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Generalization of the effective mass method for semiconductor structures
with atomically sharp heterojunctions

É. E. Takhtamirov* ) and V. A. Volkov†)

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 103907 Moscow, Russia
~Submitted 28 June 1999!
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The Kohn–Luttinger method of envelope functions is generalized to the case of heterostructures
with atomically sharp heterojunctions based on lattice-matched layers of related
semiconductors with zinc-blende symmetry. For electron states near theG point in ~001!
heterostructures the single-band effective-mass equation is derived, taking into account both the
spatial dependence of the effective mass and effects associated with the atomically sharp
heterojunctions. A small parameter is identified, in powers of which it is possible to classify the
various contributions to this equation. For hole states only the main contributions to the
effective Hamiltonian, due to the sharpness of the heterojunctions, are taken into account. An
expression is derived for the parameter governing mixing of states of heavy and light
holes at the center of the 2D Brillouin zone. © 1999 American Institute of Physics.
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1. INTRODUCTION

The Kohn–Luttinger effective-mass method1,2 is widely
used to describe electron states in external fields vary
smoothly over scales of the lattice constanta. Although the
original method, based on the formalism of envelope fu
tions, is applicable only to homogeneous semiconduct
various modifications of it have been used to described
electron states in semiconductor heterostructures. In re
years there has been a revival of discussion on the app
bility of the effective-mass method to describe electron a
hole states in real nanostructures.3–22 Many different modi-
fications of the effective-mass method have been propo
which apply to the case of a spatially varying effective ma
m(r ). There are two ways of constructing the effective-ma
approximation for heterostructures. 1! Derivation of the ef-
fective Hamiltonian for the envelope functions, defined ov
all space. By integrating the effective-mass equation~which
contains this Hamiltonian! near the heteroboundary it is po
sible to obtain boundary conditions on the envelope fu
tions ~if needed!. 2! Derivation or, as is done much mor
often, postulation of phenomenological boundary conditio
on the envelope functions at the heteroboundary. This
proach makes use of symmetry arguments, continuity of
probability flux density, etc.~By the way, these argument
as a rule, are insufficient to uniquely determine the bound
conditions.! The second approach is applicable in the case
sharp heterojunctions~all the models in which such bound
ary conditions were obtained dealt with mathematica
sharp heterojunctions between the left-hand and right-h
materials!. It is implicitly assumed that the envelope functio
on the left side~on the right side! of the heteroboundary
satisfies the same equation as in the bulk case for the
hand ~right-hand! material. In this case the very delica
problem of increasing the accuracy arises~which, by the
1001063-7761/99/89(11)/15/$15.00
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way, has not been discussed to this date!: the boundary con-
ditions should hold with the same accuracy as the equat
for the envelope functions hold.

Below we will follow the first approach, in which it is
possible to rigorously treat the problem of accuracy~see Sec.
3!.

It is well known that two main problems arise along th
path of constructing a common equation for the envelo
functions. The first is the problem of ordering the momentu
operators in the kinetic-energy operator@due to the noncom-
mutativity of the momentum operator and the functi
m(r )#, on the form of which the derived effective-mas
equations can depend substantially.18 The second problem is
that the effective potential near a heteroboundary, as a r
is not a smooth function on scales of the order ofa. This
calls into question the validity of using differential equatio
in the method of envelope functions. Let us discuss th
problems in the indicated order.

1.1. Account of the spatial dependence of the effective
mass

A necessary condition for the applicability of one-ba
equations for the envelope functions~one equation is under
stood here, valid near the bottom of the nondegenerate
duction band, or a system of equations for the degene
valence band! used in the effective-mass method is ‘‘sha
lowness’’ of these states: their energy, measured from
band edge, should be small in comparison with the interb
energy. Therefore, bearing in mind the one-band version
the effective-mass method, we restrict the discussion to
erostructures consisting of related materials, where the b
discontinuities are small in comparison with the characte
tic widths of the band gaps; this means, as a rule, that o
band parameters of the semiconductors differ only sligh
Let us consider the first problem, which arises even for h
erostructures whose chemical composition varies smoo
0 © 1999 American Institute of Physics
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on scales of the order ofa. As the zeroth-order potential w
choose the potential of the crystalline lattice, continued to
space, of one of the materials of the structure~this is not a
unique choice, see Ref. 7!, and we treat the difference be
tween the potentials of the lattices of the remaining semic
ductors and the basis potential as a small perturbation.
lowing the approach of Luttinger and Kohn and deriving t
many-bandk–p system of equations~see, e.g., Ref. 3!, we
can next attempt to solve the problem of the correct orde
noncommuting operators in the kinetic-energy operator
the one-band equations. But here yet another problem ar

Reduction of the many-band system of equations t
one-band effective-mass equation is achieved by elimina
the small envelope functions from the many-bandk–p sys-
tem in favor of the large ones by means of some proced
We make a small departure here and make use of a fo
analogy between the relativistic Dirac equation and
many-band k–p system of equations for the envelop
functions,23 which is most simply seen in the two-band a
proximation~the conduction band and the nondegenerate
lence band!. In the relativistic theory there are two ap
proaches to deriving an equation for shallow electron sta
One of them consists in eliminating the small positron co
ponent of the wave function by the method of substitution
this case, we obtain either an exact equation for the elec
component, which is not an eigenvalue equation~Ref. 24,
Ch. 20, Sec. 28! or an approximate equation whose Herm
ian nature must be checked separately.25 The second ap-
proach is a Foldy–Wouthuysen transformation, an appro
mate unitary transformation of the Dirac equation~Ref. 24,
Ch. 20, Sec. 33!.

In our case the first approach is comparatively simple
realize only in the two-band approximation~see, e.g., Ref.
26!. In a treatment of the contribution of distant bands~and
this is necessary, in particular, for a valid description of
contribution of the heavy holes! a number of problems arise
Thus, the authors of Refs. 14 and 20 were able to take
account only a few of the first-order corrections to the ‘‘sta
dard’’ Kohn–Luttinger equation with position-independe
effective mass~the small parameter here is the ratio of t
characteristic band discontinuity to the characteristic in
band energy!. However, treating the expression obtained,
example, in Ref. 14 for the position-dependent effect
mass, it can be shown that the effective mass of the edg
the conduction band of one of the non-basis semiconduc
does not contain interband matrix elements of the pertu
tion potential, obtained using Bloch functions of the ba
edge of the basis crystal~see Sec. 4.1 below!. It can be easily
seen that this is equivalent to the poorly justified approach
neglecting the difference between the interband matrix
ments of the momentum operator or, what is equivalent,
difference between the Bloch functions for the materi
making up the structure.

Hence it follows that we should give special attention
the problem of taking distant bands into account. Efforts
solving it by direct elimination of the small envelope fun
tions by the method of substitution, in addition to its labo
ousness, lead finally to a non-Hermitian equation, whose
lution is still in need of a valid interpretation.
ll
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Below we will follow the second approach, i.e., we w
apply the unitary transformation eliminating the small env
lope functions.1,27 Since we are considering heterostructur
consisting of related materials, the standard effective-m
method will play the role of a first approximation. An ac
count of the spatial dependence of the effective mass ne
sitates treating corrections to the standard theory, where
necessary to take into account all corrections of the sa
order without increasing the accuracy.

In order to understand what corrections should be ta
into account, let us turn to the relativistic analogy with t
hypothetical Dirac equation containing the inhomogene
gap 2m(r )c2, wherec is the speed of light in vacuum~see
Appendix A!. The ordinary one-band effective-mass equ
tion is an analog of the nonrelativistic Schro¨dinger equation.
It is important, however, that the effective mass in the tw
band approximation is proportional to the local band g
Eg(r ) ~this is valid if the effective mass is formed mainly b
the k–p interaction!, and its relative variationdm/m
.dEg /Eg . Since the correction to the kinetic energy d
scribing the spatial dependence of the effective mass
have a ‘‘relativistic’’ character, the desired equations for t
heterostructures will be analogous to the Schro¨dinger equa-
tion with all relativistic corrections—both the usual ones~the
contribution of nonparabolicity of the dispersion law, pr
portional top4, wherep is the momentum operator; the con
tribution of the spin–orbital interaction; and the so-call
Darwin term, proportional to the second derivative of t
potential energy! and a new pseudorelativistic correction d
scribing dm(r ). Of course, the present arguments are va
for describing states whose energies, reckoned from the b
edge of any of the materials making up the structure, are
the order of the band discontinuity. The case of a very sm
band discontinuity, where the discontinuity is small in com
parison with the energies of the states is quite trivial: d
pending on the energies of the states under consideratio
account of the spatial dependence of the effective mass
require treating terms with higher and higher powers of
momentum operator. We will not consider such a situati
In this sense, introducing a term proportional to the fou
power of the momentum operator into the effective-ma
equation is a necessary condition for a consideration of
spatial dependence. Note that for homogeneous semicon
tors an effective-mass equation analogous to the Schro¨dinger
equation with first relativistic corrections was discussed
ready in Ref. 27~Sec. 27!.

A typical shortcoming of previous works dedicated to
generalization of the effective-mass method to electron st
in heterostructures is that they take account within the fram
work of perturbation theory of only some of the terms of
given order. Thus, Refs. 3–22 take account of the spa
dependence of the effective-mass parameters, but ne
corrections;p4. In Refs. 3, 7, 10, and 14, dedicated
deriving the one-band equations for the envelope functi
directly from a many-bandk–p system, the main error, lead
ing to an invalid result, is an incorrect estimate, according
which the contribution of thek–p interaction terms~i.e., the
terms\kpnn8 /m0 , wherem0 is the free electron mass an
pnn8 is the interband matrix element of the momentum! is of
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order the contribution of the potential energy terms~by po-
tential energy here we mean the difference in the perio
potentials of the semiconductors making up the structu
also treated in a perturbation-theory context!. In the case of a
smooth heterojunction the correct procedure for deriving
one-band effective-mass equation near the bottom of
conduction band with all the above-indicated contributio
taken into account was followed in Ref. 28.

1.2. Account of atomically sharp heterojunctions

The second problem requiring careful study is the n
smooth nature of actual heterojunctions, where the transi
from one material to the other occurs over scales of the o
of a. In this case, first, Leibler’s many-bandk–p system,3

where smoothness of the potential was a necessary cond
for validity of the system, is in need of refinement, and s
ond, the problem of transforming tor space from the region
of k space bounded by the first Brillouin zone is mo
complicated.1 It is also necessary to analyze the con
quences of the unitary transformation eliminating dist
bands. It is important to estimate the error that enters at e
step. An estimate of this error either gives us confidence
the absence of an excess of accuracy or it challenges
validity of the effective-mass approximation. In the wor
known to us which treat sharp heterojunctions, such an e
mate is lacking. References 14 and 20, for example, o
point to its smallness, and Ref. 19 made some approxi
tions whose accuracy were not even estimated.

Thus, we can formulate the following steps in the co
struction of an effective-mass approximation for heterostr
tures: a! obtaining a many-bandk–p system of equations fo
the envelope functions taking proper account of poss
sharpness of the heterojunction; b! reducing this system to
one-band equations with the help of the unitary transform
tion to k space, transforming tor space and transforming th
resulting equation to differential form; c! estimating the ac-
curacy of these transformations. Following this scheme, s
~a! is realized in Sec. 2. The equations include contributio
associated with the non-smoothness of the heterojunctio
scales of ordera which are treated within the framework o
an approach similar to that used in Ref. 27 to describe
short-range part of the impurity potential. Section 3 sho
that a common differential equation over all space for
envelope functions for sharp heterojunctions exists, and
accuracy is determined by the procedure of transforming
one-band equations inr space. One-band equations are co
sidered in Sec. 4.1~the conduction band! and in Sec. 4.2~the
valence band!. Section 4.3 is devoted to heterostructur
with superthin layers. It is shown that additional contrib
tions to the ‘‘standard’’ effective-mass equation can be cl
sified by powers of the small parameterk̄am , wherek̄ is a
characteristic value of the quasimomentum of the state
am is on the order of the lattice constant. Section 5 constru
a hierarchical scheme of effective-mass equations, thenth
level of which corresponds to taking account of these ad
tional contributions up to (k̄am)n. The zeroth order of the
hierarchy (n50) corresponds to the ‘‘standard’’ effective
mass equation with position-independent parameters. At
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first level of the hierarchy each heteroboundary gives an
ditional d-function contribution to the potential energy. On
at the second level of the hierarchy does spatial depend
of the effective mass appear, along with corrections ass
ated with weak nonparabolicity of the spectrum and hete
surface terms of the spin–orbit interaction. At higher lev
of the hierarchy nonlocal contributions arise, and the o
band differential effective-mass equations do not exist. R
sults are compared with the conclusions of other auth
Brief reports on the results obtained have been publis
elsewhere.29–31

2. MANY-BAND k –p SYSTEM OF EQUATIONS FOR
ENVELOPE FUNCTIONS IN THE CASE OF A SHARP „001…
HETEROJUNCTION

Let us consider a heterojunction formed from relate
lattice-matched semiconductors with zinc-blende structu
The Schro¨dinger equation without relativistic correction
~which will be taken into account below! and in the absence
of external potentials has the usual form

S p2

2m0
1U~r ! DC~r !5eC~r !.

HereU(r )[U is the crystal potential of the heterostructur
To start with, we will use the following model of this poten
tial:

U5U11G~z!@U22U1#[U11G~z!dU, ~1!

where U1[U1(r ) and U2[U2(r ) are periodic~with the
same period! potentials, continued through the entire stru
ture, of the left-hand and right-hand materials, respective
the z axis is directed perpendicular to the plane of the h
erojunction,G(z) is the form factor of the heterojunction

G~z!uz,2d50, G~z!uz.d51;

and the width of the transitional region of the heterojuncti
is 2d ~non-one-dimensionality ofG(z) will be taken into
account below!.

It is natural to treat the potentialG(z)dU as a perturba-
tion. As the basis for expanding the wave function we u
the complete orthonormal set of Kohn–Luttinger functio
$un0eik–r%

C~r !5(
n8

E F n8~k8!eik8•run80d3k8, ~2!

whereun0[un0(r ) is the periodic Bloch amplitude for the
edgeen0 of the nth band of the left-hand crystal at theG
point of the Brillouin zone~in the nonrelativistic limit!,

S p2

2m0
1U1Dun05en0un0 .

The sum in Eq.~2! is over all bands, and the integral, unle
otherwise stated, is over the Brillouin zone here and in w
follows; F n(k) is the envelope function for thenth band in
k space. Following the standard procedure,1 we obtain a sys-
tem of k–p equations:3
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S en01
\2k2

2m0
D F n~k!1(

n8

\pnn8•k

m0
F n8~k!

1(
n8

E Mnn8~k,k8!F n8~k8!d3k85eF n~k!;

Mnn8~k,k8!5(
j

Cj
nn8G ~kz2kz81Kz j!

3d~ki2ki81K i j !. ~3!

Here pnn85^nupun8& and Cj
nn85^nudUe iK j •run8&, and the

matrix elements of the periodic operatorf are defined as
follows:

^nufun8&
~2p!3

V E
cell

un0* fun80d3r ,

whereV is the volume of the unit cell;ki5(kx ,ky,0), and
Kz j and K i j are the components of the vectorK j of the
inverse lattice perpendicular and parallel to the plane of
heteroboundary, respectively;G (kz) is the Fourier transform
of G(z). Let us analyze the expression for the matrix e
mentsMnn8(k,k8):

Mnn8~k,k8!5 (
j (K i j 50)

Cj
nn8G ~kz2kz81Kz j!d~ki2ki8!

1 (
j (K i jÞ0)

Cj
nn8G ~kz2kz81Kz j!

3d~ki2ki81K i j !. ~4!

The second sum in Eq.~4! describes transfer processes in t
two-dimensional Brillouin zone, when the projections of a
pair of vectorsk and k8 from the bulk Brillouin zone onto
the plane of the heterojunction satisfy the conditionki82ki
5K i jÞ0. For a heterojunction of arbitrary orientation su
transfer processes exist. However, for the orientation of
terest to us—the~001! orientation—their contribution to the
desired equations for the envelope functions disappears~see
Appendix B!:

Mnn8~k,k8!5d~ki2ki8!FG ~kz2kz8!dUnn8

1(
j Þ0

Cj
nn8G ~kz2kz81K j !G , ~5!

where we have introduced the notationK j5(4p/a) j ,

j 561,62, . . . , anddUnn85C0
nn8 . If G(z) is a sufficiently

smooth function,a!d, and we are interested in states wi
k̄z!2p/a, wherek̄z is a characteristic value of the quasim
mentum of the state, we can neglect the second term in
the brackets in Eq.~5! and as a result obtain the well-know
set of equations for the envelope functions.3,28 In the case of
an atomically sharp heterojunction, on the other hand, i
possible to proceed in the spirit of the method used in R
27 to describe a short-range impurity potential. We introdu
the function G8(z)[dG(z)/dz, localized on the heter
oboundary,uzu<d. Then, for j Þ0 we have
e

-

-

de

is
f.
e

G ~kz2kz81K j !5
1

2p E
2`

1`

G~z!exp~2 i ~kz2kz81K j !z!dz

5
1

2p i

1

kz2kz81K j
E

2`

1`

G8~z!

3exp~2 i ~kz2kz81K j !z!dz

5
1

2p iK j
S 12

kz2kz8

K j
1...D

3E
2d

d

G8~z!exp~2 iK jz!

3@12 i ~kz2kz8!z1...#dz, ~6!

and we can write the sum in Eq.~5! in the form of an ex-
pansion in powers ofkz2kz8 :

(
j Þ0

Cj
nn8G ~kz2kz81K j !5 (

s50,1,2,...

~kz2kz8!s

2p
Dsnn8 .

~7!

The constants in the expansion~7! have the form

D0nn85(
j Þ0

Cj
nn8

1

iK j
E

2d

d

G8~z!exp~2 iK jz!dz,

D1nn85(
j Þ0

Cj
nn8

1

iK j
E

2d

d

G8~z!exp~2 iK jz!

3S 2
1

K j
2 izDdz,...

The present approach fundamentally allows one to treat e
mathematically sharp heterojunctions, since the neces
convergence of the coefficientsDlnn8 is ensured by the prop

erty Cj
nn8→0 asK j→` ~by the way, a physically realizable

heterojunction cannot be mathematically discontinuous!.
Let us consider the corrections associated with sharpn

of the heterojunction. Simple estimates show that terms p
portional to D0nn8 , D1nn8 ,... can give corrections not
greater in order of magnitude thanak̄z , (ak̄z)

2,... respec-
tively. Our goal is to obtain one-band equations w
position-dependent effective-mass parameters, which
achieved by taking account of corrections of order (l k̄z)

2 to
the standard approximation. Here we have introduced a c
acteristic ‘‘two-band’’ lengthl5\(2mEg)21/2. For GaAs,
for example,l'6 Å. We will make use of the smallness o
the parameterk̄zd, which will allow us to write down the
final equation in quite simple form~see below!. Thus, three
quantities having the dimensions of length~a, d, andl! in
combination withk̄z form three parameters whose smallne
is employed in the present method. In our view, the situat
a&d&l is the most realistic, being realized in semicondu
tor heterostrutures with sharp heteroboundaries. Thus,
parameterl k̄z can be taken as the main small parameter
the problem and the sum in Eq.~7! can be restricted to term
with s50 ands51.
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As a result, the many-band system ofk–p equations~3!
takes the form

05S en02e1
\2k2

2m0
D F n~k!1(

n8

\pnn8•k

m0
F n8~k!

1(
n8

E FG ~kz2kz8!dUnn81
1

2p
D0nn8

1
kz2kz8

2p
D1nn8GF n8~kz8 ,ki!dkz8 . ~8!

Here we can distinguish different contributions of the pert
bation potential: the contribution of the smooth part is re
resented by the first term inside the brackets, and the co
bution of the discontinuous part is represented by the sec
and third terms.

2.1. Account of the 3 D character of the form factor

Let us now consider instead of Eq.~1! a more realistic
form of the heteropotential:

U5U11g~r i ,z!dU, ~9!

where r i5(x,y,0). By definition, g(r i ,z)uz,2d50 and
g(r i ,z)uz.d51, and the functiong(r i ,z) is periodic in r i .
For our case of a~001! heterostructure the unit translatio
vectors in the plane of the heteropotential area1

5(1,1,0)a/2 and a25(21,1,0)a/2. The sites of the two-
dimensional inverse lattice with basis vectorsb1

5(1,1,0)2p/a and b25(21,1,0)2p/a are projections of
the sites of the three-dimensional inverse lattice onto
~001! plane.

We expandg(r uu ,z) in a 2D Fourier series:

g~r i ,z!5(
l

Gl~z!exp~ iK l•r i!,

where the summation indexl is defined so that the vectorsK l

determine the sites of the indicated two-dimensional inve
lattice, and

Gl~z!5
1

V i
E2D

cell

g~r i ,z!exp~2 iK l•r i!d
2r i .

The integration is over a unit cell of the 2D lattice with area
V ia

2/2. DenotingG(z) asG0(z), we obtain for the pertur-
bation potential

g~r i ,z!dU5G~z!dU1dU(
lÞ0

Gl~z!exp~ iK l•r i!. ~10!

It can be seen that the simple model~1! takes into accoun
the first term in the sum~10!. The functionsGl(z) for lÞ0
are nonzero only forzP@2d,d#. Therefore, the left-hand
side of Eq.~3! will include an additional sum of interfac
contributions:

(
n8

E M nn8
i

~k,k8!F n8~k8!d3k8,

where
-
-
ri-
nd

e

e

Mnn8
i

~k,k8!5 (
lÞ0; j

Cj
nn8

~2p!3 E all
space

Gl~z!exp~ iK l•r i!

3exp~2 i ~k2k81K j !•r !d3r .

For states withukxu1ukyu,p/a ~see Appendix B! we
obtain

Mnn8
i

~k,k8!5d~ki2ki8!

3 (
lÞ0; j

Cj
nn8

2p
dK l ,K i j

E
2d

d

Gl~z!

3exp~2 i ~kz2kz81Kz j!z!dz

5d~ki2ki8! (
j (K i jÞ0)

Cj
nn8

2pV i

3E
2d

d

dzE2D
cell

d2r ig~r i ,z!

3exp~2 iK i j•r i!

3exp~2 i ~kz2kz81Kz j!z!.

For a smooth heterojunction it is necessary to retain o
terms withKz j50 in the sum and develop the expression
the standard way3 since the equations for the envelope fun
tions in ther representation will include an additional inte
face potential. Note that while the smooth partG(z)dU en-
sures mixing of states of the same crystal symmetry~i.e., the
local symmetry of the smooth part of the perturbation pot
tial G(z)dU coincides with the symmetry of the bulk crys
tal!, this additional potential also ensures mixing of states
different symmetry. We are interested in the casek̄zd!1,
and this obviates the necessity of separating effects of
additional potential into contributions of smooth and disco
tinuous parts and allows us to use the expansion

Mnn8
i

~k,k8!5d~ki2ki8! (
s50,1,2,...

~kz2kz8!s

2p
Dsnn8

i , ~11!

where

D0nn8
i

5 (
j (K i jÞ0)

Cj
nn8

V i
E

2d

d

dzE2D
cell

d2r ig~r i ,z!

3exp~2 iK j•r !,

D1nn8
i

5 (
j (K i jÞ0)

Cj
nn8

V i
E

2d

d

dzE2D
cell

d2r ig~r i ,z!

3exp~2 iK j•r !~2 iz!,...

In the expansion~11! it is necessary to keep only the firs
two terms; the terms proportional toD0nn8

i and D1nn8
i can

give contributions of orderk̄zd and (k̄zd)2, respectively.
We have shown that taking the three-dimensionality

the form factor into account@see Eq.~9!# causes no specia
difficulty for analysis, and we now make an important obs
vation which will allow us to use the simple model~1!. The
function g(r i ,z) has lower symmetry thanG(z). Specifi-
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cally, it is invariant under symmetry transformations fro
the point groupC2v . The complete perturbation potential
both models,~1! and ~9!, on the other hand, possesses
same symmetry, both its point-group symmetry (C2v) and
translational symmetry in the plane of the heterojuncti
Information aboutC2v symmetry will be preserved, how
ever, only if the contribution of the discontinuous part of t
potentialG(z)dU in model~1! is taken into account. There
fore, using model~9! instead of model~1! does not give
anything qualitatively new, and only leads to renormalizat
of some parameters, namely those that are negligibly sm
for the smooth heterojunction in model~1!. The expressions
for these parameters are very complicated, so in what follo
we will stick with model~1!.

2.2. Account of relativistic corrections

Let us now consider relativistic effects. We restrict t
discussion to the spin–orbital interaction. The remain
relativistic contributions only influence the values of the co
stants that we will obtain. We assume that within the fram
work of perturbation theory the characteristic parameter
the spin–orbital interaction and also the difference of t
parameter for the left-hand and right-hand crystals are
than or of the same order as the characteristic band dis
tinuity. The expansion of the total wave function, as befo
is given by expression~2!. Omitting intermediate manipula
tions, we give the resulting, quite lengthyk–p system of
equations which take into account the spin–orbit interact

S en02e1
\2k2

2m0
D F n~k!1(

n8

\pnn8•k

m0
F n8~k!

1(
n8

dUnn8E G ~kz2kz8!F n8~kz8 ,ki!dkz8

1(
n8

\^nu@¹U13p#un8&•s

4m0
2c2 F n8~k!

1(
n8

\^nu@¹dU3p#un8&•s

4m0
2c2

3E G ~kz2kz8!F n8~kz8 ,ki!dkz8

1(
n8

\^nu@ndU3p#un8&•s

4m0
2c2 E i ~kz2kz8!

3G ~kz2kz8!F n8~kz8 ,ki!dkz8

1(
n8

E \2^nu@¹dU3k8#un8&•s

4m0
2c2 d~ki2ki8!

3G ~kz2kz8!F n8~k8!d3k81(
n8

E S 1

2p
D0nn8

1
kz2kz8

2p
D1nn8D F n8~kz8 ,ki!dkz81(

n8
E S 1

2p
S0nn8
e

.

n
all

s

g
-
-
f

s
ss
n-
,

n

1
kz2kz8

2p
S1nn8D •sF n8~kz8 ,ki!dkz81(

n8
E 1

2p
d~ki

2ki8!~\k83s!•B0nn8F n8~k8!d3k80. ~12!

The vectorsS0nn8 , S1nn8 , and B0nn8 have the following
form:

S0nn85(
j Þ0

\^nu@¹~eiK jzdU !3p#un8&
4iK jm0

2c2 E
2d

d

G8~z!e2 iK j zdz,

S1nn852(
j Þ0

\^nu@¹~eiK jzdU !3p#un8&
4K jm0

2c2

3E
2d

d

G8~z!e2 iK j zzdz

2(
j Þ0

\^nueiK jz@¹dU3p#un8&
4iK j

2m0
2c2 E

2d

d

G8~z!e2 iK j zdz,

B0nn85(
j Þ0

\^nu¹~eiK jzdU !un8&
4iK jm0

2c2 E
2d

d

G8~z!e2 iK j zdz.

Here n is the unit vector along thez axis, nG8(z)
[¹G(z), ands is the Pauli matrix. On the left-hand side o
Eq. ~12! the fourth term describes the spin–orbital intera
tion in the potential of the basis semiconductor; the fif
sixth, and seventh terms are due to the smooth part of
perturbation potential. The terms proportional toS0nn8 ,
S1nn8 , andB0nn8 are due to the sharpness of the potential.
Ref. 28, in a consideration of the state of the conduct
band in heterostructures with smooth heteroboundaries,
neglected the sixth and seventh terms on the left-hand sid
Eq. ~12! as small. We noted that in second-order perturbat
theory they, together with\k–pnn8 /m0 , give a correction
only of order (l k̄z)

2m/m0 , which in this case is of order the
effective mass is small in comparison withm0 . For the hole
states, on the other hand,m/m0 is able not to be a smal
parameter.

We do not considerk-linear contributions of the spin–
orbital interaction due to the potentialU1 . They give correc-
tions of order (l k̄z)

3 ~third-order corrections, along with two
terms of the form\k–pnn8 /m0! similar to the contribution
responsible for removing the spin degeneracy in the cond
tion band of the bulk semiconductor~we neglect terms of
this order!, and for the valence band it is well known that
first order the contribution of these terms is small, and
second order, along with\k–pnn8 /m0 they only renormalize
the effective-mass parameters.

As for the contributions from the sharpness of the h
erojunction potential to the spin–orbit interaction, the ter
proportional to S0nn8 can give corrections of orderak̄z ,
while the termsS1nn8 and B0nn8 can give terms of order
(ak̄z)

2.
It is trivial to generalize to the case of many heterojun

tions. In this case it is convenient to choose the coordina
of the heteroboundaries so that the distances between
be integer multiples ofa/2, so that the phase factor of eac
of the expansions of the type~7! are equal to unity.
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3. PROBLEM OF TRANSFORMATION OF THE EFFECTIVE-
MASS EQUATIONS FROM QUASIMOMENTUM SPACE
TO COORDINATE SPACE

In the following section we obtain the one-ban
effective-mass equations for the conduction band and the
lence band. But first of all, we must discuss a problem a
ing in the method of envelope functions and associated w
the boundedness ofk space. Let us consider the followin
one-band equation for the envelope functionsf (kz) in k
space:

E H~kz ,kz8! f ~kz8!dkz85e f ~kz!, ~13!

wherekz and kz8 are bounded by the Brillouin zone. Usin
the transformation~13! to go over to the coordinate repre
sentation we obtain, generally speaking, an integral equa
The problem consists in the accuracy with which it is po
sible to obtain a differential equation inr space. Let us con
sider an equation similar to Eq.~13!, but in whichkz andkz8
belong to the entire inverse space:

E
2`

1`

H~kz ,kz8!g~kz8!dkz85eg~kz!. ~14!

The Fourier transform of Eq.~14! with the system of equa
tions ~12! taken into account gives a differential equation
the r representation. If the functiong(kz) vanishes forkz not
in the Brillouin zone, they are also solutions of Eq.~13! and
we have solved our problem exactly. In general this is not
But in order for Eqs.~13! and ~14! to be approximately
equivalent, it is necessary thatg(kz) be small forkz not in
the Brillouin zone. In the theory of smooth perturbations t
smallness is ensured by exponentially decaying enve
functions in thek representation; however, in the case
discontinuous perturbations the envelope functions are
creasing functions ofkz with only a power-law falloff. Thus,
if the envelope function possesses one discontinuity, its F
rier transform satisfiesg(kz)}(dḡ/ḡ)(kz)

21 for large kz

~where the exponential contributions associated with the
fects of smooth fields have decayed!; here (dḡ/ḡ) is a typical
relative discontinuity of the function inr space. If we con-
sider, for example, the standard effective-mass equati1

with discontinuous potentials, then the second derivative
the corresponding envelope functions will be discontinuo
with characteristic relative discontinuity of the order of un
~again, for states whose energies, measured from the
edge of the left-hand or right-hand material, is of the orde
the band discontinuity!, and the error incurred by using dif
ferential equations will be of order (k̄z /K)3, whereK is the
radius of the Brillouin zone along thekz axis.

In the case of a quantum well of widthL it is possible to
treat two cases:k̄zL*1 andk̄zL!1. In the first case the erro
is of the same order as for a single heterojunction; in
second case it can be of the order (k̄zL)21( k̄z /K)3. This is
an upper estimate. For a symmetric quantum well in the c
duction band, for example, the error depends on the sig
the product of the values of the envelope function on
heteroboundaries, and for states of the second 2D subband it
is more. In the limiting case of a narrow quantum well,L
a-
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th
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f
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&1/K, the potential can be replaced by ad function. We
obtain an envelope function with a discontinuous derivat

and error of order (k̄z /K)2.
Above, in Eq.~13!, we tacitly assumed that the Hami

tonianH(kz ,kz8) is defined for allkz andkz8 belonging to the
Brillouin zone. Since our goal is to obtain the one-ba
equations, we must take one more circumstance into acco
In k space near theG point there exists a regionL1 in which
the spectrum of states of the conduction band of the b
material can be written in the form of a series in powers
the quasimomentum~for states of a degenerate band t
spectrum is determined by a matrix whose elements are s
series!. The series converges foruku,1/2l, as follows from
the two-band approximation~such an estimate is valid if the
effective mass is formed mainly by thek–p interaction!. This
is the region described by the Hamiltonian of the one-ba
equation. There is also a regionL2 , where the interaction of
states of isolated bands with distant bands is not describe
this series. In our case of sharp heterojunctions the enve
functions in thek representation fall off according to
power law; therefore we should also provide a valid desc
tion of the regionL2 , which will be done elsewhere in con
nection with the problem of intervalley mixing of states
heterostructures. Here we only mention that if the ratio of
characteristic band discontinuity to the energy gap betw
the interesting states in the regionL1 and the states in the
regionL2 is a small parameterv!1, then the error incurred
by neglecting the regionL2 will be less than or of order

v(ak̄z)
2. Thus, the effective radius ink space determining

the accuracy of reducing the integral equation to a differ
tial equation is in fact not determined by the size of t
Brillouin zone along thekz axis, but depends on which band
are taken to be distant and are ‘‘eliminated’’ by the unita
transformation. In our case, this radius is of the order of 1l.

Below we will obtain an equation for the conductio
band, leaving out details of the unitary transformation tok
space and at once carrying out the transformation to thr
representation. Formally, the final equation is a fourth-or
differential equation, and the envelope function satisfying
in the case of a discontinuous potential, the most unfavora
case for accuracy, has a discontinuous second derivative
characteristic discontinuity of the order of the second deri
tive itself. It is possible to proceed otherwise. Reducing
fourth-order differential equation to a physically equivale
second-order equation,28 we obtain a discontinuous envelop
function with characteristic relative discontinuity of ord

( k̄zl)2. This means that for a single heterojunction or a wi
quantum well the accuracy of the obtained effective-m
equation is limited as a result of having to take account of

terms up to order (k̄zl)3. In the case of a narrow quantum
well, on the other hand, even forL;l the effective-mass
equation should include only first-order corrections asso
ated with effects of sharpness of the heterojunction, and c
sidering all remaining orders, including those leading to s
tial dependence of the effective-mass parameters, will y
an excess of accuracy. In such a case the short-range p
tial formalism, already used above to obtain the expans
~11!, is convenient. This will be taken up in Sec. 4.3.
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4. ONE-BAND EQUATIONS

4.1. Conduction band

4.1.1. Smooth heterojunction

The transformation from a many-band system of eq
tions for the envelope functions to a single-band equatio
realized in the standard way.1,27 For smooth heterojunction
the one-band equation for the envelope functions for thc
band ~conduction band! was derived in Ref. 28. In ther
representation it has the form

ec0Fc~r !1
1

2
ma1~z!pmb1~z!pma1~z!Fc~r !

1G~z!DUcFc~r !1a0p4Fc~r !1b0~pi
2pz

2

1px
2py

2!Fc~r !1h~p3n!•sG8~z!Fc~r !5eFc~r !.

~15!

The product of the discontinuity in the conduction bandDUc

and the modified form factor of the heterojunctionG(z) is
given by

G~z!DUc5G~z!dUcc1(
n

8
udUcnu2

ec02en0
G2~z!,

so that in all small correctionsG(z) can be replaced by
G(z). The position-dependent effective mass is given by

m~z!5m1@11m1~m12m2!G~z!#,

and m1 is the effective mass of the edge of the conduct
band of the left-hand material, and ifm2 is the effective mass
of the conduction band of the right-hand material we hav

1/m251/m11m22m1 .

The parametersa1 andb1 are defined as follows:

a1 5
m1

2~m22m1!
, 2a11b1521.

The parametersm1 andm2 are given by

m15(
n

8
2u^cupxun&u2dUcc

m0
2~ec02en0!2

2(
n,l

8
4^cupxun&^nupxu l &dUlc

m0
2~ec02en0!~ec02e l0!

, ~16!

m25(
n,l

8
2^cupxun&dUnl^ l upxuc&
m0

2~ec02en0!~ec02e l0!
. ~17!

In Eq. ~15! a0 andb0 are the nonparabolicity parameters
the bulk spectrum. Finally, the last parameter entering i
the equation is

h5(
n,l

8
\2^cupzun&^nu@¹dU3p#xu l &^ l upyuc&

4im0
4c2~ec02en0!~ec02e l0!

.

In the Introduction it was pointed out that an inval
expression for the effective mass of the edge of the cond
tion band of a non-basis semiconductor was obtained in R
14 by direct elimination of the small envelope function
This corresponds to the absence in expression~16! of the
-
is

n

o

c-
f.

.

second sum, and in expression~17!, of the terms withn
Þ l . Thus it is necessary to be careful when using the met
of direct elimination of small envelope functions.

The relation of the envelope function of the conducti
bandFc(r ) with the total wave function is given by

C~r !5uc0$112Rm1~G~z!DUc1ec02e!%Fc~r !

1(
n

8
un0

~ec02en0! F\^nupuc&•¹

im0
1dUncG~z!

1 (
l ,a,b

8
^nupau l &^ l upbuc&

m0
2~ec02e l0!

papbGFc~r !. ~18!

Here

R5
1

2 (
n

8
u^cupxun&u2

m0
2~ec02en0!2 ,

and the term 2Rm1(G(z)DUc1ec02e) inside the braces in
expression~18! comes from the term2Rp2 treated as a per
turbation using the standard effective-mass equation. In
brackets in expression~18! we neglected the term

\^nu@¹U13p#uc&•s

4m0
2c2 1G~z!

\^nu@¹dU3p#uc&•s

4m0
2c2 ,

~19!

since the largest contribution to the matrix elements~19!
comes from the region of the potential near the atomic nu
in which the spin–orbital interaction operator can be writt
in the form of a product of operators of the electron spin a
the orbital angular momentum, and the functionuc0 is
spherically symmetric~the orbital momentum is zero!.

In Ref. 28 it was shown that fork̄zd!1 Eq. ~15! can be
replaced by an equivalent equation where the Heaviside
function u(z2z0) replaces the functionG(z), and the coor-
dinatez0 assigning the position of the mathematically sha
heterojunction can be chosen arbitrarily within the lim
2d<z0<d. The method used in Ref. 28 for this transfo
mation is not the most convenient. There is a simpler way
transforming to a mathematically sharp heterojunction ba
on the following chain of identities, valid for operators ac
ing on smooth functions:

G~z!5
1

2p E
2`

1`

dkze
ikzzE

2`

1`

G~z8!e2 ikzz8dz8

5u~z2z0!1
1

2p E
2`

1`

dkze
ikz(z2z0)E

2d

d

~G~z8!

2u~z82z0!!e2 ikz(z82z0)dz8'u~z2z0!

1d~z2z0!F E
2d

d

G~z!dz2~d2z0!G1d8~z2z0!

3F E
2d

d

G~z!~z02z!dz1
~d2z0!2

2 G .
Settingz050, instead of Eq.~15! we obtain a more conve
nient form of the effective-mass equation for a smoo
heterojunction:
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@ec02e1u~z!DUc1DUcr0d~z!#Fc~r !

1
1

2
ma2~z!pmb2~z!•pma2~z!Fc~r !1a0p4Fc~r !

1b0~pi
2pz

21px
2py

2!Fc~r !1h~p3n!•sd~z!Fc~r !50.

~20!

Here

m~z!5m1@11m1~m12m2!u~z!#,

and the parametera2 not only depends on the materials
the heterojunction but also takes into account its finite wi
through its dependence onG(z):

a2 5
m112DUc\

22@d22*2d
d 2G~z!zdz#

2~m22m1!
.

The relation 2a21b2521 is preserved, and

r05E
2d

d

G~z!dz2d.

The transformation to a mathematically sharp heterojunc
described above is dictated only by arguments of con
nience, and the explicit form of the functionG(z) appears
only in integral form in the expressions for the two para
etersa2 andr0 .

4.1.2. Sharp heterojunction

To include corrections associated with the nonsmoo
ness of the heterojunction in Eq.~20!, it is necessary in the
standard procedure1,27 to take into account the contribution
of the termsD0nn8 , D1nn8 , andB0nn8 in first-order pertur-
bation theory~S0cc5S1cc50, as follows from zinc-blende
symmetry!, and the contributions of the termsD0nn8 and
S0nn8 should still be treated in the second-order theory alo
with the terms\k–pnn8 /m0 . Utilizing symmetry properties
it is not hard to obtain the following additional termHabr to
the Hamiltonian of Eq.~15!:

Habr5D0ccd~z!1rd8~z!1h̃~p3n!•sd~z!. ~21!

Here

D0cc52(
j Þ0

^cudU cos~K jz!uc&
K j

E
2d

d

G8~z!sin~K jz!dz,

r5 (
n; j Þ0

8
\^cupzun&^nudU sin~K jz!uc&

iK jm0~ec02en0!

3E
2d

d

G8~z!cos~K jz!dz1(
j Þ0

^cudU cos~K jz!uc&
K j

3E
2d

d

G8~z!S cos~K jz!

K j
1z sin~K jz! Ddz,

h̃5(
j Þ0

S (
n

8
\^cu@¹~sin~K jz!dU !3p#xun&^nupyuc&

2K jm0
3c2~ec02en0!

2
\^cu¹z~sin~K jz!dU !uc&

4K jm0
2c2 D E

2d

d

G8~z!cos~K jz!dz.
h

n
-

-

-

g

Comparing expression~21! with the Hamiltonian of Eq.~20!,
we see that for the conduction band taking the sharpnes
the heterojunction into account does not alter the form of
one-band equation and simply renormalizes the const
used in it. If we take Eqs.~20! and ~21! into account, the
desired equation for the conduction band takes the form

~ec02e1u~z!DUc1d1d~z!!Fc~r !1
1

2
ma~z!pmb~z!

3pma~z!Fc~r !1a0p4Fc~r !1b0~pi
2pz

2

1px
2py

2!Fc~r !1d2~p3n!•sd~z!Fc~r !50. ~22!

The termrd8(z) in expression~21! was absorbed by the
kinetic-energy operator; as a result, fora we obtain

a 5
m112DUc\

22@d22*2d
d 2G~z!zdz#14r\22

2~m22m1!

~here the error incurred in Ref. 29 has been corrected!, and
2a1b521, with d15D0cc1DUcr0 andd25h1h̃.

Let us discuss the Hamiltonian of Eq.~22!. The first term
represents the potential energy of an electron in thec band.
The possible existence of a hetero-interface term prop
tional to d1 was discussed in Ref. 5; it is clear that th
contribution disappears for a mathematically discontinuo
heterojunction~in this rather unrealistic case models~1! and
~9! are identical!. The second term is the position-depende
kinetic-energy operator, which is quadratic in the mome
tum; such a form was proposed in Ref. 6 more genera
Note that the parametera is not a universal constant bu
depends both on the materials and on the shape of the
sitional region of the heterojunction, as seems natural e
intuitively ~see also Ref. 8!. If it happens thatm(z)5const,
i.e., m15m2 , indeterminate expressions of the form 1` arise
in the form of the kinetic-energy operator used here wh
are easily evaluated. Such indeterminate forms do not ari
we use a different, equivalent form of this operator where
separate out a term analogous to the relativistic Darwin te
~see Ref. 28!:

T25p
1

2m~z!
•p1S m1\2

4
1DUc

3Fd2

2
2E

2d

d

G~z!zdzG1r D d8~z!.

The third and fourth terms in the Hamiltonian of Eq.~22!
describe corrections to the weak nonparabolicity and dep
only on the bulk parameters. The fifth term describes
interface spin–orbital interaction~see, e.g., Ref. 32!, whose
strength (d2) depends not only on the materials of the h
erojunction but also on the shape of the transitional regi
The relation between the total wave function and the en
lope functions of the conduction band is given by Eq.~18!,
where we can setG(z)5u(z).

4.1.3. Boundary conditions on the envelope functions

From Eq.~22! it is not hard to obtain boundary cond
tions imposed on the envelope functions at the heteroju
tion; to this end it is necessary to reduce Eq.~22! to a



al

s
nd

ke
a

e
u

ny
n

as
e
e

fo
co
o
v

th
en
qu
er
th
a
p

at

to
ua-

-

e

-

re

al-

orm

e

the
in
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second-order differential equation by employing the sm
ness of the contribution proportional top4 ~Ref. 28!. We
present only the result:

S Fc~r !

Fc8~r ! D U
z510

5S d11 0

d21 d22
D S Fc~r !

Fc8~r ! DU
z520

,

where

d115114m1
2a0DUc1m1aS 1

m2
2

1

m1
D ,

d215
2m1

\2 ~d11d2~p3n!•s!,

and

d225
m2

m1
14m1

2a0DUc2m1aS 1

m2
2

1

m1
D .

In the approximation of the standard effective-ma
method we have a position-independent effective mass a
discontinuous~step-function! potential. Corrections which
are first order in the small parameter of the problem are ta
into account by including in the standard equation
d-function potential proportional tod1 ~formally, this is a
correction of orderk̄zd!. The complete equation~22! also
includes all corrections of order (l k̄z)

2. It is not possible to
take into account smaller contributions in the one-band v
sion of the method of envelope functions because the
avoidable error arising in the transformation from the ma
band system of integral equations to the one-ba
differential equation is of the same order.

It is not hard to generalize the above results to the c
of an arbitrary heterostructure. It is easy to do this proce
ing from symmetry arguments for a symmetric quantum w
with two equivalent heterojunctions with coordinatesz50
and z5L, where L5N a/2, whereN is an integer. The
effective Hamiltonian is

Hel5ec01DUc$u~z!2u~z2L !%1
1

2
ma~z!pmb~z!

3pma~z!1a0p41b0~pi
2pz

21px
2py

2!1d1$d~z!

1d~z2L !%1d2$d~z!2d~z2L !%~p3n!•s.

4.2. Valence band

The distinction between the effective-mass method
the valence band and the effective-mass method for the
duction band consists, in principle, simply of the necessity
considering more elaborate equations in the case of the
lence band. The main points of the problem of deriving
equation for the hole states with position-depend
effective-mass parameters were noted in Ref. 29. The e
tion for the c band already contains three new paramet
which depend on the bulk properties of the materials of
heterostructure and on the properties of the heterobound
For the valence band, there is a larger number of such
rameters, which may be seen as rendering such an equ
l-
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of little practical value. Therefore we limit ourselves here
a derivation of first-order corrections to the standard eq
tion in the above small parameter.

In the basis$uJ, j z&% of eigenfunctions of the total angu
lar momentumJ and its projectionj z , with these eigenfunc-
tions being combinations of Bloch functionsX , Y , andZ

of the top of the valence band~transforming according to the
representationG15! and the spin, the matrix of the effectiv
Hamiltonian for the valence bandH in this approximation is
a sum of the 636 matrix of the standard kinetic-energy op
eratorT ~we neglect the small contribution ofk-linear bulk
terms from the spin–orbit interaction! and the 636 matrix
of the potential-energy operatorV:

H5T1V.

Of course, in the standard approximationV contains only
diagonal discontinuous~step-function! potentials. Additional
terms appear in the approximation that follows which a
diagonal and nondiagonald-function potentials.

It is convenient first to find the elements of the potenti
energy matrixṼ in the basis$X ,Y ,Z%, and then compose
from them the necessary linear combinations and transf
to V:

ṼZZ5ṼX X 5eX 01dUX X G~z!1D0X X d~z!

'eX 01dUX X u~z!1~D0X X 1r0dUX X !d~z!,

ṼX Y 5
1

3i
~D1dDG~z!!sz1D0X Yd~z!1S0X Y

z d~z!sz

'
1

3i
~D1dDu~z!!sz1D0X Yd~z!

1S S0X Y
z 1

r0dD

3i D d~z!sz ,

where

D 5
3\ i ^X u@¹U13p#zuY &

4m0
2c2 ,

dD 5
3\ i ^X u@¹dU3p#zuY &

4m0
2c2 .

Analogously,

ṼX Z 5
i

3
~D1dDG~z!!sy1S0X Z

y d~z!sy

'
i

3
~D1dDu~z!!sy1S S0X Z

y 1
ir0dD

3 D
3d~z!sy .

The remaining elements ofṼ can be obtained from thos
shown above by cyclic permutation of the indices.

The contribution of the sixth and seventh terms on
left-hand side of Eq.~12!, as can be seen, is not included
Ṽ since it is negligibly small for the following reason:

^X u¹zU1uY &50

~see Ref. 27, Sec. 21!. This means that the matrix element
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^X u¹zdUuY &5^X u¹zU2uY &.

For the Bloch functions of thenth band at theG point of the
right-hand crystal in the nonrelativistic limit (ũn0) we now
have

ũn05un01(
n8

8
dUn8cun80

ec02en80
, ~23!

and for the corresponding functions of the edge of the
lence band of the right-hand crystalX̃ and Ỹ the relation

^X̃ u¹zU2uỸ &50 holds. That is, the seventh term on t
left-hand side of Eq.~12! gives corrections only of orde
(l k̄z)

3, and notl k̄z . In our approximation, on the othe
hand, it is necessary in general to neglect the difference
tween the Bloch functionsũn0 and un0 . Hence it follows
from invariance of the equation under time reversal that
contribution from the sixth term on the left-hand side of E
~12! is negligibly small.

It is not difficult now to obtain the elements ofV. We
choose the phases the same as was done in Ref. 1 and

u1&[U32 ,
3

2L , u2&[U32 ,2
3

2L , u3&[U32 ,
1

2L ,

u4&[U32 ,2
1

2L , u5&[U12 ,
1

2L , u6&[U12 ,2
1

2L
~pairs of states of heavy holes, light holes, and states of
split-off band!. Thus, the desired potential-energy mat
takes the form

V5S VG8
1 V0sy 2 i&V0sy

V0
†sy VG8

1 0

i&V0
†sy 0 VG7

1
D , ~24!

where

VG8
5EG8

1DUG8
u~z!1x1d~z!,

VG7
5EG7

1DUG7
u~z!1x2d~z!,

V0 5
D0X Y

)
d~z!.

Here we have introduced the notation

EG8
5eX 01

1

3
D, DUG8

5dUX X 1
1

3
dD,

EG7
5eX 02

2

3
D, DUG7

5dUX X 2
2

3
dD,

x15D0X X 1r0dUX X 1 iS0X Y
z 1

1

3
r0dD,

x25D0X X 1r0dUX X 22iS0X Y
z 2

2

3
r0dD.

The expressions forD0X X , D0X Y , andS0X Y
z have the

following form:
-

e-

e
.

rite

e

D0X X 52(
j Þ0

^X udU cos~K jz!uX &
K j

3E
2d

d

G8~z!sin~K jz!dz,

D0X Y5(
j Þ0

^X udU sin~K jz!uY &
K j

3E
2d

d

G8~z!cos~K jz!dz, ~25!

S0X Y
z 52(

j Þ0

\^X u@¹~cos~K jz!dU !3p#zuY &
4K jm0

2c2

3E
2d

d

G8~z!sin~K jz!dz.

Thus, within the framework of thek–p method we have
shown that in~001! III–V heterostructures mixing of heavy
(hh) and light (lh) holes takes place at the center of the 2D
Brillouin zone ~see Ref. 33 and the references cited there!
which bears no relation to thekz-linear bulk terms from the
spin–orbit interaction. This mixing is governed by the p
rameterD0X Y , which was estimated in Ref. 33 on the bas
of experimental data for GaAs/AlAs heterostructure
D0X Y.500 meV•Å.

In Ref. 29 it was concluded that the strength of the m
ing of the heavy and light holes at the center of the 2D
Brillouin zone is greater for sharp heterojunctions than
heterojunctions with smoothly varying chemical compo
tion. But this is valid only in model~1!. Generally speaking
one can draw conclusionsonly about the dependence of
strength of this mixing on the structure of the transition
region of the heterojunctions.

For a symmetric quantum well with boundaries atz50
andz5L the elements of the potential-energy matrix can
easily obtained from symmetry arguments:

VG8
5EG8

1DUG8
~u~z!2u~z2L !!

1x1~d~z!1d~z2L !!,

VG7
5EG7

1DUG7
~u~z!2u~z2L !!

1x2~d~z!1d~z2L !!,

V0 5
D0X Y

)
~d~z!2d~z2L !!.

4.3. Equation for the envelope functions for a narrow well in
the conduction band

We will devote separate attention to the problem of el
tron states in narrow quantum wells because at present
widely held that the effective-mass method is inapplicable
such cases. Here we treat only states of thec band in a~001!
III–V heterostructure consisting of related isolated quant
well ~or narrow barrier! semiconductors for the case when
width satisfiesL&l. Hole states are easily treated in a
analogous way. Now the contributions from the steepnes
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the potential begin to play a much greater role than in
case of wide quantum wells. In fact, the estimatek̄z

2/2m
;dUcc is valid only when the width of the quantum well
greater than or of the order of the characteristic localizat
length of the states. For states in a narrow quantum well
the other hand, of coursek̄z

2/2m;dUcck̄zL, and the contri-
bution to the energy eigenvalue from the terms associa
with steepness of the potential can be estimated to first o
asdUcck̄za, which implies that they must be taken into a
count even in the zeroth approximation.

Thus, the potential of the heterostructure under con
eration can be written as

U5U11P@U22U1#[U11P~z!dU,

whereU1 andU2 are periodic crystal potentials of the ‘‘ba
rier’’ ~basis! and ‘‘well’’ semiconductor, respectively, an
P(z) is the form factor of the heterostructure. We chooseL
so thatP(z,2L/2)5P(z.L/2)50. It is natural to consider
P(z) as a local function on the scale of variation of t
envelope function of the conduction band sinceLk̄z!1. The
one-band equation has the following form:

Fec02e1
p2

2m
1b1d~z!1b2d8~z!

1b3d~z!~p3n!•sGFc~r !50, ~26!

wherem is the position-independent effective mass, and
have the following expressions for the three parametersbi

( i 51,2,3):

b15(
j

^cudU cos~K jz!uc&E
2L/2

L/2

P~z!cos~K jz!dz,

b25(
n; j

8
\^cupzun&^nudU sin~K jz!uc&

im0~ec02en0!

3E
2L/2

L/2

P~z!sin~K jz!dz2(
j

^cudU cos~K jz!uc&

3E
2L/2

L/2

P~z!cos~K jz!zdz, ~27!

b35(
j

S (
n

8
\^cu@¹~sin~K jz!dU !3p#xun&^nupyc&

2m0
3c2~ec02en0!

2
\^cu¹z~sin~K jz!dU !uc&

4m0
2c2 D E

2L/2

L/2

P~z!sin~K jz!dz,

in which the summation indexj includes zero~the terms
with j 50 represent the contribution of the smooth part of
potential!. The term in the potential energy proportional
b1 gives the main contribution, and the two remaining ter
are corrections of orderl k̄z . For a symmetric structure
P(z)5P(2z), the equation simplifies:

b25b350.

Strictly speaking, Eq.~26! is invalid from a mathematica
point of view ~it does not have a rigorous nontrivial solu
e

n
n

d
er

-

e

e

s

tion!; therefore, it needs to be put into a different form usi
the smallness of the term proportional tob2 and discarding
corrections of order (l k̄z)

2. It is necessary to invoke the
approximate relation

b1d~z!1b2d8~z!'b1dS z1
b2

b1
D , ~28!

and in the term proportional tob3 , d(z) can be replaced by
d(z1b2 /b1) for simplicity. We obtain the valid equation

Fec02e1
p2

2m
1b1dS z1

b2

b1
D

1b3dS z1
b2

b1
D @p3n#•sGFc~r !50. ~29!

Note that for states of one band~if we are not interested, for
example, in interband transitions! in a heterostructure with
one narrow layer the value ofb2 does not play a role: in Eq
~26! we can shift the originz85z1b2 /b1 .

We assume that we are dealing with a structure cont
ing two narrow layers lying near one another~such that the
distance between them is of the order ofl!. In this case, an
upper estimate on the error arising from the transformation
a one-band differential equation isl k̄z ~this is valid, in par-
ticular, in the case when the constantb1 describing the po-
tential of the first layer is equal to the constant describing
potential of the second layer taken with opposite sign!. Then
we should remove from consideration those terms contain
b2 andb3 in Eq. ~26!. We could probably treat both layers a
one local perturbation, thereby decreasing the error, and
tain Eq.~26! with one set of parameters of the local pertu
bation. In the situation for which we obtained an upper e
mate of the error, however, we could not then guarantee
smallness of the parameterk̄zb̃2 /b̃1 on which Eq. ~28! is
based. If it is not small, then we could not say that Eq.~28!
is mathematically correct, which would imply the inapplic
bility of such an approach.

Thus, taking the above modification into account, we c
also apply the effective-mass method to electron state
heterostructures with superthin layers. In this regard the s
ation can arise in which the potential of a thick layer of som
semiconductor plays the role of a barrier for the electr
states while a thin layer of the same material will coup
states andvice versa, depending on the sign of the paramet
b1 . The sign of this parameter, as can be seen from E
~27!, can be different from the sign of the paramet
^cudUuc&, which defines the discontinuity in the conductio
band at the heterojunction.

5. HIERARCHY OF EFFECTIVE-MASS EQUATIONS AND
DISCUSSION OF RESULTS

We have derived a many-bandk–p system of integral
equations~12! which can be used to describe electron sta
in heterostructures with atomically sharp variation of th
chemical composition. The system contains contributions
the form of converging power series inkz2kz8 which are due
to the sharpness of the heterojunction. For example, s
terms were discarded in Refs. 14, 20, and 19 so that
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effects of a discontinuous change in the crystal potentia
the structure near a heterojunction were in fact neglecte
is specifically the presence of these terms that distinguis
the many-band system ofk–p equations derived here from
the system obtained by Leibler3 for heterostructures with
smooth heterojunctions. All of the papers known to us wh
use one-band or many-band schemes of the method of e
lope functions to describe electron states in heterostruct
apply thek–p system of Leibler. Very often the distinctio
between the Bloch functions for the component semicond
tors of the heterostructure is also neglected, which gives
particular, dUnn850 for nÞn8. Taking into account the
terms due to sharpness of the heterojunction, thek–p method
can also be used to describe intervalley mixing of state
heterostructures, including the problem ofG2Xz mixing of
states in~001! heterostructures.

The most important limitation on the accuracy of t
method of envelope functions employing differential equ
tions is the procedure of transforming fromk to r space. The
one-band differential equation~of fourth order! with
position-dependent effective mass is valid for structures w
characteristic width of layers~much! greater thanl, where
the lengthl was defined in Sec. 2.

Above we considered in detail how taking account
contributions of the sharpness of the interface poten
modifies the equation for states of the conduction band
~001! heterostructures of related, lattice-matched III–V sem
conductors, derived in Ref. 28. Formally, the resulting eq
tion for a sharp heterojunction differs from that for a smoo
heterojunction only by renormalization of the parameters
tering into it. In the case of the valence band, on the ot
hand, taking account of the sharpness of the heterojunc
leads to qualitatively new effects~mixing of heavy and light
holes forki50!.

For heterostructures with wide layers it is possible
construct a hierarchy of approximations of the one-ba
method of envelope functions according to the param
l k̄z , wherek̄z is the characteristic value of the quasimome
tum of the state. For example, for an isolated heterojunc
we have the following.

0! Zeroth level of the hierarchy for electrons.
In the effective-mass approximation in which small co

rections in the order parameter have been neglected, we
the usual equation with position-independent effective m
and a discontinuous~step-function! potential:

S ec01u~z!DUc1
p2

2mDFc~r !5eFc~r !. ~30!

1! First level of the hierarchy.
First-order corrections are taken into account~here, on

the contrary, the small parameterk̄zd plays a role; 2d here is
the width of the transitional region of the heterojunction! by
including ad-function potential in Eq.~30!, which is local-
ized at the heteroboundary:

S ec01u~z!DUc1d1d~z!1
p2

2mDFc~r !5eFc~r !,

whered1 is given by the complicated expression in Sec. 4
f
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2! Second level of the hierarchy.
Equation~22! includes all corrections of order (l k̄z)

2.
Smaller contributions, of third order and higher, cannot
taken into account correctly in a one-band version of
method.

For hole states we obtained@see Eq.~24!# the first-order
corrections to the standard equation~we obtained the first
step of the hierarchy of effective-mass equations for
holes! and showed that for~001! heterostructures mixing o
heavy and light holes at the center of the 2D Brillouin zone
does indeed take place and that contributions from the sh
ness of the heterojunction potential determine the strengt
this mixing so that it depends on the microscopic structure
the heteroboundaries. In Ref. 20 it is asserted, in particu
that such mixing of heavy and light holes is caused by
difference in the Bloch functions for the component sem
conductors of the heterostructure and it is absent, if one
glects such a difference, or, what should be equivalent, if
Bloch functions of all the bulk semiconductors comprisi
the structure are the same set of functions. If this is ind
the case, then the contribution of these terms~even without
taking symmetry arguments into account! would be only of
order (l k̄z)

2, as can be seen from Eq.~23!. In fact, however,
the difference in the Bloch functions does not play a subst
tial role. To prove this, consider the idealized situation o
~001! homojunction—the problem of hole states in a we
but not smooth external potential, say,W(z)5G(z)W0 ,
whereW0 is a constant assigning the jump of the potenti
small in comparison with the band gap. In this case the po
symmetry of the structure (C2v) also admits the existence o
mixing of heavy and light holes at the center of the 2D
Brillouin zone,33 and for the coefficient governing this mix
ing, D0X Y , instead of formula~25! we have

D0X Y5(
j Þ0

W0^X usin~K jz!uY &
K j

3E
2d

d

G8~z!cos~K jz!dz.

This is direct proof of our assertion.
The independent parametersa, d1 , andd2 introduced in

the present work and appearing in Eq.~22!, and alsox1 , x2 ,
andD0X Y entering into the effective potential energy oper
tor for the valence-band states, depend not only on the b
properties of the materials of the heterojunction, but also
its microscopic structure. All these parameters determine
hetero-interface contribution to the potential energy. At t
same time, it is well known34 that as a consequence of th
possible appearance of an electric dipole moment at the
terface of two materials the magnitude of the potential ju
at the interface can also depend on the microscopic struc
of the boundary. This is not described in our model of
heterojunction because we do not take into account the e
of such a dipole. Including the corresponding discontinuo
electrostatic potential in Eq.~1! and developing it according
to the scheme laid out above also yields the desired effe

The electron states in heterostructures consisting of
layers whose thickness is less than or on the order ofl can
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be treated only in the approximation quadratic in the mom
tum operator. In this case an account of terms due to
sharpness of the potential becomes necessary already i
zeroth approximation. This is clear from Eqs.~27!. In this
regard, the following situation is possible: as the width of t
quantum well is decreased, the bound state can disappe
conversely, a thin layer—nominally a ‘‘barrier’’ layer—o
some semiconductor can create an attractive potential
form a bound state.

It is possible that just such a situation was observed
Ref. 35 and then modeled in Ref. 36.

The authors are grateful to E. L. Ivchenko and A.
Gorbatsevich for helpful discussions of a number of res
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11475!, and also the Russian Ministry of Science under
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tures’’ ~Grant No. 99-1124! and ‘‘Atomic Surface Struc-
tures’’ ~Grant No. 3.1.99!.

APPENDIX A: THE DIRAC EQUATION WITH POSITION-
VARIANT GAP

Let us consider a model Dirac equation with a positio
dependent gap 2m(r )c2

Fm~r !c2 cs•p

cs•p 2m~r !c2G S we

wp
D5eS we

wp
D ,

wherewe and wp are the electron and positron compone
of the wave function, respectively. Letm(r ) vary weakly in
space, i.e.,m(r )5m̃1dm(r ) so thatdm(r )/m̃!1. With the
help of a Foldy–Wouthuysen unitary transformation it
quite simple, for example, following the scheme laid out
Ch. 20, Sec. 33 or Ref. 24, to obtain a one-band equa
describing the states of the electron. Thus, the equatio
which all small terms have been discarded is the ordin
Schrödinger equation

S m~r !c21
p2

2m̃D w̃e5ew̃2 ,

where w̃e is the transformed electron wave function. T
equation, on the other hand, in which all terms of high
order thandm(r )/m̃ have been neglected~the following ap-
proximation! has the form

Hw̃e5ew̃e ,

H5m~r !c21
p2

2m̃
2

pdm~r !•p

2m̃2 1
\2¹2dm~r !

8m̃2

2
p4

8m̃3c2 2
\@¹dm~r !3p#•s

4m̃2 . ~A1!

All terms in Eq.~A1! with the exception of the third which
describes the position-dependent mass can be taken as
dinary.’’ The second, third, and fourth terms~the fourth is
the Darwin term! can either be written in the following form
-
e
the

e
or

nd

n

s

ch

e
c-

-

s

n
in
y

r

or-

T2 5
1

2
p•

1

m~r !
p1

\2¹2dm~r !

8m̃2 ,

or combined into one~quadratic in the momentum! kinetic-
energy operator:

T2 5
1

2

1

A4 m~r !
p

1

Am~r !
•p

1

A4 m~r !
,

or some other equivalent form can be used. For exam
Ref. 21 uses the following form forT2 :

T25
1

4 Fp
1

Am~r !
•p

1

Am~r !
1

1

Am~r !
p•

1

Am~r !
pG .

Thus, in the model Dirac equation with position-depend
gap the concept of a position-dependent effective m
shows up only within the context of the nonrelativistic~qua-
dratic! approximation.

APPENDIX B: REGARDING TRANSFER PROCESSES IN THE
TWO-DIMENSIONAL BRILLOUIN ZONE FOR A „001…
HETEROSTRUCTURE

Let us consider the second sum in Eq.~4!, describing
transfer processes in the two-dimensional Brillouin zone a
prove that it does not contribute in the case of interest to
of states near the Brillouin zone center in~001! heterostruc-
tures. Since the functionG (q) isonzero for anyq, there also
exist nonzero vectors of the inverse latticeK j for which ki8
2ki5K i j . Here ki8 and ki are components of vectors be
longing to the Brillouin zone. There exits a finite number
vectorsK j possessing this property. Therefore, in general
should also retain the second sum in expression~4!. Let us
now consider the interesting case of a~001! heterostructure.
The octagon in Fig. 1 represents the projection of the b
Brillouin zone onto the~001! plane, and projections of site
of the lattice are denoted by asterisks. The funct
F n8(kz8 ,ki8) on which the operatorMnn8(k,k8) acts in Eq.
~3! is defined only forki8 belonging to the projection of the
bulk Brillouin zone onto the~001! plane. But since all sites
K i j for j Þ0 lie outside this projection, there exists a regi

FIG. 1. Projection of the bulk Brillouin zone~the region bounded by the
octagon! and sites of the inverse lattice~denoted by asterisks! onto the~001!
plane. The square with diagonal 2p/a bounds the region where there are n
2D transfer processes.
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of ki for which uki82kiu,K ij, j Þ0. This region is defined
by the inequalityukxu1ukyu,p/a and is indicated in the fig-
ure by the square with diagonal 2p/a. The area of this re-
gion is one-fourth that of the area of the first 2D Brillouin
zone ~the square with diagonal 4p/a!. In the regionukxu
1ukyu,p/a the second sum in expression~4! does not con-
tribute to the equations for the envelope functions. Its lar
dimensions ensure satisfaction of the conditions of appl
bility of the derived equations for the envelope functio
describing states near theG point.
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Complex dynamics and chaos in the parametric coupling of counter-propagating waves
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We study the dynamics of a distributed self-oscillating system of three parametrically coupled
waves, one of which is propagating counter to the other two. We show that an infinite
number of natural modes are self-excited as the bifurcation parameter, which has the meaning of
the pump amplitude, increases without bound. Exact solutions describing steady-state
oscillation regimes are found. We present the results of computer simulation, which show that
for moderate pump amplitudes the transient process terminates when a stationary state
corresponding to the fundamental mode sets in. As supercriticality increases, the oscillations
become chaotic, with the transition to chaos being rapid. We note an analogy that exists between
the dynamics of such a system and the dynamics of a Lorentz system. ©1999 American
Institute of Physics.@S1063-7761~99!02611-6#
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1. INTRODUCTION

Investigations into the complex dynamics of distribut
self-oscillating systems are an important part of the theory
oscillations and waves. The relationship between such in
tigations and the onset of turbulence in the formation of d
sipative structures is quite obvious.1,2 However, direct com-
puter simulation of complex and, especially, chao
oscillation regimes in specific distributed self-oscillating sy
tems, such as devices of vacuum and quantum electro
and hydrodynamic flow, pose many difficulties for the r
searcher. Hence the search of fairly simple distributed mo
systems with complex dynamics becomes crucial, since s
models can be studied in detail by numerical and, possi
analytical methods.

Among such models we should like to mention the eq
tions of parametric coupling of three wave packets propa
ing in a quadratically nonlinear medium, equations that
scribe parametric ~decay! instability in hydrodynamic
problems, nonlinear optics, plasma physics, etc., and
among the most important standard equations of nonlin
wave theory.2,3 If some kind of feedback is present, the sy
tem becomes self-oscillatory and exhibits complex dyna
cal behavior. For instance, Burlak and Ishkabulov4 detected
dynamical chaos in the case where one of the waves is
flected at the boundaries.

In the present paper we study the problem of three-w
coupling in which two wave propagate in opposite dire
tions, which guarantees the existence of internal distribu
feedback. We believe that this situation is common and
be realized, in particular, when low- and high-frequen
waves interact,2 e.g., when optical waves interact with acou
tic waves or ion-acoustic waves interact with Langm
waves. In electronics, a system of three parametric
coupled waves one of which is counter-propagating can
taken as the simplest model of a free-electron laser, a g
erator of a counter-propagating wave, in which the elect
beam interacts with the fields of two electromagnetic wav
1011063-7761/99/89(11)/6/$15.00
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It was Ginzburg and Sergeev5 who pointed out that the dy
namics can be complex in this case.

In Sec. 2 we discuss the main equations and find
conditions for self-excitation of self-oscillations. Since th
system being studied is distributed, it is characterized by
infinite number of natural modes, which are self-excited
the bifurcation parameter increases~here the amplitude of the
pump wave acts as the bifurcation parameter!. The exact
time-dependent nonlinear solutions corresponding to the
damental and higher modes are analyzed in Sec. 3. Sect
is devoted to describing the results of computer simulati
We study in detail a scenario for the transition to chaos.
also discuss the analogy between sequences of bifurca
in the present system and those in some finite-dimensio
systems, e.g., in the Lorentz system, which is one of the b
known and most thoroughly studied models of nonlinear
namics with a small number of degrees of freedom.

2. THE STARTING EQUATIONS: CONDITIONS FOR SELF-
EXCITATION OF SELF-OSCILLATIONS

For the staring equations we take the equation of thr
wave parametric interaction,2,3 which in our case assume th
form

]A1

]t
1v1

]A1

]x
5s1A2A3* ,

]A2

]t
1v2

]A2

]x
52s2A1A3 , ~1!

]A3

]t
2v3

]A3

]x
5s3A2A1* .

Here A1,2,3(x,t) are the complex-valued amplitude of th
idler wave, the pump wave, and the signal wave, resp
tively, v1,2,3 are the group velocities of these waves, a
s1,2,3 are the real nonlinear-coupling constants. The ‘‘m
nus’’ in front of v3 is an indication that the signal wave
propagating counter to the idler and pump waves. We ex
5 © 1999 American Institute of Physics
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ine the situation where an intense pump wave with an a
plitude a5const is input into the system at the pointx50
and there is no idler wave. We assume that at the r
boundary of the system, in the cross sectionx5 l , there is no
signal wave. Thus, the boundary conditions are

A1~x50;t !50, A2~x50;t !5a, A3~x5 l ;t !50, ~2!

which corresponds to a distributed parametric generator
counter wave. Since Eqs.~1! are invariant under the trans
formations

A1→A1 exp~ iw1!, A2→A2 exp~ iw2!,

A3→A3 exp@ i ~w22w1!#, ~3!

wherew1,25const, we can assume, without loss of gene
ity, that a is real. We select the initial conditions in the for

A2~x;t50!5a, uA1,3~x;t50!u!a ~4!

and are interested in the conditions for self-excitation of
system by small fluctuations of the idler and signal wave

We introduce the dimensionless coordinatej5x/ l and
time

t5
2v1v3t2~v32v1!x

l ~v31v1!

and the new dependent variables

Ai85
Ai l

a
As jsk

v jvk
,

where i , j ,k51,2,3, with iÞ j Þk. Substituting all this in
Eqs.~1! and dropping the primes, we get

]A1

]t
1

]A1

]j
5aA2A3* ,

~11u!
]A2

]t
1

]A2

]j
52aA1A3 , ~5!

]A3

]t
2

]A3

]j
5aA2A1* ,

where

u5
2v3~v12v2!

v2~v11v3!

is the dimensionless parameter characterizing the detunin
the group velocities of the co-propagating waves. T
boundary conditions~2! and the initial conditions~4! become

A1~j50;t!50, A2~j50;t!51, A3~j51;t!50,
~6!

A2~j;t50!51, uA1,3~j;t50!u!1. ~7!

In order to derive the conditions for self-excitation of se
oscillations we start with the initial stage in the developm
of an instability, when the amplitudes of the signal and id
waves are small and depletion of the pump wave still has
effect. PuttingA251 in Eqs.~5!, we obtain
-

ht

a

l-

e

of
e

t
r
o

]A1

]t
1

]A1

]j
5aA3* ,

]A3

]t
2

]A3

]j
5aA1* . ~8!

Equations~8! with the boundary conditions

A1~j50;t!5A3~j51;t!50

coincide with the equations that describe the time-depend
linear coupling of counter-propagating waves with positi
and negative energies. The theory of such coupling has b
thoroughly described in the literature~see, e.g., the review by
Trubetskov and Chetverikov6!. Separating the variables i
~8!, we find the general solution as a superposition of natu
modes:

A15(
n

Cn exp~knt !sin@Aa22kn
2j#,

A35(
n

Dn exp~knt !sin@Aa22kn
2~j21!#,

where the amplitudesCn and Dn can be found from the
initial conditions, and thekn are the solutions of the tran
scendental equation

Aa22k2 cosAa22k21k sinAa22k250. ~9!

This equation has an infinite number of complex-valued
lutions, which is a reflection of the fact that the distribut
system contains an infinite number of natural modes,
degrees of freedom.

The condition for the loss of stability of a node wit
numbern can be found by puttingk50 in Eq. ~9!, which
yields an5pn1p/2. Thus, when the parametera exceeds
the valuean , self-excitation of thenth mode is possible. The
mode with n50 has the smallest valuea05p/2, i.e., the
smallest pumping amplitude.

3. STEADY-STATE OSCILLATIONS REGIMES

Let us now find the solutions that describe steady-s
self-oscillating regimes. To this end we put]/]t[0 in Eqs.
~5!. This yields a system of ordinary differential equation

dA1

dj
5aA2A3* ,

dA2

dj
52aA1A3 ,

dA3

dj
52aA2A1*

~10!

with the boundary conditions

A1~0!50, A2~0!51, A3~1!50. ~11!

Note that these equations do not contain the parameteru, i.e.,
stationary solutions do not depend on the detunings of
group velocities ~in the normalization of the variable
adopted here!.

Assuming thatAj5ajexp(iwj), whereaj andw j are the
real-valued amplitude and phase, and separating the rea
imaginary parts in~10!, we arrive at the system of equation

da1

dj
5aa2a3 cosF, ~12!
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da2

dj
52aa1a3 cosF, ~13!

da3

dj
52aa2a1 cosF, ~14!

dF

dj
5aS a1a2

a3
1

a1a3

a2
2

a2a3

a1
D sinF, ~15!

whereF5w22w12w3 . The exact solutions of the syste
of equations~12!–~15! are well known~see, e.g., Ref. 2!.
The unique property of the problem is that the bound
conditions~11! are set at the different ends of the system. W
write Eq. ~15! as follows:

dF

dj
52

d ln~a1a2a3!

dj
tanF.

Integration of this equation with allowance for the bounda
conditions yieldsa1 a2 a3 sinF50. Since this equality is
valid for all values ofj, nontrivial solutions correspond t
sinF50. Thus, in a steady-state regime the phases of
interacting waves are found to be synchronized.

From Eqs.~12! and ~13! we can obtain one more con
stant of motion:

a1
2~j!1a2

2~j!5a1
2~0!1a2

2~0!51.

Assuming thata15sin(c/2) anda25cos(c/2) and substitut-
ing these quantities in~14!, we arrive at the pendulum equa
tion

d2c

dz2
1sinc50, ~16!

wherez5aj, with the boundary conditions

c~z50!5 dc~z5a!/dz50.

The phase portrait of Eq.~16! is depicted in Fig. 1. The
solutions we are interested in are portions of the phase p
that begin at the vertical axis and end at the horizontal a
Thus, we must find the solution in the form of periodic o
cillations with a periodT54a ~the path1 in Fig. 1!. Allow-
ing for the expression for the period of pendulum oscillatio
~see, e.g., Ref. 7!, we find thata5K@sin2(c0/2)#, whereK is
the complete elliptic integral of the first kind, withc0

5c(a). Since K.p/2, the solution exists fora.p/2,
which agrees with conditions for self-excitation establish
in Sec. 2.

FIG. 1. Phase portrait of the nonlinear oscillator~16!. Paths1 and18 cor-
respond to stationary solutions for the fundamental mode, and the path2, for
the second mode.
y
e

e

hs
s.
-

s

d

Whena.3p/2, there appears an additional solution, a
cording to which the pendulum performs three-fourths o
complete revolution~path 2 in Fig. 1!. The solution corre-
sponds to the second natural mode. Asa increases, new
stationary solutions corresponding to higher modes app
The conditions for self-excitation of such modes were fou
in Sec. 2. These solutions can be written explicitly:

c52 arcsin~m sn~z;m!!, a15m sn~z;m!,

a25dn~z;m!, a35m cn~z;m!, ~17!

where sn(•••), cn(•••), and dn(•••) are Jacobi elliptic
functions, andm5sin2(cn/2), n50,1,2, . . . , with cn deter-
mined by the equationa5(2n11) K@sin2(cn/2)#. Obvi-
ously, in view of the invariance of Eq.~6! under the trans-
formation c→2c, to each solution in ~17! there
corresponds a solution of opposite polarity. The phase p
in Fig. 1 that originate in the lower half-plane~e.g., the path
18! correspond to these new solutions.

4. RESULTS OF COMPUTER SIMULATION AND DISCUSSION

The analysis done in Sec. 3 makes it possible to find
exact solutions describing steady-state oscillation mod
However, it is still unclear which of these regimes actua
sets in as a result of the transient process~and whether such
regimes set in at all!. To answer these questions we a
forced to turn to direct numerical integration of the tim
dependent equations.

So solve Eqs.~5! with the boundary and initial condi
tions ~6! and ~7!, we use the second-order Lax–Wendo
method,8 with the time and space step sizes related by
formula Dt5Dj/2. Calculations show that the selection
N;100, whereN51/Dj is the number of steps in the dif
ference scheme in coordinate, ensures good accuracy o
results~except for the range of parameters for whichu!1;
for more details see the text below!. Note that any finite-
difference approximation actually amounts to passing fr
the distributed system to a chain ofN elements, which has a
large but finite number of degrees of freedom.

For the sake of simplicity we limit ourselves to the ca
where the amplitudes of the interacting waves are pur
real. Here we have sinF50, i.e., the phase path belongs to
manifold on which stationary solutions are realized~see Sec.
3!. It can be shown that if this condition was met initially,
will remain valid at any subsequent moment in time, i.e.,
manifold sinF50 is invariant.

The system in question has two simplifying paramete
the parametera, which measures the extent to which th
system departs from equilibrium, and the parameteru, which
is the detuning of the group velocities. First we turn to t
analysis of one-parameter dynamics. We describe the
quence of bifurcations observed asa increases with a con
stant valueu50.1.

For a,p/2 the only stable state of the system is giv
by the trivial solutionA1,350 andA251. In phase space thi
corresponds to an equilibrium state in the form of a sta
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FIG. 2. Time dependence of the output-signal amp
tude A3(j50) in the process of the establishment
oscillations~a!, and the steady-state distributions of th
wave amplitudes~b! at u50.1 anda52.0.
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node, which we denote byO. Self-excitation of oscillations
occurs ata5p/2, which agrees with the results of Sec.
Here the equilibrium stateO becomes a saddle point an
there appear two nontrivial equilibrium statesC6 that corre-
spond to the stationary solutions for the fundamental m
found in Sec. 3. These equilibrium states are symmetric
der the transformationsA1→2A1 andA3→2A3 . Figure 2
depicts the time dependence of the output-signal amplit
A3(j50) in the establishment of oscillations~a! spatial dis-
tributions of the amplitudes in the steady-state regime~b!,
whena is only slightly larger thanp/2. Obviously,C6 are
equilibrium states of the stable-node type. The saddle-p
equilibrium stateO has a stable manifoldWs and a pair of
symmetric unstable manifoldsWu

6 , with Wu
1 attracted toC1

and Wu
2 to C2. Thus, the initial perturbations determin

which of the two stable states is realized after the trans
process terminates.

As the control parametera increases, the transient pro
cess acquires an oscillatory character and its duration
.

e
n-

e

nt

nt

n-

creases~Fig. 3!. The oscillations are due to the retardin
nature of the internal distributed feedback, their period
close to the time lagl /v11 l /v3 , which in the normalization
of variables adopted here is equal to two. In the process,
equilibrium statesC6 change from nodes to foci. For larg
enough values ofa the stationary distributions of the ampl
tudes are close to the solutions that correspond to the mo
of the pendulum along the separatrix~see Sec. 3!: A1

5tanhaj and A2,35sechaj. At a'5.6 the manifoldsWu
6

close onWs . As a result of this bifurcation,Wu
1 begins to be

attracted byC2 andWu
2 by C1. The curves correspondin

to this case are depicted in Fig. 4. As the bifurcation para
eter increases, the transient process becomes more co
cated, which is due to the distributed nature of the syst
i.e., the occurrence of an ever-increasing number of nat
modes. However, the stationary state corresponding to
higher modes are found to be unstable, and as a resu
competition only the fundamental mode survives.
li-
of
e

FIG. 3. Time dependence of the output-signal amp
tude A3(j50) in the process of the establishment
oscillations~a!, and the steady-state distributions of th
wave amplitudes~b! at u50.1 anda54.0.
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FIG. 4. Time dependence of the output-signal amp
tude A3(j50) in the process of the establishment
oscillations~a!, and the steady-state distributions of th
wave amplitudes~b! at u50.1 anda56.0, after which
bifurcation of the formation of a separatrix loop oc
curred.
re
pr
rd
e
o

na

in

a-
pli-

am-
ch

e in
an-
Finally, ata'8.19, the motion becomes chaotic. Figu
5 depicts the temporal realization of the process and the
jection of the strange attractor restored by the Packa
Takens method. Note that the attractor and the sequenc
bifurcation preceding the appearance of the attractor dem
strate an analogy with some well-known finite-dimensio
systems, in particular, with the Lorentz system1,2

Ẋ5s~Y2X!, Ẏ5rX2Y2XZ, Ż52bZ1XY, ~18!

wherer, s, b are parameters, and with equations describ
the decay limitation of parametric instability:9
o-
–
of
n-
l

g

Ȧ15hA2* 2n1A12A2A3 ,

Ȧ25hA1* 2n2A21A1A3* ,

Ȧ352A31A1A2* , ~19!

which differ from ~18! only in the fact that the second equ
tion has an additional nonlinearity and that the wave am
tudes are, in general, complex-valued. In Eqs.~19! the waves
A1,2 are excited due to a parametric process, with the par
eterh proportional to the amplitude of the pump wave, whi
is assumed fixed. The coefficientsn1,2 determine the linear
decay of the waves. At the same time, the wave participat
another resonant interaction, in the process of which a qu
tum of waveA1 decays into quanta of the wavesA2,3. This
ait
FIG. 5. Realization and projection of the phase portr
corresponding to the strange attractor ayu50.1 and a
510.0.



ab

d

r,

o
io
e
c

r
r
lit
a

-
m
iti
th

A

if
o

nc
th

a
w
is

iz

es
ng
vio-

of
tes

er-
the
is-
of
me
m,
son
e in

-
ural
ss,

ed
ng

ility
de-

e-

ikl.

1020 JETP 89 (5), November 1999 T. V. Dmitrieva and N. M. Ryskin
decay process leads to saturation of the parametric inst
ity. The application of the system of equations~19! to a
number of problems in plasma physics has been discusse
Pikovski� et al.9

As in the finite-dimensional systems mentioned earlie
strange attractor appears before the equilibrium statesC6

lose their stability. Thus, within a narrow range of values
the parametera, stable stationary states and chaotic mot
coexist, and when the value ofa increases smoothly th
transition to chaos is accompanied by hysteresis. This
easily be verified by fixing the initial conditions in a form
close to a stationary solution. For instance, withu50.1 a
strange attractor is born ata'8.19, andC6 lose their sta-
bility at a'8.27. For the Lorentz system, in the most tho
oughly studied case ofs510 andb58/3, a strange attracto
is born atr'24.06, and the stationary state loses its stabi
at r'24.74 ~the closure of the separatrix loops occurs
r'13.92).

For other positive values ofu, the dynamics of the sys
tem is similar, although the bifurcation values of the para
eters change. Figure 6 depicts the boundary of the trans
to chaos and the line of formation of a separatrix loop in
plane of parametersa andu. However, asu→0, the value of
a at which there is a transition to chaos tends to infinity.
similar situation takes place in the Lorentz system whens
tends tob11. Thus, chaotic oscillations are possible only
the group velocity of the pump wave is smaller than that
the idler wave. Note that in the region whereu!1 holds one
is forced to increase the number of steps in the differe
scheme substantially to obtain satisfactory accuracy of
calculations.

Studies of the dynamics of the system in the general c
where theAi are assumed to be complex-valued have sho
that for values ofa that are not very large the phase path
attracted, in the transient process, to the manifold sinF50,
i.e., the phases of the coupled waves become synchron

FIG. 6. Line of formation of a separatrix loop~curve1! and the boundary of
transition to chaos~curve2! in the a,u plane.
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However, in chaotic regimes, where the wave amplitud
undergo strong oscillations, states with rapidly varyi
phases arise and the synchronization of the phases is
lated. Here the phase path jumps off the manifold sinF50
and then jumps on. Note that the system~19! behaves in a
similar manner, as noted by Pikovski�.10

5. CONCLUSION

Our results prove without any doubt that in a system
three parametrically coupled waves one of which propaga
counter to the other two, chaotic self-oscillations of a det
ministic nature can develop. Of special interest here is
fact that although the system under investigation is of d
tributed type and is characterized by an infinite number
degrees of freedom, its dynamics is close to that of so
finite-dimensional systems, in particular, the Lorentz syste
which is a standard model of nonlinear dynamics. The rea
is that three unstable stationary states play the main rol
the organization of complex dynamics: the zero stateO and
the nonzero statesC6, which correspond to the lowest natu
ral mode and are symmetric to each other. The higher nat
modes affect only the initial stage in the transient proce
and the corresponding stationary states are not realized.

Note that the rapidity of the transition to chaos observ
in the given case is not typical of distributed self-oscillati
systems with counter-propagating waves,6 where a different
scenario is more common, namely, a gradual loss of stab
by the steady-state regime through self-modulation due
layed internal feedback.
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Erratum: Nonmonotonic behavior of the superconducting transition temperature
in bimetallic ferromagnet–superconductor structures †JETP 86, 930–942 „May 1998…‡

Yu. N. Proshin and M. G. Khusainov

Kazan State University, Kazan, Russia
Zh. Éksp. Teor. Fiz.116, 1882~November 1999!

@S1063-7761~99!02711-0#

Regrettably, the authors of this paper erred in the numerical analysis of Eqs.~36!, ~37!, and ~41! for F/S junctions.
Nevertheless, the qualitatively different variants of the behavior of the curvesTc(df) shown in Fig. 1 are obtained but fo
somewhat different values of the parameters of the theory.

An accurate numerical solution shows that the values of the parameters in Fig. 1 should be a! ss50.5, 2I t f50.5,
l s5200 Å, Nsvs5Nfv f ; b! ss510, 2I t f50.7, l s5300 Å, Nsvs50.2Nfv f ; c! ss54, 2I t f53, l s5200 Å, Nsvs5Nfv f ;
d! ss518, 2I t f55, l s5300 Å, Nsvs50.5Nfv f . In addition,ds5500 Å andjs05400 Å everywhere.

Accordingly, forF/S superlattices phase diagramsTc(df) similar to those in Fig. 2 occur for the following values of th
parameters of the theory: a! ss50.7, 2I t f50.5, l s5200 Å; b! ss510, 2I t f50.5, l s5200 Å; c! ss50.5, 2I t f55,
l s5200 Å; d! ss52, 2I t f55, l s5300 Å. In addition,ds5500 Å, js05400 Å, andNsvs5Nfv f .

These corrections alter neither the main text of the paper nor our results and conclusions.

Translated by M. E. Alferieff
10211063-7761/99/89(11)/1/$15.00 © 1999 American Institute of Physics
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Investigation of the antineutrino angular distribution in experiments on the b decay
of polarized neutrons

G. G. Bunatyan* )

Joint Institute of Nuclear Research, 141980 Dubna, Moscow Region, Russia
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Zh. Éksp. Teor. Fiz.116, 1505–1522~November 1999!

Since the emission ofg rays unavoidably accompaniesb decay, the final state after theb decay
of a neutron includes a photon along with a proton, an electron, and an antineutrino, i.e.,
four particles, rather than three. Therefore, when only the electron and proton momenta are
detected and theg-ray momentum is not detected in an experiment, the antineutrino
momentum cannot be uniquely reconstructed, and only its mean value over ag-ray momentum
distribution determined from corresponding calculations can be considered. Theg rays
are significant for finding the asymmetry parameterB of the antineutrino angular distribution
from experiments on theb decay of polarized neutrons, where the electron momentum
p directed along thex axis and the projection of the proton momentumPx onto thex axis are
detected, and the neutron polarization vectorj is parallel or antiparallel tox. Since theg
rays are not detected in such experiments, the antineutrino kinematics are not uniquely specified
by the observablesp andPx and can be reconstructed only on the average, so that the
antineutrino momentum distribution averaged over ag-ray momentum distribution is considered.
Thus, the exact value ofB cannot be obtained from these experiments, but the true value
of B can be estimated on the average by considering the mean~most likely! value ^B& and the
dispersion~rms deviation! DB. The unavoidable uncertainty in the estimate ofB amounts
to several percent and is thus significant for present-day experiments, which are intended to obtain
the value ofB to a very high accuracy of;(0.121)%. If electromagnetic interactions are
taken into account, measurements of the electron and proton momentum distributions can also be
used to obtaingA , i.e., the axialb-decay amplitude, to high accuracy. ©1999 American
Institute of Physics.@S1063-7761~99!00111-0#
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1. INTRODUCTION

There has recently been growing interest in achiev
highly accurate knowledge of the characteristics of neutrob
decay, above all the neutron lifetimet ~Ref. 1! and, in the
case of polarized neutrons, the asymmetry parameter o
electron angular distributionA ~Ref. 2! and the correspond
ing parameter for antineutrinosB ~Ref. 3! relative to the
neutron polarization vectorj. The value ofA can be obtained
in a simple manner from the experimentally observed e
tron angular distribution, while obtaining the value ofB is a
far trickier matter, since there is no way to directly meas
the antineutrino angular distribution. The idea behind the
periment in Ref. 3 for obtaining the value ofB originated in
the distant past. It was back in the nineteen-sixties whe
method was proposed4 for determining the value ofB by
treating experimental data on the electron and proton ang
distributions. It was assumed that the antineutrino kinema
can be uniquely reconstructed if the electron and proton
menta are given. However, this claim would only be rigo
ously true if there were no emission ofg rays, which, as we
know ~see, for example, Refs. 5–8!, unavoidably accompa
niesb decay. Of course, the need to take into account thg
rays is only a question of the accuracy which is required
obtain the value ofB by processing the experimental dat
However, inasmuch as we are dealing with knowledge of
8111063-7761/99/89(11)/10/$15.00
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characteristics ofb decay to within;(0.121)%,1–3 there is
no basis to assume that it would be reasonable to neglec
g rays in obtaining the value ofB.3

Our professed goal is specifically to represent the in
ence of the electromagnetic interactions on the electron,
ton, and antineutrino distributions studied in Ref. 3 and
establish the accuracy that can be achieved in describing
antineutrino angular distribution in the experiments in Ref.
An accurate description of semileptonic processes requ
the unequivocal establishment of the characteristics of n
tron b decay, particularlyB, to high accuracy with prope
allowance for electromagnetic interactions.

2. DESCRIPTION OF THE b DECAY OF POLARIZED
NEUTRONS WITH ALLOWANCE FOR ELECTROMAGNETIC
INTERACTIONS

It is presently perfectly clear that exact knowledge of t
characteristics of semileptonic decays is of great importa
for the theory of elementary particles, which imposes a se
of rigorous constraints on the parameters entering into se
leptonic interactions. Of course, the validity of the relatio
following from the theory must be carefully verified in orde
to assess with complete confidence the limits and the a
racy within which the basic principles of the present-d
theory are valid. In this sense, in fact, we have no choice
© 1999 American Institute of Physics



wi
t

ld

b

s-

ep
-

n
f

d

ly

-

efi

–

ta
ic
el
th

s.

n
io
e

tion

d to

al
ac-
ts
by

to

-
f
be

unt
the
um
, in
ing
e

on

en

lec-

n

g

812 JETP 89 (5), November 1999 G. G. Bunatyan
to compare experimental data obtained to high accuracy
the results of systematic theoretical calculations based on
description of weak interactions following from general fie
theory.

The effective Lagrangian describing theb decay of bary-
ons with allowance for electromagnetic interactions can
represented~see, for example, Refs. 9–11! in the form

L int5LB f Biw1Leg1LBg , ~1!

where

LB f Biw~x!5
Gi f

&
~ c̄e~x!ga~11g5!cn~x!!C̄B f~x!

3@gagV
B~q!1gWM

B sanqn1g5~gagA
B~q!

1gIP
B qa!#CBi~x! ~2!

is the baryon-lepton (V2A) weak interaction, andq is the
momentum transferred in theb-decay process. The expre
sion

Leg~x!52ec̄e~x!gmce~x!Am~x! ~3!

describes the interaction of an electromagnetic field with l
tons, and similarlyLBg describes the interaction with bary
ons. The notation in~2! and ~3! corresponds to the notatio
adopted in Ref. 9, but here the indexB specifies the type o
baryon, and we choose units withh5c51. In addition,
CBi(x) and CB f

1 (x) are the baryon fields in the initial an
final states, andce , cn , andAm denote the electron~posi-
tron!, ~anti!neutrino, and electromagnetic fields, respective

As for gV
B(0), by analogy with Ref. 10, we setgV

n(0)
51 for neutron decay@and gV

S(0)50 for the strangeness
conserving decay processS6→L01e61n( n̄)1g#. Then,
as we know~see, for example, Refs. 9–11!, the amplitudes
Gi f in ~2! for various semiweak decays associated with d
nite i→ f quark transitions~u→d, s→d, b→d! can be rep-
resented in the form

Gi f 5GFuVi f u. ~4!

Here GF51.16639(2)31025 GeV22 can be determined
from the muon lifetime,12 and the Cabibbo–Kobayashi
Maskawa~CKM! matrix elementsVi f ~Ref. 13!, which mix
different quark states, satisfy the unitarity relation

uVudu21uVsdu21uVbdu251, ~5!

which should hold exactly within the standard model.10,11

Thus, any deviation from the identity~5! following from an
experiment, no matter how small, would be of fundamen
significance and would clearly indicate a definite contrad
tion in the basic principles of the present-day theory of
ementary particles. The main, decisive contribution to
left-hand side of Eq. ~5! stems specifically from the
strangeness-conservingu→d transition: uVudu'0.9744
60.0010, as can be corroborated, for example, by Ref
and 12. In fact, the accuracy to which the value ofuVudu can
be established guarantees the accuracy to which the ide
~5! is valid. It can be assumed that a thorough investigat
of neutronb decay will permit the reliable, highly accurat
determination of the CKM matrix elementuVudu, as well as
th
he
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the other parameters appearing in the semiweak interac
~2!. Below we shall consider only neutronb decay.

Thus, if there are experimental data that were obtaine
high accuracy,;0.1%, regarding the neutron lifetime1 and
the momentum distribution of the particles in the fin
state,2,3 our task is to systematically calculate these char
teristics according to~1!–~3! and then to compare the resul
of the calculations with the experimental data and there
obtain reliable, highly accurate values ofuVudu and the am-
plitudesg(q) in ~2!. When the nucleon mass is assumed
be infinite (M→`), gV(0) andgA(0) are known to be the
main factors determining the probability ofb decay, while
consideration of otherg amplitudes, the finite nature ofM ,
theq dependences ofgV(q) andgA(q), and the electromag
netic interactions~3! causes small corrections to it. O
course, the accuracy to which the physical quantity must
obtained determines the importance of taking into acco
the various corrections. In this study we consider only
effect of the electromagnetic interactions on the moment
distributions of the particles, especially the antineutrinos
the final state after the decay of polarized neutrons, ignor
all the other corrections, which may also be important. W
recall that corrections due to the finite value of the nucle
mass were thoroughly investigated in Ref. 14.

When electromagnetic interactions are properly tak
into account,8 the probability of theb decay of polarized
neutrons, which is accompanied by the emission of an e
tron with energy-momentum («,p), an antineutrino in thenn

direction, and ag photon with energyv[k less than a cer-
tain given valuekm (k<km<D2«), can be represented i
the form

dW~«,p,nn ,km ,j!

5dw
dnn

4p
exp@B~«,km!#

3$W0~«,p,km ,gV ,gA!

1~v•j!Wvj~«,p,km ,gV ,gA!

1~nn•j!Wnj~«,p,km ,gV ,gA!

1~nn•v!Wvn~«,p,km ,gV ,gA!%. ~6!

Herej is the neutron polarization vector, and the followin
notation has been introduced:

B5
2a

p
L ln

2km

m
, L5

1

v
ln

p1«

m
21,

Wa5wa
0@11C̃a~«,p,km!#1Ca~gV ,gA ,«,p!,

a[0, vj, nj, vn,

w0
05gV

213gA
2 , wvj

0 52gA~gV2gA!,

wnj
0 52gA~gV1gA!, wvn

0 5gV
22gA

2 ,

dw5
Gud

2

2p3 «pvn0
2 d«

dne

4p
, vn05D2«,

D5Mn2M p , ne5
p

p
, v5

p

«
, nn5

pn

vn0
. ~7!
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The exponential function exp@B(«,km)# in ~6! corrects the
infrared behavior of the decay probability
dW(«,p,nn ,km ,j)→0 as the cutoffg-ray energykm→0.
According to the general theory,9,15 this means thatb decay
is impossible without the emission of infrared~soft! g rays.
For the purposes of the present work there is no need
represent the expressions forC̃ andC,8 which are multiples
of the fine structure constanta, in explicit form.

After plugging in the maximum valuekm5D2«, the
expression~6! gives the corresponding decay probabilit
which takes into account all theg rays that are possible fo
some given value of«. Clearly, the quantities

A5
Wvj~«,p,km ,gV ,gA!

W0~«,p,km ,gV ,gA!
,

B5
Wnj~«,p,km ,gV ,gA!

W0~«,p,km ,gV ,gA!
,

a5
Wnv~«,p,km ,gV ,gA!

W0~«,p,km ,gV ,gA!
~8!

describe the asymmetry of the electron (A) and antineutrino
(B) angular distributions, as well as the electron-antineutr
angular correlations (a). Note that if the proton mass wer
not assumed to tend to infinity, none of the resulta
effects—proton recoil, theq dependences ofgV andgA , and
the contribution of the terms withgWM and gIP in ~2!—
would alter the general form of the expression~6!; the cor-
responding corrections to the quantities~8! were calculated
in Ref. 14. Of course, when all the corrections just cited
omitted, the quantities~8! take the usual well-known forms

A05
2gA~gV2gA!

gV
213gA

2 ,

B05
2gA~gV1gA!

gV
213gA

2 , a05
gV

22gA
2

gV
213gA

2 , ~9!

and the expression~6! becomes

dW~«,p,nn ,j!5dw
dnn

4p
~gV

213gA
2 !$11~v•j!A0

1B0~nn•j!1a0~nn•v!%. ~10!

After the substitutionkm5D2« and the integration of~6!
over dp dnn , we obtain the total probability of neutronb
decay,W51/t. Then the first relation for determining th
quantities appearing in~2!, particularly uVudu, follows from
the requirement of equality between the calculated lifetimt
and the experimentally measured value.1 The experimental
value ofA ~Ref. 2! is obtained by studying the electron m
mentum distribution, which corresponds to the expressi
~6! and~10! integrated over the antineutrino escape direct
dnn . In that case, of course, the terms with the coefficientB
anda in ~6! and~10! vanish. The relation defininggA is then
obtained by equating the calculated and experimentally
served values ofA ~8!.2

No matter how accurate the experimental measurem
of t andA ~Refs. 1 and 2! and their theoretical calculation
even with inclusion of all the corrections discussed above
to

o

t

e

s
n
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ts

it

is still highly desirable to include other characteristics ofb
decay along witht andA, especially the antineutrino angula
distribution relative to the neutron polarization vectorj,
along with the angular correlations between the electron
antineutrino escape directions, which appear in~6! and ~10!
as the coefficientsB and a of (nn•j)5cosunj and (nn•v)
5v cosuvn , respectively. The inclusion of these character
tics in the treatment is useful both in rechecking the accur
to which the quantitiesGud , gA , gIP , andgWM in ~2! are
determined~see Ref. 16!, and in ascertaining just how rigor
ous the general expression~2! is. As stated in Ref. 17, ac
cording to the ideas in Ref. 18, if the experimental value oB
is known to within;0.1%, it is useful for testing whethe
the weak interactions can be left–right symmetric on
Lagrangian level and whether parity breaking results exc
sively from the spontaneous breaking of this symmetry.
stated in Refs. 17 and 18, if the value ofB were determined
to such high accuracy, it would be possible to find the m
nitude of an admixture to the Lagrangian~2! with the same
transformation properties as~2! but differing from~2! by the
replacementg5→2g5. Thus, the problem is to verify the
possibility of a contribution of right-handed currents to t
semiweak interactions and to estimate the bound on the m
of the right-handed gauge boson associated with them.19 Of
course, this whole idea only makes sense when the valu
B is extracted from experimental data to an accuracy
;0.1%, for which consideration of the electromagnetic
teractions is absolutely necessary.8

Obviously, establishment of the value ofB in ~6! and
~10! requires determination of the antineutrino angular d
tribution, which corresponds to the expression~6! integrated
over the electron momentumdp, in which the terms with the
coefficientsA anda vanish. However, it is totally impossible
to observe the antineutrino angular distribution directly in
experiment, because there is no way to detect antineutri

An extremely clever and pretty way to successfully c
cumvent this problem was apparently found a long time a
in Ref. 4.

3. ELECTRON AND PROTON MOMENTUM DISTRIBUTIONS
AND THE ANTINEUTRINO ANGULAR DISTRIBUTION

Usually, any time we think about theb-decay process
we have in mind its description specifically by Eqs.~6!–~10!,
but these expressions by themselves are not applicabl
obtainingB from experimental data. To describe the electr
and antineutrino distributions in the final state of theb decay
of polarized neutrons, the relations~6!–~10! are clearly ob-
tained from the total decay probability by integrating ov
the proton andg-ray momenta. Such distributions would co
respond to an experiment in which the protons andg rays
emitted are not detected at all, i.e., we would be dealing w
a decay probability which includes protons andg rays with
all the momenta that are feasible for a givendp dnn . In
experiments in which the value ofA is obtained,2 we observe
only the electron momentum distribution without detecti
the antineutrinos, i.e., taking all feasible antineutrino m
menta into account. This observable distribution is descri
by the expression~6! integrated overdnn , which should then
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contain only the term proportional to (v•j)A. To obtain the
value ofB, i.e., the coefficient of (nn•j) in ~6! and~10!, an
experiment in which, conversely, the antineutrino angu
distribution is measured without regard to the proton, el
tron, andg ray momenta would have to be set up. Thus, a
integrating the expression~6! overdp, the terms withA and
a vanish, and only the term proportional to (nn•j)B remains.
However, it is known that this desirable experiment is infe
sible, since it is impossible to detect antineutrinos, and
mulas~6! and ~10! are consequently useless for directly o
taining the value ofB from experimental data.

In order to have the antineutrino angular distribution
our disposal without detecting the antineutrinos themselv
we need the electron, proton, andg-ray angular distributions
the original neutrons are assumed to be at rest. The elec
momentum can be determined in present-day experim
directly to high accuracy,2 while a simple method for mea
suring the proton andg-ray momenta is presently impossib
in practical terms. Thus, the situation can appear to be ho
less when we try to determineB from experimental data
However, despite how complicated this problem seems,
investigations in Ref. 4 suggest a way to solve it. A meth
was proposed in those papers and subsequently in Ref. 3
a corresponding experiment was carefully developed to
construct the antineutrino kinematics and to conseque
obtain the value ofB ~8! in ~6! from measurements of th
electron momentum distribution and the distribution of t
values of the projection of the proton momentumPx onto the
x axis, to which the neutron polarization vector is parallel
antiparallel~see Fig. 1!. The setup of a real experiment wa
carefully spelled out in Ref. 3, and we merely recall here t
in its idealized scheme~shown in Fig. 1!, which is perfectly
adequate for our purposes, the detected electron mome
p is directed strictly along thex axis, the polarization vecto
j of the stationary neutron is also strictly parallel or antip
allel to thex axis, and the projection of the proton mome
tum Px onto thex axis is detected in coincidence with th
electron momentump, while the components of the proto
momentumP perpendicular tox, as well as all theg rays, are

FIG. 1.
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not observed at all. When the energy« is fixed, Px varies in
the range

upu2~D2«!<Px<upu1~D2«!. ~11!

For clarity, the quantityPx in ~11! and below represent
the x component of the proton momentum with the oppos
sign, as in Ref. 3, i.e., the quantityPx.0 appears in Fig. 1.
If we momentarily ignore theg rays and neglect the kineti
energy of the proton in view of its large mass, then the
tineutrino energyvn0 and the cosine of the angle betwee
the x axis and the antineutrino escape direction~see Fig. 1!
are clearly given by

vn05D2«, y0[cosunx 5
Px2upu

vn0
. ~12!

In the real experiment in Ref. 3 the measurements consi
of counting the number of events with given values ofp and
Px and a neutron polarization vectorj parallel or antiparallel
to the x axis. What was measured in this experiment is
probability ofb decay of a polarized neutron when the ele
tron momentum equalsp and the projection of the proton
momentum onto thex axis equalsPx regardless of the an
tineutrino andg ray momenta, as well as the projections
the proton momentum perpendicular to thex axis. We can
thus obtain the electron momentum distribution together w
the distribution of the values ofPx :

dWexp
z ~Px ,p!5wexp

z ~Px ,p!dp dPx , ~13!

the contributions of antineutrinos,g rays, and protons with
all feasible momenta being included therein. In Eq.~13! and
below z51 for neutron polarization parallel to thex, and
z52 for polarization in the opposite direction.

The overall expression for the probability ofb decay of
a polarized neutron when the electron carries momentump
and thex component of the momentum of the proton equ
Px , and the event is accompanied by the emission ofg rays
with all energiesv5k5uku less than a certain given valu
km , k<km<D2«, can be derived using the Lagrangia
~1!–~3! in the same manner as~6! was obtained in Ref. 8:

dWz~Px ,p,km!5dPx

dw

2vn0
wz~Px ,p,km!,

wz~Px ,p,km!5exp@B~«,km!#$w0
0@11C̃0~p,km!#

1C0~Px ,p,gV ,gA!1~vj!$wvj
0 @1

1C̃vj~p,km!#1Cvj~Px ,p,gV ,gA!%

1wjn
0 zy0@11C̃jn~Px ,p,km!#

1vwvn
0 zy0@11C̃vn~Px ,p,km!#

1zC~Px ,p,gV ,gA!%. ~14!

For the purposes of the present work there is no need to w
out the detailed explicit expressions for the functionsC̃ and
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C, which are multiples of the fine structure constanta. If
km5D2«, the expression~14! represents the experiment
distribution ~13!. Instead of using~13! directly, it is more
convenient to process the experimental data2,3 using the
quantity
al
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X5
wexp

1 ~Px ,p!2wexp
2 ~Px ,p!

wexp
1 ~Px ,p!1wexp

2 ~Px ,p!
. ~15!

With consideration of~14!, the quantity defined by~15! can
be represented in the form
X5
v@wvj

0 ~11C̃vj!1Cvj#1wjn
0 y0~11C̃jn!1vwvn

0 y0~11C̃vn!1C

w0
0@11C̃0#1C0

. ~16!
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Thus, comparing~14! with the corresponding experiment
data for ~13! and ~16! ~Ref. 3!, we obtain an equation~in
addition to the ones used in Refs. 1 and 2! for Gud , gA ,... in
~2!. Thus, the value ofgA obtained in the experiments in Re
2 can be verified once again.16

However, in this way the value ofB, i.e., the coefficient
of (nn•j) in ~6! and ~10!, which we wish to find, canno
enter into the discussion at all, because integration ove
feasible antineutrino momenta was carried out during
derivation of~14!, and accordingly, the distribution~13! ob-
served in the experiment in Ref. 3 includes a contribut
from antineutrinos with all feasible momenta. Thus, we m
find another way that does not employ~14!, but properly
takes into account the influence of theg rays in the process
of extracting the value ofB from the experimental distribu
tion ~13! observed in Ref. 3.

4. ESTIMATION OF B FROM THE ELECTRON AND PROTON
MOMENTUM DISTRIBUTIONS

Clearly, in a hypothetical simplified case in which th
relations~12! are valid, the antineutrino kinematics would b
uniquely specified by the values ofp andPx detected in the
experiment in Ref. 3. Accordingly, without consideration
the g rays and under the assumption that the proton mas
infinite, i.e.,M→`, the distribution~14! transforms into

dWz~Px ,p!5dPx

dw

2vn0
wz~Px ,p!,

wz~Px ,p!5w0
0@11Azv1B0y0z1ay0v#, ~17!

while the antineutrino angular distribution takes on the fo
~10!. Thus, in this simplified case there would be a one-
one correspondence between the distribution~13!, which de-
scribes the experiment in Ref. 3, and the antineutrino ang
distribution~10!, the quantity (j•nn) in ~10! taking the value
of zy0 in ~17!, and the quantitydPx/2vn0 in ~17! replacing
dnn/4p in ~10!. Then a comparison of~17! with the experi-
mental distribution~13! ~Ref. 3! would yield the equation

wexp
z ~Px ,p!5 f 0~vn0!~11zAv !

1 f 0~vn0!y0~zB01av !. ~18!

Accordingly, the coefficient of (j•nn) in ~10! would be ex-
pressed directly in terms ofwexp

z ~13!:
ll
e

n
t

is

-

ar

B05
1

zy0f 0
@wexp

z 2 f 0~11zAv !2 f 0avy0#,

f 0

Gud
2 vn0

16p4 w0
0 , ~19!

or, as in Ref. 3, in terms ofX ~15!:

B05@X~11avy0!2Av#/y0 . ~20!

The value B050.982160.0040 was given in Ref. 3. O
course, we ignored all the uncertainties that inevitably ar
in a real experiment because of the sparse statistics, im
fect equiipment geometry, etc. This ultimately does not me
that we must regard the corresponding corrections as b
negligible, but our purpose here is to thoroughly investig
only the influence of theg rays on obtainingB by processing
the experimental data in Ref. 3. In~17!–~20! we added the
subscript 0 toB to stress that this value would be obtain
with exclusion of theg rays, as in~9! and ~10!. As we see,
B0 turns out to be expressed in terms off 0 , y0f 0 , andvn0

@~12! and ~19!#, which would be known exactly in this cas
for each event with the values ofPx andp that were detected
in the experiment in Ref. 3.

However, since neutronb decay, as has been we
known for a long time, is accompanied by the emission og
rays, the probability ofb decay was measured in the re
experiment in Ref. 3 with given values ofPx andp and with
inclusion ofg rays with all feasible values of the momentu
k. In describing each individual event the expressions fory0

andvn0 in ~12! undergo the following replacements:

y0→y~v!5cosunx5
Px2upu2xv

vn
, x5cosugx ,

f 0→ f ~v!5
Gud

2 vn

16p4 w0
0 , vn0→vn~v!5D2«2v,

~21!

wherev5uku is theg-ray energy andugx is the angle defin-
ing the direction of theg rays relative to thex axis ~see Fig.
1!. Thus, to uniquely reconstruct the antineutrino kinemati
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we would have to know the values ofv and x associated
with theg rays accompanying each individualb-decay event
with the values ofp andPx that were detected in the exper
ment in Ref. 3.

Of course, for realb decay, which is accompanied by th
emission ofg rays, the required coefficientB cannot be ex-
pressed according to~19! and~20! in terms off 0 , f 0y0 , and
vn0 , which themselves, strictly speaking, do not have rig
ous physical meaning. It is then natural to estimate the c
ficient B in ~6! by introducing into the discussion the e
pected valueŝ f & and ^y f& of f (v) and f (v)y(v,x) ~21!,
which replacef 0 and f 0y0 in a state with definite values o
Px , p, andz. The values of̂ f & and^y f& must be calculated
by averagingf (v) and f (v)y(v,x) over the momentum dis
tribution Wg

z(Px ,p,k) of the g rays accompanying deca
with given values ofPx , p, andz. To estimate the required
value ofB @given by ~8!# in ~6!, we must introduce the ex
pected valuêB& in terms of^y f& and ^ f &.

Recent experiments3 have detected only the total numb
n

n

an

e

-
r
n

-
f-

of b-decay events with definite values ofp and Px accom-
panied by the emission ofg rays with all kinematically fea-
sible values ofv andx, i.e., the integral

wexp
z ~p,Px!5E dk wexp

z ~p,Px ,k! ~22!

over all feasiblek. The problem is to be able to extrac
accurate information regarding the coefficientB ~8! in ~6!
from the experimentally observed distributio
wexp

z (p,Px)dp dPx ~13! ~Ref. 3!. Each individual decay even
with a given value ofk appears in the experimental quanti
wexp

z (p,Px) with its own individual weight and with a prob
ability Wg

z(p,Px ,k)dk of the emission ofg rays with a given
momentumk accompanyingb decay with given values ofp
and Px . Thus, ~18! can be replaced by a new relation,
which the experimentally observed quantitywexp

z (p,Px) is
equated to theb-decay probability averaged with the weig
Wg

z(Px ,p,k):
wexp
z ~p,Px!5

*dk Wg
z~Px ,p,k! f ~v!@11zAv1z^B&zy~v,x!1avy~v,x!#

*dk Wg
z~p,Px ,k!

5^ f &z~11zAv !1^y f&z~z^B&z1av !, ~23!

where we have introduced the ordinary averaging notation:

^F&z~Px ,p!5
*dk Wg

z~Px ,p,k!F~k!

*dk Wg
z~Px ,p,k!

5
*0

D2«v2 dv*x1

x2dx F~Px ,p,v,x!*0
2pdf Wg

z~Px ,p,v,x,f!

*0
D2«v2 dv*x1

x2dx*0
2pdf Wg

z~Px ,p,v,x,f!
. ~24!
e
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Here the limits

x1512~D1upu2«2Px!/v>21,

x25211~D2upu2«1Px!/v<1

follow simply from the kinematics of the process under co
sideration, the averaged values off (v) and f (v)y(v,x) be-
ing independent of the azimuthf of theg rays. The value of
Px varies in the range~11! for a given electron energy«. We
discuss the form of the distributionWg

z(Px ,p,k) and its main
properties somewhat later on. SinceWg

z(Px ,p,k) depends on
the neutron polarization (z56), all the mean values~24!
and ~23!, in turn, also depend onz, being different for the
different polarizationsz51 andz52.

Thus, we have~23!, which replaces the former relatio
~18!. SinceB0 in ~18! is the coefficient ofzy0f 0 , it should be
equal specifically to the asymmetry parameter of the
tineutrino angular distributionB0 ~9! in ~10!, as explained
above. Since we are dealing with the description of a r
experiment, the expression~23! defines^B&z, which is the
coefficient of the mean~expected! value ^y f&z, which re-
placesf 0y0 in ~18!. Comparing the distribution~23!, which
contains^B&z, and the antineutrino angular distribution~6!,
which containsB ~8!, we see that̂B&z can be used to esti
mate the value ofB ~8! in ~6! in the mean, which is now ou
goal. According to~23!, ^B&z(p,Px) can be expressed i
terms of the experimental values ofwexp

z (p,Px) ~22! ~Ref. 3!.
-

-

al

Of course, it would be desirable to calculate^B&z(p,Px) di-
rectly with the values ofwexp

z (p,Px), from which the value of
B0 @~19! and~20!# was obtained without consideration of th
g rays in Ref. 3. However, we are unable to calcula
^B&z(p,Px) from wexp

z (p,Px), because these measurement
sults were not explicitly given in Ref. 3. Therefore, we o
tain the expected valuêB&z(p,Px) @and then its dispersion
DBz(p,Px)# from B0 @~19! and ~20!#, rather than from the
values ofwexp

z (p,Px) themselves. The expression for^B&z in
terms of B0 can be obtained directly from~17!–~19! and
~23!:

^B&z5z@~11zAv !~ f 02^ f &z!

1y0f 0~av1zB0!#/^y f&z2zav. ~25!

As we see, we have obtained two different values
^B&z to describe the antineutrino angular distribution for t
two different neutron polarizationsz56. Obviously, ~25!
reduces tô B&z5B0 when ^ f &z5 f 0 and ^y f&z5 f 0y0 . Oth-
erwise, ^B&z turns out to be represented in the form of
function of the expected~mean! values of f (v) and
f (v)y(v,x). Thus, in order to assess the accuracy and e
the very possibility of such an estimate ofB using the mean
value ^B&z with complete confidence, we must ascertain t
form that the distributions off (v) and f (v)y(v,x) have in
the vicinity of the most likely~expected! values ^ f & and
^y f&, i.e., we must investigate the dispersion off (v) and
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f (v)y(v,x). Thus, along with the expected values^ f & and
^y f& themselves, we must also calculate the rms deviati
of f (v) and f (v)y(v,x) from their expected valueŝf & and
^y f&:

~D f !z5A^~D f !2&z5A^ f 2&z2~^ f &z!2,

~Dy f !z5A^~D~y f !!2&z5A^~y f !2&z2~^y f&z!2, ~26!

^D~ f •y f !&z5^ f •y f&z2^ f &z^y f&z.

Thus, the dispersion

DBz[A^~DBz!2&5A^B2&z2~^B&z!2, ~27!

which specifies the accuracy achieved in the estimate~25! of
B, can be expressed in the usual manner~see, for example
Ref. 20! in terms of the quantities in~26! and the derivatives

]^B&z

]^ f &z ,
]^B&z

]^y f&z . ~28!

Of course, in~26! the expected valueŝf 2&z, ^( f y)2&z, and
^ f 2y&z are obtained by averagingf 2(v), @ f (v)y(v,x)#2,
and f 2(v)y(v,x) in accordance with~24! with the weight
Wg

z(Px ,p,k).
Thus, the uncertainties in estimating the true value oB

in terms of^B&6 stem from the difference between^B&1 and
^B&2 themselves and from the appearance of the disper
DB6.

The expected valuêB&z is suitable for estimating the
true value ofB ~8! in ~6! when the distributions of the value
of f (v) and f (v)y(v,x) are ‘‘sharp,’’ i.e., when the ratios
D f /^ f & and D( f y)/^ f y& and, consequently,DB/^B& for
given values ofPx and p are very small~essentially negli-
gible! compared to the errors entailed in determiningB to a
desirable accuracy in Ref. 3. The value of the ratioDB/^B&
essentially sets the limit of the accuracy of obtaining
value ofB ~8! in ~6! by processing the experimental data f
~13! in Ref. 3. If the distributions off (v) and f (v)y(v,x)
in the vicinity of ^ f & and^ f y& for certain values ofPx andp
are so spread out thatD f /^ f &;1 andD( f y)/^ f y&;1 and,
accordingly,DB/^B&;1, then there will not be any basis fo
estimating the value ofB ~8! in ~6! in terms of^B&z. In such
a case the antineutrino kinematics and the antineutrino a
lar distribution~6! cannot be reconstructed from the expe
mentally observed3 distribution ~13! even in the mean. Fo
such circumstances and for such values ofPx andp there is
no reasonable way to accurately estimate the value ofB ~8!
in ~6! using the experimental data in Ref. 3.

Thus, we must clearly understand to what limits and
what accuracy we are capable of reconstructing the
tineutrino kinematics, having at our disposal only expe
mentally observed3 values ofwexp

z (p,Px) ~13! for given val-
ues ofp and Px without detecting theg rays. The problem
facing us is therefore to calculate the uncertainties in estim
ing B in terms of^B&z and, in essence, to ascertain the phy
cal meaning of introducinĝB&6 for given values ofp and
Px . Of course, if the differencesB62B0 between the cal-
culated values ofB6 ~25! and B0 @~19! and ~20!# found in
Ref. 3, like the values ofDB6 ~27!, are actually negligible
for anyp andPx in comparison to the measurement error
s
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e
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f

B stated in Ref. 3,DB'0.4%, then consideration of theg
rays would be superfluous; however, this is not the case
reality.

5. CALCULATION OF ŠB ‹

z AND DB z; DISCUSSION OF
RESULTS

The distributionWg
z(Px ,p,k) in ~23! and ~24! can be

obtained to first order ina according to Ref. 8 for theb
decay of polarized neutrons directly from~1!–~3! in the same
way that the probabilityWg(v) of the emission ofg rays
with an energyv was calculated back in Ref. 5 for all fea
sible values ofPx , p, andk/k in the case of theb decay of
unpolarized neutrons. Then, after integrating theg-ray distri-
bution Wg

z(Px ,p,v,x,f) over df, which is contained in
~24!, calculating the expected values^ f &z and^ f y&z in ~23!–
~28! reduces to averaging corresponding values off (v) and
f (v)y(v,x) with the function

v2dv dx dp dPxE
0

2p

df Wg
z~Px ,p,v,x,f!

5S eGud

2&
D 2

8

~2p!7

1

4«2

vn

@12xv#2

1

v
dx dv dPxdp

3$~12x2!«v@v~«1v!~gV
213gA

2 !1y~v1v2«!

3~gV
22gA

2 !#1v2@~gV
213gA

2 !1yx~gV
22gA

2 !#

3~12vx!12zgA@~12x2!«v@~gV2gA!

3~v2«1v!1~gV1gA!vy~«1v!#1v2

3~12vx!@~gV2gA!x1~gV1gA!y##%. ~29!

However, this expression, in and of itself, is still not app
cable directly to the calculation of~23!–~28! because of the
explicit nonintegrable singularity atv→0, which leads to
logarithmic divergence when~24! is integrated overdv.
Since the averaged values off (v) and f (v)y(v,x) are not
dependent onx when v→0, we are concerned essential
only with the correct behavior of the distributio
Wg

z(p,Px ,v,x,f) integrated overdx df at v→0. To sys-
tematically describe theg rays at smallv, wherea ln(D/v)
>1, i.e., infrared radiation, the processes which involve
arbitrary number of ‘‘soft’’ photons must be taken int
account.15 In accordance with the method described in Re
9 and 15, the correct behavior of theg-ray distribution at
v→0 can be obtained, according to Ref. 8, by making
following replacement in~29! at v→0:

1

v
→ 1

m S m

v D 12o

, o5
2a

p F1

v
lnS «1upu

m D21G . ~30!

It might be appropriate to recall that at such small valu
of v→0, wherea ln(D/v)>1, we are dealing with the iso
tropic emission of an unspecified, infinite number of ‘‘soft
photons,9,15 i.e., the classical emission ofg rays occurs under
such conditions. Systematic consideration of the emissio
infraredg rays ~‘‘soft photons’’! leads, according to Ref. 8
to the multiplier exp@B(«,km)# in formulas~6! and~14!, and
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TABLE I. Values of (̂ B&62B0)/B0 ~in percent! as a function of« andy0 ~see the text!.

«,
MeV

y0

20.80 20.40 20.20 20.10 20.05 0.05 0.10 0.20 0.40 0.80

(^B&12B0)/B0

0.55 0.00 20.04 20.12 20.28 20.59 0.66 0.34 0.19 0.10 0.03
0.70 20.01 20.09 20.25 20.57 21.20 1.34 0.70 0.38 0.21 0.08
0.80 20.02 20.12 20.33 20.74 21.57 1.74 0.91 0.49 0.27 0.11
0.90 20.02 20.15 20.40 20.90 21.90 2.11 1.10 0.59 0.33 0.14
1.00 20.03 20.17 20.47 21.05 22.20 2.45 1.28 0.69 0.39 0.17
1.25 20.04 20.23 20.62 21.37 22.86 3.20 1.66 0.89 0.50 0.24

(^B&22B0)/B0

0.55 0.02 0.08 0.17 0.34 0.67 20.65 20.32 20.15 20.06 20.01
0.70 0.03 0.13 0.29 0.58 1.17 21.18 20.58 20.28 20.12 20.02
0.80 0.03 0.15 0.34 0.70 1.40 21.43 20.71 20.34 20.15 20.03
0.90 0.04 0.17 0.38 0.79 1.59 21.64 20.81 20.40 20.18 20.04
1.00 0.04 0.18 0.42 0.86 1.74 21.81 20.90 20.44 20.20 20.05
1.25 0.05 0.21 0.49 1.01 2.03 22.14 21.07 20.52 20.24 20.07
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then ~29! and ~30! can also be derived directly by differen
tiating ~14! with respect tokm and then plugging inkm5D
2« ~Ref. 8!.

With the distributionWg
z(Px ,p,k) @~29! and ~30!# the

integrals~24! do not diverge, and the values of^B&z(Px ,p)
and DBz(Px ,p) can be calculated directly. It is noteworth
that as the fine structure constanta→0, all the values of~24!
calculated withWg

z(Px ,v,p,x,f) @~29! and ~30!# become
equal to the values ofF(0) found by averagingF(v) at v
50. In fact, whena50, the value ofo in ~30! also vanishes,
and the normalization integral overdv in the denominator in
~24! diverges logarithmically at the lower limitv→0. Ac-
cordingly, if the numerator in~24! had a finite value, the
entire expression~24! would vanish. Expanding the average
function in v, F(v)'F(0)1vF8(0)1..., we seethat all
terms containingv make finite contributions to the integra
in the numerator in~24!, while the term withF(0) is exactly
a multiple of the normalization integral in the denominat
This normalization integral cancels out, and each value
~24! simply reduces toF(0). Thus, ata→0, we would have

^ f ~v!&z→ f ~0![ f 0 , ^y~v!&z→y~0![y0 ,
.
f

^ f ~v!y~v!&z→ f ~0!y~0![ f 0y0 , ~31!

^B&z5B0

and all the uncertainties would vanish:

D f 5D~y f !5DB50.

Thus, according to its physical meaning, formula~25! would
transform into~19! if a were to vanish, and we would obtai
the result corresponding to the idealized case in whichg rays
do not enter into the calculation, as assumed in Ref. 3.

The results of the calculation of^B&z andDBz are pre-
sented in Tables I and II. Table III shows which value ofPx

corresponds to specific values ofy0 and«. The first row in
each table contains the values ofy0 ~12!, and the electron
energies~in Mev! are given in the first column. Thus, eac
value of the parameters in the tables corresponds to a defi
pair of values ofy0 and «. In these results,y0 varies from
20.8 to 10.8, as in Ref. 3. Table I presents the values o

^B&62B0

B0
•100, ~32!
.68

.28

.64

.96

.24

.82

.56

.65

.71

.77

.83

.95
TABLE II. Same as in Table I, but forDB6/^B&6.

«,
MeV

y0

20.80 20.40 20.20 20.10 20.05 0.05 0.10 0.20 0.40 0.80

DB1/^B&1

0.55 0.39 1.53 4.48 10.34 22.01 24.53 12.85 6.96 3.86 1
0.70 0.37 2.14 5.92 13.45 28.44 31.82 16.62 9.00 5.05 2
0.80 0.41 2.45 6.67 15.05 31.70 35.58 18.54 10.02 5.64 2
0.90 0.45 2.70 7.29 16.37 34.39 38.76 20.15 10.87 6.14 2
1.00 0.48 2.92 7.82 17.50 36.67 41.51 21.54 11.60 6.56 3
1.25 0.57 3.37 8.97 19.74 41.18 47.09 24.34 12.98 7.38 3

DB2/^B&2

0.55 1.19 3.29 6.47 12.47 24.31 22.99 11.05 5.04 1.96 0
0.70 1.01 3.37 7.07 14.04 27.75 27.43 13.38 6.32 2.66 0
0.80 0.96 3.40 7.27 14.56 28.85 29.02 14.20 6.77 2.92 0
0.90 0.94 3.43 7.40 14.89 29.55 30.13 14.77 7.08 3.10 0
1.00 0.93 3.45 7.50 15.13 30.02 30.96 15.18 7.31 3.24 0
1.25 0.94 3.51 7.72 15.48 30.68 32.38 15.87 7.61 3.46 0
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TABLE III. Same as in Table I, but forPx ~in MeV!.

«,
MeV

y0

20.80 20.40 20.20 20.10 20.05 0.05 0.10 0.20 0.40 0.80

0.55 20.39 20.09 0.05 0.13 0.17 0.24 0.28 0.35 0.50 0.8
0.70 0.00 0.24 0.36 0.42 0.45 0.51 0.54 0.60 0.72 0.
0.80 0.22 0.42 0.52 0.57 0.59 0.64 0.66 0.71 0.81 1.
0.90 0.43 0.58 0.66 0.70 0.72 0.76 0.78 0.82 0.90 1.
1.00 0.62 0.74 0.80 0.83 0.84 0.87 0.89 0.92 0.98 1.
1.25 1.11 1.12 1.13 1.14 1.14 1.14 1.15 1.15 1.16 1.
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i.e., the deviations of̂B&z ~25! from B0 ~19! in percent. For
example, we conclude from Tables I and II that fory050.2
and«51 Mev, B1 exceedsB0 by 0.69%, while for the cor-
responding values of« and Px , B2 is 0.44% less thanB0 .
The differences in Table I increase significantly with d
creasinguy0u. It becomes clear from these tables that t
differences^B&62B0 and ^B&12^B&2 cannot be consid-
ered negligible so long as we are dealing with an accurac
1% or better in the determination ofB. Thus, the results in
Table I are enough convince us that there is no basis
assume that an accuracy of;0.4% is achieved in determin
ing B by processing the experimental data in Ref. 3, in wh
g rays are not taken into account.

To continue, the values of

DB6

^B&6 •100, ~33!

which represent the widthDBz ~dispersion! of the possible
distribution of values ofB about the expected~mean! value
^B&z, are given in Table II. Of course, having only the o
servablewexp

z (p,Px) ~13! ~Ref. 3! at our disposal, we are no
able to estimate the true value ofB to an accuracy better tha
DBz(y0 ,«), as explained above. However, as can be s
from Table III, even the smallest uncertaintiesDB for uy0u
50.8 reach;1%, and the values ofDB rise very quickly
with decreasinguy0u, as do the values in Table I. From th
data in the tables we conclude that the uncertainties in
estimation ofB due to the large dispersionDB6 are far more
significant than those due to the difference between^B&1

and^B&2. Thus, it is unreasonable to determine the value
B ~8! in ~6! by processing the experimental data in Ref. 3
values ofp andPx corresponding to small values ofuy0u.

Of course, there is nothing surprising in the fact that
quantities in Table I and especially in Table II increase v
rapidly asy0→0. The physical reason for such behavior
^B& andDB is perfectly clear. In fact, wheny0'0, i.e., when
upu'Px , the presence of the termxv in y(v) ~21! leads to
significant values of the ratios (y2y0)/y0 and (Dy f )/^y f&
for all v, no matter how small. In this case the presence og
rays completely alters the antineutrino kinematics in co
parison to the kinematics that would be observed in the
sence of electromagnetic interactions. The values of (^B&6

2B0)/B0 andDB6/^B&6, in turn, increase significantly an
can even become arbitrarily large asuy0u→0. Of course, un-
der these conditions we can say nothing definite about
expected~mean! values of these parameters.
-
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This result leads us to a clear understanding that ther
no significant physical basis to use the experimental data
small values ofuy0u;0.1 to obtain a credible value of th
asymmetry parameterB of the antineutrino angular distribu
tion. Having at our disposal only the probability of theb
decay of polarized neutrons for given values ofp and Px

without detecting the accompanyingg rays, we are able to
reconstruct the antineutrino angular distribution only to
approximation, on the average, and accordingly to estim
the value ofB based on the results in the tables to the sa
approximation. One can then conclude that the determina
of B becomes invalid and essentially devoid of any credib
ity when events corresponding touy0u<0.1 are included in
the analysis without assigning an appropriate weight to th
Processing the experimental data at other than these s
values of uy0u, we can claim to obtain a semiquantitativ
estimate ofB to an accuracy of roughly several percent.
the best case it can be assumed that an accuracy better
1% can be achieved in reconstructingB from the electron
and proton momentum distributions in Ref. 3 by taking in
account only events withuy0u'0.821.0.

6. CONCLUDING REMARKS

We thus have no basis for neglecting the emission og
rays in finding the value ofB, or confirming the very high
accuracy of'0.4% in the measurement ofB claimed in Ref.
3.

It should be clear and should be specially stressed
the uncertainties introduced by the undetectedg rays in the
process of obtainingB, i.e., the differencesuB12B2u and
uB62B0u and the dispersionDBz, cannot be eliminated o
even diminished by improving the statistics in the expe
ment in Ref. 3 or by skillfully improving any of the existing
experimental equipment.3 The values listed in the tables wer
obtained during our analysis, because the antineutrino k
matics can be reconstructed from the measurements ofp and
Px in Ref. 3 only in the mean, since theg rays were not
detected. In any decay event the antineutrino kinema
could be uniquely reconstructed if theg-ray momentum were
detected along with the values ofp andPx . Accordingly, an
experiment should be set up to detect triple coincidence
the decay of polarized neutrons, i.e., events in whichv andx
~21! of the accompanyingg rays are detected simultaneous
with p andPx . There would then be a one-to-one correspo
dence between such an observed triple distribution and



ar
th

fo
a

ly

-

d

n
th

e
al
th

in

th
d

-
-

un

S.

K.

S.

.

d

n.

-

820 JETP 89 (5), November 1999 G. G. Bunatyan
antineutrino angular distribution, in which the parameterB
of interest to us would appear. Despite the difficulty of c
rying out such an experiment, there is no reason to doubt
it is feasible if it actually turns out to be necessary.

The conclusion to be drawn from our calculations~see
Table I! is that the uncertainties inB due tog rays could
have been reduced to<1% if the value ofB had been ex-
tracted in Ref. 3 by processing experimental data only
uy0u>0.8. Thus, it might be reasonable to reprocess the d
in Ref. 3 with consideration of this limitation, and to direct
calculate the expected value^B&z(p,Px) and its dispersion
DBz(p,Px) according to~23! from the corresponding mea
sured values ofwexp

z (p,Px) ~22! ~Ref. 3!.
We also recall that, as noted in Sec. 3@see~14!–~16!#,

the experimental data obtained in Ref. 3 might be used
rectly to find the value ofgA in ~2!. Of course, explicit,
complete expressions for C̃(Px ,p,gV ,gA) and
C(Px ,p,gV ,gA) in ~14! must be obtained. This can esse
tially be accomplished in exactly the same way that all
coefficients in ~6! were previously obtained.8 Conversely,
having the value ofgA obtained in Ref. 2 at our disposal, w
can substitute it into~14! to see whether the experiment
data in Ref. 3 are thereby reconstructed. A discussion of
values ofgA obtained from different experiments is given
Ref. 16.

In light of the foregoing~see Sec. 2! regarding the im-
portance of establishing the values of bothB itself and ofgA

to the required high accuracy, it becomes perfectly clear
the investigations performed in Refs. 3 and 4 should be
veloped as vigorously as possible.
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Common vacuum conservation amplitude in the theory of the radiation of mirrors
in two-dimensional space-time and of charges in four-dimensional space-time
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The changes in the action~and thus the vacuum conservation amplitudes! in the proper-time
representation are found for an accelerated mirror interacting with scalar and spinor vacuum fields
in 111 space. They are shown to coincide to within a factor ofe2 with changes in the
action of electric and scalar charges accelerated in 311 space. This coincidence is attributed to
the fact that the Bose and Fermi pairs emitted by a mirror have the same spins 1 and 0 as
do the photons and scalar quanta emitted by charges. It is shown that the propagation of virtual
pairs in 111 space can be described by the causal Green’s functionD f(z,m) of the wave
equation for 311 space. This is because the pairs can have any positive mass and their
propagation function is represented by an integral of the causal propagation function of a
massive particle in 111 space over mass which coincides withD f(z,m). In this integral the lower
limit m is chosen small, but nonzero, to eliminate the infrared divergence. It is shown that
the real and imaginary parts of the change in the action are related by dispersion relations, in which
a mass parameter serves as the dispersion variable. They are a consequence of the same
relations forD f(z,m). Therefore, the emergence of a real part in the change in the action is a
direct consequence of causality, according to which ReDf(z,m)Þ0 only for timelike and
lightlike intervals. © 1999 American Institute of Physics.@S1063-7761~99!00211-5#
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1. INTRODUCTION

An intriguing symmetry between the creation of partic
pairs by an accelerated mirror in 111 space and the emis
sion of single quanta by a charge accelerated as a mirro
311 space was discovered in Refs. 1–3. This symmetr
confined to coincidence of the spectra of the Bose and Fe
pairs created by the mirror with the spectra of the phot
and scalar quanta emitted by electric and scalar charge
twice the frequenciesv andv8 of the quanta in a pair cre
ated by the mirror are identified with the componentsk6

5k06k1 of the 4-wave vectorka of the quantum emitted by
the charge:

2v5k1 , 2v85k2 . ~1!

It was shown in Ref. 3 that the Bogolyubov coefficien
bv8v

B and bv8v
F , which describe the spectra of Bose a

Fermi radiation of a mirror, are related to the Fourier tra
forms of the 4-current densityj a(k1 ,k2) and the scalar
charge densityr(k1 ,k2), which describe the spectra of pho
tons and scalar quanta emitted by charges:1!

bv8v
B* 52Ak1

k2

j 2

e
5Ak2

k1

j 1

e
, ~2!

bv8v
F* 5

1

e
r~k1 ,k2!. ~3!

It was also shown thatbv8v
* is the source amplitude of a pa

of particles which are only potentially emitted to the rig
and to the left with the frequenciesv andv8. In other words,
it is the virtual-pair creation amplitude. The pair becom
8211063-7761/99/89(11)/9/$15.00
in
is

i
s

, if

-

s

real when one of its particles undergoes internal reflect
with a frequency change and both particles move in the sa
direction, i.e., to the right in the case of a right-sided mirr
and to the left in the case of a left-sided mirror. Therefo
for a right-sided mirror, for example, the emission amplitu
^out v9vu in& of a real pair of particles with the frequencie
v and v9 is related to the virtual-pair creation amplitud
bv8v

* by

^out v9vu in&52(
v8

^out v9uv8 in&bv8v
* , ~4!

where ^out v9uv8 in& is the amplitude of single-particle
scattering on the mirror. The energy and momentum of t
real pair equalv1v9 and v1v9, i.e., the pair does no
have mass, nor do its components.

A virtual pair is another matter. According to~1!, the
zeroth and first components of the 4-momentumka of a
quantum emitted by a charge are equal to the energy
momentum of a virtual pair of massless particles created b
mirror:

k05v1v8, k15v2v8, ~5!

and form the timelike 2-momentum of the pair in 111
space. Clearly, the quantity

m5Ak1k252Avv8, ~6!

being an invariant of Lorentz transformations along axis 1
the mass of the virtual pair, and at the same time it equals
transverse momentumk'5Ak2

21k3
2 of the massless rea

quantum emitted by the charge.
© 1999 American Institute of Physics



-
n
u
r
o
pa
by

-

o
n

-

e
pr
tia

d
g
a

if

2,
e
ep
al

b

ed
th
h
er
ra

th
o

tio
s

rac-

ges
n-
e

n

for

n

ns

the
pa-

me
tion

2
les:

he

nite

ri-

n

822 JETP 89 (5), November 1999 V. I. Ritus
The fact that the source amplitudebv8v
B of a virtual pair

of bosons is specified by the currentj a(k1 ,k2), while the
source amplitudebv8v

F of a virtual pair of fermions is speci
fied by the scalarr(k1 ,k2), means that the spin of a boso
pair equals 1, while the spin of a fermion pair equals 0. Th
the coincidence between the emission spectra of a mirro
111 space and charges in 311 space can be attributed t
the coincidence between the angular momentum of a
emitted by the mirror and the spin of a particle emitted
the charge.3

The relation~2! can be written in the manifestly invari
ant form

ebv8v
B* 5«abka j b/Ak1k2, ~7!

and, more specifically, in the form of the scalar product
the 2-vector currentj b and the 2-pseudovector polarizatio
ab of a Bose pair

ab5
«abka

Ak1k2

, a052
k1

Ak1k2

, a15
k0

Ak1k2

. ~8!

The spacelike pseudovectorab is constructed from the ze
roth and first components of the 4-momentumka of the
quantum emitted by the mirror. It is orthogonal to th
2-momentum of the pair, has length 1, and can be re
sented in the comoving frame of the pair by just a spa
component, like the current vectorj a.

In this paper we find the vacuum conservation amplitu
for acceleration of a mirror, which is defined by the chan
DW in the self-interaction of the mirror due to its acceler
tion. In essence, the problem here is finding ReDW from the
previously found quantity ImDW, twice the value of which
coincides in a certain approximation~see below! with the
mean number of real pairs formed by the mirror. Three d
ferent methods are used for this purpose.

The first~and principal! method is considered in Sec.
and involves transforming the original space-time repres
tation for the mean number of pairs into an proper-time r
resentation, whose kernel turns out to be the relativistic
invariant singular even solution (1/2)D1(z) of the wave
equation in 311 space. Then, the functionD1(z) in the
expression obtained for the number of pairs is replaced
the even solutionD1(z,m) of the Klein–Gordon equation in
order to invariantly and symmetrically eliminate the infrar
divergence in the integral for the number of pairs using
small mass parameterm instead of the large trajectory-lengt
parameterL used in the original expression. The paramet
m, L21!k, if k is the characteristic acceleration on the t
jectory. Finally, by treating the function (1/2)D1(z,m) as the
imaginary part of the kernel definingDW, we can recon-
struct a relativistically invariant kernel which is even inz
and coincides with the causal Green’s functionD f(z,m) spe-
cific to 311 space by finding the analytic continuation wi
respect toz2. The resultant changes in the action of a mirr
and a charge differ only by a factor ofe2, and the interac-
tions are described by the same causal propagation func
Thus, the difference in dimensionality between the space
s,
in

ir

f

e-
l

e
e
-

-

n-
-

ly

y

e

s
-

r

n.
is

compensated by the difference in the mechanism of inte
tion transfer: it is mediated by pairs in 111 space and by
individual particles in 311 space.

Section 3 presents a direct calculation of the chan
DWf

B,F in the self-interaction for a concrete, but fairly ge
eral mirror trajectory. The invariant functions of the relativ
velocity of the trajectory ends obtained forDWf

B,F are con-
sistent with the results of Sec. 2.

In Sec. 4 ReDWf is reconstructed from ImDWf using
dispersion relations, in whichm appears as the dispersio
variable. It is shown that the dispersion relations forDWf are
a consequence of the same relations forD f(z,m) with a time-
like z as the variable. As a consequence of causality only
suchz, the values of ReDf and ReDWf are nonzero and are
related to ImDf and ImDWf , respectively, by the dispersio
relations.

The fifth section examines other analytic continuatio
of iD1/2 onto the realz2 axis that lead to kernels forDW
whose real parts are not even inz.

A physical interpretation of the results is presented in
sixth, concluding section. The emergence of a causal pro
gation function characteristic of four-dimensional space-ti
in two-dimensional space-time can be attributed to media
of the interaction by pairs of differing mass.

2. PROPER-TIME REPRESENTATION OF THE CHANGE IN
THE ACTION

The following representations were obtained in Ref.
for the mean numbers of radiated Bose and Fermi partic

NB,F5
1

4p2 E
2`

`

du KB,F~u!, ~9!

KB~u!5«2`

` dv
v2 f ~u! F 1

g~v !2u
2

f 8~u!

v2 f ~u!G , ~10!

KF~u!52Af 8~u!E
2`

` dv
v2 f ~u!

F Ag8~v !

g~v !2u
2

Af 8~u!

v2 f ~u!
G .

~11!

It follows from these representations for trajectories with t
asymptotically constant velocitiesb1 andb2 at the ends and
a nonzero Lorentz-invariant relative velocity

b215
b22b1

12b2b1
, u5tanh21 b21, ~12!

that the mean number of massless quanta emitted is infi
~there is infrared divergence!. In fact, in this case it follows
from formulas~10! and~11! for u→6` ~more precisely, for
uuu@k21, i.e., outside the region where the mirror expe
ences the characteristic accelerationk! that the functions
KB,F(u) exhibit universal behavior, which depends only o
b21:

KB~u!'6
1

u S ue7u

sinhu
21D56

1

u S u

tanhu
21D2

u

u
, ~13!

KF~u!'6
1

u S 12
u

sinhu D . ~14!
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The coefficients ofu21 are relativistically invariant on the
portions of the trajectories with asymptotically constant v
locities. As a result, the mean number of quanta emitted o
portion of the trajectory covering the acceleration reg
grows logarithmically as the length 2L of that portion is
increased:

NB5
1

2p2 S u

tanhu
21D ln~Lk!12bB~u!, ~15!

NF5
1

2p2 S 12
u

sinhu D ln~Lk!12bF~u!, Lk@1. ~16!

Let us focus our attention on the fact that the odd~with
respect to bothu andu! term in the asymptote ofKB(u) does
not contribute to the integral definingNB. The terms 2bB,F

do not depend onL if Lk@1, but they can depend on th
specific form of the trajectories.

We note that there are representations forNB,F which
differ from ~9!–~11! by mirror symmetry, i.e., by the replace
mentsu�v and f (u)�g(v). The integrandsKB,F(v) de-
fining them differ fromKB,F(u), but are denoted below b
the same letter, since they are values of the same functi
taken for a mirror-symmetrical pair of trajectories:K(u)
[K@u;g# and K(v)[K@v; f #. As v→6`, KB,F(v) have
asymptotes which differ from~13! and ~14! by the replace-
mentsu→v andu→2u.

The vacuum conservation amplitude of an accelera
mirror is specified by the change in the actionDW5Wu0

F

~i.e., the difference between the actions for the accelera
and unaccelerated mirror! and has the form exp(iDW), where
2 ImDW5N, if the interference effects in the creation of tw
or more pairs are neglected. Here we consider a particle
an antiparticle to be nonidentical; otherwise, in the same
proximation 2 ImDW5(1/2)N ~see Ref. 3!.

Now the main task is to find ReDW. For this purpose,
we obtain a suitable representation for ImDW and utilize
relativistic invariance and causality arguments.

Let us consider the space-time representation forN
which was the direct ‘‘parent’’ of the representation~9!–~11!
@see Ref. 2#. In this representation

NB5E E
2`

`

du dvS~u,v !u0
F ,

S~u,v !5
1

8p2 F 1

~v2 f ~u!2 i«!~g~v !2u2 id!
1c.c.G .

~17!

We go over from the independent characteristic variableu
andv to the moments in proper timet andt8 of two points
on the world trajectory of the mirrorxa(t):

u5x0~t!2x1~t!5x2~t!,

v5x0~t8!1x1~t8!5x1~t8!. ~18!

Then

f ~u!5x0~t!1x1~t!5x1~t!,

g~v !5x0~t8!2x1~t8!5x2~t8!, ~19!
-
a

al

d

ed

nd
p-

and S(u,v) becomes a relativistically invariant function o
the two-dimensional vectorza5xa(t)2xa(t8)[(x2x8)a

joining the pointsxa5xa(t) andx8a5xa(t8) on the mirror
trajectory:

S~z!5
1

8p2 F 1

~x18 2x12 i«!~x28 2x22 id!
1c.c.G

5
1

8p2 F 1

z1z21 i« sgnz0 1c.c.G
5

1

8p2 F 1

2z21 i« sgnz0 1c.c.G52P
1

4p2z2 . ~20!

The individual terms in~20! and their sum are well-known
relativistically invariant singular functions in quantum ele
trodynamics~we use Thirring’s notation,4 but ourD1 andD1

lack the factori !:

D6~z!5
6 i

4p2~z26 i« sgnz0!

5
1

4p2 Fp«~z0!d~z2!6
i

z2G , ~21!

D1~z!5
1

2p2z2 ,

so that

S~z!52
i

2
@D2~z!2D1~z!#52

1

2
D1~z!. ~22!

We stress that these functions are singular solutions of
wave equation in 311 space, ifza is construed to be a
four-dimensional, rather than a two-dimensional, vect
Here the presence of these functions, which depend on
2-vectorza, is the result of a deep symmetry between t
creation of a pair by a mirror in 111 space and the emissio
of single quanta by a charge in 311 space.

Using

du dv5dt dt8ẋ2ẋ18 5dt dt8F1

2
~ ẋ2ẋ18 1 ẋ1ẋ28 !

1
1

2
~ ẋ2ẋ18 2 ẋ1ẋ28 !G

5dt dt8~2 ẋaẋ8a1«abẋaẋ8b! ~23!

in the form of a sum of terms which are even and odd w
respect to the interchanget�t8 ~a dot denotes differentia
tion with respect to the proper time!, we obtain

NB5E E
2`

`

dt dt8~ ẋaẋ8a2«abẋaẋ8b!
1

2
D1~z!U

0

F

. ~24!

It is natural to use a manifestly relativistic method th
preserves the symmetry under the interchanget�t8 to
eliminate the infrared divergence in~24!. It consists of re-
placingD1(z) by D1(z,m), which is also even inz and has
the small mass parameterm!k, wherek is the characteristic
acceleration of the mirror.
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This function

1

2
D1~z,m!5

m

8ps
N1~ms!

52
1

4p2s2 2
m

4p2s
J1~ms!ln

2

ms
1R ~25!

~whereJ1 andN1 are Bessel and Neumann functions, andR
is a regular function ofs! is a singular solution of the wav
equation in 311 space, which depends only on the interv
s5A2z2 between the two points and preserves all the f
tures with respect tos at s50. It is called the Hadamard
elementary function or the fundamental solution.5 The coef-
ficient of the logarithm, which is called the Rieman
function,5 is a regular function ofs, which satisfies the sam
equation asD1. Just these two functions define the imagina
and real parts of the change in the action.

Thus,

NB5E E
2`

`

dt dt8~ ẋaẋ8a2«abẋaẋ8b!
1

2
D1~z,m!U

0

F

.

~26!

In the expressions forNB the odd term is insignificant
sinceD1(z) andD1(z,m) are even under the replacementz
→2z.

Now regardingN as the imaginary part of twice th
action, we naturally consider (1/2)D1(z,m) to be the imagi-
nary part of some functionF(z2), which is taken on the rea
z2 axis and which is analytic in thez2 complex plane with a
cut along thez2<0 semiaxis, where Lorentz invariance a
lows it to still depend on the sign ofz0, and coincides with
( i /2)D1(z,m) at z2.0. Then the transition fromiNB to 2W
is equivalent to the analytic continuation ofF(z2) onto the
real semiaxisz2<0. It is generally known6 that the boundary
value of such a function, which does not depend on the s
of z0, and is therefore even, is the limit from above («→
10), which is called a causal function:

D f~z,m!5F~z21 i«!5
m

4p2s
K1~ ims!

5
1

4p
d~s2!2

m

8ps

3@J1~ms!2 iN1~ms!#. ~27!

HereK1 is the modified Bessel function of the second kin
and s5A2z22 i«. The latter equality was written forz2

<0, wheres>0 andD f has a real part, which coincides wit
the Riemann function multiplied byp/2. If z2.0, then
s52 iAz2, D f is purely imaginary, and its imaginary part
positive.

Thus, forDWf
B we obtain

DWf
B5

1

2 E E dt dt8ẋa~t!ẋa~t8!D f~z,m!U
0

F

. ~28!

As shown in Ref. 2, the space-time representation forNF

differs from the representation~17! for NB by the additional
l
-

n

,

factor2Af 8(u)g8(v) under the integral. Therefore, after th
replacement of variables~18!, instead of~23! we have

2du dvAf 8~u!g8~v !52dt dt8. ~29!

Then

NF5
1

2 E E dt dt8D1~z,m!U
0

F

, ~30!

and the change in the action is

DWf
F5

1

2 E E dt dt8D f~z,m!U
0

F

. ~31!

The proper-time representations obtained forDWf
B,F dif-

fer from the changesDW1 andDW0 in the self-interactions
of electric and scalar charges moving along the same tra
tories as the mirror, but in 311 space, only by the absenc
of the factore2.

As m→0, the coefficients of lnm21 in the imaginary
parts of the proper-time integrals~28! and ~31! should coin-
cide with the coefficients of lnL in the corresponding expres
sions forNB andNF @see~15! and ~16!#, since these coeffi-
cients cannot depend on the method used to eliminate
infrared divergence in the different representations forNB

and forNF.
Since for an interval between two points on the timeli

trajectory

ReD f~z,m!52
m

8ps
J1~ms!, ~32!

which differs from the coefficient of the logarithm in ImDf

only by the factorp/2 @see~27! and ~25!#, ReDWf also dif-
fers by the same factor from the coefficient of lnm21 in
Im DWf . Thus, to within terms which vanish atm→0, we
have

DWf5pa~u!1 i Fa~u!ln
k2

m2 1b~u!G , ~33!

aB~u!5
1

8p2 S u

tanhu
21D ,

aF~u!5
1

8p2 S 12
u

sinhu D . ~34!

The functionb(u) can depend on other dimensionless p
rameters, for example, the velocity changes on portions
the trajectory containing other extreme values of the s
acceleration.

It is significant that ReDWf5pa has a finite positive
limit at m→0, which is positive foruÞ0.

To conclude this section we recall that ReDWf is the
acceleration-induced self-energy shift of the source in
grated over the proper time and that 2 ImDWf is the mean
number of pairs emitted~or particles emitted in the
case of nonidentity to the antiparticles!. More precisely,
exp(22 ImDWf) is the probability of the noncreation of pair
during all the time of acceleration.
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3. CHANGE IN THE ACTION IN THE CASE OF
QUASIHYPERBOLIC MIRROR MOTION

It would be interesting to directly calculateDWf
B,F for

the special, but very important mirror trajectory

x5j~ t !5v`Av`
2

k2 1t2, ~35!

which can be called quasihyperbolic. Here6v` are the ve-
locities of the mirror att→6`, andk is its acceleration a
the turning point (t50). This motion is remarkable in that a
v`→1, it becomes increasingly close to uniformly accel
ated ~hyperbolic! motion over the increasingly longer tim
interval

utu&t15
v`

k
~12v`

2 !21/2,

smoothly going over to uniform motion outside this interv
This can be seen from the expression for the magnitud
the acceleration in the comoving frame

a5kS 11
t2

t1
2D 23/2

.

The spectrum and total radiated energy were found for
electric charge moving along the trajectory~35! in Ref. 7.

To calculateDWB, in ~28! instead oft we use the vari-
ableu, which is defined by the formula

t5
v`

k
sinhu.

Then

dt dt8ẋa~t!ẋa~t8!52dx dy
v`

2

k2 S 11v`
2

2
coshx

1
12v`

2

2
cosh 2yD , ~36!

~x2x8!2522
v`

2

k2 ~coshx21!@v`
2 1~12v`

2 !cosh2 y#,

x5u2u8, y5
u1u8

2
,

andDWB can be expressed in terms of an integral of mo
fied Bessel functions

DWB52
1

32p2 E
0

` dj

j2 e2 im2jE
2`

`

dy
v`

2

k2 eiz@~11v`
2 !

3K1~ iz!1~12v`
2 !K0~ iz!cosh 2y#0

F , ~37!

if we use the representation

D f~x2x8,m!5
1

16p2 E
0

` dj

j2 expF i
~x2x8!2

4j
2 im2jG

~38!

for the causal function and introduce the notation

z5
v`

2

2k2j
@v`

2 1~12v`
2 !cosh2 y#. ~39!
-

.
of

n

-

Now switching from the integration variablej to z in ~37!,
we obtain

DWB52
1

8p2 E
2`

`

dyH 11v`
2

2Q
@S1~L!

1S0~L!#2S0~L!J , ~40!

where

L5lv`
2 Q, l5

m2

k2 , Q5v`
2 1~12v`

2 !cosh2 y, ~41!

Sn~L!5~21!n11E
0

`

dze2 iL/2zFeizKn~ iz!2A p

2izG .
~42!

The subtractionu0
F in ~40! reduced to subtraction of th

asymptote (p/2iz)1/2 of the integrand in~42! for Sn(L). As
shown in Refs. 8 and 9, the functionsSn(L) can be ex-
pressed in terms of the product of the modified Bessel fu
tions I n(AL) and Kn(AL). We also turn attention to the
more compact expressions for the derivatives

Sn8~L!5~21!npF I n~x!Kn~x!2
1

2xG1 iK n
2~x!,

x5AL. ~43!

It can be seen from formulas~40!–~42! thatDWB depends on
two dimensionless parameters, namelyl and v`

5tanh(u/2).
To calculate the asymptote of the integral~40! at l→0

we note that the valuesL→0 will be effective in the first
term in this case, and therefore

S1~L!1S0~L!'2p2 i ln
4

g2L
, g51.781..., ~44!

and that in the second term the integral can be reduced to
expression

E
2`

`

dy S0~L!'2E
0

`

dLS08~L!ln L

1S0~0!ln
4

lv`
2 ~12v`

2 !

52p2 i F ln
16

g2v`
2 ~12v`

2 !l
22G . ~45!

As a result, to within terms that vanish atl→0 we obtain

DWB'
1

8p2 H pS u

tanhu
22D1 i F S u

tanhu
21D

3 lnF 8~coshu11!2

g2l~coshu21!G12

2
L2~12e22u!1u2

tanhu G J . ~46!

Here u5tanh21 b2152 tanh21 v` , and L2(x) is the Euler
dilogarithm.10,11
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For a quasiuniformly accelerated mirror interacting w
a spinor field, instead of~40! we obtain

DWF5
1

8p2 E
2`

`

dyH E
0

`

dz

3expS 2
iL

2z
1 izDR~ iz!2S0~L!J , ~47!

where

R~ iz!5E
0

`

dxSA~coshx1c!22s2

~11c!22s2 21D
3exp~2 iz coshx!, ~48!

c5coshu cosh 2y, s5sinhu sinh 2y,

u52 tanh21 v` ,

and the remaining notation is the same as in~40!. It is seen
that DWF depends on the two dimensionless parameterl
andu.

When l→0, the expression in the large parentheses
~48! can be replaced by

coshx21

A~11c!22s2
.

This approximation holds for coshx@1 and has the correc
~zero! value atx50. Then

DWF'
1

8p2 E
2`

`

dyH 1

A~11c!22s2
@S1~L!

1S0~L!#2S0~L!J , ~49!

and using~44! and ~45!, we obtain

DWF'
1

8p2 H pS 12
u

sinhu D1 i F S 12
u

sinhu D
3 lnF 8~coshu11!2

g2l~coshu21!G22

1
L2~12e22u!1u2

sinhu G J ~50!

to within terms that vanish atl→0.
The formulas obtained forDWB,F not only have the

structure ~33!, but also contain explicit expressions fo
bB,F(u). It can also be seen thatDWB,F do not depend on the
sign of u or b21, if we take into account thatL2(12e22u)
1u2 is an odd function ofu @see Landen’s formula~1.12! in
Ref. 11#. We note in this connection that for small values
u

L2~12e22u!1u252u1
2

9
u32

2

225
u51..., ~51!

and that asu→6`, to within exponentially small terms we
have
n

f

L2~12e22u!1u256S u21
p2

6 D1... . ~52!

The imaginary and real parts ofDWB,F in ~46! and~50!
are positive owing to unitarity and causality. Whenu50,
DW vanishes, since the quasihyperbolic trajectory becom
straight line.

The pointu5` for DWf
B,F(u,l) is an essential singu

larity. It physically corresponds to a purely hyperbolic tr
jectory for whichb2151 or 21, according to the sign ofk.
At a fixed value ofl and u→6`, from ~40! and ~47! we
obtain

DWf
B,F~u,l!57u

1

8p2 S1,0~l!. ~53!

Here6u5uku(t22t1)@1, and when the interval (t1 ,t2) of
proper time approaches infinite length, the relative veloc
b21 approaches11 or 21. Formula~53! was obtained for
uniformly accelerated charges in 311 space in Ref. 12 and
was discussed in detail in Refs. 8 and 9. In those studie
defined the classical mass shift of a uniformly accelera
charge:

Dm1,052
]DW1,0

]t2
5

a

2p
ukuS1,0~l!. ~54!

In accordance with unitarity and causality of this fun
tion, the imaginary and real parts ofDm are negative. Atk
50 the functionDm(k) is nonanalytic, and therefore cann
be reproduced by perturbation theory with respect tok or
with respect to the field accelerating the charge.

4. DISPERSION RELATIONS FOR DW AND THEIR ORIGIN

It was shown in Ref. 9 that the changesDWs(m
2) in the

action of point charges moving along timelike trajectories,
functions of the square of the mass of quanta of their s
field with spins51,0, are analytic in them2 complex plane
with a cut along the positivem2 semiaxis, on whose edge
the imaginary parts of each of the functions coincide, wh
the real parts differ in sign. Such functions satisfy the d
persion representations (Imm,0)

DW~m2!5
2i

p E
0

` dx xReDW~x2!

x22m2

52
2m

p E
0

` dx Im DW~x2!

x22m2 , ~55!

which reconstruct the functionDWs(m
2) in the m2 complex

plane from its real or imaginary part on the lower edge of
cut. Whenm5 ik andk.0, these relations yield the impor
tant equalities

2

p E
0

` dx xReDW~x2!

x21k2 5
2k

p E
0

` dx Im DW~x2!

x21k2

5Im DW~2k2!.0, ~56!

ReDW~2k2!50. ~57!

As a consequence of unitarity, ImDW(m2) is positive on
the real semiaxism2.0. Then, according to the second
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the representations~55!, Im DW(m2) is positive definite over
the entirem2 complex plane~or in the lowerm half-plane!.

Here we show that the dispersion relations forDW(m2)
are due to the analytic properties of the causal Green’s fu
tion D f(z,m), which, as we see, specifies not onlyDWs(m

2)
for the vacuum amplitude of accelerated charges in 311
space, but alsoDWB,F(m2) for the vacuum amplitude of an
accelerated mirror in 111 space.

We can show that the causal functionD f(z,m) for a
timelike z satisfies the dispersion relations presented.
cording to formulas~2.12.4.28! and~2.13.3.20! from Ref. 13

E
0

` dx x2J1~sx!

x21k2 52kE
0

` dx xN1~sx!

x21k2 5kK1~sk!,

~58!

where s, Rek.0. After analytic continuation ink to the
point k5 im1« where m.0 and «→10, these relations
transform into

E
0

` dx x2J1~sx!

x22m21 i«
52 imE

0

` dx xN1~sx!

x22m21 i«
5 imK1~ ims!

52
ipm

2
@J1~ms!2 iN1~ms!#. ~59!

After multiplying by 2 i /4p2s, they form the first pair of
dispersion relations~55!, which, instead ofDW(m2), contain
the causal function~27! with a timelike vectorza, for which
s5A2z2.0. For spacelikeza the intervals52 iAz2, and
D f(z,m) is purely imaginary.

After multiplication by21/4p2s, the original formulas
~58! coincide with the second pair of the relations~56! with
the replacement ofDW(m2) by D f(z,m). The function ap-
pearing on the right-hand side of these relations

2
k

4p2s
K1~ks!5Im D f~z,2 ik!, ~60!

unlike ImDW(2k2), is negative. In addition,

ReD f~z,2 ik!50, ~61!

as can be seen from~27!. This property is a consequence
causality, according to which ReDf(z,m)50 outside the light
cone, i.e., for spacelikeza. In this case the argument of th
Bessel function in~27! is real and positive. When we go ove
to timelikeza and a purely imaginary negativem52 ik, this
argument remains real and positive, whence follows~61!.

While satisfying the dispersion relations~55! and ~56!
with respect to the ‘‘dispersion’’ variablem, the function
D f(z,m), unlike DW(m2), still depends on the parameters,
which equals the invariant interval between the two poi
chosen on the mirror trajectory with the proper timest and
t8, i.e., ons5s(t,t8). Integrating the dispersion relation
for D f over t, t8 with the weight (1/2)ẋa(t) ẋa(t8) or 1/2
and performing the subtraction procedure, we obtain the
persion relations forDWB or DWF, if, of course, the familiar
conditions for changing the order of integration overx andt,
t8 are satisfied.

Thus, the dispersion relations forDW(m2) are a conse-
quence of the dispersion relations forD f(z,m).
c-

-

s

s-

It follows from ~56! that if ImDW(m2) is bounded at
zero, then ReDW(m2) must vanish asm→10. If, on the
other hand, ImDW(m2) logarithmically tends to infinity as
m→0 according to the relation

Im DW~m2!5a ln m221b~m2! ~62!

@a.0, andb(m2) is bounded at zero#, it follows from ~56!
that ReDW(m2) tends to the positive value ReDW(0)5pa as
m→0. According to ~57!, this means that the function
ReDW(m2) has a discontinuity equal topa on the realm2

axis atm250.

5. INFLUENCE OF THE BOUNDARY CONDITIONS ON
Re DW

Let us now consider the other boundary values ofF(z2),
which is analytic in thez2 complex plane with a cut along
the z2<0 semiaxis and coincides with (i /2)D1(z,m) on the
z2.0 semiaxis.

The limit F(z22 i«) from below on the real axis is dis
tinguished from the limit~27! from above by the opposite
sign of the real part. According to this function, free fiel
would transport negative energy in 311 space; therefore
this boundary condition is not considered here.

The other boundary values ofF(z2), which already de-
pend on the sign ofz0, may be the limitsF(z26 i« sgnz0),
«→10. They are positive- and negative-frequency fun
tions, or more precisely,6D6(z,m) ~Ref. 4!:

6D6~z,m!56«~z0!ReD f1 i Im D f . ~63!

Such functions naturally vary only the real part of the acti
obtained forD f , so that

ReDW6
B 56

1

2 E E dt dt8~ ẋaẋ8a

2«abẋaẋ8b!ReD6~z,m!u0
F ~64!

differ from ReDWf
B and are given in the limitm→0 by the

expressions

ReDW6
B 57

1

8p E E dt dt8«abẋaẋ8b«~z0!d~z2!.

~65!

The integrand can be expanded int8 neart85t and repre-
sented in the form

«abẋaẋ8b«~z0!d~z2!52«abẋaẍbd~t2t8!. ~66!

Here the equalityuxud(x2)5d(x) was used~see, for ex-
ample, Ref. 14!.

Then, integrating overt8 and expressing the self
acceleration

a~t!5«abẋaẍb
f 9

2~ f 8!3/25
d ln f 8~u!

2dt
5

d tanh21 b~t!

dt
~67!

in the form of the derivative of the rapidity with respect
the proper time, we obtain
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ReDW6
B 56

1

8p E
2`

`

dt «abẋaẍb

56
1

8p
tanh21 b2156

u

8p
. ~68!

Clearly,

ReDW6
F 56

1

2 E E dt dt8 ReD6~z,m!50 ~69!

because of the oddness of ReD6 with respect toz.
The expressions obtained for ReDW7 coincide to within

the factor (8p)21 with the coefficients that are odd inu for
the terms proportional tou21 and v21 in the asymptotic
expansions ofK(u) and K(v), respectively@see ~13! and
~14! and the comment following Eq.~16!#. At the same time,
ReDWf coincides to within the factor (8p)21 with the co-
efficient that is even inu for the term proportional tou21 or
v21 in the asymptotic expansion ofK(u) or K(v). We note
that all these coefficients, as well as the functionsK(u) and
K(v) themselves, are formed without any involvement of t
parameterL, which eliminates the infrared divergence of th
space-time integrals~9! for the mean number of particle
emitted.

Thus, information on the interaction contained inK(u)
and K(v), which determine ImDW, is conveyed to ReDW
owing to causality and the boundary conditions. In additi
ReDWf contains information on the interaction that prop
gates within the light cone, and ReDW6 contains informa-
tion on the interaction that propagates along the light c
and is therefore local owing to the timelike character of
trajectory.

Half the sum of the retarded and advanced fields is
self-field of the source,4 and half their difference is the ra
diation field escaping to infinity. Since

ReD f5
1

2
~D ret1Dadv!,

and

ReD15
1

2
~D ret2Dadv!,

ReDWf describes the self-energy shift of the source, a
ReDW1 describes the interaction with the radiation fie
i.e., with real quanta. The boundary condition which elim
nates the interaction with virtual quanta or pairs seems
natural.

6. DISCUSSION AND PHYSICAL INTERPRETATION OF
RESULTS

The proper-time representations for the changes in
self-interaction of a mirror upon acceleration in a tw
dimensional vacuum of scalar and spinor fields can be c
sidered the most significant results of this work. These r
resentations coincided with the representations of
changes in the self-interaction of electric and scalar cha
e

,
-

e
e

e

d
,

n-

e

n-
-
e
es

accelerated in four-dimensional space-time. In other wo
the two were found to be identical functionals of the sou
trajectory.

This coincidence, first, confirms the interpretation giv
in Ref. 3 of the Bogolyubov coefficientbv8v

* as the source
amplitude of a virtual pair of particles potentially emitted
the right and to the left with the frequenciesv andv8, with
the timelike 2-momentum of the pair~5!, the massm
52Avv8, and a spin equal to 1 for a boson pair and 0 fo
fermion pair.

Second, it means that the self-interaction of the mir
involves the creation and absorption of virtual pairs, rath
than individual particles, and is transmitted from one point
the trajectory to another by the causal Green’s function of
wave equation for four-dimensional, rather than tw
dimensional space-time.

The action integral is formed by virtual pairs with ma
m52Avv8, which takes any positive values. Therefore, it
natural to expect that the effective propagation function
such pairs will be the integral of the propagation function
a massive particle in two-dimensional space-time over
massm.

At the same time, it can be shown that the cau
Green’s functions for spaces of dimensionalitiesd and d
12, being functions of the invariant intervals5A2z2 be-
tween two points and the massm, are related to one anothe
by

D f
(d12)~z,m!5

1

p

]

]s2 D f
(d)~z,m!

5
1

4p E
m2

`

dm2D f
(d)~z,m! ~70!

and can be expressed in terms of the modified Bessel fu
tion of the second kind with index specified by the dime
sionality of the space-time:

D f
(d)~z,m!5

im2n

~2p!n11~ ims!n Kn~ ims!, n5
d22

2
.

~71!

The second equality in~70! for d52 confirms the emer-
gence of a causal function characteristic of four-dimensio
space-time as an effective propagation function of virt
pairs with different massesm in two-dimensional space
time. Now the small mass parameterm, which was intro-
duced in Sec. 2 to eliminate the infrared divergence, can
interpreted as the lower bound of the masses of the vir
pairs that mediate the self-interaction of a mirror.

A virtual pair can escape to infinity, since one of i
particles is necessarily reflected from the mirror, after wh
the pair becomes real and massless. The emission of
pairs shapes ImDW. Owing to their masslessness, the em
sion of an arbitrarily large number of soft quanta approa
ing infinity becomes possible on trajectories withb21Þ0,
i.e., infrared divergence of ImDWf appears. By choosing a
nonvanishing but sufficiently small value ofm, we eliminate
the infrared divergence in ImDWf and assure ourselves th
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ReDWf does not depend onm at m!uku. This means that the
main contribution to ReDWf comes from virtual pairs with a
mass of orderuku.

In the general case, where the mean number of p
created is not small compared to 1, the quantity 2 ImDW is
no longer equal to the mean number of pairs Tr(b1b). Due
to the interference of two or more pairs during their creati
it equals

2 ImDW56Tr ln~16b1b!u0
F56Tr ln~a1a!u0

F . ~72!

The latter formula prompted De Witt15 to consider

W56 i Tr ln a ~73!

to be a natural expression forW. The matrix formulation of
the Bogolyubov coefficientsa and b has been adopted i
these equations. In addition, Tr must be replaced by~1/2! Tr
when the particle and antiparticle are identical.3

We are not aware of any specific results for ReDW hav-
ing been derived from~73!.

The symmetry discussed here would be total if it we
the case in Heaviside units thate25\c.

This work was carried out with the financial support
the Russian Fund for Fundamental Research~Grant Nos. 96-
15-96463 and 96-02-17314a!.
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1!The natural system of units, the Heaviside units of charge, and the me

of four-dimensional and two-dimensional space with traces 2 and 0
used, so that\5c51, e2/4p51/137, kaxa5k•x2k0x0, and j 65 j 0

6 j 1. For the remaining notation see Refs. 1–3.
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The electron loss and electron capture cross sectionss i ,i 1m ands i ,i 2m for boron ions and atoms
traveling at the velocitiesV51.19 and 1.83 a.u. in H2, He, N2, Ne, Ar, and Xe are
measured. The known experimental data on these cross sections at velocities near the cross-
section maximum are analyzed. It is found that the electron loss cross sections can be described by
a formula which was previously derived in the free-collision approximation and takes into
account features of both the ions and the ambient atoms. As the nuclear chargeZt of the ambient
atoms increases, the cross sections vary nonmonotonically, increasing on average asZt

1/2. A
formula based on the model of independent electrons is proposed for electron capture by ions with
small values of the chargei . It describes the dependence of the electron capture cross
sections i ,i 21 on the mean binding energy of an electron in an ion with the chargei 21. The
total electron capture cross sections i ,i 21 is proportional to the number of vacancies in
the unfilled electron shell nearest the nucleus. The cross sectionss i ,i 21 exhibit substantially
nonmonotonic variation withZt , increasing on average asZt

1/3. © 1999 American Institute of
Physics.@S1063-7761~99!00311-X#
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1. INTRODUCTION

The objective of the present investigation is to obta
new experimental data on the electron loss and electron
ture cross sections for fast atomic particles with outer e
trons having very small binding energies, including negat
ions, in various media for the purpose of establishing la
governing the dependence of these cross sections on
nuclear charge of the ambient atomsZt and the binding en-
ergy I nl of the electrons removed or captured. Since f
negative ions readily transform into neutral atoms, the st
of their properties is of considerable interest for several ar
of physics. These data are needed for implementing the
jection of heavy ions in accelerators, as well as for inve
gating various processes in high-temperature plasmas.1

The cross sections for the loss and capture of one
several electrons by fast atoms, as well as negative and p
tive ions, of boron with velocitiesV51.19V0 and 1.83V0

~where V052.193108 cm/s! as they pass through gaseo
H2, He, N2, Ne, Ar, and Xe are measured in the prese
work. The analogous cross sections known from the lite
ture for several other ions with outer electrons having m
mal binding energies are analyzed. The data obtained en
us to accurately estimate the corresponding cross section
other ions and media, for which there have not been
direct measurements. The ion velocitiesV are henceforth
presented in atomic units ofV0 .

2. EXPERIMENTAL METHOD

The electron loss and electron capture cross sections
boron ions and atoms were determined using the experim
tal equipment described in Refs. 2 and 3. The volatile bo
compound BBr3 was introduced into the cyclotron ion sourc
8301063-7761/99/89(11)/7/$15.00
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with a vapor pressure at room temperature of about 8 k
which is sufficient for operation of the ion source. Sing
charged11B1 ions which were accelerated in a 72-cm cycl
tron and had energiesE535 and 83 keV/nucleon, i.e., ve
locities V51.19 and 1.83, were directed into a charg
exchange device, in which the primary B1 ions were
transformed into beams of Bi ions with chargei 521, 0, 1,
and 2. Boron atoms and negative boron ions were obtai
as a result of the charge exchange of B1 ions in a thin helium
target. Since the probability of formation of these partic
decreased rapidly with increasing velocityV, their flux in-
tensity was corrected by altering the gas pressure in the
lium target. To obtain the maximum number of negative B2

ions, the gas layer in the target was increased from
31015 to 331015atoms/cm2 when the velocity was in-
creased by a factor of 1.5. Thus, the number of B2 ions in
the vicinity of the detector varied from 10–50 particles p
second atV51.19 to 2–5 particles per second atV51.83.
The flux of B0 atoms was set to;103 particles per second
In the work with beams of B0 atoms, the charged compo
nents B1 and B2 were deflected by an electrostatic analyz

Beams of boron ions with various values ofi formed as
a result of charge exchange were alternately directed into
collision chamber, which consisted of a cylinder 24 cm lo
with entrance and exit channels 0.5 cm high, 0.1–0.2
wide, and 2.6 cm long. The gas pressure of H2, He, N2, Ne,
Ar, and Xe injected into the center of the collision chamb
was determined to within 10% by ionization gauges ca
brated for the various gases using a McLeod gauge.
charge distribution of the boron ions after passage thro
the collision chamber was measured by a detector consis
of a magnetic analyzer and counters at two or three value
the gas pressure in the chamber. The field intensity of
© 1999 American Institute of Physics
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TABLE I. Electron loss cross sectionss i ,i 1m ~in units of 10216 cm2/atom!

i , i 1m H2 He N2 Ne Ar Kr Xe

V51.19
21, 0 10.0 6.3 10.0 17.0 30.0 - 70.0
21, 1 2.8 2.5 5.0 10.0 14.0 - 23.0
21, 2 0.2 0.3 1.3 0.75 2.2 - 4.4

0, 1 2.3 2.0 5.0 2.2 10.0 14.0 10.0
0, 2 0.2 0.3 1.0 0.3 1.3 - 0.8
0, 3 - 0.05 0.04 - 0.01 - -
1, 2 0.8 1.0 2.0 0.7 3.0 3.2 2.3
1, 3 0.015 0.02 0.05 0.02 0.10 0.05 0.03
2, 3 0.12 0.18 0.15 0.01 0.3 0.28 0.2

V51.83
21, 0 4.0 4.0 6.6 11.2 14.0 - 23.0
21, 1 1.6 1.7 3.8 4.0 9.0 - 10.0
21, 2 0.30 0.15 0.64 0.35 2.6 - 1.15

0, 1 2.8 3.0 5.6 6.3 13.0 19.0 14.0
0, 2 0.20 0.30 1.4 1.1 3.2 - 3.3
0, 3 0.002 0.002 0.1 0.035 0.16 - 0.11
1, 2 0.7 1.4 2.5 2.3 6.0 5.0 6.3
1, 3 0.014 0.022 0.17 0.12 0.43 0.18 0.25
2, 3 0.18 0.35 0.54 0.4 1.2 1.1 1.0
2, 4 - 0.001 0.003 0.01 - - -
ju
ro
r
tr
th
s

ur
ro
f

on
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ss

for
ies

itive
rst

and
re-
analyzing magnet was such that on average, particles of
one charge struck the middle part of each counter. The c
sectionss i ,i 1m ands i ,i 2m for the loss and capture of one o
several electrons were found for the resulting charge dis
butions by the method described in Ref. 2. The errors in
cross sections accrued mainly from errors in the thicknes
the gas layer in the collision chamber (;10%) and the sta-
tistical spread of the results of several series of meas
ments, and amounted to 10–15% on average for the c
sections for the loss and capture of one electron, 20–30%
the cross sections for the loss and capture of two electr
and about 50% for the cross sections for the loss and cap
of three electrons. At the velocityV51.83 the error ins1,21
st
ss

i-
e
of

e-
ss
or
s,
re

reached 50–100%, i.e., only an upper limit for the cro
sections was obtained in certain cases.

The electron loss and electron capture cross sections
positively charged boron ions traveling at these velocit
were previously measured in atomic~H! and molecular (H2)
hydrogen4 and in He, N2, and Ar, as well as in Kr, in Refs. 2
and 5–7. All the cross sectionss i ,i 1m for the negative boron
ions and atoms, as well as the cross sections for pos
boron ions in Ne and in Xe, were determined for the fi
time. The resulting values ofs i ,i 6m are listed in Tables I and
II. Since the cross sections measured in the present work
in Refs. 1, 5 and 6 coincided to within 20–30%, the cor
sponding mean cross sections are given in the tables.
TABLE II. Electron capture cross sectionss i ,i 2m ~in units of 10216 cm2/atom)

i , i 2m H2 He N2 Ne Ar Kr Xe

V51.19
0,21 0.08 0.05 0.05 0.045 0.09 - 0.1
1, 0 1.6 1.0 1.0 0.65 2.5 2.76 2.8
1, 21 0.005 0.003 0.005 0.0025 0.01 - 0.025
2, 1 4.3 4.0 6.2 2.0 10.0 15.0 13.0
2, 0 0.35 0.4 0.3 0.1 0.6 0.83 2.5
3, 2 5.5 - - - - - -
3, 1 1.3 - - - - - -
4, 3 0.06 - - - - - -

V51.83
1, 21 0.025 0.035 0.025 0.04 0.045 - 0.1
1, 0 0.5 0.5 0.50 0.4 0.95 1.6 1.6
1, 21 0.001 0.0016 0.001 0.004 0.01 - -
2, 1 1.5 2.2 2.4 1.5 5.0 6.6 6.3
2, 0 0.04 0.03 0.045 0.04 0.14 0.28 0.3
3, 2 2.7 3.2 5.0 3.5 10.0 11.0 10.0
3, 1 0.25 0.25 0.55 0.4 1.3 2.4 2.0
3, 0 - - 0.03 - - 0.063 0.06
4, 3 5.0 5.0 6.3 6.5 14.0 - -
4, 2 0.2 0.3 0.9 0.06 2.0 - -
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3. DISCUSSION OF RESULTS

3.1. Electron loss cross sections

The loss of one or several electrons by a many-elec
particle is a result of the loss of individualnl electrons. The
total cross section for the removal of a fixed electron fro
the subshell with quantum numbersn andl , with the remain-
ing electrons in arbitrary states, is called the single-elect
loss cross sectionsnl . When the probability of an Auge
transition with filling of an inner-shell vacancy can be n
glected,snl can be represented in the form8

snl5qnl
21FSi2( qnl

insnl
in G , ~1!

whereqnl andqnl
in are the numbers of electrons in the ou

and inner subshells of the ion, andSi5(ms i ,i 1m . The sum
Si characterizes the increase in the charge of the ion~atom!
as a result of collisions with ambient atoms of the mediu
In studies of the ionization of ambient atoms by various p
ticles, the quantity analogous toSi is called the total ioniza-
tion cross section, and it coincides with the cross section
the production of free electrons.9

An analysis of the experimental electron loss cross s
tions s i ,i 1m for ions of light elements with a nuclear charg
Z<18 and with a number of electronsN5Z2 i from 1 to 17
shows10 that for a given set of quantum numbersnl, electron
binding energyI nl , and relative velocity of the ionsV, the
cross sectionsnl for ions with various numbers of electron
N scarcely depends onqnl . This enables us to obtain th
values ofsnl for some ions from the experimental values
s i ,i 1m for other ions. The lack of a dependence ofsnl on qnl

for given nl, I nl , andV corresponds to the results of calc
lations based on the independent electron loss model,
which the mean probability and cross section for the remo
of each of the electrons do not depend on the presence o
other electrons in the ion. In that case the cross sectionssnl

for the loss of a single electron and the cross sections i ,i 1m

for the loss ofm electrons from the outer subshell withqnl

electrons have the form7,10,11

snl5E Wnl~p!dp,

s i ,i 1m5Cq
mE Wnl

m~p!@12Wnl~p!#q2mdp, ~2!

wherep is the impact parameter,Wnl(p) is the probability of
removal of a single electron, andCq

m5q!/m!(q2m)!. Ex-
pressions similar to~2! were obtained for the electron los
cross sectionss i ,i 1m of the K and L shells, and have bee
used in semiclassical calculations of inner-shell ionization12

One special feature of the electron loss cross sections
the negative boron ions is the substantial contribution of
multiple-ionization cross sectionss21,211m (m.1) to the
total ionization cross sectionS21 . The fraction of this con-
tribution is specified byRi512@s i ,i 21 /Si #, which has the
valueR2150.5060.05 for B2 ions. At the same time, for B0

atoms and B1 ions the contributions of multiple ionization t
n

n

r

.
-

r

c-

or
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e

the total ionization cross section are considerably sma
and amount, on average, toR050.2560.10 for B0 and
R150.0560.01 for B1.

The cross sectionssnl for the loss of individualnl elec-
trons from outer 1s, 2s, and 2p subshells were found usin
formula ~1! from the experimental cross sectionss i ,i 1m with
allowance for the possibility of electron loss from the inn
shells. The cross sections for the loss of inner 1s electrons
were equated to the electron loss cross sections
hydrogen-like particles with the same electron binding e
ergy as in the ion~atom! under consideration. The values o
s2s were assumed to be equal to the cross sections for
loss of 2s electrons by lithium-like and beryllium-like ions
with the same electron binding energies. The values ofI nl

were taken from Ref. 13.
The values calculated in the Born approximation for t

cross sectionss1s and s2s for the loss ofK electrons by
hydrogen-like and helium-like ions upon the passage of
particles though hydrogen, helium, and nitrogen14–16and the
experimental electron loss cross sectionssnl for negative H2

ions and H0 atoms,17 negative Li2 ions,18 and positive ions
of light elements in heavier media10 enabled us to establis
the dependence ofsnl on I nl in the rangeI nl5(0.1210)I 0

(I 0513.6 eV).
In the rangeI nl<I 0 , where the Born approximation co

incides with the free-collision approximation,19 the cross sec-
tions vary slowly withI nl , the ratios1s /s2s differing from
unity by no more than 20%.16 In the rangeI nl.I 0 the cross
sectionssnl decrease rapidly with increasingI nl . The depen-
dence ofsnl on I nl obtained was used to estimate the co
tribution D of the cross sections for electron loss from t
inner subshells,(qnl

insnl
in , to the total ionization cross sectio

for the boron ionsSi5ms i ,i 1m in different media. On aver-
age, the values ofD were roughly 20%, 50%, 3–5%, an
<1% for B2, B0, B1, and B21, respectively.

The resulting dependence of the cross sectionssnl for
the loss of the outer 2s ~for B2 ions and B0 atoms! and 2p
~for B1 and B21! electrons during the passage of fast bor
atoms and ions through gaseous media with the veloc
V51.19 and 1.83 on the nuclear charge of the medium ato
Zt is presented in Fig. 1. The cross sectionss i are propor-
tional to Zt

k . WhenV51.19, k is greatest for negative B2

ions (k'0.5) and decreases tok'0.4 for B0 atoms and to
k'0.220.15 for B1 and B21 ions. WhenV51.83, k'0.5
for all ions. Asm, the number of electrons removed, is i
creased andV is diminished, the deviation ofs i(Zt) from a
monotonic dependence increases significantly. In particu
whenV51.83, the cross sections2 for B21 ions in neon is
approximately one-tenth the corresponding cross section
nitrogen and argon.

As shown in Ref. 6, the values of the velocityVmax, at
which electron loss cross sections reach their maximum
ues, can be found from the relationVmax;gUi , whereUi is
the mean orbital velocity of the electron being removed.
Zt increases, the coefficientg increases fromg'1.3 in he-
lium to g'2 in krypton. Accordingly, the maximum elec
tron loss cross sections for B2 ions should be observed a
Vmax'0.3. The greatest electron loss cross sections for0

atoms are achieved atVmax'1.5, and the greatest values fo
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positive B1 and B21 ions are achieved atVmax'223. The
values ofs i obtained in the present work for boron atom
and ions with the chargesi 50, 1, and 2 increase somewh
with increasingV, while the values for the negative ion
decrease.

It was previously20 shown in an investigation of the elec
tron loss cross sections for negative hydrogen ions and
drogen atoms that the dependence ofs i on Zt is has a step-
like character. The sharp increase in the electron loss c
sectionss i for hydrogen particles in alkali-metal vapors
comparison to the corresponding cross sections in inert g
results from the weaker screening of the nuclear Coulo
field in the alkali-metal atoms by the outer electrons. T
following semiempirical formula, which takes into accou
the features of both the ions and the ambient atoms,
proposed in Ref. 20 to describe the dependence ofs i on Zt :

s i5pa0
2Zt

a/VUiU~Zt!, ~3!

where Ui5AI i /I 0 and U(Zt)5AI (Zt)/I 0 are the mean or-
bital velocities of the electrons in the ion and an ambi
atom, andI (Zt) is the ionization potential of the ambien
atoms. AtV'122 the exponenta is set to 0.5.

Formula ~3!, which was obtained in the free-collisio
approximation, is a modified version of the familiar Bo
formula for the loss of a weakly bound electron in med
with Zt>V/2 and is applicable in the range of ion velociti
V>(122)Ui , where the cross sections fall off compar
tively slowly, asV21.

In accordance with~3!, the products iUi for identical
values ofU(Zt) andV should be the same for different ion
In fact, whenV51.19, the measured and calculated valu
of s iUi for B2 and H2 ions coincide in all media to within
20–30%~with the exception of the H2 ions in lithium, where
the experimental values ofs iUi are 1.5–2 times the calcu
lated values!. WhenV51.83, the measured values ofs iUi

FIG. 1. Dependence of the single-electron loss cross sectionss i for boron
ions and atoms onZt at V51.19 ~solid lines and filled points! and at
V51.83 ~dashed lines and unfilled points!. The ion chargei is indicated
near the curves.
y-

ss

es
b
e

as

t

s

for B2 ions are, on average, 30–40% less than the co
sponding calculated and experimental values for H2 ions
~Fig. 2!.

The electron loss cross sections for the negative ion
light elements in the range of ion velocitiesV'122 are
known not only for the hydrogen and boron ions consider
but also for metastable helium ions in the Hem2(1s2s2p)
state,21 Li2(1s22s2) ions,18,22 C2(1s22s22p3) ions, and
O2(1s22s22p2) ions.23 The orbital velocitiesUi of the outer
electrons in these particles vary fromUi'0.077 in He2 to
0.35 in O2 ~Ref. 24!. The contribution of the cross section
for the loss of two electrons to the total ionization cro
section S21 for H2, He2, and Li2 ions amounts toR21

50.2060.05 on average. At the same time, the cross s
tions for the loss of two and three electrons for C2 and O2

ions, just as for B2 ions, amount to'0.5 and'0.3 of the
cross sections for the loss of one electron, and there
R2150.6060.05. The value ofVmax, where the electron
loss cross sections peak, should vary fromVmax'0.2 for he-
lium ions toVmax'0.7 for carbon and oxygen ions.

Apart from the data just enumerated, for negative ions
light elements with outer electrons having a very small bin
ing energy, the electron loss cross sections for metast
Hem0(1s2s) ~Ref. 22!, Li0(1s22s) ~Ref. 25!, and H0(1s)
atoms, as well as the cross sections obtained in the pre
work for B0(1s22s22p) atoms, are now known. The value
of Ui for these particles vary fromUi50.57 for helium at-
oms toUi51.0 for hydrogen atoms, and the maxima of t
electron loss cross sections are located in the rangeVmax

'122.
An analysis of the electron loss cross sectionss i for the

negative ions and atoms of light elements showed that
cross sectionss i decrease with increasing orbital velocitie
of the outer electronsUi in proportion toUi

21 and that the
deviation of the measured cross sections from the values
culated from formula~3! is at most a factor of 1.5 over th

FIG. 2. Dependence ofs iUi on Zt for negative B2 ions ~filled points! and
H2 ions ~unfilled points!. Solid lines—calculation based on formula~3!:
1—V51.19; 2—V51.83.
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entire range ofUi , which amounts to more than an order
magnitude~from 0.08 to 1.0!. Figure 3 presents the data fo
helium, nitrogen, and argon~the most measurements we
performed in these media!. Clearly, the greatest deviatio
between the calculated and measured values occur
Ui>0.5. Somewhat better agreement with experiment
achieved over the full range ofUi , if a weaker dependenc
of s i on Ui , specificallys i}Ui

22/3, is adopted in Eq.~3!.

3.2. Electron capture cross sections

Scrutiny of the experimental data on the charg
exchange cross sections for atoms and singly charge ion
light elements26,27 revealed that the cross sections for no
resonant charge exchange peak at the velocityVmax, which
satisfies Massey’s adiabatic criterion28

Vmax'auDEu/h, ~4!

whereDE is the change in the internal energy of the syste
a'331028 for single-electron capture,29 and a'1.5
31028 for double-electron capture.26 In accordance with this
criterion, the maximum electron capture cross sections
most of the ion–ambient-atom pairs studied fall in the ran
Vmax'0.522. According to the experimental data for Bi ions
in hydrogen,4 whenV systematically increases, the cross s
tions s i ,i 21 for the ions with chargesi 5125 are propor-
tional to V23 over the rangeV51.522. As the velocity in-
creases further, the dependence of these cross section
V strengthens, and we haves i ,i 21}V25 by the time
V.223.

The investigation of the electron capture cross secti
s i ,i 21 for fast positive nitrogen and neon ions in Ref. 3
revealed that for ions with small values ofi , which satisfy
the condition

I i 21~n!<I 5I v/313I t , ~5!

the total electron capture cross sections i ,i 21 is proportional
to the numberp(n) of vacant states in the ion. In formula~5!

FIG. 3. Dependence of the electron loss cross sectionss i for ions of light
elements atV51.19 onUi in helium ~filled triangles!, in nitrogen~unfilled
circles!, and in argon~unfilled triangles!. Straight lines—calculation base
on formula~3!.
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I i 21(n) is the mean binding energy of an electron in t
unfilled electron shell with principal quantum numbern that
is closest to the nucleus in an ion with chargei 21, I t is the
binding energy of the outer electrons in the ambient ato
and I v5mV2/2 is the transport energy of an electron who
velocity V equals the velocity of a fast particle.

The proportionality between the electron capture cr
section and the number of vacant states corresponds to
model of independent electrons,31 according to which

s i ,i 2m5pa0
2Cp

mWm, ~6!

where W is the mean probability of electron capture a
Cp

m5p!/m!( p2m)!.
To estimate the charge-exchange cross sections at

velocities close to the maximum in heavy media@(I i 21 /I 0)
,Zt#, where the effective number of electrons captured fr
ambient atomsN}Zt

1/3 ~Ref. 32!, the value ofW can be
represented in the form

W;~ I i 21 /I 0!Zt
1/3V23. ~7!

On the basis of~6! and ~7! the total single-electron captur
cross sections i ,i 21 at ion velocities near the maximum i
given by

s i ,i 215pi 21~n!pa0
2~ I i 21 /I 0!Zt

1/3V23. ~8!

WhenV51.19, the electron capture cross sectionss0,21 for
B0 atoms depend weakly onZt , varying over the range from
0.5 to 1310217cm2/atom asZt increases from 1 to 54. The
corresponding cross sections for positive B1 and B21 ions
are 10–30 times the electron capture cross sections for b
atoms. The electron capture cross sectionss i ,i 21 for boron
atoms and ions determined from formula~8! agree with the
measured values to within a factor of 2–3. The greatest
ference, a factor of 5, was obtained forV51.19 in neon. In
neon, however, the experimental values ofs i ,i 21 exhibit
substantially nonmonotonic variation, increasing asZt

1/3 on
average~Fig. 4!.

According to formula~8!, the single-electron captur
cross sectionss i ,i 21 divided by the number of vacancie
pi 21(n) in the unfilled shell nearest the nucleus, i.e., t
values of sc(n)5s i ,i 21 /pi 21(n), should lie on straight
lines corresponding to the linear dependence onI i 21(n).
Figure 5 presents the dependence ofsc(n) on I i 21(n) for
electron capture by atoms and positive ions of light eleme
with Z<10 in a nitrogen target atV51.19. The experimenta
cross sections were taken from Refs. 2, 17, 21, 22, 25,
and 33–35. The values ofsc(1) andsc(2) for electron cap-
ture by H0 atoms with a vacancy in theK shell and for
electron capture by B0, C0, and O0 atoms with vacancies in
the L shell are located in the range of small valuesI 21(n)
'0.322 eV. The values ofsc(1) for electron capture to
vacant states in theK shell by H1 ions ~protons!, He1,21

ions, and Li2,31 ions, as well as the values ofsc(2) for
electron capture by Li1, B1,21, N1,2,3,41, and Ne1,2,3,4,51 ions,
lie in the range ofI i 21(n) from 5 to 100 eV. AsI i 21(n)
increases, the experimental reduced cross sectionssc(1) and
sc(2) increase in proportion toI i 21(n) as I i 21(n0) varies
over a range of almost three orders of magnitude~from 0.3 to
100 eV!. The sc determined from formula~8! are approxi-
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FIG. 4. Dependence of the electron capture cross sect
s i ,i 21 on Zt : a—V51.19, b—V51.83. Dashed lines—
calculation based on formula~8!. The ion chargei is indicated
near the curves.
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mately triple the value ofsc(2), and areessentially identical
to sc(1). For ions with high values ofi , for which
I i 21(n).I'50 eV, the dependence of the reduced cr
sectionssc(1) andsc(2) on I i 21(n) weakens. As shown in
Ref. 30, the capture of an electron by these ions occurs
dominantly to excited states of the ion; therefore, the to
cross sections i ,i 21 depends weakly on the number of ele
trons in the ion and is determined by the chargei and by the
velocity V.

4. CONCLUSION

The results of the present work have enabled us to
tablish the basic behavior of electron loss and electron c
ture cross sections for ions of light elements in various me
in the range of ion velocitiesV where the cross section
reach their maximum values.

FIG. 5. Dependence of the values ofsc(n)5s i ,i 21 /pi 21(n) on I i 21(n).
The unfilled points show the values ofsc(1) for ions with aK vacancy, and
the filled points show the values ofsc(2) for ions with anL vacancy. Solid
line—calculation based on formula~8!.
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It has been shown that the experimental electron l
cross sections for boron ions and atoms, as well as the an
gous published data for other ions of light elements, are
isfactorily described by the formula previously obtained
the free-collision approximation, which takes into accou
the features of both the ions and the ambient atoms.20 The
single-electron loss cross sectionss i vary nonmonotonically,
increasing asZt

1/2 on average. At a given ion velocityV the
values ofs i decrease with increasing orbital velocityUi of
the electron being removed asUi

21 . When we go over from
inert gases to alkali-metal vapors, the values ofs i increase
by a factor of 1.5.

A formula based on the model of independent electro
which satisfactorily~to within a factor of 2–3! describes the
dependence of the electron capture cross sectionss i ,i 21 on
the magnitudeI i 21 of the mean binding energy of an ele
tron in an ion with chargei 21, has been proposed for ion
with small values ofi . As I i 21 increases, the cross section
increase proportionally toI i 21 . The total electron capture
cross sections i ,i 21 is proportional to the number of vacan
cies in the unfilled electron shell closest to the nucleus. A
the values of s i ,i 21 exhibit substantially nonmonotoni
variation with Zt , increasing asZt

1/3 on the average. As
shown in Refs. 36 and 37 by investigating the charg
transfer cross sections for positive hydrogen and helium i
in various media, the nonmonotonic dependence of the c
sections onZt , which leads to the systematic alteration
maxima and minima, results from structural features of
ambient atoms and the resonant nature of the cha
exchange cross sections, and can be described qualitat
by the quantum-mechanical Oppenheimer–Brinkman
Kramers~OBK! approximation.

A preliminary analysis of data on the cross sectio
s i ,i 1m and s i ,i 2m for the loss and capture of two or mor
electrons by boron ions and atoms points to a significan
stronger dependence onZt .

We express our sincerest thanks to the service tec
cians for the 72-cm cyclotron—Yu. P. Druzhinin, V. A



of
ro

sm

h.

h
itu

h.

h.

h.

J.

ev

iv

s.

n, J.

836 JETP 89 (5), November 1999 Dmitriev et al.
Kalita, S. A. Murav’ev, A. A. Obukhov, and V. A. Pronin—
for their assistance in conducting the experiment.

This work was carried out with the financial support
the ‘‘Controlled Thermonuclear Fusion and Plasma P
cesses’’ program.

1Present Status on Atomic and Modelling Data Relevant to Fusion Pla
Diagnostics and Modelling, NIES-Data 39, H. Tawara ~Ed.!, Nagoya
~1997!.

2V. S. Nikolaev, I. S. Dmitriev, L. N. Fateeva, and Ya. A. Teplova, Z
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50, 1252~1966! @Sov. Phys. JETP23, 832 ~1966!#.
24H. S. W. Massey,Negative Ions, Cambridge University Press~1976!.
25E. Horsdal-Pedersen, J. Heinemeier, L. Larsen, and J. V. Mikkelse

Phys. B13, 1167~1980!.
26Ya. M. Fogel’, R. V. Mitin, and A. G. Koval’, Zh. E´ksp. Teor. Fiz.31,

397 ~1956! @Sov. Phys. JETP4, 359 ~1957!#.
27Ya. M. Fogel’, R. V. Mitin, V. F. Kozlov, and N. D. Romashko, Zh. E´ksp.

Teor. Fiz.35, 565 ~1958! @Sov. Phys. JETP8, 390 ~1959!#.
28H. S. W. Massey, Rep. Prog. Phys.12, 248 ~1948!.
29Ya. M. Fogel’, V. A. Ankudinov, and D. V. Pilipenko, Zh. E´ksp. Teor.

Fiz. 35, 868 ~1958! @Sov. Phys. JETP8, 601 ~1959!#.
30I. S. Dmitriev, Yu. A. Tashaev, V. S. Nikolaev, Ya. A. Teplovaet al., Zh.
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Rotational quasienergy states and alignment of molecules in a strong laser field
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The interaction of a molecule with a strong laser field is investigated. Raman-type transitions
between rotational levels of a fixed vibrational state of the ground-state term are taken
into account in the ‘‘quantum rotator’’ approximation. An initial problem of the evolution of the
state of a molecule interacting with a pulsed field is solved. The dynamics of the degree of
alignment of a molecule with respect to the direction of polarization of the field during the pulse
is investigated. It is shown that for sufficiently long pulses with a smooth envelope the axis
of the molecule adiabatically follows the time-varying field amplitude, and alignment is maximum
when the field intensity is maximum. It is shown that alignment of molecules can be
substantial only if the second-order composite matrix elements, determining the probability
amplitudes of transitions between rotational levels of a molecule, are much greater than the
dissociation broadening of the levels. The angular distribution of the dissociation products
of a molecule in a strong laser field is investigated. ©1999 American Institute of Physics.
@S1063-7761~99!00411-4#
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1. INTRODUCTION

It has been found in a number of experimental wo
investigating the interaction of molecules with a strong la
field that under certain conditions the angular distribution
the photodissociation fragments of a molecule is extende
the direction of polarization of the field.1,2 In such experi-
ments, ordinarily, the object of investigation is a gas of
atomic molecules with an isotropic distribution of the dire
tions of the axes. Motion of the dissociation produc
predominantly in the direction of polarization of the fie
could be a consequence of field-induced alignment of
axes of the molecules in this direction, which in turn cou
be due to restructuring of the rotational motion of the m
ecules in a strong light field.

The restructuring of the rotational motion of a molecu
in a strong light field can occur for various reasons, such
resonant excitation and mixing of the vibrational states of
molecule,3,4 photodissociation or photoionization broadeni
of rotational levels,5–7 two-photon Raman transitions be
tween the rotational levels of a molecule,8,9 and so on. In
certain special cases the photodissociation of the molec
ion H2

1 by a laser pulse has been investigated numericall
a two-term model.6,10,11 However, the reasons and the co
ditions for field-induced restructuring of the rotational m
tion of a molecule as well as the effect of the restructuring
the angular distribution of the dissociation products were
determined.

In Refs. 12 and 13 a molecule was treated as a class
rigid rotator, and the rotation and orientation of molecules
a strong light field were investigated in such a model. T
applicability of the classical approach is briefly discussed
Sec. 4.1.

In the present paper resonant excitation of the vibrati
and ionization of molecules is studied. Photodissociat
8371063-7761/99/89(11)/8/$15.00
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broadening and two-photon Raman transitions between r
tional levels of a molecule are taken into account in t
quantum-mechanical model formulated below. The dyna
ics of reoccupation of the rotational levels of the ground te
of a molecule, the time-dependent degree of alignment o
initially isotropic ensemble of molecules, and the angu
distribution of the decay fragments of the dissociated m
ecule are investigated.

2. FORMULATION OF THE PROBLEM

We consider the interaction of the hydrogen molecu
ion H2

1 with a radiation pulse whose electric field we give
the form «(t)5«0f (t)cos(vt), where f (t) is the envelope
normalized to unity at the maximum,f max5f(0)51. The
time-dependent wave functionC(t) of the molecule in the
field satisfies the Schro¨dinger equation

i
]

]t
C5@H02d–«~ t !#C,

where H0 is the Hamiltonian of the free molecule in th
Born–Oppenheimer approximation,d is its dipole moment
operator, and\5ueu51. We seek a solution of this equatio
in the form of an expansion in terms of the complete basis
wave functions of the free molecule:14

C5 (
n,L,v,N

Cn,v,N,L,M~ t !unvNLM &exp~2 iEnvNt !

1 (
n8,L,N

E dE Cn8,E,N,L,M~ t !un8ENLM &

3exp~2 iEt !, ~1!

wherev is the vibrational quantum number,L is the projec-
tion of the electron angular momentum on the axis of
© 1999 American Institute of Physics
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molecule,N is the total angular momentum quantum nu
ber,M is the projection of the total angular momentum in t
direction of polarization of the field, andn are other term
quantum numbers of the molecule. The first term on
right-hand side of the Eq.~1! takes account of the expansio
in terms of all discrete levels of the coupled terms of t
molecule, and the second is an expansion in continuum s
of all terms,E is the energy of the continuum states,EvN

(n)

5Ev
(n)1Be

(n)N(N11) is the energy of the vibrational–
rotational states in thenth term,Ev

(n) are the energies of th
corresponding vibrational levels, andBe

(n) is the rotational
constant of thenth term. We assume the initial state of th
molecule to be one of the vibrational–rotational states of
electronic ground term 1ssg(2Sg

1): ugvNM&
5ug&uv&uNM&, whereug& is the electron wave function an
uv& and uNM& are, respectively, the vibrational and angu
functions of the nuclear motion. In the present paper
assume that in the initial statev51, i.e., the molecule is in
the lowest vibrational level of the ground term. For t
ortho- modification of the molecular H2

1 ion, only odd rota-
tional quantum numbers,N51,3,5,... are possible in th
ground term, and for the para- modification only even nu
bers are possible,N50,2,4,. . . .14,15 For a linearly polarized
field the quantum numberM is an integral of the motion
Therefore the problem can be solved separately for e
numberM , whereupon the results can be averaged with
spect to the distribution function of the unperturbed m
ecules over the statesuNM&.

We examine single- and multiphoton dissociation o
molecule. In accordance with the Franck–Condon princip
for a k-photon transition to the repulsive term 2psu(2Su

1)
from the lowest vibrational level (v51) of the ground-state
term 1ssg(2Sg

1) the frequency of the fieldv must satisfy the
condition v>v res

(k)5@U(Re)2EN#/k, where U(Re) is the
potential energy of the nuclei in the repulsive term,Re is the
equilibrium internuclear distance of the ground term, a
EN[E1N

(0) .
Substituting the expansion of the wave function~1! into

the Schro¨dinger equation, we obtain a system of different
equations for the probability amplitudesCn,v,N,L,M(t) and
Cn,E,N,L,M(t). Using the procedure for adiabatic exclusio
of the continuum,16 we expressCn,E,N,L,M(t) in terms of
Cn,v,N,L,M(t) and obtain the following system of equation
for the probability amplitudes of finding a molecule in th
vibrational–rotational states of the ground termCN(t)
[CN

(M )(t) ~where the indexM is dropped to simplify the
equations!

iĊN~ t !5(
N8

CN8~ t !exp$ i ~EN2EN8!t%

3F2
1

4
aNN8 f 2~ t !«0

22
i

2
f 2k~ t !(

k
GNN8G , ~2!

whereGNN8 andaNN8 are, respectively, the tensor of diss
ciation widths and the polarizability~scattering! tensor, re-
spectively. The ionization-width tensor can be determined
explicit form as the product ofk-photon composite matrix
elements of the dipole moment operator
-

e

tes

e

r
e

-

ch
-

-

,

d

l

n

GNN852p~2d–«0/2!NE
(k) ~2d–«0/2!EN8

(k) uE5EN1kv . ~3!

For single-photon dissociation,k51, the components of the
dissociation-width tensorGNN8 and the polarizability tenso
aNN8 can be expressed in terms of the real and imagin
parts of the composite second-order matrix elementsMN8N

(2) :

2
1

4
aNN8«0

22
i

2
GNN85MNN8

(2)

[S E dE1(
i

D ~2d–«0!N,E( i )~2d–«0!E( i ),N8
E~Ei !2EN2v1 id U

d→0

,

~4!

where the sum overi is a sum over all intermediate states
the molecule from which the integral over the energyE of
the molecule in the repulsive term, the transition to whi
corresponds to dissociation, is singled out. According to
~4!, for k51 GNN8 and2aNN8«0

2/4 are of the same~second!
order in the intensity of the field«0 and, generally speaking
are comparable in magnitude, and the actual ratio betw
the dissociation-width tensor and the amplitudes of the
man transitions depends on the frequency of the field. In
present case at single-photon transitions from the lowes
brational level of the molecule, in accordance with t
Franck–Condon principle the dissociation widthGNN8(v) of
the levelEN has a maximum near exact resonancev;v res

[v res
(1)5U(Re)2EN . Under the same conditions the dispe

sion dependence of the Stark shift of the levelEN ,
2aNN(v)«0

2/4, has a form similar to the derivative o
GNN8(v) and, therefore, uaNN(v)u«0

2/4!GNN8(v) near
v res.

17,18 Conversely, far fromv res there exists a region
where the shift of a level is relatively large, an
uaNN(v)u«0

2/4@GNN8(v).12,13 For multiphoton dissociation
of a molecule (k>2) the probability amplitudes of Rama
transitions once again are of second order in the field int
sity, while the components of the dissociation-width tens
are proportional to the field intensity to the power 2k and
therefore, as a rule,uaNN(v)u«0

2/4@GNN8(v) in this case.
Note that there is a difference between situations invo

ing short and long pulses. If the pulse duration is short co
pared with the reciprocal of the spacing between the nea
rotational levels,t,1/Be , whereBe[Be

(0) , then the radia-
tion spectrum is broad,Dv;1/t.Be , and Raman transi-
tions between different rotational levels can occur in stro
and weak fields. In contrast, for pulses of long durationt
.1/Be , the spectral width is small,Dv;1/t,Be , and Ra-
man transitions in a weak field are forbidden by energy c
servation considerations. However, in a strong field t
stricture is lifted and transitions can occur.

The criterion for a strong field is

1

4
uaN8N~v!u«0

2.Be . ~5!

This criterion is a common one, and does not depend on
pulse duration. Although for a short pulse (t,1/Be) Raman
transitions can also occur in weaker fields, they are ine
cient in that case. Raman transitions become efficient
large and smallt only if ~5! is satisfied. Numerically, for the
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ground state of the molecular hydrogen ion H2
1 ~5! corre-

sponds to field intensitiesI>1010W•cm22 or field intensities
«0>33106 V•cm21[«B , where«B is the threshold inten-
sity for the appearance of the strong-field effects conside
below. This estimate of«B can be easily shown to be corre
either by approximating the polarizability tensoraNN8(v) by
the static limit of its diagonal partuaNN(v50)u'5 ~in
atomic units! or by estimatingaNN8(v) by its maximum
frequency dependence uaNN(v)umax'1512,13 for Be

530 cm21.19

Considering weak and strong fields@according to the cri-
terion ~5!#, we assume that the field intensity is still bound
from above by the conditions

uaNN8u«0
2!ve , GNN8!ve , ~6!

whereve is the frequency of a vibrational quantum in th
ground term of the molecule,ve52297 cm21.19 Since
uaNN(v)umax'1512,13 and @GNN8(v)#max'10,17,19 we find
that ~6! holds for I<1012W•cm22, which is obviously con-
sistent with the condition for the strong-field regime~5!. The
condition ~6! justifies the possibility of taking account o
only transitions between rotational sublevels of the low
vibrational level of the ground term of the molecule witho
excitation of the higher vibrational levels. This approxim
tion is reflected explicitly in Eqs.~2!, whose right-hand side
do not contain a summation over the vibrational states of
molecule. The region of even stronger fields, where~6! is not
satisfied, is certainly of interest, but such an extension of
problem falls outside the scope of the present work.

Equations~2!–~4! can be further simplified by singling
out in the matrix elements of the dipole moment the pa
calculated in terms of the rotational functions of a free m
ecule, and assuming that the remaining factors are ei
weakly dependent on the rotational quantum number in
initial and final states and can be approximated by consta
In this approximation, all components of the ionizatio
width tensor and the polarizability tensor are characteri
only by the constantsb0 anda0 , respectively,

GNN8
(M )

5b0DNN8
(M ) «0

2 , aNN8
(M )

5a0DNN8
(M ) . ~7!

For single-photon dissocation the coefficientsDNN8
(M ) are

DNN
(M )5

N22M2

4N221
1

~N11!22M2

4~N11!221
,

DNN8
(M )

5A~Nmax
2 2M2!~~Nmax21!22M2!

~4Nmax
2 21!~4~Nmax21!221!

dNN862 ,

~8!

whereNmax5max$N,N8%. For three-photon dissociation of
molecule, naturally the expression~7! for the polarizability
tensor aNN8

(M ) remains the same, and the formula for t
dissociation-width tensor becomes

GNN8
(M )

5b̃0D̃NN8
(M ) «0

6 , ~9!

where the coefficientsD̃NN8
(M ) are given in Table I. The con

stantsa0 , b0 , andb̃0 are not calculated in the present pap
but instead are given phenomenologically.
d
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The solutionsCN
(M )(t) of the system~2! can be used to

find as a function of timet the probability density of the
orientation of the molecular axis in any given direction ch
acterized by the anglesu and w of a spherical coordinate
system withz axis oriented parallel to the polarization vect
of the field«0 :

PN
(M )~ t,u,w!5U(

N8
CN8

(M )
~ t !YN8M

* ~u,w!U2

, ~10!

where as before the quantum numbersN andM characterize
the initial state of the molecule. If the system under study
initially an ensemble of molecules with distribution functio
rN

(M ) over the quantum numbersN and M , then the time-
dependent distribution function over the directions of t
axes of the molecules in the ensemble is

P~ t,u,w!5(
NM

rN
(M )PN

(M )~ t,u,w!

5(
NM

rN
(M )U(

N8
CN8

(M )
~ t !YN8M

* ~u,w!U2

. ~11!

Using the solutions of the system of equations~2!, the
angular distribution function of the dissociation products
the ensemble of molecules can also be found similarly to
~11!:

Pf r~u,w!5(
NM

rN
(M )E dEU(

N8
CEN8

(M )
~T!YN8M

* ~u,w!U2

.

~12!

HereCEN
(M )(t) are the probability amplitudes of finding a mo

ecule at timet in continnum states of the repulsive term wi
energyE and quantum numbers of the angular moment
and its projectionN andM :

CEN
(M )~ t !52 i E

0

t

dt8(
N8

exp$ i ~E2EN82v!t8%

3S 2
d–«0

2 D
ENM;N8M

(k)

CN8M~ t8!, ~13!

where (2d–«0/2)ENM;N8M
(k) is thek-photon matrix element of

a dipole transition from the state of the ground termug,v

TABLE I.

DNN13M A~N11!22M2

4~N11!221

~N12!22M 2

4~N12!221

~N13!22M 2

4~N13!221
DNN11M A~N11!22M 2

4~N11!221 S ~N12!22M 2

4~N12!221
1

~N11!22M 2

4~N11!221

1
N22M 2

4N221 D
DNN21M AN22M 2

4N221 S ~N11!22M 2

4~N11!221
1

N22M2

4N221
1

~N21!22M2

4~N21!221 D
DNN23M A~N21!22M 2

4~N21!221

~N22!22M 2

4~N22!221

N22M2

4N221
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51,N8,M & to the continuum stateuu,E,N,M &; the timeT in
the argument ofCEN

(M ) on the right-hand side of Eq.~12! is the
moment at which the pulse ceases.

3. ROTATIONAL QUASIENERGY STATES OF A MOLECULE
AND ALIGNMENT EFFECTS WITH THE INTERACTION
TURNED ON ADIABATICALLY

For a constant, time-independent envelope of the fi
f (t)[1, the system of equations~2! can be transformed to
system of equations with constant coefficients for the fu
tions AN(t)5exp(2iENt)CN(t)

iȦN~ t !2ENAN~ t !5(
N8

AN8~ t !

3S 2
1

4
aNN8«0

22
i

2 (
k

GNN8D ,

~14!

which obviously has a solution of the formAN(t)
5exp(2igt)aN , whereaN is a constant andg are complex
quasienergies of the system. The equations for the co
cientsaN have the form

S g2EN1
a012ib0

4
«0

2DN,NDaN

52
a012ib0

4
«0

2~DN,N12aN121DN,N22aN22!,

~15!

where the approximate formulas~7! were used for the polar
izability and ionization-width tensors. The single-photon d
sociation channel is assumed to be open, and in this cas
constantsDN,N8 are determined by Eqs.~8!.

As noted in the Introduction, for single-photon dissoc
tion of a molecule the ratio of the constantsa0 andb0 de-
pends on the frequency of the external field. Fora0!b0 the
perturbation of the levels of the molecule in a field is det
mined mainly by the dissociation broadening, and this c
has been investigated in detail in our previous work.7 In the
present paper this case is not studied, since appreciable a
ment of molecules in a strong field does not occur w
strong dissociation broadening of the levels. From this sta
point, the opposite case, where the perturbation of the r
tional levels of a molecule as a result of direct two-phot
Raman transitions is much greater than their dissocia
broadening,uaNN8

(M ) u@uGNN8
(M ) u or a0@b0(b̃0), is much more

interesting. These equations~15! are equivalent to the equa
tions for the expansion coefficients of the prolate sphero
function of the first kind in spherical harmonics.8,9,20

The solutions of the system of equations~15! determine
the expansion coefficientsaN of the quasienergy wave func
tions Cg in terms of the rotational states of a free molecu
and the field-dependent quasienergiesg of the system. The
real and imaginary parts of the quasienergies determine
positions and widths of the quasienergy levels. Although
quasienergy states are a superposition of the rotational s
of a free molecule with differentN, it is nonetheless conve
ld
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nient to characterize each quasienergy state by a rotati
quantum numberN0 of the level of the free molecule (EN0

)
into which a given quasienergygN0

(«0) passes in the forma
limit of zero field intensity,«0→0. The value and desirabil
ity of solving for the quasienergies and quasienergy wa
functions of a molecule are due to the fact that when the fi
is turned on sufficiently slowly~adiabatically!, i.e., for suffi-
ciently long pulse durations~see below for estimates!, the
system always remains in a quasienergy state, satisfyin
given initial condition, and its characteristics at any time a
determined by the parameters of this quasienergy state
which it is only necessary to replace«0 by a weakly time-
dependent envelope«0f (t) of the light pulse. In other words
in the adiabatic approximation a replacement of the param
ric dependence ofg andaN on «0 by a dependence on«0f (t)
makes it possible to solve the initial problem, i.e., to find t
solutionC(t)5Cg@«0f (t)# of the Schro¨dinger equation that
satisfies the initial conditionsg@«0f (t)#→EN0

and Cg

→uN0 ,MN0
& as t→2`.

If the system is in a quasienergy stateCg , then in par-
ticular the probability densityP(g) of the orientation of the
axis of the molecule in this state can also be determi
using Eq.~10!:

P(g,M )~ t,u,w!5U(
N

aN
(g,M )@«0f ~ t !#

3exp$2 i ~EN1g!t%YNM* ~u,w!U2

. ~16!

For an interaction turned on adiabatically, the quasienergg
and the corresponding coefficientsaN

(g,M ) in Eq. ~16! are cho-
sen from the solutions of Eqs.~15! and the initial conditions
g@«0f (t)#→EN0

andCg→uN0 ,MN0
& ast→2`. Assuming

the adiabaticity conditions to be satisfied and, in additi
uaNN8

(M ) u@uGNN8
(M ) u (a0@b0), andGNN8

(M ) T!1 we solve Eq.~15!
and investigate the dynamics of the alignment of an
semble of molecules excited by a field into quasiene
statesCg .

We assume as usual that the object of investigation is
equilibrium molecular gas at room temperature. Under th
conditions only rotational states with smallN of the mol-
ecules are populated, and for the ortho- configuration of
molecular ion H2

1 only the states withN51 are populated,
all three sublevels withM51, 0, and21 being equally
populated,r1

(M )51/3. In accordance with Eq.~11! the distri-
bution function over directions of the axes of such an e
semble of molecules has the form

P~ t,u,w!5
1

3
@P1

(1)~ t,u,w!1P1
(0)~ t,u,w!

1P1
(21)~ t,u,w!#, ~17!

where the functionsP1
(M )(t,u,w) must be found from Eqs

~16!. In the limit t→2`, P(t,u,w)u t→2`5const51/4p
follows from Eq.~17!. This explicitly confirms that the dis-
tribution of the molecular axes in the unperturbed state of
ensemble is isotropic.

Figure 1 shows the directional distribution functio
P(u) ~17! of the axes of the ensemble of molecules und
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study after the interaction is turned on adiabatically~i.e., at
t50, when the field in the pulse has reached its maxim
value!, calculated for several peak values of the field inte
sity, «0 /«B50, 1, 2, 5, and 10. We note that because of ax
symmetry the distribution functionP does not depend on th
azimuthal anglew ~in a plane perpendicular to«0!. Accord-
ing to the figure, as the field increases the distribution fu
tion P(u) becomes narrower and is localized at small valu
of u and p2u, i.e., close to the direction of field polariza
tion. In addition, in a strong field a dip also appears in
distribution function precisely atu50 andu5p. This dip
becomes increasingly noticeable as the field intensity
creases.

The distribution functionP(u) found above can be use
to calculate average values, for example, the average anū
between the axis of a molecule and the direction of polar
tion of the field and the quantum variances5@u2

2(u)2#1/2, where

un5E
0

p/2

unP~u!sinu duY E
0

p/2

P~u!sinu du. ~18!

We note that the integration in Eq.~18! extends from 0 to
p/2 and not from 0 top, since the positions of the molecu
with the axis making anglesu andp2u with «0 are assumed
to be equivalent. It is also interesting to note that in t
absence of a field~for P5const! ū51 rad ands'0.4 rad. In
this case these values ofū and s are independent of the
choice of direction for the quantization axis.

Figure 2 shows the average angleū and the quantities
ū6s as a function of the peak amplitude«0 of the field in a
pulse with the interaction turned on adiabatically. The av
age angleū(«0) decreases with increasing field, and in t
strong-field limit it reaches a constant value of only seve
degrees. The relative standard deviation of the angleu from
its average value remains more or less const
s(«0)/ ū(«0)'40%. Therefore, in a strong field the avera
angle between the axes of the molecules and the directio
«0 as well as the standard deviations of the average angle
are substantially less than their values for a weak field. T

FIG. 1. Angular distribution of the axes of an ensemble of molecules
radiation field. The distribution results from adiabatic switching of the
teraction. The numbers show the field intensity«0 in units of «B .
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indicates unequivocally that the axes of the molecules
aligned in the direction of polarization of a strong light fiel

The alignment of the molecules in the direction of p
larization of a strong field can largely determine the angu
directivity of the dissociation fragments of the molecu
Photodissociation itself can serve as a competing mechan
for the narrowing of the directional pattern of the molecu
fragments. As is well known,19,5,21even in a weak field and
with an isotropic distribution of the directions of the molec
lar axes, the directional pattern of the fragments in sing
photon dissociation as calculated in first-order perturbat
theory is governed by the factor cos2 ufr , whereu f r is the
angle between the direction of emergence of the fragme
and the field intensity vector«0 . For three-photon dissocia
tion the corresponding factor is cos6 ufr , an extremely nar-
rowly directed function.

In the theoretical model under study the distributi
function P(u f r) of the fragments of the molecule over th
directions of emergence and the average emergence a
ū f r , determined similarly to Eq.~18!, were calculated using
Eqs.~13! and ~14! for single- and three-photon dissociatio
The calculation was performed in the adiabatic approxim
tion used in the present section. The computed depend
of the average emergence angle on the peak field intensit«0

in the pulse is presented in Fig. 2. As one can see from
figure, the average emergence angleū f r(«0) of the fragments
of a molecule is always less than the average angleū(«0)
between the axes of the undissociated molecules and«0 . For
one- and three-photon ionization, in the weak field limitū f r

'2ū/3 and ū f r50.45ū, respectively. In a strong fieldū f r

'ū in both cases. This result essentially suggests a chang
the mechanism whereby the directional pattern of the dis
ciation products becomes narrower as the field increases.
weak field the distribution of the axes of the molecules o
the anglesu is almost isotropic, and the narrowing of th
directional pattern of the dissociation products results so
from the dissociation process itself, i.e., the transition to
continuum. In a strong field the dominant mechanism
comes alignment of the undissociated molecules along
field. The degree of directivity of the dissociation products
essentially the same as the degree of orientation of the
of the molecules.

a

FIG. 2. Average angleū(«0) between the axis of a molecule and the fie
intensity with the field turned on adiabatically~curve 1! and the average

emergence angleū f r(«0) of the fragments with single-photon~curve2! and

three-photon~curve3! dissociation; dotted curves—ū(«0)6s(«0).
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4. SOLUTION OF THE INITIAL PROBLEM AND ALIGNMENT
EFFECTS INDUCED BY VARIOUSLY-SHAPED PULSES

4.1. Square pulse

We consider first the often used model of a square pu
i.e., the interaction is turned on and off instantaneou
Solving Eqs.~2! and ~4! and assuming once again that in
tially the ensemble of molecules is characterized by an
tropic directional distribution function of the axes of the mo
ecules, we find using Eqs.~11! and ~18! the time-dependen
average angleū(t) between the axis of a molecule and t
polarization direction of the field and the quantum varian
s(t) fo this angle. Figure 3 shows the functionsū(t) and
ū(t)6s(t) calculated for a square pulse of durationT
55TB ~whereTB51/Be! at peak field strength seven time
the threshold value for the appearance of strong-field effe
«057«B ~see Eq.~5! for the definition of«B!. As is evident
from the figure, the average angleū(t) undergoes compli-
cated nonharmonic but periodic oscillations between the
tial value ū(0)51 rad'57° and the minimum value'27°
with frequencies equal to the differences of the occup
quasienergy states. Expanding the functionū(t) in a Fourier
~integral! series, we find that oscillations with frequenci
equal to the differences of the quasienergies of the quas
ergy states of the molecule that are populated initially w
the interaction turned on instantaneously are represente
the spectrum of the periodic functionū(t). However, the
large quantum variance of the angleu, much greater than the
amplitude of the oscillations of the average angle, can m
it very difficult to observe these oscillations. We note that
observed large quantum variance of the angleu gives a far
from obvious possibility of describing the rotations of a mo
ecule in a field using the classical theory,12,13 where the de-
pendenceū(t) is a strictly deterministic function.

Since the dissociation of a molecule~by assumption,
slow, GM ,M(T)!1! occurs during the entire time of the in
teraction with the field, the oscillations in the time depe
denceū f r(t) of the average emergence angle of the de
products of the molecule are smoothed out ast increases, as
is clearly seen in Fig. 3.

FIG. 3. Time-dependence of the average angleū(t) between the axis of the
molecules and the field intensity~curve1! and the average emergence ang

ū f r(t) of the fragments with single-photon dissociation~curve 2! with the

interaction turned on instantaneously with«0510«B ; dotted curves—ū(t)
6s(t).
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4.2. Gaussian pulse

The model with the interaction turned on instantaneou
is attractive solely because of its simplicity. It does not c
respond to the envelope of real laser pulses, which is b
approximated by a Gaussian functionf (t)5exp@2(t/T)2#.
For sufficiently long pulse durationT, the solution of the
problem should correspond to the adiabatically switch
model studied in the preceding section. However, for val
of T comparable toTB51/Be the deviations from adiabatic
ity can be appreciable. In the language of quasienergy fu
tions a deviation from adiabaticity means that on the lead
edge of the pulse several quasienergy states of the mole
in the field, and not only one state as in the adiabatic ca
become occupied as the field is turned on. Solving the eq
tion for the time-dependent coefficients in the expansion
the wave function of the molecule in the field of a Gauss
pulse, it can be shown that the adiabaticity parameter is

n05
~614N0!BeT

p F lnS ua012ib0u«0
2

~614N0!Be
D G21/4

, ~19!

which can be interpreted as the number of oscillations
functions of the typeu(t) on the leading edge of a Gaussia
pulse. Forn0,1 there is not enough time for even one o
cillation of ū(t) to occur as the leading edge is turned on.
this case the interaction is turned on abruptly and the proc
resembles more an instantaneously switched process. M
quasienergy states of the molecule become occupied as
interaction is turned on. In contrast, forn0@1 the switching
time is long, and many oscillations of the functionū(t) occur
during this time, but the amplitude of these oscillations
extremely small, and the switching process is nearly ad
batic. These behaviors are characterized by the comp
tional results presented in Fig. 4, which shows the functio
ū(t) and ū(t)6s(t) calculated in the same model as in a
preceding calculations but for a Gaussian pulse with dura
T50.1TB , TB , and 5TB and peak field strength«0510«B .
For T55TB , according to Eq.~19!, n0'8, i.e., the pulse is
turned on gradually, essentially adiabatically. The aver
angle ū(t) decreases with timet to the minimum value,
which is reached att50, i.e., at the maximum of the time
dependent amplitude«0f (t) of the field. For small values o
n0 the deviations from adiabaticity are large. In short a
long pulses the quantum variances is greater than the am
plitude of the oscillations of the average angleū(t).

In contrast to a pulse with a rectangular envelope, i
Gaussian pulse the dissociation of molecules occurs ma
near the field maximum att50. Figure 5 shows as a functio
of the field strength the pulse-averaged angle of the axe
an ensemble of molecules at the center of the pulse and
average emergence angles of the photodissociation prod
for single- and three-photon decay of molecules in an
semble for several pulse durations. For very short puls
n0!1, the difference from perturbation theory is small. F
very long pulses,n0@1, the difference from the adiabati
switching model is small. The angular distribution of the ax
of a molecule at the center of a pulse and the angular di
butions of the fragments of a molecule for single- and thr
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photon decay are essentially the same as the correspon
distributions with the field turned on adiabatically. For su
ficiently long pulses,n0>1, two regions can be singled ou
in the functionsū(«0), ū f r(«0), andu f r

(3)(«0): the region of
relatively weak fields, where the properties of the angu
distribution of the fragments are determined by the orient
properties of the phototransition to the continuum of the
stable term, and the region of strong fields, where the ang
distribution of the fragments is the same as the angular

FIG. 4. Time-dependence of the average angleū(t) between the axis of the
molecules and the intensity of the field for a Gaussian pulse with p
intensity «0510«B and pulse durationT50.1TB ~a!, T5TB ~b!, and T

55TB ~c!; dotted curves—ū(t)6s(t); dashed curves—ū(t) in the model

with the interaction turned on adiabatically;ūad(t)—average angle betwee
the field intensity and the axis of molecules in a quasienergy state wit
adiabatically slowly varying field amplitude«0(t).

FIG. 5. Average angleū(t) between the axis of a molecule and the directi
of the field intensity~1! and the average emergence angle of the fragme
for single-photon~2! and three-photon~3! dissociation for short~solid lines!
and long~dashed lines! pulses, for which, respectively,n0!1 andn0@1,
calculated for a Gaussian pulse att50 as a function of the peak field
strength«max5«0(t50).
ing
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tribution of the axes of the molecules in the ensemble. H
ū f r(F)'ū(F) ~Fig. 5!. We note that, other conditions bein
the same, as the fractionGT of molecules that decay durin
a pulse increases, the width of the angular distribution of
fragments over the emergence angles increases.

5. CONCLUSIONS

The main results of this work are the conclusion th
substantial alignment of molecules in the direction of pol
ization of the field is possible and a formulation of the co
responding conditions. It was shown that alignment can
substantial only if the field is turned on adibatically, i.e.,
the duration of a pulse with a smooth envelope is sufficien
long. Then the alignment is maximum at the maximum of t
field. The second important condition for alignment is th
the dissociation broadening of the rotational levels of a m
ecule must be relatively small compared with the pertur
tion of the levels as a result of direct two-photon Ram
transitions.

The second important result of this work concerns
angular distribution of the products of dissociation of a m
ecule. It was shown that the narrowing of the direction
pattern of the dissociation fragments and its orientation in
direction of polarization of the field can be determined
two factors: the orientation of the axes of the molecules
the direction of a strong field and by the transition itself fro
a bound state of the molecule to the continuum of an
stable term. If the conditions of alignment of molecules in
bound state as formulated above are not satisfied, then
directivity of the dissociation products of the molecules c
be determined only by the properties of the transition to
continuum. Specifically, the directivity of the angular dist
bution of the fragments along the field increases with
number of photons involved in the transition to the repuls
term. However, if the strong field satisfies the conditions
substantial alignment of the axes of the molecules in th
bound state, then the angular distribution of the dissocia
products is essentially the same as the angular distributio
the axes of the molecules.

These results can be compared qualitatively with exp
mental data.2 For example, under the experimental cond
tions of Ref. 2 the pulse duration was short, so thatn0<1
(Cl2, T'100 fs,B'1.7 cm21, a'30 a.u.!. Therefore, in our
view, the directivity of the angular distribution of the diss
ciation products of the molecules along the field was de
mined only by the orienting properties of the multiphoto
transition to the photoionization continuum with formatio
of a molecular ion and a subsequent transition to the ph
dissociation continuum with decay of the molecules in
fragments. Alignment of the axis of a molecule and the a
of a molecular ion as a result of Raman-type transitions
fore transitions to a state in the continuum was small. Thi
indicated by the dependence of the alignment on the p
duration, the field intensity, and the wavelength. Accordi
to the data of Ref. 2, variations in the pulse duration and fi
intensity had only a minor effect on the angular distributi
of the dissociation fragments, and an increase in wavelen
narrowed the angular distribution. The latter indicates
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rectly that an increase in the number of photons involved
the transition has a controlling effect on the angular distri
tion of the fragments.

We reiterate that our analysis is limited to fields that a
not too strong~4!. To go beyond these restrictions it is ne
essary to take account of the possibility of excitation of m
lecular vibrations, which greatly complicates the problem

This work was supported by the Russian Fund for F
damental Research~Grant No. 99-02-18034!.
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We discuss the process of resonant subbarrier internal conversion ofg rays, where the converted
electron is transferred to one of the atomic orbitals. For the first time we study how this
process is affected by residual interactions: the splitting of the atomic terms in the total angular
momentum of the atom, configuration mixing, and the magnetic interaction between the
electrons of the atom. The calculations are done by the relativistic multiconfiguration Dirac–Fock
method with allowance for the Breit interaction for theM1 transition with an energy of
35 492 eV in multiply charged ions of125Te. We show that allowing for the residual interaction
is obligatory if we want to calculate the conversion rate in the vicinity of a resonance
correctly. © 1999 American Institute of Physics.@S1063-7761~99!00511-9#
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1. INTRODUCTION

The use of multiply charged ions in modern accelerat
allows observing processes that are, at least in principle,
sible and have been studied theoretically, but are extrem
rare in neutral atoms. One of these exotic processes is
subbarrier~or discrete or resonant! internal conversion ofg
rays, where the electron is~virtually! transferred to one o
the discrete levels of the atom. Such a process was con
ered in Ref. 1 and 2. Since discrete conversion is definite
resonant process, it was suggested in Ref. 2 that reso
conversion could be used to accelerate nuclear transition
balancing the resonance defect by an external field of la
radiation of appropriate frequency.

A different experimental study of theM1 transition with
an energy of 35 491.960.5 eV in multiply charged ions o
125Te was carried out at the University of Bordeaux.3,4 In the
neutral atom this transition occurs primarily due to conv
sion on theK-shell, and the corresponding internal conve
sion coefficientaK

M1 is equal to 11.6. As the shell becom
ionized, the electron binding energy increases, and at ion
tion multiplicity q545 ordinary conversion on theK-shell
becomes impossible. However, the expected decrease in
time was not observed in experiments: it remained cons
even atq546; only with further ionization does the lifetim
exhibit a smooth increase. This experiment stimulated a
oretical investigation4 of the process of subbarrier resona
conversion that occurs atq>45. The Feynman diagram o
this process is depicted in Fig. 1. We see that the electro
~virtually! transferred to one of the states belonging to
discrete spectrum, which then decays via a radiative elec
~or hole! transition.

In the present paper we refine the calculation done
Ref. 4 by allowing for the residual interactions. On partic
lar, we allow for the splitting of atomic terms in the tot
8451063-7761/99/89(11)/5/$15.00
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angular momentum of the atom, take into account the m
netic Breit interaction between the atomic electrons, and
low for configuration mixing. As expected, allowing fo
these effects strongly influences the resonant conversion

2. ALLOWANCE FOR THE MAGNETIC INTERACTION
OF ELECTRONS AND THE SPLITTING OF TERMS
IN TOTAL ANGULAR MOMENTUM OF THE ATOM

The rate of resonant conversion depends very stron
on the energy of the intermediate electron state~see Fig. 1!.
Hence in calculations it is very important to allow for th
splitting of atomic levels in the total angular momentum a
for the magnetic Breit interaction~in addition to the Cou-
lomb interaction!. The effect of the Breit interaction on th
energy of 1s→ns transitions in the125Te451 ion is illustrated
by Table I. The first column lists the values of the energies
1s→ns transitions,n59218, calculated by the Dirac–Foc
method for the median~‘‘average’’! level (DFav) without
allowance for the Breit interaction and the total angular m

FIG. 1. Feynman diagram for discrete conversion. A hole forms in thes
shell, and the corresponding electron goes to thens state. The double line
corresponds to a nuclear transition from the excited (ex* ) state to the
ground (g) state. The arrow corresponding to the hole state is direc
against the flow of time.
© 1999 American Institute of Physics
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TABLE I. Energies of 1s→ns transitions calculated by the DFav method without allowance for the splitting in
the total angular momentumJ of the atom, by the DFtd with allowance for the splitting (E(J1 ,J2)), and by the
DFtd method with allowance for the magnetic interaction (MI (J1 ,J2)). The energies are in electronvolts an
are measured from 35000 eV.

ns DFav E(3/2,5/2) E(1/2,3/2) MI (3/2,5/2) MI (1/2,3/2)

9s 331 320 349 252 283
10s 402 391 419 323 354
11s 454 443 471 375 406
12s 493 483 511 414 445
13s 524 513 541 445 476
14s 548 537 563 469 500
15s 568 557 585 488 519
16s 584 573 601 504 535
17s 597 586 614 517 548
18s 608 597 625 528 559
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mentum of the atom. This approximation corresponds to
model used in Ref. 4. The total angular momentumJ of the
method can be taken into account by using the te
dependent Dirac–Fock method (DFtd) or the multiconfigura-
tion Dirac–Fock method~MCDF!. Such calculations lift the
degeneracy in the total angular momentumJ of the atomic
terms. As a result, the excitedns levels split into two dou-
blets, each of which remains almost doubly degenerate.
levels of the lower doublet with the angular momentaJ
53/2 and 5/2 differ by roughly 0.1 eV in energy. The leve
of the upper doublet with angular momentaJ51/2 and 3/2
are separated by a narrower gap,;0.02 eV.

The energies of the 1s→ns transitions calculated by th
different methods are compared in Table I. In addition to
energies obtained by the DFav method, the third and fourth
columns list the energies of the doublets calculated by
DFtd method. Since inside each doublet the transition en
gies do differ by an amount smaller than the accuracy of
data in Table I, these components are paired. The co
sponding values ofJ are listed in the first row of the table
The energies of the transitions calculated by the DFtd method
with allowance for the Breit interaction are listed in the fif
and sixth columns.

The results presented in Table I show that allowance
the residual interaction radically changes the arrangemen
the electron levels. Splitting of the levels is almost const
and amounts to 27–31 eV. This value exceeds the separ
of median levels, so that the levels belonging to neighbor
doublets overlap. The magnetic interaction increases the
energyEtot of the ground state of the125Te451 ion ~with the
electron configuration 1s22s22p1/2

2 2p3/2) by 90.7 eV. For
highly excited states with the electron configurati
1s2s22p22p3/2ns, the energyEtot increases by roughly
e
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r
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g
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22 eV. Thus, the entire energy of transitions forns states
with large values ofn decreases by roughly 70 eV, which
much larger than the level separation.

3. INTERACTION OF CONFIGURATIONS

What we said in Secs. 1 and 2 readily implies that t
rate of discrete conversion strongly depends on the level d
sity, which usually increases significantly when the mixi
of configurations is taken into account. As noted earlier,
the case at hand the allowance for the interaction of confi
rations causes splitting of eachns state into two levels in the
final configurations (1s2s22p1/2

2 2p3/2ns), and each compo-
nent of the split levels remains almost doubly degenerate
the present work the configuration interaction is taken i
account within the MCDF method.

Using our RAINE package of computer programs,5 de-
vised for relativistic calculations of atomic structures and
interaction of electromagnetic radiation and the nucleus w
the atomic electrons, we developed a program that real
the MCDF method. The main concepts were taken from
theory of Grantet al.,6 but in our calculations by the MCDF
method we took for the base functions the Slater deter
nants corresponding to states with a well-defined projec
M of the total angular momentumJ. The energy levels of the
atom are determined by diagonalizing the Hamiltonian, a
each level corresponds to an eigenfunction of the operato
total angular momentum, i.e., to a definite value of the
gular momentumJ.

There are three types of configuration interaction.6 Fig-
ure 2a depicts the Feynman diagram of the mixing am
tude, which occurs due to the one-particle operator of kine
energy and the Coulomb interaction with the nucleus. Fig
ic
e

.

FIG. 2. Three types of configuration interaction:~a!
mixing due to the one-particle operator of kinet
energy and the Coulomb interaction with th
nucleus;~b! mixing due to the interaction with the
core; and~c! interaction with excitation of the core
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2b depicts the diagram representing the two-particle inte
tion of the electron and the field generated by the other e
trons, whose states do not change, so that they can b
garded as comprising the core. This interaction also lead
mixing of the finalns states in the principal quantum numb
n. The state of the core does not change if one allows for
type of interaction. Finally, Fig. 2c illustrates two-partic
interaction with more complicated many-particle configu
tions of the core-excitation type.

The typical matrix elements of the type of interaction
Fig. 2a or b for Te451 are listed in Table II. The first four
rows in the table illustrate the fragmentation of the 8s states
in the 6s, 7s, and 9s shells, fragmentation that occurs due
the interaction with the other electrons of theK- andL-shells.
The results show that the interaction matrix elements
almost the same for all electrons of theL-shell and are some
what larger from theK-shell. The magnitude of each matr
element is about 10 eV. They add up coherently, yielding,
instance, (k^k 9suH8u8s k&539.881 eV. However, this
value is balanced almost perfectly by the contributions of
interaction of the type depicted in Fig. 2a, which is appro
mately equal in value but has the opposite sign, as the s
and seventh rows in Table II show. This perfect balance
a simple physical meaning. The electron in the highly e
cited state 9s ‘‘detects’’ basically the nearly Coulomb poten

TABLE II. Matrix elements of the two-particle interaction of configuration
^k nsuH8u8s k& ~Fig. 2b!, rows 1–4;M tot is the total matrix element of
two-particle interaction;M1 is the one-particle matrix element^nsuHoneu8s&
~Fig. 2a!; and M res is the resulting matrix element. All values of matri
elements are in electronvolts.

k \ n 6 7 9

1s1/2 8.518 9.403 7.355
2s1/2 13.405 15.9473 12.770
2p1/2 14.186 16.559 13.183
2p3/2 7.058 8.252 6.573

M tot 43.167 50.161 39.881

M1 242.887 249.944 239.702

M res 0.280 0.217 0.179
c-
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tial with a chargeZ2q11, which depends very weakly o
the specific configuration of the core. Therefore allowan
for the given type of interaction gives rise only to a slig
mixing of configurations with an amplitude of less tha
;1%.

However, as noted earlier, calculations by the MCD
method yield splitting of levels in total angular momentum
with the value of this splitting being approximately 30 eV
The level density changes when the interaction represe
by Fig. 2c is taken into account. The typical matrix eleme
of this type are listed in Table III. Since they are off-diagon
in all four states, they prove to be smaller by factor of 10
100. Note that the matrix elements with numbers from 3 t
with excitation of the hole states 2p1/2 in the core add up
coherently. The total value of such matrix elements amou
to roughly 6 eV, which is larger by a factor of ten than th
matrix elementM resof one-particle mixing listed in Table II.
And since the difference of the corresponding energy
roughly 50 eV, allowance for this interaction can lead
mixing of these states with an amplitude close to 10% and
a corresponding change in the transition energy and the
version matrix elements. Thus, although the density of
atomic levels is not really as high as in the case of the m
tiply charged Au241 ion studied by Gribakinet al.,7 allow-
ance for configuration mixing, as we will show shortl
proves to be very important if we want to calculate the r
of discrete conversion correctly.

4. CONVERSION TRANSITIONS TO nd -SHELLS

The selection rules for the conversionM1 transition also
allow for transitions in which the electron orbital angul
momentuml changes by 2, i.e.,D l 52. In the case at hand
this means that there can be transitions of the 1s electron not
only to thens states but also to the discrete statesnd3/2 of
shells, transitions withDJ50,61 which are close in energy
to the energy of the nuclear transition. However, we exp
the probability of these transitions to be low due to the sm
ness of the wave functions of thed electrons in the region o
the nucleus. Since the electron wave functions behave a
origin as (pr) l , it is indeed true that in the case of anM1
transition the internal conversion coefficients are at th
nd the

TABLE III. Matrix elements of the interaction of configurations,^ jnuH8un8 j 8& ~Fig. 2c!. The one-particle states
are specified by the values of the principal quantum number, the orbital and total angular momenta, a
projection of the total angular momentum.

Configuration Matrix
Number j n j 8 n8 element, eV

1 2p3/2
3
2 6s1/2 2

1
2 8s1/2

1
2 2p1/2

1
2

20.184

2 2p3/2
1
2 6s1/2

1
2 8s1/2

1
2 2p1/2

1
2

20.106

3 2p3/2
1
2 6s1/2 2

1
2 8s1/2

1
2 2p1/2 2

1
2

20.144

4 2p3/2 2
1
2 6s1/2

1
2 8s1/2

1
2 2p1/2 2

1
2

20.106

5 2p3/2
1
2 7s1/2

1
2 8s1/2

1
2 2p1/2

1
2

20.083

6, 7 2p3/2
1
2 6p1/2 6

1
2 8s1/2

1
2 2s1/2 7

1
2

20.401

8 2p3/2 2
1
2 6p1/2

1
2 8s1/2

1
2 2s1/2 2

1
2

0.401

9 2p3/2
3
2 6p1/2 2

1
2 8s1/2

1
2 2s1/2

1
2

0.695

10 2p3/2 2
3
2 7p1/2

3
2 8s1/2 2

1
2 2s1/2

1
2

20.126
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maximum in the 1s→ns transition, for which the wave func
tion of thens electron is finite at the origin~see, e.g., Ref. 8!.
On the other hand, the wave functions of thed states have a
second-order zero near the nucleus and are localized e
tially outside theK-shell. In Table IV we list the interna
conversion coefficients for transitions to the discrete state
the nd3/2-shell. We see that the values of these coefficie
prove to be smaller by a factor of 1000 than the values of
internal conversion coefficients for transitions to states of
ns-shells given in Ref. 4~see also Table V!.

TABLE IV. Energiesvnk and the discrete conversion coefficientsad
M1 for

the M1 transitions 1s→nd3/2 calculated by the DFav method.

nd3/2 vnk , eV ad
M1 , eV

11d3/2 35 458 0.481
12d3/2 35 496 0.368
13d3/2 35 526 0.286
14d3/2 35 550 0.223
15d3/2 35 569 0.175
16d3/2 35 585 0.137

TABLE V. Results of calculations by the MCDF method: the energiesvnk

of the 1s→ns transitions forns levels with different angular momentaJ,
the weightsSof the ‘‘pure’’ configurations 1s2s22p1/2

2 2p3/2ns, the discrete
internal conversion coefficientsad

M1DJ , and the conversion factorsRnkS.

ns J vnk , eV S ad
M1DJ , eV RnkS

1/2 35 443.8 0.9967 67.31 0.0230
3/2 35 443.9 0.9954 83.74 0.0287

12s
3/2 35 410.6 0.9878 51.03 0.0060
5/2 35 410.4 0.9887 200.90 0.0237

1/2 35 474.4 0.9899 51.90 0.1309
3/2 35 474.4 0.9934 64.57 0.1633

13s
3/2 35 441.1 0.9864 39.34 0.0119
5/2 35 440.9 0.9823 154.90 0.0465

1/2 35 498.5 0.9893 40.41 0.6384
3/2 35 498.5 0.9881 50.27 0.7932

14s
3/2 35 465.2 0.9817 30.63 0.0333
5/2 35 465.0 0.9800 120.61 0.1289

1/2 35 517.8 0.9744 31.56 0.0362
3/2 35 517.9 0.9737 39.27 0.0446

15s
3/2 35 484.5 0.9645 23.93 0.3011
5/2 35 484.5 0.9672 94.21 1.1605

1/2 35 533.6 0.9370 24.57 0.0105
3/2 35 533.7 0.9362 30.56 0.0130

16s
3/2 35 500.3 0.9255 18.62 0.1785
5/2 35 500.2 0.9305 73.33 0.7223

1/2 35 547.9 0.9472 18.92 0.0045
3/2 35 547.9 0.9465 23.54 0.0057

17s
3/2 35 514.6 0.9368 14.34 0.0205
5/2 35 514.4 0.9404 56.46 0.0825

Rtot 4.6077
en-

of
ts
e
e

Note that a similar situation occurs in229Th when one
deals with the de-excitation of the nucleus through the e
tron bridge 7s→8s→7p ~see Ref. 2!. A situation that is the
opposite of the one discussed above was studied by Striz
and Tkalya,9 who took into account only the contribution t
the electron bridge that starts either at the 6d3/2 state or at the
7s state but passes through the excited 6d5/2 level. As a
result, the effect was underestimated by a factor of 10
Unfortunately, this serious error of past years found its w
into Ref. 10, with the result that the interpretation of t
experimental data was based on an erroneous theoretica
culation. Indeed, the analysis of subsequent experime
data11,12suggested that the UV photon emission observed
Irwin and Kim10 and by Richardsonet al.13 is a possible
consequence of the fluorescence of nitrogen molecules in
air surrounding the radioactive sources rather than the de
of the 3.5-eV level in229Th.

5. RESULTS OF CALCULATIONS OF THE INTERNAL
CONVERSION COEFFICIENTS

As noted earlier, as a result of calculations by the MCD
method, for each electron configuration of the final sta
1s2s22p1/2

2 2p3/2ns, four levels form with total angular mo
mentaJ55/2, 3/2, 1/2, and 3/2. The angular momenta of t
levels are ordered according to increasing energy. Using
data of our calculations by the MCDF method, we estima
the fractions of the internal conversion coefficients,DJ , re-
lated to each of these levels. The results of the calculati
yield the following distribution of internal conversion coe
ficients among the four levels:

DJ55/250.5, DJ53/250.127,

DJ51/250.168, DJ53/250.209, ~1!

We see that the sum over all fractions is roughly uni
(JDJ'1. The internal conversion coefficients for the 1s
→ns transitions,n512217, are listed in Table V. Note tha
the coefficients have been multiplied by the respective fr
tion DJ .

In the case of ordinary conversion, the coefficientank is
defined as the ratio of the rates of conversion and radia
transitions of the nucleus. When we are dealing with discr
conversion, the coefficientad

nk has the dimensionality of en
ergy on account of the different normalization of the wa
function of the conversion electron.4 However, we can deter
mine the conversion factorRnk, which is still the ratio of the
rates of conversion and radiative nuclear transitions:4

Rnk5ad
nk 1

2p

G

~vg2vnk!21~G/2!2
, ~2!

whereG is the total energy of the hole state,vg is the energy
of the nuclear transition, andvnk is the energy of the elec
tron transition. If, following Ref. 4, we assume that the wid
G of the 1s vacancy is 5 eV and allow for the weightsS of
the ‘‘pure configurations’’ 1s2s22p1/2

2 2p3/2ns, which are de-
termined in the calculation by the MCDF method, we obta
the values of the conversion factorRnkS listed in Table V.
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The total resonant conversion factorRtot is obtained by
summing over all the final states:

Rtot5(
n

RnkS. ~3!

Table V shows that the maximum contribution to t
total factor of resonant conversion,Rtot

MCDF , is provided by
the levels with angular momentaJ53/2 and 5/2 with ener-
gies 35 484.5 eV and 35 484.4 eV, respectively, which a
in the splitting of the final state 15s, and also by the levels
with angular momentaJ51/2 and 3/2 with an energy
35 498.5 eV, which arise in the splitting of the final state 14s.
This result should be compared with the results of Ref.
where the calculations done by the DFav method without al-
lowance for the residual interactions suggested that the m
contribution toRtot

DF is provided by the final state 18s. The
total conversion factorRtot

MCDF is equal to 4.36, which differs
from Rtot

DF55.9 obtained in Ref. 4 by roughly 30%. The r
sults listed in Table V show that the total weight of th
impurity configurations may be substantial and reaches
for the given shell. The corresponding shift in the transiti
energies due to configuration mixing can be estimated
comparing the data of Tables V and I. This shift reach
3–4 eV, in accordance with the quantitative reasoning d
in Sec. 3. Note that core excitation~Fig. 2c! has a strong
effect on the value ofRtot and on the corresponding transitio
energies. Allowing for this mechanism in a proper mann
gives rise to an energy shift of the levels withJ53/2, 5/2
(15s) from the value 35 488 eV provided by the DFtd method
to the value 35 484.5 eV. Allowing~or not allowing! for this
mechanism and the corresponding shifts of the transition
ergy by 3 eV changes the value of the partial factor of
conversion transition to the given level by a factor of 2.5 a
that of the total conversion factor by a factor of 1.8.
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Polarization of the vacuum in a relativistic hydrogenlike atom: the Lamb shift
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This paper examines the shift of energy levels in a hydrogenlike atom induced by vacuum
polarization effects. The contribution of free polarization is found for the ground state and several
excited states in a closed analytical form. For the first time an expression is derived for the
radiative correction to the energy in the form of an explicit function of the parameterZa. The
results are valid for statesnl j with the largest values of orbital and total angular momenta
( l 5n21 and j 5 l 11/2). The final expression, found in terms of generalized hypergeometric
functions, is a function of three variables,Za, n, and the ratio of the particle masses on
the orbit and in the vacuum loop, i.e., the result is valid for ordinary atoms and for muonic atoms.
Several useful asymptotic expressions are also derived. ©1999 American Institute of
Physics.@S1063-7761~99!00611-3#
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1. INTRODUCTION

The diagram that allows for vacuum polarizatio
effects ~Fig. 1! is the simplest one, but there is n
closed analytical expression even for its contributi
to the energy levels. Some coefficients in the expans
in the strength of the Coulomb interactionZa are known
for various energy levels in an~electronic! hydrogen-
like atom with a point nucleus.1–4 An analytical
expression for muonic atoms has been found o
in the leading nonrelativistic~Schrödinger! approximation.5

There are also some numerical results~see, e.g.,
Ref. 6!.

The goal of the present paper is to derive closed ana
cal expressions for the corrections to the energy lev
in electronic and muonic atoms. We will discuss t
case of a hydrogenlike atom with an infinitely hea
point nucleus and a bound particle of massm. In
real applications the particle may be either an elect
or a muon. We will study the contribution of the fre
polarization of vacuum ~the Uehling potential!; the
particle in the loop in cases of interest is an electr
(ml5me).

Note that there are several reasons why this problem
so important. First, in some cases the expansion in powe
Za is not very efficient because terms with high powers
logarithms~e.g., ln2(1/Za)'24 and ln3(1/Za)'120) arise7

and so one is forced to do exact calculations inZa or at least
to better understand the structure of the series inZa. The
calculations done in the present paper make it possibl
study the structure of the expansion in powers of this par
eter. Second, a number of useful asymptotic expressions
both electronic and muonic atoms are derived. For insta
for not-too-light muonic atoms (l 5n21 and j 5 l 11/2) we
have
8501063-7761/99/89(11)/6/$15.00
n

y

i-
ls

n

n

is
of
f

to
-

or
e,

EU~nl j !52
a

p

~Za!2m/n2

A12~Za!2/n2 H F2

3
ln~2kn!

1
2

3
~c~1!2c~223en!!2

5

9G1
p

2

12en

kn

1
223n~12en!210n2~12en

2!

6

1

kn
2

1OS 1

kn
3D J ,

~1!

where the relativistic effects are described by the param

en512A12
~Za!2

n2
~2!

and where we have introduced the ratio of the atomic m
mentum (g) to the mass of the particle in the loop (ml):

kn5
g

mln
5

Zam

mln
. ~3!

In particular, for muonic atoms we havekn.1.5Z/n. Here
we used a system of units in which\5c51.

Third, the correction obtained in this paper is unque
tionably the simplest quantum-electrodynamics correcti
but the methods developed here can be used when m
complicated diagrams are involved.8

We begin by discussing the general expression for
ground state, then we turn to the asymptotic expressions,
finally determine the Uehling relativistic correction for th
levels nl j with the largest values of angular momental
5n21 and j 5 l 11/2). We will conclude the paper with a
discussion of the results and the possible applications of
methods developed here.
© 1999 American Institute of Physics
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2. DERIVATION OF THE GENERAL EXPRESSION

We begin with the derivation of a convenient represe
tation for the Uehling potential. Allowing for the polarizatio
in the momentum representation amounts to the well-kno
substitution

1

q2
→ a

p E
0

1

dv
v2~12v2/3!

12v2

1

q21l2
, ~4!

where

l~v !5
2ml

A12v2
~5!

~the reader will recall that the mass of the particle in the lo
is ml). In the coordinate representation the substitution
the form

1

r
→ a

p E
0

1

dv
v2~12v2/3!

12v2

exp$2lr %

r
. ~6!

The correction to the energy can be written in the fo
of a product,

EU5
a

p
ECRC~k!, ~7!

whereEC is the average potential energy of the Dirac ele
tron and

RC~k!5E
0

1

dv
v2~12v2/3!

12v2
RC~l~v !!. ~8!

The potential energy can easily be expressed in term
the total energyED of the bound Dirac particle~see, e.g.,
Ref. 9!,

EC~nl j !5 K nl jU2 Za

r Unl j L 5Za
]

]~Za!
ED~nl j !, ~9!

andRC in ~8! can be written in the form of a ratio,

RC~l!5

E
0

`

dr r 2@ f 2~r !1g2~r !#
exp$2lr %

r

E
0

`

dr r 2@ f 2~r !1g2~r !#
1

r

. ~10!

Here we have employed the notation adopted in Ref. 10
the radial part of the large@ f (r )# and small@g(r )# compo-
nents of the Dirac wave function. The above expressions
valid for all states, and in the case of the 1s level we have

FIG. 1. Uehling potential for an atom with a particle of massm. The mass
of the particle in the loop isml .
-

n

p
s

-

of

r

re

EC~1s!52
~Za!2m

A12~Za!2
~11!

and

RC~l!5

E
0

`

dr r exp$2~2g1l!r % r 22e

E
0

`

dr r exp$22gr % r 22e

. ~12!

The relativistic effects for the ground state are determined
the value of the parameter

e512A12~Za!2,

which vanishes in the Schro¨dinger approximation, and the
are also taken into account in the relativistic potential ene
~11!. To simplify the expressions, we discard the label 1
the ground state and use the notatione andk.

The radial integration proves to be trivial and yields
simple result:

RC~l!5S 2g

2g1l D 2(12e)

. ~13!

What is not trivial is that the resulting single integral

RC~k!5E
0

1

dv v2S 12
v2

3 D S k

11kA12v2D 2

3S kA12v2

11kA12v2D 22e

~14!

can be evaluated in closed form,11 ~more precisely, in terms
of the generalized hypergeometric function3F2). It is con-
venient to express the results of integration in terms of
base integrals

EU~1s!52
a

p

~Za!2m

A12~Za!2 H I 1222
1

3
I 222J , ~15!

where

I abc5
kc22e

2
BS a1

1

2
,12

b

2
1

c

2
2e D 3F2S c

2
2e,

c

2
1

1

2

2e,12
b

2
1

c

2
2e;

1

2
,a1

3

2
2

b

2
1

c

2
2e;k2D

2
~c22e!

2
kc1122eBS a1

1

2
,
3

2
2

b

2
1

c

2
2e D

33F2S c

2
112e,

c

2
1

1

2
2e,

3

2
2

b

2
1

c

2
2e;

3

2
,a12

2
b

2
1

c

2
2e;k2D . ~16!

The evaluation of these integrals is given in the Append
Clearly, the expression is finite if

Za,1. ~17!
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Below we will discuss some asymptotic expressions
~15!.

3. UEHLING CORRECTION FOR Za!1

We wish to discuss the nonrelativistic limit without ma
ing any assumptions concerning the size of the parametek.
Two special cases are important here: an electronic a
(k5Za) and a not-too-light muonic atom (k.1.5Z@1).

WhenZ is small, the expression for the correction to t
energy can be written

RC~k!5r C~k!22epC~k!1O~e2!, ~18!

where

2e.~Za!2 ~18!

in the nonrelativistic approximation. We will first calcula
r C and pC and then discuss the corrections to the expr
sions.

In the Schro¨dinger approximation, the result incorpo
rates only the first term of the expansion~18!, which is well
known:5

r C~k!5
1

3 F2
41k222k4

k3
A~k!

1
413k2

k3

p

2
2

12111k2

3k2 G , ~20!

where

A~k!5
arccosk

A12k2
5

ln~k1Ak221 !

Ak221
, ~21!

with A(0)5p/2.
When dealing with the electronic atom (k5Za), we

note that for small values ofZ the power expansion up t
terms of ordera(Za)7m is of practical interest. With appro
priate accuracy, the normalization factor is

EC52~Za!2m@11 1
2~Za!21 3

8~Za!4#. ~22!

Whenk is small, we have the following expressions f
the terms in~18!:

r C~k!5
4

15
k22

5p

48
k31

12

35
k42

7p

64
k5, ~23!

pC~k!5F 4

15
ln~2k!2

77

225Gk22S 5p

48
ln

k

2
1

47p

576Dk3.

~24!

Finally,

RC5
4

15
k22

5p

48
k31

12

35
k42

7p

64
k52~Za!2

3F S 4

15
ln~2k!2

77

225Dk22S 5p

48
ln

k

2
1

47p

576Dk3G . ~25!

As a result we arrive at an expansion~for Za small! for the
Uehling correction to the energy level of the ground state
an ~electronic! hydrogenlike atom:
r

m

-

n

EU5
a

p
~Za!4mH 2

4

15
1

5p

48
Za1F 4

15
ln~2Za!2

1289

1575G
3~Za!21F5p

48
ln

2

Za
1

23p

288G~Za!3J . ~26!

This expansion reproduces all the coefficients known so
~see Refs. 1 and 2 and the papers cited therein! and one
unknown coefficient~we denote it byA70).

4. UEHLING CORRECTION FOR MUONIC ATOMS

Now we examine the case of large values ofk. First we
note that in muonic atoms this limit is reached for fair
small values ofZa. In the case of very smallZa (Z
5123, k(H).1.5, k(He1).3, andk(Li11).4.5) the re-
sults obtained in Ref. 5 are sufficient@this result is shown in
~20!#. For larger values ofZ we can expand in powers of 1/k.
Let us go back to~18! and discuss the terms in it. The an
lytical result of Ref. 5 represented in~20! can easily be ex-
panded:

r C~k!5
2

3
ln~2k!2

11

9
1

p

2k
1OS 1

k2D . ~27!

The expansion of the second term in~18! we find directly:

pC~k!5
2

3
2

p2

9
1OS 1

k D ~28!

To obtain the asymptotic expressions, we only need to b
in mind that the contribution stems from a small domain
integration with respect tov near the upper limitv.1. In-
troducing the substitutions

v2S 12
v2

3 D→ 2v
3

~29!

in ~14!, we can easily evaluate the integrals with respect tov.
The result of all this is

RC~k!5F2

3
ln~2k!2

11

9
1

p

2kG2S 2

3
2

p2

9 D ~Za!2

1O~~Za!4!1OS ~Za!2

k D1OS 1

k2D . ~30!

The substitution~29! is valid if Z is small andk is large.
However,~29! can easily be generalized. In particular, wh
k@1, we can use the transformation

v2~12v2/3!

12v2
5

2

3

v

12v2
2

v~12v !~21v !

3~11v !
~31!

to evaluate the integral

I bc5E
0

1

dv
v2~12v2/3!

~12v2!b/2 S kA12v2

11kA12v2D c22e

. ~32!

Only one of these integrals is needed in calculating the c
tribution of the Uehling potential,
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RC~k!5I 22. ~33!

In accordance with~31!, we split this integrals into two
parts, I (1,2). The first term reduces to the incomplete be
function:

I bc
(1)5

2

3 E
0

1

dv
v

~12v2!b/2 S kA12v2

11kA12v2D c22e

5
2

3
kb22E

d

1 dz

z
~12z!12b1c22e

5
2

3
kb22B12d~22b1c22e,b22!, ~34!

where

1

z
511kA12v2, ~35!

and

d5
1

11k
!1.

Now it is fairly simple to find the necessary asymptotic e
pression for the incomplete beta function:

B12d~c22e,0!5 ln~11k!1@c~1!

2c~c22e!#1
c22e21

k

2
~c22e21!~c1222e!

2k2
1OS 1

k3D .

The second term forb52 can be expanded,

I 2c
(2)5E

0

1

dv
v~12v !~21v !

3~11v ! S 12
c22e

11kA12v2

1
~c22e!~c2122e4!

2k2~12v2!
D 1OS 1

k3D ,

and integrated:

I 2c
(2)52S 5

9
2

2

3
ln 2D1S p

4
2

2

3D c22e

k

2
~c22e!~c2122e!

12k2
1OS 1

k3D . ~36!

The result is an expression for the base integral

I 2c5F2

3
ln~2k!1

2

3
~c~1!2c~c22e!!2

5

9G1
p

4

c2e

k

1F1

3
2

c22e

4
2

5

12
~c22e!2G 1

k2
1OS 1

k3D , ~37!

which for c52 yields
-

RC5F2

3
ln~2k!1

2

3
~c~1!2c~222e!!2

5

9G
1

p

2

12e

k
1F1

3
2

12e

2
2

5

3
~12e!2G 1

k2
1OS 1

k3D .

~38!

Formula~30! is reproduced whenZ is small~i.e., e is small!,
which is a check on the validity of~38!.

The convergence of the expression is determined by
value of the argument of thec-function ~the logarithmic de-
rivative of theG-function!, which must not vanish. This con
dition again leads to the finiteness of the correction for
chargeZ, which is given by the inequality~17!.

5. UEHLING CORRECTION FOR SOME EXCITED STATES

Now we examine the excited statesnl j with the largest
values of orbital and total angular momenta (l 5n21 and j
5 l 11/2). The wave functions and energy levels of the Dir
atom prove to be the simplest in this case. In particular,
normalization factor in~7! has the form

EC~n!52
~Za!2m/n2

A12~Za!2/n2
, ~39!

and in the Schro¨dinger approximation

EC~n!'2~Za!2m/n2.

The quantityR(n,nen ,kn) assumes the form@cf. ~14!#

R~n,nen ,kn!5E
0

1 dv v2

12v2 S 12
v2

3 D
3S knA12v2

11knA12v2D 2n(12en)

. ~40!

Above we examined the casen51 in detail using the
simplified notatione15e, k15k, and R(1,e,k)5RC(k).
One of the ways to pass to arbitrary values ofn is to use the
recurrence relation

S A12v2

11knA12v2D 2n(12en)

5
1

~2n2122nen!~2n2222nen!

]2

]kn
2

3S A12v2

11knA12v2D 2(n212nen)

, ~41!

which gives rise to the expression

S A12v2

11knA12v2D 22n(12en)

5
G~222nen!

G~2n22nen!

] (2n22)

]kn
(2n22) S A12v2

11knA12v2D 2

. ~42!
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This readily yields

R~n,nen ,kn!5
kn

2n

~2n2122nen!~2n2222nen!

3
]2

]kn
2

R~n21,nen ,kn!

kn
2(n21)

~43!

and

R~n,nen ,kn!5kn
2n G~222nen!

G~2n22nen!

3
] (2n22)

]kn
(2n22)

R~1,nen ,kn!

kn
2

. ~44!

In the Schro¨dinger approximation, the results for the 1s
level @see~20!# and for the 2p and 3d levels were found in
Ref. 5. In the general case for levels with quantum numb
l 5n21 and j 5 l 11/2 the result assumes the form11 @cf.
~15!#

R~n,nen ,kn!5I 122n~nen ,kn!2 1
3 I 222n~nen ,kn!. ~45!

The calculation of the base integralsI abc @see~16!# is dis-
cussed in the Appendix.

For excited states in muonic atoms obeying the condit
k.1.5Z/n@1 we have the expression

R~n,nen ,kn!5F2

3
ln~2kn!1

2

3
~c~1!2c~2n~12en!!!

2
5

9G1
p

2

n~12en!

kn
1F1

3
2

n~12en!

2

2
5n2

3
~12en!2G 1

kn
2

1OS 1

kn
3D . ~46!

This expression was derived by a method similar to the u
in deriving the expression~38! for the ground state.

We now examine the nonrelativistic expansion for a h
drogenlike atom with a bound electron (kn5Za/n). We can
easily write the first two terms:

EU52
a

p S Za

n D 2(11n) m

3 H ~n11!BS 5

2
,nD

2Za~2n13!BS 5

2
,n1

1

2D1•••J .

The first term in the expansion reproduces the well-kno
result of Ref. 4.

6. DISCUSSION

There are several points that must be mentioned in
cussing the results. First, we note that for large values ok
the logarithmic terms can easily be found without doing e
plicit calculations. Simple considerations associated wit
running coupling constant,

Za→Za~kn!5ZaS 11
2

3

a

p
ln knD ,

immediately lead to
rs

n

d

-

n

s-

-
a

EU5EC

2

3

a

p
ln kn ,

and this is true for all values ofZa. The fact this result
coincides with the result of explicit calculations serves
additional proof of their validity. Another proof of their va
lidity is that the results agree with those of numerical calc
lations done in Ref. 6 for the ground state. Other confirm
tion can be found in the present paper: for instance,
reproduced all known analytical results for the contributi
of the free polarization of vacuum to the energy levels
electronic and muonic atoms.

Here is a brief discussion of the aspects related to
accuracy of the calculations. First, we note that the accur
can easily be increased. To do this, in the expressions co
sponding to the Schro¨dinger approximation we need onl
replace the mass of the Dirac particle with the reduced m
and retain the particle mass only in the relativistic corre
tions. Another problem is the finite size of the nucleus
muonic atoms. In this connection it must be noted that
results obtained in this paper refer to states with large an
lar momenta, and the structure of the nucleus has a s
effect on such states. States with large orbital momenta
interesting objects of investigation in muonic atoms. No
for example, the high-precision measurements of the 3d5/2–
2p3/2 transitions in muonic24Mg and28Si, which made it pos-
sible to determine the exact value of the mass of the nega
muon.12 A review of the data on 5g–4f , 4f –3d, and 3d–2p
transitions can be found in Ref. 13. The investigation of su
states is of interest in connection with the problem of an
proton helium, where only states with large values ofl have
a fairly long lifetime ~see Ref. 14!.

The corrections discussed in this paper are those to
Lamb shift. However, the methods developed here can
used for hyperfine splitting,8 and we intend to continue ou
studies in this direction.

The author is grateful to U. Jentschura, V. G. Ivanov,
Pilkhun, and V. G. Shabaev for useful discussions. The w
was partially supported by the Fundamental Metrology P
gram.

APPENDIX DERIVATION OF THE GENERAL EXPRESSION

To integrate in~14!, it is convenient to introduce som
base integrals:

RC~k!5I 1222
1
3 I 222,

where11

I abc5E
0

1

dv
v2a

~12v2!b/2 S kA12v2

11kA12v2D c22e

.

Integration can be carried out for the casek,1:
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I abc5E
0

1

dv
v2a

~12v2!b/2 S kA12v2

11kA12v2D c22e

5
1

2
kc22eE

0

1

dt ta21/2~12t !2b/21c/22e

3 (
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For further calculations it is convenient to sum the ev
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This paper is a theoretical study of the spectral features of the velocity of light-induced drift
~LID ! of lithium atoms (7Li and 6Li) in a binary mixture of noble gases: Ne1Ar, Ne1Kr, and
Ne1Xe. The spectral shape of the LID signal is predicted to depend strongly on the
fraction j of neon in the buffer mixture in the rangej'0.8–0.9 (j5NNe/Nb , whereNNe is the
neon concentration, andNb is the total concentration of the buffer particles!. When the
velocity of anomalous LID is treated as a function of the radiation frequency, it is found to have
one, three, five, or seven zeros and to differ substantially from the dispersion-curve-like
behavior with one zero predicted by the standard LID theory with velocity-independent transport
collision rates. The reason for these additional zeros of the drift velocity is the alternating-
sign dependence on the lithium-atom velocity of the relative difference of transport rates of
collisions between buffer particles and excited and unexcited atoms. What is also
established is that the anomalous LID of lithium atoms can be observed at almost all temperatures,
depending on the value ofj. At a fixed temperature, anomalous LID can be observed only
in a narrow range of values of the fraction of neon in the buffer mixture,Dj'0.02. The results
make possible highly precise testing in the LID experiments of the interatomic potentials
used in calculations of the velocity spectrum of anomalous LID. ©1999 American Institute of
Physics.@S1063-7761~99!00711-8#
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1. INTRODUCTION

Light-induced drift~LID ! in gases
1,2

is one of the stron-
gest effects of the action of radiation on the translatio
motion of the particles of the gas. Theoretically, under la
excitation the drift velocities can reach the value of the th
mal velocity.3 Experiments have shown that as a result
LID the atoms can move with a velocity of several tens
meters per second and gather in a layer with a thickness
than 1 mm~see Refs. 4 and 5!. It has now been experimen
tally established that almost two dozen objects, atoms
molecules, exhibit the LID effect~see, e.g., the reviews cite
in Refs. 6–9!.

The size of the LID effect is proportional to the relativ
difference of the transport rates of collisions of resonant p
ticles in the ground and excited states with buffer particl
Until fairly recently, all data on LID experiments could b
described satisfactorily by a LID theory in which the tran
port collision rates were velocity independent.6–13 This
theory yielded a dispersion-curve-like frequency depende
of the drift velocityuL(V) with one zero where the detunin
V of the radiation frequency vanishes~see Fig. 4 below!. In
1992, while studying LID in C2H4 molecules with Kr acting
as a buffer gas, van der Meeret al.14 detected an unexpec
edly large departure of the frequency dependence of the
velocity uL(V) from a dispersionlike curve: an anomalo
spectral profile of LID velocity with three zeros instead
the one zero predicted by the then existing theory. The
viation from the predictions of the theory was so large t
effect became known as anomalous LID. Today we hav
8561063-7761/99/89(11)/8/$15.00
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vast body of data, both experimental14–20 and
theoretical,16,20–28gathered in anomalous-LID studies. It ha
been found that anomalous LID is entirely due to the dep
dence of transport collision rates on the velocityv of the
resonant particles, and the anomaly can arise only if the
ferenceDn(v) of the transport collision rates on the combi
ing ~i.e., affected by radiation! levels changes its sign as
function of v.

When molecules are involved, this behavior ofDn(v) is
due to inelastic collisional transitions between rotational le
els, with the result that a regular pattern in the manifestat
of anomalous LID of molecules may be present. In Ref. 2
was shown that for all linear molecules with moderate valu
of the rotational constant, anomalous LID can always
observed under the proper experimental conditions.

The situation with atoms is quite different. Th
alternating-sign behavior ofDn(v), which is necessary if we
want to observe anomalous LID, is due only to certain fe
tures in the behavior of the potentials of the interaction
atoms in the combining states and the buffer particles. He
to calculate anomalous LID of atoms we must know t
interaction potentials for each specific system of collidi
particles~a resonant particle and a buffer particle!.

The anomalous LID of atoms was theoretically predict
in Refs. 25 and 27 for the Li–Ne and Rb–Kr systems w
the Li and Rb atoms resonantly excited. So far no consis
research into anomalous LID in such systems has been d
since high temperatures (T;1000 K) are needed if we wan
to observe anomalous LID in them.

Among atoms potassium atoms are the only objects
© 1999 American Institute of Physics



ae
e
on
ve

t

lt
ri

at
os

r
or
e

l
r

t
ol

ng
le
ia
er
c

m

n
ce

ea
m

f
d by
f

but

al

uc-

the
d
of
ne

f
nts
an

e.
o-
loc-
on

of
the
nts

he

te,
fol-

e
-

-

b
ns

857JETP 89 (5), November 1999 A. I. Parkhomenko
which anomalous LID has been observed. In 1996, Yahy
Moayyed and Streater19 detected in their experiment th
anomalous LID of potassium atoms in a buffer medium c
sisting of a mixture of neon and another noble gas. Howe
no theoretical studies of the anomalous dependence of
drift velocity uL on the detuningV of the radiation fre-
quency for such systems have been done, with the resu
still impossible to directly compare the results of that expe
ment with the anomalous-LID theory.

In the present paper we find a system that can be tre
theoretically. In this system anomalous LID of atoms is p
sible at almost any temperature~including room tempera-
ture!. It is found that for7Li or 6Li atoms that are in a buffe
mixture of neon and a different noble gas of the Ar, Kr,
Xe type there is always anomalous LID if the fraction of N
atoms in the buffer mixture is selected appropriately~the
selection is temperature-dependent!. The anomalous spectra
profile of the LID velocityuL(V) can have three, five, o
even seven zeros instead of the one zero predicted by
standard LID theory with velocity-independent transport c
lision rates

2. GENERAL RELATIONSHIPS

We will discuss the interaction between of a traveli
monochromatic wave and three-level absorbing partic
placed in a gas mixture with buffer particles. The level d
gram for the absorbing particles is depicted in Fig. 1. H
the levelsn and l are the components of the hyperfine stru
ture of the ground state, and the levelm corresponds to the
excited electronic state. A particle radiatively relaxes fro
the levelm to the levelsn and l with the rate constantsGmn

andGml , respectively. We will ignore the collisions betwee
the absorbing particles, assuming that the buffer gas con
tration Nb is much higher than the concentrationN of the
absorbing gas.

This level diagram is a good representation of the r
structure of the ground and first excited states of lithiu
atoms (7Li or 6Li). Indeed, the ground level2S1/2 of these
atoms is split into two hyperfine components. For7Li atoms
the hyperfine splitting of the ground state,v ln55.049

FIG. 1. Energy level diagram. Solid arrows stand for transitions initiated
radiation, and dashed arrows designate spontaneous radiative transitio
i-

-
r,
he
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-

ed
-

he
-

s
-
e
-

n-

l

3109 s21 ~Ref. 29! is comparable to the Doppler width o
the resonant line and so the ground state can be modele
two levels,n and l. For 6Li atoms the hyperfine splitting o
the ground state,v ln51.4343109 s21 ~Ref. 29! is several
times smaller than the Doppler width of the resonant line,
still we will model the ground state by two levels. When7Li
atoms are involved~the nuclear spin is 3/2), the statistic
weight of the leveln is gn53 ~the total angular momentum
of the atomF51), and the statistical weight of the levell is
gl55 (F52). When 6Li atoms ~nuclear spin 1! are in-
volved, we havegn52 (F51/2) andgl54 (F53/2).

The level m ~with the statistical weightgm) models a
group of levels that are components of the hyperfine str
ture of the excited states,2P1/2 and2P3/2. Such modeling of
a group of levels by a single level is possible since for
7Li and 6Li atoms the hyperfine splitting in these excite
states is very small in comparison to the Doppler width
the resonant line. The radiation involves only one of the fi
components of the excited state,2P1/2 or 2P3/2.

The lithium atoms comply with the limiting case o
strong collisional coupling between the fine compone
2P1/2 and2P3/2 ~the Massey parameter is much smaller th
unity!. In the excitation of lithium atoms to state2P1/2 and to
state2P3/2 the scattering cross sections are almost the sam30

Therefore, in terms of collisions the pair of the fine comp
nents can be interpreted as a single level, and the LID ve
ity considered a function of the detuning of the radiati
frequency is the same in the excitations of theD1 and D2

lines of the lithium atoms. This result, i.e., the existence
universal transport characteristics for the lithium atom in
2P state, has also been corroborated by LID experime
involving sodium atoms,5 for which, as for lithium atoms,
the limiting case of strong collisional coupling between t
fine components2P1/2 and2P3/2 holds.

The interaction of particles and radiation in steady-sta
spatially homogeneous conditions are describes by the
lowing equations for the density matrix:10,31

Gmrm~v!5Sm~v!1N@Pn~v!1Pl~v!#,

Gmirm~v!1Si~v!5NPi~v!,

FGm

2
2 i ~V0i2k–v!Grmi~v!

5Smi~v!1 iGFr i~v!2
gi

gm
rm~v!G , ~1!

where

NPi~v!522Re@ iG* rmi~v!#,

uGu25
BI

2p
, B5

l2Gm

4\v

gm

gn1gl
, ~2!

Gm5Gmn1Gml , V0i5v2vmi , i 5n,l .

Herer i(v) is the velocity distribution of the particles at th
level i; N5Nn1Nl1Nm is the concentration of the absorb
ing particles (Ni5*r i(v) dv); Sm(v), Si(v), andSmi(v) are
the collision integrals;v, l, andk are the frequency, wave
length, and wave vector of the radiation;Gmi is the rate of

y
.
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spontaneous relaxation of the excited levelm through the
m→ i channel;vmi is the frequency of them–i transition;
andI is the radiation intensity. In the formula for the seco
Einstein coefficientB in ~2! we have notet that in the adopte
three-level model the ratio of the radiative transition ra
from the level m to the hyperfine componentsn and l is
determined by the ratio of the statistical weights32

Gmn /Gml5gn /gl . The probability of radiation absorptio
per unit time,Pi(v) ~or absorption rate!, in the m–i transi-
tion by a particle with a fixed velocityv is determined by the
off-diagonal element of the density matrix,rmi(v) ~or coher-
ence!. Note that the last equation in~1! for the off-diagonal
elementrmi(v) is valid only if we ignore the coherenc
r ln(v) between the hyperfine componentsn and l. For
lithium atoms this approximation holds only if the radiatio
intensity is not too high, orI !10 W/cm2 ~Ref. 33!.

For atoms of alkali metals in an atmosphere of no
buffer gases, the cross sections of the collisional transiti
n→ l and l→n between the component of the hyperfi
structure of the ground state are extremely small—six to
orders of magnitude smaller than the gaskinetic cr
sections.34 Bearing this in mind, below we will examine th
case where there is no collisional exchange between the
perfine componentsn and l, i.e., we will assume that the
diagonal collision integralsSi(v) ( i 5n,l ,m) in ~1! are due
only to elastic scattering.

We integrate with respect to the velocityv the second
equation in~1! and note that in elastic collisions*Si(v) dv
50. Combining the resulting equation, we get

Pn

Pl
5

Gmn

Gml
5

gn

gl
. ~3!

wherePi5*Pi(v) dv. This equation shows that the ratio o
the integral rates of absorption in them–n andm–l transi-
tions depends neither on the intensity of the radiation nor
radiation frequency. The ratio characterizes the proces
optical pumping of the hyperfine components of the grou
state and follows from the absence of collisional excha
between the hyperfine componentsn and l.

In the absence of phase memory in collisions involvi
optical transitions~which is a natural assumption in nonlin
ear atomic spectroscopy!, the off-diagonal collision integra
has the form

Smi~v!52@gmi~v !1 iDmi~v !#rmi~v!, i 5n,l , ~4!

wheregmi(v) and Dmi(v) are the collision broadening an
shift of the levels, respectively. Combining~4! with the ab-
sorption ratePi(v) specified in~2!, we get

NPi~v!5
BI

p
Yi~v!Fr i~v!2

gi

gm
rm~v!G , ~5!

where

Yi~v!5
G j~v !

G j
2~v !1@V i~v !2k–v#2

,

G j~v !5
Gm

2
1gmi~v !, ~6!
s

e
s

n
s

y-

e
of
d
e

V i~v !5V0i2Dmi~v !, i 5n, j 51; i 5 l , j 52.

Here G1(v) and G2(v) are the homogeneous halfwidths
the absorption lines in them–n andm–l transitions, respec-
tively. In alkali-metal atoms the homogeneous halfwidt
G1(v) and G2(v) are almost the same, so that we will a
sumeG1(v)5G2(v)[G(v).

For the diagonal collision integral we use the model
particle ‘‘arrival’’ that is isotropic in velocities:

Si~v!52n i~v !r i~v!1Si
(2)~v !, i 5n,l ,m, ~7!

where the arrival termSi
(2)(v) is a function of the absolute

value of velocity,v5uvu, and n i(v) in ~7! is the transport
collision rate.28,35 The collisional model~7! allows for a ve-
locity dependence of the collision rate and at the same t
makes it possible to solve the problem analytically.

The relationship between the transport collision ra
n i(v) in ~7! and the characteristics of an elementary scat
ing act are given by the formula10

n i~v !5
q

v3 E0

`

u2 expH 2
u21v2

v̄b
2 J F~uv !s i~u! du, ~8!

where

F~uv !5
2uv

v̄b
2

cosh
2uv

v̄b
2

2sinh
2uv

v̄b
2

,

~9!

q5
m

M

Nbv̄b

Ap
, m5

MMb

M1Mb
, v̄b5A2kBT

Mb
,

with Nb and Mb the concentration and mass of the buff
particles,M the mass of the particles that absorb radiatio
kB is the Boltzmann constant,T is the temperature,u is the
relative velocity of the colliding particles before collision
and s i(u) is the transport cross section of scattering of
absorbing particle in statei by a buffer particle. We can
assume, to a high accuracy, that the transport rates of c
sions involving the hyperfine componentsn and l are the
same:27

n l~v !5nn~v !. ~10!

The velocity of LID of the absorbing particle is define
by the relationship

uL[
jn1 j l1 jm

N
, j i5E vr i~v! dv, ~11!

wherej i is the partial flux of particles in statei. By combin-
ing ~1!, ~7!, and~11! with allowance for~10!, we arrive at a
formula for the LID velocity:

uL5E t~v !v@Pn~v!1Pl~v!# dv,

~12!

t~v !5
nn~v !2nm~v !

nn~v !@Gm1nm~v !#
.

As noted in the Introduction, anomalous LID can arise on
if the difference of the transport collision rates,Dn(v)
[nm(v)2nn(v) @or, which is the same, the factort(v)]
changes its sign as a function ofv. Here the absorbing par
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ticles with both positive values oft(v) and negative values
of t(v) contribute to the drift velocityuL . This can cause a
large deviation of the frequency dependence ofuL from the
dispersion-curve-like dependence~as was the case whe
t(v)5const), including the occurrence of several additio
zeros instead of one zero.

3. LOW RADIATION INTENSITIES

To calculate the drift velocity, we will limit ourselves t
the case of low radiation intensities:

I ! G~Gm1nm!/B , ~13!

where nm and G are the characteristic~average! values of
nm(v) andG(v). If condition ~13! is met, then in~5! we can
ignore the population of the excited level (rm(v)50), and
the population velocity distributions in the hyperfine comp
nents i 5n,l , can be considered essentially Maxwellia
(r i(v)5NiW(v), where W(v) is the Maxwellian distribu-
tion!. Here from~5! we find that

Pi~v!5
BI

p

Ni

N
Yi~v!W~v!. ~14!

Combining~3! and ~14! and using the normalization cond
tion Nn1Nl.N ~here we have noted thatNm!N holds if
the conditions~13! are met!, we find that

Nn

N
5

wn^Yl&
wn^Yl&1wl^Yn&

,
Nl

N
512

Nn

N
,

~15!

^Yi&5E Yi~v!W~v! dv, wi5
gi

gn1gl
, i 5n,l .

Plugging ~14! and ~15! into ~12! and integrating over the
directions ofv, we arrive at the final expression for the LI
velocity uL , which we write as

uL[
k

k
uL , uL5u0u~x!, ~16!

where we have introduced the parameteru0 with dimensions
of velocity,

u05
2BI

p3/2kGm

, ~17!

and the dimensionless velocityu as a function of the dimen
sionless detuningx of the radiation frequency,

u~x!5
1

wn^Yl&1wl^Yn&
E

0

`

tt0~ t !exp~2t2!

3@wn^Yl& f n~ t !1wl^Yn& f l~ t !# dt. ~18!

Here we have introduced the following functions of the
mensionless velocityt5v/ v̄:

f i~ t !5xi~ t !c i~ t !1
y~ t !

2
ln

y2~ t !1@ t2xi~ t !#2

y2~ t !1@ t1xi~ t !#2
,

c i~ t !5arctan
t1xi~ t !

y~ t !
1arctan

t2xi~ t !

y~ t !
,

~19!
l

-

t0~ t !5
nn~ t !2nm~ t !

nn~ t !@11nm~ t !/Gm#
, y~ t !5

G~ t !

kv̄
,

xi~ t !5
V i~ t !

kv̄
, v̄5A2kBT

M
, i 5n,l .

In Eq. ~18!, the quantitieŝ Yi&, which are defined in~15!,
assume the form

^Yi&5
2

Ap kv̄
E

0

`

t exp~2t2! c i~ t ! dt, i 5n,l . ~20!

For the dimensionless detuningx of the radiation frequency
it is convenient to use in~18! the quantity

x5
V

kv̄
, ~21!

where

V5v2v0 , v05wnvmn1wlvml . ~22!

The frequencyv0 corresponds to the ‘‘center of gravity’’ o
the transition frequenciesvmn and vml with allowance for
the statistical weights of the levelsn and l. In the region of
‘‘normal’’ LID @where we can putt0(t)5const in~18!#, the
drift velocity uL vanishes only at one point,x50 ~see Ref.
36 and Fig. 4 below!.

When calculating the LID velocity of atoms placed in
mixture of two different buffer gases, in the formula~19! for
t0(t) we must put

n i~ t !5n1i~ t !1n2i~ t !, i 5n,m, ~23!

where the subscripts 1 and 2 denote the type of buffer p
ticles.

4. ANOMALOUS LID OF LITHIUM ATOMS

The LID of lithium atoms in noble buffer gases wa
studied numerically via formulas~8! and ~18!–~23!. The
transport collision ratesn i(t)[n i(t v̄)[n i(v) for Li–X sys-
tems, where X is an atom of a noble gas, were calcula
numerically using~8! with the transport cross sectionss i(u)
taken from Ref. 25, where they were calculated using
semiempirical interaction potential of Pascale a
Vandeplanque.37

As noted earlier, the anomalous behavior of LID is co
pletely determined by the alternating-sign dependence of
factort0 on the velocityt5v/ v̄. Allowance in~18!–~20! for
the dependence of the homogeneous halfwidthG and the
frequency detuningV i on the velocityt can only refine the
spectrumu(x) of the velocity of anomalous LID, withou
changing it qualitatively. But when there is Doppler broa
ening of the absorption line~in the limit G!kv̄), the effect
of G(t) andV i(t) on the spectrumu(x) of the LID velocity
is usually small and can be ignored.

Indeed, when there is Doppler broadening of the abso
tion line, the parametery(t) in ~19! is small: y(t)!1. This
makes it possible to ignore the fact that the parametery in
~19! is t-dependent, since in the limity(t)→0 the functions
f i(t) andc i(t) in ~19! is in no way dependent on the param
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etery(t) @in this limit the functionc i(t)] has the shape of a
step beginning att5uxi(t)u, i.e., c i(t)5p for t>uxi(t)u and
c i(t)50 for 0<t,uxi(t)u). In view of what we have just
said, in calculating the LID velocity in Doppler broadenin
conditions we ignored thet-dependence of the homogeneo
halfwidth of the absorption line,G, and put G(t)5G
5const in~19!. The specific values ofG5Gm/21g for dif-
ferent Li–X systems were found from the data of Allard a
Kielkopf38 on collision broadeningg of the absorption line
(g53.86 MHz/torr for Li–Ne,g55.31 MHz/torr for Li–Ar,
g57.00 MHz/torr for Li–Kr, andg57.96 MHz/torr for Li–
Xe.

The t-dependence of the dimensionless frequency de
ing xi can affect the functionsf i(t) andc i(t) in the integral
~18! for the LID velocity u(x) only if uV0i u&Dmi(t). Since
the collision shift Dmi(t) of the levels is usually severa
times smaller than the collision broadeningg ~Refs. 38 and
39! and souDmi(t)u,g,G holds, in the event of Dopple
broadening of the absorption line~for y5G/kv̄!1) the ef-
fect of xi(t) on the functionsf i(t) andc i(t) manifests itself
only if uxi(t)u&y!1, i.e., in a narrow range of detuning ne
the zero values ofxi(t). In view of this, in calculating the
LID velocity we also ignored thet-dependence of the fre
quency detuningsV i(t) in ~19!.

At xi(t)5xi5const the dimensionless frequency detu
ing x given by ~21! is related to the detuningsxi by the
following relationships:

xn5x2dwl , xl5x1dwn , d5
v ln

kv̄
, ~24!

whered is the dimensionless distance between the com
nents of the hyperfine structure of the ground state.

Figures 2 and 3 depict the transport collision ratesn i and
the relative difference of transport collision rates

Dn

n
[

nm~ t !2nn~ t !

nn~ t !
, ~25!

calculated according to Eq.~8! for 7Li in different buffer
gases as functions of the dimensionless velocityt5v/ v̄. A
characteristic feature of the behavior of the collision ra

FIG. 2. Transport collision rate as a function of the dimensionless velo

t5v/ v̄ of lithium atoms atT5300 K and a buffer gas pressureP51 torr:
curve1, nm(t) for the7Li–Ne system; curve2, nn(t) for the7Li–Ne system;
curve 3, nn(t) for the 7Li–Kr system; and curve4, nm(t) for the 7Li–Kr
system.
n-

-

o-

s

n i(t) for lithium atoms in Ar, Kr, or Xe as a buffer gas is th
nonmonotonic dependence on the velocityt. A characteristic
feature of the7Li–Ne system is the decrease in the transp
collision rate within a certain velocity interval in the event
lithium-atom excitation~the curves1 and2 in Fig. 2 and the
curve1 in Fig. 3!. It is this feature that ensures a controllab
~as required by the experimenter! dependence of the facto
Dn/n @and hence the factort0(t) in ~18!# needed for observ-
ing anomalous LID in the buffer mixture of neon with an
other noble gas~Ar, Kr, or Xe! by varying the fractionj of
neon in the buffer mixture:

j5
NNe

Nb
, Nb5NNe1NX , ~26!

whereNNe is the neon concentration,NX is the concentration
of the other noble buffer gas~Ar, Kr, or Xe!, andNb is the
total concentration of the buffer gas. The alternating-s
factor Dn/n may vanish three times at velocities dependi
on the fractionj of neon in the buffer mixture~see curve5 in
Fig. 3 for the buffer mixture Ne1Kr; for the buffer mixtures
Ne1Ar and Ne1Xe the corresponding curves are similar

FIG. 4. Dimensionless drift velocityu(x) as a function of the dimensionles

frequency detuningx5V/kv̄ of the radiation for7Li atoms in Kr or Ne as a
buffer gas in the case of normal LID atT5300 K and a buffer-gas pressur
P55 torr. The short vertical lines in the middle of the diagram indicate
frequencies in resonance with them–n and m–l transitions. The dashed
curves3 and 4 represent the results of calculations by formulas~18!–~23!
wheren i(t) is replaced bŷ n i&. Curves1 and3 correspond to the7Li–Kr
system and curves2 and4, to the7Li–Ne system.

yFIG. 3. Relative difference of the transport collision rates,Dn/n, as a func-

tion of the dimensionless velocityt5v/ v̄ at T5300 K for different systems:
curve 1, the 7Li–Ne system; curve2, the 7Li–Ar system; curve3, the
7Li–Kr system; curve4, the 7Li–Xe system; and curve5, the 7Li– (Ne
1Kr) system with the neon fractionj50.875.
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curve 5!. This behavior of the factorDn/n means that the
anomalous LID of lithium atoms in a buffer mixture can b
observed at almost all temperatures by specifying the va
of the parameterj, which can easily be controlled in th
experiment.

The results of numerical calculations of the LID veloci
u(x) by formulas~18!–~23! are illustrated in Figs. 4–8.

Figure 4 depicts the dependence of the LID velocity
7Li atoms on the frequency detuning in a one-compon
buffer gas Ne or Kr atT5300 K. In this case the drift veloc
ity spectrumu(x) corresponds to normal LID and is de
scribed satisfactorily by a LID theory in which the transpo
collision rates are independent of the velocityt, i.e., n i(t) in
~19! is replaced by the average transport rate

^n i&5
2

v̄2 E ~n–v!2W~v!n i~v ! dv

5
8

3Ap

m

M

Nb

ū5 E
0

`

u5 expS 2
u2

ū2 D s i~u! du, ~27!

FIG. 5. Drift velocity u as a function of the frequency detuningx for 7Li
atoms in Ne as a buffer gas at a pressureP55 torr for different tempera-
tures: curve1 corresponds toT51600 K, curve2 to 1250 K, curve3 to
800 K, and curve4 to 600 K.

FIG. 6. Drift velocity u as a function of the frequency detuningx for 7Li
atoms in the buffer mixture Ne1Kr at T5300 K, pressureP55 torr, and
different neon fractionsj: curve 1 corresponds toj50.865, curve2 to j
50.875, and curve3 to j50.81. The vertical lines indicate the frequenci
in resonance with them–n andm–l transitions.
e

f
t

t

whereū5(2kBT/m)1/2, andn is a unit vector pointing in an
arbitrarily chosen direction. The average transport rate^n i&
is related to the diffusion coefficientDi of particles in statei
by the simple relationshipDi5 v̄2/2^n i&.

Formula ~18! clearly shows that, due to the facto
t exp(2t2), the principal contribution to the integral for th
drift velocity u(x) is provided by particles with velocitiest
;1. In the vicinity of t;1 at T5300 K, the sign of the
factor Dn/n for the systems7Li–Ne and 7Li–Kr does not
change~see Fig. 3!, which is the reason why normal LID is
observed.

As the temperature grows, the thermal velocityv̄ and the
region neart5v/ v̄;1 in Figs. 2 and 3 move to the righ
Now for the 7Li–Ne system the relative difference of th
transport collision rates,Dn/n, in the region wheret;1
holds becomes an alternating-sign function~curve 1 in Fig.
3! and anomalous LID arises, which is illustrated by Fig.
The curves1, 2, and 3 in Fig. 5 correspond to anomalou
LID, with the curves1 and4 outlining the limits of anoma-
lous LID diagrams and the curve2 (T51250 K) correspond-
ing to the maximum anomalous LID effect~in the ranges
where thex are either positive or negative the amplitudes

FIG. 7. Drift velocity u as a function of the frequency detuningx for 7Li
atoms in mixtures of two buffer gases atT5600 K and pressureP55 torr:
curve 1 corresponds to 7Li– ~Ne1Ar) and j50.765, curve 2 to
7Li– ~Ne1Kr! andj50.865, and curve3 to 7Li– ~Ne1Xe! andj50.9. The
vertical lines indicate the frequencies in resonance with them–n andm–l
transitions.

FIG. 8. Drift velocity u as a function of the frequency detuningx for 6Li
atoms in the buffer mixture Ne1Kr at T5600 K, pressureP55 torr, and a
neon fractionj50.865.
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the maximum and minimum drift velocitiesu(x) are ap-
proximately the same!. Note that in the case of anomalou
LID the drift velocity decreases insignificantly in comparis
to the case of normal LID~for the curves2 in Fig. 4 and 5
the maxima ofu(x) differ only by a factor of 1.5!. This
feature of anomalous LID in the case at hand is due to
specific behavior of the relative difference of the transp
collision rates,Dn/n ~curve 1 in Fig. 3!: as the function
Dn/n passes through zero, it rather soon~in the intervalDt
;1) reaches a plateaulike curve, where it is weakly dep
dent on the velocityt (Dn/n'const). Hence in the case o
anomalous LID the regionDn/n'const, which ensures nor
mal LID, contributes significantly to the integral~18! for
LID velocity, and this results in a small decrease in anom
lous LID.

Figure 6 depicts the spectrumu(x) of the drift velocity
of 7Li atoms at different neon fractionsj in the buffer mix-
ture Ne1Kr. We see that at a given temperature, anomal
LID can be observed only within a narrow range of values
the neon fraction in the buffer mixture,Dj;0.02. Numerical
analysis demonstrates the same strong sensitivity of ano
lous LID to changes in the neon concentration in other bu
mixtures, Ne1Ar and Ne1Xe. A characteristic feature o
the anomalous spectrumu(x) of the drift velocity in a buffer
mixture of two gases is the total lack of antisymmetry in t
spectrumu(x), in contrast to the cases of normal and anom
lous LID in a one-component buffer gas~see Figs. 4 and 5!.
In a binary buffer mixture, the shape of the velocity spectr
u(x) may be quite complicated~see, e.g., the curve3 in Fig.
6!.

Examples of the spectra of anomalous LID in7Li in
different binary buffer mixtures are depicted in Fig. 7.

If we compare Fig. 4~curve2! and Figs. 6 and 7, we se
that in the case of anomalous LID of7Li atoms in buffer
mixtures of two gases the drift velocity decreases in co
parison to normal LID by a factor of 10 to 20.

The anomalous LID spectrum for7Li atoms can have
one ~curve3 in Fig. 6!, three, or five zeros~see Figs. 5–7!.
For 6Li atoms the anomalous LID spectrum can even ha
seven zeros~Fig. 8!.

5. CONCLUSION

We have studied the anomalous LID of lithium atom
which in the case of normal LID in noble buffer gases ha
the simplest dispersion-curve-like antisymmetric spectr
u(x) of the drift velocity, a spectrum which coincides wit
that for two-level particles. Although lithium atoms are d
scribed by a three-level model, the velocity spectrum of n
mal LID has a simple ‘‘two-level’’ shape due to optica
pumping of the hyperfine components of the ground st
since there is no collision exchange between the hyper
components in the case of noble buffer gases. The extr
simplicity of the velocity spectrum of normal LID of lithium
atoms makes it possible to easily notice in experiments
small deviations from the normal drift-velocity spectrum.

The anomalous LID velocity spectrum is extremely se
sitive to alternating-sign dependence of the differencenm

2nn in the transport rates of collisions of buffer particl
e
t

n-

-

s
f
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-
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,
e
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e,
e
e

y
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and the excited (m) and unexcited (n) atoms on the velocity
v of the resonant atoms. Since the transport collision ra
n i(v) are completely determined by the potentials of the
teraction between resonant and buffer particles, the velo
spectrum of anomalous LID is highly sensitive to the diffe
ence in the potentials of the interaction of buffer partic
and resonant atoms in them and n states. This makes pos
sible highly precise testing in the LID experiments of t
interatomic potentials used in calculations of the veloc
spectrum of anomalous LID and hence relatively simple
perimental testing of the accuracy of various theoreti
methods used in calculating the interaction potentials.

A good criterion for determining the possibility o
anomalous LID arising in a one-component buffer gas is
alternating-sign temperature dependence of the differenc
averaged transport rates~27! of collisions, ^nm&2^nn& ~or,
what the same, of the difference of the diffusion coefficien
Dm2Dn , in the excited and ground states! of the resonant
atoms and buffer particles. In the case of a binary buf
mixture, anomalous LID can occur if the differences of t
averaged transport collision rates,^nm&2^nn& for the reso-
nant atoms in the two buffer gases have opposite sig
Anomalous LID is expected to exist at temperatures in
one-component buffer gas and at relative fractions of
gases in a binary buffer mixture at which the differen
^nm&2^nn& ~or DRm2Dn) vanishes. These criteria wer
used in Refs. 19, 25, and 27 and in the present pape
determine possible objects to manifest anomalous LID.

Using the above criteria to analyze the results of cal
lations of transport characteristics of alkali-metal atoms
the Pascale–Vandeplanque interaction potentials37 ~the re-
sults of these calculations are partially discussed in Ref.!,
we can conclude that anomalous LID should be expecte
manifest itself in the following cases:

1. In the excitation of theD1 line of Rb atoms in the
mixtures Ne1Kr, Ne1Xe, He1Kr, and He1Xe at almost
all temperatures~depending on the choice of the buffer-g
fractions in the binary buffer mixture!;

2. In the excitation of theD1 line of Cs atoms in the
mixtures Ne1Xe, He1Xe, and Kr1Xe at almost all tem-
peratures; and

3. In the excitation of theD2 line of Cs atoms in the
mixtures He1Ar, He1Kr, He1Xe, and He1Ne at tem-
peraturesT*300K, and in the following one-componen
buffer gases: He atT;300 K, Ar at T;1000 K, and Kr at
T;1600 K.

In contrast to lithium atoms, Rb and Cs atoms satisfy
limiting case of weak collisional coupling between the fi
components2P1/2 and 2P3/2. Hence the transport characte
istics of Rb and Cs atoms in the excited states2P1/2 and2P3/2

are different~see, e.g., Ref. 40!, and so are the LID velocity
spectrum in the cases of excitation ofD1 andD2 lines.

The author would like to thank Prof. J. Pascale for se
ing detailed tables listing the potentials of the interaction
alkali-metal atoms and atoms of noble gases. The invest
tion whose results are presented in this paper was spons
by the Russian Fund for Fundamental Research~Grant No.
98-02-17924!.
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Effect of thermophoretic forces on the formation of ordered structures of macroparticles
in a thermal plasma

V. E. Fortov, A. P. Nefedov, O. F. Petrov,* A. A. Samaryan, Ya. K. Khodataev,
and A. V. Chernyshev
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The thermophoretic interaction of macroparticles and its effect on the formation of ordered
structures of macroparticles in plasma was studied. It was shown that coexistence of regions with
a chaotic arrangement of particles and regions of ordered structures is typical of a thermal
plasma with strong interaction of the macroparticles. Computer simulation of a system of strongly
interacting macroparticles, taking account of the thermophoretic interaction of the particles,
was performed. The results showed that the thermophoretic attractive forces explain the form of the
spatial nonuniformity associated with the grouping of particles in small domains. The
experimentally obtained correlation function was very close to the correlation function obtained
in the computer simulation. ©1999 American Institute of Physics.@S1063-7761~99!00811-2#
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1. INTRODUCTION

A thermal plasma with macroscopic particles is a lo
temperature plasma containing small liquid or solid partic
of matter. The macroparticles effectively interact with t
charged components of the plasma and therefore
strongly influence the properties of the plasma. Th
electron-emitting particles can increase the electron den
and electric conductivity of the gas phase. However, if
particles trap electrons, then the opposite effect arises. In
limit of an un-ionized gas the presence of macropartic
completely determines the electrophysical properties of
plasma. Effects associated with the presence of parti
were observed in the very first experiments1,2 studying the
plasma of a hydrocarbon flame.

An interesting feature of such a plasma is that becaus
their relatively large sizes~from hundredths of a micron to
some tens of microns!, the particles can carry extreme
large charges~of the order of 1022105 electron charges!. As
a result, under certain conditions strong interparticle corre
tion leads to gas—liquid—solid phase transitions and
appearance of spatially ordered structures in the arrange
of the macroscopic particles, similar to the structures in
liquid or solid.3–7 Such structures have also been obser
for CeO2 particles in a thermal plasma at atmosphe
pressure.8–10 The plasma formation was characterized
large sizes~the plasma volume was about 30 cm3, which
corresponded to;108 particles with density 107 cm23), uni-
formity, and a lack of external electric and magnetic field

These investigations were primarily of a phenomen
logical character, having set aside a number of quest
concerning the mechanism of particle interaction and
anomalous value of the kinetic energy of the particles.7,11

The interaction between the macroparticles plays a large
in the dynamics of the formation of ordered structures in
dusty system, for example, accompanying the formation
8641063-7761/99/89(11)/8/$15.00
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structures with pronounced short-range order over the c
paratively short lifetimes~of the order of several millisec
onds! of a thermal plasma in a laboratory setup.9

Our objective in the present work was to study the no
electric~thermophoretic! interaction of macroparticles and it
effect on the formation of ordered structures in a therm
plasma. This particle interaction mechanism results from
decoupling of the particle temperature from the temperat
of the ambient gas. In the present work experimental m
surements of the temperature of the gas and macropart
in a thermal plasma and numerical simulation of the inter
tion of macroparticles in a thermal plasma, taking accoun
the thermophoretic attractive forces, were performed.
what follows the results of the analytic calculations of t
interaction between macroparticles and the data from the
merical simulation of the formation of dust structures w
various types of interactions of the macroparticles are d
cussed. The correlation functions obtained in the laborat
and in the numerical simulation are compared.

2. INTERACTION OF MACROPARTICLES IN PLASMA

A Debye pairwise interaction of macroparticles is ord
narily assumed in plasma:12–14

F~r !5FD~r !52Zde
]fD

]r
, ~1!

where

fD5
Zde

r
expS 2

r

r D
D . ~2!

Herer D is the Debye radius,fD is the Debye potential,e is
the elementary charge, andZd is the charge of a macropar
ticle in units of the elementary charge. This expression
fD pertains to the case of interest, withRd!r D ~Rd is the
radius of a macroparticle!.
© 1999 American Institute of Physics
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At short distances the electric interaction force is t
Coulomb force, and at large distances~compared withr D! it
decreases exponentially because of plasma screening a
therefore a short-range force.

As established recently, besides the electric interac
of macroparticles there also exists a nonelectric interac
resulting from flows of microparticles.15 Ordinarily, this type
of interaction results from the breakdown of thermodynam
equilibrium on the surface of the macroparticles. Spec
cally, for the case most often encountered in practice
negatively charged particles—each macroparticle gives
to a plasma flow~of positive ions! onto itself. Neighboring
particles interact by frictional forces resulting from the
flows, which results in an effective attraction of macrop
ticles. It has been shown that such a nonelectric attrac
can be strong enough to compete with the electrostatic re
sion and give rise to the formation of molecules of mac
particles as well as crystals of macroparticles with a f
boundary, which exist independently of the external force

In our case this mechanism, due to bombardment of
surface of the macroparticles, is ineffective, since the p
ticles are positively charged and therefore the flux of posit
ions onto their surface is relatively small. However, in th
case, if the temperature of gas is different from that of
surface of the particles, a different mechanism can arise,
to flows of neutral gas molecules. A temperature differen
can, for example, result from radiative cooling of the mac
particle material. Being colder than the gas, a particle gi
rise to a heat flow onto its surface and a temperature grad
in the ambient gas. A neighboring particle will move und
the thermophoretic force into a region of lower temperatu
i.e., it will be attracted. In this manner, a special mechan
of attraction arises. The corresponding interaction force w
be calculated below.

We consider two macroparticles of radiusRd and surface
temperatureTds in a neutral gas. The temperature and de
sity of the gas far from the particles areTg andng , respec-
tively. Let

Rd!l! l , ~3!

wherel is the mean-free path of the neutral molecules in
gas andl is the distance between particles. To calculate
heat flux onto a particle, the effect of the other particle c
be neglected. Then, assuming perfect accommodation,
easy to find the distribution of gas molecules on the surf
of a particle:

f s5H ngm3/2

~2pTg!3/2expS 2
mV2

2Tg
D , V–en,0,

ndsm
3/2

~2pTds!
3/2expS 2

mV2

2Tds
D , V–en.0,

~4!

whereen is the normal to the surface of the macropartic
andm is the mass of a gas molecule. Since particles do
absorb gas molecules in our case, the parameternds is deter-
mined by the requirement that the total flux of neutral m
ecules onto the particle surface be zero, which gives
d is

n
n
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-
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e
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nds5ngATg

Tds
. ~5!

The heat flux, corresponding to the distribution~4!, onto
the surface of a macroparticle is given by the formula

qs5E f s

mV2

2
~V–en!end3V

5en

ng

A2p
A Tg

A2p
~Tds2Tg!. ~6!

Since the heat conduction equation is linear, the heat
in the gas will be a simple sum of heat fluxes produced
each particle. The magnitude of the temperature gradient
to one particle can be written in the stationary case as

q5qs

Rd
2

r 2 5
Rd

2

r 2

ng

A2p
ATg

m
~Tds2Tg!. ~7!

The corresponding temperature gradient is

]T

]r
5

q

k
, ~8!

wherek is the thermal conductivity. A neighboring particl
interacts with the thermophoretic force, which forRd!l is

F52
32

15
Apm

8Tg
Rd

2k
]T

]r
. ~9!

Substituting the expressions~7! and~8! into Eq. ~9!, we
obtain the pairwise interaction force of the macroparticle

FT5
16

15
ng

Rd
4

l 2 ~Tds2Tg!. ~10!

It can plausibly be assumed that this force is indee
pairwise force: because the heat conduction equation is
ear, the heat fluxes resulting from different particles and
corresponding thermophoretic forces can be calculated in
pendently. The magnitude of this force is inversely prop
tional to the squared distance, i.e., it is analogous to the fo
of gravity, and it is directly proportional to the temperatu
differenceDT. Therefore if Tds,Tg , then macroparticles
attract one another, and in the opposite case they repel
another.

The relative role of the electric and thermophore
mechanisms can be characterized by the parameterj:

j[UFT~ l !

FC~ l !U5 16

15
ng

Rd
4

Zd
2 ~Tds2Tg!. ~11!

Ordered structures of macroparticles in a thermal plas
are investigated in Refs. 8–10. The thermophoretic inter
tion was not studied in the analysis of ongoing process
since the temperature difference between the gas and
persed phase was small and could be explained comple
by the error in the temperature measurements (;2%). How-
ever, if the resulting temperature difference~about 50 K! is
taken into account, then under the experimental conditi
j50.9.



ti
ed
e
hi

a
u
h

te
fe
flu
o
b-

-
re
e

/s
g

es
, a

e
in
st
te

ra
th
c
o

alu
od
gh
rm
tw

-
re
t

nd
ith

ar
ity

ore
m-

y’’
oes
s
em-
tral
e,
e di-

ce

d to
en-

ts a

em-

ine
. A

n
the

ing
I of

o a
os-
ra-
ral
es-

es
so-

ccu-

e

m-
t-
or
gle

ovel
jec-
G,
lso
per-

866 JETP 89 (5), November 1999 Fortov et al.
In summary, since it is long-range, the thermophore
force obviously strongly affects the formation of order
structures. To check this, the temperature difference betw
the gas and the macroparticles must be measured to
accuracy.

3. MEASUREMENTS OF PARTICLE AND GAS
TEMPERATURES

The experimental test stand for studying the therm
plasma included a plasma generator and diagnostic eq
ment for determining particle and gas parameters. T
plasma source consisted of a burner, a gas-supply sys
and a system for introducing particles. The particles were
to the internal flame of the burner by a special-purpose
idized bed cyclone device. This burner design made it p
sible to produce a laminar plasma jet with uniformly distri
uted parameters—the temperature and the electron and
densities. Polydisperse CeO2 particles were used in our ex
periments, with a distribution half-width, as our measu
ments showed, of at most 30%. The average Sauter diam
of the particles was about 0.8mm. In the working regime, the
velocity Vg of the plasma jet varied over the range 4–6 m
the electron and ion densities varied over the ran
10921012cm23, and the gas was kept at atmospheric pr
sure. The electron and ion temperatures were the same
varied over the rangeTi5Te5Tg5170022200 K. The test
stand is described in greater detail in Refs. 10 and 17. H
we discuss in detail only the modified methods for measur
the gas and particle temperatures, and the diagnostic in
mentation based on them, which made it possible to de
mine the temperature difference to within 10%.

The conventional method for determining the tempe
ture in a flame is a generalized reversal method, but
presence of dispersed-phase particles in gas flows
strongly influence the optical and radiative characteristics
the flows and, in consequence, substantially distort the v
of the temperature when using conventional optical meth
in a two-phase medium. In Ref. 17 it is shown that to hi
accuracy, the temperature of the gas phase in a dusty the
plasma can be obtained by measuring three signals at
wavelengths:l0 ~within the line profile! and l ~next to the
spectral line!—the signalSP from the plasma with macropar
ticles, the signalSL from a standard lamp with temperatu
TL , and the signalSLP due to the lamp radiation emitted a
temperatureT and transmitted through the plasma:

Tg5S 1

TL
2

l

c2
lnS k0~t0F02tF !

t02t D D 21

,

F5
SP

SL1SP2SLP
, ~12!

wheret is the optical density of a plasma with particles, a
the subscript 0 corresponds to parameters determined w
the spectral line profile~sodium atoms!.

Color pyrometry is ordinarily used to determine the p
ticle temperature.18 Measurements of the spectral intens
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ratios of the radiation of a dispersed medium at two or m
wavelengths make it possible to determine the color te
perature of the particles:

SP~l1!

SP~l j !
5

«~l1!I B~TP ,l1!

«~l j !I
B~TPl j !

, ~13!

whereI B(T,l) is the Planck function and«(l j ) is the emis-
sivity of the dispersed phase. In the simplest case of ‘‘gra
particles, when the emissivity of the dispersed phase d
not depend on wavelength («(l j )5«), these temperature
are the same. Otherwise, to determine the true particle t
perature it is necessary to know the form of the spec
dependence«(l). In many cases of practical importanc
when multiple scattering processes can be neglected, th
rectional emissivity of a dispersed medium is given by19

«~l!5~12v~l!!~12exp$2t~l!%!, ~14!

wherev(l) is the single scattering albedo. In this case, sin
the optical density can be calculated from the formula

t~l!52 ln~$SLP~l!2SP~l!%/SL~l!!, ~15!

determination of the particle temperature can be reduce
choosing an accurate approximation for the spectral dep
dence of the single scattering albedo. In our experimen
function of the form

v~l!512const/tl0.2, ~16!

proposed in Ref. 20, was used to determine the particle t
perature.

The optical layout of the diagnostic setup to determ
the gas and particle temperatures is presented in Fig. 1
standard VL~SI-10-300! tungsten lamp TL, whose radiatio
is interrupted by a chopper wheel CH and redirected by
beamsplitter BS, is used as the radiation source.

A characteristic feature of the apparatus for determin
the gas temperature is the use of a spectral instrument S
high resolving power~a DFS-452 spectrograph! and the use
of a linear CCD array, each pixel of which corresponds t
spectral interval of 0.06 Å, as a detector. This makes it p
sible to record the line profile, rather than the integrated
diation of the gas in the atomic lines. The small spect
range covered by the L2 linear array does not permit inv
tigating the particle characteristics~but it is possible to take
account of the influence of the particles on the spectral lin!.
The advantage lies in the possibility of obtaining good re
lution of lines~in our case, the sodium doublet! and therefore
determining the temperature of the gas phase more a
rately.

The optical layout of the method for determining th
particle temperature of the dispersed phase~see Fig. 1! con-
sists of a tungsten lamp TL, a chopper wheel CH, a bea
splitter BS, a mirror M, objectives O1 and O2, and a ligh
guide LG1. This scheme is similar to one used f
diagnostics of the gas phase and differs from it by the an
of convergence of the probe beam and the use of a n
spectrophotometer, consisting of a slit S, a system of ob
tives O3 and O4, and a 300 line/mm diffraction grating D
as the spectral instrument. A linear CCD array L1 was a
used in this scheme. Such a system made it possible to
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FIG. 1. Optical layout of the diagnostic system: TL—
tungsten lamp, CH—chopper wheel, O1, O2, O3, O4, O
O6—objectives, PD—photodetector, L—lens, L1, L2—
linear CCD arrays, LG1, LG2—lightguides, DG—
diffraction grating, S—slit, G—plasma generato
M—mirror, BS—beamsplitter, SI—spectral instrumen
IF—interference filter.
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form spectral analysis of the collected radiation in the wa
length range 450–900 nm, which is sufficient to determ
parameters of macroparticles such as their size, absorp
coefficient, temperature, and density.

The main channels are used for spectral measurem
of the intensities of the radiation from the plasma layerSP ,
the reference lampSL , and the lamp signalSLP transmitted
through the medium. A chopper wheel CH is introduced in
the scheme to measure the signalsSP andSLP . The measure-
ments were performed in an automatic mode, the sign
from the linear arrays were processed with a computer,
the signals from the photodetector PD were fed into
L-1250 ADC board and then processed with a computer

A reference channel is introduced into the scheme
correct errors introduced into measurements of the opt
density and intensity of the characteristic radiation of
layer of macroparticles as a result of fluctuations of the p
ticle density. The reference channel consists of a lens L
interference filter IF, and a photodetector PD~FÉU-84!. Ra-
diation from the measurement volume is directed onto
photodetector PD~signal SLP!. Measurement of the signal
SLP

0 and SLP simultaneously with the signalsSP and SL

makes it possible to monitor the particle density during
experiment and either to reject unsuccessful measurem
or to correct the signal from the plasma:

SP* 5SPSLP /SLP
0 .

Systematic errors in determining the emissivity from t
relative signal measurementsSP /SL were corrected by pre
liminary calibration of the instrument.

The observation of ordered structures with simultane
diagnostics of the plasma was conducted in the zone of
bilization of the temperature of the plasma jet at heig
h525240 mm above the cover of the burner for vario
plasma temperatures and particle densities. The plasma
perature was varied by varying the propane/air ratio over
range 0.95–1.47. In measurements with CeO2 particles the
particle densitynp was varied over the range (0.225.0)
3107 cm23, the plasma temperatureTg was varied over the
range 1700–2200 K, the temperature differenceDT between
the gas and macroparticles was varied from 20 to 70 K,
ion density ni was varied from 0.4231010cm23 to 4.0
-
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31010cm3, and the electron densityne was varied over the
range (2.527.2)31010cm23. On the basis of these data
was found from the quasineutrality relationZpnp1ni5ne

that the CeO2 particles are positively charged to about 103e,
to within a factor of 2. The ordered structures were analyz
using a two-point correlation functionR(r ). The resulting
plasma parameters were used for numerical modeling.

4. NUMERICAL MODELING IN A THERMAL PLASMA

Computer simulation of the behavior of an ensemble
macroparticles in a thermal plasma was performed in or
to investigate the influence of the thermophoretic interact
of the macroparticles on the formation of ordered structu
in a thermal plasma. The simulation parameters co
sponded to the experimental conditions of the plasma w
CeO2 particles, for which a liquid-type structure was o
served. Numerical modeling was carried out using the Ma
cad system by the molecular dynamics method in 2D geom-
etry. It consisted of solving the equation of motion for ea
macroparticle assuming a pairwise interaction law. Frictio
forces and Brownian motion were also taken into accoun

md

d2r k

dt2
5(

j
F~r !ur 5urk2r j u

r k2r j

ur k2r j u
2mdn f r

dr k

dt
1Fbr ,

~17!

wheremd is the particle mass,n f r is the friction decrement,
andFbr is a random force giving rise to Brownian motion

The number of particles wasN5200. A square with pe-
riodic boundary conditions was used as the simulation
gion. The significance of the periodic boundary conditions
that in the first place, when any macroparticle leaves
simulation region an identical particle enters the oppos
side of the square and, in the second place, interactions
periodic images of the particles are taken into considerat
These images are constructed in a strip of widthL0/2 around
the square, whereL0 is the edge length of the square. Su
periodic boundary conditions make is possible to av
boundary effects and set the average macroparticle dens

Initially, the particles occupy random locations insid
the simulation region, after which formation of an order
structure commences. Here a problem arises that is cha
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teristic of 2D simulation of the behavior of a real system
macroparticles. The average interparticle distancel for a 2D
system of macroparticles is equal to the value calcula
from the density in a real experiment:

l 5~4pnd/3!21/3.

In this case it is to be expected that the simulation of
processes due to short-range electric forces will be corr
However, the effect of the long-range nonelectric interact
cannot be completely accurately taken into account in aD
geometry. To simulate a structure of macroparticles wit
long-range interaction correctly, simulation must be p
formed. Nonetheless, 2D simulation for long-range interac
tion is helpful to demonstrate the effect due to attract
between particles.

Two systems were simulated:
1. A system of macroparticles taking account of only t

electric interaction.
2. A system that incorporated electrostatic repulsion a

thermophoretic attraction. Its purpose was to demonstrate
influence of long-range attractive forces.

In practice, the actual interaction law must be cut off
very short and very long distances. It is obvious that initia
some macroparticles can be very close to one another,
the initial interaction force will be very large, which wil
require a very short time step. To avoid this problem
interaction force was truncated at distances shorter t
l 050.4l . This does not affect the process leading to order
of the macroparticles, since neighboring particles, separ
by a distance of less thanl 0 , disperse quite rapidly, afte
which there are no longer likely to be any particles separa
by such a short distance.

On the other hand, the long-range interaction of partic
can give rise to unrealistic effects induced by the perio
boundary conditions. For this reason, the interaction of m
roparticles at distances greater than the width of the strip
the periodic samples~i.e., L0/2!, is cut off gradually. This
does not affect the local processes of interest, which ens
the validity of the simulation. Thus, the following interactio
law was used for numerical modeling instead of the act
one:

F̃~ l !55
F~ l 0!, l , l 0 ,

F~ l !, l 0, l ,0.5L0 ,

F~ l !
L02 l

0.1L0
, 0.5L0, l ,L0 ,

0, l .L0 .

~18!

The simulation parameters are given in Table I. So
remarks concerning this table are made below. For sev

TABLE I. Parameters used in the simulation.

Tg51700 K DT550 K nd553107 cm23

Pg51 bar md51.16310212 g GS530
ne5731010 cm23 m̃d53.2310210 g gp5150
ni543109 cm23 l 517mm N5200

r D511mm Q5500e t50.3 ms
Rd50.4mm n f r51.143105 s21 ñ f r5570 s21
d
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parameters in the table two values are presented. The va
marked with a tilde were used in the simulation.

The mass of a macroparticle ismd5(4p/3)rdRd
3 , where

rd @g/cm3# is the density of CeO2. We used the approxima
tion

n f r5
6phRd

md$12~l/Rd!~1.25710.400 exp~21.10Rd /l!!%
,

~19!

whereh is the viscosity of the gas. This complicated expre
sion is necessary because the experimental conditions c
spond to a transitional regime, where neither the Stokes
mula nor the expressions for the collisionless regime
accurate.

The mean-free path and the viscosity were taken to
l51.56mm andh51.7331023 g/cm•s. Substituting these
values into the expression~19! yields n f r51.43105 s21.
This is a very large value, considering that the characteri
formation timet f of an ordered structure is tens of second
This means that the inertia of the particles has virtually
effect on their regular motion determined by the interact
forces. Unfortunately, it is impossible to eliminate the ine
tial term from Eq.~17!, because Brownian motion is impos
sible without it.

The time stept must be less than 1/n f r . To avoid nu-
merical instabilityt'0.15/n f r was used in practice. For thi
reason, simulation with the real value ofmd required too
many time steps. However, a much larger particle mass
be used. Specifically, the massm̃d5200md was used. The
regular motion of macroparticles remains inertialess if

ñ f r t f!1. ~20!

Here ñ f r was calculated from Eq.~19!, substitutingm̃d for
md . Therefore the regular motion of macroparticles is inse
sitive to such an increase in their mass. However, this res
in an initial increase in the temperature of the macropartic
~Fig. 2!. This effect, which does not occur in reality, is due
the rapid liberation of heat at the initial stage of evolution
the structure from disorder to order. In reality,Td remains
constant, since friction is strong enough to dissipate the
ergy released and to prevent a temperature increase. Ne
theless, note that the growth timeTd is short compared with
t f , so this effect can be neglected.

As one can see from Table I, the ion density is lo
compared with the electron density. Note that the questio

FIG. 2. Time dependence of the temperature of a system of macropart
in a simulation with a purely electrostatic interaction.
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FIG. 3. Evolution of the correlation function in a simulation with a purely electrostatic interaction.
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determining the Debye length in a plasma with such a h
macroparticle density is unclear. This problem requires s
cial consideration, which is beyond the scope of the pres
work. In the present workr D was calculated neglecting th
ion screening:

r D5ATe/4pe2ne.

The first simulation with a purely electrostatic intera
tion of the macroparticles showed that after a relaxation p
cess the system arrives in a final, statistically stationary s
corresponding to a liquid structure. This agrees with the v
ues of the nonideality parametersGs andgp .

Figure 3 shows the dynamics of the correlation funct
R(r ), calculated according to the instantaneous position
the macroparticles. The arrangement of the macroparticle
the simulation region at the end of the experiment is p
sented in Fig. 4. It is evident from Fig. 3 that the particl
contributing to the correlation function at smallr vanish.
This process occurs very rapidly because of the strong e
tric repulsion forces at short distances. Then, the first p
nounced peak appears att510 ms and grows. Subsequentl
this peak continues to grow and higher-order peaks appe
the same time. The final correlation function is characteri
by a large number of sharp oscillations. The formation ti
t f of the structure is an ill-defined quantity, since it depen
on the range of distances where the evolution of the corr
tion function is studied. The greater this distance, the gre
the time required to establish the correlation function at t
distance.
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In practice, a range of distances where oscillations of
final correlation have an appreciable magnitude can be c
sidered. We consider the first five peaks. In this ca
t f'50 ms. It is also convenient to introduce the timet1 at
which the first peak emerges. This is actually the time
quired for order of any type to appear in the system. T
current simulation yieldst1'10 ms, consistent with the ana
lytic estimate

t1'
lmdn f r

F~ l !
, ~21!

which yields t1528 ms. As noted above, in this simulatio
the transit time of macroparticles istexp510 ms. This means

FIG. 4. Final form obtained for a system of macroparticles in a simulat
with a purely electrostatic interaction,t5100 ms.



rre
Th
a

re

on
u
ea
g
o
n
s
u
in
ca

ble
o-

on,
ar-
he
type
n
r-
is

les
ar-
b-
ex-

mu
ex
t

t of

870 JETP 89 (5), November 1999 Fortov et al.
that the experimentally measured correlation function co
sponds to the moment at which the structure is formed.
real transit time is sufficient for short-range order to appe
but insufficient for many oscillations to appear in the cor
lation function.

Figure 5 shows the experimental correlation functi
compared with two correlation functions obtained by n
merical simulation, one of which corresponds to the r
transit time, while the other corresponds to the final sta
Two characteristic features distinguish the experimental c
relation function. First, it has but a single peak, and seco
that peak is very wide. The lack of long-range order peak
not surprising, since the foregoing tells us that the act
transit time is too brief for them to develop. The broaden
of the main peak can probably be explained in terms of lo

FIG. 5. Comparison of the correlation functions obtained in numerical si
lation with purely electric interaction of macroparticles and measured
perimentally: solid line—simulation,t510 ms ~corresponds to the transi
time of the plasma through the experimental setup!, dashed curve—
simulation, final stationary state; dot-dashed curve—experiment.
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irregularities of the macroparticle structure. One possi
mechanism leading to these nonuniformities is therm
phoretic attraction of particles.

This mechanism is studied in the second simulati
where long-range thermophoretic attraction of macrop
ticles is included in the interaction law. It turns out that t
attraction of macroparticles leads to a nonperiodic Jeans-
instability. Figure 6 shows the evolution of the correlatio
function in the second numerical simulation. The final a
rangement of macroparticles in the simulation square
shown in Fig. 7.

It can be seen from the last figure that the macropartic
tend to gather into a cloud. Thus, the attraction of macrop
ticles might account for the strong local irregularities o
served in the laboratory experiment. Figure 8 shows the

-
-

FIG. 7. System of macroparticles, numerical simulation taking accoun
the thermophoretic attraction,t521 ms.
n
o-
FIG. 6. Temporal evolution of the correlation functio
obtained by simulation, taking account of the therm
phoretic attraction.
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perimental correlation function and the correlation functi
obtained by simulating the nonlinear stage of instabili
These are clearly in good agreement.

5. CONCLUSIONS

In summary, in the present work the thermophore
force and its effect on the formation of ordered structu
were determined for various values of the plasma par
eters. It was shown that the coexistence of regions wit
chaotic arrangement of particles and regions of orde
structures~domains! is typical of a thermal plasma with
strongly interacting macroparticles. Particles in the doma
can be separated by less than the mean distance. A syste
strongly interacting macroparticles was numerically sim
lated, taking account of thermophoretic interactions amo
the particles. The results showed that the thermophoretic
tractive forces explain the form of the spatial nonuniform
associated with particle clustering into small domains~whose

FIG. 8. Comparison of the correlation function obtained via numer
simulation, taking account of the thermophoretic interaction of macrop
ticles, and the experimentally measured correlation function: solid lin
simulation,t516 ms; dashed line—experiment.
.

c
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d
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of
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size is of the order of the mean separation!. The experimen-
tally measured correlation function was found to be ve
close to the correlation function obtained by numerical sim
lation.
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The impurity concentration in localized structures is described on the basis of analytic solutions
of model equations for convective diffusion in the one-dimensional hydrodynamic
approximation without pressure. The simplicity of the derivation of the analytic results depends
on the ratio of the kinetic coefficients of the liquid~the Prandtl numbers!. For the same
kinetic coefficients, any time-dependent problem can be reduced to problems for the conventional
heat conduction equation. For integer Prandtl numbers the problem of time-dependent
convective diffusion in the flow field of a uniformly moving shock wave likewise reduces to
problems for the heat conduction equation. Relations are established between problems whose
Prandtl numbers differ by an integer. Various representations of the Green’s functions for
the equations of convective diffusion are analyzed. For integer Prandtl numbers they can be
expressed in terms of error functions. The asymptotic character of the solutions depends
strongly on the satisfaction of global conservation laws. For global conservation of the impurity
mass, coalescence of shock waves corresponds to merging of impurity solitons, i.e.,
clustering. © 1999 American Institute of Physics.@S1063-7761~99!00911-7#
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1. INTRODUCTION

The dynamical and stochastic description of the evo
tion and interaction of many degrees of freedom, leading
the formation of structures on account of the characteri
features of the collective behavior, has been substant
developed on the basis of the theory of continuous me
The basic characteristic features, such as nonlinearity,
cous dissipation, and dispersion, on whose balance none
librium structure formation is based, can be effectively tak
into account in the hydrodynamic approximation. Even si
plified one-dimensional hydrodynamic models reveal imp
tant features of phenomena and, above all else, the dec
role of localized formations in the form of shock waves a
solitons. The one-dimensional model of a viscous liqu
without pressure, known as the Burgers model,1 has long
attracted a great deal of attention for describing determini
and stochastic flows in aerodynamics and plasma physic1–3

For all of the model simplification, it retains the inertial no
linearity and high dissipation, which play a leading role
the formation of turbulent flow. The quasilinear Burgers d
ferential equation is especially attractive because it can
reduced to a linear diffusion~heat conduction! equation by
means of a nonlinear Cole–Hopf change of variables.4,5 The
new burst of interest in this equation and its multidime
sional modifications is due to the further elaboration of me
ods for solving problems of turbulence theory6–8 and to the
substantial expansion of its physical applications in theo
of transport flows,3 structure formation in the evolution o
the Universe,9 growth of interfaces,10,11 and convective
diffusion.12

The one-dimensional hydrodynamic model without pr
sure remains simple even when it is extended to the prob
of convective diffusion~or/and heat conduction!, where mo-
8721063-7761/99/89(11)/8/$15.00
-
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lecular and convective transport in the carrying liquid a
combined. The case of equal kinetic coefficients~unit Prandtl
number! is especially simple. In this case there exists
extension of the Cole–Hopf transformation whereby the n
linear equations of motion and convective diffusion can
reduced to a linear heat conduction equation.13 The situation
becomes somewhat more complicated when the kinetic
efficients are different, and a reasonably complete anal
investigation is possible only for particular types of flow
For flow in the form of a uniformly propagating shock wav
the equations of time-dependent convective diffusion c
once again be reduced to a linear heat conduction equa
with constant coefficients for any integer Prandtl numbers~in
the general case, the relation between the solutions of p
lems whose Prandtl numbers differ by an integer will
established!. The asymptotic character of the impurity distr
bution in a shock wave depends on whether or not a glo
conservation law for the impurity is satisfied for the equ
tions of the model. The model without complete conser
tion of the impurity will be studied first in Sec. 2. Then
based on this model, a model with a global conservation
will be studied completely analogously in Sec. 4. In the lat
case, an ‘‘impurity soliton’’ will ultimately~in the limit of
long times! accompany the shock wave. The well-known e
fect of perfectly inelastic collisions of one-dimension
shock waves for Burgers’ equation2,3 will thereby correspond
to merging of impurity solitons and an increasing local im
purity concentration. This completes the one-dimensional
scription of impurity clustering, which has attracted a gre
deal of attention in the literature in the more complicat
multidimensional and stochastic situations.9,14–16 In Sec. 3
the Green’s function of the convective heat conduction eq
tion is analyzed on the basis of the solution of the we
known spectral problem of quantum mechanics for
© 1999 American Institute of Physics
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Pöschl–Teller potential.17,18 It is demonstrated that the sim
plication of the analysis for integer Prandtl numbers is due
the nonreflective character of the potential in this case.

2. DIFFUSION EQUATIONS FOR A PASSIVE IMPURITY

The equation for convective heat conduction~diffusion!
through a velocity field is coupled with the equation of m
tion, which in one-dimensional hydrodynamics without pre
sure is Burgers’ equation. In the passive-impurity appro
mation ~in this approximation there is no sense
distinguishing between heat conduction and diffusion, so
either term will be used!, which does not exert a back effe
on the fluid flow, one variant of such coupling~another is
studied below in Sec. 4! is represented by the differentia
equations

] tu1u]xu5n]x
2u, ] tu1u]xu5x]x

2u, ~2.1!

for which the solution of the initial problem presupposes
initial conditions

u~x,t !u t505]xf0~x!, u~x,t !u t505u0~x! ~2.2!

for the velocity and density fields of the passive impurity
In Ref. 13 it was shown that this system of equatio

with identical kinetic coefficients~unit Prandtl number
P[n/x51! is just as simple as a separate Burgers equat
Using the generalized Cole–Hopf change of variables,

u~x,t !522n]x ln «~x,t !, u~x,t !5c~x,t !/«~x,t !,
~2.3!

it reduces to two ordinary linear heat conduction equatio

] t«5n]x
2«, ] tc5x]x

2c ~n5x!, ~2.4!

«~x,t !u t505expS 2
f0~x!

2n D ,

c~x,t !u t505u0~x!expS 2
f0~x!

2n D .

We now analyze the equations of the one-dimensio
model ~2.1! for arbitrary ~always positive in the sense o
thermodynamic constraints! Prandtl numbers. Without dis
tinguishing heat conduction and diffusion, we use a sin
term for the dimensionless ratio of the coefficient of kin
matic viscosity to the other kinetic coefficients~in the litera-
ture, a special term—the Schmidt number—is used for
ratio of the coefficients of viscosity and diffusion!. It is con-
venient to use dimensionless variables constructed using
characteristic velocityu0 and the coefficient of viscosity
Then the system of equations assumes the form

]tv12Pv]jv5P]j
2v, ]tu12Pv]ju5]j

2u, ~2.5!

j[
u0x

2n
, tP[

u0
2t

4n
, v[

u

u0
5v~j,t!.

Since the second equation is linear in the impurity conc
tration, there is no special need to reduce the latter to dim
sionless form.

In the general case this system of equations canno
transformed to simple separate equations of the type~2.4!, as
o

-
i-

at

e

s

n.

al

e
-

e

he

-
n-

be

is obvious from the fact that the Painleve´ test for Eqs.~2.1! is
satisfied only for unit Prandtl number.13 Nonetheless, this is
possible in special cases.

The generalized Cole–Hopf transformation

v52]j ln «, u5c/«P ~2.6!

once again reduces the nonlinear equation of motion t
linear heat conduction equation with constant coefficients

]t«5P]j
2«,

and the equation for the impurity concentration reduces t
linear equation with a variable coefficient and without t
first spatial derivative of the unknownc:

L̂p21c50, L̂p[]t2]j
21P~P11!vj . ~2.7!

The differential operator arising here satisfies the import
commutation relation

L̂p2mM̂ p2m2M̂ p2mL̂p212m5
m~P2m!

P
vt ,

M̂ p[]j1Pv. ~2.8!

Besides the overtP-dependence, here there is also an i
plicit dependence~through the form of the dimensional ve
locity!. Stationary flow is an exception, as is obvious fro
the equation of motion in Eq.~2.5!. For stationary flow the
commutation relation becomes homogeneous and mak
possible to use the lowering operatorM̂ p to reduce the solu-
tion of the problem under study for some Prandtl number
the solution of a similar problem with a Prandtl numb
smaller by 1. Thus, in the modern terminology, this opera
is a Darboux operator for the differential operator of t
problem. Because of the symmetry property of the lat
L̂2p5L̂p21 , the raising operator will beM̂ 2p . Any change
in Prandtl number by an integer can be achieved by repe
application of the lowering or raising operators. Specifica
for integer Prandtl numbers the problem is reducible to
simple problem mentioned above for the heat conduct
equation~the problem withP51!. For stationary flow and
integer P, a relation between the differential operators
these problems can be easily established using~2.8!:

L̂p21M̂ p21M̂ p22 ...M̂15M̂ p21M̂ p22 ...M̂1L̂0 ,

L̂05]t2]j
2 . ~2.9!

Starting with the heat conduction equation, left-multiplyin
it by the operatorM̂1 and using the commutation relatio
~2.8! with vt50, we obtain

L̂1c (2)50, L̂0w50; c (2)5M̂1w. ~2.10!

Continuing in this manner we prove that the solution of
equation with an integer Prandtl number can be represe
in terms of the solution of the heat conduction equation a

L̂p21c (p)50, L̂0w50; c (p)5M̂ p21M̂ p22 ...M̂1w.
~2.11!
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The explicit form of the required one-dimensional stationa
flow can be found quite easily. The stationary solutio
bounded at infinity, of the equation of motion~2.1! has the
form

u~x!52u0 tanh
u0x

2n
; v52tanhj. ~2.12!

Since the equations exhibit Galilean invariance, such a fl
corresponds to a uniformly moving shock wave with a v
cous transitional layer in a coordinate system moving
gether with the wave~in what follows, all calculations are
performed in such a coordinate system!. We note that the
potential« corresponding to the indicated stationary veloc
distribution in the Cole–Hopf transformation is not statio
ary:

«~j,t!5C0ePt coshj, ~2.13!

since it must satisfy the time-dependent heat conduc
equation~2.4!. However, under the Cole–Hopf transform
tion, separating the time and space variables causes the
~together with the arbitrary constantC0! to drop out of the
result for the velocity~2.12!.

Here it is still necessary to complete the proof that a
solution of the equation under study forc with integer
Prandtl numbers can be represented in the form~2.11!. For
this we consider a solution in the formc (p)5M̂ p21x and use
for the transformations the commutation relation~2.8! with
vt50:

L̂p21c (p)50; L̂p21M̂ p21x5M̂ p21L̂p22x50;

~]j2~P21!tanhj!L̂p22x50.

Integrating the latter equation once we arrive at an inhom
geneous equation whose solution can be conveniently re
sented as a sum of the particular solution and the gen
solution of the homogeneous equation:

L̂p22x5C coshP21 j;

x52
C

~P21!2 coshP21 j1c (p21).

Applying the operatorM̂ p21 to this sum, the contribution
from the first term vanishes, and we obtain finally a formu
expressing the relation between the solutions of two pr
lems with Prandtl numbers differing by 1:

c (p)5M̂ p21c (p21). ~2.14!

Applying this formula repeatedly we once again arrive at
result ~2.11!, wherew[c (1).

Next, to study time-dependent convective diffusion o
passive impurity in the field of a uniformly moving shoc
wave, we focus our attention on the initial problem with t
impurity concentrated at a point~the solution of other initial
problems can be found by superposing such singular s
tions!:

~]t22P tanhj]j2]j
2!u50, u~j,t!ut505d~j2j0!.

~2.15!
y
,

w
-
-

n

me

y

-
re-
ral

-

e

u-

The impurity distribution at subsequent times with integ
Prandtl numbers will be expressed, in accordance with E
~2.6!, ~2.11!, and ~2.13!, as follows~in the product, the op-
erators are assumed to be ordered so that the numbe
creases from right to left!

u~j,t!5~C0ePt coshj!2P )
m51

P21

~]j2m tanhj!w

5~C0ePt!2PS ]

] sinhj D P21 w

coshj
, ~2.16!

in terms of the solution of the initial problem for the he
conduction equation of the form~the Heaviside step function
enters into the initial condition!

~]t2]j
2!w50,

wut505C0
P coshj0

3coshj
~sinhj2sinhj0!P22

~P22!!
H~j2j0!. ~2.17!

A representation of the impurity distribution in terms of
convolution integral between the Green’s function and
initial distribution then follows for the heat conduction equ
tion:

u~j,t!5e2P2t coshj0 sechP j )
m51

P21

~]j2m tanhj!I p22 ,

I n[E
j0

`

dh coshh
~sinhh2sinhj0!n

n!
D0~j2h,t!,

D0~j,t![
1

2Apt
expS 2

j2

4t D . ~2.18!

These integrals can be expressed in terms of the error f
tion erfz512erfcz. For example,

I 05
et

4
~2 coshj1S1!,

S1[(
6

~6e6j!erfS At6
j2j0

2At
D ,

I 11I 0 sinhj05
e4t

8
~2 sinh 2j1S2!,

S25(
6

e62j erfS 2At6
j2j0

2At
D , ~2.19!

and we have for the concentration distributions of a pass
impurity in the casesP52 andP53, respectively,

u~j,t!5e23t
coshj0

4
sech2 j~]j2tanhj!S1 ,

u~j,t!5e25t
coshj0

8
sech3 j~]j22 tanhj!~]j2tanhj!

3~S222e23tS1 sinhj0!. ~2.20!
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Since the expressions forSn are asymptotically constan
for fixed j andj0 at long times (t→`), concentration per-
turbations will vanish in this limit. Therefore, in the model
hand the convective transport of an impurity as a resul
fluid flow in a shock wave cannot compensate for diffusi
spreading.

For what follows, it is also convenient to rewrite the la
result ~we confine ourselves to the caseP52! in the form

u~j,t!5e24tS coshj0

coshj D 2

D~j,j0 ,t;P52!,

L̂1D50, Dut505d~j2j0!,

D~j,j0 ,t;P52!5
et

4
sechj0~]j2tanhj!S1 . ~2.21!

3. GREEN’S FUNCTION OF THE EQUATION OF CONVECTIVE
HEAT CONDUCTION „SPECTRAL EXPANSION …

The equation of convective heat conduction in the pr
ence of a flow produced by a uniformly moving shock wa
can be solved for any Prandtl number using expansion
terms of the eigenfunctions of the stationary part of its o
erator. The latter problem has been studied in detail in qu
tum mechanics and is known as the spectral problem for
modified Po¨schl–Teller potential. The simplicity of the cas
of integer Prandtl numbers corresponds to the case of no
flective potentials and is due to the additional internal sy
metry of the problem.

Seeking the solution of Eq.~2.7! ~in a coordinate system
comoving with the wave!, rewritten for the specific case of
shock wave, in the form

L̂p21c~j,t![~]t2]j
22P~P21!sech2 j!c50, ~3.1!

using the method of separation of variables~Fourier’s
method!

c~j,t!5a~t!C~j!; a~t!5e2lt,

~]j
21P~P21!sech2 j!C52lC, ~3.2!

depending on the sign of the separation constant a disc
~for l52m2,0! and a continuous~for l5k2.0! spectrum
arise. The complete solution can be represented as a li
combination of eigenfunctions of the discrete spectrum
an integral of the eigenfunctions of the continuous spectr

c~j,t!5 (
n51

N

ane2lntCn~j!

1E
2`

` dk

2p
b~k!C1~j,k!e2k2t, ~3.3!

with the exception of the situation with 0,P,1, where a
contribution only of the continuous spectrum occurs~in
quantum mechanics this corresponds to the passage of a
ticle above the potential barrierU(j)5P(12P)sech2 j.0!.

For the Green’s function of the operator under study~we
call the D function solving the initial singular problem
Green’s function also!
f

t

-

in
-
n-
e

re-
-

te

ar
d
,

ar-

L̂p21G5d~j2j0!d~t!;

G~j,j0 ,t!5H~t!D~j,j0 ,t!,

L̂p21D50, Dut505d~j2j0! ~3.4!

such an expansion has the form

D~j,j0 ,t!5 (
n51

N

e2lntCn~j!Cn~j0!

1E
2`

` dk

2p
C1~j,k!C1* ~j0 ,k!e2k2t.

~3.5!

For known eigenfunctions and eigenvalues this yields an
ternative method for solving the problem of the evolution
an impurity distribution, initially concentrated at a point,
the fluid flow created by a uniformly moving shock wav
The spectral data for the Schro¨dinger equation with a modi-
fied Pöschl–Teller well are well known.17,18 The discrete
spectrum for such a potential is finite:

ln52~P2n!2,0, n51,2,...,N,P, ~3.6!

and the eigenfunctions of the discrete part of the spect
have a polynomial form:

Cn~j!/An5~12s2!(P2n)/2F~2n11,2n12P;11P

2n;~12s!/2!

5~12s2!(P2n)/2
G~n!G~11P2n!

G~P!
Pn21

(P2n,P2n)~s!

5~12s2!(P2n)/2
G~n!G~112P22n!

G~2P2n!
Cn21

P2n11/2~s!

52P2nG~11P2n!PP21
2(P2n)~s!. ~3.7!

Here equivalent expressions are presented for the eigenf
tions in terms of finite hypergeometric series, Jacobi poly
mials, ultraspherical~Gegenbauer! polynomials, and associ
ated Legendre functions.

The orthonormality of the eigenfunctions of the discre
spectrum of the Schro¨dinger equation,

E
2`

`

djCn~j!Cm~j!5dnm ,

makes it possible to normalize the amplitude:

An52n2PA ~P2n!G~2P2n!

G~n!G2~11P2n!
. ~3.8!

Likewise, for the eigenfunctions of the continuous spe
trum the Jost functions singled out in accordance with
asymptotic behaviorC1(j,k)→exp(ikj) asj→`, we have
a representation in terms of the hypergeometric function

C1~j,k!5eikjFS 2P11,P;12 ik;
12s

2 D ,

where the latter reduces to a Jacobi polynomial for inte
Prandtl numbers~the hypergeometric series cuts off for no
positive integer values of the first argument!:
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C1~j,k!5eikj
G~P!G~12 ik !

G~P2 ik !
PP21

(2 ik,ik)~s!.

Using the well-known formulas for transforming hype
geometric functions, the Jost function under study can
rewritten in a form convenient for estimating its asympto
behavior at the other boundaryj→2`:

C1~j,k!5c21~k!eikjFS 2P11,P;11 ik;
11s

2 D
1c22~k!e2 ikjFS 2P11,P;12 ik;

11s

2 D
——→
j→2`

c21~k!eikj1c22~k!e2 ikj,

c21~k!5
G~12 ik !G~2 ik !

G~P2 ik !G~12P2 ik !
,

c22~k!5 i
sinp~P21!

sinhpk
.

Hence, for integer Prandtl numbers, the reflected w
;exp(2ikj) clearly vanishes:

c22~k!50, c21~k!5 )
n51

P21
ik1n

ik2n
,

i.e., the potentialU(j)52P(P21)sech2 j,0 in this situa-
tion is ‘‘nonreflective’’ in the language of quantum mechan
cal scattering theory.

For the smallest Prandtl numbers, 0,P,1, the spectral
problem, which has only a continuous spectrum, reduce
the problem of scattering above a positive barrier and
expansion of the Green’s function with respect to this sp
trum assumes the form

D5E
2`

` dk

2p
e2k2teik(j2j0)FS 12P,P;1

2 ik;
12s

2 DF* S 12P,P;12 ik;
12s0

2 D ,

s[tanhj, s0[tanhj0 .

In the limiting casesP50 and P51 the hypergeometric
functions here reduce to 1, and the integral reduces to
well-known expression for the Green’s function of the he
conduction equation

D0~j2j0 ,t!5E
2`

` dk

2p
e2k2teik(j2j0)

5
1

2Apt
expS 2

~j2j0!2

4t D .

In the next range, 2>P.1, a single discrete eigenvalu
with n51 appears and the corresponding eigenfunction
sumes the form~especially simple forP52!

n51; l152~P21!2,
e

e

to
e
-

he
t

s-

C1~j!5
A2G~2P22!

2P21G~P21!
sechP21 j ——→

P→2

1

A2
sechj,

~3.9!

and the eigenfunction of the continuous spectrum~the Jost
function with the asymptotic form exp(ikj) asj→`! will be

C1~j,k!5eikjFS 2P11,P;1

2 ik;
12s

2 D ——→
P→2

eikjS 11
12s

ik21D .

~3.10!

The eigenfunction expansion of the Green’s function will
~for what follows, it is useful to indicate the parametr
Prandtl number dependence explicitly in theD function!

D~j,j0 ,t;P!5e(P21)2t
G~P21/2!

ApG~P21!

3sechP21j sechP21 j0

1E
2`

` dk

2p
C1~j,k!C1* ~j0 ,k!e2k2t.

In the limit P→2 the integral of the eigenfunctions of th
continuous spectrum can be expressed in terms of error f
tions. Combining them with the function of the discrete spe
trum we obtain

D~j,j0 ,t;P52!5D0~j2j0 ,t!1
et

4
sechj sechj0

3(
6

erfS Ap6
j2j0

2At
D .

The latter expression, pertaining to the case of an inte
Prandtl number, corresponds to the expression obtaine
the preceding section by the ‘‘algebraic’’ method. This c
be shown by performing the differentiation and simple tra
formations in Eq.~2.21!.

For Prandtl numbers in the range 3>P.2 there are two
discrete levels

n51: l152~P21!2,

C1~j!5A G~P21/2!

ApG~P21!
sechP21 j,

n52: l152~P22!2,

C2~j!5A2G~P21/2!

ApG~P22!
tanhj sechP22 j,

and in the limitP→3 the normalized eigenfunctions of th
discrete spectrum assume the simple form

C1~j!5
)

2
sech2 j, C2~j!5A3

2
tanhj sechj.

For a function of the discrete spectrum the representatio
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C1~j,k!5eikjFS 2P11,P;12 ik;
12s

2 D
——→

P→3
eikjS 11

s~12s!

ik21
12

~12s!2

ik22 D .

is valid in this range of Prandtl numbers. Now the eigenfu
tion expansion of the Green’s function is

D~j,j0 ,t;P!5e(P21)2t
G~P21/2!

ApG~P21!
sechP21 j sechP21 j0

1e(P22)2t
2G~P21/2!

ApG~P22!

tanhj tanhj0

~coshj coshj0!P22

1E
2`

` dk

2p
C1~j,k!C1* ~j0 ,k!e2k2t,

and in the limitP→3 it can be expressed in terms of err
functions

D~j,j0 ,t;P53!5D0~j2j0 ,t!1
3e4t

8
sech2 j sech2 j0

3(
6

erfS 2At6
j2j0

2At
D

1
3et

4
sechj sechj0 tanhj tanhj0

3(
6

erfS At6
j2j0

2At
D .

A generalization of the three expressions presented
the Green’s function forP51, 2, and 3 will be a formula tha
is valid for arbitrary integer Prandtl numbers~the complete
proof is given in Ref. 19 for imaginary time, i.e., for th
propagator of the time-dependent Schro¨dinger equation!

D~j,j0 ,t;P!5D0~j2j0 ,t!1 (
n51

P21

e(P2n)2t
Cn~j!Cn~j0!

2

3(
6

erfS ~P2n!At6
j2j0

2At
D .

Since for integral Prandtl numbers the eigenfunctions of
continuous spectrum are proportional to the sum of simp
pole contributions

C1~j,k!5eikjS 11 (
n51

P21 an
(p)~s!

ik2n D ,

the integrals of their products in Eq.~3.5! reduce to sums o
residues proportional to error functions.

The generalized Cole–Hopf change of variables~2.6!
establishes between the Green’s function of the oper
L̂p21 and the Green’s function of the operator of the init
convective heat conduction equation~2.5! in the presence o
a flow produced by a shock wave

K̂p[]t22P tanhj]j2]j
2 , K̂pG(u)5d~j2j0!d~t!,
-

or

e
r

or
l

the simple relation

G(u)5e2P2tS coshj0

coshj D P

D~j,j0 ,t;P!H~t!.

Using the expression~2.13!, the Green’s function of the
singular initial heat conduction problem can be written in t
form

u~j,t!5e2P2tS coshj0

coshj D PH D0~j2j0 ,t!1
1

2

3 (
m51

P21

em2tCP2m~j!CP2m~j0!

3FerfS mAt1
j2j0

2At
D

1erfS mAt2
j2j0

2At
D G J . ~3.11!

It follows from this result that for long times (t→`) a tem-
perature perturbation produced at any given locat
(j5const) by an initial event at a point~at the pointj0!
rapidly vanishes. Indeed, the first exponential factor
creases more rapidly than the secondary exponential fac
of which the most rapidly growing one refers to the lowe
discrete level. Therefore diffusion spreading predomina
here.

4. CONVECTIVE DIFFUSION WITH GLOBAL CONSERVATION
OF AN IMPURITY

We now consider a model system of equations of
type ~2.1! for the convection of a passive impurity, modifie
so that the equation for the impurity concentration admit
conservation law for the total amount of impurity:

] tc1]x~uc!5x]x
2c; ] tE cdx50. ~4.1!

For a fluid flow produced by a uniformly moving shoc
wave with a viscous transitional layer, we obtain for t
impurity distribution in a coordinate system comoving wi
the shock wave, using dimensionless variables,

~]t2]t
222P tanhj]j22P sech2 j!c50, ~4.2!

which differs from the equation of the model analyzed abo
only by the addition of the last term, which is proportional
the concentration. It is remarkable that after the previo
generalized Cole–Hopf change of variables~2.6! it reduces
to an equation for a new unknown functionc of the same
type as that obtained previously:

c5«Pc; L̂pc[~]t2]j
22P~P11!sech2 j!c50.

~4.3!

However, here an important difference arises in t
asymptotic behavior of the solutions for long times, even
identical initial conditions, in connection with the increase
the number of the operator here. For example, perturbat
of the concentration which are caused by an initial action
the type~2.15! at a point~the Green’s function problem!

c~j,t!ut505d~j2j0!, ~4.4!
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can be represented similarly to the previously examin
model

c~j,t!5e2P2tS coshj0

coshj D P

D~j,j0 ,t;P11!. ~4.5!

Here, at first glance, the small but decisive difference of
Prandtl numbers by 1 occurs in the arguments of the Gre
function. Since the asymptotic behavior of the Green’s fu
tion for different Prandtl numbers is different, this results
different long-time asymptotic behavior of the solutions
the two types of model equations being analyzed.

According to the general representation of theD func-
tion from the preceding section, its asymptotic behavior
fixed coordinatesj, j0 and long timest→` is determined
by the eigenfunction with the lowest discrete eigenvalue~the
ground state!

D~j,j0 ,t;P11!;eP2tC1
(P11)~j!C1

(P11)~j0!, ~4.6!

and in accordance with Eq.~4.5! the final impurity distribu-
tion, in contrast to the situation studied earlier, does not v
ish at long times and possesses a localized soliton-like f
~the asymptotic behavior for fixed coordinatej, i.e., for the
distribution accompanying a shock wave!:

c~j,t! ——→
t→`

2G~2P!

G2~P!22P sech2P j. ~4.7!

It is easily verified that such a limiting distribution is a st
tionary solution of the convective diffusion equation und
study. The archetypical (sech2) form is obtained for unit
Prandtl number. For large Prandtl numbers, the soliton
comes more peaked.

In the situation of unit Prandtl number, the general tim
dependent case admits a simple analysis with reductio
the heat conduction equation.13 The interaction~collision! of
shock waves in the approximation characterized by Burg
model is of an perfectly inelastic character.2,3 If the mean
free path is sufficiently long, to each shock wave there w
correspond an asymptotically simplified impuri
distribution—an ‘‘impurity soliton.’’ We emphasize that de
spite the classical form, impurity solitons differ radical
from classical solitons~for example, the solitons of the
Korteweg–de Vries equation! in terms of the character o
their interactions. Coalescence of colliding shock waves c
responds to perfectly inelastic merging of impurity soliton
For large Prandtl numbers, individual impurity solitons a
more strongly peaked, and a similar inelastic merging can
expected to be the asymptotically simplified result of co
sions of shock wave—impurity soliton pairs. The result
such nonlinear interactions will be a peaked impurity co
centration field, a strong localization of an impurity wi
general conservation of its total amount.

5. CONCLUSIONS „IMPURITY CLUSTERING EFFECT…

The analytic investigation of convective diffusion in
one-dimensional hydrodynamics without pressure perform
above makes it possible to determine the overall physic
the phenomenon, depending strongly on the Prandtl num
For a medium with the same kinetic coefficients, just as
d

e
’s
-

f

r

-
m

r

e-

-
to

s’

ll

r-
.

e

f
-

d
of
er.
r

the model Burgers equation, time-dependent convect
diffusion problems turn out to be solvable. They were
duced to problems for a linear heat conduction equation.
integer Prandtl numbers, the equations of convective di
sion in the field of a uniformly moving shock wave likewis
reduce to a heat conduction equation with constant coe
cients, and the Green’s function for time-dependent diffus
in the presence of stationary flow can be expressed in te
of error functions. The solutions of these deterministic init
problems can provide the basis for understanding impu
accumulation and localization.

Above all else, a passive impurity performs the role o
marker for determining the localized dynamical structures
the velocity field of a fluid flow. It successfully reflects th
characteristic features of the formation, interaction, and
structuring of localized structures. However, restructuring
the markers themselves occurs as a result of the compet
between diffusion and convection. The formation of stab
asymptotically simplified, impurity structures against a bac
ground of dynamical structures turns out to be, as is cl
from the preceding exposition, very sensitive to the detai
features of the coupling of the impurity and velocity field
and to the satisfaction of the global conservation laws. Wh
a global conservation law exists, impurity clusterization o
curs.

Hydrodynamic turbulence in the one-dimensional Bu
gers model~‘‘Burgerlence’’! possesses the structure of a g
of inelastically colliding shock waves which is quite rarefie
at the long-time stage of evolution.20,21 For this reason,
analysis of the elementary process of the collision of sh
waves, the dynamical foundation of a stochastic wave
semble, becomes decisive.

The dynamical picture of clustering in the on
dimensional approximation turns out to be especially sim
for unit Prandtl number. In this case the time-depend
problem of the collision of shock waves with the formatio
of a larger wave as a result of the coalescence of the in
waves can be solved exactly. Asymptotically, each sh
wave is accompanied by an impurity soliton, and merging
the colliding impurity solitons will correspond to perfectl
inelastic collision of shock waves. As the shock wav
merge, the impurity increasingly concentrates in individu
locations. The sharpness of the impurity localization~local
heating! depends on the ratio of the kinetic coefficients of t
medium; it increases with the Prandtl number.

Note that from the standpoint of the evolution of a st
chastic wave ensemble, such enlargement of structure
typical of an inverse cascade process, whose possibilit
closely related to the low dimensionality of the problem.

This work was supported by the Russian Fund for Fu
damental Research~Project 99-01-00435!.
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Structure of turbulent flows of incompressible fluids and the parametrization
of turbulence
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The structure of stationary isotropic, homogeneous turbulence in an incompressible fluid with Re
@1 set into motion by a force with amplitudef 0 and spatial and temporal time scales ofr 0

andt0 , respectively, is examined. It is found that, depending on the magnitude of the force that
sets the fluid into motion, three fundamentally different turbulent stationary states of the
fluid can develop and the dimensionless parameters responsible for transitions from one state to
another,g5 f 0t0

2/r 0 andG5g4/3Re, are determined. It is shown that forg!1 andG!1
a Kolmogorov spectrum withE(k)}1/k5/3 develops in the inertial range. During the transition to
turbulent flows driven by large amplitude forcesf 0 , i.e., during the transition to a regime
with g!1 andG@1, a segment of the spectrum withE(k)}1/k2 develops near the viscous range
and ‘‘detaches’’ the Kolmogorov spectrum from the viscous range. Further increases in the
amplitudef 0 of the force, i.e., approaching the parameter range withg@1 andG@1, causes the
entire inertial range to be ‘‘occupied’’ by a spectrumE(k)}1/k2, and outside the inertial
range, large scale structures with a characteristic size extending tog2/5r 0 begin to be generated.
In the regime withG!1, the power dissipated per unit mass of fluid is independent of the
viscosity, but on going to turbulent regimes withG@1, the viscous losses begin to depend on the
viscosity of the fluid. The ‘‘turn-off’’ of viscous dissipation forG@1 shows that a drag
crisis can occur simply as the source power is increased, without any further conditions. With
this method for the excitation of turbulence, the Loitsyanskii integral diverges for arbitrary
values ofg andG. A physical mechanism is proposed to explain the readjustment of the spectrum
of the turbulent fluctuations at differentg andG. These results have all been obtained
neglecting intermittency. ©1999 American Institute of Physics.@S1063-7761~99!01011-2#
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1. INTRODUCTION

The transition of liquids or plasmas to a turbulent state
of fundamental importance for understanding the physics
a number of processes~including transport phenomena! tak-
ing place in these media. An enormous number of theoret
and experimental papers have been published so far on
ous aspects of turbulence in widely varying situations. T
has led to an understanding of weak turbulence, i.e., the
when the dynamics of the system can be described in
language of weakly interacting linear waves, but the the
of strong turbulence is still far from complete.

The best known example of strong turbulence is the
bulence in flows of incompressible fluids at high Reyno
numbers. Although the main result of hydrodynamic turb
lence theory is the Kolmogorov spectrum, which was deriv
more than fifty years ago and has been repeatedly ver
experimentally,1 attempts to justify this spectrum theore
cally, even relying on such usually efficient methods of th
oretical physics as the renormalization group technique2–4

diagram techniques,5,6 and the functional formulation of the
problem proposed so long ago by Hopf,7 have not yielded
entirely satisfactory results~see the explanations given b
low!. It can be stated that the method of obtaining the sp
8801063-7761/99/89(11)/10/$15.00
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trum of turbulent fluctuations going back to Kolmogorov
still the clearest approach to the problem.

The basis of the ideology proposed by Kolmogorov
the hypothesis that the only dimensional constant in
theory of developed hydrodynamic turbulence in the iner
range is the rate of energy dissipation per unit mass, tha
a quantity with the dimensions of cm2/s3. It remains unclear
why a quantity with this dimensionality should be better th
one with dimensions of cmn/sm, where 3nÞ2m, i.e., what
distinguishes the case 3n52m, wherem andn are real num-
bers.

The Kolmogorov spectrum and the concepts of univ
sality, constant energy flux over the spectrum, and iner
range associated with it are the basis of the modern un
standing of the nature of homogeneous turbulence in inc
pressible fluids. Meanwhile, the Kolmogorov spectrum is n
the only spectrum of turbulent fluctuations that has been
served experimentally in turbulent incompressible fluids. B
sides the Kolmogorov spectrumE(k)}1/k5/3, for example,
the spectrumE(k)}1/k7/3 associated with the helicity flux is
well known.8 It is, therefore, necessary to determine the co
ditions under which the rate of energy dissipation is a dim
sional constant that determines the turbulent fluctuation sp
trum and to examine the question of how, and under w
conditions, it is replaced by a dimensional parameter of d
© 1999 American Institute of Physics
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ferent character. Unfortunately, this problem has not
ceived the required elucidation in any of the above ci
papers devoted to justifying the Kolmogorov spectru
Thus, the question of the conditions for the formation of o
or another spectrum arises, that is, of finding the parame
that determine the spectral composition of the turbulent fl
tuations in one or another range of wave vectors. This pa
is devoted to the problem of determining the parts of
spectrum with universal behavior and the parameters gov
ing their onset. A number of related questions have b
examined briefly before,9 but part of the results of that pape
needed to be made more precise and interpreted physic

Before discussing the specific results, let us empha
specially that the entire analysis presented here neglect
termittency. Recall that intermittency leads to the appeara
of an additional factor of the form (L/r )d, where L is a
characteristic size andd is the dimensional anomaly. Thu
intermittency effects can change the numerical value of
correlator substantially, even for smalld, if L is sufficiently
large. In addition, ifd is small, then the additional facto
associated with intermittency is a function that varies slow
compared to the Kolmogorov part of the correlator. In oth
words, neglecting intermittency is somewhat analogous
the WKB approximation: only the rapidly varying function
taken into account, although the slow part can change s
stantially in magnitude over long intervals.

The possibility of neglecting intermittency is the hypot
esis under which the results obtained below are valid. Th
here we do not touch upon the applicability of the Kolmo
orov theory under intermittency conditions, but study t
need to modify the Kolmogorov theory when the finite co
relation time of the force that drives fluid motion is take
into account.

2. STATEMENT OF THE PROBLEM AND THE DESCRIPTION
OF TURBULENCE IN TERMS OF THE EULER EQUATION

As we are interested only in fluid flows with large Re
nolds numbers, as a first step we consider the Euler equa
(Re51`)

]v

]t
1~v•¹!v52¹p1f~r ,t !, div v50, ~1!

with an external forcef(r ,t) that obeys

^f~r ,t !&50,

^f~r1 ,t1!•f~r2 ,t2!&5 f 0
2KS t12t2

t0
,
r12r2

r 0
D , ~2!

whereK describes the correlation properties of the forcf
that sets the fluid into motion and, by the definition off 0

2,

E KS t

t0
,

r

r 0
Ddr dt5r 0

3t0 .

For the following discussion, it is important that the la
integral converge and be nonzero; that is, the limits impo
on the force that brings the liquid into motion reduce to th
In order to avoid misunderstandings, we emphasize spec
that the equalitŷ f(r ,t)&50 does not imply that this integra
-
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.
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of the functionK goes to zero. Without loss of generality, w
can assume that the forcef is purely solenoidal and include
the potential part in the pressure gradient.

First, we rewrite Eq.~1! in Lagrangian coordinates.12 To
do this, it is necessary to begin by expressing the pressu
terms of the distribution of the velocities in the liquid. Ca
culating the divergence of Eq.~1! subject to the incompress
ibility condition divv50, we have

np52
]2

]xi]xj
~v iv j !, ~3!

here and everywhere, if the contrary is not stated, repe
indices denote summation.

From Eq.~3! we obtain

p~r ,t !52
1

4p E 1

ur2r 8u
]2

]xi8]xj8
~v i8v j8!dr 8, ~4!

wherevi85v(r 8,t).
Using Eqs.~3! and ~4!, we find

]p

]xk
5

1

4p E ~v i82v i !~v j82v j !
]3

]xi8]xj8]xk8

1

ur2r 8u
dr 8.

~5!

We now transform to Lagrangian variables.12 Let a par-
ticle of liquid be at the pointr0 at time t050. ~Note that the
value ofr0 can be regarded simply as a label for the particl!
Then the velocity of the particle with numberr0 at time t,
which we shall denote byw(r0 ,t) below, is simply equal to
the velocity at timet at the pointr (r0 ,t), i.e.,

w~r0 ,t !5v~r ~r0 ,t !,t !. ~6!

Noting that, according to the incompressibility condition

detU]r ~r0 ,t !

]r0
U51, ~7!

i.e., the motion does not change the total number of partic
we rewrite Eq.~1! in the form

d

dt
wk52E Gi jk~r ~r0 ,t !2r ~r08 ,t !!

3~wi82wi !~wj82wj !dr081f~r ,t !, ~8!

with

d

dt
r k~r0 ,t !5wk~r0 ,t !. ~9!

Here the incompressibility condition is simply written as
limitation on the allowable initial conditions:

divr0
w~r0 ,t !50. ~10!

Equations~8! and~9! are the equations of classical co
tinuum mechanics for classical particles, although with
rather exotic interaction. This naturally brings up a few fu
damental questions. First, note that, in the absence o
external force, the Euler equation~1!, whose solutions are
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assumed to have a sufficient number of derivatives~i.e., to
belong to the corresponding class of smoothness!, conserves
the total kinetic energy of the fluid, which coincides with th
kinetic energy of the dynamic system~8! and ~9!. This last
point is extremely nontrivial: the kinetic energy is conserv
in a system of interacting particles. Here the interaction
such that it cannot be stated that the force acting on a par
at any given time is perpendicular to the velocity of th
particle. The question therefore arises of what property of
dynamic system~8! and ~9! distinguishes it from Hamil-
tonian systems, in which only the total energy~and not just
the kinetic energy, specifically! energy is conserved, or from
systems with dissipation~frictional forces!, in which no en-
ergy of any kind is conserved. In order to understand this
is necessary to consider the initial assumptions which le
the Euler equation. First of all, we note that, if Newton
third law is valid in the system of particles but only particl
with equal velocity vectors interact, then it is the total kine
energy which is conserved in such a system. In the deriva
of the Euler equation it was assumed that only adjacent
grangian particles interact, while Newton’s third law~action
equals reaction! is valid and the velocities of the Lagrangia
particles depend smoothly on position. Thus, if we consi
two Lagrangian particlesa and b interacting with one an-
other, then the force of particlea acting on particleb, Fab ,
is related to the forceFba by Fab52Fab ~Newton’s third
law!, and their velocities coincide, i.e.,va5vb , to within
infinitesimally small quantities which vanish for zero di
tance between particlesa andb ~there is only a contact in
teraction!; that is, the work done by particlea on particleb
for an infinitesimal time intervaldt equalsvb•Fabdt, while
the work done by particleb on particlea over the same time
interval, va•Fbadt, is of the same magnitude, but oppos
sign. It is clear from these remarks why the kinetic energy
conserved for a fluid whose motion is described by smo
solutions of the Euler equation. If the necessary smoothn
is lacking, then the infinitesimal differences in the velociti
of the interacting particles cannot be neglected in the ab
discussion. Besides, this can be confirmed in a purely for
way by not turning to intuitive considerations associa
with the sources of the Euler equation: note that, if the in
grand in

E ~v~r ,t !•¹p~r ,t !!dr

is a smooth function of position, then the integral reduces
a surface integral in the case of an incompressible fluid
the Euler equation conserves the kinetic energy of the fl
Therefore, conservation of the kinetic energy in the dynam
system~8! and ~9! is a property of a particular class of it
solutions that corresponds to the solutions of the Euler eq
tion with a sufficiently high class of smoothness. This lat
discussion provide an interpretation for the concept of a n
viscous limit with finite dissipation introduced in Ref. 8
Note that solutions corresponding to a nonviscous limit w
finite dissipation should arise naturally in the dynamic s
tem of Eqs.~8! and~9! if we do not require the existence o
higher order derivatives with respect to the label of the L
grangian particles, the parameterr0 . Thus, obtaining a
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closed, irreversible kinetic equation for the Lagrangian p
ticles of the fluid makes it possible to formalize, in a natu
way, the intuitive concept of turbulent viscosity, which
often used in the theory of turbulence.

Of course, a chain of coupled equations for many p
ticle distribution functions can be written down for this sy
tem of Eqs.~8! and~9!. Unfortunately, because of the stron
and unusual interaction between the particles, it is imposs
to truncate the resulting infinite chain of equations correc
In the meantime, there is a way of proceeding to an und
standing of the dynamics of this system. It is, indeed, und
standable that finding simultaneous distribution functions
the velocity and pressure gradient would be of great inte
for hydrodynamics. However, in the language of the d
namic system of Eqs.~8! and~9!, the pressure gradient at an
point is proportional to the acceleration of the Lagrang
fluid particle located at that point. Given this, we can use
method similar to that in Ref. 14: any description of th
system dynamics ultimately implies a description of typic
single particle trajectories comprising the dynamic system
particles. Here the use of distribution functions raises
question of what variables these functions should depend
in order for a closed description of the dynamics to be atta
able in their language. In the case of gases, it is well kno
that we can limit ourselves to considering distribution fun
tions that depend only on positions and momenta~the Bolt-
zmann equation!, while generalized distribution function
that also depend on higher derivatives must be considere
the case of media with more complicated dynam
properties.14

3. KINETIC EQUATIONS FOR DESCRIBING TURBULENCE

In order to study the spectral properties of the probl
stated by Eqs.~1! and~2!, we shall use a kinetic equation fo
the Lagrangian particles of an incompressible fluid13 in the
limit Re→1` ~see explanations below!:

S ]

]t
1L̂11L̂2DF2~ t,1,2!5P~ t,1,2!1P~ t,2,1!. ~11!

HereF2(t,1,2)5F2(t,r1 ,v1 ,a1 ,r2 ,v2 ,a2) is the generalized
~i.e., dependent on the accelerations resulting from the in
action of the Lagrangian particles, as well as on their velo
ties! two-particle distribution function,

L̂ i5vi

]

]r i
1~ai1f~r i ,t !!

]

]vi
, i 51,2,

P~ t,1,2!5E
0

1`

R̂~ t,t2t!S E E Q̂~1,3!Q̂~2,4!F2~ t

2t,1,3!F2~ t,2,4!d3d4Ddt, ~12!
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Q̂~1,2!52~a2,l2a1,l !~v2,m2v1,m!

3
]3

]x1,l ,]x1,m ,]x1,p

1

ur12r2u
]

]a1,p

2~v2,m2v1,m!~v2,l2v1,l !~v2,n2v1,n!

3
]4

]x1,l ,]x1,m ,]x1,n ,]x1,p

1

ur12r2u
]

]a1,p
,

where the repeated subscripts in the last formula imply s
mation andv2,l , a2,l , andv1,l , a1,l are thel th components of
the vectorsv2 , a2 , and v1 , a1 , respectively. The operato
R̂(t,t2t) is defined as

R̂~ t,t2t!5Û21~ t !Û~ t2t!, ~13!

where the operatorÛ(t) obeys the differential equation

dÛ~ t !

dt
5Û~ t !L̂, Û~0!51, ~14!

and the operatorÛ21(t) obeys the following equation which
follows from Eq.~14!,

dÛ21~ t !

dt
52L̂Û21~ t !, Û21~0!51.

The operatorsÛ(t) andÛ21(t) can be represented as tim
ordered exponentials, which, for a time-independent forcf,
reduce to the usual exponentials, in which case the oper
R̂ is easily calculated. In the general case, the operatorR̂ can
be calculated only for special cases, but this is of no sign
cance for the following discussion, since the scaling prop
ties of R̂, which are of importance there, follow from Eq
~13! and ~14!.

Let us clarify the significance of introducing distributio
functions that contain the accelerations as additional a
ments. Usually, in constructing kinetic equations, one beg
with the distribution functions and tries to describe proces
associated with the interparticle interaction. A proposal14 has
been made that kinetic equations be obtained by solving
inverse problem: assuming that the distribution of forces
space is given~in the case of a liquid, the pressure gradien!,
calculate many-particle distribution functions that are con
tent with the given distribution of force vectors. In this wa
distribution functions appear which depend on the accel
tions. Since no restrictions have been imposed on the in
distribution of forces in space, except those which follo
from Newton’s laws, this approach permits a correct desc
tion of fluctuations in the framework of the kineti
equation.15 Furthermore, any generalized distribution fun
tion also contains information of the sort which is contain
only in the entire infinite set of standard distribution fun
tions ~for example, any generalized distribution function c
be used to calculatêa2n& for arbitraryn!. In connection with
this last point, it is clear why, in a number of problems whe
the standard BBGKY chain cannot be truncated, it is p
sible to obtain a closed equation for the generalized tw
-
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particle distribution function.13 A kinetic equation of this
form has been used successfully for solving a number
problems in plasma physics.16

If the functionF2(t,1,2) is a solution of Eq.~11!, then
the function

F2
(D,l)~ t,1,2!5l218D26F2~l11Dt,lr1 ,l2Dv1 ,l2122Da1 ,

3lr2 ,l2Dv2 ,l2122Da2!, ~15!

is also a solution of Eq.~11!, but with another external force

f(D,l)~r ,t !5l2D11f~lr ,l11Dt !, ~16!

wherel.0 andD are arbitrary numbers. This is easily co
firmed by substituting Eqs.~15! and ~16! in Eq. ~11!.

A number of expressions from this section were given
Ref. 9 with some errors that did not affect the results of t
paper.

Here we note a fundamental feature of the kinetic eq
tion formalism in the theory of turbulence. The kinetic equ
tion formalism makes it possible to describe turbulence
terms of an evolution problem, i.e., proceeding from ar
trarily specified initial conditions it is possible to follow th
time evolution of the solution. If the initial conditions ar
forgotten in the course of events, then the system approa
a stationary solution. Here the remarkable thing is the po
bility of finding a stationary solution by proceeding from th
evolution problem. There is no need to invert a linear
nonlinear operator, i.e., the possibility of studying turbulen
in the framework of an evolution problem allows us to avo
in a natural way, the problem of zero modes which alwa
shows up during the inversion of operators. The complex
of the zero mode problem can be traced, for example
Kraichnan’s model for passive scalar diffusion.10 Although a
closed linear equation for the four point correlator can
obtained in this model, the nonevolutionary character of
resulting boundary value problem means that the oper
must be inverted, i.e., it leads to a zero mode problem, wh
is one of the central problems10 in the diffusion of passive
scalars. The zero mode problem in descriptions of turbule
in incompressible fluids has been examined elsewher11

Note that the zero mode problem is considerably more co
plicated for passive scalars than for hydrodynamic tur
lence. This follows, as well, from the fact that passive scal
are described by linear inhomogeneous partial differen
equation, while hydrodynamic turbulence is associated w
an intrinsically nonlinear problem. This difference is fund
mental: in fact, the solution of an inhomogeneous line
equation transforms to a solution of the same equation if
arbitrary solution of the corresponding homogeneous eq
tion is added to it, but in nonlinear problems there is
analog of this property of linear equations. Another fund
mental feature of the passive scalar problem, which make
more complicated, in a certain sense, than the hydrodyna
turbulence problem is that, in order to study steady-state
fusion ~i.e., to describe diffusion by time independent corr
lation functions! it is necessary to introduce two types
random variables–the source of the passive scalar and
velocity field.10
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4. LARGE-SCALE STRUCTURE OF A TURBULENT FLOW
AND THE LOITSYANSKII INTEGRAL

In order to study the large-scale structure of a flow,
choose the numberD so that in the limitl→1` the func-
tion F2

(D,l)(t,1,2) approaches a finite limit. This requires th
the correlator of the force~16! have a finite limit asl→
1`, i.e., in connection with the equality

lim
l→1`

^f(D,l)
•~r1 ,t1!•f(D,l)~r2 ,t2!&

5 f 0
2r 0

3t0d~r12r2!d~ t12t2! lim
l→1`

l3D22, ~17!

we must setD5D`52/3. We note that, precisely because
our examination of the limitl→1`, in the right hand side
of Eq. ~17! the correlatorK for the external force can b
replaced by a product ofd functions. Here it is significan
that the resultingD`52/3.21.

We therefore conclude that the function liml→1`F2
(2/3,l)

is homogeneous~to prove this it is sufficient to note tha
according to the definition of the limit, liml→1`F2

(2/3,l)

5 liml→1`F2
(2/3,ll8) , wherel8 is an arbitrary positive num

ber! and that the relation

^v~r ,t !•v~0,t !&5C1S f 0
2r 0

3t0

r 2 D 2/3

for r @maxS r 0 ,S f 0t0
2

r 0
D 2/5

r 0D ~18!

holds, whereC1 is a universal constant. In this stage of t
analysis, we cannot explain the domain of applicability
this correlator given by the inequality in Eq.~18!. Later we
shall examine the domain of applicability of Eq.~18!, but for
now we can confirm that the correlator~18! actually falls off
as 1/r 4/3 at large distances. In fact, writing the left hand si
of Eq. ~18! in the form of an integral of the function
liml→1`F2

(2/3,l) and using the homogeneity of this functio
it is possible to establish that the correlator has a power
dependence onr and to determine the power. Note that
power law behavior on the right hand side of Eq.~18! fol-
lows from the homogeneity of the function liml→1`F2

(2/3,l)

and the power to whichr is raised on the right of Eq.~18! is
uniquely determined by the numberD`52/3. Here, of
course, the functional dependence in Eq.~18! is consistent
with the dimensionality of the parameter in Eq.~17!. We
emphasize specially that we have not postulated, but pro
the power law character of the right hand side of Eq.~18!.
Equation ~18! describes the creation of large vortices~in-
verse cascade! and of the long wave length correlations a
sociated with them. The correlator~18! leads to a spectrum
E(k)}k1/3 in the long wavelength region, as confirme
experimentally.17

The correlator~18! shows up in the so-called Loitsyan
skii integral12

L52
1

4p E r 2^v~r ,t !•v~0,t !&dr .

According to Eq.~18!, the Loitsyanskii integral diverges
i.e.,L5`. Thus, a correct description of the inverse casc
e

t

f

r

w

n,

e

for the method of exciting turbulence being studied he
leads to a divergent Loitsyanskii integral. It is curious th
prior to this, the convergence of the Loitsyanskii integral h
been studied only for isotropic turbulent motion with an e
ponentially rapid decrease in the correlator~18! at large dis-
tances at the initial time, i.e., assuming that it is possible
create isotropic turbulence with negligible long waveleng
correlations. Under this assumption it is possible to sh
that even for subsequent free evolution, the Loitsyanskii
tegral remains finite.12 Equation ~18! shows that a similar
assumption that the role of large scale vortices~the inverse
cascade! is negligible is not always satisfied for isotrop
turbulence.

Recall that the Loitsyanskii integral is related to th
square of the angular momentum of a turbulent fluid, i.e.
a certain sense it characterizes the appearance of sponta
rotation of the entire fluid as a whole. It is easy to verify th
the square of the total angular momentumM of the fluid
contained within a large volumeV ~isolated within an un-
bounded fluid! is M254pr2LV, wherer is the fluid den-
sity. The fact thatM2}V20/9 confirms that long-wavelength
correlations are important in the dynamics of a turbule
fluid.

5. UNIVERSAL PROPERTIES OF SMALL-SCALE FLOW
STRUCTURE

It turns out that the small-scale structure of the flow
also universal. In fact, an examination of the small-sc
structure of the flow of Eqs.~1! and~2! reduces to choosing
D5D0521/2 in Eq.~16!, which ensures the existence of
finite homogeneous function liml→10F2

(21/2,l) . This implies
that

^~v~r ,t !2v~0,t !!2&5C2f 0r for r !min~r 0 , f 0t0
2!, ~19!

whereC2 is a universal constant. In the following, we sha
explain the physical meaning of the inequality that det
mines the domain of applicability of the correlator~19!.

A numerical study has been made of turbulent flo
driven by a constant force applied to the fluid.18 It was found
that in certain directions~in the simulations the externa
force was chosen to have a spatial period and not depen
time! a spectrumE(k)}1/k2 is formed, rather than the Kol
mogorov spectrumE(k)}1/k5/3. This is in accord with Eq.
~19! and, we believe, validates the ideas developed here

To study the flow at scales fromr 0 to f 0t0
2, we shall

discuss two limiting cases,g5 f 0t0
2/r 0!1 and g5 f 0t0

2/r 0

@1.

5.1. The condition for formation of a Kolmogorov spectrum:
g5f 0t0

2/r 0!1

Let g!1. We shall examineF2 for ur12r2u!r 0 . In this
range of distances, the force correlator~2! can be set equal to

^f~r1 ,t1!•f~r2 ,t2!&5 f 0
2KS t12t2

t0
,0D . ~20!

We emphasize specially that equation~20! for the correlator
does not allow us to write down the form of the spectru
from dimensionality arguments alone. In fact, the dime
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sional parametersf 0 andt0 can be used to construct a com
bination with the dimensions of length,f 0t0

2, and, therefore,
dimensional arguments only determine the spectrum
within a factor off( f 0t0

2k), wheref is an arbitrary func-
tion.

Let us apply the considerations that led to Eq.~18! to the
correlator~20!. Note that using Eq.~20! guarantees the dis
cussion for distancesur12r2u!r 0 , while the limit l→1`
ensures it forur12r2u@gr 0 . Thus, we find that forgr 0

!ur12r2u!r 0 , the flow can be described by a uniform fun
tion liml→1`F2

(21/3,l) and the equation

^~v~r ,t !2v~0,t !!2&5C3~ f 0
2t0r !2/3 for gr 0!r !r 0 ~21!

holds, i.e., the Kolmogorov-Obukhov law is satisfied with
this scaling interval. The question of the limit of zero visco
ity, but finite dissipation, in the Euler equation and the d
velopment of a Kolmogorov spectrum in this case has b
discussed elsewhere.8

Therefore, for the method of exciting turbulence d
cussed here, a Kolmogorov spectrum develops only w
certain conditions are imposed on the external force
drives the fluid into motion,g!1. Therefore, only in this
case does a constant with the dimensions of power dissip
per unit mass actually end up being the parameter wh
determines the behavior of the fluid within a certain spec
interval. Later we shall discuss the physical processes ta
place at the boundaries of that interval in detail, but for n
we proceed to examine the caseg@1.

5.2. The structure of the intermediate scaling region for
g@1

Let g@1. Note that the characteristic time correspond
to fluctuations with a characteristic scale ofr 0 and the cor-
responding@to these fluctuations, according to Eq.~19!#
characteristic velocity (f 0r 0)1/2, is estimated to beg21/2t0 .
Let r (t0) ~we shall estimate it below! be the characteristic
fluctuation scale length, to which the characteristic timet0

corresponds. We shall considerF2 for r 0!ur12r2u!r (t0).
For this scaling region, the force correlator~2! can be rewrit-
ten as

^f~r1 ,t1!•f~r2 ,t2!&5 f 0
2KS 0,

r12r2

r 0
D , ~22!

since the characteristic velocity of the Lagrangian fluid p
ticles @Eq. ~19!# is at least (f 0r 0)1/2 and the distance move
by a Lagrangian particle over a time on the order oft0 is of
orderg1/2r 0 .

Arguments similar to those of the previous section sh
that forr 0!ur12r2u!r (t0), a turbulent flow of the fluid can
be described by the homogeneous function liml→1`F2

(1/4,l) ,
with

^v~r ,t !•v~0,t !&5C4S f 0
2r 0

3

r D 1/2

for r 0!r !r ~t0!5g2/5r 0 .

~23!

The following considerations were used to estimate the t
r (t0) in Eq. ~23!. Note that, according to Eq.~23!, the char-
to
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acteristic velocity corresponding to fluctuations with a sc
length of orderr (t0) are roughly@ f 0

2r 0
3/r (t0)#1/4. Thus, the

size r (t0) can be found from the equation

r ~t0!;t0~ f 0
2r 0

3/r ~t0!!1/4,

which yieldsr (t0)5g2/5r 0 .
Note that the inequality in Eq.~18! follows from the

inequalities defining the region of applicability of the cor
elators~19! and ~23! for g!1 andg@1.

In the case examined in this section, there is no segm
of the spectrum with a Kolmogorov power law dependen
of the formE(k)}1/k5/3. Note, also, the slow decrease of th
velocity correlator,}1/Ar for r 0!r !g2/5r 0 , which is re-
placed by a rapid decrease of universal character,}1/r 4/3 for
g2/5r 0!r @see Eq.~18!#.

6. THE ROLE OF FINITE VISCOSITY

We now take account of a finite viscosityn in the prob-
lem, i.e., the existence of yet another characteristic sc
length, the viscous length. We shall show that the ene
dissipated per unit time per unit mass~specific power dissi-
patione), is determined by the new dimensionless parame

G5g4/3Re, ~24!

where Re5r0(f0
2r0t0)

1/3/n for g!1 and Re5r0(f0r0)
1/2/n for

g@1. We shall examine three cases that can occur in tur
lent flows (Re@1) in detail.

It makes sense to examine the character of the diss
tion for different values ofG in some detail, by isolating
different special cases, since an examination of the natur
the dissipation yields some important qualitative results c
cerning the structure of turbulent flows.

6.1. The physics of turbulent dissipation for g!1

For g!1 andG!1, according to Eqs.~19! and~24! the
viscous length exceedsf 0t0

2, i.e., the Kolmogorov spectrum
is immediately adjacent to the viscous range. The spec
power dissipatione in this case can be estimated as the v
cous loss over scale lengths on the order of the visc
length,

e; f 0
2t0 , ~25!

that is, it is independent of the viscosity@cf. Eq. ~21!#. This
result is entirely consistent with the, by now, classical sta
ment that viscous losses in a turbulent fluid are independ
of the magnitude of the viscosity; however, as we shall n
verify, this situation is only valid as long as the Kolmogoro
spectrum is immediately adjacent to the viscous range.

Let g!1, as before, butG@1. Then, Eqs.~19! and~24!
imply that the sizef 0t0

2 substantially exceeds the viscou
length, i.e., the Kolmogorov spectrum is separated from
viscous range by the spectrum~19!. The specific dissipation
power is then roughly

e;n1/3f 0
4/3, ~26!

i.e., approximately Re
*
1/3 times smaller than the energy flu

along the Kolmogorov segment of the spectrum, where R*
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is the Reynolds number for the short wavelength end of
Kolmogorov spectrum. Thus, the segment~19! of the spec-
trum shields the viscous range from the energy flux pro
gating along the Kolmogorov segment of the spectrum
turns on the viscous dissipation.

We now provide a physical interpretation of this la
result. The intuitive qualitative discussions given belo
make it possible to understand its physical content. In or
to understand the physical significance of Eq.~26!, we note
that the external forcef(r ,t) interacts most efficiently with
fluctuations of the fluid which either have a resonant wa
vector k;1/r 0 or a resonant frequencyv;1/t0 (k
;1/f 0t0

2). According to Eq.~25!, fluctuations in spatial reso
nance with the external force are efficiently excited~i.e., are
in phase with the external force and the latter pumps th
efficiently!. Energy moves along the Kolmogorov segme
of the spectrum to modes which are in temporal resona
with the external force and which vibrate in counterphase
the external force, i.e., the external force quenches osc
tions with k;1/f 0t0

2 and gathers energy from these mod
The resulting collective energy sink is an extremely imp
tant physical phenomenon. In other words, we can say
the external force acts simultaneously as a source of en
and as a sink for the energy. Thus, wheng!1 and G@1
dissipation is shut off in the fluid and this should be of so
significance in theories of flapping flight and the drag cris

From a practical standpoint, there is some importanc
the fact that the reduction in drag~drag crisis! associated
with the turnoff of viscous dissipation in accordance w
Eq. ~26! takes place even while the source power is incre
ing, i.e., without any additional requirements for a change
the structure of the boundary.

Given the significance of the scaling~19! in turning off
dissipation in a turbulent fluid, we now clarify which integr
of motion this scaling can be associated with, i.e., indic
the quantity which is conserved for an ideal fluid, who
density has a unit of measurement the same as that forf 0 .
This quantity is the helicity,G5*v•curlv dr . Thus, the for-
mation of Eq.~19! and the turn off of dissipation can b
associated with fluctuations in the helicity near the visco
range~the so-calledI -invariant19!. To avoid misunderstand
ing, we note specially that, besides theE(k)}1/k2 spectrum
associated with the helicity near the viscous range exam
here, a helical spectrum of the formE(k)}1/k7/3 associated
with a constant helicity flux is often examined in the liter
ture.

The Kolmogorov theorem in the caseg!1 andG@1 for
a two point ~velocity, velocity!–velocity correlator is dis-
cused in the Appendix.

6.2. Turbulent flows with g@1

When g@1, G always obeys the inequalityG@1. It is
easy to verify that in this case the specific dissipation po
is given by Eq.~26!, i.e., the dissipative losses depend on
viscosity.

The physics of a turbulent flow changes fundamenta
in this limiting case. Note that forg@1, all the inertial range
is filled by a helical spectrum and outside the inertial ran
e
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the velocity-velocity correlator begins to fall off slowly. It i
well known, however, that helicity formation in a turbule
flow can lead to spontaneous generation of large sc
structures.8 Thus, it should be expected that forg@1 the
spontaneous generation of structures begins in a turbu
flow. The slow decrease in the correlator~23! for r 0!r
!g2/5r 0 is convincing confirmation of this fundamentall
important statement. It is important to note that the gene
tion of large scale structures in turbulent flows does not
gin for g!1 andG@1, when a helical segment shows up
the spectrum of the turbulent fluctuations, but when the
lical spectrumE(k)}1/k2 fills the whole inertial range, i.e.
has completely expelled the Kolmogorov spectrum.

This picture, of course, is consistent with existing ide
regarding the role of spatial and temporal resonances in
ergy transfer between turbulent fluctuations with differe
scales and an external source~force! that makes the fluid
move. From this standpoint, the energy is delivered to fl
tuations with a characteristic scale length of orderr 0 corre-
sponding to the maximum velocities (f 0r 0)1/2 ~spatial reso-
nance!. The energy delivered to these modes is transferre
long wavelength fluctuations, i.e., it goes into generat
large scale structures~inverse cascade!, thereby reaching tur-
bulent fluctuations with a characteristic scale length
g2/5r 0 , which are in a temporal resonance with the exter
force ~have a characteristic time scale of ordert0!. By oscil-
lating in counterphase, fluctuations with a size on the or
of g2/5r 0 can efficiently deliver energy to the external sourc
that is, the force which brings the liquid into motion effe
tively damps their oscillations.

It is interesting to note that the spatial scale length of
resulting structures can substantially~by a factorg2/5! exceed
the characteristic scale length for the force that brings
fluid into motion. This may have interesting geophysical a
plications, since it provides a natural mechanism for the f
mation of hydrodynamic structures with a horizontal sc
length greatly exceeding the thickness of the atmosph
~depth of the oceans!, while the spatial scale length of th
force that brings the air into motion may not exceed t
thickness of the atmosphere~depth of the oceans!.

7. HIERARCHY OF STATES OF A TURBULENT FLOW

In order to exhibit the physical content of these resu
let us consider a simple example. We shall consider a liq
set into motion by a force with amplitudef 0 , a spatial scale
lengthr 0 , and a characteristic time scalet0 . Let us see how
the structure of the flow changes with varyingf 0 when the
spatial and temporal scales of the forces are fixed. If
amplitudef 0 of the force is very small, then the fluid flow i
laminar and this case is not the subject of this paper. W
the amplitude of the force is raised to some level that is lo
given the low viscosity of the moving fluid, a transition t
turbulence takes place. If the viscosity is low enough, the
transition takes place forg!1 andG!1; that is, in this case
the Kolmogorov spectrum is adjacent to the viscous ra
and the dissipated energy is independent of the viscosity
equals the energy flux over the Kolmogorov spectru
E(k)}1/k5/3. As the force amplitudef 0 is increased further,
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the picture changes: a transition occurs in the regiong!1
and G@1, i.e., a segment of helical spectrumE(k)}1/k2

grows near the inertial range and this leads to a reductio
the dissipated energy by a factor of Re1/3 compared to the
energy flux over the Kolmogorov segment of the spectru
With further increases inf 0 , the helical part of the spectrum
expands owing to the narrowing of the Kolmogorov regi
within the inertial range. Further increases inf 0 lead to a
regime withg@1, when the entire spectrum in the inerti
range is helical, and in the region outside the inertial ran
large scale structures with scale lengths ofr 0!r !g2/5r 0 be-
gin to be generated.

Therefore, there is an entire hierarchy of turbulent sta
of the fluid with qualitatively different properties and whic
succeed one another as the amplitude of the force driving
fluid motion is raised.

8. OTHER APPROACHES TO PARAMETRIZING
TURBULENCE

Since the results obtained in this paper rely on the
netic equation formalism of the theory of strong turbulen
which itself is quite complicated, a question arises as to
extent to which they can be obtained using the traditio
formalism of strong turbulence theory. It is important to co
sider this question because it also allows us to look at
physics of the processes taking place in a turbulent med
from a new point of view.

First, we note that nontrivial physics of turbulent flu
behavior has arisen from an examination of a force wit
finite correlation time. In other words, we have taken acco
of the fact that turbulent fluctuations can be in both spa
and temporal resonance with harmonics of the external fo
which drives the fluid motion. The resulting turbulence r
gime is determined by the characteristic scales of these
types of resonant fluctuations. Since the two types of re
nant wave vectors divide length space into three regio
exactly three ranges of wave vectors develop, with differ
kinds of turbulent fluctuations. It turns out that each of the
regions corresponds to a distinct dimensional constant w
uniquely determines the turbulent fluctuation spectrum. T
possibility of such a simple description of the spectra is
terly nontrivial, since the nonlinearity of the Euler equati
means that fluctuations on different scales interact sign
cantly with one another and the appearance of universa
mensional parameters that describe the physics on the d
ent scales is quite unexpected.

Let us consider the possibility of obtaining the results
this paper using a chain of equations for the moments. If
start from the very beginning and specify the force correla
by one of the simplified forms, e.g., Eq.~17!, ~20!, or ~22!,
rather than the general expression~2!, then the corresponding
spectra will follow immediately from dimensional conside
ations or a more extended scaling formalism, such as
developed in Ref. 8. An approach of this sort, however, d
not allow matching of the calculated spectrum with an int
val of wave vectors when the external force has the c
relator~2!. An attempt to directly transfer the method used
this paper to a system of equations for the moments enc
in
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ters the following difficulty: correlators of the force–forc
type, ^ f i(r1 ,t) f j (r2 ,t)&, and velocity–force type,
^ f i(r1 ,t)v j (r2 ,t)&, arise naturally in the system of equation
but it is not clear from general considerations whether it
required that this kind of correlator be finite when using t
scaling technique of this paper. From this standpoint,
advantage of the kinetic equation method lies in the fact t
the kinetic equation only contains one random quantity,
external force, while the velocity is simply an argument
the distribution function. In addition, if we assume that t
main correlator to which all the others adjust themselves
the force–force correlator, then all the results of this pa
can also be obtained by the method of moments. The o
advantage of the kinetic equation method compared to
method of moments is the clear interpretation of the z
viscosity limit with finite dissipation permitted by the Eule
equation.

9. CONCLUSION

One of the main results of this paper is a proof that
concepts of the universality of developed turbulence in
compressible fluids arising from the classical work of Ko
mogorov do need substantial refinement. It turns out tha
number of segments of universal character actually appea
the turbulent fluctuation spectrum, but the fact that these
pear, and their relative position and extent in wave vec
space are determined by the parameters of the source
delivers energy to the fluid and drives it into motion. Thu
the three fundamentally different classes of stationary hom
geneous isotropic flows of incompressible fluids examin
here will develop. The classification of turbulent flows esta
lished here for the first time may be of interest in a numb
of geophysical and technological problems.

We emphasize, specially, that here we have not con
ered the radical changes in the Kolmogorov picture of tur
lence which might arise owing to intermittency. This ana
sis has had an entirely different goal: to study the change
the energy structure of a turbulent flow~in the second veloc-
ity correlator! when the finite correlation time of the forc
driving the fluid is taken into account.

An important new result obtained by taking the fini
correlation time of the driving source into account is som
nontrivial physics of the energy flux over the spectrum.
particular, under certain conditions~found above!, the energy
flux flows only over a limited segment of the spectrum whi
lies entirely within the inertial range. In other words, a sit
ation can arise in which the energy flux does not reach
viscous range, but is repelled to a segment of the spect
associated with helicity; then, energy is gained by the ex
nal force at the boundary of the Kolmogorov and helic
spectra~the corresponding harmonics of the liquid oscilla
in counterphase to the external force!. The resulting structure
of the correlators is consistent with the Kolmogorov the
rem. ~See the Appendix.!

~Note added in press.! In connection with the results
involving the long-wavelength part of the spectrum it shou
be mentioned that the question of the rule of the Lo�tsyanski�
integral was treated previously in Ref. 21.
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APPENDIX A

Here we point out some features of the derivation of
Kolmogorov theorem for the caseg!1. The expression
^(f(r1 ,t)•v(r2 ,t))& arises in a proof of the Kolmogoro
theorem for a two-point ~velocity, velocity!-velocity
correlator.20 It transforms to

^~ f~r1 ,t !•v~r2 ,t !!&

5^~ f~r2 ,t !•v~r2 ,t !!&1^~ f~r1 ,t !2f~r2 ,t !•v~r2 ,t !!&

5^~ f~r1 ,t !•v~r1 ,t !!&1^~ f~r1 ,t !•v~r2 ,t !2v~r1 ,t !!&.

~A1!

Since we are only interested in points lying within the ine
tial range, the average in the second term of Eq.~A1! con-
tains an additional small term of the form given by the ra
of ur12r2u to the characteristic scale lengthr 0 for the force.
Thus, the second term in Eq.~A1! can be neglected com
pared to the first, and this immediately leads to the Kolm
orov theorem. Note, however, that this procedure for estim
ing the various terms on the right hand side of Eq.~A1! is
mathematically rigorous only when the averaged function
fixed in sign: when the averaged function changes sign
small absolute magnitude of the correction to it still does
imply that the contribution of this correction to the avera
will be small.

We can now show that the standard argument leadin
the Kolmogorov theorem requires considerable refinemen
a finite source correlation time is taken into account. W
emphasize specially that neglecting the second term c
pared to the first in Eq.~A1! owing to this smallness in the
second term is justified only when the first term is not e
actly equal to zero and does not contain an additional sm
ness compared to the second because of some other
parameter. In the limitg!1, the argument that usually lead
to the Kolmogorov theorem has to be refined, precisely
the following reason: in this case, the smallest paramete
the problem is the correlation timet0 , so it is necessary to
study the dependence of^(f(r1 ,t)•v(r2 ,t))& on t0 in detail.
For this purpose, we write

^~ f~r1 ,t !•v~r2 ,t !!&5 lim
T→1`

1

2T

3E
2T

T

~ f~r1 ,t !•v~r2 ,t !!dt. ~A2!

Let us write the velocityv(r2 ,t) in the sum of two terms,

v~r2 ,t !5v(1)~r2 ,t !1v(2)~r2 ,t !, ~A3!
-

-

e

-

-
t-

s
a
t

to
if
e

-

-
ll-
all

r
of

wherev(1)(r2 ,t) is the contribution to the velocity owing to
harmonics with wave vectorsk!k* , where 1/r 0!k*
!1/f 0t0

2, while v(2)(r2 ,t) is the contribution from all the
remaining harmonics.

Thus, we can rewrite Eq.~A3! in the form

^~ f~r1 ,t !•v~r2 ,t !!&5 lim
T→1`

1

2T E
2T

T

~ f~r1 ,t !•v(1)

3~r2 ,t !!dt1 lim
T→1`

1

2T

3E
2T

T

~ f~r1 ,t !•v(2)~r2 ,t !!dt. ~A4!

Note that uv(1)u@uv(2)u, but the characteristic times assoc
ated with the harmonics which appear inv(1) are substan-
tially longer than the characteristic time scale for the for
t0 , while v(2) contains harmonics with characteristic tim
on the order oft0 . Thus, the inequalityuv(1)u@uv(2)u does
not justify neglecting the second term Eq.~A4! compared to
the first because of the different oscillatory properties of
integrands. Thus, the contribution of the harmonics w
wave vectorsk;1/f 0t0

2 to Eq. ~A4! may be comparable to
the contribution of the long wavelength part.

However, the role of harmonics withk;1/f 0t0
2 differs in

the cases ofG!1 andG@1. The caseG@1, where the har-
monics with k;1/f 0t0

2 lie outside the viscous range, is o
greatest interest. In this case it is to be expected that
ur12r2u@ f 0t0

2, the major contribution to Eq.~A1! is from
long-wavelength harmonics, since at such large distances
short-wavelength fluctuations are not correlated with the
ternal force. Forur12r2u! f 0t0

2, i.e. at distances comparab
to the amplitude of the oscillations of a Lagrangian parti
acted on by the external force, however, we should exp
short wave length fluctuations to make a significant con
bution to Eqs.~A4! and ~A1!. Thus, the standard derivatio
of the Kolmogorov theorem is valid when a finite correlatio
time of the external force withg!1 andG@1 is included,
only if ur12r2u@ f 0t0

2. Thus, the Kolmogorov theorem doe
not prohibit a substantial realignment of the~velocity,
velocity!–velocity correlator forur12r2u! f 0t0

2. According
to Eqs.~19! and ~20!, the second term in Eq.~A4! for ur1

2r2u, f 0t0
2 ~when it is to be expected that the correlatio

between the external force and the small scale compone
the velocity are substantial! can be approximated byf 0

2t0 ,
sincev (2); f 0t0 , which is comparable to the energy fluxe
over the Kolmogorov segment of the spectrum according
Eq. ~25!.

In the caseG!1, the harmonics withk;1/f 0t0
2 fall

within the viscous range, so that these fluctuations are s
pressed by viscous effects. However, ifv (2)! f 0t0 , then the
contribution of the short wavelength harmonics withk
;1/f 0t0

2 to Eq. ~A1! is clearly small. Thus, in this case th
standard proof of the Kolmogorov theorem encounters
difficulty.

Note that^(f(r1 ,t)•v(r2 ,t))& can also be represented
the form of a volume average. It can therefore be verifi
that the external force also interacts significantly with flu
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tuations that are in spatial resonance with it. Thus, reson
harmonics also have a distinct role in the proof of the K
mogorov theorem.
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A technique of simultaneous gamma-ray, x-ray, and electron Mo¨ssbauer spectroscopy is used to
study the magnetic structure of the surface layer with direct comparison to the magnetic
structure inside single crystal samples of hexagonal Ba–M ferrites, in which part of the iron ions
have been replaced by diamagnetic Sc ions~chemical formula BaFe122dScdO19!. It is found
that when the diamagnetic Sc ions are introduced into the crystal lattice of BaFe122dScdO19 at
concentrations~x50.4 and 0.6! far below the level at which the collinear magnetic
structure inside the sample is destroyed, a macroscopic layer of thickness;300 nm develops on
the surface, in which the magnetic moments of the iron ions are oriented noncollinearly
with respect to the moments inside the sample. The deviation^u& of the magnetic moments in
BaFe11.6Sc0.4O19 was 10°62° for x50.4, and when the Sc concentration was raised to
0.6, the anglêu& increased to 17°62°. The noncollinear magnetic structure in the surface layer
in these crystals develops because of further reduction in the energy of the exchange
interactions owing to the presence of a ‘‘defect,’’ such as the surface. For the first time, therefore,
an anisotropic surface layer whose magnetic properties differ from those in the interior of a
sample has been observed experimentally in ferromagnetic crystals, as predicted by Ne´el @L. Néel,
Phys. Radium.15, 225 ~1954!#. © 1999 American Institute of Physics.
@S1063-7761~99!01111-7#
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1. INTRODUCTION

Since the beginning of the 1970’s, studies of the m
netic properties of crystalline surfaces have attracted e
increasing attention of researchers. This is because of
need to understand the effect of ‘‘defects’’ such as surfa
on the magnetic structure and properties of surface la
and the role of surfaces in the formation of the properties
a material. Studies of processes taking place during ph
transitions in the surface layer and of the difference betw
them and phase transitions inside the crystal and the inte
lation between them are also important. At present, th
studies are acquiring an ever greater practical significa
because, for example, the properties of finely dispersed n
sized powders depend substantially on the properties of
crystallite surface. Thus, an understanding of the mechan
for formation, e.g., of the magnetic properties of nanosiz
crystallites, will open the path to creating magnetic inform
tion carriers with ultrahigh recording densities.

The theoretical description of surface anisotropic lay
in ferromagnetic materials was given by Ne´el in 1954.1

However, the idea that the surface affects the properties
material was invoked for interpreting experimental data o
much later. Thus, it has been proposed2 that on thin-film Fe,
Co and Ni surfaces there is a nonmagnetic~magnetically
dead! layer with a thickness of roughly 6 Å.

Finely dispersed powders and thin films have been
tensively used in subsequent research on the propertie
surfaces. This is because of the increase in the specific
face of a crystallite as its volume is reduced, as well as
absence of experimental techniques capable of distinguis
8901063-7761/99/89(11)/9/$15.00
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the signals from a thin surface layer and those from insid
macroscopic crystal. The widespread use of Mo¨ssbauer spec
troscopy in studies of surface properties for the case of
films or finely dispersed powders is explained by the pos
bility of enhancing~or attenuating! the signal from the sur-
face layer by enriching this layer in the isotope57Fe ~or
56Fe!. Thus, the unusual experimental fact3 that the saturation
magnetization of a finely dispersed powder is lower than
a macroscopic crystal of the same material has attracted g
interest on the part of researchers. Mo¨ssbauer studies hav
shown that a change in the magnetic structure of the crys
lites is also the reason for the reduction in the saturat
magnetization of the finely dispersed powder.4 A ‘‘shell’’
model11,12 has been proposed to explain the experimen
data obtained from finely dispersed powders ofa-Fe2O3,

5

g-Fe2O3,
6,7 CrFe2O4,

8 CrO2,
9 NiFe2O4, Y3Fe5O12, and

Dy2BiFe5O12,10 and BaFe12O19.11 According to this model
the magnetic structure of the interior of a crystallite is ana
gous to or, perhaps, completely identical to the structure
macroscopic crystal, while in a thin surface layer~i.e., in the
shell! the magnetic moments are not in collinear alignme
with the moments in the interior.

However, the shell model is by no means used eve
where to explain the experimental data; other approaches
used, as well. Thus, it has been assumed13 that on the surface
of a NiFe2O4 particle there is an angular ordering of the spi
with a set of stable configurations, which transforms to
spin-glass state as the temperature is lowered. A disord
shell has been assumed to exist in CoFe2O4 ~Ref. 14! and
Fe3O4 ~Ref. 15! crystallites. Elsewhere,16 it has been as-
sumed that noncollinear alignment of the spins ing-Fe2O3
© 1999 American Institute of Physics
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particles does not occur only on the surface. It has b
conjectured17 that, in order to overcome the volume aniso
ropy and complete ordering of the magnetic moments al
an external magnetic field, substantially higher fields w
have to be applied than those used to prove the shell mo
On the other hand, data on textured samples ofg-Fe2O3 in
strong magnetic fields18 have been explained by the nonco
linear ordering of the spins and it has also been shown18 that
the incomplete ordering of the magnetic moments canno
explained by a large volume magnetic anisotropy, as w
assumed earlier.17

The use of finely dispersed powders for studying
properties of surfaces has permitted a major step toward
derstanding the importance of ‘‘surface’’ magnetism. But
should be noted that the nonuniform sizes of a ensembl
particles, superparamagnetic effects, the strong depend
on fabrication techniques, etc., complicate the study of
properties of surfaces using finely dispersed powders.
these difficulties are eliminated when macroscopic crys
are used.

The predicted1 surface anisotropy was first observed
1972 by Krinchik,et al.19 in an antiferromagnetic materia
with weak ferromagnetism. They19 proposed that macro
scopic anisotropy of a surface layer can occur in magn
materials where, compared to ferromagnetic materials,
energy of the demagnetizing field is small and there is
magnetic anisotropy in the basal plane, which increses
role of surface anisotropy. It is this situation which made
possible to observe a surface anisotropy for the first time
hematite,19 an antiferromagnetic material with weak ferr
magnetism. Based on the experimental data, it w
proposed19 that, within the confines of this surface anis
tropic layer, which was referred19 to as ‘‘transitional,’’ the
orientation of the magnetic moments varies smoothly fr
the direction along which the moments are oriented ins
the sample to the direction at the surface. Subsequently
anisotropic surface layer was observed in macroscopic c
tals of FeBO3,

20,21 ErFeO3, and TbFeO3,
22 which also have

weak ferromagnetism. It was found experimentally that
thickness of the transition surface layer is;500 nm for
FeBO3.

20,21

Unique possibilities for experimental studies of the pro
erties of the surface of macroscopic crystals are offered
the new technique of simultaneous gamma-ray, x-ray,
electron Mössbauer spectroscopy, which makes it possible
extract information about the state of the surface layer
interior of the crystal simultaneously and to compare
results immediately.23

Simultaneous gamma, x-ray, and electron Mo¨ssbauer
spectroscopy yielded the first direct experimental verificat
of the existence of a transition surface layer with
thickness24 of ;400 nm in macroscopic crystals of Fe3BO6

~which, like hematite, are antiferromagnetic with weak fe
romagnetic!. Layer-by-layer studies employing simultaneo
gamma, x-ray, and electron Mo¨ssbauer spectroscop
showed24 that, as the iron ions move toward the crystal s
face, the angle of deflection of their magnetic moments re
tive to their orientation inside the sample increases smoo
within the transition layer. Simultaneous gamma, x-ray, a
n
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electron Mössbauer spectroscopy studies of the surface
Fe32dGadBO6 crystals have shown that replacement of on
9% of the iron atoms by diamagnetic gallium ions increa
the thickness of the transition layer by an order
magnitude.25

In studies of hexagonal type-M ferrites~BaFe12O19,
SrFe12O19, and PbFe12O19! by simultaneous gamma, x-ray
and electron Mo¨ssbauer spectroscopy, no transition surfa
layer with a magnetic structure different from that of th
bulk crystal was observed.26 An analysis of model Mo¨ss-
bauer spectra showed that if a transition surface layer d
exist in these type-M hexaferrites, then it cannot be m
than a few nm thick. This is of the same order of magnitu
as Néel’s theoretical estimates1 and is substantially smalle
than the experimental error, which is roughly 10 nm.

Therefore, the existence of a macroscopic surface la
~referred to in Refs. 21 and 22 as transitional! in antiferro-
magnetic materials with weak ferromagnetism has been c
vincingly demonstrated. Observing these layers on the
face of hexagonal type-M ferrites will require26 methods that
can analyze surface layers within a few nm.

In this paper we study the magnetic structure of the s
face layer in direct comparison with the structure inside m
roscopic crystals of hexagonal type-M ferrites in which p
of the iron ions have been replaced by diamagnetic ions
stating the problem, we assumed that it was possible to
serve a transitional surface layer experimentally in the s
stituted hexaferrites. Here is why: first, it is known27–29 that
replacing a large fraction of the iron ions in type-M hexafe
rites by diamagnetic In, Sc, Ga, or Al ions gives rise to
noncollinear magnetic structure inside the crystal. Secon
has been shown25 that replacing only 9% of the iron ions in
Fe3BO6 by diamagnetic Ga ions increases the thickness
the transition surface layer by an order of magnitude. Thi
because the inter-sublattice exchange bonds are weake
owing both to the introduced diamagnetic ions and to
presence of a surface. For this reason, it was possibl
assume that if a small part of the iron ions are replaced
diamagnetic ions~when a collinear magnetic structure is r
tained inside the sample!, then a macroscopic surface lay
with noncollinearly ordered magnetic moments can deve
on the surface of macrocrystals of the hexagonal ferri
Preliminary studies30 showed replacing a small number o
the magnetic iron ions in the structure of the hexagonal
rite Sr–M by diamagnetic Al ions~chemical formula
SrFe10.2Al1.8O19! gives rise to a layer with a thickness o
;200mm on the surface where the magnetic moments
noncollinear with those inside the sample.

For these studies we have chosen a hexagonal B
ferrite in which part of the iron ions are replaced by diama
netic Sc ions; the chemical formula is BaFe122dScdO19. It
has been shown27–29 that for substitutionsx,1.2, the col-
linearity of the moments inside the crystal is preserv
while for x.1.2 the collinearity of the moments is disrupte
inside the crystal. Thus, for concentrationsx50.4 and x
50.6 of the diamagnetic ions, i.e., in crystallin
BaFe11.4Sc0.4O19, and BaFe11.4Sc0.6O19, we could be sure
that these amounts of scandium ions were well below
amount required to form a noncollinear structure inside
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sample so we could study the effect of this substitution
the properties of a thin surface layer.

2. MÖSSBAUER STUDIES OF MAGNETIC STRUCTURE IN
CRYSTALS

Mössbauer spectroscopy is widely used in studies of
magnetic structure of materials because the magnetic
mentM of the iron ion is always oriented antiparallel to th
effective magnetic fieldHeff at the nucleus. If the energy o
the electrical interaction in the crystal is negligibly low an
the levels are split owing to the magnetic hyperfine inter
tion, then the intensities of the components of the Zeem
sextupletA1 :A2 :A3 :A4 :A5 :A6 in the Mössbauer spectrum
depend on the angleu between the direction of the wav
vector of the gamma-rays and the orientation of the effec
magnetic fieldHeff at the nucleus of the iron ion~or the
magnetic moment of the iron ion! as follows:

3~11cosu!:4 sinu:~11cosu!:~11cosu!:4 sinu:4~1

1cosu!. ~1!

Therefore, the ratio of the second or fifth (A2,5) lines of
the Zeeman sextuplet corresponding to transitions withDm
50 to the intensity of the first or sixth line (A1,6) in the
Mössbauer spectrum of a single crystal,

A2,5/A1,654 sin2 u/$3~cos2 u11!%, ~2!

can be used to determine the angleu which specifies the
orientation of the magnetic moments with respect to
gamma ray beam:

u5arccosS 4A1,623A2,5

4A1,613A2,5
D 1/2

5arcsinS ~3/2!A2,5/A1,6

11~3/4!A2,5/A1,6
D 1/2

. ~3!

If the angleu varies in the sample, then Eqs.~2! and~3!
yield an averagêu&. Thus, Mössbauer spectroscopy can
used to determine the orientation of the magnetic momen
a crystal to rather high accuracy.

3. SIMULTANEOUS GAMMA, X-RAY, AND ELECTRON
MÖSSBAUER SPECTROSCOPY

The simultaneous gamma, x-ray, and electron Mo¨ss-
bauer spectroscopy technique proposed and described in
23 was used for the measurements. Simultaneous gam
x-ray, and electron Mo¨ssbauer spectroscopy involves simu
taneous detection of the Mo¨ssbauer spectra of radiation wit
different mean free paths in the material, specifica
gamma-rays, characteristic x-rays, and conversion and A
electrons, which carry information on the properties of t
crystal within its bulk, in a surface layer severalmm thick,
and in a surface layer with a thickness of;300 nm, respec-
tively. When a gamma-photon is absorbed an iron atom
ters an excited state, and the reverse transition to the gro
state is accompanied by the emission of a character
x-ray, as well as of conversion and Auger electrons. In
multaneous gamma, x-ray, and electron Mo¨ssbauer spectros
copy, the spectra of these x-rays and electrons are meas
n
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in a backscattering geometry, together with the spectrum
the gamma-rays transmitted through the sample. The en
of an electron leaving the sample is lower when it leaves
atom that lies deeper in the sample. Simple proportio
counters could be used32–34for energy resolution of the elec
trons. Of course, the accuracy of the analysis of the layer
terms of thickness is much poorer than with electric or m
netic separators,35 but in a number of cases this accuracy
entirely sufficient, so that simultaneous gamma, x-ray, a
electron Mössbauer spectroscopy using a proportional de
tor has been employed for layer-by-layer analysis of the s
face layers down to thicknesses of less than 300 nm.36

Therefore, simultaneous gamma, x-ray, and elect
Mössbauer spectroscopy offers unique prospects for stud
the state of the surface layer and interior of macrosco
crystals because of the following. First, the simultaneity
the tests means that the experimental conditions are the s
for the surface layers and interior of the crystal. Seco
simultaneous gamma, x-ray, and electron Mo¨ssbauer spec
troscopy uses a single technique~the Mössbauer effect!, so
the experimental data on the properties of the surface la
and interior of a crystal can be compared directly.

Simultaneous gamma, x-ray, and electron Mo¨ssbauer
spectroscopy was carried out using the automatic system
which a block diagram is shown in Fig. 1. The various r
diations, specifically gamma rays, x rays, and conversion
Auger electrons are detected by the countersG, X, and E,
respectively in a universal three chamber detector. The
nals from the counters were amplified, then discriminat
set the thresholds for distinguishing the corresponding e
gies, and the resulting signals were sent to the correspon
memory buffers for the Mo¨ssbauer spectra.

4. EXPERIMENTAL RESULTS

The single crystal BaFe122dScdO19 hexaferrite samples
for these studies were synthesized by spontaneous crys
zation from a solution in a melt of NaFeO2. The chemical
composition and identification of these crystals as ferri
with a type-M hexagonal structure were verified by x-r
analysis, chemical analysis, and the structure of the Mo¨ss-
bauer spectra. The degree of substitution of the iron ions
also determined from the dependence of the Curie temp
ture on the concentration of Sc. The Curie temperature
determined from the temperature dependences of the e
tive magnetic fields and by taking temperature scans wit
fixed velocity of the gamma-ray source.

For the Mössbauer measurements, slabs in the form
disks with thicknesses of;80mm and diameters;8 mm
were cut from the single crystals. The crystallographicC
axis was oriented perpendicular to the plane of the sla
Special attention was devoted to the surface quality of
crystals. Single crystals with a natural mirror facet were
lected for studying the surface properties and subjec
chemical polishing by etching for one minute in orthopho
phoric acid at a temperature of 90 °C. Slabs of the fer
BaFe12O19 without Sc ion substitution were prepared simu
taneously by this technique for use as control samples.

Simultaneous gamma, x-ray, and electron Mo¨ssbauer
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FIG. 1. A block diagram of the automated system f
simultaneous gamma-ray, x-ray, and electron Mo¨ssbauer
spectroscopy. Items indicated in the figure include:G, X
andE, the detectors for, respectively, gamma rays, ch
acteristic x rays, and secondary electrons, S the gam
ray source, the sample, oven~heater!, B the Doppler
modulator for the source motion, MG the motion gener
tor, LVC a laser velocity calibrator, A amplifiers, D dis
criminators, M memory buffers, HV high voltage sup
plies, NFB negative feedback channel, and CC compu
correction channel.
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spectra were obtained experimentally at temperatures f
300 to 750 K. Figures 2, 3, and 4 show examples of spe
of the ferrites BaFe122dScdO19 with x50.4, 0.6, and 0 taken
at room temperature with detection of gamma rays, as w
as of conversion and Auger electrons. The Mo¨ssbauer spec
tra taken with the x rays carry information from a layer wi
a thickness of a fewmm and are analogous to those tak
with the gamma rays. Thus, we do not show the spe
taken in the x ray region in order to make the figures m
clearly understandable. As can be seen from Figs. 2–4,
spectral lines are well resolved. This makes it possible
determine the parameters of the hyperfine interactions
well as the orientations of the magnetic moments in the c
tal, with high accuracy.

As Figs. 2~a!, 3~a!, and 4~a! show, the Mo¨ssbauer spec
tra of the ferrites with added Sc obtained by detecting
gamma rays are similar to the unsubstituted Ba-M ferr
except that the spectra of BaFe11.6Sc0.4O19 @Fig. 2~a!# and
BaFe11.4Sc0.6O19 @Fig. 3~a!# contain additional well resolved
lines corresponding to the 12k8 sublattice. An analysis of the
gamma resonance spectra@Figs. 2~a!, 3~a!, and 4~a!# showed
that in the Zeeman sextuplets of each nonequivalent posi
the intensities of the second and fifth lines, correspondin
transitions withDm50, are zero. This means that the angleu
equals zero and, therefore, that the magnetic moments o
iron ions occupying sites within the crystal are collinear w
the wave vector of the gamma rays and the crystallograp
C axis. This pattern was observed over the entire temp
ture range studied and is in good agreement with data on
bulk properties of these crystals.37

The sections corresponding to velocities of64 and
65 mm/s in the spectra with detection of conversion a
m
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Auger electrons@Figs. 2~b! and 3~b!# contain low intensity
lines that are clearly absent in the gamma-ray spectra@Figs.
2~a!, 3~a!, and 4~a!#. It should be noted that the intensities
these lines in the spectra of Fig. 2~b! are roughly a factor of
3 higher than the noise, and for the spectra of Fig. 3~b!, the
signal-to-noise ratio is still higher. An analysis of the spec
of the conversion and Auger electrons showed that these
ditional lines are the second and fifth components of
Zeeman sextuplets. This means that the magnetic mom
of the iron ions occupying positions in a surface layer
thickness;200 nm are oriented at some angleu to the di-
rection of the gamma-ray wave vector and, therefore, to
C axis. This pattern is observed up to temperatures
;600 K, above which it is difficult to analyze the spect
because of the poor resolution of the lines. The deviation
the magnetic moments from the wave vector of the gam
rays ^u& calculated using Eq.~3! from the spectra of the
BaFe122dScdO19 was 10°62° for x50.4. When the concen
tration of Sc was raised to 0.6, the angleu increased to 17°
62°, according to an analysis of the spectrum shown in F
3~b!. It should be noted that in these experiments it was
possible to determine the area within which the magne
moments are deflected. The main result of these studies i
experimental fact that the magnetic moments of the iron i
within a surface layer of thickness;200 nm are noncollinea
with the crystallographicC axis, along which the magneti
moments of the iron ions occupying positions in the inter
of the crystal are aligned.

In order to verify the correctness of this analysis of t
Mössbauer spectra, we took spectra on single crystals
were inclined so that theC axis formed an anglea with the
wave vector of the gamma rays. Figures 2~c! and 3~c! show
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FIG. 2. Room temperature Mo¨ssbauer spectra of single
crystal hexaferrite BaFe11.6Sc0.4O19 : a and c with detection
of gamma rays carrying information from the volume of th
crystal, b with detection of secondary electrons from a s
face layer extending from 0 to 200 nm. For a and b t
wave vector of the gamma rays is parallel to the crystal
graphicC axis, while for c the wave vector of the gamm
rays is directed at an angle of 28° to the crystallographicC
axis.
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examples of gamma resonance spectra obtained fora528°
62°. These figures show that when the magnetic mome
deviate from the propagation direction of the gamma ra
lines of the Zeeman sextuplets corresponding to transit
with Dm50 show up in the spectrum. The angle^u& calcu-
lated from the gamma-ray spectra shown in both Figs. 2~c!
and 3~c! using Eq.~3! was 27°62°. Therefore, to within the
limits of error of the apparatus, the angle of inclination of t
crystal,a, and the calculated value ofu were in good agree
ment. Note that a comparison of the experimental spectr
Figs. 2~b! and 3~b! reveals good agreement between the
sitions on the velocity scale of the second and fifth lines
the gamma resonance spectra taken with an inclined cry
@Fig. 2~c! and 3~c!# and the second and fifth lines of th
spectra obtained with detection of conversion and Au
electrons@Figs. 2~b! and 3~b!#.

These results prove convincingly that, when diamagn
Sc ions are introduced into Ba-M crystals, a macrosco
surface layer with a thickness of;200 nm develops, within
which the magnetic moments of the iron ions deviate fr
the direction of the crystallographicC axis and from the
direction of the spin moments of the iron ions which occu
sites in the interior of the crystal.
ts
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It might be assumed that the observed deviation of
magnetic moments is caused by ‘‘etching’’ of magnetic io
from the surface layer during chemical polishing of the cry
tals that further reduces the exchange interaction energ
this layer. In order to test this hypothesis on single crystals
BaFe12O19 prepared simultaneously with th
BaFe122dScdO19 by the same chemical polishing techniqu
we took the Mo¨ssbauer spectra shown in Fig. 4. As can
seen in Fig. 4, when the crystallographicC axis is oriented
parallel to the wave vector of the gamma rays, the sec
and fifth lines of the Zeeman sextuplets are absent in
spectra in which either electrons@Fig. 4~b!# or gamma rays
@Fig. 4~a!# were detected. As a comparison, Fig. 4~c! also
shows the Mo¨ssbauer spectrum obtained with detection
gamma radiation on the same single crystal slab
BaFe12O19 inclined so that itsC axis was oriented at an angl
of a528°62° to the wave vector of the gamma rays. Figu
4~c! shows that the deviation in the direction of the magne
moments from the propagation direction of the gamma r
has caused the lines from the Zeeman sextuplet corresp
ing to transitions withDm50 to appear. Equation~3! gives
u530°62°, in good agreement with the anglea set in the
experiment. Thus, these experiments show convincingly
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FIG. 3. Room temperature Mo¨ssbauer spectra of single
crystal hexaferrite BaFe11.6Sc0.6O19 : a and c with detection
of gamma rays carrying information from the volume of th
crystal, b with detection of secondary electrons from a s
face layer extending from 0 to 200 nm. For a and c t
wave vector of the gamma rays is parallel to the crystal
graphicC axis, while for b the wave vector of the gamm
rays is directed at an angle of 28° to the crystallographicC
axis.
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our technique for preparing the sample surfaces does
cause any changes in the magnetic structure of the sur
layer. This experiment also is an additional confirmation
the results of Ref. 26, where it was shown that, to within
experimental error of roughly 10 nm, there is no surfa
layer on BaFe12O19 crystals with a magnetic structure diffe
ent from that which exists in the interior of the crystal.

Let us consider the reasons for the deviation in the
entation of the magnetic moments in the surface layer fr
their direction in the interior of the crystal. The main orie
tational influence on the direction of the magnetic mome
of individual sublattices37 is exerted by exchange intera
tions in the hexagonal block R between Fe(2b) –O–Fe(4f 2)
and Fe(4f 2) –O–Fe(12k), which have fairly large bond
angles~;140° and 130°, respectively!. The corresponding
Fe–O distances are approximately 1.8 and 1.95 Å. The
teractions correspond to the highest values of the excha
integrals. Since the Fe(2b) –O–Fe(4f 2) –O–Fe(12k) inter-
action is somewhat stronger the chain consists of two
change bonds, the spins of the Fe(2b) and Fe(12k) ions are
oriented antiparallel to the spin of the Fe(4f 2) ion, despite
the strong opposing interaction between the Fe(2b) and
Fe(12k) ions, for which the interaction angle is;125°, and
ot
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f
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e
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ge
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the Fe–O distances are 2.3 and 1.87 Å, respectively. In
spinel block, the interaction takes place in the usual man
so that the mutual orientation of the magnetic moments is
shown in Table I. Iron ions in the 2b-position play a specia
role in the formation of such an axial structure, as well as
the magnetocrystalline anisotropy. This position has a str
intracrystalline field with a trigonal symmetry where the ax
of symmetry coincides with the crystal axis. The importan
of the contribution to the magnetic anisotropy of the ir
ions occupying 12k positions in the low symmetry octahe
dron ~see Table I! has been noted previously.38

Neutron diffraction and Mo¨ssbauer studies of type-M
hexagonal ferrites have shown27–29 that when iron ions in
these ferrites are replaced by diamagnetic Sc ions, the
substantial change in the exchange interaction, even in c
pounds with a relatively small number of Sc ions. When t
amount of Sc ions,x.1.2 a noncollinear magnetic structur
appears.28 In the case of the Sc-substituted ferrite withx
51.8, the magnetic moments of the blocks form a coni
block helicoid, within each block of which the magnetic m
ments of the iron ions are collinear.28

The resonant absorption probabilities~Mössbauer effect!
listed in Table I were calculated from the area under the li
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FIG. 4. Room temperature Mo¨ssbauer spectra of single
crystal hexaferrite BaFe12O19 : a and c with detection of
gamma rays carrying information from the volume of th
crystal, b with detection of secondary electrons from a s
face layer extending from 0 to 200 nm. For a and b t
wave vector of the gamma rays is parallel to the crystal
graphicC axis, while for c the wave vector of the gamm
rays is directed at an angle of 28° to the crystallographicC
axis.
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in the experimental Mo¨ssbauer spectra. Table I implies tha
to within the experimental error, the resonant absorpt
probabilities for BaFe12O19 are in good agreement with th
n
number of ions in the corresponding sublattices of the u
cell of the crystal. The hyperfine interaction parameters
tained from the experimental Mo¨ssbauer spectra o
e of the
TABLE I. Distribution of Fe31 ions over a unit cell, the surroundings and orientation of their spins in a type-M hexagonal ferrite, and the magnitud
Mössbauer effect~area under the corresponding spectrum lines! for the hexaferrites BaFe12O19 , BaSc0.4Fe11.6O19 , and BaSc0.6Fe11.4O19 at room temperature.

Sub-
lattices

Distribution of Fe31 ions over
the unit cell,

surroundings, and spin
orientations

Mössbauer effect

BaFe12O19 BaSc0.4Fe11.6O19 BaSc0.6Fe11.4O19

Number
of

ions
Surroun-

dings
Direction
of spins

Area, %
~Normalized

to 24!

Area, %
~Normalized

to 23.2!

Area, %
~Normalized

to 22.8!

12k 12 octa up 12.460.2 9.260.2 7.360.3
12k8 - 0.760.2 4.460.4
4f 1 4 tetra down 4.960.4 4.160.3 5.460.4
4f 2 4 octa down 3.960.2 5.860.4 3.660.4
2a 2 octa up 1.460.6 2.260.4 1.160.5
2b 2 tri-

gonal
bipyra-

mid

up 1.460.2 1.160.3 0.960.2
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TABLE II. Effective magnetic fieldsHeff , isomeric shiftsd, and quadrupole splittingsDE for BaScxFe122xO19 at room temperature~the isomeric shiftd is
taken relative toa-Fe!.

Sublattices Heff , kOe d, mm/s DE, mm/s

x50 @g# @e# @g# @e# @g# @e#

12k 41661 42261 0.3460.01 0.3560.01 0.4260.01 0.4260.02
4f 1 49361 49561 0.2760.01 0.2960.02 0.1960.02 0.0960.04
4f 2 52063 52361 0.3860.01 0.3560.02 0.2760.01 0.2060.04
2a 50863 50863 0.3360.01 0.3160.02 0.1660.02 0.1160.04
2b 40365 40165 0.3060.02 0.2560.10 2.0760.04 1.8460.20

x50.4 @g# @e# @g# @e# @g# @e#
12k 41661 42261 0.3660.01 0.3560.01 0.4260.02 0.4360.02
12k8 32461 32961 0.3760.01 0.3560.02 0.4260.02 0.4160.04
4f 1 49561 48861 0.2960.01 0.3060.01 0.2560.02 0.1660.03
4f 2 51961 51961 0.4660.01 0.3560.01 0.3260.02 0.2860.02
2a 51363 51461 0.3160.02 0.3060.03 0.1060.04 0.1860.06
2b 40265 - 0.4160.05 - 2.0560.10 -

x50.6 @g# @e# @g# @e# @g# @e#
12k 41361 41461 0.3760.01 0.3860.01 0.4160.02 0.3960.03
12k8 32561 32762 0.3860.01 0.3560.03 0.4160.03 0.3660.06
4f 1 48661 48661 0.3160.01 0.3060.02 0.2460.02 0.2460.04
4f 2 51261 51461 0.4360.01 0.3360.02 0.3260.02 0.4160.04
2a 50562 - 0.3360.01 - 0.1260.02 -
2b 40663 - 0.4360.02 - 2.0360.05 -
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BaFe122dScdO19 for x50, 0.4, and 0.6 are shown in Table I
The values listed in Table II are in good agreement w
published data.37,39,40A comparison of the hyperfine interac
tion parameters for BaFe12O19 and BaFe11.4Sc0.6O19 shows
that the variation in these parameters for such an appare
negligible replacement of iron ions by Sc ions asx50.6 is
substantial, which is indicative of a selective positioning
the Sc ions.

The experimental spectra and the tables show that
behavior of the Sc ions gives rise to a 12k8 sublattice and a
drop in the intensities of the lines corresponding to iron io
in 2b and 12k positions. The formation of a 12k8 sublattice
can be explained by the fact that Sc ions occupy 2b posi-
tions. Iron ions at the 12k sites have six exchange intera
tions: three with iron ions at 4f 1 positions, two with Fe ions
at 4f 2 positions, and one with Fe in the trigonal bipyram
The appearance of diamagnetic Sc ions in the 2b sites means
that part of the Fe ions in the 12k positions lose the
Fe(2b) –O–Fe(12k) exchange coupling, while another pa
of the Fe(12k) ions retains this coupling, so that a no
equivalent situation develops. The ratio of the numbers
ions in the 12k- and 12k8-positions will be proportional to
the number of magnetic and nonmagnetic ions
2b-positions.

Table I implies that the numbers of iron ions in 12k and
12k8 positions for BaFe11.4Sc0.6O19 are roughly in the ratio of
2:1. At the same time, if the Sc ions occupy on
2b-positions, then for the ferrite of this composition withx
50.6, in the 2b sublattice the ratio of the number of ma
netic ions to nonmagnetic ions should, as discussed ab
be 2:3, which is not really so.~See Table I.! Therefore, iron
ions are not displaced by Sc ions only at 2b positions, but
also at other positions. As Table I implies, for a givenx there
is roughly equal replacement of iron ions with opposite o
entations of their magnetic moments, i.e., both iron ions
tly

f

e

s

f

e,

-
t

2b sites upward orientations of their spin moments and i
ions with downward spins, which occupy 4f sites, are re-
placed.

These data are consistent with the conclusions of R
27–29, based on neutron diffraction data, that for low co
centrations, the Sc ions are located at 2b positions and for a
degree of substitution of less than 30%, 4f 2 positions are
occupied in addition to 2b positions. The increase in th
intensity of the lines corresponding to Fe ions in 4f 1 posi-
tions ~Table I! should be attributed to the large error in th
calculations of the poorly resolved sextuplets for iron ions
4 f 2 and 2a positions. Localization of Sc ions in 2b positions
weakens the exchange bonds between the S and R block
as the Sc content is changed byDx51, the Curie tempera-
ture falls by 160– 170°, while when Al or Ga ions are intr
duced, the Curie temperature (TC) falls by 50– 60° when the
substitution is raised byDx51. We have obtained values o
the Curie temperature from the experimental data. For
ferrite with x50.6, our value ofTC was 647 K, in good
agreement with other published data.40

To summarize the above discussion, in the crystals
have chosen, BaFe122dScdO19 for x50.4 or 0.6, diamagnetic
Sc ions displace iron ions in 2b- and 4f 2-positions and, on
forming magnetic bonds, facilitate the formation of a nonc
linear magnetic structure. However, the amount of Sc io
(x50.4 or 0.6! is far from high enough to destroy the co
linearity in the volume.27–29 In the surface layer of thes
crystals, the exchange interaction energy is reduced, bot
the diamagnetic ions, and by the presence of the surf
Thus, for example, it has been shown25 that replacement of
only 9% of the iron ions in Fe3BO6 by diamagnetic Ga ions
increases the thickness of the ‘‘transition’’ surface layer
almost a factor of 10.

It has, therefore, been found experimentally for the fi
time that, when diamagnetic ions are introduced into hexa
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nal Ba-M ferrite crystals, a macroscopic surface layer wit
thickness of;200 nm is formed, within which the magnet
moments of the iron ions are noncollinear with those of
iron ions at sites in the interior of the crystal. Thus, for t
first time we have experimentally observed a surface laye
ferrites whose magnetic structure differs from that inside
crystal and whose existence was predicted theoretically
Néel in 1954.1

The author thanks V. L. Rozenbaum for help in maki
the measurements.
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1L. Néel, J. Phys. Radium15, 225 ~1954!.
2L. Liebermann, D. R. Fridkin, and H. B. Shore, Phys. Rev. Lett.22, 539
~1969!; L. Liebermann, J. Clinton, D. M. Edwards, and J. Mathon, Ph
Rev. Lett.25, 232 ~1970!.

3A. E. Berkowitz, W. J. Schuele, and P. J. Flanders, J. Appl. Phys.39, 1261
~1968!.

4J. M. D. Coey, Phys. Rev. Lett.27, 1140~1971!; Can. J. Phys.65, 1210
~1987!.

5A. M. van der Kraan, Phys. Status Solidi A18, 215 ~1973!.
6A. H. Morrish, K. Haneda, and P. J. Schurer, J. de Phys. Colloque C 637,
C6-301~1976!.

7P. M. de Bakker, E. DeGrave, R. E. Vandenberghe, and L. H. Bow
Hyperfine Interact.54, 493 ~1990!.

8A. E. Berkowitz, J. A. Lahut, and C. E. van Buren, IEEE Trans. Mag
MAG-16, 184 ~1980!.

9K. Haneda, H. Kojima, A. H. Morrish, P. J. Picone, and K. Wakai,
Appl. Phys.53, 2686~1982!.

10A. H. Morrish and K. Haneda, IEEE Trans. Magn.MAG-25, 2597~1989!;
J. Appl. Phys.52, 2496~1981!.

11K. Haneda and A. H. Morrish, Nucl. Instrum. Methods, Phys. Res. B76,
132 ~1993!.

12K. Haneda, Can. J. Phys.65, 1233~1987!.
13R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr.,; and S. Foner, J. Ap

Phys.81, 5552~1997!.
14D. Lin, A. C. Nunes, C. F. Majkrzak, A. E. Berkowitz, and M. B. Maple

J. Magn. Magn. Mater.45, 343 ~1995!.
15S. S. Parkin, R. Sigsbee, R. Felici, and G. P. Felsher, J. Appl. Phys57,

1371 ~1985!.
16F. T. Parker, M. W. Foster, D. Margulis, and A. E. Berkowitz, Phys. R

B 47, 7885~1993!.
17Q. A. Pankhurst and P. J. Pollard, Phys. Rev. Lett.67, 325 ~1991!.
18P. V. Hendrilsen, S. Linderoth, C. A. Oxborrow, and S. Morup, J. Ph

Condens. Matter6, 3091~1994!.
a

e

in
e
y

-

.

,

.

.

.:

19G. S. Krinchik, A. P. Khrebtov, A. A. Askochenski�, and V. E. Zubov,
JETP Lett.17, 345 ~1973!; G. S. Krinchik and V. E. Zubov, Zh. E´ksp.
Teor. Fiz.69, 707 ~1975 @Sov. Phys. JETP42, 359 ~1975!#.

20 V. G. Labushkin, V. V. Rudenko, Yu. R. Sarkisov, V. A. Sarkisyan, a
V. N. Seleznev, JETP Lett.34, 544 ~1981!.

21V. E. Zubov, G. S. Krinchik, V. N. Selznev, and M. B. Strugatski�, Zh.
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Characteristics of magnetic order in perovskite manganites La 12xCaxMnO3

T. I. Arbuzova,* ) I. B. Smolyak, S. V. Naumov, A. A. Samokhvalov, A. V. Mostovshchikov,
and N. I. Solin
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Solid solutions of the system La12xCaxMnO3 are synthesized, and their magnetic and electrical
properties are investigated. Asx is increased, the crystal lattice changes symmetrically
from an orthorhombic (x50 and x50.8) to a cubic structure (0,x<0.6 and x51).
Nonstoichiometric LaMnO3 and compositions with a low Ca content (0,x,0.4) are collinear
ferromagnets. A metal–insulator transition is observed in them near the Curie temperature.
Compositions with 0.6<x<0.9 exhibit a semiconductor-type conductivity and an unusual
temperature behavior of the magnetization and the susceptibility with very distinct Curie
and Néel temperatures. The magnetic properties of the solid solutions are explained on the basis
of the model of ferro–antiferromagnetic phase separation. ©1999 American Institute of
Physics.@S1063-7761~99!01211-1#
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1. INTRODUCTION

The perovskite manganites ABO3 can be classified a
magnetic semiconductors characterized by strong coup
between the electronic and magnetic subsystems. This
pling produces a number of unusual properties such a
metal–insulator transition, colossal magnetostriction, m
netic transitions of the antiferromagnetic-ferromagnetic ty
charge ordering, and the formation of polarons. The elec
cal and magnetic properties of manganites are sensitiv
changes in the crystal structure and deviations from stoi
ometry. An external magnetic field can influence structu
phase transitions. Manganites have been of special inte
since the discovery of colossal magnetoresistance in th
and for this reason attention has been focused primarily
La12xAxMnO3 solid solutions in the composition rangex
,0.4, which exhibit the highest magnetoresistances nea
Curie temperatureTC . The rangex.0.5 has been largely
ignored. At the present time there is no consensus as to w
causes the onset of colossal magnetoresistance in these
pounds. It is often attributed to a double exchange mec
nism, but this hypothesis is countered by a mechanism
indirect exchange and the two-phase ferro–antiferromagn
state of degenerate antiferromagnetic semiconductors. A
tional experimental data are needed to explain the en
gamut of physical properties of perovskites within the fram
work of a single model. The investigation of the magne
properties of systems of LaMnO3-based solid solutions is
8991063-7761/99/89(11)/7/$15.00
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also of independent interest in regard to the physics of m
netic semiconductors, in particular, for explaining the e
change interaction mechanisms, the possibility of an in
mogeneous state, the formation of polarons, and
separation of the magnetic phases.

We have investigated the temperature and field dep
dence of the magnetization, susceptibility, and magnetore
tance of the system La12xCaxMnO3 (0<x<1), for which a
continuous series of solid solutions exists.

2. SAMPLES AND MEASUREMENT PROCEDURE

The La12xCaxMnO3 samples were prepared by ceram
technology from as-delivered La2O3, CaCO3, and Mn3O4

powders~all of extreme purity!. The samples were synthe
sized in two stages. The mixture was first annealed in ai
1300 °C for 30 h. It was then ground and compacted i
tablets, which were subjected to a second, 50-h anneal. X
analysis was performed on a DRON-2.0 x-ray diffractome
in Cr Ka radiation. The samples were single-phase obje
The values of the lattice parameters of the samples are sh
in Table I. The unit cell structures were orthorhombic for t
LaMnO3 and La0.2Ca0.8MnO3 compositions and were cubi
for all others. The technological conditions can influence
crystal structure and physical properties of manganites;1 the
La0.2Ca0.8MnO3 and La0.4Ca0.6MnO3 samples were therefor
subjected to another air anneal at 1400 °C for 30 h, follow
TABLE I. Lattice parameters of manganites La12xCaxMnO3.

Composition x50 x50.1 x50.2 x50.3 x50.4 x50.6 x50.8 x51

Crystal O C C C C C O C
Lattice a55.524 a55.334
parameters, Å b57.788 7.784 7.768 7.708 7.691 7.628 b57.535 3.731

c55.402 c55.326

Legend: O—orthorhombic structure; C—cubic structure.
© 1999 American Institute of Physics
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by air hardening. Annealing and hardening did not alter
symmetry of the lattice, but the lattice parameters decrea

The magnetic properties of the La12xCaxMnO3 solid so-
lutions were measured in the temperature rangeT
577– 600 K on a vibration magnetometer and a Fara
magnetic balance. The dc electrical conductivity and mag
toresistance were measured by a four-contact procedur
an automated system.

3. EXPERIMENTAL RESULTS

In the system of La12xCaxMnO3 solid solutions the lim-
iting compositions withx50 and x51 must be antiferro-
magnetic semiconductors with Ne´el temperatures TN

5139.5 K Refs. 2 and 3! and TN5131 K ~Ref. 2!, respec-
tively. Deviations from stoichiometry can increase the co
ductivity and ferromagnetic ordering of the magnetic m

FIG. 1. Temperature dependence of the magnetization in a static
H560 Oe for LaMnO3 ~1! and CaMnO3 ~2!.
e
d.

y
e-
on

-
-

ments of Mn. Complications would most likely b
encountered in trying to obtain samples of stoichiome
composition, because data on the characteristic tempera
and field dependence of the magnetizations and the suscep
tibility x of collinear antiferromagnets are all but nonexiste
in the literature for LaMnO3 and CaMnO3. We have inves-
tigated the magnetic properties of a continuous series
La12xCaxMnO3 solid solutions. The limiting composition
with x50 andx51 can be regarded as reference points
analyzing the influence of Ca substitution on the magne
properties of LaMnO3.

Figure 1 shows temperature curves of the magnetiza
in a static magnetic fieldH560 Oe for LaMnO3 and
CaMnO3. It is evident that for LaMnO3 the s(T) curve has
the typical form for ferromagnets, exhibiting a sharp drop
the magnetization near the Curie temperatureTC . For
CaMnO3 the s(T) curve flattens out, suggesting inhomog
neity due to native defects (TC5115 K). The magnetic state
of a sample at a fixed temperature can be estimated from
field dependence of the magnetization. Figure 2 shows
field dependence of the magnetization for compositions w
x50 andx51 at temperatures of 77 K and 300 K. At roo
temperature thes(H) curves are generally linear for bot
compounds and extrapolate to zero, indicating the param
netic state. At 77 K the field curves have a nonlinear form,
is characteristic of the ferromagnetic ordering region. By e
trapolating theses(H) curves to H50 from the region
of the para-process, we have estimated the satura
magnetizations: ss573.8 G•cm3/g for LaMnO3 and
ss51.35 G•cm3/g for CaMnO3. The theoretical values of the
saturation magnetization atT50 for ferromagnetically
ordered spins of the Mn31 (S52) in LaMnO3 are
s theor592.4 G•cm3/g, and for the spins of Mn41 ions
(S53/2) in CaMnO3 we have s theor5117.2 G•cm3/g. In
contrast with LaMnO3, for which the theoretical and exper
mental values ofss are fairly close together~taking into
account the Bloch-law decrease ofss as T increases!, the

ld
FIG. 2. Field dependence of the magnetization atT577 K ~dark
symbols! and 300 K~light symbols! for LaMnO3 ~curves1 and
3, left scale! and CaMnO3 ~curves2 and4, right scale!.
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experimental value ofss for CaMnO3 at 77 K is two orders
of magnitude lower than the theoretical value. The reason
this low value ofss is that a large part of the sample exis
in the antiferromagnetic state, or else the measurement
perature is close toTC , and long-range ferromagnetic ord
significantly damages thermal excitations.

Schiffer, Ramirezet al.4,5 have plotted a phase diagra
of the magnetic and electronic states of the syst
La12xCaxMnO3. According to this diagram~Fig. 3!, compo-
sitions having a low doping level,x,0.2, must be ferromag
netic insulators withTC5160–180 K. As the Ca21 concen-
tration is increased (0.2,x,0.5), the solid solutions
become conducting ferromagnets with highTC<270 K and
almost total saturation of the magnetization atT50. For
these compositions we have observed a metal–insulator
sition and colossal magnetoresistance in the vicinity ofTC .
In the interval 0.5,x,1 the solid solutions must be nonco
ducting antiferromagnets.

We have measured the resistivityr(T) of
La12xCaxMnO3 samples in the temperature range 77–300
in magnetic fieldsH<20 kOe. The temperature dependen
of r at H50 and (rH2r0)/r0 at H520 kOe are shown in
Fig. 4. The metal–insulator transition is observed for co
positions withx<0.3. The maximum negative magnetores
tance near the transition point is 55%. The magnetoresista
decreases with increasing distance from the transition t
perature. Samples withx.0.3 exhibit a semiconductor-typ
conductivity over the entire temperature range. Their mag
toresistance is substantially lower.

Magnetic measurements have shown that our sam
with a low Ca content are ferromagnets. Temperature cu
of the magnetization in a fieldH560 Oe for La0.9Ca0.1MnO3

and La0.7Ca0.3MnO3 are shown in Fig. 5. The Curie temper
tures determined by the kink method areTC5170 K (x
50.1) andTC5205 K (x50.3). Field curves of the magne
toresistance for these samples atT577 K and T5300 K
~above and belowTC) are shown in Fig. 6. Clearly, at 300 K
both samples are in the paramagnetic state. At 77 K

FIG. 3. Phase diagram of the magnetic and electronic states of
system La12xCaxMnO3 ~Ref. 4!: AFMI5antiferromagnetic insulator;
FMI—ferromagnetic insulator; FMM—ferromagnetic meta
PMI—paramagnetic insulator.
or
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s(H) curves exhibit nonlinear behavior. The saturation ma
netizations obtained by extrapolation toH50 are
ss574.1 G•cm3/g for x50.1 and ss581.9 G•cm3/g for
x50.3, which are lower than the theoretical values
completely ferromagnetically ordered spins of Mn31

and Mn41 ions, ss
theor593.9 G•cm3/g (x50.1) and

ss
theor597.5 G•cm3/g (x50.3).

The magnetization exhibits unusual behavior in solid
lutions with compositions 0.6<x<0.9. Figure 7 shows tem
perature curves of the magnetization in various magn
fields for compositions withx50.6 and x50.8. In weak
fields thes(T) curves have the usual form for ferromagne
with TC5113 K (x50.6) andTC598 K (x50.8). Increas-
ing the magnetic field not only spreads out the phase tra
tion, but also causes the magnetization and the susceptib
to acquire maxima aboveTC . Maxima of s and x can be
observed in antiferromagnets nearTN , in ferromagnets with
TN.TC ~Ref. 7!, or in spin glasses near the freezing po
Tf . To test the onset of the spin-glass state in these s
solutions, we have measured the dependences(T) andx(T)
in two regimes: zero-field cooling and cooling in a magne
field. None of the characteristic spin-glass hysteresis effe
are observed atT.140 K.

The temperature dependence of the susceptibility
fieldsH54.5 kOe and 8.9 kOe for La0.2Ca0.8MnO3 is shown
in Fig. 8. We see that the sample exists in the paramagn
state above 300 K, because the reciprocal susceptib
obeys the Curie–Weiss law with a paramagnetic Curie te
peratureQ5142 K andmeff53.93mB (meff

theor54.1mB). The
susceptibility maximum near 200 K is probably associa
with the Néel temperature. When the temperature is lowe
from the high-T range, the sample goes from the parama
netic to the antiferromagnetic state. In the paramagn
range the susceptibility of antiferromagnets does not dep
on the magnetic field. In the magnetically ordered rangeT
,TN) the susceptibility of antiferromagnets depends on
field, and the higher the fieldH the lower the value ofx ~Ref.
8!. We have observed a qualitatively similar pattern
La0.2Ca0.8MnO3. It is noteworthy that data on the magnet
properties of La0.2Ca0.8MnO3, obtained on the vibration
magnetometer and magnetic balance, are in good agree
@see Figs. 7~b! and 8#.

The temperature dependence of the magnetization
manganites is influenced not only by the magnetic field,
also by native defects. For example, the heat treatmen
samples withx50.6 and 0.8 at 1400 °C and subsequent
hardening greatly suppress the magnetization in the l
temperature rangeT,150 K. The magnetization maximum
in the interval 200–250 K becomes more pronounced, bu
position on theT axis stays the same.

4. DISCUSSION

Magnetic oxides with a perovskite structure ABO3 have
important bearing on the experimental investigation of 18
superexchange through anions, because they are devo
direct cation–cation exchange and 90° superexchange.
interaction between identical magnetic ions other than Ja
Teller ions (Mn31, Cr31, and Cu21) is antiferromagnetic, so

he
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FIG. 4. Temperature dependence of the resistivity atH50 ~a!
and the magnetoresistance in a fieldH520 kOe ~b! for
La12xCaxMnO3: ~1! x50; ~2! x50.1; ~3! x50.2; ~4! x50.3; ~5!
x50.4; ~6! x50.6; ~7! x50.8.
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that the majority of 3d-perovskites are semiconducting an
ferromagnets. The ideal ABO3 structure is cubic (Pm3m),
but perovskites usually have an orthorhombic or rhombo
dral lattice because of Jahn–Teller effects. The symmetr
the lattice is dictated by the relative dimensions of the io
and its tendency toward close-packing. Jahn–Teller effe
play an important role in magnetic exchange interactions

The magnetic properties of LaMnO3-based perovskites
were first studied by Jonker and van Santen.9 They discov-
ered that when La31 ions are replaced by alkaline-earth~A!
Ca21, Sr21, and Ba21 ions, La12xAxMnO3 solid solutions in
the composition range 0.2,x,0.4 become ferromagnet
with a high Curie temperatureTC,280 K and metallic con-
ductivity. The onset of ferromagnetism in doped mangani
as in pure LaMnO3 with an oxygen excess, was identifie
with the presence of Mn41 ions and was attributed to th
competition of weak ferromagnetic exchange between M31

ions, strong antiferromagnetic exchange between Mn41 ions,
and strong ferromagnetic exchange between Mn41 and Mn31

ions.10 Zener14 has called attention to the high electrical co
ductivity of high-TC compositions and, to account for th
onset of ferromagnetism, has proposed a mechanism
double exchange with the migration ofd-electrons between
-
of
s
ts

s,

of

Mn41 and Mn31 ions. However, it has been show
experimentally11 that ferromagnetism is possible in nonco
ducting LaMnO3 for Mn ions of the same valence. The a
thor associates ferromagnetism with the elimination of Jah
Teller lattice distortion and the tendency of the lattice towa
cubic symmetry.

Goodenough12 has presented a qualitative theory of 18
superexchange with allowance for the covalent bond, wh
depends on the distance. The degree of covalence exe
strong influence on exchange interaction andp-type conduc-
tivity. The critical distances between magnetic ions for t
transition of localized 3d states to nonlocalized states ha
been determined, and semiempirical rules have been for
lated for the signs and magnitudes of the superexchange
rameters. According to the Goodenough-Kanamori rules,
perexchange interaction is antiferromagnetic for small latt
parameters, when the overlap integral of 3d orbitals of mag-
netic ions is a maximum. For large lattice parameters, w
contact of 3d orbitals, and a zero overlap integral, supere
change must be ferromagnetic. Consequently, for mangan
devoid of Jahn–Teller ordering Mn41–O2–Mn31 and
Mn31–O2–Mn31 interactions have a ferromagnetic chara
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ter. On the basis of the theory of 180° superexchange an
analysis of experimental data on the magnetic, electrical,
crystallographic properties of perovskites Goodenough
constructed a semiempirical phase diagram for the sys
La12xCaxMnO3 ~Refs. 12 and 13!. According to this dia-
gram, compositions withx,0.2 must have orthorhombi
symmetry and canted~noncollinear! antiferromagnetic order
those with 0.2,x,0.4 have rhombohedral symmetry an
ferromagnetic order, and compositions with 0.5,x,0.9
have tetragonal symmetry and antiferromagnetic order.

In the nineties manganites aroused interest after colo
magnetoresistance was discovered in them. The magne
sistance peak in magnetic semiconductors is normally
served near the Curie temperature and can attain large
ues. At the present time there is no consensus as to w
causes the onset of magnetoresistance. Colossal magne
sistance is attributed either to a double exchange me
nism14,15 or to indirect exchange and the separation of fer
magnetic and antiferromagnetic phases.16 It should be noted
that the double and indirect exchange mechanisms are q
tatively similar, but differ in the number of free carrier

FIG. 5. Temperature dependence of the magnetization for La0.9Ca0.1MnO3

~1! and La0.7Ca0.3MnO3 ~2! in a field H560 Oe.
an
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The replacement of La31 ions by divalent nonmagnetic ion
or an oxygen excess produces Mn41 ions, creating ferromag-
netic order and generating free charge carriers~holes!. Both
mechanisms account for the colossal magnetoresistance
ferromagnetism in manganites, but when double excha
occurs, the magnetic state atT,TC must be homogeneou
~collinear ferromagnetism or canted antiferromagnetis!.
When the Nagaev mechanism is active, the magnetic sta
two-phase in the rangeT,TC . The spatial separation of th
ferromagnetic and antiferromagnetic phases should be m
fested in the magnetic properties of manganites.

To date many papers have been published on the m
netic, electrical and crystallographic properties of mang
ites, but the data can differ even for identical compositio
because native defects have a strong influence on these
erties. The investigation of La12xCaxMnO3 samples prepared
by the same technology with different compositionsx and an

FIG. 6. Field dependence of the magnetization at 77 K~dark symbols! and
300 K ~light symbols! for La0.9Ca0.1MnO3 ~1,3! and La0.7Ca0.3MnO3 ~2,4!.
ti-
FIG. 7. Temperature dependence of the magne
zation for La0.4Ca0.6MnO3 ~a! and La0.2Ca0.8MnO3

~b! in various magnetic fields:~1! H550 Oe; ~2!
5 kOe; ~3! 10 kOe;~4! 13 kOe;~5! 2 kOe; ~6! 5
kOe;~7! 8 kOe;~8! 10 kOe. The scales ofs differ
for two curves: 1:3 for curve1; 1:10 for curve4.
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analysis of published data are helpful in separating the in
ence of doping from that of native defects.

The magnetic properties of our solid solutions conc
qualitatively with the phase diagrams of Goodenough a
Ramirez, but a number of anomalies are found. Undo
LaMnO3 exhibits the properties of a collinear homogeneo
ferromagnet belowTC5193 K ~Figs. 1 and 2. This high
value of TC is probably associated with the presence
Mn41 ions resulting from native defects. The high condu
tivity of this sample and the transition from conductivity
the semiconductor type to the metallic type nearTC indicate
the presence of a fair number of free carriers~Fig. 4!. Doped
samples in the rangex,0.4 are also ferromagnets. The
have a cubic structure, high magnetoresistance, and a
distinct metal–insulator transition. The magnetic and elec
cal properties of La12xCaxMnO3 (x,0.4) can be explained
on the basis of a modified double-exchange model.15 The
diffuseness of the magnetic phase transition is attributabl
spin polarons. In the high-temperature range the formatio
spin polarons is more favorable energetically than the ho
geneous paramagnetic state. The polarons are small an
not overlap in space. The system as a whole remains p
magnetic, because the directions of the magnetic mom
fluctuate. As the temperature is lowered the dimensions
the spin polarons increase and they begin to overlap. A
result electrons localized near the magnetic moments bec
delocalized, and the system goes over to the homogen
ferromagnetic state.

As mentioned above, La12xCaxMnO3 in the range
0.5,x,1 should be antiferromagnetic. Our samples w
0.6<x<0.9 exhibit properties of both antiferromagnets a
ferromagnets with sharply defined Curie and Ne´el tempera-
tures ~Figs. 7 and 8!. We identify the magnetization an
susceptibility maxima in the temperature intervalT
5200– 250 K with the Ne´el temperature, because in the tem
perature intervalTC,T,TN the magnetization depends lin
early on the field, and the hysteresis effects typical of a s
glass to not occur. Our values ofTN are in good agreemen
with the data of Ref. 4, which givesTN5255 K for the com-
positionx50.6 andTN5205 K for x50.75. However, if the
entire sample existed in the antiferromagnetic state foT
,TN, the susceptibility would either have to decrease
remain constant as the temperature decreased. The a

FIG. 8. Temperature dependence of the susceptibility and the recip
susceptibility for La0.2Ca0.8MnO3 in fields H54.5 kOe ~1! and
H58.9 kOe~2!.
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increase ins andx for T,100 K, the nonlinear form of the
magnetization curve at 77 K, and the nature of the tempe
ture dependence ofs in a weak magnetic field indicate th
presence of a ferromagnetic phase at low temperatures.
extrapolation of the reciprocal susceptibility to positiveQ
also reveals strong ferromagnetic interaction between
magnetic moments. The magnetic properties
La12xCaxMnO3 (0.6<x<0.9) can be explained on the bas
of the Nagaev theory16 for the two-phase state of degenera
antiferromagnetic semiconductors. The presence of M41

and Mn31 ions makes the system amenable energetically
partition into conducting and insulating regions. In the co
ducting regions the carrier density is high enough to estab
magnetic order. However, the entire crystal is still semico
ducting~Fig. 4!, because a large fraction of the regions ex
in the antiferromagnetic insulator state. At low temperatu
the magnetization of the crystal is determined by the mag
tization of the ferromagnetic regions, because the magne
tion of the antiferromagnetic regions is close to zero. In
ferromagnetic regions the total magnetization decrease
the Curie temperature is approached. In the intermed
temperature rangeTC,T,TN the ferromagnetic phase ex
ists in the paramagnetic state, and the antiferromagn
phase is in the magnetically ordered state. The total sus
tibility is the superposition of these contributions. In th
high-temperature rangeT.TN the entire sample goes over t
the paramagnetic state.

The form of the temperature curves of the magnetizat
and the susceptibility of La12xCaxMnO3 manganites is dic-
tated by the ratio of the volumes of the ferromagnetic a
antiferromagnetic phases. Our investigations have sho
that reducing the oxygen content of samples withx50.6 and
0.8 by heat treatment causes the volume of the ferromagn
phase to decrease, and the ferromagnetic contribution t
suppressed. As a result of heat treatment, these sample
quire the typical dependences(T) for antiferromagnets, i.e.
when the temperature is lowered,T,TN , the magnetization
decreases and is not very large in the limitT→0, consistent
with the data of Ref. 4.

The partition into ferromagnetic and antiferromagne
phases can also occur in samples having a Ca contex
,0.5. The deviation of the saturation magnetic moment
these samples from the theoretical value can be elicited
the presence of the antiferromagnetic phase. However,
advent of antiferromagnetic properties is masked by the
romagnetic phase. Possible causes of this behavior are
small volume of the antiferromagnetic phase, the hundred
thousandfold lower magnetization and susceptibility of an
ferromagnets relative to ferromagnets, and low Ne´el tem-
peratures,TN,TC .

5. CONCLUSION

We have shown that the symmetry of the crystal latt
of the system La12xCaxMnO3 is lowered from orthorhombic
to cubic when the concentration of divalent Ca ions in t
system is increased. Replacing a portion of the La31 ions by
Ca21 ions in the range of low concentrationsx, like devia-

al
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905JETP 89 (5), November 1999 Arbuzova et al.
tions from stoichiometric composition, increases the cond
tivity and suppresses ferromagnetism. The maximum va
of the Curie temperatureTC , the saturation magnetization
and the magnetoresistance are observed atx50.3. With a
further increase in the content of Ca21 ions the Curie tem-
perature, the magnetization, and the resistivity decrease
pecially noteworthy are compositions close to the form
La0.2Ca0.8MnO3, for which maxima of the magnetization an
the susceptibility are observed aboveTC . The occurrence of
coexisting ferromagnetic and antiferromagnetic proper
with very distinct Curie and Ne´el temperatures confirms th
existence of two magnetic phases—one ferromagnetic
one antiferromagnetic. The magnetic properties of the co
plete system of La12xCaxMnO3 solid solutions (0,x,1)
can be explained on the basis of the model of indirect
change and separation of magnetic phases.

This work has received support from the Federal P
gram ‘‘Surface Atomic Structures’’~Project 2.4.99!.
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Explosive decomposition of heavy-metal azides
B. P. Aduev,* ) É. D. Aluker, G. M. Belokurov, Yu. A. Zakharov, and A. G. Krechetov

Kemerovo State University, 650043 Kemerovo, Russia
~Submitted 14 June 1999!
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A real-time investigation of the explosive decomposition of heavy-metal azides is reported. A
multichannel instrument configuration designed specifically for the goals of the study is
described; it is capable of measuring the transient conductivity and the spectral and kinetic
characteristics of the luminescence and absorption of exploding samples with nanosecond time
resolution. New phenomena are discovered and analyzed in detail: the predetonation
conductivity and predetonation luminescence of heavy-metal azides. The conductivity of silver
azide in the predetonation state is used to make an experimentally justified decision as to
whether the explosion is driven by a thermal or chain mechanism, in favor of the latter. The sum-
total of the new data provides the basis for the development of an experimentally justified
model of predetonation luminescence and the explosive decomposition process of heavy-metal
azides, including the following principal stages: hole trapping by a cation vacancy,
reconstruction of the center as a result of chemical reaction with the formation of a quasi-local
hole state in the valence band, hole detrapping from the reconstructed center, carrier
multiplication as a result of impact ionization by hot holes, and reconstruction of a local state in
the bandgap, thereby establishing conditions for repetition of the investigated chain of
processes. ©1999 American Institute of Physics.@S1063-7761~99!01311-6#
in
ta
r-
n
ni
s

pe
a

as
is

a
ni
e

a
o

a
u

m
dia

io
ly

n

ex-
.

d
ny-

l
re-

er’s
the

id-
e-
the
hat
n-

cu-
of

es-

-
. A
uch
at
1. INTRODUCTION

For close to half a century now scientists have been
trigued by the explosive decomposition of heavy-me
azides~HMAs!.1 The applied aspect of this unflagging inte
est is related to the fact that the HMAs are the simplest a
hence, the most exhaustively studied representatives of i
ating agents and serve as a model object for this clas
systems.2

The theoretical aspect of the problem runs much dee
Until recently it has been impossible to reliably detect
single instance of a branched chain reaction involving qu
particles in a solid. The explosive decomposition of HMAs
indeed of major interest from this perspective.3,4

By the early eighties a wealth of experimental data h
been accumulated, and basic notions as to the mecha
underlying the explosive decomposition of HMAs had be
formulated~see the survey in Ref. 2!, laying the foundation
for the majority of subsequent research on the problem.5,6 In
our opinion, however, an analysis of these experimental d
and the explosive decomposition models developed fr
them justify a lingering sense of dissatisfaction.

Culling out papers aimed at narrowly confined applic
tions, we discern two experimental approaches to the st
of the explosive decomposition of HMAs.

1. The first approach is to investigate slow HMA deco
position processes in exposure to heat, light, ionizing ra
tions, electric fields, and magnetic fields.6,7 Obviously, the
applicability of data from these studies for the construct
of a realistic model of explosive decomposition is high
problematical.3,4

2. The second approach involves experiments desig
9061063-7761/99/89(11)/10/$15.00
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to investigate explosive decomposition directly. These
periments are set up according to the following scheme2,8

An explosion is initiated by an impulsive action~shock, a
light pulse, an accelerator pulse, etc.!. The goal is then to
record either the event of an explosion2 or, better, the time
interval ~induction period! between the initiating pulse an
the instant of explosion as determined from the accompa
ing flash of light8 or fragmentation of the sample~using
high-speed motion pictures!.2 Clearly, in this experimenta
setup only certain global parameters of the process are
corded, and the main event is excluded from the research
field of vision, viz.: the changes in the characteristics of
sample~or phenomena accompanying these changes! during
the evolution of explosive decomposition.

The situation is reminiscent of circumstances in sol
state radiation physics prior to the advent of highly tim
resolved spectroscopy techniques, which made feasible
real-time recording of short-lived states; such states are w
define, in the final analysis, the physics of radiatio
stimulated processes in solids.9

The lack of adequate experimental data imparts a spe
lative quality to existing concepts as to the mechanism
explosive decomposition of HMAs.2,5 According to these
concepts, the energy transformations of an explosion are
tablished by the exothermic reaction

2N3→N6→3N21Q. ~1!

Quantum-mechanical calculations~for isolated N3 radicals!
give Q'9 – 12 eV ~Ref. 2!. In a solid this reaction is pos
sible if two holes are trapped at contiguous lattice sites
cation vacancy is regarded as the most likely site for s
trapping.5 The development of an explosion requires that
© 1999 American Institute of Physics
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FIG. 1. Block diagram of the experimental configuration for th
investigation of explosive decomposition.~a! General block dia-
gram:~1! sample;~2! excitation source~laser or electron accelera
tor!; ~3! source of the probe light;~4, 5, 6! optical, acoustic, and
electrical signal recording channels, respectively.~b! Block dia-
gram of the signal recording channels:~1! acoustic sensor;~2!
oscilloscope;~3! television counting device;~4! interface;~5! com-
puter; ~6! conductivity measurement cell;~7! spectrum instrument
~monochromator or spectrograph!; ~8! photomultiplier;~9! photo-
electron detector.
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least some of the energyQ be spent in the reproduction an
multiplication of holes. Various multiplication scenarios a
considered. Most authors assume that the energyQ is re-
leased in the form of phonons and that lattice heating un
lies the thermal generation of several electron–hole pair2,8

A so-called ‘‘thermal explosion’’ occurs in this case.10 A
minority of authors5 advocate the notion of ‘‘chain explo
sion’’ ~Ref. 10!. The possible mechanism of hole multiplic
tion is considered to be photomultiplication,5 or the produc-
tion of a hot hole directly as a result of the reaction~1! with
subsequent multiplication by shock ionization.11 It must be
emphasized that even the very fundamental idea of the r
tion ~1! as a decisive factor in the explosive decomposit
of HMAs, apart from any consideration of the chain or the
mal character of the explosion, lacks experimental confirm
tion.

In our opinion, the entire foregoing discussion indica
that the only road to progress in understanding the mec
nism of explosive decomposition of HMAs is the develo
ment of new experimental approaches that can be use
record in real time the variations of the characterist
~physical properties! of a sample during an explosion. As th
foundation for such an experimental approach we h
adopted pulse techniques used in radiation physics,9 modify-
ing them as necessary in application to the specific attrib
of the investigation of explosive samples. The results of
implementation of this approach and an explosive decom
sition model proposed on the basis of those results mak
the content of the present article.

2. OBJECTS AND PROCEDURE

The objects chosen for the investigation were azides
silver AgN3, thallium TlN3, and lead Pb~N3!2. The azides
were prepared in powder form by dual-jet crystallization12

The concentrations of the main impurities~Fe, Si, Ca, Mg,
Al, Na! were determined polarographically and by co
plexometric analysis; they were less than 1016– 1017cm23.

The investigated thallium and lead azide samples w
pressed tablets of diameter 10 mm and thickness 300–
mm for the thallium azide and 2.5 mm and 30–40mm for the
lead azide. The silver azide samples were whiskers w
characteristic dimensions 0.130.05310 mm and ‘‘macroc-
rystals’’ with characteristic dimensions 0.53333 mm. The
crystals were grown from solution by a procedure descri
in Ref. 12. The density of cation vacancies in the cryst
was less than 1016cm23 ~Ref. 12!.

The instrument configuration used in the study~Fig. 1! is
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based on the principles of experimental pulsed radiolysis
photolysis techniques.9

The sources of excitation~initiation! are a GIN-600
high-current electron accelerator~effective electron energy
300 keV, current density 1000 A/cm2, and pulse duration 3
ns! and a YAG:Nd31 laser (l51064 nm, pulse duration 30
ps, and pulse energy 0.5–30 mJ!.

The recording apparatus is made up of several sync
nized channels.

The optical channelconsists of an ISP-51 spectrograp
or MSD-1 monochromator and a photomultiplier~FÉU-97,
FÉU-165-1, 14 ÉLU-FM! or FÉR-7 image-converter strea
camera. The photomultiplier output signal is sent to the in
of an oscilloscope~S7-8, S7-19!; the output of the streak
camera is sent through a television counting device utiliz
an LI-702 Superkremnikon~a highly sensitive image icono
scope! and then through an interface directly into a compu
for processing. The spectral range spanned by the op
channel is 250–1000 nm, and the time resolution is 10 n
better. By using a spectrograph–chronograph system~instead
of the usual monochromator–photomultiplier combinatio!
in the optical channel it is possible to obtain the relaxat
pattern of a segment of the spectrum (;400 nm) within one
pulse ~‘‘spectrum-in-pulse’’ rather than the customa
‘‘point-by-point spectrum’’ technique9!, a feature that is es
sential to the investigation of explosive~‘‘one-time only’’!
samples.

In the conductivity channelthe current through the
sample is recorded from the voltage drop across the osc
scope input resistance, which is connected in series with
sample. When an S8-12 oscilloscope is used, the time r
lution is 7 ns and is determined by the oscilloscope; for
S7-19 high-speed oscilloscope the time resolution of
channel is limited by the parameters of the measurement
and is;0.3 ns

In the acoustic signal channelthe sample is attached t
the input window of an acoustic sensor in the form of
piezoelectric detector with an intrinsic time resolutio
;1 ns. The signal from the acoustic sensor is sent to
oscilloscope.

The channels are synchronized by means of referen
pulses generated by the input of an initiating pulse to a
tector ~scattered light from a laser pulse incident on a ph
todetector, direct action of a laser pulse on the acoustic s
sor, etc.!. The time-referencing error limits of the signals
the various channels are63 ns. A detailed description of the
equipment configuration used in the investigation is given
Refs. 3, 4, 13, 14.
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3. EXPLOSIVE CONDUCTIVITY

The first series of experiment to find and investigate
conductivity of HMAs during explosive decomposition~ex-
plosive conductivity! was set up as follows. A silver azid
whisker with characteristic transverse dimensions 1
3150mm2 was mounted in an air~or vacuum! gap between
electrodes of width 2 mm. The explosion was initiated by
laser pulse. Uniform initiation was ensured by making t
beam cover the entire length of the interelectrode gap
having the energy of the exciting photons (l51064 nm) fall
within the transparency region of the crystal~optical width of
the silver azide bandgap;3.5 eV, thermal width;1.5 eV,
Ref. 15!.

3.1. Predetonation conductivity

A typical profile of the explosive conductivity pulse
shown in Fig. 2a. The simplest explanation of the obser
kinetics is that the rise of the conductivity in the first peak
associated with the still intact crystal~predetonation conduc
tivity !, the decay of the first peak corresponds to rupture
the discontinuity of sample due to growing stresses indu
by decomposition, and the next rise is associated with
conductivity of the explosion products~plasma!.

The next series of experiments was set up to test
hypothesis. A sample was mounted with its lateral fa
against the input window of the acoustic sensor to per

FIG. 2. Kinetics of the explosive conductivity of AgN3 crystals:~a! com-
plete oscillogram of the current pulse;~b! initial segment of the explosive
conductivity pulse~predetonation conductivity!: ~1! conductivity; ~2! lead-
ing edge of the acoustic signal;~c! approximation of the kinetics by Eq.~3!:
the solid curve is calculated from Eq.~3!, and the dots represent the valu
of n calculated from the experimental values ofs (s5enm,
m510 cm2

•V21
•s21,) and t0 andn0 are the time and number density co

responding to the emergence of a current signal that can be reliably dete
e
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synchronous measurement of the conductivity signal and
acoustic signal. The onset of the sample deformation
eventually results in its mechanical fragmentation~explo-
sion! was determined from the leading edge of the acou
sensor signal.

The sample conductivity preceding the leading edge
the acoustic signal~Fig. 2b! corresponds to the intact sampl
i.e., it can be identified with the predetonation conductivi
A detailed analysis of the observed predetonation conduc
ity reveals the following behavior.

1. As the energy of the initiating pulse is varied in th
interval 3–10 mJ, the induction period~the time interval be-
tween the initiating pulse and the onset of predetonation c
ductivity! decreases monotonically and attains 20 ns.

2. The amplitude and shape of the predetonation cond
tivity pulse do not depend on the energy of the initiati
pulse.

3. The maximum values of the recorded current pul
correspond to predetonation conductivities;1000V21

•cm21.
4. The current-voltage curves measured from

maxima of the current pulses are linear.

3.2. Chain-reaction explosive decomposition

The fundamental problem of the nature of the explos
decomposition of HMAs~chain or thermal16! can be judged
on the basis of the reported data.

We estimate the density of band carriers at the maxim
(;103 V21

•cm21) recorded predetonation conductivitie
We invoke the well-known relations5enm, wheres is the
conductivity, e is the electron charge,n is the density of
band carriers~in light of the approximate nature of the est
mate, we make no distinction between electrons and ho!,
andm is the drift mobility.

For m'10 cm2
•V21

•s21 ~Ref. 7! the conductivity s
5103 V21

•cm21 corresponds ton'5•1020cm23.
The resulting estimate ofn as an approximation of the

characteristic values for metals indicates the very unus
state of the material in the predetonation phase, which
probably be regarded as a special kind of phase transit
This value ofn can serve as a reference point from which
make an experimentally justified decision between the c
cepts of thermal and chain explosions of HMAs.

We analyze whether the valuen'5•1020cm23 is realis-
tic from the standpoint of the thermal mechanism of exp
sion. The thermal width of the silver azide bandgap isEg

'1.5 eV ~Ref. 15!. Assuming the approximationsn
'n0 exp(2Eg /kT) and n0'1022cm23, we infer that the
valuen'5•1020cm23 corresponds toT'7000 K. We need
not be troubled by the crudeness of the estimate, beca
attempts to include such factors as the decrease in mob
with increasing temperature, the influence of electro
electron scattering, the true density of states, etc., can
raise the required values ofT. The value obtained forT is
totally unrealistic inasmuch as the melting point of silv
azide is;523 K ~Ref. 2!. Consequently, the experiment
values ofs in the predetonation state unequivocally rule o
the thermal mechanism of explosive decomposition and

ed.
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be regarded as direct experimental proof that the explo
of HMAs is a chain reaction.

3.3. Kinetics of the predetonation conductivity

The confirmation of the chain-reaction character of
explosion of HMAs underscores the urgent need to ana
the kinetics of the growth of the predetonation conductiv
as a mirror of the kinetics of the evolution of a chain react
of explosive decomposition.1!

The following equation represents the simplest vers
of a quantitative description of kinetics of the type in Fi
2~c!:

dn/dt5an2bn2, ~2!

wheren is the density of holes~electrons!.
The solution of Eq.~2! subject to the initial condition

n(t0)5n0 is

n~ t !5
exp~a~ t2t0!!

n`
21~exp~a~ t2t0!!21!1n0

21 , ~3!

where n` is the density on the plateau, andt0 and n0 are
the time and density at which the conductivity attains
value that can be reliably measured. The value ofn in
Fig. 2~c! is calculated from the relations5enm with
m'10 cm2

•V21
•s21 ~Ref. 7!. We emphasize that th

parameterst0 , n0 , andn` in Eq. ~3! are evaluated directly
from the experimental curve, and the only fitting par
meter is a. For all the investigated samplesa lies in
the interval 108– 109 s21, and b lies in the interval
10211– 10212cm3

•s21.
The good approximation of the experimental curv

@Fig. 2~c!# by Eq. ~3! casts doubt on the widely accepted2,5

~but unproved! opinion that the main exothermic reaction
the HMA decomposition is bimolecular. Indeed, the simpl
interpretation of Eq.~2!, whose solution is given by Eq.~3!,
is that the growth~branching! of the chain is governed by
monomolecular process (an), and its breaking is a bimo
lecular process (bn2).

To advance a sensible hypothesis as to
nature of the corresponding processes, it is helpful
analyze the experimental valuesa;108– 109 s21 and
b;10211– 10212cm3

•s21. The simplest approach is to sta
with b5vSr , wherev is the thermal electron~hole! veloc-
ity, and Sr is the cross section of the process induced
breaking of the chain. Forv;107 cm•s21 we have Sr

'10218– 10219cm2. These values are typical of indirect in
terband recombination,17 i.e., the simplest interpretation o
bimolecular breaking of the chain,bn2, is the interband re-
combination of electrons and holes.

The simplest interpretation of the linear growth of
chainan is the trapping of a hole by a point defect. In th
casea5vSlN, where v is the thermal velocity,Sl is the
capture cross section, andN is the density of defects. Fo
v'107 cm•s21 and N'1015cm23 ~the usual density of
cation vacancies in silver azide whiskers! we obtain
Sl;10214cm2, i.e., the characteristic capture cross sect
for trapping by an attractive center.18
n
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On the basis of these results, therefore, we can adva
what seems to us an adequately grounded hypothesis:
growth of the chain reaction of explosive decomposition
HMAs is governed by a monomolecular process: the cap
of holes by cation vacancies, and breaking of the chain
governed by the bimolecular interband recombination
electrons and holes.

4. EXPLOSIVE LUMINESCENCE

The shape of the light pulse accompanying the explos
decomposition of a heavy-metal azide~Fig. 3! resembles the
shape of the current pulse@Fig. 2~a!# and suggests that thi
luminescence has two components: predetonation lumi
cence~the first maximum! and luminescence of the explo
sion products~the next rise!. In any case, the part of th
luminescence leading the onset of the acoustic signal~Fig. 3!
is unquestionably associated with the intact sample and
be identified as predetonation luminescence.

4.1. Predetonation luminescence and luminescence of the
explosion products

Figure 4 shows a streak photograph, taken from
screen of the FE´R camera, of time-resolved spectra of th
explosive luminescence of an AgN3 crystal. Two essentially
different types of luminescence are clearly distinguished
this streak photograph: initially wideband luminescence
the sample followed by discrete-line luminescence of
explosion-generated plasma.

In the spectra of the plasma generated by explosion
the HMA we can identify metal lines~silver, thallium, and
lead!, along with certain nitrogen lines19 ~see Table I!. An
unidentified line in the vicinity of 770 nm is also observed
all the HMAs.

The wideband luminescence is the most interesting co
ponent from our point of view~Fig. 5!. The spectrum of this
luminescence~or at least part of it! cannot be described b
the Planck formula, attesting to the nonthermal characte
the process. This conclusion is further corroborated by
qualitative appearance of the spectrum~especially for thal-
lium azide! ~Fig. 5! and the nature of the kinetics~decay of
the signal intensity before onset of the plasma spectrum;
Fig. 4!. All told, these considerations mean that the lig
radiation preceding the explosion can definitely be identifi
as predetonation luminescence.19–21

FIG. 3. Kinetics of the explosive luminescence of AgN3 whiskers
(l5550 nm, laser pulse initiation, crystal mounted on the input window
the acoustic sensor!; the solid curve represents the laser signal, and
dashed curve represents the leading edge of the acoustic signal.



s-

ra:

e

910 JETP 89 (5), November 1999 Aduev et al.
FIG. 4. Streak photograph of the explosive lumine
cence spectrum of a AgN3 macrocrystal, reproduced
from the screen of the image-converter streak came
~a! predetonation luminescence region;~b! region of lu-
minescence of the explosion products; thel and t axes
indicate the direction of increasing wavelength and tim
over the screen.
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We now discuss certain properties of this luminescen
which are essential to the understanding of its nature and
mechanism of explosive decomposition on the whole.

1. In all the objects the short-wavelength boundary of
luminescence lies in the transparency region. Attempts
detect shorter-wavelength luminescence by means of m
sensitive equipment have been in vain.3,4,16This result means
that the photomultiplication process discussed in Ref. 5
be eliminated below as a possible mechanism of hole m
plication.

2. A large part of the predetonation luminescence sp
trum corresponds to a photon energy greater than the the
width of the HMA bandgap (;1 – 1.5 eV; Ref. 15!. We must
therefore be dealing with hot luminescence.22 This is a rig-
orous assertion for the part of the spectrum with\v.Eg .
For the part of the spectrum with\v,Eg the statement is a

TABLE I. Identification of lines in the luminescence spectra of HMA d
composition products.

Material Band No.
Spectral line,

nm Identification

1 523 Ag ~521 nm!
2 548 Ag ~546.5 nm!

AgN3 3 595 N ~594 nm!
4 769 Unidentified line
5 834 N ~822 nm!

1 505 N ~505 nm!
2 523 Unidentified line
3 592 N ~593 nm!

PbN6 4 679 N ~672 nm!
5 724 Pb~722 nm!
6 773 Unidentified line
7 828 N ~822 nm!

1 532 Tl ~535.046 nm!
2 588 N1 ~593.179 nm1594.167 nm!

TlN3 3 651 Tl ~654.977 nm!
4 747 Unidentified line
5 815 N ~818.816 nm!
6 870 Unidentified line
e,
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conjecture, and arguments supporting it will be given bel
in our discussion of the predetonation luminescence mod

3. Synchronous measurements of the predetonation
ductivity and the predetonation luminescence show that
luminescence is observed in the range of very high b
carrier densities (;1020cm23!.13,16 Even at far lower densi-
ties defect-related luminescence saturation effects are us
observed.22 ~Recall that the concentration of impurities in th
as-prepared samples is less than 1017cm23.) Moreover, pro-
cesses of absorption by band carriers become significan
such densities.22 Essentially structureless predetonation a
sorption has been observed experimentally in silver azid23

It is highly probable that the decay of the predetonation
minescence intensity prior to the onset of plasma lumin
cence~Fig. 4! is attributable to resorption processes. Th
conjecture will be proved in Sec. 4.2.

4. It has been shown2 that the mechanical fragmentatio
of a sample is preceded by partial melting. Consequen
predetonation luminescence is observed at close to melt
point temperatures, at which luminescence is usua
extinguished.18,22

4.2. Kinetics of predetonation luminescence

The kinetics of the recorded predetonation luminesce
signal~Fig. 3! does not reflect the true kinetics of this lum
nescence and definitely not the kinetics of explosive deco
position. This disparity is associated with the following co
siderations.

1. The true luminescence kinetics is distorted by reso
tion processes.

2. The nonuniform excitation of the macrosamples us
in several experiments can have the effect of superimpo
the kinetics of propagation of the reaction zone through
sample~detonation wave! on the basic chain-reaction kine
ics.

To rule out the influence of these factors, we have p
formed experiments involving synchronous measurement
the predetonation luminescence and the absorption of s
azide whiskers in the presence of laser pulse initiationl
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51064 nm). Using this type of excitation and whisker cry
tals enabled us, as in the measurements of the predeton
conductivity, to make the excitation uniform and thus p
clude the influence of detonation processes. The synchro
measurement of luminescence and absorption~at one wave-
length! also provided a means for taking into account t
distortion of the luminescence signal kinetics due to reso
tion, i.e., to determine the true luminescence kinetics~Fig.
6!.

Resorption is taken into account by the expression24

I ~ t !5I r~ t !D~ t !~12exp~2D~ t !!!21, ~4!

FIG. 5. Predetonation luminescence of HMAs:~a! AgN3; ~b! Pb~N3!2; ~c!
TlN3.
-
ion
-
us

-

whereI r(t) is the recorded luminescence intensity~lumines-
cence signal!, andD(t) is the optical density of the sample

The resorption-corrected luminescence kinetics is fou
to be represented by a curve that levels off into a plat
@~Fig. 6~b!# and is very similar to the kinetics of the predet
nation conductivity~Fig. 2!. The similarity is more than out-
ward appearance. The corrected luminescence kinetics,
the case of the predetonation conductivity~Fig. 2!, is well
approximated by the solution of the equation

dI

dt
5aI 2bI 2, ~5!

which has the form

I ~ t !5
exp~a~ t2t0!!

I `
21~exp~a~ t2t0!!21!1I 0

21 , ~6!

wheret0 is the time at whichI (t) attains a valueI 0 that can
be reliably measured, andI ` is the value ofI (t) on the
plateau. As in the case of the predetonation conductivity,
value of the constanta in Eqs.~5! and~6! lie in the interval
a5108– 109 s21 for different samples.

In our opinion, the agreement of the predetonation c
ductivity and luminescence kinetics is a very important fa
and indicates that they reflect the kinetics of the basic p
cess: explosive decomposition. This fact must be taken
account in constructing a model of predetonation lumin
cence and explosive decomposition on the whole.

4.3. Model of predetonation luminescence

The predetonation luminescence properties are such
the range of possible models of the phenomenon can be
rowed down considerably.

Above all, the condition\v.Eg and the absence o
temperature extinction of this luminescence rule out all
kinds of luminescence associated with local centers.18,22

Comparison of the spectra of the pre-explosion lumin
cence with the band structure data15,23,25also serves to rule
out such forms of fundamental luminescence as edge, e
ton, and cross-luminescence.18,22,26

Consequently, of all the known types of luminescen
from solids, the only remaining candidate is intraband lum
nescence due to radiative transitions of hot electrons
holes within the conduction or valence band, resp
tively.22,27 However, we have not been able to discern a
reasonable correlation between the band structure of the
a

d
ce
FIG. 6. Predetonation luminescence kinetics of
silver azide whisker atl5550 nm~laser pulse ini-
tiation!: ~a! luminescence signal~solid curve! and
optical absorption~dashed curve!; ~b! luminescence
kinetics with allowance for resorption, calculate
from the experimental values of the luminescen
signal and the optical density according to Eq.~4!
~dashed curve! and calculated according to Eq.~6!
~solid curve!; t0 is the time at which the lumines-
cence signal attains a valueI 0 that can be reliably
detected.
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vestigated objects and the predetonation luminescence s
tra, which is one of the basic methods used to identify int
band luminescence.27

An altogether different picture emerges when the
lence band is assumed to contain quasi-local hole states
level corresponding to a quasi-local hole state is presen
the interior of the valence band at a distance of 3.2 eV fr
the top of the valence band in silver azide, at 3.4 eV
thallium azide, or at 3.6 eV in lead azide, a distinct corre
tion is observed between the luminescence maxima and
density-of-state peaks~Fig. 7!.2! However, attempts to obtain
an analogous correlation for a level corresponding to a qu
local hole state in the conduction band have failed.

The sum total of these considerations has led us to
pose, as a model of predetonation luminescence, intrab
radiative transitions of valence-band electrons into qu
local hole states situated in the depth of the valence b
~Fig. 7!. Inasmuch as the lifetime of a hole in a quasi-loc
hole state is at most;10214s ~Ref. 28!, these states must b
generated continuously during explosive decomposition.

At this time we do not see any alternative explanat
for predetonation luminescence. The proposed model ni
accounts for all the observed properties of this luminesce
It is extremely unlikely that the correlations of the positio
of the luminescence maxima for the three objects~two
maxima in silver and lead azides, and four maxima in th
lium azide! are accidental. We therefore assume that the
equacy of the proposed model, if not proved directly,
highly probable.

One other remark has very important bearing on
what follows. The detrapping of holes from a quasi-loc
hole state produces hot holes, which can cause hole mult
cation as a result of impact ionization18 and, hence, to the
development of a chain reaction.

5. MODEL OF THE EXPLOSIVE DECOMPOSITION OF
HEAVY-METAL AZIDES

We first state the main principles on which the model
explosive decomposition must be based.

1. The chain-reaction character of explosive decomp
tion has been proved experimentally~Sec. 3.2!. The decom-
position kinetics is described on the assumption that
growth of the chain is linear, and its breaking is a quadra
process~Secs. 3.3 and 4.2!.

2. Experimental estimates of the cross sections~Sec. 3.3!
support the assumption that the branching of the chain~hole
multiplication! is determined by the trapping of holes by
cation vacancy, and breaking of the chain is determined
indirect interband recombination.

3. Photomultiplication of holes is not a contributing fa
tor in the growth of the chain. The principal mechanism
hole multiplication is the impact ionization of hot hole
formed in detrapping from a quasi-local hole state~Secs. 4.1
and 4.2!.

The chain reaction of the decomposition of HMAs do
not cause molecular nitrogen to form in the crystal.3,6,7

These experimentally substantiated principles can
used to formulate the main questions that need to be
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swered~at least at the level of a working hypothesis! by the
proposed model.

1. What are the processes by which hole trapping b

FIG. 7. Comparison of the spectra of predetonation luminescence~a! and
the density of states in the valence band~b! for silver, thallium, and lead
azides;E1 andN1 are the scales for the density of states,E2 andN2 are the
scales for the predetonation luminescence spectrum, andE0 is the position
of the quasi-local level for best correlation between the maxima of
predetonation luminescence spectrum and the density of states; the a
indicate optical transitions of valence-band electrons into a quasi-local s
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FIG. 8. Main stages of the AgN3 explosive
decomposition reaction.
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cation vacancy leads to the formation of an actual quasi-lo
hole state?

2. How is the reproduction of cation vacancies~or the
centers that take their place! maintained during decompos
tion? What is the necessary condition for the experiment
observed invariance of the quantitya in Eq. ~2! as the den-
sity of band holes is varies in the interval 1018– 1020cm23?

A proposed monohole chain-reaction model~in applica-
tion to silver azide! satisfying the stated requirements
shown schematically in Fig. 8. The figure shows only t
main processes underlying chain growth and terminating
the production of a hot hole and the restoration of a lo
level in the bandgap. The well-known processes of imp
ionization by hot holes,18 which cause hole multiplication
and interband electron–hole recombination,22 which causes
the chain to break, are omitted to avoid cluttering the fig
unnecessarily. For the same reason, neither are the radi
transitions responsible for luminescence shown, as they
not affect the energy behavior of the process. The total p
cess in question is conveniently divided into three stages

1. Hole trapping at a cation vacancy~Fig. 8!. The pa-
rameters characterizing the process have been establish
Sec. 3.2:Sl;10214cm2; t;1029 s. The end result of this
stage is the transformation of an extended~detrapped! state
~band hole! into a radical trapped at a cation vacancy, i.
the formation of a nonequilibrium (Vc , N3

0) cluster. Inas-
much as the duration of this stage greatly exceeds the d
tion of the subsequent stages, it is the stage that controls
kinetics of the process.

2. Formation of quasi-local hole states due to reco
struction of the(Vc , N3

0) cluster in interaction with neigh-
boring N3

2 andAg1 ions. We an assume that the reconstru
tion process begins with the formation of a molecular bo
between a N3

0 radical trapped at a vacancy and a neighbor
N3

2 ion (N3
01N3

2→N6
2). This process is analogou

to the well-studied self-trapping of holes in alkali-halid
crystals.18,29 ~Quantum-chemical calculations of the reacti
N3

01N3
2→N6

2 for isolated radicals and data on the expe
mental observation of short-lived N6

2 radicals in solutions by
pulsed photolysis are given in Ref. 30!. Unlike alkali-halide
crystals, however, the completion of this reconstruction p
cess most likely has the effect of ‘‘smearing’’ the hole wa
function throughout a (Vc , N6, Ag! cluster.~An analogous
process occurs in AgCl, in which the self-trapped hole i
(AgCl6)42 cluster.31

Unfortunately, calculations that could be used to e
mate at least approximately the energy released in this s
are nonexistent at the present time. However, making us
the fact that the resultant state is close to N6

0 and relying on
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the results of calculations of the reaction~1! in Ref. 2, we
can state with some certainty that the process in questio
exothermic. In this case, we can assume by reasoning sim
to that in Refs. 3 and 4 that the released energy is store
the potential energy of a hole in a quasi-local hole state~Fig.
8!.

According to data obtained in the investigation of pr
detonation luminescence~Sec. 4.3!, the depth of this state is
3–3.5 eV. Multiplying the latter by Avogadro’s number, w
obtain the total energy that must be released in the comp
decomposition of one mole of silver azide if the propos
model is correct. This quantity (;3 J/mol) is close to the
experimental energy release in an explosion32; this proximity
can be regarded as evidence of the adequacy of the mo

Consequently, the end result of this stage is the onse
a quasi-local hole state~Fig. 8!, which is responsible, in par
ticular, for predetonation luminescence~Sec. 4.3!. According
to the proposed model, the density of these states is pro
tional to the density of band holes, thereby reconciling
kinetics of the predetonation conductivity and predetonat
luminescence. It must be emphasized that because the i
band luminescence yield is less than 1025 ~Ref. 27!, it pro-
vides us with a good indicator of the multiplication proce
without influencing its overall kinetics.

The slowest process in this stage is the migration
heavy particles during reconstruction, i.e., the duration of
stage is;10213s.

3. Hole detrapping~Fig. 8!. The lifetime of a hole in the
quasi-local hole is normally no longer than;10214s ~Ref.
28!. A hot band hole having an energy of 3–3.5 eV is ge
erated in hole detrapping. This process can be regarde
transfer of the potential energy of a hole in a quasi-local h
state into the kinetic energy of a hot hole. Consequently,
holes with energies greatly exceeding the width of the HM
bandgap~1–1.5 eV, Ref. 11! are generated. This energy
transformed via two channels: impact ionization, which lea
to the multiplication of band holes and electrons, and phon
emission, which causes the sample to heat up, but does
support multiplication.

According to existing notions,18 at hole energies abov
the threshold level, which is usually only slightly higher tha
Eg , the probability of impact ionization is close to unity
Thermalization due to phonon emission becomes predo
nant at below-threshold energies. In application to
scheme of the model this means that the probability of
pact ionization for holes detrapped from the quasi-local h
state is close to unity, i.e., each link of the chain induc
doubling of the number of holes or, in reactor terminolog
the hole multiplication factor is equal to 2. On the oth
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hand, the sample is heated by phonon emission during
thermalization of holes and electrons whose energies fall
low the threshold.

A fundamental question arises: What happens at the
cal density-of-states peak corresponding to a quasi-local
state before hole detrapping? In other words, where does
level corresponding to the (Vc , N6 Ag)2 cluster~Fig. 8! go?
Above all, we call attention to the fact that the (Vc N6 Ag)
cluster maintaining the presence of the quasi-local hole s
in the depth of the valence band is neutral relative to
lattice. But the (Vc , N6 Ag)2 cluster, which is the result o
detrapping, has a negative unit charge relative to the lat
i.e., this cluster has the same charge as the cation vaca
As a rule, the position of the energy level of a defect in t
band diagram is strictly decided by its charge.29 We can
therefore assume with reasonable certainty that the pos
of the cluster level does not differ much from the position
the level of the original cation vacancy. Since the transit
of the cluster into the equilibrium state is accompanied
the migration of heavy particles, the duration of this stage
also;10213s.

Consequently, the detrapping of a hole from a qua
local hole state eradicates the density-of-states peak from
valence band and introduces a local level in the bandgap
position close to the level of the isolated cation vacancy. T
emergence of this level establishes conditions for the abo
described chain of processes to be repeated, i.e., for the c
reaction to continue. In other words, from the standpoint
the processes discussed here the system can spontane
return to its initial state many times. In the proposed mod
therefore, the growth of a chain reaction does not require
generation of new vacancies, a result that fits in very w
with the experimentally observed invariance of the quan
a in Eq. ~2! as the density of band electrons~holes! varies
within a range of two orders of magnitude.

Two remarks are called for regarding the model as
whole.

1. The proposed chain-link model is consistent with
currently available experimental evidence. The followi
principles of the model have been experimentally corro
rated to date: the monomolecular character of the growth
the chain process, the role of quasi-local hole states in
generation of hot holes, and the impact mechanism of h
multiplication. Other principles have been established
what we consider to be the level of a reasonable work
hypothesis: the role of cation vacancies and the compos
of the clusters responsible for the actual local and quasi-lo
states.

2. The kinetics of explosive decomposition is describ
by Eq. ~2!. Therefore the monomolecular growth and bim
lecular breaking of the chain are not assumptions of
model, they constitute an experimental fact. However, t
experimental fact refers to the already developed explos
process, when the density of band electrons and holes
attained;1018cm23 ~Sec. 3.2!. The high band-carrier den
sities lead to saturation of the processes caused by trappi
local centers and, hence, account for the simplicity of
observed kinetics of the process.

In the nascent stage~initiation! of the process the situa
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tion can reverse, and processes at preexisting defects
play a decisive role. One of the simplest ways to take t
fact into account in the formal kinetics is to writea that
appears in~2! in the forma5 f 2g(t), wheref andg(t) are
the rate constants of hole trapping by cation vacancies
by competing centers, respectively. The dependenceg(t)
could be supported, for example, by the ‘‘burnout’’ of the
centers during initiation. Inasmuch as a chain can grow o
under the conditiona.0, ~i.e., g, f ), the threshold charac
ter of initiation2 can be attributed specifically to the need
maintain sufficiently ‘‘complete burnout’’ (g, f ) under the
influence of the initiating pulse.

In closing, we wish to call attention to a certain fund
mental aspect of the problem that far transcends the issu
exposing the mechanism underlying the explosive decom
sition of heavy-metal azides. We feel that the informati
presented in the article convincingly demonstrates an
tremely interesting possibility for the achievement of chem
cal reactions in solids. A necessary condition for chemi
reaction to take place in gases and liquids is that the reac
partners~radicals! must move in such a way as to encoun
one another. In a solid, on the other hand, a totally differ
situation can be realized. Electron excitations are in moti
and their trapping at select sites of the crystal lattice~at
structural or impurity defects! causes actual radicals to b
formed at the necessary site. Consequently, the long-t
migration of heavy particles~usually by diffusion! is super-
seded by the far more rapid migration of electron excitatio
In our opinion, the fascinating prospects for the utilization
this possibility have not yet been fully appreciated in t
modern physics and chemistry of the solid state.
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1!The explosion~fragmentation! of a sample when the reaction-rate curv

reaches the plateau@Figs. 2~b! and 2~c!# is attributable to the fact that the
rate at which heat is released exceeds the rate at which heat is remov
heat transfer.10 In isolated cases sample fragmentation is observed be
the rate curve reaches the plateau.16

2!Correlation in the intensities of the luminescence and density-of-s
peaks might not be observed, because the luminescence intensity als
pends on the transition probabilities.
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20B. P. Aduev, É. D. Aluker, Yu. A. Zakharov, A. G. Krechetov, and I. V
Chubukin, JETP Lett.66, 111 ~1997!.
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Effect of the inner structure of domain walls on the stability of an isolated stripe
domain in a pulsed field
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Zh. Éksp. Teor. Fiz.116, 1694–1705~November 1999!

This paper studies the effect of the inner structure of domain walls on the stability of an isolated
stripe domain localized in a thin ferromagnetic film against a pulse of magnetic field
applied perpendicularly to the film surface. It is found that the value of the critical amplitude of
the pulsed signal strongly depends on the value of the magnetizing field in which the
system was initially placed. It is also established that the difference on stability of domains with
unipolar and bipolar walls in pulsed fields diminishes as the amplitude of the magnetizing
field decreases. Finally, the dependence of the region of stability in a pulse field on the parameters
of the system is determined for various domain types. ©1999 American Institute of
Physics.@S1063-7761~99!01411-0#
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1. INTRODUCTION

The structure of the magnetization of a nonconduct
ferromagnetic system is determined by solving the Landa
Lifshitz equations and the equations of magnetostatics sim
taneously. Generally, these equations are nonlinear and
tain integral terms, which makes them impossible to so
analytically. A more or less complete analysis can be car
out for simplified models of elements of magnetic structur
among which is the isolated stripe domain and a lattice
stripe domains in a film with perpendicular uniaxial anis
ropy. The literature devoted to the investigation of such s
tems both theoretically and experimentally is vast~see, e.g.,
Refs. 1–3!. There are a number of topics in this field
research whose study is extremely difficult. Among such t
ics is the allowance for the combined effect on the dom
properties of the magnetostatic field of scattering and
exchange interaction. To resolve the problem, one m
solve a nonlinear equation containing an integral term
magnetostatic origin.

Several simplified models are used to overcome th
difficulties. For instance, in a model widely used in stud
of properties of magnetic domains, the domain walls~DW!
are interpreted as infinitely thin geometric boundaries w
their own surface energy. Within this approximation the d
pendence of the properties of domain structures on the
rameters of the material and the thickness of the ferrom
netic film was found.4–7 However, this model does no
correctly describe the state of the domains when their w
becomes comparable to the DW thickness and forces of
exchange interaction come into play.

In another limiting case the solutions of the Landa
Lifshitz equations are determined for the model of a fer
magnet of infinite dimensions. The various properties of
isolated domain in such a system were studied in Refs. 8–
Among the topics investigated by the researchers were
9161063-7761/99/89(11)/7/$15.00
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conditions for stability of an equilibrium system and th
spectral characteristics of spin-wave excitations. Howev
since the size of the ferromagnet was infinite, the contri
tions of the fields generated by the scattering from the s
face inhomogeneities of magnetization had to be ignor
But such fields always exist in real systems, and their eff
does not vanish in the limitL→` ~hereL is the thickness of
the film!. In this case the value of the scattering field acti
on a stripe domain tends to the limit 4pM0 , whereM0 is the
saturation magnetization of the material.1 Hence the research
whose results are reported in the papers cited above i
interest from the methodological viewpoint. Only a mod
that allows for scattering from the surface can be conside
meaningful.

The theory of the approximate solution of the singula
perturbed equation describing the structure of magnetiza
of an isolated stripe domain in a thin ferromagnetic field w
developed in Refs. 13 and 14. A unified approach based
method developed in those papers made it possible to a
for the effect of the magnetostatic and exchange interact
on the domain structure and to determine the limits of ap
cability of the model of geometric DW.

Here we will discuss the stability of an isolated strip
domain bounded by unipolar and bipolar domain wa
against a step magnetic-field pulse. We will also compa
tively analyze the stability of the given structures, determ
the relationship that exists between the critical amplitude
the pulse and the initial value of the magnetizing field, a
analyze the dependence of this relationship on the par
eters of the material.

2. DYNAMICAL EQUATION FOR THE PARAMETERS OF A
STRIPE DOMAIN IN A THIN FILM

The magnetic energy functional,
© 1999 American Institute of Physics
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E5E
V

dVH a

2 S ]M

]x D 2

2
b

2
Mz

22HzMzJ 1Em ,

~1!

Em5
1

2EV
E

V
dV dV8 Mi~r 8!M j~r !

]2

]xi8 ]xj

1

ur2r 8u
,

is our starting point in describing the properties of an is
lated stripe domain. HereEm is the energy of the intrinsic
magnetic field, repeated indices imply summation, anda and
b are the constants of exchange interaction and uniaxial
isotropy, respectively. The anisotropy axis is parallel to thz
axis and is perpendicular thexy plane of the film, andHz is
the external field, which is perpendicular to the film plane

Since the magnetization vectorM in nonconducting fer-
romagnetic materials meets the conditionM25M0

2, we can
express its components in terms of the angles in a sphe
system of coordinates:

S Mx

M y

Mz

D 5M0S sinu cosw

sinu sinw

cosu
D , ~2!

whereu andw are the polar and azimuthal angles in a syst
of coordinates in which thez axis is the polar axis and th
anglew is measured from thex direction.

We will assume that an isolated stripe domain orien
parallel to they axis, so that the magnetization is uniform
distributed along this direction.

As shown in Ref. 14, in thin ferromagnetic films o
thicknessL whose value is such that (L/L)2!16 ~with L
5Aa/4p the magnetic length!, the effects of DW twisting
are very weak and hence we can assume that the DW s
ture is approximately uniform in thickness.

Thus, reasoning within these approximations, we c
clude that the anglesw and u depend only on one spatia
variable,x, which makes all calculations much simpler.

Integrating in~1! with respect toy andz, we get

E5M0
2SE dx W~u,w!, ~3!

whereS is the DW area, and

W~u,w!5
a

2 S ]u

]xD 2

1
a

2
sin2 uS ]w

]x D 2

2
b

2
cos2 u

2S hz2
hz

m~x!

2 D cosu1
hx

m~x!

2
cosw sinu ~4!

is the magnetic energy density of the system. The com
nents of the magnetostatic fieldhi

m(x) are

hx
m~x!54p cosw sinu2E dx8J~x2x8!cosw~x8!sinu~x8!,

hz
m~x!5E dx8J~x2x8!cosu,

J~x2x8!5
2

L
ln S L21~x2x8!2

~x2x8!2 D .
-

n-

al

d

c-

-

o-

To describe the magnetization state of the system w
the energy density given by~4!, we write the Landau–
Lifshitz equations in terms of angular variables:

2 l 2
]2u

]x2
1F11 l 2S ]w

]x D 2Gsinu cosu

52«hx
m cosw cosu2«S hz2hz

m2
]w

]t D sinu, ~5a!

l 2
]

]x
sin2 u

]w

]x
52«S hx

m sinw2
]u

]t D sinu, ~5b!

where «5b21!1, l 5Aa/b and t5tv0 ; here v0

52m0M0 /\ andm0 is the Bohr magneton.
The right-hand side of Eq.~5b! contains a small param

eter, with the result that one of the partial solutions of th
equation in the zeroth approximation in« is independent of
the variablex. We examine this solution in greater detail an
determine the state of the isolated stripe domain that co
sponds to it.

We formally expressw andu as functions ofx andt:

w~x,t!5w0~t!1«w1~x,t!1•••,

u~x,t!5u01«u11•••. ~6!

Here the correctionw1 can be found by solving the equatio

l 2
]

]x
sin2 u0

]w1

]x
52S h0x

m sinw02
]u0

]t D sinu0 . ~7!

As for Eq.~5a!, standard perturbation-theory techniques ca
not be used in the solution, since the external field dram
cally changes the system state, with the result that the ri
hand side of Eq.~5a! is a singular perturbation.

To solve Eq.~5a!, we use the perturbation regularizatio
method.13,14 To this end we add to the right- and left-han
sides of Eq.~5a! an effective operator6«h sinu ~hereh is a
parameter that is generally time-dependent! and write Eq.
~5a! as follows:

2 l 2
]2u

]x2
1sinu cosu6«h sinu

52«hx
m cosw cosu1«S 2hz1hz

m6h1
]w

]t D sinu. ~8!

Assuming that the right-hand side of Eq.~8! can be regular-
ized via appropriate selection of the parameterh, we can
determineu0 by solving the equation

2 l 2
]2u0

]x2
1sinu0 cosu06«h sinu050 ~9!

with the boundary conditions]u0 /]xux→6`50.
The correctionu1 can be found by solving the inhomo

geneous linear equation

Ĝ1~u0!u15F~u0 ,w0!, ~10!

Ĝ1~u0!52 l 2
]2

]x2
1cos 2u06«h cosu0 ,
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where

F~u0 ,w0!52h0x
m cosw0 cosu0

1S 2hz1h0z
m 6h1

]w0

]t D sinu0 .

When the parameterh is positive, the boundary-valu
problem ~9! has two different solutions, depending on t
sign in front ofh:

u0~X,h!

5H p12 arctanHA «h

11«h
sinhSA11«h

X

l D J for 1h,

p22 arctanHA «h

12«h
coshSA12«h

X

l D J for 2h,

~11a!

~11b!

with X5x2x0 .
An analysis of the results shows that the solution~11a!

describes an isolated stripe domain as a bound state of
polar Bloch walls. Since for the given structure the angleu0

changes by 2p when2` changes to1`, from now on we
will say that ~11a! corresponds to a 2p-DW.

The total variation of the angleu0 for ~11b! is equal to
zero, as a result of which we define the structure of the gi
isolated stripe domain as that of a 02DW. This corresponds
to a bound state of bipolar Bloch walls.

The expressions~11a! and ~11b! for the ground state o
both types of domain structures contain an undefined par
eterh. This parameter must be selected in such a way tha
secular terms remain on the right-hand side of Eq.~10!. This
is achieved by satisfying the solvability condition

E dx c~x!F~u0 ,w0!50, ~12!

wherec(x) is the general homogeneous solution of Eq.~10!.
Clearly, in the zeroth approximation in« there are two

such solutions:

c1~x!5 l
]u0

]x
, c2~x!5sinu0 . ~13!

If we define the width of an isolated stripe domain as10

d5
1

2 E dx ~12cosu0!, ~14!

there is a one-to-one correspondence between the param
h and the domain widthd, according to which

«h5cosh22
d

2l
for 0-DW,

«h5sinh22
d

2l
for 2p-DW. ~15!

Substituting~13! in ~12! and employing analytical integra
tion methods, we obtain to within terms proportional tol /d
dynamical equations that establish a relationship between
width of an isolated stripe domain and the rate of change
the azimuthal angle:
ni-

n

-
o

eter

he
f

]w0

]t
2hz2b cosh22

d

2l
18 arctan

L

d
24

d

L
lnF11S L

dD 2G50

~16a!

for 0-DW, and

]w0

]t
2hz1b sinh22

d

2l
18 arctan

L

d
24

d

L
lnF11S L

dD 2G50

~16b!

for 2p-DW.
To obtain a closed system of dynamical equations for

parameters of the domain structure, we integrate the rig
and left-hand sides of Eq.~7! with respect tox from 2` to
1`. Since the left-hand side vanishes in the process,
second dynamical equation is determined by the conditio

E
2`

`

dxS h0x
m sinw02

]u0

]t D sinu050. ~17!

Bearing in mind that forl /d!1 we have

]u0

]t
5

]u0

]h

]h

]t
'2

1

2
sinu0

]~d/ l !

]t
,

we find that

1

l

]d

]t
1V1 sin 2w050, ~18!

where

V154pH 12
p l

8L F ln
L2

l 2
7 lnS 11

L2

d2D 2aG J ,

a5
8

p2E2`

`

dx
x ln x

sinhx
'0.174.

In deriving ~18! we discarded the terms proportional
l /d,l 2/L2!1. Here and in what follows the upper signs
the expression with (6,7) correspond to 2p-DW and the
lower signs to 0-DW. Since we haveL2/ l 2@L2/d2, the ef-
fect of the term following ‘‘7 ’’ in the expression forV1 can
be ignored. Then the coefficientV1 can be accurately written

V154pS 12
p l

4L
ln

L

l D . ~19!

Obviously, in this approximation Eq.~18! is the same for
0-DW and 2p-DW.

On the basis of the earlier remarks we note that the ra
of applicability of the theory in the thickness of ferroma
netic fields is bounded above and below:

l 2!L2!16L2. ~20!

Thus, for both types of isolated stripe domains localiz
in thin films we have a system of dynamical equations for
parameters of the domain structure@~16! and ~18!# that are
similar to the Slonczewski equations for 180°-DW~see Ref.
1!. Our theory can be used to describe the dynamics o
stripe domain in magnetic bubble materials whose thickn
satisfies the condition~20!.

Note that for systems of a different type, systems t
model the situation in yttrium–iron garnets, the dynamic
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equations in the approximation of ultrathin films (L! l ) with
easy-axis magnetization in the film plane were derived
Kovalevet al.15,16 who carried out a full investigation of th
dynamics of two DWs coupled by the magnetostatic inter
tion.

We will now employ the dynamical equations derived
Sec. 2 to study the state of 0-DW and 2p-DW.

Using Eq.~18!, we can exclude the variablew0(t) from
Eqs.~16a! and ~16b!. If hz5const, the first constant of mo
tion can easily be found. Introducing the nationd5d/ l and
l5L/ l , we can express it as

T~ ḋ !1U~d,hz!5E, ~21!

where

T~ ḋ !5
V1

2
S 12A12S ḋ

V1
D 2 D

is the kinetic energy. An analysis of the expression for
kinetic energy shows that there is a limit in the rate of var
tion of the width of an isolated stripe domain and that t
limit is close to twice the Walker velocity. In the adopte

notation, this limit is ḋc5V1 . The potential energy of an
isolated stripe domain,U(hz ,d), in dimensionless units is
given by the formula

U~hz ,d!5dS hz28 arctan
l

d D22l lnS 11
d2

l2D
12

d2

l
lnS 11

l2

d2D 1DU~d!, ~22!

where

DU~d!5H 2b tanh~d/2! for 0-DW,

2b coth~d/2! for 2p-DW

is the contribution to the potential energy of an isolat
stripe domain that arises due to the allowance for an in
structure of DW.

3. EFFECT OF THE MICROMAGNETIC STRUCTURE ON THE
STABILITY OF A 0-DW IN A PULSED FIELD

To be specific we begin with a 0-DW. Th
d-dependence of the potential energy of a 0-DW ond is
depicted in Fig. 1 by the curves1–3, which correspond to

FIG. 1. Thed-dependence of the potential energy of a 0-DW for vario
values of the magnetic field.
y

-

e
-

er

various values of the magnetic field.
At certain values of the magnetic field the potential e

ergy of a 0-DW has two extrema at points that can be fou
from the condition

05
]U~hz ,d!

]d
5hz1b cosh22

d

2

28 arctan
l

d
14

d

l
lnS 11

l2

d2D . ~23!

Obviously, in weak fields, when the width of an isolate
stripe domain is large, the second term on the right-hand
of Eq. ~23! is negligible, so that~23! corresponds to the
result obtained in geometric domain wall models.4

We will assume that in the initial stationary state t
system is in a magnetizing fieldh0z . In curve1 of Fig. 1 this
state is denoted byA. As the strength of the external field i
increased, the dependence of the potential energy cha
~curves 2 and 3, respectively!. If the field amplitude in-
creases slowly, the system has time to reach~due to dissipa-
tive processes! a state of equilibrium determined by the ne
position of minimum in the potential energy. As the fie
tends tohc ~curve3!, the minimum in the energy disappea
and the 0-DW becomes unstable.

If a step pulseDhz of magnetic field is applied to the
system, thed-dependence of the magnetic field sudden
changes~curve2 now! while the domain width remains th
same. Here the new state of the system corresponds to
point D. Then the system begins to move, and the dom
width d changes. IfUD , the coordinate of pointD on the
energy axis, is smaller thanUC , the potential energy of the
0-DW at the maximum, then the state may remain sta
provided that the rate of variation of the domain width do
not reach the critical valueV1 and the pointd2 of the
potential-energy minimum. Here the motion of a 0-DW co
responds to periodic pulsations. IfUD.UC holds ~as in the
case depicted in Fig. 1!, the 0-DW becomes unstable an
collapses.

On the basis of the above reasoning we can formu
the conditions for the stability of a 0-DW against a magnet
field pulse:

U~h0z1Dhz ,dc!2U~h0z1Dhz ,d1!<0, ~24a!

U~h0z1Dhz ,d1!2U~h0z1Dhz ,d2!< ~V1/2! , ~24b!

where ~24a! is the condition for 0-DWstability against col
lapse, and~24b! is the condition of 0-DW stability agains
dynamical transformations that appear when the DW reac
the critical rateV1 . Note thatd1 is determined by solving
Eq. ~23! corresponding to the energy minimum in the fie
h0z , and the quantitiesd2 and dc constitute the solution of
the same equation for the fieldh0z1Dh and correspond to
the positions of the minimum and maximum in the potent
energy of the domain.

Figure 2 illustrates the graphical solution of the syste
of inequalities~24a! and~24b!, which determines the region
of 0-DW stability in the (h0z ,Dhz) plane, for a film withl
510 andb5100.
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Above the curve2 lies the region corresponding to va
ues of the magnetizing fieldh0z and the amplitudeDhz of the
pulsed signal for which the rate of variation of the doma
width reaches its critical valueV1 and an isolated stripe
domain becomes unstable against dynamical transfor
tions. We will call h0z andDhz the parameters of the field
When the field parameters are below the curve2, there is no
dynamical 0-DW instability.

The curve1 divides the plane in Fig. 2 into two parts
The region below1 corresponds to values of the field param
eters at which the 0-DW width does not reach the criti
value dc ~Fig. 1! and the structure of an isolated stripe d
main remains stable. Thus, the hatched region in Fig. 2 d
ignates the region where a stable 0-DW exists.

It is clear that the extent of the region of stability d
pends sensitively on the magnetic film thickness. The tra
shown in Fig. 3 give an upper bound for the 0-DW region
stability in films of various thicknessL for b5100.

4. EFFECT OF THE MICROMAGNETIC STRUCTURE OF
DOMAIN WALLS ON THE STABILITY OF A 2 p-DW

In contrast to the potential energy of a 0-DW, the pote
tial energy of a 2p-DW has only one extremal point, whic
corresponds to the minimum of the energy~Fig. 4!. The co-
ordinate of this point on thed axis is determined by the
condition

FIG. 2. Graphical solution of the inequalities~24!.

FIG. 3. Regions of 0-DW stability for various values of the thickness of
magnetic film.
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]U~hz ,d!

]d
5hz2b sinh22

d

2

28 arctan
l

d
14

d

l
lnS 11

l2

d2D . ~25!

As in the 0-DW case, we will assume that the system in
field h0z is in a stationary state corresponding to pointA and
passes into stateD when a pulse of magnetic field is applie

In our case the condition for the stability of the structu
of a 2p-DW against dynamical transformations that occ
when the critical rate is reached is similar to the conditi
~24! for a 0-DW. At the same time, as shown in Ref. 13, t
decrease in the width of the 2p-DW to a certain critical
valuedc ~Fig. 4! induces inhomogeneous longitudinal pertu
bations of the DW magnetizations. Thus, the 2p-DW be-
comes unstable if the energyUD acquired as a result of th
action of a field pulse is sufficiently large to reduce the wid
to dc . Here, for an unstable state to be reached, the poindc

must coincide with the turning point, at which the kinet
energy of the 2p-DW vanishes.

To determine the criterion for the stability of a 2p-DW
under compression, we will study the corresponding solut
of ~11a!, ~16b!, and~18! at the turning pointdc for stability
against small perturbations.

At the turning pointḋ50 holds, as a result of which Eq
~18! implies that there is a solution that corresponds tow0

5p/2. Then the system of equations describing the sm
perturbations (du,dw) superposed on the ground states~11a!
determined at the turning point has the form

Ĝ1~u0!du5«
]

]t
du,

~26!

Ĝ2~u0!du52«4pdu1«E dx8J~x2x8!du~x8!2«
]

]t
du,

where

du5sinu0 dw, Ĝ2~u0!5Ĝ1~u0!1sin2 u02 l 2S ]u0

]x D 2

.

Clearly, to within terms proportional to«, the solutions
of Eqs.~26! can be written13

du5C1 exp$ ivt% c1~x!1C2 exp$ ivt% c2~x!,

du5C3 exp$ ivt% c1~x!1C4 exp$ ivt% c2~x!, ~27!

FIG. 4. Thed-dependence of the potential energy of a 2p-DW.
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wherec1 andc2 are the eigenfunctions~13! of the operators
G1 andG2 , which have eigenvalues of order«.

Substitutingdu anddw in the form ~27! into Eqs.~26!
and finding the scalar products of the result by the co
sponding eigenfunctions~13!, we arrive at a system of alge
braic equations for the expansion coefficientsCi :

vC350,

ivC11@V122b sinh22 ~dc/2!#C350, ~28a!

V2C22 ivC450,

ivC21V1C450, ~28b!

whereV252b sinh22(dc/2)1(4/l)ln(11l2/dc
2).

The system of equations~28b! has nontrivial solutions
for v5AV1V2, a condition that determines the natural fr
quency of small pulsation perturbations of the 2p-DWat the
turning point dc . Since the natural frequency is real an
positive for all values ofd, the 2p-DW is always stable
against such perturbations.

In our case the system of equations~28a! is the most
interesting. Clearly, the nontrivial solutionsC3Þ0 of this
system result if

v50, V122b sinh22 ~dc/2! 50. ~29!

An analysis shows that these relationships determine
condition for the occurrence of an instability against dev
tion from the Bloch orientation of magnetization in the wa
bounding the domain.

On the basis of these results we can formulate a crite
for conservation of 2p-DW stability in a pulsed field:

U~h0z1Dhz ,dc!2U~h0z1Dhz ,d1!<0, ~30a!

U~h0z1Dhz ,d1!2U~h0z1Dhz ,d2!<T~ ḋc!. ~30b!

Obviously, the systems of inequalities determining t
stability regions for 0-DW and 2p-DW are similar. The dif-
ferences are related to the differences in the dependenc
the potential energy of the given systems and in the way
which the critical widths of domains are determined. F
instance, for a 0-DW the critical width is determined by E
~23!, while for a 2p-DW the critical width is determined by
Eq. ~29!.

Figure 5 depicts the graphical solutions of the inequ
ties ~30a! and~30b!, which determine the regions of stabilit

FIG. 5. Graphical solution of the inequalities~30a! and ~30b! for films of
various thickness.
-

e
-

n
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of
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r
.

-

of the 2p-DW structure in the (h0z ,Dhz) plane.~The stabil-
ity regions are bounded above by the corresponding curv!

5. COMPARATIVE ANALYSIS OF STABILITY OF A 0-DW
AND A 2p-DW IN A PULSED FIELD

In Fig. 6 we compare the regions of stability of the stru
tures under investigation for a film with a thicknessl510
and b5100. The curveOMN bounds the region of 0-DW
stability from above, while the curveOPRbounds the region
of 2p-DWstability from above.

Figure 6 shows if the domains of different structure a
initially placed in a weak magnetizing field, their response
a magnetic-field pulse is almost the same. Both structu
examined in the present paper become unstable agains
namical transformations when the critical rate is reached

On the other hand, if the magnetizing field is high, t
structures examined in the present paper exhibit differen
which are related to the organization of the inner structure
the domain walls. The curveRPMN bounds the region of
the field parameters in which a 0-DW disappears but ap
5DW remains stable.

Obviously, in thin films, for certain values of the fiel
parametersh0z and Dhz a 2p-DW is more stable than a
0-DW. In thick films, due to DW twisting, the states of th
structures near the surface are equivalent, so that the di
ences in the stability of 0-DW and 2p-DW in thin fields
manifest themselves less vividly.

The conclusions of the theory developed here were c
firmed by the results of experiments17–19 in which the possi-
bility of using vertical Bloch lines as memory elements w
investigated. These experiments revealed that the stabilit
a 2p-DW is higher than that of a 0-DW.

The author is grateful to Prof. Yu. I. Gorobets for di
cussing the various aspects of the present research.
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Electronic properties of C 60 single crystals doped with lithium by electrodiffusion

A. V. Bazhenov, S. I. Bredikhin, V. V. Kveder,* ) Yu. A. Ossipyan, R. K. Nikolaev,
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Zh. Éksp. Teor. Fiz.116, 1706–1722~November 1999!

Diffusion of lithium cations in C60 single crystals driven by electric field has been detected and
studied. A novel technique for fullerene crystal doping based on injection of ions through
a ‘‘superionic crystal/C60 single crystal’’ heterojunction has been suggested. It has been found that
lithium doping of C60 single crystals brings about an ESR signal, and this signal as a
function of time has been investigated. The electronic conductivity in LixC60 crystals has a
nonmetallic nature. Reflection spectra measured in the IR band have shown that the reflectivity due
to free electrons gradually decreases with time, which correlates with the evolution of
signals due to ESR and microwave conductivity. Lithium doping of crystals increases the oscillator
strength of theT1u(4) vibrational mode and shifts it to lower frequencies~from 1429 cm21

to 1413 cm21), which indicates that one electron is present at the C60 molecule, and this fact may
be treated as evidence that the LiC60 phase is generated in a C60 crystal. © 1999 American
Institute of Physics.@S1063-7761~99!01511-5#
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1. INTRODUCTION

Given the almost spherical shape of the C60 molecule
and the weak intermolecular interaction, one can classify60

crystals as typical molecular solids, whereas their electro
properties are more like those of semiconductors. Inde
measurements of their conductivity,

1–3
optical absorption

spectra,4,5 and photoconductivity6 provide evidence that C60

in the crystalline form is a semiconductor with relative
narrow~about 0.5 eV! energy bands and a band-gap width
about 2.2 eV. The valence band of the crystal is formed
Ag orbitals of the C60 molecules, which are fully populate
by electrons, whereas the conduction band is formed fr
three almost degenerate, unoccupiedT1g , T2g , andGg or-
bitals of the C60 molecule.

On the basis of the simple one-electron model, one m
suppose that the crystalline C60 should demonstrate metalli
properties at fairly high doping levels~for example, with
alkali metals!. The small widths of energy bands, the lar
contribution of Coulomb correlations, and the possibility
strong Jahn–Teller effects caused by molecule deformati
however, can cause a failure of the model of ‘‘rigid’’ on
electron bands, which is applied to such systems in m
cases. In 1991 thin films of C60 fullerenes doped with alkal
metals, namely,AxC60, where A5Li, K, Na, Rb, and Cs,7

were fabricated for the first time. It was demonstrated la
that in AxC60 ~with A5K, Rb, Cs and atx51, 3, 4, 6! an
electron transfers from the alkali metal to the C60 molecule.
This means that the triply degenerate unoccupied orbita
sponsible for formation of the conduction band is populat
In the case of the half-filled conduction band, which occ
at x53, the material is a metal and undergoes a superc
ducting transition at low temperatures.8–11But atx54, prob-
ably owing to the Jahn–Teller deformation of molecules,12 a
9231063-7761/99/89(11)/10/$15.00
ic
d,

f
y

m

y

f
s,

y

r

e-
.

s
n-

gap opens around the Fermi level andAxC60 demonstrates
dielectric properties. It is also noteworthy that, depending
the fabrication conditions ofAxC60, various stable and meta
stable phases have been detected.13 For example, atx51 and
with A5K, Rb, and Cs, monomer, dimer, and polym
phases were clearly distinguished using the IR spectrosc
All this has led us to the conclusion that our understanding
properties of even such extensively investigated material
AxC60 ~A5K, Rb, and Cs and atx51,3,4) is farfrom clear
at the present time.

It is obvious that, for clearer understanding of proces
in AxC60 materials, it is advisable to study properties of C60

crystals lightly doped with alkali metals. Such samples, ho
ever, are difficult to fabricate using conventional diffusion
alkali metals because the system has a tendency to de
pose into stable phases with integerx. It is no less interesting
to studyAxC60 materials where A stands not only for K, Rb
and Cs, but may denote a wide range of other metals. S
systems have been little studied thus far because of diffi
ties associated with sample fabrication.

In this paper we suggest a nontraditional approach
doping of C60 crystals with metal ions by injecting them
through a ‘‘superionic crystal/C60 crystal’’ heterojunction,
which we call the electrodiffusion technique. In superion
conductors, the ionic conductivity is usually five to six o
ders of magnitude higher than their electronic conductiv
so it seemed to us highly probable that an electric current
through a heterojunction should inject mobile ions into
fullerene crystal. It is known that atT.260 K C60 crystals
have a face-centered cubic~fcc! structure with a lattice con-
stant of 1.4 nm. This structure typically has octahedral voi
which form three-dimensional networks of channels align
with @111# crystal axes. This was expected to lead to hi
diffusion coefficients for most metallic atoms, which mig
© 1999 American Institute of Physics
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permit easy doping of fullerenes with metals when an io
current is fed through them.

In the presence of electric fieldE(r ), the diffusion equa-
tion has the form

J5ND~eE1¹m!/kT, ~1!

dN~r !/dt52div J, ~2!

whereN(r ) is the ion concentration at a point with coord
nate r, D is their diffusion coefficient,J(r ) is their current
density,T is the temperature, andm(r ) is the chemical po-
tential of ions at the given point. At low concentrationsN,
when the interaction among ions can be neglected,m
5kT ln N, and Eq.~1! reduces to

J5NeDE/kT2D¹N. ~3!

If eEN@kT¹N, the electric field notably accelerates the d
fusion into a sample and allows one to execute an alm
uniform doping of a large sample, even when the diffus
coefficient is small. At largeN, the functionm(N) is non-
monotonic, which leads in the case of conventional diffus
to decomposition of a sample into phases with specific co
positions and makes fabrication of homogeneous sam
impossible. In this case, the presence of an intense ele
field should notably suppress~although not eliminate com
pletely! the decomposition of the material into differe
phases.

We selected Li ions for our first experiments because
Li xC60 composition was the least studied among
fullerenes doped with alkali metals. The aim of the repor
work is investigation of current–voltage characteristics
C60– Li7SiPO8 heterojunctions, a feasibility study of C60

doping with metal ions using the electrodiffusion techniqu
and measurements of electronic properties of doped C60 crys-
tals.

2. SAMPLES AND EXPERIMENTAL TECHNIQUES

C60 single crystals were grown at Institute for Solid Sta
Physics, Russian Academy of Sciences, by the techniqu
physical vapor-phase transport~sublimation! under a tem-
perature gradient in a sealed-off cell at temperatures ran
from 600 to 640 °C. The starting material C60 had a purity of
no less than 99.98% after purification by the chroma
graphic technique and elimination of solvent traces throu
multiple sublimation in vacuum. For our measurements,
selected single crystals shaped as thin plane-parallel p
with natural faces. The crystal faces were planes of t
~111!. The sample thickness varied between 0.7 and 2 m
and the other two dimensions were usually 2 to 4 mm.

In order to inject Li ions, electrodes were mechanica
attached to opposite~111! faces of a C60 crystals. The cath-
ode was graphite, and the anode was a two-la
Li0.2WO3uLi7SiPO8 electrode, which has a high ionic con
ductivity for lithium cations and cuts off the electronic com
ponent of electric current. In accordance with the above,
lization of cells like

~1 !Li0.2WO3uLi7SiPO8uC60crystaluGraphiteu~2 ! ~4!
c

st
n

n
-

es
ric

e
l
d
f

,

of

ng

-
h
e
tes
e
,

r

i-

allowed us to inject lithium cations into C60 single crystals
and dope samples under investigation in a controlled man
In the process of doping, cell~4! was placed on a quart
substrate in a sealed-off thermostat. A voltage was fed
cell in order to measure its current–voltage characteris
and the current as a function of time at various temperatu
The substrate temperature could be tuned over a range
2150 to 500 °C. Most experiments were performed a
voltage across a cell of 10 to 200 V and at temperatures
400–520 K. The typical current fed across the cell was 2–
mA. After the process of electrodiffusion~its time varied
from one hour to 100 h!, the sample was rapidly transporte
to a quartz ampoule and stored in liquid nitrogen before f
ther experiments.

In order to observe the diffusion process visually, w
used an MBS-4 microscope equipped with a silicon CC
camera. In the process of diffusion, a sample was illumina
from below by monochromatic radiation obtained by feedi
light from a halogen lamp through a monochromator. T
sample image generated by the CCD camera was sent
computer, and some frames separated by a predeterm
time interval ~usually 20 to 60 s! were stored on the com
puter hard disk for further processing. This computer a
controlled the temperature and recorded the current
through the cell as a function of time.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Electrodiffusion of lithium and absorption spectra in
the near IR band

An electric field was applied to cell~4! so that the elec-
trode conducting Li ions was positive, and as a result,
cations were injected into the C60 crystal via the
Li0.2WO3uLi7SiPO8uC60 crystal heterojunction, and electron
via the C60ugraphite heterojunction. Measurements
current–voltage characteristics at various temperatures h
demonstrated that, in the initial stage of C60 single crystal
doping, the electrodiffusion of Li cations is an activated pr
cess with an activation energyDE'0.93–0.96 eV. This en-
ergy can probably be associated with the activation energ
lithium diffusion in C60 single crystals. Saturation of C60

crystals with lithium leads to an increase in the Li chemic
potential (mLi) in the fullerene crystal, and the voltage acro
the cell in the open-circuit mode is of order 2 V (mLi52 eV!.
This means that the lithium concentration generated by
electrodiffusion is notably higher than its equilibrium valu
which can be obtained through conventional diffusion. F
ure 1 shows typical current–voltage characteristics of cell~4!
at T5478 K and 508 K after saturation of C60 crystals with
lithium. It is clear that the shapes of the current–volta
characteristics are typical of the process of charging a che
cal battery. When the voltage across the cell is set to zero~its
electrodes are short-circuited!, this chemical battery is dis
charged, and some of the lithium is deposited on the surf

Figure 2 shows absorption spectra of a C60 crystal before
~curve1! and after~curve2! electrodiffusion of Li ions. The
spectra were recorded atT5290 K. The intense absorptio
beginning in the initial crystal at an energy of 1.6 eV is d
to the excitonic absorption in the crystal. One can see in
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diagram that after the lithium doping, an additional bro
absorption band turns up between 0.9 and 1.5 eV. This b
is very similar to spectra of ‘‘photoinduced absorption,’’ i.e
additional optical absorption caused by laser excitati

FIG. 1. Current–voltage characteristics of cell~4! atT5478 and 508 K. The
positive voltage corresponds to injection of Li1 ions into the C60 crystal.

FIG. 2. Absorption spectra of the C60 crystal atT5290 K before~curve1!
and after~curve2! Li electrodiffusion. Curve3 shows the absorption spec
trum of the undoped crystal atT510 K. The inset shows spectra measur
in situ as Li was injected atT5525 K. Spectrum 1 was taken before appl
ing voltage to the cell, spectrum2 after 2-h exposure to current.
nd

,

which was observed in C60 crystals.14,15By analogy with the
earlier investigations,14,15 we assume that the recorded a
sorption band is due to electronic transitions from theT1g ,
T2g , and Gg orbitals of C60, which form the conduction
band in the crystal, to the higher band generated byT1u

orbitals of the C60 molecule. If so, we have to suppose th
the electrodiffusion of Li1 cations and electrons into C60

single crystals generates electrons in the conduction ban
The additional absorption of light enables us to visual

the diffusion of Li in the course of experiment. Figure
shows photographs of a C60 crystals taken atT5525 K in the
configuration of light transmission at a photon energy
1.4 eV ~885 nm!. Picture 1 was taken at the moment wh
the current across the cell was turned on, and picture 3
obtained after 30-min exposure to a current of 10mA flow-
ing from the anode to cathode. The superionic contact w
attached to the left-hand side of the crystal. One can see
a dark ‘‘cloud’’ penetrates into the crystal from the left-han
contact. Under the assumption that the absorption at
wavelength of 885 nm is proportional to the concentrationN
of Li1 ions~to be exact, to the concentration of C60

2 anions or
electrons in the conduction band!, one can visualize the pro
cess of diffusion in real time. The fast propagating da
‘‘cloud’’ does not have clearly defined boundaries and, o
viously, corresponds to the composition LixC60, where
x!1 and is a slowly changing function of the coordinat
within the sample. In the immediate neighborhood of t
electrode injecting Li into the sample, an expanding bla
region with clear-cut edges can be seen, which probably
a composition withx51. Picture 4 in Fig. 3 illustrates the
evolution of the Li concentration after the current direction
reversed. One can see that the dark ‘‘cloud’’ vanishes
lithium is ejected from the sample. Figure 4 shows quant
tive characteristics of the process. The current as a func
of time before and after its reversal is plotted in Fig. 4a; F
4b shows the charge transmitted through the sample, w
approximately reflects the number of Li ions injected into t
sample. Figure 4c shows the light absorption at a wavelen
of 885 nm~1.4 eV! at two different sites on the sample. Th
point corresponding to curve2 is 0.65 mm farther from the
Li-injecting contact than the point corresponding to curve1.
Figure 4 clearly indicates that there is a good correlat
between the charge transmitted across the sample and
change in the sample absorption. One can see in Fig. 5
files of the absorption coefficient, which is proportional
the Li concentration, as a function of distancex to the
lithium-injecting electrode under the forward current~curves
1 and2! and after its reversal~curves3 and4!.

The reversibility of the lithium injection process in th
samples under investigation indicates that a subset of
lithium cations are mobile in C60 crystals, and fullerene crys
tals demonstrate superionic properties. Moreover, the rev
ibility of the diffusion process with the current reversal pr
vides evidence in favor of the dominant role of electric fie
in the process of Li diffusion, hence follows the feasibility
this technique for controlled doping of C60 crystals with vari-
ous ions.

After a longer exposure to a direct current across
cell, the lithium concentration in the ‘‘cloud’’ rises to a ce
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FIG. 3. Photograph of the C60 crystal takenin situ at T5525 K in transmitting light with a photon energy of 1.4 eV~885 nm!. The superionic contact can b
seen on the left of the sample. Picture1 was taken before feeding current, pictures2 and3 after 10-min and 20-min exposure to a current of order 15mA in
the forward direction. Picture4 was taken 40 min after switching the current to the opposite direction, picture5 after 60 min of additional exposure to curren
in the forward direction, and picture6 in 60 min after switching off the current.
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tain limiting value, which depends on both the temperat
and applied voltage, then the evolution of the sample con
tion proceeds through the expansion of the ‘‘black’’ pha
which consists, most probably, of the LiC60 (x51) com-
pound. That the lithium concentration in the sample due
the electrically driven injection is much higher than the eq
librium value is the fact supported by the observation of
growth of isolated LiC60 phase clusters in the bulk of th
sample~Picture 5 in Fig. 3!. If the current is turned off and
the temperature is maintained constant, the lithium conc
tration in the ‘‘cloud’’ drops considerably and, at the sam
time, new clusters of the ‘‘phase’’ are generated~Picture 6 in
Fig. 3!. The kinetic characteristics of this process a
strongly dependent on the temperature and degree of o
saturation, and they have not been studied in detail. The
certain observation is that relatively fast cooling of a sam
to room temperature~in several minutes! allowed us to pre-
e
i-
,

o
-
e

n-

er-
ly
e

serve a strongly nonequilibrium lithium distribution gene
ated by electrodiffusion.

3.2. ESR and microwave conductivity

Unlike the pristine samples, which were ESR sile
lithium-doped C60 crystals demonstrated an intense ESR s
nal in the form of several lines withg-factors close to 2.0
~Figs. 6 and 7!. The main lines, which were present in ES
spectra of all lithium-doped samples, can be divided in
three groups.

1. A broad isotropic line (X1) with a g-factor of 2.004
60.001, whose half-width atT5290 K varied from sample
to sample between 5 and 8 Oe, and atT55 K dropped to
2–3 Oe.

2. Three narrow anisotropic lines (X2) corresponding to
centers with different orientations. These lines have
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g-factor of 2.002 varying in a range of60.0008 as the
sample is rotated. The half-widths of these lines drop fr
1.5 Oe atT5290 K to 0.35 Oe at 5 K. The anisotropic effe
indicates that the symmetry of paramagnetic centers res
sible for theX2 lines is lower than the cubic one.

3. A pair ofX3 lines of equal intensities and a half-wid
of 1.5 Oe atT5290 K. The meang-factor of these lines is
2.003, and the splitting between them is 33 Oe. The inten
of these lines is very weak in comparison with other lin
and poorly reproducible from sample to sample. These li
are probably due to electrons localized at C60 molecules
which have chemical impurities with nuclear spinI 51/2 in
their immediate neighborhood, and the splitting of 33 Oe

FIG. 4. ~a! Current across the cell as a function of time atT5525 K. At the
moment t55 min a voltage of1200 V is switched on, att532 min its
polarity is switched to the opposite direction, att582 min again a voltage of
1200 V is applied;~b! current transmitted across the sample versus tim
~c! variation of the sample absorption at a wavelength of 885 nm~1.4 eV! at
two different points on the sample. Curve2 corresponds to the region whic
is 0.65 mm further from the Li contact than the region for curve1.

FIG. 5. Profiles of absorption coefficient in C60 crystals at a wavelength o
885 nm atT5525 K as a function of distancex from the Li contact. Curves
1 and 2 were recorded 12 and 29 min after feeding current in the forw
direction. Curves3 and4 were recorded 11 and 41 min after switching t
current polarity.
n-

ty
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due to the hyperfine interaction. Since the intensity of th
lines is very low, they can be ascribed to an uncontrol
impurity which is present in the samples.

The total intensity of the ESR spectrum at sufficien
small doping times~far from C60 saturation with lithium! is
approximately proportional to the total charge transmit
through the cell and the amount of additional optical abso
tion in the sample. This allows us to associateX1 andX2
ESR-active centers with the lithium doping of the sampl
The proportion of the Li7 isotope with nuclear spin 3/2 in
natural lithium is 92.5%, so if the paramagnetic electr
were localized close to the lithium nucleus, we would o
serve splitting of each line into four hyperfine componen
The absence of this hyperfine splitting supports our hypo
esis that unpaired electron spins are located on C60 mol-
ecules, and the negative charge of the molecule is canc
by Li1 ions located in the voids of the crystal.

;

d

FIG. 6. ~a! ESR spectra recorded atT5290 K in a C60 crystal after Li
electrodiffusion at 520 K. Spectrum1 was recorded immediately after coo
ing, spectra2–4 after regular intervals of several hours of exposure to
temperature of 290 K;~b! spectrum4 on an extended scale and its decom
position into separate lines.

FIG. 7. Typical ESR spectrum of a LixC60 crystal recorded atT57 K and
its decomposition into separate lines.
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At temperatures below 250 K, we did not detect a
changes in the ESR intensity with time. At temperatu
higher than 280 K, however, the evolution of intensities
the X1 andX2 lines was quite considerable. This is illu
trated by Fig. 6a, where spectrum1 was recorded immedi
ately after a rapid~during several minutes! cooling of the
sample from T5520 K, at which it was saturated wit
lithium, to room temperature. Spectra2–4 were recorded
sequentially with a time interval between them of seve
hours. In this process, the sample was kept at room temp
ture. In order to calculate the concentration of different pa
magnetic centers, we normalized the ESR signal due to
sample to the ESR signal of a paramagnetic refere
sample, then decomposed the ESR spectrum into sep
lines ~via a least-squares fit! and calculated total intensitie
of separate lines, proportional to the line intensity times
half-width squared. We managed to account for the evolu
of ESR spectra on the basis of an assumption that two in
pendent processes proceed concurrently.

1. A drop in the concentration ofX1 centers~the broader
ESR line! owing to transformation ofX1 centers toX2 ~nar-
rower ESR line!.

2. A drop in the concentration ofX2 centers owing to
their transformation to ESR-silent complexes.

If the initial concentration ofX1 centers is much highe
than that ofX2 centers, the first process leads to an incre
in the concentration ofX2 centers, notwithstanding the se
ond process. In fact, spectrum1 in Fig. 6a yielded a concen
tration of X1 centers of 6.731017cm23 and that ofX2 cen-
ters 0.431017cm23, whereas in spectrum 3 the
concentrations ofX1 and X2 centers were already 2.
31017cm23 and 1.531017cm23, respectively. Thus, the
concentration ofX1 centers had dropped by 4.231017cm23

in several hours, whereas the concentration ofX2 centers
had increased by 1.131017cm23. When theX1 center con-
centration had become too small, process 2 domina
which led to a drop in the concentrations of both centers
is shown by spectrum4 in Fig. 6a. The kinetics of processe
1 and 2 are strongly affected by the temperature and co
tions of sample manufacture~local concentration of Li!.
These processes are nonexponential and deserve a ded
investigation.

It is probable thatX1 centers~the broader ESR line!
correspond to conduction electrons in the weakly doped
gion of the LixC60 crystal with x!1, whereasX2 centers
correspond to the electrons localized on C60 molecules in the
phase withx51 formed in the process of self-organizatio
Then process 1, which transformsX1 to X2, corresponds to
the decomposition of the ‘‘cloud’’ of uniformly distributed
Li ions into clusters of the phase withx51, which was ob-
served visually~pictures 5 and 6 in Fig. 3!.

Process 2, which is responsible for the disappearanc
the X2 ESR signal, is probably more complicated: it pro
ably leads to formation of monomer or polymer species
cluding even numbers of Li atoms, which form covale
bonds with C60 molecules within the phase clusters. Add
tional arguments supporting this hypothesis will be given
Sec. 4, which deals with measurements of light absorption
vibrational modes in doped LixC60 samples.
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Effective numbers of paramagnetic spins inX1 andX2
centers~whose spectra are given in Fig. 7! in one of the
samples are plotted versus temperature in Fig. 8. The
numbers were calculated by dividing the total intensities
ESR signals due to these centers by the total ESR inten
due to the paramagnetic reference sample with a kno
number of spins. It is clear thatX1 centers correspond t
nondegenerate electrons weakly interacting with each ot
This supports our assumption thatX1 centers correspond t
electrons on C60 molecules in weakly doped regions of th
sample. In contrast, the effective number of paramagneticX2
centers drops considerably with decreasing temperature
proximately following the function

N5Npara1Naf expS 2
Eaf

kTD , ~5!

whereEaf54.9 meV,Npara/Naf50.3, Naf51.2831018cm23.
Thus, either the electrons are localized and the antiferrom
netic interaction between them is of order 5 meV, or th
behavior is caused by Fermi degeneracy in the electro
system.

Figure 9 shows the conductivity of the same sam
measured at a frequency of 9300 MHz. The conductiv

FIG. 8. Effective numbers of ESR-active spins corresponding toX1 andX2
centers whose ESR spectra are shown in Fig. 7 as functions of tempera
The numbers of spins were calculated as ratios between integrated
signals ofX1 andX2 centers on one side and the integrated ESR inten
of a paramagnetic reference sample on the other.

FIG. 9. Conductivity of the LixC60 crystal versus temperature measured a
frequency of 9300 MHz. The conductivitys(T) was derived from measure
ments of the FWHMDF of the resonant curve of a rectangular microwa
cavity loaded with the sample.
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s(T) was derived from the change in the FWHMDF of the
resonant curve of a rectangular microwave cavity after p
ing the sample inside it. It is clear that the sample cond
tivity is not of metallic character. In the temperature ran
T.170 K the curve ofs(T) is in good agreement with th
activation temperature dependences(T)5s0 exp(2Ea /kT)
with an activation energyEa'90 meV, whereas atT,160 K
the curve is in fairly good agreement with the functio
s(T)5s0H exp@(2A/T)1/4#, which characterizes hoppin
conductivity with variable hop length.

Let us discuss these results. Above all, note that aft
sufficiently long electrodiffusion and slow cooling of th
sample, the intensity of theX2 signal is usually much lowe
than that corresponding to the Li concentration in the d
regions with phasex51. The cause is process 2. In our e
periments, the intensity of theX2 signal was usually 0.1 to
1% of the number of Li atoms in the sample estimated on
basis of the electric charge transmitted through it and
visually detected volume of the dark phase~Figs. 3 and 4!.
The data given above were taken from a sample thro
which a charge of 1021e/cm3 was transmitted, which is ap
proximately equal to the total number of C60 molecules in the
sample. As a result, the sample was almost entirely opaqu
the wavelength of 885 nm~1.4 eV!, and we could suppos
that a notable fraction of its volume was occupied by
phase x51. The total ESR signal from this sample
T5290 K, however, corresponded to only 1.731018cm23

electrons. This means that the major fraction of the electr
had been knocked out of the game owing to formation
new compounds containing one or several C60 molecules
connected by covalent bonds and even numbers of Li at
in covalent bonds with C60. Thus, we have a system with
high concentration of defects containing few free electro
In such a system, the Fermi level is probably below the m
bility edge of the conduction band, the electrons are loc
ized at low temperatures, and hopping conductivity ta
place.

4. OPTICAL SPECTRA IN THE REGION OF VIBRATIONAL
MODES

Reflection spectra of LixC60 single crystals were mea
sured on a Bru¨cker 113v Fourier spectrometer at room te
perature in a spectral range of 80 to 5000 cm21

(;0.1–0.6 eV! with a resolution of 1 cm21. The pristine
single crystals had mirror-reflecting faces, and their refl
tion spectrum is labeled by number1 in Fig. 10a. After
lithium doping, the faces of the single crystal became d
At the same time, the crystal surface, which had been b
in visible optical range, was covered with yellow-green sp
located close to the Li electrode. Reflection spectra fr
different areas on the LixC60 crystal surface recorded usin
the IR microscope of the Fourier spectrometer are given
Fig. 10. Note that the roughness of the crystal surface h
considerable effect on the intensity of reflected light, so sp
tra of Li doped samples are plotted in arbitrary units. T
reflection spectra from both yellow-green~Fig. 10a! and dark
~Fig. 10b! areas of the surface through which lithium w
introduced into the crystal are different from those of t
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pristine C60 crystal since they have a background monoto
cally rising as the wave number drops. This spectral com
nent indicates the presence of either free or quasi-free c
ers in the surface regions of the lithium-doped crystal, wh
is in accord with measurements of the microwave conduc
ity. At room temperature, the background intensity dro
with time: the spectra shown by dotted lines in Fig. 10 we
taken 40 min after the spectra plotted by solid lines. This f
indicates that the density of quasi-free carriers drops, wh
is also consistent with the drop in the microwave conduc
ity and ESR intensity with time atT5300 K. Moreover, one
can see in Fig. 10 that the dropping rate of the backgro
intensity is different on different areas of the surface throu
which lithium was introduced: in the yellow-green are
~Fig. 10a! this dropping rate is notably lower than in the da
areas~Fig. 10b!. Thus, the kinetics of the density of quas
free carriers in the entire sample volume has complex ch
acteristics.

The spectra of the LixC60 samples also contain at lea
four intense lines associated with different vibration
modes: 1415, 870, 760, and 627 cm21. The intense line cen-
tered at 1415 cm21 is an analog of theT1u(4) ~1429 cm21)
vibrational mode of the initial C60 crystal. The accuracy o
the center frequency of the vibrational mode manifesting
the peak at 1415 cm21 is very important for calculating the
density of electrons in the C60 molecule. Unfortunately, we
could not make use of the Kramers–Kronig technique
calculating the mode frequency because of the effect of
face roughness on the light scattering. The method of dis
sion analysis allowed us to approximate the reflection sp
trum with poor accuracy and yielded a center frequency
1410 cm21. The actual frequency of this mode is probab
141362 cm21.

In the reflection spectrum of the initial crystal, the inte
sities of lines associated with theT1u(4)51429 cm21 and
T1u(3)51183 cm21 modes are approximately equal~spec-

FIG. 10. Reflection spectra taken from the surface of a fresh as-gr
Li xC60 sample atT5290 K: ~a! regions of increased Li concentration~the
surface is tinted yellow-green in the visible light!; ~b! regions with a lower
concentration~dark areas of the surface!. The solid lines show spectra take
in one hour after Li diffusion, the dotted lines show spectra recorded a
another 40 min of exposure to a temperature of 290 K. Spectrum1 in Fig.
10a was taken from the pristine~undoped! sample.
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trum 1 in Fig. 10a!. After the lithium doping, firstly, the
oscillator strength of theT1u~4! mode becomes significantl
higher than that of theT1u~3! mode, secondly, the forme
mode shifts to the low-energy side by 16 cm21. A similar
red shift and an increase in the oscillator strength of
T1u~4! mode were detected previously16 in C60 films doped
with K and Rb and interpreted in terms of the ‘‘charg
phonon’’ model.17 In accordance with this model, introduc
tion of electrons to the lower unpopulated orbitals of the C60

molecule, which form the conduction band of the cryst
leads to interaction of the vibrational modes of C60 through a
virtual electronic transition from these states to the ba
which is about 1.2 eV higher. Depending on the elect
populationx on the C60 molecule, the vibrational modes shi
to the low side, and this shift is proportional tox, and their
oscillator strengths increase asx2. Among the four dipole-
active vibrational modes detected in C60, the T1u~4! mode
has the highest constantl of electron–phonon coupling. Th
coupling constantl of the T1u(3)51183 cm21 mode is
small, so lithium doping has little effect on this mode.

Investigations16 of C60 films doped with K and Rb led
the researchers to a conclusion that theT1u~4! mode shifts to
the low-energy side by about 15 cm21 when one electron is
placed on the C60 molecule. Using the frequency of th
T1u~4! mode measured as a function of the numberx of
electrons per one molecule,16 we have inferred that, in the
case under investigation, there is one electron per one60

molecule near the crystal surface through which Li was
troduced. Therefore, our assumption that the LiC60 phase
(x51) is generated in the doped crystal seems likely.

Unlike the spectrum of the undoped C60 crystal, that of
LiC60 contains a large set of relatively weak lines over
broad spectral range. The most intense among them are
lines at 870, 760, and 627 cm21 ~Fig. 10!, which have not
been detected in C60 crystals doped with K, Rb, and C
~Refs. 16 and 18!. Previously19 spectral lines at 880, 670, an
450 cm21 were detected after lithium doping of graphite: t
line at 880 cm21 was ascribed to a skeletal oscillation of th
Li–Li bond in seven- and six-atomic lithium clusters, and t
line at 670 cm21 was attributed to valence oscillations of th
Li–C bond. In the case under study, the line at 870 cm21 can
also be put down to a skeletal oscillation of the Li–Li bon
and the line at 627 cm21 probably corresponds to a valenc
oscillation of the Li–C60 bond. The notable shift of its fre
quency from that measured in graphite intercalated w
lithium ~670 cm21) can be ascribed to the difference b
tween the masses of the carbon atom and C60 molecule. Iden-
tification of the line at 760 cm21 seems more difficult. Prob
ably, the lithium can have two different states in the C60

crystal and form both the ionic Li1 –C60 and covalent Li–C60

bonds, which manifest as two valence oscillations at 627
760 cm21. Note that the possibility of forming the Li–C60

covalent bond accounts for the disappearance ofX2 ESR-
active centers with time.

As was noted above, the exposure of samples to ro
temperature leads to the considerable drops in the ESR
nal, microwave conductivity, and IR reflection due to qua
free electrons. Probably, a fraction of Li is ejected from t
sample bulk to the surface. This process can cause forma
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of cracks in the sample after a time. Studies of degra
samples, however, revealed that their surfaces had large
eas which looked black under light of wavelengths less th
1000 nm. This observation indicates that their degrada
cannot be fully interpreted in terms of the lithium ejection
the surface, and this fact impels us to assume that o
phases~or compounds! are formed in doped samples, whic
contribute to absorption in the spectral range under inve
gation and have a considerable~more than 3 to 5%! volume
deficiency, which leads to cracking. Moreover, such pha
should not contribute to the ESR signal, neither can th
have a high conductivity.

This assumption is supported by IR reflection spectra
degraded samples shown in Fig. 11. The reflection spect
of the sample surface shown by the dashed line in Fig. 1
very similar to the ~C60)2 dimer spectrum recorded
previously,18 when transmission spectra of C60 monomer,
dimer, and polymer phases in RbC60 were studied. It was
shown18 that the transition from the initial C60 phase to
dimers, for example, leads to splitting of theT1u~4! ~1429
cm21) mode into several lines and generates a set of line
frequencies around 700 cm21. This was ascribed to the lowe
symmetry of the C60 molecule in the dimer phase.

The spectrum shown by the solid line in Fig. 11 w
taken from a cleaved surface of a degraded sample. Its c
parison to the data reported earlier18 indicates that this spec
trum can be attributed to the polymer phase. The splitting
the T1u(4) ~1429 cm21) mode of the initial C60 crystal into
two lines at 1415 and 1480 cm21 and the smaller number o
spectral lines than in the dimer phase provide evidence
favor of this interpretation. The latter effect is due to t
higher symmetry of the C60 molecule in the polymer phas
than in the dimer phase. The plot also clearly shows lin
that indicate the presence of lithium clusters~865 cm21) and
the Li–C60 bond~760 cm21). Moreover, as in the case of th
monomer phase observed on the surface of a pristine sa
~Fig. 10a!, the oscillator strengths of vibrational modes
frequencies of 1415 and 1480 cm21 are significantly higher

FIG. 11. Reflection spectra of the surface~dashed line! and cleaved surface
~solid curve! of an ‘‘aged’’ sample, in which the conductivity and ES
signal are almost zero, atT5290 K.
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than that of the 1183 cm21 mode. A third fact that is note
worthy is the difference between the spectral positions of
1415 cm21 and 1480 cm21 lines on one side and thos
detected20 in the photopolymerized phase~1424 and 1460
cm21), i.e., the 1415 cm21 line is shifted to the low-energy
side by 9 cm21 as compared to those in the spectrum of
photopolymerized phase. This shift is less than 15 cm21,
which is typical of the case when one electron is added
C60 molecule in the monomer phase.16 These three facts ha
led us to a conclusion that lithium is incorporated in t
structure of the polymer phase synthesized in our exp
ment, where the number of electrons per one C60 molecule is
probably much less than unity.

The main difference between the LiC60 polymer phase
and RbC60 polymer reported earlier18 is associated with the
presence of free~or quasi-free! carriers. It was found
previously18 that the optical conductivity of RbC60 increases
in the sequence of the dimer–monomer–polymer phase
the case under study, the polymer phase of LiC60 is not con-
ducting. This statement is supported by both microwave c
ductivity data and the reflection spectrum in Fig. 11, wh
does not show a monotonic increase in the reflectivity w
decreasing wave number, characteristic of the contributio
free carriers. Thus, in contrast to the case of RbC60, the Li–
C60 covalent bond is formed in the polymer phase of LiC60,
whose valence oscillation manifests in the line at 760 cm21

in the reflection spectrum. The reflection line at 627 cm21,
which is also attributed to the valence oscillation of the L
C60 bond in pristine samples, but is absent in the polym
phase of degraded LixC60, should probably be associate
with the oscillation of the Li1 –C60 ionic bond. Thus, our
investigation of reflection spectra indicates that the assu
tion about formation of dimer and polymer phases in d
graded Li–C60 crystals is true. Moreover, the absence of
ESR signal in the LixC60 polymer allows us to draw the
conclusion that an even number of Li atoms are bound to
C60 molecule by covalent bonds.

5. CONCLUSIONS

We have suggested and implemented a novel techn
for controlled doping of fullerene crystals through diffusio
of ions driven by an electric field from a superionic conta
We have studied features of electrodiffusion of Li ions in C60

crystals and electronic properties of LixC60 single crystals
fabricated by this method.

In lithium-doped C60 crystals, we have detected an ES
signal in the form of several lines withg-factors around 2.0
We have observed and studied evolution of ESR spectra
time and the effective numbers of unpaired spins correspo
ing to theX1 andX2 centers as functions of temperature

The temperature dependence of the microwave cond
tivity of lithium-doped C60 crystals has been investigate
The sample conductivity is of a nonmetallic nature. In t
temperature rangeT.170 K the curve ofs(T) is well ap-
proximated by the functions(T)5s0 exp(2Ea /kT) with an
activation energyEa of about 90 meV, whereas atT,160 K
it is approximated by the function s(T)5s0H

3exp@(2(A/T)1/4#, which is typical of the hopping conduc
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tivity with variable hop length. Thus, LixC60 single crystals
contain a lot of defects, but the concentration of free el
trons is low. In such a system, the Fermi level should
located below the edge of the conduction band, electr
should be localized at low temperatures, and hopping c
ductivity should take place.

In IR reflection spectra of the LixC60 samples, we have
detected lines associated with vibrational modes at 14
870, 760, and 627 cm21, and a background whose intensi
increases monotonically as the wave number drops
which is due to free or weakly localized electrons. The sp
tral position of the 1415 cm21 line indicates that one electro
is bound to the C60 molecule. The lines at 627 and 760 cm21

are put down to valence oscillations of the Li1 –C60 ionic
bond and Li–C60 covalent bond, respectively. The forme
decays with time as crystals degrade, and only lithium
covalent bonds~alongside lithium clusters! is detected in de-
graded samples. The shapes of reflection spectra of degr
samples indicates that the conducting monomer phas
pristine samples transforms to nonconducting phases
dimers on the surface and polymers in the bulk of degra
samples. This supports our assumption that a subset of th
atoms form covalent bonds with C60 molecules, which leads
to the decay of both ESR and microwave conductivity s
nals.
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Atomic Clusters of the State R&D Program Physical Pro
erties, Phase Transitions, and Metastable Phases of Fulle
Crystals and Their Derivatives, and was partly supported
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Two-dimensional weak localization effects in high temperature superconductor
Nd22xCexCuO42d
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and N. G. Shelushinina

Institute of Metal Physics, 620219 Ekaterinburg, Russia

A. A. Ivanov

Moscow Engineering Physics Institute, 115409 Moscow, Russia
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A systematic study of the resistivity and Hall effect in single-crystal films
Nd22xCexCuO42d (0.12<x<0.20) is presented, with special emphasis on the low-temperature
dependence of the normal state conductance. Two-dimensional weak localization effects
are found both in a normally conducting underdoped sample (x50.12) andin situ superconducting
optimally doped (x50.15) or overdoped (x50.18) samples in a high magnetic field
B.Bc2 . The phase coherence timetw (5.4•10211s at 2 K! and the effective thickness of a
CuO2 conducting layerd (.1.5 Å) have been estimated by fitting 2D weak localization theory
expressions to magnetoresistivity data for magnetic fields perpendicular to theab plane and
in plane. Estimates of the parameterd ensure strong carrier confinement and justify a model
consisting of almost decoupled 2D metallic sheets for the Nd22xCexCuO42d single crystal.
© 1999 American Institute of Physics.@S1063-7761~99!01611-X#
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1. INTRODUCTION

The field of high-transition-temperature~high-Tc) super-
conductivity has generated several thousand publication
the last few years. For a short overview of the lattice str
ture and phase diagram of the most widely studied cop
oxide compounds, such as hole-doped La22xSrxCuO4 and
YBa2Cu3O61x or electron-doped L22xCexCuO4 (L5Nd or
Pr!, one can consult, e.g., the review in Ref. 1 or book
Plakida.2 The copper oxide high-Tc materials are basically
tetragonal, and all of them have one or more CuO2 planes in
their structure, which are separated by layers of other at
~Ba–O, La–O, Nd–O,...!. Most researchers empirically an
theoretically have come to a consensus that supercondu
ity is related to processes occurring solely in the conduc
CuO2 planes, with the other layers simply providing the ca
riers ~they are therefore called charge reservoirs!. In the
CuO2 planes, each copper ion is strongly bonded to fo
oxygen ions separated by approximately 1.9 Å.

Due to the layered character of the crystal structures,
high-Tc copper oxide compounds are highly anisotropic
their normal-state electrical properties. Although the resis
ity in the CuO2 planes,rab , shows metallic temperature de
pendence, the temperature behavior and the magnitude o
resistivity parallel to thec axis, rc , are strongly dependen
on crystal structure, and on the concentration of charge
riers.

Systematic data forrc in a number of high-Tc materials
obtained on well characterized single crystals are prese
by Ito et al.3 For hole-doped systems YBa2Cu3O61x and
La22xSrxCuO4 rc exhibits a marked change in magnitude
well as in temperature dependence with changing hole c
9331063-7761/99/89(11)/7/$15.00
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centration~i.e., changingx!. For the underdoped~low x! and
optimally doped~superconducting! compoundsrc is nonme-
tallic (drc /dT,0) at low enough temperatures. In both sy
tems the anisotropy coefficient,rc /rab , decreases notice
ably with doping, being;102 for the superconducting
compounds.

The crystal structureT8 of the electron doped
Nd22xCexCuO42d system is the simplest among the sup
conducting cuprates with the perovskite structure.4 The Cu
atoms in the CuO2 layers of hole-doped La22xSrxCuO4 or
Nd22x2yCexSryCuO42d (y.x) superconductors are su
rounded by apical O atoms, forming octahedrons~T struc-
ture! or semioctahedrons (T* structure!. The most important
difference in the crystal structures of Nd2~Ce!CuO4 and
La2~Sr!CuO4 is that the apical oxygen atoms in theT8 struc-
ture are displaced so as to make an isolated CuO2 plane~Fig.
1!.

The undoped system Nd2CuO4 is an insulator, with the
valence band mainly of O 2p character, and the empty con
duction band being the upper Hubbard Cu 3d band. The
Coulomb 3d– 3d repulsion at the Cu siteU (.6 – 7 eV) is
strong, and it is greater than the oxygen to metal char
transfer energyD (.1 – 2 eV). As the gap between the co
duction and valence bands is determined just by the ene
D, these cuprates are classified as charge-transfer sem
ductors.5

The combination of Ce doping and O reduction results
n-type conduction in CuO2 layers in Nd22xCexCuO42d

single crystals.4,6 An energy band structure calculation7

shows that the Fermi level is located in a band ofpds-type
formed by 3d(x22y2) orbitals of Cu andps(x,y) orbitals of
© 1999 American Institute of Physics
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FIG. 1. Crystal structure of three types of copper oxides~Ref.
4!.
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oxygen. The pds band appears to be of highly two
dimensional~2D! character, with almost no dispersion in th
z-direction normal to CuO2 planes. The electrons are conce
trated within the confines of conducting CuO2 layers, sepa-
rated from each other by a distancec.6 Å.

In accordance with such a structure Nd22xCexCuO42d ,
single crystals have a significantly higher resistive anisotr
than Y- or La-systems:rc /rab.104 for x50.158,9 and for
x50.16– 0.20 with different values of oxygen deficiencyd10

at room temperature, it increases with decreas
temperature.10 Measurements by Itoet al.3 for another
electron-doped compound with the sameT8 structure,
Pr22xCexCuO42d , show that forx50.15 the anisotropy is
very large,rc /rab>104, and nonmetallicrc is observed.
Preliminary measurements on a Pr-system with differenx
indicated that, as in the case of Y- and La-systems,rc de-
creases with increasing carrier concentration much more
idly than rab .

The larger anisotropy in Nd- or Pr-systems compa
with La-or Y-systems would imply that fluorite-type Nd2O2

or Pr2O2 layers block out-of-plane conduction more effe
tively than NaCl-type La2O2 or Ba2O2 layers.3

The nonmetallic behavior of out-of-plane conductan
suggests that the carriers are confined tightly in the C2
plane.3 It is thus of interest to search for two-dimension
effects in the in-plane conductance of the layered cupra
There are several previous reports on the manifestation o
weak localization effects in the in-plane conductance
Nd22xCexCuO42d single crystals or films. Thus a linear de
pendence of resistivity on lnT comes about atT,Tc for
samples withx.0.15, in which the superconducting state
destroyed by a magnetic field.11 Furthermore, a highly aniso
tropic negative magnetoresistance, predicted for 2D weak

TABLE I.

x t, Å Tc , K
r0•105,
V•cm

r300 K•105,
V•cm r300 K/rr0

A•109,
V•cm/K2

0.12 5500 - - 102 - -
0.15 5000 20 8.2 42.4 5.2 4.0
0.17 5700 12 8.6 29.6 3.4 2.7
0.18 5000 6.0 6.0 23.5 3.9 2.2
0.20 4000 ,1.3 1.1 10.0 9.1 1.1
-

y

g

p-

d

e

l
s.
D
f

o-

calization, has been observed in the nonsuperconduc
state at low temperatures: in samples withx50.1112 and in
unreduced samples withx50.1513 or x50.18.14 We report
here a systematic study of 2D weak localization effects fo
number of optimally reduced samples of Nd22xCexCuO42d

with 0.12<x<0.20.

2. EXPERIMENTAL PROCEDURE

The flux separation technique was used
Nd22xCexCuO42d film deposition.15 High-qualityc-axis ori-
ented single crystal films with thickness around 5000 Å a
0.12<x<0.20 were grown. The values ofTc after sample
reduction are shown in Table I.

Figure 2 demonstrates thatTc of the film with x50.15 is
in agreement with previously published data for bulk sing
crystals.4 The values of Tc for overdoped films with
x>0.17 are higher than for corresponding bulk crystals
accordance with the information of Xuet al.16 that supercon-
ductivity survives up tox50.22 in Nd22xCexCuO42d films.

Standard four-terminal measurements of the resistivitr
and Hall effectR ( j iab,Bic) in the dc regime were carried
out in the temperature rangeTc,T<300 K without a mag-
netic field B, and in magnetic fields up toB512 T at tem-
perature down to 0.2 K. The electrical contacts were p
pared by evaporating thin silver strips onto the sample,
attaching silver wires to these with conducting glue.

FIG. 2. Phase diagram of Nd22xCexCuO42d . Notation: triangles and
circles—data of Ref. 4~triangles—Tc50); crosses—our data.
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3. RESULTS

The temperature dependence of the zero-field in-pl
resistivity for the investigated samples atT up to 300 K is
shown in Fig. 3. A clear resistance minimum is observed
T.150 K for the nonsuperconducting sample withx50.12.
The r(T) dependence is described byr5r01AT2 at T
520– 180 K forx50.15, 0.17, and 0.18, and over the wid
T510– 300 K forx50.20. The values ofr0 andA are pre-
sented in Table I.

We describe here the magnetoresistance measurem
only for the underdoped nonsuperconducting sam
(x50.12) and for two overdoped superconducting samp
(x50.18 andx50.20). Detailed investigations ofr(B,T)
dependencies for the optimally doped sample withx50.15
were presented earlier,17 as were some results on th
x50.18 sample.18

In the superconducting samples, normal-state trans
at low T is hidden unless the magnetic field stronger than

FIG. 3. Temperature dependence of in-plane resistivity for the sample
vestigated Nd22xCexCuO42d .
e

t

nts
le
s

rt
e

second critical fieldBc2 is applied. As we are interested i
the low-temperaturer(T) dependence, we have destroy
the superconductivity with a magnetic fieldB' perpendicular
to the CuO2 planes. In Fig. 4, ther(B') dependence for
x50.20 atT51.3 K andT54.2 K in a magnetic fields up to
B55.5 T are presented. In the inset of Fig. 4, the depende
of the Hall coefficientR on magnetic fieldB' at T51.3 K is
also shown. On the assumption thatBc2

' (T) is a field in
which r(B') andR(B') at givenT come up to their normal-
state value, we haveBc2

' 52.2 T at T51.3 K and Bc2
'

51.5 T atT54.2 K.
In our previous investigation18 of the sample with

x50.18, negative magnetoresistance was observed afte
destruction of superconductivity by a magnetic field up
5.5 T atT>1.4 K. In Fig. 5,r(B') is shown for this sample
at much lower temperatures~down to 0.2 K! and in fields up

n-FIG. 4. In-plane resistivity (j'B) of the sample withx50.20 as a function
of magnetic fieldB'ab at two different temperatures. Arrows indicate va
ues of the second critical field. Inset: Hall coefficient (j iab; B'ab) as a
function of magnetic field atT51.3 K.
t:
t
cal
FIG. 5. In-plane resistivity (j'B) of the sample withx50.18 as a
function of magnetic fieldB'ab at different temperatures. Inse
Hall coefficient (j iab;B'ab) as a function of magnetic field a
T50.2 K. The arrow shows the estimate for the second criti
field.
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936 JETP 89 (5), November 1999 Harus et al.
to 12 T. The inset of Fig. 5 shows an example ofR(B') at
given T,Tc . The nonmonotonicR(B') behavior, with re-
versal of the sign of the Hall effect, is usually observed in
mixed state of the superconductor.18,19 The transition to the
normal state is completed atB5Bc2 , where the Hall coeffi-
cient becomes nearly constant with the same value as in
normal state atT.Tc ~Bc2.5 T atT50.2 K). Values ofBc2

for x50.18 estimated in this way at different temperatu
are marked by the arrows in Fig. 6. This figure also clea
demonstrates the transition from positive to negative mag
toresistance after the suppression of superconductivity.

In Fig. 7, the results of the theoretical description of t
magnetoconductivity atB.Bc2 are presented. Figure 8 dem
onstrates that the resistivity of the sample withx50.18 is a
linear function of lnT in magnetic fieldsB.Bc2 . The ex-
perimental points forB51.5 T are also shown. If the loga
rithmic temperature dependence of the resistivity is typi

FIG. 6. Negative magnetoresistance atB.Bc2 in the sample withx
50.18. Arrows indicate values of the second critical fieldBc2 at different
temperatures.
e

he

s
y
e-

l

of the normal state, then the discrepancy between the exp
mental points and the logarithmic law indicates that the n
mal state has not yet been attained atB51.5 T.

We have also measured the in-plane conductivity in
nonsuperconducting sample withx50.12 for magnetic fields
perpendicular and parallel to the CuO2 planes up to 5.5 T at
T51.9 K and 4.2 K~Fig. 9!. The positive magnetoconduc
tivity ~negative magnetoresistance! observed in this sample
is obviously anisotropic relative to the direction of the ma
netic field.

4. DISCUSSION

A logarithmic temperature dependence of the conduc
ity is one indication of the interference quantum correcti
due to 2D weak localization. A magnetic field normal to t
diffusion path of a carrier destroys the interference. In a tw
dimensional system, it causes negative magnetoresistanc
the field perpendicular to the plane, but no effect for t
parallel configuration. Weak localization effects are alm
totally suppressed forB'.Btr ,20 where the so called ‘‘trans
port field’’ is defined as the field at which

2pBtr l
25F0 . ~1!

Here l is the elastic mean free path andF05pc\/e is the
elementary flux quantum.

Let us compare Eq.~1! with the relations between th
coherence lengthj and the second critical field in the pur
superconductor (j! l ),

2pBc2j25F0 , ~2!

or in the so-called ‘‘dirty limit’’ (j@ l ):

2pBc2j l 5F0 . ~3!

From Eqs. ~1! and ~2! we haveBtr /Bc25(j/ l )2, so Btr

!Bc2 , and it is impossible to observe weak localization e
fects in the pure case. In contrast, from Eqs.~1! and~3! one
-
FIG. 7. Fit of the expression~4! to experimental data on the sur
face conductivity of the sample withx50.18 atT50.2 K. Fit pa-
rameters of the broken line are:Bw50.1 T, a56.6. Inset: Surface
conductivity as a function of lnB.
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FIG. 8. In-plane resistivity of the sample withx50.18 as a func-
tion of ln T in different magnetic fields.
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hasBtr /Bc25(j/ l ), Btr.Bc2 , and weak localization should
survive in the normal state (B.Bc2) of a dirty supercon-
ductor.

In Table II, the parameters of investigated samples
sential to a description of localization are presented. Fr
the experimental values of the in-plane resistivityr and Hall
constantR in the normal state, we have obtained the surfa
resistanceRs5r/c per CuO2 layer and the bulk and surfac
electron densitiesn5(eR)21 andns5nc (c56 Å is the dis-
tance between CuO2 layers!. Using the relations21 ss

5(e2/\)kFl for the 2D conductancess51/Rs , and kF

5(2pns)
1/2 for the Fermi wave vector, we have estimat

the important parameterkFl , the mean free pathl, and then
according to Eq.~1! the characteristic fieldBtr . For the
sample withx50.15 we use the data of Ref. 17.

In a random two-dimensional system, the parameterkFl
can serve as a measure of disorder.21 It is seen from Table II
that we have a wide range;1 – 102 of kFl in the investigated

FIG. 9. Surface conductivity of the sample withx50.12 as a function of
magnetic fieldB' (B'ab) or Bi (Biab) at different temperatures.
s-
m

e

series of samples. ForkFl @1, a true metallic conduction
takes place in CuO2 layers. Thus, we have a rather pure 2
system withkFl;10 for x50.15 or x50.18, and an ex-
tremely pure system withkFl;102 for x50.20. It is quite
remarkable that even at such high values of the param
kFl , a trace of localization comes to light: forB'.Bc2 , r is
greater at 1.3 K than at 4.2 K~see Fig. 4!. As for the sample
with x50.12, wherekFl is of the order of unity, this system
is in close proximity to transition from weak logarithmic t
strong exponential localization as disorder increases (kFl de-
creases!.

The second critical fieldBc2
' at temperatures aroun

T.1.4 K ~see Figs. 4 and 5! and values ofj estimated ac-
cording to Eqs.~2! or ~3! are also shown in Table II. In the
pure system withx50.20,j, l , and negative magnetoresis
tance is not detected atB.Bc2 , at least forT>1.3 K ~see
Fig. 4!. Systems withx50.15 and 0.18 are situated close
the dirty limit j@ l , and there exist appreciable field rang
Bc2,B,Btr where negative magnetoresistance due to
weak localization is actually observed~see Ref. 17 and Fig
6!.

In 2D weak localization theory, the quantum correcti
to the Drude conductivity in a perpendicular magnetic fie
is22

Dss~B'!5a
e2

2p2\ H CS 1

2
1

Bw

B'
D2CS 1

2
1

Btr

B'
D J , ~4!

TABLE II.

x
n•10222,

cm23 kFl l , Å Btr , T
Bc2

' , T
(T51.4 K) j, Å

0.12 0.2* 2 '10 '270 - -
0.15 2.0* 18 '30 '30 5.5 180
0.18 1.1 25 40 22.5 4.0 200
0.20 1.0 150 240 0.6 2.2 150

*Data from Ref. 1 atT580 K.
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wherea is a factor of the order of unity,C is the digamma
function, andBw5c\/4eLw

2. Here Lw5ADtw is the phase
coherence length,D is the diffusion coefficient, andtw is the
phase breaking time.

The fit of ~4! to the experimentalss(B') data for
x50.18 atB'.Bc2

' is shown in Fig. 7. For each temperatu
there are two fit parameters: the characteristic fieldBw ~or
Lw) and the factora. The widest range of requisite magnet
fields and thus the most accurate fit results are obtained
the lowest temperatureT50.2 K. With Btr522.5 T, the best
fit is obtained forBw.0.1 T (Lw5560 Å) anda56.6. The
fitting procedure is highly sensitive to the value of the p
rametera. In contrast, the value ofBw is obtained only to
order of magnitude, as we have no zero-field and weak-fi
data. Nevertheless, there is no doubt that the inequalityBw

!Btr is valid.
In the field rangeBw!B!Btr , the expression~4! can be

written

Dss~B'!5a
e2

2p2\ H 2CS 1

2D2 ln
B'

Btr
J . ~5!

The inset of Fig. 7 shows that the experimental data
T50.2 K can be fitted rather closely by this simple formu
over a wide range of fields, 5<B<11 T. But as we have the
factor a56.6, negative magnetoresistance is too large to
due to the destruction of weak localization only. Thus
conclude that some additional mechanism of negative m
netoresistance must be at work.

There exists another quantum correction to the norm
state conductivity with a logarithmic dependence of mag
toresistivity on B, namely the correction due to disorde
modified electron–electron interaction~EEI! in the Cooper
channel.23 In the range of magnetic fieldsBT!B!Btr , we
have

Dss
EEI~B'!52

e2

2p2\
g~T!lnS B'

Btr
D , ~6!

whereBT5pc\/2eLT
2, LT5A\D/kT is the thermal coher-

ence length, andg(T) is the effective interaction constant o
two electrons with opposite momenta. For the attract
electron–electron interaction due to virtual phonon e
change,g.0, and according to~6! the magnetoresistanc
should be negative.

As we have dealt within situ superconducting samples
so thatg.0, the contribution due to EEI is most probab
the reason for the extra negative magnetoresistance at
low temperatures (BT50.02 T atT50.2 K). With increasing
temperature, the magnitude of the EEI contribution decrea
rapidly (a52.5 atT50.8 K), and atT>1 K the estimated
value of the factor is close to unity (a50.77 atT52.1 K),
as it should be for weak localization.

It should be noted that pronounced negative magnet
sistance due to the suppression of weak electron localiza
is observed in ordinary superconductors as well. The elec
transport properties of three-dimensional~3D! amorphousa-
Mo3Si anda-Nb3Ge superconducting films have been inve
tigated in magnetic fields up toB530 T at temperatures
down toT50.35 K.24 The authors have found that both th
or
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temperature and field dependence of the resistivityr can be
qualitatively described by weak localization theory. At lo
temperatures and in magnetic fields above the upper cri
field, B.Bc2 , magnetoconductivity is proportional toB1/2.
This field dependence is consistent with weak localization
the high-field limit (B@Bw) for 3D disordered systems, in
contrast to a 2D system withDs(B)} ln B.

One important indication of the 2D character of a syst
is the strong dependence of magnetoresistance on mag
field orientation. Highly anisotropic~negative! magnetoresis-
tance is actually observed in a nonsuperconducting sam
with x50.12 ~see Fig. 9!. From the fit toss(B') by the
functional form ~4! with a51, we find Lw5770 Å at
T51.9 K and Lw5550 Å at T54.2 K, so that the
phase coherence timetw55.4•10211s at T51.9 K and
tw52.7•10211s atT54.2 K.

We explain the much weaker negative magnetore
tance for the parallel configurationBiab by incorporating
finite-thickness~d! corrections into the strictly 2D theory:25

Dss~Bi!5
e2

2p2\
lnS 11

d2Lw
2

3l i
4 D , l i

25
c\

eBi
. ~7!

By fitting the theoretical expression~7! to the curves for
s(Bi) ~see Fig. 9!, we have found the effective thickness
a conducting CuO2 layer, d.1.5 Å. This value yields an
estimate for the extent of the electron wave function in
normal direction, and ensures strong carrier confinemend
,c). The single crystal NdCeCuO can therefore be regar
as an analog of an ultra-short-period superlattice~1.5 Å
wells /4.5 Å barriers!.

As the 2D version of weak localization theory is able
describe the behavior ofs(B,T) in our sample, the inequal
ity tesc.tw should be valid for the escape time of a
electron from one CuO2 plane to another. Then we hav
tesc>5•10211s. The escape time between adjacent wells
a superlattice can also be estimated from the value of
normal diffusion constant,tesc5c2/D' . For the parameters
of our sample at 300 K, we have9 D i /D'51.7•104 with the
in-plane diffusion constant D i51.2 cm2s21. Then
tesc.5•10211s even at room temperature, sotesc.tw with
certainty at low temperatures.

5. CONCLUSION

We have investigated the low-temperature and magn
field dependence of the normal state in-plane resistivity,rab ,
in a layered copper oxide single crystal Nd22xCexCuO42d .
The material is regarded as an intrinsic two-dimensional c
duction system~a collection of 2D conducting CuO2 planes!,
and the results are interpreted in terms of the 2D weak lo
ization model. Three indications of 2D weak localizatio
have been displayed: logarithmic temperature dependenc
the resistivity, significant negative magnetoresistance fo
field normal to theab-plane, and pronounced magnetores
tance anisotropy~much weaker effect for a parallel configu
ration!. A strong dependence of the magnitude of magneto
sistance on the direction of the magnetic field is the m
important experimental test for the two-dimensional char
ter of a conducting system.
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In a series of samples withx50.12– 0.20, we have a ful
range of disorder parameter values,kFl 52 – 150. Estimates
of essential microscopic parameters, such as the elastic m
free pathl, the inelastic scattering lengthLw , and the effec-
tive thickness of a conducting layerd, have shown that in
accordance with the adopted model,d! l ,Lw!t ~t is the
geometrical thickness of a sample!. Moreover, our estimate
show that the thickness of the conducting layer is less t
the distance between CuO2 layers,d,c, and this favors car-
rier confinement within a separate CuO2 layer. Thus, the
NdCeCuO single crystal can be described as a natural su
lattice with a confining potential induced both by the spec
pds symmetry of the electron wave function and stro
Coulomb correlation effects.
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Structure of the mixed state induced in thin YBaCuO superconducting films by the field
of a small ferromagnetic particle
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Zh. Éksp. Teor. Fiz.116, 1735–1749~November 1999!

The temperature dependence of the local energy barrier to formation of the mixed state in
YBaCuO thin-film superconducting samples has been determined. The measurement technique is
based on use of a small ferromagnetic particle as the magnetic field source. It is found that
the energy barrier to creation of vortices~for the field oriented parallel to the CuO planes! is
anomalously small while the dependence of the corresponding threshold currentj c(T)
differs substantially from the temperature dependence of the pair-breaking current. The
experimental results are interpreted in terms of the model of a Josephson medium. The observed
temperature dependence ofj c points to a strong suppression of the superconducting order
parameter at the intergrain boundaries, which for the most probable type of boundaries:
superconductor–insulator–superconductor, is evidence of anisotropic pairing. ©1999
American Institute of Physics.@S1063-7761~99!01711-4#
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1. INTRODUCTION

In recent years a great deal of attention has been give
experimental and theoretical studies of the mixed state
thin films of high-temperature superconductors~HTSC’s!
~see, e.g., the review in Ref. 1 and the references c
therein!. The results of measurements of the magnetic pr
erties can be interpreted on the basis of the well-known B
model. Such calculations turn out to be quite complicated
samples of arbitrary shape and can be performed with r
tive ease only for certain particular cases~e.g., for samples of
cylindrical or ellipsoidal shape!. Thus, an analysis of the
experimental data on the magnetization of thin films, es
cially in a field perpendicular to the surface, is a very dif
cult task. The large demagnetizing factor of such samp
leads to a high density of the screening current at the ed
of the film, as a result of which the poorly controlled ed
structure of the samples to a significant degree determ
the experimentally measurable magnetic characteristics.

In the present paper we propose an original method~pre-
liminary results were presented in Ref. 2! for directly mea-
suring local the characteristics of the mixed state~the Bean–
Livingston energy barrier for entry of magnetic lines of for
B from the sources, the critical current of barrier suppress
j c , and the depinning currentj p), allowing one to neglect
the influence of edge effects, which are substantial for m
surements in uniform fields. The given method is based
an experimental analysis~with the aid of a Hall sensor! of
the spatial distribution of the residual magnetization crea
by the vortices pinned at the pinning centers and penetra
into the film under the action of the field of a small ferr
magnetic particle~micromagnet!. The use of such a micro
magnet, located a small distancea from the film surface (a
!L, L is the lateral dimension of the film!, as the field
source allows one to neglect edge effects since the curren
9401063-7761/99/89(11)/8/$15.00
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the edges of the film in this case are negligibly small. No
that systems of this type~a magnetic dipole above the su
face of a superconductor! are being actively investigated a
the present time, in particular, as applied to problems of
magnetic force microscope, levitation, etc.3–5 As a rule, such
studies assume that the magnetic dipole moment is q
small and only weakly perturbs the structure of the mix
state. In the present paper we present an experimental
theoretical study of a qualitatively different situation, whe
the mixed state itself is created by the field of the magne
dipole ~micromagnet!. The scenario of the appearance
such a vortex state depends substantially on how the
goes over to the superconducting state, in the presence
the absence of the field of the micromagnet. Freezing of
vortices in the field of the micromagnet was investigat
experimentally in Ref. 6. This case corresponds to the th
retical analysis of Refs. 5, 7–9, based on a comparison of
free energy of a superconductor without vortices and wit
single vortex. As will be shown in this paper, a study of t
formation of a vortex state~in a dipole field! in samples
cooled toT,Tc in the absence of a field is also of gre
interest since it would yield important information about l
cal characteristics of the sample. In this context we prop
the following scenario of the appearance of the mixed s
in our experiments. As the distancea between the film and
the micromagnet is decreased, the local Meissner curren
the surface of the film exceeds a critical value, which lead
the generation near the surface of vortex half-loops. S
half-loops, with increase of their radius, reach the oppo
surface of the film, where they split up into a vortex
antivortex pair. These newly formed vortices become pinn
to pinning centers and create a residual field. In this scen
it is possible, in particular, to determine the local ener
barrier to entry of the vortex lines into the thin supercondu
ing film through its surface. This problem reduces to me
© 1999 American Institute of Physics
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suring the threshold distanceacr , starting from which de-
struction of the Meissner state occurs. Note that the prob
of determining the local surface energy barrier is of inter
in connection with results10 which indicate a substantial de
pendence of the barrier on the orientation of the surface r
tive to the crystal axes, which cannot be explained in ter
of the anisotropic Ginzburg–Landau theory.11,12

Using this method we have obtained the temperature
pendence of the surface energy barrier suppressing cu
density j c in thin YBaCuO films in the temperature rang
77–90 K. The measured value ofj c turns out to be extremely
small in comparison with the theoretical value of the pa
breaking current for homogeneous single-crystal superc
ductors j GL ( j c / j GL;1022), which is in good agreemen
with the results of an analysis of the hysteretic dependenc
M (H) ~Ref. 10!. Our experiments have shown that the te
perature dependence ofj c}t2 differs substantially from tha
of j GL}t1.5, wheret5(Tc2T)/Tc . In our opinion, the ob-
served effects are evidence for the existence in the samp
Josephson-coupled grains, and the temperature depend
points to strong suppression of the magnitude of the or
parameter at the grain boundaries. Note that the existenc
grains is confirmed by the results of tunnel scanning mic
scope studies. To interpret our experimental data, we car
out a theoretical analysis of the spatial distribution of t
vortices in a thin film in the Bean model, which takes a
count of the magnetostatics of thin superconducting films
the mixed state.

The paper is organized as follows. Section 2 descri
the characteristics of the samples and the experimental s
Section 3.1 presents results of measurements of the de
ning currentj p in a uniform magnetic field. Section 3.2 de
scribes a technique for measuring the critical distanceacr

from the micromagnet to the film surface and present res
of such measurements. Section 4 analyzes the temper
dependence of the critical distanceacr in order to obtain
information about the temperature dependence of the cur
j c . Section 5 considers a theoretical model which descri
the resulting vortex state and compares the calculated c
acteristics of the vortex structure with the experimental
sults.

2. SAMPLE CHARACTERISTICS AND EXPERIMENTAL
SETUP

Experiments on measuring the energy barrier at the fi
temperatureT577 K were performed on a large number
YBaCuO films differing in thickness~from 850 Å to 3000
Å!, preparation technique~magnetron sputtering or laser a
lation!, and type of substrate~sapphire with yttria-stabilized
zirconia ~YSZ! sublayer, NdGaO3.) The results of all these
experiments convincingly demonstrate the existence of a
energy barrier to entry of vortex lines from the superco
ductor surface.

To check the temperature measurements of the cha
teristics of the mixed state, we used fourc-oriented YBaCuO
films (M1, M2, M3, M4) with dimensions 20320 mm2 and
thickness 850 Å, which were grown in a low-temperatu
single-stage processin situ by the method of reverse magn
m
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tron sputtering. An annular target, prepared from a p
synthesized and pressed powder of the phase YBa2Cu3Ox

sputtered in an argon–oxygen mixture at the optimal ra
Ar:O51:1 and optimal pressure 50 Pa. The temperature
measured and maintained with an accuracy of64 °C in the
range 600– 750 °C. The substrate was NdGaO3 with orienta-
tion ^100&. The films differed in their conditions of prepara
tion. The temperature of the condensation surface was
same forM3 andM4 and approximately equal to 700 °C
and forM1 andM2 it was 20 °C and 40 °C higher, respe
tively. The deposition rate forM1, M2, and M3 was 4.7
Å/min and the grain size was 5000 Å, while forM4 it was
two times lower and the grain size was 1.4 times greater.
half-width at half-maximum of the rocking curve fo
v-scanning of the~005! reflection of YBaCuO was 1°. The
films had the following parameters:Tc'84– 86 K, width of
the resistive junction'1 – 2 K, low microwave~10 GHz!
resistance;1024– 1023 V at 77 K and high depinning cur
rent densityj p(77 K)5105– 106 A/cm2, and normal-state re
sistance~at 90 K! ;100mV• cm. Details of sample prepa
ration and sample characteristics are described more full
Refs. 13–15.

The setup for performing the temperature measurem
was a copper table with a massive base immersed in liq
nitrogen ~Fig. 1!. The investigated film was placed on th
table, under which a heater was mounted on a rod. The t
perature was determined from the change in the resistanc
a copper wire which played the role of a temperature sen
and was situated in contact with the film on the surface of
table. A prescribed temperature was maintained by a ther
stat, which created a balance between the delivered hea
the removed heat by controlling the current flowing throu
the heater.

A particle of SmCo5 with dimensions 3003300
3500mm3 and magnetic moment 6.731023 G•cm3 served
as the micromagnet. Characteristics of the vortex distri
tions were measured by two identical Hall sensors based
InSb films with dimensions of the working region 5
3100mm2. A scanning sensorP1 was situated above th
film surface at a distance of 100mm and was used to mea
sure the spatial dependence of thez component of the mag
netic field Bz(x,y) at T577 K. The fixed Hall sensorP2
was located under the film precisely under the micromag

FIG. 1. Diagram of the experimental setup:1—bar; 2—micromagnet;
3—YBaCuO film;4—substrate;5—scanning Hall sensorP1; 6—fixed Hall
sensorP2; 7—temperature-sensitive element;8—heater;9—heat sink.
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942 JETP 89 (5), November 1999 Aladyshkin et al.
and was used for temperature measurements of the res
magnetization. The sensors in thexy plane had spatial reso
lution RH1'100mm andRH2'700mm, respectively.

3. EXPERIMENTAL RESULTS

3.1. Film in a homogeneous magnetic field

To determine the depinning current densityj p and its
temperature dependence, we performed experiments in a
form magnetic field. The film, located in a solenoid, w
cooled in zero field down to temperatures 77 K<T<Tc . Af-
ter increasing the field to valuesB>600 G, thereby ensuring
complete penetration of the flux into the film and sub
quently lowering the field to zero, we used the scanning H
sensorP1 to record the spatial distribution of the trapp
field Bz(x,y) ~Fig. 2!. TheBz(x,y) measurements are foun
to be in agreement with typical experimental data
YBaCuO films.16 In Fig. 2 it can be seen that the regio
where the vortices are pinned is not localized; this indica
penetration of vortex lines from the edges.1 It should be
noted that some of the behavior~logarithmic growth of the
filed near the center and change of sign of the second de
tive! predicted by theoretical calculation in the model of t
critical state with uniform depinning current densityj 5 j p

5const are not observed in the experiment. In our view,
may be due to the finite spatial resolutionR of the experi-
mental setup~in our caseR5RH1'100mm, and in Ref. 16
R51.6 mm) or to large-scale inhomogeneities which lead
the dependencej p(x,y). Nevertheless, in the critical-stat
model with j 5 j p5const ~Ref. 17! ~i.e., ignoring the inho-
mogeneities! it is possible to estimate the mean depinni
current densityj p , averaged over the surface of the film
using the formula

j p5
c max@Bz#

2pd ln~L/RH2!
, ~1!

whered is the film thickness andd5850 Å. The temperature
dependencej p(T) obtained in this way is plotted in Fig. 3
Note that this dependence is nearly linear at temperature
from Tc .

FIG. 2. Spatial distribution of the residual magnetic fieldBz in the film,
measured by the scanning sensorP1 after switching the external uniform
magnetic field on and off (H5500 G, T577 K).
ual
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3.2. Film in the field of the micromagnet

As was indicated in the Introduction, the use of a micr
magnet makes it possible to neglect the influence of e
effects, which are important in uniform fields. The field of
micromagnet at distancesr @ l ~where l is the characteristic
dimension of the micromagnet! falls off with increasing dis-
tance as 1/r 3. Therefore, despite the increase in the curren
the edge~by virtue of the large demagnetizing factor!, the
current density near the edges turns out to be neglig
small in comparison with the pair-breaking current and
sufficient for vortex creation. The form of the spatial dist
bution ofBz on the surface of the thin film magnetized in th
field of the micromagnet~Fig. 4! confirms that vortex lines
cannot penetrate the film from the edges: the vortices
localized in a bounded region of the film under the micr
magnet. As a result, in experiments on samples with fin
dimensions the presence of an edge does not have an e

FIG. 3. Typical temperature dependence of the depinning currentj p (d)
and the resistivityr (n).

FIG. 4. Spatial distribution of the residual magnetic fieldBz in the film,
measured by the scanning sensorP1 after lowering the micromagnetic to a
heighta,acr and its subsequent removal from the film (T577 K).
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and the possibility exists of carrying out local measureme
In the present section we show how the technique of m
suring local characteristics of the mixed state is used to
the temperature dependence of the surface energy ba
suppressing current densityj c .

The experiment was performed in the temperature in
val 77 K,T,Tc and in the range of distances between
center of the micromagnet and the surface 150mm,a
,4000mm for each sample. The procedure for measur
the residual magnetization arising in the film in the field
the micromagnet was as follows. The film with frozen-
zero flux was cooled to a fixed temperature which was ma
tained with an accuracyDT50.01 K. The micromagnet
originally located far from the film, was lowered to som
height a, which was measured with a micrometer, and w
then raised to its original height. After this, the magne
field of the film was measured with the sensorP2. Using this
technique, we obtained the dependence of the residual m
netization on the distancea to the micromagnet for eac
sample at various temperatures. Let us enumerate our m
results:

a! the vortex lines penetrate into the thin-film samp
through its surface and not from its edges;

b! the resulting vortex distribution has regions with po
tive and negative components ofBz ; the maximum of the
absolute value ofBz grows with decreasinga;

c! the existence of a critical distanceacr is observed,
which corresponds to onset of entry of vortices into the
perconductor~Fig. 5!; for a.acr residual magnetization is
absent, which corresponds to the Meissner state~the vortex
state is formed only fora,acr);

d! the critical distanceacr increases as the temperatureT
is increased~Fig. 6!.

To increase the accuracy of the measurements, the c
cal distanceacr ~in the presence of noise corresponding to
magnetic field'0.1 G) was determined by extrapolation
the dependence of the signal at the sensorP2 on the distance
a ~Fig. 5!. The character of the observed experimental d
tributions Bz(x,y) was the same for all samples. The tem
perature dependence ofacr ~Fig. 6! is well approximated by a

FIG. 5. Typical dependence of the residual fieldBz in the center of the film
on the distancea at T577 K.
s.
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power lawacr}tn. For all samples the exponentn.20.7.
Using these data, we will find the value ofj c using the model
described above.

4. DISCUSSION OF RESULTS

4.1. Temperature dependence of the critical current j c

The relation between the critical distanceacr and the
current densityj c needed for analysis of the experiment
data can be easily obtained by solving the problem of
distribution of the Meissner current induced by the field
the micromagnet. For the case of an infinite superconduc
film the initial equation has the form

¹3¹3A1
f ~z!

lab
2 A54pd~z1a!¹3$md~x,y!%, ~2!

wherex,y,z is the coordinate system with origin on the film
surface,lab is the effective penetration depth for curren
parallel to thexy plane; and the micromagnet~magnetic di-
pole! is located at the pointz52a, x5y50 with miz. The
function f (z) is defined as follows:f (z)51 for 0,z,d and
f (z)50 for z,0 andz.d.

Note thatlab depends strongly on the structure of th
samples: for uniform single-crystal filmslab coincides with
the London penetration depthlL while for grainy media this
length depends on the intergrain Josephson interactio18

From Eq.~2! with the help of the relation

j w52
c

4plab
2 Aw ~3!

we obtain the following expression for the current density

j w52
cm

2plab
2 E

0

`

exp~2qa!

3
k cosh@k~d2z!#1q sinh@k~d2z!#

~k21q2!sinh~kd!12kd cosh~kd!
q2J1~qp!dq, ~4!

where r ,w,z is the cylindrical system of coordinates,k2

5q21lab
22 , and J1 is the first-order Bessel function

FIG. 6. Typical dependence ofacr (d) and j c (s) on the temperatureT.
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944 JETP 89 (5), November 1999 Aladyshkin et al.
Clearly, Eq.~4! can also be used for a film of finite dimen
sions in the limitsa!L and r !L. To analyze the experi
mental data it is convenient to use a simplified express
that follows from Eq.~4! for a@max@lab,lab

2 /d#:

j w~r !52
3cmra

2plab~r 21a2!5/2

cosh@~z2d!/lab#

sinh~d/lab!
. ~5!

Employing Eq. ~5! and the experimental dependence
acr(T), we can determine the value of the critical curre
density j c(T)5maxujw(r,w)u5ujw(acr/2,0)u corresponding to
the onset of vortex penetration. Here we have also made
of the conditionlab@d, which turns out to hold in the tem
perature range under consideration~see the estimates derive
below!. Figure 6 displays a typical dependence ofj c(T). Let
us turn our attention now to some important features of
obtained results:

a! for the entire temperature rangej c(T) is significantly
smaller thanj GL , the Ginzburg–Landau critical current de
sity needed to suppress the surface barrier in ideal sam
~at T577 K we havej / j GL;1022); thus, our results are in
agreement with the results of Refs. 2 and 10, where
smallness of the Bean–Livingston barrier to entry of vor
lines parallel to the CuO planes was demonstrated;

b! for temperatures nearTc the experimental data ar
well approximated by the dependencej c}tp, where p.2
~see also Table I, which lists the main parameters of
samples!.

Let us now consider possible mechanisms of the
served strong suppression of the Bean–Livingston bar
First, suppression of the barrier can clearly be connec
with surface roughness and surface defects. This mecha
lowers the critical current of penetration of the first vortice
j ;g j GL , where g,1. Nevertheless, it is improbable th
such a mechanism should give the small valueg;1022 cor-
responding to the experimental data. Besides, even if we
sume that surface roughness leads to the appearance o
tex half-loops near the surface, breaking of these half-lo
into vortex–antivortex pairs would still require a rath
strong current densityj ; j GL . It should also be noted tha
barrier suppression due to surface roughness, in our v
cannot explain the observed temperature dependencej c}tp

with exponentp.2, which differ substantially from the tem
perature dependence of the Ginzburg–Landau current
sity j GL}t1.5.

Second, a low barrier can be easily explained in terms
the model of a grainy Josephson medium. Here the role
Josephson contacts can be played, for example, by g
boundaries. The effective critical pair-breaking current
such a model is equal in order of magnitude to the Joseph

TABLE I. Main parameters of the investigated samples.

Film Tc ,K j c(77 K),A/cm2 j p(77 K),A/cm2 p

M1 86.4 2.23106 0.83106 2.160.1
M2 86.9 2.63106 0.853106 2.060.1
M3 85.5 2.03106 0.953106 2.060.1
M4 86.6 1.03106 0.73106 1.960.1
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critical current between the grains, which is much less th
j GL . According to Ref. 18, the effective penetration dep
can be written as follows:

lab
2 5

cF0

16p2m l j c
, ~6!

wherem is the effective permeability of the medium, asso
ated with the ratiolL / l ~for lL / l;1 we havem,1.) For
lL(77 K)53000 Å, l'0.5mm, and j c523106 A/cm2 we
obtain lab; l . It can be seen that at all temperaturesT
.77 K the conditionlab. l , which was used above in th
analysis of the experimental data, is valid. At temperatu
T,77 K the penetration depthlab can be less than the grai
size l and the simple model~see Ref. 18! based on the free
energy functional averaged over the scalel is no longer
valid. The temperature dependence ofj c observed in our
experiment differs significantly from the temperature dep
dence characteristic for Josephson contacts of the f
superconductor–insulator–superconductor (j c}t; t!1)
~Ref. 19!, and points to a substantial suppression of the or
parameter at the grain boundaries. This conclusion is fo
to be in agreement with the results of Ref. 20, whi
measured the magnetic susceptibility of polycrystalli
YBaCuO films with resistivity rab(100 K)5800mV•cm
and Tc580 K. If we ignore the possible existence o
superconductor–normal metal–superconductor contacts
YBaCuO films, then our results point to an anisotropic ty
of pairing in the grains.

4.2. Model of the critical state in thin films

To analyze the characteristics of the mixed state form
in the field of a micromagnet, we considered a simple mo
of the critical state in thin films with thicknessesd!lab ,
which allowed us to find the steady-state vortex distribut
in an external magnetic field.

As was stated above, vortex–antivortex pairs are crea
in a bounded region near the maximum of the Meissner c
rent r max5a/2. The vortices that have entered the film und
the action of the Lorentz force will move to the oppos
side, redistributing the residual magnetization as a resul
steady-state vortex distribution in the film is possible p
vided the following conditions hold~see, e.g., Ref. 21!. First,
the current density should not exceed the critical valuej c

~otherwise additional vortices will be generated!. Second, in
order that the vortex structure be fixed, the current densit
the region of the vortices should not be greater than the
pinning current densityj p . A simple variant of the nascen
vortex structure is a set of two nonoverlapping regions
which either the vortex density or the antivortex density
nonzero.

Let j1(r ,r 8) be the current density at the pointr created
by a vortex located at the pointr 8:

j1~r ,r 8!5 j 1~ ur2r 8u!z3
r2r 8

ur2r 8u
.

Then the expression for the current densityj tot(r ) created by
the fixed vortices distributed with concentrationn(r ) has the
form
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j tot5E n~r 8!j1~ ur2r 8u!dr 8. ~7!

For the case of an axially symmetric distributionn(r )
5n(r ), Eq. ~7! reduces to the form

j tot,w5
1

N E
0

`

2pn~r 8!G~r ,r 8!r 8dr8, ~8!

whereG(r ,r 8) is the current density created by a vortex ri
with concentration of vorticesn(r )5Nd(r 2r 8)/2pr , where
N is the total number of vortices.

An analysis of the creation of a vortex structure c
be performed at the threshold of vortex-pair generat
@(acr2a)/acr!1#. In this case, the steady-state vortex d
tribution consists of two narrow rings located a great d
tance apart: an inner vortex ring of radiusr 1 and half-width
u1 and an outer vortex ring of radiusr 2@r 1 and half-width
u2 (u1,2!r 1,2). We also assume thatj p! j c . This condition
is in agreement with our experimental results forT close to
Tc ~see Sec. 3.1 and 4.1!. The indicated conditions allow u
to simplify the expression forG(r ,r 8) in Eq. ~8! ~see Ap-
pendix A! and obtain the following system of equations:

«a

b cF0n1~r 8!dr8

2p2d~r 2r 8!
1 j w~r !1

3NcF0r 1

8p2dr2
3 52 j p , a<r<b,

~9!

2«c

d cF0n2~r 8!r 8dr8

2p2dr~r 2r 8!
1 j w~r !1

NcF0

4p2dr2
2 52 j p ,

c<r<d, ~10!

j w~ r̃ !1
cF0N

4p2dr̃2 1
3cF0Nr

4p2dr̃2 52 j c , ~11!

d

dr
j w~r !U

r̃

1
d

dr S cF0N

4p2dr2D U
r̃

1
d

dr S 3cF0Nr

4p2dr2 D U
r̃

50, ~12!

wherea<r<b andc<r<d are respectively the regions o
existence of the vortices and antivortices;r̃ is the point at
which the total current reaches its maximum;n1 is the vor-
tex density; andn2 is the antivortex density. Equations~9!
and~10! describe the conditions of immobility of the vorte
structure@ j tot(r)5jp for a<r<b and c<r<d], while Eqs.
~11! and ~12! correspond to the situation where the ma
mum value of the current density is equal toj c .

Taking the approach employed, for example, in Ref.
it is possible to invert the integral equations~9!–~12! ~see
Appendix B!. After solving the resulting system we obta
the following expressions for the vortex and antivortex de
sities:

n15
3m

F0acr
4 Au1

22~r 2r 1!2, n25
12macr

F0r 2
5 Au2

22~r 2r 2!2,

~13!

where

r 15
2p j pdacr

4

3mc
, r 1r 2

45acr
5 , ~14!
n
-
-

,

-

u1
25

NcF0

2p3d jp
, u15

1

2
u2 . ~15!

Then

N52pr 1E
r 12u1

r 11u1
n1~r !dr52pr 2E

r 22u2

r 21u2
n2~r !dr

5
9mp

1.255/2F0•4acr
S 12

a

acr
D . ~16!

To compare the results obtained using the conside
theoretical model with the experimental data, it is necess
to find a relation linking the experimentally measured va
of Bz with the parameters of the vortex structure. Becau
two narrow vortex rings (u1,2!r 1,2) are formed near the gen
eration threshold, to find the magnetic field created by
film we can take the vortex density to be equal to

n~r !5
N

2pr
@d~r 2r 1!2d~r 2r 2!#. ~17!

The desired expression for thez component of the mag
netic fieldBz measured by the Hall sensorP2 ~located under
the film at the distanceH5700mm) has the form

Bz5E
0

` H

~r 821H2!3/2F0n~r 8!r 8dr8

5
NHF0

2p F 1

~r 1
21H2!3/22

1

~r 2
21H2!3/2G . ~18!

It is interesting to compare the slope of the experimen
curveBz(a) for a5acr with the theoretical value

Bz8[SdBz

da DU
a5acr

52
9mH

1.255/2
•8acr

2 F 1

~r 1
21H2!3/22

1

~r 2
21H2!3/2G .

~19!

As can be seen from Fig. 7, the temperature depende
Bz8(T) demonstrates good agreement between the theore
calculations and the experimental data.

FIG. 7. Temperature dependence ofBz85dBz /da (d — experiment,s —
theory!.
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5. CONCLUSION

In the present paper we have proposed a new experim
tal method for determining the local characteristics of sup
conducting films, in particular, the surface energy barrier
entry of vortex lines into the superconductor. The measu
ment technique is based on the use of a small ferromagn
particle as the magnetic-field source and is therefore fre
the drawbacks characteristic of methods employing unifo
external fields to determine the characteristics of sam
with a large demagnetizing factor. The primary virtue of t
method is that it allows one to obtain direct informatio
about important parameters of a superconductor regardle
the geometry of the sample. The experiments conducted
YBaCuO films have shown that the energy barrier to crea
of vortices~for the field oriented parallel to the CuO plane!
is anomalously small. The temperature dependence of
corresponding threshold currentj c ~induced by the micro-
magnet! differs substantially from the temperature depe
dence of the pair-breaking current responsible for overco
ing the Bean–Livingston barrier in ideal samples. The
facts can be interpreted in terms of the model of a Joseph
medium. In this case, the value that we have obtained
j c(T) is the intergrain critical current density. The observ
temperature dependence ofj c is indicative of a strong sup
pression of the superconducting order parameter at the in
grain boundaries, which for the most probable type
boundaries ~superconductor–insulator–superconductor! is
evidence of anisotropic pairing. Further analysis of the te
perature dependence ofj c(T) in samples with different mi-
crostructure is thus very important for answering the qu
tion of the type of pairing in high-temperatur
superconductors.

In conclusion, we would like to express our gratitude
A. A. Andronov for valuable remarks and discussion of t
results. This work was carried out with the financial supp
of the Russian Fund for Fundamental Research~Grant No.
97-02-17437! and the International Center–Foundation f
Promising Research in Nizhni� Novgorod ~Grant No. 99-2-
03!.

APPENDIX A

Here we obtain the asymptotic limits for the Green
functionG(r ,r 8) in Eq. ~8!. We find the current density cre
ated by a ring of vortices with concentration

n~r !5Nd~r 2r 8!/~2pr ! ~A1!

(r 8 is the radius of the ring!. It is well known that the ex-
pression forj 1(r ,r 8) for ur2r 8u@leff (leff5lab

2 /d) has the
form

j 1~r ,r 8!5
cF0

4p2ur2r 8u2d
. ~A2!

After substituting Eqs.~A1! and~A2! into expression~7! and
integrating overr 85ur 8u we obtain

G~r ,r 8!5
cF0N

8p3d E
2p

p ~r 2r 8cosw!dw

~r 21r 8222rr 8 cosw!3/2. ~A3!
n-
r-
r
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After some mathematical manipulations, expression~A3! can
be reduced to the form

G~r ,r 8!5
cF0N

4p3d F E~k!

r ~r 2r 8!
1

K~k!

r ~r 1r 8!G , ~A4!

whereK(k) andE(k) are the complete elliptical functions o
the first and second kind andk254rr 8/(r 21r 82).

We write down the asymptotic limits of the Green
function G(r ,r 8) @Eq. ~A4!#:

1! for ur 2r 8u!r 8

G~r ,r 8!5
cF0N

4p3d

1

r 8~r 2r 8!
; ~A5!

2! for ur 2r 8u@r 8 and r .r 8

G~r ,r 8!5
cF0N

4p2d

1

r 2 ~A6!

~this form of the Green’s function is used to calculate t
current density created by a vortex ring in the region of
antivortex ring!;

3! for ur 2r 8u@r 0 and r ,r 8

G~r ,r 8!5
3cF0N

8p2d

r

r 83 ~A7!

~this form of the Green’s function is used to calculate t
current density created by an antivortex ring in the region
a vortex ring!.

APPENDIX B

To solve the system of integral equations, we used
approach developed in Ref. 22. In this situation, according
Ref. 22, for the singular integral equation

1

p i «a
b w~ t !dt

t2t0
5 f ~ t0!1C, a<t0<b, ~B1!

~where w(t) is an unknown function satisfying the Helde
condition, andC is an unknown constant! the unique solu-
tion has the form

w~ t0!5
A~ t02a!~ t02b!

p i E
a

b f ~x!dx

A~x2a!~x2b!~x2t0!
,

~B2!

C5
1

p i Ea

b f ~x!dx

A~x2a!~x2b!
. ~B3!
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Spectroscopy of electroreflection, the electron band structure, and the mechanism
of visible photoluminescence of anisotropically etched silicon
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We present the results of studies of electroreflection in the 1.1–4.4 eV spectral range, of electron
Auger spectroscopy, and of electron diffraction involving the photoluminescent Si–SiO2

system prepared via anisotropic chemical etching of the Si~100! surface. These results are
explained on the basis of a four-layer model of the band structure and energy transition
diagram for a system with a quantum well at the silicon surface, surface electron states at the
boundary, and a gradient of the band potential in the transition layer. We find that light-
emitting silicon remains an indirect-gap semiconductor and that the visible photoluminescence is
due to direct recombinations of the light-excited electrons and holes in the quantum well at
the center of the Brillouin zone with the participation of the band of deep localized states, which
is due to the presence of oxygen at the silicon surface. ©1999 American Institute of
Physics.@S1063-7761~99!01811-9#
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1. INTRODUCTION

Since visible photoluminescence was first detected
silicon at room temperature,1 much attention has been paid
this phenomenon, which is unexpected in indirect-gap se
conductors. The unflagging fundamental and practical in
est in the emission of radiation by silicon2–5 is due to the
specific optical and electronic properties of this mater
properties that also make it possible to record electrolu
nescence at room temperature.6,7 This broadens the possibi
ity of using one of the main materials of electronics not on
in microelectronics but also in optoelectronics.

In silicon direct radiative recombination of electrons a
side minimum in the conduction band and a hole at the top
the valence band is usually impossible without the partici
tion of phonons or violation of selection rules, so the pho
luminescence efficiency of silicon is extremely low. To i
crease this efficiency, the electrons and holes must
localized at the same point of the Brillouin zone~in k-space!.
However, the results of numerous studies indicate that
tense photoluminescence at room temperature can be
tected after the silicon surface has been treated appropri
by one of the following methods: anodic electrolyt
etching,1 chemical etching,8 photochemical etching,9 and an-
isotropic chemical etching.10 It was also found that silicon
nanospheres deposited on quartz or germanium subst
and covered by a layer of silicon dioxide emit light at roo
temperature when excited by laser light,11 and so do Si–SiO2
superlattices.12

It has been established without doubt that irrespective
the method used in preparing light-emitting silicon, the e
ergy of the emitted photons exceeds the energy of the i
rect transition ~1.12 eV! and does not coincide with th
known energies of direct optical transitions for silicon at t
critical points of the Brillouin band. Therefore, it is quit
natural that most studies of light-emitting silicon have be
9481063-7761/99/89(11)/7/$15.00
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aimed at establishing the nature and mechanism of l
emission in silicon, which were usually found from the spe
tral dependence of the photoluminescence intensity and
effects of various factors, such as the nanocrystallite siz13

thermal annealing,14 ultraviolet,15 laser,16 electron,17 and
gamma18 radiation, chemical etching,19 electric field,20 and
the surroundings.21 However, despite the substantial a
vances in the studies of properties of light-emitting silico
the physical mechanism of visible photoluminescence of s
con is still unclear.

Although excitonic annihilation at the surface states
quantum-size structures is the generally accepted mod
standard mechanism of visible photoluminescence in sili
has yet to be developed. Neither has it been established w
out doubt that light-emitting silicon is an indirect-gap sem
conductor, although there are indications of this in the res
of studies of light-induced absorption in porous silicon22

According to theoretical calculations,23–26 light-emitting sili-
con becomes a quasidirect-gap semiconductor with an
creased band gap and less stringent selection rules due t
effect quantum-size confinement in nanostructures. The la
is important if we want to increase the photoluminescen
efficiency.

Studies of the electron band structure of light-emitti
silicon by the modulation spectroscopy method should h
in understanding the nature of efficient visible photolumin
cence of indirect-gap semiconductors. The high sensitivity
this method to details of the band structure is well known27

The advantage of modulation spectra over classical spe
lies in the fact that they allow the fine structure, usua
hidden by the structureless background, to be establis
Here the electroreflection method is the most sensitive, s
the electroreflection signal is determined by the third ene
derivative of the optical constants~and hence of the reflec
tion!. The signal exists only at the critical points of th
© 1999 American Institute of Physics
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Brillouin zone in the direct-transition region, vanishes as
move away from these point, and is determined by both
tical and electron properties of the semiconductor surf
under investigation.28 No studies of light-emitting silicon by
this method have been conducted so far, and there ar
data on the electroreflection and changes in the elec
structure of silicon initiated by the transition to the ligh
emitting state in the literature.

This paper is a report on the studies of the energy sp
trum of light-emitting silicon, prepared by anisotropic etc
ing, The results were extracted by the electroreflect
method and compared with the spectrum of ordinary~non-
light-emitting! bulk silicon. We also examined the results
electron diffraction and electron Auger spectroscopy. On
basis of the data, we interpret the nature of photolumin
cence in way that differs from the common approach.

2. EXPERIMENT

Layers of photoluminescent silicon with a thickness
up to 0.3mm each were formed by anisotropic chemic
etching of a mirror-smooth n-Si~100! surface in a
HF:HNO3520:1 mixture in the course of 20–30 min. Ph
toluminescence was recorded at room temperature by a
dard device and was excited by the 514.5-nm light of
argon laser with a flux of less than 0.1 W cm-2 ~see Ref. 10!.

The essence of the electroreflection method consist
recording the modulation of the reflectivity of the samp
that appears when an external modulating electric field
applied to the sample. The quantity that is measured is
relative reflectivity modulation,DR/R. The electroreflection
spectra were measured in an electrolytic cell with a 0
normal aqueous solution of KCl at room temperature in
1.1–4.4 eV spectral range, which included the phot
emission range for silicon and the direct transitions at
center of the Brillouin zone and at the edge of the zone in
direction^100& of the wave vector, where the absolute min
mum X1 of the conduction band of silicon is located.

The measurements were done by a device based on
DMR-4 monochromator with automatic recording of th
spectrum on the display with a linear energy scale an
0.003-eV resolution. The sensitivity of the device in meas
ing DR/R reached one part in a million, and the accuracy
measuring the signal strength was 2%. The electroreflec
signal was recorded at 0.2–0.7 eVmodulating voltages to
sure the weak-field measuring regime.

An analysis of the electroreflection spectra in a spec
region in thek-space of the Brillouin zone for a specifi
energy transition made it possible to determine the transi
energyEg , the phenomenological Lorentz broadening p
rameterG, which allows for dissipation processes in the ele
tron transition, and the energy relaxation timet of the light-
excited charge carriers. The calculations were done by
three-point method29 using the energy position of the dom
nating peaks in the electroreflection spectrum with allowa
for the peak intensities.

The morphology of the surface of the silicon plates a
its modification as a result of anisotropic etching were st
ied with the JEM-100 CX scanning electron microscope. T
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atomic composition of the surface was determined from
Auger spectra for low-energy (LVV) and high-energy
(KLL) transitions obtained in the JEOL JAMP-10
microanalyzer with 10-keV electrons and a 3-Vmodulati
voltage. To analyze the chemical composition of ligh
emitting silicon by depth we usein situ layer-by-layer etch-
ing of the silicon surface by 3-keV Ar1 ions with a current
density of 1–2mA mm22 and a spot diameter of 100mm.
The etching rate was 3 nm per minute. The perfection of
crystal structure at the plate surface was estimated from
electron-diffraction patterns produced by the E´MR-100
electron-diffraction camera with an accelerating voltage
75 keV. If necessary, the surface layer of silicon was
moved in an aqueous solution of hydrofluoric ac
HF:H2O51:1.

3. RESULTS OF THE EXPERIMENT

In the process of anisotropic etching, the surface of
silicon plate dimmed, acquired a microrelief, and beca
opalescent. Under laser excitation, such silicon samples w
found to emit light at room temperature in the 600–800 n
spectral range with a maximum at 720 nm, and the halfwi
of the photoluminescence band amounted to 0.25 eV.
shape of the spectrum was found to be the same as
obtained in other studies of porous silicon. A specific feat
of the luminescence is the small halfwidth of the emiss
band in comparison to the values for ordinary silic
~0.32–0.58 eV!2–4,18–21and the fact that luminescence did n
degrade after long storage periods~more than one year!. A
detailed report on the results of studies of photolumin
cence, Raman scattering of light, and the surface morp
ogy of anisotropically etched silicon can be found in Ref. 1
After light-emitting silicon was treated by an aqueous so
tion of hydrofluoric acid, the opalescence disappeared
the surface acquired a mat finish, but the microrelief
mained. We were unable to record any photoluminescenc
such a sample~just as with the initial bulk silicon sample!.

An analysis of the electron-diffraction patterns produc
by the electron-diffraction camera suggested that the in
and anisotropically etched surfaces differ in crystal structu
The electron-diffraction pattern of the initial surface exhi
ited distinct point reflections. The electron-diffraction patte
of the anisotropically etched surface contained rings, wh
is an indication that a polycrystalline structure is prese
After the light-emitting layer was removed, the electro
diffraction camera produced patterns with Kikuchi line
which indicates that the crystal structure of the microrel
surface of the silicon is nearly perfect. According to Refs.
and 30, as a result of anisotropic etching of Si~100! plates, a
layer of the crystal modification of theb-cristobalite of SiO2

forms at the surface. In our research we used the data
electron-diffraction patterns to show that this layer has
polycrystalline structure with a tetragonal lattice.

A detailed analysis of Auger spectra showed that th
was no oxygen in the initial plate and confirmed that
oxide phase is formed at the silicon surface as a resul
anisotropic etching. The intensities of the high-ener
KLL-peaks in the Auger spectra of oxygen~500 eV! and
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FIG. 1. Electroreflection spectra of the initial~curve 1!
and photoluminescent~curve 2! silicon surfaces in the
regions of theE08- andE0-transitions~point G, Fig. a! and
of E2-transitions~point X, Fig. b!.
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silicon ~1590 eV! were used to determine the O-to-Si rat
and its changes as we approach the SiO2–Si boundary. First
this ratio did not change, but then, at a distance of 100
from the silicon surface, a composition gradient was o
served with a smooth transformation from SiO2 to Si through
the SiOx phases~the incompletely oxidized states Si2O3,
SiO, and Si2O!. For the low-energy siliconLVV-transition,
the Auger spectra in the transition layer revealed large sh
of Auger electrons (29 eV!, which is characteristic of the S
bond in SiO2.

The results of measurements of the electroreflection
the initial and light-emitting silicon surfaces are depicted
Fig. 1. Electroreflection signals from the initial surface we
recorded in the 3.2–3.55 eV~curve 1 in Fig. 1a! and 3.9–
4.25 eV~curve 1 in Fig. 1b! spectral ranges. According t
electron band structure of silicon,31 the electroreflection
spectrum in Fig. 1a corresponds to the direct transitionsG258 –
G15 andG258 –G2, which occur between the valence band a
the conduction band at the center of the Brillouin zone.
silicon atk50, the orbitally degenerate bandG15 lies below
the nondegenerate conduction bandG28 , since the order in
which the structuresE0 and E08 appear in the spectrum i
opposite the sequence observed in other semicondu
~Fig. 2!. The low-energy structureE08 corresponds toG258 –
G15 transitions. In view of broadening, the signals from t
E08- andE0-transitions overlap and usually are not resolv
at room temperature. In the 3.9–4.25 eV spectral ra

FIG. 2. Electron band structure of silicon.
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~curve1 in Fig. 1b!, the electroreflection signal is due to th
X4–X1 transitions at the edge of the zone~theE2-transition!.
In agreement with selection rules, the indirect transitionG258 –
X1with an energy of 1.12 eV did not manifest itself in th
electroreflection spectrum. The electroreflection spectra
the photoluminescent silicon surface are depicted in Fig
~curve 2! and 3. In comparison to the spectra of the init
surface, these spectra showed that

1. There is inversion of the polarity of electroreflectio
signal in the vicinity of theE08 andE0-transitions, but there is
no inversion of the polarity for theE2-transition;

2. The value of the phenomenological broadening
rameter decreases, which made it possible to allow forE08-
andE0-transitions;

3. There is a signal in the spectral range where photo
minescence is observed~Fig. 3!;

4. Periodic alternating-sign oscillations appear in t
short-wavelength region of each transition;

5. The dominating peaks separated by 40 meV are d
blets; and

6. The removal of the oxide layer causes the disappe
ance of the electroreflection effect in the photoluminesce
region, the disappearance of short-wavelength oscillati
and peak splitting, and the restoration of the polarity of t
initial signal.

4. DISCUSSION

In interpreting the experimental data we assumed t
measurements of the reflection of photoluminescent sili
samples without a modulating field do not reveal the pr

FIG. 3. The electroreflection spectrum of anisotropically etched silicon
the photoluminescence region.
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FIG. 4. Schematic of the band diagram of the photolum
nescent Si–SiO2 structure~a!, and the diagram of energy
transitions that form the electroreflection and photolum
nescence spectra~b!.
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ence of interference effects, and electroreflection spect
copy provides information about the presence of direct tr
sitions in the band structure of the semiconductor a
establishes the energy distribution of the electron in
structure. Hence the differences in the behavior of the e
troreflection spectra that manifest themselves when we
from bulk silicon with a surface prepared in the standard w
to light-emitting silicon are due to the change in the elect
properties and the structure of the energy bands of the sil
surface brought on by anisotropic etching. The shape of
electroreflection spectra and the occurrence of photolumi
cence in anisotropically etched silicon can be explained
the four-layer model of the band diagram, which does
contradict the experimental data on electron Auger spect
copy either. The model presupposes the existence in an
tropically etched silicon of interphase surface electron sta
situated deep inside the forbidden band of silicon, a tra
tion layer of SiOx at the Si–SiO2 boundary, and surface siz
quantization of the energy of the electrons belonging to
conduction band. A schematic of the proposed band diag
is depicted in Fig. 4a.

The results of electroreflection studies have shown
at the initial surface of the silicon substrate, and also after
oxide layer is removed from the microrelief surface, t
bands undergo depletion bending, i.e., the surface is dep
of electrons and the bands are bent upward. In the proce
anisotropic etching, silicon atoms are forced to leave the s
strate surface and are replaced by oxygen atoms, as sh
by Auger spectroscopy. This process is accompanied by
dered growth of crystalline SiO2, which changes the concen
tration and spectrum of the surface electron states in the
face layer. On the surface silicon under a layer of SiO2 ~Fig.
4a! the potential is of enrichment type and the bands are b
downward. The surface is enriched with electrons due to
appearance of interphase surface electron states at the b
ary and a built-in positive change. This causes a chang
the phase of the electroreflection signal. Since a change f
a depletion potential to an enrichment potential was obser
only for G-transitions and was absent forX-transitions~the
phase of the electroreflection signal was retain!, we can state
that the interphase surface electron states lie ink-spacewhich
are not near the minimum of the silicon conduction band,
at the center of the Brillouin zone.

According to the selection rules, the electroreflection
fect is observed if27
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¹k@Ec~k!2Ev~k!#50, ~1!

whereEc andEv are electron energies in the conduction a
valence bands, respectively. It is likely that the condition~1!
is met also for the electron transition between the main b
and the band of surface electron states lying at a depthEss:

¹k@Ec~k!2Ess~k!#50. ~2!

If we allow for ~2!, the occurrence of an electroreflectio
signal from anisotropically etched silicon in the spect
range depicted in Fig. 3 can be explained by the presenc
the direct transitionsEss–G15 at the center of the Brillouin
zone, in the same way as the presence of theG258 –G15 tran-
sitions explains the origin of an electroreflection signal~for
the latter transitions the electroreflection spectrum is giv
by curve2 in Fig. 1a!.

The doublet nature of the peaks of electroreflection
light-emitting silicon can be explained by the effect of su
face size quantization of the electron energy in the enric
surface layer of silicon. The band diagram in Fig. 4a su
gests that between the SiOx layer and silicon there is a quan
tum well, i.e., the lateral motion of the electrons is fre
while in the direction perpendicular to the boundary the s
tem is quantized. The presence of 2D electrons in the c
duction band leads to a situation in which in addition
electron transitions between the main bands there are tra
tions between the valence band or the band of surface e
tron states and the first quantized levele1 in the 2D quantum
well ~Fig. 4b!. The presence of two transitions with energi
Eg andEg1e1 splits the peaks in the electroreflection spe
trum.

Gushchinaet al.32 were the first to detect a discrete e
ergy spectrum related to size quantization in photolumin
cent silicon. Their experiment revealed that such a spect
appears in differential transmission spectra and was at
uted to the presence of quantized energy levels. The en
of optical transitions in the quantum-size system for the fi
quantization level is given by the expression

E5Eg1
\2p2

2mL2
, ~3!

where Eg is the band-to-band transition energy,m is the
band-to-band effective mass, andL is the width of the quan-
tum well. The valuee150.04 eV found from the experimen
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FIG. 5. Experimental curves~4! for determining the
electro-optical energy:~a! in the region of theE0-
~straight line1! and E2-transitions~straight line2!,
and ~b! in the photoluminescence region.
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tal electroreflection spectra under the assumption that the
fective hole mass ismp50.49m0 at the pointG258 ~herem0 is
the free electron mass! and that the effective electron mass
me50.156m0 at the pointG28 ~Ref. 31!, and with allowance
for the expression~3! the value of the quantum-well widthL
is 4 nm.

In the presence of a quantum well and a SiOx layer, the
presence of alternating-sign oscillations observed in the e
troreflection spectra above the optical absorption edge ca
explained by the Franz–Keldysh effect involving direct tra
sitions in a semiconducting structure with a built-in elect
field. Franz–Keldysh oscillations in a uniform electric fie
are usually observed if33

np5F1
4

3 S En2Eg

\u D 3/2

, ~4!

wheren andEn are the number of an extremum in the osc
lations and the position of this extremum on the energy sc
F is a phase factor, andhu is the electro-optical energy. Fo
the energy transitionsE0 (Eg53.42 eV) and E2 (Eg

54.2 eV), the experimental curves are depicted in Fig.
and for the transition with the participation of surface ele
tron states (Eg51.6 eV), in Fig. 5b. The values for theE0-,
E2-, andEss-states, which we found from the slopes of t
curves specified by~4! and depicted in Fig. 5, amounted
41, 27, and 58 meV.

The electro-optical energy is determined by the fie
induced broadening of the spectrum and depends in the
lowing way on the band-to-band effective masses of
charge carriers and the electric field strength:28

~\u!35e2\2Fs
2/m , ~5!

wheree is the electron charge, andFs is the surface electric
field. The value\u541 meV and the value ofm50.119m0,
determined from the given values ofme andmp for theG258 –
G28 with allowance for~5!, were employed to find the valu
of the built-in electric field,Fs51.53105 V cm21. Allowing
for ~5! and the value\u527 meV for theE2-transition, we
calculated the value of the band-to-band effective m
f-

c-
be
-

e,

,
-

-
l-

e

s

m50.432m0. With the effective electron massme50.98m0

at pointX1 ~Ref. 31!, the value of the effective hole mass
point X4 proved to bemp50.824m0.

The Franz–Keldysh effect with the participation of lo
calized states was studied theoretically by Vinogradov34

while we were the first to observe it in experiments. For
energy transition with the participation of a miniband, t
value \u558 meV at Fs51.53105 V cm21 was used to-
gether with~5! to determine the value of the band-to-ba
effective mass for the given transition,m50.416m0. The
large number of oscillations in the electroreflection spec
and the fact that the condition~4! holds point to the unifor-
mity of the built-in electric field, which is due to the variab
energy gap of the SiOx layer. For a layer of thickness
d5100 nm, the pinning of the Fermi level at the silicon su
face at the boundary,Epin5eFsd51.5 eV, is close to the
energy ‘‘depth’’ of the miniband of the surface electro
states~1.6 eV!.

Note that the electro-optical Franz–Keldysh effect in
built-in electric field was also observed in photoreflecti
spectra.35–37 In variable-gap GaAlAs–GaAs structures35 and
in insulator–n1n–semiconductor structures,36 oscillations
was observed atFs533105 V cm21. In CdTe/CdMnTe
structures with single quantum wells the built-infield w
found be as high as 7.53104 V cm21, with the width of the
quantum well ranging from 5 to 15 nm~see Ref. 37!.

The width of the enrichment layer,l 52kT/eFs , at room
temperature (kT525 meV) amounted to 3.3 nm in a fiel
Fs51.53105 V cm21, which is close to the calculated valu
L54 nm of the width of the quantum well, obtained from th
data on peak splitting in the electroreflection spectrum. T
closeness of the values ofl andL suggests that there is quan
tum well at the silicon surface, in accordance with the p
posed model of the band diagram of the photoluminesc
Si–SiO2 structure.

The model made it possible to explain the effect of ele
troreflection in the photoluminescence region, signal inv
sion, the presence of periodic oscillations, and peak split
in the electroreflection spectra. The diagram of the ene
transitions at the center of the Brillouin band that are resp
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sible for the spectra of electroreflection and photolumin
cence in anisotropically etched silicon is depicted in Fig.
All processes included in the diagram participate in the e
troreflection, while the photoluminescence is due solely
the transitions in which the levelsEss take part. Here the
photoluminescent silicon remains an indirect-gap semic
ductor, since, according to electroreflection data, the ener
of the direct transitions at the singular pointsG and X re-
mained almost unchanged when the initial silicon was
placed by anisotropically etched silicon. Only a slight var
tion in the energy was observed, which was due to surf
quantization~40 meV! and the appearance of internal m
chanical stresses associated with compression. Estimat
the values of these stresses made on the basis of the da
Raman scattering of light taken from Ref. 10 yield
53108 N/m2, which changesEg by 50 meV.

Thus, in anisotropically etched silicon, no displacem
of the absolute minimum of the conduction band from po
X1 to point G and no strong increase in the indirect gap d
to quantum-size confinement are observed. Hence the o
of photoluminescence in such silicon is caused neither b
quantum-size increase in the band gap nor by transitions
tween the tails of the density states at the edges of the
bility edges nor by excitonic annihilation at the surface sta
of quantum size structures.

A comparison of the spectral photoluminescence a
electroreflection curves suggests that the carriers are ge
ated as a result of excitation of a transition in which the ba
of surface electron states at pointk50 participates. The en
ergy of this transition exceeds the energyEg of the indirect
transition. Transitions with radiative recombination of ele
trons and holes take place at the same point ofk-space of the
Brillouin zone, which requires neither the violation of sele
tion rules nor the participation of phonons, and this rai
quantum efficiency substantially.

The surface radiative recombination of electrons a
holes excited by laser light is confined to the quantum w
where the probability of finding a nonradiative center is lo
Indeed, the Lorentz broadening parameterG decreases from
132 meV to 80 meV for theE0-transition when the initial
silicon is replaced by light-emitting silicon, while for th
Ess-transition responsible for photoluminescence we h
G540 meV.

As is known,G is the dissipative part of the self-energ
of an electron excited by light to the conduction band and
determined by scattering of the electron energy in an opt
transition. The presence of a quantum well at the photolu
nescent surface of silicon makesG smaller and increases th
energy relaxation timet5\/G. The value of the relaxation
time was found to increase from 5310215s to 8310215s,
while for theEss-transitiont51.6310214s. The increase in
t causes an increase in the mean free path of an elect
hole pair and to a corresponding increase in the mobility
such pairs. Note that an increase in the energy relaxa
time for electrons was also observed by Gushchinaet al.32 in
photoluminescent silicon with the quantum size effect~com-
pared to the value in the initial sample!.

The following factors also contribute to the increase
photoluminescence intensity: the passivation by oxygen
-
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broken bonds at the light-emitting surface~the decrease in
the number of nonradiative recombination centers!, the de-
crease in the rate of nonradiative surface recombination
the built-in electric field, and the increase in the absorpt
of the exciting light by the well-developed microrelief su
face of anisotropically etched silicon. The high stability
photoluminescence with the passage of time can be
plained by the passivation of the photoluminescent surf
by a thick oxide layer. Fauchetet al.38 also reported an in-
crease in intensity and stability of photoluminescence in o
dized porous silicon in comparison to the values in the ini
sample.

5. CONCLUSIONS

On the basis of a comparison of the results of expe
mental investigations of the electroreflection of the init
surface and the anisotropically etched photoluminescent
face of silicon we have developed a four-layer model of
band structure of Si–SiO2, determined the parameters of th
structure, and examined a mechanism of visible photolu
nescence that differs from standard mechanisms. Our fi
ings yield the following conclusions.

1. Light-emitting, anisotropically etched silicon is a
indirect-gap semiconductor. The surface photoluminesce
that arises in this semiconductor at room temperature is
to the emergence of a miniband of deeply-lying levels
surface electron states in the forbidden band of anisotr
cally etched silicon, levels formed by adsorbed oxygen
oms. Direct radiative recombination of electrons and ho
takes place in a quantum well near the Si–SiO2 boundary
during the energy transition at the center of the Brillou
zone between the conduction band and the miniband of
face electron states.

2. The increase of quantum efficiency is promoted by
increase in the absorption of the exciting radiation by
well-developed surface of the boundary and by the redis
bution of the radiative and nonradiative recombination c
ters at the silicon surface after anisotropic etching is co
pleted. The decrease in the number of nonradiat
recombination centers in the region where electron–h
pairs are produced is due to the high perfection of the S
SiO2 boundary.

3. Passivation of the photoluminescent boundary b
thick oxide layer makes the structure of Si–SiO2 prepared by
anisotropic etching extremely stable and inert to the s
roundings. The stability of photoluminescence in this stru
ture is not inferior to that in porous silicon prepared by sp
cial methods by Fauchetet al.38 The simple technology use
in manufacturing the photoluminescent layer and the h
efficiency and stability of photoluminescence require furth
investigation in order to obtain electroluminescence in ani
tropically etched silicon.
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Optical and magnetooptical properties of granular alloys with giant magnetoresistance
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The features of the optical and magnetooptical properties of granular alloys with giant
magnetoresistance in the IR region are examined in reference to the magnetorefractive effect and
the equatorial Kerr effect. Calculations are performed within the semiclassical approximation
with consideration of spin-dependent scattering in the bulk of the granules and on their surfaces
~interfaces!. The expressions obtained forsxx(v) andsxy(v) are found to be sensitive to
scattering on the surfaces and in the bulk of the granules, as well as to granule size, the type of
impurities trapped on the interfaces, the frequency of the incident light, and the external
magnetic field. For granular thin films exhibiting giant magnetoresistance, the theory predicts
significant relative changes in the optical reflection and transmission coefficients when
the sample is magnetized to saturation~0.02% and 20%, respectively, for giant magnetoresistance
of the order of 20%!, as well as Kerr and Faraday effects that are nonlinear with respect to
magnetization. ©1999 American Institute of Physics.@S1063-7761~99!01911-3#
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1. INTRODUCTION

It has essentially been proven that the giant magnet
sistance in magnetic multilayers and granular alloys is as
ciated with the spin-dependent scattering of conduct
electrons.1,2 The occurrence of spin-dependent scattering
such systems is also manifested in other transport phen
ena, for example, in the thermal conductivity a
thermopower,3 the anomalous Hall effect,4,5 the optical
properties,6–9 and the high-frequency impedance.10

The reflection (R), transmission (T), and absorption (k)
coefficients of metals in the IR region of the spectrum
determined by the frequency dependence of the diag
component of the intraband conductivity tensorsxx(v).
Since the static conductivitysxx(v→0) of materials with
giant magnetoresistance depends strongly on the magne
tion of the sample,1,2 it is clear thatsxx(v) and, conse-
quently, all the optical properties should also depend
magnetization. This phenomenon, which is called the m
netorefractive effect, was first discovered experimentally a
explained theoretically for multilayers by Jacquet and Vale6

Thus, the magnetorefractive effect consists of changes in
optical properties of systems with giant magnetoresista
when they are magnetized. This phenomenon can be
served only in the IR region of the spectrum, where the
tical properties are determined by intraband scattering p
cesses. The theory for this effect in multilayers has b
thoroughly developed.6–9 At the same time, this effect has
fairly general character and should be observed in all s
tems characterized by significant magnetoresistance, par
larly in granular metal-metal alloys with giant magnetores
9551063-7761/99/89(11)/5/$15.00
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tance or granular metal-dielectric alloys with tunnelin
magnetoresistance. The magnetorefractive effect was
cently discovered11 in reflection from granular
Cox~Al2O3!12x films, and its magnitude in the near-IR regio
of the spectrum was smaller than might have been expe
from the analogy to multilayers. Therefore, a theory for t
magnetorefractive effect in granular films is developed in
first part of this paper, and the high sensitivity of this effe
to the microstructure of the alloy is demonstrated.

The magnetooptical properties of ferromagnets in the
region of the spectrum are determined by the off-diago
part of the conductivity tensorsxy(v), which is the dynamic
analog of the anomalous Hall conductivitysxy(0). In homo-
geneous ferromagnets bothsxy(0) andsxy(v) depend lin-
early on magnetization; therefore, the magnetooptical K
and Faraday effects are linear with respect to magnetizat
However, in the case of materials with giant magnetore
tance,sxy(0) exhibits a nonlinear dependence on magn
zation, which is caused by spin-dependent scattering.12 It is
shown in Sec. 3 of this paper thatsxy(v) can display very
complex behavior~nonlinear with respect to magnetizatio
and nonmonotonic with respect to external magnetic field! in
granular alloys and that it leads to magnetooptical effe
that are nonlinear with respect to magnetization. As far as
know, such effects have not been discussed in the literat
To stress that such nonlinear behavior appears as a resu
spin-dependent scattering and is not related to the nonlin
magnetooptical effects caused by high-intensity light bea
we call it the nonlinear field-dependent magnetooptical
fect.
© 1999 American Institute of Physics
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2. MAGNETOREFRACTIVE EFFECT

The optical and magnetooptical spectra of a granu
film are calculated below in the Zhang–Levy model13 using
the self-averaging limit of the scattering probabilities1,13 and
by considering the intraband dynamics of the conduct
electrons in the IR energy range of the incident light in t
normal skin-effect regime.

The optical response of a metal is determined by
diagonal part of the dielectric tensor«xx(v), which can be
expressed in terms of the corresponding component of
conductivity tensor:

«xx~v!5«xx8 2 i«xx9 512 i
4psxx~v!

v
. ~1!

For example, the reflection coefficientR of a metal with
normally incident light is

R5
k21~12n!2

k21~11n!2 , ~2!

where n is the refractive index. In addition,n and k are
related to the dielectric tensor:«xx8 5n22k2, «xx9 52nk.

The conductivitysxx(v) of a granular alloy in formula
~1! is determined by the contributions of electrons with sp
parallel and antiparallel to the magnetization@spin up (↑)
and spin down (↓)#. Then14

sxx~v!5sxx
↑ ~v!1sxx

↓ ~v! 5
sxx

↑ ~v50!

11 ivt↑ 1
sxx

↓ ~v50!

11 ivt↓ , ~3!

where t↑(↓) is the electron mean free time between co
sions, and in the Zhang–Levy model13

sxx
↑(↓)~v50!5

ne2\

2m

1

D↑(↓) , ~4!

D↑(↓)[
\

2t↑(↓) , D↑(↓) 5
«F

kF
S j06j1

^Mz&
Ms

D , ~5!

j05
12x

l nm
1

x~11pb
2!

l m
1

3x~11ps
2!

r 0l s /a0
, ~6!

j15
2xpb

l m
1

6xps

r 0l s /a0
. ~7!

Herex is the concentration of ferromagnetic granules in
nonmagnetic matrix; the mean free pathsl nm , l m , and l s

characterize the scattering on impurities in the nonmagn
matrix, in the bulk of a granule, and on a granule surfa
respectively;pb and ps are the ratios of the spin-depende
scattering potential to the spin-independent scattering po
tial in the bulk and on the surface of a granule;r 0 is the
granule radius~it is assumed that all the granules are iden
cal single-domain spheres!; a0 is the lattice parameter;^Mz&
is the mean magnetic moment of the granules in the direc
of the magnetic fieldHz ; and Ms is its value at saturation
Following the Zhang–Levy model, we assume that elect
transfer is of thes type. Since^Mz& depends on magneti
field, sxx(v50) andsxx(v) are functions of magnetic field
The giant magnetoresistance is defined as
r

n

e

e

s

e

ic
,

n-

-

n

n

Dr

r
5

r~Hc!2r~H !

r~Hc!
5

j1
2

j0
2 S ^Mz&

Ms
D 2

, ~8!

wherer(Hc)5rc is the resistivity of the alloy in the demag
netized state~in a field equal to the coercive forceHc when
^Mz&50). When the field is equal to the saturation fie
Hs(r(Hs)5rs), the giant magnetoresistance takes its ma
mum value

Drs

r
5

j1
2

j0
2 .

The parameters describing the magnetorefractive ef
in optical reflection and absorption can be defined in
following manner:

DR

R
5

R~Hc!2R~Hs!

R~Hc!
5

R~v,Hc!2R~v,Hs!

R~v,Hc!
, ~9!

DT

T
5

T~Hc!2T~Hs!

T~Hc!
5

T~v,Hc!2T~v,Hs!

T~v,Hc!
. ~10!

In the general case they can be calculated using Fresne
efficients on the basis of Eqs.~1! and~3!–~7!. In the Hagen–
Rubens limitvt!1 we have

R5122A v

2ps
5122Avr

2p
, ~11!

T5S vr

2p De2at, ~12!

wherea52kv/c and t is the film thickness. Then, forvt
!1 we can write

DR

R
5

R~Hc!2R~Hs!

R~Hc!
52A v

2p
~Ars2Arc!

52Avrc

2p SArs

rc
21D 52Avrc

2p SA12
Drs

r
21D

'2Avrc

2p

Drs

r
, ~13!

DT

T
5

T~Hc!2T~Hs!

T~Hc!
512S 12

Drs

r D
3expF2t

2v

c
A2p

v SA1

rs
2A 1

rc
D G

'12S 12
Drs

r DexpF2
t

c
A2pv

rs

Drs

r G , ~14!

where it is assumed in the final approximate expressions
Drs /r!1. It follows from ~13! and~14! that the magnetore
fractive effect depends strongly on the magnitude of the
ant magnetoresistance and that it is preferable to observe
optical transmission.

Figure 1 presents the results of a calculation of the f
quency dependence of the magnetorefractive effect in
reflection and transmission coefficients, which was p
formed using Fresnel coefficients. The parameters of
granular alloy were chosen to correspond to a typical al
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FIG. 1. Spectral dependences of the relative chan
in the reflection coefficient~a! and the transmission
coefficient ~b! when the sample is magnetized fo
granular alloys with giant magnetoresistance of va
ous strength~normal light incidence!: 1—Drs /r
530%, r 0520 Å; 2—Drs /r522%, r 0540 Å; 3—
Drs /r517%, r 0560 Å. The film thickness t
5200 Å, Pb50.2, Ps50.42, c50.2, l nm5200 Å,
l m550 Å, andl s /a052.
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with giant magnetoresistance. The granule size, which is
of the parameters determining the magnitude of the mag
toresistance@see formulas~6!–~8!#, was varied in the calcu
lations. Similar spectral dependences were obtained by v
ing other microscopic parameters that influence
magnitude of the giant magnetoresistance@see~6!–~8!#. Sev-
eral conclusions can be drawn from the data in Fig. 1. Fi
the amplitude of the reflective magnetorefractive effect in
near-IR region of the spectrum and on the edge of the vis
range is comparatively small (DR/R,0) and does not ex
ceed 0.1%, in agreement with the experimental data in R
11. However, even in that case the amplitude of the effec
two orders of magnitude greater than the amplitude of
magnetooptical Kerr effects. Second,DR/R increases in the
mid-IR region of the spectrum, and, as follows from form
las ~1!–~3! and~9!, the maximum value ofDR/R is achieved
at the frequencyv51/t. Thus, experimental investigation
of the magnetorefractive effect permit determination of
relaxation time of the electrons responsible for the opti
properties. Third, as in the limiting case ofvt!1 consid-
ered above, it is seen that the transmission effect can re
values comparable to the giant magnetoresistance; howe
the transmission effect has strong dispersion and cha
sign, in agreement with the calculations for multilayer6

Fourth, the magnetorefractive effect is highly sensitive to
microstructure of the alloy, specifically to any variation
the parameters characterizing the spin-dependent scatt
or the granule size. This finding also corresponds to the
perimental data in Ref. 11.

It is noteworthy that, strictly speaking, the calculatio
performed are applicable only to granular metal–metal
loys; therefore, a comparison with the data in Ref. 11
only a qualitative character.

We also stress that the magnetorefractive effect is iso
pic, i.e., it does not depend on the orientation of the mag
tization in the film plane; therefore, it can easily be dist
guished from the classical magnetooptical effects.

3. NONLINEAR FIELD-DEPENDENT MAGNETOOPTICAL
EFFECT

The magnetooptical response is determined by both
diagonal component«xx(v)5«xx8 2 i«xx9 and the off-diagonal
component

«xy~v!5«xy8 2 i«xy9 5
4psxy~v!

v
~15!
e
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y-
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of the dielectric tensor. In particular, the parameterd(v,H)
of the equatorial Kerr effect, which characterizes the relat
change in the intensityI of reflected light when the sample i
magnetized, can be expressed in the case ofp polarization in
the form

d~v,H !5
I ~H !2I ~0!

I ~0!
5a«xy8 1b«xy9 , ~16!

a52
A

A21B2 sin 2w, b52
B

A21B2 sin 2w, ~17!

A5«xx9 ~2«xx8 cos2 w21!,

B5~«9xx
2 2«8xx

2 !cos2 w1«xx8 2sin2 w,

wherew is the angle of light incidence.
In the case of ferromagnets«xy}sxy}^Mz&, and «xx

}sxx and does not depend or depends weakly on^Mz& or
magnetic field. Therefore, as a result,d(v)}^Mz&. How-
ever, this is not true in the case of granular alloys with gia
magnetoresistance:sxx depends on̂ Mz&, and sxy(v), as
will be shown below, is nonlinear with respect to^Mz&.

In the case of weak scattering of the conduction el
trons, the off-diagonal componentsxy of the conductivity
tensor is described by the following expression, which
sembles the Drude formula:14

sxy~v!5
sxy

↑ ~v50!

@11 ivt↑#2 1
sxy

↓ ~v50!

@11 ivt↓#2 . ~18!

The static off-diagonal conductivitysxy(v50) is linear with
respect to the spin-orbit coupling and can be expresse
terms of the coefficientRs of the anomalous Hall effect:14

Rs5Rs
↑1Rs

↓ , Rs
↑(↓)5

sxy
↑(↓)~v50!

4p^Mz&
r2. ~19!

Then

sxy
↑(↓)~v!

^Mz&
5

4pRs
↑~H !

r2~H !@11 ivtd
↑~H !#2

1
4pRs

↓~H !

r2~H !@11 ivtd
↓~H !#2 . ~20!

It is generally assumed thatd electrons are responsible fo
determiningsxy(v50), Rs , and sxy(v) ~Ref. 14!. Thus,
the relaxation time in formulas~18! and~20! can differ from
the relaxation time in formula~3!. Therefore, we introduced
the corresponding notationtd

↑(↓) in ~20!. Because of the spin
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dependent scattering, the values ofr and td
↑(↓) for granular

alloys depend on magnetic field. It was recently shown~see
Ref. 12 and the references therein! thatRs in granular alloys
with giant magnetoresistance depends strongly on magn
field, more strongly than does the resistivityr(H). If the
main contribution toRs is made by electrons with spin dow
and ^Mz&/Ms is described by the Langevin functionL(H),
the coefficient of the anomalous Hall effect of a granu
alloy in the Zhang–Levy model can be written12

Rs
↓~H !5H Rs

b↓ ~11pb
2!2@122pbL~H !1pb

2#

~11pb!4~12pb!2

1Rs
b↓ ~11px

2!2@122psL~H !1ps
2#

~11ps!
4~12ps!

2 J
3

@j01j1L~H !#2

j0
2 , ~21!

where Rs
b and Rs

s are the values of the coefficients of th
anomalous Hall effect in the bulk and on the surface o
granule. Therefore, three factors can lead to dependenc
the Kerr effect that are nonlinear with respect to magnet
tion: first, the dependence of the optical properties on m
netization, i.e., the parametersa and b in ~16!, which, ac-
cording to~17!, depend onsxx(v); second, the dependenc
of sxy(v) on r(H) and td

↑(↓)(H); and, finally, the strong
field dependence ofRs , which largely determines the beha
ior of sxy(v). All three factors are related to spin-depende
scattering.

The results of the calculation of the field dependence
the equatorial Kerr effect using~16!–~21! are presented in
Figs. 2–4. All the figures present the normalized ra
d(v,H)/d0(v,H), whered0(v,H) is the parameter of the
equatorial Kerr effect in the absence of spin-dependent s
tering ~pb50, ps50, and consequentlyDrs /r50!. Clearly,
d(v,H)/d0(v)51 for a homogeneous ferromagnet, as
shown by curve1 in Fig. 2. In all the other cases there is
strong field dependence of this ratio up to the saturation fi
As follows from these figures, the field dependence of
equatorial Kerr effect does not correlate with the field dep
dence of the magnetization. The nonmonotonic course of

FIG. 2. Field-dependent equatorial Kerr effect in granular alloys for vari
levels of spin-dependent scattering: curve1—pb50, ps50, Drs /r50%;
curve 2—pb50.2, ps50, Drs /r50.5%; curve3—pb5ps50.2, Drs /r
510%; curve4—pb50.2, ps50.42, Drs /r530%; curve5—pb50.2, ps

50.52, Drs /r540%. Parameters:r 0520 Å, c50.2, l nm5200 Å, l m

5150 Å for s electrons andl m550 Å for d electrons,l s /a052, Rs
s/Rs

b

51.5, \v50.01 eV, andw570°.
tic
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field dependences and possible sign reversal are also n
worthy. It follows from Fig. 2 that there is a nonlinear fie
dependence of the equatorial Kerr effect even in the prese
of weak spin-dependent scattering, although, of course
becomes strong when the giant magnetoresistance incre
the parameters of the spin-dependent scattering vary~Fig. 2!,
or the granule size varies~Fig. 3!.

Figure 4 demonstrates the importance of scattering
the granule surfaces in shaping the field dependence of
equatorial Kerr effect. The type of impurities and their co
centration on the granule surfaces alter the magnitude
sign of the corresponding Hall coefficient4,5 and thus have a
strong influence on the equatorial Kerr effect. Hence it a
follows that the field dependence ofRs(H) can be the main
factor determining the nonlinearity of the equatorial Kerr e
fect.

Clearly, the other magnetooptical Kerr and Faraday
fects will also have similar features, viz., a nonlinear dep
dence on magnetization, and this nonlinearity can exc
100%.

Thus, it has been shown in this work that the sp
dependent scattering in granular alloys leads to two featu
in the IR region of the spectrum: the magnetorefractive
fect, which consists of changes in the optical reflectio
transmission, and absorption coefficients when the alloy

sFIG. 3. Field-dependent equatorial Kerr effect in granular alloys with gi
magnetoresistance for various granule sizes: curve1—r 0560 Å, Drs /r
530%; curve2—r 0540 Å, Drs /r522%; curve3—r 0520 Å, Drs /r
517%. Parameters:pb50.2, ps50.42,c50.2, l nm5200 Å, l m5150 Å for
s electrons andl m550 Å for d electrons, l s /a052, Rs

s/Rs
b51.5, \v

50.01 eV, andw570°.

FIG. 4. Field-dependent equatorial Kerr effect in granular alloys with gi
magnetoresistance forRs

s/Rs
b510 ~curve1! 20.9 ~2!, and21.1 ~3!. Param-

eters: pb50.2, ps50.42, Drs /r530%, c50.2, l nm5200 Å, l m5150 Å
for s electrons andl m550 Å for d electrons,l s /a052, r 0520 Å, \v
50.01 eV,w570°.
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magnetized, and a strong nonlinear field dependence o
parameters of the magnetooptical effects, which is nonmo
tonic in the general case.
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Semiconductor–metal transition in FeSi in an ultrahigh magnetic field
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We study the conductivity and magnetic susceptibility of single-crystal iron monosilicide in
ultrahigh magnetic fields~up to 500 T) at low temperatures. The experimental methods used in
measuring the conductivity and magnetic susceptibility are discussed. At 77 K we detect a
gradual increase in the conductivity of iron monosilicide by more than a factor of 100 as the
magnetic field gets stronger. At 4.2 K we detect a first-order phase transition in a field of
355 T accompanied by a sudden change in the value of the magnetic moment by 0.95mB per iron
atom and a transition to a phase with high conductivity. The results are discussed within the
scope of the spin-fluctuation theory. ©1999 American Institute of Physics.
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1. INTRODUCTION

In the family of narrow-gap semiconductors, iron mon
silicide is famous for its unusual properties. For instance,
violation of sum rules in FeSi has attracted wide attention
optical spectroscopy,1 and metallization with increasing tem
perature occurs much faster than could be expected f
band-structure calculations.2 Near the Fermi level in the en
ergy spectrum of FeSi there lies a narrow threefold dege
ate band formed by thed-electrons of iron, with the resul
that various theoretical models3–7 in which the strong elec-
tron correlations of thed-electrons are taken into accou
have been used to explain the observed anomalies. Altho
the effective electron masses obtained from ba
calculations8 are large, they are still much smaller than t
experimental values, which suggests strong mass renor
ization due to electron–electron interactions.

Since the Zeeman splitting in magnetic fields on the
der of several hundred teslas is comparable to the widthd of
the gap in the spectrum of thes-, p-, andd-electronsof FeSi
(d50.11 eV; see Ref. 9!, it can give rise to a dramatic trans
formation of the electron spectrum. Hence ultrahigh m
netic fields constitute a powerful instrument for studying t
electronic structure of narrow-gap semiconductors. Rece
the behavior of FeSi in strong magnetic fields has been s
ied theoretically.10,11 The study predicted the existence of
first-order phase transition into a metallic phase at abso
zero and a magnetic inductionB5170 T accompanied by a
sudden jump in the magnetic order of order of two-tenths
a Bohr magneton,11 or one Bohr magneton10 per iron atom.

Some of the results obtained atT577 K can be found in
the brief communication in Ref. 12.
9601063-7761/99/89(11)/6/$15.00
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2. EXPERIMENTAL TECHNIQUES AND PREPARATION OF
SAMPLES

To generate ultrahigh magnetic fields with an inducti
of up to 450 T we used an MK-1 magnetocumulati
generator.13 At present this is the only device that allow
reproducible uniform magnetic fields withB up to 1000 T to
be created in large effective volumes.13 In this device, the
initial magnetic field (B'16 T), generated in a thin-walled
multilayer multifilar solenoid by a discharge of a powerf
capacitor bank, is amplified through compression of a c
ducting cylinder by products of the blast of a cylindric
charge of an explosive. The time of compression of the
tial magnetic flux is about 16ms. The MK-1 generator was
used in a single-cascade variant, i.e., without intermed
internal cascades,13 which, on the one hand, somewhat r
duces the peak value of the magnetic-field induction~450–
550 T!, but, on the other, makes it possible to obtain
smooth magnetic-field pulse~Fig. 1a!. The effective volume
when the magnetic field is at its maximum is a cylinder w
the following nominal dimensions: 10 mm in diameter a
100-mm long. The large effective volume of the MK-1 ge
erator allowed using several samples in a single experim

The samples and magnetic-field pickups were placed
a glass–textolite plate. In the experiments in which the ini
temperature wasT577 K the plate was submerged in
foam-plastic vessel filled with liquid nitrogen. When the in
tial temperature wasT54.2 K, the plate was placed in
helium cryostat with a vacuumized double glass wall~Fig.
2!. The cooling of the sample started 30 to 40 minutes bef
the beginning of the experiment. To this end the helium fro
Dewar vessel was transferred, via a heater, to the hel
cryostat. The temperature in the cryostat was monitored b
carbon thermometer manufactured from the calibrated re
© 1999 American Institute of Physics
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FIG. 1. Time dependence of the magnetic field
the final stage of the pulse~a!, the time derivative of
the magnetic field from the induction pickup~curve
1 in b!!, and the signal from the compensatio
pickup ~curve 2 in ~b!! at T577 K. The inset de-
picts the schematic of the compensation pickup~the
arrow depicts the direction of the magnetic field!
and the respective electric circuit.
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tor TVO-0.125. The thermometer was in the upper part
the cryostat.

Since the rate at which the magnetic field increa
changes substantially in the process of field generation~from
approximately 0.5 Tms21 when the initial magnetic field is
generated to approximately 102 T ms21 at the end of the
pulse!, it is difficult to measure the magnetic field accurate
with a single induction pickup over the entire length of t
pulse. Hence in our experiments we used a set of single-
induction pickups with diameters ranging from 0.8 mm
14.0 mm in which the PE´TV-2 brand of wire with diameters
ranging from 71mm to 0.25 mm was used. Earlier studi
~see, e.g., Refs. 13 and 14! revealed that such an approa
can guarantee a 5 to 10% accuracy of measurements in fi
of up to 500 T. All signals were recorded using four-chan
Tektronix-784 and Tektronix-744 oscilloscopes.

The single crystals of FeSi used in the experiments w
grown by the Czochralski method in an atmosphere of sp
trally pure helium under a pressure of 0.4 atm in the^100&
direction. The rate of crystal growth amounted to 0.4 mm
minute when the crucible with the melt and the crystal w
rotated in opposite direction at a rate of three rotations
minute. The initial components were 99.98%-pure carbo
iron and band-purified semiconducting silicon. The prepa
tion of single-crystal FeSi is described in detail in Ref. 15

The induction measurements of the conductivity a
magnetic susceptibility were done in the compensat
pickup ~see the inset in Fig. 1b!.16 The PÉTV-2 wire 71 mm
in diameter was placed in the spiral grooves of two fram
2 mm in diameter fabricated of Caprolan, withN59 turns on
each frame. The degree of compensation of the coils
tested in a hf magnet. The total areasNS of the coils, where
S is the area of one turn, differed by less than 2%. A h
was drilled ~1.6 mm in diameter! in one of the frames to
attach the sample under investigation.

The effective signal from an induction pickup can
related to the conductivity and magnetization of the sam
To separate these factors, we used two types of sample
FeSi single crystal was crushed in a porcelain mortar t
powder with a granule size of about 100mm. The powder
was packed under pressure into the opening of the pick
The density of the ‘‘filling’’ was monitored by weighing an
on the average wask50.41. The signal from this sampl
contained contributions from the conductivity and magne
zation.

For the second type of sample we used a single-cry
powder of FeSi mixed with polymethyl methacrylate. T
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mixture was polymerized by dichloroethane. As a result
obtained single-crystal FeSi granules in an insulator mat
This made it possible, in measuring magnetization, to av
the appearance of an additional diamagnetic moment du
induction currents.

In the experiment atT577 K with FeSi powder in an
insulator matrix no peaks in the signal from the compen
tion pickup were observed and the shape of the signal c
cided with that of the signal from the magnetic-field indu
tion pickup. Figure 1b depicts the signals from the magne
field induction pickup and from the compensation pick
with the pure FeSi powder. Here additional induction emf
clearly visible against the background of pickup decomp
sation emf~the time derivative of the magnetic field!. Thus,
in a pulsed magnetic field, an additional diamagnetic m
ment arises in the powder, and it is related to the conduc
ity of the powder.

In our experiment the magnetic field was axial and u
form andl was always much larger thanR, wherel is the
thickness of the skin layer, andR is the sample radius. The
the induction current densityj in the sample is proportiona
to r ~the radius!, and the magnetic-field inductionB is pro-
portional tor 2. The diffusion equation for the magnetic field

FIG. 2. The schematic of the device used in the experiment when the in
temperature wasT54.2 K: 1, explosive charge;2, solenoid;3, glass vacu-
umized cryostat;4, heater for raising the helium;5, carbon thermostat;6, the
measuring unit~samples and the magnetic-field pickups!; 7, helium cryostat;
and8, foam-plastic mounts.
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DB5m0s ]B/]t ~wherem0 is the permeability of free space
or the magnetic field constant, ands the conductivity of the
powder! yields the following distribution of the magneti
field in the sample:

B~r !5B01
Ḃm0s

4
~r 22R2!, ~1!

whereB0 is the magnetic-field induction outside the samp
This yields a formula for calculating the time dependence
the conductivity:

s~ t !5
8

pR4m0ḂN
E

0

t

DU~t! dt, ~2!

whereDU is an additional emf related to the induction cu
rents in the powder. The conductivity of the powder calc
lated by using the data in Fig. 1b and formula~2! is depicted
in Fig. 3 ~small open circles!.

The experiments involving FeSi samples whose te
perature wasT54.2 K revealed a sharp peak in a field
355620 T. As is known, the appearance of sharp peaks
the signal is due to discontinuities in the magnetic mom
when the samples undergo metamagnetic transition16

Moreover, the readings from the pickup with pure FeSi po
der demonstrated that after a peak a diamagnetic mom

FIG. 3. Diagrams representing the dependence of the conductivity of
powder~1! and a single-crystal plate of FeSi~2! in a magnetic field at 77 K
~the solid curve corresponds to the dependence that follows from s
fluctuation theory! and of the conductivity in the experiment with an initia
temperature of 4.2 K~3!.
.
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develops, which implies a transition to the conducting pha
Figure 4 depicts the signal from the pure FeSi powder, wh
both features are clearly exhibited.

Using the signal depicted in Fig. 4, we can calculate
conductivity using the method described above~see Fig. 3!
and the discontinuity in the magnetic moment. We elimin
the background signal~see the inset in Fig. 4!. The expres-
sion for the discontinuity in the specific magnetization h
the form

DI 5
1

pR2m0Nk
E

t1

t2
DU~t! dt. ~3!

Integration is done between the points1 and2 ~see the
inset in Fig. 4!. Using this expression, we can find the di
continuity in the magnetic moment in Bohr magnetonsmB

per iron atom:

DP5
M

pR2m0mBNrkNA
E

t1

t2
DU~t! dt, ~4!

whereNA is the Avogadro number,r is the density, andM is
the molar mass. Using Eq.~4! and the data in Fig. 4, we find
that for an initial temperature of 4.2 K the size of the disco
tinuity in the magnetic moment is (0.9560.2)mB /at. Fe.

We also measured the conductivity of a 43430.3 mm
single-crystal plate of FeSi atT577 K. To do this, we em-
ployed a high-frequency method. The measuring circuit
shown in Fig. 5. The sourceG of high-frequency oscillations
was a G4-154 generator. The oscillation frequency was ab
49 MHz. The signal travelled through a valveV, a band-pass
filter F, and an isolation transformer and was fed to a 30
cable. The other end of the cable was attached to a flat
3 mm in diameter consisting of five turns~the wire used in
the coil was of the PE´TV-2 brand with a diameter of
71mm). The coil was placed flat on the FeSi plate in t
cavity of an MK-1 generator, and the two ends of the c
were led out as a twisted pair. The axis of the coil w
perpendicular to the direction of the external magnetic fie
which reduced the emf induced by the pulses of this fie
Here the plane of the plate was parallel to the external m
netic field, which prevented the sample from being heat

Si

n-
at
FIG. 4. Signal from the induction pickup with pure FeSi powder
an initial temperature of 4.2 K~the solid curve!, and the scaled
signal from the induction field pickup~the dashed curve!. The inset
shows the signal after the background proportional to]B/]t is
eliminated. The arrows indicate the limits of integration in Eq.~4!.
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FIG. 5. High-frequency circuit for measuring conductivity and th
hf signal obtained in the experiment at an initial temperatureT
577 K.
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by induction currents~according to our estimates, the heati
of the sample did not exceed 4 K!. The incident hf wave was
reflected at the end of the cable to which the coil was
tached, with the reflectivity depending on the conductivity
the plate. The subtraction circuitA made it possible to dis
criminate the reflected signal, which was then recorded by
oscillographO. The electrodynamics of the given circuit
similar to that used by Sakakibaraet al.17 but is more
noiseproof.

The dynamic range of the hf method of measuring c
ductivity is limited from below. Hence in the experime
with the initial temperatureT577K this method makes i
possibly only to establish the presence of conductivity of
FeSi plate at the level of 23104 V21cm21 ~the conductivity
was calculated by a method similar to the one used
Sakakibaraet al.17!. Figure 5 depicts the hf signal, where th
signal of the sample conductivity at approximately 400 T
clearly visible, which suggests that the conductivity is high
than 23104 V21 cm21.

3. STATE OF THE SAMPLES IN ULTRAHIGH MAGNETIC
FIELDS

When the sample is placed in a pulsed magnetic fiel
solenoidal electric field is generated in the sample, and in
case of a metal or semiconductor there are induction
rents. Although the vortex field and the currents can be la
~the maximum electric field strength on the surface of a
lindrical sample 1.6 mm in diameter is 400 V cm21), still
they are not large enough to dramatically alter the electro
structure of the substance. Hence secondary factors pro
be more important, i.e., factors that arise in a conduct
medium due to the pulses of the magnetic field: magn
pressure and Joule heating.

The magnetic pressure at the center of the sample, w
it is at its maximum, can be calculated by the formula

P5
~dB!2

2m0
, ~5!

wheredB is the difference between the magnetic-field indu
tions outside the sample and at the center of the sample,
t-
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m0 is the permeability of free space. Here it is assumed t
the permeability of the medium is close to unity. Using~5!
we find that

P5
R4Ḃ2s2

32m0
. ~6!

In all cases the magnetic pressure estimated by~6! was
found to be lower than 50 bar. Such pressure cannot dram
cally alter the electronic structure or, with allowance for t
shortmagnetic-field pulse, deform the sample.

To estimate to what extent the sample is heated, we
sume that at low temperatures the heat capacity of FeSi
cubic function of temperature:C5bT3, where b
50.6 J m23 K21 ~see Ref. 18!. Since we are interested in th
upper bound on the heating of the sample, we ignore
types of heat transfer and calculate the temperature at
sample surface, where the release of heat is greatest. T
using the expressions~1! and~2!, we arrive at the following
formula for the time dependence of the heat released b
cylindrical sample per unit time:

Q~t!5
1

4 E
0

t

s~l!Ḃ2R2 dl. ~7!

Hence the upper bound on the temperature as a func
of time is

T~t!5F 4

kb
Q~t!1T0G1/4

. ~8!

Figure 6 depicts the field dependence of the upper bo
on the temperature of a powder sample in the experimen
which the initial temperature was 4.2 K. Clearly, after t
sample passes to the conducting state, it heats up
strongly. In the experiment with an initial temperature
77 K, the heating of the powder sample is not so intense:
field of 400 T the upper bound of the sample temperatur
90 K. The dynamics of the temperature of the single-crys
plate used in the hf method can also be estimated by~7! and
~8! if instead ofR we take one-half of the plate thickness. A
an initial temperature of 77K, the upper bound on the plat
temperature at 400 T was found to be 81 K.
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4. DISCUSSION AND CONCLUSIONS

The results of experiments conducted in magnetic fie
with an induction of up to 450 T atT577 K suggests that a
this temperature there is neither magnetic ordering nor a
continuous semiconductor–metal transition in FeSi. Inst
of such a transition, we observed a gradual increase of
conductivity of FeSi withB by a factor larger than 100~at
B5450 T) in comparison to the conductivity in a zero fiel
Since the effective masses of the mobile charge carrier
FeSi are much larger than the mass of a free electron,
behavior of this semiconductor in a magnetic field diffe
dramatically from that of ordinary narrow-gap semicondu
tors and semimetals, e.g., InSb, PbTe, and Bi. The dista
between the Landau levels in FeSi is very small, with
result that orbital quantization can be ignored. Then, wit
band gap in the spectra ofs-, p-, and d-electrons equal to
0.11–0.12 eV (52d) ~see Refs. 10, 11, and 19!, the ‘‘col-
lapse’’ of the energy gap due to the Zeeman splitting of
energies of~both s- andp-, andd-! electrons must occur a
B'400 T. Hence lns increases linearly with field induction
for B,400 T. However, we found~see Fig. 3! that the non-
linear nature of the field dependence of the logarithm of
conductivity of FeSi manifests itself much earlier, starting
B5250 T. This is an indication that the value of the ba
gap found from band calculations in Refs. 10, 11, and 19
from experiments on the temperature dependence
conductivity20 is overestimated at the given temperature.

The reason for this discrepancy in nearly ferromagne
semiconductors is the splitting of the energy spectrum du
spin-density fluctuations~SDF! of d-electrons,21,22which en-
sures the narrowing of the energy gap in their spectra w
increasing temperature:

d~B,T!5d~0,0!22Um~B,T!. ~9!

Here 2d(0,0) and 2d(B,T) is the gap without allowance fo
SDF and the gap renormalized by SDF as a function of m
netic field and temperature,Um(B,T)5@j0

21U2^m2&#1/2 is
the effective Zeeman splitting of the energies ofd-electrons
in a magnetic field in the presence of SDF, withj05UM0

12H ~where H is the magnetic field strength~in units of
2mB), M0 is the uniform magnetization of thed subsystem
~in units of 2mB), andU is the parameter of the intratomi
Coulomb interaction!, and^m2&1/2 the SDF amplitude deter

FIG. 6. Upper bound on the temperature of the FeSi powder in the ex
ment with an initial temperature of 4.2 K. The arrow indicates the ph
transition at 355 T.
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mined by the fluctuation–dissipation theorem and incor
rating contributions from thermal and zero-point spin-dens
fluctuations.22 Note that the splitting caused by SDF does n
give rise to magnetization. Using the approach develope
Refs. 12, 21, and 22, we see that magnetization deve
because of a change in the capacitances of the subbands
responding to opposite directions of spins. With allowan
for charge-density fluctuations, the magnetization is
scribed by the equation12,22

M05
1

4N0
(

s561
sE d«K (

n,a
g0~«1aAjn

2~t! !

3S 11
asjn

z~t!

Ajn
2~t!

D f ~«2m2hn~t!!L . ~10!

Here g0(«) is the density of states of noninteractin
d-electrons,jn(t) is the vector of the fluctuating exchang
field, n is the crystal lattice vector,n5(n,t), t is the imagi-
nary Matsubara time,

(
n

~••• !5T(
n
E

0

1/T

~••• ! dt,

N0 is number of lattice sites, the Fourier transform of t
local exchange field jn(t) has the form jq

(g)

5r q,g exp$iqq,g% ~at q50 we haveqq,g50, andr q,g is real!,

^m2&5
1

U2N0
(

n
jn

2~t!,

^mg
2& is the mean-square amplitude of thegth component of

the SDF, withg5x,y,z, f («2m) is the Fermi function, with
m the chemical potential,

^~••• !&5E
0

`E
0

2p

)
g,q(Þ0)

drq,gdqq,g~••• !,

andhn(t) is the random charge field that fluctuates in bo
space and time and is related to the longitudinal fluctuati
of the local magnetic moment:

hn
2~t!5

(
a561

ag0~m1aUm!~jn~t!2Um
2 !

(
a561

g0~m1aUm!

.

For the semiconductor state of thed-electrons of FeSi
(5,T,100 K) ~see Ref. 22!, the SDF amplitude can be ca
culated from the formulâm2&1/25bT, whereb57/U, with
U50.8 eV. Numerical estimates of the value of th
magnetic-field induction corresponding to the collapse of
gap in the spectrum ofd-electrons at an initial temperature o
77 K yield Bd5275 T. Thus, the observed deviation of th
experimental dependence lns(B) from the linear law above
250 T can be explained by the SDF narrowing of the gap
thed-spectrum. Here, in view of the extreme smallness of
SDF amplitude in the system ofs- and p-electrons and the
smallness of parameter of (s,p–d)-exchange interaction
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(I 50.1U; see Ref. 3!, the energy gap in the spectrum ofs-
and p-electrons disappears atBs5389 K. Hence the contri-
bution of this group of carriers to the conductivity of FeSi
extremely small at low magnetic-field induction (B,40 T)
and increases significantly only whenB.400 T. The field
dependence of the conductivity of FeSi calculated in sp
fluctuation theory with an initial temperatureT577 K is de-
picted in Fig. 2.

Concluding the analysis of this part of the experime
we would like to mention the work of Anisimovet al.,10 who
showed that there can be a first-order phase transition
tween a singlet semiconductor and a ferromagnetic m
with a critical point (Bc ,Tc)5(170 T, 280 K! at U53.4 eV
and d50.02 eV. However, according to Anisimovet al.,10,
the emergence in FeSi of a metallic state is accompanie
ferromagnetic ordering, a phenomenon not observed by u
T577 K (,280 K).

At the initial temperature 4.2 K of the experiment w
clearly detected a discontinuity in the magnetic moment
FeSi amounting to 0.95mB /at. Fe atB5355 T. It must also
be noted that no sample heating or magnetic pressure
observed~see Fig. 6!.

Comparing our results with the theoretical estima
made in Ref. 19, we can conclude that the value of the fi
induction found in that paper is underestimated by a facto
approximately two~as in Ref. 10!. More than that, the size o
the magnetization discontinuity obtained in Refs. 11 and
smaller than the value observed in the experiment by a fa
of approximately four. This shows that the density of sta
of FeSi differs from the value established in Refs. 11 and
~to make their estimates, Anisimovet al.10 used the model of
a rectangular band!. Note that Anisimovet al.10 mentioned
the possibility of observing a discontinuity in the magne
moment of order 1mB /at. Fe, but only in very high magneti
field, higher than 1000 T.

Our calculations of the field dependence of magneti
tion, based on spin-fluctuation theory and the data on
density of states ofd-electrons taken from Refs. 11 and 1
done at the initial temperatureT54.2 K, revealed that at low
temperatures the amplitude of thermal SDF is extrem
small ~in comparison tod). Hence if we allow only for ther-
mal SDF the value of the critical field is of order 1000 T. A
the same time, according to Refs. 21 and 22, at low temp
tures there are zero-point SDFs in iron monosilicide with
amplitude ^m2&0

1/250.14mB /at. Fe. The resulting value o
magnetic induction corresponding to the peak in the fi
dependence of the response function~see Fig. 3! proves to be
equal to 320 T, which agrees with the experimental val
According to the magnetic state equation~10!, the same
magnetic field,Bc5320 T, corresponds to the magnetizati
discontinuity of 1.02mB /at. Fe.

Thus, the metamagnetic transition detected atT54.2 K
and the absence of such a transition atT577 K in FeSi and
the established value of the magnetic field strength at wh
the energy gap in the spectrum ofd-electrons do not agre
~when considered in the mean-field approximation! with the
results of band calculations. One of the possible reasons
this discrepancy is the renormalization of the energy sp
trum of d-electrons due to SDF~including zero-point SDF!
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accompanied by a redistribution of the number of sta
among the states with opposite directions of spins.

We believe that it is very important to study the tempe
ture dependence of the first-order phase transition at
temperature and to determine the critical point from expe
ments.

Our research in ultrahigh magnetic fields was carried
in the ‘‘Kapitza experiments’’ program supported by th
Russian Ministry of Atomic Energy and the Russian Min
try of Science and Technology.
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Mechanism of Fermi acceleration in dispersing billiards with time-dependent
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Zh. Éksp. Teor. Fiz.116, 1781–1797~November 1999!

The paper is devoted to the problem of Fermi acceleration in Lorentz-type dispersing billiards
whose boundaries depend on time in a certain way. Two cases of boundary oscillations
are considered: the stochastic case, when a boundary changes following a random function, and a
regular case with a boundary varied according to a harmonic law. Analytic calculations
show that the Fermi acceleration takes place in such systems. The first and second moments of
the velocity increment of a billiard particle, alongside the mean velocity in a particle
ensemble as a function of time and number of collisions, have been investigated. Velocity
distributions of particles have been obtained. Analytic and numerical calculations have been
compared. ©1999 American Institute of Physics.@S1063-7761~99!02111-3#
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1. INTRODUCTION

The term billiard is applied to a dynamic system i
which a point-like particle moves within a certain regionQ
with a piecewise smooth boundary]Q under the condition
that the law of equality between the angles of incidence
reflection applies. Depending on the billiard boundary co
figuration, the motion of the particle~billiard ball! can be
regular, ergodic, or mixing. The termdispersing billiard1

applies to a system whose boundary]Q is convex inside the
regionQ. It is well known that such a billiard has a mixin
property, and the billiard ball dynamics in this case is ch
otic.

If the set]Q is constant with time, the system is called
billiard with a constant ~fixed! boundary, but if ]Q
5]Q(t), this is a billiard with a perturbed~moving! bound-
ary. Billiards with fixed boundaries have been well studi
~see Refs. 1–7 and references therein!. At the same time,
there have been very few publications devoted to billia
with perturbed boundaries,7–11 although their studies are o
great interest from the viewpoints of both solutions of so
problems of statistical mechanics and the feasibility of
unbounded increase in a ball velocity, the latter probl
originating from that of the so-called Fermi acceleration.12,13

Fermi acceleration is the phenomenon of infinite acc
eration of particles of various nature owing to their scatter
by moving massive scatterers. This mechanism of accel
tion was first suggested by Fermi12 to account for the origin
of cosmic rays of very high energies. Later various mod
were suggested,14–21 which described this phenomenon wi
a lesser or greater degree of success. For example, Ul14

demonstrated that, if a particle moves between an oscilla
and a fixed wall, and the oscillation phase of the former
the moment of collision is a random value, the particle c
acquire an infinitely high velocity. A more detailed inves
gation of Ulam’s model was conducted by Lieberman a
Lichtenberg,16 who showed that, in the case of a smooth tim
9661063-7761/99/89(11)/9/$15.00
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dependence of the wall velocity, stochastic layers are se
rated by invariant curves. These curves set limits on the
ergy acquired by the particle. If this dependence is not s
ficiently smooth, there are no invariant curves, and
particle velocity can increase without bound. Later inves
gations~see Refs. 16,19–21 and references therein! of vari-
ous versions of Ulam’s model revealed some relation
tween the law governing wall oscillations~i.e., the
smoothness of the wall velocity as a function of time and
degree of its randomness! and the presence of the Ferm
acceleration.

In chaotic billiards, even if the boundary velocity is
smooth function of time, the incidence angle of a particle c
be treated as a random parameter. Consequently, the no
velocity component at the collision point~this is the compo-
nent that changes as a result of scattering, whereas the
gential component is constant! is a stochastic value. Obvi
ously, changes in the velocity are also random in this ca

The paper is devoted to the problem of Fermi accele
tion treated on the example of a generalized billiard, nam
a Lorentz gas with an open horizon and a perturbed bou
ary. We focus attention on two different cases of stocha
and regular~harmonic! oscillations of the boundary. Note
that in all publications on this topic of which we are awar
the problem of Fermi acceleration was investigated in in
grable or almost integrable systems. In view of this, our
per presents the first investigation of chaotic billiards w
perturbed boundaries.

The paper comprises three main sections. The firs
them is devoted to the basic concepts and derivation of m
that describe the dynamics of a billiard. The second
scribes the analytic and numerical study of the feasibility
Fermi acceleration. The third presents numerical calculati
of the particle velocity as a function of time and number
scattering events, and compares them to analytic results
© 1999 American Institute of Physics
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2. LORENTZ GAS

This section is devoted to the main concepts and der
tion of mappings that determine the dynamics of a tw
dimensional Lorentz gas.

Consider a plane areaQ with a piecewise smooth bound
ary ]Q. The dispersing billiard1,4 is a system composed o
neutral]Qi

0 and dispersing]Qi
1 ~i.e., convex in the region

Q) sections of the boundary]Q. One representative of suc
billiards is a system defined in an unbounded domainD and
composed of a set of round infinitely heavy scatterersBi with
boundaries]Qi and of radiiR located at sites of an infinite
periodic lattice with perioda ~Fig. 1!. Given thatBi are
fixed, the billiard in the regionQ5D\ø i 51

r Bi is called a
Lorentz gas. A particle moves among the scatterers and
flects from them in accordance with the mirror reflecti
law. Such a billiard has been studied in detail in the case
]Q5const~see Refs. 1, 3, 4, 6 and references therein!.

The ratio (a/R)2 is one of the main parameters of th
Lorentz gas. Depending on this parameter, we distingu
Lorentz gases with a bounded horizon@(a/R)2,4#, with an
open horizon@4,(a/R)2,8#, and with an infinite horizon
@(a/R)2.8#. In the first case, the particle motion is limite
to one lattice cell, in the second and third cases it can tra
throughout the entire space. In the case of an infinite horiz
statistical properties of a billiard change because of hig
probabilities of long free paths,3,4,22–24whereas in Lorentz
gases with bounded and open horizons correlations de
exponentially. The mean free path is defined asl 5pA/P,
whereA is the area of a billiard where a particle can go a
P is the scatterer perimeter. For a system with an open h
zon l 5(a22pR2)/2R, and for a billiard with an infinite ho-
rizon l has no upper bound.

Suppose that the radii of scatterersBi in a Lorentz gas
are perturbed in accordance with a certain law, i.e.,
boundaries]Qi perform small oscillations in the normal d
rection. In this paper we consider two different cases: p
odic ~and phase-synchronized! oscillations, and random
changes in scatterer radii. The first case corresponds to
situation when all boundaries oscillate in phase following
same law. The second case describes oscillations of m
scatterer boundaries with the initial phases distributed r
domly.

FIG. 1. Configuration of Lorentz gas model. The scatterers~circles of radius
R) are located at sites of a periodic lattice with perioda.
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2.1. Lorentz gas with a fixed boundary

It is known that one can select as canonical variables
billiards with unperturbed boundaries the azimuthal an
f and incidence anglea between the interior normal to th
surface and particle velocity before the collision. Let us
troduce the reflection anglea* between the exterior norma
and velocity after the collision~Fig. 1!. It is obvious that
fP@0,2p#, and the anglesa anda* vary over the interval
@2p/2,p/2#. In order to describe the dynamics of an unpe
turbed billiard, one has to calculate a mapping (an ,fn)
→(an11 ,fn11) which transforms the variables (a,f) at the
moment before thenth collision with ]Q to their values at
the moment before the (n11)th collision. It clearly follows
from geometrical considerations~Fig. 1! that

fn1an* 1p5fn111an11 . ~1!

Moreover,an* 52an since these angles are measured in
posite directions.

Let us introduce a reference frame with its origin at t
center of a circle on which the latest scattering event
taken place and determine the equation of the straight
along which the particle travels after the collision. Then o
can easily calculate the distance at which the particle pa
another center at a distance ofp cells along the horizonta
axis andq cell along the vertical axis:

dn115a@p sin~fn1an* !2q cos~fn1an* !#2R sinan* . ~2!

The parameterp is assumed to be positive if the partic
moves on the right of the center and negative if the part
moves on the left. Accordingly,q is positive if the particle
moves upwards and negative if it moves downwards. T
valuesp andq are determined using the scattering conditio
i.e., these are integers with the smallest absolute value
which the conditionudn11u<R is satisfied. After calculating
the impact parameterdn11 , one can easily calculate th
angle at which the collision with the next scatterer will ta
place:

an115sin21
dn11

R
. ~3!

The Jacobian of the resulting mapping defined by Eqs.~1!–
~3! is

]~fn11 ,an11!

]~fn ,an!
5

cosan

cosan11
.

Thus, the mapping preserves the phase volume cosadadf.
Hence follows, in particular, that if the billiard is ergodic, th
distribution with respect toan is described by the formula

ra~a!5
1

2
cosa, ~4!

where 1/2 is the normalization factor.

2.2. Lorentz gas with oscillating scatterer boundaries

Now we can easily obtain a mapping that describes
dynamics of a billiard with a perturbed boundary under t
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assumption that the boundary oscillation amplitude is m
smaller than its radius, i.e., we can neglect geometr
changes in its boundaries.

Suppose that the dispersing component]Q1 of bound-
ary ]Q contracts and expands~Fig. 1!, so that its radius
varies following the law

R5R~ t !5R1r ~ t !, where maxur ~ t !u!R.

Then the boundary velocity is a function of time,u(t)
5 ṙ (t). Further, we assume for definiteness thatu(t)
5u0 cos(vt), where u05vr 0 . In this case, in addition to
parametersa andf, we have to introduce another two var
ables, namely, the particle velocityv and collision timet.
Given that only the normal~radial! component of the veloc
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ity changes in the process of scattering, and the tange
component remains unchanged, we obtain a mapping for
absolute value of particle velocity after the collision:

vn115Avn
224unvn cosan14un

2. ~5!

Hereun[u0 cosv tn is the boundary velocity at the momen
of the nth scattering event. The relation between the ang
of incidence and reflection, in its turn, can be expressed

an* 52sin21S vn

vn11
sinanD .

Now, by calculating the separation between sequential s
tering events, one can easily obtain a mapping for the co
sion timetn :
tn115tn1
l n11

vn11
,

l n115A@R~cosfn112cosfn!2pa#21@R~sinfn112sinfn!2qa#2. ~6!
not
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t its
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Herel n is the free path. Under the assumption thatr !R, the
mappings for variablef and impact parameterd are the
same as for the unperturbed billiard@Eqs.~1! and ~2!#.

3. FERMI ACCELERATION

As a result of impacts with a perturbed boundary, t
billiard ball velocity always changes. As earlier research
shown,11 these changes in the velocity are random. The
fore, let us consider an ensemble of particles and calcu
their velocity distribution and average velocity as a functi
of time t and number of collisionsn ~the number of collisions
and time are not directly proportional because a faster
ticle undergoes more impacts during a time interval tha
slower one!. In this section, we will first consider the issue
the mean change in the velocity in billiards with arbitra
shapes and perturbed boundaries, then we will discuss
problem of Fermi acceleration in a Lorentz gas with ra
domly and regularly oscillating scatterers.

3.1. Average change in the velocity in the general case

Consider two sequential collisions of a ball hittin
against a wall in a billiard of an arbitrary configuration~Fig.
2!. Denote bya0 the particle incidence angle in the fir
collision, and bya1 this angle in the second collision~they
are introduced as in Sec. 2.1!. Further, denote byv0 andv1

the absolute values of the ball velocity before the first a
second collisions, respectively. The velocity components
labeled by the following indices: the superscriptst and n
denote the tangential and normal velocity components,
spectively, the first subscript is the velocity index, the seco
is set to unity if the velocity component is considered bef
the collision and to zero after the collision. Thus,v10

t denotes
the tangential component of velocityv1 at the point of the
first collision, andv11

t is the tangential component at th
e
s
-
te

r-
a

he
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d
re
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point of the second collision. In the general case, they are
equal ~Fig. 2!. Let u(t) be the boundary velocity. The fol
lowing relation should, obviously, hold:

^u~ t !& t50, ~7!

which means that the boundary remains, on average, a
place.

Consider a single collision between a particle and a w
The tangential velocity component in this case is, obvious
constant, whereas the change in the normal component
be easily calculated in the reference frame connected to
wall. Thus, we can write for the first collision

v10
n 52v01

n 12u~ tn!52v0 cosa012u~ tn!,

v10
t 5v01

t 5v0 sina0 , ~8!

v15Av0
224v01

n u~ tn!14u2~ tn!.

It is clear that, if only one collision is considered,^Dv10
t &

50 and^Dv10
n &50 for a billiard of an arbitrary configura

tion. Moreover, changes in the velocity are associated o

FIG. 2. Billiard of an arbitrary configuration.
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with the normal component since the tangential compon
is unchanged after the reflection. Consequently, the ave
growth in the velocity depends on the normal velocity co
ponent in the next collision. In the general case, howev
one can consider only the average velocity component,

^v11
n &5^v1 cosa1&

5^Av0
224v0u~ t !cosa014u2~ tn!cosa1&, ~9!

where averaging is performed over anglesa0 and a1 and
time t.

It seems appropriate to illustrate Eq.~9! on two ex-
amples.

Ulam’s model.14,16–21 Two parallel heavy walls are
placed at distanceL between them, and a ball moves betwe
these walls. One wall oscillates periodically with amplitu
d such thatL@d. The specific time dependence of the
oscillations is unimportant for our analysis, the only impo
tant point is that the wall motion should satisfy condition~7!.
Since the tangential velocity component in this model is c
stant,vt5const, the velocity and incidence angle are rela
by the formula

v sina5vt5const. ~10!

The normal velocity component, in its turn, has the sa
absolute value before the first collision,v10

n , and before the
second,v11

n . Consequently,

^v11
n &5^v10

n &5^2v01
n 12u~ tn!&5v01

n .

Thus, there is no particle acceleration on average in
model.

Lorentz gas.Owing to the strong mixing in this mode
we can assume that anglesa0 anda1 are mutually indepen-
dent, hence

^v11
n &5^cosa1v1&a0 ,a1 ,t5^cosa1&a1

^v1&a0 ,t .

Therefore, fluctuations in the velocity~increase and de
crease! due to collisions are associated with changes in
absolute value, but not in its normal component, as wa
the previous case. As will be shown below, the value^vn&
increases withn, therefore Fermi acceleration is feasible
the Lorentz gas.

This conclusion can probably be extended to other s
tems in which the incidence angle and velocity are not
rectly related by Eq.~10!, as in Ulam’s model. An interme
diate configuration between Ulam’s model and a scatte
billiard is the ‘‘stadium-shaped’’ billiard, in which the feas
bility of Fermi acceleration was studied numerically.11

3.2. Stochastically perturbed scatterer boundary

Let the boundary velocity of a scatterer at which thenth
collision takes place be

un~ t !5u0 coswn , ~11!

whereu0 is the boundary velocity amplitude, and$wn% is a
set of uncorrelated random values uniformly distributed o
the interval@0,2p). Let us calculate the velocity distributio
function and the average velocity in an ensemble of partic
nt
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as a function of the numbern of scattering events and timet.
In the case of a low particle velocity,v!u0 , the major con-
tribution to velocity given by Eq.~5! is due to the last term
on the right-hand side, hence

vn11'2uu~ tn!u.

If boundary oscillations are determined by Eq.~11!,

^vn11&'2^uu~ tn!u& t54
u0

p
.

Thus, even after the first collision, the average velocity
comes larger thanu0 .

Now let us calculate the change in the velocity
v@u0 . By expanding the right-hand side of Eq.~5! in pow-
ers ofu/v, we obtain an expression for the velocity chang

Dvn5vn112vn522un cosan12
un

2

vn

3sin2 an1vnOS S un

vn
D 3D , ~12!

whereun is the scatterer boundary velocity during thenth
collision.

Using Eq.~4! and the uniformity of the phase distribu
tion at the moment of collision, we obtain̂Dvn& and
^(Dvn)2&:

ms[^Dvn&5
Ms

v
, ss

2[^~Dvn!2&5
4

3
u0

2 . ~13!

Here we have introduced for simplicity of further calcul
tions the parameterMs[u0

2/3, where subscripts denotes the
stochastic effect. After averaging, only the second term
the right of Eq.~12! contributes to the velocity increase, an
in calculations of the variance the first term is sufficient.

If the numbern of scattering events is sufficiently large
we can replace the first equation in~13! with a differential
equation

]v~n!

]n
5

Ms

v~n!
. ~14!

Its solution with the initial conditionv(0)5v0 yields the
most probable velocity as a function of the number of co
sions:

v~n!5A2Msn1v0
2. ~15!

Since the particle velocity is expressed as a sum of indep
dent random quantitiesDvn with known mean and variance
it follows from Lyapunov’s central limit theorem that th
distribution function of the random valuevn5v0

1( i 51
n Dv i tends to a normal distribution with meanv(n)

and variancenss
2 . Thus, the velocity distribution has th

shape of a spreading Gaussian. The position of the distr
tion peak is at the most probable velocityv(n), proportional
to the square root ofn.

This reasoning applies only to the case of a sufficien
high particle velocity,v@u0 . In order to describe the distri
bution at lower velocities, let us introduce an additional co
dition, namely, that there is no flow of particles to the regi
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of negative velocities: (v]r/]v)v5050. It is well known
that the Gaussian distribution that satisfies this condition
the form

r~v,n!5
1

ssA2pn
FexpS 2

@v2v~n!#2

2ss
2n

D
1expS 2

@v1v~n!#2

2ss
2n

D G . ~16!

This allows us to calculate the mean velocity in the parti
ensemble as a function of the number of scattering even

V~n!5ssA2n

p
expS 2

v2~n!

2ss
2n

D 1v~n!FS v~n!

ssA2n
D ,

~17!

where F(x)5(2/Ap)*0
xexp(2x2)dx is the error function.

HereafterV denotes the mean velocity in the particle e
semble. By substituting all coefficients and expanding
expression for the velocity, we obtain

V~n!5CAn1OS 1

An
D , ~18!

where the constant C5A2@ss exp(2Ms/ss
2)/Ap

1F(AMs/ss)AMs#'1.143u0 .
Thus, Eqs.~16! and~18! determine the velocity distribu

tion and the mean velocity in the ensemble as functions
the number of scattering events.

To calculate the mean velocity versus time we use
Fokker–Planck equation:

]r~v,t !

]t
52

]

]v
@Ar~v,t !#1

1

2

]2

]v2
@Br~v,t !#,

where the factorsA andB are given by the expressions

A[ K Dv
t L 5

Ms

l
, B[ K Dv2

t L 5
ss

2v

l
.

Here the mean time between collisionst5 l /v, l is the mean
free path, andDv andDv2 are defined by Eq.~13!. By sub-
stituting the resulting coefficients in the equation, we obt

]r~v,t !

]t
52

Ms

l

]

]v
r~v,t !1

1

2

ss
2

l

]2

]v2
@vr~v,t !#. ~19!

If parametersMs andss are determined in accordance wi
Eq. ~13!, the solution of this equation in the limit of hig
velocities much larger than the initial value, i.e., after a s
ficiently long time interval, tends to

r~v,t !5
1

A2tApv
expS 2

v
2tAD ,

whereA5Ms / l . The latter expression yields the mean p
ticle velocity:

V~ t !5
Ms

l
t1v05

1

3

u0
2

l
t1v0 . ~20!
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Thus, the system under investigation gives rise to
Fermi acceleration, with the particle velocity increasing a
linear function of time.

3.3. Periodically perturbed scatterer boundaries

Suppose that all scatterer boundaries contract and
pand following a certain periodic law with a constant initi
phase. Then, during one half of the period, the particle
locity should increase as a result of collisions and decre
during the other half. If the particle velocity is high enoug
the timets between scattering events is longer than the
riod T of scatterer oscillations. This leads to correlations
particle velocity variations, so the sequential increments
the velocity defined by Eq.~12! can no longer be treated a
independent.

This section presents numerical calculations of the
locity variance and its average increase, alongside the de
rate of the correlation functionR(m)5(DvnDvn1m). They
indicate, in particular, that correlations can lead to larger fi
and second moments of velocity distributions. The calcu
tions were performed on the basis of the Lorentz gas mo
with the following parameters: the scatterer radiusR50.4;
the separation between their centersa51 @thus, the basic
model parameter (a/R)256.25#; the amplitude of the scat
terer surface velocityu050.01; the oscillation frequency
v51.

It follows from the analysis of the previous subsecti
that at high particle velocitieŝDv&;1/v. Therefore, the
variable most convenient for the analysis and graphic rep
sentation isM[^Dv&v. Figure 3 showsM plotted against
the particle velocity in the case of stochastic~curve 1! and
periodic~curve2! boundary oscillations. One can see that,
the case of stochastic oscillations, the variableMs'u0

2/3 co-
incides with to the result of the previous subsection. In
case of regular oscillations,Mr first increases, and then mo
likely tends to a constantMr

max5(1.1560.10)u0
2 at v>15,

which corresponds in this specific billiard configuration
n>150 particle collisions with the boundary during one o

FIG. 3. ParameterM[v^Dv& as a function of particle velocity. Curves1
and2 are calculated by the Lorentz gas model for the cases of random
regular boundary oscillations, respectively. Curve3 is calculated using the
simplified mapping~22!. The dashed line showsMs in the Lorentz gas in the
case of stochastic boundary oscillations calculated by Eq.~13!. Results are
obtained atu050.01, a51, andR50.4.
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cillation period on average. In addition, it is clear that t
particle acceleration in the case of regular boundary osc
tions is a factor of three to four higher than in the case
stochastic oscillations.

For the analysis of velocity changes in chaotic billiar
with periodically oscillating boundaries, the following ap
proach can be suggested. Consider an approximate map
for velocity ~12!. Since correlations between parametersan

decay exponentially~as follows from the billiard configura
tion!, the formulas can be averaged overa using Eq.~4!.
Then

^Dv&a52
p

2
u0 cosvtn1

u0
2 cosvtn

vn
. ~21!

During the oscillation period, the largest contribution
changes in the velocity is due to the first term on the rig
Therefore, it is sufficient in the first approximation to ta
into account only the changes in the velocity due to the fi
term, and the second can be neglected. On the other h
correlational corrections to the second term generate term
higher orders than that of its average. Therefore, correla
effects in the second term can be neglected. For this rea
the two values related to the first and second terms can
calculated independently:

^Dv&5^Dv& I1^Dv& II ,

where ^v& II5u0
2/(3v), which coincides withms in the sto-

chastic case@Eq. ~13!#, and ^Dv& I is the correction due to
correlations. Discarding the second term on the right of
~21!, we have the following mapping for calculating^Dv& I :

vn115vn1g cosun , un115un1
l n11v

vn11
. ~22!

Hereg52pu0/2, and the collision phaseun[vtn is substi-
tuted for time. This mapping is exactly equivalent to Ulam
well-known mapping,14–21 the only difference being that in
this case the free pathl n is a random parameter distribute
over a certain interval.

Let us analyze numerically this mapping at the sa
values ofu0 and v as those selected in our analysis of t
Lorentz gas. Suppose that the free pathl n has a normal dis-
tribution with meanl 50.62 and variances l

250.657. This
corresponds to the variance and mean free path calcu
numerically atR50.4 anda51 ~see the previous subse
tion!. Figure 3 showŝDv& Iv1u0

2/3 ~curve3! derived from
mapping~22!. One can see in the graph that the first mom
of the velocity distribution defined by this mapping becom
positive, but it is still smaller than the observed veloc
increase in the Lorentz gas. Nonetheless, this mappin
easier for analysis than Eq.~21!.

Now let us estimate the variance and decay rate of c
relations in the velocity change. Suppose that the part
velocity is so high that its change aftern scattering events is
negligible. It is clear that, in order to satisfy this conditio
one can choosev andu0 in a proper manner. Let us calcula
correlations between velocity incrementsDvm and Dvm1n

@Eq. ~12!# for n→`. Taking into account in the first approx
mation only the first terms on the right of Eq.~12!, we obtain
-
f

ing
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n,
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R~n![^DvmDvm1n&5u0
2 p2

4
^cosvtm cosvtm1n&,

which takes into account, as follows from Eq.~4!, that
^cosan&5p/4. By setting the oscillation frequency to unit
and introducing the notationSn[( i 51

n tm1 i , where t i5t i

2t i 21 , we obtain

^costm costm1n&5^costm cos~ tm1Sn!&.

The variableSn can be expressed as

Sn5(
i 51

n

~ l 1D l i !/v,

whereD l i is the deviation from the mean free path on thei th
collision. SinceSn is the sum of independent random qua
tities, its distribution at largen tends to the normal distribu
tion with meannl and variancens l

2 , wheres l
2 is the mean

free path variance. By expanding the cosine of the sum
averaging overSn , we obtain the following expression fo
the correlation function of velocity increments:

R~n!.
p2

8
u0

2 cos~vnt!expS 2
n

ND , ~23!

where v is the frequency of scatterer oscillation
N5v2/(v2s l

2). Thus, correlations between sequent
changes in the particle velocity are the stronger, the hig
the velocity, and their ‘‘half-life’’N, i.e., the number of col-
lisions after which correlations drop by factore, increases
proportionally tov2. Note that the number of collisions ove
one period is proportional tov. Thus, in order to estimate
correctly the velocity variance, one has to average over
larger number of oscillation periods, the higher the parti
velocity. The issue of how this can be done, however,
remained unresolved.

In order to estimate the variance in the first approxim
tion, let us consider the velocity increment after two sequ
tial collisions with the boundary. In this analysis, we assu
that correlations among three and more increments are
ligible. In the limit of a high velocity of a billiard particle,
the correlator of sequential velocity increments can be e
mated by the formula

^DvnDvn11&5u0
2 p2

4
^cos2 vtn~12O~t2!!&

5u0
2 p2

8
1OS u0

2

v2D .

From this expression and Eq.~13!, we derive

s r
25

^~Dvn1Dvn11!2&
2

'S 4

3
1

p2

8 Du0
2 . ~24!

Figure 4 shows numerical and analytic estimates of
velocity increment variance in the stochastic~dashed line!
and regular~solid lines! cases. In the case of stochastic o
cillations, the numerical and analytic@Eq. ~13!# estimates are
identical, so the graph shows only numerical calculations
ss

2 . Regular oscillations are characterized in this graph
the straight line defined by Eq.~24! and the broken line
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calculated numerically. In order to take into account corre
tions between velocity increments, we calculated in the re
lar case the effective variances r

25^DV2&/Nmax, whereDV
is the total velocity increment afterNmax collisions. Given
Eq. ~23! describing the correlation function decay, w
equatedNmax to 10v2/(v2s l

2), which is a factor of ten highe
than the characteristic correlation decoupling number. A
shown by the graphs, the variancess

2 in the stochastic case i
constant, whereas in the regular case (s r

2) it grows with the
velocity. In addition, the variance in the regular case de
mined by Eq.~24! is slightly overestimated.

Thus, the numerical and analytic estimates given in t
section indicate that particle acceleration should occur
chaotic billiards with periodically oscillating boundaries. W
can most likely say that deterministic chaoticity is a su
cient condition for Fermi acceleration. Moreover, period
oscillations of billiard boundaries lead to a higher partic
acceleration.

3.4. Numerical results

This section presents numerically calculated particle
locity as a function of the number of scattering events a
time in comparison with the analytic estimates given abo
The calculations were performed by the Lorentz gas mo
with the following parameters: the amplitude of the scatte
boundary oscillation velocityu050.01; the scatterer radiu
R50.4; the distance between their centersa51; the fre-
quency of boundary oscillationsv51; the initial velocity
v051. Thus, the mean free path calculated analytically
these parameters,l 50.6216815. The numerical calculation
of the mean free path@Eq. ~6!# and its variance in this spe
cific billiard configuration yieldl 50.6216360.00003 and
s l

250.65760.001.
The difference in realizations was in the initial values

a and f, which were selected at random. Two differe
cases were investigated: stochastic oscillations of scat
boundaries with initial phases distributed uniformly a
regular oscillations of boundaries. In both cases, the billi
ball ~particle! dynamics was determined by the mapping d
rived in Secs. 2.1 and 2.2. The scatterer boundary oscilla
velocity in the first case was defined by the formu

FIG. 4. Variance versus particle velocity in the Lorentz gas in the case
stochastic~dashed line! and regular~solid lines! oscillations. The straight
line shows the theoretical estimate of the variance in the regular case b
~24!. The calculations were performed atu050.01, a51, andR50.4.
-
u-

is

r-

is
n

-
d
.

el
r

r

f

rer

d
-
n

un5u0 coswn , wherewn is a random parameter uniforml
distributed over the interval@0,2p), and in the second cas
by the formulaun5u0 cosvtn , where tn is the moment of
collision between the particle and boundary. For each c
100 realizations of billiard dynamics were investigated. T
averaged velocity as a function of the number of scatter
events and time is plotted in Figs. 5 and 6, respectively
both graphs, the solid lines plot the data for the regular ca
and the dashed line corresponds to the case of random o
lations.

Figure 5 shows the averaged velocity of an ensemble
particles versus the numbern of scattering events over th
range of 53108 iterations. It is clear that both curves a
accurately approximated by the square-root function~18!. In
the case of stochastic oscillations, parametersMs and ss

were derived from Eq.~13!, and in the regular case the lim
iting valuesMr ands r were derived from numerical calcu
lations described in the previous subsection.

The curves of the mean velocity versus time~Fig. 6! plot
the data averaged over 100 realizations in the stocha
~dashed lines! and regular~solid lines! cases. The particle
dynamics was simulated over a time interval of@0, 33106#
time units, and some trajectories of ‘‘fast’’ particles cover
up to 33109 iterations. The mean particle velocity was a
proximated using Eq.~20!. The parameterMs was calculated
for stochastic oscillations by Eq.~13!, and for regular oscil-
lations as a limit ofMr obtained in the previous subsectio
The curves show that the growth in the particle velocity
approximately linear, and the approximation of the avera
velocity by Eq.~20! is in reasonable agreement with com
puter simulations.

4. CONCLUSIONS

Billiards are fairly convenient models of a set of phys
cal systems. For example, particle trajectories in billiards
specific configurations can be used in modeling many

of

q.

FIG. 5. Mean particle velocities as functions of the number of scatter
events in the Lorentz gas~curves1 and2! and their approximations by Eq
~18! ~curves3 and4!. The dashed lines correspond to stochastic bound
oscillations, the solid lines correspond to regular oscillations. The avera
was performed over 100 process realizations with different velocity dir
tions selected at random. The calculation were performed atu050.01,
a51, andR50.4.



th
m
d
ie
f
em
or
ic
ec
ca
y
ar
n
.,

o
w
es
s
e
as

,
t

tw
o
a

ar

s
it
nt

i-

ore
ant

the

l-
par-
nd-
h.
ntial

he
ng
ype

oc-
ur
ra-

an
by
y
s of

i-
e
tly
or-

ces
ai
ar
nd
at

en-
-
bil-
to

e
n. In
ore
ds

tion
gy
ches
for
-
is

rth
ith
c-

is

rox

973JETP 89 (5), November 1999 Loskutov et al.
namical systems. Moreover, most approaches to
problems of mixing in many-body systems originate fro
billiard-like problems. A natural generalization of a billiar
system is a billiard whose boundary is not fixed, but var
following a certain law. This is a relatively new field o
research, which opens new prospects in studies of probl
that have been known for a long time, but have been po
investigated. For example, the problem of particle dynam
in a billiard whose boundary changes with time has a dir
physical application as a model of nonequilibrium statisti
mechanics. As follows from the existing literature, the d
namical properties of a billiard with perturbed boundaries
important: if its dynamics is chaotic, boundary perturbatio
can lead to an infinite growth in the particle velocity, i.e
such a billiard demonstrates Fermi acceleration.

In the present article, we have studied the problem
Fermi acceleration in dynamical systems generated by t
dimensional dispersing billiards with perturbed boundari
A billiard with a boundary like that of the Lorentz ga
oscillating in accordance with a certain law has been inv
tigated. It is well known that the conventional Lorentz g
~i.e., that with an unperturbed boundary! has clearly demon-
strated chaotic properties~mixing, decay of correlations
etc.!. Perturbation of boundaries in such a billiard leads
the Fermi acceleration. This model has been studied in
versions, namely, those with stochastically and regularly
cillating scatterer boundaries. It has turned out that the
celeration is higher in the case of periodical bound
oscillations.

We can identify two basic acceleration mechanism
which have been discovered in deriving the particle veloc
distribution as a function of the number of scattering eve
in the case of stochastic oscillations~Sec. 3.3!. The first is
the mechanism deriving from the condition^Dv&.0 @Eq.
~13!#, which drives all particles to the side of higher veloc
ties. The second is the dispersive~or fluctuational! mecha-
nism controlled by two conditions:~a! ^Dv2&.0, therefore

FIG. 6. The same data as in Fig. 5, but plotted against time. The app
mation was performed by Eq.~20!.
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the peak in the velocity distribution spreads with time;~b!
the absolute value of velocity cannot be negative, theref
the peak spread cannot be symmetrical, but its predomin
direction is to the side of higher velocities, as a result,
simple normal distribution is replaced by distribution~16!.
Moreover, it follows from both analytic and numerical ca
culations that fluctuations and the mean increase in the
ticle velocity are larger in the case of regular scatterer bou
ary oscillations, which leads to a larger velocity growt
Thus, the mechanism due to correlations between seque
changes in the velocity has been suggested.

It is quite clear that the reasoning used in deriving t
particle velocity as a function of the number of scatteri
events and time can be directly translated into another t
of billiard in which a distribution of anglea ~between the
normal to the surface at the impact point and particle vel
ity! is known. Therefore, the technique developed in o
work can be used in solving the problem of Fermi accele
tion in the general case.

The presence of a chaotic condition in a system c
change its statistical properties. A recent publication
Tsang and Ngai10 considered a billiard in an area defined b
a rectangle whose corners were replaced by quarter-circle
radiusR ~smoothed corners! and one side oscillated period
cally. A particle travels within this area and collides with th
boundaries. Each collision with the boundary is not perfec
elastic, and the particle loses a fraction of its energy prop
tional to a constantd (d!1). This model is similar to Ul-
am’s model, but the presence of smoothed corners introdu
random elements to the particle dynamics. Tsang and Ng10

investigated relaxation of a system to equilibrium. A simil
investigation was performed earlier by Tsang a
Lieberman25 on the basis of Ulam’s model. It was shown th
the functionF(t)5E(t)2E(`), which is the deviation of
the mean energy from the equilibrium value, drops expon
tially, F(t)}exp(2t/t), which is quite natural of most physi
cal systems. The investigation of this parameter in the
liard discussed in Ref. 10 revealed that its relaxation
equilibrium in this case is slower,F(t)}exp@2(t/t)b#, where
b,1 and drops withR. Given the results of this paper, w
can understand the cause of the slower system relaxatio
fact, the random element in the system becomes m
important at larger radii of circles at the corners, which lea
to acceleration of particles. Therefore the system relaxa
to its equilibrium, associated with the particle ener
dissipation in the system, becomes slower. The approa
developed in the reported work create preconditions
determination ofb, hence of the relaxation rate to equilib
rium in a system where the chaotic dynamics
dominant.

Thus, on the basis of our investigations, we can put fo
an important hypothesis: a random element in a billiard w
a fixed boundary is a sufficient condition for the Fermi a
celeration in the system when a boundary perturbation
introduced.

i-
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Nonequilibrium Josephson effect in systems of tunnel superconducting junctions
and in layered superconductors
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This paper examines the time-dependent Josephson effect in systems of tunnel superconducting
junctions and in layered superconductors~the intrinsic Josephson effect! with allowance
for nonequilibrium superconductivity effects. Kinetic and quasihydrodynamic equations are
derived that describe self-consistently the dynamics of Josephson phases and nonequilibrium
quasiparticles. It is found that the state of nonequilibrium between the layers leads to an
effective mechanism of the interaction between interlayer Josephson junctions, which can be used
to synchronize the junctions. Current–voltage characteristics of chains of intrinsic junctions
are obtained for different values of the parameters. ©1999 American Institute of Physics.
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1. INTRODUCTION

It is well known ~see the review articles in Refs. 1–3!
that when subjected to a finite voltage a Josephson junc
is a source of nonthermal quasiparticles, which relax in
‘‘banks.’’ Hence near the junction there is always a region
nonequilibrium superconductivity. The excess of quasipa
cles changes the energy gap. More than that, a differe
arises in the populations of the electronlike and holel
branches of the electron excitation spectrum~the electron–
hole imbalance!, which changes the chemical potential of t
superconducting condensate~the number of superconductin
electrons changes to balance the excessive charge of the
siparticles! and leads to penetration of the superconductor
the electric field. If the banks are fairly large, diffusion of th
quasiparticles plays the main role~in dirty superconductors!.
The characteristic spatial scales are determined by the en
relaxation depthl e5ADte and the imbalance relaxatio
depth ~the penetration depth of the electric fiel!
l q5ADtq, with D the diffusion coefficient,te the inelastic
relaxation time, andtq the imbalance relaxation time. But
the banks are smaller thanl q in the direction of diffusion, a
spatially homogeneous nonequilibrium state forms that
laxes with characteristic timeste and tq . In this case the
system may be farther from equilibrium.

Quasiparticle interactions between junctions have b
studied in systems of Mercereau–Notaris bridges4,5 and in
SNS junctions.6,7 The nonequilibrium change in the energ
gap in SIS systems was examined in Refs. 8–11~an inter-
esting particular case of this phenomenon is the stimulat
or enhancement, of superconductivity in a double tun
junction with a nonequilibrium middle layer!. Another factor
that may be important is the violation of the Josephson r
tionship dw/dt5(2e/\)V between the voltage across th
junction and the phase difference at the junction in the n
equilibrium case~see below!. In layered superconductor
with Josephson interaction between the layers, nonequ
9751063-7761/99/89(11)/11/$15.00
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rium effects may be very large because the effective la
thickness is small~3–10 Å!. In recent studies,12–27the intrin-
sic Josephson effect in high-Tc superconductors was ob
served directly. A number of researchers28–32 remarked on
the importance of allowing for nonequilibrium effects, esp
cially the violation of the equilibrium Josephson relation,
interpreting the results of experiments in this field.

In Sec. 2 we will discuss the elementary theory of t
nonequilibrium Josephson effect and make estimates for
tificial tunnel structures and high-Tc superconductors. Sec
tion 3 is devoted to the derivation of kinetic and quasihyd
dynamic equations of quasiparticle dynamics in systems
tunnel junctions. In Sec. 4 we will examine the dynamics
a chain of junctions and present the results of numerical
culations of current–voltage characteristics and of the hi
frequency interaction of junctions.

2. ELEMENTARY THEORY

From the microscopic viewpoint, the main process in
nonequilibrium superconductor is the change in the quasi
ticle distribution function, which is accompanied by chang
in the macroscopic characteristics of the condensate: the
ergy gapD, the shiftdm of the chemical potential, and th
invariant potentialF related to this shift.

A change in the energy gap takes place when the pa
the distribution function which is symmetric in energy,ne

(ne describes the quasielectron energy distribution fore.0
and the quasihole distribution fore,0); in the simplest case
it can be found from the E´ liashberg self-consistenc
equation33

15lE
D

uD 12ne2n2e

~e22D2!1/2
de. ~1!

On the other hand, the shift of the chemical potential
the condensate in the superconductor is determined by
part of the distribution function which is symmetric i
© 1999 American Institute of Physics
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TABLE I. Artificial structures (T54.2 K).

N(0), 1034 RS, d0 ,
Structure erg21 cm23 V cm2 Å n,s21 te , s nte

Nb–AlOx– Al–AlOx– Nb ~Ref. 8! 0.81 ~327!31027 100 >108 ;1028 >1

Nb/Al– AlOx– Nb8Al–AlO x– Nb ~Ref. 9!
;1 ;1026 ;100 ;108 ;1029 ;0.1

Nb/Al/Nb8/Al– AlO x– Nb9Al–AlO x– Nb8/Al/Nb ~Ref. 9!

Nb/Al– AlOx– Al8– AlOx– Al/Nb ~Ref. 10!
0.81 ~124!31026 60 ;108 ;1028 ;1

Nb/Al/Nb/Al– AlO x– Al8– AlOx– Al/Nb/Al/Nb ~Ref. 10!

Nb–AlOx– Nb8– AlOx– Nb ~Ref. 11! 1.99 ;1026 100 >107 5310210 ;0.01
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energy.34–36 In the simplest case of a pure superconducto
a spatially homogeneous quasistatic nonequilibrium state
energy distribution of the paired electrons is given by
expressionvk

25(1/2) (12jk /ek), where jk5\2k2/2m2eF

2dm, ek5AD21jk
2 is the quasiparticle spectrum, anddm is

the shift of the chemical potential. Then fordm!eF the
charge density is given by the formula

r52eN~0!Fdm1E
D

`

~ne2n2e! deG , ~2!

where the first term on the right-hand side is the conden
charge and the second is the quasiparticle charge,
N(0)5mpF/2p2\3 is the density of states on the Fermi su
face. Equation~2! is the second self-consistency equation.
the quasineutral case (r'0) we have

dm52E
D

`

~ne2n2e! de. ~3!

This expression is a reflection of the features of the cha
effects in superconductors: when an electron–hole imbala
develops, the quasineutrality is ensured due to the super
ducting electrons.

The shift of the chemical potential can be expressed
terms of what i known as the invariant potential:dm5eF,
with

F~ t !5f1
\

2e

]u

]t
, ~4!

wheref is the electric potential,u is the phase of the orde
parameter, andF50 in an equilibrium state. For a pur
superconductor, in the quasiclassical case this relation
follows directly from the shape of the quasipartic
spectrum.35 Generally, it is the gauge-invariant potentialF
that enters into the dynamical equations. The expression
the charge becomes

r522e2N~0!~F2C!52
1

4pr d
2 ~F2C!, ~5!

whereC5(1/e)*D
`(ne2n2e) de is the electron–hole imbal

ance potential,1) and r d is the penetration depth of the ele
tric field.
n
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n
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In a state with a shift of the chemical potential, the o
dinary relationship dw i j /dt5(2ueu/\)Vi j the Josephson
phase difference w i j 5@u j2u i #sgne and the voltage
Vi j 5f i2f j breaks down. Instead, using the definition ofF,
we obtain the Josephson nonequilibrium relationship

dw i j

dt
5

2ueu
\

Vi j 1
2ueu
\

~F j2F i !. ~6!

Thus, in the general case, we must self-consistently
scribe the dynamics of the Josephson phasesw i j (t) and the
distribution functionsne

( i )(t) with allowance for the condi-
tions ~1! and ~5! and for the nonequilibrium expressions fo
the tunneling current between the layers.

The main parameters determining the degree of the n
linearity of the effects of any type in tunnel structures a
other systems with weak coupling are the productsnte and
ntq , where n is what is known as the tunnel frequenc
which for thin layers (d0! l e ,l q) is given by the formula

n5
1

4e2N~0!RNd0

, ~7!

whereRN is the resistance of the junction in the normal sta
per unit surface area. Fornte.1 or ntq.1 strong distor-
tions of the quasiparticle distribution function are possibl

The results of estimates recently made for artificial str
tures are listed in Table I. These data suggest the follow
First, the highly nonequilibrium regime is realized in tunn
structures based on Al and Nb. Second, the parameternte

can be much larger than unity,nte@1. Indeed,n;108 s21

correspond to very low barrier transmissivit
D;102721026 (n5vFD/4d0), and the condition for
junction weakness is met with a large marg
(n!D;101221013s21). Thus, an increase in value of th
nonequilibrium parameter by a factor of 100 to 1000 w
barrier transmissivity is quite possible~at least in principle!.

It is difficult to make estimates for high-Tc supercon-
ductors because of the lack of a sufficient large body of d
obtained in direct measurements of nonequilibrium effe
and the fuzziness of the microscopic picture. For rough e
mates we can use formula~7! and a similar formula that
expressesn in terms of the critical current at absolute zero
the BCS model:
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n5
Jc~0!

2peDN~0!d0
. ~8!

On the basis of Refs. 12–27 we assume t
Jc(0);500220 000 A/cm2, Vc;1210 mV, RNS;1025

210-7 V cm2 ~for structures with different degrees of aniso
ropy!, D;20 meV, andN(0);103221033. We then arrive at
the estimaten;10821012s21, depending on the degree o
anisotropy and the way in which the estimate is made. W
the inelastic relaxation time changes from 1029 s ~at
T;4.2 K) to 10212s ~at T;Tc), the productnte changes
over a wide range from 1024 in structures with the greates
anisotropy at temperatures close to critical~note, however,
that ntq may be much larger in view of the factorT/D) to
103 in structures with weaker anisotropy at low temperatur
which suggests that under certain conditions a system
an intrinsic Josephson effect may be very far from equi
rium.

3. QUASIPARTICLE KINETICS IN SYSTEMS OF TUNNEL
JUNCTIONS. THE QUASIHYDRODYNAMIC APPROXIMATION

In this paper we will examine the system of Josephs
coupled thin layers~Fig. 1! with a tunnel mechanism of cur
rent transfer between the layers. Thus, the state of thei th
layer is determined by the interaction of that layer with t
( i 21)st and (i 11)st layers. For any pair of layers this in
teraction is the same type, and below we will develop
microscopic theory of an arbitraryi th layer with allowance
for the ‘‘left,’’ ( i 21)st, layer. The effect of the ‘‘right,’’
( i 11)st, layer will be taken into account in the final expre
sions.

We will assume that the layer thicknessd0 is comparable
to the penetration depthr d of the electric field~as is the case
in high-Tc superconductors! and is much smaller than th
characteristic nonequilibrium relaxation depths,d0! l e ,l q .
In this case the analysis of charge effects becomes m
simpler, since we can average all quantities over the la
thickness.

3.1. The starting equations

The starting equations are the E´ liashberg equations33 for
the two-time quasiclassical@integrated with respect to th
energy variablej5vF (p2pF)] Green’s functionsge(t),
f e(t), ge

A(R)(t), andf e
A(R)(t) describing an arbitrary nonequ

librium state of the superconductor. In the most general fo
such equations were obtained via the Keldysh method37 by
Larkin and Ovchinnikov38,39 ~see also Refs. 2,3, and 40–44!.

FIG. 1. A system of coupled Josephson layers.
t

n

s,
th
-

-

a

-

ch
er

The functionsge
A(R) and f e

A(R) describe the density of quas
particle states in energy in the static case and are called s
tral, while the ‘‘Keldysh’’ functionsge(t) and f e(t) describe
the kinetics of the quasiparticles. Since we intend to go o
to a kinetic ~quasiclassical in time! equation, we introduce
the Fourier representation in the time differencet12t2 and
retain the dependence on the time sumt5(t11t2)/2. More-
over, in the ‘‘dirty’’ case (tpD,tpv!1 andl p!j0 ,d0), we
can average over the directions of the momentum on
Fermi surface. Thus, we obtain, for instance,2!

ge~r ,t !5
i

pE djE dVp

4p E d~ t12t2!E d~r12r2!

3G~r1 ,r2 ,t1 ,t2!exp$2 i e~ t12t2!

1 ip–~r12r2!%, ~9!

The equations for the functionsge and f e(t) averaged over
the layer thickness have the form~in a gauge in which the
order parameter is real!

]ge

]t
52 ie$Fg2gF%e2 i $D f †2 f D%e2I 1

ph2I 1
tun, ~10!

i2e f e5 ie$F f 2 f F%e2 i $Dḡ2gD%e1I 2
ph1I 2

tun, ~11!

whereI ph and I tun are, respectively the phonon collision in
tegral and the tunneling source,f †(t1 ,t2)5 f * (t2 ,t1) and
ḡ(t1 ,t2)5g(t2 ,t1) in the temporal representation, and th
symbol$AB% stands for the convolution in time,

$AB%~ t1 ,t2!5E A~ t1 ,t3!B~ t3 ,t2! dt3 , ~12!

which in the frequency representation has the form

$AB%e~v!5E Ae1v/22v1/2~v1!Be2v1/2~v2v1!
dv1

2p
,

~13!

and in the quasiclassical case can be represented by a p
series inv, i.e.,

$AB%e5AeBe1
i

2 S ]Ae

]e

]Be

]t
2

]Ae

]t

]Be

]e D
2

1

8S]2Ae

]e2

]2Be

]t2
22

]2Ae

]e ]t

]2Be

]e ]t
1

]2Ae

]t2
]2Be

]e2 D1•••. ~14!

Here in ~10! and ~11! we must assume that formall
D(t1 ,t2)5D(t1)d(t12t2) and F(t1 ,t2)5F(t1)d(t12t2).
The following relationships hold:3!

g* ~ t1 ,t2!5g~ t2 ,t1!, f ~ t1 ,t2!5 f ~ t2 ,t1!,

f e
†5 f e* , f e5 f 2e , ḡe5g2e , ge* 5ge ,

which imply thatge(t) is a purely real function andf e(t) is
an even function.

The tunneling sourceI tun was obtained by Volkov45 and
in our notation has the form

I 1
tun5n$g(t)Rg2gg(t)A1 f f (t)†A2 f (t)Rf †

1g(t)gA2gRg(t)1 f Rf (t)†2 f (t) f †A%, ~15!
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I 2
tun5n$g(t)Rf ḡ(t)A1 f (t)Rḡ2g f (t)A

1g(t) f A2 f Rḡ(t)1 f (t)ḡA2gRf (t)%. ~16!

Here the Green8s functions with the superscript~t! refer to
the other~‘‘left 9! superconductor. These functions contain
additional phase factor~in relation to the functions taken in
a gauge in which the order parameter is real!, which reflects
the presence of the Josephson phase differe
w(t)5@u8(t)2u(t)#sgne between the superconductors. Th
means that the following gauge transformation must be
ried out:

g(t)(R,A)~ t1 ,t2!5expH i @w~ t1!2w~ t2!#sgn
e

2 J
3g8(R,A)~ t1 ,t2!,

ḡ(t)(R,A)~ t1 ,t2!5expH 2 i @w~ t1!2w~ t2!#sgn
e

2 J
3ḡ8(R,A)~ t1 ,t2!,

~17!

f (t)(R,A)~ t1 ,t2!5expH i @w~ t1!1w~ t2!#sgn
e

2 J
3 f 8(R,A)~ t1 ,t2!,

f (t)†(R,A)~ t1 ,t2!5expH 2 i @w~ t1!1w~ t2!#sgn
e

2 J
3 f 8†(R,A)~ t1 ,t2!,

where the primed functions now satisfy the same gau
invariant Eqs.~10! and ~11! as the unprimed.

The self-consistency condition for the energy gap has
ordinary form

D~ t !5lE
2uD

uD de

4
Ref e~ t !, ~18!

and for the second self-consistency condition we must t
the continuity equation with the charge

r~ t !522eN~0!FeF~ t !1E
2`

` de

4
ge~ t !G . ~19!

These conditions constitute a generalization of the exp
sions~1! and ~5! to an arbitrary time-dependent case.

The resulting equations must be augmented with the
pression for the current flowing between the layers. A c
venient way of calculating the current is to integrate Eq.~10!
with respect to energy. We will use this trick when we pa
to the kinetic approximation.

The spectral functions are determined by equations
the form~10! and~11!. We will assume that in the static cas
they are

ge
R(A)5

e6 ig

D
f e

R(A)5
e6 ig

A~e6 ig!22D2
, ~20!

f e
†R(A)5 f e

R(A) , ḡe
R(A)52ge

R(A) , ~21!
n

ce

r-

e-

e

e

s-

x-
-

s

f

ge*
R(A)52ge

A(R) , f e*
R(A)52 f e

A(R) ,

with the sign of the square root determined by the condit
ImA•••.0. Below we will need combinations of the spe
tral functions, for which we introduce the special notation

ue5
1

2
~ge

R2ge
A!, ve5

1

2
~ f e

R2 f e
A!,

we5
i

2
~ f e

R1 f e
A!, ye5

i

2
~ge

R1ge
A!, ~22!

he5
1

2
@12~ge

Rge
A2 f e

Rf e
†A!#, be5

i

2
~ge

Rf e
A1ḡe

Af e
R!.

3.2. Kinetic approximation

At low frequencies (v!D), the system of the dynamica
equations can be greatly simplified by passing to the kin
equation for the energy distribution function for the qua
particles. Such an equation for a system of tunnel juncti
in the quasistatic case (v→0) was derived by Bulyzhenkov
and Ivlev,46 Ivlev,47 and Gulyan and Zharkov.48 As shown by
Larkin and Ovchinnikov38,39 and Schmid and Sho¨n,49 in the
time-dependent case the passage to the kinetic approxim
can be achieved by introducing two real distribution fun
tions f 1 and f 2 , in terms of which the functionsge and f e are
expressed so that the normalization condition

H S gR f R

2 f †R ḡRD S g f

2 f † ḡ
D J

1H S g f

2 f † ḡ
D S gA f A

2 f †A ḡAD J 50 ~23!

holds. As for the spectral functionsge
R(A) and f e

R(A), it is
sufficient to express them in terms ofD(t) via the formulas
~20! of the static approximation.39

Shelankov43 found that when the spin states are equa
populated, one real distribution function of the general fo
f e(t) is sufficient, and the functionsf 1 and f 2 have a definite
symmetry. Using the Shelankov method,43 we can express
the Green’s functions immediately in terms of the symme
part be(t)5(ne1n2e21)sgne and the antisymmetric par
ae(t)5(ne2n2e)sgne of the distribution function, as fol-
lows:

ge5$bege
A2ge

Rbe%2ae1$ge
Raege

A%2$ f e
Rae f e

†A%,
~24!

f e5$be f e
A2 f e

Rbe%1$ge
Rae f e

A1 f e
Raeḡe

A%.

The Green’s functions~24! automatically satisfy the normal
ization condition~23! for arbitrary ae and be . Following
this method of determining the distribution functions, we a
rive at a system of dynamical kinetic equations. In the zer
approximation in the frequency,

ge52~ge
R2ge

A!be2ae2~ge
Rge

A2 f e
Rf e

†A!ae

522uebe22heae , ~25!
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f e52~ f e
R2 f e

A!be1~ge
Rf e

A1 f e
Rḡe

A!ae

522vebe22ibeae ,

these expressions are sufficient for obtaining the kin
equations to first order in frequency. Before we deal with
equations for the distributions functions, we must expr
exactly the termD( f e

†2 f e) ~the first term in the frequency
expansion of$D f †2 f D%e) in Eq. ~10! via Eq. ~11!. As a
result, Eq.~10! yields

]ge

]t
52 ie$Fg2gF%e2 i $D f †2 f D%e81 i FeD

2e
$F f 2 f F%e

2
D

2e
$Dḡ2gD%e2c.c.G2F I 1

ph2
D

2e
~ I 2

ph1I 2*
ph!G

2F I 1
tun2

D

2e
~ I 2

tun1I 2*
tun!G , ~26!

where $D f †2 f D%e85$D f †2 f D%e2D( f e
†2 f e). If in this

equation we use the expansion~14! and the expressions~25!
and separate the even and odd parts, we arrive at a syste
kinetic equations,

he

dae

dt
52e Fd~uebe!

de
2

D

e

d~vebe!

de G dF

dt
2Fae

dhe

dD

1
2D

e

d~heae!

de G dD

dt
1nQa1I a , ~27!

ue

dbe

dt
52e

d~heae!

de

dF

dt
2Fbe

due

dD
1

d~vebe!

de G dD

dt

1nQb1I b , ~28!

whereI a andI b are the phonon collision integrals, which a
not written explicitly, and the tunneling sourcesQa andQb

have been obtained in the low-frequency approximation
are given by the formulas~herev5(sgne/2) dw/dt)

Qa5Q1a1Q2a sgne sinw1Q3a cosw,

Q1a5S ue2
D

e
veD @ue2v8 ~be2v8 2be!1ue1v8 ~be2be1v8 !#

1S ue2
D

e
veD ~he2v8 ae2v8 1he1v8 ae1v8 !2~ue2v8

1ue1v8 !heae1
D

e
~ye2v8 1ye1v8 !beae ,

~29!

Q2a52S ve2
D

e
ueD ~we1v8 1we2v8 !be2S we2

D

e
yeD

3~ve1v8 be1v8 1ve2v8 be2v8 !2
D

e
~we1v8 2we2v8 !heae

2~ve1v8 2ve2v8 !beae2S ve2
D

e
ueD ~be1v8 ae1v8

2be2v8 ae2v8 !,
ic
e
s

of

d

Q3a5S ve2
D

e
ueD @~ve1v8 2ve2v8 !be1ve2v8 be2v8

2ve1v8 be1v8 #1
D

e
~ve1v8 1ve2v8 !heae2~we1v8

1we2v8 !beae1S we2
D

e
yeD ~be1v8 ae1v8 1be2v8 ae2v8 !,

Qb5Q1b1Q2b sgne sinw1Q3b cosw,

Q1b5ueue2v8 ~be2v8 2be!1ueue1v8 ~be1v8 2be!

1ue~he2v8 ae2v8 2he1v8 ae1v8 !1~ue1v8 2ue2v8 !heae ,
~30!

Q2b5ve~we2v8 2we1v8 !be1we~ve2v8 be2v8 2ve1v8 be1v8 !

2~ve1v8 1ve2v8 !beae2ve~be1v8 ae1v8 1be2v8 ae2v8 !,

Q3b5veve1v8 ~be2be1v8 !1veve2v8 ~be2be2v8 !

2~we1v8 2we2v8 !beae1we~be1v8 ae1v8 2be2v8 ae2v8 !.

The self-consistency equations become

D52lE
0

uD
vebe de, ~31!

r522eN~0!FeF~ t !2E
0

`

heae deG
52e2N~0!@F2C#52

1

4pr d
2 ~F2C!, ~32!

with the electron–hole imbalance determined by the form

C5
1

eE0

`

heae de. ~33!

Finally, for the current flowing between the layers w
have

J5J11J2 sinw1J3 cosw,

J152eN~0!d0nE
2`

`

de @ueue1v8 ~be2be1v8 !

1uehe1v8 ae1v8 2ue1v8 heae#,

~34!

J252ueuN~0!d0nE
2`

`

de @2vewe1v8 be2weve1v8 be1v8

2ve1v8 beae2vebe1v8 ae1v8 #,

J352eN~0!d0nE
2`

`

de@veve1v8 be2veve1v8 be1v8

2we1v8 beae1webe1v8 ae1v8 #.

In the limit g/D!1 ~a good gap! andv→0 the kinetic equa-
tions derived in this section become the equations obtai
in Refs. 46–48, and Eqs.~31! and ~32! become~1! and ~5!.
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3.3. Quasihydrodynamic approximation: the dynamics of
the electron-hole imbalance

We examine the approximation in which the departure
the system from equilibrium is small and the kinetic equ
tions can be linearized. Expanding in power series inah ,
be

(1) , v/D, andv/T and keeping only the leading terms, w
obtain

he

dae

dt
52eFd~uebe

(0)!

de
2

D

e

d~vebe
(0)!

de G dF

dt

1nQa
(0)1nQa

(1)1I a
(1) , ~35!

ue

dbe
(1)

dt
52Fd~vebe

(0)!

de
1be

(0) due

dD G dD

dt

1nQb
(0)1nQb

(1)1I b
(1) , ~36!

Qa
(0)5

ue8~ue2~D/e!ve!

T cosh2~e/2T!
v12F S ve2

D

e
veDwe8

1S we2
D

e
yeD ve8G tanh

e

2T
sgne sinw

1
ve8~ve2~D/e!ue!

Tcosh2~e/2T!
v cosw, ~37!

Qa
(1)52S ue2

D

e
veDhe8ae822ue8heae1

2D

e
ye8beae

1F2D

e
ve8heae22we8beae

12S we2
D

e
yeDbe8ae8Gcosw, ~38!

Qb
(0)5F2ve

dwe8

de
tanh

e

2T
12we

d~ve8 tanh~e/2T!!

de G
3v sgne sinw, ~39!

Qb
(1)52ueue8~be8

(1)2be
(1)!1@22ve8beae22vebe8ae8#

3sgne sinw1@2veve8~be
(1)2be8

(1)!#cosw, ~40!

J15
1

2eRN
E

2`

`

de F ueue8

2T cosh2~e/2T!
v1uehe8ae82ue8heaeG ,

J25
1

2ueuRN
E

2`

`

de F ~vewe81weve8!tanh
e

2T

2ve8beae2vebe8ae8G ,
J35

1

2eRN
E

2`

`

de F veve8

2T cosh2~e/2T!
v1webe8ae82we8beaeG .

~41!

Equation~35! for ae(t) depends onbe
(1) only throughD(t)

and can be solved independently of~36!. Moreover, we limit
f
-

ourselves to the case where all variations in the energy ga
the equation forae(t) can be ignored and study the dynam
ics of the electron-hole imbalance.

The solution of the kinetic equation~35! in the general
case is extremely cumbersome due to the dependence o
coefficients one. However, forD/g!1 ~gapless supercon
ductivity!, this dependence is unimportant, while forD/T
!1 andg/T!1 (T.Tc) the particles that play the main rol
are those with energiese;T@D,g, and the energy depen
dence is also unimportant; in such cases the tunneling so
in the leading approximation is

Qa
(0)1Qa

(1)5
v

T cosh2~e/2T!
12~ae82ae!. ~42!

The form of the tunneling source and of the factor ofdF/dt
suggests that in the zeroth approximation inD/T andg/T or
D/g, the expression

ae
( i )~ t !5

eC i~ t !

2T cosh2~e/2T!
, ~43!

is valid in all layers and automatically satisfies the definiti
~33! of C ~herehe.1). In this case a closed equation fo
C(t) can be rigorously derived and a transition to the qua
hydrodynamic description can be achieved. Integrating~35!
and ~41! with respect toe, in the leading approximation we
have

dC i

dt
5

dF i

dt
12n

\

2ueu S dw i 21,i

dt
2

dw i ,i 11

dt D
12n~C i 211C i 1122C i !2tq

21C i , ~44!

Ji 21,i5
\

2ueuRN

dw i 21,i

dt
1

C i 212C i

RN
1Jc sinw i 21,i .

~45!

In Eq. ~44! we have added the second~‘‘right’’ ! source, in-
troduced the layer indices, restored\, and written the colli-
sion integral in thet-approximation. For simplicity we have
assumed that the parameters of all the layers and junct
are the same.

Combining Eqs.~44! and ~45! and allowing for the ex-
pression~32! and the continuity equation, we arrive at th
equation

C i522tqnRNJc~sinw i 21,i2sinw i ,i 11!, ~46!

which corresponds to the imaginary part of the tim
dependent Ginzburg–Landau equation. The term w
dC/dt drops out of this equation because the factor
dC/dt is small in the parametersD/g or D/T and g/T.
However, at high frequencies this term may, on the who
prove to be of the same order as the other terms and mu
retained. The final equation is

tqG
dC i

dt
1C i522tqnRNJc~sinw i 21,12sinw i ,i 11!,

~47!

where
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G5E
0

`Dve tanh~e/2T!

e2
de. ~48!

Equations~47! and ~45! contain no interference terms
these are known to be small in gapless superconductors
lowing for them~for arbitrary values of the parameters! gives
rise to more general equations, which are given in the A
pendix.

4. DYNAMICS OF A CHAIN OF JUNCTIONS

A. 4.1. A system of equations for a chain of junctions

Using the equations of the dynamics of the electro
hole imbalance and the expressions for the current~all de-
rived in Sec. 3!, we can introduce a complete system
dynamical equations for a chain of junctions. Followin
Refs. 28,29,32, and 50–52, we use the continuity equati

d0

dr i

dt
5Ji 21,i2Ji ,i 11 ~49!

and the equation that relates the voltage~the electric field!
across the layers to the layer charge,

Vi ,i 112Vi 21,i5
4pd0d

e0
r i , ~50!

where d is the distance between the layers, ande0 is the
dielectric constant. These equations imply that

Ji 21,i1
e0

4pd

dVi 21,i

dt
5J~ t !, ~51!

whereJ(t) is the external current. Together with the Josep
son nonequilibrium equation~6!, the expressions for the
charge@Eq. ~32!# and current@Eq. ~45!# @or ~A2!#, and the
imbalance dynamical equation~47! @or ~A1!#, these equa-
tions constitute the complete system of dynamical equat
for a chain of junctions.

Using Eqs.~45! and ~47!, in the dimensionless form we
obtain

b
d2w i ,i 11

dt2
1

dw i ,i 11

dt
1sinw i ,i 111c i2c i 11

1bS dm i

dt
2

dm i 11

dt D5 j ~ t !, ~52!

aG
dc i

dt
1c i52h~sinw i 21,i2sinw i ,i 11!, ~53!

m i1z~2m i2m i 212m i 11!5c i1zS dw i 21,i

dt
2

dw i ,i 11

dt D ,

~54!

(
i

dw i 21,i

dt
5v~ t !, ~55!

where j (t) is the external current in units o
Jc5( f 4T)/(eRN) , v(t) is the external voltage in
units of Vc5RNJc , m(t)5F(t)/Vc , c(t)5C(t)/Vc ,
a5tqvc , b5vc

2/vp
2 , z5(e0r d

2)/(d0d), vc5(2eRNJc) /\,
l-

-

–

f

-

s

vp
25(8pedJc) /(\e0S), t5vct, and h52ntq . Note that

there is a relationship between the coefficients,az5bh,
which follows from their definitions.

In the more general case, using Eqs.~A2! and ~A1!, we
get

b
d2w i ,i 11

dt2
1

dw i ,i 11

dt
1sinw i ,i 111

c

f 3
~c i2c i 11!

2
c4

f 3
~c i1c i 11!sinw i ,i 111F f 5

f 3

dw i ,i 11

dt

1
c1

f 3
~c i2c i 11!Gcosw i ,i 111bS dm i

dt
2

dm i 11

dt D5 j ~ t !,

~56!

a
dc i

dt
1c i1hc~2c i2c i 212c i 11!2hc1@~c i 212c i !

3cosw i 21,i1~c i 112c i !cosw i ,i 11#2h~c2 cosw i 21,i

1c2 cosw i ,i 1112c3!c i1h~c21c3 cosw i 21,i !c i 21,i

1h~c21c3 cosw i ,i 11!c i ,i 115h f S dw i 21,i

dt
2

dw i ,i 11

dt D
1aa

dm i

dt
2h

f 1f 3

f 4
~sinw i 21,i2sinw i ,i 11!

2h f 2S dw i 21,i

dt
cosw i 21,i2

dw i ,i 11

dt
cosw i ,i 11D , ~57!

where nowVc5RNJc / f 3 and vc5(2eRNJc) /( f 3\). These
equations can be assumed to be phenomenological equa
within a broad temperature interval.

4.2. Behavior of the current-voltage characteristics

Using the equations we have derived in the previo
sections, we can analyze the dynamics of a chain of juncti
for the values of the nonequilibrium parameterh. We limit
ourselves to the caseb@1, in which the current-voltage
characteristic of separate Josephson junction exhibits hy
esis. We discuss in detail the situation within the simp
model specified by~52! and ~53!, when the imbalance dy
namics is controlled by two parameters,h andaG. The pa-
rameterz is assumed to be of order unity. Here are the m
limiting cases.

In the limit h!1, the current-voltage characteristics
Fig. 2a generally resemble those of a system of noninter
ing junctions. There are separate branches correspondin
different numbers of junctions in the resistive state,4! and the
size of the hysteresis is determined by the parameterb.
However, there are qualitative differences, too.

First, the observed values of critical currents at whi
there is a transition to the subsequent curves are determ
not by the initial spread of critical currents~which was fixed
in the calculation to within 1%! but by the nonequilibrium
effect of step pulling, which amounts to a situation in whi
in the course of the transition of one of the junctions into t
resistive state there arises an electron-hole imbalance in
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FIG. 2. Current–voltage characteristics of a cha
of ten junctions withb510 and z51 and small
values of the nonequilibrium parameters:~a!
h50.1 and aG50.01, and ~b! h50.5 and
aG50.1.
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neighboring superconducting layers and an additional nor
current, which develops because of the inhomogeneity of
imbalance, flows through the neighboring junctions. As
result, the supercurrent through these junctions decrease
a stronger external current is required to transform them
the resistive state. Thus, the spread of critical current pro
to be of orderhJc , which is illustrated in Figs. 2a (h
50.1) and 2b (h50.5).

Second, there is the ‘‘excess current9 phenomenon. For
instance, the curve corresponding to one junction being
the resistive state is an almost straight line~provided that the
currents are large!, as it is in the case of independent jun
tions, but the extrapolation of this straight line toV50 yields
J0Þ0. This well-known effect is the result of the nonequ
librium state, and for the last branch in Fig. 2a, correspo
ing to the case where all junctions are in the resistive s
and the imbalance is zero, the excess current is also z
Note that in their recent work on the intrinsic Josephs
effect in high-Tc superconductors, Yanet al.25 established
the presence of excess current experimentally. Ash in-
creases, the step-entraining effect becomes more pronou
and the shape of the branches changes~Fig. 2b!.

For moderate values of the nonequilibrium parameterh,
i.e., h;1 ~Fig. 3!, the shape of the branches changes s
stantially and the general form of the current-voltage char
teristics depends on the value of the parameteraG. A char-
acteristic ‘‘ripple9 appears, which is due to the dependen
of the synchronization phases on the current~see below!.
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In the limit h@1 the situation is determined by the se
ond parameter,aG. For aG;h or aG@h the giant-
hysteresis regime is realized~Fig. 4a!, in whichV.NJ holds
for J.Jc , whereN is the number of junctions, irrespectiv
of the number of junctions in the resistive state. T
branches of the current-voltage characteristic correspon
to different states are very close to each other. But
aG!h holds in the dynamic state the imbalance oscillatio
are strong and the regime of chaotic oscillations is realiz
The branches of the current-voltage characteristic in this
gime disappear and the hysteresis effect is small~Fig. 4b!.

4.3. High-frequency interaction of junctions

We will conclude this section by a discussion of th
high-frequency interaction of junctions. This problem pla
an important role in the interpretation of the microwave e
periment in the intrinsic Josephson effect in high-Tc super-
conductors and from the practical viewpoint. Of special
terest here is the regime of in-phase synchronization o
chain of junctions, in which the optimum conditions for ge
eration and reception of microwaves are achieved. Our
search has shown that in both weak (h,1) and strong (h
.1) interaction there can be in-phase regimes, more c
plicated synchronous regimes with phase shifts~Figs. 5 and
6!, inhomogeneous regimes with different control freque
cies of the junctions, and chaotic regimes. When the inte
tion is weak and some of the junctions are in the resist
in
FIG. 3. Current–voltage characteristics of a cha
of ten junctions withb510 andz51 and interme-
diate values of the nonequilibrium parameters:~a!
h51 andaG50.1, and~b! h51 andaG51.
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FIG. 4. Current–voltage characteristics of a cha
of ten junctions withb510 andz51 and large val-
ues of the nonequilibrium parameters:~a! h5100
andaG5100, and~b! h5100 andaG51.
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state, synchronization of a group of junctions is observ
Numerical calculations show that the type of synchronizat
depends on the parameters and the external current. Fo
stance, for small values ofh within the scope of the simpli-
fied system of equations~52!–~55!, in-phase synchronization
is observed~Fig. 5a!, but allowance for the term withf 2 ,
which enters into the more general equations~56! and ~57!,
leads to a more complicated regime with phase shift~Fig.
5b!. Interestingly, there are regimes where in-phase sync
nization is observed only at some values of the current, w
in the intervals between these values there is a shift in ph
~Fig. 6!. This explains the presence of ripples in the curre
voltage characteristics~Fig. 3b!.

5. CONCLUSION

In this paper we have systematically studied the the
of the nonequilibrium Josephson effect, from the mic
scopic equations for the Green8s functions to the macro
scopic dynamical equations in which the electron-hole
balance is taken into account in the quasihydrodyna
approximation. The calculated current-voltage characteris
demonstrate the nature of the effect of the electron-hole
balance on the dynamics of one-dimensional chains of ju
tions. It is believed that the result will prove important
studies of submicrometer Josephson structures and the in
sic Josephson effect in high-Tc superconductors. In a recen
paper, Yurgenset al.53 reported on their experimental studie
of the current-voltage characteristics of a chain of intrin
junctions in Bi2Sr1.5La0.5CuO61d ~B-2201!, which the super-
conducting ‘‘electrode9 is formed not by two or three layer
.
n
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-
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of CuO2, as it is in compounds of Bi and Tl studied earlie
but by only one layer. Because of this, probably, the no
equilibrium effects are much stronger and the current-volt
characteristics presented in Fig. 1b of Ref. 53 are simila
those depicted in Fig. 3a of the present work. A detai
study of the nonequilibrium intrinsic Josephson effect me
a separate publication.
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15-96591!, INTAS ~Grant No. 96-0457!, and the ICFPM Re-
search Program.

APPENDIX

We can approximately derive the equations with int
ference terms by assuming that the distribution funct
ae(t) is proportional toC(t), integrating~35! with respect
to e, and retaining all the terms:

dC i

dt
5a

dF i

dt
12n f

\

2ueu S dw i 21,i

dt
2

dw i ,i 11

dt D22n f 1

T

ueu

3~sinw i 21,i2sinw i ,i 11!22n f 2

\

2ueu

3S dw i 21,i

dt
cosw i 21,i2

dw i ,i 11

dt
cosw i ,i 11D

12nc~C i 211C i 1122C i !12nc1@~C i 212C i !
FIG. 5. Temporal dynamics of Josephson phases (ẇ1 ,

ẇ2 , and ẇ3 are depicted! with b510, aG50.1,
h50.5, z51, and j 52: ~a! without interference terms
~the in-phase regime!, and ~b! with the ‘‘ f 2’’ interfer-
ence term withf 250.1 ~the regime with phase shift!.
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FIG. 6. Temporal dynamics of Josephson phases (ẇ1 ,

ẇ2, and ẇ3 are depicted! with b510, aG51, h51,
and z51: ~a! at j 53 ~the in-phaseregime!, and ~b! at
j 52.8 ~the regime with phase shift!. The phase shift
depends on the current.
a-

on

rrec-
t,
al
the

ays

e dif-

v.
3cosw i 21,i1~C i 112C i !cosw i ,i 11]

12n~c2 cosw i 21,i1c2 cosw i ,i 1112c3!C i

22n~c21c3 cosw i 21,i !C i 21,i

22n~c21c3 cosw i ,i 11!C i ,i 112tq
21C i . ~A1!

The expression for the current is

Ji 21,i5 f 3

\

2ueuRN

dw i 21,i

dt
1c

~C i 212C i !

RN

1
T

ueuRN
f 4 sinw i 21,i1F f 5

\

2ueuRN

dw i 21,i

dt

1c1

C i 212C i

RN
Gcosw i 21,i . ~A2!

Here the coefficientsa(T), f (T), f 1(T), f 2(T), f 3(T),
f 4(T), and f 5(T) can be calculated exactly for all temper
tures:

a~T!5E
0

`Fd~ue tanh~e/2T!!

de
2

D

e

d~ve tanh~e/2T!!

de Gde512G,

~A3!

f ~T!5E
0

` ue8~ue2~D/e!ve!

2T cosh2~e/2T!
de, ~A4!

f1~T!52
1

TE0

`FSve2
D

e
ueDwe81Swe2

D

e
yeDve8Gtanh

e

2T
de, ~A5!

f 2~T!52E
0

` ve8~ve2~D/e!ue!

2T cosh2E~e/2T!
de, ~A6!

f 3~T!5E
0

` ueue8

2T cosh2~e/2T!
de, ~A7!

f 4~T!5
1

TE0

`

~vewe81weve8!tanh
e

2T
de, ~A8!

f 5~T!5E
0

` veve8

2T cosh2~e/2T!
de, ~A9!

and the coefficientsc(T), c1(T), c2(T), andc3(T) depend
on the shape of the distribution function and, if conditi
~43! is met, are given by the formulas
c~T!5E
0

` uehe

2T cosh2~e/2T!
de, ~A10!

c1~T!5E
0

` webe

2T cosh2~e/2T!
de, ~A11!

c2~T!5E
0

` Dvehe

2eT cosh2~e/2T!
de, ~A12!

c3~T!5E
0

` Dyebe

2T cosh2~e/2T!
de. ~A13!

These expressions make it possible to determine the co
tions to Eqs.~47! and~45!. From a more general viewpoin
Eqs. ~A1! and ~A2! can be thought of as phenomenologic
equations, since they contain all the main components of
imbalance source and the interlayer current.

* !E-mail: ryn@ipm.sci-nnov.ru
1!It is convenient to define the potentialC in this way in order to obtain the

dynamical equations.
2!In this section we use a system of units in which\51.
3!The arguments of the functions in the temporal representation are alw

given explicitly, e.g.,g(t1 ,t2), while in the mixed representation (e,t) the
argumentt may be dropped as, say, inge .

4!A resistive state is one in which on the average the Josephson phas
ference increases,^dw/dt&Þ0.
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Inhomogeneous ferromagnetic resonance modes in †Fe/Cr‡n superlattices with a high
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In a set of@Fe/Cr#n superlattices, magnetization curves and spectra of ferromagnetic resonance
under an in-plane magnetic field have been studied at room temperature. Along with the
acoustic branch, several additional branches have been observed in resonance spectra. Resonance
spectra have been calculated analytically for a structure with an infinite number of layers
and numerically for finite numbers of layers in real samples using a model of biquadratic exchange
taking account of the fourth-order magnetic anisotropy. A possibility of describing both
static and resonance properties of the system in terms of this model has been demonstrated.
© 1999 American Institute of Physics.@S1063-7761~99!02311-2#
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1. INTRODUCTION

Exchange interaction between thin ferromagnetic lay
separated by a nonferromagnetic spacer has been studie
a long time.1–4 Since the detection of noncollinear~90-
degree! magnetic ordering in such structures,5,6 the energy of
interaction between two neighboring ferromagnetic lay
separated by a thin spacer has been usually expressed
form of two terms:

E52J1

~M1•M2!

M1M2
2J2

~M1•M2!2

~M1M2!2
, ~1!

whereM1 andM2 are the magnetizations of the interactin
layers,J1 and J2 are phenomenological constants. Depen
ing on the sign ofJ1 , the first term, named bilinear ex
change, leads to either parallel or antiparallel alignmen
neighboring magnetic layers. The second term, which
called biquadratic exchange, makes an angle of 90° betw
the magnetization vectors preferable ifJ2 is negative. The
competition between these two components of the ferrom
netic energy can lead, generally speaking, to an arbit
angle between the magnetizations of two neighboring fe
magnetic layers.

The biquadratic exchange has been experimentally
tected in a set of metallic multilayered systems. An app
ciable amount of data obtained by the Kerr magnetome
vibrating sample magnetometry, and SQUID magnetome
measurements of magnetoresistance, ferromagnetic r
nance~FMR!, and Mandelstam–Brillouin light scattering ca
be interpreted on the basis of the biquadratic excha
model.4 The discussion in the present paper is limited to
case of Fe/Cr multilayered systems, which have been stu
9861063-7761/99/89(11)/9/$15.00
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most extensively and whose biquadratic exchange consta
fairly high.

Samples used in studies of exchange interaction betw
layers of such multilayer magnetic structures can be cla
fied with two types. The first of them includes so-calle
‘‘sandwiches,’’ which are composed of two iron layers sep
rated by a chromium spacer. Most experiments have b
conducted with such samples.4–7 One advantage of the ex
periments with sandwiches is the simple interpretation
obtained data. On the other hand, the in-plane magnetic
isotropy in such samples is usually comparable to the effe
of interlayer interaction, so the iron magnetizations are eit
collinear or oriented at 90° with respect to one another.

The second type of samples includes superlattices,
periodic structures consisting of a large number~in reality,
up to several dozens! of identical iron layers separated b
chromium spacers. Since each iron layer interacts with
two neighbors at the same time, the effects of magnetic
change in such structures are much stronger. For exam
the magnetic field necessary for alignment of magnetic m
ments of all layers into a collinear structure can be hig
than 10 kOe,8–10 even though the field of the fourth-orde
magnetic anisotropy in iron is about 500 Oe. In this situati
even in the absence of magnetic field, the magnetization
rection in each layer can deviate from the easy magnetic
and be determined primarily by the minimum of the expre
sion~1!. As a result, a so-called ‘‘canted’’ magnetic structu
with two magnetic sublattices with an ordering angle b
tween them different from 0°, 90°, and 180° can
formed.9–13The large number of layers in superlattices, ho
ever, complicates the interpretation of measurements of b
magnetization and ferromagnetic resonance.

The order of magnitude and oscillations in the biline
© 1999 American Institute of Physics
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exchange constantJ1 as a function of the nonferromagnet
spacer thickness are explained perfectly on the basis of
well-known RKKY theory.2 At the same time, no compre
hensive approach to the origin of the biquadratic excha
has yet been put forth. Some theories treat the chrom
spacer as nonmagnetic. In this case, mechanisms both
ciated with the electronic structure of chromium itself a
controlled by defects or roughness of the iron–chromi
interface yieldJ2 much lower than experimental values.14–17

The model suggested by Słonczewski,16 on the contrary, pre-
sumes a considerable exchange stiffness of the spacer m
rial. This model has allowed the researchers to explain
noncollinear ordering in superlattices, but it leads to a f
mula for the coupling between iron layers different from E
~1!. This model is supported by certain experimental dat12

The work by Levchenkoet al.18 is also worth mentioning,
which pointed out the inevitability of a peculiar doma
structure in such systems, provided that sufficiently la
atomically smooth areas of the iron–chromium interface
present.

Thus, the model of biquadratic exchange, which is
tensively used at present in interpreting experimental data
Fe/Cr systems, has not been fully explained on the basi
existing microscopic theories. In this connection, a ques
arises about how accurate is the description of magn
properties of multilayered magnetic structures by this mod

A set of publications, including recent ones~see Ref. 7
and references therein!, have been dedicated to systema
studies of the biquadratic exchange in Fe/Cr/Fe sandwic
using several experimental techniques~magnetoresistance
Kerr effect, FMR, light scattering!. But, as was noted above
the effects of interaction between layers in sandwiches
superposed on a strong in-plane anisotropy, which mod
the pattern of magnetic ordering described by Eq.~1! and
gives rise to jumps and hysteretic loops on experime
curves.

In the present work, we studied FMR spectra and m
netization curves in a set of@Fe/Cr#n superlattices, in most o
which a canted magnetic ordering has been detected.
main goal of our study was to check out how adequate
model of biquadratic exchange is when the corrections to
measured effects due to the anisotropy are relatively sm
In particular, we have studied the question of whether o
can describe at the same time the static and resonance
erties of a system using the same values ofJ1 and J2 .
Previously9,10 we reported about observation of an optic
and several additional resonant modes in FMR spectra
responding to standing spin waves for two samples. N
that an FMR optical mode was previously detected only
sandwiches. A larger number of samples studied in the
ported work, measurements, and inclusion of the fou
order anisotropy in analytic and numerical calculations
resonance spectra, gave us an opportunity to compare
experimental data and calculations by the biquadratic
change model in more detail.

2. SAMPLES AND EXPERIMENTAL TECHNIQUES

The @Fe/Cr#n superlattices were fabricated at th
Katun-S facility, which employs molecular beam epitax
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The substrates were MgO single-crystal plates cut paralle
the ~100! crystal plane. The buffer layer was a Cr film with
thickness of about 100 Å. The samples were grown a
substrate temperature of 210–220 °C. The sample qua
and thicknesses of Fe and Cr layers were monitored u
the small-angle X-ray scattering and X-ray spectroscopy
high coordinate resolution~the techniques are described
detail elsewhere19!. The @001# crystal axis of the iron and
chromium films was aligned with the normal to the samp
plane.

We tested seven@Fe/Cr#n samples. Below is the list o
these samples with the thicknesses and total numbers of
ers in the structures.
~1! @Fe~21 Å!/Cr~10 Å)]12 ~5! @Fe~48 Å!/Cr~7.6 Å)]16
~2! @Fe~21 Å!/Cr~14 Å)]12 ~6! @Fe~20 Å!/Cr~10 Å)]20
~3! @Fe~21 Å!/Cr~10 Å)]16 ~7! @Fe~26 Å!/Cr~9.2 Å)]24
~4! @Fe~33 Å!/Cr~7.7 Å)]16

We used two experimental techniques, namely, the
romagnetic resonance and measurements of static mag
zation curves. The experiments were conducted at room t
perature. The magnetization curves were recorded b
vibrating-sample magnetometer under a magnetic field ra
ing from 0 to 17 kOe. The ferromagnetic resonance was s
ied in a frequency band of 9.5 to 37 GHz under magne
fields of up to 18 kOe. In order to detect FMR in this fr
quency band, we used a set of six cylindrical microwa
cavities in which the microwave modesH011, H012, and
H013 were excited. A sample was placed at the bottom of
cavity so that the microwave magnetic field was aligned p
allel to the sample plane. A dc magnetic field was also
plied parallel to the sample plane and directed along the h
@110# or easy@100# axes of the iron magnetic anisotropy. B
changing the sample position, we could satisfy either tra
verse or longitudinal pumping conditions.

3. EXPERIMENTAL RESULTS

In Fig. 1, symbols of different shapes show magne
static measurement data for three samples, namely@Fe~33
Å!/Cr~7.7 Å)]16, @Fe~48 Å!/Cr~7.6 Å)]16, and @Fe~21 Å!/
Cr~10 Å)]16. The curves show the magnetization compon
M along the applied magnetic field as a function of the m
netic field strengthH. The field is aligned with the hard
magnetic axis in the sample plane~the crystal axis@110#!.
The solid and dashed lines plot calculations to be discus
below. Two of the three samples have considerable valu
magnetizationM0 even at zero magnetic field, which ind
cates the presence of noncollinear magnetic ordering.
corresponding angle between magnetizations of neighbo
iron layers,u052 cos21(M0 /MS), in these samples is give
in the graph (MS is the saturation magnetization!. In the third
sample, the magnetic moment at zero magnetic field is a
zero, but the nonlinear approach of all three curves to
saturation level is an indication of considerable biquadra
exchange in all the samples. In the series of seven multi
ered films studied in our experiments, four had a nonvan
ing zero-field magnetization.

In studying the ferromagnetic resonance, we detec
along with the homogeneous acoustic FMR mode, sev
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inhomogeneous modes9,10 in all samples. Figure 2 shows
set of experimental curves recorded at different frequen
in the configuration of transverse resonance excitation in
@Fe~21 Å!/Cr~10 Å)]12 sample under a field aligned with th

FIG. 1. Magnetization as a function of magnetic field for three samples.
symbols represent experimental data: (d) @Fe~33 Å!/Cr~7.7 Å)]16 ; (,)
@Fe~48 Å!/Cr~7.6 Å)]16 ; (m) @Fe~20 Å!/Cr~10 Å)]20 . The solid lines show
calculations by Eqs.~8! and~9!, the dashed lines are numerical calculation
The inset showsM (H) in the range of low magnetic fields for@Fe~48 Å!/
Cr~7.6 Å)]16 on an extended scale.

FIG. 2. Derivative of microwave absorption]P/]H as a function of mag-
netic field in the configuration of longitudinal excitation at different freque
cies for the@Fe~21 Å!/Cr~10 Å)]12 sample.
es
e

hard axis of iron magnetization. In addition to the inten
absorption line corresponding to the acoustic resona
mode ~it is labeled by1 in the graph!, one can also se
weaker and broader lines corresponding to excitation of
homogeneous magnetization modes and marked by ar
~digits 2 and3 on the lower curve!. The narrow line marked
by 4 is due to the paramagnetic substance, which was us
calibrate the Hall probe. The line width of the acoustic FM
mode was approximately 300 Oe. The line widths at hig
magnetic fields~on the right of the acoustic mode! were
larger ~up to 1000 Oe!, the corresponding resonances ha
not been observed in all samples, and they could be ex
only in the longitudinal configuration. The resonances
weaker magnetic fields~on the left of the acoustic mode!
were detected in all tested superlattices. Some of them c
be detected only in the longitudinal configuration, and a fr
tion of these resonances could be observed in both lon
dinal and transverse configurations. The intensities of l
seen in the transverse resonance excitation configura
were a factor of several tens lower under the longitud
excitation. It is graphically illustrated by Fig. 2 in Ref.
which shows traces of FMR in one sample recorded with
different alignments of the dc and microwave magne
fields. The frequencies of the FMR modes detected in
experiments for several superlattices are plotted by dot
Figs. 4, 5, and 8 as functions of magnetic field applied al
both easy and hard magnetic axes. The anisotropy of ab
tion peak positions, i.e., the change in these positions du
the dc magnetic field rotation in the sample plane through
angle of 45°, was, as can be seen in the graphs, up to 1

4. ANALYTIC CALCULATION OF STATIC MAGNETIZATION
AND FMR SPECTRUM OF A SUPERLATTICE

In order to interpret our experimental results, we cal
lated analytically the magnetization curves and FMR spe
of a superlattice on the basis of the biquadratic excha
model taking into account the fourth-order cubic anisotro
in the case of a magnetic fieldH parallel to the sample plane
We carried out a similar calculation, but without taking a
count of the cubic anisotropy, in our earlier work.9 We as-
sumed that the magnetization of each iron layer was ho
geneous over its volume and equal toMS , irrespective of the
applied magnetic field, and the magnetization of each la
rotated as a whole. Under these assumptions, the mag
energy of a multilayered structure per unit area of a film
be expressed as

E52d(
j 51

n

~H–M j !2
J1

MS
2 (

j 51

n21

~M j•M j 11!

2
J2

MS
4 (

j 51

n21

~M j•M j 11!21d
Nzz

2 (
j 51

n

~M j•z!2

2d
Ku

MS
2 (

j 51

n

~M j•z!22d
K1

2MS
4 (

j 51

n

@~M j•x!4

1~M j•y!41~M j•z!4#, ~2!

e
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FIG. 3. Curves ofM (H) calculated by Eqs.~8! and
~9! for two directions of applied magnetic field@~a!
along the easy magnetization axis and~b! along the
hard axis# for different values of exchange con
stants: ~1! J1 /(dMSHa)520.3, J2 /(dMSHa)
520.5; ~2! J1 /(dMSHa)521.0, J2 /(dMSHa)
520.3. The hatched areas are regions where
solutions are unstable. The insets schematica
show the alignments of iron magnetization vecto
with respect to the easy and hard magnetizati
axes for these solutions.
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whereM j is the magnetization of thej th iron layer,d is the
thickness of each iron layer,Nzz is the demagnetization fac
tor (4p in this specific case!, Ku characterizes the uniaxia
anisotropy, andK1 accounts for the fourth-order anisotrop
with easy axesx, y, andz, where thez-axis is normal to the
sample plane. In what follows, we introduce for convenien
the surface anisotropy coefficient

Keff5Nzz22Ku /MS
2 , ~3!

and also the effective anisotropy field of the fourth order

Ha52K1 /MS . ~4!

For simplicity of our calculations, the following analys
will be performed in the limit of an infinite superlattice
Since the applied magnetic field is parallel to the sam
plane and the demagnetization field in these samples is
siderably higher than the anisotropy field, the magnetizati
of all iron layers in equilibrium lies also in the film plane, s
M j•z50. In this case, the total energy can be expressed

E52dHMS (
j

cosw j2J1 (
j

cos~w j2w j 11!

2J2 (
j

cos2~w j2w j 11!2
1

16
dHaMS

3(
j

cos 4~w j1c!, ~5!

wherec is the angle between the easy axisx and external
field H, andw j is the angle between magnetic fieldH and
magnetizationM of the j th ferromagnetic layer. The equilib
rium values of anglesw j are derived, as is usual, from th
energy minimum condition

]E/]w j50. ~6!

We will consider two configurations of the highest sym
metry, namely, with the magnetic field applied along t
easy (c50) or hard (c5p/4) axes of iron magnetization
anisotropy~Fig. 3!. One can easily prove that condition~6!
leads to a two-sublattice ordering of ferromagnetic mome
in a wide range of magnetic fields, and the sublattice m
netizations are aligned symmetrically with respect to the
plied magnetic field. In this case, one can analytically cal
e

e
n-
s

s

ts
-
-
-

late the magnetization curves and resonance spectrum o
structure. The anglesw j can be expressed in this case as

w j5~21! jw, where w5cos21~M /MS!. ~7!

Let us consider only the interesting case ofJ2,0. Then, with
due account of Eq.~7!, condition ~6! yields the following
two solutions:

H5S 2
4J128J2

dMS
2

6
Ha

MS
D M1S 2

16J2

dMS
4

72
Ha

MS
3D M3,

~8!

M5MS . ~9!

Hereafter the upper signs correspond to the anglec50, and
the lower signs toc5p/4. The functionM (H), determined
implicitly by Eq. ~8!, corresponds to the case when the an
between sublattice magnetizations is nonzero. Solution~9!
describes the case of saturation, when the magnetization
all iron layers are aligned with the applied magnetic fie
(w50). The regions of magnetic field where these solutio
minimize the total system energy can be determined us
the condition that the second differential must be posit
definite:

D2E5(
i , j

]2E

]w i]w j
Dw iDw j.0

for arbitrary Dw i and Dw j . ~10!

One can prove that, for the two-sublattice configuration
magnetization described by Eq.~7!, condition~10! is equiva-
lent to the combination of two inequalities:

~H cosw6Ha cos 4w!14S J1

dMS
cos 2w1

2J2

dMS
cos 4w D.0,

~11!

H cosw6Ha cos 4w.0. ~12!

First let us consider limitations imposed by conditio
~11!. For the unsaturated phase defined by Eq.~8!, condition
~11! reduces to
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]H

]M
5S 2

4J128J2

dMS
2

6
Ha

MS
D

13S 2
16J2

dMS
4

72
Ha

MS
3D M2.0. ~13!

This is a formulation of a quite obvious fact that on
branches of functionM (H) on which the magnetization in
creases with the magnetic field are stable. For a solution~9!
corresponding to the saturated state, inequality~11! leads to
the condition

H.HS
E,H52~4J118J2!/dMS7Ha . ~14!

This condition means that the saturated state, in which
magnetic moments in all layers are aligned with the app
field, is stable when the external field is higher than the sa
ration field HS

E,H , at which the curve defined by Eq.~8!
crosses curve~9! (HS

E is the saturation field along the eas
axis, andHS

H in the same along the hard axis!.
Note that in the interesting case of a relatively high

quadratic exchange~to be exact, under the condition2J2

.dHaMS/8) condition ~13! is always satisfied, and cond
tion ~11! reduces to the trivial statement that the alignmen
all magnetic moments with the applied magnetic field
stable when the latter is higher than the saturation fi
HS

E,H .
Now let us turn to condition~12!. It is clear that it de-

fines areas on theH/Ha–M /MS plane in which a symmetri-
cal configuration of two sublattices is unstablea fortiori ~the
hatched areas in Fig. 3!. The crossing point of the magnet
zation curves calculated by Eqs.~8! and~9! with the bound-
aries of these areas determine the fieldsHC

E andHC
H for the

easy and hard directions, respectively, below which
above formulas for the magnetization curves and FMR sp
tra do not apply~see below!.

Note that, in the case of saturation fields much hig
than the anisotropy field, which was realized in our expe
ments, condition~8! holds over a wide field rangeHC

E,H

,H,HS
E,H , and atH.HS

E,H solutionM5MS is stable.
In calculating the oscillation spectrum of the system u

der consideration, let us use the Landau–Lifshitz equati
without the damping term:

g21~]M j /]t !52M j3H j
eff , ~15!

whereH j
eff is obtained by differentiating energy~2! with re-

spect toM j :

H j
eff52~]E/]M j !d

21. ~16!

In solving Eqs.~15! and~16!, let us express the magne
tization M j as the sum of the static magnetizationM j

(0) and
the small term describing a wave propagating along the n
mal to the film plane:

M j5M j
(0)1mj exp$2 i ~vt2 jq !%. ~17!

Here parameterq is the product of the wave vector and th
superlattice period. It can be treated as a phase differe
between magnetization oscillations in neighboring iron la
e
d
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ers. The case ofq50 corresponds to the acoustic mode
oscillations, andq5p corresponds to the optical mode.

After substituting expression~17! in Eqs. ~15! and ~16!
and linearizing the resulting equation with respect tomj , we
can derive the frequenciesvq(H) as functions ofq and mag-
netic field H from the existence condition of a nontrivia
solution:

vq
2

g2
5F ~A1BM2!cos2

q

2
1Keff1

3Ha

4MS
6

Ha

4MS
3 ~MS

224M2!G
3F ~A1BM2!M2 cos2

q

2
1~A13BM2!~MS

2

2M2!sin2
q

2
6

Ha

MS
3 ~MS

22M2!~MS
2

26M2!G for HC
E,H,H,HS

E,H , ~18!

vq
2

g2
5FH2HS sin2

q

2
1KeffMS1

3Ha

4
6HaS cos2

q

2
2

3

4D G
3S H2HS sin2

q

2
6Ha cos2

q

2D for H.HS
E,H ~19!

with the notations

A52
4J128J2

dMS
2

, B52
16J2

dMS
4

. ~20!

At Ha50, Eqs.~8! and ~9! for the static magnetization
and Eqs.~18! and ~19! for the FMR frequency are identica
to the corresponding expressions in Ref. 9, whereas aH
50 they coincide with the formulas in Ref. 20. Note on
again that the resulting formulas apply to the fields high
than HC , when we have a two-sublattice ordering of ma
netic moments aligned symmetrically with respect to the
ternal magnetic field.

5. DISCUSSION OF RESULTS

5.1. Comparison to analytic calculations

Our calculations were fitted to experimental data in t
following way. Magnetization curves measured by
vibrating-sample magnetometer under a magnetic fi
aligned with the hard axis in the sample plane were appro
mated by Eqs.~8! and ~9!. The resulting constantsJ1 , J2 ,
and MS were used in calculations of FMR spectra. The p
rametersHa andKeff were selected to obtain the best fits
the resonance acoustic branch measured along the eas
hard magnetization axes. This procedure was performed
all samples. Figure 1 shows, along with the experimen
data, calculated magnetization curves for three sam
~solid lines!. The agreement between theoretical and exp
mental curves is quite satisfactory. The absence of a vis
cusp on experimental curves ofM (H), which can be seen on
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FIG. 4. FMR spectra of the@Fe~48 Å!/Cr~7.6 Å)]16

sample polarized along the~a! easy and~b! hard mag-
netic axes. The points are experimental data, and s
lines are calculations by Eqs.~21! and ~22! with the
following parameters:J1520.58 erg/cm2; J2520.50
erg/cm2; MS51590 G;Keff512; Ha5300 Oe.
n
th

a

ld

in
m

on

-
a

di

In
b
h
A
e

ar
f t
io

ta
th

ch
ur
s
o

w
in
ld
rd

n
e
ld

tio

c
th

nt
ould
s of
g. 4
ite-
th
ntial
has
ata,
nant

tal
ent
m-
em

ers
eri-
-
ap-
el
se of
ting

ap-
e-

tail

rve
m-
d
e
in
eti-
at
the
of
he
no-
the calculated curves atHS , can be ascribed to variations i
the iron and chromium layer thicknesses, which can blur
feature.

Calculations of the FMR spectrum of one sample fe
tured in Fig. 1~@Fe~48 Å!/Cr~7.6 Å)]16) based on Eqs.~18!
and ~19! for two alignments of the applied magnetic fie
~with the easy and hard magnetization axes! are plotted in
Fig. 4 by solid lines. As was stated above, in calculat
these spectra we used the same parameters as for the
netization curve in Fig. 1. The set ofq’s that we employed in
plotting the set of curves in the graphs requires clarificati
For a traveling wave in an infinite superlattice,q varies con-
tinuously between2p andp, but in a finite structure mag
netization modes are characterized by a set of discrete w
vectors. The graphs plot magnetization modes correspon
to q’s ranging between 0 andp with a step ofp/(N21),
whereN is the number of iron layers in the superlattice.
this case, the number of FMR modes is equal to the num
of magnetic layers in the sample, which is identical to t
number of inherent oscillation modes of the structure.
numerical calculations will show, there is little sense in d
fining q with good accuracy on the basis of model bound
conditions on the outer surfaces because the condition o
two-sublattice magnetic ordering in a finite structure is v
lated in a magnetic field.

In comparing the theoretical curves with experimen
FMR spectra, we note above all that in all the samples
numbers of experimentally observed resonance bran
were smaller than the numbers of iron layers in the struct
It is not surprising, however, that we failed to detect all po
sible magnetic modes because all the modes except the
tical and acoustic ones can be excited in principle only o
ing to the finite number of iron layers or slight variations
their thicknesses, whereas a homogenous microwave fie
both the longitudinal and transverse configurations is ha
an efficient tool for driving these modes.

The agreement between calculations and experime
data~points on the graphs! for the acoustic resonance mod
is good for both orientations of the external magnetic fie
For the optical mode~black squares! the difference between
the experimental data for some samples~but not all of them!
and theoretical predictions was larger than the absorp
line width, shown in the graph by the horizontal bars~Fig.
4!. The comparison between the experimental data and
culations for several intermediate modes higher than
is
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acoustic one~triangles in the graph! is difficult because their
correspondingq’s are unknown. The criterion of agreeme
between measurements and calculations in this case sh
be the equality between the slopes of experimental curve
f (H) and nearest theoretical curves. One can see in Fi
that the experimental data reasonably conform to this cr
rion in the cases of magnetic field orientation along bo
easy and hard axes, although the difference was substa
for some of the samples. Thus, the suggested theory
demonstrated qualitative agreement with experimental d
although sometimes it cannot accurately describe reso
features of our samples.

5.2. Numerical calculations. Comparison with experiment

In order to fit the suggested model to real experimen
data, we numerically calculated the spectrum of inher
magnetic modes of a superlattice incorporating a finite nu
ber of iron layers. The magnetic component of the syst
energy was expressed, as in analytic calculations, by Eq.~2!,
where the sums were performed over the finite set of lay
in a real sample. Then this energy was minimized num
cally by varying all anglesw j between the magnetic mo
ments of the layers and applied magnetic field. This
proach is quite different from the two-sublattice mod
discussed above. The absence of one neighbor in the ca
the highest and lowest iron layers leads to larger can
angles between the magnetizations of these layers and
plied field. As a result, the two-sublattice ordering is r
placed by a more complicated pattern.

Let us discuss numerical calculations in greater de
taking as an example the@Fe~48 Å!/Cr~7.6 Å)]16 sample
considered in the previous section. The magnetization cu
of this sample calculated with due account of the real nu
ber of iron layers (n516) is shown in Fig. 1 by the dashe
line. Its deviation from the curve obtained in the limit of th
infinite superlattice is insignificant, and it is notable only
the field range below 3 kOe. At the same time, the magn
zation pattern in this case is radically different from th
predicted by the two-sublattice model. Figure 5 shows
equilibrium anglesw j between the magnetization vector
the j th iron layer and external magnetic field aligned with t
hard magnetization axis. It is clear that these angles are
tably different for the outer layers~in this specific case, the
first and sixteenth!. The anglesw j for the inner layers also
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vary considerably. Nonetheless, the alignment of all m
netic moments to the ferromagnetic phase takes place si
taneously, and the cusp on the magnetization curve atHS

persists. Under sufficiently strong fields, the calculatio
were not affected by either the field direction or the sam
history, whereas at weaker magnetic fields~depending on the
parametersJ1 , J2 , andHa) hysteresis loops were observe
Note, however, that all absorption lines recorded in our
periments had positions in the field range where the calc
tions were unambiguous, so the doubts concerning
sample history were irrelevant.

The curves in Fig. 6 plot numerical calculations of t
FMR spectrum of the sample under consideration,@Fe~48
Å!/Cr~7.6 Å)]16. The constantsJ1 , J2 , and MS for these
calculations were derived from the magnetization cur
Note above all the similarity of these curves to the analy
calculations plotted in Fig. 4. There are, however, nota
differences between them. First, the dropping section of
curve of the optical mode~the lowest curve in the field rang
of 4 to 8 kOe! becomes doubly degenerate and separate f
the higher resonance lines. Second, the intermediate r
nance modes between the acoustic and optical FMR mo
are also deformed in comparison with the case of an infi
superlattice, but now their positions are determined uniqu
without any independent variables likeq. The analysis of
their configurations shows that the total sample magnet
tion oscillates not only in the optical and acoustic modes,

FIG. 5. Calculated equilibrium values of anglesw j between magnetization
vector in j th iron layer and magnetic field direction for the@Fe~48 Å!/Cr~7.6
Å)] 16 sample. The numbers near some of the curves indicate the l
number. The external magnetic field is applied along the hard magnetiz
axis.
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also in all other FMR modes, which allows us to drive the
intermediate modes by a uniform microwave field.

The agreement between the numerical calculations
experimental data for the sample under discussion is be
because the lowest FMR mode obtained in this calcula
and separated from the rest is closer to the ‘‘optical’’ res
nance mode in the range of strong magnetic fields. None
less, we have to admit that the calculated curves still nota
deviate from the experimental points, especially in the ran
of higher magnetic fields. Moreover, although the calcu
tions are not affected by any uncertainty associated with
variableq, difficulties may arise in ascribing resonant line
detected in experiments to specific modes obtained by
merical calculations.

The analysis of the results concerning the set of sam
under investigation has led us to a conclusion that, using
same constants in the energy expression, it is sometimes
possible to obtain a satisfactory description of the magn
zation curves and FMR spectra simultaneously. So the q
tion arises of how good the description of experimen
spectra may be if we vary the constants to obtain the bes
to the recorded spectra and how great the discrepancy
tween the measured and calculated magnetization curves
be in this case. Such a comparison for the@Fe~21 Å!/
Cr~10 Å)]12 sample, in which the discrepancy between t
experimental spectrum and the spectrum calculated using
parameters derived from the magnetization curve was m
mal, will be given below.

The full circles in Fig. 7 show measurements of th
sample’s magnetization, the solid line is a calculated cu
which is best fitted to the magnetization measurements,
the dashed line is a calculated curve whose parameters
derived from the FMR spectrum~the function plotted by
triangles will be discussed below!. The spectra correspond
ing to these calculations of magnetization are shown, al
with experimental data, in Fig. 8.

The sample@Fe~21 Å!/Cr~10 Å)]12 is the only one in
which we detected more than one resonance line in the
gion of stronger magnetic fields~on the right of the acoustic
branch!. It is clear that at parameters derived from the e
perimental magnetization curves~see the caption to Fig. 8!
these dropping resonance branches are lower than the c
lated curves~Fig. 8a1 and 8b1!. The agreement between th
experimental data and calculations, however, can be alm

er
on
e

al
-

FIG. 6. FMR spectra in magnetic fields aligned with th
~a! hard and~b! easy magnetization axes in the@Fe~48
Å!/Cr~7.6 Å)]16 sample. The points are experiment
data, the solid lines show calculations with the follow
ing parameters: J1520.67 erg/cm2; J2520.47
erg/cm2; MS51590 G;Keff512; Ha5300 Oe.
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ideal for all resonance modes observed in experiment
both field orientations if we vary parametersJ1 and J2 to
obtain the best fit~Fig. 8a2 and 8b2!. The magnetization
curve ~Fig. 7! calculated at these values of parameters
within 10% from the experimental points, which, however,
larger than the experimental uncertainty. Note that the dif
ence betweenJ1 an J2 derived from the magnetizatio
curves and independently from FMR spectra was within 1
20% in our samples.

At this point it is probably appropriate to compare t
absolute values of constantsJ1 and J2 obtained in our ex-
periments with the results by other authors. The bilinear
change constants for our samples are around the peakJ1

plotted versus the spacer thickness, and our data are in f

FIG. 7. Magnetization of the@Fe~21 Å!/Cr~10 Å)]12 sample versus mag
netic field. The full circles plot experimental data, the solid line sho
numerical calculations by the biquadratic exchange model with param
derived from the magnetization curve, the dashed line shows similar ca
lations with parameters selected to obtain the best fit to the experim
spectrum~Fig. 8!. The triangles represent the results of calculations ba
on Słonczewski’s model.
at

s

r-

–

-

rly

good agreement with earlier publications.2,4,7 This also ap-
plies to our measurements ofJ2 ~Refs. 2 and 4!, although the
spread of biquadratic exchange constants quoted in litera
for the same thicknesses of the chromium spacer is not
larger.7

5.3. Comparison with Słonczewski’s model

As was noted in Introduction, the model of ‘‘proximit
magnetism’’ suggested by Słonczewski16 to account for the
noncollinear magnetic structure in superlattices of Cr a
Mn layers yields an energy of interaction between neighb
ing iron layers different from the biquadratic exchange:

E5C1~u!1C2~u2p!2. ~21!

Hereu is the angle between magnetization vectors in nei
boring ferromagnetic layers,C1 andC2 are phenomenologi-
cal constants. The open triangles in Fig. 7 show the mag
tization curve calculated for the@Fe~21 Å!/Cr~10 Å)]12

sample by Słonczewski’s model. The constantsC1 andC2

were selected to obtain the best fit of calculations to exp
mental data. The graph clearly shows that the agreem
with the curve predicted by Słonczewski’s model is poo
than with the biquadratic exchange calculations.

Chirita et al.21 calculated a spectrum of spin waves for
sandwich by the ‘‘proximity magnetism’’ model. The resul
ing frequency as a function of magnetic field for the optic
mode is radically different from our measurements off (H)
in the range of strong magnetic fields. Thus, it is obvio
that, at least at room temperature, the measurements o
samples are much better described by the biquadratic
change model than by Słonczewski’s ‘‘proximity magn
tism’’ model.

rs
u-
tal
d

la-
de-

e

FIG. 8. FMR spectra in the field aligned with the~a1,
a2! hard and~b1, b2! easy magnetization axis in the
@Fe~21 Å!/Cr~10 Å)]12 sample. The points plot ex-
perimental data, the solid lines are numerical calcu
tions. The parameters for graphs a1 and b1 were
rived from the magnetization curve (J1520.42
erg/cm2; J2520.24 erg/cm2; MS51620 G; Keff

511; Ha5300 Oe!. The parameters for graphs a2
and b2 were selected to obtain the best fit to th
experimental spectrum (J1520.38 erg/cm2;
J2520.19 erg/cm2; MS51620 G; Keff511; Ha

5300 Oe!.
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6. CONCLUSIONS

Let us briefly summarize the reported investigation.
In a set of@Fe/Cr#n superlattices with noncollinear mag

netic ordering at room temperature, we measured magne
tion curves and ferromagnetic resonance spectra und
magnetic field parallel to the sample surface. Along with
homogeneous mode~acoustic branch! in FMR spectra, we
detected inhomogeneous resonance modes in our ex
ments.

On the basis of the biquadratic exchange model, we
culated magnetization curves and spin-wave spectra o
infinite superlattice with due account of the fourth-ord
magnetic anisotropy. It turned out that, in the configuratio
with the magnetic field aligned with the easy or hard ma
netization axis, a two-sublattice ordering of iron magne
moments symmetrical with respect to the applied magn
field is stable over a wide range of magnetic fields. In t
case, we obtained analytic expressions for the magnetiza
versus field and oscillation spectra in the system, which
in good agreement with experimental data.

Magnetization curves and oscillation spectra in super
tices incorporating finite numbers of iron layers, as in r
samples, have been calculated numerically. These calc
tions have yielded theoretical curves which are in be
agreement with experimental results.

In most cases, constantsJ1 andJ2 derived from experi-
mental magnetization curves also accurately describe r
nant properties of superlattices. The difference between
change constants derived from magnetization curves
independently from FMR spectra of the same sample
within 10–20%.

Magnetization curves calculated on the basis of the
quadratic exchange model are in better agreement with m
surements of our samples than those based on Słonczew
‘‘proximity magnetism’’ model.16

In conclusion, we stress that the model used in the
ported study is oversimplified. For example, it ignores
fact that the iron–chromium interface is not infinitely thi
but a region of an alloy with a thickness of several atom
layers.22,23 The model treating iron magnetization in ea
layer as a single vector rotated as a whole is also v
approximate.2 Nonetheless, this model yields a fairly acc
rate description of the basic static and resonant propertie
a-
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@Fe/Cr#n magnetic superlattices and is in reasonable ag
ment with experimental data.
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Electronic spectrum of a two-dimensional Fibonacci lattice
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The electronic spectrum and wave functions of a new quasicrystal structure—a two-dimensional
Fibonacci lattice—are investigated in the tight-binding approximation using the method of
the level statistics. This is a self-similar structure consisting of three elementary structural units.
The ‘‘central’’ and ‘‘nodal’’ decoration of this structure are examined. It is shown that the
electronic energy spectrum of a two-dimensional Fibonacci lattice contains a singular part, but in
contrast to a one-dimensional Fibonacci lattice the spectrum does not contain a hierarchical
gap structure. The measure of allowed states~Lebesgue measure! of the spectrum is different from
zero, and for ‘‘central’’ decoration it is close to 1. The character of the localization of the
wave functions is investigated, and it is found that the wave functions are ‘‘critical.’’ ©1999
American Institute of Physics.@S1063-7761~99!02411-7#
er
co
e
th

e
a
u
e

o-
h
o
el
on

F

t

d
el
fo

ra
ip
ns
in
e
. 2
ic
o

ur
in

n
a

the
, a

est
ree-
il-
fea-
the
a-

y
e
s of
be

sys-
n
n

r

ing

the

ns
.

ated

h-
1. INTRODUCTION

The electronic spectrum of a two-dimensional quasip
odic structure has been studied for a Penrose lattice
structed from two structural units.1 It has been shown that th
density of states is strongly singular, but the measure of
allowed states of the spectrum~Lebesgue measure! is differ-
ent from zero. At the same time, just as for a on
dimensional quasicrystal structure, the wave functions
critical, i.e., they are neither localized nor delocalized, b
rather they decay according to a power law. Besides the P
rose lattice, it is of interest to investigate other tw
dimensional structural quasicrystalline formations. In t
present paper, the object of investigation is a tw
dimensional quasiperiodic Fibonnaci sequence. The mod
constructed as follows. Plotting a Fibonnaci sequence al
the axes of a Cartesian coordinate system, we obtain a
bonnaci lattice consisting of three structural units~Fig. 1!.
The areas of the three elementary structural units are in
ratio 1,t, andt25t11, wheret5(11A5)/2 is the ‘‘golden
section.’’ Just like a one-dimensional Fibonnaci lattice an
Penrose lattice, the two-dimensional Fibonnaci lattice is s
similar. Such a structure can be obtained in practice by,
example, lithography.

At present there does not exist a sufficiently gene
method for investigating the electronic properties of quas
eriodic structures. Since quasicrystals do not possess tra
tional symmetry, the conventional methods for calculat
the band structure of solids on the basis of Bloch’s theor
are not directly applicable. For this reason, just as in Ref
rational approximants of a two-dimensional Fibonnaci latt
were chosen as the object of investigation. The tw
dimensional Fibonnaci lattice was treated as the struct
limit of a sequence of rational approximants with increas
period.

2. ELECTRONIC SPECTRUM

The electronic properties of a two-dimensional Fibo
naci lattice were investigated in the tight-binding approxim
9951063-7761/99/89(11)/5/$15.00
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tion by the method of the statistics of levels. To reduce
number of free parameters in the problem to a minimum
Hamiltonian with constant transfer integrals for near
neighbors was used. As the results for one-, two-, and th
dimensional quasicrystals show, this form of the Ham
tonian makes it possible to reproduce the characteristic
tures of a quasicrystal object and to examine qualitatively
effect of quasiperiodicity on the electronic structure of a qu
sicrystal with the corresponding dimension.1–6 In this work,
‘‘central’’ and ‘‘nodal’’ decoration of the approximants b
atoms of the same kind were examined: atoms with ons
orbital per atom are located at the centers or at the node
the cells. For this case the Hamiltonian of the system can
written in the form

H5(
j

u j &« j^ j u1 (
j , j Þ i

u i &t i j ^ j u.

When atoms of only one component are present in the
tem, the diagonal elements« j can be set equal to zero. The
the Schro¨dinger equation in the tight-binding approximatio
can be written in the form

(
j

t i j c j5Ec i , ~1!

where the transfer integrals are proportional tor 22 ~r is the
distance between the atoms! only for nearest neighbors—fo
atoms separated by a distance not exceedingt ~taking ac-
count of the next neighbors does not introduce anyth
qualitatively new and complicates the calculation!. To ana-
lyze the electronic properties of the object under study,
Hamiltonian matrix of Eq.~1! was diagonalized numerically
for different approximants with periodic boundary conditio
and the distribution of the energy levels was investigated

The smoothness of the energy spectrum was investig
by the method of level statistics~LS method!.1,5,6 Here there
are two key relations: The first one is the fraction of neig
boring interlevel spacingsDE<BNb
© 1999 American Institute of Physics
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D~b!5
1

N21 (
j 51

N21

uS b2 logNS « j 112« j

B D D , ~2!

whereN is the number of atoms in the basis of the appro
imant,B5«N2«1 is the total width of the band, andu is the
Heaviside theta function. The second one is the fraction
the zone filled by interlevel spacingsDE<BNb

F~b!5
1

B (
j 51

N21

~« j 112« j !uS b2 logNS « j 112« j

B D D . ~3!

If B5const, then irrespective of the degree of smoothnes
the spectrum, in the thermodynamic limit, these functio
should satisfy the conditions1,5,6

D~b!51 for b.21 and F~b!50 for b,21.

For crystal and amorphous systems~with smooth spectra! the
curves D(b) and F(b) in the thermodynamic limit jump
from 0 to 1 atb521.1,5,6 For this reason, the energy spe
trum is considered to be irregular or singular if in the th
modynamic limit the dependence of the interlevel spaci
on the size of the system is different from the 1/N law.

The localization behavior of the wave functions of
two-dimensional Fibonnaci lattice was studied by the meth
of the statistics of 2p-norms of the wave functions.1,5 The
2p-norm is defined as

ici2p[
(

n
ucnu2p

~(
n
ucnu2!p , ~4!

wherecn are the amplitudes of the electronic wave functi
~expansion coefficients of the wave function in a tigh
binding basis!.

Treating the two-dimensional Fibonnaci lattice as t
structural limit of a series of approximants with increasi
period, the thermodynamic limit in the behavior of th
curves describing the statistics of the distribution
2p-norms of the eigenvectors of the Hamiltonian of Eq.~1!
can be found. Statistical analysis of the distribution of t
2p-norms of the wave functions was performed by calcu
ing I 2p(g),1,5 describing the fraction of states for which th
2p-norms satisfyici2p<Ng, i.e.,

FIG. 1. Fragment of a two-dimensional Fibonacci lattice consisting of s
S and longL segments,L/S5t, wheret5(11A5)/2 is the ‘‘golden sec-
tion.’’
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I 2p~g![
1

N (
n51

N

u~g2 logNic (n)i2p!. ~5!

The classification of the wave functions was construc
using the normalization integral.1 The wave functions are
considered to be delocalized if

E
ur u,R

uc~r !u2dr;Rd,

where d is the dimension of the space, and localized if
normalization

È uc~r !u2dr ;

exists. The wave functions that cannot be normalized in
infinite system but are not delocalized are considered to
‘‘critical.’’

3. RESULTS

Four approximants of a two-dimensional Fibonnaci l
tice were investigated in this work: 5/3, 8/5, 13/8, and 21/
For nodal decoration the unit cells of these approxima
contain 64, 169, 441, and 1156 atoms, respectively, in
basis. For central decoration the unit cells of the appro
mants contain 49, 144, 400, and 1089 atoms, respectivel
the basis. Figure 2 shows plots of the integrated density
states, calculated for values of the energy levels at
k-points for the 8/5, 13/8, and 21/13 approximants of t
Fibonnaci lattice.

It is evident in Fig. 2 that the curves of the integrat
density of states converge quite rapidly and do not show
presence of a hierarchical gap structure, characteristic f
Cantor set of the spectrum of a one-dimensional quasicry
The quantitiesD(b) and F(b) were calculated for the 8/5
13/8, and 21/13 approximants. The calculations show
the D(b) curves for these three approximants almost c
verge to the thermodynamic limit in the regionb,21. This
means that in the limitN→` all interlevel spacings are les
than in conventional systems~for crystal and amorphous sys
tems, in the thermodynamic limit the dependence of
magnitudes of these spacings on the size of the syste
determined by the relationDE;1/N1!. A calculation of a
dependenceF(b) for the approximants mentioned above
the regionb.21 shows that a finite fraction of the zone
filled by larger spacings than in conventional systems. Th
the results obtained show that in the limitN→` the energy
spectrum of the Fibonnaci lattice contains a singular par

The density of states for the approximants 8/5, 13/8, a
21/13 was calculated by the method of triangles using a
k-point irreducible part of the Brillouin zone of the corre
sponding approximant. Curves of the electronic density
states are shown in Figs. 3 and 4. As follows from Fig. 4,
nodal decoration the form of the spectrum depends on
‘‘parity’’ of the approximant, which attests to the existenc
of a topological feature of the two-dimensional Fibonac
lattice. The curves of the electronic density of states beco
less smooth and more ‘‘peaked’’ as the order of the appr
imant increases. This confirms the conclusion that the ene

rt
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FIG. 2. Integral density of states for pe
riodic approximants 8/5, 13/8, and 21/1
of a two-dimensional Fibonacci lattice
with central decoration~a! and nodal
decoration~b!.
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the
spectrum of the structure under study contains a sing
part, since otherwise the electron density of states wo
converge to a smooth curve. The smoothness of the spec
depends on the energy range: The energy spectrum
smoother at low energies and strong oscillations are pre
mainly at high energies. However, as the order of the app
imant increases, the length of the smooth section of the
ergy spectrum decreases. For this reason, it can be ass
that in the thermodynamic limit~quasicrystal! strong oscilla-
tions of the density of states, which reflect the presence
singular part in the spectrum, are present in the entire en
range of the electronic spectrum, attesting to the fact that
ar
ld
um
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nt

x-
n-
ed

a
gy
e

energy bands are flat, almost dispersion-free, with zero e
tron group velocity.

The calculation of the electronic density of states mad
possible to determine the Lebesgue measure of the en
spectra of the corresponding approximants. The Lebes
measure of the energy spectrum was calculated as the
length of the allowed sections of the spectrum. The ene
spectra, orthonormalized to the Lebesgue measureB5«N

2«1 , of the approximants 5/3, 8/5, 13/8, and 21/13 were 1
0.94, 0.98, and 1.0 for central decoration and 0.70, 1.0, 0
and 0.99 for nodal decoration. Therefore the measure of
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allowed sections of the spectrum is finite and close to 1
central decoration.

For central decoration the dependence of the Lebes
measure of the energy spectrum on the order of the app
imant for a two-dimensional Fibonacci lattice is weak,

FIG. 3. Density of states for the periodic approximants 13/8 and 21/13
two-dimensional Fibonacci lattice with central decoration.

FIG. 4. Density of states for even periodic approximants 5/3 and 13/8~a!
and odd periodic approximants 8/5 and 21/13~b! of a two-dimensional
Fibonacci lattice with nodal decoration.
r

ue
x-

contrast to the one-dimensional quasicrystal, where the
besgue measure decreases as a power law as a function
size of the system. The small difference in the Lebesg
measures of the energy spectra for the last two compu
approximants shows that the energy spectrum of a t
dimensional Fibonacci lattice occupies a region of fin
width on the energy scale. Moreover, values of the norm
ized Lebesgue measures of the energy spectra that are
to 1 indicate that there are no large gaps in the spectrum
Fibonnaci lattice with central decoration.

For nodal decoration a strong dependence on the pa
of the approximant is observed. For odd approximants
Lebesgue measure, just as for central decoration, is clos
1. For even approximants the Lebesque measure is clos
0.7, which shows that a substantial gap is present in
spectrum. The results obtained are different from the L
esque measures of the approximants of a Penrose lattice
latter are approximately 0.62.1 Accordingly, differences
should be expected in the conducting properties of these
structures.

The quantitiesI 8(g) were calculated for the three ap
proximants 8/5, 13/8, and 21/13 of the Fibonnaci lattice. T
calculations show that in the thermodynamic limit the curv
I 8(g) converge in a small regiong'22.2 for central deco-
ration andg'22.3 for nodal decoration. Moreover, as th
numbers of the approximant increase, the curvesI 8(g) ap-
proach a step function with the step located nearg'22.3.
This means that in the thermodynamic limit (N→`) the
2p-norms (p54) of almost all wave functions of the Fi
bonacci lattice depend on the size of the system asicig

'Ng, whereg'22.3.
In the case of a delocalized state the 2p-norm of the

wave function, as follows from Eq.~4!, depends on the size
of the system asici2p

ext'N12p, and the exponentially local
ized wave functions are characterized by the 2p-norm
ici2p

exp loc'1. The dependence found for the 2p-norms (p
54) of the wave functions of a Fibonacci lattice on the s
of the system rules out delocalization and exponential loc
ization of the states. Nonetheless, it is known that the dep
dence of the 2p-norm of the wave function on the size of th
system asNg(p,a) holds for wave functions whose square
moduli of the amplitude decrease as a power law1,5

(a>0—localization exponent, where the casesa50 and
a→` must be referred, respectively, to a delocalized st
and to an exponential-localization state!. For this reason, it
was assumed that

ucu2;ur u22a. ~6!

The dependenceg(p,a)up54 with 23<g<21.7 was calcu-
lated for sufficiently large quasiperiodic fragments on t
basis of the computed 2p-norm of the wave function~6!. The
results were obtained numerically for the 34/21 approxim
of a Fibonacci lattice — before convergence to the therm
dynamic limit. The calculations performed showed th
g'22.3 corresponds to a localization exponenta'0.48
anda'0.44, respectively, for central and nodal decoratio
According to the classification with respect to the normaliz
tion integral, wave functions exhibiting such behavior a

a
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critical, since the normalization of the functions withucu2

;ur u22a, a.0, in the two-dimensional case can be pe
formed only fora.1.

In summary, for central decoration the energy spectr
does not contain large gaps, and the quasiperiodicity of
structure leads to strong oscillations in the entire ene
range. Most wave functions of a two-dimensional Fibona
lattice are critical and squared moduli of the amplitudes a
function of distance decrease according to a power law.
localization exponenta is 0.48~central decoration! and 0.44
~nodal decoration!, and it is the same in order of magnitud
as the localization exponenta'0.5, obtained in Ref. 1 for a
Penrose lattice. The energy spectrum of a Penrose la
contains a singular part; the spectrum is smoother at
energies and strongly oscillatory at high energies. As
order of the approximant increases, the spectrum beco
more ‘‘peaked.’’1 This agrees well with the results of th
present work, which allows us to conclude that the proper
of the electronic spectrum of various quasiperiodic tw
dimensional structures, such as the Penrose lattice and
two-dimensional Fibonacci lattice, are general, although
conducting properties can be different.

4. CONCLUSIONS

The results of our investigation show that the electro
spectrum of a two-dimensional Fibonacci lattice posses
the same characteristic features as the spectrum of a Pe
lattice. The spectrum contains a singular part, but it is
self-similar. Most wave functions are ‘‘critical,’’ i.e., the
-
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are neither localized nor delocalized, but instead decay w
increasing distance according to a power law. The meas
of the allowed sections of the spectrum, in contrast to
one-dimensional structure, is finite. It is evident that the g
eral properties of the spectra of different two-dimensio
quasiperiodic structures should be similar. The spectrum
the structure studied differs from that of a Penrose latt
exist only with respect to the localization exponents of t
wave functions and the measure of the allowed spacings.
wave functions of a two-dimensional Fibonacci lattice a
less localized, and the meaure of the allowed spacings w
central decoration is close to 1. The latter indicates tha
could be possible to observe Ohm’s law experimentally.
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