb force, and at large distandesmpared withr p) it 5

decreases exponentially because of plasma screening and is

therefore a short-range force. The heat flux, corresponding to the distributi@h, onto
As established recently, besides the electric interactiothe surface of a macroparticle is given by the formula

of macroparticles there also exists a nonelectric interaction >

resulting from flows of microparticle’s. Ordinarily, this type q :f f ﬂ(V-en)endW

of interaction results from the breakdown of thermodynamic ° 2

equilibrium on the surface of the macroparticles. Specifi-

cally, for the case most often encountered in practice— _ i A /&(T ~T.) (6)

. . . . . ds g/
negatively charged particles—each macroparticle gives rise \/ﬁ \/_77

to a plasma flow(of positive iong onto itself. Neighboring ) he h ducti onis i he heat fl
particles interact by frictional forces resulting from these, Since the heat conduction equation is linear, the heat flux

flows, which results in an effective attraction of macropar-" the gas will be a simple sum of heat fluxes produced by
ticles. It has been shown that such a nonelectric attractioﬁaCh particle. The magnitude of the temperature gradient due

can be strong enough to compete with the electrostatic repu}9 one particle can be written in the stationary case as
sion and give rise to the formation of molecules of macro- R2 RZ n T
particles as well as crystals of macroparticles with a free q:qs—g: — —— \/E(Tds—Tg).
; ot r r< 2 m

boundary, which exist independently of the external forces. ™

In our case this mech.amsm_, dge to b_ombardment of thg o corresponding temperature gradient is
surface of the macropatrticles, is ineffective, since the par-
ticles are positively charged and therefore the flux of positve ~ JT ¢
ions onto their surface is relatively small. However, in this  5r ~ «’ ®
case, if the temperature of gas is different from that of the _ o ) ) )
surface of the particles, a different mechanism can arise, dughere« is the thermal conductivity. A neighboring particle
to flows of neutral gas molecules. A temperature differencdnteéracts with the thermophoretic force, which Rg<\ is
can, for example, result from radiative cooling of the macro- 32 [7m JT
particle material. Being colder than the gas, a particle gives &=—-— —Rﬁx—. (9)
; ; ; 15 V8T ar
rise to a heat flow onto its surface and a temperature gradient 9

in the ambient gas. A neighboring particle will move under  sypstituting the expressiotig) and (8) into Eq. (9), we

the thermophoretic force into a region of lower temperaturegptain the pairwise interaction force of the macroparticles
i.e., it will be attracted. In this manner, a special mechanism

of attraction arises. The corresponding interaction force will o —E)n Rﬁ(_l_ T (10)
be calculated below. T715 92" ds Toh
We consider two macroparticles of radig and surface

temperaturel 4 in a neutral gas. The temperature and den- It.can plausibly be assumed that th'S_ force is |.nde_ed.a
sity of the gas far from the particles aFg andng, respec- pairwise force: because the heat conduction equation is lin-
tively. Let 9 ear, the heat fluxes resulting from different particles and the

corresponding thermophoretic forces can be calculated inde-
pendently. The magnitude of this force is inversely propor-
tional to the squared distance, i.e., it is analogous to the force
of gravity, and it is directly proportional to the temperature
Sdifference AT. Therefore ifT4s<T4, then macroparticles

)

Ry<\<l, 3

where\ is the mean-free path of the neutral molecules in th

gas and s the distance between particles. To calculate the,.,,+ one another, and in the opposite case they repel one
heat flux onto a particle, the effect of the other particle can, Lother

be neglected. Then, assuming perfect accommodation, it is The relative role of the electric and thermophoretic
easy to find the distribution of gas molecules on the Surfac?nechanisms can be characterized by the parangeter

of a particle:
o(1)| 16 R
nym®? m\? &= = _ng_Z(Tds_ Tg)- (11
9 ext] — V-e.<0 ()] 15973
(27Ty)%? 2T, )" ’ . .
fo= 3 > (4) Ordered structures of macroparticles in a thermal plasma
NgsM exp{ _ mV ) V.e,>0 are investigated in Refs. 8—10. The thermophoretic interac-
(27T 4o 2Tqs)’ tion was not studied in the analysis of ongoing processes,

since the temperature difference between the gas and dis-
wheree, is the normal to the surface of the macroparticlepersed phase was small and could be explained completely
andm is the mass of a gas molecule. Since particles do nadby the error in the temperature measurement2¢). How-
absorb gas molecules in our case, the paranmgtgs deter-  ever, if the resulting temperature differen@bout 50 K is
mined by the requirement that the total flux of neutral mol-taken into account, then under the experimental conditions
ecules onto the particle surface be zero, which gives £=0.9.
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In summary, since it is long-range, the thermophoreticratios of the radiation of a dispersed medium at two or more
force obviously strongly affects the formation of orderedwavelengths make it possible to determine the color tem-
structures. To check this, the temperature difference betwegperature of the particles:
the gas and the macroparticles must be measured to high

g . g Sp(Ny) e(N)I1B(Tp ,Ny)

accuracy. = , 13
Se(n))  sOIE(TeN) 13
wherel B(T,\) is the Planck function and(\;) is the emis-
3. MEASUREMENTS OF PARTICLE AND GAS sivity of the dispersed phase. In the simplest case of “gray”
TEMPERATURES particles, when the emissivity of the dispersed phase does

not depend on wavelengthe(\;) =¢), these temperatures

The experimental test stand for studying the thermakre the same. Otherwise, to determine the true particle tem-
plasma included a plasma generator and diagnostic equiperature it is necessary to know the form of the spectral
ment for determining particle and gas parameters. Thelependence:(\). In many cases of practical importance,
plasma source consisted of a burner, a gas-supply systemvhen multiple scattering processes can be neglected, the di-
and a system for introducing particles. The particles were fedectional emissivity of a dispersed medium is givert®oy
to the internal flame of the burner by a special-purpose flu-
idized bed cyclone device. This burner design made it pos- e(M)=(1= o) (1-exp—7(M)}), (14
sible to produce a laminar plasma jet with uniformly distrib- wherew()\) is the single scattering albedo. In this case, since
uted parameters—the temperature and the electron and iahe optical density can be calculated from the formula
densities. Polydisperse Cg@articles were used in our ex-
periments, with a distribution half-width, as our measure-  7(M= ~INASLA(N) = Se(M)}/SL(M)), (15)
ments showed, of at most 30%. The average Sauter diametgétermination of the particle temperature can be reduced to
of the particles was about O:8n. In the working regime, the choosing an accurate approximation for the spectral depen-
velocity V4 of the plasma jet varied over the range 4-6 m/s,dence of the single scattering albedo. In our experiments a
tho% elglcétron 3and ion densities varied over the rangdunction of the form
10°-10“cm *, and the gas was kept at atmospheric pres-
sure. The electron and ion temperatures were the same, and ©(\)=1-consth ™ (16
varied over the rang@&;=T.=T,=1700-2200K. The test proposed in Ref. 20, was used to determine the particle tem-
stand is described in greater detail in Refs. 10 and 17. Herperature.
we discuss in detail only the modified methods for measuring  The optical layout of the diagnostic setup to determine
the gas and particle temperatures, and the diagnostic instrtne gas and particle temperatures is presented in Fig. 1. A
mentation based on them, which made it possible to deterstandard VL(SI-10-300 tungsten lamp TL, whose radiation
mine the temperature difference to within 10%. is interrupted by a chopper wheel CH and redirected by the

The conventional method for determining the temperabeamsplitter BS, is used as the radiation source.
ture in a flame is a generalized reversal method, but the A characteristic feature of the apparatus for determining
presence of dispersed-phase particles in gas flows cahe gas temperature is the use of a spectral instrument Sl of
strongly influence the optical and radiative characteristics ohigh resolving powefa DFS-452 spectrograpland the use
the flows and, in consequence, substantially distort the valuef a linear CCD array, each pixel of which corresponds to a
of the temperature when using conventional optical methodspectral interval of 0.06 A, as a detector. This makes it pos-
in a two-phase medium. In Ref. 17 it is shown that to highsible to record the line profile, rather than the integrated ra-
accuracy, the temperature of the gas phase in a dusty thermdibtion of the gas in the atomic lines. The small spectral
plasma can be obtained by measuring three signals at twange covered by the L2 linear array does not permit inves-
wavelengths\ o (within the line profile and\ (next to the tigating the particle characteristi¢but it is possible to take
spectral ling—the signalSp from the plasma with macropar- account of the influence of the particles on the spectral Jines
ticles, the signals, from a standard lamp with temperature The advantage lies in the possibility of obtaining good reso-
T_, and the signab, p due to the lamp radiation emitted at |ution of lines(in our case, the sodium doubleind therefore

temperaturel and transmitted through the plasma: determining the temperature of the gas phase more accu-
rately.
T :(i_ll Ko(7oFo—7F) ) ! The optical layout of the method for determining the
90T ¢ To— T ' particle temperature of the dispersed ph@s® Fig. 1 con-

sists of a tungsten lamp TL, a chopper wheel CH, a beam-
Sp splitter BS, a mirror M, objectives O1 and O2, and a light-
- S +So—S.p’ (12) guide LG1. This scheme is similar to one used for
diagnostics of the gas phase and differs from it by the angle
whereris the optical density of a plasma with particles, andof convergence of the probe beam and the use of a novel
the subscript O corresponds to parameters determined withgpectrophotometer, consisting of a slit S, a system of objec-
the spectral line profilésodium atomp tives O3 and O4, and a 300 line/mm diffraction grating DG,
Color pyrometry is ordinarily used to determine the par-as the spectral instrument. A linear CCD array L1 was also
ticle temperaturé® Measurements of the spectral intensity used in this scheme. Such a system made it possible to per-

F
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FIG. 1. Optical layout of the diagnostic system: TL—
tungsten lamp, CH—chopper wheel, 01, 02, O3, 04, 05,
O6—objectives, PD—photodetector, L—lens, L1, L2—
linear CCD arrays, LG1, LG2—lightguides, DG—
diffraction grating, S—slit, G—plasma generator,
M—mirror, BS—beamsplitter, Sl—spectral instrument,
IF—interference filter.

form spectral analysis of the collected radiation in the wave-x 10'°cm?, and the electron density, was varied over the
length range 450-900 nm, which is sufficient to determingrange (2.5-7.2)x10°cm 3. On the basis of these data it
parameters of macroparticles such as their size, absorptiagas found from the quasineutrality relatid@yn,+n;=n,
coefficient, temperature, and density. that the Ce@particles are positively charged to abouf&0
The main channels are used for spectral measuremengs within a factor of 2. The ordered structures were analyzed
of the intensities of the radiation from the plasma laggr  using a two-point correlation functioR(r). The resulting
the reference lamf,, and the lamp signéb, p transmitted  plasma parameters were used for numerical modeling.
through the medium. A chopper wheel CH is introduced into
the scheme to measure the sigriglandS, . The measure-  \,,\iericAL MODELING IN A THERMAL PLASMA
ments were performed in an automatic mode, the signals
from the linear arrays were processed with a computer, and Computer simulation of the behavior of an ensemble of
the signals from the photodetector PD were fed into armacroparticles in a thermal plasma was performed in order
L-1250 ADC board and then processed with a computer. to investigate the influence of the thermophoretic interaction
A reference channel is introduced into the scheme t®f the macroparticles on the formation of ordered structures
correct errors introduced into measurements of the opticah a thermal plasma. The simulation parameters corre-
density and intensity of the characteristic radiation of thesponded to the experimental conditions of the plasma with
layer of macroparticles as a result of fluctuations of the parCeQ, particles, for which a liquid-type structure was ob-
ticle density. The reference channel consists of a lens L, agerved. Numerical modeling was carried out using the Math-
interference filter IF, and a photodetector FEEU-84). Ra-  cad system by the molecular dynamics methodingeom-
diation from the measurement volume is directed onto theetry. It consisted of solving the equation of motion for each
photodetector POsignal S, ). Measurement of the signals macroparticle assuming a pairwise interaction law. Frictional
S%s and S simultaneously with the signalS, and S, forces and Brownian motion were also taken into account:
makes it possible to monitor the particle density during the d2
experiment and either to reject unsuccessful measurements mdd_tzkzz. ®(f)|r:\r
or to correct the signal from the plasma: ]

S;:SPSLP/SEP'

rk_r]' drk F
T Mgyt ,
K rj\lrk_r]_| dVfr gt br

17)
wheremy is the particle massyy, is the friction decrement,
Systematic errors in determining the emissivity from theandF,, is a random force giving rise to Brownian motion.
relative signal measuremen$s /S, were corrected by pre- The number of particles wa$=200. A square with pe-
liminary calibration of the instrument. riodic boundary conditions was used as the simulation re-

The observation of ordered structures with simultaneougjion. The significance of the periodic boundary conditions is
diagnostics of the plasma was conducted in the zone of stdahat in the first place, when any macroparticle leaves the
bilization of the temperature of the plasma jet at heightsimulation region an identical particle enters the opposite
h=25-40 mm above the cover of the burner for variousside of the square and, in the second place, interactions with
plasma temperatures and particle densities. The plasma temeriodic images of the particles are taken into consideration.
perature was varied by varying the propane/air ratio over th&hese images are constructed in a strip of widgl2 around
range 0.95-1.47. In measurements with ggarticles the the square, wherk, is the edge length of the square. Such
particle densityn, was varied over the range (0:5.0)  periodic boundary conditions make is possible to avoid
x 10" cm™3, the plasma temperatuiig, was varied over the boundary effects and set the average macroparticle density.
range 1700—2200 K, the temperature differeAdebetween Initially, the particles occupy random locations inside
the gas and macroparticles was varied from 20 to 70 K, théhe simulation region, after which formation of an ordered
ion density n; was varied from 0.4210'°cm 3 to 4.0  structure commences. Here a problem arises that is charac-
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TABLE |. Parameters used in the simulation. T/7}"

T,=1700K AT=50K ng=5x10"cm? 20

Py=1 bar my=1.16x 10 ‘2g I's=30 15k
ne=7x10cm3 Mmy=3.2x10 g ¥p=150
ni=4x10°cm™3 =17 um N=200 10t

rp=11um Q=500 7=0.3ms

Ry=0.4um v =1.14x10° st P4, =570s? s

\ , I
teristic of 2D simulation of the behavior of a real syst f 0 3 10 t5
ystem o t, ms

macroparticles. The average interparticle distdnioe a 2D _ _

system of macroparticles is equa| to the value calculate&'G- 2 Tlm_e dep_endence of the tempe_rat_ure of:_asystem of macroparticles
L . ) in a simulation with a purely electrostatic interaction.

from the density in a real experiment:

| =(4mngy/3) 1~ ,
_ o ) ) parameters in the table two values are presented. The values
In this case it is to be expected that the simulation of thenarked with a tilde were used in the simulation.

processes due to short-range electric forces will be correct.  The mass of a macroparticlerisy= (4/3)p4R3, where

However, the effect of the long-range nonelectric interaction,, [ g/cn?] is the density of Ce@ We used the approxima-
cannot be completely accurately taken into account ifba 2 g

geometry. To simulate a structure of macroparticles with a

long-range interaction correctly, simulation must be per- _ 6m 7Ry

formed. Nonetheless,2 simulation for long-range interac- T mg{1—(MRy)(1.257+0.400 exp— 1.1CRy/\))

tion is helpful to demonstrate the effect due to attraction (19

between particles. where 7 is the viscosity of the gas. This complicated expres-
Two systems were simulated: sion is necessary because the experimental conditions corre-
1. A system of macroparticles taking account of only théspond to a transitional regime, where neither the Stokes for-

electric interaction. mula nor the expressions for the collisionless regime are

2. A system that incorporated electrostatic repulsion an@ccyrate.
thermophoretic attraction. Its purpose was to demonstrate the The mean-free path and the viscosity were taken to be
influence of long-range attractive forces. A=1.56um and »=1.73x 10”3 g/cm-s. Substituting these

In practice, the actual interaction law must be cut off aty5jyes into the expressiofl9) yields v, =1.4x10°s™ L.
very short and very long distances. It is obvious that initially Thjs is a very large value, considering that the characteristic
some macroparticles can be very close to one another, afgrmation timet; of an ordered structure is tens of seconds.
the initial interaction force will be very large, which will Thjs means that the inertia of the particles has virtually no
require a very short time step. To avoid this problem theeffect on their regular motion determined by the interaction
interaction force was truncated at distances shorter thagy ces. Unfortunately, it is impossible to eliminate the iner-

lo=0.4. This does not affect the process leading to ordering;a| term from Eq.(17), because Brownian motion is impos-
of the macroparticles, since neighboring particles, separateglple without it.
by a distance of less thalp, disperse quite rapidly, after The time stepr must be less than #{, . To avoid nu-
which there are no longer likely to be any particles separate¢herical instabilityr~0.15/;, was used in practice. For this
by such a short distance. reason, simulation with the real value ofy required too

On the other hand, the long-range interaction of particlesnany time steps. However, a much larger particle mass can

can give rise to unrealistic effects induced by the periodigye ysed. Specifically, the mags=200m,; was used. The
boundary conditions. For this reason, the interaction of Macregular motion of macroparticles remains inertialess if

roparticles at distances greater than the width of the strip of

the periodic sample§.e., Ly/2), is cut off gradually. This vty<l. (20)

does not affect the local processes of interest, which ensuresere7;, was calculated from Eq19), substitutingf, for

the validity of the simulation. Thus, the following interaction m,. Therefore the regular motion of macroparticles is insen-

law was used for numerical modeling instead of the actuasitive to such an increase in their mass. However, this results

one: in an initial increase in the temperature of the macroparticles
D(ly), 1<lo, (Fig. 2)._ This efft_—zct, which does nqt occur in reality, is dye to

the rapid liberation of heat at the initial stage of evolution of

_ e (), lo<I<0.8.,, the structure from disorder to order. In realifjjy remains

d(l)= Lo—| (18) constant, since friction is strong enough to dissipate the en-
q)(l)o__ﬂ_o’ 0.8 o<l <L, ergy released and to prevent a temperature increase. Never-
0 1L, theless, note that the growth tinig is short compared with

ts, so this effect can be neglected.
The simulation parameters are given in Table I. Some As one can see from Table I, the ion density is low
remarks concerning this table are made below. For severalompared with the electron density. Note that the question of
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FIG. 3. Evolution of the correlation function in a simulation with a purely electrostatic interaction.

determining the Debye length in a plasma with such a high In practice, a range of distances where oscillations of the
macroparticle density is unclear. This problem requires spefinal correlation have an appreciable magnitude can be con-
cial consideration, which is beyond the scope of the presergidered. We consider the first five peaks. In this case
work. In the present workp was calculated neglecting the t;~50ms. It is also convenient to introduce the tieat

ion screening: which the first peak emerges. This is actually the time re-
fo= \/m. quired for order of any type to appear in the system. The

current simulation yields; ~10 ms, consistent with the ana-
The first simulation with a purely electrostatic interac- lytic estimate
tion of the macroparticles showed that after a relaxation pro-

. . ! . . Im
cess the system arrives in a final, statistically stationary state t,~ air , (21)
corresponding to a liquid structure. This agrees with the val- @)
ues of the nonideality parametdrg and vy, . which yieldst; =28 ms. As noted above, in this simulation

Figure 3 shows the dynamics of the correlation functionthe transit time of macroparticles fig,,=10 ms. This means
R(r), calculated according to the instantaneous positions of

the macroparticles. The arrangement of the macroparticles in

the simulation region at the end of the experiment is pre- I —0—00T T g

i Ei i« avi i - © 0 0,.°20000 o909
sented in Fig. 4. It is evident from Fig. 3 that the particles 0.0 0% 00 0002000
contributing to the correlation function at smallvanish. 200'00%% o%o © 0,0 95009
This process occurs very rapidly because of the strong elec- °° ©oo0 °°o (o] 8 09 g oo go o
tric repulsion forces at short distances. Then, the first pro- o%% °°°o Og go °, oo g g
nounced peak appearstat 10 ms and grows. Subsequently, o OOO o°° g 8 °o° 8 ooo o 0C
this peak continues to grow and higher-order peaks appear at 100y © 0000 ,00 00 L09

\ . ) e . 50 000°% a0 0200 §

the same time. The final correlation function is characterized °°°o 000 000O ° o% o 000
by a large number of sharp oscillations. The formation time DO Y % 00f0o0 % o o°o°0
t¢ of the structure is an ill-defined quantity, since it depends 39 00°L 0000600 C’f’
on the range of distances where the evolution of the correla- 0o - 100" 200
tion function is studied. The greater this distance, the greater sl

the time required to establish the correlation function at this;g. 4. Final form obtained for a system of macroparticles in a simulation
distance. with a purely electrostatic interactiots= 100 ms.
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FIG. 5. Comparison of the correlation functions obtained in numerical simu- 0

lation with purely electric interaction of macroparticles and measured ex-
perimentally: solid line—simulationt= 10 ms (corresponds to the transit ) ) ) ) )
time of the plasma through the experimental sgtugashed curve— FIG. 7. System of macroparticles, numerical simulation taking account of
simulation, final stationary state; dot-dashed curve—experiment. the thermophoretic attractiob=21 ms.

that the experimentally measured correlation function correirregularities of the macroparticle structure. One possible
sponds to the moment at which the structure is formed. Thenechanism leading to these nonuniformities is thermo-
real transit time is sufficient for short-range order to appearphoretic attraction of particles.
but insufficient for many oscillations to appear in the corre-  This mechanism is studied in the second simulation,
lation function. where long-range thermophoretic attraction of macropar-
Figure 5 shows the experimental correlation functionticles is included in the interaction law. It turns out that the
compared with two correlation functions obtained by nu-attraction of macroparticles leads to a nonperiodic Jeans-type
merical simulation, one of which corresponds to the realnstability. Figure 6 shows the evolution of the correlation
transit time, while the other corresponds to the final stagefunction in the second numerical simulation. The final ar-
Two characteristic features distinguish the experimental corrangement of macroparticles in the simulation square is
relation function. First, it has but a single peak, and secondshown in Fig. 7.
that peak is very wide. The lack of long-range order peaks is It can be seen from the last figure that the macroparticles
not surprising, since the foregoing tells us that the actuatend to gather into a cloud. Thus, the attraction of macropar-
transit time is too brief for them to develop. The broadeningticles might account for the strong local irregularities ob-
of the main peak can probably be explained in terms of locaterved in the laboratory experiment. Figure 8 shows the ex-

R(r) . R(r)
3 3
a 1=0 c t=13 ms
24 8 2+ b
AN I
0 1 2 3 4 0 I 2 3 " 4 FIG. 6. Temporal evolution of the correlation function
R il R(r) r obtained by simulation, taking account of the thermo-
3 . 3 phoretic attraction.
b r=6ms d =21 ms
2t 12 ]
1 AWM~ Iy ]
0 I 2 3 0 I 2 3 4

4
rfl ril
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R size is of the order of the mean separatiorhe experimen-

3 tally measured correlation function was found to be very
close to the correlation function obtained by numerical simu-

2t lation.
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The impurity concentration in localized structures is described on the basis of analytic solutions
of model equations for convective diffusion in the one-dimensional hydrodynamic

approximation without pressure. The simplicity of the derivation of the analytic results depends
on the ratio of the kinetic coefficients of the liquithe Prandtl numbeysFor the same

kinetic coefficients, any time-dependent problem can be reduced to problems for the conventional
heat conduction equation. For integer Prandtl numbers the problem of time-dependent
convective diffusion in the flow field of a uniformly moving shock wave likewise reduces to
problems for the heat conduction equation. Relations are established between problems whose
Prandtl numbers differ by an integer. Various representations of the Green’s functions for

the equations of convective diffusion are analyzed. For integer Prandtl numbers they can be
expressed in terms of error functions. The asymptotic character of the solutions depends

strongly on the satisfaction of global conservation laws. For global conservation of the impurity
mass, coalescence of shock waves corresponds to merging of impurity solitons, i.e.,

clustering. ©1999 American Institute of PhysidsS1063-776(99)00911-7

1. INTRODUCTION lecular and convective transport in the carrying liquid are
combined. The case of equal kinetic coefficigiuisit Prandtl
The dynamical and stochastic description of the evolunumbey is especially simple. In this case there exists an
tion and interaction of many degrees of freedom, leading t@xtension of the Cole—Hopf transformation whereby the non-
the formation of structures on account of the characteristidinear equations of motion and convective diffusion can be
features of the collective behavior, has been substantiallyeduced to a linear heat conduction equaﬂi%)mhe situation
developed on the basis of the theory of continuous medigbecomes somewhat more complicated when the kinetic co-
The basic characteristic features, such as nonlinearity, visfficients are different, and a reasonably complete analytic
cous dissipation, and dispersion, on whose balance nonequhvestigation is possible only for particular types of flows.
librium structure formation is based, can be effectively takerFor flow in the form of a uniformly propagating shock wave
into account in the hydrodynamic approximation. Even sim-the equations of time-dependent convective diffusion can
plified one-dimensional hydrodynamic models reveal impor-once again be reduced to a linear heat conduction equation
tant features of phenomena and, above all else, the decisivéth constant coefficients for any integer Prandtl numigiers
role of localized formations in the form of shock waves andthe general case, the relation between the solutions of prob-
solitons. The one-dimensional model of a viscous liquidlems whose Prandtl numbers differ by an integer will be
without pressure, known as the Burgers mddeks long  establishell The asymptotic character of the impurity distri-
attracted a great deal of attention for describing deterministibution in a shock wave depends on whether or not a global
and stochastic flows in aerodynamics and plasma physics. conservation law for the impurity is satisfied for the equa-
For all of the model simplification, it retains the inertial non- tions of the model. The model without complete conserva-
linearity and high dissipation, which play a leading role intion of the impurity will be studied first in Sec. 2. Then,
the formation of turbulent flow. The quasilinear Burgers dif- based on this model, a model with a global conservation law
ferential equation is especially attractive because it can bwill be studied completely analogously in Sec. 4. In the latter
reduced to a linear diffusiotheat conductionequation by case, an “impurity soliton” will ultimately(in the limit of
means of a nonlinear Cole—Hopf change of variabfeShe  long time$ accompany the shock wave. The well-known ef-
new burst of interest in this equation and its multidimen-fect of perfectly inelastic collisions of one-dimensional
sional modifications is due to the further elaboration of meth-shock waves for Burgers’ equatfotwill thereby correspond
ods for solving problems of turbulence theb®yand to the to merging of impurity solitons and an increasing local im-
substantial expansion of its physical applications in theoriepurity concentration. This completes the one-dimensional de-
of transport flows structure formation in the evolution of scription of impurity clustering, which has attracted a great
the Universe, growth of interfaces®!* and convective deal of attention in the literature in the more complicated
diffusion!? multidimensional and stochastic situation$'®In Sec. 3
The one-dimensional hydrodynamic model without presthe Green'’s function of the convective heat conduction equa-
sure remains simple even when it is extended to the probleriion is analyzed on the basis of the solution of the well-
of convective diffusionor/and heat conductionwhere mo-  known spectral problem of quantum mechanics for the

1063-7761/99/89(11)/8/$15.00 872 © 1999 American Institute of Physics
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Paschl-Teller potential '8t is demonstrated that the sim- is obvious from the fact that the Painletest for Eqs(2.1) is
plication of the analysis for integer Prandtl numbers is due tesatisfied only for unit Prandtl numbé&t Nonetheless, this is
the nonreflective character of the potential in this case. possible in special cases.

The generalized Cole—Hopf transformation

2. DIFFUSION EQUATIONS FOR A PASSIVE IMPURITY v=—>a;Ine, 6=yle’ (2.6)

The equation for convective heat conductiaiffusion)  ,nce again reduces the nonlinear equation of motion to a

through a velocity field is coupled with the equation of Mo- jinear heat conduction equation with constant coefficients
tion, which in one-dimensional hydrodynamics without pres-

sure is Burgers’ equation. In the passive-impurity approxi- &Tszp&és,

mation (in this approximation there is no sense of ] ] ) )

distinguishing between heat conduction and diffusion, so tha@nd the equation for the impurity concentration reduces to a
either term will be used which does not exert a back effect linear equation with a variable coefficient and without the
on the fluid flow, one variant of such coupliignother is  first spatial derivative of the unknows

studied below in Sec.)dis represented by the differential N _ A 5
equations Lp-19=0, L,=d,—3d;+P(P+1)v,. .7

AU+ UG U=vd2u, 0+ UdH= x>0, (2.1  The differential operator arising here satisfies the important

. . - commutation relation
for which the solution of the initial problem presupposes the

initial conditions - . - - m(P—m)
Lp-mMp-m—M pmepflfm:TVrv
U(X,t)|t:0:(9x¢o(X), G(X!t)|t=O: QO(X) (22)
for the velocity and density fields of the passive impurity. M =3+ PV. 2.9

In Ref. 13 it was shown that this system of equations
with identical kinetic coefficients(unit Prandtl number Besides the overP-dependence, here there is also an im-
P=v/x=1) is just as simple as a separate Burgers equatiorplicit dependencéthrough the form of the dimensional ve-
Using the generalized Cole—Hopf change of variables, locity). Stationary flow is an exception, as is obvious from
the equation of motion in Eq2.5). For stationary flow the
ux,0)==2vdyIne(x.1), 0(X,t)=1,b(x,t)/e(x,t),(2 commutation relation becomes homogeneous and makes it
, ) ) . _ possible to use the lowering operathzlrp to reduce the solu-
it reduces to two ordinary linear heat conduction equationsijon of the problem under study for some Prandtl number to

e=vdle, p=xo2y (v=x), (2.4  the solution of a similar problem with a Prandtl number
smaller by 1. Thus, in the modern terminology, this operator
_ $o(X) is a Darboux operator for the differential operator of the
S(X’t)|t=°_eXp( - 2v ) problem. Because of the symmetry property of the latter,
Bo(x) L_p,=L,-1, the raising operator will b& _,. Any change
WYX, ) |i=0= 60(x)exp( — ;V ) in Prandtl number by an integer can be achieved by repeated

application of the lowering or raising operators. Specifically,
We now analyze the equations of the one-dimensionalor integer Prandtl numbers the problem is reducible to the
model (2.1) for arbitrary (always positive in the sense of simple problem mentioned above for the heat conduction
thermodynamic constraint®randtl numbers. Without dis- equation(the problem withP=1). For stationary flow and
tinguishing heat conduction and diffusion, we use a singldnteger P, a relation between the differential operators of
term for the dimensionless ratio of the coefficient of kine-these problems can be easily established u&):
matic viscosity to the other kinetic coefficier(ia the litera- . . . . . . .
ture, a special term—the Schmidt number—is used for the Lp-1Mp-1Mp_2..M1=M_1My5...MyLo,
ratio of the coefficients of viscosity and diffusiprit is con- . )
venient to use dimensionless variables constructed using the Lo=d,—d%. (2.9
characteristic velocityu, and the coefficient of viscosity.

. Starting with the heat conduction equation, left-multiplyin
Then the system of equations assumes the form g d PYing

it by the operatorM,; and using the commutation relation
IN+2PVIN=PI, 9,0+2Pvi0=7z0, (2.5 (2.8 with v.=0, we obtain

_Ux uat ~u
= 2V’ TE= 41/, _uo_v(gaT)'

Lip@=0, Lop=0; ¢P=Mye. (2.10

_ S _ _ _ Continuing in this manner we prove that the solution of an
Since the second equation is linear in the impurity concengquation with an integer Prandtl number can be represented

tration, there is no special need to reduce the latter to dimenp, terms of the solution of the heat conduction equation as
sionless form.

In the general case this system of equations cannot be ﬁp_llp(P):o, ﬁ0¢:o; z/;(p):|\7|p_1l\7|p_2...|\7|1¢.
transformed to simple separate equations of the (¢p®, as (2.1)
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The explicit form of the required one-dimensional stationaryThe impurity distribution at subsequent times with integer
flow can be found quite easily. The stationary solution,Prandtl numbers will be expressed, in accordance with Egs.
bounded at infinity, of the equation of motid8.1) has the (2.6), (2.11), and(2.13), as follows(in the product, the op-
form erators are assumed to be ordered so that the number in-
U creases from right to left

u(x)=—u0tanhzi; v=—tanhé. (2.12 P-1
g 8(£,7)=(CoeP"coshe) P (9,~mtanhé)e
Since the equations exhibit Galilean invariance, such a flow m=1
corresponds to a uniformly moving shock wave with a vis- P-1
cous transitional layer in a coordinate system moving to- =(C0ePT)P<a h )
gether with the wavein what follows, all calculations are sinh¢
performed in such a coordinate syspertWe note that the in terms of the solution of the initial problem for the heat
potentiale corresponding to the indicated stationary velocity conduction equation of the forthe Heaviside step function
distribution in the Cole—Hopf transformation is not station- enters into the initial condition
ary:

¢
coshé’

(2.16

o (9,~ %) =0,
e(&,7)=Cpe""coshé, (2.13
. . . . . (P| =0 Cg COSth
since it must satisfy the time-dependent heat conduction

equation(2.4). However, under the Cole—Hopf transforma- h (sinhé—sinhgo)” 2
tion, separating the time and space variables causes the time X coshy (P—2)!

(together with the arbitrary constafY)) to drop out of the ) ] ) S
result for the velocity(2.12. A representation of the impurity distribution in terms of a

Here it is still necessary to complete the proof that anyconvolution integral between the Green’s function and the
solution of the equation under study far with integer initial distribution then follows for the heat conduction equa-

Prandtl numbers can be represented in the f@m1. For ~ ton:

H(§—&o). (2.17)

this we consider a solution in the forgi” =M ,_, x and use , P-1
for the transformations the commutation relati@8) with 6(¢,7)=e """ coshé, seclt le (dg—mtanhé)l,_»,
v,=0: m=
- PR A % sinhz—sinh¢&,)"
Loop®=0; L, aMp_jx=M, 1L, ,x=0; | = L dncoshn( U - %o Do(€—7,7),
~ 0 ’
(9= (P—1)tanhé)L,_,x=0.
1 2
Integrating the latter equation once we arrive at an inhomo-  D(§,7)=_——exp — —) (2.18
: ) . i 2Jmr 47
geneous equation whose solution can be conveniently repre
sented as a sum of the particular solution and the generghese integrals can be expressed in terms of the error func-
solution of the homogeneous equation: tion erfz=1—erfcz. For example,
L,_,x=Ccosf ¢ e’
P2 IO:Z(Z coshé+S,),
C
x=——=——5cos L&+ yPD)
(P_ 1) + g_ §0
N S;=>, (e Herf Jr= ,
Applying the operatoM,_; to this sum, the contribution * 2\/;
from the first term vanishes, and we obtain finally a formula 4
expressing the relation between the solutions of two prob- | | sinhg,=—(2 sinh 2¢+S,),
lems with Prandtl numbers differing by 1: 8
YO gD, (2.14 &S e+2§erf(zﬁi§—§o | (219
Applying this formula repeatedly we once again arrive at the * 2\

— 1
result(2.11), whereq.o=¢( ). S and we have for the concentration distributions of a passive
Next, to study time-dependent convective diffusion of Aimpurity in the case® =2 andP=3, respectively

passive impurity in the field of a uniformly moving shock
wave, we focus our attention on the initial problem with the
impurity concentrated at a poifthe solution of other initial
problems can be found by superposing such singular solu-
tions):

h
0(&7)= e’37%§0 seclf £(9;—tanh§)S,,

6(.7)= e_5Tcosh§0

(9,—2Ptanhéd;— d2)0=0, 0(&,7)|,—o=d(&—&). 8
(2.15 X(S,—2e7%7S; sinhé&y). (2.20

sech £(d;— 2 tanh¢) (9, — tanh¢)
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_Smce the expressions f&, are asymptotically _constant ﬁp—1G= S(E—£0)8(7);
for fixed £ and &y at long times {—<°), concentration per-
turbations will vanish in this limit. Therefore, in the model at
hand the convective transport of an impurity as a result of

G(£,40,7)=H(7)D(,£0.7),

fluid flow in a shock wave cannot compensate for diffusion ~ Lp-1D=0, D[,—o=d(é— &) (3.4
spreading. - _ _ such an expansion has the form

For what follows, it is also convenient to rewrite the last N
result(we confine ourselves to the caBe=2) in the form N

D(&,&,7)= 2, e "W (§Wy(&)
o .| cosh, 2D s A=1
(5,7’)—6 COShg (§1§O!7-1 - )1 . dk . 2
A +f_ - V(&P (& ke T
L]_D:O, D|T:0:5(§_§O)1
(3.9

T

D(¢,&y,7,P=2)= Zsechgo(ag—tanhg)sl. (2.21) For known eigenfunctions and eigenvalues this yields an al-
ternative method for solving the problem of the evolution of
an impurity distribution, initially concentrated at a point, in
the fluid flow created by a uniformly moving shock wave.

The spectral data for the Scliinger equation with a modi-

The equation of convective heat conduction in the presfied Pa@chi-Teller well are well .kInOW']’?'lS The discrete
ence of a flow produced by a uniformly moving shock waveSPectrum for such a potential is finite:
can be solved for any Prandtl number using expansions in )\ — _(p—n)2<0, n=1,2,..N<P,
terms of the eigenfunctions of the stationary part of its op-
erator. The latter problem has been studied in detail in quar@Nd the eigenfunctions of the discrete part of the spectrum
tum mechanics and is known as the spectral problem for thBave a polynomial form:
modified Pechl-Teller potential. The simplicity of the case V(E)IA,=(1—02) P M2E(—n4+1—n+2P;1+P
of integer Prandtl numbers corresponds to the case of nonre-
flective potentials and is due to the additional internal sym-
metry of the problem.

Seeking the solution of E@2.7) (in a coordinate system =(1-0?)P "2

3. GREEN'S FUNCTION OF THE EQUATION OF CONVECTIVE
HEAT CONDUCTION (SPECTRAL EXPANSION)

(3.6

-n;(1-0)/2)

(M (1+P—n) pP=0P-) o)

. . . " r'(P)
comoving with the wavkg rewritten for the specific case of a
shock wave, in the form :(1_02)(P,n),2f(n)F(1+2P—2n) P-n+172 )
T'(2P—n) n-1

Loo19W(§,7)=(9,— d:—P(P—1)seck &)=0, (3.1

=2P T (14 P-mP & (o). @9

Here equivalent expressions are presented for the eigenfunc-
tions in terms of finite hypergeometric series, Jacobi polyno-
Y& =a(nV(é); mials, ultrasphericalGegenbaugrpolynomials, and associ-

5 ated Legendre functions.
(95+P(P—1)seck §)¥=—\¥, (3.2 The orthonormality of the eigenfunctions of the discrete

depending on the sign of the separation constant a discre?é)eCtrum of the Schdinger equation,
(for A= — u?<0) and a continuougfor A =k?>0) spectrum %

arise. The complete solution can be represented as a linear j_xd§‘1'n(§)‘1'm(§)=5nm,

combination of eigenfunctions of the discrete spectrum and

an integral of the eigenfunctions of the continuous spectrummakes it possible to normalize the amplitude:

(P=n)I'(2P—n)
I'(n)L'?(1+P—n)

Likewise, for the eigenfunctions of the continuous spec-

using the method of separation of variabléBourier's
method

a(r)=e M,

N
ET)= 2, ane () Ap=2""P 3.8

= dk 2.
+f_w S (¢ ke ko7 (3.3

with the exception of the situation with<OP<<1, where a
contribution only of the continuous spectrum occyms

trum the Jost functions singled out in accordance with the
asymptotic behavio¥ , (¢,k) —exp(ké) asé—«, we have
a representation in terms of the hypergeometric function

. —
guantum mechanics this corresponds to the passage of a par- ‘lf+(§,k)=e'kfF( —P+1P;1-ik; — ]

ticle above the potential barrigf(£)=P(1— P)sechf £>0).
For the Green’s function of the operator under stadg

where the latter reduces to a Jacobi polynomial for integer

call the D function solving the initial singular problem a Prandtl numbersthe hypergeometric series cuts off for non-

Green’s function also

positive integer values of the first argumpent
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L L(PYC(1—ik) . 2T (2P—2) 1
W, (£ k)=ek— T pLikil) ) — = = -1 _—
+(&,K) F(P=ik) Pt (o) W,(8) 2P,1F(P_1)sect‘f' §—>PH2 \/Esechg,
Using the well-known formulas for transforming hyper- (3.9

geometric functions, the Jost function under study can bend the eigenfunction of the continuous spectriihe Jost
rewritten in a form convenient for estimating its asymptotic function with the asymptotic form exixg) as&— o) will be
behavior at the other boundagy— — o°:

) \If+(§,k)=e”‘§F(—P+1,P;1
2

i o 1+o
\P+(§vk)2021(k)e'k§|:( —P+1P;1+ik;——
ik l-o
T

" 1-0
| 1+o — )
+022(k)e'kfF(—PJrl,P;l—ik;T) P—2

(3.10

The eigenfunction expansion of the Green'’s function will be
(for what follows, it is useful to indicate the parametric
r'i—-ik)I'(=ik) Prandtl number dependence explicitly in thefunction)

— s cy(k)eE+ (ke ke,

f——

C21K) = F P T (1=P=ik)’
D(¢.£9.7:P) (P17 '(P-1/2
B 1 1T1 = -
sinm(P—1) 0 \/;F(P—l)
A= gk
xsech t¢sech 1 g,
Hence, for integer Prandtl numbers, the reflected wave = dk
~exp(—iké) clearly vanishes: +f Z_qf+(§,k)\pj(§o,k)e*k2t
— o0 o
" ik+n
= = In the limit P—2 the integral of the eigenfunctions of the
c2k)=0, ca(k=1I1 F— g g

continuous spectrum can be expressed in terms of error func-
tions. Combining them with the function of the discrete spec-

i.e., the potential (¢)=—P(P—1)secK £<0 in this situa- trum we obtain

tion is “nonreflective” in the language of quantum mechani-

cal scattering theory. e’

For the smallest Prandtl numberss<®<1, the spectral D(&,£0,mP=2)=Do(§~ &0, 7) + - secht seché,
problem, which has only a continuous spectrum, reduces to
the problem of scattering above a positive barrier and the &E-§&
expansion of the Green’s function with respect to this spec- XZ erf( Vs 27 ) '

trum assumes the form
The latter expression, pertaining to the case of an integer

f‘” %e_kZTeik@_gO)F(l—P p-1 Prandtl number, corresponds to the expression obtained in
—w 2T Y the preceding section by the “algebraic” method. This can
be shown by performing the differentiation and simple trans-
1-P P 1—ik: 1_‘70) formations in Eq(2.21).
v 2 ) For Prandtl numbers in the range=®>2 there are two
discrete levels

n=1: N\=—(P-1)

-0
—ik; ——

*
)

O'Etanhf, UOEtanhgo

In the limiting casesP=0 and P=1 the hypergeometric

functions here reduce to 1, and the integral reduces to the T'(P—-1/2)
well-known expression for the Green’s function of the heat  WV1(§)= WSGCﬁ_lg,
conduction equation 7l'(P—1)

n=2: \=—(P—2)?

Dy(£— ¢ T):F 9K iergik(e—£0)
A e X 2T (P—1/2) B
\Pz( f) = mtanhf seclt ¢,

6—50)2)
' and in the limitP— 3 the normalized eigenfunctions of the

1 p( (
= exp —
2\t 4
) ) ) discrete spectrum assume the simple form
In the next range, 2 P>1, a single discrete eigenvalue

with n=1 appears and the corresponding eigenfunction as- _ V3 _ \F
sumes the fornfespecially simple foP=2) Wa(6)= ESGCH & Wa(§)= /5 tanhé seche.

n=1; A\ =—(P—1)? For a function of the discrete spectrum the representation

:
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ke ( 1—0) the simple relation
V. (£ k) =e"F| —P+1P1-ik;— o coshéo| P
G =g Pr | D&, mP)H(7).
o(l-o) _(1-0)? coshé

elkél 14

: Using the expressio(2.13), the Green’s function of the
singular initial heat conduction problem can be written in the

is valid in this range of Prandtl numbers. Now the eigenfuncform

tion expansion of the Green’s function is

i k=1 2 k=2

cosh&,

2 P 1
0(517)287P T( ) {DO(§_§017)+§

rp-1/2
D(§,§0,T;P)=e('°*1)2’(—)secﬁ’*l§sect‘?*1§0 coshs
VAl (P-1) p-1
m27'
L o2, 2N (P=1U2)  tanhé tanhéy X 2 € Voo (O Vponlto)
e T -
@l (P—2) (coshg coshgo)” 2
&= %o
~ dk . x| erfl myr+ "
+ j_w Z‘P+(§’k)q}i(§0!k)e_k Ti T
and in the limitP—3 it can be expressed in terms of error +erf( m\/;— 5_50)“. (3.11)
functions 2\7
3e47 It follows from this result that for long timesr{—~) a tem-
D(&,&p,m,P=3)=Do(é— &, 1)+ sech & secH &, perature perturbation produced at any given location
8 (é=const) by an initial event at a poirtat the point&g)
E—& rapidly vanishes. Indeed, the first exponential factor de-
X 2 erf( 2= 0) creases more rapidly than the secondary exponential factors,
= 2\r of which the most rapidly growing one refers to the lowest
er discrete level. Therefore diffusion spreading predominates
+ 7 sech¢ sechéy tanhé tanhé, here.
4. CONVECTIVE DIFFUSION WITH GLOBAL CONSERVATION
- OF AN IMPURITY
x> erf \/;tg fo . . .
£ 27 We now consider a model system of equations of the

type (2.1 for the convection of a passive impurity, modified

A generalization of the three expressions presented oLy, hat the equation for the impurity concentration admits a
the Green’s function foP =1, 2, and 3 will be a formula that  .nservation law for the total amount of impurity:

is valid for arbitrary integer Prandtl numbefthe complete

proof is given in Ref. 19 for imagipgry time, i.e:, for the ﬁtc+§x(uc)=x(?§c; atJ cdx=0. (4.1)
propagator of the time-dependent Safimyer equation
P-1 W (6 (&) For a fluid flow produced by a uniformly moving shock
D(& &, 7 P)=Do(é— &y, 7)+ D e(P-m?r ZMS7 71507 wave with a viscous transitional layer, we obtain for the
n= 2 impurity distribution in a coordinate system comoving with
the shock wave, using dimensionless variables,
§—¢&o 5
x2, erf| (P—n)yr= ) (9,— 32— 2P tanh¢a,;— 2P sech £)c=0, 4.2

which differs from the equation of the model analyzed above

Since for integral Prandtl numbers the eigenfunctions of they, 1y the addition of the last term, which is proportional to
continuous spectrum are proportional to the sum of simplef,e” concentration. It is remarkable that after the previous

pole contributions generalized Cole—Hopf change of variabl@sf) it reduces
_ P-1 alP (o) to an equation for a new unknown functighof the same
V. (&k) =€k 1+ 2 = ) type as that obtained previously:
n=1 -

=¢Pcr Lou= — 93— + =0.
the integrals of their products in E(B.5) reduce to sums of p=e7c Lpy=(d.— 0~ P(P 1)secti £)y=0 4.3

residues proportional to error functions. ) ] ] )
The generalized Cole—Hopf change of variabies) However, here an important difference arises in the

establishes between the Green’s function of the operat(gsymptotic behavior of the solutions for long times, even for
~ identical initial conditions, in connection with the increase in

Lp-1 and the Green’s function of the operator of the initial .
. . . ; the number of the operator here. For example, perturbations
convective heat conduction equati¢hb) in the presence of ) ; o .
of the concentration which are caused by an initial action of

a flow produced by a shock wave the type(2.15 at a point(the Green'’s function problem
Kp=0,~2Ptanh¢d,— 3z, K,G!"=5(¢=£0)a(7), C(£,7)] ,=0= 8(¢~ o), (4.4
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can be represented similarly to the previously examinedhe model Burgers equation, time-dependent convective-
model diffusion problems turn out to be solvable. They were re-
P duced to problems for a linear heat conduction equation. For
_ 2.[ coshég ) ) : .
c(ér)=e P T( _> D(&,&, 7, P+1). (4.5 integer Prandtl numbers, the equations of convective diffu-
cosh¢ sion in the field of a uniformly moving shock wave likewise
Here, at first glance, the small but decisive difference of théeduce to a heat conduction equation with constant coeffi-
Prandtl numbers by 1 occurs in the arguments of the Greengients, and the Green'’s function for time-dependent diffusion
function. Since the asymptotic behavior of the Green’s funcin the presence of stationary flow can be expressed in terms
tion for different Prandtl numbers is different, this results in Of error functions. The solutions of these deterministic initial
different long-time asymptotic behavior of the solutions of problems can provide the basis for understanding impurity
the two types of model equations being analyzed. accumulation and localization.

According to the general representation of tefunc- Above all else, a passive impurity performs the role of a
tion from the preceding section, its asymptotic behavior formarker for determining the localized dynamical structures of
fixed coordinates, &, and long timesr— is determined the velocity field of a fluid flow. It successfully reflects the
by the eigenfunction with the lowest discrete eigenvdthe  characteristic features of the formation, interaction, and re-
ground statp structuring of localized structures. However, restructuring of

) the markers themselves occurs as a result of the competition

D(&&,mP+1)~eP WP D(HWP (&), (4.6 petween diffusion and convection. The formation of stable,

and in accordance with E@4.5) the final impurity distribu- asymptotically sirr_lplified, impurity structures against a back-
tion, in contrast to the situation studied earlier, does not vanground of dynamical structures turns out to be, as is clear
ish at long times and possesses a localized soliton-like forffom the preceding exposition, very sensitive to the detailed

(the asymptotic behavior for fixed coordinaiei.e., for the features of the coupling of the impurity and velocity fields
distribution accompanying a shock wave and to the satisfaction of the global conservation laws. When

a global conservation law exists, impurity clusterization oc-
C(&,7) 21(2P) sech® ¢ @7 cus
’ r?(p)22° ' ' Hydrodynamic turbulence in the one-dimensional Bur-
y y
. ] N o S gers model“Burgerlence”) possesses the structure of a gas
It is easily verified that such a limiting distribution is a sta- ot jnejastically colliding shock waves which is quite rarefied
tionary solution of the convective diffusion equation underg; the long-time stage of evolutiGA?! For this reason
study. The archetypical (seghform is obtained for unit analysis of the elementary process of the collision of shock
Prandtl number. For large Prandtl numbers, the soliton be\?\/aves, the dynamical foundation of a stochastic wave en-
comes more peaked. ~ semble, becomes decisive.

In the situation of unit Prandtl number, the general time- 114 dynamical picture of clustering in the one-
dependent case admits a simple analysis with reduction tgimensjonal approximation turns out to be especially simple
the heat conduction equat|€.n°’1?|'h'e interactior(collision) of o ynit Prandtl number. In this case the time-dependent
shock waves in the approximation characterized by Burgersy oplem of the collision of shock waves with the formation
model is of an perfectly inelastic characferlf the mean _of a larger wave as a result of the coalescence of the initial
free path is sufficiently long, to each shock wave there will\ayes can be solved exactly. Asymptotically, each shock
correspond  an  asymptotically simplified —impurity yaye js accompanied by an impurity soliton, and merging of
distribution—an “impurity soliton.” We emphasize that de- ¢ cojliding impurity solitons will correspond to perfectly
spite the qlassmal_ form, impurity solitons dl_ffer radically inelastic collision of shock waves. As the shock waves
from classical solitons(for example, the solitons of the arge  the impurity increasingly concentrates in individual
Korteweg—de Vries equatiorin terms of the character of |5cations. The sharpness of the impurity localizatitotal
their interactions. Coalescence of colliding shock waves COTheating depends on the ratio of the kinetic coefficients of the
responds to perfectly inelastic merging of impurity solitons. edium: it increases with the Prandtl number.

For large Prandtl numbers, individual impurity solitons are  note that from the standpoint of the evolution of a sto-
more strongly peaked, and a similar inelastic merging can bgpastic wave ensemble, such enlargement of structures is
expected to be the asymptotically simplified result of colli-yhica| of an inverse cascade process, whose possibility is
sions of shock wave—impurity soliton pairs. The result of cjosely related to the low dimensionality of the problem.
such nonlinear interactions will be a peaked impurity con-  This work was supported by the Russian Fund for Fun-
centration field, a strong localization of an impurity with damental ReseardtProject 99-01-00435

general conservation of its total amount.

T— %

*)E-mail: teodor@ipmnet.ru
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The structure of stationary isotropic, homogeneous turbulence in an incompressible fluid with Re
>1 set into motion by a force with amplitudg and spatial and temporal time scalesr gf

and 7y, respectively, is examined. It is found that, depending on the magnitude of the force that
sets the fluid into motion, three fundamentally different turbulent stationary states of the

fluid can develop and the dimensionless parameters responsible for transitions from one state to
another,y= forélro andI'=y*3Re, are determined. It is shown that fpr<1 andI'<1

a Kolmogorov spectrum witl (k) o< 1/k>2 develops in the inertial range. During the transition to
turbulent flows driven by large amplitude forcés, i.e., during the transition to a regime

with y<1 andI'>1, a segment of the spectrum wiit{k) = 1/k? develops near the viscous range
and “detaches” the Kolmogorov spectrum from the viscous range. Further increases in the
amplitudef of the force, i.e., approaching the parameter range withiL andI'>1, causes the
entire inertial range to be “occupied” by a spectruigk) < 1/k?, and outside the inertial

range, large scale structures with a characteristic size extendint’tg begin to be generated.

In the regime withl’<<1, the power dissipated per unit mass of fluid is independent of the
viscosity, but on going to turbulent regimes witk> 1, the viscous losses begin to depend on the
viscosity of the fluid. The “turn-off” of viscous dissipation fdfr>1 shows that a drag

crisis can occur simply as the source power is increased, without any further conditions. With
this method for the excitation of turbulence, the Loitsyanskii integral diverges for arbitrary

values ofy andI'. A physical mechanism is proposed to explain the readjustment of the spectrum
of the turbulent fluctuations at differentandI’. These results have all been obtained

neglecting intermittency. €1999 American Institute of Physids$1063-776(99)01011-3

1. INTRODUCTION trum of turbulent fluctuations going back to Kolmogorov is
still the clearest approach to the problem.

The transition of liquids or plasmas to a turbulent state is  The basis of the ideology proposed by Kolmogorov is
of fundamental importance for understanding the physics ofthe hypothesis that the only dimensional constant in the
a number of processémcluding transport phenomentak-  theory of developed hydrodynamic turbulence in the inertial
ing place in these media. An enormous number of theoreticaiange is the rate of energy dissipation per unit mass, that is,
and experimental papers have been published so far on va#-quantity with the dimensions of &®’. It remains unclear
ous aspects of turbulence in widely varying situations. ThigVhy @ quantity with this dimensionality should be better than
has led to an understanding of weak turbulence, i.e., the ca§@€ With dimensions of cfis™, where 31#2m, i.e., what
when the dynamics of the system can be described in thgistinguishes the case3-2m, wherem andn are real num-

language of weakly interacting linear waves, but the theor)pers' )
of strong turbulence is still far from complete. The Kolmogorov spectrum and the concepts of univer-

The best known example of strong turbulence is the tur_sality, constant energy flux over the spectrum, and inertial

bulence in flows of incompressible fluids at high Reynoldsrange associated with it are the basis of the modern under-

. ) standing of the nature of homogeneous turbulence in incom-
lnumb(terr]s. Althotﬁgthr:e main result ?f hydr(r)](.jyhnamlcdtur.bu- ressible fluids. Meanwhile, the Kolmogorov spectrum is not
ence theory IS the Koimogorov spectrum, which was deriveqy, o only spectrum of turbulent fluctuations that has been ob-

more than fifty years ago and has been repeatedly verifiedyyeq experimentally in turbulent incompressible fluids. Be-
experimentally’ attempts to justify this spectrum theoreti- sides the Kolmogorov spectrufi(k)=1/k>3, for example,
cally, even relying on such usually efficient methods of the-pe spectrunE (k) 1k associated with the helicity flux is
oretical physics as the renormalization group technidfle, ell known?® It is, therefore, necessary to determine the con-
diagram technique? and the functional formulation of the ditions under which the rate of energy dissipation is a dimen-
problem proposed so long ago by Hdpfiave not yielded sjonal constant that determines the turbulent fluctuation spec-
entirely satisfactory resultésee the explanations given be- trum and to examine the question of how, and under what
low). It can be stated that the method of obtaining the speceonditions, it is replaced by a dimensional parameter of dif-

1063-7761/99/89(11)/10/$15.00 880 © 1999 American Institute of Physics
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ferent character. Unfortunately, this problem has not re-of the functionK goes to zero. Without loss of generality, we
ceived the required elucidation in any of the above citedcan assume that the foréas purely solenoidal and include
papers devoted to justifying the Kolmogorov spectrum.the potential part in the pressure gradient.
Thus, the question of the conditions for the formation of one  First, we rewrite Eq(1) in Lagrangian coordinaté$.To
or another spectrum arises, that is, of finding the parameteido this, it is necessary to begin by expressing the pressure in
that determine the spectral composition of the turbulent flucterms of the distribution of the velocities in the liquid. Cal-
tuations in one or another range of wave vectors. This papesulating the divergence of E@l) subject to the incompress-
is devoted to the problem of determining the parts of thebility condition divv=0, we have
spectrum with universal behavior and the parameters govern-
ing their onset. A number of related questions have been
examined briefly befor&put part of the results of that paper
needed to be made more precise and interpreted physically. . .

Before discussing the specific results, let us emphasiz)éer.e and everywhere, '.f the contrary is not stated, repeated
specially that the entire analysis presented here neglects iH?d'CGS denote summaﬂqn.
termittency. Recall that intermittency leads to the appearance From Eq.(3) we obtain

(92

Ap=~— (Vivj), (3

X (QX]

of an additional factor of the formL{r)°, wherelL is a 1 1 52

characteristic size and is the dimensional anomaly. Thus, p(r,t)y=—-— f 7 ——(v{vi)dr’, (4)
( _ ; 4 ) |r—r'| ox/ ox! !

intermittency effects can change the numerical value of the o

correlator substantially, even for smallif L is sufficiently wherev! =v(r',t).

large. In addition, if§ is small, then the additional factor Using Eqgs.(3) and (4), we find

associated with intermittency is a function that varies slowly

compared to the Kolmogorov part of the correlator. In other dp 1 , , 3 1 )
words, neglecting intermittency is somewhat analogous to  gx, 4 (Vi =vi)(vj=v)) x| x| oxg Ir—1'] dr’.
the WKB approximation: only the rapidly varying function is (5
taken into account, although the slow part can change sub- ) .

stantially in magnitude over long intervals. We now transform to Lagrangian variabféd.et a par-

The possibility of neglecting intermittency is the hypoth- ticle of liquid be at the pointq at timety=0. (Note that th.e
esis under which the results obtained below are valid. Thus/alue ofro can be regarded simply as a label for the parficle.
here we do not touch upon the applicability of the Kolmog- Theén the velocity of the particle with numbeg at timet,
orov theory under intermittency conditions, but study theWhich we shall denote by(r,,t) below, is simply equal to
need to modify the Kolmogorov theory when the finite cor- the velocity at timet at the pointr(ro,t), i.e.,
relation time of the force that drives fluid motion is taken W(r g, )= V(1 (1g,0),1). ©)

into account.
Noting that, according to the incompressibility condition

2. STATEMENT OF THE PROBLEM AND THE DESCRIPTION ‘Vr(ro't)
e

OF TURBULENCE IN TERMS OF THE EULER EQUATION ar ‘ =1, (7)
0

As we are interested only in fluid flows with large Rey- e., the motion does not change the total number of particles
nolds numbers, as a first step we consider the Euler equatidh & g P '

we rewrite Eq.(1) in the form

(Re=+x)
v d :
—£ T (v V)v==Vp+f(r,), divv=0, 1) aWk:_J’ Gijk(r(ro,t)=r(rg,t))
with an external forcéd(r,t) that obeys X (W —w;) (wj —wj)dro+f(r,t), ®)
(f(r,1))=0, with
<f(r1,t1)'f(r2:t2)>:fSK(tlTOtZ, rlrorz)' 2 %rk(ro,t)=wk(ro,t). 9

whereK describes the correlation properties of the fofce

that sets the fluid into motion and, by the definitionféf Here the incompressibility condition is simply written as a

limitation on the allowable initial conditions:
tr

f K(—,—)dr dt=r3ro. div, w(rg,t)=0. (10

7o To 0

For the following discussion, it is important that the last Equations(8) and(9) are the equations of classical con-
integral converge and be nonzero; that is, the limits imposetinuum mechanics for classical particles, although with a
on the force that brings the liquid into motion reduce to this.rather exotic interaction. This naturally brings up a few fun-
In order to avoid misunderstandings, we emphasize speciallgamental questions. First, note that, in the absence of an
that the equalityf(r,t))=0 does not imply that this integral external force, the Euler equatidf), whose solutions are
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assumed to have a sufficient number of derivatifies, to  closed, irreversible kinetic equation for the Lagrangian par-
belong to the corresponding class of smoothpaesmserves ticles of the fluid makes it possible to formalize, in a natural
the total kinetic energy of the fluid, which coincides with the way, the intuitive concept of turbulent viscosity, which is
kinetic energy of the dynamic systef@) and (9). This last  often used in the theory of turbulence.

point is extremely nontrivial: the kinetic energy is conserved  Of course, a chain of coupled equations for many par-
in a system of interacting particles. Here the interaction igicle distribution functions can be written down for this sys-
such that it cannot be stated that the force acting on a particleem of Eqgs.(8) and(9). Unfortunately, because of the strong
at any given time is perpendicular to the velocity of thatand unusual interaction between the particles, it is impossible
particle. The question therefore arises of what property of théo truncate the resulting infinite chain of equations correctly.
dynamic system(8) and (9) distinguishes it from Hamil- In the meantime, there is a way of proceeding to an under-
tonian systems, in which only the total ener@nd not just standing of the dynamics of this system. It is, indeed, under-
the kinetic energy, specificallyenergy is conserved, or from standable that finding simultaneous distribution functions for
systems with dissipatiotfrictional forces, in which no en- the velocity and pressure gradient would be of great interest
ergy of any kind is conserved. In order to understand this, ifor hydrodynamics. However, in the language of the dy-
is necessary to consider the initial assumptions which led tmamic system of Eq$8) and(9), the pressure gradient at any
the Euler equation. First of all, we note that, if Newton’s point is proportional to the acceleration of the Lagrangian
third law is valid in the system of particles but only particles fluid particle located at that point. Given this, we can use a
with equal velocity vectors interact, then it is the total kinetic method similar to that in Ref. 14: any description of the
energy which is conserved in such a system. In the derivatiosystem dynamics ultimately implies a description of typical
of the Euler equation it was assumed that only adjacent Lasingle particle trajectories comprising the dynamic system of
grangian particles interact, while Newton'’s third l&action  particles. Here the use of distribution functions raises the
equals reactionis valid and the velocities of the Lagrangian question of what variables these functions should depend on
particles depend smoothly on position. Thus, if we considein order for a closed description of the dynamics to be attain-
two Lagrangian particlea andb interacting with one an- able in their language. In the case of gases, it is well known
other, then the force of particle acting on particld, F,,, that we can limit ourselves to considering distribution func-
is related to the forcd,, by F,,=—F,, (Newton’s third tions that depend only on positions and momeiie Bolt-
law), and their velocities coincide, i.ev,=Vv,, to within  zmann equation while generalized distribution functions
infinitesimally small quantities which vanish for zero dis- that also depend on higher derivatives must be considered in
tance between particles andb (there is only a contact in- the case of media with more complicated dynamic
teraction; that is, the work done by particke on particleb properties*

for an infinitesimal time intervatlt equalsv,- F,,dt, while

the work done by particle on particlea over the same time

|r.1tervalz Va: Fpadt, s of the same magnltude., bqt opposng 3. KINETIC EQUATIONS FOR DESCRIBING TURBULENCE

sign. It is clear from these remarks why the kinetic energy is
conserved for a fluid whose motion is described by smooth  |n order to study the spectral properties of the problem

solutions of the Euler equation. If the necessary smoothnesstated by Eqs(1) and(2), we shall use a kinetic equation for

is Iacking, then the infinitesimal differences in the Ve|OCitieSthe Lagrangian partic|es of an incompressib|e ﬂﬁum the
of the interacting particles cannot be neglected in the abovgmit Re— +« (see explanations below

discussion. Besides, this can be confirmed in a purely formal
way by not turning to intuitive considerations associated
with the sources of the Euler equation: note that, if the inte-
grand in

i L+ £2) Fo(t,1,2)=P(t,1,2) + P(t,2,1). (11

f (v(r,t)-Vp(r,t))dr

HereF,(t,1,2)=F,(t,r1,v1,84,r,,V5,8,) is the generalized
is a smooth function of position, then the integral reduces tdi.e., dependent on the accelerations resulting from the inter-
a surface integral in the case of an incompressible fluid anéction of the Lagrangian particles, as well as on their veloci-
the Euler equation conserves the kinetic energy of the fluidties) two-particle distribution function,
Therefore, conservation of the kinetic energy in the dynamic
system(8) and (9) is a property of a particular class of its
solutions that corresponds to the solutions of the Euler equa- 9
tion with a sufficiently high class of smoothness. This latter  Li=V; I*—(aﬁ-f(ri ’t))ﬁ’
discussion provide an interpretation for the concept of a non- ! :
viscous limit with finite dissipation introduced in Ref. 8.
Note that solutions corresponding to a nonviscous limit with
finite dissipation should arise naturally in the dynamic sys-
tem of Eqs.(8) and(9) if we do not require the existence of
higher order derivatives with respect to the label of the La-
grangian particles, the parametegs. Thus, obtaining a

i=1,2,

F>(t,1,2)=f0 xﬁ(t,t—r) ff@(l,3)©(2,4)F2(t

- 1',1,3)F2(t,2,4)d3d4)d7-, (12
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Q(1,2=2(ay;—ay)(Vom—Vim) particle distribution functiod® A kinetic equation of this
' ' ' ' form has been used successfully for solving a number of
9 1 d problems in plasma physic8.
Xﬂxl,l , X1, X1 p [ri—ry) day If the functionF,(t,1,2) is a solution of Eq(1l), then

the function
—(Vom=Vim) (Vi —=V1)(Von—Vip)

ot 1 d
X , , .
X1y, Xy m, IXep,IX1p [F1—To| da1p XAy, N8V, N1 2%,), (15)

FOM(1,1,2)= N1 6F (N At A1y A8y N1 2

where the repeated subscripts in the last formula imply sumis also a solution of Eq11), but with another external force
mation andv, , a,;, andvy, a;, are thelth components of
the vectorsv,, a,, andv,, a;, respectively. The operator fANH=N2ATH (O NTAY, (16)

R(t,t—7) is defined as , o ,
wherex>0 andA are arbitrary numbers. This is easily con-

R(t,t—n=0"2t)0(t— 1), (13) firmed by substituting Eqs{lS) and(1§) in Eq. (12). ' .
A number of expressions from this section were given in
where the operatod (t) obeys the differential equation Ref. 9 with some errors that did not affect the results of that
paper.
dot) . . . Here we note a fundamental feature of the kinetic equa-
BT u(t)L, U(0)=1, (14 tion formalism in the theory of turbulence. The kinetic equa-

tion formalism makes it possible to describe turbulence in
terms of an evolution problem, i.e., proceeding from arbi-
trarily specified initial conditions it is possible to follow the
time evolution of the solution. If the initial conditions are
d0-1(t) forgot_ten in the course of events, then the sys_;tem approachfas
——=-L04t), U Y0)=1. a stationary solution. Here the remarkable thing is the possi-
dt bility of finding a stationary solution by proceeding from the
- Y i evolution problem. There is no need to invert a linear or
The operator:U(t).andU . (t) can b_e represented as tme- poplinear operator, i.e., the possibility of studying turbulence
ordered exponentials, which, for a time-independent férce i, the framework of an evolution problem allows us to avoid,
[educe to the usual exponentials, in which case thfz operatgh 4 natural way, the problem of zero modes which always
R is easily calculated. In the general case, the opeRimaN  shows up during the inversion of operators. The complexity
be calculated only for special cases, but this is of no signifiof the zero mode problem can be traced, for example, in
cance for the following discussion, since the scaling properkraichnan’s model for passive scalar diffusifhalthough a
ties of R, which are of importance there, follow from Egs. closed linear equation for the four point correlator can be
(13) and (14). obtained in this model, the nonevolutionary character of the
Let us clarify the significance of introducing distribution resulting boundary value problem means that the operator
functions that contain the accelerations as additional argumust be inverted, i.e., it leads to a zero mode problem, which
ments. Usually, in constructing kinetic equations, one begings one of the central problertfsin the diffusion of passive
with the distribution functions and tries to describe processescalars. The zero mode problem in descriptions of turbulence
associated with the interparticle interaction. A proptahs  in incompressible fluids has been examined elsewtere.
been made that kinetic equations be obtained by solving thBote that the zero mode problem is considerably more com-
inverse problem: assuming that the distribution of forces irplicated for passive scalars than for hydrodynamic turbu-
space is giverin the case of a liquid, the pressure gradient lence. This follows, as well, from the fact that passive scalars
calculate many-particle distribution functions that are consisare described by linear inhomogeneous partial differential
tent with the given distribution of force vectors. In this way equation, while hydrodynamic turbulence is associated with
distribution functions appear which depend on the acceleraan intrinsically nonlinear problem. This difference is funda-
tions. Since no restrictions have been imposed on the initialnental: in fact, the solution of an inhomogeneous linear
distribution of forces in space, except those which followequation transforms to a solution of the same equation if an
from Newton'’s laws, this approach permits a correct descriparbitrary solution of the corresponding homogeneous equa-
tion of fluctuations in the framework of the kinetic tion is added to it, but in nonlinear problems there is no
equation®> Furthermore, any generalized distribution func- analog of this property of linear equations. Another funda-
tion also contains information of the sort which is containedmental feature of the passive scalar problem, which makes it
only in the entire infinite set of standard distribution func- more complicated, in a certain sense, than the hydrodynamic
tions (for example, any generalized distribution function canturbulence problem is that, in order to study steady-state dif-
be used to calculai@?") for arbitraryn). In connection with ~ fusion (i.e., to describe diffusion by time independent corre-
this last point, it is clear why, in a number of problems wherelation function$ it is necessary to introduce two types of
the standard BBGKY chain cannot be truncated, it is posfandom variables—the source of the passive scalar and the
sible to obtain a closed equation for the generalized twovelocity field°

and the operatdf:J‘l(t) obeys the following equation which
follows from Eq.(14),
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4. LARGE-SCALE STRUCTURE OF A TURBULENT FLOW for the method of exciting turbulence being studied here
AND THE LOITSYANSKII INTEGRAL leads to a divergent Loitsyanskii integral. It is curious that
prior to this, the convergence of the Loitsyanskii integral had
been studied only for isotropic turbulent motion with an ex-
ponentially rapid decrease in the correlatb®) at large dis-

tances at the initial time, i.e., assuming that it is possible to
create isotropic turbulence with negligible long wavelength
correlations. Under this assumption it is possible to show

In order to study the large-scale structure of a flow, we
choose the numbek so that in the limith — + the func-
tion F$*M(t,1,2) approaches a finite limit. This requires that
the correlator of the forc€16) have a finite limit asn —
+o0, i.e., in connection with the equality

lim (fAN.(ry,ty)-fAN(r,,1,)) that even for subsequent free evolution, the Loitsyanskii in-
N toe tegral remains finité? Equation (18) shows that a similar
=f§r8706(r1—r2)5(t1—t2) lim \3A-2 17) assumptlpn that. t_he rqle of large scale yo_rué‘dm inverse
N cascadg is negligible is not always satisfied for isotropic
turbulence.

we must sef =A.,=2/3. We note that, precisely because of  pecall that the Loitsyanskii integral is related to the
our examination of the limik — +, in the right hand side  gqare of the angular momentum of a turbulent fluid, i.e., in

of Eq. (17) the correlatorK for the external force can be 4 certain sense it characterizes the appearance of spontaneous
replaced by a product o functions. Here it is significant o¢ation of the entire fluid as a whole. It is easy to verify that
that the resulting\.,=2/3>— 1. o oay  the square of the total angular momentdh of the fluid

~ We therefore conclude that the function Jim, .F5*  otained within a large volum¥ (isolated within an un-

is homogeneousto prove this it is sufficient to note that, pyunded fluidl is M2=4mp2AV, wherep is the fluid den-
according to the definition of the limit, lign, ..F*" sity. The fact thatM2ov299 confirms that long-wavelength
=Iimh+xF(22’3“'), where)’ is an arbitrary positive num- correlations are important in the dynamics of a turbulent

ben and that the relation fluid.
£2,3 7o 23
<v<r,t>~v<o,t)>=cl( ~
r 5. UNIVERSAL PROPERTIES OF SMALL-SCALE FLOW
STRUCTURE
fOT(z) 2/5
forr=>max rg, o lo (18 It turns out that the small-scale structure of the flow is

_ _ _ also universal. In fact, an examination of the small-scale
holds, whereC, is a universal constant. In this stage of the structure of the flow of Eqg1) and(2) reduces to choosing
analysis, we cannot explain the domain of applicability forA = A = —1/2 in Eq.(16), which ensures the existence of a

this correlator given by the inequality in E(L8). Later we  finite homogeneous function lim, . oF$ Y2 . This implies
shall examine the domain of applicability of E4.8), but for  that

now we can confirm that the correlatd) actually falls off ) ) )

as 1t*3 at large distances. In fact, writing the left hand side  ((V(I,) =v(0))%)=Cofor forr<min(ro, o), (19

of Eq. (18) in the form of an integral of the function whereC, is a universal constant. In the following, we shall
lim, . ,.F¥**) and using the homogeneity of this function, explain the physical meaning of the inequality that deter-
it is possible to establish that the correlator has a power lawhines the domain of applicability of the correlatdm).
dependence on and to determine the power. Note that a A numerical study has been made of turbulent flows
power law behavior on the right hand side of E#8) fol-  driven by a constant force applied to the fldfdt was found
lows from the homogeneity of the function ljm...F**  that in certain directiongin the simulations the external
and the power to which is raised on the right of Eq18) is  force was chosen to have a spatial period and not depend on
uniquely determined by the numbeX.=2/3. Here, of time) a spectrunE(k)x1/k? is formed, rather than the Kol-
course, the functional dependence in Etg) is consistent mogorov spectrunt (k)= 1/k%3. This is in accord with Eq.
with the dimensionality of the parameter in EQ.7). We  (19) and, we believe, validates the ideas developed here.
emphasize specially that we have not postulated, but proven, To study the flow at scales from, to fng, we shall

the power law character of the right hand side of B).  discuss two limiting casesy=fy72/ro<1 and y=fy72/r,
Equation (18) describes the creation of large vorticés- >1.

verse cascadeand of the long wave length correlations as-
sociated with them. The correlat@t8) leads to a spectrum
E(k)>k'® in the long wavelength region, as confirmed
experimentally-’ Let y<1. We shall examin&, for |r;—r,|<rg. In this
The coirlrzelator(lS) shows up in the so-called Loitsyan- range of distances, the force correlat®rcan be set equal to
skii integral

5.1. The condition for formation of a Kolmogorov spectrum:
y="foralro<l

(f(ry,ty) - f(ra,tp)) =K

ti—t
1 0]. (20)
2 7o
A=—4— fr (v(r,t)-v(0t))dr.
& We emphasize specially that equati@®) for the correlator
According to Eq.(18), the Loitsyanskii integral diverges, does not allow us to write down the form of the spectrum
i.e., A=o. Thus, a correct description of the inverse cascadérom dimensionality arguments alone. In fact, the dimen-
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sional parameterg, and 7y can be used to construct a com- acteristic velocity corresponding to fluctuations with a scale
bination with the dimensions of Iengthaq-g, and, therefore, length of ordem (7y) are roughly[fgrglr(ro)]l"‘. Thus, the
dimensional argumentg only determine the spectrum taizer(7r,) can be found from the equation
l/ivc;tr:l'm a factor of ¢(fg7pk), where ¢ is an arbitrary func- r(ro)~ro(f§r8/r(ro))l’4,
Let us apply the considerations that led to Eip) to the  which yieldsr (7o) = y?®r .
correlator(20). Note that using Eq(20) guarantees the dis- Note that the inequality in Eq(18) follows from the
cussion for distancel;—r,|<rg, while the limit \ — +o inequalities defining the region of applicability of the corr-
ensures it for|r,—ry|>yry. Thus, we find that foryry  elators(19) and (23) for y<1 andy>1.
<|ry—r,|<ry, the flow can be described by a uniform func- In the case examined in this section, there is no segment
tion IimHMF(z’l’?”\) and the equation of the spectrum With/:? Kolmogorov power law dependence
5 of the formE(k) « 1/k°>. Note, also, the slow decrease of the
((v(r,H)=v(01))?)=Ca(foror)** for yro<r<ro  (21) velocity correlator,=1/\r for ro<r<y?%,, which is re-
holds, i.e., the Kolmogorov-Obukhov law is satisfied within placed by a rapid decrease of universal charaeté;,* for
this scaling interval. The question of the limit of zero viscos- y2’5r0<r [see Eq(19)].
ity, but finite dissipation, in the Euler equation and the de-

velopment of a Kolmogorov spectrum in this case has been
discussed elsewhefe 6. THE ROLE OF FINITE VISCOSITY

TherEfore, for the method of EXCiting turbulence dis- We now take account of a finite Viscosit)yin the prob_
cussed here, a Kolmogorov spectrum develops only whefem, j.e., the existence of yet another characteristic scale
certain conditions are imposed on the external force thafength, the viscous length. We shall show that the energy
drives the fluid into motion,y<1. Therefore, only in this gissipated per unit time per unit magpecific power dissi-

case does a constant with the dimensions of power dissipatefhtione), is determined by the new dimensionless parameter
per unit mass actually end up being the parameter which

determines the behavior of the fluid within a certain spectral I'=y*Re, (24)
interval. Later we shall discuss the physical processes takinghere Re:ro(fgroq-o)lle’/y for y<1 and Re=r(foro)¥% v for
place at the boundaries of that interval in detail, but for nowys1. We shall examine three cases that can occur in turbu-
we proceed to examine the cage- 1. lent flows (Re>1) in detail.

It makes sense to examine the character of the dissipa-

tion for different values ofl” in some detail, by isolating

5.2. The structure of the intermediate scaling region for differ_ent_ Sp_eCiaI _Cases’ sinc_e an examinaﬂ_on_Of the nature of
y>1 the dissipation yields some important qualitative results con-

o _cerning the structure of turbulent flows.
Let y>1. Note that the characteristic time corresponding

to fluctuations with a characteristic scalergfand the cor-

responding[to these fluctuations, according to E(L9)]  6:1. The physics of turbulent dissipation for ~ y<1

characteristic velocity for o) /2, is estimated to be/~Y27,. For y<1 andl'<1, according to Eqg19) and(24) the

Let r(ro) (we shall estimate it belowbe the characteristic yiscous length exceedsy 2, i.e., the Kolmogorov spectrum
fluctuation scale length, to which the characteristic tige  js immediately adjacent to the viscous range. The specific

corresponds. We shall considep for ro<[r;—ro|<r(7o).  power dissipatiore in this case can be estimated as the vis-
ri—r g2
<f(r1,tl>~f<r2,tz>>=fSK(o, o 2), 2 < foo (29

that is, it is independent of the viscosityf. Eq. (21)]. This
since the characteristic velocity of the Lagrangian fluid parresult is entirely consistent with the, by now, classical state-
ticles[Eq. (19)] is at least {or)? and the distance moved ment that viscous losses in a turbulent fluid are independent

by a La(/grangian particle over a time on the orderrgfis of  of the magnitude of the viscosity; however, as we shall now
1/2,

ordery'y. verify, this situation is only valid as long as the Kolmogorov
Arguments similar to those of the previous section showspectrum is immediately adjacent to the viscous range.
that forrg<|r,—r,|<r (), a turbulent flow of the fluid can Let y<1, as before, buE'>1. Then, Egs(19) and(24)
be described by the homogeneous functionimwF(zll“), imply that the sizef,75 substantially exceeds the viscous
with length, i.e., the Kolmogorov spectrum is separated from the
£2,3) 12 viscous range by the spectruih9). The specific dissipation
(V(r,t)-v(01)) = c4(¥) forrg<r<r(rg)=»?%,.  Power is then roughly
23) e~ 1343 (26)

The following considerations were used to estimate the terme., approximately eré3 times smaller than the energy flux
r(7p) in Eq. (23). Note that, according to E@23), the char- along the Kolmogorov segment of the spectrum, wherg Re
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is the Reynolds number for the short wavelength end of theéhe velocity-velocity correlator begins to fall off slowly. It is
Kolmogorov spectrum. Thus, the segméh®) of the spec- well known, however, that helicity formation in a turbulent
trum shields the viscous range from the energy flux propaflow can lead to spontaneous generation of large scale
gating along the Kolmogorov segment of the spectrum andtructure$ Thus, it should be expected that fo&=1 the
turns on the viscous dissipation. spontaneous generation of structures begins in a turbulent
We now provide a physical interpretation of this last flow. The slow decrease in the correlatt®3) for ro<r
result. The intuitive qualitative discussions given below<y?%r; is convincing confirmation of this fundamentally
make it possible to understand its physical content. In ordeimportant statement. It is important to note that the genera-
to understand the physical significance of E26), we note tion of large scale structures in turbulent flows does not be-
that the external forcé(r,t) interacts most efficiently with gin for y<1 andI'>1, when a helical segment shows up in
fluctuations of the fluid which either have a resonant waveahe spectrum of the turbulent fluctuations, but when the he-

vector k~1/fry or a resonant frequencyw~1/7y (k lical spectrumE(k)1/k? fills the whole inertial range, i.e.,
~1/f473). According to Eq(25), fluctuations in spatial reso- has completely expelled the Kolmogorov spectrum.
nance with the external force are efficiently excited., are This picture, of course, is consistent with existing ideas

in phase with the external force and the latter pumps themegarding the role of spatial and temporal resonances in en-
efficiently). Energy moves along the Kolmogorov segmentergy transfer between turbulent fluctuations with different
of the spectrum to modes which are in temporal resonancecales and an external sourfferce) that makes the fluid
with the external force and which vibrate in counterphase tanove. From this standpoint, the energy is delivered to fluc-
the external force, i.e., the external force quenches oscillauations with a characteristic scale length of ordgicorre-
tions with k~ 1/f073 and gathers energy from these modes.sponding to the maximum velocitie$ f ;) /> (spatial reso-
The resulting collective energy sink is an extremely impor-nance. The energy delivered to these modes is transferred to
tant physical phenomenon. In other words, we can say thdong wavelength fluctuations, i.e., it goes into generating
the external force acts simultaneously as a source of enerdgrge scale structurdmverse cascadgthereby reaching tur-
and as a sink for the energy. Thus, wherl andI’>1  bulent fluctuations with a characteristic scale length of
dissipation is shut off in the fluid and this should be of somey?®r,, which are in a temporal resonance with the external
significance in theories of flapping flight and the drag crisis.force (have a characteristic time scale of ordgy. By oscil-
From a practical standpoint, there is some importance iiating in counterphase, fluctuations with a size on the order
the fact that the reduction in draglrag crisi$ associated of % can efficiently deliver energy to the external source;
with the turnoff of viscous dissipation in accordance withthat is, the force which brings the liquid into motion effec-
Eq. (26) takes place even while the source power is increastively damps their oscillations.
ing, i.e., without any additional requirements for a change in It is interesting to note that the spatial scale length of the
the structure of the boundary. resulting structures can substantialty a factory?®) exceed
Given the significance of the scaliri@9) in turning off  the characteristic scale length for the force that brings the
dissipation in a turbulent fluid, we now clarify which integral fluid into motion. This may have interesting geophysical ap-
of motion this scaling can be associated with, i.e., indicateplications, since it provides a natural mechanism for the for-
the quantity which is conserved for an ideal fluid, whosemation of hydrodynamic structures with a horizontal scale
density has a unit of measurement the same as thdtfor length greatly exceeding the thickness of the atmosphere
This quantity is the helicityG= [v-curlvdr. Thus, the for- (depth of the oceanswhile the spatial scale length of the
mation of Eq.(19) and the turn off of dissipation can be force that brings the air into motion may not exceed the
associated with fluctuations in the helicity near the viscoughickness of the atmosphefdepth of the oceans
range(the so-called -invariant®). To avoid misunderstand-
ing, we note specially that, besides tHgk) = 1/k? spectrum

associated with the helicity near the viscous range examine HIERARCHY OF STATES OF A TURBULENT FLOW

here, a helical spectrum of the forlf_lf(k)ocl{kw3 associated In order to exhibit the physical content of these results,
with a constant helicity flux is often examined in the litera- |et us consider a simple example. We shall consider a liquid
ture. set into motion by a force with amplitudg, a spatial scale

The Kolmogorov theorem in the cage<1 andl’>1 for  |engthr,, and a characteristic time scatg. Let us see how
a two point (velocity, velocity—velocity correlator is dis- the structure of the flow changes with varyifig when the
cused in the Appendix. spatial and temporal scales of the forces are fixed. If the
amplitudef of the force is very small, then the fluid flow is
laminar and this case is not the subject of this paper. When
the amplitude of the force is raised to some level that is low,

When y>1, I" always obeys the inequalitf>1. It is  given the low viscosity of the moving fluid, a transition to
easy to verify that in this case the specific dissipation poweturbulence takes place. If the viscosity is low enough, then a
is given by Eq(26), i.e., the dissipative losses depend on thetransition takes place foy<1 andl'<1; that is, in this case
viscosity. the Kolmogorov spectrum is adjacent to the viscous range

The physics of a turbulent flow changes fundamentallyand the dissipated energy is independent of the viscosity and
in this limiting case. Note that fop>1, all the inertial range equals the energy flux over the Kolmogorov spectrum,
is filled by a helical spectrum and outside the inertial rangeE (k)= 1/k>3. As the force amplitudé, is increased further,

6.2. Turbulent flows with y>1
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the picture changes: a transition occurs in the regyefil ters the following difficulty: correlators of the force—force
andI'>1, i.e., a segment of helical spectrul(k) o 1/k? type, (fi(r,t)fj(rp,t)), and velocity—force type,
grows near the inertial range and this leads to a reduction iqf;(r,,t)v(r,t)), arise naturally in the system of equations,
the dissipated energy by a factor of Recompared to the but it is not clear from general considerations whether it is
energy flux over the Kolmogorov segment of the spectrumrequired that this kind of correlator be finite when using the
With further increases ifiy, the helical part of the spectrum scaling technique of this paper. From this standpoint, the
expands owing to the narrowing of the Kolmogorov regionadvantage of the kinetic equation method lies in the fact that
within the inertial range. Further increasesfin lead to a the kinetic equation only contains one random quantity, the
regime with y>1, when the entire spectrum in the inertial external force, while the velocity is simply an argument of
range is helical, and in the region outside the inertial rangehe distribution function. In addition, if we assume that the
large scale structures with scale lengths g&r<y?>r, be-  main correlator to which all the others adjust themselves is
gin to be generated. the force—force correlator, then all the results of this paper
Therefore, there is an entire hierarchy of turbulent statesan also be obtained by the method of moments. The other
of the fluid with qualitatively different properties and which advantage of the kinetic equation method compared to the
succeed one another as the amplitude of the force driving theethod of moments is the clear interpretation of the zero
fluid motion is raised. viscosity limit with finite dissipation permitted by the Euler
equation.

8. OTHER APPROACHES TO PARAMETRIZING
TURBULENCE 9. CONCLUSION

Since the results obtained in this paper rely on the ki-  One of the main results of this paper is a proof that the
netic equation formalism of the theory of strong turbulenceconcepts of the universality of developed turbulence in in-
which itself is quite complicated, a question arises as to theompressible fluids arising from the classical work of Kol-
extent to which they can be obtained using the traditionamogorov do need substantial refinement. It turns out that a
formalism of strong turbulence theory. It is important to con-number of segments of universal character actually appear in
sider this question because it also allows us to look at théhe turbulent fluctuation spectrum, but the fact that these ap-
physics of the processes taking place in a turbulent mediurpear, and their relative position and extent in wave vector
from a new point of view. space are determined by the parameters of the source that

First, we note that nontrivial physics of turbulent fluid delivers energy to the fluid and drives it into motion. Thus,
behavior has arisen from an examination of a force with ahe three fundamentally different classes of stationary homo-
finite correlation time. In other words, we have taken accoungeneous isotropic flows of incompressible fluids examined
of the fact that turbulent fluctuations can be in both spatiahere will develop. The classification of turbulent flows estab-
and temporal resonance with harmonics of the external forckshed here for the first time may be of interest in a number
which drives the fluid motion. The resulting turbulence re-of geophysical and technological problems.
gime is determined by the characteristic scales of these two We emphasize, specially, that here we have not consid-
types of resonant fluctuations. Since the two types of rescered the radical changes in the Kolmogorov picture of turbu-
nant wave vectors divide length space into three regiondence which might arise owing to intermittency. This analy-
exactly three ranges of wave vectors develop, with differensis has had an entirely different goal: to study the changes in
kinds of turbulent fluctuations. It turns out that each of thesehe energy structure of a turbulent flgim the second veloc-
regions corresponds to a distinct dimensional constant whiclly correlato) when the finite correlation time of the force
uniquely determines the turbulent fluctuation spectrum. Thalriving the fluid is taken into account.
possibility of such a simple description of the spectra is ut-  An important new result obtained by taking the finite
terly nontrivial, since the nonlinearity of the Euler equation correlation time of the driving source into account is some
means that fluctuations on different scales interact signifinontrivial physics of the energy flux over the spectrum. In
cantly with one another and the appearance of universal dparticular, under certain conditiof®und abovg the energy
mensional parameters that describe the physics on the diffeflux flows only over a limited segment of the spectrum which
ent scales is quite unexpected. lies entirely within the inertial range. In other words, a situ-

Let us consider the possibility of obtaining the results ofation can arise in which the energy flux does not reach the
this paper using a chain of equations for the moments. If weviscous range, but is repelled to a segment of the spectrum
start from the very beginning and specify the force correlatoassociated with helicity; then, energy is gained by the exter-
by one of the simplified forms, e.g., E(L7), (20), or (22), nal force at the boundary of the Kolmogorov and helicity
rather than the general expressi@h then the corresponding spectra(the corresponding harmonics of the liquid oscillate
spectra will follow immediately from dimensional consider- in counterphase to the external foyc€he resulting structure
ations or a more extended scaling formalism, such as thaif the correlators is consistent with the Kolmogorov theo-
developed in Ref. 8. An approach of this sort, however, doesem. (See the Appendix.
not allow matching of the calculated spectrum with an inter-  (Note added in pressin connection with the results
val of wave vectors when the external force has the corinvolving the long-wavelength part of the spectrum it should
relator(2). An attempt to directly transfer the method used inbe mentioned that the question of the rule of thé&tsyanski
this paper to a system of equations for the moments encourrtegral was treated previously in Ref. 21.
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1 (T
((f(ry,0)-v(ra,0))=lim —f (f(ry,t)-v®
2T )+

T—+w
APPENDIX A
X (ry,t))dt+ lim i
Here we point out some features of the derivation of the 2 Tt 2T
Kolmogorov theorem for the casg<1l. The expression
; ; T
((f(rqy,t)-v(ro,t))) arises in a prqof of the.KoImog_orov Xf (F(r,t) - V(1 1))dt. (Ad)
theorem for a two-point (velocity, velocity-velocity T

correlator?® It transforms to
Note that|v(V)|>|v(?)|, but the characteristic times associ-
((f(ry,1)-V(ry,1))) ated with the harmonics which appear\ff) are substan-
_ B tially longer than the characteristic time scale for the force,
= ((f(rz,0) - v(r2, D) +{(f(ry,0) = 1(r2,0) - v(r2.1)) 70, While v(?) contains harmonics with characteristic times
—(F(r ) -V(rg, D)) +((F(ry, 1) - V(ra,H) = v(ry,1)). on the order ofrg. Thus, the inequalityv¥)|>|v(?)| does
(A1) not justify neglecting the second term E&4) compared to
the first because of the different oscillatory properties of the

Since we are only interested in points lying within the iner-integrands. Thus, thze contribution of the harmonics with
tial range, the average in the second term of &¢) con- ~ Wave vectorsk~1/f,75 to Eq. (A4) may be comparable to
tains an additional small term of the form given by the ratiothe contribution of the long wavelength part. =
of |[r,—r,| to the characteristic scale length for the force. However, the role of harmonics wittr 1/f, 75 differs in
Thus, the second term in EGAL) can be neglected com- the cases of <1 andI'>1. The casd'>1, where the har-
pared to the first, and this immediately leads to the KolmogMonics withk~ 1/fo75 lie outside the viscous range, is of
orov theorem. Note, however, that this procedure for estimatdreatest interest. In this case it is to be expected that for
ing the various terms on the right hand side of Bl) is  |T1—F2|>fo75, the major contribution to EqAL) is from
mathematically rigorous only when the averaged function idong-wavelength harmonics, since at such large distances the
fixed in sign: when the averaged function changes sign, ghort-wavelength fluctuations are not correlated with the ex-
small absolute magnitude of the correction to it still does noternal force. Fofry—r,|<fo75, i.e. at distances comparable
imply that the contribution of this correction to the averaget0 the amplitude of the oscillations of a Lagrangian particle
will be small. acted on by the external force, however, we should expect
We can now ShOW that the Standard argument |eading t§h0l’t wave Iength fluctuations to make a Signiﬁcant contri-
the Kolmogorov theorem requires considerable refinement ipution to Eqs(A4) and(Al). Thus, the standard derivation
a finite source correlation time is taken into account. Weof the Kolmogorov theorem is valid when a finite correlation
emphasize specially that neglecting the second term conilme of the external force wity<1 andI'>1 is included,
pared to the first in Eq{AL) owing to this smallness in the 0nly if [r;—r,[>fo75. Thus, the Kolmogorov theorem does
second term is justified only when the first term is not ex-Not prohibit a substantial realignment of theelocity,
actly equal to zero and does not contain an additional smallelocity)—velocity correlator forir;—r,|<fo75. According
ness compared to the second because of some other smi&IEQs.(19) and (20), the second term in EqA4) for |r;
parameter. In the limity<1, the argument that usually leads —2/<fo75 (When it is to be expected that the correlations
to the Kolmogorov theorem has to be refined, precisely foPetween the external force and the small scale component of
the following reason: in this case, the smallest parameter dhe velocity are substantiatan be approximated bffo,
the problem is the correlation tims, so it is necessary to Sincev(®~f,7y, which is comparable to the energy flax
study the dependence ¢ff(ry,t)-v(r,,t))) on 7y in detail. ~ over the Kolmogorov segment of the spectrum according to
For this purpose, we write Eq. (25).
In the casel'<1, the harmonics withk~1/fy75 fall
_ within the viscous range, so that these fluctuations are sup-
((f(ry,0)-v(rz, )= lim - pressed by viscous effects. Howeveryif)<f,7,, then the
T contribution of the short wavelength harmonics wikh
T ~1/fo73 to Eq. (A1) is clearly small. Thus, in this case the
x J_T(f(rl,t)-v(rz,t))dt. (A2) standard proof of the Kolmogorov theorem encounters no
difficulty.
Let us write the velocity(r,,t) in the sum of two terms, Note that{(f(ry,t)-v(r,t))) can also be represented in
the form of a volume average. It can therefore be verified
V(rp,t)=v(r,,t) +v(r,,t), (A3)  that the external force also interacts significantly with fluc-
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A technique of simultaneous gamma-ray, x-ray, and electroesidauer spectroscopy is used to
study the magnetic structure of the surface layer with direct comparison to the magnetic
structure inside single crystal samples of hexagonal Ba—M ferrites, in which part of the iron ions
have been replaced by diamagnetic Sc i@igemical formula BaRg_ sSc;0;9). It is found

that when the diamagnetic Sc ions are introduced into the crystal lattice of,BgbesO,q at
concentrationgx= 0.4 and 0.6 far below the level at which the collinear magnetic

structure inside the sample is destroyed, a macroscopic layer of thickig¥3$nm develops on

the surface, in which the magnetic moments of the iron ions are oriented noncollinearly

with respect to the moments inside the sample. The devidtiprof the magnetic moments in
BaFg; 5¢ 4019 Was 10%2° for x=0.4, and when the Sc concentration was raised to

0.6, the angl€ ¢) increased to 17*2°. The noncollinear magnetic structure in the surface layer
in these crystals develops because of further reduction in the energy of the exchange
interactions owing to the presence of a “defect,” such as the surface. For the first time, therefore,
an anisotropic surface layer whose magnetic properties differ from those in the interior of a
sample has been observed experimentally in ferromagnetic crystals, as predicteel fly. Ngel,

Phys. Radium15, 225(1954)]. © 1999 American Institute of Physics.

[S1063-776(199)01111-1

1. INTRODUCTION the signals from a thin surface layer and those from inside a
macroscopic crystal. The widespread use ofbtzauer spec-
Since the beginning of the 1970’s, studies of the mag+troscopy in studies of surface properties for the case of thin
netic properties of crystalline surfaces have attracted evefiims or finely dispersed powders is explained by the possi-
increasing attention of researchers. This is because of thsility of enhancing(or attenuatinythe signal from the sur-
need to understand the effect of “defects” such as surfacegace layer by enriching this layer in the isotopée (or
on the magnetic structure and properties of surface layer®Fe). Thus, the unusual experimental fatttat the saturation
and the role of surfaces in the formation of the properties ofnagnetization of a finely dispersed powder is lower than for
a material. Studies of processes taking place during phasemacroscopic crystal of the same material has attracted great
transitions in the surface layer and of the difference betweemterest on the part of researchers. $dbauer studies have
them and phase transitions inside the crystal and the interrghown that a change in the magnetic structure of the crystal-
lation between them are also important. At present, thesfites is also the reason for the reduction in the saturation
studies are acquiring an ever greater practical significancmagnetization of the finely dispersed powdiek “shell”
because, for example, the properties of finely dispersed nanenodet''? has been proposed to explain the experimental
sized powders depend substantially on the properties of thegata obtained from finely dispersed powdersaefe,0;,°
crystallite surface. Thus, an understanding of the mechanism-Fe,0,,%" CrFg0,°2 Cr0,° NiFe,0,, YsFe0;,, and
for formation, e.g., of the magnetic properties of nanosizedy,BiFe-0;,,° and BaFg0;4.* According to this model
crystallites, will open the path to creating magnetic informa-the magnetic structure of the interior of a crystallite is analo-
tion carriers with ultrahigh recording densities. gous to or, perhaps, completely identical to the structure of a
The theoretical description of surface anisotropic layeramacroscopic crystal, while in a thin surface layee., in the
in ferromagnetic materials was given by élein 1954  shel) the magnetic moments are not in collinear alignment
However, the idea that the surface affects the properties of with the moments in the interior.
material was invoked for interpreting experimental data only  However, the shell model is by no means used every-
much later. Thus, it has been propo%s#tat on thin-film Fe, where to explain the experimental data; other approaches are
Co and Ni surfaces there is a nonmagnédtitagnetically  used, as well. Thus, it has been assutidtht on the surface
dead layer with a thickness of roughly 6 A. of a NiFe0, particle there is an angular ordering of the spins
Finely dispersed powders and thin films have been exwith a set of stable configurations, which transforms to a
tensively used in subsequent research on the properties spin-glass state as the temperature is lowered. A disordered
surfaces. This is because of the increase in the specific sushell has been assumed to exist in Cabe(Ref. 14 and
face of a crystallite as its volume is reduced, as well as th&e0, (Ref. 19 crystallites. Elsewher®, it has been as-
absence of experimental techniques capable of distinguishirumed that noncollinear alignment of the spinsyitFe,0;

1063-7761/99/89(11)/9/$15.00 890 © 1999 American Institute of Physics
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particles does not occur only on the surface. It has beerlectron Mmssbauer spectroscopy studies of the surface of
conjectured’ that, in order to overcome the volume anisot- Fe;_ ;Ga;BOg crystals have shown that replacement of only
ropy and complete ordering of the magnetic moments alon§% of the iron atoms by diamagnetic gallium ions increases
an external magnetic field, substantially higher fields willthe thickness of the transition layer by an order of
have to be applied than those used to prove the shell modahagnitude®®
On the other hand, data on textured samplegy-#fe,0; in In studies of hexagonal type-M ferriteBaFg,0;g,
strong magnetic field& have been explained by the noncol- SrFg 0,9, and PbFg0;o) by simultaneous gamma, x-ray,
linear ordering of the spins and it has also been shdumat  and electron Mesbauer spectroscopy, no transition surface
the incomplete ordering of the magnetic moments cannot blyer with a magnetic structure different from that of the
explained by a large volume magnetic anisotropy, as wabulk crystal was observed. An analysis of model Mss-
assumed earlief. bauer spectra showed that if a transition surface layer does
The use of finely dispersed powders for studying theexist in these type-M hexaferrites, then it cannot be more
properties of surfaces has permitted a major step toward urthan a few nm thick. This is of the same order of magnitude
derstanding the importance of “surface” magnetism. But, itas Nel's theoretical estimatésand is substantially smaller
should be noted that the nonuniform sizes of a ensemble dhan the experimental error, which is roughly 10 nm.
particles, superparamagnetic effects, the strong dependence Therefore, the existence of a macroscopic surface layer
on fabrication techniques, etc., complicate the study of théreferred to in Refs. 21 and 22 as transitignal antiferro-
properties of surfaces using finely dispersed powders. Almagnetic materials with weak ferromagnetism has been con-
these difficulties are eliminated when macroscopic crystalsincingly demonstrated. Observing these layers on the sur-

are used. face of hexagonal type-M ferrites will requifemethods that
The predictedi surface anisotropy was first observed in can analyze surface layers within a few nm.
1972 by Krinchik, et al!® in an antiferromagnetic material In this paper we study the magnetic structure of the sur-

with weak ferromagnetism. Th&y proposed that macro- face layer in direct comparison with the structure inside mac-
scopic anisotropy of a surface layer can occur in magneticoscopic crystals of hexagonal type-M ferrites in which part
materials where, compared to ferromagnetic materials, thef the iron ions have been replaced by diamagnetic ions. In
energy of the demagnetizing field is small and there is ncstating the problem, we assumed that it was possible to ob-
magnetic anisotropy in the basal plane, which increses theerve a transitional surface layer experimentally in the sub-
role of surface anisotropy. It is this situation which made itstituted hexaferrites. Here is why: first, it is knoWr?° that
possible to observe a surface anisotropy for the first time imeplacing a large fraction of the iron ions in type-M hexafer-
hematite!® an antiferromagnetic material with weak ferro- rites by diamagnetic In, Sc, Ga, or Al ions gives rise to a
magnetism. Based on the experimental data, it wasoncollinear magnetic structure inside the crystal. Second, it
proposed® that, within the confines of this surface aniso- has been shovinthat replacing only 9% of the iron ions in
tropic layer, which was referrédito as “transitional,” the ~ FeBOg by diamagnetic Ga ions increases the thickness of
orientation of the magnetic moments varies smoothly fronthe transition surface layer by an order of magnitude. This is
the direction along which the moments are oriented insiddecause the inter-sublattice exchange bonds are weakened,
the sample to the direction at the surface. Subsequently, aswing both to the introduced diamagnetic ions and to the
anisotropic surface layer was observed in macroscopic crygpresence of a surface. For this reason, it was possible to
tals of FeBQ,?%?* ErFeQ, and TbFe®,?? which also have assume that if a small part of the iron ions are replaced by
weak ferromagnetism. It was found experimentally that thediamagnetic iongwhen a collinear magnetic structure is re-
thickness of the transition surface layer 48500 nm for tained inside the samplethen a macroscopic surface layer
FeBQ,. 202 with noncollinearly ordered magnetic moments can develop

Unique possibilities for experimental studies of the prop-on the surface of macrocrystals of the hexagonal ferrites.
erties of the surface of macroscopic crystals are offered bfreliminary studie¥ showed replacing a small number of
the new technique of simultaneous gamma-ray, x-ray, anthe magnetic iron ions in the structure of the hexagonal fer-
electron Mssbauer spectroscopy, which makes it possible toite Sr—M by diamagnetic Al ions(chemical formula
extract information about the state of the surface layer an®&rFgg-Al; sO19) gives rise to a layer with a thickness of
interior of the crystal simultaneously and to compare the~200um on the surface where the magnetic moments are
results immediately® noncollinear with those inside the sample.

Simultaneous gamma, x-ray, and electron sstmauer For these studies we have chosen a hexagonal Ba-M
spectroscopy yielded the first direct experimental verificatiorferrite in which part of the iron ions are replaced by diamag-
of the existence of a transition surface layer with anetic Sc ions; the chemical formula is Bake;ScsOq9. It
thicknes&* of ~400nm in macroscopic crystals of JB;  has been shovii?° that for substitutionsx<1.2, the col-
(which, like hematite, are antiferromagnetic with weak fer-linearity of the moments inside the crystal is preserved,
romagneti¢. Layer-by-layer studies employing simultaneouswhile for x> 1.2 the collinearity of the moments is disrupted
gamma, x-ray, and electron ‘Msbauer spectroscopy inside the crystal. Thus, for concentratiors:0.4 andx
showed* that, as the iron ions move toward the crystal sur-=0.6 of the diamagnetic ions, i.e., in crystalline
face, the angle of deflection of their magnetic moments relaBaFe; ,sS¢ 4019, and BaFe; .S¢ ¢019, We could be sure
tive to their orientation inside the sample increases smoothlyhat these amounts of scandium ions were well below the
within the transition layer. Simultaneous gamma, x-ray, ancamount required to form a noncollinear structure inside the
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sample so we could study the effect of this substitution orin a backscattering geometry, together with the spectrum of

the properties of a thin surface layer. the gamma-rays transmitted through the sample. The energy
of an electron leaving the sample is lower when it leaves an

2. MOSSBAUER STUDIES OF MAGNETIC STRUCTURE IN atom that lies deeper in the sample. Simple proportional

CRYSTALS counters could be us&d34for energy resolution of the elec-

Méssbauer spectroscopy is widely used in studies of thdrons. Of course, th.e accuracy of the analysis of the layers in
magnetic structure of materials because the magnetic m(!i@"_nS of thickness is much poorer than with e_Iectrlc or mag-
mentM of the iron ion is always oriented antiparallel to the net!c separa_\t(_)r%? but in a nu_mber of cases this accuracy is
effective magnetic field . at the nucleus. If the energy of entirely sufﬁuent, so that S|multane_ous gamma, x-ray, and
the electrical interaction in the crystal is negligibly low and ele(;]tronbM(ssbau?r sp(;ac;trolscopybusllng a pro?or_tlonfalhdetec-
the levels are split owing to the magnetic hyperfine interac{O Nas been employed for layer-by-layer analysis of the sur-

tion, then the intensities of the components of the Zeema?c'f'jlce Isyerfs down_ to Ith|cknesses of less than 300°’Z1m.|
sextupletA;:A,:A;:A,:As:Ag in the Mossbauer spectrum .. Therefore, simuitaneous gamma, x-ray, an eectrc_)n
depend on the anglé between the direction of the wave Mossbauer spectroscopy offers unique prospects for studying

vector of the gamma-rays and the orientation of the effectivéhe St?teb of the Sl;rfr;l]cef Iﬁyer. andF'lnterlﬁr OT mflcrOSfCOprC
magnetic fieldHy4 at the nucleus of the iron iofor the cr:ystas ecauseho the ollowing. 'TSt' td_e_5|mutan$]|ty 0
magnetic moment of the iron ioras follows: the tests means that the experimental conditions are the same

for the surface layers and interior of the crystal. Second,
3(1+cosf):4 sind:(1+cosh):(1+cosh):4sind:4(1  simultaneous gamma, x-ray, and electrorissloauer spec-
(1) troscopy uses a single technig(tke Massbauer effegt so
the experimental data on the properties of the surface layers
Therefore, the ratio of the second or fiftAfs) lines of  and interior of a crystal can be compared directly.

+cosb).

the Zeeman sextuplet corresponding to transitions Wit Simultaneous gamma, x-ray, and electron stoauer

=0 to the intensity of the first or sixth lineAg ¢ in the  spectroscopy was carried out using the automatic system of

Mossbauer spectrum of a single crystal, which a block diagram is shown in Fig. 1. The various ra-
Ass/Aq 6= 4 Sirf 01{3(co 0+1)}, ) diations, specifically gamma rays, x rays, and conversion and

. ' . Auger electrons are detected by the counierx, andE,
can be used to determine the anglevhich specifies the respectively in a universal three chamber detector. The sig-
orientation of the magnetic moments with respect to thenals from the counters were amplified, then discriminators

gamma ray beam: set the thresholds for distinguishing the corresponding ener-
4A, ¢ 3A, 5| 12 gies, and the resulting signals were sent to the corresponding
0=arcco£m> memory buffers for the Mssbauer spectra.
1,6 2,5
1/2
- arcsir{ 1 (3(/3225/'6;26 ) (3) 4. EXPERIMENTAL RESULTS
+ 25/A16

The single crystal Bakg_ sScsO,9 hexaferrite samples

. If the angled varies in the. sample, then Ed2) and(3) for these studies were synthesized by spontaneous crystalli-
yield an averagg6). Thus, Mcsshauer spectroscopy can be.zation from a solution in a melt of NaFgOThe chemical

used to determine the orientation of the magnetic mOments i, osition and identification of these crystals as ferrites

a crystal to rather high accuracy. with a type-M hexagonal structure were verified by x-ray
analysis, chemical analysis, and the structure of thessvio
bauer spectra. The degree of substitution of the iron ions was
also determined from the dependence of the Curie tempera-
The simultaneous gamma, x-ray, and electronsi4o ture on the concentration of Sc. The Curie temperature was
bauer spectroscopy technique proposed and described in Refetermined from the temperature dependences of the effec-
23 was used for the measurements. Simultaneous gammtaye magnetic fields and by taking temperature scans with a
x-ray, and electron Mssbauer spectroscopy involves simul- fixed velocity of the gamma-ray source.
taneous detection of the Msbauer spectra of radiation with For the Mssbauer measurements, slabs in the form of
different mean free paths in the material, specifically,disks with thicknesses of~80um and diameters-8 mm
gamma-rays, characteristic x-rays, and conversion and Augevere cut from the single crystals. The crystallograp@8ic
electrons, which carry information on the properties of theaxis was oriented perpendicular to the plane of the slabs.
crystal within its bulk, in a surface layer sevepai thick, = Special attention was devoted to the surface quality of the
and in a surface layer with a thickness-eB00 nm, respec- crystals. Single crystals with a natural mirror facet were se-
tively. When a gamma-photon is absorbed an iron atom enlected for studying the surface properties and subjected
ters an excited state, and the reverse transition to the grourahemical polishing by etching for one minute in orthophos-
state is accompanied by the emission of a characteristiphoric acid at a temperature of 90 °C. Slabs of the ferrite
x-ray, as well as of conversion and Auger electrons. In siBaFg,0,9 without Sc ion substitution were prepared simul-
multaneous gamma, x-ray, and electronddloauer spectros- taneously by this technique for use as control samples.
copy, the spectra of these x-rays and electrons are measured Simultaneous gamma, x-ray, and electron Sstmauer

3. SIMULTANEOUS GAMMA, X-RAY, AND ELECTRON
MOSSBAUER SPECTROSCOPY
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FIG. 1. A block diagram of the automated system for
simultaneous gamma-ray, x-ray, and electronsbtmmuer
spectroscopy. Iltems indicated in the figure incluBeX
andE, the detectors for, respectively, gamma rays, char-
acteristic x rays, and secondary electrons, S the gamma-

A A l A | ray source, the sample, oveheatej, B the Doppler

modulator for the source motion, MG the motion genera-
tor, LVC a laser velocity calibrator, A amplifiers, D dis-
I DJ | D l I D l I D I [ D ] criminators, M memory buffers, HV high voltage sup-
T T N l 11213 plies, NFB negative feedback channel, and CC computer

l_l\ﬁ- MG |J|\_/|L| |_'I\_/ILI [*M* l I wl\;l I [ M—I Y correction channel.

CC

onz2

IBM /PC

spectra were obtained experimentally at temperatures frorAuger electrongFigs. 2b) and 3b)] contain low intensity
300 to 750 K. Figures 2, 3, and 4 show examples of spectrines that are clearly absent in the gamma-ray sp¢€tigs.
of the ferrites BaFg_ sSc;049 With x=0.4, 0.6, and 0 taken 2(a), 3(a), and 4a)]. It should be noted that the intensities of
at room temperature with detection of gamma rays, as welthese lines in the spectra of Figlb2 are roughly a factor of
as of conversion and Auger electrons. Thedslmauer spec- 3 higher than the noise, and for the spectra of Fif),2he
tra taken with the x rays carry information from a layer with signal-to-noise ratio is still higher. An analysis of the spectra
a thickness of a fewum and are analogous to those takenof the conversion and Auger electrons showed that these ad-
with the gamma rays. Thus, we do not show the spectrditional lines are the second and fifth components of the
taken in the x ray region in order to make the figures moreZeeman sextuplets. This means that the magnetic moments
clearly understandable. As can be seen from Figs. 2—4, thef the iron ions occupying positions in a surface layer of
spectral lines are well resolved. This makes it possible tdhickness~200 nm are oriented at some angld¢o the di-
determine the parameters of the hyperfine interactions, agction of the gamma-ray wave vector and, therefore, to the
well as the orientations of the magnetic moments in the crys€ axis. This pattern is observed up to temperatures of
tal, with high accuracy. ~600K, above which it is difficult to analyze the spectra
As Figs. Za), 3(a), and 4a) show, the Mssbauer spec- because of the poor resolution of the lines. The deviation of
tra of the ferrites with added Sc obtained by detecting thehe magnetic moments from the wave vector of the gamma
gamma rays are similar to the unsubstituted Ba-M ferriterays (6) calculated using Eq(3) from the spectra of the
except that the spectra of BafgSg 4019 [Fig. 2@] and  BaFg,_sSc;0,9was 10%2° for x=0.4. When the concen-
BaFe; .S5q 019 [Fig. @] contain additional well resolved tration of Sc was raised to 0.6, the angléncreased to 17°
lines corresponding to the k2 sublattice. An analysis of the *2°, according to an analysis of the spectrum shown in Fig.
gamma resonance specffigs. 2a), 3(a), and 4a)] showed 3(b). It should be noted that in these experiments it was not
that in the Zeeman sextuplets of each nonequivalent positiomossible to determine the area within which the magnetic
the intensities of the second and fifth lines, corresponding ttnoments are deflected. The main result of these studies is the
transitions withAm=0, are zero. This means that the an@le experimental fact that the magnetic moments of the iron ions
equals zero and, therefore, that the magnetic moments of theithin a surface layer of thickness200 nm are noncollinear
iron ions occupying sites within the crystal are collinear withwith the crystallographicC axis, along which the magnetic
the wave vector of the gamma rays and the crystallographimoments of the iron ions occupying positions in the interior
C axis. This pattern was observed over the entire temperaof the crystal are aligned.
ture range studied and is in good agreement with data on the In order to verify the correctness of this analysis of the
bulk properties of these crystals. Mossbauer spectra, we took spectra on single crystals that
The sections corresponding to velocities ©#f4 and  were inclined so that th€ axis formed an angle with the
+5mm/s in the spectra with detection of conversion andwave vector of the gamma rays. Figurgs)2and 3c) show
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examples of gamma resonance spectra obtained fo28° It might be assumed that the observed deviation of the

+2°. These figures show that when the magnetic momentsagnetic moments is caused by “etching” of magnetic ions
deviate from the propagation direction of the gamma raysfrom the surface layer during chemical polishing of the crys-
lines of the Zeeman sextuplets corresponding to transitiontals that further reduces the exchange interaction energy in
with Am=0 show up in the spectrum. The angl¢) calcu- this layer. In order to test this hypothesis on single crystals of
lated from the gamma-ray spectra shown in both Figs) 2 BaFg,0;q prepared simultaneously with the
and 3c) using Eq.(3) was 27 2°. Therefore, to within the BaFg,_sSc;0;9 by the same chemical polishing technique,
limits of error of the apparatus, the angle of inclination of thewe took the M@sbauer spectra shown in Fig. 4. As can be
crystal,«, and the calculated value @fwere in good agree- seen in Fig. 4, when the crystallograpl@caxis is oriented
ment. Note that a comparison of the experimental spectra giarallel to the wave vector of the gamma rays, the second
Figs. 2b) and 3b) reveals good agreement between the po-and fifth lines of the Zeeman sextuplets are absent in the
sitions on the velocity scale of the second and fifth lines ofspectra in which either electrofBig. 4(b)] or gamma rays
the gamma resonance spectra taken with an inclined crystfFig. 4(a)] were detected. As a comparison, Fidc)4also
[Fig. 2(c) and 3c)] and the second and fifth lines of the shows the Mesbauer spectrum obtained with detection of
spectra obtained with detection of conversion and Augegamma radiation on the same single crystal slab of
electrongFigs. 2b) and 3b)]. BaFg,0;inclined so that it<C axis was oriented at an angle
These results prove convincingly that, when diamagnetiof «=28°*2° to the wave vector of the gamma rays. Figure
Sc ions are introduced into Ba-M crystals, a macroscopi@(c) shows that the deviation in the direction of the magnetic
surface layer with a thickness f200 nm develops, within  moments from the propagation direction of the gamma rays
which the magnetic moments of the iron ions deviate fromhas caused the lines from the Zeeman sextuplet correspond-
the direction of the crystallographi€ axis and from the ing to transitions withAm=0 to appear. Equatio(8) gives
direction of the spin moments of the iron ions which occupy#=30°*+2°, in good agreement with the angleset in the
sites in the interior of the crystal. experiment. Thus, these experiments show convincingly that
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our technique for preparing the sample surfaces does ndhe Fe—O distances are 2.3 and 1.87 A, respectively. In the
cause any changes in the magnetic structure of the surfagpinel block, the interaction takes place in the usual manner,
layer. This experiment also is an additional confirmation ofso that the mutual orientation of the magnetic moments is as
the results of Ref. 26, where it was shown that, to within theshown in Table I. Iron ions in thel2position play a special
experimental error of roughly 10 nm, there is no surfacerole in the formation of such an axial structure, as well as of
layer on BaFg0, 4 crystals with a magnetic structure differ- the magnetocrystalline anisotropy. This position has a strong
ent from that which exists in the interior of the crystal. intracrystalline field with a trigonal symmetry where the axis
Let us consider the reasons for the deviation in the ori-of symmetry coincides with the crystal axis. The importance
entation of the magnetic moments in the surface layer fronof the contribution to the magnetic anisotropy of the iron
their direction in the interior of the crystal. The main orien- ions occupying 1R positions in the low symmetry octahe-
tational influence on the direction of the magnetic momentsiron (see Table)l has been noted previousi.
of individual sublattice¥ is exerted by exchange interac- Neutron diffraction and Mssbauer studies of type-M
tions in the hexagonal block R between Fe{20—-Fe(4>) hexagonal ferrites have sho®n?® that when iron ions in
and Fe(4,)-O-Fe(1R), which have fairly large bond these ferrites are replaced by diamagnetic Sc ions, there a
angles(~140° and 130°, respectivelyThe corresponding substantial change in the exchange interaction, even in com-
Fe—O distances are approximately 1.8 and 1.95 A. The inpounds with a relatively small number of Sc ions. When the
teractions correspond to the highest values of the exchangemount of Sc ionsx>1.2 a noncollinear magnetic structure
integrals. Since the Fetd—O—Fe(4,)-O—Fe(1R) inter-  appearg? In the case of the Sc-substituted ferrite with
action is somewhat stronger the chain consists of two ex=1.8, the magnetic moments of the blocks form a conical
change bonds, the spins of the Fbf2and Fe(1R) ions are  block helicoid, within each block of which the magnetic mo-
oriented antiparallel to the spin of the Fég¥ ion, despite  ments of the iron ions are colline&t.
the strong opposing interaction between the Bg(and The resonant absorption probabilitiédossbauer effegt
Fe(1X) ions, for which the interaction angle is125°, and listed in Table | were calculated from the area under the lines
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in the experimental Mssbauer spectra. Table | implies that, number of ions in the corresponding sublattices of the unit
to within the experimental error, the resonant absorptiorcell of the crystal. The hyperfine interaction parameters ob-
probabilities for BaFgO,4 are in good agreement with the tained from the experimental Wdebauer spectra of

TABLE |. Distribution of Fé* ions over a unit cell, the surroundings and orientation of their spins in a type-M hexagonal ferrite, and the magnitude of the
Mossbauer effectarea under the corresponding spectrum lifesthe hexaferrites Bak§D, g, BaSg €1 {019, and BaSgdFe ; ;9 at room temperature.

Distribution of Fé* ions over ..
Mossbauer effect

the unit cell,
surroundings, and spin BaFe.O BaSc F BaSc F
orientations 62019 ©.4Fe11.010 G.6Fe11.O19
Number Area, % Area, % Area, %
Sub- of Surroun- Direction (Normalized (Normalized (Normalized
lattices ions dings of spins to 24) to 23.2 to 22.8
12k 12 octa up 12.40.2 9.2£0.2 7.3:0.3
12’ - 0.7+0.2 4.4-0.4
4f, 4 tetra down 4904 4.1+0.3 5.4-0.4
4f, 4 octa down 3.840.2 5.8:0.4 3.6£0.4
2a 2 octa up 1.40.6 2204 1.1+0.5
2b 2 tri- up 1.450.2 1.1+0.3 0.9-0.2
gonal
bipyra-

mid
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TABLE Il. Effective magnetic field#H;, isomeric shiftss, and quadrupole splitting& E for BaSgFe;,_,O;9 at room temperaturé&he isomeric shifts is
taken relative tax-Fe).

Sublattices Hei, kOe S, mm/s AE, mm/s

x=0 B2 [e] [v] [e] [v] [e]
12k 416+1 422+1 0.34:0.01 0.35-0.01 0.42-0.01 0.42-0.02
4f, 493+t 1 495+1 0.27+0.01 0.29:0.02 0.19:0.02 0.09-0.04
4f, 520+3 523+1 0.38:0.01 0.35:0.02 0.270.01 0.20:0.04
2a 508+3 508+ 3 0.33£0.01 0.310.02 0.16-0.02 0.110.04
2b 403+5 401*+5 0.30+0.02 0.25-0.10 2.070.04 1.84£0.20

x=0.4 [v] [e] (] [e] (] [e]
12k 416+ 1 422+1 0.36:£0.01 0.35:0.01 0.42£0.02 0.43:0.02
12k’ 324+1 329+1 0.37£0.01 0.35-0.02 0.42-0.02 0.41-0.04
4f, 495+ 1 488+ 1 0.29+0.01 0.30:0.01 0.25-0.02 0.16:0.03
4f, 519+1 519+1 0.46+0.01 0.35:0.01 0.32:0.02 0.28-0.02
2a 513+3 514+1 0.31+0.02 0.30-0.03 0.10-0.04 0.18-0.06
2b 402+5 - 0.41+0.05 - 2.05-0.10 -

x=0.6 [v] [e] (] [e] (] [e]
12k 413+1 414+1 0.37+0.01 0.38:0.01 0.410.02 0.39:0.03
12k’ 325+1 3272 0.38£0.01 0.35:-0.03 0.41-0.03 0.36:0.06
4f, 486+ 1 486+ 1 0.31+0.01 0.33:0.02 0.24-0.02 0.24-0.04
4f, 512+1 514+1 0.43+0.01 0.33:0.02 0.32:0.02 0.41-0.04
2a 505+ 2 - 0.33£0.01 - 0.12-0.02 -
2b 406+ 3 - 0.43+0.02 - 2.03:0.05

BaFq,_ 5S¢;0;4 for x=0, 0.4, and 0.6 are shown in Table II. 2b sites upward orientations of their spin moments and iron
The values listed in Table Il are in good agreement withions with downward spins, which occupyf &ites, are re-
published datd’3*4°A comparison of the hyperfine interac- placed.
tion parameters for BakgD,q and BaFeg, S (019 Shows These data are consistent with the conclusions of Refs.
that the variation in these parameters for such an apparent®7—29, based on neutron diffraction data, that for low con-
negligible replacement of iron ions by Sc ions»xas0.6 is  centrations, the Sc ions are located atgbsitions and for a
substantial, which is indicative of a selective positioning ofdegree of substitution of less than 30%,4positions are
the Sc ions. occupied in addition to B positions. The increase in the
The experimental spectra and the tables show that thitensity of the lines corresponding to Fe ions ify posi-
behavior of the Sc ions gives rise to aklZublattice and a tions (Table |) should be attributed to the large error in the
drop in the intensities of the lines corresponding to iron ionscalculations of the poorly resolved sextuplets for iron ions in
in 2b and 1% positions. The formation of a k2 sublattice  4f, and 2a positions. Localization of Sc ions inb2positions
can be explained by the fact that Sc ions occuppygdsi-  weakens the exchange bonds between the S and R blocks, so
tions. Iron ions at the IR sites have six exchange interac- as the Sc content is changed hx=1, the Curie tempera-
tions: three with iron ions at# positions, two with Fe ions ture falls by 160—170°, while when Al or Ga ions are intro-
at 4f, positions, and one with Fe in the trigonal bipyramid. duced, the Curie temperaturéd) falls by 50—60° when the
The appearance of diamagnetic Sc ions in theses means substitution is raised bjix=1. We have obtained values of
that part of the Fe ions in the &k2positions lose the the Curie temperature from the experimental data. For the
Fe(2b)-O-Fe(1R) exchange coupling, while another part ferrite with x=0.6, our value ofT: was 647 K, in good
of the Fe(1R) ions retains this coupling, so that a non- agreement with other published d&fa.
equivalent situation develops. The ratio of the numbers of To summarize the above discussion, in the crystals we
ions in the 1R- and 1X’-positions will be proportional to have chosen, Bake ;ScsO,4 for x=0.4 or 0.6, diamagnetic
the number of magnetic and nonmagnetic ions inSc ions displace iron ions ink2 and 4f,-positions and, on
2b-positions. forming magnetic bonds, facilitate the formation of a noncol-
Table | implies that the numbers of iron ions inkl@nd  linear magnetic structure. However, the amount of Sc ions
12k’ positions for BaFg S 019 are roughly in the ratio of (x=0.4 or 0.6 is far from high enough to destroy the col-
2:1. At the same time, if the Sc ions occupy only linearity in the volumeé’=2° In the surface layer of these
2b-positions, then for the ferrite of this composition with  crystals, the exchange interaction energy is reduced, both by
=0.6, in the D sublattice the ratio of the number of mag- the diamagnetic ions, and by the presence of the surface.
netic ions to honmagnetic ions should, as discussed abov&hus, for example, it has been shdwihat replacement of
be 2:3, which is not really sqSee Table ). Therefore, iron  only 9% of the iron ions in F80g by diamagnetic Ga ions
ions are not displaced by Sc ions only & Bositions, but increases the thickness of the “transition” surface layer by
also at other positions. As Table | implies, for a givethere  almost a factor of 10.
is roughly equal replacement of iron ions with opposite ori- It has, therefore, been found experimentally for the first
entations of their magnetic moments, i.e., both iron ions atime that, when diamagnetic ions are introduced into hexago-
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Solid solutions of the system La,CaMnO; are synthesized, and their magnetic and electrical
properties are investigated. Asis increased, the crystal lattice changes symmetrically

from an orthorhombic X=0 and x=0.8) to a cubic structure @©x<0.6 andx=1).
Nonstoichiometric LaMn@and compositions with a low Ca content<{®<0.4) are collinear
ferromagnets. A metal—insulator transition is observed in them near the Curie temperature.
Compositions with 0.&x=<0.9 exhibit a semiconductor-type conductivity and an unusual
temperature behavior of the magnetization and the susceptibility with very distinct Curie

and Nesl temperatures. The magnetic properties of the solid solutions are explained on the basis
of the model of ferro—antiferromagnetic phase separation.1999 American Institute of
Physics[S1063-776099)01211-1

1. INTRODUCTION also of independent interest in regard to the physics of mag-
netic semiconductors, in particular, for explaining the ex-

hange interaction mechanisms, the possibility of an inho-
nogeneous state, the formation of polarons, and the
%eparation of the magnetic phases.

We have investigated the temperature and field depen-

The perovskite manganites AB@an be classified as
magnetic semiconductors characterized by strong couplin
between the electronic and magnetic subsystems. This co
pling produces a number of unusual properties such as

metal—insulator transition, colossal magnetostriction, magEj f1h ti7ati tibilit d i )
netic transitions of the antiferromagnetic-ferromagnetic type ence of the magnetization, susceptibiiity, and magnetoresis-
tance of the system La,CaMnO; (0<x=<1), for which a

charge ordering, and the formation of polarons. The electri . ; : . .

cal and magnetic properties of manganites are sensitive t%ontlnuous series of solid solutions exists.

changes in the crystal structure and deviations from stoichi-

ometry. An g_xternal magn9t|c field can influence §tru_cturalz_ SAMPLES AND MEASUREMENT PROCEDURE

phase transitions. Manganites have been of special interest

since the discovery of colossal magnetoresistance in them, The La_,CaMnO5; samples were prepared by ceramic
and for this reason attention has been focused primarily otechnology from as-delivered L@;, CaCQ, and MO,

La; _,A,MnO; solid solutions in the composition range  powders(all of extreme purity. The samples were synthe-

< 0.4, which exhibit the highest magnetoresistances near th&zed in two stages. The mixture was first annealed in air at
Curie temperaturd . The rangex>0.5 has been largely 1300°C for 30 h. It was then ground and compacted into
ignored. At the present time there is no consensus as to whtdblets, which were subjected to a second, 50-h anneal. X-ray
causes the onset of colossal magnetoresistance in these coamalysis was performed on a DRON-2.0 x-ray diffractometer
pounds. It is often attributed to a double exchange mechan Cr K, radiation. The samples were single-phase objects.
nism, but this hypothesis is countered by a mechanism ofhe values of the lattice parameters of the samples are shown
indirect exchange and the two-phase ferro—antiferromagnetio Table I. The unit cell structures were orthorhombic for the
state of degenerate antiferromagnetic semiconductors. AddizaMnO; and Lg sCa gMNnO5; compositions and were cubic
tional experimental data are needed to explain the entiréor all others. The technological conditions can influence the
gamut of physical properties of perovskites within the frame-crystal structure and physical properties of mangaritis;
work of a single model. The investigation of the magneticLay ;Ca gVinO; and Lg ,Ca MNO; samples were therefore
properties of systems of LaMngbased solid solutions is subjected to another air anneal at 1400 °C for 30 h, followed

TABLE |. Lattice parameters of manganites;LagCaMnOs.

Composition x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.6 x=0.8 x=1

Crystal O C C C C C (@] C

Lattice a=5.524 a=5.334

parameters, A b=7.788 7.784 7.768 7.708 7.691 7.628 b=7.535 3.731
c=5.402 c=5.326

Legend O—orthorhombic structure; C—cubic structure.

1063-7761/99/89(11)/7/$15.00 899 © 1999 American Institute of Physics
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o, emu/g ments of Mn. Complications would most likely be
corrsp 9N ITN encountered in trying to obtain samples of stoichiometric
3k 1 composition, because data on the characteristic temperature

and field dependence of the magnetizatioand the suscep-
tibility x of collinear antiferromagnets are all but nonexistent
in the literature for LaMn@ and CaMnQ. We have inves-

2k tigated the magnetic properties of a continuous series of
La; ,CaMnO; solid solutions. The limiting compositions
with x=0 andx=1 can be regarded as reference points in
analyzing the influence of Ca substitution on the magnetic
properties of LaMn@

. Figure 1 shows temperature curves of the magnetization
\ \ in a static magnetic fieldH=600e for LaMnQ and
! } CaMnQ;. It is evident that for LaMn@the o(T) curve has
OF N s the typical form for ferromagnets, exhibiting a sharp drop in
. . . the magnetization near the Curie temperatdig. For
100 200 300 T7.K CaMnQ; the o(T) curve flattens out, suggesting inhomoge-
FIG. 1. Temperature dependence of the magnetization in a static fiel€ify due to native defectS¢=115K). The magnetic state
H=60 Oe for LaMnQ (1) and CaMnQ (2). of a sample at a fixed temperature can be estimated from the

field dependence of the magnetization. Figure 2 shows the

] ) ) ) ] field dependence of the magnetization for compositions with
by air hardening. Annealing and hardening did not alter thg _ 5 gndx=1 at temperatures of 77 K and 300 K. At room

symmetry of the lattice, but the lattice parameters decreasegemperature ther(H) curves are generally linear for both

The magnetic properties of the £3CaMnO; solid S0 ,mnounds and extrapolate to zero, indicating the paramag-

lgt;()?nSGO‘g(ze meas_greq in the temperaturde r?:nTg'ed netic state. At 77 K the field curves have a nonlinear form, as
e on a vibration ma_gnetometer_a_n a raratays characteristic of the ferromagnetic ordering region. By ex-
magnetic balance. The dc electrical conductivity and magn

. et’rapolating theses(H) curves toH=0 from the region
toresistance were measured by a four-contact procedure W the para-process, we have estimated the saturation
an automated system. magnetizations: 0,=73.8Gcm’g for LaMnO® and
os=1.35Gcnr/g for CaMnQ,. The theoretical values of the
saturation magnetization at=0 for ferromagnetically
In the system of La_,CaMnO; solid solutions the lim-  ordered spins of the M (S=2) in LaMnO; are
iting compositions withx=0 andx=1 must be antiferro- oeo=92.4Gcemg, and for the spins of MW ions
magnetic semiconductors with “Ble temperatures Ty (S=3/2) in CaMnQ we have oy,eo=117.2Gem/g. In
=139.5K Refs. 2 and)3and Ty=131K (Ref. 2, respec- contrast with LaMn@, for which the theoretical and experi-
tively. Deviations from stoichiometry can increase the con-mental values ofos are fairly close togetheftaking into
ductivity and ferromagnetic ordering of the magnetic mo-account the Bloch-law decrease @f as T increasep the

3. EXPERIMENTAL RESULTS

o, emu/g ¢, emu/g
L ) - ]
80 I 11.6
i PP TS 22 o 0600000000800
L »*® 4
601 41.2
i ) FIG. 2. Field dependence of the magnetizatiot at77 K (dark
symbolg and 300 K(light symbols for LaMnO; (curvesl and
40r 108 3, left scale and CaMnQ (curves2 and4, right scale.
201 10.4
,DDDéDDDDDDDC e
3
0 2 4 6 1
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T, K o(H) curves exhibit nonlinear behavior. The saturation mag-
o-T, netizations obtained by extrapolation téi=0 are
2601 n-T. 0s=74.1Gcmlg for x=0.1 and 0,=81.9Gcmlg for

- x=0.3, which are lower than the theoretical values of
20l completely ferromagnetically ordered spins of ¥n

and Mrft ions, oM®=93.9Gcm’g (x=0.1) and
o"®°=97 5 GemP/g (x=0.3).

The magnetization exhibits unusual behavior in solid so-
lutions with compositions 06x=<0.9. Figure 7 shows tem-
perature curves of the magnetization in various magnetic
fields for compositions withx=0.6 andx=0.8. In weak
4 fields theo(T) curves have the usual form for ferromagnets
P with Tc=113K (x=0.6) andT-=98K (x=0.8). Increas-

2 0.4 0.6 0.8 1.0 ing the magnetic field not only spreads out the phase transi-
tion, but also causes the magnetization and the susceptibility
FIG. 3. Phase diagram of the magnetic and electronic states of théo acquire maxima abov&:. Maxima of o and y can be
system La CaMnO,; (Ref. 4: AFMI=antiferromagnetic insulator; ghserved in antiferromagnets nég, in ferromagnets with
Em:::;gng:z::g insul'z;zl:.'ator; FMM—ferromagnetic  metal; 1~ (Ref. 7, or in spin glasses near the freezing point

T¢. To test the onset of the spin-glass state in these solid

solutions, we have measured the depender{dg andx(T)

in two regimes: zero-field cooling and cooling in a magnetic
experimental value ofrs for CaMnQ; at 77 K is two orders field. None of the characteristic spin-glass hysteresis effects
of magnitude lower than the theoretical value. The reason fogre observed af>140K.
this low value ofo is that a large part of the sample exists ~ The temperature dependence of the susceptibility in
in the antiferromagnetic state, or else the measurement terfieldsH =4.5kOe and 8.9 kOe for lggCa gMnO;3 is shown
perature is close td., and long-range ferromagnetic order in Fig. 8. We see that the sample exists in the paramagnetic
significantly damages thermal excitations. state above 300 K, because the reciprocal susceptibility

Schiffer, Ramirezt al*° have plotted a phase diagram obeys the Curie—Weiss law with a paramagnetic Curie tem-
of the magnetic and electronic states of the systenperature®=142K andues=3.93ug (it =4.1ug). The
La; _,CaMnO,. According to this diagraniFig. 3), compo- susceptibi]ity maximum near 200 K is probably associated
sitions having a low doping levex< 0.2, must be ferromag- With the Neel temperature. When the temperature is lowered
netic insulators withT -=160-180K. As the Ca concen- from the highT range, the sample goes from the paramag-
tration is increased (02x<0.5), the solid solutions netic to the antiferromagnetic state. In the paramagnetic
become conducting ferromagnets with hig<270K and range the susceptibility of antiferromagnets does not depend
almost total saturation of the magnetization Tat0. For  on the magnetic field. In the magnetically ordered range (
these compositions we have observed a metal—insulator trar- Tn) the susceptibility of antiferromagnets depends on the
sition and colossal magnetoresistance in the vicinitifff  field, and the higher the field the lower the value of (Ref.

In the interval 0.5:x< 1 the solid solutions must be noncon- 8). We have observed a qualitatively similar pattern in
ducting antiferromagnets. Lay ,Ca MNO5. It is noteworthy that data on the magnetic

We have measured the resistivityp(T) of  properties of Lg,CagMnOs obtained on the vibration
La, _,CaMnO; samples in the temperature range 77—300 Kmagnetometer and magnetic balance, are in good agreement
in magnetic fieldsH<20kOe. The temperature dependencelsee Figs. @) and §.
of patH=0 and (y— po)/po at H=20kOe are shown in The temperature dependence of the magnetization of
Fig. 4. The metal—insulator transition is observed for com-manganites is influenced not only by the magnetic field, but
positions withx<0.3. The maximum negative magnetoresis-also by native defects. For example, the heat treatment of
tance near the transition point is 55%. The magnetoresistané@mples withx=0.6 and 0.8 at 1400 °C and subsequent air
decreases with increasing distance from the transition terrhardening greatly suppress the magnetization in the low-
perature. Samples witk>>0.3 exhibit a semiconductor-type temperature rang&<150K. The magnetization maximum
conductivity over the entire temperature range. Their magneln the interval 200-250 K becomes more pronounced, but its
toresistance is substantially lower. position on theT axis stays the same.

Magnetic measurements have shown that our samples
with a low Ca content are ferromagnets. Temperature curve
of the magnetization in a field =60 Oe for Lg Ca, {MnO; % piscussIoN
and Lg /Ca sMnO; are shown in Fig. 5. The Curie tempera- Magnetic oxides with a perovskite structure ABave
tures determined by the kink method afe=170K (x  important bearing on the experimental investigation of 180°
=0.1) andT;=205K (x=0.3). Field curves of the magne- superexchange through anions, because they are devoid of
toresistance for these samples &t77K and T=300K direct cation—cation exchange and 90° superexchange. The
(above and below ) are shown in Fig. 6. Clearly, at 300 K interaction between identical magnetic ions other than Jahn—
both samples are in the paramagnetic state. At 77 K th&eller ions (Mr**, C**, and Cd") is antiferromagnetic, so
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T T T T T i
50 100 150 200 250 300 FIG. 4. Temperature dependence of the resistivitHat0 (a)
and the magnetoresistance in a field=20kOe (b) for
La; ,CaMnOs (1) x=0; (2) x=0.1; (3) x=0.2; (4) x=0.3; (5
x=0.4; (6) x=0.6; (7) x=0.8.

that the majority of 8-perovskites are semiconducting anti- Mn*" and Mr*" ions. However, it has been shown

ferromagnets. The ideal ABOstructure is cubic Rm3m),  experimentally* that ferromagnetism is possible in noncon-
but perovskites usually have an orthorhombic or rhombohegycting LaMnQ for Mn ions of the same valence. The au-
dral lattice because of Jahn—Teller effects. The symmetry ofyor associates ferromagnetism with the elimination of Jahn—

the lattice is dictated by the relative dimensions of the ionSrgjier |attice distortion and the tendency of the lattice toward
and its tendency toward close-packing. Jahn—Teller effects pic symmetry.

play an important role in magnetic exchange interactions.
The magnetic properties of LaMnased perovskites
were first studied by Jonker and van Sarttérhey discov-
ered that when LH ions are replaced by alkaline-eaih)
ca&’, SPt, and B&" ions, La_,A,MnO; solid solutions in

Goodenougtt has presented a qualitative theory of 180°
superexchange with allowance for the covalent bond, which
depends on the distance. The degree of covalence exerts a
strong influence on exchange interaction antype conduc-

the composition range 0s2x<<0.4 become ferromagnets t|V|ty.. The cfr:tlcallldls(,jtaances between lmaglpet:jc lons for: the
with a high Curie temperaturé.< 280K and metallic con- transition of localize states to nonlocalized states have

ductivity. The onset of ferromagnetism in doped manganites?€€" determined, and semiempirical rules have been formu-
as in pure LaMn@ with an oxygen excess, was identified lated for the signs and magnitudes of the superex_change pa-
with the presence of M ions and was attributed to the "ameters. According to the Goodenough-Kanamori rules, su-
competition of weak ferromagnetic exchange betweed™Mn Perexchange interaction is antiferromagnetic for small lattice
ions, strong antiferromagnetic exchange betweefi’'Mons, ~ Parameters, when the overlap integral of Grbitals of mag-

and strong ferromagnetic exchange betweerfMamd Mr?* netic ions is a maximum. For large lattice parameters, weak
ions1® Zenet* has called attention to the high electrical con- contact of 3i orbitals, and a zero overlap integral, superex-
ductivity of high-Tc compositions and, to account for the change must be ferromagnetic. Consequently, for manganites
onset of ferromagnetism, has proposed a mechanism afevoid of Jahn—Teller ordering Mh-O,—Mn®** and
double exchange with the migration dfelectrons between Mn*'—0,—Mn3" interactions have a ferromagnetic charac-
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ter. On the basis of the theory of 180° superexchange and 4HG. 6. _Field dependence of the magnetization at 7@&k symbols and
analysis of experimental data on the magnetic, electrical, angP° < (1ght symbols for L2, (2, MnOs (1,3 and La 1Ca MNO; (2:4).
crystallographic properties of perovskites Goodenough has
constructed a semiempirical phase diagram for the system
La,_,CaMnO; (Refs. 12 and 18 According to this dia- The replacement of I3 ions by divalent nonmagnetic ions
gram, compositions withk<<0.2 must have orthorhombic or an oxygen excess produces Mrions, creating ferromag-
symmetry and canteghoncollineay antiferromagnetic order, netic order and generating free charge carribrdes. Both
those with 0.2 x<0.4 have rhombohedral symmetry and mechanisms account for the colossal magnetoresistance and
ferromagnetic order, and compositions with €%6<0.9  ferromagnetism in manganites, but when double exchange
have tetragonal symmetry and antiferromagnetic order. occurs, the magnetic state 8 T, must be homogeneous

In the nineties manganites aroused interest after colossatollinear ferromagnetism or canted antiferromagnetism
magnetoresistance was discovered in them. The magnetoré¢hen the Nagaev mechanism is active, the magnetic state is
sistance peak in magnetic semiconductors is normally obtwo-phase in the rangé<T.. The spatial separation of the
served near the Curie temperature and can attain large vdkrromagnetic and antiferromagnetic phases should be mani-
ues. At the present time there is no consensus as to whétsted in the magnetic properties of manganites.
causes the onset of magnetoresistance. Colossal magnetore- To date many papers have been published on the mag-
sistance is attributed either to a double exchange mechaetic, electrical and crystallographic properties of mangan-
nismt*or to indirect exchange and the separation of ferro-tes, but the data can differ even for identical compositions,
magnetic and antiferromagnetic phas®#. should be noted because native defects have a strong influence on these prop-
that the double and indirect exchange mechanisms are quabrties. The investigation of La,CaMnO; samples prepared
tatively similar, but differ in the number of free carriers. by the same technology with different compositionand an

. emu/g o, emu/g
3r 1.5
3\ a
2r 2 1.0 )
FIG. 7. Temperature dependence of the magneti-
. zation for Lg 4Ca gMnO; (a) and Lg ;Ca gMNO3
. (b) in various magnetic fieldg1) H=50 Oe; (2)
5 kOe; (3) 10 kOe;(4) 13 kOe;(5) 2 kOe;(6) 5
1k 7 0.5 kOe;(7) 8 kOe;(8) 10 kOe. The scales af differ
k“"‘-a\ for two curves: 1:3 for curvé; 1:10 for curve4.
O 0440004000000 0
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7. 107 em*/g 1y, 10°g/em® increase ino and y for T<100K, the nonlinear form of the
magnetization curve at 77 K, and the nature of the tempera-
ture dependence af in a weak magnetic field indicate the
presence of a ferromagnetic phase at low temperatures. The
extrapolation of the reciprocal susceptibility to positi@e
also reveals strong ferromagnetic interaction between the
. magnetic moments. The magnetic properties of
) , . ) o La; ,CaMnO; (0.6=x=<0.9) can be explained on the basis
100 300 500 T.K of the Nagaev theoly for the two-phase state of degenerate
L ____antiferromagnetic semiconductors. The presence of'Mn
FIG. 8. Temperature dependence of the susceptibility and the reciprocal + o .
susceptibility for Lg,CaMnO; in fields H=45kOe (1) and and_MrF _ions makes_ the sy;tem ar_nenablg energetically to
H=28.9 kOe(2). partition into conducting and insulating regions. In the con-
ducting regions the carrier density is high enough to establish
magnetic order. However, the entire crystal is still semicon-
ducting(Fig. 4), because a large fraction of the regions exist
in the antiferromagnetic insulator state. At low temperatures
analysis of published data are helpful in separating the influthe magnetization of the crystal is determined by the magne-
ence of doping from that of native defects. tization of the ferromagnetic regions, because the magnetiza-
The magnetic properties of our solid solutions concurtion of the antiferromagnetic regions is close to zero. In the
qualitatively with the phase diagrams of Goodenough anderromagnetic regions the total magnetization decreases as
Ramirez, but a number of anomalies are found. Undope¢he Curie temperature is approached. In the intermediate
LaMnG; exhibits the properties of a collinear homogeneousemperature rang&.<T<Ty the ferromagnetic phase ex-
ferromagnet belowT¢=193K (Figs. 1 and 2. This high ists in the paramagnetic state, and the antiferromagnetic
value of T¢ is probably associated with the presence ofphase is in the magnetically ordered state. The total suscep-
Mn** ions resulting from native defects. The high conduc-tibility is the superposition of these contributions. In the
tivity of this sample and the transition from conductivity of high-temperature range> Ty, the entire sample goes over to
the semiconductor type to the metallic type n€arindicate  the paramagnetic state.
the presence of a fair number of free carrigfg. 4). Doped The form of the temperature curves of the magnetization
samples in the range<0.4 are also ferromagnets. They and the susceptibility of La ,CaMnO; manganites is dic-
have a cubic structure, high magnetoresistance, and a vetgited by the ratio of the volumes of the ferromagnetic and
distinct metal—insulator transition. The magnetic and electri-antiferromagnetic phases. Our investigations have shown
cal properties of La_ ,CaMnO; (x<0.4) can be explained that reducing the oxygen content of samples with0.6 and
on the basis of a modified double-exchange mdddihe 0.8 by heat treatment causes the volume of the ferromagnetic
diffuseness of the magnetic phase transition is attributable tphase to decrease, and the ferromagnetic contribution to be
spin polarons. In the high-temperature range the formation ofuppressed. As a result of heat treatment, these samples ac-
spin polarons is more favorable energetically than the homoguire the typical dependenegT) for antiferromagnets, i.e.,
geneous paramagnetic state. The polarons are small and dden the temperature is lowereb< Ty, the magnetization
not overlap in space. The system as a whole remains pardecreases and is not very large in the lifit0, consistent
magnetic, because the directions of the magnetic momentsith the data of Ref. 4.
fluctuate. As the temperature is lowered the dimensions of The partition into ferromagnetic and antiferromagnetic
the spin polarons increase and they begin to overlap. As phases can also occur in samples having a Ca comtent
result electrons localized near the magnetic moments become0.5. The deviation of the saturation magnetic moment of
delocalized, and the system goes over to the homogeneotizese samples from the theoretical value can be elicited by
ferromagnetic state. the presence of the antiferromagnetic phase. However, the
As mentioned above, La,CaMnO; in the range advent of antiferromagnetic properties is masked by the fer-
0.5<x<1 should be antiferromagnetic. Our samples withromagnetic phase. Possible causes of this behavior are the
0.6=x=<0.9 exhibit properties of both antiferromagnets andsmall volume of the antiferromagnetic phase, the hundred- or
ferromagnets with sharply defined Curie andeNteempera- thousandfold lower magnetization and susceptibility of anti-
tures (Figs. 7 and 8 We identify the magnetization and ferromagnets relative to ferromagnets, and loweNem-
susceptibility maxima in the temperature intervdl  peraturesIy<Tc.
=200-250 K with the Nel temperature, because in the tem-
perature interval - <T<Ty the magnetization depends lin-
early on the field, and the hysteresis effects typical of a spin ~5ncLusion
glass to not occur. Our values of; are in good agreement
with the data of Ref. 4, which giveby=255K for the com- We have shown that the symmetry of the crystal lattice
positionx= 0.6 andTy=205K forx=0.75. However, if the of the system La ,CaMnQOs is lowered from orthorhombic
entire sample existed in the antiferromagnetic stateTfor to cubic when the concentration of divalent Ca ions in the
<Ty, the susceptibility would either have to decrease orsystem is increased. Replacing a portion of thé'Lians by
remain constant as the temperature decreased. The abru@" ions in the range of low concentrations like devia-
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A real-time investigation of the explosive decomposition of heavy-metal azides is reported. A
multichannel instrument configuration designed specifically for the goals of the study is
described; it is capable of measuring the transient conductivity and the spectral and kinetic
characteristics of the luminescence and absorption of exploding samples with nanosecond time
resolution. New phenomena are discovered and analyzed in detail: the predetonation
conductivity and predetonation luminescence of heavy-metal azides. The conductivity of silver
azide in the predetonation state is used to make an experimentally justified decision as to
whether the explosion is driven by a thermal or chain mechanism, in favor of the latter. The sum-
total of the new data provides the basis for the development of an experimentally justified

model of predetonation luminescence and the explosive decomposition process of heavy-metal
azides, including the following principal stages: hole trapping by a cation vacancy,
reconstruction of the center as a result of chemical reaction with the formation of a quasi-local
hole state in the valence band, hole detrapping from the reconstructed center, carrier
multiplication as a result of impact ionization by hot holes, and reconstruction of a local state in
the bandgap, thereby establishing conditions for repetition of the investigated chain of
processes. €1999 American Institute of Physids$$1063-776(99)01311-§

1. INTRODUCTION to investigate explosive decomposition directly. These ex-
periments are set up according to the following schéfhe.

For close to half a century now scientists have been inAn explosion is initiated by an impulsive actidshock, a
trigued by the explosive decomposition of heavy-metallight pulse, an accelerator pulse, ¢tcThe goal is then to
azides(HMAs).! The applied aspect of this unflagging inter- record either the event of an explosiaor, better, the time
est is related to the fact that the HMAs are the simplest andnterval (induction period between the initiating pulse and
hence, the most exhaustively studied representatives of initthe instant of explosion as determined from the accompany-
ating agents and serve as a model object for this class dfg flash of light or fragmentation of the sampl@ising
systemg. high-speed motion picturg$ Clearly, in this experimental

The theoretical aspect of the problem runs much deepesetup only certain global parameters of the process are re-
Until recently it has been impossible to reliably detect acorded, and the main event is excluded from the researcher’s
single instance of a branched chain reaction involving quasifield of vision, viz.: the changes in the characteristics of the
particles in a solid. The explosive decomposition of HMAs issample(or phenomena accompanying these chandesng
indeed of major interest from this perspective. the evolution of explosive decomposition.

By the early eighties a wealth of experimental data had  The situation is reminiscent of circumstances in solid-
been accumulated, and basic notions as to the mechanisstate radiation physics prior to the advent of highly time-
underlying the explosive decomposition of HMAs had beenresolved spectroscopy techniques, which made feasible the
formulated(see the survey in Ref.)2laying the foundation real-time recording of short-lived states; such states are what
for the majority of subsequent research on the probtémm.  define, in the final analysis, the physics of radiation-
our opinion, however, an analysis of these experimental datstimulated processes in soligls.
and the explosive decomposition models developed from The lack of adequate experimental data imparts a specu-
them justify a lingering sense of dissatisfaction. lative quality to existing concepts as to the mechanism of

Culling out papers aimed at narrowly confined applica-explosive decomposition of HMAS® According to these
tions, we discern two experimental approaches to the studgoncepts, the energy transformations of an explosion are es-
of the explosive decomposition of HMAs. tablished by the exothermic reaction

1 The first appr_oach is to investigate _slow HMA decom- 2Ny— Ng— 3N, + Q. 1)
position processes in exposure to heat, light, ionizing radia-
tions, electric fields, and magnetic fieRi5.Obviously, the = Quantum-mechanical calculatiofifor isolated N radicalg
applicability of data from these studies for the constructiongive Q~9-12 eV (Ref. 2. In a solid this reaction is pos-
of a realistic model of explosive decomposition is highly sible if two holes are trapped at contiguous lattice sites. A
problematicaf* cation vacancy is regarded as the most likely site for such

2. The second approach involves experiments designeiapping® The development of an explosion requires that at

1063-7761/99/89(11)/10/$15.00 906 © 1999 American Institute of Physics
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FIG. 1. Block diagram of the experimental configuration for the
investigation of explosive decompositiof@ General block dia-
gram: (1) sample;(2) excitation sourcélaser or electron accelera-
tor); (3) source of the probe ligh{4, 5, 6 optical, acoustic, and
electrical signal recording channels, respectivéb). Block dia-
gram of the signal recording channeld) acoustic sensor(2)
oscilloscope(3) television counting devicd4) interface;(5) com-
puter; (6) conductivity measurement cell7) spectrum instrument
(monochromator or spectrograpti8) photomultiplier;(9) photo-
electron detector.

least some of the enerdy be spent in the reproduction and based on the principles of experimental pulsed radiolysis and
multiplication of holes. Various multiplication scenarios are photolysis techniques.

considered. Most authors assume that the en€¥gg re- The sources of excitatiorinitiation) are a GIN-600
leased in the form of phonons and that lattice heating undemigh-current electron accelerat¢effective electron energy
lies the thermal generation of several electron—hole géirs. 300 keV, current density 1000 A/é&nand pulse duration 3

A so-called “thermal explosion” occurs in this ca¥eA ng and a YAG:Nd" laser \ =1064 nm, pulse duration 30
minority of authors advocate the notion of “chain explo- ps, and pulse energy 0.5—30)mJ

sion” (Ref. 10. The possible mechanism of hole multiplica- The recording apparatus is made up of several synchro-
tion is considered to be photomultiplicatiomr the produc- nized channels.
tion of a hot hole directly as a result of the reactidn with The optical channelconsists of an ISP-51 spectrograph

subsequent multiplication by shock ionizatithnlt must be or MSD-1 monochromator and a photomultipliéfEU-97,
emphasized that even the very fundamental idea of the reagEU-165-1, 14 EU-FM) or FER-7 image-converter streak
tion (1) as a decisive factor in the explosive decompositioncamera. The photomultiplier output signal is sent to the input
of HMAs, apart from any consideration of the chain or ther-of an oscilloscopgS7-8, S7-19 the output of the streak
mal character of the explosion, lacks experimental confirmacamera is sent through a television counting device utilizing
tion. an LI-702 Superkremnikofa highly sensitive image icono-

In our opinion, the entire foregoing discussion indicatesscopg and then through an interface directly into a computer
that the only road to progress in understanding the mechgor processing. The spectral range spanned by the optical
nism of explosive decomposition of HMAs is the develop- channel is 250—1000 nm, and the time resolution is 10 ns or
ment of new experimental approaches that can be used f{getter. By using a spectrograph—chronograph sysiestead
record in real time the variations of the characteristicsof the usual monochromator—photomultiplier combination
(physical propertigsof a sample during an explosion. As the jn the optical channel it is possible to obtain the relaxation
foundation for such an experimental approach we havgattern of a segment of the spectrum400 nm) within one
adopted pulse techniques used in radiation physisdify-  puise (“spectrum-in-pulse” rather than the customary
ing them as necessary in application to the specific attributesyoint-by-point spectrum” techniqu®, a feature that is es-
of the investigation of explosive samples. The results of theential to the investigation of explosiv&one-time only”)
implementation of this approach and an explosive decomposamples.
sition model proposed on the basis of those results make up | the conductivity channelthe current through the
the content of the present article. sample is recorded from the voltage drop across the oscillo-
scope input resistance, which is connected in series with the
sample. When an S8-12 oscilloscope is used, the time reso-
lution is 7 ns and is determined by the oscilloscope; for the

The objects chosen for the investigation were azides 067-19 high-speed oscilloscope the time resolution of the
silver AgN;, thallium TIN;, and lead P@N3),. The azides channel is limited by the parameters of the measurement cell
were prepared in powder form by dual-jet crystallizattén. and is~0.3 ns
The concentrations of the main impuritiése, Si, Ca, Mg, In the acoustic signal channehe sample is attached to
Al, Na) were determined polarographically and by com-the input window of an acoustic sensor in the form of a
plexometric analysis; they were less thart®aL0" cm™3. piezoelectric detector with an intrinsic time resolution

The investigated thallium and lead azide samples were-1 ns. The signal from the acoustic sensor is sent to an
pressed tablets of diameter 10 mm and thickness 300—4Q8scilloscope.
pm for the thallium azide and 2.5 mm and 3040 for the The channels are synchronized by means of references
lead azide. The silver azide samples were whiskers witlpulses generated by the input of an initiating pulse to a de-
characteristic dimensions 0x0.05<10 mm and “macroc- tector (scattered light from a laser pulse incident on a pho-
rystals” with characteristic dimensions X8X3 mm. The todetector, direct action of a laser pulse on the acoustic sen-
crystals were grown from solution by a procedure describedor, etc). The time-referencing error limits of the signals of
in Ref. 12. The density of cation vacancies in the crystalghe various channels are3 ns. A detailed description of the
was less than #cm™2 (Ref. 12. equipment configuration used in the investigation is given in

The instrument configuration used in the stfig. 1) is  Refs. 3, 4, 13, 14.

2. OBJECTS AND PROCEDURE
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J» arb. units synchronous measurement of the conductivity signal and the
acoustic signal. The onset of the sample deformation that
eventually results in its mechanical fragmentati@xplo-
sion) was determined from the leading edge of the acoustic
sensor signal.
. . . ‘ ) The sample conductivity preceding the leading edge of

0 100 200 300 400 500 the acoustic signdFig. 2b corresponds to the intact sample,

L ns i.e., it can be identified with the predetonation conductivity.

&, p, arb. units A detailed analysis of the observed predetonation conductiv-
1.0 b ity reveals the following behavior.

1. As the energy of the initiating pulse is varied in the
interval 3—10 mJ, the induction peridthe time interval be-
tween the initiating pulse and the onset of predetonation con-
ductivity) decreases monotonically and attains 20 ns.

2. The amplitude and shape of the predetonation conduc-
tivity pulse do not depend on the energy of the initiating
pulse.

0.5

n- 107 ¢m3

Lo c 3. The maximum values of the recorded current pulses
correspond to predetonation conductivities 10000 1
.cm L,
0.5 4. The -current-voltage curves measured from the
Ing i maxima of the current pulses are linear.
0 20 40 60 80 100 120

tLns . ) . .
3.2. Chain-reaction explosive decomposition

FIG. 2. Kinetics of the explosive conductivity of AgNtrystals:(a) com- .
plete oscillogram of the current pulséy) initial segment of the explosive The fundamental prObIem of the nature of the eXpIOS'Ve

conductivity pulse(predetonation conductivily (1) conductivity; (2) lead-  decomposition of HMAgchain or thermaf) can be judged
ing edge of the acoustic signat) approximation of the kinetics by E(): on the basis of the reported data.
the solid curve is calculated from E(B)', and the dots represent the values We estimate the density of band carriers at the maximum
of n calculated from the experimental values aof (o=enu, -1 _q . s
u=10cn?-V~1.s71) andt, andn, are the time and number density cor- (~103 ""-cm™7) recorded predetonation conductivities.
responding to the emergence of a current signal that can be reliably detectedV/e invoke the well-known relatior=enu, whereo is the
conductivity, e is the electron charge) is the density of
band carriergin light of the approximate nature of the esti-
mate, we make no distinction between electrons and holes
The first series of experiment to find and investigate theand  is the drift mobility.
conductivity of HMAs during explosive decompositi¢ex- For u~10cn?-V~1.s7! (Ref. 7 the conductivity o
plosive conductivity was set up as follows. A silver azide =10°Q'-cm™* corresponds tm~5-10?cm 3,
whisker with characteristic transverse dimensions 100 The resulting estimate af as an approximation of the
X 150um? was mounted in an aijor vacuum gap between characteristic values for metals indicates the very unusual
electrodes of width 2 mm. The explosion was initiated by astate of the material in the predetonation phase, which can
laser pulse. Uniform initiation was ensured by making theprobably be regarded as a special kind of phase transition.
beam cover the entire length of the interelectrode gap andhis value ofn can serve as a reference point from which to
having the energy of the exciting photons=£1064 nm) fall make an experimentally justified decision between the con-
within the transparency region of the crystaptical width of ~ cepts of thermal and chain explosions of HMAs.
the silver azide bandgap 3.5 eV, thermal width~1.5eV, We analyze whether the valume=5-10°cm 2 is realis-
Ref. 15. tic from the standpoint of the thermal mechanism of explo-
3.1, Predetonation conductivity sion. The thermal width of the silver azide bgndgapE'bs
- ~1.5eV (Ref. 15. Assuming the approximations
A typical profile of the explosive conductivity pulse is ~ngexp(~E4/kT) and no~107?cm™3, we infer that the
shown in Fig. 2a. The simplest explanation of the observedaluen~5-10?°cm2 corresponds td~7000 K. We need
kinetics is that the rise of the conductivity in the first peak isnot be troubled by the crudeness of the estimate, because
associated with the still intact crystgdredetonation conduc- attempts to include such factors as the decrease in mobility
tivity ), the decay of the first peak corresponds to rupture ofvith increasing temperature, the influence of electron—
the discontinuity of sample due to growing stresses induceélectron scattering, the true density of states, etc., can only
by decomposition, and the next rise is associated with theaise the required values df. The value obtained for is
conductivity of the explosion productplasma. totally unrealistic inasmuch as the melting point of silver
The next series of experiments was set up to test thiazide is~523K (Ref. 2. Consequently, the experimental
hypothesis. A sample was mounted with its lateral facevalues ofo in the predetonation state unequivocally rule out
against the input window of the acoustic sensor to permithe thermal mechanism of explosive decomposition and can

3. EXPLOSIVE CONDUCTIVITY
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be regarded as direct experimental proof that the explosion 1, p, arb. units
of HMAs is a chain reaction. Lor |
0.8} |
0.6} ! 1P
3.3. Kinetics of the predetonation conductivity 0.4} }
The confirmation of the chain-reaction character of the 0.2} ;'
explosion of HMAs underscores the urgent need to analyze e A
the kinetics of the growth of the predetonation conductivity 0 200 400 €00 800
as a mirror of the kinetics of the evolution of a chain reaction ’
of explosive decompositioﬁ_ FIG. 3. Kinetics of the explosive luminescence of AgNvhiskers

The foIIowing equation represents the simplest Versior{)\=550 nm, laser pulse initiation, crystal mounted on the input window of
the acoustic sensprthe solid curve represents the laser signal, and the

gz ‘)”1 quantitative descrlptlon of kinetics of the type in Fig. dashed curve represents the leading edge of the acoustic signal.
C).

dn/dt=an-—gn’, @) On the basis of these results, therefore, we can advance
wheren is the density of holegelectrons. what seems to us an adequately grounded hypothesis: The
The solution of Eq.(2) subject to the initial condition growth of the chain reaction of explosive decomposition of
n(tg)=ngq is HMAs is governed by a monomolecular process: the capture
expla(t—to)) of holes by cation vacancies, and breaking of the chain is
n(t)= — 0 —, (3y 9overned by the bimolecular interband recombination of
n..~(expla(t—to)) —1)+ng electrons and holes.

wheren,, is the density on the plateau, atgland n, are

the time and density at which the conductivity attains a*- EXPLOSIVE LUMINESCENCE

value that can be reliably measured. The valuenofn The shape of the light pulse accompanying the explosive

Fig. 2c) is calculated from the relationr=enu with  decomposition of a heavy-metal azitfg. 3) resembles the

u~10cnf-V'hst (Ref. 7. We emphasize that the shape of the current pul§&ig. 2a)] and suggests that this

parametersy, Ny, andn., in Eq. (3) are evaluated directly |uminescence has two components: predetonation lumines-

from the experimental curve, and the only fitting para-cence(the first maximum and luminescence of the explo-

meter is a. For all the investigated samples lies in  sjon products(the next ris¢ In any case, the part of the

the interval 16-1Fs™', and B lies in the interval |uminescence leading the onset of the acoustic sitfigl 3

10 1-10*cn?.sh is unquestionably associated with the intact sample and can
The good approximation of the experimental curveshe identified as predetonation luminescence.

[Fig. 2(c)] by Eq. (3) casts doubt on the widely acceptéd _ _ _

(but unproved opinion that the main exothermic reaction of 4.1. Pr.edetonatlon luminescence and luminescence of the

the HMA decomposition is bimolecular. Indeed, the simplestexIOIOSIon products

interpretation of Eq(2), whose solution is given by E@3), Figure 4 shows a streak photograph, taken from the

is that the growthbranching of the chain is governed by a screen of the FE camera, of time-resolved spectra of the

monomolecular processx(l), and its breaking is a bimo- explosive luminescence of an AgNrystal. Two essentially

lecular processgn?). different types of luminescence are clearly distinguished in
To advance a sensible hypothesis as to thehis streak photograph: initially wideband luminescence of

nature of the corresponding processes, it is helpful tdhe sample followed by discrete-line luminescence of the

analyze the experimental valuea~10°P-10°s ' and explosion-generated plasma.

B~10"11-10 2¢cm?.s™L. The simplest approach is to start In the spectra of the plasma generated by explosion of

with 8=vS;, wherev is the thermal electrothole) veloc- the HMA we can identify metal linessilver, thallium, and

ity, and S, is the cross section of the process induced bylead, along with certain nitrogen liné%(see Table )l An

breaking of the chain. Fov~10"cm:s™* we have S,  unidentified line in the vicinity of 770 nm is also observed in

~10 -10 9cn?. These values are typical of indirect in- all the HMAs.

terband recombinatiott, i.e., the simplest interpretation of The wideband luminescence is the most interesting com-
bimolecular breaking of the chaifgn?, is the interband re- ponent from our point of viewFig. 5. The spectrum of this
combination of electrons and holes. luminescencdor at least part of jtcannot be described by

The simplest interpretation of the linear growth of athe Planck formula, attesting to the nonthermal character of
chain an is the trapping of a hole by a point defect. In this the process. This conclusion is further corroborated by the
casea=vSN, wherev is the thermal velocityS, is the qualitative appearance of the spectr@especially for thal-
capture cross section, and is the density of defects. For lium azide (Fig. 5 and the nature of the kinetidgecay of
v~10"cm-s™! and N~10®cm™2 (the usual density of the signal intensity before onset of the plasma spectrum; see
cation vacancies in silver azide whiskersve obtain  Fig. 4). All told, these considerations mean that the light
S~10 cn?, i.e., the characteristic capture cross sectiorradiation preceding the explosion can definitely be identified
for trapping by an attractive cent&t. as predetonation luminescence?
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FIG. 4. Streak photograph of the explosive lumines-
cence spectrum of a AgNmacrocrystal, reproduced
from the screen of the image-converter streak camera:
(a) predetonation luminescence regidb) region of lu-
minescence of the explosion products; thandt axes
indicate the direction of increasing wavelength and time
over the screen.

We now discuss certain properties of this luminescencegonjecture, and arguments supporting it will be given below
which are essential to the understanding of its nature and thie our discussion of the predetonation luminescence model.
mechanism of explosive decomposition on the whole.

1. In all the objects the short-wavelength boundary of theductivity and the predetonation luminescence show that this

3. Synchronous measurements of the predetonation con-

luminescence lies in the transparency region. Attempts tduminescence is observed in the range of very high band
detect shorter-wavelength luminescence by means of momarrier densities{ 10?°cm™2).131® Even at far lower densi-
sensitive equipment have been in vah'®This result means ties defect-related luminescence saturation effects are usually
that the photomultiplication process discussed in Ref. 5 caobserved? (Recall that the concentration of impurities in the
be eliminated below as a possible mechanism of hole multias-prepared samples is less thah’tth3.) Moreover, pro-
plication. cesses of absorption by band carriers become significant at

2. A large part of the predetonation luminescence specsuch densitie$? Essentially structureless predetonation ab-
trum corresponds to a photon energy greater than the thermsbrption has been observed experimentally in silver aZide.
width of the HMA bandgap{1-1.5eV; Ref. 1h We must It is highly probable that the decay of the predetonation lu-
therefore be dealing with hot luminescerféélhis is a rig- minescence intensity prior to the onset of plasma lumines-
orous assertion for the part of the spectrum witha>E,. cence(Fig. 4) is attributable to resorption processes. This
For the part of the spectrum witho <E4 the statement is a conjecture will be proved in Sec. 4.2.

TABLE |I. Identification of lines in the luminescence spectra of HMA de-

composition products.

4. It has been shovirthat the mechanical fragmentation
of a sample is preceded by partial melting. Consequently,
predetonation luminescence is observed at close to melting-
point temperatures, at which luminescence is usually
extinguished?2?

Spectral line,
Material Band No. nm Identification
1 593 Ag(521 nm 4.2. Kinetics of predetonation luminescence
AN 2 ggg AEI((55‘;35 ;m The kinetics of the recorded predetonation luminescence
o\ n . . . . . i
1 769 Unidentified line signal (Fig. 3 does_ r_10t reflect the_tru_e kinetics of Fh|s lumi
5 834 N(822 nm) nescence and definitely not the kinetics of explosive decom-
position. This disparity is associated with the following con-
1 505 N (505 nm ; ;
Some siderations.
2 523 Unidentified line . . . .
3 592 N (593 nm) 1. The true luminescence kinetics is distorted by resorp-
PbN, 4 679 N(672 nm) tion processes.
5 724 Pb(722 nm 2. The nonuniform excitation of the macrosamples used
6 773 Unidentified line in several experiments can have the effect of superimposing
! 828 N (822 nm the kinetics of propagation of the reaction zone through the
1 532 TI(535.046 nm sample(detonation waveon the basic chain-reaction kinet-
2 588 N* (593.179 nr-594.167 nmh ics.
TIN; i sii S (_354'&_77(]??”‘ To rule out the influence of these factors, we have per-
: 815 ergf;;aiee n:;e formed experiments involving synchronous measurements of
6 870 Unidentified line the predetonation luminescence and the absorption of silver

azide whiskers in the presence of laser pulse initiatisn (
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wherel (1) is the recorded luminescence intengiymines-

1.25¢ cence signa) andD(t) is the optical density of the sample.
100k a The resorption-corrected luminescence kinetics is found
to be represented by a curve that levels off into a plateau
0.751 [(Fig. 6(b)] and is very similar to the kinetics of the predeto-
0.50F nation conductivity(Fig. 2). The similarity is more than out-
ward appearance. The corrected luminescence kinetics, as in
0.25¢ the case of the predetonation conductiviBig. 2), is well
(;.2 lf4 1?6 T3 2T0 ey approximated by the solution of the equation
E, eV di
— 2
N . arb. units dt al=Bl1%, ©
Look b which has the form
0.75t expla(t—t
()= = e (®)
0.50+ o (expla(t—tg))—1)+1,
0.25¢ wheret, is the time at whicH (t) attains a valué, that can
0 . . . . be reliably measured, and, is the value ofl(t) on the
12 14 16 18 20 22 plateau. As in the case of the predetonation conductivity, the
E eV value of the constant in Egs.(5) and(6) lie in the interval
a=10F-10 s ! for different samples.
Ny, arb. units In our opinion, the agreement of the predetonation con-
1.oor c ductivity and luminescence kinetics is a very important fact
: and indicates that they reflect the kinetics of the basic pro-
0.75 | cess: explosive decomposition. This fact must be taken into
050+ account in constructing a model of predetonation lumines-
- cence and explosive decomposition on the whole.
0.25}
0 . ; . . . .
12 14 16 18 20 2% e%/A 4.3. Model of predetonation luminescence

FIG. 5. Predetonation luminescence of HMA&) AgNs; (b) Ph(N3),; (€)

TIN,.

=1064 nm). Using this type of excitation and whisker crys-
tals enabled us, as in the measurements of the predetonation
conductivity, to make the excitation uniform and thus pre-
clude the influence of detonation processes. The synchronous
measurement of luminescence and absorpf@irone wave-

length also provided a means for taking into account the
distortion of the luminescence signal kinetics due to resorpg. |
tion, i.e., to determine the true luminescence kinetf€s).

The predetonation luminescence properties are such that
the range of possible models of the phenomenon can be nar-
rowed down considerably.

Above all, the conditionzw>Ey4 and the absence of
temperature extinction of this luminescence rule out all the
kinds of luminescence associated with local centgfé.
Comparison of the spectra of the pre-explosion lumines-
cence with the band structure d&t&?°also serves to rule
out such forms of fundamental luminescence as edge, exci-
ton, and cross-luminescent®&?2

Consequently, of all the known types of luminescence
m solids, the only remaining candidate is intraband lumi-
nescence due to radiative transitions of hot electrons and

6). o :
L . ' holes within the conduction or valence band, respec-
Resorption is taken into account by the expreséion . 2227 .
tively.“=“" However, we have not been able to discern any
I[(t)=1,(t)D(t)(1—exp —D(t))) 1, (4) reasonable correlation between the band structure of the in-
1, arb. units D I, arb. units FIG. 6. Predetonation luminescence kinetics of a
1.0 1.5 Ll silver azide whisker ak =550 nm(laser pulse ini-
1.5t -~ tiation): (a) luminescence signdkolid curvg and
1.0 X optical absorptiodashed curve (b) luminescence
05 1.0f kinetics with allowance for resorption, calculated
: 0s .. 7 from the experimental values of the luminescence
S 0.5t b signal and the optical density according to E4).
- 0 ="‘;q,0 (dashed curveand calculated according to E(p)
el . - A : Lot y . - - . (solid curve; t, is the time at which the lumines-
0 550 75 100 l2§ n;SO 0 25 50 75 100 12? n;SO cence signal attains a valug that can be reliably

detected.
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vestigated objects and the predetonation luminescence spec-
tra, which is one of the basic methods used to identify intra-
band luminescenc¥.

An altogether different picture emerges when the va-
lence band is assumed to contain quasi-local hole states. If a
level corresponding to a quasi-local hole state is present in
the interior of the valence band at a distance of 3.2 eV from
the top of the valence band in silver azide, at 3.4 eV in
thallium azide, or at 3.6 eV in lead azide, a distinct correla-
tion is observed between the luminescence maxima and the
density-of-state peak&ig. 7).2 However, attempts to obtain
an analogous correlation for a level corresponding to a quasi-
local hole state in the conduction band have failed.

The sum total of these considerations has led us to pro-
pose, as a model of predetonation luminescence, intraband
radiative transitions of valence-band electrons into quasi-
local hole states situated in the depth of the valence band
(Fig. 7). Inasmuch as the lifetime of a hole in a quasi-local
hole state is at most 10™ **s (Ref. 28, these states must be
generated continuously during explosive decomposition.

At this time we do not see any alternative explanation
for predetonation luminescence. The proposed model nicely
accounts for all the observed properties of this luminescence.
It is extremely unlikely that the correlations of the positions
of the luminescence maxima for the three obje(iso
maxima in silver and lead azides, and four maxima in thal-
lium azide are accidental. We therefore assume that the ad-
equacy of the proposed model, if not proved directly, is
highly probable.

One other remark has very important bearing on the
what follows. The detrapping of holes from a quasi-local
hole state produces hot holes, which can cause hole multipli-
cation as a result of impact ionizatihand, hence, to the
development of a chain reaction.

5. MODEL OF THE EXPLOSIVE DECOMPOSITION OF
HEAVY-METAL AZIDES

We first state the main principles on which the model of
explosive decomposition must be based.

1. The chain-reaction character of explosive decomposi-
tion has been proved experimentallyec. 3.2. The decom-
position kinetics is described on the assumption that the
growth of the chain is linear, and its breaking is a quadratic
procesgSecs. 3.3 and 4)2

2. Experimental estimates of the cross secti@ex. 3.3
support the assumption that the branching of the clizate
multiplication) is determined by the trapping of holes by a

N,. arb. units
0.5 I

S -+ N,, arb. units
, Rl

4+

s

E, eV
_6_
N,, arb. units
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N o 05 I g

Ne

4 .
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cation vacancy, and breaking of the chain is determined byG. 7. Comparison of the spectra of predetonation luminescécand

indirect interband recombination.

the density of states in the valence baiwl for silver, thallium, and lead

3. Photomultiplication of holes is not a Contributing fac- azides;E; andN, are the scales for the density of stateés,andN, are the

tor in the growth of the chain. The principal mechanism of

scales for the predetonation luminescence spectrumEgris the position
of the quasi-local level for best correlation between the maxima of the

hole multiplication is the impact ionization of hot holes predetonation luminescence spectrum and the density of states; the arrows

formed in detrapping from a quasi-local hole stédecs. 4.1
and 4.2.

The chain reaction of the decomposition of HMAs does
not cause molecular nitrogen to form in the cryStal.

These experimentally substantiated principles can b@roposed model.

used to formulate the main questions that need to be an-

indicate optical transitions of valence-band electrons into a quasi-local state.

swered(at least at the level of a working hypothesiy the

1. What are the processes by which hole trapping by a
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decomposition reaction.
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cation vacancy leads to the formation of an actual quasi-locahe results of calculations of the reacti@h) in Ref. 2, we
hole state? can state with some certainty that the process in question is

2. How is the reproduction of cation vacanci@ the exothermic. In this case, we can assume by reasoning similar
centers that take their placenaintained during decomposi- to that in Refs. 3 and 4 that the released energy is stored as
tion? What is the necessary condition for the experimentallthe potential energy of a hole in a quasi-local hole staig.
observed invariance of the quantitdyin Eq. (2) as the den-  8).
sity of band holes is varies in the interval'#010?°cm3? According to data obtained in the investigation of pre-

A proposed monohole chain-reaction modelapplica-  detonation luminescend&ec. 4.3, the depth of this state is
tion to silver azide satisfying the stated requirements is 3—-3.5 eV. Multiplying the latter by Avogadro’s number, we
shown schematically in Fig. 8. The figure shows only theobtain the total energy that must be released in the complete
main processes underlying chain growth and terminating irlecomposition of one mole of silver azide if the proposed
the production of a hot hole and the restoration of a locaimodel is correct. This quantity~3 J/mol) is close to the
level in the bandgap. The well-known processes of impacexperimental energy release in an explodfpthis proximity
ionization by hot holed® which cause hole multiplication, can be regarded as evidence of the adequacy of the model.
and interband electron—hole recombinafféiwhich causes Consequently, the end result of this stage is the onset of
the chain to break, are omitted to avoid cluttering the figurea quasi-local hole stat@ig. 8), which is responsible, in par-
unnecessarily. For the same reason, neither are the radiatitieular, for predetonation luminescen(@ec. 4.3. According
transitions responsible for luminescence shown, as they d® the proposed model, the density of these states is propor-
not affect the energy behavior of the process. The total protional to the density of band holes, thereby reconciling the
cess in question is conveniently divided into three stages. kinetics of the predetonation conductivity and predetonation

1. Hole trapping at a cation vacanciFig. 8. The pa- luminescence. It must be emphasized that because the intra-
rameters characterizing the process have been establishedgand luminescence vyield is less thar tqRef. 27, it pro-

Sec. 3.2:5~10 cn?;, 7~10 °s. The end result of this vides us with a good indicator of the multiplication process
stage is the transformation of an extendddtrappefistate  without influencing its overall kinetics.

(band hol¢ into a radical trapped at a cation vacancy, i.e.,  The slowest process in this stage is the migration of
the formation of a nonequilibrium\{;, N3 cluster. Inas- heavy particles during reconstruction, i.e., the duration of the
much as the duration of this stage greatly exceeds the duratage is~10 **s.

tion of the subsequent stages, it is the stage that controls the 3. Hole detrapping(Fig. 8. The lifetime of a hole in the
kinetics of the process. quasi-local hole is normally no longer than10 4s (Ref.

2. Formation of quasi-local hole states due to recon-28). A hot band hole having an energy of 3—-3.5 eV is gen-
struction of the(V,, NY) cluster in interaction with neigh- erated in hole detrapping. This process can be regarded as
boring N; andAg™ ions We an assume that the reconstruc-transfer of the potential energy of a hole in a quasi-local hole
tion process begins with the formation of a molecular bondstate into the kinetic energy of a hot hole. Consequently, hot
between a R radical trapped at a vacancy and a neighboringholes with energies greatly exceeding the width of the HMA
N; ion (NJ+N;—Ng). This process is analogous bandgap(1—1.5 eV, Ref. 1l are generated. This energy is
to the well-studied self-trapping of holes in alkali-halide transformed via two channels: impact ionization, which leads
crystalst®?° (Quantum-chemical calculations of the reactionto the multiplication of band holes and electrons, and phonon
NJ+N; —Ng for isolated radicals and data on the experi-emission, which causes the sample to heat up, but does not
mental observation of short-livedgNradicals in solutions by  support multiplication.
pulsed photolysis are given in Ref.)3@nlike alkali-halide According to existing notion¥ at hole energies above
crystals, however, the completion of this reconstruction prothe threshold level, which is usually only slightly higher than
cess most likely has the effect of “smearing” the hole waveEy, the probability of impact ionization is close to unity.
function throughout a\{;, Ng, Ag) cluster.(An analogous Thermalization due to phonon emission becomes predomi-
process occurs in AgCl, in which the self-trapped hole is anant at below-threshold energies. In application to the
(AgClg)*~ cluster®! scheme of the model this means that the probability of im-

Unfortunately, calculations that could be used to esti-pact ionization for holes detrapped from the quasi-local hole
mate at least approximately the energy released in this stageate is close to unity, i.e., each link of the chain induces
are nonexistent at the present time. However, making use afoubling of the number of holes or, in reactor terminology,
the fact that the resultant state is close @;ama relying on  the hole multiplication factor is equal to 2. On the other
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hand, the sample is heated by phonon emission during thiion can reverse, and processes at preexisting defects can
thermalization of holes and electrons whose energies fall beplay a decisive role. One of the simplest ways to take this
low the threshold. fact into account in the formal kinetics is to write that
A fundamental question arises: What happens at the loappears in2) in the forma=f—g(t), wheref andg(t) are
cal density-of-states peak corresponding to a quasi-local holéae rate constants of hole trapping by cation vacancies and
state before hole detrapping? In other words, where does tHgy competing centers, respectively. The dependeydég
level corresponding to the/(., NgAg) ~ cluster(Fig. 8 go?  could be supported, for example, by the “burnout” of these
Above all, we call attention to the fact that th&(Ng Ag) centers during initiation. Inasmuch as a chain can grow only
cluster maintaining the presence of the quasi-local hole statender the conditionr>0, (i.e.,g<f), the threshold charac-
in the depth of the valence band is neutral relative to thder of initiatior? can be attributed specifically to the need to
lattice. But the ¥/, NgAg) ™ cluster, which is the result of maintain sufficiently “complete burnout”d<f) under the
detrapping, has a negative unit charge relative to the latticénfluence of the initiating pulse.
i.e., this cluster has the same charge as the cation vacancy. In closing, we wish to call attention to a certain funda-
As a rule, the position of the energy level of a defect in themental aspect of the problem that far transcends the issue of
band diagram is strictly decided by its chafjewe can exposing the mechanism underlying the explosive decompo-
therefore assume with reasonable certainty that the positiogition of heavy-metal azides. We feel that the information
of the cluster level does not differ much from the position ofpresented in the article convincingly demonstrates an ex-
the level of the original cation vacancy. Since the transitioriremely interesting possibility for the achievement of chemi-
of the cluster into the equilibrium state is accompanied bycal reactions in solids. A necessary condition for chemical
the migration of heavy particles, the duration of this stage igeaction to take place in gases and liquids is that the reacting
also~10 s, partners(radical$ must move in such a way as to encounter
Consequently, the detrapping of a hole from a quasiOne another. In a solid, on the other hand, a totally different

local hole state eradicates the density-of-states peak from tifétuation can be realized. Electron excitations are in motion,
valence band and introduces a local level in the bandgap in@nd their trapping at select sites of the crystal lattiae
position close to the level of the isolated cation vacancy. Thétructural or impurity defecjscauses actual radicals to be
emergence of this level establishes conditions for the abovdormed at the necessary site. Consequently, the long-term
described chain of processes to be repeated, i.e., for the chaiigration of heavy particleusually by diffusion is super-
reaction to continue. In other words, from the standpoint ofseded by the far more rapid migration of electron excitations.
the processes discussed here the system can spontaneou8lpur opinion, the fascinating prospects for the utilization of
return to its initial state many times. In the proposed modelthis possibility have not yet been fully appreciated in the
therefore, the growth of a chain reaction does not require therodern physics and chemistry of the solid state.

generation of new vacancies, a result that fits in very well
with the experimentally observed invariance of the quantitylvIitr

ain Eq. (2) as the density of band e!ectroﬂs;oles) Varnes | Krasheninin and V. G. Kriger for productive discussions.
within a range of two orders of magnitude.
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This paper studies the effect of the inner structure of domain walls on the stability of an isolated
stripe domain localized in a thin ferromagnetic film against a pulse of magnetic field

applied perpendicularly to the film surface. It is found that the value of the critical amplitude of
the pulsed signal strongly depends on the value of the magnetizing field in which the

system was initially placed. It is also established that the difference on stability of domains with
unipolar and bipolar walls in pulsed fields diminishes as the amplitude of the magnetizing

field decreases. Finally, the dependence of the region of stability in a pulse field on the parameters
of the system is determined for various domain types. 1999 American Institute of
Physics[S1063-776099)01411-7

1. INTRODUCTION conditions for stability of an equilibrium system and the
spectral characteristics of spin-wave excitations. However,
The structure of the magnetization of a nonconductingsince the size of the ferromagnet was infinite, the contribu-
ferromagnetic system is determined by solving the Landau-tions of the fields generated by the scattering from the sur-
Lifshitz equations and the equations of magnetostatics simuface inhomogeneities of magnetization had to be ignored.
taneously. Generally, these equations are nonlinear and coBut such fields always exist in real systems, and their effect
tain integral terms, which makes them impossible to solvedoes not vanish in the limit —< (hereL is the thickness of
analytically. A more or less complete analysis can be carriedhe film). In this case the value of the scattering field acting

out for simplified models of elements of magnetic structuresOn @ stripe domain tends to the limitzM,, whereM, is the
among which is the isolated stripe domain and a lattice ofaturation magnetization of the matefiaflence the research

whose results are reported in the papers cited above is of

stripe domains in a film with perpendicular uniaxial anisot- ‘ Cf h thodoloaical vi it onl del
ropy. The literature devoted to the investigation of such sysln erest from the methodological viewpoint. Jnly a mode

tems both theoretically and experimentally is vésie, e.g., that allows for scattering from the surface can be considered

L . meaningful.
Refs. 1-3. There are a number of topics in this field of The theory of the approximate solution of the singularly

Fes‘?amh whose study is extremely difficult. Among such tOIf)'perturbed equation describing the structure of magnetization
ics is the allowance for the combined effect on the domainy o, isolated stripe domain in a thin ferromagnetic field was
properties of the magnetostatic field of scattering and th@jeveloped in Refs. 13 and 14. A unified approach based on a
exchange interaction. To resolve the problem, one musiethod developed in those papers made it possible to allow
solve a nonlinear equation containing an integral term ofor the effect of the magnetostatic and exchange interactions
magnetostatic origin. on the domain structure and to determine the limits of appli-
Several simplified models are used to overcome theseability of the model of geometric DW.
difficulties. For instance, in a model widely used in studies  Here we will discuss the stability of an isolated stripe
of properties of magnetic domains, the domain wébd$v)  domain bounded by unipolar and bipolar domain walls
are interpreted as infinitely thin geometric boundaries withagainst a step magnetic-field pulse. We will also compara-
their own surface energy. Within this approximation the de-ively analyze the stability of the given structures, determine
pendence of the properties of domain structures on the p;;he relationship that exists between the critical amplitude of
rameters of the material and the thickness of the ferromagi'€ Pulse and the initial value of the magnetizing field, and
netic film was found~" However, this model does not analyze the dependence of this relationship on the param-
correctly describe the state of the domains when their widttFte"s of the material.
becomes comparable to the DW thickness and forces of the
exchange interaction come into play.
In another limiting case the solutions of the Landau—
Lifshitz equations are determined for the model of a ferro-, HynamicAL EQUATION FOR THE PARAMETERS OF A
magnet of infinite dimensions. The various properties of arsTRIPE DOMAIN IN A THIN FILM
isolated domain in such a system were studied in Refs. 8—12.
Among the topics investigated by the researchers were the The magnetic energy functional,

1063-7761/99/89(11)/7/$15.00 916 © 1999 American Institute of Physics
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E—deaaMz'BMZHM
=),V 2l 5] ~2MimHM:

To describe the magnetization state of the system with
+Em, the energy density given by4), we write the Landau—
0 Lifshitz equations in terms of angular variables:
(92

1 1 2 2
E=—deVdv'M-r'M-r— 290 o[ 99
"2 )y )y (rOM;(n0 -~ 2| 1417 2

is our starting point in describing the properties of an iso-

X; axjlr—r’| 2
) ) ) o m A
lated stripe domain. Herg,, is the energy of the intrinsic =—¢ehy' cosep cosfé—¢| h,—h;'— —]siné, (5a
- Lo . . or

magnetic field, repeated indices imply summation, arehd

B are the constants of exchange interaction and uniaxial an- g
isotropy, respectively. The anisotropy axis is parallel tozhe | 5SI
axis and is perpendicular they plane of the film, andH, is

sin# cosé

sing, (5b)

deo m a0
nzeﬁ——s(hx Sing E

the external field, which is perpendicular to the film plane. where e=B1<1, I=\Jalf and r=tw,; here w,
Since the magnetization vectbt in nonconducting fer- =2uoMo/% and u, is the Bohr magneton.
romagnetic materials meets the conditiif=M?2, we can The right-hand side of E¢5b) contains a small param-
express its components in terms of the angles in a spheric&fer, with the result that one of the partial solutions of this
system of coordinates: equation in the zeroth approximation énis independent of
) the variablex. We examine this solution in greater detail and
My sinf cose determine the state of the isolated stripe domain that corre-
My | =Mg| sinfsing |, (2)  sponds to it.

M, cosé We formally expressp and 6 as functions of and 7:

whered and¢ are the polar and azimuthal angles in a system P61 = po(1) Fe@r(X,7)F -,

of coordinates in which the axis is the polar axis and the O(X,7)=6pteby+---. (6)

angle ¢ is measured from the direction. o Here the correctiorp; can be found by solving the equation
We will assume that an isolated stripe domain oriented

parallel to they axis, so that the magnetization is uniformly Izi

distributed along this direction. X
As shown in Ref. 14, in thin ferromagnetic films of

thicknessL whose value is such that (A)?<16 (with A

=\ aldw the magnetic lengih the effects of DW twisting

are very weak and hence we can assume that the DW strug- . . : .
. . . N and side of Eq(5a) is a singular perturbation.
ture is approximately uniform in thickness.

Thus, reasoning within these approximations, we con To solve Eq.(5a), we use the perturbation regularization
, , - 13,14 ; iaht- -
clude that the angleg and # depend only on one spatial ”?e‘h"d- To this end we add to the ng_ht and Ief_t hand
X . . . sides of Eq(5a an effective operator- ¢h siné (hereh is a
variable,x, which makes all calculations much simpler.

S : parameter that is generally time-dependleantd write Eq.
Integrating in(1) with respect toy andz, we get (54 as follows:

dey

sir? GOW =

) 6\ .
o sin <po—¥) sinéy. (7)

As for Eqg.(5a), standard perturbation-theory technigues can-
not be used in the solution, since the external field dramati-
cally changes the system state, with the result that the right-

Ezmzsf dx W(6,¢), 3 7%0
0 W0.¢) ® —I2F+sin0cosetshsin0
X
whereSis the DW area, and
e
aldb\? « dp\2 B =—gh} cosp cosf+¢&| —h,+h)+h+—|sing. (8)
= | — —gj ) == J
W(6,¢) 2((9)( +25|r126((9x) 200§0 T
h7(x) h™(x Assuming that the right-hand side of E&) can be regular-
—( =5 ) 0+ 5 CoSp sinfd (4) ized via appropriate selection of the paramdiemwe can
determinef by solving the equation
is the magnetic energy density of the system. The compo- 2a200 . .
nents of the magnetostatic fietd'(x) are -l PR +5in o Cosfp+ eh sin o =0 ©

h™(x) =4 coSe sin — J dx’ J(x—x")cose(x')sina(x'), with the boundz_iry condition360/8x|xatw=_0. _
The correctiond; can be found by solving the inhomo-

geneous linear equation

hz(x):J dx’J(x—x")cos¥, G1(6) 01=F (65, 00), (10

2
J(x—x’)=EIn

L2+(x—x')2) &.(80) |2(92+ o9 o cos
- . = —1%2— +c0s 20,* ¢h coséy,
(x—x')2 1(0o P 0 0
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where d¢o d L d L\?
- a——h — B cosh 2§+8 arctans — 4 In| 1+ 3 |70
F(6o,¢0) = —hoy COSpq COSHy 4 (169
J
—h,+hT+h+ %) sin 6. for 0-DW, and
de , d L d 2
When the parameten is positive, the boundary-value a —hg+ Bsinh™® 5y +8 arctang —4-Inj 1+| 5] =0
problem (9) has two different solutions, depending on the (16b)
sign in front ofh: for 2-DW.
0o(X,h) To obtain a closed system of dynamical equations for the

parameters of the domain structure, we integrate the right-

[ eh —X and left-hand sides of Eq7) with respect tax from —oo to
W+2ar°ta'{ 1+shs'm'< 1+8h| ) +o. Since the left-hand side vanishes in the process, the

eh X second dynamical equation is determined by the condition
7— 2 arcta ———cosh y1—eh—] for —h, (11b)

f dx( hey Singg— ?) sing,=0. (17

for+h, (118

with X=Xx—Xg. .
An analysis of the results shows that the soluti@tha
describes an isolated stripe domain as a bound state of u
polar Bloch walls. Since for the given structure the angje 360y 30y oh 1 ol
changes by Z when —< changes tot o, from now on we a7 oh ar 2SN to ar

will say that(11a corresponds to a2-DW. .
The total variation of the anglé, for (110 is equal to ~ We find that
zero, as a result of which we define the structure of the given 1 5q
isolated stripe domain as that of a DW. This corresponds T
. aT
to a bound state of bipolar Bloch walls.
The expressionglla and(11b) for the ground state of where

rﬁ;_earing in mind that fot/d<1 we have

+le|n 2@00 0 (18)

both types of domain structures contain an undefined param- 5 5
l L L
eterh. This parameter must be selected in such away thatno . —4,11- — In— % 1In ~alt,
secular terms remain on the right-hand side of @@). This 8L d2
is achieved by satisfying the solvability condition
a= —J |nh ~0.174.
f dx ¢(x)F (6o, ¢0) =0, (12 s
) ) In deriving (18) we discarded the terms proportional to
wherey(x) is the general homogeneous solution of Bd). |/ 12/ 2<1. Here and in what follows the upper signs in
CIearIy, in the zeroth approximation i there are two  he expression with £,¥) correspond to 2-DW and the
such solutions: lower signs to 0-DW. Since we haue/|?>L?/d?, the ef-
96 fect of the term following ‘“+ " in the expression foK),; can
P (x)=I (9—)(0, Ya(X)=sin6y. (13)  beignored. Then the coefficief¥; can be accurately written
ml L
If we define the width of an isolated stripe domairt®as 01=4w( 1=y ) (19
_ 1 f dx(1—cosfy), (14) Obviously, in this approximation Eq18) is the same for
0-DW and 27-DW.

On the basis of the earlier remarks we note that the range
applicability of the theory in the thickness of ferromag-
netic fields is bounded above and below:

there is a one-to-one correspondence between the paramet?r
h and the domain widthl, according to which

d 212 2
— for 0-DW |“<L“<16A°“. (20)

_ ~2
eh=cosh ol

Thus, for both types of isolated stripe domains localized
d in thin films we have a system of dynamical equations for the
eh=sinh"? oy for 2m-DW. (15  parameters of the domain structyxé6) and (18)] that are
similar to the Slonczewski equations for 180°-Diéée Ref.
Substituting(13) in (12) and employing analytical integra- 1). Our theory can be used to describe the dynamics of a
tion methods, we obtain to within terms proportionall td stripe domain in magnetic bubble materials whose thickness
dynamical equations that establish a relationship between thaatisfies the conditiof0).
width of an isolated stripe domain and the rate of change of Note that for systems of a different type, systems that
the azimuthal angle: model the situation in yttrium—iron garnets, the dynamical
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v / various values of the magnetic field.
_’/’3 At certain values of the magnetic field the potential en-
U PR P 2 ergy of a 0-DW has two extrema at points that can be found
;0 S S from the condition
e[ E T
\ au(h,,0) 5
§ -~ fT + -2
/ a7 0=—75 =htBcosh ™3
8 \ +4 5I 1+ M 23
3 5 5 5 arctang X n ? . (23

FIG. 1. The s-dependence of the potential energy of a 0-DW for various Obwously in weak fields, when the width of an isolated
values of the magnetic field. ’
stripe domain is large, the second term on the right-hand side
of Eqg. (23) is negligible, so that23) corresponds to the
equations in the approximation of ultrathin filmis<1) with  result obtained in geometric domain wall m_od‘éIS-
easy-axis magnetization in the film plane were derived by =~ We will assume that in the initial stationary state the
Kovalevet al**>*®who carried out a full investigation of the System is in a magnetizing fietth, . In curvel of Fig. 1 this
dynamics of two DWs coupled by the magnetostatic interacstate is denoted bj. As the strength of the external field is

tion. increased, the dependence of the potential energy changes
We will now employ the dynamical equations derived in (curves 2 and 3, respectively. If the field amplitude in-
Sec. 2 to study the state of 0-DW aner-DW. creases slowly, the system has time to re@ftre to dissipa-

Using Eq.(18), we can exclude the variablg,(7) from  tive processesa state of equilibrium determined by the new
Eqgs.(16a and(16b). If h,=const, the first constant of mo- position of minimum in the potential energy. As the field
tion can easily be found. Introducing the natiér:-d/l and  tends toh. (curve3), the minimum in the energy disappears

A=L/l, we can express it as and the 0-DW becomes unstable.
. If a step pulseAh, of magnetic field is applied to the
T(6)+U(d,h)=E, (21)  system, thes-dependence of the magnetic field suddenly
where changegcurve 2 now) while the domain width remains the
same. Here the new state of the system corresponds to the
Q, S z point D. Then the system begins to move, and the domain
T(6)=— (1— Vi1i- Q, width & changes. IfUy, the coordinate of poinD on the

energy axis, is smaller thdd., the potential energy of the
is the kinetic energy. An analysis of the expression for they.pw at the maximum, then the state may remain stable,
kinetic energy shows that there is a limit in the rate of varia-proyided that the rate of variation of the domain width does
tion of the width of an isolated stripe domain and that thiSnot reach the critical valug), and the points, of the
limit is close to twice the Walker velocity. In the adopted potential-energy minimum. Here the motion of a 0-DW cor-
notation, this limit |35 =(),. The potential energy of an responds to periodic pulsations.Ufp>U holds(as in the
isolated stripe domainJ(h,,d), in dimensionless units is case depicted in Fig.)lthe 0-DW becomes unstable and
given by the formula collapses.
On the basis of the above reasoning we can formulate

2
U(h,,8)= 5( h,—8 arctan): —oninl 1+ 5_ the conditions for the stability of a 0-DW against a magnetic-
2 A2 field pulse:
52 )\2 U(hOZ+Ahz’5c)_U(hOz+Ath51)$oy (243
+2—In| 1+ 5| +AU(9), (22)
g U(hgg+ Ah,,81) — U(hg+ Ah,, 8,)< (Q,/2),  (24b)
where
where (2439 is the condition for 0-DWstability against col-
AU(S) = 2ptanh(s/2) for 0-DW, lapse, and24b) is the condition of 0-DW stability against
(9)= 2B coth(8/2) for 2mw-DW dynamical transformations that appear when the DW reaches

the critical rate(),. Note thats,; is determined by solving
Eq. (23) corresponding to the energy minimum in the field
oz, and the quantitie$, and . constitute the solution of
the same equation for the fielth,+Ah and correspond to
the positions of the minimum and maximum in the potential
energy of the domain.

Figure 2 illustrates the graphical solution of the system

To be specific we begin with a 0-DW. The of inequalities(24a@ and(24b), which determines the region
S5-dependence of the potential energy of a 0-DW &rnis  of 0-DW stability in the fp,,Ah,) plane, for a film withA
depicted in Fig. 1 by the curves-3, which correspond to =10 andB=100.

is the contribution to the potential energy of an isolated
stripe domain that arises due to the allowance for an |nne|[I
structure of DW.

3. EFFECT OF THE MICROMAGNETIC STRUCTURE ON THE
STABILITY OF A 0-DW IN A PULSED FIELD
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Ah, U
4_’;‘ ﬂ" 100 ,/
2, L= 10l L2
0.1r ’, \ ’,/’
P4 UC 4 \C D’,”’
U, N
1
ht4n
\’\\l\\ —
0 03 heldn & & 4 s
FIG. 2. Graphical solution of the inequaliti€é®4). FIG. 4. Theé-dependence of the potential energy of &a-BW.
Above the curve? lies the region corresponding to val- ~ dU(h;,9) _h —ﬂsinh*ZE
ues of the magnetizing field,, and the amplitudé h, of the a6 z 2

pulsed signal for which the rate of variation of the domain
width reaches its critical valu€),; and an isolated stripe —8arctan)l+4t—sln
domain becomes unstable against dynamical transforma- 6 A
tions. We will callhy, and Ah, the parameters of the field. . , ,
When the field parameters are below the ciyenere is no  AS in the 0-DW case, we will assume that the system in the
dynamical 0-DW instability. field hOZ.IS in a stationary state correspon(jlng to pdirﬂnq
The curvel divides the plane in Fig. 2 into two parts. PaSSes into state when a pulse of magnetic field is applied.
The region belowl corresponds to values of the field param- In our case th_e cond|t|0n_ for the stability _of the structure
eters at which the 0-DW width does not reach the critical®f @ 27-DW against dynamical transformations that occur
value 8, (Fig. 1) and the structure of an isolated stripe do- when the critical rate is reached is similar to the condition

main remains stable. Thus, the hatched region in Fig. 2 de§-24) fora Q'DW' At-the same time, as shown in_Ref..1.3, the
ignates the region where a stable 0-DW exists. decrease in the width of them2DW to a certain critical

It is clear that the extent of the region of stability de- value &, (Fig. 4) induces inhomogeneous longitudinal pertur-

pends sensitively on the magnetic film thickness. The trace@ations of the DW magnetizations. Thus, the-DW be-

shown in Fig. 3 give an upper bound for the 0-DW region of ©OMes unstable if the enerdyp acquired as a result of the
stability in films of various thicknesk for 8=100. action of a field pulse is sufficiently large to reduce the width

to 6.. Here, for an unstable state to be reached, the pRint
must coincide with the turning point, at which the kinetic
energy of the 2Zr-DW vanishes.
4. EFFECT OF THE MICROMAGNETIC STRUCTURE OF To determine the criterion for the stability of ar2DW
DOMAIN WALLS ON THE STABILITY OF A 2 7-DW under compression, we will study the corresponding solution

, of (113, (16b), and(18) at the turning poin®, for stability
In contrast to the potential energy of a 0-DW, the poten-

. i "~'"against small perturbations.
tial energy of a 2r-DW has only one extremal point, which

corresponds to the minimum of the ener@yg. 4). The co- 18 AL thl? turt?]mtgtﬁomtzizo holldtg, astr? ;esult of Whloclh Eg.
ordinate of this point on theS axis is determined by the (18) implies that there is a solu lon that correspon SPP
=/2. Then the system of equations describing the small

2

1+—

1k (25

condition _

perturbations §6, 5¢) superposed on the ground staté$a
determined at the turning point has the form
~ J

A'l:/4}f 61(00)5028_5U,

0.12 o0 or

£= , (26)
0.08t T 62(00)5u=—84w5u+sf dx’J(x—x’)&u(x’)—sa—Tﬁe,
T T L=1o
) where

0.04} _ . . _ o[ 900\?

5U:S|n00 5@, G2(00)261(00)+S|n2 00—| W .
Clearly, to within terms proportional te, the solutions

0 0.168 0.335 of Egs.(26) can be writtefr’

60=C, expfiwt X) + C, expli wt X),
FIG. 3. Regions of 0-DW stability for various values of the thickness of the ! p{ @ } ¥1(X) 2 p[ @ } Y2(X)
magnetic film. Su=Cyexpliwt} ¢1(X) +C, expli wt} ,(X), (27)

hoz/4;z
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FIG. 5. Graphical solution of the inequaliti€30g and (30b for films of FIG. 6. Regions of 0-DW and 2-DWstability.
various thickness.

of the 2#7-DW structure in thely,,Ah,) plane.(The stabil-

wherey; andy, are the eigenfunctiond3) of the operators ity regions are bounded above by the corresponding cyrves.

G, andG,, which have eigenvalues of order

Substitutingdé and 8¢ in the form (27) into Eqgs.(26) 5. COMPARATIVE ANALYSIS OF STABILITY OF A 0-DW

and finding the scalar products of the result by the correND A 27-DWIN A PULSED FIELD

sponding eigenfunctiond.3), we arrive at a system of alge- In Fig. 6 we compare the regions of stability of the struc-
braic equations for the expansion coefficieGs tures under investigation for a film with a thickness- 10
©Ca=0 and 8=100. The curveOMN bounds the region of 0-DW
) & N stability from above, while the curv@ PR bounds the region
lwCy+[Q;—2Bsinh™*(6,/2)]C3=0, (28 of 27-DWstability from above.
i _ Figure 6 shows if the domains of different structure are
92C2 |(1)C4 Oy e . .. . .
) initially placed in a weak magnetizing field, their response to
|(0C2+Q]_C4:O, (28b)

a magnetic-field pulse is almost the same. Both structures
whereQ,=28 sinh*2(542)+(4/)\)In(1+)\2/6§). examined in the present paper become unstable against dy-
The system of equation@8b) has nontrivial solutions hamical transformations when the critical rate is reached.
for w=Q,0,, a condition that determines the natural fre-  On the other hand, if the magnetizing field is high, the
quency of small pulsation perturbations of the-DWat the ~ structures examined in the present paper exhibit differences,
turning point 8. Since the natural frequency is real and Which are related to the organization of the inner structure of

positive for all values ofs, the 27-DW is always stable the domain walls. The curvRPMN bounds the region of

against such perturbations. the field parameters in which a 0-DW disappears butma 2
In our case the system of equatio(®8a is the most =DW remains .stabl.e. ' ' .
interesting. Clearly, the nontrivial solutior@;#0 of this Obviously, in thin films, for certain values of the field
system result if parametershy, and Ah, a 27-DW is more stable than a

I 0-DW. In thick films, due to DW twisting, the states of the
©=0, Q,=2Bsinh *(5/2)=0. (29 structures near the surface are equivalent, so that the differ-
An analysis shows that these relationships determine thences in the stability of 0-DW and72DW in thin fields

condition for the occurrence of an instability against devia-manifest themselves less vividly.

tion from the Bloch orientation of magnetization in the walls ~ The conclusions of the theory developed here were con-

bounding the domain. firmed by the results of experimehts*®in which the possi-
On the basis of these results we can formulate a criterioRility of using vertical Bloch lines as memory elements was
for conservation of 2-DW stability in a pulsed field: investigated. These experiments revealed that the stability of

a 27-DW is higher than that of a 0-DW.
The author is grateful to Prof. Yu. |. Gorobets for dis-
cussing the various aspects of the present research.

U(hg,+Ah,,8.)—U(hg,+Ah,,d;)=<0, (303

U(ho,+Ah,,8,)—U(hg,+Ah,,5,)<T(8).  (30b)

QbV|0u§Iy, the systems of |nequalltle§ qeterm'”'”g thelA. P. Malozemoff and J. C. Slonczewskjagnetic Domain Walls in
stability regions for 0-DW and 2-DW are similar. The dif- Bubble Materials Applied Solid State Science Series, Supplement I, Aca-
ferences are related to the differences in the dependence gﬁemic Press, New Yorkl1979. .
the potential energy of the given systems and in the ways in sAté t'daE:;’(*ig%a”d E. Della Torréflagnetic BubblesNorth-Holland, Am-
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Diffusion of lithium cations in G single crystals driven by electric field has been detected and
studied. A novel technique for fullerene crystal doping based on injection of ions through

a “superionic crystal/g, single crystal” heterojunction has been suggested. It has been found that
lithium doping of G single crystals brings about an ESR signal, and this signal as a

function of time has been investigated. The electronic conductivity ,i@dgicrystals has a
nonmetallic nature. Reflection spectra measured in the IR band have shown that the reflectivity due
to free electrons gradually decreases with time, which correlates with the evolution of

signals due to ESR and microwave conductivity. Lithium doping of crystals increases the oscillator
strength of theT,,(4) vibrational mode and shifts it to lower frequenci&®m 1429 cm'*

to 1413 cm 1), which indicates that one electron is present at tiggnilecule, and this fact may

be treated as evidence that the Li@hase is generated in gdXrystal. © 1999 American

Institute of Physicg.S1063-776(99)01511-3

1. INTRODUCTION gap opens around the Fermi level aAdCq, demonstrates
dielectric properties. It is also noteworthy that, depending on
Given the almost spherical shape of thg @olecule  the fabrication conditions o4,Cg, various stable and meta-
and the weak intermolecular interaction, one can classify C stable phases have been detectdebr example, ax=1 and
crystals as typical molecular solids, whereas their electronigith A=K, Rb, and Cs, monomer, dimer, and polymer
properties are more like those of semiconductors. Indeeghases were clearly distinguished using the IR spectroscopy.
measurements of their conductivity, optical absorption Al this has led us to the conclusion that our understanding of
spectré;® and photoconductivifyprovide evidence thatds  properties of even such extensively investigated materials as
in the crystalline form is a semiconductor with relatively A C., (A=K, Rb, and Cs and at=1,3,4) is farfrom clear
narrow(about 0.5 eV energy bands and a band-gap width of 5t the present time.
about 2.2eV. The valence band of the crystal is formed by |t is obvious that, for clearer understanding of processes
A orbitals of the g molecules, which are fully populated jn A,Cy, materials, it is advisable to study properties gf,C
by electrons, whereas the conduction band is formed fromgrystals lightly doped with alkali metals. Such samples, how-
three almost degenerate, unoccupieq, Tq, andGg or-  ever, are difficult to fabricate using conventional diffusion of
bitals of the Ggo molecule. alkali metals because the system has a tendency to decom-
On the basis of the simple one-electron model, one mayose into stable phases with integett is no less interesting
suppose that the crystallingsg&should demonstrate metallic to studyA,Cq, materials where A stands not only for K, Rb,
properties at fairly high doping leveldor example, with  and Cs, but may denote a wide range of other metals. Such

alkali metal$. The small widths of energy bands, the large systems have been little studied thus far because of difficul-
contribution of Coulomb correlations, and the possibility of ties associated with sample fabrication.

strong Jahn-Teller effects caused by molecule deformations, In this paper we suggest a nontraditional approach to
however, can cause a failure of the model of “rigid” one- doping of G crystals with metal ions by injecting them
electron bands, which is applied to such systems in manyhrough a ‘“superionic crystall§g crystal” heterojunction,
cases. In 1991 thin films of g fullerenes doped with alkali which we call the electrodiffusion technique. In superionic
metals, namelyA,Cgo, Where A=Li, K, Na, Rb, and CS,  conductors, the ionic conductivity is usually five to six or-
were fabricated for the first time. It was demonstrated lateders of magnitude higher than their electronic conductivity,
that in A,Cso (with A=K, Rb, Cs and ak=1, 3, 4, § an  so it seemed to us highly probable that an electric current fed
electron transfers from the alkali metal to thg,@olecule.  through a heterojunction should inject mobile ions into a
This means that the triply degenerate unoccupied orbital refullerene crystal. It is known that at>260K Gy, crystals
sponsible for formation of the conduction band is populatedhave a face-centered culfiicc) structure with a lattice con-

In the case of the half-filled conduction band, which occursstant of 1.4 nm. This structure typically has octahedral voids,
at x=3, the material is a metal and undergoes a supercorwhich form three-dimensional networks of channels aligned
ducting transition at low temperatur&s-! But atx=4, prob-  with [111] crystal axes. This was expected to lead to high
ably owing to the Jahn—Teller deformation of molecufea, diffusion coefficients for most metallic atoms, which might

1063-7761/99/89(11)/10/$15.00 923 © 1999 American Institute of Physics
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permit easy doping of fullerenes with metals when an ionicallowed us to inject lithium cations intogg single crystals

current is fed through them. and dope samples under investigation in a controlled manner.
In the presence of electric fiel(r), the diffusion equa- In the process of doping, cel#) was placed on a quartz

tion has the form substrate in a sealed-off thermostat. A voltage was fed to a
J=ND(eE+V w)/KT, 1) cell in order to measure its current—voltage characteristics

and the current as a function of time at various temperatures.
dN(r)/dt=—divJ, (2)  The substrate temperature could be tuned over a range of
—150 to 500°C. Most experiments were performed at a
voltage across a cell of 10 to 200V and at temperatures of
400-520 K. The typical current fed across the cell was 2—20
uA. After the process of electrodiffusiofits time varied

; . . from one hour to 100)) the sample was rapidly transported
vl/hk(i_nlnt'zea;]r:jteéa(:(tllc))r;egrr::c;r;gtolons can be neglectad, to a quartz ampoule and stored in liquid nitrogen before fur-
B : q: u ther experiments.

J=NeDEKT-DVN. 3 In order to observe the diffusion process visually, we
L .. used an MBS-4 microscope equipped with a silicon CCD
If eEN>KTVN, the electric field notably accelerates the dif- S . .

L amera. In the process of diffusion, a sample was illuminated
fusion into a sample and allows one to execute an almo%i : S . .

. : .. . _from below by monochromatic radiation obtained by feeding
uniform doping of a large sample, even when the diffusion,.
- ' . . light from a halogen lamp through a monochromator. The
coefficient is small. At largeN, the functionw(N) is non- .
. . . . . . sample image generated by the CCD camera was sent to a
monotonic, which leads in the case of conventional diffusion X
. ) . e computer, and some frames separated by a predetermined
to decomposition of a sample into phases with specific com; .

. L time interval (usually 20 to 60swere stored on the com-
positions and makes fabrication of homogeneous samples ) . .
: . . : uter hard disk for further processing. This computer also
impossible. In this case, the presence of an intense electrf}

. o controlled the temperature and recorded the current fed
field should notably suppregalthough not eliminate com- throuah the cell as a function of time

pletely) the decomposition of the material into different 9 '

phases.

We selected Li ions for our first experiments because th&. EXPERIMENTAL RESULTS AND DISCUSSION
Li,Ceo composition was the least studied among all3 Ejectrodiffusion of lithium and absorption spectra in
fullerenes doped with alkali metals. The aim of the reportedhe near IR band
work is investigation of current—voltage characteristics of
Ceo—Li;SIPQ; heterojunctions, a feasibility study ofg&
doping with metal ions using the electrodiffusion technique,
and measurements of electronic properties of dopga@s-
tals.

whereN(r) is the ion concentration at a point with coordi-
nater, D is their diffusion coefficient]J(r) is their current
density, T is the temperature, and(r) is the chemical po-
tential of ions at the given point. At low concentratioNs

An electric field was applied to cel#t) so that the elec-
trode conducting Li ions was positive, and as a result, Li
cations were injected into the ¢& crystal via the
Lio sWO3|Li;SiPQ;| Cg crystal heterojunction, and electrons
via the Gy graphite heterojunction. Measurements of
current—voltage characteristics at various temperatures have
demonstrated that, in the initial stage of,Gingle crystal
2. SAMPLES AND EXPERIMENTAL TECHNIQUES doping, the electrodiffusion of Li cations is an activated pro-

Ceo Single crystals were grown at Institute for Solid Stateces’S with an activation energye~0.93-0.96 eV. This en-

Physics, Russian Academy of Sciences, by the technigue ﬁ?Ergy can probably be associated with the activation energy of

physical vapor-phase transpagublimation under a tem- hium diffusion in G, single crystals. Saturation of ¢&

S . crystals with lithium leads to an increase in the Li chemical
perature gradient in a sealed-off cell at temperatures rangmgotential (L) in the fullerene crystal, and the voltage across
from 600 to 640 °C. The starting materiajdhad a purity of Li ystal 9

no less than 99.98% after purification by the chromato-the. cellin the open C|r.cu.|t mode is of orderzy/iL(, 2eV).
. . R This means that the lithium concentration generated by the
graphic technique and elimination of solvent traces through e . . .
. LT electrodiffusion is notably higher than its equilibrium value,
multiple sublimation in vacuum. For our measurements, we . : i e _
. : which can be obtained through conventional diffusion. Fig-

selected single crystals shaped as thin plane-parallel plates . .
. ure 1 shows typical current—voltage characteristics of(égll
with natural faces. The crystal faces were planes of type

. . at T=478K and 508K after saturation ofggcrystals with
;atll)t.hzho(athza:r?vsloecjtir::ek:seizisv\?vr;g Esf,gﬁe; ?6746::212 M™Mithium. It is clear that the shapes of the current—voltage
. - y : characteristics are typical of the process of charging a chemi-
In order to inject Li ions, electrodes were mechanically . .
attached to oppositel11) faces of a G, crystals. The cath- cal battery. When the voltage across the cell is set to @&ro
PP Go C1y ' electrodes are short-circuitedhis chemical battery is dis-

ode was graphite, and the anode was a two-layer AT .
Li, WOs|Li;SiPQ, electrode, which has a high ionic con- charged, and some of the lithium is deposited on the surface.

ductivity for lithium cations and cuts off the electronic com- Figure 2 shows absorption spectra of g Qtystal before

ponent of electric current. In accordance with the above uti-(CurVe 1) and after(curve?) electrodiffusion of Liions. The
lization of cells like ' ' " spectra were recorded &t=290K. The intense absorption
beginning in the initial crystal at an energy of 1.6 eV is due

(+)Lig WO5|Li;SiPQ;|CgocrystalGraphite(—)  (4)  to the excitonic absorption in the crystal. One can see in this
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FIG. 1. Current—voltage characteristics of dd)l at T=478 and 508 K. The
positive voltage corresponds to injection ofLions into the G, crystal.
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which was observed in & crystalst**° By analogy with the
earlier investigation$*'° we assume that the recorded ab-
sorption band is due to electronic transitions from Thg,
Ty, and G4 orbitals of G, which form the conduction
band in the crystal, to the higher band generatedThy
orbitals of the @Gy molecule. If so, we have to suppose that
the electrodiffusion of Li cations and electrons intogg
single crystals generates electrons in the conduction band.
The additional absorption of light enables us to visualize
the diffusion of Li in the course of experiment. Figure 3
shows photographs of ggcrystals taken af =525 K in the
configuration of light transmission at a photon energy of
1.4eV (885nm). Picture 1 was taken at the moment when
the current across the cell was turned on, and picture 3 was
obtained after 30-min exposure to a current ofud0 flow-
ing from the anode to cathode. The superionic contact was
attached to the left-hand side of the crystal. One can see how
a dark “cloud” penetrates into the crystal from the left-hand
contact. Under the assumption that the absorption at the
wavelength of 885 nm is proportional to the concentratibn
of Li* ions(to be exact, to the concentration of@nions or
electrons in the conduction banane can visualize the pro-
cess of diffusion in real time. The fast propagating dark
“cloud” does not have clearly defined boundaries and, ob-
viously, corresponds to the composition,C,, where
x<1 and is a slowly changing function of the coordinates
within the sample. In the immediate neighborhood of the
electrode injecting Li into the sample, an expanding black
region with clear-cut edges can be seen, which probably has
a composition withx=1. Picture 4 in Fig. 3 illustrates the
evolution of the Li concentration after the current direction is
reversed. One can see that the dark “cloud” vanishes as

diagram that after the lithium doping, an additional broadlithium is ejected from the sample. Figure 4 shows quantita-
absorption band turns up between 0.9 and 1.5eV. This bantive characteristics of the process. The current as a function
is very similar to spectra of “photoinduced absorption,” i.e., of time before and after its reversal is plotted in Fig. 4a; Fig.

additional optical absorption caused by laser excitationdb shows the charge transmitted through the sample, which

FIG. 2. Absorption spectra of theggcrystal atT= 290 K before(curve 1)
and after(curve 2) Li electrodiffusion. Curve3 shows the absorption spec-
trum of the undoped crystal dt=10 K. The inset shows spectra measured
in situ as Li was injected af =525 K. Spectrum 1 was taken before apply-
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ing voltage to the cell, spectruthafter 2-h exposure to current.

approximately reflects the number of Li ions injected into the
sample. Figure 4c shows the light absorption at a wavelength
of 885nm(1.4eV) at two different sites on the sample. The
point corresponding to curve is 0.65 mm farther from the
Li-injecting contact than the point corresponding to cutve
Figure 4 clearly indicates that there is a good correlation
between the charge transmitted across the sample and the
change in the sample absorption. One can see in Fig. 5 pro-
files of the absorption coefficient, which is proportional to
the Li concentration, as a function of distangeto the
lithium-injecting electrode under the forward curréatirves

1 and?2) and after its reversgcurves3 and4).

The reversibility of the lithium injection process in the
samples under investigation indicates that a subset of the
lithium cations are mobile in g crystals, and fullerene crys-
tals demonstrate superionic properties. Moreover, the revers-
ibility of the diffusion process with the current reversal pro-
vides evidence in favor of the dominant role of electric field
in the process of Li diffusion, hence follows the feasibility of
this technique for controlled doping ofgcrystals with vari-
ous ions.

After a longer exposure to a direct current across the
cell, the lithium concentration in the “cloud” rises to a cer-
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FIG. 3. Photograph of thegcrystal takerin situ at T=525 K in transmitting light with a photon energy of 1.4 885 nm). The superionic contact can be
seen on the left of the sample. Pictdrevas taken before feeding current, pictueand3 after 10-min and 20-min exposure to a current of ordep.26in
the forward direction. Picturd was taken 40 min after switching the current to the opposite direction, pigtafter 60 min of additional exposure to current
in the forward direction, and pictur@in 60 min after switching off the current.

tain limiting value, which depends on both the temperatureserve a strongly nonequilibrium lithium distribution gener-
and applied voltage, then the evolution of the sample condiated by electrodiffusion.

tion proceeds through the expansion of the “black” phase,

which consists, most probably, of the lgC(x=1) com-
pound. That the lithium concentration in the sample due t
the electrically driven injection is much higher than the equi-  Unlike the pristine samples, which were ESR silent,
librium value is the fact supported by the observation of thdithium-doped G crystals demonstrated an intense ESR sig-
growth of isolated LiG, phase clusters in the bulk of the nal in the form of several lines with-factors close to 2.0
sample(Picture 5 in Fig. 3. If the current is turned off and (Figs. 6 and Y. The main lines, which were present in ESR
the temperature is maintained constant, the lithium concerspectra of all lithium-doped samples, can be divided into
tration in the “cloud” drops considerably and, at the samethree groups.

time, new clusters of the “phase” are generatBétture 6 in 1. A broad isotropic line X1) with a g-factor of 2.004
Fig. 3. The kinetic characteristics of this process are+0.001, whose half-width af=290K varied from sample
strongly dependent on the temperature and degree of ovete sample between 5 and 8 Oe, andTat5 K dropped to
saturation, and they have not been studied in detail. The onl2—3 Oe.

certain observation is that relatively fast cooling of a sample 2. Three narrow anisotropic lineX®) corresponding to

to room temperatur@n several minutesallowed us to pre- centers with different orientations. These lines have a

03.2. ESR and microwave conductivity
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FIG. 4. (a) Current across the cell as a function of timeTat 525 K. At the 0

momentt=5 min a voltage of+200V is switched on, at=32 min its FIG. 6. (a) ESR spectra recorded @t=290K in a G crystal after Li
polarity is switched to the opposite directiontat82 min again a voltage of  gjectrodiffusion at 520 K. Spectruthwas recorded immediately after cool-
+200V is applied;(b) current transmitted across the sample versus time;ing, spectra2—4 after regular intervals of several hours of exposure to the
() variation of the sample absorption at a wavelength of 883heeV) at  temperature of 290 K(b) spectrumd on an extended scale and its decom-
two different points on the sample. Cur@eorresponds to the region which  sition into separate lines.

is 0.65 mm further from the Li contact than the region for cutve

g-factor of 2.002 varying in a range of 0.0008 as the due to the hyperfine interaction. Since the intensity of these
sample is rotated. The half-widths of these lines drop frondines is very low, they can be ascribed to an uncontrolled
1.50e afT=290K to 0.35Oe at 5K. The anisotropic effect impurity which is present in the samples.
indicates that the symmetry of paramagnetic centers respon- The total intensity of the ESR spectrum at sufficiently
sible for theX2 lines is lower than the cubic one. small doping timegfar from G, saturation with lithiun is

3. A pair of X3 lines of equal intensities and a half-width approximately proportional to the total charge transmitted
of 1.50e atT=290K. The mearg-factor of these lines is through the cell and the amount of additional optical absorp-
2.003, and the splitting between them is 33 Oe. The intensitfion in the sample. This allows us to associxte and X2
of these lines is very weak in comparison with other linesESR-active centers with the lithium doping of the samples.
and poorly reproducible from sample to sample. These line$he proportion of the Li isotope with nuclear spin 3/2 in
are probab|y due to electrons localized 360®10|ecu|es natural lithium is 92.5%, so if the paramagnetic electron
which have chemical impurities with nuclear Spiﬁ 1/2 in were localized close to the lithium nucleus, we would ob-

their immediate neighborhood, and the splitting of 33 Oe isserve splitting of each line into four hyperfine components.
The absence of this hyperfine splitting supports our hypoth-

esis that unpaired electron spins are located @p r@ol-
Som! ecules, and the negative charge of the molecule is canceled

AK
ab.
i by Li* ions located in the voids of the crystal.

501 T=525K, 4= 885nm (1.4 V)

- X2 T=7K
I X2
=
~
= a;
RN, 14
" . . : |
0 0.2 0.4 0.6 0.8
X, mm |
FIG. 5. Profiles of absorption coefficient inggxrystals at a wavelength of 3358 3360 3362 3364
885 nm afT =525 K as a function of distancefrom the Li contact. Curves HO, Oe

1 and 2 were recorded 12 and 29 min after feeding current in the forward
direction. Curves3 and4 were recorded 11 and 41 min after switching the FIG. 7. Typical ESR spectrum of a JGg, crystal recorded at=7 K and
current polarity. its decomposition into separate lines.
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At temperatures below 250K, we did not detect any
changes in the ESR intensity with time. At temperatures
higher than 280 K, however, the evolution of intensities of
the X1 and X2 lines was quite considerable. This is illus-
trated by Fig. 6a, where spectruinwas recorded immedi-
ately after a rapidduring several minutgscooling of the
sample fromT=520K, at which it was saturated with
lithium, to room temperature. Spect-4 were recorded
sequentially with a time interval between them of several
hours. In this process, the sample was kept at room tempera- b L o ——
ture. In order to calculate the concentration of different para- 0 50100150 200T K250
magnetic centers, we normalized the ESR signal due to the '
samp|e to the ESR Signal of a paramagnetic referencelG. 8. Effective numbers of ESR-active spins correspondinglt@ndX2
sample, then decomposed the ESR spectrum into Separ#@ters whose ESR.spectra are shown in Fig. 7 as functions_of temperature.
. . . . . he numbers of spins were calculated as ratios between integrated ESR
lines (via a least-squares Yiand calculated total intensities signals ofX1 andX2 centers on one side and the integrated ESR intensity
of separate lines, proportional to the line intensity times itSof a paramagnetic reference sample on the other.
half-width squared. We managed to account for the evolution
of ESR spectra on the basis of an assumption that two inde-
pendent processes proceed Concurrent|y_ EffeCtiVe numbel‘S Of paramagnetic SpInSXﬂl andX2

1. A drop in the concentration &f1 centerdthe broader ~Centers(whose spectra are given in Fig) ih one of the
ESR line owing to transformation oX1 centers toX2 (nar-  Samples are plotted versus temperature in Fig. 8. The spin

rower ESR ling. numbers were calculated by dividing the total intensities of
2. A drop in the concentration of2 centers owing to ESR signals due to these centers by the total ESR intensity
their transformation to ESR-silent complexes. due to the paramagnetic reference sample with a known

If the initial concentration oiX1 centers is much higher Number of spins. It is clear thal centers correspond to
than that ofX2 centers, the first process leads to an increasBondegenerate electrons weakly interacting with each other.
in the concentration X2 centers, notwithstanding the sec- This supports our assumption thél centers correspond to
ond process. In fact, spectrubrin Fig. 6a yielded a concen- €lectrons on g molecules in weakly doped regions of the
tration of X1 centers of 6.% 1087 cm™3 and that ofX2 cen- Sample. In contrast, the effective number of paramagiic
ters 0.4<107cm 3, whereas in spectrum3 the centers drops considerably with decreasing temperature, ap-
concentrations ofX1 and X2 centers were already 2.5 Proximately following the function
x10em 2 and 1.5<10cm 3, respectively. Thus, the E
concentration o1 centers had dropped by &40 cm™3 N=Nparat Nafexr{ - k_'T') ()
in several hours, whereas the concentrationX@f centers
had increased by 1:410'7cm™3. When theX1 center con- WhereE =4.9 meV,Npa/Nyr= 0.3, Noy=1.28< 108 cm™ 3,
centration had become too small, process 2 dominated,hus, either the electrons are localized and the antiferromag-
which led to a drop in the concentrations of both centers, agetic interaction between them is of order SmeV, or this
is shown by spectrum in Fig. 6a. The kinetics of processes behavior is caused by Fermi degeneracy in the electronic
1 and 2 are strongly affected by the temperature and condsystem.

tions of sample manufacturéocal concentration of Li Figure 9 shows the conductivity of the same sample
These processes are nonexponential and deserve a dedicafegasured at a frequency of 9300 MHz. The conductivity
investigation.
It is probable thatX1l centers(the broader ESR line
correspond to conduction electrons in the weakly doped re- log(o) - cm™
gion of the LiCgq crystal with x<<1, whereasX2 centers -15 .
correspond to the electrons localized ag @olecules in the —2.0F &
phase withx=1 formed in the process of self-organization. ¢
Then process 1, which transforifd to X2, corresponds to -2.5¢
the decomposition of the “cloud” of uniformly distributed
Li ions into clusters of the phase with=1, which was ob- -3.0r
served visually(pictures 5 and 6 in Fig.)3 35t
Process 2, which is responsible for the disappearance of '
the X2 ESR signal, is probably more complicated: it prob- _4.0F T
ably leads to formation of monomer or polymer species in- 4 6 8 10 12 14 16 18 20

cluding even numbers of Li atoms, which form covalent 1000/T, K™!

bonds with Gy molecules within the phase clusters. Addi- o _
FIG. 9. Conductivity of the LiCqq crystal versus temperature measured at a

tional argu_ments Supportlng this hypOtheSI_S will be glvgn Infrequency of 9300 MHz. The conductivity(T) was derived from measure-
Sec. 4, which deals with measurements of light absorption byents of the FWHMAF of the resonant curve of a rectangular microwave

vibrational modes in doped \&q, Samples. cavity loaded with the sample.
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o(T) was derived from the change in the FWHAM of the o.sh 5
resonant curve of a rectangular microwave cavity after plac- ' v - a
ing the sample inside it. It is clear that the sample conduc- 067 22 =
tivity is not of metallic character. In the temperature range @ 0.4t \
T>170K the curve ofo(T) is in good agreement with the S
activation temperature dependeneé€T)= o exp(—E,/KT) g 02 7
with an activation energi ,~90 meV, whereas at<160 K z o— . . -~ -
the curve is in fairly good agreement with the function § \‘ b
o(T)= ooy exd(—AT)Y4], which characterizes hopping B 0.4}
conductivity with variable hop length. E A

Let us discuss these results. Above all, note that after a 0.2t \‘\-t":/. \
sufficiently long electrodiffusion and slow cooling of the TR &k
sample, the intensity of th&2 signal is usually much lower ol . . . ; .
than that corresponding to the Li concentration in the dark 600 800 1000 1200 1400 1600
regions with phase&=1. The cause is process 2. In our ex- Wave number, cm

periments, the intenSit_y of thﬁ? signal was USl_Ja”y 0.1t0 FiG. 10. Reflection spectra taken from the surface of a fresh as-grown
1% of the number of Li atoms in the sample estimated on thei,Cg, sample afT=290K: (a) regions of increased Li concentratidine
basis of the electric Charge transmitted through it and théurface is tinted yellow-green in the visible lightb) regions with a lower

- . concentratior(dark areas of the surfacelhe solid lines show spectra taken
visually det?Cted volume of the dark phdﬁgs‘ 3 and 4 in one hour after Li diffusion, the dotted lines show spectra recorded after
Th? data given above were taken from a sample_ througBnother 40 min of exposure to a temperature of 290 K. SpectrimFig.
which a charge of 1e/cm® was transmitted, which is ap- 10a was taken from the pristifendoped sample.
proximately equal to the total number ofnolecules in the

sample. As a result, the sample was almost entirely opaque at

the wavelength of 885nnil.4eV), and we could suppose pristine G, crystal since they have a background monotoni-
that a notable fraction of its volume was occupied by thecally rising as the wave number drops. This spectral compo-
phasex=1. The total ESR signal from this sample at nent indicates the presence of either free or quasi-free carri-
T=290K, however, corresponded to only XT0"*cm™>  ¢rs in the surface regions of the lithium-doped crystal, which
electrons. This means that the major fraction of the electronfg in accord with measurements of the microwave conductiv-
had been knocked out of the game owing to formation ofity. At room temperature, the background intensity drops
new compounds containing one or severgh @olecules  with time: the spectra shown by dotted lines in Fig. 10 were
connected by covalent bonds and even numbers of Li atomgken 40 min after the spectra plotted by solid lines. This fact
in covalent bonds with 5. Thus, we have a system with a indicates that the density of quasi-free carriers drops, which
high concentration of defects containing few free electronsis also consistent with the drop in the microwave conductiv-
In such a system, the Fermi level is probably below the moity and ESR intensity with time af =300 K. Moreover, one
bility edge of the conduction band, the electrons are localcan see in Fig. 10 that the dropping rate of the background
ized at low temperatures, and hopping conductivity takesntensity is different on different areas of the surface through
place. which lithium was introduced: in the yellow-green areas
(Fig. 104 this dropping rate is notably lower than in the dark
areas(Fig. 10h. Thus, the kinetics of the density of quasi-
free carriers in the entire sample volume has complex char-
acteristics.

Reflection spectra of LCq, single crystals were mea- The spectra of the LCq, samples also contain at least
sured on a Brcker 113v Fourier spectrometer at room tem-four intense lines associated with different vibrational
perature in a spectral range of 80 to 5000¢m modes: 1415, 870, 760, and 627 ¢t The intense line cen-
(~0.1-0.6eV with a resolution of 1cm?. The pristine tered at 1415 cm' is an analog of thd@,(4) (1429 cm )
single crystals had mirror-reflecting faces, and their reflecvibrational mode of the initial g crystal. The accuracy of
tion spectrum is labeled by numbdrin Fig. 10a. After the center frequency of the vibrational mode manifesting in
lithium doping, the faces of the single crystal became dullthe peak at 1415 cit is very important for calculating the
At the same time, the crystal surface, which had been blacHensity of electrons in the gg molecule. Unfortunately, we
in visible optical range, was covered with yellow-green spotsould not make use of the Kramers—Kronig technique for
located close to the Li electrode. Reflection spectra frontalculating the mode frequency because of the effect of sur-
different areas on the L4, crystal surface recorded using face roughness on the light scattering. The method of disper-
the IR microscope of the Fourier spectrometer are given irsion analysis allowed us to approximate the reflection spec-
Fig. 10. Note that the roughness of the crystal surface hastaum with poor accuracy and yielded a center frequency of
considerable effect on the intensity of reflected light, so speci410cm . The actual frequency of this mode is probably
tra of Li doped samples are plotted in arbitrary units. The1413+2 cm 2.
reflection spectra from both yellow-greérig. 109 and dark In the reflection spectrum of the initial crystal, the inten-
(Fig. 10b areas of the surface through which lithium was sities of lines associated with the,,(4)=1429 cm ! and
introduced into the crystal are different from those of theT;,(3)=1183 cmi ! modes are approximately equabpec-

4. OPTICAL SPECTRA IN THE REGION OF VIBRATIONAL
MODES
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trum 1 in Fig. 109. After the lithium doping, firstly, the 03
oscillator strength of thd@,,(4) mode becomes significantly
higher than that of thd;,(3) mode, secondly, the former
mode shifts to the low-energy side by 16ch A similar
red shift and an increase in the oscillator strength of the§ 0.2k
T14(4) mode were detected previoutiyin Cg, films doped
with K and Rb and interpreted in terms of the “charged
phonon” model*” In accordance with this model, introduc-
tion of electrons to the lower unpopulated orbitals of thg C
molecule, which form the conduction band of the crystal,% 0.1
leads to interaction of the vibrational modes gf @rough a
virtual electronic transition from these states to the band
which is about 1.2eV higher. Depending on the electron
populationx on the G molecule, the vibrational modes shift 0 ) ) L ‘ . 1
to the low side, and this shift is proportional xpand their 200 400 600 800 1000 1200 1400 1600
oscillator strengths increase &8. Among the four dipole- Wave number, cm’™’
active Vlb.ratlonal modes detected ingC the Tsy(4) .mOde FIG. 11. Reflection spectra of the surfacshed lingand cleaved surface
has the highest constaktof electron—phonon coupling. The (solid curvg of an “aged” sample, in which the conductivity and ESR
coupling constant of the T,,(3)=1183cm ! mode is signal are almost zero, &=290 K.
small, so lithium doping has little effect on this mode.

Investigation&® of Cg, films doped with K and Rb led
the researchers to a conclusion thatThg(4) mode shiftsto  of cracks in the sample after a time. Studies of degraded
the low-energy side by about 15 cthwhen one electron is samples, however, revealed that their surfaces had large ar-
placed on the g molecule. Using the frequency of the eas which looked black under light of wavelengths less than
T,4,(4) mode measured as a function of the numkeof = 1000 nm. This observation indicates that their degradation
electrons per one moleculd we have inferred that, in the cannot be fully interpreted in terms of the lithium ejection to
case under investigation, there is one electron per oge Cthe surface, and this fact impels us to assume that other
molecule near the crystal surface through which Li was inphasegor compoundsare formed in doped samples, which
troduced. Therefore, our assumption that the ¢siPhase contribute to absorption in the spectral range under investi-
(x=1) is generated in the doped crystal seems likely. gation and have a considerafjfaore than 3 to 5%volume

Unlike the spectrum of the undopegXrystal, that of  deficiency, which leads to cracking. Moreover, such phases
LiCgo contains a large set of relatively weak lines over ashould not contribute to the ESR signal, neither can they
broad spectral range. The most intense among them are tihave a high conductivity.
lines at 870, 760, and 627 ¢rh (Fig. 10, which have not This assumption is supported by IR reflection spectra of
been detected in g crystals doped with K, Rb, and Cs degraded samples shown in Fig. 11. The reflection spectrum
(Refs. 16 and 18 Previously® spectral lines at 880, 670, and of the sample surface shown by the dashed line in Fig. 11 is
450 cm ! were detected after lithium doping of graphite: the very similar to the (Cgp), dimer spectrum recorded
line at 880 cm* was ascribed to a skeletal oscillation of the previously'® when transmission spectra ofgCmonomer,
Li—Li bond in seven- and six-atomic lithium clusters, and thedimer, and polymer phases in RjGwvere studied. It was
line at 670 cm * was attributed to valence oscillations of the showrt® that the transition from the initial &g phase to
Li—C bond. In the case under study, the line at 870¢man  dimers, for example, leads to splitting of tfg,(4) (1429
also be put down to a skeletal oscillation of the Li—Li bond,cm™!) mode into several lines and generates a set of lines at
and the line at 627 cm' probably corresponds to a valence frequencies around 700 ¢rh. This was ascribed to the lower
oscillation of the Li—Gg bond. The notable shift of its fre- symmetry of the g, molecule in the dimer phase.
guency from that measured in graphite intercalated with  The spectrum shown by the solid line in Fig. 11 was
lithium (670cm 1) can be ascribed to the difference be- taken from a cleaved surface of a degraded sample. Its com-
tween the masses of the carbon atom agghilecule. Iden-  parison to the data reported eartfeindicates that this spec-
tification of the line at 760 cm' seems more difficult. Prob- trum can be attributed to the polymer phase. The splitting of
ably, the lithium can have two different states in thg, C the T,,(4) (1429 cm'') mode of the initial G, crystal into
crystal and form both the ionic [[i-Cgy and covalent Li-g,  two lines at 1415 and 1480 ¢r and the smaller number of
bonds, which manifest as two valence oscillations at 627 andpectral lines than in the dimer phase provide evidence in
760cm . Note that the possibility of forming the Lig favor of this interpretation. The latter effect is due to the
covalent bond accounts for the disappearancX2fESR-  higher symmetry of the § molecule in the polymer phase
active centers with time. than in the dimer phase. The plot also clearly shows lines

As was noted above, the exposure of samples to roorthat indicate the presence of lithium clusté8§5cm 1) and
temperature leads to the considerable drops in the ESR sighe Li—Cg, bond(760 cmi 1). Moreover, as in the case of the
nal, microwave conductivity, and IR reflection due to quasi-monomer phase observed on the surface of a pristine sample
free electrons. Probably, a fraction of Li is ejected from the(Fig. 103, the oscillator strengths of vibrational modes at
sample bulk to the surface. This process can cause formatidrequencies of 1415 and 1480 chare significantly higher

arb.

ectance
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than that of the 1183 cit mode. A third fact that is note- tivity with variable hop length. Thus, LCq, single crystals
worthy is the difference between the spectral positions of theontain a lot of defects, but the concentration of free elec-
1415cm! and 1480cm? lines on one side and those trons is low. In such a system, the Fermi level should be
detecte® in the photopolymerized phag@424 and 1460 located below the edge of the conduction band, electrons
cm 1), i.e., the 1415cm? line is shifted to the low-energy should be localized at low temperatures, and hopping con-
side by 9 cm! as compared to those in the spectrum of theductivity should take place.
photopolymerized phase. This shift is less than 15tm In IR reflection spectra of the LCq, samples, we have
which is typical of the case when one electron is added to aetected lines associated with vibrational modes at 1415,
Cgo molecule in the monomer pha&&These three facts has 870, 760, and 627 cht, and a background whose intensity
led us to a conclusion that lithium is incorporated in theincreases monotonically as the wave number drops and
structure of the polymer phase synthesized in our experiwhich is due to free or weakly localized electrons. The spec-
ment, where the number of electrons per oggr@olecule is  tral position of the 1415 cm' line indicates that one electron
probably much less than unity. is bound to the g molecule. The lines at 627 and 760¢ch
The main difference between the lgCpolymer phase are put down to valence oscillations of the"HCgq ionic
and RbG, polymer reported earliét is associated with the bond and Li—G, covalent bond, respectively. The former
presence of free(or quasi-freg carriers. It was found decays with time as crystals degrade, and only lithium in
previously® that the optical conductivity of Rhgincreases covalent bondgalongside lithium clustejds detected in de-
in the sequence of the dimer—monomer—polymer phases. lgraded samples. The shapes of reflection spectra of degraded
the case under study, the polymer phase ofghi€ not con-  samples indicates that the conducting monomer phase in
ducting. This statement is supported by both microwave conpristine samples transforms to nonconducting phases of
ductivity data and the reflection spectrum in Fig. 11, whichdimers on the surface and polymers in the bulk of degraded
does not show a monotonic increase in the reflectivity withsamples. This supports our assumption that a subset of the Li
decreasing wave number, characteristic of the contribution afitoms form covalent bonds withgg&molecules, which leads

free carriers. Thus, in contrast to the case of Rh@he Li—  to the decay of both ESR and microwave conductivity sig-
Ceo covalent bond is formed in the polymer phase of gC  nals.
whose valence oscillation manifests in the line at 760tm The work was part of Task 2-1-98 Fullerenes and

in the reflection spectrum. The reflection line at 627¢m  Atomic Clusters of the State R&D Program Physical Prop-
which is also attributed to the valence oscillation of the Li—erties, Phase Transitions, and Metastable Phases of Fullerene
Ceo bond in pristine samples, but is absent in the polymeiCrystals and Their Derivatives, and was partly supported by
phase of degraded |G@q,, should probably be associated the HTSC State R&D Program, Project 96031.

with the oscillation of the Li—Cgq ionic bond. Thus, our

investigation of reflection spectra indicates that the assump-

tion aboqt formation qf dimer and polymer phases in de-*>E_ma”: kveder@issp.ac.ru

graded Li—G crystals is true. Moreover, the absence of an

ESR signal in the LiCgy polymer allows us to draw the

conclusion that an even number of Li atoms are bound to the

Cgo molecule by covalent bonds.
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A systematic study of the resistivity and Hall effect in single-crystal films

Nd,_,CeCuQ,_; (0.12<x=<0.20) is presented, with special emphasis on the low-temperature
dependence of the normal state conductance. Two-dimensional weak localization effects

are found both in a normally conducting underdoped sampteQ(12) andn situ superconducting
optimally doped ¥=0.15) or overdopedx=0.18) samples in a high magnetic field

B>B,. The phase coherence timg (5.4 10 s at 2 K) and the effective thickness of a

CuO, conducting layed (=1.5A) have been estimated by fitting 2D weak localization theory
expressions to magnetoresistivity data for magnetic fields perpendicular &b {flane and

in plane. Estimates of the paramettrensure strong carrier confinement and justify a model
consisting of almost decoupled 2D metallic sheets for the_Nde,CuQ,_ 5 single crystal.

© 1999 American Institute of Physid$$1063-776(99)01611-X

1. INTRODUCTION centration(i.e., changing). For the underdope@dow x) and
optimally dopedsuperconductingcompounds,. is nonme-
The field of high-transition-temperatufeigh-T.) super- tallic (dp./dT<0) at low enough temperatures. In both sys-
conductivity has generated several thousand publications igms the anisotropy coefficien./p,,. decreases notice-
the last few years. For a short overview of the lattice strucyply with doping, being~10? for the superconducting
ture and phase diagram of the most widely studied coppetompounds.
oxide compounds, such as hole-doped, L&r,CuO, and The crystal structureT’ of the electron doped

YBa;,ClyOg.1 OF electron-doped .,CeCu0, (L=Nd or Ny cecuo, ; system is the simplest among the super-

P, one can consult, e.g., the review in Ref. 1 or book by.,nq,cting cuprates with the perovskite strucfuféne Cu
Plakida® The copper oxide higfi materials are basically

. atoms in the Cu@layers of hole-doped La ,Sr,CuQO, or
tetragonal, and all of them have one or more Gplanes in
. . Nd,_,_,CeSr,CuQ,_ > superconductors are sur-
their structure, which are separated by layers of other atoms 2 XY~ >yt o (y=X) sup . .

(Ba—0, La—0, Nd-0,... Most researchers empirically and founded by apical O atoms, forming octahedr@sstruc-

theoretically have come to a consensus that superconducti{[/qre) or semioctahedronsT(" structure. The most important

ity is related to processes occurring solely in the conductin |ffe;erg:eom_ ttr;]ettt:rr]ystal_ stlr uctures Otf Nde)ct:;g“ tand
CuG, planes, with the other layers simply providing the car- 2,(S) 3 4 IIS 3 € apica okxygeq a Ioms(,jm an S 'r:uc
riers (they are therefore called charge reseryoils the ture are displaced so as to make an isolated fhiane(Fig.

CuG, planes, each copper ion is strongly bonded to four™: . . )
oxygen ions separated by approximately 1.9 A. The undoped system NAuQ, is an insulator, with the

Due to the layered character of the crystal structures, th¥&/énce band mainly of O character, and the empty con-
high-T, copper oxide compounds are highly anisotropic induction band being the upper Hubbard Cd Band. The
their normal-state electrical properties. Although the resistiv:Coulomb 31-3d repulsion at the Cu site) (=6-7eV) is
ity in the CuG, planes,p,p,, shows metallic temperature de- Strong, and it is greater than the oxygen to metal charge-
pendence, the temperature behavior and the magnitude of th@nsfer energi\ (=1-2eV). As the gap between the con-
resistivity parallel to thec axis, p., are strongly dependent duction and valence bands is determined just by the energy
on crystal structure, and on the concentration of charge cad, these cuprates are classified as charge-transfer semicon-
riers. ductors®

Systematic data fop,, in a number of highF, materials The combination of Ce doping and O reduction results in
obtained on well characterized single crystals are presentgtitype conduction in Cu® layers in Ng_,CeCuQ,_;
by Ito etal® For hole-doped systems YBau,Og,, and  single crystal$:® An energy band structure calculation
La, _,Sr,CuQ, p. exhibits a marked change in magnitude asshows that the Fermi level is located in a bandhdir-type
well as in temperature dependence with changing hole corformed by 31(x?—y?) orbitals of Cu anc,(x,y) orbitals of

1063-7761/99/89(11)/7/$15.00 933 © 1999 American Institute of Physics
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FIG. 1. Crystal structure of three types of copper oxitiRsf.
4).

\S\

oxygen. The pdo band appears to be of highly two- calization, has been observed in the nonsuperconducting
dimensional2D) character, with almost no dispersion in the state at low temperatures: in samples with0.11*2 and in
z-direction normal to Cu@planes. The electrons are concen-unreduced samples with=0.15" or x=0.181* We report
trated within the confines of conducting Cufayers, sepa- here a systematic study of 2D weak localization effects for a
rated from each other by a distance:6 A. number of optimally reduced samples of NJCeg,CuQ,_

In accordance with such a structure NdCe,CuQ, _ 5, with 0.12<x=<0.20.
single crystals have a significantly higher resistive anisotropy
than Y- or La-systemsp./pap=10" for x=0.15"° and for
x=0.16—0.20 with different values of oxygen deficienty
at room temperature, it increases with decreasin
temperaturé® Measurements .by Itoet al3 for another The flux separation technique was used for
electron-doped compound with the sanié 'structure', Nd, ,Ce,Cu0,_, film deposition'® High-quality c-axis ori-
P, xCeCuQ,- 5, show that forx=0.15 the anisotropy is ented single crystal films with thickness around 5000 A and

very large, pc/pay=10, and nonmetallico. is observed. ( 15<y<0.20 were grown. The values @, after sample
Preliminary measurements on a Pr-system with diffesent ,oq,ction are shown in Table .

&. EXPERIMENTAL PROCEDURE

indicated that, as in the case of Y- and La-systemsde- Figure 2 demonstrates th& of the film with x=0.15 is
creases with increasing carrier concentration much more rags agreement with previously published data for bulk single
idly than pqy, . crystals! The values of T, for overdoped films with

_ The larger anisotropy in Nd- or Pr-systems compared,=( 17 are higher than for corresponding bulk crystals in
with La-or Y-systems would imply that fluorite-type M@, 5ccordance with the information of Xat al € that supercon-
or Pr,O, layers block out-of-plane condu%tion more effec- ductivity survives up tox=0.22 in Ng_,Ce,Cu0,_ ; films.
tively than NaCl-type LgO, or BgO; layers: Standard four-terminal measurements of the resistjvity

The nonmetallic behavior of out-of-plane conductance,ny Hajl effectr (jllab,Biic) in the dc regime were carried
suggests that the carriers are confined tightly in the CuOg i in the temperature range.<T<300K without a mag-
plane? It is thus of interest to search for two-dimensional netic field B, and in magnetic fields up tBB=12T at tem-

effects in the in-plane conductance of the layered cuprate$erature down to 0.2 K. The electrical contacts were pre-
There are s.eve_ral previous _reports.on the manifestation of 23, aq by evaporating thin silver strips onto the sample, and
weak localization effects in the in-plane conductance Ofattaching silver wires to these with conducting glue.

Nd,_,CeCuQ,_ 4 single crystals or films. Thus a linear de-

pendence of resistivity on i comes about af <T, for

samples withx=0.15, in which the superconducting state is

destroyed by a magnetic field Furthermore, a highly aniso- T..K

tropic negative magnetoresistance, predicted for 2D weak lo- 30
[ 4 g.

TABLE I. 20 g

g

po- 10, pago - 10, A-10, 10F g =

X tA T, K Qcm Q-cm PaookpPo  -cmIK? g O\, 3

» 7] =
0.12 5500 - - 102 - - W WYY .
0.15 5000 20 8.2 42.4 5.2 4.0 0 0.10 0.15 0.20
0.17 5700 12 8.6 29.6 3.4 2.7 Xce
0.18 5000 6.0 6.0 23.5 3.9 2.2
0.20 4000 <1.3 11 10.0 9.1 1.1 FIG. 2. Phase diagram of Nd,CeCuQ,_s. Notation: triangles and

circles—data of Ref. 4triangles—.=0); crosses—our data.
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FIG. 3. Temperature dependence of in-plane resistivity for the samples inFIG. 4. In-plane resistivityj(L B) of the sample withx=0.20 as a function

vestigated N¢_,CeCuO,_;. of magnetic fieldBL ab at two different temperatures. Arrows indicate val-
ues of the second critical field. Inset: Hall coefficiefitab; BLab) as a
function of magnetic field alT=1.3 K.

3. RESULTS

The temperature dependence of the zero-field in-plane
resistivity for the investigated samples Riup to 300 K is  second critical fieldB., is applied. As we are interested in
shown in Fig. 3. A clear resistance minimum is observed athe low-temperature(T) dependence, we have destroyed
T=150K for the nonsuperconducting sample witk 0.12.  the superconductivity with a magnetic fiddd perpendicular
The p(T) dependence is described y=p,+AT2 at T  to the CuQ planes. In Fig. 4, thex(B,) dependence for
=20-180K forx=0.15, 0.17, and 0.18, and over the wider x=0.20 atT=1.3K andT=4.2K in a magnetic fields up to
T=10-300K forx=0.20. The values op, andA are pre- B=5.5T are presented. In the inset of Fig. 4, the dependence
sented in Table I. of the Hall coefficienR on magnetic field, atT=1.3K is

We describe here the magnetoresistance measurememtiso shown. On the assumption tHat,(T) is a field in
only for the underdoped nonsuperconducting samplevhichp(B,) andR(B,) atgivenT come up to their normal-
(x=0.12) and for two overdoped superconducting samplestate value, we haveB,,=2.2T at T=1.3K and B,

(x=0.18 andx=0.20). Detailed investigations qf(B,T) =15T atT=4.2K.

dependencies for the optimally doped sample with0.15 In our previous investigatidi of the sample with
were presented earliéf, as were some results on the x=0.18, negative magnetoresistance was observed after the
x=0.18 sample® destruction of superconductivity by a magnetic field up to

In the superconducting samples, normal-state transpoB.5 T atT=1.4K. In Fig. 5,p(B,) is shown for this sample
at low T is hidden unless the magnetic field stronger than thet much lower temperaturédown to 0.2 K and in fields up

-5
p 10 Q-cm
8
A\
6F 42K
\
21K
1 T=02K 08K
FIG. 5. In-plane resistivityj(L B) of the sample withx=0.18 as a
function of magnetic fieldL ab at different temperatures. Inset:
4n L 4r Hall coefficient (llab;BLab) as a function of magnetic field at
E T=02K T=0.2K. The arrow shows the estimate for the second critical
o 2r field.
2 |
2K « 0 ‘\-.._
e
0 2 4 BT 6
.J 1 " 1 1 X 1 4 1
0 2 4 6 8 10 12
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2 1070 em of the normal state, then the discrepancy between the experi-
! mental points and the logarithmic law indicates that the nor-
mal state has not yet been attaineBat1.5T.

We have also measured the in-plane conductivity in a
nonsuperconducting sample with=0.12 for magnetic fields
perpendicular and parallel to the Cu@lanes up to 5.5 T at

% T=1.9K and 4.2 K(Fig. 9. The positive magnetoconduc-
| %%% tivity (negative magnetoresistanagbserved in this sample
(R M is obviously anisotropic relative to the direction of the mag-
netic field.

757

6.5~ 4. DISCUSSION

: I L A logarithmic temperature dependence of the conductiv-

BT ity is one indication of the interference quantum correction

due to 2D weak localization. A magnetic field normal to the

F'g-l :-A’r\:g\?vzﬂm ig?gf;‘:zf:igﬁﬂzesggﬁazCirzlictzlefi;;m;'zif‘f’g';ﬁt diffusion path of a carrier destroys the interference. In a two-

temperatures. dlme_nS|onaI system, it causes negative magnetoresistance for

the field perpendicular to the plane, but no effect for the

parallel configuration. Weak localization effects are almost
totally suppressed fd, > B, ,2° where the so called “trans-

port field” is defined as the field at which

to 12T. The inset of Fig. 5 shows an exampleR{B, ) at
given T<T.. The nonmonotonidr(B,) behavior, with re-
versal of the sign of the Hall effect, is usually observed inthe  27B 2= ®,. 1)
mixed state of the superconductdrt® The transition to the
normal state is completed Bt=B,, where the Hall coeffi-
cient becomes nearly constant with the same value as in taementary flux quantum. _
normal state aT>T, (B, =5 T atT=0.2K). Values 0B, Let us compare Eq(l) with the rtlel.atlon's btheen the
for x=0.18 estimated in this way at different temperaturescOherence lengtl§ and the second critical field in the pure
are marked by the arrows in Fig. 6. This figure also Clearlysuperconductor.ﬁKI),
demonstrates the transition from positive to negative magne- 2B _,£2=d,, 2)
toresistance after the suppression of superconductivity.

In Fig. 7, the results of the theoretical description of theor in the so-called “dirty limit” (£>1):
magnetoconductivity £>Bcz are presented. Figure 8'dem— 2B él =D, . &)
onstrates that the resistivity of the sample with0.18 is a
linear function of InT in magnetic fieldsB>B,,. The ex- From Egs.(1) and (2) we haveB,, /B.,=(¢/1)?, so By,
perimental points foB=1.5T are also shown. If the loga- <B.,, and it is impossible to observe weak localization ef-
rithmic temperature dependence of the resistivity is typicafects in the pure case. In contrast, from E@s.and(3) one

Herel is the elastic mean free path adg,= wcfi/e is the

FIG. 7. Fit of the expressiof¥) to experimental data on the sur-
face conductivity of the sample witk=0.18 atT=0.2 K. Fit pa-
rameters of the broken line arB,=0.1 T, «=6.6. Inset: Surface
conductivity as a function of IB.
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FIG. 8. In-plane resistivity of the sample wit=0.18 as a func-
tion of InT in different magnetic fields.
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hasB;, /B.o=(¢/1), By, >B.,, and weak localization should series of samples. FdtzI>1, a true metallic conduction

survive in the normal stateB(>B.,) of a dirty supercon-

ductor.

takes place in Cu®layers. Thus, we have a rather pure 2D
system withkgl~10 for x=0.15 or x=0.18, and an ex-

In Table I, the parameters of investigated samples estremely pure system withgl ~10? for x=0.20. It is quite
sential to a description of localization are presented. Frommemarkable that even at such high values of the parameter

the experimental values of the in-plane resistiyitgnd Hall

kel, a trace of localization comes to light: f8r >B,, p is

constantR in the normal state, we have obtained the surfaceygreater at 1.3 K than at 4.2 (6ee Fig. 4. As for the sample
resistancers= p/c per CuQ layer and the bulk and surface with x=0.12, wherekgl is of the order of unity, this system

electron densities=(eR) "! andng=nc (c=6 A is the dis-
tance between CuQlayers. Using the relatior® oy
=(e?/h)kgl for the 2D conductancers=1/R,, and kg

=(2mng)Y? for the Fermi wave vector, we have estimated

the important parametds:I, the mean free path and then
according to Eq.(1) the characteristic fieldB,, . For the
sample withx=0.15 we use the data of Ref. 17.

In a random two-dimensional system, the paramketér

can serve as a measure of disortldt.is seen from Table II
that we have a wide range1— 1@ of kel in the investigated

B, T

FIG. 9. Surface conductivity of the sample witt=0.12 as a function of

magnetic fieldB, (BLab) or B, (Bllab) at different temperatures.

is in close proximity to transition from weak logarithmic to
strong exponential localization as disorder increakek de-
creasep

The second critical fieldB, at temperatures around
T=1.4K (see Figs. 4 and)5and values of estimated ac-
cording to Egs(2) or (3) are also shown in Table Il. In the
pure system withx=0.20, £<I, and negative magnetoresis-
tance is not detected &>B,,, at least forT=1.3K (see
Fig. 4). Systems witbk=0.15 and 0.18 are situated close to
the dirty limit £&>1, and there exist appreciable field ranges
B.,<B<By, where negative magnetoresistance due to 2D
weak localization is actually observésee Ref. 17 and Fig.
6).

In 2D weak localization theory, the quantum correction
to the Drude conductivity in a perpendicular magnetic field

iSZZ

AB—equlB“’qle” 4
os(By)=a5 o 278, 278, 4

TABLE II.

n-10"2 BL, T
X cm3 Kel LA By, T (T=14K) &A
0.12 0.2 2 ~10 =270 - -
0.15 2.0 18 =30 ~30 55 180
0.18 11 25 40 22,5 4.0 200
0.20 1.0 150 240 0.6 2.2 150

*Data from Ref. 1 af =80 K.
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where« is a factor of the order of unity} is the digamma temperature and field dependence of the resistpitan be
function, andB,=c#/4eL?. HereL,=\Dr, is the phase qualitatively described by weak localization theory. At low
coherence lengttD is the diffusion coefficient, and, is the ~ temperatures and in magnetic fields above the upper critical
phase breaking time. field, B>B,,, magnetoconductivity is proportional ®2.

The fit of (4) to the experimentalc((B,) data for This field dependence is consistent with weak localization in
x=0.18 atB, > B, is shown in Fig. 7. For each temperature the high-field limit 8>B,) for 3D disordered systems, in
there are two fit parameters: the characteristic figld(or ~ contrast to a 2D system witho(B)In B.

L) and the factow. The widest range of requisite magnetic One important indication of the 2D character of a system
fields and thus the most accurate fit results are obtained fds the strong dependence of magnetoresistance on magnetic
the lowest temperaturfE=0.2 K. With B, =22.5T, the best field orientation. Highly anisotropitegative magnetoresis-

fit is obtained forB,=0.1T (L ,=560 A) anda=6.6. The tance is actually observed in a nonsuperconducting sample
fitting procedure is highly sensitive to the value of the pa-with x=0.12 (see Fig. 9. From the fit toos(B,) by the
rametera. In contrast, the value dB,, is obtained only to functional form (4) with «=1, we find ch:770'& at
order of magnitude, as we have no zero-field and weak-field=1.9K and L¢:550A at T=4.2K, so that the
data. Nevertheless, there is no doubt that the inequBlity phase coherence time,=5.4-10"''s at T=1.9K and

<B,, is valid. 7,=2.7-10 Ms atT=4.2K.
In the field rangdB ,<B<B;, , the expressiofé4) can be We explain the much weaker negative magnetoresis-
written tance for the parallel configuratioBllab by incorporating
o . B finite-thickness(d) corrections into the strictly 2D theoRy:
AoB))=am——-1—-V¥| = —In—l]. 5 2 212
o 2“271{ <2) Bu ® A0(B))= 5 In 1+—2"), Nt @)
27°h 3\ eB,

The inset of Fig. 7 shows that the experimental data at ) )

T=0.2K can be fitted rather closely by this simple formulaBY fitting the theoretical expressio¥) to the curves for
over a wide range of fields,$B<11T. But as we have the “(Bi) (see Fig. §, we have found the effective thickness of
factor = 6.6, negative magnetoresistance is too large to b& conducting Cug@ layer, d=15A. This value yields an
due to the destruction of weak localization only. Thus weestimate for the extent of the electron wave function in the

conclude that some additional mechanism of negative mad]ormal direction, and ensures strong carrier confinement (
netoresistance must be at work. <c). The single crystal NdCeCuO can therefore be regarded
There exists another quantum correction to the normal@S an analog of an ultra-short-period superiatiites A
state conductivity with a logarithmic dependence of magneWells /4.5 A barriers o _
toresistivity onB, namely the correction due to disorder-  AS the 2D version of weak localization theory is able to
modified electron—electron interactidgEl) in the Cooper ~describe the behavior @f(B,T) in our sample, the inequal-
channef In the range of magnetic fieldB;<B<B,,, we IV Tesc>7, should be valid for the escape time of an

have electron from one Cu®plane to another. Then we have
Tes=5-10 s, The escape time between adjacent wells in
EEI e? B, a superlattice can also be estimated from the value of the
Aog™(B)==529(T)n B,/ ®  normal diffusion constantr..=c?D, . For the parameters

of our sample at 300 K, we ha¥/®, /D, =1.7-10* with the

where Br=mchi/2eL?, Lt=VAD/KT is the thermal coher- in-plane diffusion constant D,=1.2cnfs%.  Then
ence length, and(T) is the effective interaction constant of 7, ~=5.10 's even at room temperature, sg.> 7, With
two electrons with opposite momenta. For the attractivecertainty at low temperatures.
electron—electron interaction due to virtual phonon ex-
change,g>0, and according tq6) the magnetoresistance
should be negative.

As we have dealt withn situ superconducting samples, We have investigated the low-temperature and magnetic
so thatg>0, the contribution due to EEI is most probably field dependence of the normal state in-plane resistigity,
the reason for the extra negative magnetoresistance at veny a layered copper oxide single crystal NdCe,CuQ,_ 5.
low temperaturesB;=0.02 T atT=0.2 K). With increasing The material is regarded as an intrinsic two-dimensional con-
temperature, the magnitude of the EEI contribution decreaseguction systenta collection of 2D conducting Culplanes,
rapidly («=2.5 atT=0.8K), and atT=1 K the estimated and the results are interpreted in terms of the 2D weak local-
value of the factor is close to unityy=0.77 atT=2.1K), ization model. Three indications of 2D weak localization
as it should be for weak localization. have been displayed: logarithmic temperature dependence of

It should be noted that pronounced negative magnetorehe resistivity, significant negative magnetoresistance for a
sistance due to the suppression of weak electron localizatioffeld normal to theab-plane, and pronounced magnetoresis-
is observed in ordinary superconductors as well. The electrotance anisotropymuch weaker effect for a parallel configu-
transport properties of three-dimensiof@D) amorphousx- ration). A strong dependence of the magnitude of magnetore-
Mo;Si anda-NbsGe superconducting films have been inves-sistance on the direction of the magnetic field is the most
tigated in magnetic fields up t8=30T at temperatures important experimental test for the two-dimensional charac-
down to T=0.35K.?* The authors have found that both the ter of a conducting system.

5. CONCLUSION
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Structure of the mixed state induced in thin YBaCuO superconducting films by the field
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The temperature dependence of the local energy barrier to formation of the mixed state in
YBaCuO thin-film superconducting samples has been determined. The measurement technique is
based on use of a small ferromagnetic particle as the magnetic field source. It is found that

the energy barrier to creation of vorticé®r the field oriented parallel to the CuO plahés
anomalously small while the dependence of the corresponding threshold guEnt

differs substantially from the temperature dependence of the pair-breaking current. The
experimental results are interpreted in terms of the model of a Josephson medium. The observed
temperature dependence jfpoints to a strong suppression of the superconducting order
parameter at the intergrain boundaries, which for the most probable type of boundaries:
superconductor—insulator—superconductor, is evidence of anisotropic pairin$j99®

American Institute of Physic§S1063-776(199)01711-4

1. INTRODUCTION the edges of the film in this case are negligibly small. Note
that systems of this typéa magnetic dipole above the sur-
In recent years a great deal of attention has been given ace of a superconducfoare being actively investigated at
experimental and theoretical studies of the mixed state ithe present time, in particular, as applied to problems of the
thin films of high-temperature superconductdqi$TSC'S9  magnetic force microscope, levitation, &t€.As a rule, such
(see, e.g., the review in Ref. 1 and the references citedtudies assume that the magnetic dipole moment is quite
therein. The results of measurements of the magnetic propsmall and only weakly perturbs the structure of the mixed
erties can be interpreted on the basis of the well-known Beastate. In the present paper we present an experimental and
model. Such calculations turn out to be quite complicated fotheoretical study of a qualitatively different situation, where
samples of arbitrary shape and can be performed with relehe mixed state itself is created by the field of the magnetic
tive ease only for certain particular casesy., for samples of dipole (micromagnet The scenario of the appearance of
cylindrical or ellipsoidal shape Thus, an analysis of the such a vortex state depends substantially on how the film
experimental data on the magnetization of thin films, espegoes over to the superconducting state, in the presence or in
cially in a field perpendicular to the surface, is a very diffi- the absence of the field of the micromagnet. Freezing of the
cult task. The large demagnetizing factor of such samplesortices in the field of the micromagnet was investigated
leads to a high density of the screening current at the edgesxperimentally in Ref. 6. This case corresponds to the theo-
of the film, as a result of which the poorly controlled edgeretical analysis of Refs. 5, 7—9, based on a comparison of the
structure of the samples to a significant degree determinefsee energy of a superconductor without vortices and with a
the experimentally measurable magnetic characteristics.  single vortex. As will be shown in this paper, a study of the
In the present paper we propose an original metlpoe-  formation of a vortex statéin a dipole field in samples
liminary results were presented in Rej. fr directly mea- cooled toT<T, in the absence of a field is also of great
suring local the characteristics of the mixed si@ie Bean— interest since it would yield important information about lo-
Livingston energy barrier for entry of magnetic lines of force cal characteristics of the sample. In this context we propose
B from the sources, the critical current of barrier suppressiorthe following scenario of the appearance of the mixed state
jc, and the depinning curreny), allowing one to neglect in our experiments. As the distaneebetween the film and
the influence of edge effects, which are substantial for meathe micromagnet is decreased, the local Meissner current on
surements in uniform fields. The given method is based otthe surface of the film exceeds a critical value, which leads to
an experimental analysisvith the aid of a Hall sensprof ~ the generation near the surface of vortex half-loops. Such
the spatial distribution of the residual magnetization createdhalf-loops, with increase of their radius, reach the opposite
by the vortices pinned at the pinning centers and penetratingurface of the film, where they split up into a vortex—
into the film under the action of the field of a small ferro- antivortex pair. These newly formed vortices become pinned
magnetic particlgmicromagnet The use of such a micro- to pinning centers and create a residual field. In this scenario
magnet, located a small distanadrom the film surfaced it is possible, in particular, to determine the local energy
<L, L is the lateral dimension of the filpas the field barrier to entry of the vortex lines into the thin superconduct-
source allows one to neglect edge effects since the currentsiag film through its surface. This problem reduces to mea-

1063-7761/99/89(11)/8/$15.00 940 © 1999 American Institute of Physics



JETP 89 (5), November 1999 Aladyshkin et al. 941

suring the threshold distanae,, starting from which de- 1
struction of the Meissner state occurs. Note that the problem

of determining the local surface energy barrier is of interest

in connection with result§ which indicate a substantial de- — 2
pendence of the barrier on the orientation of the surface rela- F 3
tive to the crystal axes, which cannot be explained in terms S 4 pr——

7
of the anisotropic Ginzburg—Landau thedfy? ! = |

Using this method we have obtained the temperature de- p j\
pendence of the surface energy barrier suppressing current 8
density j. in thin YBaCuO films in the temperature range
77-90 K. The measured value jofturns out to be extremely
small in comparison with the theoretical value of the pair-fig 1 piagram of the experimental setup—bar; 2—micromagnet;
breaking current for homogeneous single-crystal supercors—yBacuo film; 4—substrate5—scanning Hall sensd?1; 6—fixed Hall
ductorsjg, (jc/je.~102), which is in good agreement sensorP2; 7—temperature-sensitive elemeBi-heater;9—heat sink.
with the results of an analysis of the hysteretic dependence of
M(H) (Ref. 10. Our experiments have shown that the tem-
perature dependence pf 72 differs substantially from that tron sputtering. An annular target, prepared from a pre-
of jg 7 wherer=(T,—T)/T,. In our opinion, the ob- synthesized and pressed powder of the phase,E&&,
served effects are evidence for the existence in the sample sputtered in an argon—oxygen mixture at the optimal ratio
Josephson-coupled grains, and the temperature dependergeO=1:1 and optimal pressure 50 Pa. The temperature was
points to strong suppression of the magnitude of the ordemeasured and maintained with an accuracy-df °C in the
parameter at the grain boundaries. Note that the existence miinge 600—750 °C. The substrate was Nd@afh orienta-
grains is confirmed by the results of tunnel scanning microtion (100. The films differed in their conditions of prepara-
scope studies. To interpret our experimental data, we carrietion. The temperature of the condensation surface was the
out a theoretical analysis of the spatial distribution of thesame forM3 andM4 and approximately equal to 700 °C,
vortices in a thin film in the Bean model, which takes ac-and forM1 andM?2 it was 20 °C and 40 °C higher, respec-
count of the magnetostatics of thin superconducting films irtively. The deposition rate foM1, M2, andM3 was 4.7
the mixed state. Almin and the grain size was 5000 A, while fbt4 it was

The paper is organized as follows. Section 2 describesvo times lower and the grain size was 1.4 times greater. The
the characteristics of the samples and the experimental setuipalf-width at half-maximum of the rocking curve for
Section 3.1 presents results of measurements of the depia~scanning of th€005) reflection of YBaCuO was 1°. The
ning currentj, in a uniform magnetic field. Section 3.2 de- films had the following parameters,~84-86 K, width of
scribes a technique for measuring the critical distaage the resistive junctionr=1-2 K, low microwave(10 GH2
from the micromagnet to the film surface and present resultgesistance~ 10 %—-10 2 at 77 K and high depinning cur-
of such measurements. Section 4 analyzes the temperaturent densityj ,(77 K)=10°-1 A/cm?, and normal-state re-
dependence of the critical distaneg, in order to obtain sistancelat 90 K) ~100.()- cm. Details of sample prepa-
information about the temperature dependence of the curremition and sample characteristics are described more fully in
jc. Section 5 considers a theoretical model which describeRefs. 13-15.
the resulting vortex state and compares the calculated char- The setup for performing the temperature measurements
acteristics of the vortex structure with the experimental rewas a copper table with a massive base immersed in liquid
sults. nitrogen (Fig. 1). The investigated film was placed on the
table, under which a heater was mounted on a rod. The tem-
perature was determined from the change in the resistance of
a copper wire which played the role of a temperature sensor
and was situated in contact with the film on the surface of the

Experiments on measuring the energy barrier at the fixethble. A prescribed temperature was maintained by a thermo-
temperaturel =77 K were performed on a large number of stat, which created a balance between the delivered heat and
YBaCuO films differing in thicknesgfrom 850 A to 3000 the removed heat by controlling the current flowing through
A), preparation techniquénagnetron sputtering or laser ab- the heater.
lation), and type of substratesapphire with yttria-stabilized A particle of SmCg with dimensions 308 300
zirconia (YSZ) sublayer, NdGa@) The results of all these Xx500um® and magnetic moment 67103 G-cnr served
experiments convincingly demonstrate the existence of a lovas the micromagnet. Characteristics of the vortex distribu-
energy barrier to entry of vortex lines from the supercon-tions were measured by two identical Hall sensors based on
ductor surface. InSb films with dimensions of the working region 50

To check the temperature measurements of the charac<100um?. A scanning sensoP1 was situated above the
teristics of the mixed state, we used fadoriented YBaCuO film surface at a distance of 1Q@dm and was used to mea-
films (M1, M2, M3, M4) with dimensions 28 20mn? and  sure the spatial dependence of theomponent of the mag-
thickness 850 A, which were grown in a low-temperature,netic field B,(x,y) at T=77 K. The fixed Hall sensoP2
single-stage process situ by the method of reverse magne- was located under the film precisely under the micromagnet

2. SAMPLE CHARACTERISTICS AND EXPERIMENTAL
SETUP
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FIG. 2. Spatial distribution of the residual magnetic fi#@d in the film, 76 80 84 T K 88
measured by the scanning sen&dr after switching the external uniform '
magnetic field on and off =500 G, T=77 K). FIG. 3. Typical temperature dependence of the depinning cuje(®)

and the resistivityp (A).

and was used for temperature measurements of the residual
magnetization. The sensors in tkg plane had spatial reso- 3.2. Film in the field of the micromagnet

lution Ry;; ~100um andRy;,~700um, respectively. As was indicated in the Introduction, the use of a micro-

magnet makes it possible to neglect the influence of edge
effects, which are important in uniform fields. The field of a
micromagnet at distances>| (wherel is the characteristic
3.1. Film in a homogeneous magnetic field dimension of the micromagnefalls off with increasing dis-

To determine the depinning current densjfy and its tance as ¥P. Therefore, despite the increase in the current at

temperature dependence, we performed experiments in a urifle edge(by virtue of the large demagnetizing factothe

form magnetic field. The film, located in a solenoid, wascurrent density near the edges turns out to be negligibly
cooled in zero field down to temperatures 7ZK<T,. Af-  Small in comparison with the pair-breaking current and in-
ter increasing the field to valu&=600 G, thereby ensuring Sufficient for vortex creation. The form of the spatial distri-
Complete penetration of the ﬂux into the film and Subsebution OfBZ on the surface of the thin film magnetized in the
quently lowering the field to zero, we used the scanning Halfield of the micromagnetFig. 4) confirms that vortex lines
sensorP1 to record the spatial distribution of the trapped cannot penetrate the film from the edges: the vortices are
field B,(x,y) (Fig. 2). The B,(x,y) measurements are found localized in a bounded region of the film under the micro-
to be in agreement with typical experimental data formagnet. As a result, in experiments on samples with finite
YBaCuO films!® In Fig. 2 it can be seen that the region dimensions the presence of an edge does not have an effect,
where the vortices are pinned is not localized; this indicates

penetration of vortex lines from the eddest should be

noted that some of the behavitiogarithmic growth of the B,G

filed near the center and change of sign of the second deriva-
tive) predicted by theoretical calculation in the model of the
critical state with uniform depinning current density-j 7
=const are not observed in the experiment. In our view, this
may be due to the finite spatial resoluti@hof the experi- 5
mental setugin our caseR=R,;;~100um, and in Ref. 16
R=1.6 mm) or to large-scale inhomogeneities which lead to 3 =
the dependencg,(x,y). Nevertheless, in the critical-state :”;;;ivg‘l';‘(\;;'.
model with j = j,=const(Ref. 17 (i.e., ignoring the inho- 11, ivgaetys
mogeneitiey it is possible to estimate the mean depinning
current densityj,, averaged over the surface of the film, -1
using the formula

. cC max B, ]
P = 2 7dIn(L/Ry)

whered is the film thickness and=850 A. The temperature

dependencq_}p(T) obtained !n this Wa,y Is plotted in Fig. 3. FIG. 4. Spatial distribution of the residual magnetic fi#ld in the film,
Note that this dependence is nearly linear at temperatures f{easured by the scanning senddr after lowering the micromagnetic to a

from T.. heighta<a,, and its subsequent removal from the filfi= 77 K).

3. EXPERIMENTAL RESULTS

oY)
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FIG. 5. Typical dependence of the residual fiBldin the center of the film
on the distanca at T=77 K. FIG. 6. Typical dependence ef, (®) andj. (O) on the temperaturé.

and the possibility exists of carrying out local measurementspower lawa,,o 7. For all samples the exponent=—0.7.

In the present section we show how the technique of meaysing these data, we will find the value jofusing the model
suring local characteristics of the mixed state is used to findjescribed above.

the temperature dependence of the surface energy barrier
suppressing current density.

The experiment was performed in the temperature inter?- DISCUSSION OF RESULTS
val 77 K<KT<T. and in the range of distances between the4.1. Temperature dependence of the critical current  j,,
center of the micromagnet and the surface ABt<a
<4000um for each sample. The procedure for mea\suringCurr

the residual magnetization arising in the film in the field Ofdata can be easily obtained by solving the problem of the

the micromagnet was as_follows. The film W.'th frozen—nj distribution of the Meissner current induced by the field of
zero flux was cooled to a fixed temperature which was main:

tained with an accuracAT—0.01K. The micromagnet the micromagnet. For the case of an infinite superconducting
. P ' film the initial equation has the form

originally located far from the film, was lowered to some

heighta, which was measured with a micrometer, and was f(z)

then raised to its original height. After this, the magnetic 7 <V XA~ N2, A=4rmo(z+a)Vx{mao(x,y)}, (2

field of the film was measured with the sen&#. Using this ) 2 ) ) o _

technique, we obtained the dependence of the residual malj{N€rex,y,z is the coordinate system with origin on the film

netization on the distanca to the micromagnet for each surface,\ 5, is the effective penetration depth for currents

sample at various temperatures. Let us enumerate our mapfrallel to thexy plane; and the micromagnénagnetic di-

The relation between the critical distaneg, and the
ent densityj, needed for analysis of the experimental

results: pole) is located at the poirt=—a, x=y=0 with m||z. The

a) the vortex lines penetrate into the thin-film sample functionf(2) is defined as followsf(z) =1 for 0<z<d and
through its surface and not from its edges; f(2)=0 for z<0 andz>d.

b) the resulting vortex distribution has regions with posi- ~ Note thatk,, depends strongly on the structure of the
tive and negative components Bf,: the maximum of the samples: for unlform_ smgle-crysta_l films,, c_ommdes_ Wlth
absolute value oB, grows with decreasing; the London penetration depify while for grainy media this

¢) the existence of a critical distaneg, is observed, length depend_s on the intergrain Jpsephson interatdion.
which corresponds to onset of entry of vortices into the sufrom Ea.(2) with the help of the relation
perconductor(Fig. 5); for a>a,, residual magnetization is c
absent, which corresponds to the Meissner dife vortex Jo=— m%
state is formed only foa<ag); ab
d) the critical distance,, increases as the temperatdre we obtain the following expression for the current density:
is increasedFig. 6).

()

cm o (=
To increase the accuracy of the measurements, the critj- = — —Zf exp(—qa)
cal distancea,, (in the presence of noise corresponding to a T\ap Jo
magnetic field~0.1G) was determined by extrapolation of k costik(d—2)]+q sinHk(d—2)]

the dependence of the signal at the se®dion the distance X q2J.(gp)dg, (4)

a (Fig. 5. The character of the observed experimental dis- (k™+q%)sinf(kd) + 2kd cosfkd)

tributions B,(x,y) was the same for all samples. The tem-wherer,¢,z is the cylindrical system of coordinatek?
perature dependence af; (Fig. 6) is well approximated by a =q?+ )\;bz, and J; is the first-order Bessel function.
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TABLE I. Main parameters of the investigated samples. critical current between the grains, which is much less than

Fim T.K I (77 K) Alon? (77 Ky, Ao 0 oL - Acco_rdlng to Ref. 1.8, the effective penetration depth
can be written as follows:

M1 86.4 2.x10° 0.8x10° 2.1+0.1

M2 86.9 2.6<10° 0.85x 10° 2.0+0.1 A2, = c®g (6)

M3 85.5 2.0 1¢° 0.95x 1¢° 2.0+0.1 b 16m%ulj,’

M4 86.6 1.0 10° 0.7x 1P 1.9+0.1

whereu is the effective permeability of the medium, associ-
ated with the ration /I (for N /I~1 we haveu<1.) For
A (77K)=3000A, I~0.5um, andj.=2x10° Alcm? we
obtain A,,~1. It can be seen that at all temperatures
>77K the condition\ ,,>1, which was used above in the
o X ayes _analysis of the experimental data, is valid. At temperatures
mental data it is convenient to use a S|2mpllf|ed expressior 77 i the penetration deptky, can be less than the grain
that follows from Eq.(4) for a>ma)\qp \a/d]: sizel and the simple moddkee Ref. 18based on the free
. 3cmra costi(z—d)/\ 4] energy functional averaged over the schlés no longer
Jo(r)=-— 2 RPN : ' (5  valid. The temperature dependence jgfobserved in our
Thap(re+a%) sinh(d/\ ) . . L
experiment differs significantly from the temperature depen-
Employing Eg. (5) and the experimental dependence ofdence characteristic for Josephson contacts of the form
a.(T), we can determine the value of the critical currentsuperconductor—insulator—superconductoj «@; 7<1)
density j(T) =maxj(r.¢)|=|j,(a./2,0)| corresponding to (Ref. 19, and points to a substantial suppression of the order
the onset of vortex penetration. Here we have also made uggrameter at the grain boundaries. This conclusion is found
of the condition\ ,,>d, which turns out to hold in the tem- to be in agreement with the results of Ref. 20, which
perature range under consideratigsee the estimates derived measured the magnetic susceptibility of polycrystalline
below). Figure 6 displays a typical dependencg &fT). Let ~ YBaCuO films with resistivity p,,(100 K)=800u()-cm
us turn our attention now to some important features of thend T.=80K. If we ignore the possible existence of
obtained results: superconductor—normal metal—superconductor contacts in
a) for the entire temperature rangg(T) is significantly ~ YBaCuO films, then our results point to an anisotropic type
smaller than g, , the Ginzburg—Landau critical current den- of pairing in the grains.
sity needed to suppress the surface barrier in ideal samples
@t T=77K W.e havej /jg ~10 2); thus, our results are in 4.2. Model of the critical state in thin films
agreement with the results of Refs. 2 and 10, where the
smallness of the Bean—Livingston barrier to entry of vortex ~ To analyze the characteristics of the mixed state formed
lines parallel to the CuO planes was demonstrated; in the field of a micromagnet, we considered a simple model
b) for temperatures neaf. the experimental data are of the critical state in thin films with thicknessel<\ ,;,,
well approximated by the dependenfe:7°, where p=2 which allowed us to find the steady-state vortex distribution
(see also Table I, which lists the main parameters of thén an external magnetic field.
samples As was stated above, vortex—antivortex pairs are created
Let us now consider possible mechanisms of the obin @ bounded region near the maximum of the Meissner cur-
served strong suppression of the Bean—Livingston barrief€ntrna,=a/2. The vortices that have entered the film under
First, suppression of the barrier can clearly be connectethe action of the Lorentz force will move to the opposite
with surface roughness and surface defects. This mechanissifle, redistributing the residual magnetization as a result. A
lowers the critical current of penetration of the first vortices: Steady-state vortex distribution in the film is possible pro-
i~7vieL, Where y<1. Nevertheless, it is improbable that vided the following conditions holsee, e.g., Ref. 21First,
such a mechanism should give the small vajue1l0 2 cor-  the current density should not exceed the critical vglue
responding to the experimental data. Besides, even if we agotherwise additional vortices will be generate8econd, in
sume that surface roughness leads to the appearance of verder that the vortex structure be fixed, the current density in
tex half-loops near the surface, breaking of these half-loopthe region of the vortices should not be greater than the de-
into vortex—antivortex pairs would still require a rather pinning current density,. A simple variant of the nascent
strong current density~jg, . It should also be noted that Vvortex structure is a set of two nonoverlapping regions in
barrier suppression due to surface roughness, in our viewvhich either the vortex density or the antivortex density is
cannot explain the observed temperature dependgice’ nonzero.

Clearly, Eq.(4) can also be used for a film of finite dimen-
sions in the limitsa<L andr<L. To analyze the experi-

with exponentp=2, which differ substantially from the tem- Letjy(r,r’) be the current density at the pointreated
perature dependence of the Ginzburg—Landau current deRy a vortex located at the point:
sity jg o 75, e

Second, a low barrier can be easily explained in terms of jl(r,r’):j1(|r—r’|)z><r—,.
the model of a grainy Josephson medium. Here the role of r=r'|
Josephson contacts can be played, for example, by graifihen the expression for the current dengjtyr) created by
boundaries. The effective critical pair-breaking current inthe fixed vortices distributed with concentratin(r) has the
such a model is equal in order of magnitude to the Josephsdorm
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o= [ =1 ¥
For the case of an axially symmetric distribution(r)
=n(r), Eq. (7) reduces to the form

l ©
hm,ﬁﬁf 2an(r)G(r,r")r'dr’, )
0
whereG(r,r') is the current density created by a vortex ring
with concentration of vortices(r)=N&(r —r')/2mwr, where
N is the total number of vortices.
An analysis of the creation of a vortex structure can

be performed at the threshold of vortex-pair generation

[(ag—a)/ag<1]. In this case, the steady-state vortex dis-
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log|B, | [G/ecm]
2 -
1 -
0 ) , ; "
0.2 04 0.6 0.8 1.0
log(T, - TIK]

tribution consists of two narrow rings located a great dis-

tance apart: an inner vortex ring of radiusand half-width
0, and an outer vortex ring of radius>r, and half-width
0, (01,<r1,). We also assume th@f<j.. This condition
is in agreement with our experimental results Toclose to
T, (see Sec. 3.1 and 4.IThe indicated conditions allow us
to simplify the expression foG(r,r’) in Eq. (8) (see Ap-
pendix A and obtain the following system of equations:

bcCI)on+(r’)dr’+_ +3thl>or1 "
=— =rs<
2 2nd(r—r) A gz T e 2STSD
9
fdcdbon_(r’)r’dr’ ) Ncd, L
¢ 2midr(r—r’) +J‘P(r)+4ﬂ'2dl’22_ Ip:
c<r<d, (10
P cdyN +3c<1>0Nr_ i 11
J(p(r) 471_2d-r'2 47T2d?2 =~y ( )
d . d [ cdyN d [3cdyNr o 12
arle| *arl a2 ar| a72a )| 70 (12

wherea<r=<b andc=<r=d are respectively the regions of
existence of the vortices and antivortic&sis the point at
which the total current reaches its maximum; is the vor-
tex density; anch_ is the antivortex density. Equatiorg)
and(10) describe the conditions of immobility of the vortex
structure| jo(r)=j, for asr<b andc=<r=d], while Egs.
(11) and (12) correspond to the situation where the maxi-
mum value of the current density is equaljta

Taking the approach employed, for example, in Ref. 21
it is possible to invert the integral equatiof®—(12) (see
Appendix B. After solving the resulting system we obtain

FIG. 7. Temperature dependenceBjf=dB,/da (® — experimentO —
theory).

PP, 1, 15
1_27T3djpv 1_5 2 ( )
Then
ri+o ro+ 6,
N=27Tr1f n+(r)dr=2wr2f n_(r)dr
ri—0; ro2— 06
B ommr 1 a 16
T 1.257D,-4a, ag/ (16

To compare the results obtained using the considered
theoretical model with the experimental data, it is necessary
to find a relation linking the experimentally measured value
of B, with the parameters of the vortex structure. Because
two narrow vortex rings €, ,<r, ;) are formed near the gen-
eration threshold, to find the magnetic field created by the
film we can take the vortex density to be equal to

N
N(r)=5—[o(r—r)=a(r—ry)]. an

The desired expression for tkecomponent of the mag-
netic fieldB, measured by the Hall sensBe (located under
the film at the distancél=700um) has the form

BZZ fo W(D(,n(r’)r’dr’

1 1

_ NHd, }
(ri+ H2)3/2 (r§+H2)3/2 .

2

(18

the following expressions for the vortex and antivortex den-

sities:
3m 2ma;
_ \/ﬁ — r\/ﬁ
n. ®oal O—(r—rps, n_ q)org 05— (r—ry)*,
(13
where
27 dad
r1=#, rirs=az, (14)

It is interesting to compare the slope of the experimental
curveB,(a) for a=a, with the theoretical value
dB, 1 1
a (r%+H2)3/2_(r§+H2)3/2}
(19
As can be seen from Fig. 7, the temperature dependence

B,(T) demonstrates good agreement between the theoretical
calculations and the experimental data.

9mH

Bl= ——
1.252.8a,

z

a=ag
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5. CONCLUSION After some mathematical manipulations, expres$fB) can

. be reduced to the form
In the present paper we have proposed a new experimen-

tal method for determining the local characteristics of super- , c®N| E(k) K(k)
conducting films, in particular, the surface energy barrier for G(r.ri)= A3 |r(r—r’) r(r+r’)]
entry of vortex lines into the superconductor. The measure- o .
ment technique is based on the use of a small ferromagnetfnereK (k) and(k) are the complete elliptical functions of
particle as the magnetic-field source and is therefore free df'€ first and second kind and=4rr'/(r?+1'?). ,
the drawbacks characteristic of methods employing uniform W€ Write ,down the asymptotic limits of the Green's
external fields to determine the characteristics of sampletc“ncmmG(r'r ? [Eq,. (A4)]
with a large demagnetizing factor. The primary virtue of the 1) for [r—r'|<r
method is that it allows one to obtain direct information cdoN 1
about important parameters of a superconductor regardless of G(r,r')= 473d r’(r——r’); (A5)
the geometry of the sample. The experiments conducted on
YBaCuO films have shown that the energy barrier to creation 2 for [r—r'[>r" andr>r’
of vortices(for the field oriented parallel to the CuO plahes chN 1
is anomalously small. The temperature dependence of the G(r,r’)= 2.2 12 (AB)

. L . 7odr
corresponding threshold currept (induced by the micro-
magnel differs substantially from the temperature depen-(this form of the Green’s function is used to calculate the
dence of the pair-breaking current responsible for overcomeurrent density created by a vortex ring in the region of an
ing the Bean-Livingston barrier in ideal samples. Theseantivortex ring;
facts can be interpreted in terms of the model of a Josephson 3) for [r—r'|>rq andr<r’
medium. In this case, the value that we have obtained for 3ch N T
jc(T) is the intergrain critical current density. The observed  G(r,r')= ——— -3
temperature dependence jQfis indicative of a strong sup- 8md r
pression of the superconducting order parameter at the integthis form of the Green’s function is used to calculate the
grain boundaries, which for the most probable type ofcurrent density created by an antivortex ring in the region of
boundaries (superconductor—insulator—superconductds  a vortex ring.
evidence of anisotropic pairing. Further analysis of the tem-
perature dependence pf(T) in samples with different mi-  AppeNDIX B
crostructure is thus very important for answering the ques-

tion of the type of pairing in high-temperature To solve the system of integral equations, we used the
superconductors. approach developed in Ref. 22. In this situation, according to

Ref. 22, for the singular integral equation
In conclusion, we would like to express our gratitude to
A. A. Andronov for valuable remarks and discussion of the i!b p(Ddt
results. This work was carried out with the financial support ~ 7172 t—tg
of the Russian Fund for Fundamental Resedf@fant No.  (where ¢(t) is an unknown function satisfying the Helder
97'02'17437 and the International Center—Foundation forcondition’ andC is an unknown Constahthe unique solu-
Promising Research in NizhinNovgorod (Grant No. 99-2-  tion has the form

(Ad)

(A7)

03).
(to) V(tg—a)(to—b) [P f(x)dx
®(lo) = ; )

APPENDIX A l a V(X—a)(X—b)(X—to)(Bz)

Here we obtain the asymptotic limits for the Green’s
functionG(r,r’) in Eq. (8). We find the current density cre- o 1 e f(x)dx B3
ated by a ring of vortices with concentration m Ja J(x—a)(x—b)

n(r)=No&(r—r")/(2r) (A1)
(r' is the radius of the ring It is well known that the ex- *E-mail: alay@ipm.sci-nnov.ru
pression forj(r,r') for [r—r’|>\g (Neg=M24/d) has the
form
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We present the results of studies of electroreflection in the 1.1-4.4 eV spectral range, of electron
Auger spectroscopy, and of electron diffraction involving the photoluminescent Sj—SiO

system prepared via anisotropic chemical etching of tH&08i surface. These results are
explained on the basis of a four-layer model of the band structure and energy transition

diagram for a system with a quantum well at the silicon surface, surface electron states at the
boundary, and a gradient of the band potential in the transition layer. We find that light-

emitting silicon remains an indirect-gap semiconductor and that the visible photoluminescence is
due to direct recombinations of the light-excited electrons and holes in the quantum well at

the center of the Brillouin zone with the participation of the band of deep localized states, which
is due to the presence of oxygen at the silicon surface.1999 American Institute of
Physics[S1063-776019901811-9

1. INTRODUCTION aimed at establishing the nature and mechanism of light
emission in silicon, which were usually found from the spec-
Since visible photoluminescence was first detected inral dependence of the photoluminescence intensity and the
silicon at room temperaturemuch attention has been paid to effects of various factors, such as the nanocrystallite Size,
this phenomenon, which is unexpected in indirect-gap semithermal annealing® ultraviolet!® laser!® electron'” and
conductors. The unflagging fundamental and practical intergammés radiation, chemical etchin, electric field?® and
est in the emission of radiation by silicon is due to the e surroundingd! However, despite the substantial ad-
specific optical and electronic properties of this materia'gvances in the studies of properties of light-emitting silicon,

properties that also make it posglble to record electrqlgmlthe physical mechanism of visible photoluminescence of sili-
nescence at room temperatfreThis broadens the possibil- con is still unclear

ity of using one of the main materials of electronics not only Although excitonic annihilation at the surface states of

n rr}lcrqle_zlectrg_nlcs: bu(;. atl_so n opto;lectt_romcfs.l ¢ ; quantum-size structures is the generally accepted model, a
_n stiicon direct radiative recombination of €1ectrons at aq 44,4 mechanism of visible photoluminescence in silicon

side minimum in the conduction band and a hole at the top o, . . . .

. . . . .~ “has yet to be developed. Neither has it been established with-

the valence band is usually impossible without the participa- : o . : L .

. o . out doubt that light-emitting silicon is an indirect-gap semi-

tion of phonons or violation of selection rules, so the photo- S o

. -~ - ) .~ conductor, although there are indications of this in the results
luminescence efficiency of silicon is extremely low. To in- ¢ studies of liahtinduced absorption in porous silié3n
crease this efficiency, the electrons and holes must b 9 b P :

localized at the same point of the Brillouin zofie k-space. ccording to theoretical .calculatioﬁéjzéIight-emitting sili-
However, the results of numerous studies indicate that inton becomes a quasidirect-gap semiconductor with an in-

tense photoluminescence at room temperature can be d%r_eased band gap and less stringent selection rules due to the

tected after the silicon surface has been treated appropriatefif[€Ct duantum-size confinement in nanostructures. The latter
by one of the following methods: anodic electrolytic iS important if we want to increase the photoluminescence

etching® chemical etching,photochemical etchingand an-  &fficiency. _ »
isotropic chemical etchintf It was also found that silicon Studies of the electron band structure of light-emitting

nanospheres deposited on quartz or germanium substrat@$icon by the modulation spectroscopy method should help
and covered by a layer of silicon dioxide emit light at room in understanding the nature of efficient visible photolumines-
temperature when excited by laser lighgnd so do Si-Si9 ~ cence of indirect-gap semiconductors. The high sensitivity of
superlatticed? this method to details of the band structure is well knéWwn.

It has been established without doubt that irrespective of he advantage of modulation spectra over classical spectra
the method used in preparing light-emitting silicon, the en-ies in the fact that they allow the fine structure, usually
ergy of the emitted photons exceeds the energy of the indihidden by the structureless background, to be established.
rect transition(1.12e\) and does not coincide with the Here the electroreflection method is the most sensitive, since
known energies of direct optical transitions for silicon at thethe electroreflection signal is determined by the third energy
critical points of the Brillouin band. Therefore, it is quite derivative of the optical constantand hence of the reflec-
natural that most studies of light-emitting silicon have beertion). The signal exists only at the critical points of the

1063-7761/99/89(11)/7/$15.00 948 © 1999 American Institute of Physics
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Brillouin zone in the direct-transition region, vanishes as weatomic composition of the surface was determined from the
move away from these point, and is determined by both opAuger spectra for low-energy LVV) and high-energy
tical and electron properties of the semiconductor surfacKLL) transitions obtained in the JEOLJAMP-10S
under investigatio® No studies of light-emitting silicon by microanalyzer with 10-keV electrons and a 3-Vmodulating
this method have been conducted so far, and there are nmltage. To analyze the chemical composition of light-
data on the electroreflection and changes in the electroamitting silicon by depth we usa situ layer-by-layer etch-
structure of silicon initiated by the transition to the light- ing of the silicon surface by 3-keV Arions with a current
emitting state in the literature. density of 1-2uAmm~?2 and a spot diameter of 1Qom.
This paper is a report on the studies of the energy specfhe etching rate was 3 nm per minute. The perfection of the
trum of light-emitting silicon, prepared by anisotropic etch- crystal structure at the plate surface was estimated from the
ing, The results were extracted by the electroreflectiorelectron-diffraction patterns produced by theViE-100
method and compared with the spectrum of ordingrgn-  electron-diffraction camera with an accelerating voltage of
light-emitting) bulk silicon. We also examined the results of 75keV. If necessary, the surface layer of silicon was re-
electron diffraction and electron Auger spectroscopy. On thenoved in an aqueous solution of hydrofluoric acid,
basis of the data, we interpret the nature of photoluminesHF:H,O0=1:1.
cence in way that differs from the common approach.

3. RESULTS OF THE EXPERIMENT

2. EXPERIMENT . . .
In the process of anisotropic etching, the surface of the

Layers of photoluminescent silicon with a thickness ofsilicon plate dimmed, acquired a microrelief, and became
up to 0.3um each were formed by anisotropic chemical opalescent. Under laser excitation, such silicon samples were
etching of a mirror-smoothn-Si(100) surface in a found to emit light at room temperature in the 600—800 nm
HF:HNO;=20:1 mixture in the course of 20—30 min. Pho- spectral range with a maximum at 720 nm, and the halfwidth
toluminescence was recorded at room temperature by a staof the photoluminescence band amounted to 0.25eV. The
dard device and was excited by the 514.5-nm light of arshape of the spectrum was found to be the same as that
argon laser with a flux of less than 0.1 W¢értsee Ref. 10 obtained in other studies of porous silicon. A specific feature

The essence of the electroreflection method consists iof the luminescence is the small halfwidth of the emission
recording the modulation of the reflectivity of the sampleband in comparison to the values for ordinary silicon
that appears when an external modulating electric field i$0.32—0.58 e}y?~*8-21and the fact that luminescence did no
applied to the sample. The quantity that is measured is thdegrade after long storage perio@sore than one yearA
relative reflectivity modulationAR/R. The electroreflection detailed report on the results of studies of photolumines-
spectra were measured in an electrolytic cell with a 0.1cence, Raman scattering of light, and the surface morphol-
normal aqueous solution of KCI at room temperature in theogy of anisotropically etched silicon can be found in Ref. 10.
1.1-4.4eV spectral range, which included the photon-After light-emitting silicon was treated by an aqueous solu-
emission range for silicon and the direct transitions at thdion of hydrofluoric acid, the opalescence disappeared and
center of the Brillouin zone and at the edge of the zone in théhe surface acquired a mat finish, but the microrelief re-
direction(100) of the wave vector, where the absolute mini- mained. We were unable to record any photoluminescence of
mum X; of the conduction band of silicon is located. such a sampl@just as with the initial bulk silicon sample

The measurements were done by a device based on the An analysis of the electron-diffraction patterns produced
DMR-4 monochromator with automatic recording of the by the electron-diffraction camera suggested that the initial
spectrum on the display with a linear energy scale and and anisotropically etched surfaces differ in crystal structure.
0.003-eV resolution. The sensitivity of the device in measur-The electron-diffraction pattern of the initial surface exhib-
ing AR/R reached one part in a million, and the accuracy ofited distinct point reflections. The electron-diffraction pattern
measuring the signal strength was 2%. The electroreflectioaf the anisotropically etched surface contained rings, which
signal was recorded at 0.2—0.7 eVmodulating voltages to eris an indication that a polycrystalline structure is present.
sure the weak-field measuring regime. After the light-emitting layer was removed, the electron-

An analysis of the electroreflection spectra in a specifidiffraction camera produced patterns with Kikuchi lines,
region in thek-space of the Brillouin zone for a specific which indicates that the crystal structure of the microrelief
energy transition made it possible to determine the transitiosurface of the silicon is nearly perfect. According to Refs. 10
energy E4, the phenomenological Lorentz broadening pa-and 30, as a result of anisotropic etching of18D) plates, a
rameter”, which allows for dissipation processes in the elec-layer of the crystal modification of th@-cristobalite of SiQ
tron transition, and the energy relaxation timef the light-  forms at the surface. In our research we used the data on
excited charge carriers. The calculations were done by thelectron-diffraction patterns to show that this layer has a
three-point methad using the energy position of the domi- polycrystalline structure with a tetragonal lattice.
nating peaks in the electroreflection spectrum with allowance A detailed analysis of Auger spectra showed that there
for the peak intensities. was no oxygen in the initial plate and confirmed that an

The morphology of the surface of the silicon plates andoxide phase is formed at the silicon surface as a result of
its modification as a result of anisotropic etching were studanisotropic etching. The intensities of the high-energy
ied with the JEM-100 CX scanning electron microscope. TheKLL-peaks in the Auger spectra of oxygéb00e\) and
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silicon (1590 eV} were used to determine the O-to-Si ratio (curvel in Fig. 1b), the electroreflection signal is due to the
and its changes as we approach the,Si8 boundary. First X,—X; transitions at the edge of the zofike E,-transitior).

this ratio did not change, but then, at a distance of 100 nnin agreement with selection rules, the indirect transitigg-
from the silicon surface, a composition gradient was ob-X;with an energy of 1.12 eV did not manifest itself in the
served with a smooth transformation from $i© Si through  electroreflection spectrum. The electroreflection spectra of
the SiQ phases(the incompletely oxidized states,8s,  the photoluminescent silicon surface are depicted in Figs. 1
SiO, and SjO). For the low-energy silicoh VV-transition,  (curve 2) and 3. In comparison to the spectra of the initial
the Auger spectra in the transition layer revealed large shiftsurface, these spectra showed that

of Auger electrons £ 9 eV), which is characteristic of the Si 1. There is inversion of the polarity of electroreflection

bond in SiQ. __ signal in the vicinity of theE}, andE-transitions, but there is
The results of measurements of the electroreflection oﬁo inversion of the polarity for th&,-transition:

the initial and light-emitting silicon surfaces are depicted in ] ]

Fig. 1. Electroreflection signals from the initial surface were ~ 2- The value of the phenomenological broadening pa-
recorded in the 3.2-3.55éMurve 1 in Fig. 19 and 3.9— rameter decrgases, which made it possible to allowEfpr
4.25eMcurve 1 in Fig. 1b spectral ranges. According to andEo-transitions;

electron band structure of silicdh, the electroreflection 3. There is a signal in the spectral range where photolu-
spectrum in Fig. 1a corresponds to the direct transitiohs minescence is observé#ig. 3);

I"ys andI'55-T"5, which occur between the valence band and 4 perigdic alternating-sign oscillations appear in the
thg conduction band Qt the center of the Brlllt_)um zone. Inshort-wavelength region of each transition:

silicon atk=0, the orbitally degenerate baihds lies below
the nondegenerate conduction bang, since the order in
which the structure€, and E; appear in the spectrum is
opposite the sequence observed in other semiconductors 6. The removal of the oxide layer causes the disappear-
(Fig. 2). The low-energy structur&; corresponds td',s—  ance of the electroreflection effect in the photoluminescence
I'15 transitions. In view of broadening, the signals from theregion, the disappearance of short-wavelength oscillations
Eg- and Ep-transitions overlap and usually are not resolvedand peak splitting, and the restoration of the polarity of the
at room temperature. In the 3.9-4.25eV spectral rangéitial signal.

5. The dominating peaks separated by 40 meV are dou-
blets; and

E, eV 4. DISCUSSION
6
| In interpreting the experimental data we assumed that
L measurements of the reflection of photoluminescent silicon
4t samples without a modulating field do not reveal the pres-
2 ARIR, 107
10
0 st
o AN AAAA
o S RAAALL
-5F
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FIG. 3. The electroreflection spectrum of anisotropically etched silicon in
FIG. 2. Electron band structure of silicon. the photoluminescence region.
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g/ E, nescence spectf@).
E,
ence of interference effects, and electroreflection spectros- Vk[E.(k)—E, (k)]=0, (1)

copy provides information about the presence of direct tran-
sitions in the band structure of the semiconductor andvhereE. andE, are electron energies in the conduction and
establishes the energy distribution of the electron in theé/alence bands, respectively. It is likely that the conditibn
structure. Hence the differences in the behavior of the eledS met also for the electron transition between the main band
troreflection spectra that manifest themselves when we g8nd the band of surface electron states lying at a depsh
from bulk silicon with a surface prepared in the standard way _ _
to light-emitting silicon are due to the change in the electron VKE(k)~Esdk)]=0. @
properties and the structure of the energy bands of the silicolf we allow for (2), the occurrence of an electroreflection
surface brought on by anisotropic etching. The shape of thgignal from anisotropically etched silicon in the spectral
electroreflection spectra and the occurrence of photoluminesange depicted in Fig. 3 can be explained by the presence of
cence in anisotropically etched silicon can be explained byhe direct transition€~I";5 at the center of the Brillouin
the four-layer model of the band diagram, which does notone, in the same way as the presence offthe-I';5 tran-
contradict the experimental data on electron Auger spectrossitions explains the origin of an electroreflection sigtfat
copy either. The model presupposes the existence in aniséhe latter transitions the electroreflection spectrum is given
tropically etched silicon of interphase surface electron statey curve?2 in Fig. 19.
situated deep inside the forbidden band of silicon, a transi- The doublet nature of the peaks of electroreflection in
tion layer of SiQ at the Si—SiQ boundary, and surface size light-emitting silicon can be explained by the effect of sur-
quantization of the energy of the electrons belonging to théace size quantization of the electron energy in the enriched
conduction band. A schematic of the proposed band diagrasurface layer of silicon. The band diagram in Fig. 4a sug-
is depicted in Fig. 4a. gests that between the Sitayer and silicon there is a quan-
The results of electroreflection studies have shown thaium well, i.e., the lateral motion of the electrons is free,
at the initial surface of the silicon substrate, and also after thevhile in the direction perpendicular to the boundary the sys-
oxide layer is removed from the microrelief surface, thetem is quantized. The presence of 2D electrons in the con-
bands undergo depletion bending, i.e., the surface is depletefiiction band leads to a situation in which in addition to
of electrons and the bands are bent upward. In the process efectron transitions between the main bands there are transi-
anisotropic etching, silicon atoms are forced to leave the sultions between the valence band or the band of surface elec-
strate surface and are replaced by oxygen atoms, as showtn states and the first quantized leeglin the 2D quantum
by Auger spectroscopy. This process is accompanied by omwell (Fig. 4b). The presence of two transitions with energies
dered growth of crystalline SiQwhich changes the concen- E; andE4+e; splits the peaks in the electroreflection spec-
tration and spectrum of the surface electron states in the sutrum.
face layer. On the surface silicon under a layer of SiEig. Gushchinaet al3? were the first to detect a discrete en-
49) the potential is of enrichment type and the bands are berdrgy spectrum related to size quantization in photolumines-
downward. The surface is enriched with electrons due to theent silicon. Their experiment revealed that such a spectrum
appearance of interphase surface electron states at the bourgbpears in differential transmission spectra and was attrib-
ary and a built-in positive change. This causes a change inted to the presence of quantized energy levels. The energy
the phase of the electroreflection signal. Since a change fromf optical transitions in the quantum-size system for the first
a depletion potential to an enrichment potential was observequantization level is given by the expression
only for I'-transitions and was absent f¥transitions(the
phase of the electroreflection signal was retaive can state h2m?
that the interphase surface electron states liegpacewhich E=Eg+ 2,12 )
are not near the minimum of the silicon conduction band, but
at the center of the Brillouin zone. where E, is the band-to-band transition energy, is the
According to the selection rules, the electroreflection ef-band-to-band effective mass, ahds the width of the quan-
fect is observed ff tum well. The valuee;=0.04 eV found from the experimen-
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FIG. 5. Experimental curveg}) for determining the
electro-optical energy(a) in the region of theEg-
(straight line1) and E,-transitions(straight line 2),
and(b) in the photoluminescence region.
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tal electroreflection spectra under the assumption that the egt

fective hole mass i, =0.49m, at the pointl’55 (heremy is

the free electron magand that the effective electron mass is

m.=0.156m, at the pointl'; (Ref. 31, and with allowance
for the expressiofi3d) the value of the quantum-well width
is 4nm.

In the presence of a quantum well and a Si&yer, the

presence of alternating-sign oscillations observed in the ele

troreflection spectra above the optical absorption edge can

explained by the Franz—Keldysh effect involving direct tran-
sitions in a semiconducting structure with a built-in electric

field. Franz—Keldysh oscillations in a uniform electric field
are usually observedit

En_ Eg 3/2
he '

4
nr=®+ -

. @

wheren andE, are the number of an extremum in the oscil-
lations and the position of this extremum on the energy scale,

® is a phase factor, andd is the electro-optical energy. For
the energy transitionsE, (Ey=3.42eV) and E; (Eq

C_

=0.432n,. With the effective electron masa,= 0.98m,
pointX; (Ref. 31, the value of the effective hole mass at
point X, proved to bem,=0.824n.

The Franz—Keldysh effect with the participation of lo-
calized states was studied theoretically by Vinogratfov,
while we were the first to observe it in experiments. For an
energy transition with the participation of a miniband, the
value #6=58meV atF,=1.5x10°Vcm ! was used to-
ether with(5) to determine the value of the band-to-band
effective mass for the given transitiop,=0.416ny. The
large number of oscillations in the electroreflection spectra
and the fact that the conditio@) holds point to the unifor-
mity of the built-in electric field, which is due to the variable
energy gap of the SiQlayer. For a layer of thickness
d=100 nm, the pinning of the Fermi level at the silicon sur-
face at the boundang,,=eFd=1.5eV, is close to the
energy “depth” of the miniband of the surface electron
states(1.6 eV).

Note that the electro-optical Franz—Keldysh effect in a
built-in electric field was also observed in photoreflection
spectra®%"In variable-gap GaAlAs—GaAs structufesind

=4.2eV), the experimental curves are depicted in Fig. 5ain insulator-n* n—semiconductor structuré®, oscillations

and for the transition with the participation of surface elec-

tron states E4=1.6eV), in Fig. 5b. The values for tHgy-,

was observed aF,=3x10°Vcm Ll In CdTe/CdMnTe
structures with single quantum wells the built-infield was

E,-, andEggstates, which we found from the slopes of the found be as high as 7:610* V cm™2, with the width of the

curves specified by4) and depicted in Fig. 5, amounted to
41, 27, and 58 meV.

The electro-optical energy is determined by the field-

guantum well ranging from 5 to 15 nifsee Ref. 3Y.
The width of the enrichment laydrs=2kT/eF, at room
temperature KT=25meV) amounted to 3.3nm in a field

induced broadening of the spectrum and depends in the fol_—1 5x 10° vem ™, which is close to the calculated value
lowing way on the band-to-band effective masses of thg =4 nm of the width of the quantum well, obtained from the

charge carriers and the electric field strength:

(h0)°=e?h?F2lu, 5

wheree is the electron charge, ari is the surface electric
field. The valueh 6=41 meV and the value gi=0.119m,,
determined from the given values wf, andm, for the I 55—
I'; with allowance for(5), were employed to find the value
of the built-in electric fieldFs=1.5x10° V.cm™ L. Allowing
for (5) and the valugi #=27 meV for theE,-transition, we

data on peak splitting in the electroreflection spectrum. The
closeness of the values b&ndL suggests that there is quan-
tum well at the silicon surface, in accordance with the pro-
posed model of the band diagram of the photoluminescent
Si—SiO, structure.

The model made it possible to explain the effect of elec-
troreflection in the photoluminescence region, signal inver-
sion, the presence of periodic oscillations, and peak splitting
in the electroreflection spectra. The diagram of the energy

calculated the value of the band-to-band effective massransitions at the center of the Brillouin band that are respon-
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sible for the spectra of electroreflection and photoluminesbroken bonds at the light-emitting surfa@e decrease in
cence in anisotropically etched silicon is depicted in Fig. 4bthe number of nonradiative recombination centetise de-

All processes included in the diagram participate in the elecerease in the rate of nonradiative surface recombination in
troreflection, while the photoluminescence is due solely tahe built-in electric field, and the increase in the absorption
the transitions in which the level&gs take part. Here the of the exciting light by the well-developed microrelief sur-
photoluminescent silicon remains an indirect-gap semiconface of anisotropically etched silicon. The high stability of
ductor, since, according to electroreflection data, the energi%otoluminescence with the passage of time can be ex-

of the direct transitions at the singular poiritsand X re-  pjained by the passivation of the photoluminescent surface
mained almost unchanged when the initial silicon was réhy a thick oxide layer. Fauchet al3® also reported an in-
placed by anisotropically etched silicon. Only a slight varia-¢ e a6 in intensity and stability of photoluminescence in oxi-
tion " thg energy was observed, which was que to SurfaCaized porous silicon in comparison to the values in the initial
guantization(40 me\) and the appearance of internal me- .. ole
chanical stresses associated with compression. Estimates oé} pie.
the values of these stresses made on the basis of the data on
Raman scattering of light taken from Ref. 10 yielded
5x 10° N/m?, which change€, by 50 meV.

Thus, in anisotropically etched silicon, no displacements_ CONCLUSIONS
of the absolute minimum of the conduction band from point
X1 to point’ gnd no §trong increase in the indirect gap due On the basis of a comparison of the results of experi-
tc])c quantum-_S|ze conﬂn_ement are obs<_arved. Hence_ the onslsFltentaI investigations of the electroreflection of the initial
° photolumlngscence n such silicon is caused ne|t_h_er by urface and the anisotropically etched photoluminescent sur-
guantum-size increase in the band gap nor by transitions bg)—

tween the tails of the density states at the edges of the m ace of silicon we have developed a four-layer model of the

bility edges nor by excitonic annihilation at the surface state and structure of S|TS|pdeterm|neq the parameters of the.
of quantum size structures. structure, and examined a mechanism of visible photolumi-

A comparison of the spectral photoluminescence andescence that differs from standard mechanisms. Our find-

electroreflection curves suggests that the carriers are gendfds Yield the following conclusions.
ated as a result of excitation of a transition in which the band 1. Light-emitting, anisotropically etched silicon is an
of surface electron states at pokt0 participates. The en- indirect-gap semiconductor. The surface photoluminescence
ergy of this transition exceeds the eneigy of the indirect  that arises in this semiconductor at room temperature is due
transition. Transitions with radiative recombination of elec-ty the emergence of a miniband of deeply-lying levels of
trons and holes take place at the same poiritsface of the g rface electron states in the forbidden band of anisotropi-
Brillouin zone, which requires neither the violation of selec- cally etched silicon, levels formed by adsorbed oxygen at-
tion rules nor the participation of phonons, and this raiseg, g pirect radiative recombination of electrons and holes
quantum efficiency syb;tantmlly. o dIakes place in a quantum well near the Si—Si@@undary
The ;urface radlat!ve r.ecomp|nat|on of electrons an during the energy transition at the center of the Brillouin
holes excited by laser light is confined to the quantum well, . -
. . o . zone between the conduction band and the miniband of sur-
where the probability of finding a nonradiative center is Iow.face electron states
Indeed, the Lorentz broadening paramdiedecreases from '
132meV to 80 meV for theEy-transition when the initial 2. The increase of quantum efficiency is promoted by the
silicon is replaced by light-emitting silicon, while for the increase in the absorption of the exciting radiation by the
E<transition responsible for photoluminescence we havevell-developed surface of the boundary and by the redistri-
I'=40meV. bution of the radiative and nonradiative recombination cen-
As is known,I" is the dissipative part of the self-energy ters at the silicon surface after anisotropic etching is com-
of an electron excited by light to the conduction band and ipleted. The decrease in the number of nonradiative
determined by scattering of the electron energy in an opticalecombination centers in the region where electron—hole

transition. The presence of a quantum well at the photolumipajrs are produced is due to the high perfection of the Si—
nescent surface of silicon makEssmaller and increases the sjo, phoundary.

energy relaxation time=#%/I". The value of the relaxation o i
time was found to increase fromx510~25s to 8x 10~ s 3. Passivation of the photoluminescent boundary by a

while for the Eqctransitionr=1.6x 10~ %4s. The increase in thick oxide layer makes the structure of Si—gi@epared by
7 causes an increase in the mean free path of an electror2NiSotropic etching extremely stable and inert to the sur-
hole pair and to a corresponding increase in the mobility ofoundings. The stability of photoluminescence in this struc-
such pairs. Note that an increase in the energy relaxatioft!® is not inferior to that in porous silicon prepared by spe-
time for electrons was also observed by Gushckinal®in  cial methods by Fauchet al* The simple technology used
photoluminescent silicon with the quantum size effecim-  in manufacturing the photoluminescent layer and the high
pared to the value in the initial sample efficiency and stability of photoluminescence require further
The following factors also contribute to the increase ininvestigation in order to obtain electroluminescence in aniso-
photoluminescence intensity: the passivation by oxygen ofropically etched silicon.
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The features of the optical and magnetooptical properties of granular alloys with giant
magnetoresistance in the IR region are examined in reference to the magnetorefractive effect and
the equatorial Kerr effect. Calculations are performed within the semiclassical approximation

with consideration of spin-dependent scattering in the bulk of the granules and on their surfaces
(interface$. The expressions obtained fox,(w) ando,,(w) are found to be sensitive to

scattering on the surfaces and in the bulk of the granules, as well as to granule size, the type of
impurities trapped on the interfaces, the frequency of the incident light, and the external
magnetic field. For granular thin films exhibiting giant magnetoresistance, the theory predicts
significant relative changes in the optical reflection and transmission coefficients when

the sample is magnetized to saturati®2% and 20%, respectively, for giant magnetoresistance
of the order of 20% as well as Kerr and Faraday effects that are nonlinear with respect to
magnetization. ©1999 American Institute of Physid$1063-776(99)01911-3

1. INTRODUCTION tance or granular metal-dielectric alloys with tunneling
magnetoresistance. The magnetorefractive effect was re-
It has essentially been proven that the giant magnetorecently — discoverett in  reflection from  granular
sistance in magnetic multilayers and granular alloys is assaeg, (Al,0,); _« films, and its magnitude in the near-IR region
ciated with the spin-dependent scattering of conductionyf the spectrum was smaller than might have been expected
electrons:” The occurrence of spin-dependent scattering iffrom the analogy to multilayers. Therefore, a theory for the
such systems is also manifested in other transport phenosagnetorefractive effect in granular films is developed in the
ena, for example, in the thermal conductivity andfisi part of this paper, and the high sensitivity of this effect
thermo_powg?, the anomalous Hall effeCt the optical 14 the microstructure of the alloy is demonstrated.
properties’ and the high-frequency impedante. The magnetooptical properties of ferromagnets in the IR

T.h.e reflection R), t_ranswssmn'(), and absorptionk) region of the spectrum are determined by the off-diagonal
coefficients of metals in the IR region of the spectrum are

determined by the frequency dependence of the diagonﬁart of the conductivity tensar,(«), W.hI.Ch s the dynamic
. L analog of the anomalous Hall conductivity,(0). In homo-
component of the intraband conductivity tenseg,(w). Y

Since the static conductivity,,(w—0) of materials with geneous ferromagnets baal,(0) and ay(w) depend lin-

giant magnetoresistance depends strongly on the magnetiz‘?fflrly on magnetization; t_herefor_e , the magnetooptlca_\l K_e "
tion of the samplé? it is clear thato,(w) and, conse- and Faradgy effects are linear ywth re_speq to magneuzatlpn.
quently, all the optical properties should also depend orf fowever, in the case of mafterlals with giant magnetore5|_s-
magnetization. This phenomenon, which is called the magt2Nc€:oxy(0) exhibits a nonlinear dependence on magneti-
netorefractive effect, was first discovered experimentally and@tion, which is caused by spin-dependent sc_attéﬁrigls
explained theoretically for multilayers by Jacquet and VAlet. Shown in Sec. 3 of this paper thaf,(») can display very
Thus, the magnetorefractive effect consists of changes in tHeP?MpPlex behavioinonlinear with respect to magnetization
optical properties of systems with giant magnetoresistanc@nd nonmonotonic with respect to external magnetic field
when they are magnetized. This phenomenon can be of§anular alloys and that it leads to magnetooptical effects
served only in the IR region of the spectrum, where the oplhat are nonlinear with respect to magnetization. As far as we
tical properties are determined by intraband scattering proknow, such effects have not been discussed in the literature.
cesses. The theory for this effect in multilayers has beerd 0 stress that such nonlinear behavior appears as a result of
thoroughly developefi:® At the same time, this effect has a spin-dependent scattering and is not related to the nonlinear
fairly general character and should be observed in all sysmagnetooptical effects caused by high-intensity light beams,
tems characterized by significant magnetoresistance, particwe call it the nonlinear field-dependent magnetooptical ef-
larly in granular metal-metal alloys with giant magnetoresis-fect.

1063-7761/99/89(11)/5/$15.00 955 © 1999 American Institute of Physics
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2. MAGNETOREFRACTIVE EFFECT Ap  p(Ho)—p(H) ‘fi((Mz))Z

_ | TR ®
The optical and magnetooptical spectra of a granular P p(Hc) &0 s

film are calculated below in the Zhang-Levy m.d_ﬂ_elsmg wherep(H,) = p. is the resistivity of the alloy in the demag-
the self-averaging limit of the scattering probabilitieand  atizeqd statdin a field equal to the coercive fordé, when

by considering the intraband dynamics of the conductio M,)=0). When the field is equal to the saturation field
electrons in the IR energy range of the incident light in theHs(p(Hs)=ps), the giant magnetoresistance takes its maxi-

normal skin-effect regime. mum value
The optical response of a metal is determined by the )
diagonal part of the dielectric tenser,(w), which can be Aps é

expressed in terms of the corresponding component of the T: 53'

conductivity tensor: . )
The parameters describing the magnetorefractive effect

. Amog(w) in optical reflection and absorption can be defined in the
Exx( @) = e ley= 1= —=—. @ following manner:
For example, the reflection coefficieR of a metal with AR _R(Ho)—R(Hy) _R(w,Hc)—R(w,Hy) ©
normally incident light is R R(H.) R(w,H.) '
K2+ (1-n)? @ AT T(H)—-T(Hs) T(w,He)—T(w,Hy) 10
T K+ (1+n)? T THy T(w,He) (10
where n is the refractive index. In additiom and k are  In the general case they can be calculated using Fresnel co-
related to the dielectric tensat;,=n>—k?, &}, =2nk. efficients on the basis of Eg&l) and(3)—(7). In the Hagen—
The conductivityo,,(w) of a granular alloy in formula Rubens limitwr<1 we have
(1) is determined by the contributions of electrons with spins
. o w wp
parallel and antiparallel to the magnetizatispin up () R=1-2\/—=1-21 | (11)
and spin down [)]. Thert* 2ma 2m
1 - ! - w
o (w=0) oy (w=0) T:(—p)eat 12
Tl )= Tly(0) F (@) = et e (9 27)® 12

where a=2kw/c andt is the film thickness. Then, foo 7

where 7'(!) is the electron mean free time between colli- )
<1 we can write

sions, and in the Zhang—Levy modfel

ehn 1 AR_RMHJ-RMHy _, [@ ~—_
ai(x“(w=0)=nz—mm, @ R- RH) ~2VagVesm e

Ap
g eF (M) :2\/wp°< \E—1>:2\/w’)°( 1- S—1)

)= 1y _8F

1-x x(1+p?) 3x(1+p?) o\ [2Pears 13
&o= + + , (6) 27 p

Inm Im I'0|S/a0

AT T(H¢)—T(Hy) ( Aps

2X 6X —_— = 1—(1—

=, B ) T T(Ho) P

I rols/ag

. . . . 2w |27 1 1
Herex is the concentration of ferromagnetic granules in the X ex —t? i Y (Y
@ Ps Pc

nonmagnetic matrix; the mean free paths,, |, andlg

char_act_erize the scattering on impurities in the nonmagnetic ( Aps) ;{ t \/mApS
matrix, in the bulk of a granule, and on a granule surface, ~1—|1- exg — =
respectively;p, and pg are the ratios of the spin-dependent p ¢ Ps P
scattering potential to the spin-independent scattering potenwhere it is assumed in the final approximate expressions that
tial in the bulk and on the surface of a granuig;is the  Apgs/p<<1. It follows from (13) and(14) that the magnetore-
granule radiugit is assumed that all the granules are identi-fractive effect depends strongly on the magnitude of the gi-
cal single-domain sphergs, is the lattice paramete(M ,) ant magnetoresistance and that it is preferable to observe it in
is the mean magnetic moment of the granules in the directiopptical transmission.

of the magnetic fieldH,; and My is its value at saturation. Figure 1 presents the results of a calculation of the fre-
Following the Zhang—Levy model, we assume that electrorguency dependence of the magnetorefractive effect in the
transfer is of thes type. Since(M,) depends on magnetic reflection and transmission coefficients, which was per-
field, oy (w=0) ando,(w) are functions of magnetic field. formed using Fresnel coefficients. The parameters of the
The giant magnetoresistance is defined as granular alloy were chosen to correspond to a typical alloy

, (14




JETP 89 (5), November 1999 Granovski et al. 957

FIG. 1. Spectral dependences of the relative change
in the reflection coefficienta) and the transmission
coefficient (b) when the sample is magnetized for
granular alloys with giant magnetoresistance of vari-
ous strength(normal light incidence 1—Apg/p
=30%,rq=20A; 2—Ap,/p=22%,r,=40 A; 3—
Aps/p=17%, ro=60A. The film thicknesst
=200A, P,=0.2, P,.=0.42, c=0.2, |,,=200A,
I,=50A, andl /a,=2.

~0.002R% "

-0.004

-0.006
0

“E eV ' ' Eev

with giant magnetoresistance. The granule size, which is onef the dielectric tensor. In particular, the parameiéwn,H)

of the parameters determining the magnitude of the magnesf the equatorial Kerr effect, which characterizes the relative
toresistancgsee formulag6)—(8)], was varied in the calcu- change in the intensitly of reflected light when the sample is
lations. Similar spectral dependences were obtained by varynagnetized, can be expressed in the cage mflarization in

ing other microscopic parameters that influence thehe form
magnitude of the giant magnetoresistafmee(6)—(8)]. Sev-

eral conclusions can be drawn from the data in Fig. 1. First,  §(w,H)= w:as; +bel,, (16)
the amplitude of the reflective magnetorefractive effect in the 1(0) Y Y

near-IR region of the spectrum and on the edge of the visible A B

range is comparatively smalAR/R<0) and does not ex- a=2msin 20, bzzmsin 20, a7

ceed 0.1%, in agreement with the experimental data in Ref.

11. However, even in that case the amplitude of the effect is A=¢! (2¢] cof ¢—1),

two orders of magnitude greater than the amplitude of the

magnetooptical Kerr effects. SeconsiR/R increases in the B=(e",—&'5)C0% @+e),—sir o,
mid-IR region of the spectrum, and, as follows from formu-
las (1)—(3) and(9), the maximum valu_e oA&R/R_ls achlev_ed In the case of ferromagnets,,» oy,>(M,), and ey
at the frequencyw=1/7. Thus, experimental investigations

: ) Ve « g, and does not depend or depends weakly bh,) or
of the magnetorefractive effect permit determination of themagnetic field. Therefore, as a resub(w)>(M,). How-
N 1 z/

relaxation time of the electrons responsible for the opticabver, this is not true in the case of granular alloys with giant

properties. Third, as in the limiting case efr<1 consid- magnetoresistancer,, depends onM,), and o(w), as
ered above, it is seen that the transmission effect can rea%” be shown below. is nonlinear with respect(t{vl )
1 Z .

values comparable to the giant magnetoresistance; however, |, the case of weak scattering of the conduction elec-

the transmission effect has strong dispersion and chang@ﬁmsl the off-diagonal component,, of the conductivity
sign, in agreement with the calculations for multilay®rs. tensor is described by the follo y

. e " wing expression, which re-
Fourth, the magnetorefractive effect is highly sensitive to the;ampies the Drude formui4:
microstructure of the alloy, specifically to any variation of
the parameters characterizing the spin-dependent scattering ox(©0=0) oy (w=0)
or the granule size. This finding also corresponds to the ex- Txy(@) = [1+iwT ]? * [1+iwr]? (18)
perimental data in Ref. 11. . . - L .
It is noteworthy that, strictly speaking, the calculationsThe static off-diagonal conductivityy(w=0) is linear with

performed are applicable only to granular metal-metal alrespect to the spi_n_—orbit coupling and can be expressed in
loys: therefore, a comparison with the data in Ref. 11 had®Ms Of the coefficienRs of the anomalous Hall effect.

only a qualitative character. . 0 oly)(w:O) ,
We also stress that the magnetorefractive effect is isotro- Rs=Rg+ Ré ) Rg ZWP : (19
pic, i.e., it does not depend on the orientation of the magne- z
tization in the film plane; therefore, it can easily be distin- Then
guished from the classical magnetooptical effects. Uly)(w)_ 47TR;(H)

where ¢ is the angle of light incidence.

(M) p2(H)[1+iwTi(H)]?

3. NONLINEAR FIELD-DEPENDENT MAGNETOOPTICAL

!
EFFECT 47RL(H)

A Lo (M)

(20

The magnetooptical response is determined by both the ,
diagonal component,(w) =& —i&!, and the off-diagonal It is gepgrally assumed that electrons are responsible for
component determiningo,y(0=0), R, and o,y (w) (Ref. 14. Thus,

the relaxation time in formulagl8) and(20) can differ from
(15) the relaxation time in formul&3). Therefore, we introduced

Aoy ()
® the corresponding notatior@“) in (20). Because of the spin-

Exy(®) =&y —liel,=
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FIG. 2. Field-dependent equatorial Kerr effect in granular alloys for variousFIG. 3. Field-dependent equatorial Kerr effect in granular alloys with giant

levels of spin-dependent scattering: cutre-p,=0, ps=0, Aps/p=0%;
curve 2—p,=0.2, ps=0, Aps/p=0.5%; curve3—p,=ps=0.2, Apg/p
=10%; curved—p,=0.2, ps=0.42, Aps/p=30%; curve5—p,=0.2, pg
=052, Aps/p=40%. Parametersro=20A, ¢=0.2, 1,,=200A, I,
=150 A for s electrons and,=50A for d electrons,| /a,=2, RYR"

magnetoresistance for various granule sizes: curva ,=60A, Apg/p
=30%; curve2—r,=40A, Ap./p=22%; curve3—r,=20A, Ap./p
=17%. Parameter§i,=0.2, ps=0.42,¢=0.2,|,,=200 A, | ,=150 A for
s electrons and,=50A for d electrons, | /a,=2, R§/R2=1.5, ho
=0.01eV, andp=70°.

=1.5,Aw=0.01eV, andp=70°.

Ry(H)={ R

(21)

8w, H)/5(w.H)
af

H,kOe

. field dependences and possible sign reversal are also note-
dependent scattering, the valuespoénd 7y for granular worthy. It follows from Fig. 2 that there is a nonlinear field
alloys depend on magnetic field. It was recently shde&e  johendence of the equatorial Kerr effect even in the presence
Ref. 12 and the references thefeihat R, in granular alloys o \weak spin-dependent scattering, although, of course, it
with giant magnetoresistance depends strongly on magnetjta.omes strong when the giant magnetoresistance increases,
field, more strongly than does the resistiviggH). If the ¢ parameters of the spin-dependent scattering (Figy 2),
main contribution tcRs is made by electrons with spin down g, the granule size varig&ig. 3.
and(M;)/M is described by the Langevin functidr(H), Figure 4 demonstrates the importance of scattering on
the coefficient of the anomalous Hall effect of a granularihe granule surfaces in shaping the field dependence of the
alloy in the Zhang—Levy model can be writfén equatorial Kerr effect. The type of impurities and their con-
(1+p2)?[1—2puL(H)+p2] cgntration on the gran_ule surfaces_a_lter the magnitude and
(1+pp)*(1—pp)? sign of the corresponding Hall c_oeffucuéﬁtand thus have a
strong influence on the equatorial Kerr effect. Hence it also
b (1+ p2)2[1—2psL(H)+p?] follows that the field dependence B(H) can be the main
s I 2 factor determining the nonlinearity of the equatorial Kerr ef-
(1+ps)*(1—ps) foct
[£o+&L(H)T? Clearly, the other magnetooptical Kerr and Faraday ef-
X &2) ' fects will also have similar features, viz., a nonlinear depen-
b s . dence on magnetization, and this nonlinearity can exceed
where Ry and R; are the values of the coefficients of the 1qq9,
anomalous Hall effect in the bulk and on the surface of a Thus, it has been shown in this work that the spin-
granule. Therefore, three factors can lead to dependences gf,eondent scattering in granular alloys leads to two features
the Kerr effect that are nonlinear with respect to magnetizay, the IR region of the spectrum: the magnetorefractive ef-
tion: first, the dependence of the optical properties on Magrecy which consists of changes in the optical reflection,
netization, i.e., the parametessandb in (16), which, ac-  yansmission, and absorption coefficients when the alloy is
cording to(17), depend orv,,(w); second, the dependence
of o,y(w) on p(H) and 7\)(H); and, finally, the strong
field dependence d®g, which largely determines the behav-
ior of o, (). All three factors are related to spin-dependent
scattering.
The results of the calculation of the field dependences of
the equatorial Kerr effect usingl6)—(21) are presented in
Figs. 2—4. All the figures present the normalized ratio
S(w,H)/ p(w,H), where §y(w,H) is the parameter of the
equatorial Kerr effect in the absence of spin-dependent scat-
tering (pp=0, ps=0, and consequentlp,/p=0). Clearly,
8(w,H)/6p(w)=1 for a homogeneous ferromagnet, as is
shown by curvel in Fig. 2. In all the other cases there is a
strong field dependence of this ratio up to the saturation field'G- 4 Fielc_i-dependent (—gquatorial Kerr effect in granular alloys with giant
As follows from these figures, the field dependence of the;ntggsﬁt:f;';ta;fﬁgRz: 1/2(;;8221);%2(2')’ ngolz'\l(f)'zpfggx‘
equatorial Kerr effect does not correlate with the field depenyyr s electrons and =50 A for d electrons,l./ap=2, ro=20 A,
dence of the magnetization. The nonmonotonic course of the 0.01 eV, p=70°.
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We study the conductivity and magnetic susceptibility of single-crystal iron monosilicide in
ultrahigh magnetic fieldsup to 500 T) at low temperatures. The experimental methods used in
measuring the conductivity and magnetic susceptibility are discussed. At 77 K we detect a
gradual increase in the conductivity of iron monosilicide by more than a factor of 100 as the
magnetic field gets stronger. At 4.2 K we detect a first-order phase transition in a field of
355 T accompanied by a sudden change in the value of the magnetic moment ay P&5iron
atom and a transition to a phase with high conductivity. The results are discussed within the
scope of the spin-fluctuation theory. €99 American Institute of Physics.
[S1063-776(199)02011-9

1. INTRODUCTION 2. EXPERIMENTAL TECHNIQUES AND PREPARATION OF
SAMPLES
In the family of narrow-gap semiconductors, iron mono-
silicide is famous for its unusual properties. For instance, the ~ T0 generate ultrahigh magnetic fields with an induction
violation of sum rules in FeSi has attracted wide attention i UP 0 3450T we used an MK-1 magnetocumulative
optical spectroscopyand metallization with increasing tem- generato!l. At present this is the only device that allows
perature occurs much faster than could be expected fro producible uniform magnetic fields wihup to 1000T to

band-structure calculatioRsNear the Fermi level in the en- 2 created in large effective volumgsin this device, the

ergy spectrum of FeSi there lies a narrow threefold degene}[1Itlal magnetic field B~16 ), generated in a thin-walled

multilayer multifilar solenoid by a discharge of a powerful
ate band formed by thd-electrons of iron, with the result d y g P

) s 3 | : capacitor bank, is amplified through compression of a con-
that various theoretical modéfs in which the strong elec- ducting cylinder by products of the blast of a cylindrical

tron correlations of thed-electrons are taken into account charge of an explosive. The time of compression of the ini-

have been used to explain the observed anomalies. Althougfy) magnetic flux is about 16s. The MK-1 generator was
the effective electron masses obtained from bandised in a single-cascade variant, i.e., without intermediate
calculationg are large, they are still much smaller than theinternal cascadées$, which, on the one hand, somewhat re-
experimental values, which suggests strong mass renormaluces the peak value of the magnetic-field inductiéb0—
ization due to electron—electron interactions. 5507T), but, on the other, makes it possible to obtain a
Since the Zeeman splitting in magnetic fields on the or-smooth magnetic-field pulsgig. 1a. The effective volume
der of several hundred teslas is comparable to the width ~ When the magnetic field is at its maximum is a cylinder with
the gap in the spectrum of tre, p-, andd-electronsof FeSi the following nominal dimensipns: 10mm in diameter and
(6=0.11eV; see Ref.)Qit can give rise to a dramatic trans- 100-mm long. Th? large effective Volume of' the MK-1 gen-
formation of the electron spectrum. Hence ultrahigh mag_erator allowed using several samples in a single experiment.

netic fields constitute a powerful instrument for studying the The samp!es and magnet|c-f|elq p|ckups were plac.e(.j.on
. . a glass—textolite plate. In the experiments in which the initial
electronic structure of narrow-gap semiconductors. Recenta/

the behavior of EeSi in st tic fields has b ¢ emperature wasI=77K the plate was submerged in a
€ behavior of Fes! In Strong magnetic ields has been stu oam-plastic vessel filled with liquid nitrogen. When the ini-

ied theoretically:®'? The study predicted the existence of a a1 temperature wag—4.2K, the plate was placed in a

first-order phase transition into a metallic phase at absolutgajium cryostat with a vacuumized double glass waig.

zero and a magnetic inductid®=170T accompanied by @ 2) The cooling of the sample started 30 to 40 minutes before

sudden jump in the magnetic order of order of two-tenths ofhe beginning of the experiment. To this end the helium from

a Bohr magneton! or one Bohr magnetdfiper iron atom.  Dewar vessel was transferred, via a heater, to the helium
Some of the results obtained &t 77 K can be found in  cryostat. The temperature in the cryostat was monitored by a

the brief communication in Ref. 12. carbon thermometer manufactured from the calibrated resis-

1063-7761/99/89(11)/6/$15.00 960 © 1999 American Institute of Physics
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B, T dB/dt, dM/dt, arb.units

500
B

FIG. 1. Time dependence of the magnetic field at
the final stage of the pulg@e), the time derivative of
the magnetic field from the induction pickdpurve

1 in b)), and the signal from the compensation
pickup (curve 2 in (b)) at T=77 K. The inset de-
picts the schematic of the compensation pickilne

400¢

3001

2001

100 arrow depicts the direction of the magnetic field
a b ) e
0 . ) , ) N . ) 0 ; g ) ) . . , and the respective electric circuit.
90 91 92 93 94 95 96 97 9 91 92 93 94 95 96 97
r? HS ri IJS

tor TVO-0.125. The thermometer was in the upper part ofmixture was polymerized by dichloroethane. As a result we
the cryostat. obtained single-crystal FeSi granules in an insulator matrix.
Since the rate at which the magnetic field increase§his made it possible, in measuring magnetization, to avoid
changes substantially in the process of field generdfifom  the appearance of an additional diamagnetic moment due to
approximately 0.5 Tus ! when the initial magnetic field is induction currents.
generated to approximately 40 us * at the end of the In the experiment aff =77 K with FeSi powder in an
pulse, it is difficult to measure the magnetic field accurately insulator matrix no peaks in the signal from the compensa-
with a single induction pickup over the entire length of thetion pickup were observed and the shape of the signal coin-
pulse. Hence in our experiments we used a set of single-codided with that of the signal from the magnetic-field induc-
induction pickups with diameters ranging from 0.8 mm totion pickup. Figure 1b depicts the signals from the magnetic-
14.0 mm in which the PEV-2 brand of wire with diameters field induction pickup and from the compensation pickup
ranging from 7lum to 0.25mm was used. Earlier studies with the pure FeSi powder. Here additional induction emf is
(see, e.g., Refs. 13 and )1revealed that such an approach clearly visible against the background of pickup decompen-
can guarantee a 5 to 10% accuracy of measurements in fieldation emf(the time derivative of the magnetic figldThus,
of up to 500 T. All signals were recorded using four-channelin a pulsed magnetic field, an additional diamagnetic mo-
Tektronix-784 and Tektronix-744 oscilloscopes. ment arises in the powder, and it is related to the conductiv-
The single crystals of FeSi used in the experiments weréy of the powder.
grown by the Czochralski method in an atmosphere of spec- In our experiment the magnetic field was axial and uni-
trally pure helium under a pressure of 0.4 atm in {460 form and\ was always much larger tha® where\ is the
direction. The rate of crystal growth amounted to 0.4 mm pethickness of the skin layer, ariRlis the sample radius. Then
minute when the crucible with the melt and the crystal werethe induction current densityin the sample is proportional
rotated in opposite direction at a rate of three rotations peto r (the radiug, and the magnetic-field inductioB is pro-
minute. The initial components were 99.98%-pure carbonyportional tor2. The diffusion equation for the magnetic field,
iron and band-purified semiconducting silicon. The prepara-
tion of single-crystal FeSi is described in detail in Ref. 15.
The induction measurements of the conductivity and

2
magnetic susceptibility were done in the compensation ] 7 3
pickup (see the inset in Fig. 283 The PE'V-2 wire 71 mm _\ ',r%'/ 6
in diameter was placed in the spiral grooves of two frames \ P 4

2 mm in diameter fabricated of Caprolan, witt=9 turns on
each frame. The degree of compensation of the coils was
tested in a hf magnet. The total arééS of the coils, where
Sis the area of one turn, differed by less than 2%. A hole
was drilled (1.6 mm in diameterin one of the frames to
attach the sample under investigation.

The effective signal from an induction pickup can be
related to the conductivity and magnetization of the sample.
To separate these factors, we used two types of samples. A
FeSi single crystal was crushed in a porcelain mortar to a
powder with a granule size of about 12@. The powder
was packed under pressure into the opening of the pickup.
The density of the “filling” was monitored by weighing and
on the average wak=0.41. The signal from this sample
contained contributions from the conductivity and magneti-FIG. 2. The schematic of the device used in the experiment when the initial
zation. temperature wa¥=4.2K: 1, exp_losive cha_rgez, solenoid;3, glass vacu-

. mized cryostatd, heater for raising the heliung; carbon thermostas, the

For the second type of sample we used a single-Crystaheasuring unitsamples and the magnetic-field pickiyg helium cryostat;

powder of FeSi mixed with polymethyl methacrylate. The and8, foam-plastic mounts.
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o Q'em’ develops, which implies a transition to the conducting phase.
2 Figure 4 depicts the signal from the pure FeSi powder, where
1000t both features are clearly exhibited.
j Using the signal depicted in Fig. 4, we can calculate the
100} '_’f:{?}‘ conductivity using the method described abdsee Fig. 3
and the discontinuity in the magnetic moment. We eliminate

10k the background signdbkee the inset in Fig.)4The expres-
sion for the discontinuity in the specific magnetization has
1 X . . the form
100 200 300 400 . 500
Bs

2AU(r) dr. &)

NS
7TR2[.L0Nk ty

FIG. 3. Diagrams representing the dependence of the conductivity of FeSi
powder(1) and a single-crystal plate of Fe&) in a magnetic field at 77 K

(the solid curve corresponds to the dependence that follows from spin- ; : :
fluctuation theory and of the conductivity in the experiment with an initial . Integration is done between the ponﬂland 2 (see the

temperature of 4.2 K3). inset in Fig. 4. Using this expression, we can find the dis-
continuity in the magnetic moment in Bohr magnetqns
per iron atom:

AB= uqo 9B/t (whereu is the permeability of free space,

or the magnetic field constant, andthe conductivity of the AP= M

powde) yields the following distribution of the magnetic

field in the sample:

to
AU(7)dr, 4
mR? ougNpk Ny ftl () @

whereN, is the Avogadro numbep is the density, anil is
the molar mass. Using E¢4) and the data in Fig. 4, we find
that for an initial temperature of 4.2 K the size of the discon-

whereBj is the magnetic-field induction outside the sample.tmu'ty in the magnetic moment is (0.93.2)ug/at. Fe.

. . . We also measured the conductivity of &4X0.3 mm
This yields a formula for calculating the time dependence of . e .
L single-crystal plate of FeSi dt=77 K. To do this, we em-
the conductivity:

ployed a high-frequency method. The measuring circuit is
t shown in Fig. 5. The sourd® of high-frequency oscillations
U(7)dr, (2)  was a G4-154 generator. The oscillation frequency was about
49 MHz. The signal travelled through a valvea band-pass
whereAU is an additional emf related to the induction cur- filter F, and an isolation transformer and was fed to a 30-m
rents in the powder. The conductivity of the powder calcu-cable. The other end of the cable was attached to a flat coll
lated by using the data in Fig. 1b and form(®a is depicted 3 mm in diameter consisting of five turrithe wire used in
in Fig. 3 (small open circles the coil was of the PEV-2 brand with a diameter of
The experiments involving FeSi samples whose tem-71um). The coil was placed flat on the FeSi plate in the
perature wasl =4.2 K revealed a sharp peak in a field of cavity of an MK-1 generator, and the two ends of the coil
355+20T. As is known, the appearance of sharp peaks inwere led out as a twisted pair. The axis of the coil was
the signal is due to discontinuities in the magnetic momenperpendicular to the direction of the external magnetic field,
when the samples undergo metamagnetic transiffons.which reduced the emf induced by the pulses of this field.
Moreover, the readings from the pickup with pure FeSi pow-Here the plane of the plate was parallel to the external mag-
der demonstrated that after a peak a diamagnetic momenetic field, which prevented the sample from being heating

Bﬂog

B(r)=Bo+ (r*=R?), 1)

[l
® mR*ueBN Jo

70

60
2
550
o
S 40 FIG. 4. Signal from the induction pickup with pure FeSi powder at
-?_—,5 | an initial temperature of 4.2 Kthe solid curvg and the scaled
2 signal from the induction field pickufthe dashed curyeThe inset
330 shows the signal after the background proportionabBiot is
<E,: eliminated. The arrows indicate the limits of integration in E).

[ye3
(o]
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300 350 400

FIG. 5. High-frequency circuit for measuring conductivity and the
hf signal obtained in the experiment at an initial temperaflire
=77K.

Amplitude, arb. units

. 1 2 i L " i L
96.6 96.8 97.0 97.2 97.4 976 1t ps

by induction currentgaccording to our estimates, the heating uq is the permeability of free space. Here it is assumed that
of the sample did not exceed 4 KThe incident hf wave was the permeability of the medium is close to unity. Usift)
reflected at the end of the cable to which the coil was atwe find that

tached, with the reflectivity depending on the conductivity of 4o o

the plate. The subtraction circult made it possible to dis- _ R'B%a 6)

criminate the reflected signal, which was then recorded by an 32uq
oscillographO. The electrodynamics of the given circuit is

similar o that used by Sakakibaret al™* but is more found to be lower than 50 bar. Such pressure cannot dramati-

noiseproof. . ;
. : cally alter the electronic structure or, with allowance for the
The dynamic range of the hf method of measuring con- y

L : . shortmagnetic-field pulse, deform the sample.
ductivity is limited from below. Hence in the experiment 9 b P

. S X . T im wh xtent th mple is h w -
with the initial temperaturel =77K this method makes it 0 estimate to what extent the sample is heated, we as

: . . me that at low temperatures the h ity of FeSi i
possibly only to establish the presence of conductivity of theSu € that at low temperatures the heat capacity of FeSiis a

: AN S cubic function of temperature:C=pT3, where
FeSi plate at the level of 210* QO ~*cm™?! (the conductivity —0.63m 3K (see Ref. 1p}3 Since we £e i terested ifthe

Xipper bound on the heating of th | i I
: 17 ; : pper bound on the heating of the sample, we ignore a
Sakakibarat al.”). Figure 5 depicts the hf signal, where the types of heat transfer and calculate the temperature at the

signal of the sample conductivity at approximately 400 T ISsample surface, where the release of heat is greatest. Then,

clearly visible, which suggests that the conductivity is higher" _. : . .
than 2<10° Q- Lem L. using the expressiond) and(2), we arrive at the following

formula for the time dependence of the heat released by a
cylindrical sample per unit time:

In all cases the magnetic pressure estimated6hyvas

3. STATE OF THE SAMPLES IN ULTRAHIGH MAGNETIC

1 ( .
FIELDS Q=7 f a(\)B2R?dX\. (7)
0
When the sample is placed in a pulsed magnetic field, a

solenoidal electric field is generated in the sample, and in the Hence the upper bound on the temperature as a function
case of a metal or semiconductor there are induction curof time is
rents. Although the vortex field and the currents can be large 4
(the maximum electric field strength on the surface of acy- T(7)=|— Q(7)+T,
lindrical sample 1.6 mm in diameter is 400V c#h), still ks

they are not large enough to dramatically alter the electronic  Figure 6 depicts the field dependence of the upper bound
structure of the substance. Hence secondary factors prove g the temperature of a powder sample in the experiment in
be more important, i.e., factors that arise in a conductingvhich the initial temperature was 4.2 K. Clearly, after the
medium due to the pulses of the magnetic field: magnetigample passes to the conducting state, it heats up very

1/4

()

pressure and Joule heating. strongly. In the experiment with an initial temperature of
The magnetic pressure at the center of the sample, whergy K, the heating of the powder sample is not so intense: in a
it is at its maximum, can be calculated by the formula field of 400 T the upper bound of the sample temperature is
(5B)? 90 K. The dynamics of the temperature of the single-crystal
P= P00 (5) plate used in the hf method can also be estimate(Zpgand

(8) if instead ofR we take one-half of the plate thickness. At
wheredB is the difference between the magnetic-field induc-an initial temperature of 7K, the upper bound on the plate
tions outside the sample and at the center of the sample, anemperature at 400 T was found to be 81K.
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T.K mined by the fluctuation—dissipation theorem and incorpo-
80_ rating contributions from thermal and zero-point spin-density
fluctuations®? Note that the splitting caused by SDF does not
give rise to magnetization. Using the approach developed in
Refs. 12, 21, and 22, we see that magnetization develops
because of a change in the capacitances of the subbands cor-
responding to opposite directions of spins. With allowance
for charge-density fluctuations, the magnetization is de-
scribed by the equatidh??

60-

3(%0 l 400 440 480
B, T

1
FIG. 6. Upper bound on the temperature of the FeSi powder in the experi- Mo:m E O'J de 2 90(8 ta \/fi( 7))
ment with an initial temperature of 4.2 K. The arrow indicates the phase 0o0==%1 v.a

transition at 355 T.

x(1+cwgzv(ﬂ)f o (10
\/% (e=p—mn,7) ).

_ . - Here g°(e) is the density of states of noninteracting
The results of experiments conducted in magnetic fieldgi-electrons,¢,(7) is the vector of the fluctuating exchange

with an induction of up to 450 T af =77 K suggests that at field, » is the crystal lattice vectoy;=(»,7), 7 is the imagi-
this temperature there is neither magnetic ordering nor a dissary Matsubara time,

continuous semiconductor—metal transition in FeSi. Instead
of such a transition, we observed a gradual increase of the 2 (. '):Tz fl/T(. ydr
conductivity of FeSi withB by a factor larger than 10(at " 5 Jo '
B=450T) in comparison to the conductivity in a zero field.
Since the effective masses of the mobile charge carriers iNo is number of lattice sites, the Fourier transform of the
FeSi are much larger than the mass of a free electron, thecal exchange field £,(7) has the form &
behavior of this semiconductor in a magnetic field differs=rg,, explidy,} (atq=0 we haved, ,=0, andr , is real,
dramatically from that of ordinary narrow-gap semiconduc-
tors and semimetals, e.g., InSb, PbTe, and Bi. The distance (m?)= 1 2 (1)
between the Landau levels in FeSi is very small, with the UN, 5 7
result that orbital quantization can be ignored. Then, with a
band gap in the spectra af, p-, and d-electrons equal to <m§> is the mean-square amplitude of thth component of
0.11-0.12eV €26) (see Refs. 10, 11, and 1%he “col-  the SDF, withy=x,y,z, f(e — u) is the Fermi function, with
lapse” of the energy gap due to the Zeeman splitting of theu the chemical potential,
energies oflboth s- and p-, andd-) electrons must occur at Y
B~400T. Hence Irr increases linearly with field induction W — T o
. (C-)) j f [1 drg,ddq,(--),

for B<400T. However, we foundsee Fig. 3 that the non- 0 Jo ya(#0)
linear nature of the field dependence of the logarithm of the i i )
conductivity of FeSi manifests itself much earlier, starting at2nd 7,(7) is the random charge field that fluctuates in both
B=250T. This is an indication that the value of the bangSPace and time and is related to the longitudinal fluctuations
gap found from band calculations in Refs. 10, 11, and 19 an@f the local magnetic moment:
from experiments on the temperature dependence of
conductivity’® is overestimated at the given temperature. > ag®(u+aUy)(£,(r)—U3)

The reason for this discrepancy in nearly ferromagnetic 2(r)= a=*1
semiconductors is the splitting of the energy spectrum due to v

4. DISCUSSION AND CONCLUSIONS

0
spin-density fluctuationéSDP) of d-electrons?*which en- a;:l g (ptaly)
sures the narrowing of the energy gap in their spectra with
increasing temperature: For the semiconductor state of tladeelectrons of FeSi

. (5<T<100K) (see Ref. 2@ the SDF amplitude can be cal-
o(B,T)=0(0,0=2Un(B.T). O culated from the formuldm?)Y2=bT, whereb=7/U, with
Here 25(0,0) and (B, T) is the gap without allowance for U=0.8eV. Numerical estimates of the value of the
SDF and the gap renormalized by SDF as a function of magmagnetic-field induction corresponding to the collapse of the

netic field and temperaturé) (B, T)=[£3+U%m?)]*?is  gap in the spectrum af-electrons at an initial temperature of
the effective Zeeman splitting of the energiesdeélectrons 77 K yield B4=275T. Thus, the observed deviation of the
in a magnetic field in the presence of SDF, wiifcUM,  experimental dependenced(B) from the linear law above
+2H (whereH is the magnetic field strengttin units of 250 T can be explained by the SDF narrowing of the gap in
2ug), My is the uniform magnetization of thé subsystem thed-spectrum. Here, in view of the extreme smallness of the
(in units of 2ug), andU is the parameter of the intratomic SDF amplitude in the system @&f and p-electrons and the
Coulomb interactiofy and(m?)%2 the SDF amplitude deter- smallness of parameter ofs,p—d)-exchange interaction
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(1=0.1U; see Ref. B the energy gap in the spectrum®f accompanied by a redistribution of the number of states

and p-electrons disappears Bt=389 K. Hence the contri- among the states with opposite directions of spins.

bution of this group of carriers to the conductivity of FeSiis ~ We believe that it is very important to study the tempera-
extremely small at low magnetic-field inductioB<40T) ture dependence of the first-order phase transition at low
and increases significantly only whé>400T. The field temperature and to determine the critical point from experi-
dependence of the conductivity of FeSi calculated in spiniments.

fluctuation theory with an initial temperatufie= 77 K is de- Our research in ultrahigh magnetic fields was carried out
picted in Fig. 2. in the “Kapitza experiments” program supported by the

Concluding the analysis of this part of the experiment,Russian Ministry of Atomic Energy and the Russian Minis-
we would like to mention the work of Anisimost al,**who  try of Science and Technology.
showed that there can be a first-order phase transition be-
tween a singlet semiconductor and a ferromagnetic metal
with a critical point B.,T;)=(170T, 280K at U=3.4eV
and 6=0.02 eV. However, according to Anisimat al,°,
the emergence in FeSi of a metallic state is accompanied bYe.mail: kudasov@ntc.vniief.ru
ferromagnetic ordering, a phenomenon not observed by us at
T=77K (<280K).

At the initial temperature 4.2K of the experiment we
clearly detected a discontinuity in the magnetic moment of
FeSi amounting to 0.9bg/at. Fe atB=355T. It must also
be noted that no sample heating or magnetic pressure WaS. van der Marel, A. Damascelli, and K. Schulte, E-prints archive
observedsee Fig. 6. cond-mat/97010051997).

Comparing our results with the theoretical estimates”V- Jaccarino, G. R. Wertheim, and J. H. Wernic, Phys. Re80, 476
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the magnetization discontinuity obtained in Refs. 11 and 19*M. B. Hunt, M. A. Chernikov, E. Felder, and H. R. Ott, Phys. Re\5®
smaller than the value observed in the experiment by a factogé4 &33\52171?[?]2- ohys. Rev. B0, 9952(1994
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The paper is devoted to the problem of Fermi acceleration in Lorentz-type dispersing billiards
whose boundaries depend on time in a certain way. Two cases of boundary oscillations

are considered: the stochastic case, when a boundary changes following a random function, and a
regular case with a boundary varied according to a harmonic law. Analytic calculations

show that the Fermi acceleration takes place in such systems. The first and second moments of
the velocity increment of a billiard particle, alongside the mean velocity in a particle

ensemble as a function of time and number of collisions, have been investigated. Velocity
distributions of particles have been obtained. Analytic and numerical calculations have been
compared. ©1999 American Institute of PhysidsS1063-776(99)02111-3

1. INTRODUCTION dependence of the wall velocity, stochastic layers are sepa-

rated by invariant curves. These curves set limits on the en-

The termbilliard is applied to a dynamic system in grgy acquired by the particle. If this dependence is not suf-
which a point-like particle moves within a certain regiQn ficiently smooth, there are no invariant curves, and the
with a piecewise smooth boundas@) under the condition o ticle velocity can increase without bound. Later investi-

that the law of equality between the angles of incidence an%ations(see Refs. 16,19-21 and references therefrvari-
reflection applies. Depending on the billiard boundary con- .

. . . o ous versions of Ulam’s model revealed some relation be-
figuration, the motion of the particléilliard ball) can be

. o . . . tween the law governing wall oscillationgi.e., the
regular, ergodic, or mixing. The termdispersing billiard th f1h Il velocit functi fii d th
applies to a system whose boundagy is convex inside the smoothness ot the wafl Veloctly as a function of ime and the

regionQ. It is well known that such a billiard has a mixing degree of its randomnesand the presence of the Fermi

property, and the billiard ball dynamics in this case is cha-2cceleration.

oftic. In chaotic billiards, even if the boundary velocity is a

If the setdQ is constant with time, the system is called a Smooth function of time, the incidence angle of a particle can
billiard with a constant (fixed) boundary, but if 9Q be treated as a random parameter. Consequently, the normal
=9Q(t), this is a billiard with a perturbetmoving bound-  velocity component at the collision poitthis is the compo-
ary. Billiards with fixed boundaries have been well studiednent that changes as a result of scattering, whereas the tan-
(see Refs. 1-7 and references thereft the same time, gential component is constaris a stochastic value. Obvi-
there have been very few publications devoted to billiardously, changes in the velocity are also random in this case.
with perturbed boundariés!! although their studies are of The paper is devoted to the problem of Fermi accelera-
great interest from the viewpoints of both solutions of someton treated on the example of a generalized billiard, namely,
problems of statistical mechanics and the feasibility of arg |grentz gas with an open horizon and a perturbed bound-
unbounded increase in a ball velocity, the latter problemyry e focus attention on two different cases of stochastic
originating from that of the so-called Fermi accglgrgﬂ%f'ﬁ' and regular(harmoni¢ oscillations of the boundary. Note

Fermi acceleration is the phenomenon of infinite accel'that in all publications on this topic of which we are aware,

ration of particl f vari nature owin heir rin . . . . o
eratio orpa tCE’TS ofvarious natu € owing o .t eir scattering, problem of Fermi acceleration was investigated in inte-
by moving massive scatterers. This mechanism of accelera-

tion was first suggested by Ferthto account for the origin grable or almost in_tegr.able gystgms. In view of Fh.is’ our pa-
of cosmic rays of very high energies. Later various modelde" presents the fllrst investigation of chaotic billiards with
were suggestetf, 2 which described this phenomenon with perturbed boundaries. . _ _

a lesser or greater degree of success. For example,XJlam  T"€ paper comprises three main sections. The first of
demonstrated that, if a particle moves between an oscillating'€M is devoted to the basic concepts and derivation of maps
and a fixed wall, and the oscillation phase of the former athat describe the dynamics of a billiard. The second de-
the moment of collision is a random value, the particle carscribes the analytic and numerical study of the feasibility of
acquire an infinitely high velocity. A more detailed investi- Fermi acceleration. The third presents numerical calculations
gation of Ulam’s model was conducted by Lieberman andof the particle velocity as a function of time and number of
Lichtenberg'® who showed that, in the case of a smooth timescattering events, and compares them to analytic results.

1063-7761/99/89(11)/9/$15.00 966 © 1999 American Institute of Physics
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2.1. Lorentz gas with a fixed boundary

It is known that one can select as canonical variables for
billiards with unperturbed boundaries the azimuthal angle
¢ and incidence angle between the interior normal to the
surface and particle velocity before the collision. Let us in-
troduce the reflection angle* between the exterior normal
and velocity after the collisiorfFig. 1). It is obvious that
¢ e[0,27], and the angles and a* vary over the interval
[—m/2,712]. In order to describe the dynamics of an unper-
turbed billiard, one has to calculate a mapping, (¢,)

— (ap+1,®ns 1) Which transforms the variables(¢) at the
moment before thath collision with ¢Q to their values at

FIG. 1. Configuration of Lorentz gas model. The scattefersles of radius

R) are located at sites of a periodic lattice with peréod the moment before theﬁ& 1).th CQ||iSi0n- It clearly follows
from geometrical consideratiorifig. 1) that
¢n+a:+77=d’n+l+an+1- (1)
2. LORENTZ GAS Moreover,a} = — a, since these angles are measured in op-

hi on is d dto th . d deri posite directions.
This section is devoted to the main concepts and deriva- | ot 5 introduce a reference frame with its origin at the

tion of mappings that determine the dynamics of & WO~ enter of 4 circle on which the latest scattering event has

d|menS|or1aI Lorentz gas. ) ) , taken place and determine the equation of the straight line
Consider a plane argawith a piecewise smooth bound- along which the patrticle travels after the collision. Then one

. . oy 4 .
ary JQ. Tge d|sp(_ersmg_b|ll|arP is a system composed Of .o, easily calculate the distance at which the particle passes
neutral JQ;" and dispersingiQ;” (i.e., convex in the region 5 qiher center at a distance pfcells along the horizontal
Q) sections of the boundaiQ. One representative of such .« andq cell along the vertical axis:

billiards is a system defined in an unbounded donfiaiand
composed of a set of round infinitely heavy scatteBerwith ~ dny1=a[psin(¢,+ajy) —qcog ¢, +ay)]—Rsinay . (2)
boundaries)Q; and of radiiR located at sites of an infinite
periodic lattice with perioda (Fig. 1. Given thatB; are
fixed, the billiard in the regioQ=D\U;_,B; is called a
Lorentz gas. A particle moves among the scatterers and r
flects from them in accordance with the mirror reflection
law. Such a billiard has been studied in detail in the case o}(

aQ?ﬁonstE§ee ;qufzs'. L3, 4,f6ﬂ<’;1nd re.ferences t:le)relnf h which the conditiorld,,;|<R is satisfied. After calculating
e ratio @/R)® is one of the main parameters of the the impact parameted,,,;, one can easily calculate the

Lorentz gas. Depending on this parameter, we distinguis}a . n . )
_ X . ngle at which the collision with the next scatterer will take
Lorentz gases with a bounded horizigfa/R)?< 4], with an pla%e' i slon wi X w

open horizor[4< (a/R)?<8], and with an infinite horizon
[(a/R)?>8]. In the first case, the particle motion is limited __y Onyg
to one lattice cell, in the second and third cases it can travel ~®*n+1=SIN = —p—
throughout the entire space. In the case of an infinite horizon _ . . )
statistical properties of a billiard change because of higheThe_ Jacobian of the resulting mapping defined by Egjs-
probabilities of long free patH&"?2-24whereas in Lorentz (3 1S

gases Wi'_ch bounded and open hori_zons _correlations decay (¢, . 1,ns1) cosa,

exponentially. The mean free path is definedl asrA/P, FONCA) =
whereA is the area of a billiard where a particle can go and nen
P is the scatterer perimeter. For a system with an open horiThus, the mapping preserves the phase volumexdadd.
zonl=(a?— wR?)/2R, and for a billiard with an infinite ho- Hence follows, in particular, that if the billiard is ergodic, the

The parametep is assumed to be positive if the particle
moves on the right of the center and negative if the particle
moves on the left. Accordinglyg is positive if the particle
fhoves upwards and negative if it moves downwards. The
aluesp andq are determined using the scattering condition,
e., these are integers with the smallest absolute values at

3

 CcoSapn. g

rizon | has no upper bound. distribution with respect tay, is described by the formula
Suppose that the radii of scatterdsin a Lorentz gas 1
are perturbed in accordance with a certain law, i.e., all p (a)= 5 cosa, (4)

boundaries?)Q; perform small oscillations in the normal di-

rection. In this paper we consider two different cases: periwhere 1/2 is the normalization factor.

odic (and phase-synchronizedbscillations, and random

changes in scatterer radii. The first case corresponds to the

situation when all boundaries oscillate in phase following the ) . )

same law. The second case describes oscillations of mar%yz' Lorentz gas with oscillating scatterer boundaries

scatterer boundaries with the initial phases distributed ran- Now we can easily obtain a mapping that describes the
domly. dynamics of a billiard with a perturbed boundary under the
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assumption that the boundary oscillation amplitude is muclity changes in the process of scattering, and the tangential
smaller than its radius, i.e., we can neglect geometricatomponent remains unchanged, we obtain a mapping for the
changes in its boundaries. absolute value of particle velocity after the collision:

Suppose that the dispersing compong@t” of bound-
ary dQ contracts and expand§ig. 1), so that its radius
varies following the law Hereu,=ug coswt, is the boundary velocity at the moment

R=R()=R+r(t), where mai(t)|<R. of fthe_nth scattering eve_nt. '_I'h_e relation between the angles

of incidence and reflection, in its turn, can be expressed as

Then the boundary velocity is a function of time(t)

=r(t). Further, we assume for definiteness thaft) af=—sin"!
=Ug cos(wt), whereug=wrq. In this case, in addition to

parametersy and ¢, we have to introduce another two vari- Now, by calculating the separation between sequential scat-
ables, namely, the particle velocity and collision timet.  tering events, one can easily obtain a mapping for the colli-
Given that only the normakadia) component of the veloc- sion timet,:

Vns1=VVa—4UnV, COSay+4U2, (5)

Vin

sina,

Vin+1

|

n+1

thr1=tht )
Vin+1

In+1= V[R(COS¢n 11— COS¢y) —pal*+[R(siN by 11— Sin ) —qal’. (6)

Herel,, is the free path. Under the assumption th&R, the  point of the second collision. In the general case, they are not
mappings for variablep and impact parameted are the equal(Fig. 2). Let u(t) be the boundary velocity. The fol-

same as for the unperturbed billigigs. (1) and(2)]. lowing relation should, obviously, hold:
(u()=0, @)
3. FERMI ACCELERATION which means that the boundary remains, on average, at its
place.

As a result of impacts with a perturbed boundary, the
billiard ball velocity always changes. As earlier research ha%’he

11 H H
shown,” these changes in the velocity are random. Therebonstant, whereas the change in the normal component can

forg, let us cons@er an ensemble of part|c!es and calcglatge easily calculated in the reference frame connected to the
their velocity distribution and average velocity as a functlonWaII Thus. we can write for the first collision

of timet and number of collisiona (the number of collisions

and time are not directly proportional because a faster par- Vo= —Vg,+2U(t,) = — Vv COSag+ 2u(t,),
ticle undergoes more impacts during a time interval than a -
slower ong. In this section, we will first consider the issue of Vio~
the mean change in the velocity in billiards with arbitrary V1=\/VS—4V31U(tn)+4U2(tn)-

shapes and perturbed boundaries, then we will discuss the

problem of Fermi acceleration in a Lorentz gas with ran-It is clear that, if only one collision is considerevig)

domly and regularly oscillating scatterers. =0 and(Av]y)=0 for a billiard of an arbitrary configura-
tion. Moreover, changes in the velocity are associated only

Consider a single collision between a particle and a wall.
tangential velocity component in this case is, obviously,

Vgl:VO Sinao, (8)

3.1. Average change in the velocity in the general case

Consider two sequential collisions of a ball hitting
against a wall in a billiard of an arbitrary configurati@fig.
2). Denote byag the particle incidence angle in the first
collision, and bya; this angle in the second collisigthey
are introduced as in Sec. 2.Further, denote by, andv;
the absolute values of the ball velocity before the first and
second collisions, respectively. The velocity components are
labeled by the following indices: the superscriptsand n
denote the tangential and normal velocity components, re-
spectively, the first subscript is the velocity index, the second
is set to unity if the velocity component is considered before
the collision and to zero after the collision. Thugg denotes
the tangential component of velocity, at the point of the
first collision, andvi, is the tangential component at the FIG. 2. Billiard of an arbitrary configuration.
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with the normal component since the tangential componeras a function of the numberof scattering events and tinte
is unchanged after the reflection. Consequently, the averada the case of a low particle velocity,<ug, the major con-
growth in the velocity depends on the normal velocity com-tribution to velocity given by Eq(5) is due to the last term
ponent in the next collision. In the general case, howeverpn the right-hand side, hence

one can consider only the average velocity component, i.e.,

(vip=(v,cosa;)

Var1~2u(ty)].

If boundary oscillations are determined by E#1),

=(\V2—4vu(t)cosag+4u?(t,)cosa;),  (9) !
ing i (Vo) =2(u(ty) =4
where averaging is performed over angles and «; and n+1 nIn=a
time t. . . '
It seems appropriate to illustrate E69) on two ex- Thus, even after the first collision, the average velocity be-
amples. comes larger thang.

Now let us calculate the change in the velocity at

Ulam's model!*15-21 Two parallel heavy walls are : . ) .
placed at distance between them, and a ball moves betweenv>u°' By expandlng the ”ght'h?‘”d side of E@) N pow- ]
ers ofu/v, we obtain an expression for the velocity change:

these walls. One wall oscillates periodically with amplitude
S such thatL> 6. The specific time dependence of these uﬁ
oscillations is unimportant for our analysis, the only impor- AVp=Vpi1—Vp=—2U, COSan+2V—
tant point is that the wall motion should satisfy conditi@. "

Since the tangential velocity component in this model is con- 2 up)3

stant,v"=const, the velocity and incidence angle are related XSIn ap +vinO v, |’ (12)

by the formula i ) )
whereu, is the scatterer boundary velocity during thth

v sinae=v"=const. (100 collision.

The normal velocity component, in its turn, has the same USing Eq.(4) and the uniformity of the phase distribu-
absolute value before the first collisionf},, and before the tion at the moment of collision, we obtaifAvy,) and

2\.
secondy!,. Consequently, (Avp)9):
N\ _/yN\_/_\,N —\n M 4
(Vi =(Vip=(=Vbi+2u(ty))=Vpy. ps=(Avp) ===, of=((Avy)?)=Zu5. (13)
Thus, there is no particle acceleration on average in this
model. Here we have introduced for simplicity of further calcula-

Lorentz gas. Owing to the strong mixing in this model, tions the parametevl sEuS/3, where subscrips denotes the
we can assume that angleg and «; are mutually indepen- stochastic effect. After averaging, only the second term on

dent, hence the right of Eq.(12) contributes to the velocity increase, and
(V1) =(cosavy) — (cosay), (V) in calculations of the variance the first term is sufficient.
w- ¥1V1/ag,ap 1 1 a;\V1/ag t- If the numbem of scattering events is sufficiently large,

Therefore, fluctuations in the velocitfincrease and de- We can replace the first equation (b3) with a differential
creasg due to collisions are associated with changes in it€quation
absolute value, but not in its normal component, as was in avn) M
. . S
the previous case. As will be shown below, the vajug) =
increases with, therefore Fermi acceleration is feasible in
the Lorentz gas. Its solution with the initial conditionv(0)=v yields the
This conclusion can probably be extended to other sysmost probable velocity as a function of the number of colli-
tems in which the incidence angle and velocity are not di-sions:
rectly related by Eq(10), as in Ulam’s model. An interme-

an  v(n) (14

— 2
diate configuration between Ulam’s model and a scattering v(n)=v2Mgn+vg. (15
billiard is the “stadium-shaped™ billiard, in which the feasi- gjnce the particle velocity is expressed as a sum of indepen-
bility of Fermi acceleration was studied numericdfly. dent random quantitie&v,, with known mean and variance,

it follows from Lyapunov’s central limit theorem that the
distribution function of the random valuev,=v,
+32,Av; tends to a normal distribution with mear(n)

Let the boundary velocity of a scatterer at which tile ~ and variancena. Thus, the velocity distribution has the
collision takes place be shape of a spreading Gaussian. The position of the distribu-
tion peak is at the most probable velocityn), proportional
to the square root af.
whereug is the boundary velocity amplitude, afd¢,} is a This reasoning applies only to the case of a sufficiently
set of uncorrelated random values uniformly distributed oveihigh particle velocityy>ug. In order to describe the distri-
the interval[ 0,27). Let us calculate the velocity distribution bution at lower velocities, let us introduce an additional con-
function and the average velocity in an ensemble of particleslition, namely, that there is no flow of particles to the region

3.2. Stochastically perturbed scatterer boundary

Up(t)=Uuq cose,, (11
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of negative velocities: (dp/dv),-o=0. It is well known M|
that the Gaussian distribution that satisfies this condition has 1.2,,5
the form

1.0u}

)= 1 . _[v—v(n)]2 )
pLv,  gey2mn X 202n 0'81‘0_

2 ’-9.— -
F{ [v+v(n)]2) 0‘6%. S B4 1
+exp — ]
20—Sn 4 T,- ——— -}' ............................... -
Ml

(16)

0.4113 o {I \{‘%
This allows us to calculate the mean velocity in the particle 0-2"3
ensemble as a function of the number of scattering events:

A i ) ]

5 5 10 15 20 25 v
2n v4(n) v(n)
V(n)=os\/—exp — o 2 +v(n)® ) FIG. 3. ParameteM=v(Av) as a function of particle velocity. Curves
m 205” ‘Ts\/ﬁ and?2 are calculated by the Lorentz gas model for the cases of random and
17 regular boundary oscillations, respectively. CuB/& calculated using the

X > . . simplified mapping22). The dashed line showd in the Lorentz gas in the
where ®(x) = (Z/J;)foeXp(_X )dx is the error function. case of stochastic boundary oscillations calculated by(E2). Results are
HereafterV denotes the mean velocity in the particle en-obtained auy=0.01,a=1, andR=0.4.

semble. By substituting all coefficients and expanding the

expression for the velocity, we obtain . o ) .
Thus, the system under investigation gives rise to the

1 Fermi acceleration, with the particle velocity increasing as a
ﬁ ' (18) linear function of time.

where the constant  C=2[ osexp(~Ms/a)/\/m 3.3. Periodically perturbed scatterer boundaries
+® (VM o) VM]~1.143)5. )
Thus, Eqs(16) and(18) determine the velocity distribu- Suppose that all scatterer boundaries contract and ex-

tion and the mean velocity in the ensemble as functions opand following a certain periodic law with a constant initial
the number of scattering events. phase. Then, during one half of the period, the particle ve-

To calculate the mean velocity versus time we use thdocity should increase as a result of collisions and decrease
Fokker—Planck equation: during the other half. If the particle velocity is high enough,
the time 7, between scattering events is longer than the pe-
ap(v,t) J 52 riod T of scatterer oscillations. This leads to correlations in
Framiaiewl VIO E[BP(V,U], particle velocity variations, so the sequential increments in
the velocity defined by Eq12) can no longer be treated as
where the factoré andB are given by the expressions independent.
) 5 This section presents numerical calculations of the ve-
_ A_V _ % B= AL o5V locity variance and its average increase, alongside the decay
T\ o7 I |- rate of the correlation functioR(m)=(Av,Av,.m). They

V(n)=C\/ﬁ+O<

-
indicate, in particular, that correlations can lead to larger first
and second moments of velocity distributions. The calcula-
tions were performed on the basis of the Lorentz gas model

MWwith the following parameters: the scatterer radiis 0.4;

ap(v,t) M, @ 05 2 the separation between their centarsl_[thus, the basic

=———p(v,t) + = — —[vp(v,1)]. (19 model parametera(R)%=6.25]; the amplitude of the scat-
I av 2 1 gv? terer surface velocityuy=0.01; the oscillation frequency

Here the mean time between collisions /v, | is the mean
free path, and\v andAv? are defined by Eq13). By sub-
stituting the resulting coefficients in the equation, we obtai

ot

If parametersM ¢ and o5 are determined in accordance with “~ 1. _ _ _
Eq. (13), the solution of this equation in the limit of high It follows from the analysis of the previous subsection

velocities much larger than the initial value, i.e., after a suf-hat at high particle velocitiesAv)~1A. Therefore, the
ficiently long time interval, tends to variable most convenient for the analysis and graphic repre-

sentation isM=(Av)v. Figure 3 showaM plotted against
w1 1 p( v the particle velocity in the case of stochadfitirve 1) and
p(v,t)= ———exp — 575 |- periodic(curve2) boundary oscillations. One can see that, in
2tAmy 2A the case of stochastic oscillations, the variaidlg~u3/3 co-
whereA=M,/I|. The latter expression yields the mean par-incides with to the result of the previous subsection. In the
ticle velocity: case of regular oscillation$/, first increases, and then most
likely tends to a constanl"®=(1.15+0.10u3 at v=15,
which corresponds in this specific billiard configuration to
n=150 particle collisions with the boundary during one os-

2
Lu;

Ms
V(t): I_t+V0:
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cillation period on average. In addition, it is clear that the w2

particle acceleration in the case of regular boundary oscilla-  R(N)=(AvV; AV, )= U%j(‘?oswtm COSwtmin),

tions is a factor of three to four higher than in the case of

stochastic oscillations. which takes into account, as follows from E), that
For the analysis of velocity changes in chaotic billiards{CoSa,)=m/4. By setting the oscillation frequency to unity

with periodically oscillating boundaries, the following ap- and introducing the notatio®,=={"_; 7., where r=t;

proach can be suggested. Consider an approximate mappingti-1, We obtain

for velocity (12). Since correlations between parametefs

decay exponentiallyas follows from the billiard configura-

tion), the formulas can be averaged overusing Eq.(4).  The variableS, can be expressed as

Then

(cost, costy,, n)=(cost, cogt,+S,)).

n
T u3 coswt, Sn—zl (AL,
— Euo coswt,+ —. (21 _ o _
n whereAl; is the deviation from the mean free path on itte
During the oscillation period, the largest contribution to collision. SinceS, is the sum of independent random quan-
changes in the velocity is due to the first term on the right.tities, its distribution at larga tends to the normal distribu-
Therefore, it is sufficient in the first approximation to take tion with meann| and varianceo{ , whereo? is the mean
into account only the changes in the velocity due to the firsfree path variance. By expanding the cosine of the sum and
term, and the second can be neglected. On the other han@veraging oveiS,, we obtain the following expression for
correlational corrections to the second term generate terms #te correlation function of velocity increments:
higher orders than that of its average. Therefore, correlation 2 n
effects in the second term can be neglected. For this reason, R(n)= gug cog wna-)ex;{ - N)’
the two values related to the first and second terms can be
calculated independently: where o is the frequency of scatterer oscillations,
N=v?/(w?c?). Thus, correlations between sequential
(Av)=(Av)i+(Av)y, changes in the particle velocity are the stronger, the higher
Where<v>,|=u§/(3v), which coincides withus in the sto-  the velocity, and their “half-life”N, i.e., the number of col-
chastic casé¢Eq. (13)], and(Av), is the correction due to lisions after which correlations drop by facter increases
correlations. Discarding the second term on the right of EqProportionally tov?. Note that the number of collisions over

(21), we have the following mapping for calculatifd.v), : one period is proportional te. Thus, in order to estimate
correctly the velocity variance, one has to average over the

lni1o 22 larger number of oscillation periods, the higher the particle
Vi1 velocity. The issue of how this can be done, however, has
. ) ) remained unresolved.

Herey=—aruo/2, and the collision phasé,= wt, is substi- In order to estimate the variance in the first approxima-
tuted for time. This mapping is exactly equivalent to Ulam's ;,n, ‘jet ys consider the velocity increment after two sequen-
well-known mapping:'~*!the only difference being that in o) coflisions with the boundary. In this analysis, we assume
this case the free patly is a random parameter distributed w5 correlations among three and more increments are neg-
over a certain interval. ligible. In the limit of a high velocity of a billiard particle,

Let us analyze numerically this mapping at the samey cqrelator of sequential velocity increments can be esti-
values ofuy and w as those selected in our analysis of the i by the formula

Lorentz gas. Suppose that the free pla‘tﬂnazs a normal dis- )
tribution with meanl =0.62 and variancer; =0.657. This P
corresponds to the variance and mean flree path calculated <AV”AV”+1>:UOT<COS? wt(1-0(7%)))
numerically atR=0.4 anda=1 (see the previous subsec-
tion). Figure 3 showiAv),v+ué/3 (curve 3) derived from ué
mapping(22). One can see in the graph that the first moment ﬁ '
of the velocity distribution defined by this mapping becomes
positive, but it is still smaller than the observed velocity From this expression and E(L3), we derive
incrgase in the !_orentz gas. Nonetheless, this mapping is i (Avp+Avn)?) (4 w2
easier for analysis than EQ1). or= 5 ~\3 + 5
Now let us estimate the variance and decay rate of cor-
relations in the velocity change. Suppose that the particle Figure 4 shows numerical and analytic estimates of the
velocity is so high that its change afteiscattering events is velocity increment variance in the stochastiashed ling
negligible. It is clear that, in order to satisfy this condition, and regular(solid lineg cases. In the case of stochastic os-
one can choose andug in a proper manner. Let us calculate cillations, the numerical and analy{iEq. (13)] estimates are
correlations between velocity incrememiy,,, and Av,, identical, so the graph shows only numerical calculations of
[Eq.(12)] for n—cc. Taking into account in the first approxi- og. Regular oscillations are characterized in this graph by
mation only the first terms on the right of Ed.2), we obtain  the straight line defined by Eq24) and the broken line

(Av),=

(23

Vn+1=VptyCosty, Onp1=0ht

277'2
:U0§+O

u3. (24)
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FIG. 4. Variance versus particle velocity in the Lorentz gas in the cases of [
stochastic(dashed ling and regular(solid lineg oscillations. The straight 1 . . ,
line shows the theoretical estimate of the variance in the regular case by Eq. * — * 3 108 - 5 103
(24). The calculations were performedaj=0.01,a=1, andR=0.4. 110 ) )

FIG. 5. Mean particle velocities as functions of the number of scattering
events in the Lorentz gasurvesl and?2) and their approximations by Eq.
(18) (curves3 and4). The dashed lines correspond to stochastic boundary

calculated numerically. In order to take into account correlaoscillations, the solid lines correspond _to rggular _oscil_lations. The a_lvere_lging
tions between velocity increments, we calculated in the re(‘:]ut\:vas performed over 100 process reahza}nons with different velocity direc-
] ’ ions selected at random. The calculation were performed,at0.01,

lar case the effective varlan(sz=<AV2)/Nmax, whereAV a=1, andR=0.4.
is the total velocity increment aftéd,,,, collisions. Given
Eq. (23) describing the correlation function decay, we
equatedN . to 10/2/(w2(r|2), which is a factor of ten higher u,=ugcose,, where ¢, is a random parameter uniformly
than the characteristic correlation decoupling number. As iglistributed over the intervdl0,27), and in the second case
shown by the graphs, the varian@éin the stochastic case is by the formulau,=ug coswt,, wheret, is the moment of
constant, whereas in the regular Caeé)(it grows with the collision between the particle and boundary. For each case
velocity. In addition, the variance in the regular case deter100 realizations of billiard dynamics were investigated. The
mined by Eq.(24) is slightly overestimated. averaged velocity as a function of the number of scattering

Thus, the numerical and analytic estimates given in thig€vents and time is plotted in Figs. 5 and 6, respectively. In
section indicate that particle acceleration should occur iP0th graphs, the solid lines plot the data for the regular case,
chaotic billiards with periodically oscillating boundaries. We @nd the dashed line corresponds to the case of random oscil-
can most likely say that deterministic chaoticity is a suffi-1ations. ,
cient condition for Fermi acceleration. Moreover, periodic ~ F19ure 5 shows the averaged velocity of an ensemble of

oscillations of billiard boundaries lead to a higher particlepartICIeS Versus 'the qumberqf scattering events over the
acceleration. range of 5 10 iterations. It is clear that both curves are

accurately approximated by the square-root funcfit®). In
3.4. Numerical results the case of stochastic oscillations, parametdrs and o
were derived from Eq(13), and in the regular case the lim-

This section presents numerically calculated particle ve-" I q derived f cal cal
locity as a function of the number of scattering events anqt'n,g valuesM, and g, were derived from numerical calcu-
ations described in the previous subsection.

time in comparison with the analytic estimates given above. T fth locit titeia. 6) plot
The calculations were performed by the Lorentz gas model e curves of the mean velocity versus titg. 6) plo

with the following parameters: the amplitude of the scatter(atIhe data .averaged over lOQ re_al|zat|ons in_the stqchasﬂc
boundary oscillation velocityi,=0.01; the scatterer radius (dashed linesand regular(solid lineg cases. The particle

R=0.4: the distance between their centers 1: the fre- dynamics was simulated over a time interval[ 6f 3x 10°]

- . : time units, and some trajectories of “fast” particles covered
qguency of boundary oscillatione=1; the initial velocity ' J P

: up to 3x 10° iterations. The mean particle velocity was ap-
vo=1. Thus, the mean free path calculated analytically for b P y P

: . roximated using Eq20). The parameteM ; was calculated
these parameterss=0.6216815. The numerical calculations proxi using E420) P s W !

fth f 6 di . in thi for stochastic oscillations by E413), and for regular oscil-
o _t € mean ree_pat[E_q. ( )_] and its variance in this Spe- | iong as a limit ofM, obtained in the previous subsection.
cific billiard configuration yieldl

2 =0.62163-0.00003 and The curves show that the growth in the particle velocity is
o7=0.657+0.001.

: ] o ] o approximately linear, and the approximation of the average
The difference in realizations was in the initial values of

‘ . velocity by Eq.(20) is in reasonable agreement with com-
a and ¢, which were selected at random. Two different puter simulations.

cases were investigated: stochastic oscillations of scatterer

boundaries with initial phases distributed uniformly and

regular oscillations of boundaries. In both cases, the billiard" CONCLUSIONS

ball (particley dynamics was determined by the mapping de-  Billiards are fairly convenient models of a set of physi-
rived in Secs. 2.1 and 2.2. The scatterer boundary oscillational systems. For example, particle trajectories in billiards of
velocity in the first case was defined by the formulaspecific configurations can be used in modeling many dy-
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the peak in the velocity distribution spreads with tintke)
the absolute value of velocity cannot be negative, therefore

330 the peak spread cannot be symmetrical, but its predominant
direction is to the side of higher velocities, as a result, the
250 simple normal distribution is replaced by distributi¢h6).
Moreover, it follows from both analytic and numerical cal-
200 culations that fluctuations and the mean increase in the par-
ticle velocity are larger in the case of regular scatterer bound-
150 ary oscillations, which leads to a larger velocity growth.
Thus, the mechanism due to correlations between sequential
100 changes in the velocity has been suggested.
It is quite clear that the reasoning used in deriving the
50 particle velocity as a function of the number of scattering
events and time can be directly translated into another type
of billiard in which a distribution of anglex (between the

normal to the surface at the impact point and particle veloc-
ity) is known. Therefore, the technique developed in our
FIG. 6. The same data as in Fig. 5, but plotted against time. The approxiwork can be used in solving the problem of Fermi accelera-
mation was performed by E420). tion in the general case.

The presence of a chaotic condition in a system can

. change its statistical properties. A recent publication by
namical systems. Moreover, most approaches to thef_ d Na&? idered a billiard i defined b
problems of mixing in many-body systems originate from sang and Ngar considered a bifiard in an area de m_e y
billiard-like problems. A natural generalization of a billiard a rgctangle whose corners were replgced by.quarter-m.rcl(-es of
system is a billiard whose boundary is not fixed, but varied@diusR (smoothed corneysand one side oscillated periodi-
following a certain law. This is a relatively new field of cally. A particle travels within this area and collides with the
research, which opens new prospects in studies of prob|ent§)l.lndaries. Each collision with the boundary is not perfectly
that have been known for a long time, but have been poorlglastic, and the particle loses a fraction of its energy propor-
investigated. For example, the problem of particle dynamicsional to a constant (6<1). This model is similar to Ul-
in a billiard whose boundary changes with time has a direcam’s model, but the presence of smoothed corners introduces
physical application as a model of nonequilibrium statisticalrandom elements to the particle dynamics. Tsang and*Ngai
mechanics. As follows from the existing literature, the dy-investigated relaxation of a system to equilibrium. A similar
namical properties of a billiard with perturbed boundaries argnvestigation was performed earlier by Tsang and
important: if its o.Iyr'1a.mics is chqotic, boundary pertu_rb""t,iOnsl_iebermaﬁ5 on the basis of Ulam’s model. It was shown that
can Iead_ tp an infinite growth in t_he partlcle_ velocity, I8 the functiond (t) = E(t) — E(=), which is the deviation of
such a billiard demonstrates Fermi acceleration. o

In the present article, we have studied the problem o}_he mean energy from th? eq_whbvum value, drops expor?en-
Fermi acceleration in dynamical systems generated by twot—'a"y’ <b(t)ocexp(—t/r), Wh'Ch_'S quite r]atural of mo;t phyS|-.
dimensional dispersing billiards with perturbed boundariesC@ Systems. The investigation of this parameter in the bil-
A billiard with a boundary like that of the Lorentz gas liard discussed in Ref. 10 revealed that its relaxation to
oscillating in accordance with a certain law has been invesequilibrium in this case is slowet (t)<exd —(t/7)"], where
tigated. It is well known that the conventional Lorentz gas#<1 and drops wittR. Given the results of this paper, we
(i.e., that with an unperturbed boundphas clearly demon- can understand the cause of the slower system relaxation. In
strated chaotic propertieemixing, decay of correlations, fact, the random element in the system becomes more
etc). Perturbation of boundaries in such a billiard leads toimportant at larger radii of circles at the corners, which leads
the Fermi acceleration. This model has been studied in twgy acceleration of particles. Therefore the system relaxation
versions, namely, those with stochastically and regularly ostg jts equilibrium, associated with the particle energy
cillating scatterer boundaries. It has turned out that the aGgissipation in the system, becomes slower. The approaches
celeration is higher in the case of periodical boundarydeveloped in the reported work create preconditions for

oscillations. o . o
. . . . . determination of3, hence of the relaxation rate to equilib-
We can identify two basic acceleration mechanisms,. & q

which have been discovered in deriving the particle velocit lum in a system where the chaotic dynamics Iis

distribution as a function of the number of scattering eventgom'nam' ) ) o
in the case of stochastic oscillatiofSec. 3.3. The first is Thus, on the basis of our investigations, we can put forth

the mechanism deriving from the conditigdv)>0 [Eq. &N important hypothesis: a random element in a billiard with
(13)], which drives all particles to the side of higher veloci- & fixed boundary is a sufficient condition for the Fermi ac-
ties. The second is the dispersi(@ fluctuational mecha- celeration in the system when a boundary perturbation is
nism controlled by two conditionga) (Av2)>0, therefore introduced.
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This paper examines the time-dependent Josephson effect in systems of tunnel superconducting
junctions and in layered superconduct@ise intrinsic Josephson effgatith allowance

for nonequilibrium superconductivity effects. Kinetic and quasihydrodynamic equations are
derived that describe self-consistently the dynamics of Josephson phases and nonequilibrium
quasiparticles. It is found that the state of nonequilibrium between the layers leads to an

effective mechanism of the interaction between interlayer Josephson junctions, which can be used
to synchronize the junctions. Current—voltage characteristics of chains of intrinsic junctions

are obtained for different values of the parameters. 1999 American Institute of Physics.
[S1063-776(99)02211-9

1. INTRODUCTION rium effects may be very large because the effective layer
thickness is small3—10 A). In recent studie¥ %" the intrin-

It is well known (see the review articles in Refs. 1-3 sic Josephson effect in highs superconductors was ob-
that when subjected to a finite voltage a Josephson junctioserved directly. A number of researct&rs? remarked on
is a source of nonthermal quasiparticles, which relax in thehe importance of allowing for nonequilibrium effects, espe-
“banks.” Hence near the junction there is always a region ofcially the violation of the equilibrium Josephson relation, in
nonequilibrium superconductivity. The excess of quasipartiinterpreting the results of experiments in this field.
cles changes the energy gap. More than that, a difference In Sec. 2 we will discuss the elementary theory of the
arises in the populations of the electronlike and holelikenonequilibrium Josephson effect and make estimates for ar-
branches of the electron excitation spectr(tire electron— tificial tunnel structures and highz superconductors. Sec-
hole imbalancg which changes the chemical potential of the tion 3 is devoted to the derivation of kinetic and quasihydro-
superconducting condensdtbe number of superconducting dynamic equations of quasiparticle dynamics in systems of
electrons changes to balance the excessive charge of the quannel junctions. In Sec. 4 we will examine the dynamics of
siparticles and leads to penetration of the superconductor bya chain of junctions and present the results of numerical cal-
the electric field. If the banks are fairly large, diffusion of the culations of current—voltage characteristics and of the high-
quasiparticles plays the main rdlie dirty superconductojs  frequency interaction of junctions.
The characteristic spatial scales are determined by the energy
relaxation depthl =D, and the imbalance relaxation 2. ELEMENTARY THEORY
depth (the penetration depth of the electric figld

. cer - - . . From the micr ic viewpoint, the main pr in
l4= VD74, with D the diffusion coefficientr, the inelastic 0 € ficroscopic VIEWpPOIN?, Ihe maif process in a

relaxation time, and, the imbalance relaxation time. But if r_loneq_um_bnu_m supergonduc’;or IS the change_m the quasipar-
ticle distribution function, which is accompanied by changes

the banks are smaller thdp in the direction of diffusion, a . . T i

: o in the macroscopic characteristics of the condensate: the en-
spatially homogeneous nonequilibrium state forms that ey, apA the shiftsu of the chemical potential. and the
laxes with characteristic times, and 7. In this case the gy gapa, K P '

system may be farther from equilibrium. invariant potentiakb related to this shift.

Quasiparticle interactions between junctions have beeﬂ1e A change in the energy gap takes place when the part of

studied in systems of Mercereau—Notaris bridgesnd in (n ddclessfcr:lr?gggr:h]ceun(;t;)sri]e\lgzlt(r:gnir?grmmsitgtcritl)zti%r;uee;bgr’g
SNS junction€:” The nonequilibrium change in the energy * © q oy

gap in SIS systems was examined in Refs. 84dr inter- and the quasihole distribution fer<0); in the simplest case

: . : . . . it can be found from the IlE&shberg self-consistency
esting particular case of this phenomenon is the stimulation quatiof®

or enhancement, of superconductivity in a double tunneié
junction with a nonequilibrium middle laygrAnother factor b 1—n,—n_,
that may be important is the violation of the Josephson rela- 1= f (2_A2)l2 €.
tionship de/dt=(2e/%)V between the voltage across the A (e7=4%)
junction and the phase difference at the junction in the non-  On the other hand, the shift of the chemical potential of
equilibrium case(see below In layered superconductors the condensate in the superconductor is determined by the
with Josephson interaction between the layers, nonequilibpart of the distribution function which is symmetric in

@
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TABLE I. Atrtificial structures T=4.2 K).

N(0), 16 RS do,

Structure ergtcm Q cn? A v,st 7., S VT,
Nb-AIO,—Al-AlO,—Nb (Ref. 8 0.81 3-7)x1077 100 =10° ~10°8 =1
Nb/Al—AlO,—Nb' Al-AlO,—Nb (Ref. 9

~1 ~10°6 ~100 ~10° ~107° ~0.1
Nb/Al/Nb'/Al-AlO,—Nb'Al-AIO,—Nb'/AI/Nb (Ref. 9
Nb/Al—-AlO,—Al’ — AIO,—Al/Nb (Ref. 10

0.81 (1-4)x10°° 60 ~10° ~10°8 ~1

Nb/Al/Nb/Al—-AlO,— Al — AlO,— Al/Nb/AI/Nb (Ref. 10
Nb—AIO,—Nb'—AlO,—Nb (Ref. 11) 1.99 ~10°° 100 =10 5x10 1© ~0.01

energy>*~3®In the simplest case of a pure superconductor in  In a state with a shift of the chemical potential, the or-
a spatially homogeneous quasistatic nonequilibrium state, theinary relationship de;; /dt= (2|e|/ﬁ)Vij the Josephson
energy distribution of the paired electrons is given by thephase difference ¢;;=[ 6;— 6;]sgre and the voltage
expressionvg=(1/2) (1— & /€.), where §=h%k?2m—ex  V;;= ¢;— ¢; breaks down. Instead, using the definitiordof

— S, €= \A’+ gzk is the quasiparticle spectrum, aAagt is ~ we obtain the Josephson nonequilibrium relationship

the shift of the chemical potential. Then féiu<<eg the

e et dei;  2|e| 2|e|
charge density is given by the formula d—t”z TV” + T((Dj_(bi)' (6)
p=2eN(0)| s+ fm(ns—n_e) de|, (2) Thus, in the general case, we must self-consistently de-
A scribe the dynamics of the Josephson phaggd) and the

where the first term on the right-hand side is the condensat@istribution functionsn®(t) with allowance for the condi-
charge and the second is the quasiparticle charge, arfpns (1) and(5) and for the nonequilibrium expressions for
N(0)=mpe/2m242 is the density of states on the Fermi sur- the tunneling current between the layers.

face. Equation(2) is the second self-consistency equation. In ~ The main parameters determining the degree of the non-

the quasineutral cas@€0) we have linearity of the effects of any type in tunnel structures and
other systems with weak coupling are the products and
I PR v7y, Wherev is what is known as the tunnel frequency,
Ok L (ne—n-o de. @ which for thin layers @o<I.,l,) is given by the formula

This expression is a reflection of the features of the charge 1
effects in superconductors: when an electron—hole imbalance V= 5=~
X L 4e“N(0)Rydg
develops, the quasineutrality is ensured due to the supercon-
ducting electrons. whereRy is the resistance of the junction in the normal state
The shift of the chemical potential can be expressed irper unit surface area. Forr.>1 or v7,>1 strong distor-
terms of what i known as the invariant potentidj.=e®, tions of the quasiparticle distribution function are possible.

)

with The results of estimates recently made for artificial struc-
tures are listed in Table I. These data suggest the following.
D(t)=d+ E ‘9_0 (4)  First, the highly nonequilibrium regime is realized in tunnel
2e ot structures based on Al and Nb. Second, the parametgr

where is the electric potentiald is the phase of the order €an be much larger than unitys.>1. Indeed,»~10°s™*
parameter, andb=0 in an equilibrium state. For a pure corespond to —wvery low  barrier  transmissivity,
superconductor, in the quasiclassical case this relationshfd =10 ‘—10"° (v=veD/4do), and the condition for
follows directly from the shape of the quasiparticleJunction vgeakn§s§l is met with a large margin
spectrunt® Generally, it is the gauge-invariant potentibl ~ (¥<A~10"2-10"s™"). Thus, an increase in value of the

that enters into the dynamical equations. The expression fdtonequilibrium parameter by a factor of 100 to 1000 with
the charge becomes barrier transmissivity is quite possiblet least in principlg

It is difficult to make estimates for highz supercon-
ductors because of the lack of a sufficient large body of data
(©—=W), (5) obtained in direct measurements of nonequilibrium effects
and the fuzziness of the microscopic picture. For rough esti-
whereW =(1/e) [3(n.—n_,) de is the electron—hole imbal- mates we can use formul@) and a similar formula that
ance potential) andr 4 is the penetration depth of the elec- expresses in terms of the critical current at absolute zero in
tric field. the BCS model:

1
= —2e’N(0) (P~ W)=~
P (0)( ) 22



JETP 89 (5), November 1999 D. A. Ryndyk 977

.

particle states in energy in the static case and are called spec-
: tral, while the “Keldysh” functionsg(t) andf(t) describe

it J@) the kinetics of the quasiparticles. Since we intend to go over
-] P to a kinetic (quasiclassical in timeequation, we introduce
the Fourier representation in the time differerige-t, and
retain the dependence on the time sua(t; +t,)/2. More-
A I R over, in the “dirty” case (pA, T,0<1 andl,<§,,do), we
i can average over the directions of the momentum on the
Fermi surface. Thus, we obtain, for instarite,

0.r0=— [ de [ G2 [ a1 [ dryra)

B MM The functionsg(® and f2(® describe the density of quasi-
¥
it

X

vt

—
-
+
—_

- t
BT
|

FIG. 1. A system of coupled Josephson layers.

Jc(0)
ym— (8) :
2meAN(0)d, XG(ry,rp,ty t)expl —ie(t;—ty)
On the basis of Refs. 12-27 we assume that +ip-(ry—ry)}, 9

J.(0)~500-20000A/cnf, V,~1-10mV, R\ S~107°
—107 Q cn? (for structures with different degrees of anisot-
ropy), A~20meV, andN(0)~ 10°2—10%*. We then arrive at
the estimatev~10°—10'%2s !, depending on the degree of
anisotropy and the way in which the estimate is made. When  gg,

The equations for the functiorg. and f (t) averaged over
the layer thickness have the forfimn a gauge in which the
order parameter is real

the inelastic relaxation time changes from 2@ (at e —ie{®g—g®} ~i{AfT—fA} — 15117, (10)
T~4.2K) to 10 '2s (at T~T.), the productrr, changes B
over a wide range from 1@ in structures with the greatest i25f€=ie{(I)f—f(I)}e—i{Ag—gA}€+|gh+|t“”, (11)

anisotropy at temperatures close to critiéabte, however,

that v7, may be much larger in view of the factd’A) to  wherelP" and " are, respectively the phonon collision in-
10% in structures with weaker anisotropy at low temperaturestegral and the tunneling sourcél(t,,t,)=f*(t,,t;) and
which suggests that under certain conditions a system Wit§¢, t,)=g(t,,t;) in the temporal representation, and the

an intrinsic Josephson effect may be very far from equilib-sympo|{AB} stands for the convolution in time,
rium.

{AB}(tlltZ):f A(tl,t3)B(t3,t2) dt3, (12)
3. QUASIPARTICLE KINETICS IN SYSTEMS OF TUNNEL
JUNCTIONS. THE QUASIHYDRODYNAMIC APPROXIMATION which in the frequency representation has the form

In this paper we will examine the system of Josephson- do
coupled thin layergFig. 1) with a tunnel mechanism of cur- {AB}E(w)zf Act wiz— w2 01)Beyy p(@— w1) 2—1
rent transfer between the layers. Thus, the state ofittine 77(13)

layer is determined by the interaction of that layer with the

(i—1)st and {+1)st layers. For any pair of layers this in- and in the quasiclassical case can be represented by a power
teraction is the same type, and below we will develop aseries inw, i.e.,

microscopic theory of an arbitrangh layer with allowance i (aAE JB, dA, &Bf)

for the “left,” (i—1)st, layer. The effect of the “right,” {AB}E=AEBE+E

(i+1)st, layer will be taken into account in the final expres-

sions. 1
We will assume that the layer thicknedgis comparable -= - +

to the penetration depthy of the electric fieldas is the case 8l o ot Jeddet g7 g€

in high-T superconductoysand is much smaller than the Here in (10) and (11) we must assume that formally

characteristic nonequilibrium relaxation deptil<lc.lq.  A(t,,t,)=A(t;)8(t;—t,) and d(ty,t))=D(ty)5(t;—ty).

In this case the analysis of charge effects becomes mucfhe following relationships hold:

simpler, since we can average all quantities over the layer .
thickness. g*(ty,t)=9(tz,ty), f(ty,t)="F(ts,ty),

PA. B, FPA. B, FA. B,
... (14

T _ N —
3.1. The starting equations fe=fr, f=f. 9g.-=0 . 0i=g.,

The starting equations are théidhberg equatiod&for ~ which imply thatg(t) is a purely real function anéi(t) is
the two-time quasiclassicdintegrated with respect to the an even function.
energy variableé=vg (p—pg)] Green's functionsg,(t), The tunneling sourc&“" was obtained by Volkdt? and
f.(t), g2®(t), andfA(R)(t) describing an arbitrary nonequi- in our notation has the form
librium state of the superconductor. In the most general form | tun_ V{g(t)Rg_gg(t)A_l_ FFOTA_ f(ORft
such equations were obtained via the Keldysh methby !
Larkin and Ovchinniko¥3° (see also Refs. 2,3, and 40344 +gWghA—gRg® + fRFOT O fTAL (15)
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*R(A) _ A(R) fxR(A) = _§AR)
€ € ! € € ’

|t2un: V{g(t)Rfa(t)A+f(t)Ra_gf(t)A g -g
+g(t)fA_fR5(t)+ f(I)EA_ng(t)}_ (16) with the sign of the square root determined by the condition
Im+y/--->0. Below we will need combinations of the spec-

Here the Gree's functions with the superscrit) refer to  tral functions, for which we introduce the special notation
the othen(“left”) superconductor. These functions contain an

additional phase factdjin relation to the functions taken in u :}( R_gM), v ZE(fR_fA)

a gauge in which the order parameter is reahich reflects €2 9 9c) Ve 2 ¢ €7

the presence of the Josephson phase difference . )

o(t)=[6'(t)— 6(t) ]sgre between the superconductors. This _r FRy A _r Ry g 22
means that the following gauge transformation must be car- We 2( i) Ve 2(95 ge), (22)

ried out: L _
i
OE | ¢ he=5[1- (9802~ f¥M], be=5(gffE+glfd).
grt (g, t) =ex |[<P(t1)_<P(t2)]Sgn§

xg' RA(ty,ty),
3.2. Kinetic approximation

— ) e
gORMN ()= GX4 —i[e(ty)— go(tz)]sgni] At low frequencies p<A), the system of the dynamical
B equations can be greatly simplified by passing to the kinetic
x g’ (RA(1,,1,), equation for the energy distribution function for the quasi-

particles. Such an equation for a system of tunnel junctions
17) in the quasistatic caseo(—0) was derived by Bulyzhenkov

e
FORA (¢, t,)= exp‘ i[o(t)+ go(tz)]sgn—] and Ivlev?® Ivlev,*” and Gulyan and Zharkot? As shown by
2 Larkin and Ovchinniko?¥*®and Schmid and Sing*® in the
X £ RA (L L), time-dependent case the passage to the kinetic approximation

can be achieved by introducing two real distribution func-

. e tionsf, andf,, in terms of which the functiong, andf, are
®1RA) _ _ 1 2 e e
f (t1.t2) exq’ '[‘P(tl)’L(P(tZ)]SgnE] expressed so that the normalization condition
XFrITRA (L 1), [( g® fR)( g f)]
where the primed functions now satisfy the same gauge- —fTR ER —fT 5
invariant Eqs(10) and (11) as the unprimed. f A A
The self-consistency condition for the energy gap has the + 9 o g o ) -0 (23)
ordinary form —ft g\ - g~
[ de holds. As for the spectral functiorgr™ and fR(A), it is
A=A i ZREfE(t)’ (18) sufficient to express them in terms &f{t) via the formulas

P (20) of the static approximatiof‘f’.

and for the second self-consistency condition we must take  Shelankof® found that when the spin states are equally

the continuity equation with the charge populated, one real distribution function of the general form
f (t) is sufficient, and the functionfs andf, have a definite

. (19 symmetry. Using the Shelankov methdwe can express
the Green'’s functions immediately in terms of the symmetric

These conditions constitute a generalization of the expredd't ,B_E(t):(n;rn,e— 1)sgre and the antisymmetric part
sions(1) and(5) to an arbitrary time-dependent case. “f(t)__(ne_”*e)sgnf of the distribution function, as fol-
The resulting equations must be augmented with the exXOWs:
pression for the curren_t flowing betwgen t_he layers. A con- gs:{ﬂegﬁ—gsﬁe}—ae+{95asg/§}—{f?a5fZA},
venient way of calculating the current is to integrate &d) 24)
with res_pec_t to energy. We will use this trick when we pass fe:{ﬁef?—fsﬁe}+{95aef?+ fEaEEﬁ‘}.
to the kinetic approximation.
The spectral functions are determined by equations ofrhe Green’s functiong24) automatically satisfy the normal-
the form(10) and(11). We will assume that in the static case ization condition(23) for arbitrary «, and B8.. Following

[

de
p(t)=—2eN(0)| ed(t) + f o

they are this method of determining the distribution functions, we ar-
_ _ rive at a system of dynamical kinetic equations. In the zeroth
R _ €Y ey €= (20 approximation in the frequency,
(6 7) gez—(gs—g?)ﬂe—ae—(g?g?—fERfZA)aE

FIROY Z RO | GROA)

gfW=—gf®, (21) =—2u,8.~2h.a,, (25)
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fo=—(fR~ 148+ (gR2+ 3% a,
=-2v B.~2ib .,

these expressions are sufficient for obtaining the kinetic
equations to first order in frequency. Before we deal with the
equations for the distributions functions, we must express
exactly the termA(fZ—ff) (the first term in the frequency

expansion off AfT—fA},) in Eq. (10) via Eq. (11). As a
result, Eq.(10) yields

99
at

eA
= —ie{d)g—gd)}e—i{AfT—fA};Jri Z{be—f(b}e

A
ph_ = ,yph * ph
18— (18137

AA_ A
S tAg—gAf.—cc.

A
_{IEUH_Z(“ZUH_’_I;'[UH)}’ (26)

where {AfT—fA} ={AfT—fA} —A(fI—f). If in this
equation we use the expansi@¥) and the expression25)
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Q3a: Ve_:ue [(V;Jrv_V;,v),BE‘l‘V;,Vﬁ;,v
! ’ A ’ ’ h
Ve+v:86+v]+?(ve+v+vs—v) (We+v
—v)beae+ We— (be+v s+v+b; v« é v)

Qp=Q15+ Qzpsgnesing+ Q34 CoSe,

QlB: ueu;—v(lgé—v_ﬁe)+ ueu;+v(ﬁé+v_18€)
+u,(h! Ue—v)heae,

(30

’
e~v®e— V_he+v e+v)+(ue+v

W;+V)BE+W5(V;—VB;—V_V;+vﬂe+v)
7v)beae (be+v e+v+b; v& ; v)

Q3B:Vevé+v(:8€_18;+v) +VEV;—V(B€_ﬁ;—V)

QZIB:VE(W;—V_

_(V;+v+v

and separate the even and odd parts, we arrive at a system-gfq self-consistency equations become

kinetic equations,

L da,_ [dup) A dves) dh,
“dt €T de € de dt YA
24 dth.ao)|da | | ,

<dA T T de |dt

dB.  d(h.a,) dd du,
Yogt = 7% de  dt

d(veﬂe)} da

+VQ18+IB’

wherel , andl ; are the phonon collision integrals, which are

not written explicitly, and the tunneling sourc€s, and Qg

(We+v_We v)b a +We(be+v et+v b, v&e— v)
)
Az—)\f v.b_de, (31)
0
p=—2eN(0) e(D(t)—f héaéde}
0
1
=2e’N(0)[d—V¥]=— S(D—W), (32)
477 d

with the electron—hole imbalance determined by the formula

1 (>
\If=gf h.a,de. 33

have been obtained in the low-frequency approximation and Finally, for the current flowing between the layers we

are given by the formulagherev = (sgre/2) d¢/dt)

Qa: Q1a+ QZa sgne sin ¢ + QSa Cos¢,

A
Qla= Ue— ?Ve)[u;v(ﬂ’ ﬂe)+ue+v( e+v)]
+ ue (he v ; v+h,+v e+v) (ue \Y
e+v)h A +— (y;—v+y;+v)beaei
29
N | L @
QZa:_ Ve— — (We+v+wefv)ﬁe_ We_zye
X(V;+VB;+V+V;—VB;—V) (We+v —v)heae
_(V;+v_ —v)beae_ )(be+v Xery
_b’ v¥e— v)

have

J=J,+J,sinp+J3C0S0e,

J1= zeN(O)dOVf_ de [ueu;-%—v(ﬁe_ﬁé-%—v)

! ’ !
+ ueh5+vae+v_ uE+VhEaE]!

(34)
J2—2|e|N(O)doVJ dE[ \' We+vﬂe W Ve+v:85+v

b.a,

!
e+v € -V b et+v e+v]

J;=2e N(O)dovf de[Vovi, Be— VeVl Blry

’
e+vb A +w be+v e+v]'

In the limit y/A<1 (a good gapandw—0 the kinetic equa-
tions derived in this section become the equations obtained
in Refs. 46—-48, and Eq$31) and(32) become(1) and (5).
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3.3. Quasihydrodynamic approximation: the dynamics of
the electron-hole imbalance

ourselves to the case where all variations in the energy gap in
the equation for (t) can be ignored and study the dynam-
fics of the electron-hole imbalance.

The solution of the kinetic equatiof85) in the general
case is extremely cumbersome due to the dependence of the
coefficients one. However, forA/y<1 (gapless supercon-

We examine the approximation in which the departure o
the system from equilibrium is small and the kinetic equa-
tions can be linearized. Expanding in power seriesvif
BM), v/IA, andv/T and keeping only the leading terms, we

ductivity), this dependence is unimportant, while farT

obtain
<1 andy/T<1 (T=T,) the particles that play the main role
da, d(uE,B(EO)) A d(v BN do are those with energies~T>A,y, and the energy depen-
cdt de e de dat fjence is al_so unimportant_; in _such cases the tunneling source
in the leading approximation is
+ QO+ QW) (35
0ol ;L
1) (0) v TQy =+ 2(a—a,). (42
u dBe _ d(veﬁe ) (O)du da Q Q TCOSFF(E/ZT) ( )
€ dt de € dA | dt )
The form of the tunneling source and of the factoiddf/dt
+1QP+ QP +1(D, (36)  suggests that in the zeroth approximatiomiil and /T or
Aly, the expression
(0) UL(UE_(A/E)VE) ,
P e—— V= =V | W, . el;(t)
T cost(e/2T) € V()= ————, (43
2T cost(e/2T)
A €
+lw,— :ye)v; tanhﬁ sgnesing is valid in all layers and automatically satisfies the definition
(33) of W (hereh_=1). In this case a closed equation for
vi(v.—(Ale)u,) W(t) can be'rigorougly.derived and a t'ransition to the quasi-
ﬁ—v coso, (370 hydrodynamic description can be achieved. Integra(Bt)
Tcostt(e/2T) and(41) with respect toe, in the leading approximation we
) 2 el — 2t 22y e
Qu'=2| u, ¢ VeNeae—cU N Y Deae ﬂ:@ yi d‘Pi—l,i_d(Pi,i+1
dt dt 2lel\ dt dt
+| 7 Vehea—2webea, +20(Wiy+ W -2 — 7 (44)
A fi dei-a; Vi1 —V
+2|w.——y.|blal|cose, 38 = ' iNg; 1.
( € Ey5> eae ¢ ( ) ‘]Ifl,l 2|e|RN dt + RN +JCSIn(PI*l,I
dw d( ' tanh(€/2T)) 49
v_tanhe
QY= 2v, tanh—+2 - -
de de In Eqg. (44) we have added the secofittight” ) source, in-
% . 39 troduced the layer indices, restoréd and written the colli-
vsgnesing, (39 sion integral in ther-approximation. For simplicity we have
1_ (g W gy 1oy’ _ r o assumed that the parameters of all the layers and junctions
Qﬁ ZUEUE(BE Bs ) [ zvsbfaf 2V€b6ae] are the Same
x sgnesing+[2v v.(BY - .M cose, (40) Combining Eqs(44) and (45) and allowing for the ex-

1 wd
2eF?N7306

1 %)
J2:2|e|Rme“'f

Vb! !

€ E

u.u

Jy= S —
! 2T cosR(e/2T)

v+uhlal— u;heaél ,

€
"4 ! N
(Vew, weve)tanhz_l_

—v.b.a,

!

VeV

€Y €

—  __v+w,bla ~w'b.a
2T cosH(e/2T) e Tenere

1 %
J3:_2emf_wd€
(41)

Equation(35) for a(t) depends orB™) only throughA (t)
and can be solved independently(86). Moreover, we limit

pression(32) and the continuity equation, we arrive at the
equation

Wi=—27qvRyJdc(Sing; 1 —sing; i+ 1), (46)

which corresponds to the imaginary part of the time-
dependent Ginzburg—Landau equation. The term with
dW¥/dt drops out of this equation because the factor of
dW¥/dt is small in the parameterd/y or A/T and y/T.
However, at high frequencies this term may, on the whole,
prove to be of the same order as the other terms and must be
retained. The final equation is

I

d
TqF —t

at V= —27vR\Jc(SiNgi 11— SiNQ; i 11),

(47)

where
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w§=(87red\]c) I(h€pS), T=wct, and n=2v7,. Note that
there is a relationship between the coefficientg,= 87,

which follows from their definitions.
In the more general case, using Eg52) and (A1), we

r= JWAvEtank(e/ZT)

5 de. (48)

0 €
Equations(47) and (45) contain no interference terms;
these are known to be small in gapless superconductors. Aget

lowing for them(for arbitrary values of the parametggves
rise to more general equations, which are given in the App

pendix.

4. DYNAMICS OF A CHAIN OF JUNCTIONS

A. 4.1. A system of equations for a chain of junctions

Using the equations of the dynamics of the electron—

hole imbalance and the expressions for the curtattde-

rived in Sec. 3, we can introduce a complete system of

dz(P',' 1 d@.’4 1 _ c
d;l; + oII: +Sm¢’i,i+1+€('pi_¢i+1)
C4 _ fs deijsa
_E(¢i+¢i+1)5|n@i,i+l+ T (;:
C1 dui  dpiv1) .
+E(‘/’i_¢i+1) COS@j i+1T B d_TI_ le+ )ZJ(t),

(56)

dynamical equations for a chain of junctions. Following o —~' + Wi+ pC( 24— i1~ i 1) — pCi[ (i1 — )

Refs. 28,29,32, and 50-52, we use the continuity equation

d%:J. —J. (49
0 dt i—21, ii+1
and the equation that relates the voltdtee electric fieldl
across the layers to the layer charge,
47Td0d

Vi,i+1_Vi—1,i:E—o

Pi (50)

whered is the distance between the layers, andis the
dielectric constant. These equations imply that
€0 dVi_y;

Jicit 7d at

=J(t), (51

whereJ(t) is the external current. Together with the Joseph

son nonequilibrium equatioii6), the expressions for the
charge[Eqg. (32)] and currenfEq. (45)] [or (A2)], and the
imbalance dynamical equatio@7) [or (Al)], these equa-

-
X €OSQ; 1+ (Yi+1— $i)COSE; +1]— 7(C2 COSP; 1
+C2COS@; 11+ 2C3) Phi+ 1(Ca+C3COSQ; 1) i1

d‘Pi,Hl
dr

. dei_1;
+ 7(Ca+C3CO8¢; 1 1) i+ 1= nf ar

dui fifs .
+aad—Tl— ﬂT(s"’l(Pifl,i_SIn(pi,i*l)

dQDi,H—l

d<Pi—1,i
COS@j—1;— “dr

KUE dr

COS(Pi,Hl)v (57

where nowV.=R\J./f; and w.=(2eRJ.) /(f3h). These
equations can be assumed to be phenomenological equations

‘within a broad temperature interval.

4.2. Behavior of the current-voltage characteristics

tions constitute the complete system of dynamical equations

for a chain of junctions.
Using Egs.(45) and(47), in the dimensionless form we
obtain

d’¢i 41 deiiv
d;l; d”; TSN i1t hi— i
dui  dp .
— d';1)=1<t>, (52
di . .
arm"'wi:_77(S|n(Pifl,i_S|n(Pi,i+1)v (53
dei—1;  dejivg
Mit{2ui—pi—1— piv) =i+ ¢ lel— dI: ,
(54
d‘Pifl,i_
2 —g; v, (55
where j(t) is the external current in units of
J.=(f,T)/(eRy), v(t) is the external voltage in

units of V.=RyJe, wm(t)=D(t)/Ve, w(t)=V(t)/V,,
a=T1q0¢, B=wiw;, {=(er5)/(dod), w.=(2eRyJc) /%,

Using the equations we have derived in the previous
sections, we can analyze the dynamics of a chain of junctions
for the values of the nonequilibrium parametger We limit
ourselves to the casg>1, in which the current-voltage
characteristic of separate Josephson junction exhibits hyster-
esis. We discuss in detail the situation within the simple
model specified by52) and (53), when the imbalance dy-
namics is controlled by two parametessand al’. The pa-
rameter¢ is assumed to be of order unity. Here are the main
limiting cases.

In the limit »<<1, the current-voltage characteristics in
Fig. 2a generally resemble those of a system of noninteract-
ing junctions. There are separate branches corresponding to
different numbers of junctions in the resistive stitand the
size of the hysteresis is determined by the paramgter
However, there are qualitative differences, too.

First, the observed values of critical currents at which
there is a transition to the subsequent curves are determined
not by the initial spread of critical curren¢a’hich was fixed
in the calculation to within 1%but by the nonequilibrium
effect of step pulling, which amounts to a situation in which
in the course of the transition of one of the junctions into the
resistive state there arises an electron-hole imbalance in the
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a b

FIG. 2. Current—voltage characteristics of a chain
of ten junctions with=10 and{=1 and small
values of the nonequilibrium parametersa)
7=0.1 and «I'=0.01, and (b) =0.5 and
al’=0.1.

E W%/ 91 47

0 10 20 0 10 20
Voltage Voltage

neighboring superconducting layers and an additional normal In the limit »>1 the situation is determined by the sec-
current, which develops because of the inhomogeneity of thend parameter,al’. For al'~#% or al'>7#n the giant-
imbalance, flows through the neighboring junctions. As ahysteresis regime is realiz€gig. 43, in whichV=NJ holds
result, the supercurrent through these junctions decreases aftt J>J., whereN is the number of junctions, irrespective
a stronger external current is required to transform them intef the number of junctions in the resistive state. The
the resistive state. Thus, the spread of critical current provelsranches of the current-voltage characteristic corresponding
to be of order#nJ., which is illustrated in Figs. 2as to different states are very close to each other. But if
=0.1) and 2b {=0.5). al’< 7 holds in the dynamic state the imbalance oscillations
Second, there is the “excess curfephenomenon. For are strong and the regime of chaotic oscillations is realized.
instance, the curve corresponding to one junction being iMhe branches of the current-voltage characteristic in this re-
the resistive state is an almost straight l{peovided that the gime disappear and the hysteresis effect is sifad). 4b).
currents are largeas it is in the case of independent junc-
tions, but the extrapolation of this straight line\e= 0 yields
Jo# 0. This well-known effect is the result of the nonequi-
librium state, and for the last branch in Fig. 2a, correspond- We will conclude this section by a discussion of the
ing to the case where all junctions are in the resistive statbigh-frequency interaction of junctions. This problem plays
and the imbalance is zero, the excess current is also zeran important role in the interpretation of the microwave ex-
Note that in their recent work on the intrinsic Josephsorperiment in the intrinsic Josephson effect in highsuper-
effect in highT, superconductors, Yaet al® established conductors and from the practical viewpoint. Of special in-
the presence of excess current experimentally. Asn-  terest here is the regime of in-phase synchronization of a
creases, the step-entraining effect becomes more pronouncelain of junctions, in which the optimum conditions for gen-
and the shape of the branches changég. 2b. eration and reception of microwaves are achieved. Our re-
For moderate values of the nonequilibrium parameter search has shown that in both weak<(1) and strong §
i.e., »~1 (Fig. 3), the shape of the branches changes sub=1) interaction there can be in-phase regimes, more com-
stantially and the general form of the current-voltage characplicated synchronous regimes with phase shifigs. 5 and
teristics depends on the value of the parametér A char-  6), inhomogeneous regimes with different control frequen-
acteristic “ripplé’ appears, which is due to the dependencecies of the junctions, and chaotic regimes. When the interac-
of the synchronization phases on the curreee below. tion is weak and some of the junctions are in the resistive

4.3. High-frequency interaction of junctions

— g
V4 4 e

Current
1.6

FIG. 3. Current—voltage characteristics of a chain
of ten junctions with3=10 and{=1 and interme-
diate values of the nonequilibrium paramete@®:
n=1 andal’=0.1, and(b) »=1 andal =1.

0.8

1

8
Voltage

16

8
Voltage
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Current Current
1.6 1.6

FIG. 4. Current—voltage characteristics of a chain
0.8 08¢ of ten junctions with3=10 and{=1 and large val-
ues of the nonequilibrium parametefs) =100
and aI'=100, and(b) »=100 andal'=1.

A1

) A

0 8 16 0 8 16
Voltage Voltage

state, synchronization of a group of junctions is observedof CuQ,, as it is in compounds of Bi and Tl studied earlier,

Numerical calculations show that the type of synchronizatiorbut by only one layer. Because of this, probably, the non-
depends on the parameters and the external current. For igquilibrium effects are much stronger and the current-voltage
stance, for small values of within the scope of the simpli- characteristics presented in Fig. 1b of Ref. 53 are similar to
fied system of equation$2)—(55), in-phase synchronization those depicted in Fig. 3a of the present work. A detailed

is observed(Fig. 53, but allowance for the term witli,,  study of the nonequilibrium intrinsic Josephson effect merits
which enters into the more general equati¢s® and (57), a separate publication.
leads to a more complicated regime with phase dfify. The author is grateful to A. A. Andronov, V. V. Kurin,

5b). Interestingly, there are regimes where in-phase synchraand A. S. Melnikov for their support and useful discussions.

nization is observed only at some values of the current, whilerhe work was partially sponsored by the Russian Fund for

in the intervals between these values there is a shift in phageundamental ResearctProjects 97-02-16928 and 99-02-

(Fig. 6). This explains the presence of ripples in the current-16189, the Leading Scientific Schools ProgrdRroject 96-

voltage characteristic§=ig. 3b). 15-96591, INTAS (Grant No. 96-045) and the ICFPM Re-
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5. CONCLUSION

APPENDIX
In this paper we have systematically studied the theory

of the nonequilibrium Josephson effect, from the micro- We can approximately derive the equations with inter-
scopic equations for the Greenfunctions to the macro- ference terms by assuming that the distribution function
scopic dynamical equations in which the electron-hole im-a(t) is proportional to¥(t), integrating(35) with respect
balance is taken into account in the quasihydrodynami¢o €, and retaining all the terms:

approximation. The calculated current-voltage charactenstlca 4o, i (de 1 de T
demonstrate the nature of the effect of the electron-hole |m-d— ad—+2yf ( (;71" — ('j*'“) —2vf—
balance on the dynamics of one-dimensional chains of junc- t t 2le] t t el

tions. It is believed that the result will prove important in A
studies of submicrometer Josephson structures and the intrin- X(sing;_1j=sinNg;+1)— 2Vf2m
sic Josephson effect in high: superconductors. In a recent

paper, Yurgenst al>3 reported on their experimental studies doj_1; doj i1

of the current-voltage characteristics of a chain of intrinsic X T CoSei-iT TCOS‘Pi,Hl)
junctions in BpSr; sL.ag sCuG; ., 5 (B-2203), which the super-

conducting “electrodéis formed not by two or three layers +2vC(Wi_ 1+ Wi —2W) +2vey[(Vi -1 —V))

2.1 2.1
a
FIG 5. Temporal dynamics of Josephson phases (
20 20 ¢,, and ¢; are depictell with B=10, al'=0.1,

’ 7=0.5, (=1, andj=2: (a) without interference terms
(the in-phase regimeand (b) with the “f2" interfer-
ence term withf,= 0.1 (the regime with phase shift

19 1 ! . 1.9 i . i

Time Time
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31
a
FIG. 6. Temporal dynamics of Josephson phases (
30k ©,, and ¢ are depictedwith B=10, al'=1, =1,
and{=1: (a) at j=3 (the in-phaseregimeand (b) at
j=2.8 (the regime with phase shiftThe phase shift
depends on the current.
29 I . i
Time
X cos@i_1 i+ (Wi —W;)cose; 1] M fw u.h, g (AL0)
c(T)=| —————de,
+21(C, COS@; 1 ;+C5 COSQ; i 41+ 2C3) VY 0 2T cosH(€/2T)
—2v(Ccytc3c08p; 1)W1 - foc w.b, g ALL)
c(T)=| —————de
—2(Cy+C3C08¢; 1 1)V js1—7q Wi (A1) 0 2T cosH(e/2T)
The expression for the current is - fw Av h, AL
C2 = _—
3 = fi d‘Pifl,i_i_C(\Pifl_lPi) 0 2€T cosH(e/2T)
mLTI32leg|Ry dt Rn v b
“ yE €
T i odeiy; c3<T)=J ——de. (A13)
+|e|_RNf4SIn(pi_lyi+ fSMT 02TCOSH(€/2T)
These expressions make it possible to determine the correc-
re Wi = coso: A2) tions to Eqgs.(47) and(45). From a more general viewpoint,
LRy Pi-1i- Egs.(Al) and(A2) can be thought of as phenomenological
equations, since they contain all the main components of the
Here the coefficientsaa(T), f(T), fi(T), f(T), fa(T), imbalance source and the interlayer current.
f4(T), andfs(T) can be calculated exactly for all tempera-
tures: *JE-mail: ryn@ipm.sci-nnov.ru
Y1t is convenient to define the potentidl in this way in order to obtain the
a(T)= d(uetanr(e/2T))_A d(v tanh(e/2T)) dem1-T dynamical equations.
0 de € de ' 2In this section we use a system of units in whick 1.
(A3) 3The arguments of the functions in the temporal representation are always
given explicitly, e.g.g(t1,t,), while in the mixed representatior,t) the
o UQ(UE_ (A/E)VE) argumerm may bg dropped a;, say, in . ‘
f(T) = —— de, (A4) YA resistive state is one in which on the average the Josephson phase dif-
0 2T cost(e/2T) ference increasegdo/dt)#0.
1 (= A , A , €
fl(T)=—T Ve —Ug WL+ | W,——VY, V. tanhﬁde, (A5)
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In a set of| Fe/C1], superlattices, magnetization curves and spectra of ferromagnetic resonance
under an in-plane magnetic field have been studied at room temperature. Along with the

acoustic branch, several additional branches have been observed in resonance spectra. Resonance
spectra have been calculated analytically for a structure with an infinite number of layers

and numerically for finite numbers of layers in real samples using a model of biquadratic exchange
taking account of the fourth-order magnetic anisotropy. A possibility of describing both

static and resonance properties of the system in terms of this model has been demonstrated.

© 1999 American Institute of PhysidsS1063-776099)02311-3

1. INTRODUCTION most extensively and whose biquadratic exchange constant is
fairly high.

Exchange interaction between thin ferromagnetic layers  Samples used in studies of exchange interaction between
separated by a nonferromagnetic spacer has been studied fayers of such multilayer magnetic structures can be classi-
a long timet™ Since the detection of noncollined®0-  fied with two types. The first of them includes so-called
degre¢ magnetic ordering in such structurebthe energy of  “sandwiches,” which are composed of two iron layers sepa-
interaction between two neighboring ferromagnetic layersated by a chromium spacer. Most experiments have been
separated by a thin spacer has been usually expressed in ténducted with such samplés’ One advantage of the ex-

form of two terms: periments with sandwiches is the simple interpretation of
) obtained data. On the other hand, the in-plane magnetic an-
Eo (My-M3) — — (My-Mp) D isotropy in such samples is usually comparable to the effects

of interlayer interaction, so the iron magnetizations are either
collinear or oriented at 90° with respect to one another.

whereM; andM, are the magnetizations of the interacting ~ The second type of samples includes superlattices, i.e.,
layers,J; andJ, are phenomenological constants. Depend{eriodic structures consisting of a large numkierreality,
ing on the sign ofl;, the first term, named bilinear ex- up to several dozensf identical iron layers separated by
change, leads to either parallel or antiparallel alignment ofthromium spacers. Since each iron layer interacts with its
neighboring magnetic layers. The second term, which i$wo neighbors at the same time, the effects of magnetic ex-
called biquadratic exchange, makes an angle of 90° betweethange in such structures are much stronger. For example,
the magnetization vectors preferableJif is negative. The the magnetic field necessary for alignment of magnetic mo-
competition between these two components of the ferromagnents of all layers into a collinear structure can be higher
netic energy can lead, generally speaking, to an arbitrarjhan 10 kO&'° even though the field of the fourth-order
angle between the magnetizations of two neighboring ferromagnetic anisotropy in iron is about 500 Oe. In this situation,
magnetic layers. even in the absence of magnetic field, the magnetization di-
The biquadratic exchange has been experimentally derection in each layer can deviate from the easy magnetic axis
tected in a set of metallic multilayered systems. An appreand be determined primarily by the minimum of the expres-
ciable amount of data obtained by the Kerr magnetometrysion(1). As a result, a so-called “canted” magnetic structure
vibrating sample magnetometry, and SQUID magnetometrywith two magnetic sublattices with an ordering angle be-
measurements of magnetoresistance, ferromagnetic restveen them different from 0°, 90°, and 180° can be
nance(FMR), and Mandelstam—Brillouin light scattering can formed®=*3The large number of layers in superlattices, how-
be interpreted on the basis of the biquadratic exchangever, complicates the interpretation of measurements of both
model? The discussion in the present paper is limited to themagnetization and ferromagnetic resonance.
case of Fe/Cr multilayered systems, which have been studied The order of magnitude and oscillations in the bilinear

UMM P (ugm,)?
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exchange constad; as a function of the nonferromagnetic The substrates were MgO single-crystal plates cut parallel to
spacer thickness are explained perfectly on the basis of thae (100) crystal plane. The buffer layer was a Cr film with a
well-known RKKY theory? At the same time, no compre- thickness of about 100 A. The samples were grown at a
hensive approach to the origin of the biquadratic exchangsubstrate temperature of 210-220°C. The sample quality
has yet been put forth. Some theories treat the chromiurand thicknesses of Fe and Cr layers were monitored using
spacer as nonmagnetic. In this case, mechanisms both asgbe small-angle X-ray scattering and X-ray spectroscopy of
ciated with the electronic structure of chromium itself andhigh coordinate resolutiofthe techniques are described in
controlled by defects or roughness of the iron—chromiurdetail elsewher€). The [001] crystal axis of the iron and
interface yieldJ, much lower than experimental valu¥sl’  chromium films was aligned with the normal to the sample
The model suggested by Stonczewkan the contrary, pre- plane.

sumes a considerable exchange stiffness of the spacer mate- We tested sevepFe/Cr, samples. Below is the list of
rial. This model has allowed the researchers to explain théhese samples with the thicknesses and total numbers of lay-
noncollinear ordering in superlattices, but it leads to a for-ers in the structures.

mula for the coupling between iron layers different from Eq. (1) [Fe(21 A)/Cr(10 A)]4, (5) [Fe(48 A)/Cr(7.6 A)]16

(1). This model is supported by certain experimental data. (2) [Fe21 A)/Cr(14 A)],, (6) [Fe(20 A)/Cr(10 A)] 50

The work by Levchenkeet al€ is also worth mentioning, (3 [F&(21 A)/Cr(10 A)]14 (7) [Fe(26 A)ICr(9.2 A)]o4
which pointed out the inevitability of a peculiar domain (4) [F&(33 A)/Cr(7.7 A)]16

structure in such systems, provided that sufficiently large e used two experimental techniques, namely, the fer-
atomically smooth areas of the iron—chromium interface argomagnetic resonance and measurements of static magneti-
present. zation curves. The experiments were conducted at room tem-
Thus, the model of biquadratic exchange, which is experature. The magnetization curves were recorded by a
tensively used at present in interpreting experimental data ofprating-sample magnetometer under a magnetic field rang-
Fe/Cr systems, has not been fully explained on the basis Ghq from 0 to 17 kOe. The ferromagnetic resonance was stud-
existing microscopic theories. In this connection, a questiofieq in a frequency band of 9.5 to 37 GHz under magnetic
arises about how accurate is the description of magnetife|ds of up to 18kOe. In order to detect FMR in this fre-
properties of multilayered magnetic structures by this modelguency band, we used a set of six cylindrical microwave
A set of publications, including recent onésee Ref. 7 cavities in which the microwave modés,;;, Hopp, and
and references therginhave been dedicated to systematicH ,, . were excited. A sample was placed at the bottom of the
StudieS Of the biquadratic eXChange in Fele/Fe SandWiCh%vity SO that the microwave magnetic f|e|d was a“gned par_
using several experimental techniquésagnetoresistance, jie| to the sample plane. A dc magnetic field was also ap-
Kerr effect, FMR, light scattering But, as was noted above, plied parallel to the sample plane and directed along the hard
the effects of interaction between layers in sandwiches arpL10] or easy[100] axes of the iron magnetic anisotropy. By
superposed on a strong in-plane anisotropy, which modifieghanging the sample position, we could satisfy either trans-

the pattern of magnetic ordering described by B.and  verse or longitudinal pumping conditions.
gives rise to jumps and hysteretic loops on experimental

curves.
In the present work, we studied FMR spectra and magg" EXPERIMENTAL RESULTS
netization curves in a set pFe/Cr,, superlattices, in most of In Fig. 1, symbols of different shapes show magneto-

which a canted magnetic ordering has been detected. Th@atic measurement data for three samples, narffe83
main goal of our study was to check out how adequate thi)/Cr(7.7 A)], [Fe(48 A)/Cr(7.6 A)lys, and[Fe21 A)/
model of biquadratic exchange is when the corrections to ther(10 A)],¢. The curves show the magnetization component
measured effects due to the anisotropy are relatively small along the applied magnetic field as a function of the mag-
In particular, we have studied the question of whether ongetic field strengthH. The field is aligned with the hard
can describe at the same time the static and resonance prapagnetic axis in the sample plafihe crystal axig110]).
erties of a system using the same valuesJofand J,.  The solid and dashed lines plot calculations to be discussed
Previously*® we reported about observation of an optical pelow. Two of the three samples have considerable value of
and several additional resonant modes in FMR spectra cofagnetizationM, even at zero magnetic field, which indi-
responding to standing spin waves for two samples. Not@ates the presence of noncollinear magnetic ordering. The
that an FMR optical mode was previously detected only incorresponding angle between magnetizations of neighboring
sandwiches. A larger number of samples studied in the réron layers, 6,=2 cos }(My/MJ), in these samples is given
ported work, measurements, and inclusion of the fourthin the graph M is the saturation magnetizatiprin the third
order anisotropy in analytic and numerical calculations ofsample, the magnetic moment at zero magnetic field is also
resonance spectra, gave us an opportunity to compare thero, but the nonlinear approach of all three curves to the
experimental data and calculations by the biquadratic eXsaturation level is an indication of considerable biquadratic
change model in more detail. exchange in all the samples. In the series of seven multilay-
ered films studied in our experiments, four had a nonvanish-
ing zero-field magnetization.

The [Fe/Cr,, superlattices were fabricated at the In studying the ferromagnetic resonance, we detected,
Katun-Sfacility, which employs molecular beam epitaxy. along with the homogeneous acoustic FMR mode, several

2. SAMPLES AND EXPERIMENTAL TECHNIQUES
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M, G hard axis of iron magnetization. In addition to the intense
absorption line corresponding to the acoustic resonance
mode (it is labeled by1 in the graph, one can also see
weaker and broader lines corresponding to excitation of in-
homogeneous magnetization modes and marked by arrows
(digits 2 and 3 on the lower curve The narrow line marked
by 4 is due to the paramagnetic substance, which was used to
calibrate the Hall probe. The line width of the acoustic FMR
mode was approximately 300 Oe. The line widths at higher
magnetic fields(on the right of the acoustic mogevere
larger (up to 1000 Og the corresponding resonances have
not been observed in all samples, and they could be excited
only in the longitudinal configuration. The resonances in
weaker magnetic fieldgson the left of the acoustic moge
were detected in all tested superlattices. Some of them could
be detected only in the longitudinal configuration, and a frac-
tion of these resonances could be observed in both longitu-
FIG. 1. Magnetization as a function of magnetic field for three samples. Thélinal and transverse configurations. The intensities of lines
symbols represent experimental dat®)([Fe(33 A)/Cr(7.7 A)ls; (V) seen in the transverse resonance excitation configuration
[Fle(4f|3 ?)/CF(J.GEA)]ée: (ﬁ)g[FteéZOdA)/hCrgll(_) A)lz. The solid |"ne|S S|h<t>_W were a factor of several tens lower under the longitudinal
1on n n re numeri ons. H : H H H H H
g’iéﬁrﬁs; Sho)\:vJ(S(H;?n tt(we)’rani;eaosf I?)w mzsgﬁe?ic ijieltceiscf?ﬁF?&uAa)/o ) exqtatlon. It is graph|cally I.HUStrated by Flg' 2in R?f' 9,
Cr(7.6 A)], on an extended scale. which shows traces of FMR in one sample recorded with two
different alignments of the dc and microwave magnetic
fields. The frequencies of the FMR modes detected in our
inhomogeneous mode¥ in all samples. Figure 2 shows a experiments for several superlattices are plotted by dots in
set of experimental curves recorded at different frequenciekigs. 4, 5, and 8 as functions of magnetic field applied along
in the configuration of transverse resonance excitation in theoth easy and hard magnetic axes. The anisotropy of absorp-

[Fe21 A)/Cr(10 A)],, sample under a field aligned with the tion peak positions, i.e., the change in these positions due to
the dc magnetic field rotation in the sample plane through an

angle of 45°, was, as can be seen in the graphs, up to 1 kOe.

H, kOe

OP/6H

4. ANALYTIC CALCULATION OF STATIC MAGNETIZATION
AND FMR SPECTRUM OF A SUPERLATTICE

In order to interpret our experimental results, we calcu-
lated analytically the magnetization curves and FMR spectra
of a superlattice on the basis of the biquadratic exchange
model taking into account the fourth-order cubic anisotropy
in the case of a magnetic field parallel to the sample plane.
We carried out a similar calculation, but without taking ac-
count of the cubic anisotropy, in our earlier wirkVe as-
sumed that the magnetization of each iron layer was homo-
geneous over its volume and equaMg,, irrespective of the
applied magnetic field, and the magnetization of each layer
rotated as a whole. Under these assumptions, the magnetic

energy of a multilayered structure per unit area of a film can
be expressed as
l n J n—-1
1
E=—d> (H-M)—— M;-M;
V/.—_———Jr//\lll GHz ]_Zl ( J) Mg jzl ( i J+1)
n—-1 n
3 J2 N2, 2
| | e gt 2 (MM Hd =27 2 (M;-2)
8 10

H, kOe

FIG. 2. Derivative of microwave absorptioiP/dH as a function of mag-
netic field in the configuration of longitudinal excitation at different frequen-
cies for the[Fe(21 A)/Cr(10 A)],, sample. +(M; )4+ (M;-2) 4, 2

- —ZZ(M -2)%- d—E[(M -x)*
S
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MM, MiM;
1.0
a FIG. 3. Curves oM (H) calculated by Eqs8) and
08 (9) for two directions of applied magnetic fie[¢a)
I along the easy magnetization axis gbglalong the
0.6 hard axig for different values of exchange con-
2 stants: (1) J;/(dMgH,)=—-0.3, J,/(dMgH,)
0.4 ! =-05; (2) J;/(dMgH,)=-1.0, J,/(dMcH,)
! =—0.3. The hatched areas are regions where the
02r /| - solutions are unstable. The insets schematically
! \%\ \T \“\ show the alignments of iron magnetization vectors
0 H‘E 5 3 0 H'H ) 2 [ with respect to the easy and hard magnetization
ﬁg(l) ﬁg(z) ﬁs'(l) ﬁs'(.?) axes for these solutions.
a a a a

whereM; is the magnetization of thgth iron layer,d is the  late the magnetization curves and resonance spectrum of the
thickness of each iron layeN,, is the demagnetization fac- structure. The angleg; can be expressed in this case as

tor (44 in this specific case K, characterizes the uniaxial _

anisotropy, an&, accounts for the fourth-order anisotropy ~ ¢j=(—1)'¢, where @=cos {(M/My). (7)

with easy axes, y, andz, where thez-axis is normal to the

sample plane. In what follows, we introduce for convenience-€t us consider only the interesting case)gf-0. Then, with
the surface anisotropy coefficient due account of Eq(7), condition (6) yields the following

two solutions:

Keii=Nzz= 2K, /M5, 3
and also the effective anisotropy field of the fourth order: . 4d178J, +E _ @IZE M3
dmz  Ms dmg M3
HaZZKl/MS' (4) S S S (8)

For simplicity of our calculations, the following analysis
will be performed in the limit of an infinite superlattice. M=Ms. 9)
Since the applied magnetic field is parallel to the sample )
plane and the demagnetization field in these samples is cofiléreafter the upper signs correspond to the ang#0, and
siderably higher than the anisotropy field, the magnetization§® lower signs tay= /4. The functionM (H), determined
of all iron layers in equilibrium lies also in the film plane, so IMPplicitly by Eq. (8), corresponds to the case when the angle

M;-z=0. In this case, the total energy can be expressed a§etween sublattice magnetizations is nonzero. Solutén
describes the case of saturation, when the magnetizations of

all iron layers are aligned with the applied magnetic field
(¢=0). The regions of magnetic field where these solutions
minimize the total system energy can be determined using

E=—-dHMg EJ: Cosp; —Jq EJ) CoS @~ @j+1)

1 - : . o
~J, z 0052(¢j—90j+1)— — dH,Mq the_ c_on.dmon that the second differential must be positive
] 16 definite:
X D cos4 ¢+ 5 J’E
. et ), ) A2E=D AgpiAp;>0
! ] 0¢ide .

where s is the angle between the easy axiand external
field H, and ¢; is the angle between magnetic figttland
magnetizatiorM of the jth ferromagnetic layer. The equilib- one can prove that, for the two-sublattice configuration of
rium values of angleg; are derived, as is usual, from the magnetization described by E), condition(10) is equiva-

for arbitrary Ag¢; and Ag;. (10

energy minimum condition lent to the combination of two inequalities:
JEld@;=0. (6) ] .
1 2
We will consider two configurations of the highest sym- (H cose*H, cos 4p) +4 dMy COS 2p+ dMs cos4p | >0,
metry, namely, with the magnetic field applied along the (11)
easy (=0) or hard = w/4) axes of iron magnetization
anisotropy(Fig. 3. One can easily prove that conditig¢) H cose*H, cos 4p>0. (12)

leads to a two-sublattice ordering of ferromagnetic moments

in a wide range of magnetic fields, and the sublattice mag-  First let us consider limitations imposed by condition
netizations are aligned symmetrically with respect to the ap¢11). For the unsaturated phase defined by @Bg.condition
plied magnetic field. In this case, one can analytically calcu{11) reduces to
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9H 43,-83, H ers. The case offj=0 corresponds to the acoustic mode of
Mo T T tM—a oscillations, andy= 7 corresponds to the optical mode.
dMg S After substituting expressiofl7) in Egs.(15) and(16)
and linearizing the resulting equation with respeatiig we
16J, H, . . ;
+3 = =322 M2>0. (13) can derive the frequencies,(H) as functions ofj and mag-
dl\/lé % netic field H from the existence condition of a nontrivial

L . . . solution:
This is a formulation of a quite obvious fact that only

branches of functioM (H) on which the magnetization in-
creases with the magnetic field are stable. For a soly8pn
corresponding to the saturated state, inequality leads to 7
the condition

q 3H, Hj,
A+BM?)co€ 5 + Kt - 2-4Mm?
(A+BM )00522 K off M 4M2(MS 4M?)

2
“q
2

X (A+BMZ)M2co§g+(A+SBM2)(M§

H>HSH=—(43,+8J,)/dMgH,. (14)

This condition means that the saturated state, in which the q H
magnetic moments in all layers are aligned with the applied — — Mz)sinz—i—as(Mé— M?2)(M3
field, is stable when the external field is higher than the satu- 2 Mg
ration field HS™, at which the curve defined by E¢8)
crosses curvé9) (H§ is the saturation field along the easy —6M?2)
axis, andHY in the same along the hard axis

Note that in the interesting case of a relatively high bi-
guadratic exchangéo be exact, under the condition J, wé .q 3H, qg 3
>dH,MJ8) condition (13) is always satisfied, and condi- — —| H—HsSIf5 +KegMs+ —=+Hy| cos'5 — z)
tion (11) reduces to the trivial statement that the alignment of”
all magnetic moments with the applied magnetic field is
stglale when the latter is higher than the saturation field
Hs"™.

Now let us turn to conditio{12). It is clear that it de- With the notations
fines areas on thel/H,—M/Mg plane in which a symmetri-

for HEH<H<HEH, (18)

X

H—HssinzgtHaco§g) for H>HE" (19

cal configuration of two sublattices is unstahbléortiori (the A= 4J;-8J; __ @ (20)
hatched areas in Fig).3The crossing point of the magneti- dm3 ' dMé'

zation curves calculated by Eq8) and(9) with the bound-

aries of these areas determine the figitfsand H for the At H,=0, Egs.(8) and(9) for the static magnetization

easy and hard directions, respectively, below which theind Egs(18) and(19) for the FMR frequency are identical
above formulas for the magnetization curves and FMR sped© the corresponding expressions in Ref. 9, whereas! at
tra do not apply(see below: =0 they coincide with the formulas in Ref. 20. Note once
Note that, in the case of saturation fields much highe@gain that the resulting formulas apply to the fields higher
than the anisotropy field, which was realized in our experithanHc, when we have a two-sublattice ordering of mag-
ments, condition(8) holds over a wide field rangHE'H netic moments aligned symmetrically with respect to the ex-
<H<HEM, and atH>HE" solutionM=Mg is stable. ternal magnetic field.
In calculating the oscillation spectrum of the system un-
der consideration, let us use the Landau-Lifshitz equations

without the damping term: 5. DISCUSSION OF RESULTS
y_l(&Mj [dt)=—M;X Hfﬁ, (15 5.1. Comparison to analytic calculations
whereH®" is obtained by differentiating enerdg) with re- Our calculations were fitted to experimental data in the
spect to;\/l» : following way. Magnetization curves measured by a
. vibrating-sample magnetometer under a magnetic field
Hfﬁ= —(9E/M;)d ™t (16)  aligned with the hard axis in the sample plane were approxi-

mated by Eqgs(8) and (9). The resulting constanty;, J,,
and Mg were used in calculations of FMR spectra. The pa-
o X rametersdH, and K.+ were selected to obtain the best fits to
the small term describing a wave propagating along the norg,q regonance acoustic branch measured along the easy and
mal to the film plane: hard magnetization axes. This procedure was performed for
Mj=M}°)+mj expl—i(wt—jq)}. (17) gll samples. Figure 1 sh_owsf, along with the experimental
ata, calculated magnetization curves for three samples
Here parameteq is the product of the wave vector and the (solid lineg. The agreement between theoretical and experi-
superlattice period. It can be treated as a phase differenaaental curves is quite satisfactory. The absence of a visible
between magnetization oscillations in neighboring iron lay-cusp on experimental curves f(H), which can be seen on

In solving Eqs.(15) and(16), let us express the magne-
tization M; as the sum of the static magnetizatiMfo) and
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FIG. 4. FMR spectra of th¢Fe48 A)/Cr(7.6 A)]ss
sample polarized along th@) easy andb) hard mag-
netic axes. The points are experimental data, and solid
lines are calculations by Eg$21) and (22) with the
following parametersd; = —0.58 erg/crf; J,=—0.50
ergl/ent; Mg=1590 G;K4=12; H,=300 Oe.

the calculated curves &tg, can be ascribed to variations in acoustic ondtriangles in the graphis difficult because their
the iron and chromium layer thicknesses, which can blur thigorrespondingy’s are unknown. The criterion of agreement
feature. between measurements and calculations in this case should

Calculations of the FMR spectrum of one sample fea-be the equality between the slopes of experimental curves of
tured in Fig. 1([Fe(48 A)/Cr(7.6 A)],¢) based on Eqg18)  f(H) and nearest theoretical curves. One can see in Fig. 4
and (19) for two alignments of the applied magnetic field that the experimental data reasonably conform to this crite-
(with the easy and hard magnetization gxage plotted in  rion in the cases of magnetic field orientation along both
Fig. 4 by solid lines. As was stated above, in calculatingeasy and hard axes, although the difference was substantial
these spectra we used the same parameters as for the mégr some of the samples. Thus, the suggested theory has
netization curve in Fig. 1. The set qfs that we employed in demonstrated qualitative agreement with experimental data,
plotting the set of curves in the graphs requires clarificationalthough sometimes it cannot accurately describe resonant
For a traveling wave in an infinite superlattiapyaries con-  features of our samples.
tinuously between- 7 and, but in a finite structure mag-
netization modes are characterized by a set of discrete Wa\ge2 N cal calculati c _ h _
vectors. The graphs plot magnetization modes corresponding™ umerical calculations. Comparison with experiment
to g's ranging between 0 and with a step of#/(N—1), In order to fit the suggested model to real experimental
whereN is the number of iron layers in the superlattice. Indata, we numerically calculated the spectrum of inherent
this case, the number of FMR modes is equal to the numbeanagnetic modes of a superlattice incorporating a finite num-
of magnetic layers in the sample, which is identical to theber of iron layers. The magnetic component of the system
number of inherent oscillation modes of the structure. Asenergy was expressed, as in analytic calculations, byZg.
numerical calculations will show, there is little sense in de-where the sums were performed over the finite set of layers
fining g with good accuracy on the basis of model boundaryin a real sample. Then this energy was minimized numeri-
conditions on the outer surfaces because the condition of theally by varying all anglesp; between the magnetic mo-
two-sublattice magnetic ordering in a finite structure is vio-ments of the layers and applied magnetic field. This ap-
lated in a magnetic field. proach is quite different from the two-sublattice model

In comparing the theoretical curves with experimentaldiscussed above. The absence of one neighbor in the case of
FMR spectra, we note above all that in all the samples th¢he highest and lowest iron layers leads to larger canting
numbers of experimentally observed resonance branchesgles between the magnetizations of these layers and ap-
were smaller than the numbers of iron layers in the structureplied field. As a result, the two-sublattice ordering is re-
It is not surprising, however, that we failed to detect all pos-placed by a more complicated pattern.
sible magnetic modes because all the modes except the op- Let us discuss numerical calculations in greater detail
tical and acoustic ones can be excited in principle only ow+aking as an example thigFe48 A)/Cr(7.6 A)];¢ sample
ing to the finite number of iron layers or slight variations in considered in the previous section. The magnetization curve
their thicknesses, whereas a homogenous microwave field iof this sample calculated with due account of the real num-
both the longitudinal and transverse configurations is hardlyer of iron layers = 16) is shown in Fig. 1 by the dashed
an efficient tool for driving these modes. line. Its deviation from the curve obtained in the limit of the

The agreement between calculations and experimentahfinite superlattice is insignificant, and it is notable only in
data(points on the graphgor the acoustic resonance mode the field range below 3 kOe. At the same time, the magneti-
is good for both orientations of the external magnetic field.zation pattern in this case is radically different from that
For the optical modéblack squaresthe difference between predicted by the two-sublattice model. Figure 5 shows the
the experimental data for some samplest not all of them  equilibrium anglesp; between the magnetization vector of
and theoretical predictions was larger than the absorptiothejth iron layer and external magnetic field aligned with the
line width, shown in the graph by the horizontal b@fsg.  hard magnetization axis. It is clear that these angles are no-
4). The comparison between the experimental data and catably different for the outer layerén this specific case, the
culations for several intermediate modes higher than théirst and sixteenth The anglesp; for the inner layers also
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also in all other FMR modes, which allows us to drive these
intermediate modes by a uniform microwave field.

The agreement between the numerical calculations and
experimental data for the sample under discussion is better
because the lowest FMR mode obtained in this calculation
and separated from the rest is closer to the “optical” reso-
nance mode in the range of strong magnetic fields. Nonethe-
less, we have to admit that the calculated curves still notably
deviate from the experimental points, especially in the range
of higher magnetic fields. Moreover, although the calcula-
tions are not affected by any uncertainty associated with the
FIG. 5. Calculated equilibrium values of angles between magnetization Vanableq'. dlfflcultl.eS may arise Ir?.ascnbmg reso.nant lines
vector injth iron layer and magnetic field direction for tiee(48 A)/Cr(7.6 detected in experiments to specific modes obtained by nu-
A)]16 sample. The numbers near some of the curves indicate the layemerical calculations.
nu_mber. The external magnetic field is applied along the hard magnetization  The analysis of the results concerning the set of samples
axis. under investigation has led us to a conclusion that, using the

same constants in the energy expression, it is sometimes im-
possible to obtain a satisfactory description of the magneti-

vary considerably. Nonetheless, the alignment of all mag: ation curves and FMR spectra simultaneously. So the ques-
netic moments to the ferromagnetic phase takes place simut— '

taneously, and the cusp on the magnetization curvel at lon arises of hOW good the description of gxperimentgl
persists. Under sufficiently strong fields, the caIcuIationsSpectra may be if we vary the constants to obtain the best fits

were not affected by either the field direction or the samplet0 the recorded spectra and how great the discrepancy be-

history, whereas at weaker magnetic fieldspending on the tween the measured and calculated magnetization curves can

parameterd,, J,, andH,) hysteresis loops were observed. be in this case. Such a comparison for tfee(21 A)/

Note, however, that all absorption lines recorded in our exCT(10 A)l12 sample, in which the discrepancy between the

periments had positions in the field range where the calculs€XPerimental spectrum and the spectrum calculated using the

tions were unambiguous, so the doubts concerning th@arameters derived from the magnetization curve was maxi-

sample history were irrelevant. mal, will be given below. .
The curves in Fig. 6 plot numerical calculations of the ~ The full circles in Fig. 7 show measurements of this

FMR spectrum of the sample under consideratidffe4g  Sample’s magnetization, the solid line is a calculated curve
R)ICr(7.6 A)]ys. The constants);, J,, and Mg for these ~ Which is best fitted to the magnetization measurements, and

calculations were derived from the magnetization curvethe dashed line is a calculated curve whose parameters were
Note above all the similarity of these curves to the analyticderived from the FMR spectrurfthe function plotted by
calculations plotted in Fig. 4. There are, however, notabldriangles will be discussed belgwThe spectra correspond-
differences between them. First, the dropping section of thég to these calculations of magnetization are shown, along
curve of the optical modéhe lowest curve in the field range With experimental data, in Fig. 8.

of 4 to 8 kO& becomes doubly degenerate and separate from The samplgFe(21 A)/Cr(10 A)];, is the only one in

the higher resonance lines. Second, the intermediate reswhich we detected more than one resonance line in the re-
nance modes between the acoustic and optical FMR modegion of stronger magnetic fieldsn the right of the acoustic

are also deformed in comparison with the case of an infinitdranch. It is clear that at parameters derived from the ex-
superlattice, but now their positions are determined uniquelyperimental magnetization curvésee the caption to Fig.)8
without any independent variables likg The analysis of these dropping resonance branches are lower than the calcu-
their configurations shows that the total sample magnetizaated curvegFig. 8al and 8bjl The agreement between the
tion oscillates not only in the optical and acoustic modes, buexperimental data and calculations, however, can be almost

f, GHz
50
a

40
FIG. 6. FMR spectra in magnetic fields aligned with the

30 (a) hard and(b) easy magnetization axes in tfiee(48
A)ICr(7.6 A)];s sample. The points are experimental

20 data, the solid lines show calculations with the follow-
ing parameters: J;=—0.67 erg/crh; J,=—0.47

10 erg/ent; Mg=1590 G;K4=12; H,=300 Oe.
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M, G good agreement with earlier publication’ This also ap-
plies to our measurements &f (Refs. 2 and 4 although the
spread of biquadratic exchange constants quoted in literature
for the same thicknesses of the chromium spacer is notably

Y
16001 - ‘A:AA A:Af.gﬂﬂa b

1200

larger’
800
400 5.3. Comparison with Stonczewski’'s model
As was noted in Introduction, the model of “proximity
0 ot ' 16 magnetism” suggested by Stonczewdkio account for the
5 H kOe noncollinear magnetic structure in superlattices of Cr and

Mn layers yields an energy of interaction between neighbor-

FIG. 7. Magnetization of th¢Fe(21 A)/Cr(10 A)],, sample versus mag- ing iron layers different from the biquadratic exchange:
netic field. The full circles plot experimental data, the solid line shows

numerical calculations by the biquadratic exchange model with parameters _ _ 2
derived from the magnetization curve, the dashed line shows similar calcu- E=C.(9)+C_(0—-m)" (21)

lations with parameters selected to obtain the best fit to the experimentgl . - . .
spectrum(Fig. 8). The triangles represent the results of calculations basej—kare‘9 is the angle between magnetization vectors in neigh

on Stonczewski's model. boring ferromagnetic layer§;, andC_ are phenomenologi-
cal constants. The open triangles in Fig. 7 show the magne-
tization curve calculated for théFe21 A)/Cr(10 A)];,
ideal for all resonance modes observed in experiments aample by Stonczewski’'s model. The constadts andC_
both field orientations if we vary parameteis andJ, to  were selected to obtain the best fit of calculations to experi-
obtain the best fitFig. 8a2 and 8bR The magnetization mental data. The graph clearly shows that the agreement
curve (Fig. 7) calculated at these values of parameters iswith the curve predicted by Stonczewski’'s model is poorer
within 10% from the experimental points, which, however, isthan with the biquadratic exchange calculations.
larger than the experimental uncertainty. Note that the differ-  Chirita et al?* calculated a spectrum of spin waves for a
ence betweenl; an J, derived from the magnetization sandwich by the “proximity magnetism” model. The result-
curves and independently from FMR spectra was within 10-ing frequency as a function of magnetic field for the optical
20% in our samples. mode is radically different from our measurementsf @fl)

At this point it is probably appropriate to compare thein the range of strong magnetic fields. Thus, it is obvious
absolute values of constanls and J, obtained in our ex- that, at least at room temperature, the measurements of our
periments with the results by other authors. The bilinear exsamples are much better described by the biquadratic ex-
change constants for our samples are around the pedk of change model than by Stonczewski’s “proximity magne-
plotted versus the spacer thickness, and our data are in fairlism” model.

f, GHz f, GHz
50 50
al ] bl t
40 ! 40 ]
30 : 30 1
e H :
o4 U '
20 o : 20 .
F~ ; = ! FIG. 8. FMR spectra in the field aligned with tfe,
a2) hard and(bl, b2) easy magnetization axis in the
10 . 10 ! [Fe21 A)/Cr(10 A)],, sample. The points plot ex-
’ perimental data, the solid lines are numerical calcula-
L - , . — . y . . = tions. The parameters for graphs al and bl were de-
H E
OGH 2 4 6H koi H OGH 2 4 6H koi H rived from the magnetization curvel{=—0.42
f~0 z : : f, GHz i erglen?; J,=—0.24 erglcr; Mg=1620G; Ko
5 a2 =11; H,=3000¢. The parameters for graph® a
| and 2 were selected to obtain the best fit to the
40 experimental  spectrum J{=-—0.38 erg/crf;
J,=—0.19 erg/crh, Mg=1620G; K=11; H,
30¢ —% =300 08.

204 //
10l
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6. CONCLUSIONS [ Fe/CH,, magnetic superlattices and is in reasonable agree-
Let us briefly summarize the reported investigation. ment with experlmentgl data. . .
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The electronic spectrum and wave functions of a new quasicrystal structure—a two-dimensional
Fibonacci lattice—are investigated in the tight-binding approximation using the method of

the level statistics. This is a self-similar structure consisting of three elementary structural units.
The “central” and “nodal” decoration of this structure are examined. It is shown that the
electronic energy spectrum of a two-dimensional Fibonacci lattice contains a singular part, but in
contrast to a one-dimensional Fibonacci lattice the spectrum does not contain a hierarchical

gap structure. The measure of allowed stétebesgue measuref the spectrum is different from
zero, and for “central” decoration it is close to 1. The character of the localization of the

wave functions is investigated, and it is found that the wave functions are “critical.”1999
American Institute of Physic§S1063-776(099)02411-7

1. INTRODUCTION tion by the method of the statistics of levels. To reduce the

The electronic spectrum of a two-dimensional quasiperiumber of free parameters in the problem to a minimum, a
odic structure has been studied for a Penrose lattice cofd@miltonian with constant transfer integrals for nearest
structed from two structural unifdt has been shown that the Neighbors was used. As the results for one-, two-, and three-
density of states is strongly singular, but the measure of théimensional quasicrystals show, this form of the Hamil-
allowed states of the spectrufibebesgue measurés differ- tonian makes it possible to reproduce the characteristic fea-
ent from zero. At the same time, just as for a one-tures of a quasicrystal object and to examine qualitatively the
dimensional quasicrystal structure, the wave functions aréffect of quasiperiodicity on the electronic structure of a qua-
critical, i.e., they are neither localized nor delocalized, butsicrystal with the corresponding dimensibii.In this work,

rather they decay according to a power law. Besides the Pencentral” and “nodal” decoration of the approximants by
rose lattice, it is of interest to investigate other two-atoms of the same kind were examined: atoms with sne

dimensional structural quasicrystalline formations. In theOrbital per atom are located at the centers or at the nodes of
present paper, the object of investigation is a two-the cells. For this case the Hamiltonian of the system can be

dimensional quasiperiodic Fibonnaci sequence. The model ¥fitten in the form

constructed as follows. Plotting a Fibonnaci sequence along

the axes of a Cartesian coordinate system, we obtain a Fi- H=2, [j)e;(j|+ > [i)t;(il.
bonnaci lattice consisting of three structural urisg. 1). ] Li#

The areas of the three elementary structural units are in thWhen atoms of only one component are present in the sys-
1 2_ — H ‘e
ratio 1,7, and7”= 7+ 1, wherer=(1+5)/2 is the “golden tem, the diagonal elements can be set equal to zero. Then

section.” Just like a one-dimen;ional F_ibonnaqi Iat_tice_and &he Schrdinger equation in the tight-binding approximation
Penrose lattice, the two-dimensional Fibonnaci lattice is selft51 pe written in the form

similar. Such a structure can be obtained in practice by, for

example, lithography. 2 t b —Ew
At present there does not exist a sufficiently general 7 iy =Edi,

method for investigating the electronic properties of quasip-

eriodic structures. Since quasicrystals do not possess transihere the transfer integrals are proportionat tG (r is the

tional symmetry, the conventional methods for calculatingdistance between the atopenly for nearest neighbors—for

the band structure of solids on the basis of Bloch’s theoren@toms separated by a distance not exceediriaking ac-

are not directly applicable. For this reason, just as in Ref. 2¢ount of the next neighbors does not introduce anything

rational approximants of a two-dimensional Fibonnaci latticequalitatively new and complicates the calculajiofio ana-

were chosen as the object of investigation. The twolyze the electronic properties of the object under study, the

dimensional Fibonnaci lattice was treated as the structurdti@amiltonian matrix of Eq(1) was diagonalized numerically

limit of a sequence of rational approximants with increasingfor different approximants with periodic boundary conditions

@

riod. and the distribution of the energy levels was investigated.
period ay g

The smoothness of the energy spectrum was investigated
2. ELECTRONIC SPECTRUM by the method of level statisticeS method.>>® Here there

The electronic properties of a two-dimensional Fibon-are two key relations: The first one is the fraction of neigh-
naci lattice were investigated in the tight-binding approxima-boring interlevel spacingd E<BN?

1063-7761/99/89(11)/5/$15.00 995 © 1999 American Institute of Physics
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1 N
(1) =15 2, 0y =1ogu| ¥ ™]zp). 5

The classification of the wave functions was constructed
using the normalization integralThe wave functions are
considered to be delocalized if

f l(r)|?dr ~RY,
[r|<R

whered is the dimension of the space, and localized if a
normalization

FIG. 1. Fragment of a two-dimensional Fibonacci lattice consisting of short j |l,0(l')|2d|';
oo

S and longL segmentsl/S= 7, wherer=(1+5)/2 is the “golden sec-

tion. exists. The wave functions that cannot be normalized in an

infinite system but are not delocalized are considered to be
“critical.”

Bit1™ 8]

B"OQN( B

1 N—1
D(B)=—= >, 0 ) (2)  3.RESULTS
N-1i=1
i i ) Four approximants of a two-dimensional Fibonnaci lat-
whereN is the number of atoms in the basis of the approX+jce \ere investigated in this work: 5/3, 8/5, 13/8, and 21/13.
imant,B=ey— e is the total width of the band, anglis the £, 43| decoration the unit cells of these approximants
HeaV|S|de_theta fu_nct|on. The sgcond one LI%S the fraction Of:ontain 64, 169, 441, and 1156 atoms, respectively, in the
the zone filled by interlevel spacingsE<BN basis. For central decoration the unit cells of the approxi-
mants contain 49, 144, 400, and 1089 atoms, respectively, in
(3)  the basis. Figure 2 shows plots of the integrated density of
states, calculated for values of the energy levels at 21
If B=const, then irrespective of the degree of smoothness df-points for the 8/5, 13/8, and 21/13 approximants of the
the spectrum, in the thermodynamic limit, these functionsFibonnaci lattice.
should satisfy the conditiohs® It is evident in Fig. 2 that the curves of the integrated
density of states converge quite rapidly and do not show the
D(B)=1 for p>-1 andF(8)=0 for f<—1. presence of a hierarchical gap structure, characteristic for a
For crystal and amorphous systemdth smooth spectjahe  Cantor set of the spectrum of a one-dimensional quasicrystal.
curvesD(B) and F(B) in the thermodynamic limit jump The quantitiedD(8) and F(B) were calculated for the 8/5,
from 0 to 1 atB=—1.1%®For this reason, the energy spec- 13/8, and 21/13 approximants. The calculations show that
trum is considered to be irregular or singular if in the ther-the D(8) curves for these three approximants almost con-
modynamic limit the dependence of the interlevel spacingyerge to the thermodynamic limit in the regighi< — 1. This
on the size of the system is different from th&llaw. means that in the limiN—oc all interlevel spacings are less
The localization behavior of the wave functions of athan in conventional systentfr crystal and amorphous sys-
two-dimensional Fibonnaci lattice was studied by the methodems, in the thermodynamic limit the dependence of the
of the statistics of p-norms of the wave functionss The  magnitudes of these spacings on the size of the system is
2p-norm is defined as determined by the relatioA E~1/NY). A calculation of a
S ]2 dependencé&(B) for the approximants mentioned above in
_ “al¥n the region> —1 shows that a finite fraction of the zone is
||¢||2p= W (4) filled by larger spacings than in conventional systems. Thus,
the results obtained show that in the liit— the energy
where ¢, are the amplitudes of the electronic wave functionspectrum of the Fibonnaci lattice contains a singular part.
(expansion coefficients of the wave function in a tight- The density of states for the approximants 8/5, 13/8, and
binding basis 21/13 was calculated by the method of triangles using a 21
Treating the two-dimensional Fibonnaci lattice as thek-point irreducible part of the Brillouin zone of the corre-
structural limit of a series of approximants with increasingsponding approximant. Curves of the electronic density of
period, the thermodynamic limit in the behavior of the states are shown in Figs. 3 and 4. As follows from Fig. 4, for
curves describing the statistics of the distribution ofnodal decoration the form of the spectrum depends on the
2p-norms of the eigenvectors of the Hamiltonian of Ef).  “parity” of the approximant, which attests to the existence
can be found. Statistical analysis of the distribution of theof a topological feature of the two-dimensional Fibonacci
2p-norms of the wave functions was performed by calculatattice. The curves of the electronic density of states become
ing Izp(y),l'5 describing the fraction of states for which the less smooth and more “peaked” as the order of the approx-
2p-norms satisfy| 4[| ,,<N?, i.e., imant increases. This confirms the conclusion that the energy

fit1 %
B

L N1
F(,B):§]§: (8j+1_8j)9(,3_|09N(

=1
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Integrated density of states

13/8
O s
0 3/5 ) ) ; : . L
-4 -3 -2 -1 0 1 2 3

FIG. 2. Integral density of states for pe-
riodic approximants 8/5, 13/8, and 21/13
of a two-dimensional Fibonacci lattice

\ with central decoration(a) and nodal
decoration(b).

Energy, arb. units

Integrated density of states

13/8
0
8/5
0 . . . X .
_3 -2 -1 0 1 2 3

Energy, arb. units

spectrum of the structure under study contains a singulagnergy bands are flat, almost dispersion-free, with zero elec-
part, since otherwise the electron density of states wouldéron group velocity.

converge to a smooth curve. The smoothness of the spectrum The calculation of the electronic density of states made it

depends on the energy range: The energy spectrum ispssible to determine the Lebesgue measure of the energy
smoother at low energies and strong oscillations are presegbectra of the corresponding approximants. The Lebesgue

_mamly_ at high energies. However, as the order (_)f the aPPrO%seasure of the energy spectrum was calculated as the total
imant increases, the length of the smooth section of the en-

) . ength of the allowed sections of the spectrum. The energy
ergy spectrum decreases. For this reason, it can be assume .
that in the thermodynamic limiiguasicrystal strong oscilla- spectra, orthonormallzed to the Lebesgue mealirey

tions of the density of states, which reflect the presence of & €1 Of the approximants 5/3, 8/5, 13/8, and 21/13 were 1.0,
singular part in the spectrum, are present in the entire energQr94’ 0.98, and 1.0 for central decoration and 0.70, 1.0, 0.69,

range of the electronic spectrum, attesting to the fact that thand 0.99 for nodal decoration. Therefore the measure of the
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contrast to the one-dimensional quasicrystal, where the Le-
besgue measure decreases as a power law as a function of the
size of the system. The small difference in the Lebesgue
measures of the energy spectra for the last two computed
approximants shows that the energy spectrum of a two-
dimensional Fibonacci lattice occupies a region of finite
width on the energy scale. Moreover, values of the normal-
ized Lebesgue measures of the energy spectra that are close
to 1 indicate that there are no large gaps in the spectrum of a
Fibonnaci lattice with central decoration.

For nodal decoration a strong dependence on the parity
of the approximant is observed. For odd approximants the
Lebesgue measure, just as for central decoration, is close to
1. For even approximants the Lebesque measure is close to
0.7, which shows that a substantial gap is present in the

FIG. 3. Density of states for the periodic approximants 13/8 and 21/13 of apectrum. The results obtained are different from the Leb-

two-dimensional Fibonacci lattice with central decoration.

esque measures of the approximants of a Penrose lattice. The
latter are approximately 0.62.Accordingly, differences
should be expected in the conducting properties of these two

allowed sections of the spectrum is finite and close to 1 fogctures.

central decoration.

The quantitieslg(y) were calculated for the three ap-

For central decoration the dependence of the Lebesgyggximants 8/5, 13/8, and 21/13 of the Fibonnaci lattice. The

measure of the energy spectrum on the order of the approXy|cylations show that in the thermodynamic limit the curves
imant for a two-dimensional Fibonacci lattice is weak, in 1s(y) converge in a small regiop~ —2.2 for central deco-
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FIG. 4. Density of states for even periodic approximants 5/3 and 3/8
and odd periodic approximants 8/5 and 21/ of a two-dimensional
Fibonacci lattice with nodal decoration.

ration andy~ —2.3 for nodal decoration. Moreover, as the
numbers of the approximant increase, the cunvéy) ap-
proach a step function with the step located ngar—2.3.
This means that in the thermodynamic limiN-G«©) the
2p-norms (=4) of almost all wave functions of the Fi-
bonacci lattice depend on the size of the systenj g,
~N7?, wherey~—2.3.

In the case of a delocalized state thp-2orm of the
wave function, as follows from Ed4), depends on the size
of the system a#¢||§’,§t~Nl‘p, and the exponentially local-
ized wave functions are characterized by the-ribrm
(Kb < 1. The dependence found for the-Rorms (@
=4) of the wave functions of a Fibonacci lattice on the size
of the system rules out delocalization and exponential local-
ization of the states. Nonetheless, it is known that the depen-
dence of the p-norm of the wave function on the size of the
system asdN”P% holds for wave functions whose squared
moduli of the amplitude decrease as a power ‘law
(e«=0—Iocalization exponent, where the cases0 and
a—o must be referred, respectively, to a delocalized state
and to an exponential-localization stat€or this reason, it
was assumed that

| ]2~ r| 2. (6)

The dependence(p, a)|,- 4 with —3<y=<—1.7 was calcu-

lated for sufficiently large quasiperiodic fragments on the
basis of the computed®norm of the wave functiok6). The

results were obtained numerically for the 34/21 approximant
of a Fibonacci lattice — before convergence to the thermo-
dynamic limit. The calculations performed showed that
y~—2.3 corresponds to a localization exponent0.48

anda~0.44, respectively, for central and nodal decorations.
According to the classification with respect to the normaliza-
tion integral, wave functions exhibiting such behavior are
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critical, since the normalization of the functions witis|>  are neither localized nor delocalized, but instead decay with
~|r|72¢, @>0, in the two-dimensional case can be per-increasing distance according to a power law. The measure
formed only fora>1. of the allowed sections of the spectrum, in contrast to the

In summary, for central decoration the energy spectrunpne-dimensional structure, is finite. It is evident that the gen-
does not contain large gaps, and the quasiperiodicity of theral properties of the spectra of different two-dimensional
structure leads to strong oscillations in the entire energgluasiperiodic structures should be similar. The spectrum of
range. Most wave functions of a two-dimensional Fibonaccthe structure studied differs from that of a Penrose lattice
lattice are critical and squared moduli of the amplitudes as &xist only with respect to the localization exponents of the
function of distance decrease according to a power law. Thwave functions and the measure of the allowed spacings. The
localization exponent is 0.48(central decorationand 0.44 wave functions of a two-dimensional Fibonacci lattice are
(nodal decoration and it is the same in order of magnitude less localized, and the meaure of the allowed spacings with
as the localization exponemt~0.5, obtained in Ref. 1 for a central decoration is close to 1. The latter indicates that it
Penrose lattice. The energy spectrum of a Penrose latticould be possible to observe Ohm’s law experimentally.

ntain ingular part; th rum is smoother low
contains a singular part; the spectrum Is smoother at lo In conclusion, we thank D. V. Olenev for his attention to

i I ill high ies. As th
energies and strongy oscl atory at high energies. As t ?hls work and for valuable remarks. This work was supported
order of the approximant increases, the spectrum becomes

more “peaked.” This agrees well with the results of the y the Swedish Royal Academy of Sciences.

present work, which allows us to conclude that the properties)g_mail: vekilov@trf.misa.ac.ru

of the electronic spectrum of various quasiperiodic two-

dimensional structures, such as the Penrose lattice and the

two-dimensional Fibonacci lattice, are general, although the'H. Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro, Phys. Re43B

8879(199)).
conductlng propertles can be different. 2D. V. Olenev, El Osaev, and Yu. Kh. Vekilov, Zh. lESp. Teor. Fiz113

1009(1998 [JETP86, 550 (1999].
4. CONCLUSIONS 3pP. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, JETP Letl, 145

The results of our investigation show that the eIectronimS?ﬁghmoto, B. Sutherland, and C. Tang, Phys. Re3331020(1987.
spectrum of a two-dimensional Fibonacci lattice possesse$H. Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro, J. Phys. Soc. Jpn.
the same characteristic features as the spectrum of a Penrog@ 1420(1986.
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self-similar. Most wave functions are “critical,” i.e., they Translated by M. E. Alferieff
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