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Abstract—The free charge steady-state distribution over the insulator surface that arises in a strong electric
field in a vacuum can be found by solving the boundary-value problem for the electrostatic field strength if the
angle between the field vector and vacuum–insulator interface is given. A general solution to this boundary-
value problem is derived for the case of an in-plane field and rectilinear interfaces. Laws of charge and field
formation that follow from the solution obtained are considered. Formulas for the electric field strength and
charge density in terms of elementary functions are obtained for a number of particular cases. Power-type
expressions for the electric field and a critical angle between the electrode and insulator surface that describe
the field behavior and charge distribution near the vacuum–insulator–electrode contact are derived. © 2005 Ple-
iades Publishing, Inc.
INTRODUCTION

A free electric charge arises on the surface of an
insulator placed in a strong longitudinal field in a vac-
uum. This phenomenon is one of those governing the
dielectric strength over the surface of vacuum insula-
tion [1, 2]. Taking into account field distortions due to
this charge is necessary both for designing vacuum
equipment and for due interpretation of experimental
data [3–5]. The emergence of the free charge is related
to secondary-emission-induced processes on the insu-
lator surface that occur as secondary electron ava-
lanches travel over it. The avalanches are generated
near the contact of the insulator surface with the nega-
tive electrode when a critical field strength is attained in
this region. Moving along the insulator in a longitudinal
electric field, the electrons interact with the insulator
surface, forming a positive free charge on it. The elec-
tric field of this surface charge influences the electron
paths and the energy of electron–surface interaction,
thereby modifying the charge distribution. The charge
distribution is stabilized if the average energy of elec-
tron interaction with the surface becomes equal to the
lower of two possible energy values (W1) at which the
coefficient of secondary emission from the insulator
surface equals unity. The condition for charge stability
was obtained from analysis of the path of an averaged
electron with regard to the cosine distribution of the
angle at which secondary electrons escape from the
insulator surface [6]. This condition can be recast for
the electric field components on the surface in the form

(1)
En/Eτ M const,= =

M 2W0/ W1 W0–( ) πβσ( ),tan= =
1063-7842/05/5006- $26.00 0673
where En and Eτ are the normal and tangential compo-
nents of the electric field vector on the insulator surface,
M is a constant the absolute value of which depends on
the secondary emission properties of the insulator sur-
face, W0 is the energy with which the electrons leave the
surface, and βσ is the smallest angle between the field
vector and the surface (expressed as fractions of π)
(Fig. 1).

According to this condition, the free charge is so
distributed over the insulator surface that the ratio
between the field normal and tangential components
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Fig. 1. Model scheme used in the calculation of the in-plane
field for the case when condition (1) of charge stability is
fulfilled on the insulator–insulator interface.
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remains constant throughout the surface; i.e., the tilting
angle of the field vector is specified.

Stability condition (1) can be applied for calculating
the electric field in the system and the steady-state dis-
tribution of the charge over the insulator surface. The
arising problem of calculating the electrostatic field at
a preset tilting angle of the field vector differs from
standard boundary-value electrophysical problems of
first, second, and third kind, and its solution requires
another approach.

In this work, the author derives an analytical solu-
tion to the problem stated for in-plane electric field E =
exEx + eyEy and rectilinear interfaces between the insu-
lators and electrodes (Fig. 1). Two insulating media
(one of them is a vacuum) occupy the interelectrode
space so that the insulator—insulator interface of
length L divides the space into regions Ω1 and Ω2. Con-
stant voltage U applied to the electrodes produces an
electric field parallel to the insulator–insulator interface
with average strength E0 = U/L in the electrode gap. We
assume that condition (1) is fulfilled on the side of
region Ω2 (vacuum). First, we consider a solution to the
problem for the case of a known charge distribution
over the insulator—insulator interface (hereafter inter-
face), which is then used in analysis of a solution to the
basic problem (where the distribution is unknown).

1. CHARGE DISTRIBUTION 
OVER THE INSULATOR SURFACE IS KNOWN

When the charge distribution over the insulator sur-
face (hereafter surface) is known, calculation of the
electric field reduces to the solution of the electrostatic
equations

subject to the standard matching conditions at the inter-
face between like media, which take into account the
presence of a free charge with known density σ,

(1)

Here, Ekn and Ekτ (k = 1, 2) are the normal and tangential
components of the electrostatic field vector in region Ωk

and εk is the permittivity of the medium in region Ωk.

The electrostatic equations enable introduction of a
piecewise analytical function of complex field strength
Ek(z) = Ekx – iEky (k = 1, 2) in complex plane z = x + iy.
Functions E2 and E1 are analytical in the upper and
lower regions, respectively. After the function intro-
duced has been mapped into the canonical domain, the
boundary-value problem is stated a solution to which
can be obtained using the methods of the theory of ana-
lytical functions [7]. For electrodes of an arbitrary
shape (not necessarily linear) but symmetric about the
interface, a solution to the field equation subject to the

curlE 0, div εE( ) 0= =

ε2E2n ε1E1n– σ, E1τ E2τ .= =
boundary conditions will have the form

(2)

Here, function f(z) conformally maps upper region Ω2,
where the field is sought, onto the upper half of com-
plex plane ζ = ξ + iη in such a way that the point z = 0
turn into the point ζ = –1 and the point z = L turns into
the point ζ = +1 and f '(z) is the derivative of mapping
function f(z).

The first term in (2) is due to the free charge at the
interface, and the second one is the solution to the
homogeneous problem (σ(x) = 0) and is completely
defined by the geometry of the domain being consid-
ered.

For rectilinear interfaces between the regions
(Fig. 1), we have

(3)

where g(ζ) is the function mapping the upper half-plane
onto the domain considered (i.e., the function inverse to
f(z)); β0 and βL are the respective angles that the nega-
tive electrode (passing through point 0) and the positive
electrode (passing through point L) make with a
selected direction on the surface; and B(…) is the beta
function.

The field at the interface is given the Sokhotsky–
Plemel formulas [8, 9]. At the point (x0, y = 0) at the
interface (on the side of domain Ω2),

E2 z( ) f ' z( )–

π ε1 ε2+( ) 1 f 2 z( )–
--------------------------------------------------=

× σ x( ) 1 f 2 x( )–
f x( ) f z( )–

-------------------------------------- xd

0

L

∫ E0
L f ' z( )

π 1 f 2 z( )–
-----------------------------,–

E1 z( ) E2 z( ).=

Ek z( ) C 1–( )k 1+ 1 f z( )+( )
α1

ε1 ε2+( )L 1 f z( )–( )
α3

-----------------------------------------------------=

× 1 f 2 x( )– σ x( ) x( )d
f x( ) f z( )–

-------------------------------------------------

0

L

∫ E0C
1 f z( )+( )

α1

1 f z( )–( )
α3

-----------------------------,–

g ζ( ) L
πC
------- 1 ζ+( )

β0 1–
1 ζ–( )

βL–
ζ ,d

1–

ζ

∫=

C
2

β0 βL–

π
--------------B β0 1 βL–,( ),=

α1
1
2
--- β0, α3– 1

2
--- βL,–= =

E2 x0 0,( ) C–
ε1 ε2+( )L

------------------------
1 f x0( )+( )

α1

1 f x0( )–( )
α3

-------------------------------=
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(4)

The first two terms and the last one define, respec-
tively, the x and y components of the field at the surface.
Expression (4) shows that a free charge with density σ
at the flat interface between two insulators (at the
boundary between symmetric regions) generates a field
with normal component En = Ey = σ/(ε1 + ε2). The valid-
ity of this relationship was rigorously proven in [7] and
is easy to explain qualitatively: according to the sym-
metry of the problem being considered, the interface
coincides with the field line in the interelectrode space
when free charge σ is absent. The normal field compo-
nent at the interface can be generated only by an addi-
tionally introduced free charge distributed over the
interface, which relationship (4) indicates.

By exactly calculating the singular integral appear-
ing in the solution (the Cauchy integral along the
boundary (–1, 1) in the canonical domain), one can
obtain explicit expressions for the field strength. In the
case of the electrodes normal to the interface (β(z) =
β0 = βL = π/2), these expressions for a number of typical
charge distributions σ(x) (although they can simulate
virtually any distribution) are presented in [7].

2. CONDITION (1) OF CHARGE STABILITY 
ON THE SURFACE IS FULFILLED, 

BUT THE CHARGE CONFIGURATION 
IS UNKNOWN

The problem of finding the strength of an in-plane
electric field with the tilting angle of the field vector
known was solved by reducing it to the Riemann
boundary-value problem for a piecewise analytic func-
tion.

Considering the electric field strength in a domain
covering two insulators bounded by tilted electrodes
(Fig. 1) and assuming that condition (1) is fulfilled at
the interface on the side of Ω2, we get the following
boundary conditions:

(5)

Conditions (5) correspond to the Hilbert homoge-
neous boundary-value problem [8, 9] for analytic func-
tion E2(z) = E2x – iE2y in Ω2. In the theory of analytical
functions, such a problem is also referred to as the
boundary-value problem of directional derivative.

× 1 f 2 x( )– σ x( ) x( )d
f x( ) f x0( )–

-------------------------------------------------

0

L

∫

– E0C
1 f x0( )+( )

α1

1 f x0( )–( )
α3

-------------------------------
iσ x0( )
ε1 ε2+( )

--------------------.–

E2y z( )
E2x z( )
--------------- M πβσ( ), z interface∈tan–= =

E2y z( ) πβ0( )E2x z( ),  z negative electrode∈cot–=

E2y z( ) πβL( )cot E2x z( ),  z positive electrode.∈–= 
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Having mapped the domain considered onto the
upper half-plane ζ = ξ + iη (by means of mapping func-
tion f(z) inverse to g(ζ)), we arrive at the following Hil-
bert problem for function F2(ζ) = F2ξ + iF2η = E2(g(ζ)):

(6)

Now we pass to the Riemann problem [8, 9] for
function F(ζ) that corresponds to Hilbert problem (6)
by analytically extending the function over the entire
plane by virtue of the principle of symmetry (the bar
above the function denotes the complex conjugate),

The Riemann problem is stated as

(7)

Here, F+(ξ) and F–(ξ) are the limiting values of F(ζ) as
it approaches the interface from left and right, respec-
tively (relative to the clockwise direction) and G(ξ) is
the coefficient in the boundary-value Riemann prob-
lem. Solution F(ζ) should be limited at infinity so that
F(ζ  ∞) ≠ 0 if β0 = βL and F(ζ  ∞) = 0 if β0 ≠ βL

(we assume that β0 ≥ βL).
The problem thus stated is the homogeneous bound-

ary-value Riemann problem with a discontinuous coef-
ficient and rectilinear infinite boundary coincident with
real axis 0ξ. We seek for a general solution by deter-
mining the canonical function (the index of the problem
is zero) [9]. The coefficients in a general solution are
found from the condition of boundedness of the solu-
tion at infinity and an integral relationship which a solu-
tion to the problem must meet,

or, in the canonical domain,

F2η MF2ξ ,  ξ 1, η<– 0= =

F2η πβ0( )F2ξ ,  cot ξ 1– , η< 0= =

F2η πβL( )F2ξ ,  cot ξ 1, η> 0.= = 





F ζ( )
F2 ζ( ) if Im ζ( ) 0>

F2 ζ( ) if Im ζ( ) 0.<



=

F+ ξ( ) G ξ( )F– ξ( ),=

G ξ( )

G1

πβ0( )tan i+
πβ0( )tan i–

------------------------------, ξ 1, η–< 0= =

G2
1 iM–
1 iM+
----------------

1 πβσ( )tan+
1 πβσ( )tan–
-------------------------------,= =

ξ 1,< η 0=

G3

πβL( )tan i+
πβL( )tan i–

------------------------------, ξ 1, η> 0.= =
 
 
 
 
 
 
 
 
 
 
 

=

Ex x( ) xd

0

L

∫ E0L–=

Fξ ζ( )g' ξ( ) ξd

1–

1

∫ E0L,–=
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where g'(ζ) is the derivative of mapping function g(ζ).
Eventually, the solution to Riemann problem (7) is

given by

where

The expression for the field strength in the plane of
variable z in domain Ω2, on which side stability condi-
tion (1) is fulfilled, has the form

where

This solution is also valid in the case of asymmetric
regions Ω1 and Ω2.

If the problem is symmetric about the interface, the
field strength in the adjacent region (Ω1) can also be

determined: E1(z) = . Note that, if the domains
are symmetric about the interface, the field component
normal to it (the y component) is generated by the sur-
face charge alone, Ey = σ/(ε1 + ε2). Then, comparing the
expression obtained for the field strength with (4), we
find the free charge density distribution over the surface
that meets stability condition (1),

(8)

F ζ( ) E0C 1–( )
βσ 1 ζ+( )

α12

1 ζ–( )
α32

----------------------,=

α12 α1 βσ, α32– α3 βσ.–= =

E2 z( ) E0C 1–( )
βσ 1 f z( )+( )

1
2
--- βσ– 

  β0–

1 f z( )–( )
1
2
--- βσ– 

  βL–
---------------------------------------------,=

1–( )
βσ πβσ( )cos i πβσ( )sin+

1 iM–

1 M2+
--------------------.= =

E2 z( )

σ x( ) E0C ε1 ε2+( ) πβσ( )sin=

× 1 f x( )+( )
1
2
--- βσ– 

  β0–

1 f x( )–( )
1
2
--- βσ– 

  βL–
----------------------------------------------.

Behavior of the field at characteristic points

Angular relation-
ships

Behavior of field

z = 0,
negative 
electrode

z = L,
positive 
electrode

z  ∞

1) β0 > βL ≥ βc  ∞ 0  0

2) β0 > βc > βL  ∞  ∞  0

3) βc ≥ β0 > βL 0  ∞  0

4) β = β0 = βL ≥ βc  ∞ 0 Limited and ≠ 0

5) β = β0 = βL < βc 0  ∞ Limited and ≠ 0
3. ANALYSIS OF THE EXPRESSIONS 
OBTAINED

From boundary conditions (5) to the boundary-
value problem and the solutions obtained, it follows
that the field strength near the surface, where stability
condition (1) is provided, does not depend on the per-
mittivity of both the vacuum (Ω2) and the insulator
(Ω1). The field strength depends on applied voltage U
(i.e., on average field strength E0 = U/L), the emissivity
of the surface, and the geometry of the system.

The electric field near the vacuum–insulator–elec-
trode contact may either have integrable singularities at
the points z = 0 and z = L or be limited at these points,
depending on the relationship between angle βσ and
tilting angles β0 and βL of the electrodes. The critical
value of the tilting angle of the electrodes at which the
behavior of the field at the points of contact changes is
βc = 1/2 – βσ (in fractions of π). This value corresponds
to the angle between the field vector at the interface and
the positive direction of the normal to the interface.

The table shows the field behavior according to the
relationship between tilting angles β0 and βL of the
electrodes and critical angle βc (the solution should be
limited at infinity).

The solutions obtained above make it possible to
grasp an idea of the field variation (asymptotes) near
the vacuum–insulator–electrode contact when the sur-
face charge is stable. The associated expressions in the
form of power-type dependences are the following.

Near the negative electrode (z  0),

where d is a small neighborhood of the contact (d = z/L)
and βe is the expansion angle of the electrode (βe = 2β0).
The field grows indefinitely, if β0 > βc = 1/2 – βσ (cases
(1), (2), and (4) in the table), or approaches zero, if β0 ≤
βc (cases (3) and (5)).

Near the positive electrode (z  L),

where d is a small neighborhood of the contact (d = 1 –
z/L) and βe is the expansion angle of the electrode (βe =
2(π – βL)). The field grows indefinitely, if βL < βc =
1/2 – βσ (cases (1) and (4)), or approaches zero, if βL ≥
βc (cases (2), (3), and (5)).

The constants in the asymptotic expressions are
defined by average field strength E0, as well as by
angles βσ, β0, and βL. The tilting angle of the electrode
at which the field strength is considered affects the
value of the constants to a greater extent than the angle
of the opposite electrode. If the opposite electrode rep-
resents a sharp edge (the expansion angle is zero),

const = 2E0(–1 /πβe. In this relationship, the expo-

E2 d( ) const d( )
βc

β0
----- 1–

 = const d( )
1 βc–

2 βe–
--------------–

2βσ
2 βe–
--------------– 

 

,=

E2 d( ) const d( )
1 βc–

1 βL–
-------------- 1–

 = const d( )
1 βc–

2 βe–
--------------–

2βσ
2 βe–
--------------+ 

 

,=

)
βσ
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nent is changed by 2βσ/(2 – βe) compared with a similar
power-type dependence of the field strength near the
contact in a system without a charge at the interface.

The above relationships suggest that, to prevent the
field near the triple contact between the vacuum, insu-
lator, and negative electrode from being increased when
the charge becomes steady, angle β0 between the elec-
trode and insulator surfaces must be smaller than its
critical value, β0 < βc = 1/2 – βσ (Fig. 2).

The surface charge density, unlike the field strength,
significantly depends on permittivity ε of the insulator.
An increase in ε or M (the quantity characterizing the
emissivity of the surface) raises the charge density. The
shape of the charge distribution is independent of the
voltage (average field strength E0) (Fig. 3).

It should be noted that the relationship between the
field strength and charge density on the surface, En =
σ/(ε1 + ε2), is valid only if the field is symmetric about
the interface. Unjustified attempts to extend this rela-
tionship for other types of symmetry (e.g., for axisym-
metric systems, intricate surface of the insulator, etc.)
to calculate the field or find the charge distribution will
yield incorrect results.

As follows from Fig. 3, the distributions of the
potential and charge density over the surface differ con-
siderably, which should be taken into account when the
charge distribution is found by probe measurements.

The behavior of the charge density near the inter-
face–electrode contact is similar to that of the field
strength.

Total charge Q on the surface that provides the ful-
fillment of condition (1) is obtained by integration of
(8) and varies in proportion to voltage U applied to the
electrode gap, and its density is proportional to average
field E0 along the interface.

Irrespective of the tilting angles of the electrodes,
we have

4. PARTICULAR CASES

From the formulas obtained above, one can derive
expressions for the field strength and charge density for
typical tilting angles in terms of elementary functions.

(i) β0 = βL = 1/2. The field strength has an integrable
singularity at the point z = 0 and is limited far from the
interface, E(z  ∞) = –E0. Thus, we have

Q U ε1 ε2+( ) πβσ( )tan UM ε1 ε2+( ),–= =

Qs
1
L
--- σ x( ) xd

0

L

∫ E0M ε1 ε2+( ).–= =

E2 z( ) E0 1–( )
βσ 1 πz/L( )cos+

1 πz/L( )cos–
---------------------------------- 

 
βσ

,–=
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(ii) βL = 0. At the point of contact z = L, the field
strength has an integrable singularity of order (1/2 – βσ)
and approaches zero far away from the interface,

σ x( )
E0 ε1 ε2+( )
-------------------------- πβσ( ) 1 πz/L( )cos+

1 πz/L( )cos–
---------------------------------- 

 
βσ

sin .=

E2 z( ) E0
1–( )

βσ

πβ0
---------------

z
L
--- 

 

1
2
--- βσ–

β0
--------------- 1–

1
z
L
--- 

 
1
β0
-----

–
 
 
 

1
2
--- βσ–

-------------------------------------,–=

0.8

0 0.2

σ/(E0(ε1 + ε2))

x/L
0.4 0.6 0.8 1.0

0.4

1.2
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2 3 4
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E
σ

β0
–
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1.0

0 0.2

E/E0

x/L
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Fig. 2. Distributions of field strength E and charge density
σ over the insulator–insulator interface, as well as the distri-
bution of field strength Ee over the surface of the negative
electrode at tilting angles β0 of this electrode equal to
(1) 3/4 π (135°), (2) 1/2 π (90°), (3) 0.4 π (72°), and (4) 1/4
π (45°). The positive electrode is an edge (βL = 0). M = –0.4,
βσ = 0.12 π (22°), and βc = 0.38 π (68°). d is the distance
along the electrode from the point of contact with the inter-
face.
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(iii) β0 = 1. The field strength has an integrable sin-
gularity of order (1/2 + βσ) at the point z = 0. Away from

σ x( )
E0 ε1 ε2+( )
--------------------------

πβσ( )sin
πβ0

----------------------

x
L
--- 

 

1
2
--- βσ–

β0
--------------- 1–

1
x
L
--- 

 
1
β0
-----

–
 
 
 

1
2
--- βσ–

-------------------------------------.=

0.2

0 0.1

σ/(E0(ε1 + ε2)), En/E0

x/L
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0.4

0.6

0.8

1.0

1.2

1.4

1
2

3
4

– +ε2
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ε1
L
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E/E0, E*τ
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1
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4
E*τ
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ϕ*
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0.10

0.15

0.20 1
2
3
4

Fig. 3. Distributions of charge density σ, field strength E,
field components En and Eτ, and field potential ϕ at the insu-
lator–insulator interface for βL = 1/2 π; M = (1) –0.5,
(2) −0.4, (3) –0.3, and (4) –0.2 (these values are typical of
insulators); and βσ = (1) 0.15 π (27°), (2) 0.12 π (22°),

(3) 0.093 π (17°), and (4) 0.063 π (11°).  = Eτ/E0 + 1 and

ϕ* are associated with the charge alone; i.e., external field
E0 is disregarded).

Eτ*
the interface, the field strength approaches zero,

(iv) β0 = 1 and βL = 0. The field strength has integra-
ble singularities at both points of contact, z = 0 and z =
L, and tends to zero away from the interface,

The associated distributions of the charge density
and field strength are presented in Figs. 2 and 3.

CONCLUSIONS

The results obtained in this work can be summarized
as follows. The relationships for the electric field are
valid both for symmetric and asymmetric bordering
domains (the form of region Ω1 adjacent to the vacuum
is insignificant, since the boundary-value Hilbert prob-
lem, rather than the conjugate problem, is solved). At
the same time, the charge distributions are valid only
for domains symmetric about the insulator–vacuum
interface, because they were derived using the expres-
sion En = σ/(ε1 + ε2), which is otherwise inapplicable.

With this in mind and also taking into consideration
the small size of the contact area, we may assume that
the expressions for the field near the vacuum–insula-
tor–electrode contact and critical angle βc apply to a
variety of real situations where this contact is shielded
by the electrodes (including the case of out-of-plane
fields).

The approach used in this study (calculation of the
field with an angle between the field vector and the
interface known) has proved itself to be efficient in the
case of rectilinear interfaces. It can also be used for

E2 z( ) E0
1–( )

βσ

π 1 βL–( )
-----------------------

1 z
L
---– 

 

1
2
--- βσ+

1 βL–
--------------- 1–

1 1 z
L
---– 

 
1

1 βL–
--------------

–
 
 
 

1
2
--- βσ+

----------------------------------------------------,–=

σ x( )
E0 ε1 ε2+( )
--------------------------

πβσ( )sin
π 1 βL–( )
-----------------------

1 x
L
---– 

 

1
2
--- βσ+

1 βL–
--------------- 1–

1 1 x
L
---– 

 
1

1 βL–
--------------

–
 
 
 

1
2
--- βσ+

----------------------------------------------------.=

E2 z( ) E0
1–( )

βσ

π z
L
--- 

 
1
2
--- βσ+

1 z
L
---– 

 
1
2
--- βσ–

---------------------------------------------------,–=

σ x( )
E0 ε1 ε2+( )
--------------------------

πβσ( )sin

π x
L
--- 

 
1
2
--- βσ+

1 x
L
---– 

 
1
2
--- βσ–

---------------------------------------------------.=
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more intricate boundaries, as well as for a variable tilt-
ing angle of the field vector. The mapping function and
the canonical function in the general solution, however,
take a more complicated form in this case.
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Abstract—A model of spin-dependent transport of electrons through a ferromagnet–insulator–ferromagnet
structure is developed. It takes into account the image forces, tunnel barrier parameters, and effective masses
of an electron tunneling in the barrier and in the ferromagnetic electrode in the free electron approximation.
Calculations for an iron–aluminum oxide–iron structure show that, with an increase in the bias voltage, the tun-
nel magnetoresistance decreases monotonically and then breaks into damped oscillations caused by the inter-
ference of the electrons' wave functions in the conduction region of the potential barrier. The image forces
increase the tunnel magnetoresistance by two or three times. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Structures consisting of alternating ferromagnetic
and insulating layers are a subject of extensive research
[1, 2], since they show considerable promise for inte-
grated memory devices. The conductivity of such struc-
tures can be controlled by applying a magnetic field.
The basic characteristic of such structures is the tunnel
magnetoresistance (TMR).

To calculate the TMR, a number of models were
developed [3–10], which differ in the way the potential
barrier parameters and bias voltage are taken into
account. However, these models fail in explaining nei-
ther the experimentally observed sharp decrease in and
negative values of the TMR with increasing bias nor
TMR oscillations. Some of the restrictions inherent in
these models have been removed in [10], where simu-
lation is based on the solution of the three-dimensional
Schrödinger equation. Yet, an adequate physical inter-
pretation of the effects observed, in particular, magne-
toresistance oscillations, is today lacking.

In a real metal–insulator–metal structure, the shape
of the potential barriers is other than rectangular due to
image forces [11]. For tunneling electrons, both the
height and width of the barrier vary. Since the TMR
value considerably depends on the barrier parameters
[1, 2], image forces should be taken into account for an
adequate description of electron transport in a metal–
insulator–metal structure. These forces were disre-
garded in the models suggested earlier [3–7, 10].

The purpose of this work is to theoretically investi-
gate the effect of image forces on the spin-dependent
transport of electrons in a ferromagnet–insulator–ferro-
magnet structure with allowance for bias potential and
also to give a physical interpretation for the nonlinear
variation of the TMR with increasing external bias.
1063-7842/05/5006- $26.00 0680
Numerical simulation is carried out for a structure
where iron and aluminum oxide serve as a ferromagnet
and insulator, respectively.

MODEL

The structure being simulated consists of two iden-
tical ferromagnets separated by a tunnel-thin nonmag-
netic insulating layer (Fig. 1). The application of a
potential generates a current consisting of two compo-
nents formed by spin-up electrons and spin-down elec-
trons, respectively. In the absence of scattering, these
components do not mix up. Electrons with a certain
spin that are emitted from one ferromagnet tunnel
toward the other ferromagnet, where they can occupy

N↓ (E)

0

N↑ (E)

E

h0/2

0

–h0/2

EF

U0

E

1 2 ... i–1 i

EF

Collector

z

a
eVb

a/i 2a/i (i–1)a/i

Emitter

Fig. 1. Potential profile of a ferromagnet–insulator–ferro-
magnet structure subjected to external bias Vb with regard
to image forces.
© 2005 Pleiades Publishing, Inc.
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vacancies with the same spin polarization. If the ferro-
magnets are magnetized in parallel, resistance Rp of the
structure is minimal; for antiparallel magnetization,
resistance Rap is maximal. This is because the degree of
spin polarization of electrons depends on the magneti-
zation vector direction [3]. The TMR value depends on
the difference between resistances Rp and Rap,

(1)

It is schematically shown in Fig. 1 that image forces
[11] smooth out the potential barrier in the insulator at
the insulator–ferromagnet interfaces. Such a shape of
the potential barrier is involved in the model suggested.
Moreover, unlike the earlier models [3–7, 10], we take
due account of the transverse motion of electrons and
the difference between the effective masses of electrons
with different spin polarization in the barrier and in the
ferromagnet.

In the free electron approximation, the band spec-
trum of spin-polarized charge carriers in the ferromag-
net is described by a parabola for each spin component.
The difference between the bottom of the band of spin-
up polarized electrons and the bottom of the band of
spin-down polarized electrons reflects the degree of
spin polarization of electrons in the ferromagnet and is
quantitatively described by the value of molecular field
h0 [4–7, 10].

If the layers of the structure are orthogonal to the z
axis and its dimensions in the xy plane are sufficiently
large for the quantization of the electron motion along
the interfaces to be neglected, the wave function of
electrons has the form

(2)

where ψσ(z) is the longitudinal wave function (in the z-
axis direction), k|| is the transverse wavevector in the xy

TMR
Rap Rp–

Rap
-------------------.=

Φσ ψσ z( )e
ik||ρ,=
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plane, ρ = (x, y) is the coordinate in the barrier plane,
and σ is the electron spin (up ↑  or down ↓ ).

As an electron tunnels through the potential barrier,
the transverse component of the energy remains
unchanged and so k|| may be taken to be fixed.

The one-electron stationary Schrödinger equation
for longitudinal wave functions ψσ(z) in an ith domain
(Fig. 1) has the form

(3)

where " is the Planck constant e is the electron charge,
 is the effective mass of an electron in the ith

domain, U0 is the potential barrier height, Vi is the
applied field in the ith domain, h0iσi is the internal
exchange energy [5, 7], h0i is the molecular field (h0 = 0
inside the insulator), σi is the Pauli matrix, ϕi is the
image force potential in the ith domain, and E is the
electron total energy.

The electron effective mass in each of the layers is
isotropic and different in the ferromagnet and insulator.
Quantities h0i and σi are taken along the magnetization
axis of the ith domain.

We assume that wave function ψσ(z) in the ith
domain is a linear combination of two waves corre-
sponding to the free motion of the electron in opposite
directions; namely, in the emitter region, there are the
incident and reflected waves, and, in the collector, only
the transmitted wave. The barrier region is divided into
n layers, each with its own wave function written in
accordance with Eq. (3). The wavevectors in the emit-
ter, collector, and barrier are given as follows:

"
2

2miσ*
----------- ∂2

∂z2
-------–

"
2k ||

2

2miσ*
-----------+

+ U0 h0iσi– eVi– eϕ i– ψσ z( ) Eψσ z( ),=

miσ*
(4)

kσem

2mfσ* Ez

h0

2
-----± 

 

"
--------------------------------------,=

kσcol

2mfσ* Ez

h0

2
----- eVb+± 

 

"
------------------------------------------------------,=

ki

2min* Ez U0–
i
n
---eVb

1.15e2 2ln
8πεε0a

------------------------ n2

i n i–( )
----------------- 1

min*

mfσ*
--------– 

  E||–+ + 
 

"
---------------------------------------------------------------------------------------------------------------------------------------------,=
where i = 1, 2, …, n;  and  are the effective
masses of the electron in the ferromagnet and insulator,
respectively; Ez and E|| are the longitudinal and trans-
verse components of the energy, respectively; Vb is the

mfσ* min*
 bias voltage applied to the structure; ε0 is the permittiv-
ity of a vacuum; ε is the relative permittivity of the bar-
rier material; and a is the barrier thickness. The fourth
term in the expression for the wavevector in the barrier
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describes the effect of image forces [11], and the term

(1 – / )E|| shows the contribution of the electron
energy transverse component at the ferromagnet–insu-
lator interface.

At the boundaries of all the domains, wave functions

ψσ(z) and their first derivatives (z)/m* must meet the
continuity conditions.

Thus, we have a set of 2(n + 1) equations, which will
be solved by the transfer matrix method [12]. The trans-
fer matrix relates the wave amplitudes in the emitter
and collector. In contrast to [10], where the 4 × 4 matri-
ces are applied, we will use 2 × 2 matrices separately
for each spin orientation. Such a choice, which is due to
the incoherent propagation of spins, allows us to signif-
icantly simplify calculation.

The wave transmission coefficient for the structure
studied is equal to the ratio between the flux densities
of the transmitted and incident waves.

To calculate the tunnel current, we sum up the tun-
neling probabilities over the electron distribution in the
emitter by the Tsu–Isaki formula [12],

(5)

where I is the tunnel current and f1 and f3 are the Fermi–
Dirac functions in the emitter and collector regions,
respectively.

min* mfσ*

ψσ'

I
2πe

"
3

---------mfσ* T Ez E||,( ) f 1 f 3–( ) Ez E||,dd∫∫=

Parameters of the Fe/Al2O3/Fe structure

Parameter Value

Fermi level EF 1.3 eV [13]

Molecular field h0 1.9 eV [10, 13]

Effective mass of a spin-up electron
in Fe, /

1.27 [13]

Effective mass of a spin-down electron
in Fe, /

1.36 [13]

Effective mass of an electron in the
barrier (Al2O3), /

0.4 [12]

Potential barrier width a 1–5 nm

Relative permittivity ε of nanodimen-
sional aluminum oxid

5–10

Potential barrier height in the absence
of bias U0

3–5 eV

mf ↑* me
–

mf ↓* me
–

md* me
–

Summation is over two independent spin compo-
nents. For the zero temperature, expression (5) reduces
to the form

(6)

where EF is the Fermi energy of the emitter.
In terms of tunnel currents Ip and Iap, which corre-

spond to the parallel and antiparallel magnetizations of
the ferromagnets, expression (1) transforms to

(7)

Numerical calculations by the model proposed are
made for a Fe/Al2O3/Fe structure, since the parabolic
band model works well as applied to free electrons in
iron and aluminum oxide is commonly used as a tun-
nel-thin insulator.

COMPUTATIONAL RESULTS 
AND DISCUSSION

The parameters of the Fe/Al2O3/Fe structure simu-
lated are presented in the table. It is known that the tun-
nel current for iron electrodes is determined largely by
free d electrons [14]. This is consistent with the earlier
hypothesis [15] that the wavevectors of spin-up and
spin-down electrons in iron at the Fermi level are equal
to 0.109 and 0.042 nm–1, respectively. In other bands,
the Bloch states do not have appropriate symmetry for
effective coupling through the ferromagnet–insulator
interface and quickly die down in the potential barrier
[13, 14].

Fermi energy EF and molecular field h0 were deter-
mined from the positions of the band bottoms for spin-
up and spin-down electrons by first-principles calcula-
tions [13]. The width of the potential barrier (Al2O3)
was varied from 1 to 5 nm, because, if the width is less
than 1 nm, it is difficult to grow a continuous film and,
if the width exceeds 5 nm, the tunnel current detected is
negligible [2, 12].

Figure 2 shows the dependence of the tunnel current
on the external bias for a barrier width of 1 nm and bar-
rier height U0 = 3.6 eV. At low voltages, the parallel-
magnetization current is higher (curve 1), because the
barrier penetrability for spin-up electrons is greater
than for spin-down electrons and the spin polarization
of the tunnel current is positive (Fig. 1). For biases of
0.6–1.7 V, the parallel-magnetization current becomes
higher the TMR (see (7)) changes. The change of the
collector magnetization means polarization reversal of
the collector electrons. For tunneling spin-up electrons,

I
2πe

"
3

---------mfσ* T Ez E||,( ) E||d Ezd

0

EF Ez–

∫
EF eVb–

EF

∫



=

+ T Ez E||,( ) E||d Ezd

EF Ez– eVb–

EF Ez–

∫
0

EF eVb–

∫ 



,

TMR
Ip Iap–

Ip
----------------.=
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this implies a decrease in the potential barrier penetra-
bility; for spin-down electrons, the situation is reverse.
Since the positive polarization dominates in the emitter
electron current (k↑em > k↓em), the magnetization rever-
sal results in a decrease of the total current.

Figure 3 shows the TMR versus bias dependence for
various widths of the potential barrier without regard to
image forces. For low biases, the TMR is positive and
nearly maximal. As the bias increases, the TMR drops,
approaching monotonically a negative maximum, and
then exhibits damped oscillations. The wider the tunnel
barrier, the lower the small-bias TMR and the oscilla-
tion frequency and amplitude.

The dependence of the TMR on the external bias can
be divided into two, monotone and oscillating, parts. It
seems that different mechanisms are responsible for the
tunnel current in them. For the monotone part, the
decrease in the TMR and the transition to the negative
region are associated with a sharper growth of the pen-
etration coefficient for antiparallel magnetization com-
pared with parallel magnetization. Here, the spin polar-
ization of electrons in the emitter has a less significant
effect on the TMR.

Consider two components of the coefficient of elec-
tron penetration through the potential barrier. One
depends on the relationship between the wavevectors in
the ferromagnets; the other, on the relationship between
the intensities of the transmitted and incident waves
(the element of the transfer matrix) [12]. With increas-
ing the bias, the first component grows for both parallel
and antiparallel magnetization. At a certain bias value,
these components come closer to each other. This is
because the electron tunneling depends on the applied
electric field more strongly than on the spin polariza-
tion of the electrons in the emitter and collector. Thus,
as the bias grows, the TMR decreases monotonically,
because the wavevectors of the electrons come closer to
each other.

The second component, which defines the ratio of
the transmitted and incident wave intensities, is always
greater for antiparallel magnetization. For either mag-
netization, these intensities grow in proportion to the
bias. With regard to the first component, this causes a
monotone growth of the penetration coefficients, the
growth being more significant for antiparallel magneti-
zation. Hence, the monotone decline in the TMR with
the transition to the negative region (Fig. 3).

When the voltage corresponds to the maximal nega-
tive value of the TMR, the wave functions of the elec-
trons interfere consistently (in other words, become
coherent). Then, as the bias grows, the increase in the
transmitted intensity for the antiparallel configuration
slows down, as a result of which the penetration coeffi-
cients for the two spin configurations come closer and
the TMR rises. In this case, the interference of the wave
functions in the range eVb > U0 – EF begins to exert a
dominating influence on the electron tunneling.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
Under these conditions, the upper level electrons
pass through both the band gap and conduction band of
the insulator. In the conduction band of the insulator,
they have a real wavevector. Some of the electrons
reflect from the insulator–collector interface and inter-
fere with incident electron waves. The narrower the
barrier, the higher the bias needed to produce a suffi-
ciently long conduction region in the insulator through
which the electrons pass. Therefore, the negative value
of TMR is maximal for the 1-nm-wide barrier.

In the region of TMR oscillations, the contribution
of the wave function interference to the conductivity
prevails for both parallel and antiparallel magnetiza-
tions of the ferromagnets. Interference mismatch
causes the transmission coefficients to oscillate. How-
ever, the peaks and dips of the transmission coefficients
arise under different conditions for the different magne-
tizations, which results in TMR oscillations. Thus, the
basic reason for TMR oscillations is a dominating con-
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Fig. 2. I–V characteristic of the Fe/Al2O3/Fe structure for
(1) parallel and (2) antiparallel magnetization. (3) Current-
difference curve.
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Fig. 3. TMR of the Fe/Al2O3/Fe structure vs. the bias for
Al2O3 thicknesses of (1) 1, (2) 2, and (3) 5 nm.
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tribution of the interference between the incident and
reflected waves to the conductivity of the structure and
a mismatch in the interference conditions at the oppo-
site magnetizations of the emitter and collector.

As the bias grows, the TMR oscillation amplitude
decreases and the oscillation period increases. The
decrease in the amplitude can be explained by the fact
that, as the bias grows, the difference in the transmis-
sion coefficients for the two different magnetizations of
the ferromagnets becomes smaller. This is observed at
biases in the range 1–2 V, where the transmission coef-
ficient of the electrons occupying the upper energy lev-
els is close to unity. The increase in the TMR oscillation
period is associated with an extension of the barrier at
energies below the Fermi level in the emitter. Note that
the TMR oscillates only if the voltage applied to the
structure exceeds the difference between the potential
barrier height and the Fermi level; i.e., Vb > U0 – EF.

Figure 4 shows the effect of the image force poten-
tial on the bias dependence of the TMR for ε = 10. In
this case, the TMR value depends on two factors. The
first one is the TMR growth caused by the decrease in
the effective barrier thickness. The other is a decrease
in the TMR due to the change in the barrier shape [16].
The first factor prevails. Therefore, taking into account
image forces is generally expected to raise the TMR.
For instance, for Fe/Al2O3/Fe structure with a barrier
thickness of 1 nm, the TMR value increases by a factor
of 2.5 when Vb  0 (Fig. 4). Note that, for the elec-
trons tunneling from the Fermi level at a = 1 nm, the
effective barrier width decreases by approximately
20%. A change in the potential barrier shape modifies
the conditions under which the interference arises. This
shows up in an insignificant shift of the TMR’s negative
maximum.
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Fig. 4. TMR of the Fe/Al2O3/Fe structure vs. the bias for
a = 1 nm (1) without and (2) with taking into account image
forces.
CONCLUSIONS

Our model of spin-dependent transport of electrons
through a ferromagnet–insulator–ferromagnet structure
and, in particular, the numerical simulation of the tun-
nel currents and TMR in a Fe/Al2O3/Fe structure dem-
onstrate that the tunnel barrier parameters, effective
mass of electrons tunneling in the barrier and in the fer-
romagnet, and image forces all have a considerable
influence on the behavior of the structure.

It is shown that, as the bias grows, the magnetoresis-
tance decreases monotonically, since the wavevectors
of electrons with different spin polarization in the col-
lector come close to each other. It reaches a maximal
negative value when the wave functions start interfering
in a consistent manner. Magnetoresistance oscillations
are caused by the periodically varying (as the bias
grows) conditions for electron wave interference in the
collector for the oppositely magnetized ferromagnets.
Taking into account image forces leads to a consider-
able rise in the magnetoresistance at low biases, since
the potential barrier shrinks effectively and changes
shape in this case.
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Abstract—The “frozen” and equilibrium shock adiabats for a gas with sustained steady-state nonequilibrium
are constructed accurate to the second order of smallness. With these adiabats, the pattern of and stability con-
ditions for weak shock waves in negative-dispersion nonequilibrium media, where the speed of low-frequency
(equilibrium) sound exceeds that of high-frequency (frozen) sound, are considered. On the basis of a model
nonlinear equation describing the evolution of gasdynamic perturbations in low-dispersion media, the nonsta-
tionary evolution of shock waves at a negative low-frequency nonlinearity coefficient is analyzed. This situation
corresponds to a low-frequency adiabat convex upwards. It is shown that a step autowave may arise in this case
whose amplitude is entirely specified by the nonequilibrium parameters of the medium and correlates with the
point where the low-frequency and high-frequency adiabats intersect. In addition, it is found that the initial
unsteady shock wave may split into two steady ones: a step autowave followed by a steady smooth-front expan-
sion shock. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The acoustics of thermodynamically nonequilib-
rium media (such as a vibrationally excited gas, noniso-
thermal plasma, chemically active mixtures, media
with nonequilibrium phase transitions, gaseous suspen-
sions with different temperatures of the components,
etc.) is appreciably different from the acoustics of equi-
librium media [1]. In these media, the inversion of the
second (bulk) viscosity coefficient (ξ < 0) and disper-
sion (when the low-frequency sound propagates faster
than the high-frequency one, c0 > c∞) is possible [1–13].
Negative-viscosity media are acoustically active. In
addition, the low-frequency coefficient of hydrody-
namic nonlinearity is no longer defined as Ψ0 ~ (γ0 +
1)/2 in this case; instead, it becomes a complicated
function of the stationary degree of nonequilibrium of
the medium and may even be negative [5, 14]. These
new acoustic properties should be taken into account in
analysis of various gasdynamic phenomena taking
place in these media. It is obvious that they will influ-
ence primarily the pattern of gasdynamic perturbations
with a small but finite amplitude. In [15, 16], the shock
pattern at Ψ0 > 0 was investigated by solving a model
nonlinear equation derived under the condition that a
nonequilibrium medium has a weak dispersion. In
Sect. 1 of this paper, the steady-state pattern of weak
shock waves in nonequilibrium media at Ψ0 > 0 and
Ψ0 < 0 is studied by analyzing the shock adiabats in
simple terms.
1063-7842/05/5006- $26.00 ©0685
In media with anomalous thermodynamic properties

where Ψ ~ (d2 /d )S < 0, compression shock waves,
unlike expansion shock waves, cannot exist [17, 18]. If
nonlinearity coefficients Ψ have opposite signs in a
pressure range considered, complicated regimes may
arise where diffuse waves adjacent to discontinuities or
a combination of several shock waves are observed
[17]. In Sect. 2, it is shown that such regimes may also
occur in thermodynamically nonequilibrium media
where the low-frequency and high-frequency nonlin-
earity coefficients have opposite signs, Ψ0 < 0 and
Ψ∞ > 0.

1. STEADY-STATE STRUCTURE OF WEAK 
SHOCK WAVES IN NEGATIVE-DISPERSION 

NONEQUILIBRIUM MEDIA

Slow relaxation processes, such as chemical reac-
tions, slow energy transfer between various degrees of
freedom, and so on, taking place in a gas cause a con-
siderable expansion of a shock wave and greatly com-
plicates its pattern [17–21]. In relaxation gasdynamics,
two shock adiabats drawn through a given initial point
are considered. One corresponds to total equilibrium of
the final states of the gas and, therefore, is called the
equilibrium adiabat. The other, referred to as “frozen,”
assumes that the relaxation processes do not proceed at
all. For small-amplitude waves, these adiabats can be
represented accurate to the second order of smallness in

P̃ Ṽ
2
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change of the specific volume, V2 – V1, in the form

(1)

Here, c0, Ψ0 and c∞, Ψ∞ are the low-frequency (equilib-
rium) and high-frequency (frozen) speeds of sound and
nonlinearity coefficients, respectively; P1 and P2 are the
pressures in the initial and final states; and ρ1 = 1/V1 is
the gas density in state 1. In states close to equilibrium,
the relaxation equation has the form

(2)

where E is a physical quantity characterizing the state
of the body and Ee is its value in equilibrium.

In this case, for polytropic gas media, we have c0 =

, c∞ = , Ψ0 = (γ0 + 1)/2, and Ψ∞ =
(γ∞ + 1)/2 with γ0 < γ∞. Thus, relaxation process (2)
always leads to a positive dispersion of sound. Besides,
up to the second-order of smallness, shock adiabats (1)
coincide with the corresponding Poisson adiabats. Fig-
ure 1 shows the qualitative behavior of the equilibrium
(curve e) and “frozen” (curve f ) shock adiabats drawn

through given initial point 1. Here,  = (P2 – P1)/ρ1

and  = (V2 – V1)/V1 are the dimensionless increments
of the pressure and specific volume in the shock wave.
The shock wave velocity is defined by the slope of the
chord connecting the initial (1) and final (2) states:

 = D2/  = – / .

P2 P1– ρ1c0
2 V2 V1–

V1
------------------– Ψ0

V2 V1–( )2

V1
2

-------------------------+ ,=

P2 P1– ρ1c∞
2 V2 V1–

V1
------------------– Ψ∞

V2 V1–( )2

V1
2

-------------------------+ .=

dE
dt
-------

E Ee–
τ

---------------,–=

γ0T /m γ∞T /m

P̃ c∞
2

Ṽ

D̃
2

c∞
2 P̃ Ṽ

P
~

V
~

12

e

f
2'

1'

Fig. 1. Frozen and equilibrium adiabats in a relaxing gas.
At a low shock wave velocity such that c0/c∞ <  < 1,
chord 1–2 is located between the tangents to curves e
and f at point 1 (Fig. 1). As shown in [17–20], in this
case, the shock wave merely expands (the higher the

second viscosity coefficient ξ ~ ρ(  – )τ, the more
the expansion of the shock wave).

At  > 1, the chord connects points 1, 1', and 2'.
Point 1' corresponds to the state where the relaxation to
state 1 is “frozen.” Compression of the gas from state 1
to state 1' is stepwise and from state 1' to final state 2'
gradual [17–21].

Now let us consider the propagation of a shock wave
through a gaseous medium in the steady-state nonequi-
librium state, E > Ee. The simplest model of such a
medium assumes an exponential relaxation law similar
to (2),

(3)

For a vibrationally excited gas, E is the energy of the
vibrational degrees of freedom of the molecules, Ee is
its equilibrium value, τ is the vibrational relaxation
time, and Q is the energy source sustaining thermal
nonequilibrium in the system (in particular, optical or
electric pumping). Then, the low-frequency adiabat
exponent and the nonlinearity coefficient depend on the
steady-state degree of nonequilibrium S = Qτ/T,

where CV0 = CV∞ + Cvib + Sτ', CP0 = CP∞ + Cvib + S(τ' +
1), CV∞ and CP∞ are the low-frequency and high-fre-
quency heat capacities at constant volume and pressure
in the vibrationally excited gas [5, 14], Cvib = dEe/dT is
the equilibrium vibrational heat capacity, τ' =
∂lnτ/∂lnT, and τ'' = T2τ–2∂2τ/∂T2.

The nonlinearity coefficient is defined as Ψ0 = (1 +
γ0)/2 only when the steady-state nonequilibrium of the
medium is absent; i.e., when S = 0. Therefore, at S ≠ 0,
the equilibrium shock adiabat differs from the Poisson
adiabat even in the second-order of smallness.

In media with steady-state thermodynamic nonequi-
librium, the dispersion of speed of sound may be nega-
tive. If τ' < 0 in the frame of the model considered, low-
frequency speed of sound c0 exceeds high-frequency
one c∞ when the degree of nonequilibrium satisfies the
inequality Cvib/(CV∞ – τ') < S < –(CV∞ + Cvib)/τ'. In [7–
13], the conditions for negative dispersion of speed of
sound were found for other models of relaxation of
internal degrees of freedom of molecules, as well as for
chemically active mixtures, multiphase media, and a

D̃

c∞
2 c0

2

D̃

dE
dt
-------

E Ee–
τ

---------------– Q.+=

γ0

CP0

CV0
--------,=

Ψ0
Sτ' 1 S+( )

CP0CV0
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weakly ionized gas. It was found that nonlinearity coef-
ficient Ψ0 as a function of the degree of nonequilibrium
S and τ(T) may be both positive and negative [14].

The shock wave pattern in a negative-dispersion
medium can be studied by the approach described
above. The equilibrium and frozen shock adiabats (see
(1)) at c0 > c∞ and 0 < Ψ0γ0/γ∞ < Ψ∞ are presented in
Fig. 2 (curves e and f, respectively). At such Ψ0, the adi-
abats intersect. The slope of the chord drawn through
the point where the adiabats meet (Fig. 2, straight line
1) defines the critical shock wave velocity,

(4)

In a weak shock wave propagating with such a
velocity, the density dimensionless increment is given
by

(5)

where m = (  – )/ .

At shock wave velocities  ≥  (the slope of the
corresponding chord is larger than that of straight
line 1), the shock wave structure is typical of relaxing
media with positive dispersion, because the point of
intersection between the chord and the frozen adiabat is
to the right of the point of intersection with the equilib-
rium adiabat. Therefore, the medium is first rapidly
compressed to the value specified by the point of inter-
section between the corresponding chord and the fro-
zen adiabat and then is gradually compressed to the
final state specified by the intersection of the chord with
the equilibrium adiabat. The related shock wave pattern
is shown in Fig. 3 (curve 1). Note that this pattern can-
not arise if Ψ0γ0/γ∞ > Ψ∞, since the shock adiabats do
not intersect.

When  <  <  (the slope of the chord is
larger than that of straight line 2 but smaller than the
slope of straight line 1 in Fig. 2), the shock wave struc-
ture is radically different (Fig. 3, curve 2). In this range,
the frozen adiabat is to the left of the equilibrium one.
Here, fast compression to the value determined by the
intersection of the corresponding chord with the frozen
adiabat is followed by gradual expansion to the final
state specified by the intersection between the chord
and equilibrium adiabat.

The value of  =  is found
from the condition that the slope of tangent 3 to adiabat

f at point  equals that of chord 2 drawn through the

same point to adiabat e (Fig. 2); i.e.,  =

−(d /d  = 1 – 2Ψ∞  and, hence,  ≈
−  = m/(2Ψ∞ – γ0Ψ0/γ∞). Note that the values of ρcr

D̃cr 1 Ψ∞ρ̃cr+ .=

ρ̃cr Ṽ cr–≈ m
Ψ∞ γ0Ψ0/γ∞–
----------------------------------,=

c0
2 c∞

2 c∞
2

D̃ D̃cr

D̃cr1 D̃ D̃cr

D̃cr1 1 m γ0Ψ0ρ̃cr1/γ∞+ +

Ṽ cr1

D̃cr1
2

P̃ Ṽ ) f V, Vcr1= Ṽ cr1 ρ̃cr1

Ṽ cr1
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and ρcr1 obtained in this work differ from those obtained
by other method [15, 16] only by factor γ0/γ∞ multiply-
ing Ψ0. The reason for this discrepancy is explained in
the Sect. 2.

The slope of tangent 3 determines the velocity of an
infinitesimal perturbation (the velocity of high-fre-
quency sound) propagating behind the shock wave
front. This velocity must exceed that of the shock wave
in order that the propagation be stable. Therefore,

shock waves with velocities  ≤  will be evolu-
tionarily unstable. Earlier, it was shown [15] that such
an unstable wave in a negative-dispersion medium dis-
integrates into a sequence of steady-state shock-wave
pulses. These pulses are autowaves, because their
shape, velocity, and amplitude are independent of the
velocity of the initial unstable shock wave. The pulse
amplitude, which is specified by the point of intersec-
tion between chord 2 and adiabat f (Fig. 2), is found
from the relationship ρp = 2 , and the pulse velocity

D̃ D̃cr1

ρ̃cr1

P
~

V
~

1
2

e

f

3

V
~

cr1V
~

pV
~

cr

P
~

cr

P
~

p

P
~

cr1

Fig. 2. Shock adiabats at c0 > c∞ and 0 < Ψ0γ0/γ∞ < Ψ∞.

ζ

1

2 3

ρ~

ρ~
p

Fig. 3. Shock wave pattern in a negative-dispersion medium
at Ψ0 > 0. ζ is the spatial coordinate.
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equals . The pulse has a discontinuous leading
edge and an exponentially falling (with a rate of
~Ψ0/2Ψ∞c∞τ [15]) trailing edge.

Now consider a possible steady-state pattern of
compression shock waves at a negative equilibrium
nonlinearity coefficient Ψ0. The qualitative behavior of
shock adiabats (1) at Ψ0 < 0 is shown in Fig. 4. Here,
the speed of low-frequency sound behind (before) the
shock front is always lower (higher) than the shock
wave velocity (found, as usual, from the slope of the
chord connecting initial state 1 with the final state).
Because of this, the shock waves are evolutionarily
unstable.

In the following section, it will be shown that, at
Ψ0 < 0, evolutionarily stable gasdynamic structures still
exist. First of all, these are waves with amplitude 
(5) (corresponding to the point where the adiabats

meet) that propagate with velocity  (4) (determined
by the slope of chord 1, Fig. 4). The form of this wave

D̃cr1

ρ̃cr

D̃cr

P
~

V
~

1

2

e

f

34

V
~

cr2V
~

rV
~

cr

P
~

cr

P
~

r

P
~

cr2

Fig. 4. Shock adiabats at Ψ0 < 0.

ρ~

ζ

ρ~ cr

Fig. 5. Autowave at Ψ0 < 0.
is shown in Fig. 5. Formally, the equilibrium adiabat is
unnecessary to describe its structure.

2. EVOLUTION OF GASDYNAMIC 
PERTURBATIONS AT Ψ0 < 0

Disintegration of an unstable wave into a series of
autowave pulses was investigated in [15, 16] by numer-
ically solving a model equation with positive nonlinear-
ity coefficients. Using the same approach, we will study
the unsteady evolution of small-amplitude gasdynamic
perturbations at Ψ0 < 0. The initial model equation has
the form

(6)

Here, µ∞ and µ0 are the high- and low-frequency viscos-
ity–heat conduction coefficients; η and χ are the shear
viscosity coefficient and thermal conductivity, respec-
tively; and M is the molecular weight. Equation (6) was
derived in [22] up to the second order of smallness, i.e.,
up to θ2. It describes the evolution of small-amplitude
(  ~ θ) perturbations in a homogeneous medium in
terms of exponential relaxation model (3) in the weak-
dispersion (m ~ θ) and low-dissipation (  =

µ0, ∞/τ ρ ~ θ) approximation. For copropagating
waves (ζ = (x – c∞t)/c∞τ, y = θt/τ), Eq. (6) transforms
into

(7)

where  = –CV∞m/2CV0 is the dimensionless second
viscosity coefficient.

In [15, 16], the discrepancy between γ0Ψ0/γ∞ in (7)
and Ψ0 was neglected at m ! 1, which led to the above-
mentioned disagreement between the results obtained
by different methods. This discrepancy can be avoided
if factor γ0/γ∞ appears in model equation (2) in explicit
form.

The initial perturbation had the form of a step. The
results of numerical simulation of Eq. 7 at Ψ0 < 0 are
shown in Figs. 6–8.
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When the step had initial amplitude  = , it
merely transformed in the course of evolution into an
autowave with amplitude  (Fig. 5). A small but finite
value of high-frequency viscosity–heat conduction
coefficient  of causes the front to broaden, while a

nonzero value of  changes the amplitude of the auto-

wave,  = CV0/CV∞(Ψ∞ – γ0Ψ0/γ∞). Here,  =  +

 is the low-frequency coefficient of total viscosity.

Note that the autowave exists only if  < 0. In [15], the
same conclusion was drawn regarding the existence of
structures shown in Fig. 3 by curves 2 and 3.

When the step had initial amplitude  > 
(Fig. 6), it disintegrates into a gradually expanding
unsteady compression wave and the already mentioned
autowave.

When the step had initial amplitude  <  < 

(Fig. 7) where  = Ψ∞/(2Ψ∞ – γ0Ψ0/γ∞), it
evolved into two steady-state waves: an autowave, as
before, and an expansion shock wave. Both waves
propagate in the same direction. The expansion shock
wave velocity is determined by the slope of the chord

drawn through points  and  on equilibrium adia-

ρ̃r ρ̃cr

ρ̃cr

µ̃∞

µ̃0

ρ̃cr µ̃Σ µ̃Σ ξ̃
µ̃0
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Fig. 6. Evolution of the step at Ψ0 < 0 and  > . y1 and

y2 (y2 > y1) are dimensionless time instants.

ρ̃r ρ̃cr
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bat e (straight line 2 in Fig. 4),

At  < , the inequality c01 <  < c02 is fulfilled

and the condition  >  is necessary for another ine-

quality,  <  = c∞2, to be met. Here, c01 =

 and c02 =

D̃r
P̃cr P̃r–

Ṽ r Ṽ cr–
------------------ 1 Ψ∞ρ̃cr Ψ0

γ0

γ∞
-----ρ̃r+ + .= =

ρ̃r ρ̃cr D̃r
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Fig. 7. Evolution of the step at Ψ0 < 0 and  <  < .ρ̃cr2 ρ̃r ρ̃cr
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Fig. 8. Initial stage of splitting a step with small amplitude
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 are the speeds of low-frequency
sound, respectively, before and behind the expansion

shock wave front and c∞2 =  is the speed
of high-frequency sound behind the front of the expan-

sion shock wave at  = . In Fig. 4, velocities 
and c∞2 are defined by the condition that chord 3 con-

necting points  and  on the equilibrium adiabat
is parallel to tangent 4 to the frozen adiabat that is

drawn through point . These inequalities provide
the evolutionary stability of the expansion shock wave
traveling in the gas precompressed by the autowave. At
∆  =  –  ! , the expansion shock wave has the

form of a symmetric (about the mean level) jump:  ~
ζ/2∆), where ∆ ~ 2 /Ψ0∆ . As ∆  grows, the

shape of the jump deforms and becomes asymmetric
about the mean level. Such a front pattern is also char-
acteristic of weak compression shock waves, c0/c∞ <

 < 1 (chord 1–2 in Fig. 1), traveling in a medium with
relaxation equation (2) [19, 20].

Expansion shock wave velocity  at Ψ0 < 0 is

lower than that of the autowave, . Therefore, a com-
bination of the two waves is stable; however, the dis-
tance between their fronts increases with time.

The simulation of unsteady evolution of a small step
with amplitude  <  by means of Eq. (7) led to the
fast development of numerical instability. The initial
stage of the step evolution is shown in Fig. 8.

DISCUSSION

In this paper, we (i) analyzed the form of shock adi-
abats and their associated weak shock wave patterns in
a nonequilibrium medium where the low-frequency
(equilibrium) speed of sound exceeds the high-fre-
quency (frozen) speed of sound and (ii) pioneered
investigation of complicated regimes arising when the
low- and high-frequency nonlinearity coefficients have
opposite signs. It is shown that, in a thermodynamically
nonequilibrium medium, steady-state structures appre-
ciably different from shock waves propagating through
equilibrium media may exist. This fact has been corrob-
orated by numerous experiments (see, for example,
[23–25]. In particular, splitting of the shock wave front
and emergence of precursors was noted; however, it
still remains unclear whether nonequilibrium or inho-
mogeneity of the medium is the key factor responsible
for their formation [26–28]. The above reasoning disre-
gards the inhomogeneity of a real nonequilibrium
medium and, therefore, is idealized. The joint effect of
nonequilibrium and inhomogeneity of a medium on the
shock wave pattern should be considered in terms of
more sophisticated models, which may be tested, in
particular, by passing to the limit of the idealized struc-

1 m 2Ψ0γ0ρ̃r/γ∞+ +

1 2Ψ∞ρ̃cr2+

ρ̃r ρ̃cr2 D̃cr2

Ṽ cr Ṽ cr2

Ṽ cr2

ρ̃ ρ̃cr ρ̃r ρ̃cr

ρ̃
(tanh µ̃Σ ρ̃ ρ̃

D̃

D̃r

D̃cr

ρ̃r ρ̃cr2
tures discussed above. In general, our results suggest
that steady-state nonequilibrium strongly influences the
evolution of a gasdynamic perturbation by imparting
new viscous, dispersion, and nonlinear properties to the
medium.
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Abstract—The influence of the boundary conditions on the two-dimensional gas velocity distribution in
nuclear-pumped flowing-gas laser cells is considered for low energy deposits. It is demonstrated that, for any
boundary conditions, the two-dimensional flow separates into two quasi-one-dimensional components and the
size of the area of influence of the boundary conditions is comparable to the laser cell width. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

In nuclear-pumped laser cells, the interior is covered
by thin uranium layers the fission fragments of which
irradiate the gas contained in the cell. In a flowing-gas
laser (see figure), the gas flows through the cell, as the
name suggests [1, 2]. Here, the x axis is directed along
the gas flow, the cell length along the flow is L ≈ 0.1 m,
and the cell width is 2h ≈ 0.02 m. The optical axis of the
laser is orthogonal to the plane of the figure.

The general pattern of the two-dimensional gas flow
in nuclear-pumped laser cells is considered in [3, 4].
The method of separation of variables is applied to ana-
lytically calculate the two-dimensional gas velocity for
low (compared to the internal energy of the gas) energy
deposits from the fission fragments under the assump-
tion that the gas velocity field is irrotational and so can
be described by a scalar potential satisfying the Poisson
equation [3]. The emphasis is on hermetic cells, where
the boundary conditions for the gas velocity are
straightforward (the normal component of the velocity
vanishes at the cell walls). In the works cited, as well as
in [2], flowing-gas cells are considered only in the spec-
ulative case of an unperturbed gas flow incident on the
energy deposition area (bounded by the uranium layers)
“from infinity.” However, flowing-gas lasers may be
equipped with gas-cooling radiators (placed immedi-
ately ahead of or behind the uranium layers) [1] or with
other components of the gas system, which form differ-
ent boundary conditions at the inlet and/or outlet of the
cell. This brings up the question of how to attack such
problems more correctly and how much the gas flow
pattern in the laser cell will change.

In this paper, the main results obtained in [3, 4] are
generalized to the case of arbitrary boundary conditions
for the gas flow velocity (at both the inlet and outlet of
the cell) and the effect of the boundary conditions on
the flow pattern in the laser channel is investigated. It is
1063-7842/05/5006- $26.000692
demonstrated that the main conclusion drawn in [3, 4]
that the two-dimensional gas flow separates into two
quasi-one-dimensional components remains valid for
any boundary conditions.

GASDYNAMIC MODEL

The gas is assumed to be ideal, nonviscous, and
thermally nonconductive (viscosity and thermal con-
ductivity are of considerable importance only in a nar-
row near-wall layer), and the gas pressure is set uniform
throughout the cell (the Mach number is M ≤ 10–2 ! 1)
[3, 4]. Under these conditions, the time variation of the
gas density for a fixed Lagrangean coordinate is
described by the simple thermodynamic relation [3, 4]

(1)

where P is the gas pressure, ρ is the gas density, γ is the
adiabatic exponent, and δQ is the energy absorbed
by infinitesimal gas volume δV during infinitesimal
time period δt (the energy deposit is assumed to be
known [5]).

γP
ρ

------dρ
dt
------ dP

dt
-------– γ 1–( ) δQ

δVδt
------------,–=

2h

y
L

A Q

x

Nuclear-pumped laser: Q, cell; A, uranium layer.
 © 2005 Pleiades Publishing, Inc.



        

QUASI-POTENTIAL GAS FLOW 693

                                            
With regard to the continuity equation

where v is the gas velocity with components v x = u and
v y = w, Eq. (1) can be recast as [3, 4, 6]

(2)

If the gas flow in the cell is steady, dP/dt may be set
equal to 0.

The key gasdynamic factor of nuclear-pumped laser
cells is the energy deposited into the gas by irradiating
fission fragments of the uranium layers. If the energy
deposit is not too high, the associated gas flow may be
viewed as irrotational [3, 4] (the incoming gas flow is
supposed to be vortex-free). In this case, the velocity is
completely specified by scalar potential Φ(x, y, t),

which, according to (2), satisfies the Poisson equation
[3, 4]

(3)

This equation does not involve time in explicit form.
The velocity distribution is quasi-stationary: it changes
in line with change in the gas pressure or energy deposit
distribution. Hereafter, argument t is omitted and func-
tion G(x, y) is assumed to be given.

GENERAL SOLUTION FOR THE VELOCITY 
POTENTIAL

At the walls, the normal component of the gas
velocity is equal to zero. In the hermetic cells, whose
inner surface is closed, this condition suffices to solve
elliptic equation (3). In the case of flowing-gas cells,
where the surface is basically unclosed, the situation is
more complicated. However, here, at horizontal walls
(see figure), the vertical component of the velocity van-
ishes, w(x, y) = 0, for y = ±h (as well as in hermetic
cells). A solution to Eq. (3) that satisfies this condition
can be obtained by applying the method of separation
of variables and expanding the velocity potential into
the Fourier series,

1
ρ
---dρ

dt
------ divv+ 0, v u w,( ),= =

divv G x y t, ,( ),=

G x y t, ,( ) 1
γP
------ γ 1–( ) δQ

δVδt
------------ 

  dP
dt
-------–

 
 
 

.=

v x y t, ,( ) ∇Φ ,=

∆Φ G x y t, ,( ).=

Φ x y,( )
ϕ0 x( )

2
------------- ϕn x( ) any( ),cos

n 1=

∞

∑+=

ϕn x( ) 2
h
--- Φ x y,( ) any( )cos y, and

0

h

∫ πn
h

------.= =
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This solution has the form [3, 4]

(4)

(5)

where

(6)

(7)

Here, U0 is the flowing gas velocity (the gas velocity at
the inlet of the cell); U(x) is the transversely averaged
longitudinal velocity of the gas, which depends on the
transversely averaged energy deposit; and gn(x) are the
coefficients of expansion of function G(x, y) into the
Fourier series. The values of An and Bn are determined
by the boundary conditions for the gas velocity at the
entrance to and exit from the cell.

By renormalizing constants An, this solution can be
put in a more convenient form,

For simplicity, the energy deposition area is
assumed to be bounded by the cell dimensions,

Then, the solution given by (6) and (7) takes the

u x y,( ) ∂Φ
∂x
------- U x( ) un x( ) any( ),cos

n 1=

∞

∑+= =

un x( )
dϕn

dx
---------,=

w x y,( ) ∂Φ
∂y
------- wn x( ) any( ),sin

n 1=

∞

∑= =

wn x( ) anϕn x( ),–=

un x( )
anx( )exp

2
---------------------- An gn ξ( ) anξ–( )exp ξd

∞–

x

∫+
 
 
 

=

+
anx–( )exp

2
-------------------------- Bn gn ξ( ) anξ( )exp ξd

∞–

x

∫+
 
 
 

,

wn x( )
anx( )exp

2
---------------------- An gn ξ( ) anξ–( )exp ξd

∞–

x

∫+
 
 
 

–=

+
anx–( )exp

2
-------------------------- Bn gn ξ( ) anξ( )exp ξd

∞–

x

∫+
 
 
 

,

U x( ) U0
2
h
--- G ξ y,( ) y ξ ,dd

0

h

∫
0

x

∫+=

gn x( ) 2
h
--- G x y,( ) any( )cos y.d

0

h

∫=

An Hn anL–( )exp gn ξ( ) anξ–( )exp ξ .d

∞–

∞

∫–=

gn x( ) 0 for x 0 and x L.><=
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form

(8)

(9)

Here,

(10)

(11)

Presented in this form, the solution is more conve-
nient for both qualitative analysis and numerical calcu-
lations, because it contains only damped exponentials,
whereas the terms in the first braces of presentations (6)
and (7) for this solution should be handled with care,
since they are multiplied by an increasing exponent.

un x( ) 1
2
--- Bn anx–( )exp Hn an L x–( )–[ ]exp+{ }=

+
1
2
--- gn ξ( ) an x ξ–( )–[ ]exp ξd

0

x

∫



– gn ξ( ) an ξ x–( )–[ ]exp ξd

x

L

∫ 



,

wn x( ) 1
2
--- Bn anx–( ) Hn an L x–( )–[ ]exp–exp{ }=

+
1
2
--- gn ξ( ) an x ξ–( )–[ ]exp ξd

0

x

∫



+ gn ξ( ) an ξ x–( )–[ ]exp ξd

x

L

∫ 



.

un 0( ) 1
2
--- Hn anL–( )exp Bn+[ ] 1

2
---Ψn,–=

un L( ) 1
2
--- Bn anL–( )exp Hn+[ ] 1

2
---Ξn;+=

wn 0( ) 1
2
--- Bn Hn anL–( )exp–[ ] 1

2
---Ψn,+=

wn L( ) 1
2
--- Bn anL–( ) Hn–exp[ ] 1

2
---Ξn;+=

ψn gn ξ( ) anξ–( )exp ξ ,d

0

L

∫=

Ξn gn ξ( ) an L ξ–( )–[ ]exp ξd

0

L

∫=

=  gn L ζ–( ) anζ–( )exp ζ .d

0

L

∫

QUALITATIVE ANALYSIS 
OF THE SOLUTION

Prior to analysis, let us make some useful simplifi-
cations. Constants Hn and Bn are not too large a fortiori
(they do not exceed the gas velocity in order of magni-
tude) and the value of exp(–anL) is vanishingly small
(anL ≥ πL/h ~ 10π). Therefore, boundary conditions (10)
and (11) may be simplified to

(12)

(13)

Constants Bn are thus seen to depend actually on
only the gas velocity at the inlet and constants Hn, on
the gas velocity at the outlet. Therefore, constants Bn

and Hn are determined independently of each other for
any boundary conditions at the inlet and outlet, which
allows unification of a set of possible solutions.

Next, the energy deposit (and, hence, expansion
coefficients gn(x) for function G(x, y)) changes appre-
ciably only near the ends of the uranium layer over a
distance of h (where h is the half-width of the cell) from
the inlet and outlet. In the remaining part of the cell,
coefficients gn(x) vary along the flow smoothly, the
variation being insignificant over a distance of order h.
Over such distances, the exponentials involved in inte-
grals (8) and (9) turn the integrand virtually into zero:
for |x – ξ| = 2h, we have

Therefore,

un 0( ) 1
2
--- Bn Ψn–( ), un L( ) 1

2
--- Ξn Hn+( ),≈ ≈

wn 0( ) 1
2
--- Bn Ψn+( ), wn L( ) 1

2
--- Ξn Hn–( ).≈ ≈

an x ξ– 2π, 2π–( )exp 0.002.≈≥

gn ξ( ) an x ξ–( )–[ ]exp ξd

0

x

∫

≈ gn x( ) an x ξ–( )–[ ]exp ξd

0

x

∫
gn x( )

an

------------- 1 anx–( )exp–[ ] ,=

gn ξ( ) an ξ x–( )–[ ]exp ξd

x

L

∫

≈ gn x( ) an ξ x–( )–[ ]exp ξd

x

L

∫

=  
gn x( )

an

------------ 1 an L x–( )–[ ]exp–{ } .
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Thus, in a major part of the cell, the solution given
by (8) and (9) may be represented in the form

(14)

(15)

A similar estimate can be derived for integrals Ψn

and Ξn,

This estimate is cruder, since coefficients gn(x) near
the uranium layer vary still noticeably. However, the
solution given by (14) and (15) can be (at least, approx-
imately) extended up to the ends of the cell in this way.

Even at a short distance from the inlet and outlet
(more specifically, over a distance of the cell width), all
the exponentials in solution (14)–(15) become negligi-
ble. Hence, we have

(16)

We may thus conclude that, in a major part of the
cell, the longitudinal velocity of the gas is, in essence,
equal to its transversely averaged value U(x), which
depends on the transversely averaged energy deposit.
For the transverse velocity, we have, according to (5)
and in view of (16) and (2),

(17)

where 〈…〉  means averaging across the cell.
Thus, in the cell (except for the narrow end regions),

the longitudinal gas velocity is almost uniform in the
transverse direction and the transverse velocity depends
on the difference between the local and transversely

un x( ) 1
2
--- Bn anx–( )exp Hn an L x–( )–[ ]exp+{ }≈

+
gn x( )
2an

------------- an L x–( )–[ ]exp anx–( )exp–{ } ,

wn x( ) 1
2
--- Bn anx–( )exp Hn an L x–( )–[ ]exp–{ }=

+
gn x( )
2an

------------- 2 an L x–( )–[ ]exp anx–( )exp––{ } .

Ψn

gn 0( )
an

------------- 1 anL–( )exp–[ ]
gn 0( )

an

-------------,≈≅

Ξn

gn L( )
an

------------- 1 anL–( )exp–[ ]
gn L( )

an

-------------.≈≅

un x( ) 0, wn x( )
gn x( )

an

------------- for

2h x L 2h.–≤ ≤

∂w
∂y
-------

∂
∂y
-----

gn x( )
an

------------- any( )sin
n 1=

∞

∑=

=  gn x( ) any( )cos
n 1=

∞

∑ G x y,( ) G x y,( )〈 〉–=

=  
γ 1–
γP

----------- δQ
δVδt
------------ 

  δQ
δVδt
------------–

 
 
 

,
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averaged energy deposits. Such a separation of the two-
dimensional flow into two quasi-one-dimensional com-
ponents (as demonstrated in [3, 4] with a gas flow inci-
dent on the energy deposition area “from infinity”) is
seen to take place in flowing-gas cells under any bound-
ary conditions (at both the inlet and the outlet).

DISCUSSION OF THE BOUNDARY 
CONDITIONS

General solution (8)–(9) is applicable to both her-
metic and flowing-gas cells. The formal difference is
that, in the former case, U0 = 0, whereas, in the latter
case, the two-dimensional flow described by solution (8)–
(9) is added to the general flow pattern. Such an addi-
tivity property of the velocity field is due to the linearity
of the equation for the velocity potential in the gasdy-
namic model considered.

For hermetic cells, the boundary conditions along
the x axis are straightforward,

(18)

hence, in view of (10),

(19)

in accordance with (12). Then, by virtue of (13), we
have

(20)

Theoretically, the same conditions may also be set
for flowing-gas cells. Here, the flow immediately takes
the quasi-one-dimensional form specified by (16) and
(17). Thus, if the longitudinal velocity is uniform
across the cell at the inlet, it remains such downstream
throughout the cell (except for a narrow region at the
outlet, where the flow pattern may be changed accord-
ing to the boundary conditions at the outlet). However,
such “quasi-hermetic” conditions are purely specula-
tive.

The “zero” boundary conditions at the inlet,

(21)

which correspond to the unperturbed gas flow, would
seemingly be natural. According to (12) and (13), this
is possible only when Ψn = 0 (and, hence, Bn = 0). In
this case, gn(x) = 0 (the energy deposit is transversely
uniform), the transverse velocity equals zero, in accor-
dance with (17), and the flow is one-dimensional.

un 0( ) un L( ) 0,= =

Bn

Ψn Ξn anL–( )exp+
1 2anL–( )exp–

---------------------------------------------- Ψn,≈=

Hn

Ξn Ψn anL–( )exp+
1 2anL–( )exp–

----------------------------------------------– Ξn–≈=

wn 0( ) 1
2
--- Bn Ψn+( )≈ Ψn

gn 0( )
an

-------------,≅=

wn L( ) 1
2
--- Ξn Hn–( )≈ Ξn

gn L( )
an

-------------.≅=

un 0( ) wn 0( ) 0,= =
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Thus, formulation of the boundary conditions in
flowing-gas cells needs no special discussion. In [3, 4],
where a gas flow incident on the energy deposition area
“from infinity” is considered, zero boundary conditions
(21) are set at x  –∞ and constants An and Bn are
determined by joining the solutions for the domains x <
0 and x > 0. In the domain x < 0 (no energy deposit), the
solution may be obtained in the same form as (6)
and (7),

(22)

Here, one should put Dn = 0 in order that the velocity
profile be uniform as x  –∞: u(x  –∞) = U0 and
w(x  −∞) = 0. Combining (22), (12), and (13) at x =
0, we obtain

(23)

Constants Hn can be determined by assuming that
the cell extends “to infinity” beyond the energy deposi-
tion area (x > L). Beyond this area (at x  +∞), the
solution can be written in a form similar to (22),
namely,

From the boundedness of the solution at infinity, it
follows that En = 0. Combining the above two expres-
sions with (12) and (13) at x = L, we get

This solution is of interest, since it implies that the
unperturbed velocity profile starts deforming before it
approaches the energy deposition area: in a subsonic
flow, any variation of the flow conditions in the channel
is perceived in advance. On the other hand, away from
the cell (at x  +∞), all the changes in the gas veloc-
ity that were acquired in the energy deposition area dis-
appear except for the increase in the transversely uni-
form longitudinal velocity. Outside the energy deposi-
tion area, the two-dimensional effects fade out over a
distance approximately equal to the channel width.
Certainly, these conclusions are valid only in the frame-
work of the initial approximations (the potential flow).
Actually, the longitudinal pressure gradient would
cause transverse splitting of the longitudinal gas veloc-
ity.

It can be said that the above-mentioned joining of
the energy deposition area with “empty” areas sets
“soft” boundary conditions, since the gas velocity at the
inlet (and outlet) is determined by joining with solu-
tions in other areas, instead of being strictly specified.

un x( ) 1
2
--- Cn anx( )exp Dn anx–( )exp+[ ] ,=

wn x( ) 1
2
--- –Cn anx( )exp Dn anx–( )exp+[ ] .=

Bn 0, Cn Ψn.–= =

un x( ) 1
2
--- En an x L–( )[ ]exp Fn an x L–( )–[ ]exp+[ ] ,=

wn x( )
1
2
--- E– n an x L–( )[ ]exp Fn an x L–( )–[ ]exp+[ ] .=

Hn 0, Fn Ξn.= =
However, such an approach to the problem of setting
boundary conditions in flowing-gas cells is not unique.
Just ahead of the energy deposition area (and immedi-
ately after it), there may be devices that strictly specify
other boundary conditions (such as, parallel-plate gas-
cooling radiators [1]). The form of the solution to
Eq. (3) obtained here (see (8)–(13)) allows for any
influence on the gas velocity at both the inlet and outlet
of the cell.

For instance, in the case of radiators with closely
spaced plates, one can assume that the gas velocity at
the outlet of a radiator (and at the inlet of the next radi-
ator) has only the longitudinal component, while the
transverse component is equal to zero, wn(0) = wn(L) = 0.
Then, (12) and (13) yield

(24)

with

(25)

The boundary conditions thus stated are opposite to
“quasi-hermetic” conditions (18)–(20).

THE CASE OF LONGITUDINALLY UNIFORM 
ENERGY DEPOSITION

Let us demonstrate the influence of the three types
of boundary conditions mentioned above with the sim-
ple and illustrative case when the energy deposit is lon-
gitudinally uniform within the cell, G = G(y), and van-
ishes outside it. Here,

(26)

because the pressure is uniform. The velocity distribu-
tion may be calculated by formulas (14) and (15),
which are exact, rather than approximate, in this case.
We restrict our consideration to the vicinity of the inlet,
since, outside this region, the “inlet” boundary condi-
tions have no influence on the flow and the flow pattern
at the outlet is symmetric. Then,

with

Bn Ψn, Hn– Ξn,= =

un 0( ) 1
2
--- Bn Ψn–( )≈ Ψn–

gn 0( )
an

-------------,–≅=

un L( ) 1
2
--- Ξn Hn+( )≈ Ξn

gn L( )
an

-------------.≅=

gn x( )
gn const, 0 x L< <=

0, x 0, x L,><



=

un x( ) 1
2
---Bn anx–( )exp

gn

2an

-------- anx–( )exp–≈

0 x< h ! L∼

wn x( ) 1
2
---Bn anx–( )exp

gn

2an

-------- 2 anx–( )exp–[ ] ,+=







Ψn Ξm

gn

an

-----.≈=
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Then, for quasi-hermetic boundary conditions (18)–
(20), we obtain

In this case, the transverse velocity is independent of
the longitudinal coordinate,

For soft boundary conditions (23), we get

Herein,

and the transverse velocity at the inlet is exactly half its
limiting value (17) far away from the inlet.

Finally, for longitudinal boundary conditions (24)
and (25), we have

and the transverse velocity at the inlet is equal to zero.

un 0, wn≈
gn

an

-----, 0 x< h ! L.∼=

∂w
∂y
-------

∂
∂y
-----

gn

an

----- any( )sin
n 1=

∞

∑=

=  gn any( )cos
n 1=

∞

∑ G y( ) G y( )〈 〉– .=

un x( )
gn

2an

-------- anx–( ),exp–≈

wn x( )
gn

2an

-------- 2 anx–( )exp–[ ] , 0 x h ! L.∼<=

∂w
∂y
-------

x 0=

∂
∂y
-----

gn

2an

-------- any( )sin
n 1=

∞

∑=

=  
1
2
--- gn any( )cos

n 1=

∞

∑ 1
2
--- G y( ) G y( )〈 〉–[ ] ,=

un x( )
gn

an

----- anx–( ),exp–≈

wn x( )
gn

an

----- 1 anx–( )exp–[ ] , 0 x h ! L,∼<=
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CONCLUSIONS

The two-dimensional gas velocity distribution in
nuclear-pumped flowing-gas laser cells at low energy
deposits that was obtained earlier [3, 4] for a particular
form of the boundary conditions at the inlet is general-
ized to the case of arbitrary boundary conditions at both
the inlet and outlet. Three types of boundary conditions
are considered, namely, quasi-hermetic, soft (derived
by joining), and longitudinal conditions. The last-
named conditions are the most adequate if cooling radi-
ators are placed just ahead of the inlet (and immediately
after the outlet) of the cell. The conditions at the inlet
and outlet may be specified independently by combin-
ing different situations in an arbitrary way.

It is demonstrated that the effect of the boundary
conditions is tangible only in the neighborhood of the
inlet and outlet. The length of these regions is close to
the channel width. Outside these neighborhoods, the
two-dimensional flow separates into two quasi-one-
dimensional components, as has been shown in papers
[3, 4] for specific boundary conditions.
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Abstract—In the context of the ICR method of isotope separation, resonance RF heating of the ions in an elec-
tric field propagating along a constant magnetic field while simultaneously rotating in the direction perpendic-
ular to it is calculated in a linear approximation. The analysis is carried out for two types of the initial ion dis-
tribution function over longitudinal velocities: a function proportional to the first power of the velocity in the
range of low velocities and a shifted semi-Maxwellian distribution function. The distribution function of the
ions over transverse velocities is calculated under the assumption that their initial distribution over transverse
velocities is Maxwellian. The ion fluxes onto the collector plates are estimated by integrating the corresponding
ion distribution functions over the allowed range of the longitudinal and transverse velocities and the transverse
coordinates of the guiding centers of the ion trajectories in front of the extractor. In the first part of the paper,
calculations are carried out for a model binary mixture of isotopes with mass numbers of 6 and 7. The effect of
the shape of the ion distribution function over longitudinal velocities on the heating efficiency and on the con-
centration of the target isotope ions at the collector, as well as the effect of the longitudinal ion temperature on
the width of resonance curves for the ion heating efficiency, is investigated. In the second part, a study is made
of the selectivity of heating of isotope ions in a gadolinium plasma, in particular, the effect of the longitudinal
magnetic field on the selectivity of heating of neighboring isotopes with atomic masses of 156, 157, and 158 is
examined. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The isotopes of chemical elements that form no gas-
eous compounds under normal conditions are usually
separated by the electromagnetic method [1], which is,
however, of low productivity. Plasma methods based on
systems with a traveling magnetic field or on plasma
centrifuges [2, 3] might have a high level of productiv-
ity, but it seems inexpedient to use them for isotope pro-
duction because of the comparatively low values of sep-
aration coefficients that are achievable in such devices
and because of the fairly high energy consumption [4].
A plasma method based on selective ICR heating of the
ions of the target isotope [5–11] makes it possible to
achieve comparatively high separation coefficients and
thus may hold promise for industrial applications.

CALCULATIONS OF THE ION HEATING 
EFFICIENCY. SEPARATING PARAMETERS
OF THE COLLECTOR FOR SEPARATION 

OF BINARY ISOTOPIC MIXTURES

The ICR method is based on an isotopically selec-
tive ICR heating of the ions of the target isotope, fol-
lowed by the extraction of this isotope from the plasma
flow under conditions such that the collisions between
1063-7842/05/5006- $26.000698
particles are negligible. The schematic diagram of a
version of the separator that is most suitable for indus-
trial applications is illustrated in Fig. 1. A steady
plasma flow (P) from the plasma source (the design of
different types of plasma sources was described in
detail in [8]) passes through the region where a solenoid
(1) creates a uniform magnetic field and where an RF
antenna (2) producing the heating field is located. A
system for collecting the target material is arranged
behind the heating region. The ion-collecting system
consists of equidistant collector plates (3) and a waste
plate (5). The collector plates, which are parallel to the

1

2
3

4

5
6

7

L RF

P

Vz

Fig. 1. Schematic diagram of the device.
 © 2005 Pleiades Publishing, Inc.
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plasma flow and are protected by front screens (4), are
intended for extracting the heated ions (with a large
gyroradius) of the target isotope (7). The waste plate,
which is perpendicular to the plasma flow, is aimed at
depositing the “cold” (nontarget) ions (6). In order to
increase the degree of separation, the collecting plates
can be held at a positive repulsing potential U, which
substantially reduces the nontarget ion flux. An ICR
separator is capable of yielding a considerably larger
amount of the target material (in comparison to indus-
trial electromagnetic separators based on ion beams),
because the plasma (and, accordingly, the flow of the
isotopes to be processed) is free of fundamental restric-
tions associated with the positive space charge of an ion
beam.

When the plasma passes through the ICR heating
region, the ion distribution over transverse velocities
changes appreciably. Knowledge of the distribution
function of the ions in a plasma flow that has passed
through the heating region is important because, with
this information, it is possible not only to estimate the
separating parameters of the collector system but also
to determine the selective properties of the RF system.
In some ICR devices (see, e.g., [10]), use is made of
inductive antennas in the form of twisted multiphase
cylindrical helices—the so-called helical (or spiral)
antennas. For a four-phase antenna in which the ac cur-
rent in each subsequent phase is shifted by π/2, the
alternating electric field within the cylindrical heating
region can be represented as a circularly polarized wave
that travels in the positive direction along the z axis and
whose polarization vector rotates with an angular
velocity ω,

(1)

(2)

where K = 2π/λ is the wavenumber, λ is the spatial
period of the electric field, E is the field oscillation
amplitude, and ϕ is the initial phase.

In this approximation (which can be regarded as lin-
ear), the alternating components of the magnetic field
of the wave are ignored. As the ions are heated, their
transverse temperature increases and gives rise to an
alternating electrostatic field, which reduces the heat-
ing field produced in the plasma by the antenna. In [12],
it was shown that the maximum density ni max of the tar-
get ions during their heating can be estimated from the
relationship

where mi is the mass of an ion, c is the speed of light in
vacuum, and VT is the ion thermal velocity.

Setting mi = 10–23 g, K = 10–1 cm–1, ω = 4 × 106 s–1

(which corresponds to the ion gyrofrequency at a mag-
netic induction of B = 0.25 T), and VT = 1.6 × 106 cm/s,

Ex E ωt Kz– ϕ–( )cos ,=

Ey E ωt Kz– ϕ–( )sin ,–=

ni max

mic
2K3VT

4πe2ω
------------------------,≈
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we obtain ni max ≅  1012 cm–3. If the ion density is lower
than the critical density, then the inverse effect of the
motion of plasma particles on the vacuum antenna field
can be ignored (the case of relatively low plasma densi-
ties) and representations (1) and (2) correctly describe
the heating electric field in the plasma at radii of r ≤
R/2, where R is the antenna radius [12]. For the plasma
density n =1012 cm–3, a mean ion energy on the order of
θ = 10 eV, and the relative ion atomic mass A = 6, the
mean time between Coulomb collisions of ions, esti-
mated from the relationship [8]

is equal to τii ≅  1.7 × 10–4 s, which is much longer than
the time of flight of ions through the heating region in
the Sirena device [10] (τf ≅  4 × 10–5 s). During their
flight time, the mean energy of the ions increases to
about 40 eV. For a binary isotopic mixture, the concen-
tration of the target ions of 8%, and the cross-sectional
area of the plasma column of 0.03 m2, the RF power
that goes into the heating of target ions with the density
nt = 8 × 1010 cm–3 in a longitudinal ion flow with the
mean velocity Vz = 2 × 104 m/s is on the order of 102 W.

Let us consider ICR heating of a longitudinal ion
flow with an initial Maxwellian distribution over trans-
verse velocities and with the same longitudinal veloci-
ties Vz (in what follows, such a flow will be referred to
as an ion beam) in an electric field given by relation-
ships (1) and (2), i.e., in a field rotating in the azimuthal
direction and traveling along the z axis. In this case, the
ion distribution function over transverse velocities V⊥  at
the exit from the ICR heating region is described by the
expression [13]

(3)

where m is the mass of an ion, k is Boltzmann’s con-
stant, T⊥ 0 is the initial transverse ion temperature, and
I0 is the zero-order modified Bessel function.

For a heating regime in which the transverse energy
of the ions is much higher than their initial thermal
energy, the quantity V0 is given by the formula

(4)

where B is the induction of the main magnetic field,
ω is the heating field frequency, ω0 is the ion gyrofre-
quency, and L is the length of the heating region. Distri-
bution function (3) is normalized to unity and depends
on both the longitudinal velocity of the ion beam and
the heating field frequency. When the initial longitudi-
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nal ion velocities are not the same and obey a distribu-
tion fz(Vz), the total ion distribution function can be rep-
resented as the product

(5)

where n is the ion number density. It should be noted
that distribution function (5) is very non-Maxwellian.

In order to determine the ion fluxes onto the collec-
tor plate, we utilize a method that was mainly devel-
oped in [13–15] for calculating the separation of binary
isotopic mixtures. This method consists essentially in
finding the fluxes of all isotopic species by integrating
the ion flux densities over the permissible ranges of val-
ues of the transverse and longitudinal ion velocities
(V⊥ , Vz) and of the coordinates y0 of the guiding centers
of the ion trajectories in front of the collector plate with
allowance for the known ion velocity distribution func-
tion f(V⊥ , Vz). Unlike in [13], we will obtain the fluxes
of the ion species onto the plates by integrating the cor-
responding distribution functions. In this way, we will
not use the results of numerical integration over the
coordinates of the guiding centers of the ion trajectories
but will determine the ranges of the permissible values
of these coordinates in advance [14]. According to [14],
the total density of the transverse flux of any ion species
onto the collector plate is equal to

(6)

For a binary isotopic mixture, the density of the tar-
get (first) ion species,

(where ni are the number densities of the ion species),
can be found from the relationship

(7)

where C0 is the initial concentration of the target ion
species and n10 and n20 are the initial number densities
of the first (target) and the second ion species.

In [14, 15], the separating parameters of the collec-
tor were calculated in terms of an approximate model
under the following two assumptions: first, the ions of
a flow that has passed through the heating region obey
Maxwellian distribution functions over transverse
velocities and, second, the transverse temperatures of
both ion species, T⊥ 1 and T⊥ 2, are known. In the present
paper, the fraction of the ions heated above a given
energy and the concentration of the target isotope at the
front edge of the collector plate are calculated from for-
mulas (3)–(7) as functions of the heating field fre-
quency under the assumption that the ions in the source
obey several most likely types of distribution (which
play the role of the initial ion distributions). This for-
mulation of the problem makes it possible to reveal how

f n f ⊥ V ⊥( ) f z Vz( ),=

j f ω0V ⊥ V ⊥d Vzd y0.d∫=

C
n1

n1 n2+
----------------=

C
1 C–
------------

C0

1 C0–
---------------

j1n20

j2n10
-----------

m2

m1
------,=
the separation efficiency depends on the shape of the
distribution function over longitudinal velocities, fz(Vz),
for different relationships between the length L of the
heating region and the wavelength λ of the current in
the heating solenoid. For this purpose, it is expedient to
introduce the parameter p, which is equal to the ratio of
the wavelength λ to the length L of the heating region.
Since the plasma flowing out of a plasma source is
bounded on one side, it is nonequilibrium. Conse-
quently, the ion distribution over longitudinal velocities
should differ strongly from a conventional symmetric
Maxwellian distribution. The distribution functions that
most closely correspond to the actual distributions are
asymmetric functions or shifted semi-Maxwellian
functions.

We begin by investigating the heating efficiency in
the case of a model non-Maxwellian distribution func-
tion that depends linearly on the longitudinal ion veloc-
ity in the low-velocity range,

(8)

where Tz is the effective longitudinal ion temperature.
If we introduce the dimensionless parameters

From formulas (5), (6), and (8) we can then also
obtain an expression for the relative fraction η of the
ions of an isotopic species that are heated to transverse

energies above a given energy Wmin y1 = :

(9)

Let us first consider a model isotopic mixture of ions
with mass numbers of 6 and 7. Figure 2 illustrates the
results of calculating the quantity η (which can be
called the heating efficiency) for an isotope with a rela-
tive atomic mass of 6, the remaining parameters being
the following: Wmin = 40 eV; the amplitude of the heat-
ing electric field produced by the antenna is E =
50 V/m; the longitudinal ion temperatures are Tz = 5,
10, and 20 eV; the length of the heating region is L =
0.8 m; the induction of the main magnetic field is B =

f z Vz( )
mVz
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TECHNICAL PHYSICS      Vol. 50      No. 6      2005



EFFECT OF THE ION DISTRIBUTION 701
0.25 T; and p = 1.0. Note that the heating efficiency η is
seen to depend on the longitudinal ion temperature.
Analogous dependences are shown in Fig. 3, which
illustrates the results calculated for Tz = 10 eV, for a
fixed length L of the heating region, and for different
values of the parameter p. It should be noted that, in the
range of p values under analysis, the maximum heating
efficiency decreases markedly with decreasing wave-
length λ. The numerical calculations were carried out
under the assumption that the electric field is
unchanged. It should be taken into account, however,
that the electric field changes with increasing wave-
length when the antenna current is maintained constant.
The fact that the width of the resonance curves
increases with decreasing wavelength is attributed to
the Doppler broadening.

Relationship (7) implies that, in order to find the
concentration of the target isotope ions with a number
density n at the front edge of the collector plate, it is
necessary to determine the density of the corresponding
ion flux:

(10)

The dependence of the concentration of an isotope
of mass number 6 at the front edge of the collector plate
on the dimensionless frequency of the electric field is
shown in Fig. 4, which illustrates the results of calcula-

j
4n
π

------
2kT ⊥ 0

m
--------------- 

 
1/2

=

x xy2 y2 yΩ
2 x2+ +( )–( )I0 2yyΩ( )exp y.d
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Fig. 2. Ion heating efficiency η vs. heating field frequency
for distribution function (8), for p = 1, and for different lon-
gitudinal ion temperatures: Tz = (1) 5, (2) 10, and (3) 20 eV.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
tions for the initial density C0 = 0.08, for a one-wave-
length antenna (p = 1), and for different longitudinal
ion temperatures. The width of the resonance curves is
seen to increase slightly with increasing longitudinal
temperature Tz. It is of interest to compare these results
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Fig. 3. Ion heating efficiency η vs. heating field frequency
for distribution function (8), for Tz = 10 eV, and for different
values of the parameter p.
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Fig. 4. Concentration of an isotope of mass number 6 at the
front edge of the collector plate vs. heating field frequency
for distribution function (8), for C0 = 0.08, and for different
longitudinal ion temperatures: Tz = (1) 5, (2) 10, and (3) 20 eV.
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with those in the case of a shifted semi-Maxwellian dis-
tribution function over longitudinal velocities,

(11)

where V0z is the velocity shift parameter.
In this case, the expression for the quantity η takes

the form

(12)

where

In Fig. 5, the solid curves represent the quantity η
calculated from expression (12) for shift parameters
V0z = 104 and 2 × 104 m/s and the dashed curve was cal-
culated for a zero velocity shift. As can be seen, an
increase in the shift parameter by a factor of only 2
(from 104 to 2 × 104 m/s) leads to a substantial decrease
in the efficiency of RF heating of an isotope of mass
number 6. This is well confirmed by the results of cal-
culating the separating parameters of the collector of
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Fig. 5. Heating efficiency η vs. heating field frequency for
Wmin = 40 eV, E = 50 V/m, and for different values of the
shift parameter in distribution (11): V0z = (1) 0 (a zero

velocity shift), (2) 104, and (3) 2 × 104 m/s.
heated particles. For a shifted semi-Maxwellian distri-
bution function over longitudinal velocities, the ion flux
density has the form

(13)

Figure 6 shows the density of the target isotope at
the front edge of the collector plate for an unshifted
(V0z = 0) and a shifted (V0z = 2 × 104 m/s) distribution
function. We see that, at high velocities of the plasma
flow, not only does the resonance shifts toward higher
frequencies (because of the Doppler effect), but also the
ion separation effect becomes less pronounced. The lat-
ter result has a clear physical meaning: as the shift
parameter increases at a fixed temperature Tz, the ion
heating time decreases. The heating efficiencies calcu-
lated from two different ion distributions over longitu-
dinal velocities, namely, distributions (8) and (11), for
the same mean longitudinal velocity of the ion flow dif-
fer insignificantly (see Fig. 7).

It should be noted that, under the same heating con-
ditions, the half-widths of the resonance curves (i.e.,
the full widths at half-maximum of the peaks) for the
heating efficiency η and the density C of the target iso-
tope are nearly the same.
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Fig. 6. Concentration of an isotope of mass number 6 vs.
heating field frequency for E = 50 V/m and for two different
values of the shift parameter: V0z = (1) 0 and (2) 2 ×
104 m/s.
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MASS RESOLUTION IN THE CASE 
OF HEAVY ELEMENTS

The calculations described above were carried out
for a binary isotopic mixture such that the mass differ-
ence between the isotopes to be separated is relatively
large. In this case, the effective mass resolution can be
provided by comparatively weak magnetic fields. Let
us estimate the selectivity of the heating of a multispe-
cies mixture of gadolinium isotopes. Note parentheti-
cally that the first experimental attempt to separate gad-
olinium isotopes by the ICR method was made in
France [16]. In the United States, preliminary results
from experiments on the separation of the 157Gd isotope
in gram quantities have recently been reported in [17].
Figure 8 illustrates the results of calculation of how the
mean energy of ions with atomic masses close to that of
the 157Gd isotope depends on the heating field fre-
quency. The calculations were carried out for the fol-
lowing parameter values: p = 1, the amplitude of the
transverse electric field in the plasma was E = 15 V/m,
the induction of the main magnetic field was B = 1 T,
the length of the heating region was L = 4 m, and the
effective longitudinal ion temperature was Tz = 10 eV.
The curves in Fig. 8 clearly shows that, for the given,
comparatively weak, longitudinal magnetic field of B =
1 T, the resolution of the peaks of the resonance energy
absorption is low (in terms of the Rayleigh criterion,
which is known in optics, this situation is at the thresh-
old of mass resolution: the peak in one curve occurs
essentially at the same position as the minimum in the
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Fig. 7. Heating efficiency η vs. heating field frequency for
two different ion distributions over longitudinal velocities
(curve 1 for distribution (8), and curve 2 for distribution
(11)), for the same mean longitudinal ion velocity U = 6 ×
103 m/s, and for E = 50 V/m and Tz = 10 eV.
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neighboring curve). The resonance is also observed to
be Doppler-shifted toward higher frequencies (in a
magnetic field with the induction B = 3 T, the gyrofre-
quency ω0 of a 157Gd isotope ion is about 1.8 × 106 s–1);
this effect is attributed to the chosen propagation direc-
tion of the heating wave and the chosen direction of the
mean velocity of the plasma flow [10].
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Fig. 8. Mean transverse energy of Gd isotope ions vs. heat-
ing field frequency for B = 1 T, E = 15 V/m, L = 4 m, λ =
4 m, T⊥ 0 = 5 eV, and Tz = 10 eV.
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Figure 9 illustrates the results of similar calculations
carried out for the magnetic induction B = 3 T. As is
seen, an increase in the induction of the main magnetic
field raises the ion heating selectivity: the differences
between the gyrofrequencies of the ions of different
isotopes increase while the half-widths of the reso-
nance curves remain the same as in the previous case.
The latter circumstance can play a decisive role when
other (additional) line broadening mechanisms (such as
plasma instabilities or collisions between ions) that
cannot be taken into account in the model used here
operate in the plasma.

CONCLUSIONS

(i) It is shown that, in the case of an ion distribution
function over longitudinal velocities that is linear in the
low-velocity range, the efficiency of heating of the tar-
get isotope ions depends substantially on their longitu-
dinal temperature; for a constant heating electric field,
it is found that, in the range of values of the parameter
p from 2 to 0.5, the width of the resonance heating
curve increases with decreasing wavelength; it is also
found that the width of resonance curves for the heating
efficiency and for the density of the target isotope ions
depends on the longitudinal ion temperature only
slightly.

(ii) It is shown that, in the case of a shifted semi-
Maxwellian distribution function over longitudinal
velocities, a twofold increase in the velocity shift
parameter leads to a substantial decrease in the heating
efficiency.

(iii) It is demonstrated that, in the case of a multispe-
cies gadolinium plasma, an increase in the longitudinal
magnetic field results in a corresponding increase in the
heating selectivity.
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Abstract—Results are presented from experimental studies of pulsed plasma flows generated by nanosecond
laser pulses with an intensity of 7 × 108 W/cm2 from a solid-state target in a strong electric field. The current
pulses through the laser target and the depth distributions of the iron ions implanted in a silicon substrate to
which a negative high-voltage pulse was applied are measured. The physical processes occurring in laser
plasma with an initial iron ion density of 6 × 1010 cm–3 are simulated numerically by the particle-in-cell method
for different delay times and different shapes of the accelerating high-voltage pulse. The model developed
allows one to calculate the ion flows onto the processed substrate, the electron flows onto the target, and the
energy spectra of the implanted ions. The results from computer simulations are found to be in good agreement
the experimental data. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Implantation of high-energy (up to several tens of
kiloelectronvolts) ions has been utilized over the past
few decades in the microelectronics technology [1] and
for modifying the surface properties of structural mate-
rials [2]. The important role played by ion implantation
in modern high technology has stimulated the search
for new simple and inexpensive methods for the
implantation processing of materials by high-energy
ion beams. The employment of a pulsed laser plasma as
an ion source opens new possibilities for the ion-
implantation processing of materials and the ion-
assisted deposition of coatings with the use of a rela-
tively simple scheme of ion acceleration [3–6].

The use of intense laser pulses ensures the congru-
ent evaporation of the target material and the high
degree of its ionization. These properties of laser radia-
tion were utilized in [6] in designing an ion-beam
implanter with a laser-plasma ion source. To obtain a
large-diameter ion beam, the plasma boundary in that
source was fixed with the help of a fine-mesh metal
grid. It was noted in [6] that, along with obvious advan-
tages, such an ion source has some drawbacks, which,
however, can be overcome by using another scheme of
ion beam formation. As the plasma flows from the tar-
get to the substrate, a negative high-voltage pulse is
applied to the latter; this leads to the acceleration of
ions and their subsequent implantation in the substrate.
The choice of the target (or the set of several different
targets) unambiguously determines the composition of
the ion beam. The main controllable parameters of the
laser ion-implantation process are the laser intensity,
1063-7842/05/5006- $26.00 0705
the parameters of the high-voltage pulse (including the
time at which it is applied to the substrate), and the
geometry and mutual arrangement of the target and
substrate. Variations in these parameters can substan-
tially affect the density and temperature of the laser
plasma, the configuration and strength of the electric
field between the target and substrate, and the energy
and dose of the ion beam.

The scheme of ion beam formation with an unstabi-
lized plasma boundary [3, 5] is fairly simple from the
technical standpoint. It allows one to deposit ion-
assisted coatings and is not subject to the so-called “lin-
ear-beam” effect. As is case of pulsed ion implantation
from a gas-discharge plasma [7], the application of a
negative high-voltage pulse to a body embedded in
plasma makes it possible to implant ions in rather com-
plicated surfaces.

In many respects, the innovative potential of the new
method is determined by the possibility of performing
relevant computer simulations, which substantially
simplify the optimization of the technological process.
To develop an adequate numerical model, it is neces-
sary to thoroughly investigate the expansion of a pulsed
laser plasma in a strong electric field. Today, the phys-
ics of this process still remains poorly studied.

The goal of the present paper was to experimentally
and theoretically examine the dynamics of a pulsed
laser plasma and the implantation of ions under the
action of a strong external electric field, as well as to
clarify the physics of the processes determining the for-
mation of an ion beam from the plasma cloud for differ-
© 2005 Pleiades Publishing, Inc.
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ent delay times and different shapes of the accelerating
high-voltage pulse.

1. PROCEDURE OF ION IMPLANTATION
FROM A LASER PLUME

Figure 1 shows a schematic of the experimental
setup for pulsed ion implantation from a laser plume. A
focused laser pulse with a wavelength of 1.06 µm and
duration of 10 ns was incident on an iron (99.99%) tar-
get at an angle of 45°. The target was mounted in a steel
vacuum chamber, which was evacuated by a turbomo-
lecular pump down to a pressure of 10–4 Pa. A distance
of 8 cm from the target, a silicon substrate was
installed. The substrate was connected to the generator
of negative high-voltage pulses. The repetition rate of
the laser and high-voltage pulses was 10 Hz. The rise
time of the triangular high-voltage pulses was 1 µs and
the decay time was longer than 10 µs. The amplitude of
the voltage pulses was up to 40 kV.

The target was installed on a vacuum input con-
nected to a computer recording the current pulses gen-
erated in the laser plasma when applying the high-volt-
age pulses. The high-voltage pulses were recorded with
the help of an antenna connected to the computer. To
investigate the free expansion of the laser plasma into a
vacuum, the parameters of the ion component were
measured by a grid detector [4]. The detector was set a
distance of 8 cm from the laser target, at the place
where the processed substrate was then installed.

After ion implantation, the silicon plates were
chemically treated to remove the deposited Fe film and
then were analyzed by the method of backward Ruther-
ford scattering (BRS) of helium ions. The energy of
ions in the probing beam was 1.5 MeV, and the scatter-
ing angle was 105°. Note that the objects under exami-
nation are of interest from the standpoint of the forma-
tion of iron-silicide electron structures [8]. These
objects also allow one to apply the highly informative

1
2

3

4

5
6

x y

Fig. 1. Schematic of the experimental setup for ion implan-
tation from a pulsed laser plume: (1) laser, (2) laser target,
(3) substrate for ion implantation, (4) generator of negative
high-voltage pulses, (5) antenna, and (6) ion detector.
BRS method to measuring the depth distribution of the
implanted ions. To measure the depth distribution of
iron ions in silicon, the BRS spectra were processed
with the help of the RUMP code. It should be noted that
the dose of the implanted ions did not exceed 1015 cm–2;
therefore, the effect of ion sputtering on the formation
of the ion depth distribution was insignificant.

2. EXPERIMENTAL STUDY OF THE LASER 
PLASMA AND ION-IMPLANTED LAYERS

Experiments with a laser plasma in an external elec-
tric field showed that stable regimes of ion implantation
could be achieved for moderate-intensity laser pulses
with an energy of ~20 mJ. In this case, high-voltage
electrical breakdowns could be avoided and the plasma
load insignificantly affected the output parameters of
the high-voltage source. All the experiments were car-
ried out at a fixed intensity of laser radiation on the tar-
get (about 7 × 108 W/cm2).

Grid-detector measurements of the free expansion
of the laser plasma into a vacuum showed that the max-
imum ion energy was no higher than 400 eV. The peak
of the ion energy distribution function was at 150–
200 eV. According to these measurements, the front of
the ion component traveled a distance of about 2 cm
from the target over 1 µs. The maximum ion density in
a 2-cm-wide plasma layer was about 6 × 1010 cm–3. The
measurements of the angular ion velocity spectrum
showed that, under our experimental conditions, the
plasma was ejected in the form of a relatively narrow
plume. The amplitude of the ion signal decreased
appreciably as the detector was deflected by an angle of
30° with respect to the plume axis, which was normal
to the target surface. Therefore, in developing the
numerical model and performing computer simula-
tions, it was assumed that, 1 µs after the laser pulse, all
the plasma parameters changed only slightly in the
direction perpendicular to the axis of the laser plume.

The parameters of the electric pulses measured on
the laser-irradiated target depended substantially on the
time at which the high-voltage pulses were applied.
When the accelerating voltage was applied 1 µs after
the laser pulse (Fig. 2), the target signal increased dur-
ing 1 µs and then gradually decreased during 6–7 µs.
Within this time interval, the accelerating voltage
decreased from 40 to 20 kV. The increase in the delay
time resulted in a decrease in the duration of the target
signal. Thus, at a delay time of 3 µs, the pulse duration
decreased to 2.5 µs and the signal amplitude increased
by almost twice, whereas the accelerating voltage
decreased by only 10 kV. Evidently, in this case, one
can expect the formation of the narrowest energy distri-
bution of the implanted ions. A further increase in the
delay time resulted in a gradual decrease in the ampli-
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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tude of the target signal. The accompanying variations
in the signal duration were less pronounced.

BRS measurements of the depth distribution of the
implanted iron ions in silicon showed that the narrowest
distribution (which corresponded to the minimum
spread in the ion ranges) was achieved at a delay time
of 3 µs. The iron ions had a characteristic bell-shaped
depth distribution with a maximum at a depth of about
40 nm (Fig. 3, curve 1). At other delay times, the distri-
bution was broader and the total dose of the implanted
ions was lower. The implantation depth coincided well
with the calculated ranges of iron ions with energies of
~40 keV in amorphous silicon. A relatively large
amount of implanted ions was observed in the surface
layer of the substrate. This can be explained by the
broadening of the energy distribution of the iron ions
toward the low-energy range. This may also be attrib-
uted to the ion-induced intermixing of the iron atoms
deposited from the laser plume with silicon. The reason
for such a broadening and its influence on the shape of
the ion depth distribution will be considered below.

3. MATHEMATICAL MODEL FOR SIMULATING 
THE DYNAMICS OF THE LASER PLASMA 

AND ION FLOWS

The expansion of the laser plasma into a vacuum in
an external electric field was simulated numerically by
the particle-in-cell (PIC) method [9]. The PIC method,
which is known to be an efficient tool for solving
plasma physics problems, has been successfully used
to simulate various plasma technological processes,
including ion implantation from gas-discharge plas-
mas [10].

Simulations of the physical processes in plasma by
the PIC method consist in simultaneously solving the
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t, µs

–0.4

–0.8
4 6 8 10

1

2
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Fig. 2. Measured waveforms of the current pulses through
the laser target (1, 3) and the detected signals from the
antenna recording the high-voltage pulses (2, 4). The high-
voltage pulse is applied to the substrate (1, 2) 1 and (3, 4)
3 µs after the laser pulse (marked by the arrow).
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equations of motion for electrons and ions from a cer-
tain sample representing the total ensemble of the
plasma particles and Poisson’s equation for the poten-
tial of the self-consistent electric field calculated at the
mesh points of the spatial grid.

The narrow angular width of the plasma flow after
the end of the laser pulse (and especially after the high
voltage is switched off) allows one to ignore the radial
expansion of the plasma and to solve a one-dimensional
problem.

The formation time of the laser plume (which is
close to the duration of the laser pulse τ ~ 10 ns) is
much less than the time of plasma expansion. There-
fore, starting from a certain instant t0 @ τ, the propaga-
tion of the plume to the substrate can be considered
independently of its formation. The initial distribution
of the plasma density and velocity were specified using
the results from the above measurements: over a time of
1 µs after the end of the laser pulse, the plasma
expanded over a distance of ~2 cm from the target and
its density acquired a bell-shaped profile.

The velocity distributions of the plasma particles at
t = t0 = 1 µs were assumed to be Maxwellian with the
parameters Nj, Tj, and u corresponding to the densities
and temperatures of the plasma components and the
plasma flow velocity, respectively. The initial ion and
electron densities Nj(x, t = t0) within the interval from 0
to 2 cm were approximated by parabolas with zero val-
ues at the ends of the interval and a peak value of Njm =
6 × 1010 cm–3 at x = 1 cm. The mean plasma flow veloc-
ity was assumed to be u = 106 cm/s. For the ion and
electron temperatures, we used values typical of laser
experiments: kTj = 1 eV.

As the boundary conditions for Poisson’s equation,
we used the known values of the potential at the
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D, nm

0.5

0 40 8060
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Fig. 3. Depth distribution of the iron ions implanted in sili-
con from a pulsed laser plasma under the action of a high-
voltage pulse applied to the substrate with a delay time of
3 µs: (1) the measured depth distribution and (2) the depth
distribution calculated using the ion energy distribution
determined from the mathematical model.
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grounded target ϕ(x = 0, t) = 0 and at the substrate ϕ(x =
xs, t) = Vs(t), to which high-voltage pulses of different
shapes were applied with a certain time delay τV with
respect to the laser pulse.

When solving the kinetic problem numerically, the
time step ∆t and the cell size of the spatial grid ∆x are
determined by the Debye screening radius rD =
(ε0kTe/Nee2)1/2 and the plasma frequency ωe =
(Nee2/ε0me)1/2. For the solutions obtained by the PIC
method to be stable, a number of conditions must be
satisfied, in particular, ∆x < rD and ∆t < 2π/ωe. In our
case, the plasma was modeled by 105 particles of both
species (electrons and ions) and the time and spatial
steps were 4 × 10–11 s and 2 × 10–3 cm, respectively, the
total number of cells being 4 × 103.
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Fig. 4. Time evolution of the particle flux densities Jj from
the laser plasma expanding from the target to the substrate:
(1) electron flux onto the target and (2) ion flux onto the sub-
strate. The high-voltage pulse Vs (3) is applied 3 µs after the
laser pulse.
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Fig. 5. Spatial distributions of the (1) ion and (2) electron
densities and (3) the electric potential ϕ in the laser plasma
expanding from the target (x = 0) to the substrate (x = 8 cm)
at the instant t = 4 µs. The high-voltage pulse is applied 3 µs
after the laser pulse.
Below, we present the results from numerical simu-
lations of the expansion of a laser plume consisting of
Fe+ ions and electrons into a vacuum. The calculations
were carried out for a triangular high-voltage pulse
with a shape close to that of an actual high-voltage
pulse: the voltage increased in absolute value to 40 kV
over 1 µs and then decreased over 8 µs. The distance
between the target and the substrate was set to 8 cm.

The computer simulations of the free expansion of
the laser plasma showed that the ion component
reached the substrate about 3 µs after plasma formation.
Figure 4 shows the calculated electric signals from the
target and substrate in the regime of ion implantation
for a time delay of τV = 3 µs between the laser pulse and
the application of the high-voltage pulse. It should be
noted that, after applying the accelerating voltage, the
electron flux onto the target almost coincides with the
ion flux onto the substrate. This is explained by the fun-
damental property of plasma to maintain quasineutral-
ity in the volume occupied by it. After applying the
high-voltage pulse, the ions at the leading edge of the
plasma are drawn by the accelerating field onto the sub-
strate. In contrast, the electrons are retarded by the elec-
tric field and cannot reach the substrate. To balance the
escape of ions from the plasma (i.e., to maintain plasma
quasineutrality), the excess electrons leave the plasma
from its rear side and fall onto the target. As a result, the
electric signals from the substrate and the targets are
close to one another during the entire phase of plasma
expansion in the external field (of course, these signals
have different signs). Thus, the simulation results con-
firm the validity of monitoring the laser plasma in an
external field by the target signals.

The characteristic structure of the laser plasma
expanding in an external accelerating electric field is
illustrated in Fig. 5. The simulation results show that, in
the bulk of the plasma, the external field is almost com-
pletely screened and the plasma is quasineutral over
almost the entire phase of its expansion from the target.
It can be seen from Fig. 5 that, in a layer of width
4.5 cm, the ion density (curve 1) coincides with the
electron density (curve 2). At the front of the expanding
plasma, the charges are separated, and an ion layer
forms between the plasma and the substrate. The ions
arrive at the substrate from the front of the laser plume,
where the electric field is very strong.

Figure 6 shows the calculated time behavior of the
ion density in the laser plasma expanding in an external
electric field. The ion current increases as the front of
the laser plasma approaches the substrate (Fig. 4). Over
this time period, the accelerating voltage passes its peak
value of 40 kV and starts to decrease. After this, the
plasma front begins to propagate backward (from the
substrate to the target) and the region occupied by the
space charge expands. At the same time, the plasma as
a whole continues moving from the target toward the
substrate.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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Our simulations show that, at the same accelerating
voltage, the energy spectrum and the time during which
the ion beam acts on the substrate depend substantially
on the time at which the high-voltage pulse is applied.
The calculated time evolution of the ion flux onto the
substrate for different delay times of the high-voltage
pulse are shown in Fig. 7. It should be noted that, irre-
spective of the instant at which the high-voltage pulse
is applied, the process of implantation terminates in a
time of 7–8 µs. The increase in the delay time of the
high-voltage pulse leads to a substantial decrease in the
duration of the high-energy ion beam. At a delay time
of about 4 µs, the calculated duration of the ion signal
decreases to ≈3 µs and its amplitude increases nearly by
twice as compared to the 1-µs delay time. This agrees
well with the above experimental results. At large delay
times, the signal of the accelerated ions appears after a
relatively weak signal from the ions that reach the sub-
strate before applying the high-voltage pulse. This sig-
nal is not observed experimentally because, within this
time interval, the electrons arrive at the substrate
together with the ions.

The model developed allows one to predict the
energy spectrum of the implanted ions under various
experimental conditions. The energy distributions of
the implanted ions at different delay times of the high-
voltage pulse are shown in Fig. 8. It can be seen that the
increase in the delay time from 1 to 3 µs leads to a
decrease in the maximum ion energy from 42 to 38 keV.
The fraction of high-energy ions in this case increases.
It should be noted that, under certain conditions, the
energy of the beam ions can exceed the “nominal”
energy determined by the amplitude of the applied
high-voltage pulse. Such high-energy ions can arise for
the following reasons: (i) due to the interaction with the
electrons escaping from the plasma; (ii) due to a short-
term jump in the plasma potential at the instant when
the external field, efficiently acting on the highly
mobile electron component, is applied to the substrate;
and (iii) due to the additional acceleration of a fraction
of ions in the positively charged ion layer under the
action of repulsive Coulomb forces.

The above spectra were used to calculate the model
depth distributions of iron ions in silicon (Fig. 3). The
model depth distributions were found by calculating the
depth distributions of fixed-energy ions with a step of
1 keV. For this purpose, the SRIM (Stopping and Range
of Ions in Matter) computer code was utilized. The cal-
culated fixed-energy depth distributions were then
summed with allowance for the ion energy distribution
(Fig. 8). To compare the measured and calculated depth
distributions, they were normalized to their peak val-
ues. It can be seen from Fig. 3 that, at large depths, the
calculated distribution differs somewhat from the mea-
sured one. The increase in the measured ion concentra-
tion at large depths may be attributed to two factors:
First, doubly charged ions accelerated to energies
exceeding 40 keV could be present in the laser plume.
Second, the ions implanted normally to the substrate
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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in an external electric field applied 3 µs after the laser pulse.
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surface could fall into the channels of the silicon crystal
lattice. It is known [1] that, in this case, the implanta-
tion depth increases.

CONCLUSIONS
It has been found experimentally that the current

characteristics of the laser plasma expanding from the
target to the substrate depend substantially on the time
at which the high-voltage accelerating pulse is applied.
The amplitude of the target current increases apprecia-
bly as the delay time is increased from 1 to 3 µs. A fur-
ther increase in the delay time leads to a gradual
decrease in the target current. The duration of the cur-
rent pulse, in this case, gradually decreased from 8 to
2.5 µs. When using triangular high-voltage pulses with
an amplitude of 40 kV and a duration of 10 µs, varia-
tions in the current characteristics were accompanied
by a change in the depth distribution and dose of the
implanted ions.

Computer simulations have shown that the ion com-
ponent of the plasma freely expanding into a vacuum
approaches the substrate ~2 µs after the formation of
the laser plume. When a negative high-voltage pulse is
applied to the substrate, a positively charged ion layer
forms at the leading edge of the plasma (between the
plasma and the substrate) and an ion beam is generated
in this region. The layer width, the spatial distributions
of the ions and the electric potential in it, and the cur-
rent characteristics of the ion beam depend on the
dynamics of the expanding laser plasma and the time at
which the external field is applied. The calculated
parameters of the ion beam agree well with the mea-
sured ones.

Computer simulations have also shown that the
shape of the electron current pulse to the target is simi-
lar to that of the ion current pulse to the substrate. This
confirms the validity of monitoring the ion flux onto the
substrate by the current signals from the laser target.

Calculations of the energy distributions of the
implanted ions with the help of the model developed
have shown that the maximum ion energy decreases
from 42 to 38 keV as the delay time increases from 1 to
3 µs. This is accompanied by an increase in the fraction
of high-energy ions. A comparison of the measured and
calculated depth distributions of the implanted ions has
shown that the model can be successfully used to pre-
dict the energy characteristics of the generated ion
beams. This is of great importance for implementing
the laser-plasma ion implantation technique in various
technological processes.
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Abstract—Natural diamonds are studied by Fourier-transform IR (FTIR) spectroscopy, and it is shown that B2
centers in them form through intermediate stages, which are accompanied by the appearance of absorption
bands with maxima near 1550 and 1526 cm–1. The concentration of interstitial carbon atoms in the centers
responsible for these bands may be several times higher than the concentration of the interstitials in B2 defects.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Nitrogen in diamonds is present largely as a substi-
tutional impurity, causing the formation of defects A,
B1, or C, which can be identified from the characteristic
absorption spectra in the IR range. Here, C is a substi-
tutional nitrogen atom, and A refers to two neighboring
substitutional nitrogen atoms. Defect B1 is likely to
consist of four substitutional atoms and a vacancy.
Nitrogen also enters into defects B2 (complex objects
that lie in {100} planes and range from several nanom-
eters to several tens of micrometers in size), which are
formed by carbon and, partly, by nitrogen interstitials,
as was first supposed in [1]. However, the earlier model
of defects B2 [2] assumes that they consist of only
nitrogen atoms. In the IR range, these defects produce
a B2 absorption band with a maximum in the range
1359–1380 cm–1 [2].

In synthetic diamonds, nitrogen is present in the
form of defects C. High-temperature annealing causes
the C  A  B1 transformations, during which
nitrogen forms larger aggregates [3, 4]. The A-to-B1
transformation is accompanied by the appearance of
carbon interstitials, which then generate defects B2
[1, 5]. Late in aggregation, B2 decomposes into dislo-
cation loops and octahedral voids [6] containing molec-
ular nitrogen [7]. In 1986, Woods [1] set off a group of
“ordered” crystals, where the B2 concentration is pro-
portional to the B1 concentration. The existence of
“disordered” crystals was explained by the decomposi-
tion of defects B2. However, this fact may be given
another explanation: interstitials do not necessarily
enter into B2 centers, and there may exist other intersti-
tial defects. In this case, the concentration of defects B1
should be proportional to the sum of interstitial carbon
in the form of B2 and in the form of other as yet uniden-
tified defects.
1063-7842/05/5006- $26.000711
In the IR region, there are several absorption bands
that are assigned to defects containing carbon intersti-
tials. The band at 1570 cm–1 is attributed to a defect
with two interstitials [8]. The bands near 1411, 1557,
and 1903 cm–1, as well as several repetitions (5RL), are
identified as an interstitial combined with another
intrinsic defect [8]. The band at 1530 cm–1, arising upon
irradiation and annealing, is due to vibration involving
five carbon atoms [8]. An isolated carbon interstitial in
diamond is mobile at temperatures below room temper-
ature, which favors complexation [8]. In natural dia-
monds of the IaAB type, weak bands with maxima near
1524 and 1550 cm–1 (first detected by Sutherlend [9])
are often observed; however, their origin and correla-
tion with the known centers have not been studied in
detail. Supposedly, this is because their intensities are
too low against the background of the vibrational–rota-
tional absorption spectrum of water molecules in the
range 1300–1900 cm–1, which is much more intense
than the noise. Detailed data for the bands with maxima
near 1524 and 1550 cm–1, which appear upon irradia-
tion or subsequent annealing [8, 10], are not available
in the literature. It was only speculated [5] that the fre-
quencies of local vibrations that are attributed to com-
plexes of interstitials lie in this range.

The purpose of this work is to reveal a correlation, if
any, between the bands at 1526 and 1550 cm–1 (E and F
bands for brevity), nitrogen defects A and B1, and inter-
stitial defects B2.

RESULTS

We studied 38 natural octahedral diamonds 2–4 mm
in size. The concentrations of impurity nitrogen in the
form of defects A and B1 were calculated from the IR
absorption spectra using the calibration values avail-
 © 2005 Pleiades Publishing, Inc.
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able from [1, 11, 12]. Our absorption spectra, some of
which are shown in Fig. 1, were recorded with an FSM-
1201 FTIP spectrometer in the range 400–4000 cm–1

with a resolution of 2 cm–1. They were averaged over
32 scans. Centers B2 were characterized by integral
absorption coefficient KB2 and the position of the band
maximum. The E and F bands were approximated by
the Lorentzian distribution so as to more exactly deter-
mine the position and height of the peak, as well as the
integral absorption coefficient.

The maximum absorption coefficient was calculated
to be 1.3 cm–1 for the E band and 1.6 cm–1 for the F
band. In the Lorentzian approximation of the shapes of
these bands, the wavenumbers of their maxima are
1524 ± 3 and 1548 ± 3 cm–1; their half-widths, 11 ± 2
and 12.6 ± 4 cm–1, respectively; and the maximal inte-
gral absorption coefficients are KE = 29 cm–2 and KF =
17 cm–2. The absorption spectra of ten samples contain
a weak line with a maximum near 1561 cm–1, which
sometimes has an inflection point in the shoulder of the
F line. The absorption spectra for most of the crystals
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Fig. 1. Absorption spectra of the IaAB- and IaB-type dia-
monds. The inset shows fragments of the spectra in the
range 1500–1560 cm–1.
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Fig. 2. Integral absorption coefficient KB2 vs. the concentra-
tion of nitrogen in the form of B1. The solid line is taken
from [1]. The filled circles refer to ordered samples.
also contain a regular set of weak bands in the range
1420–1470 cm–1, where the line at 1435 cm–1 also attrib-
uted to the B2 centers [1] stands out. Note that, in the
absorption spectra of five IaAB-type samples, the E, F,
and 1435 cm–1 bands are absent. In these samples, the
maximum of the B2 band is shifted toward longer
wavelengths (1362–1365 cm–1) and the profiles of the
bands are symmetric and describable by the Lorentzian
curve. In the rest of the samples, the position of the
maximum varies from 1366 to 1376 cm–1 and the band
profiles are asymmetric with an extension toward
shorter wavelengths.

We found that the E and F bands are absent in the
IIa-type crystals, IaA-type crystals, and IaB-type crys-
tals without B2. These bands occur only in the interme-
diate crystals of type IaAB, which agrees with pub-
lished data [1] and indicates that they are related to
defects A and B1. There are also crystals of type IaAB,
whose spectra do not have these bands. If the B2 band
in the spectra of the IaB crystals is absent, the bands
under study are also lacking.

Figure 2 plots the integral absorption coefficient of
the B2 band versus the concentration of nitrogen in the
form of B1 defects. It is seen that four crystals may well
be called ordered and nine more samples are close to
this group. It also follows from Fig. 2 that the integral
absorption coefficient of the B2 band may be several
times smaller than the limiting value and that the con-
centration of B2 defects does not correspond to the con-
centration of the carbon interstitials emerging at the
formation of B1 defects.

Figure 3 plots KE and KF versus KB2, demonstrating
an increase in absorption coefficients KE and KF with
the concentration of B2 defects. The absence of direct
proportionality indicates that the bands and defects are
not related. However, the dependences of positions ν0
of the maxima of the E and F bands on the ratios KE/KB2
and KF/KB2, where KB2 is the absorption coefficient of
the B2 band (Fig. 4), suggest a certain interplay
between the three centers.

DISCUSSION

The results obtained indicate that, although the E
and F bands are somewhat related to the B2 centers,
they E and F centers have another nature. Two forma-
tion mechanisms for these two absorption bands may
be suggested.

(1) The bands are caused by aggregates of intersti-
tials, which are precursors to the B2 centers. In this
case, the concentration of interstitials in the E and F
centers, Ci(E) + Ci(F), should be added to concentration
Ci(B2) of interstitials in the B2 defects so as to reach one-
fourth of nitrogen concentration CN(B1) in the B1 cen-
ters.

(2) The absorption is caused by dislocations or voids
formed as a result of the decomposition of the B2 cen-
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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ters. If the decomposition of the B2 centers is complete,
the absorption coefficient in the bands must be maxi-
mum. However, as noted above, the E and F bands in
the IaB crystals, where absorption coefficient KB2 is
minimal, are absent.

Based on the assumption that all B1 defects arise in
the grown crystal and that most carbon interstitials Ci
enter into the defects B2, E, and F, one can estimate the
Ci concentration in these defects. Using regression
analysis, we derived an empiric relationship between
the sum of the integral absorption coefficients of the KE

and KF bands, integral absorption coefficient of the B2
band, and concentration of nitrogen in the B1 defects,

(1)

which is shown in Fig. 5. The estimates are the follow-
ing: CiB2(at.%) = 3.6 × 10–5KB2 and Ci(E + F) = 2.6 ×
10−4(KE + KF).

CN B1( ) 10.5 KE KF 0.12KB2+ +( ),=

5
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K, cm–2

KB2, cm–2
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Fig. 3. Integral absorption coefficients for the (h) E and (s)
F bands vs. the integral absorption coefficient for the B2
band. For the filled symbols, see Fig. 2.
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Fig. 5. Sum of integral absorption coefficients KE, KF, and
KB2 vs. the concentration of nitrogen in B1 centers. The
solid line is a linear approximation.
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The absorption cross section determined for the B2
centers agrees with the value found in [2]. Then, as
applied to the diamonds studied, the maximal concen-
tration of interstitials in the defects giving rise to the E
and F absorption bands is estimated as 2.6 × 10–4 × 65 =
0.017 at. % (Figs. 3, 4). In the B2 defects, the concen-
tration of interstitials is 3.6 × 10–5 × 130 = 0.0046 at. %
at a concentration of nitrogen in the form of B1 defects
of 0.073 at. %.

It is known that the greater the shift of the B2 band
toward shorter wavelengths, the larger the size of the
centers [2]. The size of the centers depends on the
annealing temperature and time and, thus, is a measure
of aggregation of interstitials rather than of nitrogen
atoms. In other words, the larger the B2 centers are, the
weaker the E and F bands are bound to be. The relation-
ship between the ratio (KE + KF)/KB1 and the position of
the B2 band maximum (Fig. 6) validates this statement.

1525

1E–3

ν0, cm–1

KE/KB2, KF/KB2

1550

0.01 0.1
1520

1545
~~

Fig. 4. Positions of the maxima of the (h) E and (s) F bands
vs. the ratios of their integral absorption coefficients to the
integral absorption coefficient of the B2 band. For the filled
symbols, see Fig. 2.

1360
0

ν0, cm–1

(KE + KF)/KB1

1378

0.1 0.2 0.3 0.5

1366

1372

0.4

Fig. 6. Position of the B2 band maximum vs. the ratio of the
sum of the absorption coefficients for the E and F bands to
that for the B1 band.
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CONCLUSIONS
(1) The absence of direct proportionality between

the concentrations of B1 and B2 defects may be due to
the incomplete formation of B2 defects rather than their
decomposition.

(2) The B2 defects form through intermediate
stages, which are accompanied by the emergence of
absorption bands with maxima near 1550 (E) and
1526 cm–1 (F).

(3) The E and F bands are attributed to defects other
than B2 but also consisting of carbon interstitials.
Changes in the positions of the maxima of the E and F
bands indicate a complex composition of these defects
and a certain interplay with B2 defects.

(4) The concentration of interstitials in the centers
responsible for the E and F bands may be several times
higher than the concentration of carbon interstitials
in B2.
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Abstract—In thin tantalum films grown by pulsed laser deposition in a vacuum, the resistivity versus thickness
dependence is found to oscillate. The oscillation periods equal 5.0 and 5.6 nm for α- and β-Ta films, respec-
tively. This observation is interpreted as the quantum-size effect in thin tantalum films. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION

In contemporary microelectronics, the strong ten-
dency toward decreasing the feature size and increasing
the interconnection density generates the need to
replace aluminum interconnections with copper inter-
connections and oxide and/or nitride insulators with
those with a lower permittivity [1]. This has given
impetus to investigating the parameters of thin-film
copper conductors with thicknesses close to the mean
free path of an electron in copper (39 nm). The aim of
these investigations is to elucidate the feasibility of
applying copper conductors the size of which is smaller
than the mean free path of electrons in integrated cir-
cuits [2].

Because of a high mobility of copper atoms in met-
als and semiconductors, one faces the problem of pre-
venting copper diffusion into silicon and silicon oxide.
In other words, application of copper interconnections
necessitates the formation of stable diffusion barriers
entirely covering a copper conductor. To date, a number
of methods of applying tantalum, a promising barrier
material, have been proposed. It is known that tantalum
has two crystalline phases: body-centered cubic (α-Ta)
and tetragonal (β-Ta). The physical properties of α-Ta,
such as a low resistivity (ρ = 13 µΩ cm), high chemical
stability, and low diffusion coefficient, make it a suit-
able material for coatings. The diffusion rate of copper
atoms in the β-Ta phase (ρ = 160–180 µΩ cm) is con-
siderably higher [3].

Thick layers used as interconnections or for filling
trenches are routinely grown with standard physical
and chemical deposition methods. However, in growing
thin layers with tailored properties (specifically those
serving as diffusion barriers in ultrasmall devices), the
method of laser plasma deposition acquires a special
importance. Pulsed laser emission provides controlla-
ble mass transfer during evaporation (laser ablation)
and, thereby, precision control of the layer thickness
1063-7842/05/5006- $26.00 0715
during deposition. A high energy of the particles being
deposited makes it possible to grow both good crystal-
line films and amorphous films several nanometers
thick. Moreover, the presence of high-energy particles
in the laser erosion torch enables one to obtain high-
quality films even at room temperature.

Tantalum films grown have either the α-phase,
β-phase, or their combination [4]. In [5], techniques of
tantalum thin film physical deposition were analyzed.
In particular, it was established that the energy spec-
trum of ions plays an essential role during laser plasma
deposition. On a thoroughly cleaned silicon surface,
this method forms the α-phase of tantalum. However,
under the conditions of a low torch ionization and low
average energy of ions, the β-phase of tantalum grows.
This demonstrates the promise of lasers for producing
thin Ta films and also the significance of controlling
the ion energy spectrum in a laser torch during deposi-
tion [6].

The size effects in thin metal films have been the
subject of extensive research. Thin copper, silver, gold,
and lead films grown on the silicon surface, as well as
silver, indium, and gallium films grown on gold or sil-
ver sublayers, were examined [2]. The layer-by-layer
growth of some of the films exhibited the oscillating
resistance versus thickness dependence, which was
interpreted as the quantum size effect [7] or periodic
variation in film roughness [8].

Thus, to produce tantalum diffusion barriers for
ultrathin copper lines, it is necessary to consider not
only classical size effects but also quantum-size effects,
since the latter are responsible for the oscillating thick-
ness dependence of the conductivity in thin Ta films. In
this study, we measured in situ the resistance of thin Ta
films obtained by pulsed laser deposition as a function
of their thickness (ranging between several nanometers
and 50 nm).
© 2005 Pleiades Publishing, Inc.
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EXPERIMENTAL

Thin Ta films were prepared by the method of
pulsed laser deposition. This method makes it possible
to precisely control the film thickness during growth by
varying the number of laser pulses [9]. Owing to a rapid
instantaneous growth rate (≈0.1 mm/s), a high vacuum
is effectively maintained during the deposition of each
layer, so that residual gas atoms have no time to be
adsorbed on the film surface [10]. Surface contamina-
tion arising between the pulses is removed by high-
energy (100 eV or higher) particles from the frontal part
of the laser torch [11]. Because of a high nucleation rate
and high nucleus density, this method makes it possible
to grow ultrathin (several nanometers thick) continuous
films. In addition, since the amount of the evaporating
material per pulse is small, this method allows preci-
sion control of the film thickness by varying the number
of laser pulses.

In the deposition experiments, we used a KrF exci-
mer laser (λ = 248 nm) with a pulse energy of 100 mJ
at pulse repetition rate f = 10 Hz. A quartz lens (F =
20 cm) focused the laser radiation into a 0.5-mm2 spot
on the target surface. The substrates used were (100)
silicon plates 20 × 25 mm in size. The substrate was
mounted parallel to the target at a distance of 25 mm in
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Fig. 1. Deposition rate υ of tantalum vs. laser pulse energy E.
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Fig. 2. Resistance R of the β-Ta film vs. its thickness d.
such a way that the center of the deposition area was
exactly above the irradiation zone on the target. To
determine the growth rate (and, accordingly, an incre-
ment of the film thickness) per pulse, we constructed
(in each particular case) step calibration curves of the
film thickness versus the number of pulses. The height
of the steps was measured using a Tencor Alpha Step
500 profilometer. As follows from [12], measurements
taken by the two- and four-point probe techniques coin-
cide when the resistance of the sample exceeds 1 kΩ .
We measured the conductance of the films in situ by the
two-point probe technique. Prior to deposition, we
applied tantalum or platinum contact pads on the sub-
strate that were 5 mm distant from each other. A volt-
meter was connected to the contacts by silver clamps.
The test film was deposited through a 5 × 10-mm hole
in a mask, the 10-mm side lying between the electrodes.
Thus, the resistance of a 5 × 5-mm square on the tanta-
lum film was measured in situ (during the deposition
process). The measurements were taken under two dep-
osition conditions. In the first case, the film was depos-
ited directly on the substrate; in the second, on a
7.5-nm-thick niobium sublayer. It was shown [13] that
the tantalum film deposited on a niobium sublayer
(interface) thicker than 3 nm has a bcc lattice (α-Ta).

RESULTS AND DISCUSSION

At laser ablation, the deposition rate depends on var-
ious parameters, in particular, on the peak pulse energy
and the substrate–target distance. The deposition rates
of niobium and tantalum were determined at peak pulse
energies of up to 60 mJ for film thicknesses to 60 nm.
A number of steps were deposited with the number of
pulses per step varying between 500 and 4000. Under
the measurement conditions used (50 mJ/pulse), the
deposition rates of Nb, α-Ta, and β-Ta were found to be
0.015, 0.011, and 0.024 nm/pulse, respectively. Figure 1
plots the deposition rate of α-Ta against the pulse
energy with the target irradiation geometry kept fixed.
As was mentioned above, the surface area of the focus-
ing spot was 0.5 nm2. It can be seen that the dependence
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Fig. 3. Conductivity σ of the α-Ta film vs. its thickness d.
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is nonlinear. When the pulse energy was less than
30 mJ, the above range of the number of pulses was
insufficient for the film to grow.

The typical thickness dependence of the resistance
of the tantalum film deposited on the silicon substrate
at room temperature is shown in Fig. 2. The point where
the resistance sharply drops manifests the formation of
a continuous film.

Figure 3 shows the thickness dependence of the con-
ductance of the α-Ta film. The film was deposited on
the niobium underlayer; therefore, the zero-thickness
conductance is other than zero. The conductance is seen
to vary slightly when the film thickness exceeds 35 nm.
Figure 4 shows the thickness dependence of the resis-
tivity of the β-Ta film. Subtracting the contribution due
to the classical size effect (which can be approximated
by a quadratic polynomial within a finite interval of
thicknesses) from the experimental resistivity curve,
we find the contribution of the quantum size effect to
the thickness dependence of the resistivity. As follows
from Fig. 5, where the quantum-size contribution for
the α-Ta is presented, the associated curve is of a well-
defined oscillating character.

The oscillation periods for the α-Ta and β-Ta films
were 5.8 and 5.0 nm, respectively. It was observed [9]
that, with increasing the thickness of a bismuth film, the
electric conductivity oscillates with a period of about
25 nm. The de Broglie wavelength for tantalum is
shorter than that for bismuth: according to our data, its
room-temperature value equals 11.6 and 10.0 nm,
respectively, for the α-Ta and β-Ta. Theoretical esti-
mates [14] of the de Broglie wavelength, λ = h/PF,
where PF = h(3n/8π)1/3 is the electron momentum on the
Fermi surface, h is the Planck’s constant, and n is the
electron concentration (cm–3), give λ = 5 Å. Such dis-
crepancies between the measured and calculated values
of the de Broglie wavelength were also observed for
bismuth, where the oscillation period in a number of
experiments reached 200 nm [15]. At the same time, the
de Broglie wavelength estimated on the Fermi surface
is 40 nm [9]. Under the assumption that the concentra-
tion of carriers varies in proportion to the resistivity, the
de Broglie wavelength for the β-Ta must increase to
2.25 nm. This value is several times lower than our
measurement. Supposedly, the Fermi energy changes
[16] in small-size objects like quantum-size films.

In our opinion, similar oscillating dependences were
also observed in the works where in situ measurements
of the resistance of copper films [2] and Nichrome alloy
[17] were carried out. It seems likely that this effect
merely escaped the attention of the authors of the works
cited and the scale of their graphs did not allow them to
reliably measure the oscillation period. Making allow-
ance for the quantum effects [16], one can expect that
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
the de Broglie wavelength in thin metal films is longer
than in bulk metals.

CONCLUSIONS

Thin tantalum films were grown by the method of
pulsed laser deposition. On the background of the
monotonic decrease in the film resistivity with increas-
ing film thickness, which is due to the classical size
effect, the oscillating dependence is found with oscilla-
tion periods of 5.0 and 5.6 nm, respectively, for the
α-Ta and β-Ta films. Such behavior is explained by the
quantum-size effect in tantalum films thinner than
20 nm.

The observation of the quantum-size effect in in situ
measurements of the resistance of the tantalum films
indicates that the method of laser plasma deposition
makes it possible to produce high-quality films homo-
geneous in structure and uniform in thickness.
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Abstract—The luminescent properties of Er3+ ions embedded in silicate glass matrices with F, N, K, Al, P, Ge,
P + Al, P + K, and Ge + Al admixtures are studied. Glass samples with an erbium concentration of up to 9 ×
1020 cm–3 are synthesized by plasma-assisted CVD. The spectra, kinetics, and relative quantum efficiency of
Er3+ photoluminescence are estimated by exciting the samples with 514.5-nm Ar+ laser radiation. It is shown
that the luminescent properties of the activator in such high-erbium unfused glasses are superior to those of the
same activator in fused glasses of the same composition. This effect is attributed to suppression of clustering in
the glasses prepared by low-temperature CVD, which arises because of a limited mutual solubility of the oxides
in the melt. The efficient composites with an erbium concentration of up to 4 × 1020 cm–3 obtained in this work
can be used as an active medium of waveguide lasers and amplifiers. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The Er3+ ion is widely used as an activator in fiber-
optic amplifiers and lasers, since the luminescence
band of the 4I13/2–4I15/2 metastable laser transition falls
into the basic telecommunication range near 1.55 µm.
However, the intrinsically high efficiency of these
lasers and amplifiers declines with an increase in the
activator concentration because of the well-known
clustering effect. As a result, the production of high-
quantum-efficiency Er3+-doped active optical
waveguides that meet the requirements of integrated
optics becomes a challenging task. The advantages of
integrated optical circuits over fiber-optic ones are a
low amount of manual labor (all circuit features are
made by lithography), small size, and low cost.

To make active elements based on short-optic-path
waveguides, it is necessary that the activator ion con-
centration in the glass be one order of magnitude higher
than in the fibers. However, as the activator ion concen-
tration grows, the mean ion spacing shrinks and addi-
tional channels of excitation relaxation become signifi-
cant. One of these channels is associated with the up-
conversion effect [1, 2]: interaction of two nearby
excited erbium ions with subsequent nonradiative
relaxation of one of them [3]. In fused glasses, includ-
ing silica fibers, the reason for a sharp increase in the
concentration of pairs of nearby Er3+ ions with increas-
ing erbium concentration is the poor solubility of Er2O3

in SiO2.
1063-7842/05/5006- $26.00 0719
The up-conversion effect observed at elevated con-
centrations of the activator can be combated in two
ways, either eliminating various reasons for the effect
(for details, see [4]). The former way is to introduce Al,
P, or alkali metals into the SiO2 matrix. These admix-
tures loosen the structural network of the glass, thereby
reducing the rate of excitation migration between Er3+

ions and improving the erbium solubility. The latter
way is to apply low-temperature (without fusion) CVD
synthesis of the glass, which makes activator ions sta-
tistically uniformly build in the glass network, thus pre-
venting the formation of erbium clusters. Clearly, the
combination of these approaches will provide the high-
est efficiency in suppressing up-conversion.

Today, magnetron sputtering, ion implantation, and
plasma-chemical deposition are the most popular tech-
niques for obtaining unfused glasses in the form of pla-
nar Er-doped layers [5, 6]. The glass formation temper-
ature in these techniques varied from 300 to 500°C.
However, the “refinement” of the film structure takes
place, as a rule, upon additional annealing at ≈1000°C.

Of special interest among these techniques is sur-
face plasma-chemical vapor deposition (SPCVD) [7],
which forms a transparent glass layer at substrate tem-
peratures in the range 1000–1200°C. In this case,
increased process temperatures make subsequent
annealing unnecessary. A significant advantage of
SPCVD is a higher rate of glass deposition compared
with the other techniques. It was shown [8] that the
SPCVD may serve as a technological platform for cre-
ating active integrated optical waveguides.
© 2005 Pleiades Publishing, Inc.
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In this work, we investigated the luminescence due
to Er ions embedded in SPCVD-grown bulk unfused
glasses of different composition to a concentration of
9 × 1020 cm–3. The luminescence spectra and kinetics
were studied at wavelengths of 0.98 and 1.53 µm. Iden-
tical conditions of luminescence excitation and record-
ing made it possible to compare the quantum efficiency
of excitation of the 4I13/2–4I15/2 radiative transition in the
glasses.

EXPERIMENTAL

The doped glasses used were deposited on the inner
surface of quartz silica tubes using a setup intended for
preparation of preforms for fiber drawing. In this ver-
sion of the SPCVD process, a halogenide–oxygen mix-
ture kept at a pressure of 0.5 Torr is applied through a
tube of diameter 20 mm (a wall thickness of 2 mm)
toward a stationary plasma column. The column is sus-
tained inside the tube by surface microwave plasma
wave propagation. When the reagent mixture enters the
discharge region, the halogenides dissociate to form
oxides, which are deposited on the inner surface of the
tube. Thus, a 3- to 5-cm-long deposition zone arises at
the head of the plasma column. To provide a 25- to
30-cm-long glass layer uniform in thickness, the depo-
sition zone is periodically displaced back and forth
along the tube by controllably varying the length of the
plasma column. The plasma column length variation
(plasma scanning) frequency was 20 Hz; the deposition
zone displacement amplitude, 25 cm. (For a detailed
description of the SPCVD setup, see [9]).

The composition of the glass deposited was speci-
fied by the ratio between the flow rates of halogenides
(SiCl4 and others). The reagent ratios were set by flow-
rate controllers and controllers of the solid reagent tem-
perature. The total flow rate of the gaseous reagents
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Fig. 1. Setup for studying the luminescent properties of the
glasses.
provided a rate of glass deposition of 2–3 µm/min. The
thickness of the glass deposited was varied from 150 to
300 µm.

An additional advantage of the SPCVD process over
the other techniques of low-temperature synthesis of
activated glasses is that it allows for obtaining glasses
with a low concentration of Cl and an extremely low
(≈1 ppm) concentration of OH hydroxyl groups, which
adversely affect erbium luminescence [10].

The temperature of the substrate tube is a basic
parameter governing the composition and properties of
the glass. In the SPCVD process, the tube is heated by
the plasma from within and by additional heating ele-
ments from without. During deposition, the mean time
the inner surface of the tube is exposed to the plasma at
the ends of the scan zone differs greatly, so that the tem-
perature distribution along the substrate surface is
highly nonuniform.

In our experiments, the desired temperature at the
outer surface of the tube was kept accurate to ±1% with
a feedback loop in the heater circuit. It was measured
with an IRCON pyrometer at the site of the tube corre-
sponding to the center of the scan zone.

The glass samples cut from the cross section of the
tube had the form of 2-mm-thick semirings with pol-
ished end faces. They were selected from several exper-
iments aimed at obtaining Er-doped glasses of different
composition (see table). In a number of them, the tem-
perature nonuniformity along the tube resulted in the
corresponding composition nonuniformity with the
ratio of the reagents entering the reactor kept
unchanged. Because of this, the samples taken for spec-
troscopic studies were cut from different sections of the
tube. The composition of the glass in each of the sec-
tions was examined with the X-ray microanalyzer of a
JEOL JSM-5910LV electron microscope.

The luminescence from the samples was studied
with the experimental setup shown in Fig. 1, which
allows one to record luminescence spectra and measure
the luminescence time. The radiation from cw Ar+ laser 1
passes through a modulator consisting of electrooptic
shutter 2 and driving generator 3 of rectangular pulses,
is compressed by quartz lens L1 and is applied to sam-
ple 4 vertically (parallel to the entrance slit of mono-
chromator 5). The modulator interrupts the pump radi-
ation by rectangular pulses with leading-edge and trail-
ing-edge times of 1 µs or shorter. Luminescence is
excited over the deposited layer normally to the plane
of the semiring. The diameter of the laser beam incident
on the sample was no more than 150 µm, i.e., smaller
than the thickness of the deposit. With regard to the
focal length of lens L1, ≈50 cm, the variation of the
beam diameter over the sample can be neglected.
Quartz lens L2 transfers the image of the zone irradiated
to the entrance slit of the monochromator. At the exit
from the monochromator, the radiation is recorded by
GaAs photodiode 6 (at wavelengths of 1000–1700 nm)
or an FÉU-62 photomultiplier (in the wavelength range
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Composition of the samples under study and the kinetic characteristics of photoluminescence due to the 4I13/2–4I15/2 transition

Host Er, ppm F, wt % N, at. % K, mol % Al, mol % Ge, mol % P, mol % τ, ms

SiO2, Tdepos = 1200°C 1020 11.6

990 11.5

1280 11.5

F : SiO2, Tdepos = 1150°C 800 3.5 ***

640 3.2 ***

800 2 ***

K : SiO2, Tdepos = 1050°C 2600 0.6 12

1200 0.4 12.9

1000 0.2 12.8

N : SiO2, Tdepos = 1230°C 240 3
+1.5 wt %Cl

Al : SiO2,
Tdepos = 1110–1230°C

1980 0.8 9.9

1950 0.8 9.9

2550 1.2 9.6

3200 1.0 10.0

3500 1.0 10.0*

5400 1.2 9.5*

7500 1.6 9.1*

P : SiO2, Tdepos = 1100°C 13000 6.5 5.8***

13400 5.5 5.4***

3600 6.5 8.9**

3200 5.2 7.9**

1800 4.6 8.7*

Ge : SiO2, Tdepos = 1220°C 1800 11 11.6*

2300 15 11.6*

3600 4 10.5**

6450 4 11.3**

P, Al : SiO2, Tdepos = 1050°C 710 2.2 6 9.2

2600 2.9 9.4 9.2*

4100 2.6 10.5 8.9*

5660 2.7 11.9 8.1*

7100 2.7 12.8 7.74*

P, K : SiO2, Tdepos = 1020°C 2400 0.74 3.5 2.9

3600 0.69 3.5 3.4*

5360 0.52 5.3 6.3**

7100 0.2 7.65 7.5**

10760 0.1 10.1 7.11*

Ge, Al : SiO2, Tdepos = 1150°C 5600 2.6 16.1 8.9*

5000 4 17.9 9

2900 5.2 17.5 8.9

Note: */**/*** Slight/moderate/major contribution of the fast exponential to the kinetics of 1.53-µm luminescence.
800–1100 nm). The luminescence spectra are taken
with EG&G5209 synchronous detector 7 controlled by
computer 8. The luminescence time is measured with
SR250 gated integrator 9 synchronized (10) with the
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
modulator. Near 1.53 µm, the measurements were made
at a modulation frequency of 9 Hz; near 0.98 µm, at
110 Hz. The mean power of the pump beam at the out-
put of the modulator was 250 mW.
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SPCVD SYNTHESIS OF MULTICOMPONENT 
GLASSES

As has already been mentioned in the introduction,
the SPCVD technology of glasses has a number of fea-
tures, which show up most vividly in obtaining doped
glasses [11]. It is known, for example, that the introduc-
tion of such elements as F, Ge, K, Al, and P into the sil-
icate matrix to modify the glass reduces its viscosity. As
the temperature of the substrate tube grows, com-
pounds of these elements are desorbed from the surface
at a higher rate, which decreases the doping level in the
glass being deposited. A temperature gradient along the
tube typical of the SPCVD process causes a corre-
sponding longitudinal nonuniformity in the glass com-
position.

Since ErCl3 evaporated at 1000°C in our experi-
ments, we had to keep the temperature of the tube at a
relatively high level throughout the deposition zone in
order to prevent the condensation of the reagent. This
may be a reason for an extremely low potassium con-
centration in the glasses deposited at this temperature
(see table). Apparently, here we are facing the ability of
alkali metals to significantly fluidize silicate glasses
[12].

The temperature dependence of the incorporation
efficiency of phosphorus in the temperature range
1000–1200°C is also very strong. Therefore, its con-
centration was controlled largely by the temperature of
the tube during deposition.

A specific feature of nitrosilicate glass deposition is
that the oxidation of silicon tetrachloride proceeds
under the oxygen deficiency conditions [13]. Under
such conditions, to reach a high level of codoping by
other elements, such as Er, Ge, Al, etc., is a challenge
because of the process chemistry. Furthermore, when
oxygen is deficient in the glass, the concentration of
harmful Cl rises drastically. As a result, the maximal
erbium concentration in the nitrosilicate glass was as
low as 240 ppm (1.6 × 1019 cm–3).

The efficiency of incorporation of the elements into
the silicate matrix depends not only on the temperature
of the substrate tube and relative flow rate of the
reagents but also on the composition of the glass being
deposited. We relate this effect to the type of defect
generated in the structural network of the glass by an
element embedded in the glass. Note also that the incor-
poration efficiency correlates with the solubility of the
corresponding oxide in SiO2. For example, the effi-
ciency of incorporation of erbium into the silicate and
alumina–silicate matrices during SPCVD was ≈20% in
our experiments. Due to a considerable structural dis-
turbance, chemisorbed erbium and aluminum atoms
turn out to be weakly bonded to oxygen on the silica
glass surface. Weak bonding favors their desorption or
substitution of silicon atoms for them. An increase in
the aluminum halogenide flow rate versus that of SiCl4
enhances light scattering in the glass, indicating the
presence of the concentration homogeneity limit in
SPCVD alumina–silicate glass. The addition of Ge
generates network defects favorable to the incorpora-
tion of erbium and aluminum, as is confirmed by the
rise in the incorporation efficiency for these elements to
≈50%. With phosphorus added to the silicate matrix,
the incorporation efficiency of erbium rises still further
(up to ≈100%). As follows from the table, codoping by
phosphorus and aluminum doubles the maximal con-
centrations of both elements, presumably because a
P−Al cluster is more readily incorporated into the sili-
cate network. It should be noted that the obtaining of
Al- and P-codoped SiO2 glasses by means of the stan-
dard (nonplasma) MCVD technique is a big technolog-
ical bugaboo.

Summing up, it may be said that the SPCVD tech-
nique as applied to multicomponent glasses is in a sense
self-regulating; that is, the atomic packing is not too
highly disturbed by thermal fluctuations and the struc-
ture of the glass is dense and perfect.

EXPERIMENTAL RESULTS

Figure 2 shows the luminescence spectra of erbium
ions embedded in the fluorosilicate matrix. That taken
at a low temperature is seen to consist of a number of
closely spaced sharp lines. The long luminescence time
at 0.98 µm indicates that, in this glass, unlike the rest of
the glasses studied in this work, the multiphonon relax-
ation channel associated with the 4I11/2 level is com-
bated. The kinetics of luminescence near 1.53 µm fea-
tures rapid relaxation mechanisms. The luminescence
spectrum of Er3+ ions in the nitrosilicate matrix (Fig. 3)
also comprises a series of sharp lines, which particu-
larly stand out as the pump modulation frequency
increases. In our opinion, these lines can be assigned to
erbium ions with the shortest lifetime of the 4I13/2 level.
The spectrum at 0.98 µm has an extra peak at 1.001 µm.
Unfortunately, we did not manage to determine the
luminescence time in this case because of a low inten-
sity of the signal.

Figures summarize the luminescence spectra taken
from all the samples at 1.53 µm. They are normalized
by their peak values for comparison convenience.
Erbium ions in the F : SiO2, Al : SiO2, and Al, Ge : SiO2
matrices have the broadest spectra (50, 47, and 47 nm
wide, respectively). The spectrum taken from the K :
SiO2 matrix, conversely, is the narrowest (24 nm wide),
and the luminescence time here is the longest. Such
radical modifications of the luminescence pattern take
place despite a low potassium concentration in the
glass.

The luminescence spectra taken from the phospho-
rus-containing samples are similar to each other, but the
luminescence kinetics in them is different. In the P, K :
SiO2 and P : SiO2 glasses, the 4I13/2 level lifetime
decreases markedly with decreasing phosphorus con-
centration and increasing erbium concentration. At the
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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same time, the lifetime of this level in P, Al : SiO2
depends only on the erbium concentration.

DISCUSSION

It was shown [14] that Er3+ ion clustering and its
associated up-conversion are responsible for the slow
component in the kinetics of luminescence at 0.98 µm.
However, we did not observe this effect in the samples
studied. The reasons may be the following: (i) the effect
is too weak to be detected, (ii) the effect is distinct only
in highly clustered glasses, and (iii) the fast processes
observed in the kinetics of 1.53-µm luminescence are
related to multiphonon transitions rather than to up-
conversion.

Determining the absolute quantum efficiency of
luminescence in thin layers is a bottleneck, since the
absorbed pump power is difficult to measure. Since the
luminescence excitation and recording conditions in
our experiments were reproduced with an accuracy of
5%, we succeeded in making comparative estimates of
the luminescence quantum efficiency. Figure 5 plots the
relative quantum efficiencies of luminescence
(4I13/2  4I15/2, λ = 1.53 µm) against the erbium con-
centration. The relative quantum efficiency was calcu-
lated by the formula

(1)

where σi, m are the composition-dependent cross sec-
tions of electron excitation by 514.5-nm radiation, Qi, m
are the probabilities that electrons excited to the level
H11/2 will transit to the level 4I13/2 and then execute a
radiative transition to the ground state, and Ni and Nm

are the Er3+ ion concentrations in the ground state.
Quantities Lumm and Nm correspond to the sample
exhibiting a maximal efficiency.

In the calculation, the total erbium concentration in
the samples was used instead of the erbium ion concen-
tration in the ground state (Ni, Nm). This restricts the
validity of formula (1) to the case of weak optical exci-
tation. As is known, the adverse effect of up-conversion
on the luminescence quantum efficiency grows with
excitation level. Of practical interest are the parameters
of the glasses at an excitation level close to inversion.
Therefore, the excitation level in our experiments was
50–60%, according to the pump power used. In this
case, the error in the quantum efficiency calculated by
formula (1) may reach 20% because of different rates of
excitation relaxation to the ground level.

Let us see how the deposition conditions influence
the luminescent properties of erbium in the glasses. The
structure and composition of SPCVD silica glasses are
governed by chloride heterogeneous oxidation, the
mobility of chemisorbed atoms being dependent on

qi

LumiNm

LummNi

--------------------
σiQi H11/2 I4

13/2,( )

σmQm H11/2 I4
13/2,( )

----------------------------------------------,= =
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Fig. 2. (a) Spectra and (b) kinetics of Er3+ ion luminescence
due to the 4I11/2–4I15/2 transition (0.98 µm) for the fluorosil-
icate glass deposited at (1) low and (2) high temperature.
The luminescence kinetics is approximated by a sum of two
exponentials with indices (1) t1 = 0.3 ms and t2 = 1.23 ms
and (2) t1 = 0.09 ms and t2 = 0.48 ms.
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Fig. 3. Erbium luminescence spectra in the nitrosilicate
glass at 0.98 and 1.53 µm for different pump modulation
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Fig. 4. Erbium ion luminescence spectra near 1.53 µm taken from the glasses of different composition.
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substrate surface temperature Tsurf. Three situations are
worth considering here.

(1) Tsurf < TEr,Si and TX (X = Al, P, K, or Ge), where
TX is the characteristic temperature activating motion of
the corresponding element in the glass. In this case, the
atom mobility can be neglected and the structural net-
work of the glass is governed by the particles from the
gaseous phase that are “frozen” in the substrate surface.
Under conditions (1), the glass is a thermodynamically
nonequilibrium system. The complex luminescence
spectra (Figs. 2, 3, and 5) reflect the contributions from
different Er3+ ions in the structurally unstable anionic
environment. For example, the complex shapes of the
spectra shown in Fig. 2 indicate that the erbium ions are
in the same anion environment, and the long lifetime of
the state 4I11/2, which is responsible for 0.98-µm lumi-
nescence, points to the presence of fluorine atoms in the
environment [1]. The changes in the luminescence
spectra taken from the nitrosilicate matrix seem to be
due to chlorine and nitrogen atoms. Interestingly, when
plotted as a function of the erbium concentration, the
luminescence efficiency of all the glasses deposited
under the conditions Tsurf < TEr,Si, TX is fitted by a single
straight line (Fig. 5). Thus, such conditions wipe out the
difference between the glasses of different composition
in this respect.
(2) TX < Tsurf < TEr,Si. In this case, dopant atoms have
a chance to occupy thermodynamically equilibrium and
energetically favorable positions in the network of the
glass. It is likely that setting the equilibrium structure is

0.1

0 2

q

CEr, 103 ppm
4 6 8 10 12 14

1

Tsurf < TEr, Si, Tx

Fig. 5. Relative quantum efficiency of 1.53-µm lumines-
cence (1000 ppm = 6.6 × 1019 cm–3). (j) K-doped sample,
(d) N-doped sample, (m) F-doped sample, (.) pure silica,
(r) Al-doped sample, (b) Ge-doped sample, (c) P-doped
sample, (   ) (P + K)-doped sample, (w) (P + Al)-doped sam-
ple, and (h) (Ge + Al)-doped sample.
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also accompanied by the motion of erbium atoms but
only in the neighborhood of their initial positions. In
this state, the structure of the specific glass volume (i.e.,
the volume containing a single erbium ion) is equilib-
rium and the glass as a whole may be viewed as ther-
modynamically quasi-equilibrium. Accordingly, the
luminescence spectrum takes on the attributes of the
typical luminescence spectrum of Er3+ ion in fused
glasses. Almost all the glasses studied in this work were
deposited under these temperature conditions. The
spectrum (Fig. 3) and kinetics of 0.98-µm lumines-
cence for the fluorosilicate matrix suggest that fluorine
atoms leave the neighborhood of erbium at these tem-
peratures.

(3) Tsurf > TEr or TSi. Under these conditions, erbium
ions, when moving in the forming network of the glass,
may generate clusters or even cause precipitation of
Er2O3 in SiO2 if their concentration is high.

The above concept of forming a homogeneous
(cluster-free) structure of the glass may be invalid in
some cases. Specifically, if the dopant concentration is
high and TX ! Tsurf or the time of temperature action is
long, the bulk of the glass may get mixed up well and
thermodynamic equilibrium with clusters may set in
the system even in the absence of activating motions of
Er ions or Si atoms.

The luminescence pattern in the phosphosilicate
glass is intriguing. Figure 6 plots the erbium lumines-
cence quantum efficiency against the phosphorus con-
centration in the glass. From 5 mol % of phosphorus on,
the quantum efficiency rises monotonically. Interest-
ingly, while the high-phosphorus samples exhibit the
best luminescence properties, those with a low phos-
phorus content are inferior to the other glasses in terms
of the luminescent activity.

Figure 7 demonstrates changes in the spectrum and
kinetics of erbium ion luminescence that arose when
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Fig. 6. Relative quantum efficiency of 1.53-µm lumines-
cence vs. the phosphorus concentration. (j) P-doped,
(d) (P + K)-doped, and (m) (P + Al)-doped samples.
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the samples were heated in the flame of an oxygen–pro-
pane burner. Softening of the glass is seen to cause
erbium clustering. The luminescence spectrum broad-
ens, and up-conversion signs appear in the kinetics pat-
tern.

CONCLUSIONS

It was shown experimentally that moderate-temper-
ature plasma-chemical deposition may serve as a basis
for a new high-erbium glass synthesis technology. A
high efficiency of luminescence due to the 4I13/2–4I15/2
transition in these glasses offers considerable scope for
designing active integrated optical systems. Of most
interest are Al- and K-doped glasses obtained by the
plasma-chemical technique. In these materials, the
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Fig. 7. Effect of fusion of the Al2O3(2.7 mol %)–
P2O5(12.8 mol %)–Er(7100 ppm) glass on (a) clustering

and (b) Er3+ luminescence parameters. The bright spots in
panel (a) correspond to high-erbium areas. Panel (b) shows
the luminescence spectra and kinetics for the sample
obtained by plasma-chemical deposition (1) before and
(2) after high-temperature treatment.
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quantum efficiency of luminescence remains high as
the erbium concentration grows to at least 5000 ppm
(3.3 × 1020 cm–3). Halogens (F and Cl) introduced into
the matrix adversely affect the quantum efficiency and
reduce the concentration threshold of ion erbium clus-
tering. It is demonstrated with the fluoro- and phospho-
silicate composites that the luminescent properties of
Er ions in unfused SPCVD glasses strongly depend on
the substrate temperature during deposition. The opti-
mal temperature is that at which the atomic structure in
the neighborhood of an Er3+ ion becomes equilibrium
but the activation motion of Er3+ ions in the matrix is
still suppressed.
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Abstract—Pioneering experiments on single-photon quantum cryptography that are performed with a tailored
setup are reported. The key is transferred by pulsed semiconductor lasers, which encode the polarization state
of the photons in two mutually nonorthogonal bases. Photon detectors are based on C30902S silicon avalanche
photodiodes. For a laser pulse repetition rate of 100 kHz and a mean number of photons per pulse of about 0.2,
the key generation rate reaches ≈4 kbit/s. The error rate in the key does not exceed 1%. © 2005 Pleiades Pub-
lishing, Inc.
From the practical standpoint, quantum cryptogra-
phy is today the most mature area of quantum informat-
ics. Quantum cryptography allows for absolutely
secure data transfer between legitimate users of com-
munication lines. The security of data transfer, com-
bined with the complete impossibility of unauthorized
access, relies on fundamental laws of nature, unlike
those cryptography approaches using mathematical
methods, where the information basically may be
decoded. In accordance with the mathematically
proven Shannon statement [1], a message being trans-
ferred cannot be decoded if it is encoded by a random
one-shot key whose length equals that of the message,
provided that the key is known by legitimate users
alone. However, the problem in this situation is how to
transport the key to remote users. Generally speaking,
classical communication methods cannot provide
secure transfer of the key over accessible data channels,
since there are techniques of inconspicuous listening
with subsequent decoding.

The ideas of quantum physics and quantum infor-
matics as applied to long-range data communication
may be used to attack the problem of transfer of an
absolutely random key through accessible data chan-
nels with security assurance. The absolute security pro-
vided by quantum cryptography follows from the for-
biddings of quantum physics that are imposed on a
metering device: (i) it is impossible to extract informa-
tion about nonorthogonal states without disturbance [2]
and (ii) it is impossible to clone an unknown quantum
state (the no-cloning theorem) [3]. From these forbid-
dings, it follows that, if single quantum objects are
employed as data carriers, any intervention into the data
transfer process undertaken by an unauthorized person
will inevitably cause irreversible changes in the quan-
tum states of the objects, from which the fact of inter-
vention can be established.
1063-7842/05/5006- $26.00 0727
Bennet and Brassard in 1984 [4] were the first to jus-
tify the principles of quantum cryptography and to
devise a communications protocol. The first experi-
mental demonstration of their concept [5] attracted
much interest worldwide and gave an impetus to exten-
sive research in this field. In [5], a key dissemination
protocol was suggested, which was represented as a
secured sequence of zeros and unities enciphered by
single photons polarized in two mutually nonorthogo-
nal bases. Later, this protocol was named BB84. Subse-
quently, a protocol based on phase coding using a
Mach–Zender interferometer found wide application
(for the basic ideas behind this protocol, see [2]).
A radically new way of disseminating a quantum key
through entangled states that is based on the Einstein–
Podolsky–Rozen effect was suggested by Ekert [6].
The ideas of quantum cryptography turned out to be so
promising that many research groups worldwide imme-
diately launched R&D work on creating commercial
devices. A comprehensive review of theoretical and
experimental works in this field is presented in [7].
Since the publication of that review, a variety of new
approaches to organizing data channels have been sug-
gested. For example, the rudiments of relativistic quan-
tum cryptography were described in [8, 9], a time–fre-
quency scheme of encoding was suggested in [10], and
the concept of using a phase shift between two sequen-
tial single photons to generate a key was put forward in
[11, 12]. Using single-photon quantum cryptography, a
quantum key has been disseminated to advantage over
several tens of kilometers both along fiber-optic links
and in open space. It should be noted that the early pro-
tocols still remain the most efficient in terms of organi-
zation of real quantum data channels. The concept of
phase encoding has been implemented in 67- [13], 100-
[14], and 150-km-long [15] fiber-optic communication
lines. The polarization encoding protocol BB84, which
© 2005 Pleiades Publishing, Inc.
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was also used in this work, was applied to organize
communication through open space over a distance of
10 [16] and 23 km [17]. Today, the feasibility of com-
municating with satellites is being discussed [18].

In this paper, we report experiments on generation
of a quantum key with the help of an original setup for
quantum cryptography. The key was disseminated by
encoding the polarization states of single photons emit-
ted by pulsed semiconductor lasers in two mutually
nonorthogonal bases (the BB84 protocol [4]). The
experiments were aimed at testing techniques of gener-
ating single photons in a given quantum state with sub-
sequent detection of these photons via discriminating
them in initial states at a low level of erroneous mea-
surements. We also developed a model of capturing all
the photons by an unauthorized person and demon-
strated the absolute impossibility of inconspicuous pen-
etration of an unauthorized person into the quantum
communication line. As detectors, we used arrays of
high-speed single-photon counters based on C30902S
silicon photodiodes with active avalanche quenching.

Let us outline the generation of a quantum key using
the BB84 protocol [4, 7]. A transmitter (usually called
Alice) produces single photons linearly polarized in
two mutually nonorthogonal bases; in one (vertical–
horizontal basis), the photons are of 0° and 90° polar-
izations; in the other (diagonal basis), the photons are
of 45° and –45° polarizations. Alice and a receiver
(Bob) come to an agreement about a code assigned to
each of the polarization in binary notation. For exam-
ple, photons with 0° and 45° polarizations mean “0,”
while those with 90° and –45° polarizations mean “1.”
During a session, Alice sends a sequence of randomly
polarized photons (0°, 45°, 90°, or –45°) and Bob
records the photons arrived and randomly selects a
measurement basis for each of them. Then, using an
extra (unsecured) channel, Bob informs Alice of the
basis in which he has made the measurement but does
not tell the results of this measurement. Since the pho-
ton can take values either “0” or “1,” the message about
recording the photons, while sent over the unsecured
channel, carries no information for an outside listener
(usually called Eva). In answer to the message, Alice
tells whether the basis was correctly chosen for each of
the photons. Keeping only correct-basis measurements
during the session, Alice and Bob generate a unique
random sequence of zeros and unities, of which a
secured key is then formed.

An important step in quantum cryptographic data
transfer is a test for possibility of capturing information
transmitted through a quantum channel. To this end,
Alice and Bob, using the unsecured transmission line,
make a checking comparison of a randomly selected
part of the key generated. If listening was absent, the
codes coincide. The error in the code is due to the noise
of the detector and imperfections in the data channel. If
an outside listener penetrates into the channel and reads
out the information, he will have to generate the same
photon (it is remembered that the information is trans-
ferred by a single photon!) and send it to Bob again.
Then, according to the no-cloning theorem as applied
to the state of an arbitrary quantum object [3], the lis-
tener will irreversibly break the polarizations of the
photons and will not be able to exactly reproduce them,
causing a discrepancy between Alice’s and Bob’s
codes. As a result, the error that will be revealed by
comparing the codes in the unsecured channel will far
exceed the error inherent in undisturbed data transfer.
In this way, the fact of unauthorized penetration into the
quantum channel will be disclosed and the legitimate
users will be able to take necessary precautions against
intervention. In essence, two mutually nonorthogonal
bases and a relatively low bit rate are needed to assure
security. Note also that data transfer through a quantum
communication line implies using one-photon laser
pulses, since many-photon pulses will allow Eva to
inconspicuously direct some of the photons to her pho-
todetectors and, hence, the fact of penetration will pass
unnoticed.

Our experimental setup is depicted in Figs. 1 and 2.
A transmitting unit (Fig. 1) comprises four ILPN-210
semiconductor lasers 2, each generating a pulsed radia-
tion with one of the four polarizations (0°, 45°, 90°, and
–45°). The pulses 8–10 ns wide are combined to form a
single pulse by means of mirrors 5, attenuated at the
exit by absorbing filters 6, and directed toward the
receiver through a 70-cm-long air gap protected against
light. The lasers are fed by current-modulated power
supply 1 and are thermally stabilized with semiconduc-
tor Peltier microcoolers 3. Each of the lasers generates
a pulse of coherent 830-nm radiation when a control
signal from a computer arrives at its power source. The
attenuated laser pulses arrive at the input of the receiver
(Fig. 2) and are then split into two beams by 50% beam
splitter 1. The direct (undeflected) beam (Fig. 2) is
directed to Glan polarizing splitting prism 3, which
directs each of the photons with the vertical–horizontal
basis to its dedicated photodetector 4 (the splitting fac-
tor is 104 or higher). The photons with the diagonal
basis equiprobably (50%) fall on either of the two pho-
todetectors. The other part of the input beam, which is
deflected by the beam-splitting plate at the entrance,
first passes through the λ/2-plate, which rotates the
polarization of the photons by 45°. As a result, the pho-
tons that initially had the diagonal basis are distributed
by the beam splitter (with a high splitting factor) among
the respective photodetectors. The photons with the
other basis equiprobably fall on either of these two pho-
todetectors.

The receiver allows the transmitter to be tuned so
that each laser pulse, having passed through the exit
attenuator, has no more than one photon. Under such
conditions, the photon momentum distribution obeys
the Poisson statistic. In quantum cryptography, a signal
is regarded as single-photon if average number  of
photons per pulse varies between 0.1 and 0.2 [7]. If the
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criterion is  = 0.1, the fraction of two-photon and
three-photon pulses is 5 and 0.16% of the number of
single-photon ones. In other words, nine of ten pulses
contain no photons in this case. A photon of any polar-
ization sent by Alice may fall on any of three photode-
tectors: if it has its initial basis, on one of them (the sec-
ond one is prohibited by the polarizing splitting prism);
if it has the foreign basis, equiprobably on two of them.
The fraction of multiphoton pulses in the session can be
calculated based on the Poison statistic by counting the
signals arriving at all four photodetectors and the num-
ber of simultaneous records by two or more photode-
tectors at one time. By appropriately selecting the las-
ing power of each of the lasers, one can provide a
desired number of photons in pulses generated by the
transmitter.

Since the data transfer is secured only if each laser
pulse has no more than one photon, the photodetectors
must meet stringent requirements. Specifically, they
must offer a high quantum efficiency of recording, a
low noise, and a sufficiently high count rate. Crypto-
graphic systems intended for key transfer over open
space [16, 17] operate at a wavelength of ≈0.85 µm, i.e.,
in the atmospheric transparency window. Today, ava-
lanche photodiodes seem to be the best single-photon
detectors in this range. In our setup, we used EG&G
C30902S avalanche photodiodes (APDs), which are the
most sensitive devices at a wavelength of 0.8 µm among
those currently available [7, 19]. Around these diodes,
a high-speed single-photon counter with active ava-
lanche quenching was built [20, 21]. To count single
photons, the APD must operate as a Geiger counter
[19–21], where one photon can trigger a charge carrier
avalanche. Three of the four APD detectors (4 in Fig. 2)
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Fig. 1. Transmitter of the experimental setup for single-pho-
ton quantum cryptography. (1) Power supply for semicon-
ductor laser, (2) semiconductor laser, (3) Peltier micro-
cooler, (4) polarizer (Glan prism), (5) mirror, and
(6) absorbing filter. I, computer; II, basis.
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operated in the passive avalanche quenching mode;
one, in the active mode. The current through the APDs
was limited by a 200-kΩ ballast resistance. The signal
was picked up from a load resistance of 50 Ω [6];
amplified by amplifier 6; and applied to a pulse shaper,
which generated standard TTL pulses to provide an
interface with the computer. If a voltage applied to the
APD exceeds some threshold voltage Uth, a photon trig-
gers the avalanche multiplication of charge carriers
with a gain reaching 105–106. At a wavelength of
830 nm, the probability of recording a single photon
reaches 50%. The diodes were cooled by Peltier semi-
conductor microcoolers down to –20°C in order to
reduce the intrinsic noise. The noise pulse rate in an
APD operating in the Geiger mode depends on the tem-
perature and a voltage excess over the threshold value.
Figure 3 plots the noise pulse rate against excess U –
Uth over the threshold voltage at a diode temperature of
–20°C.

Each of photodetectors 4 in Fig. 2 represents a tai-
lored high-speed single-photon counter operating in the
active avalanche quenching mode [20, 21] with a count
rate of several megahertz. Unlike experiments carried
out in [20, 21], our experiments allowed for APD oper-
ation in various current-limiting modes in order to pro-
tect the device against bright illumination. This feature
of our operating scheme is of great important, since,
otherwise, the C30902S devices operating as a Geiger
counter may fail under a too high illumination level.
The avalanche quenching pulse amplitude can be varied
from 5 to 25 V. A pulse-delay and pulse-width window
discriminator (strobe) can be applied to the device. The
minimal duration of the strobe is 30 ns. The output sig-
nal of the counter can be displayed in analog form or be
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Fig. 2. Receiver of the experimental setup. (1) 50% beam
splitter, (2) mirror, (3) Glan polarizing separating prism,
(4) APD with collecting lens, (5) Peltier microcooler, and
(6) amplifier. I, computer; II, basis.
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converted to a TTL pulse that is then applied to the
computer. Figure 4 plots the photon count rate of the
counter with active avalanche quenching versus the
laser pulse repetition rate for various current-limiting
modes and pulse parameters (the count rate is limited
from above by (a) 2.50 and (b) 0.25 MHz).

In our experiments, the quantum key was generated
as follows. Alice’s computer sets the laser pulse repeti-
tion rate (clock frequency). For each clock period, a
sync (strobe) is generated, which is sent to Bob for
transmission–reception synchronization. Simulta-
neously with the strobe, another pulse is applied at ran-
dom to one of the four lasers, which generates a 10-ns-
wide light pulse. A random number is created by an
intelligent random-number generator, although gener-
ally it is preferable to use a noise generator to create a
random number [7]. Having received the sync, Bob
generates his own 20-ns-wide strobe. The pulses from
the photodetectors are recorded only during the strobe
application. In this case, a major part of the intrinsic
noise of the photodetector is eliminated. For example,
at –20°C and a voltage excess of 20 V, the rate of noise
pulses is about 3 × 103 per second (Fig. 3). At the same
time, this value reduces to 100 per 106 clock periods
when time gating of the signals is employed. After
amplification, the duration of the noise pulses and the
pulses from the APD was found to be 8–10 ns. Pretun-
ing of the delay between the strobe and the APD pulse
(when the diode is triggered by a laser pulse from the
transmitter) makes it possible to considerably improve
the signal-to-noise ratio and reduce the error rate in the
final code. The pulse from the APD is regarded as bear-
ing information only if it coincides in time with the
laser pulse. Intrinsic noise pulses not appearing during
the strobe did not fall on the counter. The data from the
four photodetectors were read out by Bob’s computer
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Fig. 3. Noise pulse rate F vs. voltage excess U – Uth for the
C30902S APD at –20°C.
under the control of the sync. In our setup, we used the
same computer. Without loss in generality, such a
design makes the experiment less hardware-intensive.
When a pulse from any of the APDs came during the
strobe, Bob remembered these data and the number of
the sync and generated a signal for Alice by which she
remembered the number of the sync and which of the
lasers operated in that clock period. Since the mean
number of photons in a light pulse was much less than
unity, there was no need to remember the transfer pro-
cess as a whole. Fifty percent mirror 1 at the entrance
randomly turns the photon to the vertical–horizontal or
diagonal basis for recording. If Alice’s and Bob’s bases
coincided, the measurements were assigned a succes-
sive serial number and filed to generate the key. Other-
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Fig. 4. Count rate of the single-photon counter vs. laser
pulse repetition rate ν. (a) The maximal count rate is set at
a level of 2.5 × 106 cps: (1) a laser pulse is of high intensity
and is detected with a probability of 1; (2) a laser pulse has
an intensity lower than in case 1 and is detected with a prob-
ability of 0.5; and (3) a laser pulse is still less intense and is
detected with a probability of 0.1, which roughly corre-
sponds the mean number of photons per pulse  = 0.2.
(b) The maximal count rate is set at a level of 2.5 × 105 cps.
The laser pulse intensity corresponds to a detection proba-
bility of 1.
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wise, they were disregarded. According to the BB84
protocol, such a procedure generates a matched random
secured key.

The key generation rate depends on the laser pulse
repetition rate, number n of photons per pulse, and APD
speed. In our experiment, the key generation rate was
controlled by the rate of data exchange between the
computer and transmitter/receiver, which corresponded
to a data transfer rate (pulse repetition rate) of 100 kHz.

Following are numerical results on quantum key
generation that were obtained in our experiment. In the
transfer of  ≈ 0.1 pulses per 106 syncs, a key 21303 bit
long was formed. Of this number of bit, 209 bit (0.98%)
were erroneous (Alice’s and Bob’s bit values diverged).
For  ≈ 0.2, the length of the key was 38 578 bit
(371 bit or 0.96% were invalid). For a clock frequency
of 100 kHz used in the experiment, the key generation
rate was, respectively, ≈2.1 and 3.8 kbit/s. The low error
rate observed in our work (compared with the results in
[16]) is explained by the absence of noise and signal
losses in the optical data channel. Using the same setup,
we simulated an unauthorized capture of all the photons
by the detector of an outside listener and his attempts to
transfer the data captured to Bob. When analyzing the
resulting code, which came over an unsecured channel,
we immediately revealed that the error rate in the code
had increased and, thus, disclosed the fact of penetra-
tion into the quantum transmission line.

Further research in this field seems to be aimed at
applying long-range atmospheric and fiber-optic com-
munication lines and increasing the data transfer rate.
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Abstract—An experimental setup for studying spectral–kinetic and space–dynamic characteristics of explo-
sion-induced luminescence from energetic materials is described. Explosion is initiated by nanosecond- and
picosecond-wide electron and laser beams. Explosive luminescence of a single sample is detected in a spectral
interval 450 nm wide with a spectral resolution of 2 nm and a spatial resolution of 50 µm. The time resolution,
which is determined by a radiation source, is 30 ps. © 2005 Pleiades Publishing, Inc.
Analysis of the spectral and kinetic characteristics
of insulator explosion using time-resolved optical spec-
troscopy has provided rich information regarding the
processes of formation, migration, and recombination
of electronic excitations and primary defects produced
by pulsed ionizing radiation [1, 2].

The application of similar experimental methods for
studying the explosive decomposition of solid energetic
materials also seems to be promising, since lumines-
cence is initialized even in the solid state and then is
observed in explosion products [3]. The spectral and
kinetic characteristics of this luminescence provide
important information on the chemical reaction leading
to the detonation of explosives. However, the pulsed
optical spectroscopy instrumentation used in [1, 2]
(including basically a monochromator, photoelectron
multiplier, and oscilloscope) needs substantial upgrad-
ing when applied to studying the explosive decomposi-
tion of solid energetic materials. In this case, one has to
extract the spectral and kinetic characteristics from one
sample in a spectral interval as wide as possible, since
an initializing pulse applied to a single object causes its
explosion, while using many samples is inappropriate
because of the stochastic nature of the explosion.

The most promising way to solve this problem is the
employment of a spectrograph and streak camera as
basic elements of the detection scheme. The processes
under study impose the following requirements on the
detection scheme: a time interval of 10–11–10–5 s, a spa-
tial resolution of 20 lines per millimeter or higher, a
1063-7842/05/5006- $26.00 ©0732
spectral resolution of 5 nm for the spectrometer maxi-
mal aperture ratio, and a spectral interval of detection as
wide as possible. In addition, the instrument must be
equipped with a computerized data readout and pro-
cessing system. Here, we describe an experimental
setup meeting these requirements.

The basic elements of the setup are a source of exci-
tation, a vacuum chamber with the sample, and a mea-
suring channel including a synchronization system and
computerized signal detection system. The signal
detection system is built around a specially tailored
SKh-1A spectral streak camera, which integrates a Spe-
ktr-1A polychromator and Vzglyad-2A streak camera.

The block diagram of the setup is shown in Fig. 1.
Crystal holder 2 with sample 3 is mounted in vacuum
chamber 1. Excitation source 4 initiates the explosion
of the sample, and lens L focuses the resulting radiation
(luminescence) on the entrance slit of polychromator 5,
in which the radiation is decomposed into spectral com-
ponents, converted, amplified, swept in time by streak
camera 6, recorded by SONY ICX039DLA CCD cam-
era 7 (which is a part of streak camera 6), and memo-
rized in PC 8 for subsequent processing.

The units of the setup are synchronized with CCD
camera 7 and G5-56 pulse generator 9. The synchroni-
zation accuracy is ±1 ns. Vacuum chamber 1 is evacu-
ated to 10–4 Pa.

Crystal holder 2 can be fixed to the flange of
KVO.1575.00.000 microcryogenic setup 10. In this
 2005 Pleiades Publishing, Inc.
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case, the sample temperature can be varied from 12 to
300 K.

As an excitation source, one can use, depending on
the task being solved, a GIN-600 electron accelerator
(an effective electron energy of 0.25 MeV, a beam cur-
rent density of up to 2 kA/cm2, and a controllable pulse
duration of 3–30 ns), a GIN-540 electron accelerator
with a shaping gap (an effective electron energy of
0.15 MeV, a beam current density of up to 10 kA/cm2,
and a pulse duration of 50 ps), or a YAG : Nd mode-
locked laser (a pulse energy of up to 30 mJ, a radiation
wavelength at the fundamental frequency of 1060 nm,
and a pulse duration of 30 ps).

The time resolution of the experimental setup as a
whole depends on the pulse duration of the excitation
source.

The optical scheme of polychromator 5 is the classi-
cal Cherny–Turner scheme and ensures the input radia-
tion dispersion in the spectral range from 200 to
1000 nm. When recording wide-band luminescence,
the instrument discriminates a 450-nm-wide spectral
interval with a spectral resolution of 2 nm and provides
tuning within this spectral range. The design of the
polychromator allows reconfiguration of the entrance
slit in two mutually perpendicular directions, thus mak-
ing it possible to vary the time and spectral resolutions
of the luminescence spectra. The instrument has an
aperture ratio of 1 : 5, is compact, and can be mounted
directly (without intermediate optics) on the end face of
the streak camera so that the image of the luminescence
spectrum in the form of a narrow strip is projected onto
the photocathode of the electro-optical converter
(EOC) of the streak camera.

The electro-optical scheme of streak camera 6 con-
sists of a PV-001 time-analyzing EOC and a PMU-2V
image amplifier. Allowance is made for interchange-
able EOCs with photocathodes intended for spectral
intervals of 250–850 and 400–1200 nm. The image of
the spectrum swept on the EOC screen is transferred to
a photosensitive CCD camera with a wide-aperture
lens.

The circuitry of the streak camera provides time-
base sweeping of the luminescence spectra on the
screen in the range from 0.5 ns to 20 µs with a maximal
resolution of 10–12 s.

At the initial stage of explosive decomposition, fast
sweeping is required. However, the persisting lumines-
cence of the explosion products may superimpose on
the back sweep in this case and distort the spectrum. To
avoid this, the streak camera has a shutter with an oper-
ating time from 20 ns to 20 µs and operates in the fol-
lowing modes correlating with the power supply oper-
ation: “always open” (initially open, no initializing
pulse applied to the shutter); “always closed” (initially
closed, no initializing pulse applied to the shutter);
“normally open” (initially open, closed for the pulse
duration); and “normally closed” (initially closed, open
for the pulse duration).
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
Switching the sweeping voltage on and off and com-
bining various shutters makes it possible to use the
streak camera not only to record the spectral and kinetic
characteristics of the luminescence, but also to trace its
dynamics in space. Moreover, it also can be applied as
a photographing camera with a minimal exposure time
of ≈20 ns.

A special software suite was developed for control-
ling the streak camera and for luminescence spectra
processing [4–6]. It allows for remote control of the
streak camera through both local-area (Intranet) and
global (Internet) networks, which extends the potential-
ities of spectral–kinetic analysis of energetic materials.

The Sight-2A Server program (i) solves client que-
ries to control the streak camera and provides inter-
active communication with the streak camera (on the
OS Windows 95/98/ME platform), (ii) provides
communication with the streak camera via the
TVicHW32   generic driver (on the OS Windows
95/98/ME/NT/2000/XP platform), and (iii) transmits
images of the spectra from the streak camera to the cli-
ents.

The Sight-2A Client program (i) displays the cur-
rent operating parameters of the streak camera,
(ii) solves client queries to change the operating param-
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Fig. 1. Block diagram of the setup used to study the spectral
and kinetic characteristics of energetic materials.
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Fig. 2. Explosion luminescence spectrum of the silver azide
single crystal. The source of excitation is a GIN-600 elec-
tron accelerator. The beam current density is 1 kA/cm2.

Fig. 3. Spatial dynamics of explosion luminescence from
the silver azide single crystal. The source of excitation is a
GIN-600 electron accelerator. The beam current density is
1 kA/cm2.

Fig. 4. Instantaneous photos of explosion luminescence
from the silver azide single crystal. The source of excitation
is a YAG : Nd3+ laser. The exposure time is 200 ns. The ini-
tializing energy density is (a) 5, (b) 15, and (c) 100 mJ/cm2.
eters of the streak camera, (iii) takes spectrum images
from the streak camera via the service program,
(iv) saves the images in standard graphic formats (Bit-
map, JPEG Image File, or CompuServe GIF Image),
and (v) transmits the images to the handler.

The program Sight-2A intended for luminescence
spectrum processing (i) receives spectrum images from
the client program or reads out the spectra from the
disk, (ii) normalizes the time axis by the sweep coeffi-
cients, (iii) normalizes the spectral axis by wavelength
calibration (assignment of a wavelength to an image
point), (iv) normalizes the spectral intensity by the sen-
sitivity of the streak camera optics, (v) converts the
spectra to the energy coordinates, (vi) displays the
results of computation in the 3D coordinate system
using the OpenGl technology, and (vii) transmits the
computation results to Microsoft Excel (using the OLE
technology).

The hardware–software environment described
above was employed to study the spectral–kinetic char-
acteristics of explosive luminescence from a silver
azide single crystal with a GIN-600 electron accelera-
tor as a source of excitation.

The luminescence pattern recorded from the EOC
screen is shown in Fig. 2. It can be seen that the initial-
izing pulse gives rise to a continuous luminescence
spectrum, which is associated with radioluminescence
from the crystal. The radioluminescence is followed by
the continuous spectrum second component, which is
associated with pre-explosive luminescence due to the
onset of the explosive decomposition reaction [3]. Late
in the process, the explosion of the sample is accompa-
nied by a plasma glow, on which the lines of explosion
product luminescence are imposed.

The experimental setup described above can be used
not only for studying the spectral and kinetic character-
istics of luminescence induced by explosion of ener-
getic materials but also for tracing the spatial dynamics
of the luminescence. Data of this kind are extremely
important, since it was shown (at least, for azides of
heavy metals) that the kinetics of pre-explosion lumi-
nescence is to some extent similar to the process kinet-
ics at the initial stage of the chain reaction of explosive
decomposition. Consequently, pre-explosion lumines-
cence may serve as an indicator of this reaction [3].

To perform such experiments, the experimental
scheme shown in Fig. 1 should be modified. Sample 3,
in this case, is a filamentary crystal whose axis runs par-
allel to the EOC photocathode and normally to the
sweep direction in streak camera 6. Polychromator 5 is
removed, and the sample image magnified is projected
onto the plane of the EOC photocathode. In such a con-
figuration, the time resolution depends on the sample
width and the sweep rate of the streak camera. The spa-
tial resolution determined with a reference object
(myrrh) is 50 µm.

Figure 3 shows the result for the silver azide crystal.
At the instant of initialization, a uniform glow of the
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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sample associated with radioluminescence is observed.
Subsequently, luminescence centers expand and ulti-
mately cover the entire sample. The propagation rate of
the reaction, ≈1500 m/s, can be estimated from the
angle of divergence of the luminescent cones.

Figure 4 demonstrates the potentialities of the
experimental setup operating in the instantaneous pho-
tography mode. In this case, a picosecond laser is used
as a source of excitation. The photographs are taken for
three initializing energies at an exposure time of 200 ns.
When the initializing energy density is low, the reaction
is seen to start at separate points. At a high initializing
energy density, the sample explodes (at the given expo-
sure time).
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Abstract—Earlier, computer simulation discovered the effect of catastrophic and asymmetric change in the
efficiency of second harmonic generation by high-intensity femtosecond pulses under phase mismatch. Based
on this effect, a simple method for experimentally verifying the existence of the frequency conversion bistable
mode predicted earlier is proposed. The results of computer simulation are corroborated by analytical depen-
dences obtained in the long-pulse approximation. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The problem of frequency conversion and, in partic-
ular, of generating the second harmonic of high-inten-
sity femtosecond pulses remains topical [1–6], because
high-efficiency (above 60%) frequency conversion
techniques of practical value are lacking. Strong self-
action, typical of propagation of high-intensity femto-
second laser pulses, is the cause of low-efficiency fre-
quency conversion under phase and group synchro-
nism. At the same time, it has been shown in our recent
works [7–10] that, if certain conditions are satisfied, a
60–80% energy conversion efficiency can be achieved
through frequency doubling in optical fibers (or by
using wide-aperture beams), with the quality of a sec-
ond-harmonic pulse being good. In particular, when
self-action effects are significant, phase synchronism
breaking may increase the conversion efficiency of the
high-intensity femtosecond pulse frequency by one
order of magnitude [8].

It should be noted that all the methods proposed by
us rely on the ambiguous (bistable) dependence of the
efficiency of generating the second harmonic by high-
intensity femtosecond pulses on the initial conditions
of interaction between optical waves. Specifically,
along with the usual generation mode of low efficiency,
which is typical of physical experiments where radia-
tion, for example, at the double frequency does not
enter a nonlinear medium, there exists another, high-
efficiency, mode of second harmonic generation. How-
ever, to check the theoretical speculations, it is neces-
sary to conduct physical experiments that, in our opin-
ion, are too sophisticated. If experimentalists are not
certain that the methods of sufficiently increasing the
generation efficiency (see [7–10]) are feasible (and do
exist!), relevant experiments can hardly be performed.
Therefore, it would be appropriate to devise a simpler
1063-7842/05/5006- $26.00 0736
(from the standpoint of physical experiment) method to
check the conclusions based on the approach being
developed by the authors. Tackling this problem in this
paper, we describe a method derived from the effect of
catastrophic decrease in the efficiency of fundamental-
to-second harmonic energy conversion when the sys-
tem is detuned from phase synchronism.

The term “catastrophic” appearing in the title of this
paper stresses that we are dealing with a sharp drop in
the frequency conversion efficiency when the phase
mismatch changes insignificantly about a certain
value—the situation observed under definite conditions
of wave interaction. Such conditions are typical of opti-
cal bistability problems (and of the theory of catastro-
phes in general), which consider the system’s switching
from one state to another.

BASIC EQUATIONS

The system of dimensionless equations that
describe the generation of the second harmonic by a
femtosecond pulse with allowance for its self-action
has the form

(1)

∂A1

∂z
--------- iD1

∂2A1

∂η2
----------- iD⊥ ∆⊥ A1 iγA1*A2e i∆kz–+ + +

+ iα1A1 A1
2 1 β+( ) A2

2+( ) 0, 0 z Lz,≤<=

∂A2

∂z
--------- ν

∂A2

∂η
--------- iD2

∂2A2

∂η2
----------- i

D⊥

2
-------∆⊥ A2+ + +

+ iγA1
2
ei∆kz iα2A2 1 β+( ) A1

2 A2
2+( )+ 0,=

∆⊥
1
r
--- ∂

∂r
----- r

∂
∂r
----- 

  , α2 2α1 2α .= = =
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Here, η is the dimensionless time in the coordinate sys-
tem related to the fundamental harmonic pulse; z is the
normalized longitudinal coordinate; 

are the coefficients describing the group velocity dis-
persion;  and  are, respectively, the dimensional
wavenumber and frequency of a jth wave; D⊥  is the
coefficient allowing for diffraction of light (D equals
the ratio between the length of the medium and quantity

2k1 , which is four times as large as the diffraction
length of the beam at the fundamental frequency); a1 is
the physical dimension of the beam; r is the transverse
coordinate normalized by a1; γ is the coefficient of non-
linear coupling between interacting waves; ∆k = k2 –
2k1 is the dimensional phase mismatch; αj are the coef-
ficients of self-action of the waves; Aj are the complex
amplitudes of the harmonics (j = 1, 2) normalized by
the maximum amplitude of the first harmonic at the ini-
tial cross section of the medium (z = 0); v  is a parameter
proportional to the difference in the inverse group
velocities of the second and fundamental harmonics; Lz

is the length of the nonlinear medium; and β is a param-
eter that characterizes the contribution of different per-
mittivity gratings induced by interacting waves to the
self-action of a given wave. Parameter β varies from 0
to 1, depending on the lifetime of the gratings induced.
It should be remembered that, for example, terms
(A2 )A1, (A2A1) , and ( A1)A2 are the contribu-
tors to term |A2|2A1. The products of the wave ampli-
tudes in the parentheses correspond to the permittivity
gratings at different spatial frequencies. The lifetimes
of the gratings may therefore be different. A more gen-
eral form of the terms in Eqs. (1) that allows for differ-
ent contributions of the permittivity gratings to the self-
action of the wave can be found elsewhere [1].

At the entrance to the nonlinear medium, the initial
distribution of the pulse at the fundamental frequency is
specified,

where R is the transverse dimension of the domain
under study and Lt is the dimensionless time of process
analysis.

The second harmonic amplitude in this initial cross
section is zero, A2(z = 0, η, r) = 0. It should also be
noted that the interacting wave amplitude distributions
considered here are finite and the amplitudes are lim-
ited on the axis. Therefore, the initial and boundary
conditions for Eqs. (1) are written as follows:

D j 0.5
∂2k j

∂ωj
2

---------–∼

k j ωj

a1
2

A2* A2* A2*

A1 z 0= η r, ,( ) A0 η r,( ), 0 η Lt,≤ ≤=

0 r R,≤ ≤

A j η 0= Lt, r∂A j

∂r
--------

r 0=

A j r R= 0; j 1 2.,= = = =
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In physical experiments, initial distribution A0(η, r)
of the fundamental harmonic of the pulse is usually
approximated by the Gaussian waveform and beam
profile,

The parameters are normalized in such a way that
the dimensionless amplitude at the fundamental fre-
quency equals unity, A10 = 1. Parameter mr , character-
izing the beam’s profile, may take values of 2, 4, 6, and
so on.

Generation of the second harmonic under the condi-
tions of wave self-action possesses a number of invari-
ants (see, e.g., [10]), which must be checked in com-
puter simulation. We used conservative difference
schemes, which keep these invariants constant.

Efficiency θ of fundamental-to-second harmonic
energy conversion is estimated as

ANALYTICAL ESTIMATION
In [9], we considered the generation of the second

harmonic in the long-pulse approximation and showed
that the contribution of self-action to the phase differ-
ence between interacting waves depends on the differ-
ence in their intensities and the product of α and β,

where aj and ϕj are, respectively, the amplitudes and

phases of the waves, Aj = aj  (j = 1, 2).
If the double-frequency wave is absent at the

entrance to the medium, the amplitudes of the interact-
ing waves and their phase difference ϕ in the medium
are related as follows:

The first equation implies that the extremal (maxi-
mal or minimal) values of amplitude a2 of the second
harmonic are achieved at ϕ = πn. Importantly, there
may be several maxima, because this equation is cubic
(in general, the equation for a2 is quartic). As the waves
propagate, the second harmonic amplitude oscillates
between the maximal achievable and zero values. The
dependence of this maximum, which corresponds to the
highest conversion efficiency, θmax, in the long-pulse

A0 η r,( ) A10 η Lt/2–( )/τ( )2/2 r
mr/2––( ).exp=
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Fig. 1. Maximum efficiency θmax of second harmonic generation vs. (a) β with the wave number detuning as a parameter and
(b) wave number detuning with β as a parameter in the long-pulse approximation at α = 16 and γ = 4. Also shown is the generation
efficiency in the cross section z = 1 vs. (c, d) β and (e) ∆k in the case of the Gaussian pumping pulse with τ = 4 and ν = 0 for (c) D1 =

D2 =10–6 and (d, e) D1 = D2 =10–1 (the energy conversion takes place in the optical fiber, D⊥  = 0 V in Eqs. (1)). In Fig. 1e, the dotted
line corresponds to α = 1 and β = 1; the dashed line, to the cross section z = 0.5.
approximation, on β at constant ∆k and on phase mis-
match ∆k at constant β is shown in Fig. 1. The variation
of both parameters (β and ∆k) is seen to cause sharp
steps in the maximum efficiency, which are caused by
self-action of the waves. The difference in the lifetimes
of the induced permittivity gratings (decreasing param-
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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eter β) reduces the effect of cubic nonlinearity on the
phase difference between the interacting waves, which
eventually fades out at β = 0 [9]. Therefore, as far as an
inserted phase difference is concerned, the decrease in
β from 1 to 0 is as effective as a decrease in the peak
intensity of the laser pulse fundamental harmonic in the
case when all the permittivity gratings make the same
contribution (β = 1).

Let us discuss in more detail the plots in Fig. 1,
which are drawn in the long-pulse approximation. The
sharp (catastrophic) change in the conversion efficiency
in Figs. 1a and 1b stands out. This change is caused by
the ambiguous dependence of θmax on β (dashed line in
Fig. 1a) and ∆k (dashed line in Fig. 1b). Note that the
dashed lines in Fig. 1a are not closed for the interaction
parameters chosen. As soon as β (or ∆k) reaches the
point where the efficiency is bound to switch to a higher
(lower) value, this switching proceeds sharply in
response to an insignificant change in the parameter
(β or ∆k). It is clear that, when the same crystal
(medium) is used to generate the second harmonic in a
physical experiment, phase mismatch ∆k is varied,
while β remains constant. Therefore, if the dependence
of the energy conversion efficiency on the phase mis-
match is asymmetric in a physical experiment, one can
argue that the bistable mode of generation due to the
effect of cubic nonlinearity is set and that the theoreti-
cal speculations are valid.

One should keep in mind several circumstances.
Figures 1a and 1b show that, as the effect of self-action
increases (i.e., β or the input intensity grows), the vari-
ation of the mismatch over a wide range does not have
a significant effect on the energy conversion efficiency.
In particular, if the contributions of all permittivity grat-
ings induced equal each other (β = 1) and the model
parameters are the same as above, a change in ∆k to
about −15 raises the frequency doubling efficiency by
only about 10%, as under the phase synchronism con-
ditions. Only when ∆k = –16 does the efficiency of
energy transfer into the second harmonic increase five-
fold. The effect of the pulse waveform and beam profile
is discussed in the next section.

PULSE PROPAGATION
IN AN OPTICAL FIBER

The propagation of light pulses in a fiber is
described by Eq. (1) with the only difference that the
diffraction coefficients are zero and the amplitude dis-
tribution at the entrance to the nonlinear medium
depends on time alone. As a result, for the Gaussian
waveform, the β dependence of the frequency doubling
(energy conversion) efficiency at a fixed length of wave
interaction becomes smoother, i.e., does not exhibit
abrupt switching of the system to the state with a low
conversion efficiency (Fig. 1c). This is because the
propagation path is fixed (in this case, z = 1), since the
maximum efficiency for different portions of the pulse
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
is achieved on different paths when the second-order
dispersion is weak.

The next remark concerns the effect of the second-
order dispersion on the shape of the curves. The disper-
sion also affects the behavior of the curves (Figs. 1d and
1e). The character of the changes depends on the
amount of self-action and the wave interaction path. For
example, for a medium with β = 0.5 (this value corre-
sponds to the example considered in [2]), the ∆k depen-
dence of the maximum efficiency remains virtually the
same (Figs. 1b and 1e), although the maximum value,
θmax, decreased by about 10%. On the contrary, at β = 1,
when the contributions of all the permittivity gratings
are equal to each other, the ∆k dependence of θmax

changes significantly: the sharp drop in the fundamen-
tal-to-second harmonic energy conversion efficiency in
the given cross section of the medium is absent. How-
ever, the distinct asymmetry in the generation effi-
ciency versus the phase mismatch dependence persists.
Significantly, if the self-action due to cubic nonlinearity
(β = 0) does not influence the phase mismatch or this
influence is weak compared with the influence of qua-
dratic nonlinearity (dotted line in Fig. 1e), this depen-
dence becomes symmetric and the maximal efficiency
is achieved at phase synchronism. In this case, the
absence of the sharp decrease in the energy conversion
efficiency in Fig. 1e (which corresponds to the cross
section z = 1) is attributed, in particular, to backward
energy conversion (Fig. 2). Therefore, at the given
parameters of interaction, relevant measurements
should be made for a shorter medium (z ≤ 0.25).
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Fig. 2. Evolution of second harmonic generation efficiency
θ at (1) weak dispersion (D1 = D2 = 10–6), (2) medium dis-

persion (D1 = D2 = 10–1), (3) strong dispersion (D1 = D2 =
1), and (4) anomalous dispersion (D1 = D2 = –1) for β = 1,
a = 16, γ = 4, ν = 0, ∆k = –8, and τ = 4.
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GENERATION OF THE SECOND HARMONIC 
BY OPTICAL BEAMS

Of most practical importance is generation of the
second harmonic with regard to the beam profile (D⊥  ≠
0 in Eqs. (1)). In this case, there arise a variety of non-
linear optical effects, which have been extensively stud-
ied experimentally in recent years [1, 2, 4–6]. Consid-
ering these effects is beyond the scope of this paper. We
will only touch upon the dependence of the frequency
conversion efficiency on the wave number detuning for
spatially inhomogeneous beams with the emphasis on
the practically important case that can be used for
checking the dependences being discussed, namely,
when the diffraction length for a wave incident on the
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Fig. 3. Maximum efficiency θmax of second harmonic gen-
eration in the cross section z = 1 at β = 1, γ = 4, and ν = 0
vs. parameter ∆k. (1) Gaussian (τ = 4) pumping pulse in the
optical fiber (D⊥  = 0), (2, Fig. 3a) wide-aperture (D⊥  = 10–6)
hyper-Gaussian (mr = 6) beam, and (3) Gaussian (mr = 2)

beam at D1 = D2 = 10–1 and a = (a) 16 and (b) 25 for the
second harmonic generation in the optical fiber at (1) D1 =

D2 = 10–6 and (2) in the long-pulse approximation. The dot-
ted line in Fig. 3b corresponds to z = 0.5.
nonlinear medium far exceeds the length of the nonlin-
ear medium (D⊥  ! 1). Under these conditions, the opti-
mum phase relationship between interacting waves is
not disturbed by diffraction. Therefore, the ∆k depen-
dences of the energy conversion efficiency in this case
are similar to those described above, which is illus-
trated in Fig. 3.

Note that, for spatially inhomogeneous beams,
sharp switching of the system to the state with a low
frequency conversion efficiency takes place as ∆k
increases in the vicinity of ∆k = 0. This effect is
observed on sufficiently long wave interaction paths (in
our case, z = 1) over a wide range of the self-action
parameter. For shorter interaction paths, the maximum
of the conversion efficiency shifts toward negative ∆k.
A similar effect is observed when the influence of cubic
nonlinearity is enhanced (Fig. 3b).

CONCLUSIONS

Thus, we described feasible physical experiments
aimed at verifying the earlier inference [7–10] that gen-
eration of the second harmonic by high-intensity fem-
tosecond pulses exhibits a bistability showing up in the
presence of high-efficiency and low-efficiency genera-
tion modes. Accordingly, the frequency conversion effi-
ciency versus the phase mismatch dependence is asym-
metric, this asymmetry arising only when cubic nonlin-
earity makes unequal contributions to the equations for
interacting waves, causing self-action of the waves.
Importantly, under certain conditions imposed on the
length of the medium and pulse duration that are easy
to implement in physical experiments, this dependence
exhibits a sharp change in response to an insignificant
change in ∆k. Such behavior is typical of the effect of
optical bistability and is predicted by the theory of
catastrophes. That is why (we emphasize once more)
the word catastrophic has appeared in the title of this
paper.

Our calculations also explain why the variation of
the phase mismatch over a wide range does not improve
the frequency conversion efficiency when the second
harmonic is generated by high-intensity femtosecond
pulses. The reason is just the establishment of the
bistable generation mode.

To conclude, we believe that this paper will be of
interest for experimentalists and would be appreciative
of receiving information on results obtained in physical
experiments. We are also ready to perform computation
adequate to a particular physical experiment.
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Abstract—The results of numerical simulation of a nanodimensional film–transition layer–absorbing substrate
structure are presented. It is found that the transition layer affects the accuracy of determining the refractive
index and thickness of the nanodimensional coating. It is shown that the introduction of the effective values of
the refractive index and absorption coefficient of the substrate improves the accuracy of ellipsometric measure-
ments of the nanodimensional film parameters. Physical (full-scale) and numerical experiments demonstrate
that, when the thickness and refractive index of a nanodimensional film on a substrate with an unknown transi-
tion layer comparable in thickness with the film are measured, it is appropriate to replace the substrate–transi-
tion layer structure by a substrate with effective optical parameters. It is found that a change in the thickness of
the transition layer does not noticeably affect the accuracy of determining the thickness and refractive index of
the film deposited when the effective values of the refractive index and absorption coefficient of the substrate
are used. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

At present, extensive research aimed at designing
and fabricating nanodimensional electronic and opto-
electronic devices is underway [1–3]. This has become
possible owing to the development of advanced meth-
ods for obtaining nanodimensional structures, such as
MBE, MOCVD, the Langmuir–Blodgett method [4, 5],
and layer-by-layer absorption of oppositely charged
macromolecules (the so-called polyionic assembly) [1].
In these methods, precise measurement of the optical
constants and thickness of the structure formed is a crit-
ical issue [1–3]. Ellipsometry, offering a high sensitiv-
ity and accuracy and also providing in situ measure-
ments, is being widely used for this purpose [6–14].

It is well known that ellipsometric accuracy depends
on a variety of factors, of which the adequacy of a cho-
sen model to an object being measured is of primary
importance [9–12]. In calculating optical constants, one
often uses known values of the refractive index of a
clean substrate. Such an approach may frequently turn
out to be invalid, since substrates almost without excep-
tion are covered by a transition layer (in particular, by
natural oxide in the case of silicon substrates [7, 10]).
The Langmuir–Blodgett technology is most prone to
the formation of the transition layer, since (i) monolay-
ers prepared are transferred in air [4], (ii) hydrophobic
coatings are often used [4, 5], and (iii) the layer may
form as a result of substrate–water interaction when the
deposition from the water subphase takes place [4].
These facts may noticeably affect the measurements of
the film parameters. In light of this, to estimate and
1063-7842/05/5006- $26.00 0742
minimize this effect seems to be a topical problem in
ellipsometric studies.

MODEL AND COMPUTATION 
TECHNIQUE

In our computational experiments, the test structure
consisted of a silicon substrate, transition layer, and
film to be measured (Fig. 1).

We solved the direct and inverse problems of ellip-
sometry. It is known that the basic equation of ellipsom-
etry relates polarization angles Ψ and ∆ to the reflection
coefficients of the s and p components of incident radi-
ation,

(1)

To calculate the reflection coefficients, we applied
the matrix method in which zero-thickness spacings
with the optical parameters of the environment are
inserted between the layers [13, 14]. With this method
and the model described above, one can derive general-

ρ Rp

Rs
------ Ψ i∆( ).exptan= =

Nfl = nfl – ik flFilm

SiO2

Si

Ntr = n tr – ik tr

N0 = n0 – ik0

Neff = neff – ikeff

Fig. 1. Model of the structure used in the calculations.
© 2005 Pleiades Publishing, Inc.



        

EFFECT OF THE TRANSITION LAYER 743

                                                                       
ized formulas making it possible to solve the direct
problem of ellipsometry for multilayer structures with
an infinitely large number of layers,

(2)

(3)

where Nc is the refractive index of the environment
(Nc = 1 for air); Θ is the angle of incidence of the radi-
ation on the structure; λ is the wavelength; Nm and dm

are the complex refractive index and the thickness of an
mth layer, respectively; and Fm are the Fresnel coeffi-
cients at the interface between the mth layer and the
environment,

(4)

(5)

In the calculations, the substrate was assumed to be
the medium with m = 0.

In the direct problem, the polarization angles for the
reflection of the radiation from the substrate–surface
oxide (Ψ1, ∆1) and substrate–transition layer–nanodi-
mensional film (Ψ2, ∆2) structures were calculated.

In the simulation, refractive index n0 and absorption
coefficient k0 of the substrate were taken to be n0 = 3.86
and k0 = 0.02 for λ = 632.8 nm (this wavelength is typ-
ical of an LÉF-3M ellipsometer used in the measure-
ments), the angle of incidence was Θ = 70° (the value
commonly used in ellipsometric measurements on sili-
con plates), the refractive index of the oxide simulating
the transition layer was taken to be ntr = 1.46 and 1.54
[10, 15] and oxide layer thickness dtr was varied from 0
to 23 nm. The smaller the thickness dfl of the film
applied, the stronger an effect of the transition layer
may be expected. For this reason, the thickness of the
film was varied from 10 to 20 nm. Refractive index nefl
of the film was varied from 1.05 to 1.8. When selecting
the value of refractive index nefl of the film, we took into
account the fact that Langmuir–Blodgett films contain
primarily molecules of biphyllic compounds, for which
the average refractive index equals 1.5, being depen-
dent on the presence of alkyl radicals [4, 16, 17].

The influence of the transition layer on the accuracy
of determining the refractive index and thickness of the
nanodimensional film, as well as the feasibility of min-
imizing this influence on the nanodimensional film
parameters measured, was determined by comparing a
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solution to the inverse problem with the parameters set
in the direct problem.

The inverse problem was solved using the Holmes
method [12, 18], in which the properties of the substrate
must be preset. We considered two cases (Fig. 1): (i) the
parameters of the substrate are the same as those of a
clean silicon surface (n0 = 3.86, k0 = 0.02), so that the
presence of the transition (surface) layer is disregarded,
and (ii) the optical constants of the substrate are
replaced by effective parameters (viz., refractive index
neff and absorption coefficient keff) characterizing the
real surface.

The values of neff and keff were calculated by the
well-known formula [9–12]

(6)

where Θ is the angle of incidence of radiation, ρ1 =
exp(i∆), and Ψ1 and ∆1 are the measured angles

of polarization for the substrate–transition layer struc-
ture.

The solution algorithm for the direct and inverse
problems is given in Fig 2.

RESULTS OF SIMULATION

The results of simulation are illustrated in Figs. 3–6.
For comparison, Figs. 5 and 6 also show the results of

Neff = neff ikeff–  = Nc = Θ( )
1 ρ1–
1 ρ1+
-------------- Θtan 

 
2

1+ ,sin

Ψ1tan

n0

k0

ntr

dtr

∆1

Ψ1

nfl

dfl

∆2

Ψ2

neff

keff
n1

d1

d2

n2

+

+

+

+

⇒
⇒

⇒

⇒

⇒

Fig. 2. Solution algorithm for the direct and inverse problem
of ellipsometry: n0 and k0, the refractive index and absorp-
tion coefficient of the clean substrate surface (Fig. 1); ntr
and dtr, the refractive index and thickness of the transition
layer (Fig. 1); Ψ1 and ∆1, the polarization angles obtained
from the reflection of radiation from the surface of the clean
substrate–transition layer structure; nfl and dfl, the refractive
index and thickness of the film deposited (Fig. 1); Ψ2 and
∆2, the polarization angles obtained from the reflection of
radiation from the surface of the clean substrate–transition
layer–film structure; neff and keff, the effective refractive
index and absorption coefficient of the substrate (the clean
substrate–transition layer structure) (Fig. 1); n1 and d1, the
refractive index and thickness of the film that are calculated
using the effective refractive index and absorption coeffi-
cient of the substrate; and n2 and d2 are the refractive index
and thickness of the film that are obtained from the refrac-
tive index and absorption coefficient of the clean surface of
the substrate.
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calculation for ntr = 3. From the above dependences, the
following conclusions can be drawn.

(1) Effective refractive index neff decreases and
effective absorption coefficient keff increases with
increasing thickness dtr of the oxide layer simulating
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Fig. 3. (a) Effect of transition layer (oxide) thickness dtr on
relative accuracy δ in determining the refractive index and
thickness of the nanodimensional film (for ntr = 1.46):
(I) without oxide and (II) with Neff. (b) Enlarged fragment
of Fig. 3a.
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Fig. 4. Effect of the difference in the refractive indices of the
transition layer, ntr, and the film, nfl, on relative accuracy δ
in determining the refractive index and thickness of the nan-
odimensional film (for ntr = 1.46): (I) without oxide and
(II) with Neff.
the transition layer (Fig. 5). For example, as thickness
dtr of the oxide layer grows to 15 nm (ntr = 1.46), effec-
tive refractive index neff drops from 3.86 to 3.57, while
effective absorption coefficient keff rises from 0.02 to
0.99. The presence of a transition layer on the surface
of the substrate can be judged from the values of the
effective refractive index and absorption coefficient.

(2) The error in determining the thickness and
refractive index of the film deposited on the oxide-
coated substrate depends on the oxide thickness
(Fig. 3). As dtr increases, so does the error. If the pres-
ence of the oxide layer is disregarded, the error in the
thickness is maximal and comparable to the thickness
of the oxide layer (see Fig. 3). For example, if the thick-
ness of the oxide is only 5% of the film thickness
(dtr/dfl = 5%), the error in the film thickness amounts to
4.5% when the refractive index and absorption coeffi-
cient are taken for the clean substrate and drops to 0.4%
when the effective parameters are used. For comparable
(e.g., equal) thicknesses of the oxide and film, the error
in the film thickness exceeds 90% when we ignore the
presence of the transition layer and is less than 6%
when the effective parameters of the substrate are used.

(3) The error in the thickness and refractive index of
the film depends on the difference in the refractive indi-
ces of the oxide and film (see Fig. 4). If the refractive
index of the film is 1.13 times higher than that of the
oxide (nfl/ntr = 1.13), the error in the film thickness is
1.3% if the effective parameters of the substrate are
used and grows to more than 11% if the clean-substrate
parameters are employed. Use of the effective parame-
ters of the substrate also proves itself if the refractive
index of the oxide is smaller than that of the film
(Fig. 4). If the refractive index of the film is smaller
than that of the transition layer by a factor of 0.85
(nfl/ntr = 0.85), the error in the film thickness
approaches 7 against 10% in the case when the refrac-
tive index of the clean substrate is used.

(4) For the structures simulated, we calculated the
value of Φ, the so-called effective substrate applicabil-
ity criterion [19]. It was found that the applicability cri-
terion for the effective substrate with an oxide layer
23 nm thick (ntr = 1.54) is Φ = 1.01. The ellipsometric
measurement error depends on the oxide-to-film thick-
ness ratio: specifically, for the same thicknesses of the
film and oxide, i.e., 23 nm (see Figs. 3 and 4), the error
is 6 and 5% for the refractive index and thickness of the
film, respectively.

EXPERIMENTAL RESULTS

With the aim of finding the effective parameter
ranges, we studied experimentally the effect of standard
silicon processing techniques on the effective parame-
ters of wafers. The experiments were carried out on
KÉF-5 (phosphorus-doped to a resistivity of 5 Ω cm)
Si(111) and Si(100) single crystals.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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The effective parameters were calculated from mea-
sured polarization angles Ψ and ∆ for angles of inci-
dence of 60° and 70°.

Prior to the measurements, the wafers were kept in
air for a long time. Once the wafers had been boiled in
carbon tetrachloride, they were subjected to different
types of processing: two successive etchings in an
aqueous solution of hydrofluoric acid, ion etching, and
keeping for 30 min in distilled water.

The measurements were taken from several points
on the surface and then were averaged. The table lists
the average values of the refractive index of the sub-
strate after each operation. The (100) wafers are char-
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Fig. 5. Dependence of the effective refractive index and
absorption coefficient of the substrate on the oxide layer
thickness.
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acterized by narrower ranges of the effective refractive
indices and absorption coefficients. The values of the
effective refractive indices and absorption coefficients
vary from 3.56 to 3.86 and from 0.20 to 0.92, respec-
tively, for the (100) substrates and from 3.71 to 3.85 and
from 0.24 to 0.72 for the (111) substrates. It is found
that the effective refractive indices and absorption coef-
ficients approach those for a clean substrate upon
degreasing. In all the cases, effective substrate applica-
bility criterion Φ is close to unity. The maximum devi-
ation of Φ from 1, 0.0035, is observed upon etching in
hydrofluoric acid (in particular, upon the second etch-
ing of the KÉF-5 (100) wafers in hydrofluoric acid).

The experimental values of neff and keff were used in
a numerical experiment aimed at determining the prop-
erties of Langmuir–Blodgett films deposited on silicon
substrates. The sequence of operations was the follow-
ing: (i) ellipsometric measurement of parameters Ψ1
and ∆1 of the substrate before deposition; (ii) calcula-
tion of effective refractive index neff and absorption
coefficient keff; (iii) deposition of the film and ellipso-
metric measurement of parameters Ψ2 and ∆2 of the
structure; (iv) calculation of refractive index nfl and
thickness dfl of the film deposited using the values of
neff, keff, Ψ2, and ∆2; and (v) error analysis based on the
curves obtained in the numerical experiment (Figs. 3–6).
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1.008
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Fig. 6. Dependence of the criterion of substrate effective
parameter applicability on the transition layer thickness.
Effect of substrate surface processing on the effective refractive index and absorption coefficient of the substrate

Processing technique
KÉF-5 [100] KÉF-5 [111]

nef kef nef kef

As-prepared substrate 3.856 ± 0.002 0.210 ± 0.016 3.842 ± 0.016 0.645 ± 0.018

Degreasing in CCl4 3.858 ± 0.001 0.195 ± 0.004 3.852 ± 0.002 0.242 ± 0.025

First etching in HF 3.630 ± 0.103 0.608 ± 0.204 3.780 ± 0.029 0.464 ± 0.058

Second etching in HF 3.559 ± 0.078 0.923 ± 0.148 3.711 ± 0.015 0.723 ± 0.085

Ion etching 3.759 ± 0.005 0.788 ± 0.014 3.793 ± 0.005 0.584 ± 0.012

Keeping in distilled water 3.760 ± 0.041 0.542 ± 0.060 3.818 ± 0.014 0.372 ± 0.036
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It was found that the use of neff and keff substantially
reduces the errors in determining the parameters of the
film deposited. The properties of the transition layer are
known to vary noticeably when it is covered by a film.
However, even when the layer gets thicker by a factor
of 4 (from 10 to 40% of the film thickness; see Fig. 3),
the error increases only by ≈1.8% if the effective
parameters are used.

CONCLUSIONS

When the thickness and refractive index of a nanodi-
mensional film deposited on a substrate with an
unknown transition layer comparable in thickness with
the film are to be determined, it is appropriate to replace
the substrate–transition layer structure by a substrate
with effective optical parameters, as follows from full-
scale and numerical experiments. Using the effective
parameters determined prior to deposition may cut the
measurement accuracy of the thickness and refractive
index of the film when the transition layer thickness
changes.
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Abstract—Results of complete numerical simulation of a high-power coaxial microwave ubitron are reported.
The simulation uses a 2.5-dimensional numerical electromagnetic code based on the particle-in-cell method
and is performed for the amplification and oscillation operating modes. The results of our numerical simulation
are compared with analytical results and results following from the nonlinear theory that are obtained by partial
computer simulation. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Investigation into electron devices based on the
coherent radiation of electrons moving in periodic
static electric and magnetic fields started long ago
[1, 2]. Theoretical analyses [3, 4] and experimental
implementations [5–7] have been devoted mostly to
cylindrical ubitron configurations. A new stage in
studying these devices is associated with the coaxial
configuration [8–11], in which a periodic magnetic
field is created by a set of permanent magnets regularly
arranged on the inner and outer conductors of the coax-
ial line. This configuration can produce a wiggler with
the longitudinal magnetic field alternating along the
radius, whereas the cylindrical ubitron creates a wig-
gler with a spatially periodic magnetic field.

The coaxial ubitron with the alternating magnetic
field offers a number of advantages over the cylindrical
configuration. The first is more stable transport of the
electron beam in the alternating static magnetic field of
the wiggler. If the poles of the magnets that reside on
the outer conductor are half-period displaced relative to
those of the magnets on the inner conductor, a magnetic
well is formed in the coaxial gap. When the beam par-
ticles are at the bottom of the magnetic well, the ampli-
tude of their transverse oscillations in the magnetic
field of an alternating coaxial wiggler is significantly
smaller than when the beam is transported in the spa-
tially periodic field of a cylindrical ubitron. This advan-
tage allows the coaxial ubitron configuration to employ
lower magnetic field intensities than those used in the
cylindrical configuration at the same electron beam cur-
rent.

The second important advantage of the coaxial
ubitron is that the field of the beam’s space charge in its
drift chamber is weaker than that in a cylindrical one;
i.e., the limiting vacuum current of the electron beam in
a coaxial line is higher [12]. Therefore, the device can
1063-7842/05/5006- $26.00 0747
use a higher electron beam current and, thereby, raise
the output power.

The third advantage of the coaxial ubitron is its
higher efficiency compared with the cylindrical device.
Comparative nonlinear analysis [13] has shown that the
maximum power of the amplified microwave signal in
a coaxial ubitron is higher than in its cylindrical coun-
terpart. This fact is due to a higher resistance of cou-
pling between the electron beam and the wave being
amplified.

Designing a developmental version of a coaxial
ubitron needs not only a theoretical substantiation of its
operation but also elaboration of a model in terms of
which the performance of the device can be estimated
numerically. To date, the theory of the ubitron has been
thoroughly developed [8–11, 14], unlike numerical
approaches. An efficient tool for numerical calculations
is the particle-in-cell method, which is widely applied
to high-power microwave devices. However, few works
are known where this method is applied to the coaxial
ubitron. In one of them, it is used to perform complete
numerical simulation of oscillation at 2.8 GHz (the
MAGIC numerical code) [11]. In the simulations, the Q
factor of the resonator was specified by introducing a
finite-conductivity region for a required power and effi-
ciency to be achieved.

Below, we study microwave oscillations in the coax-
ial ubitron under different conditions; namely, it is
assumed that energy losses are due to the radiation from
the open end of the waveguide.

PHYSICAL STATEMENT OF THE PROBLEM, 
BASIC EQUATIONS, AND NUMERICAL 

SIMULATION ALGORITHM

Consider a coaxial waveguide (Fig. 1) of inner
radius a and outer radius b into which an annular rela-
tivistic electron beam is continuously injected. The
© 2005 Pleiades Publishing, Inc.
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beam current is designated as Ib; the energy of beam
electrons, as Wb; the inner radius of the beam, as rin; and
the outer radius of the beam, as rout. It is assumed that
the injected beam is monoenergetic; i.e., the transverse
velocity components of electron beam particles are zero
at the entrance to the drift chamber (z = 0). The left end
of the waveguide (z = 0) is closed by a metallic wall,
which is transparent for the particles and nontranspar-
ent for waves excited. On the inner and outer conduc-
tors of the coaxial waveguide, permanent magnets are
regularly arranged along the axis with period Lw. The
poles of the outer magnets are shifted relative to those
of the inner magnets by half of the period.

The constant magnetic field produced by such a
coaxial wiggler is given by [8, 14]

(1)

(2)

where  = kwr and ζ = kw(z + 0.25Lw) are the dimen-

sionless coordinates, (n ) = fnI0(n ) – gnK0(n ),

H0z r ζ,( ) H0 Cn n ζ π
4
---– 

  Fn
0( ) nr( ),cos

n 1=

∞

∑–=

H0r r ζ,( ) H0 Cn n ζ π
4
---– 

 sin Fn
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∞
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r
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Fig. 1. Coaxial wiggler and the longitudinal distribution of
magnetic fields Hr and Hz on the inner conductor of the
coaxial waveguide (the first spatial harmonic is taken into
account). N and S are the poles of the magnets; the shad-
owed regions, pole tips.
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(n ) = fnI1(n ) + gnK1(n ), fn = [K0(n ) +

K0(n )]/∆n, gn = [I0(n ) + I0(n )]/∆n,

kw = 2π/Lw,  = kwa,  = kwb, I0 and I1 are the Bessel
functions, and K0 and K1 are the Macdonald functions.

The numerical simulation of the ubitron was based
on the original 2.5-dimensional (three-dimensional in
velocity and two-dimensional in coordinates) relativis-
tic electromagnetic code, which uses the particle-in-
cell method [15]. The trajectory of each macroparticle
was calculated by solving a set of equations of motion
using a predictor–corrector scheme in cylindrical coor-
dinates. Components E and H of an electromagnetic
field excited by the beam in the waveguide, which enter
the expression for the Lorentz force, were calculated by
TSC interpolation from the mesh nodes when the set of
the Maxwell equations was solved by the finite-differ-
ence method on a rectangular grid. The Maxwell equa-
tions were solved using an explicit time- and coordi-
nate-centered leapfrog scheme.

The boundary conditions on the metallic surfaces of
the drift chamber are as follows: Ez|r = a, b = 0, Eϕ|r = a, b =
0, Er|z = 0 = 0, and Eϕ|z = 0 = 0. On the right (open) end of
the waveguide, the condition of radiation into free
space is set: Er /Hϕ  = 1 and Eϕ/Hr  = –1.

The mechanism of charge and current weighting
over the discrete grid does not exactly meet the conti-
nuity equation, as a result of which numerical results
are unstable. Therefore, the electromagnetic field com-
ponents found were subsequently corrected by the
Boris method during the solution of the Laplace equa-
tion.

NUMERICAL RESULTS

In the simulation, we used the following parameters
of the ubitron: a = 2 cm, b = 4 cm, rin = 2.85 cm, rout =
3.2 cm, Ib = 3 kA, Wb = 490 keV, H0 = 3 kOe, the length
of the system zout = 96 cm, and wiggler period Lw =
4 cm.

Before discussing the numerical results, it is appro-
priate to qualitatively estimate the range of frequencies
and wavelengths generated. Figure 2 shows the disper-
sion curve for the injected beam and TE01 mode in the
coaxial waveguide with the above dimensions. The
microwave generation occurs when the resonance con-
dition ω = (kw + kz)v z (kz is the wavenumber of the high-
frequency mode and v z is the electron average longitu-
dinal velocity) is satisfied. For an initial beam energy of
490 keV, the resonant frequency is f1 = ω/2π =
7.75 GHz and the resonance wavenumber is kz1 ≈
0.32 cm–1. This point of resonance is indicated in Fig. 2
by figure 1. As was noted above, the injection condi-

Fn
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tions in our numerical simulation were such that the
electrons had a zero transverse velocity at the entrance
to the system. When moving in the wiggler’s field, they
acquire a transverse velocity at the sacrifice of the lon-
gitudinal velocity. As a result, the range of resonant fre-
quencies shifts toward higher frequencies and longitu-
dinal wavenumbers. As follows from Fig. 2, a change in
wavenumber kz may be significant even at a small
change in the electron average longitudinal velocity.

Figure 3 shows the configuration space (r, z) of the
beam electrons propagating in the drift chamber at
three time instants: t = 3.9 ns, the approximate time
when the first electrons injected reach the end of the
ubitron; t = 10 ns, the time when the amplitude of the
electromagnetic field excited reaches a maximal value;
and t = 20 ns, the time when transients in the ubitron
fade out (further, the dynamics of the particles and
fields qualitatively remains the same). As can be seen
from Fig. 3, early in the injection, the electrons flow in
a laminar manner, describing helical paths. The beam
surface is radially modulated in the longitudinal direc-
tion with a period much longer than the wiggler period.
Such dynamics is typical of particles moving in a peri-
odic magnetic field and can be described by a Mathieu-
type equation [16]. The electron azimuth velocity is
longitudinally modulated with a period equal to the
wiggler period (see Fig. 4 for t = 3.9 ns). As the injec-
tion proceeds, smaller scale modulations (perturba-
tions) with a period approximately equal to the wiggler
period (Lw ≈ 4 cm) and a period equal to the spatial
period of the excited wave are superimposed on the
large-scale modulation with a period of about 20 cm.
These perturbations propagate from the exit of the
ubitron toward its entrance (Fig. 5b) and finally break
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2 3–1–2–3
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16

18

1
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8

Fig. 2. Dispersion curve for the TE01 mode and beam in the
coaxial waveguide with inner radius a = 2 cm and outer
radius b = 4 cm. Resonance points 1 and 2 correspond to the
initial and average electron beam velocity in the wiggler
field.
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the initial large-scale modulation of the beam virtually
throughout the system (Fig. 5c). Although the beam
transport through the coaxial waveguide remains stable
(particle losses at the walls are negligible), the initial
laminar flow of the particles breaks. Subsequently, the
particle dynamics in the ubitron is qualitatively the
same as that illustrated in Fig. 3c for t = 20 ns.

Figure 5 shows the phase plane (γ, z) of the beam’s
particles (γ is the relativistic factor) for the same time
instants as the configuration space in Fig. 3. We simu-
lated the self-excitation of the system: the initial field in
the simulation domain was set equal to zero and the
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Fig. 3. Configuration space (r, z) of the beam’s electrons in
the coaxial ubitron at times t = (a) 3.9 (b) 10, and (c) 20 ns.
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microwave field at the entrance to the ubitron was also
taken to be zero at any time. Therefore, initially, the
beam particle energy changes due to only the electro-
static field of the beam. The particles injected into the
ubitron first slow down slightly (their kinetic energy
decreases) and then traverse a major part of the ubitron
with an almost constant energy. Only at the end of the
system can a significant energy modulation of the beam
be observed (Fig. 5a). With time, the modulation
extends along the beam (Fig. 5b). The energy modula-
tion is accompanied by a velocity modulation, bunch-
ing the particles in the longitudinal direction. The insta-
bility progresses with time and becomes steady when
the particles are trapped by the field of the wave excited
(Fig. 5c). The effects of instability development that
were found in our simulation are numerically identical
to those predicted theoretically [3, 4, 13, 17–19] and
observed experimentally [5–7]. Thus, our numerical
model provides an adequate physical description of res-
onance wave excitation by an electron beam.

The longitudinal distribution of azimuth electric
field Eϕ is illustrated in Fig. 6. Initially, Eϕ is small
almost throughout the system, increasing and reaching
a maximum near the exit from the coaxial waveguide
(Fig. 6a). With time, the electromagnetic field of the
wave excited grows, retaining its longitudinal profile;
i.e., instability evolves in the amplification mode. In our
numerical model, the boundary condition at the right
end of the waveguide corresponds to radiation into free
space. In this case, the ubitron is unmatched. As a
result, waves reflecting at the exit end of the waveguide
and propagating oppositely to the beam inevitably
arise. Initially, their amplitude is small, because so is
the amplitude of the direct wave. Also, for the reflected
wave to affect the beam and substantially contribute to
the instability, it must reach the place of injection and
reflect from it. Therefore, the effect of the reflected
wave on the beam’s dynamics and instability develop-
ment is weak for a time. Initially, the ubitron operates

–0.5

12
z, cm

0

0.5

1.0

24 36 48 60 72 84 96
–1.0

0

vϕ/c

Fig. 4. Phase space (vϕ, z) of the beam’s electrons in the
coaxial ubitron at t = 3.9 ns.
in the amplification mode and the amplitude of the
excited wave increases from the place of injection
towards the exit from the structure (Fig. 6b). With time,
the reflected wave augments the energy of the back-
ward wave and the field amplitude distribution through-
out the system becomes uniform. In this case, the lon-
gitudinal field pattern is similar to that in a resonator
with the only difference that the wavelength depends on
the wavevector of the resonance wave (Fig. 6c) rather
than on the longitudinal dimension of the resonator. As
follows from Fig. 6, the longitudinal structure of the
field has a period of ≈10 cm. This period is twice as
small as that calculated under the assumption that the
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Fig. 5. Same as in Fig. 4 for t = (a) 3.9 (b) 10, and (c) 20 ns.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005



HIGH-POWER COAXIAL MICROWAVE UBITRON 751
longitudinal velocity is completely defined by the ini-
tial energy of the particles being injected, v z =

c . As we noted above when ana-
lyzing the dispersion characteristics shown in Fig. 2,
the beam entering the field of the wiggler enhances its
transverse velocity upon the sacrifice of the longitudi-
nal velocity. As a result, the average longitudinal veloc-
ity of the beam decreases and the region of beam–wave
interaction shifts toward higher wavenumbers. A radia-
tion wavelength of ≈10 cm corresponds to longitudinal
velocity v z ≈ 0.78c. The resonance point for this veloc-
ity is indicated by figure 2 in Fig. 2. It can be seen from
Fig. 2 that the resonance frequency changed insignifi-
cantly. To corroborate this statement, Fig. 7 plots the
average longitudinal velocity of the electrons in the
ubitron against time. Thus, the estimate of the electron
average longitudinal velocity, which is based on the
longitudinal structure of the azimuth field, is in fairly
good agreement with the result obtained by the numer-
ical simulation.

Figure 8 shows the transverse structure of the azi-
muth field at z = 70 cm for t = 10 ns. The wave excited
corresponds to the TE01 mode of the coaxial waveguide.
This result also validates the physical correctness of our
numerical model.

The azimuth component of the electric field is the
highest. The radial, Er, and longitudinal, Ez, electric
fields are four to five times lower than the azimuth com-
ponent. The longitudinal structure of Er is irregular,
while the longitudinal distribution of Ez is distinctly
regular. For the parameters used in the calculation, the
beam is weakly diamagnetic, since the transverse
motion of the beam electrons is nonrelativistic (see
Fig. 4, where vϕ ≈ 0.4c). At the maximum, Hr ≈ 300 Oe,
Hz ≈ 200 Oe, and both components of the magnetic field
are modulated in the longitudinal direction with the
same period as the azimuth electric field.

The frequency spectrum of the electron beam cur-
rent is shown in Fig. 9. The beam current is modulated
with a frequency of ≈8.3 GHz, which corresponds to
the resonance frequency (point 2) on the dispersion
curve in Fig. 2. Also, significant oscillations are
observed at the frequency twice as high as the reso-
nance one.

To calculate the ubitron efficiency and check the
accuracy of the numerical model, we used the energy
conservation law

(3)

where

(4)

(5)

1 1/ 1 Wb/mc2+( )2
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the efficiency of conversion of the beam energy to the
energy stored in the resonator; and ηS, the beam-to-radia-
tion energy conversion efficiency.
(6)

In expressions (4)–(6), W is the electromagnetic
field energy stored in the system, P is the particle
energy loss, and S is the electromagnetic field energy
radiated from the entrance and exit ends of the micro-
wave device. In our statement of the problem, the
entrance end of the ubitron is nontransparent for the
waves; therefore, the energy is radiated from the exit
alone. Figure 10 shows the time variation of these
energy characteristics normalized by the energy of all
particles injected into the system,

(7)

where Ub = Wb/e and e is the electron charge.
Until the coaxial ubitron is almost completely filled

with the beam, the energy losses increase in time nearly
linearly (beam efficiency ηb is almost constant). The
particle energy is entirely converted to the energy of the
electromagnetic field. Subsequently, the linear oscilla-
tion mode changes to the nonlinear mode and the beam
energy losses rapidly grow. The electromagnetic field
energy stored in the ubitron also grows. The excited
electromagnetic waves propagate towards the exit from
the waveguide with the group velocity of the resonance
wave. The radiation from the system grows with time
first nonlinearly and then, after the energy stored in the
system becomes constant, almost linearly. Ultimately,
the system acquires a quasi-steady state, in which the
energy lost by the particles equals to the radiated
energy. In this state, the efficiency in terms of the beam
energy loss is ηb ≈ 20%; the efficiency of beam-to-radi-
ation energy conversion, ηS ≈ 14%; and the efficiency
of conversion of the beam energy to the energy stored
in the resonator, ηE ≈ 6%.

CONCLUSIONS

Using the particle-in-cell method, we numerically
simulated the transport of and excitation of microwave
oscillations by a high-current electron beam in a coax-
ial drift chamber in the presence of an alternating peri-
odic magnetic field. The shape of the high-current elec-
tron beam being transported through the alternating
periodic static magnetic field agrees with numerical
estimates obtained from the envelope equations within
a high accuracy [19].

The analysis of the electromagnetic field dynamics
showed that, until the wave reflected from the
waveguide’s exit comes to its entrance, the ubitron
operates as an amplifier. The frequency and wavevector
of the resonance wave coincide with those obtained
from the linear dispersion relation with allowance for
longitudinal–transverse velocity transformation in the
field of the wiggler. The reflected wave provides an

S
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internal feedback and the microwave device switches to
the self-excitation mode. The ubitron efficiency in
terms of radiated energy is estimated as ≈14%. For the
beam parameters taken in the simulation, this efficiency
provides a radiated power of ≈200 MW.
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Abstract—The effect of vacuum heat treatment of thin vanadium dioxide films on the parameters of the metal–
semiconductor phase transition is studied. The results of heat treatment are compared with those obtained upon
irradiation of the synthesized films by medium-energy electrons. The elemental composition of the films that is
found by the Rutherford backscattering (RBS) method suggests that an observed change in the hysteresis loop
of the films is associated with the reduction of the vanadium dioxide upon heating in a vacuum. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The first-order phase transition in vanadium dioxide
(VO2) single crystals is observed at 67°C. Upon cooling
below this temperature, the tetragonal phase transforms
into the monoclinic phase, which shows up as a step in
the electric conductivity and optical constants of vana-
dium dioxide [1]. Emerging elastic stresses may dam-
age the single crystals. Therefore, the material of
choice in both investigation and application is thin
films, and not single crystals, of vanadium dioxide,
which remain intact upon repeated cycling about the
phase-transition temperature.

When VO2 is heated or irradiated by a laser or elec-
tron beam, the phase transition parameters (the transi-
tion temperature, as well as the shape and width of the
hysteresis loop) are known to change [2–4]. This seem-
ingly gives a chance to refine the properties of vana-
dium dioxide films synthesized [5]. However, VO2-
based multilayer devices (e.g., laser-beam limiters [6])
usually involve thin layers of other materials, which are
applied on the surface of the VO2 active film. Applica-
tion of these layers often implies vacuum heating of the
VO2 thin film, causing an uncontrolled change in its
properties. Moreover, devices of this type are normally
used under severe thermal and electron irradiation con-
ditions, which may result in degradation of the VO2
film.

In this work, we compare the effects of medium-
energy electron irradiation and vacuum heating on thin
vanadium dioxide films.
1063-7842/05/5006- $26.00 ©0754
EXPERIMENTAL

Thin VO2 films were deposited by laser evaporation
[5, 7]. The thickness of the films deposited on Si(001)
substrates was 60–80 nm. The absence of vanadium
lower oxides in the films was judged by the optical
transmission at wavelength λ = 10.6 µm. We studied the
temperature dependences of the dc and ac conductivity
(in the frequency range 0.2–200 kHz) and the reflectiv-
ity of the films at wavelength λ = 1.54 µm.

The films were annealed and irradiated by electrons
at a pressure of ~10–5 Torr. The electron energy was
~10 keV; the current density, 120 µA/mm2. The irradi-
ation dose was estimated from the exposure time, and
the annealing temperature was varied from 200 to
350°C.

The elemental composition and concentration pro-
file in the films were determined by nondestructive
methods of nuclear physics: RBS and instantaneous
deuteron-induced nuclear reactions. The measurements
were performed on the analytical installation for mate-
rials research based on the electrostatic accelerator at
the St. Petersburg Institute of Nuclear Physics [8, 9].
The deuteron energy was Ed = 0.9 MeV. The deuterons
scattered and the reaction products (protons and alphas)
were detected using a planar silicon detector with
energy resolution ∆E = 10 keV for Eα = 2.7 MeV, which
was placed at angle θ = 135° to the beam direction.

The vanadium concentration in the films was calcu-
lated from the peak intensity of backscattered deuter-
ons; the oxygen concentration, from the peak intensity
 2005 Pleiades Publishing, Inc.
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of the alphas produced by the nuclear reaction of deu-
terons with oxygen-16, 16O(d, α)14N.

RESULTS AND DISCUSSION

Figure 1a shows the evolution of the hysteresis loop
for the metallic phase in the films upon vacuum anneal-
ing. Short-term annealing at 250°C shifts the loop
toward lower temperatures and affects its shape and
width only weakly. An increase in the annealing tem-
perature shifts the loop further and simultaneously
makes it wider. After the shift has reached ≈50°C, the
widening of the hysteresis loop is accompanied by a
decrease in the reflectivity; eventually, the phase transi-
tion disappears completely. The heat treatment
increases the conductivity of the films in the semicon-
ducting state, whereas the phase-transition-induced
jump of the conductivity decreases. For example, for
the as-deposited films, this jump is ~103, and after
annealing at 300°C, the conductivity at the phase tran-
sition changes only several-fold.

Similar results are obtained when the films are irra-
diated by 10-keV electrons (Fig. 1b). This similarity is
thought to indicate that the main cause of the irradia-
tion-induced changes in the properties of the films is
heating of the films during irradiation. Indeed, elastic
scattering of such low-energy electrons cannot generate
a significant amount of Frenkel pairs, so that the nonra-
diative relaxation of excitations in the electron sub-
system merely causes local heating of the films and
substrate. Other relaxation mechanisms related to elec-
trostatic instability are characteristic of only wide-gap
semiconductors, higher oxides, and alkali-halide crys-
tals [10]. Unlike those compounds, vanadium dioxide,
not exhibiting a high bond ionicity, has a comparatively
narrow energy gap (≈0.7 eV) and even acquires metal-
lic properties upon heating above 67°C. The free path
of 10-keV electrons exceeds the thickness of the films
being studied. Moreover, along with these electrons,
the vanadium dioxide interacts with a wide spectrum of
lower energy secondary electrons appearing in the sub-
strate. Taken together, these factors result in electron-
beam heating of the substrate and film.

When treating the results obtained, we used the
approach [11] developed for polycrystalline vanadium
dioxide films where grains are of different size and
degree of nonstoichiometry. According to [11], the con-
ductivity or reflectivity hysteresis loop in such a film is
considered as a sum of elementary loops assigned to
individual grains. The temperature position of an ele-
mentary hysteresis loop is related to the deviation of the
grain composition from stoichiometry, the phase transi-
tion temperature declining with increasing oxygen defi-
ciency in the grain. The width of an elementary hyster-
esis loop is inversely proportional to the square root of
the grain size [12]. This approach allows us to explain
the significant differences between the hysteresis loop
for VO2 single crystals and that for VO2 thin films, as
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
well as the evolution of the latter loop when the synthe-
sis conditions are changed or the film synthesized is
subjected to various physical actions [4, 5].

According to the above approach, the shift of the
hysteresis loop without a noticeable change in its width
and shape means that moderate-dose irradiation or
heating to 250°C (Fig. 1, loops 2) changes the stoichio-
metric composition of the grains, leaving their size the
same. The decrease in the phase transition temperature
is assumed to be related to the generation of valent
defects (V3+ ions) in the vanadium dioxide. It is the for-
mation of V3+ ions, which are necessary for electroneu-
trality to be provided, that can explain the decrease in
the phase transition temperature in the vanadium diox-
ide containing Nb5+ and W6+ impurities [1]. This
decrease can be expressed as ∆T = CV ⋅ 12°, where
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Fig. 1. Temperature dependences of fraction G of the metal-
lic phase in the vanadium dioxide film 70 nm thick. (a) The
effect of vacuum heat treatment on the shape and tempera-
ture position of the hysteresis loop: (1) as-deposited,
(2) annealed at 250°C for 15 min, and (3) annealed at 300°C
for 15 min. Fraction G was calculated from the reflectance
of the films measured at wavelength λ = 1.54 µm. (b) The
effect of 10-keV electron irradiation (at a current density of
120 µA/mm2) on the hysteresis loop: (1) as-deposited,
(2) irradiated for 5 min, and (3) irradiated for 15 min. Frac-
tion G was calculated from the conductivity measured at a
frequency of 200 kHz.



 

756

        

ALIEV 

 

et al

 

.

                                
5000

0.4

I, arb. units

10 000

0
0.8 1.2 1.6 2.0 2.4 2.8

(a)

O(d, d)

Si(d, d)

V(d, d)

×50
16O(d, p1)17O

16O(d, α)14N
16O(d, p0)17O

6000

0.76

I, arb. units
8000

0
0.77 0.78 0.79 0.80 0.81 0.82

(b)
V(d, d)

2

14000

2000

20

2.60
Eα, MeV

40

0
2.62 2.64 2.66 2.68

(c)16O(d, α)14N
60

1

2

2.2

0

2.6

1.4
10 20 30 40 60 70

(d)

2

1

2.0

1.6

50

1.8

2.4

D, nm

D, MeVEp, MeV
I, arb. units (O/V)at

Fig. 2. (a) Experimental spectrum of the particles that form during the irradiation of the vanadium dioxide film on silicon by deu-
terons with energy Ed = 0.9 MeV, (b) spectrum fragment related to deuteron scattering by vanadium, (c) spectrum of alpha particles
forming as a result of the nuclear reaction 16O(d, α)14N, and (d) the depth distribution of the oxygen-to-vanadium atomic ratio.
(1) As-deposited and (2) vacuum-annealed at 300°C for 15 min.
CV is the V3+ ion concentration in at. %. One can write
a chain of quasi-chemical reactions [13] that start at the
interface and lead to the formation of V3+ ions in the
vanadium dioxide when oxygen atoms leave it,

Here, O2– is an oxygen ion occupying a site of the VO2

crystal lattice and , , and vO are the neutral and
singly and doubly ionized oxygen vacancies, respec-
tively.

These reactions describe the case when the oxygen
merely escapes into a vacuum when the oxygen pres-
sure in the working chamber is lower than equilibrium.
Obviously, the result (i.e., the appearance of V3+ ions)

O2– v O
2– 1/2O2,+

V4+ v O
2–+ V3+ v O

– ,+

V4+ v O
– V3+ v O.+ +

v O
2– v O

–

would be the same if the vanadium dioxide is reduced
by, e.g., hydrogen or carbon monoxide that enter into
the residual gases. Accordingly, H2O or CO2 is removed
to a vacuum in this case.

As was noted above, the maximum shift in the phase
transition temperature that was induced by annealing or
electron irradiation in a vacuum is ≈50°C. If oxygen
vacancies are considered to be doubly ionized, then the
lower limit of the homogeneity range estimated by the
above equation for ∆T is close to VO1.98, which agrees
well with the data reported in [14].

Thus, with the approach adopted in [11], the evolu-
tion of the hysteresis loops can be explained as follows.
During low-temperature annealing, the oxygen leaves
the film and a nonstoichiometric oxygen-depleted VO2
film forms. As long as the film composition is within
the homogeneity range, the hysteresis loop merely
shifts toward lower temperatures. When the annealing
temperature increases, the reaction causing VO2 reduc-
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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tion proceeds at a higher rate and the initially single-
phase VO2 film becomes two-phase: another vanadium
oxide or a mixture of oxides appears. The regions occu-
pied by the vanadium dioxide inside the grains shrink,
which widens the hysteresis loop and smoothes out the
step in the physical parameters at the phase transition
[12]. Eventually, electron irradiation or vacuum heating
completely removes the vanadium dioxide from the
film.

This conclusion is qualitatively supported by the
methods of RBS and instantaneous nuclear reactions.
Figure 2 shows the spectra of scattered deuterons and
particles generated by the deuteron–oxygen-16 nuclear
reactions in the films before and after annealing. At
energies below 1 MeV, the peaks of the deuterons scat-
tered by vanadium and oxygen atoms are observed; at
higher energies, the peaks of protons and alphas, which
are the products of the nuclear reactions, are detected.
Figu-res 2b and 2c detail the spectral fragments used to
calculate the concentration profiles of the elements in
the film.

Figure 2d shows the depth distribution of the oxy-
gen-to-vanadium atomic ratio calculated according to
[8]. In the as-deposited films, the ratio O/V (Fig. 2d,
solid line) is virtually constant (2.0 ± 0.2) within a cal-
culation error. The small increase in this ratio near the
substrate is likely to be due to silicon diffusion from the
substrate into the film during synthesis at 600°C. In
contrast, in the film annealed at 300°C (Fig. 2d, dotted
line), the oxygen fraction in the near-surface layer
drops noticeably, whereas the ratio O/V near the silicon
substrate remains almost unchanged.

Thus, more than half the film does no longer contain
vanadium dioxide. Near the surface, from where the
oxygen or reduction products escape in fact, the film
composition is closer to V2O3 rather than to VO2. In
conductivity measurements, this layer would shunt the
remaining part of the vanadium dioxide.

It should be noted that the effects observed are not
irreversible. Vacuum heating of the film to 600°C fol-
lowed by cooling under the same conditions as post-
synthesis cooling recovers the step in the reflectivity of
the film, as well as the temperature position and shape
of the hysteresis loop.

CONCLUSIONS

Both vacuum heating and irradiation of thin VO2
films by medium-energy electrons damage the films,
rather than stabilize the VO2 metallic phase, as was
assumed in [2]. Treated in such a way, the films repre-
sent a mixture of different phases with metallic conduc-
tivity.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
As for the technology of multilayer coatings, one
has to avoid vacuum heating of thin vanadium dioxide
layers at temperatures above 200°C.
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Abstract—Based on experimental data for electrical aging of cast polyethylene insulation under the action of
a high voltage, it is concluded that the branches of dendrites (aging defects) growing in the insulation may be
both conductive and nonconductive according to experimental conditions. A method of numerical simulation
of the electric field around breakdown channels is described. Potential distributions in the neighborhood of den-
drites are calculated for a number of high voltages. It is shown that the growth of dendrites with nonconductive
branches slows down gradually as the branch diameter increases and the electric field strength drops. Con-
versely, the growth of conductive-branch speeds up, since the high potential is localized at their thin ends and
the field strength rises. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Polyethylene as a high-voltage insulator is widely
used for insulating, e.g., electric cables, which stimu-
lates great interest in studying its electrical aging. Elec-
trical (field) aging, eventually causing breakdown, trig-
gers irreversible processes, one of which is dendritic
growth (treeing). Dendrites represent a set of microme-
ter-diameter cavities with a length of several millime-
ters [1]. Today, there is no agreement among authors as
to whether dendrite channels are conductive and
whether they distort the electric field distribution.
According to [1, 2], dendrite channels cannot be
viewed as a mere extension of a tip. At the same time,
Ushakov [3] argues that the potential of the high-volt-
age electrode is localized near the top of a dendrite
channel. According to Kuchinskiœ [1, p. 134], the sur-
face resistance of a dendrite channel may amount to
1010 Ω , while Morshuis [4] indicates that the surface
resistance of dendrite cavities in polyethylene initially
equals 1017 and then drops to 109 Ω . Studying the effect
of high electric fields on the surface of polymeric insu-
lators, Aleksandrov and Solov’ev [5] concluded that a
long-term action of a chemically active environment on
the discharge-heated surface of a polymer generates
radicals and low-molecular decomposition products,
which may considerably reduce the surface resistance
of the material.

Studies [4, 6] on electrical aging of artificial cavities
consisting of three polyethylene layers, each 0.1–0.2
[4] or 0.4–0.5 mm [6] thick, with a hole of diameter
5 mm in the middle layer revealed three aging stages
with different partial discharge (PD) parameters. At the
first (unaged) stage, the discharge has the form of a
streamer. At the second (aged) stage (which sets in after
1063-7842/05/5006- $26.00 0758
the sample has been exposed to electric field E =
5 kV/mm for 60 min), a thin oxide layer appears on the
sample surface, the surface resistance drastically drops,
most electrons are trapped, and breakdown occurs by
the Townsend mechanism. At the third stage (which
sets in after exposure to E = 5 kV/mm for 100 h), crys-
tals start growing and the discharges are localized on
these crystals, becoming strictly periodic.

Champion and Dodd [7] analyzed the growth of
dendrites in epoxy resin subjected to a high voltage.
Photographing flashes due to PDs, they concluded that
dendrite branches may be both conductive and noncon-
ductive. For example, in the case of bush dendrites, a
PD flash occupies several branches and originates at the
tip. Here, the branches are nonconductive. For tree-like
dendrites, the flashes arise only at the very ends of the
branches, not occupying them completely and not orig-
inating at the tip. These branches are conductive. In the
photographs taken in transmitted light [7], the noncon-
ductive branches appear white, whereas the conductive
ones are colored black (possibly because of carboniza-
tion). Since PDs in the nonconductive branches occupy
them completely, such branches are bound to expand
due to erosion, as argued in [7]. It was noted [7] that
dendrite branches in polyethylene also may pass to the
conductive state at a certain stage of dendritic growth
[8, 9].

EXPERIMENTAL STUDY OF DENDRITIC 
GROWTH

Experimental investigation into the growth of den-
drites in cast polyethylene [10] confirmed the statement
that the diameter of dendrite channels increases during
dendritic growth under a low field strength that is close
© 2005 Pleiades Publishing, Inc.
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to the treeing-initiating field. For example, if the tip
radius is Rt = 2 µm, the distance to the grounded elec-
trode is h = 1.5 mm, and the applied voltage is U0 = 6–
7 kV, the extensive growth of dendrites lasts 25–30 min.
In this case, dendrite branches thicken at the base, while
remaining thin at the ends. Next is the stagnation phase,
when the dendrites almost stop propagating toward the
grounded electrode. In this phase, the dendrites branch
(lateral growth) and the already existing branches
thicken. The maximal thickness of the branch is 10–
20 µm.

For the same Rt and h and the voltage applied to the
tip U0 = 8–10 kV, the breakdown time equals 2–20 min.
Branching is weak: a main branch alone outstands. For
t ≥ 3 min, some of the branches thicken at the base adja-
cent to the tip. The maximal thickness (1–10 µm) of the
branches is attained not long before breakdown, with
the branches thickened at the bases remaining narrow at
the ends.

According to [11–13], there exists a correlation
between a stage of dendritic growth, the shape of den-
drites, and the statistic distribution of the difference
between the phase of PD initiation and phase ϕ of
applied voltage. It was shown that the distributions of
n* = n/nmax (where n is the PD occurrence frequency at
a given phase of the applied voltage and nmax is the max-
imal PD frequency observed in a given experiment) at
the early stage of growth and at the stage when the den-
drite ceases to propagate show common features;
namely, they are asymmetric on both the positive and
negative half-waves of the applied voltage (Fig. 1). At
high applied voltages, the PD occurrence frequency
distributions change: in the course of dendritic growth,
they become similar to each other (right-asymmetric
and slightly peaked) on both half-waves (Fig. 2). With
regard to the PD photographing data [7], one may argue
that, early in the growth of bush dendrites and also at
the stage of their intense growth, the branches are non-
conductive or poorly conductive, which initiates PDs in
the gas-filled dendrite cavities. The result is the asym-
metry of the PD occurrence frequency distribution
(hereafter, PD frequency distribution) on the negative
and positive half-waves of the applied voltage, which
arises from the strong dependence of the gas break-
down voltage on electrode polarity in the nonuniform
field. With time, dendrite branches developing at high
voltages become conductive and the PD frequency dis-
tributions change: they become similar to each other on
both half-waves of the applied voltages. This is because
the polyethylene breakdown voltage is less dependent
on electrode polarity [14] and also because of its great
scatter.

Thus, during high-field dendritic growth, the
branches become conductive. At the same time, fresh
dendrites or those growing under an electric field close
to the field of growth initiation have nonconductive or
poorly conductive branches. At high field strengths,
when ponderomotive forces are high, the walls of the
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
cavities are carbonized and their conductivity rises
sharply [7]. Since PDs in conductive dendrites are ini-
tiated at their ends rather than at the base of the tip, they
do not propagate along the whole length of the branches
and so do not increase their diameter. If the field and
ponderomotive forces are not too high, the cavities
widen, because PDs multiply propagate along the
whole length of the branches. Thus, high-field dendritic
growth exhibits positive feedback: the branches
become conductive but remain thin, which further
enhances the field and favors the growth toward the
counter electrode. At low fields close to the growth-ini-
tiating value, the growth proceeds under the negative-
feedback conditions: the branches remain nonconduc-
tive and their diameter increases. As a result, the growth
of such dendrites slows down and may even cease,
since the electric field around the plasma-filled noncon-
ductive branches drops when PDs are initiated and lit-
tle, if any, new areas of the polyethylene experience
breakdown. This speculation is corroborated by exper-
imental data. Under the above experimental conditions,
dendrites grow slowly at tip voltages U0 ≤ 7 kV, while
at U0 ≥ 8 kV, complete breakdown takes from several
minutes to several tens of minutes.

MATHEMATICAL SIMULATION 
OF THE DENDRITE’S ELECTRIC FIELD

The mathematical simulation of growth of conduc-
tive and nonconductive dendrite brunches under differ-
ent voltages was described in author’s earlier work
[15]. A mathematical simulation of PD initiation and
propagation in dendrite conductive and nonconductive
branches was developed in [7]. However, all the models
suggested consider too simplified forms of dendrite
cavities when calculating the electric field distribution.
In [7], the cavity is represented as a set of circles with a
diameter of 50 µm (the simulation is made in the 2D
statement). In [15], the electric field distribution is cal-
culated in the 3D statement but the dendrite is repre-
sented as a sequence of cubic cells of side 10 µm. Actu-
ally, however, dendrite branches are a series of micro-
cavities with a near-circular cross section of diameter D
varying from 1 to 20 µm. The reason for simplification
is quite clear: the dendrite is an elongated object with a
high length-to-diameter ratio and analysis of the field
generated by such objects is a mathematical challenge.

An electric field in a discharge gap is often calcu-
lated with numerical techniques, such as the finite-dif-
ference method (FDM) (see, e.g., [16, 17]). This
method makes it possible to take into account the elec-
trical nonuniformity of the medium and the variation of
the electrical parameters with an extension of a dendrite
channel. When using the FDM to calculate the electric
field of dendrite-like structures, one should appropri-
ately choose step ∆ of grid. To allow for the dependence
of the electric field distribution on radius R0 of the dis-
charge structure, the step must be no smaller than R0.
However, the length of a discharge structure may
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exceed its diameter by several orders of magnitude. As
applied to the 3D problem, the case ∆ < R0 would
greatly raise the order of equations to be solved in cal-
culating the electric field and make the problem insolv-
able even using advanced computing facilities. There-
fore, the size of a spatial mesh is usually taken to be
much larger than R0 (for example, equal to the mean
step used in simulating discharge structures [16]).

The discharge structures arising at the breakdown of
various discharge gaps can be represented as a set of
“wires,” conductive circular cylinders with a diameter
much smaller than the transverse size of the mesh. In
solving the problem, it is taken into consideration that
the field of an infinite conducting cylinder decays by
the logarithmic law. However, in [18], the problem is
solved only for an infinitely long wire and only in the
2D statement. The approach applied in [18] may be
extended for three-dimensional calculation of the elec-
tric field distribution in a set of finite-length fine wires,
including those making an angle with the coordinate
axes. Of such elementary wires, dendrites of different
spatial configuration, as well as other discharge chan-
nels arising at the breakdown of dielectric gaps, can be
composed.

To find the electric field distribution using the FDM,
an insulating domain containing fine conducting wires
was split into parallelepipeds (meshes). Splitting is
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ϕ/π
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Fig. 1. (a) Dendrite and (b) distribution of the phase differ-
ences between the phase of dendrite occurrence and that (ϕ)
of the applied voltage at U0 = 7 kV (1, plane; 2, tip; and
3, dendrite.
 accomplished in such a way that nodes (i, j, k) of the

calculation grid lie at the interfaces and on the axes of
the wires (Fig. 3) and nodes (i, j, k), (i + 1, j, k), (i + 1,
j + 1, k), (i, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k + 1),
(i + 1, j, k + 1), and (i, j, k + 1), at which unknown poten-
tials are determined, are the vertices of an (i, j, k) mesh.
Within each of the meshes, except for those adjacent to
the wire, the properties of the medium are assumed to
be uniform. For each node of the grid, the equation for
the scalar electric potential can be written in the form

(1)

where

(2)

S is the surface area of the parallelepiped whose faces
halve the distances between neighboring nodes (Fig. 3),
kx, ky, and kz are coefficients, ε is the relative permittiv-
ity, En = –∂ϕ/∂n is the electric field component normal
to elementary surface area ds, and ϕ is the scalar elec-
tric potential.

To solve the problem by the FDM, Eq. (1) was writ-
ten in the difference form for each the node. The bound-
ary conditions in the calculation were the homogeneous

ε ∂ϕ
∂n
------– 

  ds

S

∫° 0,=

ε
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Fig. 2. The same as in Fig. 1 for U0 = 9 kV.
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Neumann conditions ∂ϕ/∂n = 0 at the boundaries X =
const and Z = const and ϕ = 0 at Y = 0; ∂ϕ/∂n = E0 at
Y = Ymax; and ϕ = U0 at X = XT, Y = Ymax, and Z = ZT
(here XT, Ymax, and ZT are the coordinates of the tip
base). The set of equations obtained was solved by the
iterative method of variable directions [19] modified
for solving three-dimensional elliptic equations (for
details of the solution method, see [20]).

To simplify the mathematics, consider a cubic grid
with step ∆. The wire segments nonparallel to the coor-
dinate axes may either be directed along the diagonal of
the cubic mesh or connect opposite nodes of the faces
lying in one of the planes X = const, Y = const, and Z =
const. The nodes belonging to the wire will be assigned
index w. To be definite, we take the segment connecting
nodes (iw, jw, kw) and (iw – 1, jw + 1, kw) (Fig. 3). Sur-
faces S covering each node belonging to the wire cross
the wire. Let us express the electric field vector flux
across S1 (the section of the segment connecting these
nodes by planes X = const and Y = const) through the
potential difference between these nodes, the cross-sec-
tional area of the wire, and its conductivity γW as

(3)

where kW = S1/d1k1 = γWπ /(8∆), S1 = 0.5π(D0 )2/4,

D0 is the wire diameter, d1 = ∆  is the spacing
between nodes (iw – 1, jw + 1, kw) and (iw, jw, kw), and

k1 = 1/  is the factor allowing for the fact that the
electric field vector flux decreases when projected onto
sections X = const and Y = const.

The term on the right of (3) that contains potential
ϕiw – 1, jw + 1, kw will be assumed to be known and its value
will be defined by the previous iteration.

In difference form, integral (1) representing the
electric field induction vector flux across cell surface S
is written as

Λϕ iw jw kw, ,
W

kW ϕ iw 1– jw 1+ kw, , ϕ iw jw kw, ,–( ),=

D0
2 2

2

2

Λxϕ i j k, , Λyϕ i j k, , Λzϕ i j k, ,+ + f i j k, , ,=

Λxϕ i j k, , ϕ i 1– j k, , AXi j k, ,=

– ϕ i j k, , CXi j k, , ϕ i 1+ j k, , BXi j k, , ,+

AXi j k, , ∆ ki 1– j 1– k 1–, ,
x εi 1– j 1– k 1–, ,(=

+ ki 1– j 1– k, ,
x εi 1– j 1– k, , ki 1– j k 1–, ,

x εi 1– j k 1–, ,+

+ ki 1– j k, ,
x εi 1– j k, , )/4,

BXi j k, , ∆ ki j 1– k 1–, ,
x εi j 1– k 1–, ,(=

+ ki j 1– k, ,
x εi j 1– k, , ki j k 1–, ,

x εi j k 1–, , ki j k, ,
x εi j k, , )/4,+ +

CXi j k, , AXi j k, , BXi j k, , kWX,+ +=

Λyϕ i j k, , ϕ i j 1– k, , AYi j k, ,=

– ϕ i j k, , CYi j k, , ϕ i j 1+ k, , BYi j k, , ,+
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Here, fi, j, k = –(kWX + kWY + kWZ)ϕiw – 1, jw + 1, kw; kWX =
kWY = kW for the cells covering the wire (for other cells,
kWX = kWY = 0, kWZ = 0, since, in our case, the wire lies
in plane Z = const and does not cross it); εi, j, k is the rel-
ative permittivity of the material of the (i, j, k)th cell;

and , , and  are the respective coeffi-
cients for the (i, j, k)th cell that enter into expression (2)
for permittivity tensor ε.

Let us derive an expression for coefficients kx, ky,
and kz. The potential of a fine conductive wire of length
2C that is parallel to the OY axis is given by [21]

(4)

AYi j k, , ∆ ki 1– j k 1–, ,
y εi 1– j k 1–, , ki 1– j k, ,

y εi 1– j k, ,+(=

+ ki j k 1–, ,
y εi j k 1–, , ki j k, ,

y εi j k, , )/4,+

BYi j k, , ∆ ki 1– j k 1–, ,
y εi 1– j k 1–, , ki 1– j k, ,

y εi 1– j k, ,+(=

+ ki j k 1–, ,
y εi j k 1–, , ki j k, ,

y εi j k, , )/4,+

CYi j k, , AYi j k, , BYi j k, , kWY ,+ +=

Λzϕ i j k, , ϕ i j k 1–, , AZi j k, ,=

– ϕ i j k, , CZi j k, , ϕ i j k 1+, , BZi j k, , ,+

AZi j k, , ∆ ki 1– j 1– k 1–, ,
z εi 1– j 1– k 1–, ,(=

+ ki j 1– k 1–, ,
z εi j 1– k 1–, , ki 1– j k 1–, ,

z εi 1– j k 1–, ,+

+ ki j k 1–, ,
z εi j k 1–, , )/4,

BZi j k, , ∆ ki 1– j 1– k, ,
z εi 1– j 1– k, , ki j 1– k, ,

z εi j 1– k, ,+(=

+ ki 1– j k, ,
z εi 1– j k, , ki j k, ,

z εi j k, , )/4,+

CZi j k, , AZi j k, , BZi j k, , kWZ.+ +=

ki j k, ,
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z

ϕ x y z, ,( ) kQ
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Fig. 3. Calculation cell (I, wire; II, cell).
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where kQ = Q/8πε0εC; ε0 = 0.885 × 10–11 F/m; Q is the
charge of the wire; x, y, z are the coordinates of the
observation point and x1, y1, and z1 are the distances
between the center of the wire and the observation point
in the X, Y, and Z directions, respectively.

In the case of a uniform spatial grid with the wire
making an angle of –π/4 with the OX axis, we have

where x0, y0, and z0 are the coordinates of the center of
the charged wire.

To apply Eq. (1) to the nodes located on or around
the wire axis, we will deduce an expression for the
derivative of the potential in the X direction,

On rearrangement in view of (4), we eventually
come to

(5)

where

For R0 ! ∆, we recast kQ through the potential dif-
ference between the node lying on the wire axis and its
neighbor in the X or Y direction in view of (4),

Hence,

(6)
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Now we integrate (5) over surface area X = const ⋅
Syz (Fig. 3) of dimension ∆ × ∆,

(7)

where

(8)

Substituting (6) into (7) yields

where

(9)

Expressions for the other coefficients are derived in
a similar way,
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When the wire runs parallel to one of the coordinate
axes (for example, to Y), coefficients kx, ky, and kz are

derived similarly. For nodes on the wire, –  =
106 [20], except for the extreme node, for which

(14)

where

(15)

For coefficients kx = kz, we have

(16)

where

(17)

Thus, the influence of a fine conductive cylindrical
wire and, in particular, its diameter on the electric field
distribution is taken into account through coefficients
kx, ky, and kz (see expressions (9)–(11), (14), and (16))
multiplying the components of tensor ε for the nodes on
or around the wire (for other nodes, –kx = ky = kz = 1).
Integrals (8), (12), (13), (15), and (17) are taken numer-
ically with any routine.

Potentials ϕ were calculated using the method
described above and also the checking formulas [22]
for a conducting prolate spheroid placed in an electric
field at an angle of 45° to the OY axis. The step of the
grid was set equal to ∆ = 50 µm, and radius R0 of the
wire was varied. Comparing the results of numerical
and analytical calculations of the potential at the grid
nodes showed that the relative error is less than 1.0%
for 2R0/∆ < 0.02 and equals 1.4% for 2R0/∆ = 0.2.

CALCULATION OF THE ELECTRIC FIELD 
OF DENDRITES

The efficiency of the calculation method described
above was tested by estimating the electric field of den-
drites in the “plane with tip–plane” configuration. This
configuration was applied in experimental studies on
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field aging of solid polymeric insulation. Figure 4 is the
sectional view of the system in plane Z = const. A high
voltage is applied to the tip through tip carrier 1, which
is a metal plate on which surface tip 2 is mounted. Since
the width of the carrier far exceeds the tip diameter and
the distance to grounded plane 3, the system can be rep-
resented in the form of two parallel planes. One is
grounded (i.e., is under the zero potential), while the
other, containing tip 2, is under high potential U0. The
insulation is polyethylene 4 immersed in transformer
oil 5. Dendrite 6 originates from the tip. The tip–
grounded plane distance is h0 = 2.5 mm, the spacing
between planes 1 and 3 is dmax = 10 mm, and the length
of the part of the tip that is introduced into the polyeth-
ylene is b = 3 mm. Since the length of the system in the
X and Z directions, as well as the length of the tip, is
several times larger than h0, we used absorbing bound-
ary conditions [18] at the calculation domain bound-
aries X = Xmax, X = Xmin, Z = Zmax, Z = Zmin, and Y = Ymax.
Such an approach made it possible to significantly
shrink the calculation domain, bringing it closer to the
zone of dendritic growth. For absorbing layers, expres-
sion (2) for the relative permittivity tensor takes the
form

It is assumed here that coefficients kp = 1 + (kmax –
1)(p/d)3 (p = x, y, or z) in these matrices vary by the
exponential law kp = 1 + (kmax – 1)(p/d)3. Here, kmax =
300 is the maximal value of kp, d = N∆ is the absorbing
layer thickness, and N = 5 is the number of sublayers
into which the absorbing layer is split. The given
parameter values were taken according to the recom-
mendations made in [18]. The boundary conditions

ε
ε/kx 0 0

0 εkx 0

0 0 εkx

εky 0 0

0 ε/ky 0

0 0 εky

εkz 0 0

0 εkz 0

0 0 ε/kz

.=

Y

1

2

3

4

5

b

h0

dmax

6

0

ϕ = 0

ϕ = U0

Fig. 4. Model “plane with tip–plane” system.
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used in the calculation were the following: ∂ϕ/∂n = 0 at
boundaries X = const and Z = const, ϕ = 0 at Y = 0,
∂ϕ/∂n = kmaxE0 (E0 = U0/dmax) at Y = Ymax (for the details
concerning the last boundary condition, see [23]), and

 = U0 (where XT, Ymax, ZT are the

coordinates of the point where the tip crosses the upper
boundary of the calculation domain, Y = const = Ymax).

In the calculation, the applied voltage was U0 =
6 kV; the dendrite channel diameter, D0 = 10 µm (as
evidenced from experimental data gathered at this volt-
age); the step of the spatial grid used in the FDM, ∆ =
50 µm; and  = Emax/E0 = 55.2 (where Emax is the

ϕ X XT= Y, Ymax= Z, ZT=

Emax*
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Fig. 5. Calculated isopotentials for U0 = (a) 6 and (b) 10 kV.
maximal value of the field strength averaged over the
grid volume measuring ∆ × ∆ × ∆; the maximal electric
field is attained at the ends of the plasma-filled
branches). The electric field distributions were also cal-
culated for high-voltage dendritic growth, when the
thin basic branch of the dendrite is conductive. In this
case, U0 = 10 kV, D0 = 1 µm (as evidenced from exper-
imental data gathered at this voltage), and ∆ = 50 µm.
The maximal electric field,  = 85.3, is attained at
the end of the basic branch. Thus, because of the
increase in the dendrite branch diameter, the presence
of several breakdown channels, and the lower treeing-
initiating voltage, the absolute value of grid-volume-
averaged maximal field strength Emax at U0 = 6 kV is
2.6 times lower than at U0 = 10 kV. Note that the max-
imal strengths at the extreme point of the dendrite differ
by a factor of 16.7.

Figure 5 shows isopotentials ϕ* = U/U0 calculated
for U0 = 6 and 10 kV in section Z = const passing
through the dendrite (shown is a part of the calculation
region adjacent to the dendrite).

CONCLUSIONS

(1) Experimental data for high-voltage dendritic
growth in polyethylene insulation (namely, the evolu-
tion of the dendrite shape during growth, localization of
PD-related flares, and the distribution of the phase dif-
ferences between the phase of PD occurrence and that
of the applied voltage) strongly suggest that, early in
dendritic growth and at voltages close to the growth-
initiating voltage, dendrite branches are nonconductive.
At high applied voltages (field strengths), some of the
branches become conductive and, therefore, propagate
at a higher rate. At low fields, when PDs propagate
along nonconductive branches, they grow in width and
the growth slows down or even ceases.

(2) In this work, we modify the finite-difference
method for calculating the 3D electric field distribution
when insulating gaps experience breakdown and break-
down channels are represented as a set of conductive
cylinders with a high length-to-diameter ratio (wires).
The modified approach allows for numerical evaluation
of the field distribution for the case when the diameter
of the resulting discharge structure is five or more times
smaller than the step of the spatial grid used in calcula-
tions. Using such a calculation technique, one can take
into account the variation in the diameter of a break-
down channel along its length.

(3) Our numerical results for the electric field distri-
bution indicate that, for bush dendrites, which grow at
low voltages (6 kV), the maximal grid-volume-aver-
aged field strength is 2.6 times lower than for treelike
dendrites growing at high voltages (10 kV).

Emax*
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Abstract—The behavior of magnetic clusters in a magnetic liquid placed in a circular capillary is considered.
When a uniform magnetic field is applied to the system, acicular clusters grow from the sediment, being aligned
with the field. The interaction of the clusters as magnetic dipoles with one another and with an external gradient
magnetic field is considered theoretically. In a nonuniform symmetric magnetic field with a peak, the cluster
distribution is uniform near the peak. Such a distribution is fairly stable when the magnetic field gradient is var-
ied over certain limits. The ordered (periodic) cluster configuration is realized experimentally, and it is shown
that its period can be controlled. As the magnetic field gradient exceeds a certain threshold, the clusters are
redistributed, forming a multirow hexagonal array. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Magnetic liquids (MLs), colloidal solutions of fine
magnetic particles in a carrier liquid, have recently
become an object of extensive research (see, for exam-
ple, [1]). Interest in MLs is associated, in particular,
with their application in photon crystals [2], although
the range of application of MLs is actually much
wider [3].

Typically, particles in MLs tend toward clustering,
which can be regarded as the initial stage of transition
into the solid state or as the sedimentation of magnetic
particles. Clustering (particle agglomeration), as well
as mechanisms of particle–particle interaction in MLs,
was studied in detail in [4, 5]. In most applications of
MLs (for example, when they are used as lubricants,
printing ink, coolants, or thickeners), clustering is an
undesirable effect. In all these cases, the hydrodynamic
characteristics of MLs must remain stable.

For this reason, agglomeration-preventing tech-
niques have always been the focus of attention. How-
ever, one can benefit from clustering in MLs in a num-
ber of cases, e.g., visualization of magnetic field lines,
magnetic inhomogeneities, and magnetic domains;
operation of optical shutters; etc., where such “anoma-
lous” behavior of MLs is used to advantage. Note also
that the magnetic clustering effect (more specifically,
spatial ordering of the clusters, which is most fre-
quently due to an external magnetic field) is central to
the development of ML-based photon crystals [6].

Clusters form via dipole–dipole interaction between
magnetic nanoparticles, while the thermal vibration of
carrier-liquid molecules hampers this process. There-
fore, the coarser the particles, the stronger the cluster-
ing effect. The threshold size of nanoparticles at which
the probability of clustering becomes significant is
1063-7842/05/5006- $26.000766
about 10 nm [3]. The application of an external mag-
netic field also favors clustering. A cluster formed in
this case is a magnetic dipole where the magnetization
vector coincides with the field vector.

Clustering mechanisms and the parameters of spa-
tially ordered clusters in thin films and magnetic liquids
have received much attention [7–12]. In most of these
works, the magnetic field is applied at right angles to
the plane of the film and clusters are distributed among
the sites of the 2D hexagonal lattice like magnetic bub-
bles in thin magnetic films. Such a distribution offers
the highest packing density.

In this work, in contrast to those cited above, acicu-
lar clusters, which freely grow in MLs, are considered.
To facilitate the growth of acicular clusters and their
linear arrangement, the ML is placed in circular glass
capillaries.

The aim of this study is finding conditions under
which magnetic clusters in the capillary are arranged
into a given configuration.

THEORY

Clusters in an ML are subjected to dipole–dipole
and dipole–magnetic field interaction forces. The grav-
itational force and the viscosity of the liquid are
ignored. We use the point cluster approximation: h ! a,
where h is the cluster height and a is the cluster spacing.

It has been noted in the introduction that, when sub-
jected to a moderate magnetic field, clusters in a capil-
lary are arranged linearly; so, we will consider the lin-
ear distribution. Let us specify conditions under which
the clusters are uniformly distributed along the capil-
lary by taking into account mutual interaction of a lim-
ited number of clusters (both nearby and remote). In
 © 2005 Pleiades Publishing, Inc.
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calculation, the model of periodically arranged mag-
netic bubbles will be employed [13].

The energy of interaction between two point mag-
netic dipoles with magnetic moments m1 and m2 has
the form

where R12 is the displacement of the dipole with
moment m2 relative to the dipole with moment m1 and
R21 = –R12.

Consider a system of 2N + 1 magnetic dipoles that
are arranged along the x axis at points with coordinates
xi (i = –N, …, N) and have the same magnetic moments,
|mi| = m. The dipoles are placed in nonuniform mag-
netic field H(x) directed along the y axis. We assume
that clusters are saturated; therefore, m is independent
of H. The total energy of the system is given by

(1)

where ex is the unit vector along the x axis. The first sum
on the right-hand side of this relationship is the energy
of dipole–dipole interaction between the clusters; the
second, the energy of cluster–magnetic field interac-
tion.

Since the major axes of the dipoles are aligned with
magnetic field H = Hey || 0y, we have mi ⋅ ex = 0. The set
of equations for dipole coordinates xi corresponding to
the equilibrium state of the system is written as

(2)

In the case of a periodic equilibrium structure, xi =
ai and Eq. (2) yields (∂H/∂x  (i = –N, …, N),

(3)

Symmetric terms, which cancel out, are omitted
here.
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To determine the degree of disordering of the clus-
ters in the case when calculated distribution (3) does
not exactly fit the field actual distribution, we will cal-
culate a field gradient at which the cluster distribution
is nonuniform. Two cases will be considered: (i) the
cluster spacing decreases starting from point x = 0,
attaining a deviation of 5 (50)% at the ends and (ii) the
spacing increases in the same way.

Let aj ≡ xj – xj – 1, where j = –N + 1, …, N (for the
periodic distribution, xj/a = j, aj ≡ a ≡ (xN – x–N)/(2N +
1)). The linear dependence of aj on dipole number j
within segment [0; xN] (with the total length of the seg-
ment remaining constant) takes place if

it follows hence that

or

due to symmetry. Here, ∆ is the parameter of nonunifor-
mity (namely, the difference between adjacent dipole
spacings, D = a| j | – a| j | – 1).

For N = 15 (2N + 1 = 31), we have

For n = 5 (2N + 1 = 11),

It should be noted that, for ∆ > 0, two central spac-
ings, a1 = x1 – x0 and a0 = x0 – x–1, assume the minimal
value

while two extreme distances, a–N + 1 and aN, take on
maximal value

For ∆ < 0, the situation is reverse: the maximal spac-
ing is at the center of the array and the minimal one at
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the ends. The case ∆ = 0 corresponds to the periodic
distribution,

hence,

From relationship (2), we find the value of the com-
pensating gradient at an ith dipole:

(4)
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Fig. 1. Magnetic field gradient calculated vs. the coordinate
of clusters for N = (a) 11 and (b) 31. (1), uniform distribu-
tion of the clusters along the y axis; (2) 5, (3) –5, (2') 50, and
(3') –50% nonuniformity.
The magnetic field gradient versus dipole coordi-
nate dependence calculated by formula (4) is shown in
Figs. 1a (N = 5) and 1b (N = 15).

The gradient profile for the cluster nonuniform dis-
tribution differs from that corresponding to the uniform
distribution both quantitatively and qualitatively. For a
5% nonuniformity (δa/a = 0.05), the required gradient
remains virtually unchanged except at the periphery
(curves 2 and 3 in Fig. 1), while for a positive nonuni-
formity of 50% (∆ > 0), the gradient even increases in
absolute value toward the center, unlike the uniform
case. In addition, to produce a linear array (row) of
clusters with a negative nonuniformity (∆ < 0), the gra-
dients in the central part and at the periphery must be
opposite to each other. This means that the uniform
structure remains the equilibrium state of the system
when the field distribution varies over wide limits;
therefore, such a phenomenon may well be called self-
organization.

The second conclusion following from the calcula-
tions is that a given spatial distribution of magnetic
clusters can be provided if the magnetic field is appro-
priately distributed over the array of clusters; namely,
the field must sharply increase in absolute value at the
periphery of the array. Obviously, only in this case may
the force opposing the repulsion force of magnetic
dipoles arise.

The field gradient in Fig. 1 is given in units of 3m/a4,
and its minimum is the same for N = 5 and 15. This
means that the higher the gradient at the extremities of
the working interval, the shorter the period (the smaller
a). This circumstance makes it possible to control the
cluster array period.

The assumption of point clusters weakly affects the
calculation results, since the influences of neighboring
symmetrically arranged clusters compensate for each
other, so that remote clusters can be viewed as points,
((N + t)a @ h), where h is the cluster height.

EXPERIMENTAL

As a model material, we took monodisperse magne-
tite powder entering, together with polymers and black
dye, into the toner of a laser printer. The mean size of
magnetic particles was 1.5 µm. Ethyl alcohol was cho-
sen as a carrier liquid. The concentration of the mag-
netic powder in the ML was 100 mg/cm3. No anticoag-
ulants were used. In the absence of a magnetic field, the
powder settled at the bottom of the container. The ML
containers were glass capillaries with inner diameters
of 120, 200, and 370 µm.

An external magnetic field was produced by either
Helmholtz coils or a permanent magnet. Its strength
was varied from 0 to 260 G, and its direction could be
arbitrary.

The nonuniform distribution of the magnetic field
induction in the capillary plane used in the experiment
(the measurements were taken in 0.5-cm steps by a
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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teslameter) is shown in Fig. 2a. Figure 2b shows the
distribution of the field gradient.

EXPERIMENTAL RESULTS

Once the magnetic field is applied, acicular clusters
start growing from the magnetic sediment in the capil-
lary. By the time the growth terminates, the height of
the clusters is approximately the same (110 µm). It is
noteworthy that they stop growing even if the capillary
diameter is sufficiently large and allows for further
growth. The magnetic induction at which the height of
the clusters does not change is roughly 15 mT. In the
uniform magnetic field, the clusters are randomly
spaced and form a linear array, the plane of the clusters
passing through the capillary axis. In the presence of a

0
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–2
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H, mT
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(a)

0 x

H (b)

0 x

|dH/dx|

Fig. 2. (a) Magnetic induction distribution measured in the
plane of capillary y = 0 and (b) field gradient profile along
the capillary.
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bilateral field gradient, the clusters are arranged near its
maximum and their distribution becomes periodic. The
degree of periodicity is fairly high, as indicated by the
weakly diffuse first maxima of the light diffracted from
the ordered structure of clusters obtained in this way
(Fig. 3). The diffraction efficiency of the structure is
limited by a small ratio of the cluster diameter to the
structure period.

As the gradient increases (i.e., as the magnet is
approached; see Fig. 2), the period decreases (Fig. 4).
When it exceeds a certain threshold, the clusters are
rearranged to form two or even more rows. In this case,
their structure is close to hexagonal (Fig. 5). The spac-
ing between the clusters in such a structure remains
unchanged. In our opinion, here, as in the single row of
clusters, the interaction between the magnetized clus-
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Fig. 3. Light intensity diffracted from the ordered structure
of clusters.

Fig. 4. Period ∆x of the linear cluster array vs. the capillary–
permanent magnet distance. The period was measured at the
zero-gradient point (x = 0).
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ters and the interface between the magnetic liquid and
the nonmagnetic material (glass) (i.e., the emergence of
forces repelling the clusters from the interface) plays a
certain role.

A change in the magnetic field direction causes the
corresponding rotation of the cluster axes. In the uni-
form magnetic field, the clusters turn synchronously
about their centers without a displacement along the
capillary axis.

Comparison of the experimental gradient profile
(Fig. 2) with the theoretical curves (Fig. 1) leads to con-
clude that the shape of the field used in the experiment
qualitatively coincides with the shape required for the
uniform distribution (curves 1 in Fig. 1). At the same
time, it differs significantly from the shape providing
for the distribution with a nonuniformity even as small
as ±5% (curves 2 and 3 in Fig. 1). It is therefore not sur-
prising that the resulting cluster distribution exhibits a
high degree of periodicity (see Fig. 3).

The possibility of controlling the period is illus-
trated in Fig. 4, which plots period ∆x of the structure
against the distance between the magnet and the con-
tainer with the ML. It follows from Fig. 2 that a
decrease in this distance causes an increase in gradient
|dH/dx|, while a higher gradient corresponds to a
smaller period of the linear structure, in accordance
with the above calculations (Fig. 1). The change in the
period observed in the experiment amounts to 60%. A
further monotonic decrease in the period with increas-
ing field gradient is hampered by the formation of addi-
tional rows of clusters. This result agrees with the find-
ings in [11], where a similar effect was observed at an
increase in the uniform magnetic field.

CONCLUSIONS
(1) Our method of applying an appropriately config-

ured gradient magnetic field to a magnetic liquid con-
tained in a capillary made it possible to produce peri-
odic structures of acicular clusters of magnetic parti-
cles.

(2) The distinguishing features of the behavior of a
magnetic liquid contained in a capillary and subjected

Fig. 5. Acicular clusters (top view) after splitting of the lin-
ear array into several rows in the nonuniform external mag-
netic field. The magnetic field direction is perpendicular to
the capillary axis and to the plane of the photo.
to an external magnetic field with a gradient at the ends
of the capillary are as follows: (i) the clusters are
arranged into a periodic structure along the capillary
axis; (ii) the period of this structure can be varied over
certain limits (up to 60% in our case) by changing the
magnetic field; (iii) needle-shaped clusters rotate freely
in the magnetic field according to its sense; and
(iv) beginning from a certain value of the magnetic
field, the ordered linear array of clusters splits into sev-
eral rows with the formation of a hexagonal structure.

(3) The calculated profile of the magnetic field gra-
dient that produces a uniform distribution (ordering) of
magnetic clusters in the capillary coincides with the
experimental profile, thus confirming the validity of the
model proposed.

(4) In the calculated magnetic field profile corre-
sponding to the nonuniform distribution of magnetic
clusters, the field gradient grows at the periphery. At the
same time, it may be constant, increase, or decrease in
the central part of the working region of the capillary,
depending on the nonuniformity parameter.
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Abstract—A waveguide technique for measuring the absorption coefficient, refractive index, and thickness of
thin films is suggested. It is based on taking the angular dependence of the light beam reflection coefficient in
an optical scheme involving a prism coupler. Application of the technique to determining the parameters of thin-
film waveguides, insulating coatings, and metal films is considered. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Advances in optics and electronics are stimulating
upgrading of existing and development of new proce-
dures for measuring thin film parameters. Promising in
this respect are integral optical methods based on tak-
ing the angular dependence of light beam reflection
coefficient R(γ) when thin-film structure modes are
excited with a prism [1–5]. From the position of a min-
imum in the dependence R(γ), the real part of the com-
plex propagation constant for a guided mode excited
was measured [1–3], and substituting Reh found (h is
the complex propagation constant) into known disper-
sion relations yielded the refractive index and thickness
of the films. Similar techniques have been developed
for measuring the parameters of films guiding leaky
modes [4]. An approach suggested in [5], which is also
based on taking and processing curves R(γ), makes it
possible to find both the real and imaginary parts of the
mode propagation constant and, thereby, estimate the
refractive index, absorption coefficient, and thickness
of a guiding film. In this paper, the whys and where-
fores of this approach are presented and its efficiency as
applied to thin-film waveguides, insulating coatings,
and metal films is considered.

THEORY OF THE METHODS

When guided modes are excited with a prism cou-
pler (Fig. 1), a series of so-called m lines can be
observed in the reflected light [1]. The typical angular
dependence of light beam reflection coefficient R(γ)
under resonance excitation of guided modes is shown in
Fig. 2 (curve 1). The same dependence is observed for
leaky modes in a waveguide where the refractive index
of the film is lower than that of the environment (Fig. 2,
curves 2 and 3) and also for plasmon modes (curve 4)
guided by a metal film.
1063-7842/05/5006- $26.00 ©0771
To gain a deeper insight into the dependence R(γ),
we suppose that a d thick film with complex permittiv-
ity εw that guides optical modes covers a substrate with
complex permittivity εs and is in contact with a isosce-
les prism (see Fig. 1). The permittivities of the prism
with base angle θ, prism-surrounding environment, and
a g thick gap are known (εp, εe, and εg, respectively). In
addition, εp and εa (εp > εa) are assumed to be real. The
structure is illuminated by a coherent light beam with
its axis making angle γ with the normal to a lateral face
of the prism.

Let us take advantage of the results in [6], where the
power density of a reflected light beam was calculated
for the case of a prism-excited planar optical waveguide
in the vector electrodynamic statement. Integrating
relationships (9) and (10) in [6] yields

(1)

(2)

R j( ) Sr j( )Si
1– ,=

Si q0 q1z0 q0
2 q1

2+( ) 1–
dd

∞–

∞

∫∫=

× q0Ex q1Ey+ 2 εez0
2– q1Ex q0Ey– 2+[ ] ,

( ( ((

Si γ( ) q0 q1za
2 z0 q1

2 β2+( )2
q1

2 q2
2+( )3[ ]

1–
dd

∞–

∞

∫∫=

× ϕr
2 εe ψr

2+( ),

ϕ r 1 zazp
1––( ) 1– ϕ i rpεpq1

2 θsin
2

rss
2–( ) 1 zpza

1–+( ) 1–{=

– ψiεeq1a rs rp+( ) za 1 zpεeza
1– εp

1–+( )[ ] 1– θsin } ,

ψr 1 zaεpzp
1– εe

1–+( ) 1–
=

× ϕiεpεe
1– q1s rs rp+( ) 1 zpza

1–+( ) 1– θsin{
 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Prism coupler and (b) setup for taking the angular dependence of the light beam reflection. (1) Laser, (2) collimator,
(3) beam splitter, (4) attenuator, (5) polarizer, (6) lens, (7) prism, (8) gap, (9) thin-film structure, (10) rotary table, (11, 12) photo-
detectors, (13, 14) stepping motors, (15) motor synchronizer, (16) comparator, (17) ADC, and (18) PC.
(3)+ ψi εpa1
2rs θsin

2
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Fig. 2. Angular dependence of the light beam reflection
coefficient for the (1) SiOx film/quartz glass, (2) SiOx/K8
glass, (3) SiOx/Si, and (4) air/aluminum waveguide struc-
tures. w0 = 490 µm.
Here, Ex and Ey are the electric field components of the

exciting beam, k0 = 2π  is the wavenumber of vacuum,
and rs and rp are the coefficients of reflection of s- and p-
polarized plane waves from the base of the prism for angle

of incidence θi = . The
infinite limits of integration in (2) and (3) are taken on

the assumption that functions (q0, q1) and (q0, q1)

acquire infinitesimal values outside the domain  +

 ≤ εe.

Expressions (1)–(3) are very awkward and can
hardly be used for solving the inverse problem of recon-
structing the complex propagation constant of a mode
excited. They can be simplified if we assume that the
waveguide is excited by a polarized beam; that is,

where χ, which describes the transverse distribution of
the beam field, equals either 0 or 1.

Let function ψ(x, y) be even in x, ψ(x, y) = ψ(–x, y),
and the characteristic scale of its variation, w0(|∇ ψ| ~
|ψ| ), meet the condition k0w0 @ 1. In this case, the

z0 εe q0
2– q1

2– , za p, εe p, q1
2– q2

2– ,= =

Ex y, x yEx y, z 0= iq0k0y iq1k0x+( )exp .dd

∞–

∞

∫∫=

(

λ0
1–

q1
2 q2

2+( ) εp q1
2– a2

2–( ) 1–
arctan

Ex

(

Ey

(

q0
2

q1
2

Ex z 0= 1 χ–( )ψ x y,( ), Ey z 0= χψ x y,( ),= =

w0
1–
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Fourier transform of function ψ(x, y),

(4)

is far from zero in the domain  +  ≤ (k0w0)–2 [7], so

that quantities of order , , q1 and q0 in (2) and (3)
can be neglected.

Eventually, expression (1) can be recast as

(5)

where

(6)

and rχ = (1 – χ)rs + χrp is calculated at q1 = 0. Applying
the resonance approximation to |rχ|2 in (6) [6], we get

(7)

Here,

(8)

(9)

(10)

τ = q0k0w0( )–1; α = (Reh)2 ; ∆h =  – h;  is
the propagation constant of the leaky mode in the film
structure in the presence of the prism coupler; and  is

a root of the equation β( ) = Re  (where β(γ) =

sinθ  – sinγcosθ ).

Expression (7) is valid for an arbitrary planar
waveguide excited by a prism. In this expression, the
properties of a specific waveguide are embodied
through factor ∆h. An explicit expression for ∆h is
given in [6], where it was shown, in particular, that σ is
a small parameter, which has a considerable effect only
when leaky or plasmon modes are considered.
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Further analysis of expression (7) requires that func-
tion (q0, q1) be specified. Let oscillations in the film
be excited by a Gaussian beam, which approximates the
radiation field of a single-mode gas laser. Putting ψ ~

exp[–(x )2 – (y )2] in (4) and ignoring quantities
of order σ2 in (7), we arrive at

(11)

where ξ = –p1 + ip4 and

To reconstruct mode propagation constant h, we
assume that the dependence (γ) is taken within angu-

lar range |γ – γ0| ≤ a, where γ0 is the angle at which (γ)

reaches minimal value 0. According to (11), (γ)

reaches a minimum at p4 = , where

(12)

Here,

(13)

From (8) and (13), we have

(14)

where p2 = |p2|exp(iσ),

(15)

and ρ equals either 0 or 1.

Expressions (12)–(15) involve unknown parameters
p1 and σ. To find them, we note that the real part and
imaginary part of function G(ξ) are, respectively, an
even and odd function of parameter p4. With this in
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Table 1.  Mode propagation constants and film parameters restored by numerical simulation

w0, µm Mode type Re ( ) Im ( ) Re ε Im ε d, µm

∞ TE0 1.5126356 –9.8182 × 10–6 2.295226 –3.0298 × 10–5 3.1636

TM0 1.5125604 –9.8036 × 10–6

500 TE0 1.5126356 –9.8186 × 10–6 2.295221 –3.0313 × 10–5 3.1651

TM0 1.5125605 –9.8099 × 10–6

250 TE0 1.5126356 –9.8184 × 10–6 2.295221 –3.0298 × 10–5 3.1651

TM0 1.5125605 –9.8074 × 10–6

100 TE0 1.5126359 –9.8144 × 10–6 2.295227 –3.0287 × 10–5 3.1635

TM0 1.5125607 –9.8003 × 10–6

50 TE0 1.5126354 –9.4941 × 10–6 2.295223 –2.9296 × 10–5 3.1652

TM0 1.5125613 –9.2525 × 10–6

hk0
1– hk0

1–
mind, we integrate relationship (11) to find

(16)

(17)

where  = k0 w0a.

Expressions (12) and (14)–(17) make it possible to
solve the inverse problem of reconstructing complex
propagation constant h from distribution (γ) provided
that quantities w0, εe, εp, εg, and k0 are known. Here,
central is the solution of transcendental equation (17)
for parameter p1 (it can be shown that this equation
always has a unique negative root). Then, h is calcu-
lated directly using (12) and (14)–(16). Note that δ and
w0 in (12)–(17) depend on h (see (9) and (10)). Since
quantity (k0w)–1 in (14) is small, these parameters can

σ k0 εew0 1 δ+( ) 1 δ–( ) 1– 2
=

× N1
1– R γ( ) γd

γ0

γ0 a+

∫ R γ( ) γd

γ0 a–

γ0

∫–
 
 
 

,

N1 8 2π 1– p2 Im G p4 p2 p1
1– 1+( )–d

0

a

∫



=

∫ × ReG – p1 ia+( ) G p1–( )–[ ] N0




,

1
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0
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∫
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1 R0 1 δ+( ) 1 δ–( ) 1– 2
–

----------------------------------------------------------=

× 2a 1 δ+( ) 1 δ–( ) 1– 2
R γ( ) γd

γ0 a–

γ0 a+

∫– ,

a εe

R

be calculated for h = k0β(γ0) and then refined by itera-
tions if necessary.

The obtained solution to the inverse problem is valid
for modes propagating near the surface of a waveguide
with an arbitrary refractive index. It is determined only
by integration of function (γ) found experimentally,
which renders the results statistically stable. Moreover,
expressions (12) and (14)–(17) lack difficult-to-control
parameter g, which is responsible for prism-induced
measurement errors. On the other hand, filtering out of
the prism interference makes ρ in (15) double-valued.
With the equality |p2| = –0.5p1 fulfilled, the degree of
prism–waveguide coupling (or thickness g) is such that
one of three possible values of  is achieved,  =

|(1 – δ2)(1 + δ2)–1|2[1 + p1G(–p1)]. Accordingly, at
ρ = 0 or 1 in (15), the coupling is stronger or weaker
than this value. Practically, this means that one should
decide between two values of the propagation constant
that follow from experimental data processing, either
may turn out to be true and so cannot be eliminated
beforehand. In this situation, the curves (γ) should be
constructed for several values of g, which is varied by
loosening or tightening the prism–waveguide contact.
The value of h corresponding to the correct value of ρ
will remain unchanged, while the other value will vary.
Such an expedient was used in the experiments
described below.

To determine complex permittivity εw and thickness
d of the film, the values of h for two modes are substi-
tuted into known dispersion relations. The resulting
system of two complex nonlinear equations is solved by
contour integration as described in [8].

When deducing relationships (11)–(17), we made a
number of assumptions that were validated by estimat-
ing the accuracy of numerical solutions to the inverse

R

R0 R0min

2/π

R

TECHNICAL PHYSICS      Vol. 50      No. 6      2005



WAVEGUIDE TECHNIQUE FOR MEASURING THIN FILM 775
problem. As “experimental” data, we used distributions
(γ) calculated from (1)–(3) for different w0. Table 1

demonstrates a typical example of calculation for a
waveguide film with εw = 2.295225 – i3.03 × 10–5 and
d = 3.164 µm covering a substrate with permittivity εs =
2.25 – i3.0 × 10–6 (λ0 = 0.6326 µm). This film supports
two TE and two TM polarization modes. The exact val-
ues of the propagation constants are  =

1.512635657 – i9.8187 × 10–6 and  = 1.512560485 –

i9.80548 × 10–6. As follows from these data, the propa-
gation constants of the modes and the film parameters
are recovered most exactly in the plane-wave approxi-
mation (w0  ∞). As w0 decreases, the error in film
parameter determination grows, since the vector char-
acter of the problem of beam reflection, which is
ignored in approximation (5), is highlighted. Neverthe-
less, the data presented indicate the applicability of the
given approach to thin film parameter measurement.

EXPERIMENTAL

To measure the distribution R(γ), we designed a
computerized setup the schematic of which is shown in
Fig. 1. A Gaussian beam from a He–Ne laser with λ0 =
0.633 µm and cross-sectional radius w0 = 490 µm is
incident on prism 7 mounted on rotary table 10. The
angle of incidence of the beam on the prism was varied
in 20" steps with stepping motor 15. The prism was
made of TF12 optical glass with a refraction index of
1.77905 (at λ0 = 0.633 µm). The radiation polarization
and wavelength can be varied. Also, the light beam
radius can also be varied from 70 to 500 µm by recon-
figuring the optical scheme. The radius was measured
from the intensity level I = I0/e, where I0 is the intensity
at the center of the beam. Test sample 9 is pressed
against the measuring prism so as to provide optimal
conditions for optical mode excitation. The curve R(γ)
was recorded by means of photodetector 12, which
measures the intensity of the beam reflected from the
prism coupler and moves under the control of another
stepping motor 14, and photodetector 11, which mea-
sures the incident beam intensity (the unit controlling
motor 16 is synchronized with comparator unit 17).
After digitization, the signal entered the PC RAM.

The basic points in taking an angular dependence of
the light beam reflection coefficient when oscillations
were excited in a thin-film structure are as follows. As
the origin of the angles, we took the angular position of
photodetector 12 at the instant it records the incident
(unreflected) light beam (in this case, the prism is
located outside the beam). After the angular position of
the normal to one of the faces of the prism has been
determined with regard to the prism coupler geometry
and optical parameters of the prism and substrate, the
processor tentatively finds a range of angles to be mea-
sured and sets the stage for measurements. Statistical

R

hT E0

hT M0
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data gathered for a given number of samples and a
given number of measurements made on each sample
are then averaged, and the resulting distribution of the
reflection coefficient is memorized. A computer pro-
gram built around this algorithm processes the reflec-
tion coefficient distribution and finds the real and imag-
inary parts of the mode propagation constant. When
determining the absorption coefficient of the film mate-
rial, we supposed that the attenuation of the beam due
to scattering is much smaller than the attenuation due to
absorption.

DETERMINATION OF THE GUIDING FILM 
PARAMETERS

Thin guiding films studied in this work were pre-
pared by rf magnetron scattering of KV quartz glass on
a substrate made of the same glass in the Ar : O2 = 4 : 1
atmosphere [8]. The parameters of such a waveguide
supporting two modes of TE polarization are listed in
Table 2. In this case, the errors in determining the real
and imaginary parts of propagation constant were 2 ×
10–5 and 0.015 × 10–5, respectively. The correctness of
the data obtained was checked by other techniques. The
optical losses for the second mode were measured by
scanning a fiber along the waveguide [9] were found to
be 5.5 ± 0.1 dB/cm. The thickness of the film measured
with a profilograph was found to be 2.51 ± 0.02 µm.
These values are seen to be in satisfactory agreement
with the data listed in Table 2.

In measuring thin film parameters to take an angular
dependence of reflection coefficient, it is necessary to
properly choose the probing beam diameter. Fairly cor-
rect results can be obtained only if the beam is rather
wide. When the reflection coefficient distribution was
measured by exciting a thin-film waveguide with Gaus-
sian beams with diameters w0 = 90, 145, and 490 µm,
the optical parameters of the film were in best agree-

Table 2.  Parameters of the thin waveguiding film that are
determined by various methods

Param-
eters

Guided mode
spectroscopy

Angular dependence
of reflection

m = 0 m = 1 m = 0 m = 1

1.46755 1.45814 1.46748 1.45810

9.98 × 10–6 6.51 × 10–6 1.02 × 10–5 6.71 × 10–6*

n 1.47104 1.47099

k 1.03 × 10–5 1.08 × 10–5

d, µm 2.49 2.53

* Optical losses 5.5 dB/cm.

h 'k0
1–

h ''k0
1–
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ment with the results obtained by other techniques for
w0 = 490 µm. A possible explanation for such an effect
has been given in the previous section (Table 1). It
should also be noted that, when measuring low optical
losses (k < 10–5), we ran into the problem of energy
leakage from the prism coupler. This is because our
technique measures the total radiation attenuation in
the film. If optical losses are low, the radiation escapes
from the measuring prism and, thereby, “overesti-
mates” the absorption coefficient being measured. Gen-
erally, the measurement of low losses is correct if light
energy leakage from the prism is prevented, e.g., by
shrinking the gap between the prism and film. As fol-
lows from Fig. 3, the measured energy losses remain
unchanged if the gap thickness is smaller than some

5.0

0.14 0.15

P, dB/cm

g, µm

5.5

g0

Fig. 3. Optical losses vs. the gap between the prism and
thin-film structure.

Table 3.  Results of processing the angular dependences of
the reflection coefficient shown in Fig. 4 (the data for the
mode m = 1)

Curve h'/k0 h''/k0

1 1.46512 1.46483 1.77 × 10–3 1.22 × 10–4

2 1.46512 1.46493 1.76 × 10–3 7.97 × 10–5

3 1.46512 1.46492 1.76 × 10–3 3.39 × 10–5

Table 4.  Parameters of the SiOx films deposited on various
substrates

n k × 10–5 d, µm

SiOx/SiO2 1.47095 3.39 2.51

SiOx/Si 1.47091 3.34 2.53

SiOx/K8 1.47024 2.5 2.69
critical value g0. Unfortunately, parallelism between
the base of the prism and the sample surface breaks in
this case, introducing an additional error (up to 20%)
into the measurements of optical losses in the
waveguide. Thus, special experimental conditions must
be provided to obtain correct data for low absorption.
At a moderate absorption, no difficulties arise as a rule.

DETERMINATION OF THE NONGUIDING 
FILM PARAMETERS

Thin nonguiding films were grown by rf sputtering
of quartz glass on substrates with a higher refractive
index. The substrates were made of K8 glass and sin-
gle-crystal silicon. At a wavelength of 0.633 µm, the
refractive indices of the glass and silicon were, respec-
tively, 1.5146 and 3.515. Such structures support only
leaky modes. These structures and those discussed in
the previous section were prepared simultaneously in a
single process; therefore, it was expected that the opti-
cal parameters and thicknesses of both are close to each
other. The technique for measuring the angular depen-
dence R(γ) and the processing algorithm were the same
as in the case of the guiding films. Here, as before, we
took into account the influence of the prism coupler on
the guided mode parameters when measuring the prop-
erties of the reflected beam. It is well documented that,
when the prism tunnel excitation technique is applied
for measuring film parameters, the accuracy of the final
results depends on the degree of prism–waveguide cou-
pling (i.e., on the gap between the film and prism base)
[10]. The angular dependence of the reflection coeffi-
cient also varies with the gap (Fig. 4). However, the
results obtained with the technique suggested are inde-
pendent of experimental conditions [5]. As was noted
above, the true value of h remains constant irrespective
of the pressure the prism exerts on the sample (i.e., irre-

0.2

1

5

R

γ, deg
6 7

0.4

0.6

0.8

2

3

Fig. 4. Angular dependence of the beam reflection coeffi-
cient for the SiOx film on the K8 glass substrate for different
g (the smaller g, the larger the curve number).
TECHNICAL PHYSICS      Vol. 50      No. 6      2005



WAVEGUIDE TECHNIQUE FOR MEASURING THIN FILM 777
spective of the gap between the prism and sample),
while other values vary. This effect is dramatized in
measuring the imaginary part of the propagation con-
stant (Table 3). The parameters of SiOx films deposited
on different substrates that are derived from the angular
dependences of the reflection coefficient (Fig. 2) are
given in Table 4.

It is seen that the parameters of the films deposited
on the K8 glass differ considerably from those of the
films deposited on the other substrates. Presumably,
because of a small difference between the refractive
indices of the film and substrate (∆n = n – ns), the leaky
mode is weakly localized in the film. Measurements
made on SiOx films of roughly equal thickness
(≈2.5 µm) deposited on various substrates corroborate
this conjecture. In this case, for a refractive index of the
substrates varying between 1.9 and 2.0, the absorption
coefficient of the film coincides (within 3%) with the
values obtained by other techniques. Obviously, the
degree of localization of the mode field in the film and,
hence, the reliability of results depend on the film thick-
ness. Figure 5 shows the thickness dependence of the
relative error in measuring absorption coefficient k. All
the films were deposited under identical conditions and
had nearly the same values of n (1.4701) and k (3 ×
10−5). Simultaneously, the error in determining the
thickness and refractive index decreased from 6 to 1%
and from 5 × 10–5 to 1 × 10–5, respectively, with increas-
ing thickness.

Our technique to measure the parameters of weakly
absorbing nonguiding thin films has limitations. By
way of example, consider the results for the SiOx films
on the silicon substrate. The films had roughly the same

4

3

δk/k*, %

d, µm

8

12

4 5

Fig. 5. Relative error in the absorption coefficient for the
SiOx film on the K8 glass substrate vs. the thickness of the
film.
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thickness (≈2.5 µm) but differ in composition, since
they were grown by rf sputtering in atmospheres with a
different oxygen concentration. Therefore, the absorp-
tion coefficient was also different. Figure 6 demon-
strates how the relative error in determining the absorp-
tion coefficient depends on the absorption coefficient
value in such structures. At k < 10–5, the error exceeds
30%. This may be related to the fact that, at low k

(<10−5), the error in measuring h''  becomes compa-
rable to, or even exceeds, the value of k itself. In this sit-
uation, determination of the absorption in the film
becomes a challenge. As for the refractive index and
thickness, the respective errors are no higher than 5 ×
10–5 and 2–3%.

Thus, the measuring technique suggested in this
work is applicable to structures where the refractive
indices of the films and substrate differ considerably
(∆n must be at least >0.5). If ∆n is small, this approach
provides valid results for d ≥ 5 µm. If the absorption in
the film is not to be measured, this technique can be
used for estimating the refractive index and thickness of
the film with an accuracy of ~10–5 and ~10–2 µm,
respectively, provided that the refractive indices of the
film and substrate differ insignificantly.

DETERMINATION OF THE PARAMETERS 
OF METAL FILMS SUPPORTING PLASMON 

MODES

The approach discussed above (determination of the
complex propagation constant from the angular depen-
dence of the reflection coefficient) also applies to plas-
mon modes propagating over the surface of metal films

k0
1–

20

1

δk/k*, %

k, 10–5

40

80

3 5

60

2 4

Fig. 6. Relative error in the absorption coefficient for the
SiOx film on the silicon substrate vs. the absorption coeffi-
cient value. The measurements were made for guided
modes excited in reference SiOx/SiO2 structures.
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placed in an insulating environment. However, the
thickness of a metal film can be measured if plasmon
modes are excited at both its boundaries [11]. It is evi-
dent, however, that plasmon modes at the outer (relative
to the prism coupler) boundary can be excited only if
the film thickness lies in the range 300–500 Å because
of a high absorption of visible radiation in a metal.
Hence, our approach makes it possible to estimate the
absorption coefficient, refractive index, and thickness
of only very thin films. The measuring procedure is the
same as that described in the previous sections.

For metal films more than 800 Å thick, the parame-
ters of a plasmon mode excited at one interface are not
affected by the second interface. Then, from the angular
dependence of the reflected light beam intensity, one
can determine only the optical parameters of a thick
film or surface layers in massive metal samples. Since
the propagation constant of a plasmon mode is related
to the permittivity of a metal film (or a surface layer of
a metal), ε = ε' + iε'', and that of the environment, εe, as

h2 = h' + ih'' = εeε/(εe + ε), we have [11]

where

z = (εe  – h'2 + h''2)2 + (2h'h'')2.

Having measured propagation constant h, one can
find the permittivity and, hence, refractive index and
absorption coefficient of the metal. Figure 7 shows the
temperature dependences of the optical parameters for
aluminum films deposited on the quartz glass by cath-
ode sputtering at different substrate temperatures. It is

k0
2

ε' h'2 h''2–( )k0
2εe h'2 h''2–( )2

–[ ] z 1– ,=

ε'' 2k0
2h'h''εe/z,=

k0
2

0.4
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n

T, °C
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Fig. 7. Dependences of (1) refractive index n and
(2) absorption coefficient k on the substrate temperature for
the Al films on the quartz glass.
known that the films deposited at substrate temperature
T0 = 120 K are of good quality and exhibit a high adhe-
sion to the substrate [12, 13]. From Fig. 7, it follows
that the film has a high refractive index at temperatures
T > T0, which indicates that it is close-packed. Conse-
quently, our technique allows one to estimate
the parameters of thin metallic coatings and surface
layers of massive metal samples, as well as to judge
their quality.

CONCLUSIONS

In this paper, we substantiate a method of measuring
the absorption coefficient, thickness, and refractive
index of thin films that is based on taking the angular
dependence of the light beam reflection coefficient for
the case when guided (leaky or plasmon) modes are
excited with a prism. The potential and domain of
applicability of the method are considered. Whether the
parameters of the films supporting leaky modes are
measured correctly or not depends on the degree of
localization of the mode fields in the film and on film
thickness d. In turn, degree of localization depends on
difference ∆n = n – ns in refractive indices between the
film and substrate. For ∆n ≥ 0.5, the measured values of
k (δk/k = 0.03) coincide with those measured on a sim-
ilar waveguiding film. For ∆n < 0.5, relative error δk/k
depends on the film thickness: at d ≥ 3.5 µm, it does not
exceed 0.05 for a SiOx film on a K8 glass substrate. The
least value of k that can be measured by this method
with a reasonable accuracy depends on losses due to
leakage. For a 2.5-µm-thick SiOx film deposited on a Si
substrate, δk/k = 0.1 for k = 10–5 and δk/k = 0.03 for k =
3 × 10–5. The refractive index and thickness of the films
are measured accurate to 5 × 10–5 and 3%, respectively.
Therefore, application of this method to measure the
absorption of thin films supporting leaky modes alone
is appropriate only if the refractive indices of the film
and substrate differ considerably (at least by ∆n > 0.5).
When ∆n is small, this method works well at film thick-
nesses d ≥ 5 µm. The method suggested in this paper
allows one to estimate the parameters of thin metallic
coatings and surface layers of massive metal samples,
as well as to judge their quality.

Thus, we developed a technique for measuring the
optical properties of thin films that is based on taking
the angular dependence of the light beam reflection
coefficient when visible-range modes are excited in the
films. It can be used for characterization of various thin-
film structures in optics and microelectronics.
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Abstract—No convincing theory or hypothesis concerning the origin of biological cells exists today. Insight
into the problem is difficult, because an empiric model of cell origination and division at the crucial phase of
life, self-organization of protein nanostructures, is lacking. It has been shown experimentally that protein nano-
structures exhibit signs of self-organization when an open far-from-equilibrium protein–water system con-
denses in vitro. In other words, to be active, protein must be in the nonequilibrium state. Such a form of self-
organization is accompanied by nucleation and the formation of defects, which divide the protein film into
domains (“cells”) with nuclei. This type of structuring in the nonequilibrium (active) protein may be viewed as
a crude empiric model of protein nucleation, since it includes the formation and division (self-organization) of
biological cells, the origination of which, in turn, is intimately related to the self-organization of protein at the
nanolevel. The reason for the similarity of the basic processes is identical conditions of protein condensation in
vitro and in vivo. In both cases, when water evaporates rapidly from an open water–protein system that is far
from thermodynamic equilibrium, the conditions necessary for protein nonequilibrium nanostructures be self-
organized with nucleation in the form of nucleus-containing “cells” are set. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The origin of biological cells, the building blocks of
organized matter, still remains a mystery. This problem
occupies a prominent place in a rapidly emerging field
of biology, proteomics (science of protein). A specific
task of proteomics is to trace the evolution of structure
information from an atom to a cell. The ultimate goal in
this direction is to discover a basic principle of self-
organization that is central to all biological processes
and primarily to the origination and division of macro-
cells.

Despite recent advances in the development of ana-
lytic instruments, X-ray analysis remains the most pop-
ular technique for protein investigation [1]. With X-ray
equipment, equilibrium energy-inactive protein crys-
tals are studied with an angstrom resolution.

However, much evidence indicates that visualiza-
tion of the protein molecule structure at the angstrom
level bears little information on the functioning of pro-
tein. Efforts are therefore made to analyze the structure
of larger protein complexes. Instead of studying the
folding of protein molecular chains at the atomic level,
it seems to be more appropriate to gain insight into the
structure of noncovalent macromolecular complexes
featuring a unique structure and biological function on
the nanoscale. It has turned out that nature starts creat-
ing molecular communities that govern key processes
in the living matter (division, multiplication, function-
ing, etc.) just from this scale, and so it is this scale that
is of scientific interest.
1063-7842/05/5006- $26.00 0780
It becomes evident that gaining insight into cell
origination is hindered by the lack of a technique mak-
ing it possible to develop an empiric model that covers
the self-organization of nonequilibrium protein in vitro
from the nano- to macrolevel.

A complex investigation performed by the author
[2–7] has shown that the in vitro condensation of an
open protein–water system that is far from thermody-
namic equilibrium does reproduce the process of self-
organization of the protein nanostructures. Specifically,
it has been established that protein is active (i.e., capa-
ble of functioning) only when in the nonequilibrium
state. Most interestingly, this process is accompanied
by the emergence of defects dividing the protein film
into nucleus-containing domains, which are morpho-
logically similar to living cells (Fig. 1).

The question arises as to why structures morpholog-
ically similar to living cells appear in a film of pure pro-
tein drying on a solid substrate in open air. It is well
documented that biological cells contain not only pro-
tein but also a variety of other ingredients, such as
DNA, adenosine triphosphoric acid (ATPA), and oth-
ers. What is the role of protein in cell origination? New
impressive findings have been obtained in this respect.
Experimentally, it has been convincingly proved [8]
that protein in living matter may function indepen-
dently. Unique experiments have made it possible to
visualize (up to a second) the cytokinesis (cell division)
of the protein cytoplasm. In this case, cytokinesis pro-
ceeds in the complete absence of the genetic apparatus
© 2005 Pleiades Publishing, Inc.
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and, hence, without nucleus division (i.e., without kary-
omitosis).

However, the mechanism underlying this process
remains unknown. In particular, it is unclear why and
how the protein of the cell protoplasm plays the leading
functional role or whence come signals controlling the
protein fibers functioning as constrictors in divisible
cells of plants and animals [9, 10]. In other words, biol-
ogists do not know whence cracks dividing the protein
protoplasm in a cell come and, accordingly, do not
know the origin of living cells themselves.

To gain a better understanding of the problem, the
author carried out special experiments on protein solid-
ification under conditions that thermodynamically and
kinetically approach those under which protein func-
tions in living matter, that is, in an open and thermody-
namically nonequilibrium (rather than in a closed and
equilibrium) water–protein system. The experiments
are in many ways similar to those performed earlier [5–
7] but the emphasis is on other things, specifically, on
nucleation in protein films and complexation with the
formation of nucleus-containing domains (cells) upon
condensation.

EXPERIMENTAL
The object under study is an open (exposed to air)

water–protein (egg lysozyme, egg protein, or human
blood serum with erythrocyte hemolysis) system. The
blood serum with pronounced erythrocyte hemolysis
(i.e., containing a complex of plasma proteins together
with a high concentration of hemoglobin) was prepared
by taking 5.0 ml of venous blood and keeping it in an
open test tube placed in a cooler at 1–2°C for 10 days.
Drops of the material were placed on a microscope
slide and dried at room temperature and atmospheric
pressure. Then, the condensation kinetics was observed
under optical, polarizing, scanning electron, and laser
confocal microscopes (series 1 of tests). In series 2, the
same system was dried under a cap, so that water evap-
oration and, accordingly, protein condensation and
polymerization proceeded more slowly (for details of
the experimental procedure, see [1–7]). A total of three
thousand runs were carried out.

RESULTS
The series-1 experiments showed that the condensa-

tion of egg protein, egg lysozyme, and blood serum
with erythrocyte hemolysis in the open system, which
is far from thermodynamic equilibrium, is accompa-
nied by the self-organization of the protein solution.

When the condensation of the proteins or protein
complexes reaches a certain critical point, the homoge-
neous film consolidates and the nucleation process
starts. The onset of nucleation is manifested by a char-
acteristic click and the appearance of geometrically
related regularly shaped large-scale defects (straight
lines, spirals, etc.). They divide the 3D film of the pro-
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
tein or its complex (in the blood serum) into separate
domains (cells). Each of the cells has distinct regular
boundaries and central nucleus-containing areas with
nano- and large-scale opposite vorticities. Various
forms of discontinuous symmetry can also be distin-
guished: helical (ellipsoidal), superspiral (rotational),
translational radial, pure rotational, chiral, “hedgehog”
or “bird’s wing” symmetry with signs of fractal geom-
etry, and others.

In the series-2 experiments (the condensation of the
egg protein or pure lysozyme in the closed equilibrium
system), 2D reticular crystals appear and the above
types of nucleation with different kinds of discontinu-
ous symmetry at the nano- and macrolevel are absent.

The sharp difference in the two states of the proteins
(egg protein and lysozyme) was confirmed by X-ray
diffraction analysis. Namely, it was shown that, in the
nonequilibrium state of the protein (series 1), the spon-
taneous formation of nanostructures takes place (signs
of ordering are observed starting with 4.33–10.00 Å)
and the long-range lattice is absent (it is certain to arise
in the experiments of series 2).

It was also demonstrated that, in series 1 of experi-
ments (the highly nonequilibrium system), the conden-
sation of the proteins and blood serum results in the for-

In vivo In vitro

Fig. 1. Nonequilibrium nanofilm of the protein “protos”
(lysozyme–water system). The blocks (cells) with nuclei
inside in vitro are geometrically similar to living cells.
Shown also are biological cells in vivo. Optical microscope,
×200.



 

782

        

RAPIS

               
mation of an anisotropic liquid-crystal phase with
large-scale defects and electrical property pulsation.
Such properties are typical of many suspensions upon
solidification [11] and different liquid-crystal materials
[11–14]. At the same time, when the protein suspension
solidifies in the closed near-equilibrium system (series 2),
the liquid-crystal phase of the film does not form [15];
instead, the solid crystalline phase appears irrespective
of the film size [12]. The experiments demonstrated
that, in pure protein (egg protein or lysozyme without
DNA, ATPA, and other ingredients of living matter), as
well as in the blood serum with erythrocyte hemolysis
in the presence of a variety of the ingredients, distinct
supermolecular self-organization of the protein nano-
structure takes place. This process is accompanied by
nucleation and the appearance of 3D cluster films in the
liquid-crystal phase at the meso- and macrolevel. Under
these conditions, a new nonequilibrium state of protein
that has unusual structural, electrical, optical, and mag-
netic properties was revealed [2−7].

DISCUSSION

The data obtained allow one to trace common fea-
tures in the in vitro and in vivo self-organization of pro-
tein in the nonequilibrium state. The experiments with
pure protein suggest that the bulk of consolidating pro-
tein free of other ingredients of living matter contains
an independent program of activity that is responsible
for nucleation (or the formation of domains) in protein
with time. It also becomes clear from these experiments
why the divisibility of protein into domains (cells) with
circular nuclei at their centers is retained in the absence
of the genetic apparatus.

It is obvious that, in this case, we are facing an
important role of the protein component in the division
of living cells. However, the only fact revealed so far is
the similar behavior of protein (nucleation) under both
the biotic (in vivo) and abiotic (in vitro) conditions. To
gain a better insight into this phenomenon in living
matter, it is necessary to consider in greater detail the
experiments in vitro and discover the true reasons for
nucleation, i.e., division of the protein film by cracks
under nonequilibrium conditions.

The role of the process kinetics has been convinc-
ingly proved by simple experiments. Varying the rate of
evaporation of water from the water–protein system,
we radically change its character, i.e., made it nonequi-
librium under the open conditions and equilibrium
under the closed conditions. In the first case (open sys-
tem, series 1), we observe the nonlinear oscillating
dynamics of protein nanostructure self-organization in
the nonequilibrium state. The texture in the form of
domains with nuclei arises, which closely resembles
the protein nucleation process. In the other case (closed
equilibrium system, series 2), no nucleation is
observed.
The aforesaid impressively supports the well-known
theoretical and experimental data that the nucleation
and growth of neighboring grains (blocks, cells, etc.) in
the course of matter self-organization proceed only in a
nonlinear unstable system and texture is a derivative of
self-organization. As early as in 1952, Sternling and
Scriven [16] put forward the idea that, in nonequilib-
rium nonlinear dynamic systems, the surface current
produces cellular domains similar to Benard cells.
Benard [17] described nonequilibrium processes atten-
dant to heat convection that result in the formation of
cellular structures with clear-cut centers and striation,
which appears roughly within 72 h.

These data coincide with the behavior of other film
structures occurring during condensation and acquiring
the nonequilibrium state [18–20].

It is obvious that the emergence of domains (cells)
in all the above examples, including in protein, is of
general universal character and is associated with the
self-organization of matter in the nonequilibrium state.
This is totally consistent with the concept [21] that, in
the course of spontaneous self-organization, the mere
division of condensing matter switches to more sophis-
ticated forms of organization, since self-organization is
the “apex” of condensation and executes the program
hold in a given system [21]. According to the program,
this process generates an ordered (in a certain way)
algorithmically repeated functional supermolecular
architecture from the nano- to macrolevel. As follows
from published data, the process is under temporal
kinetic control. Nonequilibrium, in turn, governs the
appearance of ordered coherent dissipative nanostruc-
tures with nonlinear dynamics.

Eventually, the system takes a universal functional-
ity and structure with domains, blocks, cells, etc., all
playing a major part in the further self-organization of
various kinds of matter and, in particular, in evolution
of living cells [21].

Nevertheless, the appearance of domains (cells) in
protein in vitro, unlike cells in oil (the Benard phenom-
enon) and blocks observed upon drying of a takyr soil
in a clay-surfaced desert [22] or of ordinary mud
(which also exemplifies the nonequilibrium state of
matter), is a phenomenon of special importance, since
it seems to be intimately related to the production of
cells in a living organism.

All our experiments without exception revealed not
only generation of individual domains (cells), the pro-
cess inherent in other nonequilibrium systems as well,
but also the previously unknown specific feature of the
cells, namely, a geometrically regular clear-cut central
region (nucleus). Each of the cells has only one nucleus
whose size correlates with the size of the cell. A strict
geometric similarity is observed between the cells and
nuclei. Taken together, they constitute a highly ordered
structure, which bears a striking phenomenological
resemblance to cells and cell layers in living biological
systems. Of particular interest is the fact that, in the
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samples of the drying hemolyzed serum, which contain
protein complexes (serum and hemoglobin) together
with many other organic and inorganic blood compo-
nents, the pattern becomes still more ordered, very
expressive, and typical of pure protein, differing from
the pattern of pure protein only by color. Presumably,
this is the result of independent activity of protein,
where active competing autowave processes have a
very high oscillation frequency and, thereby, suppress
the morphology due to other substances [7]. However,
these very important observations remain poorly under-
stood. It is hoped that detailed investigation of the non-
equilibrium mechanism in terms of the empiric model
suggested will provide additional insight into the pro-
tein self-organization process under both abiotic and
biotic conditions.

To understand the nature of the process, it is neces-
sary to work out a theoretical model of protein self-
organization and symmetry that takes into consider-
ation the specific features of the equilibrium and non-
equilibrium states of protein. Therein lies the goal of
subsequent studies.

However, a number of points can be highlighted
even today based on the documented data currently
available. The fact that the liquid–solid phase transition
occurring in nonequilibrium protein in vitro is accom-
panied by the formation of vortices is apparently asso-
ciated with hydrodynamic turbulence. Considering the
low rate of evaporation of the water from the water–
protein system exposed to air, this effect can be
explained based on the experiments by Groisman and
Steinberg [23]. They showed that a specific type of tur-
bulence, elastic turbulence, occurs even if the rate of
solidification is low. This is especially true for high-vis-
cosity (elastic) polymer systems, which a water–pro-
tein colloid belongs to.

At the same time, turbulence is known to be a peri-
odic source of defects; that is, turbulence-generated
defects possess discontinuous symmetry [24]. This elu-
cidates the origin of the discontinuous symmetry in the
protein film upon condensation in vitro (helical or
orbital, radial, rotational, hedgehog-like, etc.), which is
similar to the symmetry of protein in vivo (Petukhov,
private communication, 1999).

The discontinuous helical (orbital) symmetry of
protein has been recently discovered in biological
experiments made in outer space. This symmetry is
attributed to the orbital interaction of electromagnetic
fields, while the nucleus-related asymmetry is associ-
ated with the action of nuclear forces (Sakina-Weave,
private communication, 2003).

In our experiments in vitro [5–7], the formation of
cells (more specifically, their boundaries) in the protein
film was due to large-scale defects appearing in the liq-
uid-crystal phase of the protein, which is consistent
with the properties of various liquid crystals [9]. This
allows us to understand the origination of large defects
in the protein of a living organism, where protein is
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
most frequently just in the liquid-crystal state. (It is
remembered that the defects inevitably cause nucle-
ation in protein with the formation of structural compo-
nents of the cells with the symmetry similar to that in
protein films and blocks observed in experiments in
vivo and in vitro at the nano- and macrolevel). The
above reasoning checks well with Mints and Konon-
enko’s opinion [13] that cell division as applied to liv-
ing organism morphology can be considered as the
motion of a linear defect (dividing groove) through the
body and membrane of a cell. It is believed that such a
motion is possible due to the presence of liquid-crystal
phases performing biological functions [11–13].

The experiments carried out by the author support
the above hypothesis. It can be argued that the liquid-
crystal phase of protein behaves in accordance to the
elasticity theory. Then, electric pulses passing through
a protein film can be regarded as a manifestation of the
well-known property of periodic elasticity variation
[25, 26]. In terms of the elasticity theory, the free
energy of the system varies depending on nonequilib-
rium elastic forces, the direction of which is responsi-
ble for its dissipation and minimization.

The above speculations concerning the process of
nucleation in the protein films, as well as the feasibility
of observing the morphological pattern in real experi-
ments in vitro, make it possible to draw some prelimi-
nary inferences. Specifically, structural ordering show-
ing up in nucleation with the formation of nucleus-con-
taining domains (cells) upon the condensation of
liquid-crystal protein films in vitro at the nano- and
macrolevel and the same effect observed in cells and
cell layers in a living organism at the same levels are
basically similar. This similarity seems to be associated
with the relaxation and minimization of the energy of
the protein nonequilibrium state in both cases. The
same symmetry types in the protein films upon self-
organization in vitro and in vivo strongly suggest the
same reasons for nucleation under the biotic and abiotic
conditions; eventually, these reasons outline the energy
stabilization route in the course of self-organization of
protein nanostructures.

This inference can be strengthened by a number of
well-documented experimental (morphological),
experimental, and functional data.

(1) When observing morphological changes inside a
living egg, embryologists, without giving any explana-
tion, usually describe the following periodically repeat-
ing pattern. At the vegetative pole of the egg, the corti-
cal layer in the surface disk of the cytoplasm consoli-
dates. It becomes very viscous, dense, and
homogeneous (i.e., free of chromosomes, DNA, and
other inclusions). Prior to division, the stress in the pro-
tein increases sharply and an initial dividing groove, a
defect, arises. Such is the onset of defect formation,
which gives rise to 2, 4, 8, 16, etc., blocks (Fig. 2).
These blocks are called cells, although the fourth side
distinctly separating the so-called cells from the bulk of
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the homogeneous structureless protein is absent at the
early stage. That is all on this issue the author has man-
aged to find in relevant publications on embryology
[27, 28].

Reading this description, one might think that the
processes observed in the experiments (namely, the
emergence of defects (cracks) in the internally strained
protein film when its viscous bulk consolidates under
the nonequilibrium conditions typical of a living sys-
tem) suffice to produce cells in the egg (in vivo). Sur-
prisingly, the only difference is that the egg is under
biotic conditions (in vivo), while the experimental con-
ditions are abiotic (in vitro).

(2) It is well known that the protein in a living organ-
ism is self-organized and performs a variety of func-
tions, which are sometimes of explosive character.

In vivo

Fig. 2. Division at the center of the mother spiral (nucleus)
of a cell in the drying protein film in vitro (×120). At the bot-
tom, the division of a snake’s egg in vivo is shown (×185).
Optical microscope.

Fig. 3. Division of an egg in vivo. The first dividing groove
passes through the animal pole. Four cells are being formed.
Today, ATPA is considered to be the basic energy
source of protein. Our experiments in vitro have shown
that, when protein is self-organized without ATPA
(lysozyme or egg protein), it passes to the high-energy
nonequilibrium state, which promotes the restructuring
and, hence, functioning of protein [2–7].

In these experiments, we managed to discover the
nonequilibrium state of protein at the same conforma-
tion transitions in vivo and in vitro and, thus, vividly
demonstrate the energy contribution of this state to the
process of protein self-organization in vivo and in vitro
when ATPA concurrently enters into the phosphoryla-
tion reaction.

The analogy (as yet qualitative) consists in the cor-
respondence between the outer configurations of the
cell and nucleus in both cases (Fig. 1). The films with
helical (orbital) symmetry surrounding the centers of
the cells in vitro resemble helical proteinaceous micro-
tubules of the cytoskeleton, which are arranged around
the nuclei in living cells [29, 30]. In addition, 3D films
appearing in the form of stacks in vitro are akin to
stacks of membranes in the living cell organelles (mito-
chondria, Golgi apparatus, etc.) [29].

It is known that the processes of structuring and
forming (e.g., membranes, layers, films, fibers, tissues,
cells with nuclei, organelles, and so on) proceeding in a
living organism seemingly follow the unified construc-
tion program, which is associated primarily with pro-
teinaceous complexes existing in these components.
These complexes inevitably arise, as in the experiments
in vitro described above, upon the condensation of var-
ious liquid or liquid-like protein–water systems and
then turn into denser or solid biological objects. How-
ever, the reasons for the geometric similarity between
various proteins, cells, and tissues irrespective of their
nature and features of a living organism still remain
unclear.

Our experimental data made it possible to explain
this phenomenon by the ability of various proteins,
when in the nonequilibrium state, to trigger the epitax-
ial growth of nanofilms (membranes) in the form of
stacks. Such behavior in the course of self-organization
is typical of organic polymers. However, the author is
unaware of works where the self-organization of poly-
mers causing nucleus-containing cells that are similar
to living cells in shape is described.

The experiments allowed us to observe not only the
statics but also the dynamics late in the protein self-
organization, when the blocks and their nuclei start
spontaneously dividing at the center of the field (simi-
larly to the division of living cells and their nuclei) to
form superspirals (Fig. 3). The onset of the process in
the central zone in both cases may indicate that this
zone is energetically the most active.

Next, the appearance of defects and extremely flat
double-wall “channels” between the blocks in vitro, as
well as in vivo, is noteworthy. In terms of morphology,
these channels are called intercellular spaces, gaps, or
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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grooves, in which the intercellular liquid is contained.
This observation is consistent with observations of
“twins” when the gelatinous bulk of the protein divides
into blocks (Fig. 1).

From the data listed, it follows that the nucleation of
nonequilibrium protein under the conditions of nano-
structure film self-organization in vitro geometrically
coincides with the formation of cells with nuclei in
vivo. It is obvious, however, that “cells” in vitro are far
from being identical to living cells. Yet, the similarity of
structures (frameworks), symmetries, and scales in
vitro and in vivo, as well as the functional activity of
protein in both cases, is a valid one and deserves further
investigation.

CONCLUSIONS

The structuring of nonequilibrium (active) protein
in vitro described in this paper may be viewed as a
crude empiric model of nucleation with the formation
and division of biologic cells, since the basis for the cell
activity in vivo is also self-organization at the
nanolevel. Even the qualitative data presented here give
an idea of a source of energy needed for nucleation and
formation of defects in protein in vitro and in vivo. The
structuring and general behavior of the nonequilibrium
liquid-crystal protein film during condensation suggest
universal properties of protein, which is in agreement
with the theory of cluster nanofilms [29, 30] and the
theory of anisotropic nematic films and elastic films
[31].

We for the first time managed to visualize the
dynamics of the spontaneous phase transition in protein
at its condensation and self-organization in vitro under
conditions that closely approach those in a living organ-
ism at a cellular level. The in vitro conditions used in
this work and in vivo conditions are similar (i) in kinet-
ics (the rate of dehydration is sufficient that the process
is nonequilibrium; in vivo, nonequilibrium is related to
the rapid hydrolysis of ATPA), (ii) in thermodynamic
parameters (the open system far from thermodynamic
equilibrium), (iii) in scale (nanolevel, cellular level, and
macrolevel; X-ray diffraction analysis, optical and
electron microscopes), and (iv) in solvent (water).

Our experiments showed that, when protein nano-
structures are self-organized at the mesolevel and mac-
rolevel (cellular level), the emergence of a new liquid-
crystal phase with elastic properties is accompanied by
the generation of large-scale defects promoting nucle-
ation and the formation of multilayer films. These films
divide into blocks (cells) with nuclei at their centers
under both the biotic and abiotic conditions.

Significantly, while the process in vitro goes in pure
protein free of additional energy sources (such as
ATPA, DNA, and others), the resulting types and scales
of symmetry are similar to those in vivo. This may indi-
cate the same underlying mechanisms in both cases and
suggests the independent activity of protein in a living
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
organism. It appears that a more comprehensive quan-
titative correlation between the self-organization
dynamics of pure protein in vitro and the self-organiza-
tion dynamics of protein in vivo will allow us to esti-
mate the “competitiveness” of its activity and, hence, to
see whether it can efficiently “operate” in a complex
system with a variety of ingredients. The experiments
with the hemolyzed serum seemingly exclude the
assumption that protein, when in a complex system like
a living organism and operating in cooperation with
many other ingredients, may change the route of self-
organization and structuring. This is consistent with the
concept in [21], which states that supramolecular
chemistry in the course of self-organization is the result
of executing a certain conformation molecular code
existing both in vitro and in vivo. This fact forbids the
systems from evolving in directions other than the
given one, which generate products of another essence
[21].

It is hoped that detailed analysis of the empiric
model of protein self-organization under nonequilib-
rium conditions, which is accompanied by nucleation
from the nano- to the macrolevel, will provide a deeper
insight into the origination and division of living cells.
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Abstract—The basic optical and electrical properties of turpentine, a biologically active natural organic com-
pound, are studied. At wavelengths from 350 to 550 nm, the room-temperature photoluminescence spectrum of
turpentine shows a number of peaks. In the temperature range 280–300 K, the activation energy of conduction
is found to be 0.53 eV, which is much lower than the optical bandgap and indicates the hopping mechanism of
conduction with a variable length of hops between states near the Fermi level. © 2005 Pleiades Publishing, Inc.
Advances in semiconductor optoelectronics have
led to the development of a variety of heterophotocells
with different functionality [1–3]. Together with rou-
tine studies of conventional solid-state semiconductor–
semiconductor, semiconductor–metal, and semicon-
ductor–insulator structures, investigations into hybrid
semiconductor–organic substance heterojunctions are
becoming more and more extensive [4–7]. When
appropriately designed, these structures may offer pho-
toelectric parameters that are comparable, or even
much superior, to those of commercial devices [8].
Structures consisting of a semiconductor and a biolog-
ically active organic substance are of special interest
[9–11]. In our recent work [12], we demonstrated that
turpentine, a natural organic substance, when incorpo-
rated into photosensitive structures, behaves as a
p-semiconductor. A feature of turpentine-based struc-
tures is that photovoltaic conversion takes place mainly
in the organic substance.

Turpentine, a gummy substance that exudes from
incisions in the trunks of pine trees, is a valuable raw
material for the production of various technical and
biologically active compounds: lacquers; camphore;
immersion oil, which is applied in microscopy; rosin (a
mixture of resin acids with the general formula
C19H29OOH); and turpentine oil (a mixture of unsatur-
ated terpene hydrocarbons of general formula C10H16).
Reversibility of chemical processes taking place in the
turpentine constituents with time and under illumina-
tion was reported [13]. However, despite progressively
growing interest in percolation composites (insulator–
conductor and insulator–semiconductor systems)
[14, 15], data on the physical properties of turpentine
are currently lacking.

In this work, we for the first time determined the
basic optical and electrical properties of films of this
natural biologically active organic material. Namely,
we recorded the transmission and luminescence spectra
1063-7842/05/5006- $26.00 0787
of turpentine in the wavelength range λ = 300–900 nm,
measured its conductivity at room temperature, and
took the temperature dependence of the conductivity.

To prepare a turpentine film uniform in thickness, a
drop of an alcoholic solution (96% ethyl alcohol) of tur-
pentine was applied on a sapphire substrate mounted on
a centrifuge. The centrifuge was rotated until the alco-
hol completely evaporated. The thickness of the test
films thus obtained was 20–30 µm; the density,
0.714 g/cm3. The conductivity of the films was mea-
sured by the standard two-point probe method [16]
using silver contacts.

The optical measurements are shown in Fig. 1. It is
seen that (i) the turpentine films are transparent in the
range 500–900 nm (T ≈ 90% at thickness d ≈ 20 µm,
curve 1); (ii) the long-wave part of the optical absorp-
tion edge is highly diffuse; and (iii) absorption coeffi-
cient α changes by one order of magnitude (from 103 to
102 cm–1) in the range 300–400 nm, i.e., at photon ener-
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Fig. 1. (1) Transmission, (2) absorption, and (3) photolumi-
nescence spectra taken of turpentine films at T = 288 K.
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gies varying between 4.13 and 3.1 eV (curves 2). Note
that rosin films obtained by the same technique are
transparent (T ≈ 90% at the same film thickness)
throughout the spectral range studied.

Luminescence was excited by 337-nm radiation.
The luminescence spectrum (Fig. 1, curve 3) exhibits
many peaks in the range 350–550 nm, indicating sev-
eral types of luminescence centers present in turpen-
tine, which is characteristic both of compounds with a
complicated energy band structure [17] and of complex
molecular mixtures [18].

Figure 2 shows the temperature dependence of the
turpentine conductivity, σ(T). In the temperature range
291–325 K, the activation energy of conduction is con-
stant, ≈0.53 eV. This value is much lower than the
energy bandgap of the material that might be expected
from the absorption spectrum. Presumably, we are deal-
ing with either the impurity mechanism of conduction
or with the hopping mechanism with a variable length
of hops between states localized near the Fermi level. A
more detailed study of the temperature dependence of
the turpentine conductivity will be carried out in our
subsequent works. Here, we only note that the linear
run of lnσ as a function of T–1/4 at T = 280–325 K, as
well as the presence of the portion where σ ~ ω0.8

(where ω is the frequency of the electric field used in
the measurements), counts in favor of the hopping
mechanism of conduction in turpentine films [19]. At
T > 325 K, the conductivity of the organic material
starts decreasing. Such behavior of the curve σ(T) may
be accounted for by several reasons. First, the decline in
the conductivity with rising temperature can be attrib-
uted to the saturation of the rate of increase of the
charge carrier mobility after all holes (electrons) have
passed from localized centers to the valence (conduc-
tivity) band under the action of temperature. This sce-
nario is typical of both amorphous inorganic semicon-
ductors and a number of organic compounds [19, 20].
Second, such behavior of σ(T) may be associated with
a decrease in the carrier mobility due to phonon scatter-
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Fig. 2. Temperature dependence of the conductivity of the
turpentine films.
ing. Bearing in mind that organic substances have usu-
ally a crystal structure [21] and that even amorphous
films have crystalline areas [19], the second supposi-
tion does not seem meaningless, while it needs addi-
tional substantiation.

Thus, the results of the pioneering investigation into
the optical performance and electrical conductivity of
turpentine indicate that this biologically active natural
organic material is a semi-insulator with an optical
bandgap of ≈3.3 eV and so can be used in designing
optoelectronic devices. It should also be emphasized
that the resistivity of turpentine does not exceed that of
a number of artificial (synthesized) wider bandgap
organic materials that are to be used or even are being
used in various commercial electronic components
[22]. One more advantage of turpentine over its biolog-
ical counterparts mentioned in the literature (skin,
green leaves, protein, and others [9, 10]) and a number
of organic materials is its high environmental resis-
tance.
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Abstract—A new magnetic material, C60 fullerite powder doped by magnetite (Fe3O4) nanoparticles, is
obtained by heating a mixture of fullerite and iron(III) acetylacetonate. It is shown that the material offers super-
paramagnetic properties. Surface bonding between the nanoparticles and the fullerite is established. © 2005
Pleiades Publishing, Inc.
The physical properties of nanocomposites and,
hence, their functionality depend on the size of the
nanoparticles and the properties of the matrix. A chal-
lenging problem in this field is preparing nanoparticles
of a given composition by one-stage synthesis. Fullerite
seems to be an appropriate matrix for magnetic nano-
composites, which are today viewed as very promising.
In this work, we study the resonance and magnetic
properties of C60 fullerite powder with Fe3O4 magnetite
nanoinclusions. The material is prepared by the chemi-
cal reaction between C60 and volatile iron triacetylacet-
onate Fe(acac)3 (Fe(acac)3 = Fe(CH3COCHCOCH3)3),
during which the magnetite nanoparticles enter the
magnetically neutral but chemically active matrix.

The samples of magnetic materials MC60 and M*C60
(M stands for magnetite) were prepared by the original
method [1], according to which a solid mixture
Fe(acac)3 : C60 = 1 : 2 is heated to 300°C until the burn-
ing of Fe(acac)3 is seen visually. Then, the process goes
in air spontaneously without heating (MC60 samples).
When M*C60 samples were synthesized, the crucible
with the reagents was cooled by water of temperature
10–15°C.

The heating process was studied by the method of
differential thermal analysis (DTA). It was found that,
in the presence of C60, Fe(acac)3 decomposes with the
formation of Fe(acac)2 and the radical (acac) followed
by pyrolysis of Fe(acac)2 without substantial gas evolu-
tion from C60. The weight loss meets the conversion of
Fe(acac)3 to Fe3O4.

The state of the iron was determined with Möss-
bauer measurements using a 57Co(Cr) source. The elec-
tron magnetic resonance (EMR) spectra were taken
with an SE/X-2544 electron paramagnetic resonance
X-ray spectrometer equipped with a thermal liquid-
nitrogen trap. The spectra were characterized by effec-
tive (peak-to-peak) resonance linewidth ∆H, which was
1063-7842/05/5006- $26.00 0790
found from the derivative of the absorption line, and
position H0 of the peak, which is found by integrating
the derivative. Magnetic measurements were made with
a SQUID magnetometer. The X-ray fluorescence spec-
trum taken from the C60 fullerite synthesized by
Eletskiœ exhibits a standard set or peaks typical of the
face-centered cubic lattice of C60 at 300 K. For this ful-
lerite, the electron paramagnetic resonance (EPR) of
the radical is characterized by parameters g = 2.0017
and ∆H = 0.08 mT. In the X-ray spectra taken from the
products of the C60–Fe(acac)3 reaction, the reflections
due to C60 persist.

Early Mössbauer measurements revealed magnetite
particles in the material synthesized [2–4]. The param-
eters of the Mössbauer spectrum taken from the MC60
sample are listed in the table. The parameters of the
hyperfine structure were obtained by fitting the model
spectrum to the experimental one under the assumption
that the absorption line is of Lorentz shape. Three dis-
tinct nonequivalent positions of the iron were distin-
guished in the spectrum that are represented by the sex-
tet, doublet, and singlet. As judged from the hyperfine
field on the nucleus and the isomer shift value, the sex-
tet can be assigned to defects in the magnetite, whose
sublattice remained unresolved because of the poor sta-
tistic of the spectrum. The particle size did not exceed
18 nm [3].

The isomer shift of the doublet is typical of trivalent
iron oxide, which can be assumed to consist of finer,
≈13 nm, superparamagnetic magnetite particles. The
isomer shift of the singlet is typical of iron-based
alloys, including iron–carbon alloys [2]. In this case,
the iron may cover the magnetite particle surface and
chemically bonded to the fullerite.

Figure 1a shows the temperature dependences of
magnetization for the composite samples cooled in a
magnetic field of 20 mT (field cooling, FC) and in the
absence of the field (zero-field cooling, ZFC). The
© 2005 Pleiades Publishing, Inc.
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Mössbauer data for MC60

Sextet δ, mm/s H, 105 A/m ε, mm/s FWHM, mm/s S

1 0.45 ± 0.05 490 ± 10 0.33 ± 0.08 1.66 ± 0.08 0.45 ± 0.1

2 0.36 ± 0.05 0 0.79 ± 0.08 0.58 ± 0.08 0.41 ± 0.1

3 0.08 ± 0.05 0 0 1.72 ± 0.1 0.13 ± 0.1

Notes: δ, the isomer chemical shift relative to α-Fe; ε, the quadrupole splitting; H, the hyperfine field on the iron nucleus; and S, the fraction
of iron-occupied sites.
curves are typical of superparamagnets. In the M*C60

sample, the magnetization decreases with increasing
temperature by roughly one order of magnitude, the
difference in the FC and ZFC curves persisting
throughout the temperature range (Fig. 1a shows only
the behavior of the magnetization under the FC condi-
tions). Based on the data of DTA and quantitative anal-
ysis (the latter show that both the iron and the fullerite
do not diminish in weight upon temperature synthesis),
we calculated the magnetization per gram of iron. In the
MC60 sample at 300 K, this value equals 17.6 emu/g,
which correlates with the data for magnetite particles in
the carbon matrix, 19–45 emu/g [4].

The EMR spectra taken in the temperature range
80–500 K are presented in Fig. 2. The spectrum for
M*C60 contains the line of the C60 radical. In the MC60

sample, this line is resolved only in a narrow magnetic
field range and is highly broadened, indicating that the
magnetization grows. The absorption line intensity for
M*C60 is roughly one order of magnitude lower than
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
for MC60, which is also consistent with the magnetiza-
tion data.

The temperature dependence of the EMR spectra
(Fig. 3) is typical of iron oxides in the superparamag-
netic state [5–7]. It is known that, because of the first-
order phase transition in the temperature range 250–
256 K, the C60 fullerite lattice becomes primitive cubic.
At these temperatures, the resonance characteristics of
the material exhibit a specific feature: the slope of the
temperature curves for the EMR linewidth and reso-
nance field changes (Fig. 3a). Such a run confirms the
presence of particle–fullerite bonding.

As the temperature grows, the EMR line narrows,
which is associated with the averaging effect of magne-
tization thermal fluctuations. According to the calcula-
tion made in [5], the EMR linewidth broadening factor
for like particles is proportional to the ratio of their vol-
umes. The experimental spectra show both broad and
narrow absorption lines, which differ in position in the
magnetic field (this fact is more pronounced for M*C60,
Fig. 2b). Presumably, there exists a statistical double-
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hump particle size distribution similar to that found in
[6]. The same takes place in the Mössbauer spectra.
Computer-aided simulation of the EMR spectra by
using two Gaussian resonance lines gave the best fit to
the experimental data (Fig. 2). Such a shape is likely to
reflect a considerable influence of nonuniform mag-
netic anisotropy in the magnetite nanoparticles embed-
ded in the fullerite. This adversely affects the resolution
of the Mössbauer spectra. Throughout the temperature
range, the value of ∆H1 of the broader spectral compo-

nent for the MC60 sample is less than ∆  for M*C60

and resonance fields obey the inequality H1 > . For

the narrower components, conversely, ∆H2 > ∆  and

H2 > . Therefore, the doublet in the spectra for
M*C60 is better resolved. The temperature dependences
of the parameters of the resonance lines simulated are
shown in Fig. 3 for MC60. For MC60 at 300 K, the line-
widths and their associated resonance fields are ∆H1 =
81.6 mT, H1 = 310.4 mT and ∆H2 = 151.5 mT, H2 =

281.7 mT. For M*C60, ∆  = 59 mT,  = 316 mT

and ∆  = 224 mT,  = 265 mT. For sized magnetite
particles, the EMR linewidths at 300 K are given in [8].
Comparing those values and ours, we obtained two
characteristic linear sizes of magnetite particles in
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Fig. 2. Temperature dependence of the EMR spectra for
(a) MC60 and (b) M*C60. The symbol “s” refers to the
computer simulation of the spectrum by using two Gaussian
curves. The EPR spectrum of the C60 radical is shown by
the arrow.
MC60: 9 and 15 nm. These sizes are comparable to
those estimated from the Mössbauer data. In M*C60,
the magnetite particles sizes are 6 and 21 nm.

The difference in particle size between MC60 and
M*C60 reflects the different synthesis conditions. In the
latter case, the process allowed for heat removal. This
decreased the rates of vaporization and decomposition
of Fe(acac)3 with the formation of the radical. As a
result, some iron complexes might stay in the molten
state. Apparently, coarser particles are synthesized
under such conditions. The decrease in the magnetiza-
tion and the coarsening of the particles may be attrib-
uted to the agglomeration of nanocrystallites and a
decrease in their density, as well as to their adsorption
on the surface due to the organic products of ligand
decomposition. Fine particles form during the gas-
phase decomposition of Fe(acac)3 on the surface of the
melt. In the case of M*C60, they became still finer,
because vaporization is less vigorous under such condi-
tions.

The temperature run of the magnetization for MC60
and the dependence of the magnetization on the cooling
conditions lead us to assume that the magnetization in
the nanoparticles is suppressed. Because of the particle
size distribution, the process covers a wide temperature
range. The resonance methods strengthen this assump-
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Fig. 3. Temperature dependence of the EMR spectrum
parameters for MC60: (a) experimental and (b) simulated
spectra.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005



SUPERPARAMAGNETISM OF MAGNETITE PARTICLES 793
tion. Figure 1b shows the temperature dependences of
the integral intensity of the EMP spectra. Its value var-
ies in proportion to the magnetization of the material.
According to the general concept [9], the run of these
curves clearly indicates magnetization suppression in
MC60 and in M*C60. In the latter case, the suppression
is observed at a higher temperature, because here
coarse particles grow.

In summary, a new magnetic composite (Fe3O4
nanoparticles in C60 fullerite powder) offers superpara-
magnetic properties. The suppression of the nanoparti-
cle magnetization starts near room temperature. The
magnetic resonant properties of the nanoparticles are
sensitive to structural changes in the fullerite. The
effects observed are of applied interest.
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Abstract—An ion–optical scheme that allows for a considerable improvement of the sensitivity and speed of
a mass spectrograph is suggested. These ends are accomplished by appropriately choosing the parameters of an
electrostatic capacitor and the shape and location of a magnetic lens, as well as by using an original multichan-
nel linear sectional detector. The numerical simulation of the detector is carried out. It is shown that rapid anal-
ysis of multicomponent mixtures in a wide mass range, along with a substantial extension of the dynamic range
of a signal recorded, is a possibility. The basic parameters of a mass analyzer based on the scheme suggested
are verified experimentally, and the results obtained are discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Portable mass spectrometers are effective instru-
ments of physicochemical analysis. Their advantages
are highlighted in performing in situ real-time measure-
ments in environmental engineering, geophysics, space
research, and process control [1]. Being capable of
operating independently, these devices are indispens-
able in carrying out long-term routine measurements
under extreme or hazardous conditions. Static sectoral
mass spectrometers offer a number of advantages that
are of importance for portable instruments: a low power
consumption, the feasibility of continuous analysis of
multicomponent mixtures, and a simple interface
between the ion mass separator and any ion source cur-
rently available.

Most today’s portable static analyzers operate in the
scanning mode [2–4]. This mode cannot provide a high
sensitivity and speed of measurement, since peaks in
the ion mass spectrum are recorded in turn. To remedy
the situation at least partially, several sensors, channel
electron multipliers, are usually used. They are
arranged so as to provide an optimal partitioning of the
total ion mass range into subranges. The drawback of
such an approach is that scannings of the ion mass spec-
trum within a subrange are interdependent and proceed
in parallel when an electric or magnetic field in the
mass analyzer is varied.

At present, the Mattauch–Hertzog scheme using a
coordinate-sensitive detector [5] is becoming the work-
horse in static mass spectrometers intended for simulta-
neous analysis of mixture components. This scheme
incorporates chevron assemblies of microchannel
plates or assemblies of microchannel plates combined
with CCD arrays. Mass spectrometers equipped with
such detectors provide a high resolution and sensitivity,
1063-7842/05/5006- $26.000794
as well as a short resolving time (several milliseconds).
However, in sectoral mass spectrometers, the ions are
spatially separated in the focal plane; therefore, a large
amount of charge is accumulated somewhere in the
detector when the conventional schemes (including the
Mattauch–Hertzog one) are used even if a spread in ion
mass is moderate. That is why the dynamic range where
the instrument provides a linear relationship between
the component concentration and signal amplitude at
the output of the detector is limited (104–105). Such a
dynamic range prevents the portable devices from
being efficient in serving a variety of research needs. In
addition, the portable devices impose restrictions on the
dimension and weight of the 90° magnetic system
employed in the Mattauch–Hertzog scheme.

In [6], an original mass spectrograph using a magnet
with a sector angle of 50° was described. Its character-
istics meet the portability requirements to a greater
extent than those of the devices based on the Mattauch–
Hertzog scheme. At the same tine, the design of that
mass spectrograph suffers from disadvantages, such as
the absence of focusing in the direction normal to the
pole pieces and, accordingly, a low sensitivity.

ION–OPTICAL SCHEME OF THE MASS 
SPECTROGRAPH

In this work, we consider the ion–optical scheme of
a mass spectrograph (Fig. 1a) with angular and energy
focusing of ions that provides rapid recording of ion
mass spectra over a wide mass range with the separat-
ing electric and magnetic fields of the mass analyzer
remaining constant. First-order angular and energy
focusing is provided in the plane perpendicular to the z
axis over a wide range of ion masses. With such focus-
 © 2005 Pleiades Publishing, Inc.
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ing, losses of particles that have a velocity component
in the z direction are virtually excluded owing to the
presence of a spherical electrostatic capacitor and also
by properly selecting the angle of incidence of ions on
the entrance boundary of the magnet. Figure 1b is the
cross-sectional view of an ion beam. We managed to
find system parameters such that focusing in the z direc-
tion does not impair the resolution of the system. In
doing so, we applied the algorithm [6] for optimizing
the design of a portable mass spectrometer with an elec-
trostatic cylindrical capacitor and the curved exit
boundary of the magnet. In [7], expressions were
derived for deviation δ of the ions from the equilibrium
trajectory after they have passed through cylindrical
and spherical electrostatic systems (the source size is
assumed to be small, and the radii of the equilibrium
trajectories are set equal to each other). For a cylindri-
cal deflector,

for a spherical deflector,

From these expressions, we arrive at a relationship
that provides the equality of the relevant distances to
the region of first-order angular and energy focusing in
these systems,

(1)

Here, l1 is the ratio of the distance between the ion
source and entrance boundary of the deflector to the
mean radius of the deflector; l2 is the ratio of the dis-
tance between the exit boundary of the deflector and the
region of focusing to the mean radius of the deflector;
ϕc and ϕs are the sector angles in the cylindrical and
spherical deflectors, respectively; α is the relative angle
spread; and σ is the relative energy spread.

With the parameter values taken in accordance with
relationship (1), the resolution of the mass spectrograph
remains unaffected in switching from one electrostatic
deflector to the other.

The analyzer shown in Fig. 1 generates an ion flux
with a small velocity component in the z direction at its
exit. This allows us to apply an original linear sectional
detector as a spectrum recorder.

δ = α lc
1 lc

2+( ) 2ϕc( )cos 1

2
------- 2lc

1lc
2– 

  2ϕc( )sin+

+ σ 1 2ϕc( )cos– 2lc
2 2ϕc( )sin+( ),

δ α ls
1 ls

2+( ) ϕ scos 1 ls
1ls

2–( ) ϕ ssin+[ ]=

+ σ 1 ϕ scos– ls
2ϕ s+( ).

2ϕc( )cos 2lc
1 2ϕc( )sin– 1–

2 2lc
1 2ϕc( )sin

2 1
2
--- 8ϕc( )sin– 

 
---------------------------------------------------------------------------------------

=  
ϕ scos ls

1 ϕ ssin–

ls
1 ϕ ssin

2 1
2
--- 2ϕ s( )sin–

--------------------------------------------------.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
DESIGN OF THE MULTICHANNEL LINEAR 
SECTIONAL DETECTOR

The detector consists of an electrostatic filter, a
chevron assembly of microchannel plates (MPs), and a
collector. The entire ion mass spectrum is displayed on
the focal plane of the mass spectrograph. The electro-
static filter extracts ions of a certain mass passing
through the MPs (Fig. 1). It has a small extent in the
direction of ion propagation and may be viewed as a
component of the detector that is placed in the focal
plane of the long-focus mass-spectroscopic system.
The recording part of the detector is partitioned into
segments (sections), each containing its own sensor that
comprises a chevron MP assembly and a collector.
Each of the segments covers a certain mass subrange.
Within each subrange, the detectors operate indepen-
dently, and each of the mass subranges is scanned in an
arbitrary sequence by applying scattering potentials to
the electrodes of the electrostatic filter. The desired
operating mode is controlled by software that selects
ions or ion bunches and directs them toward the detec-
tor through the focal plane of the mass spectrometer.
Such an operating mode is feasible because of a high
dispersion in the heavy ion range. Whether or not the
ions may pass toward the detector depends on the pres-
ence or absence of a potential on the corresponding
electrode of the electrostatic filter. The electrode spac-
ing in the focal plane must be smaller than the peak
spacing in the mass spectrum in order to keep the reso-
lution of the instrument at a desired level.
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Fig. 1. Mass spectrometer with z focusing: (a) general view
and (b) cross-sectional view of the ions in the z direction.
(1) Ion source; (2) electrostatic capacitor (mean radius
60 mm, sector angle 60°); (3, 4) magnets (angle of arrival
β = 45°, sector angle γ = 55°–90°); and (5) detector includ-
ing electrostatic filter (6), chevron assembly of microchan-
nel plates (7), and selector (8) (angle of arrival ε = 30°–90°).
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Fig. 3. Mass spectrum of orthoxylene obtained with the pro-
totype of the mass spectrograph operating in the scanning
mode. The prototype has the spherical electrostatic capaci-
tor and sectional magnet with the curved exit boundary.
ION–OPTICAL SCHEME OF THE LINEAR 
SECTIONAL DETECTOR

Figure 2 schematically shows a segment of the elec-
trostatic filter. When the cylindrical electrodes in the
upper row are under a negative potential and the elec-
trodes in the lower row remain unbiased, the ions enter-
ing the electrostatic filter of the recording unit in the x
direction and being deflected in the z and y directions
remain in the filter. When one or several upper elec-
trodes are under the zero potential, a weakly scattering
region forms near these electrodes, which provides
selective passage of the ions toward the MPs. In other
words, one can examine a desired part of the mass spec-
trum (i.e., can allow selected ions to reach the MPs) by
varying the potentials on the filter’s electrodes. Such an
approach provides for rapid analysis owing to a low
value of the control potential, on the one hand, and
because scanning of part of the spectrum is carried out
independently within each subrange totally covering an
ion peak or several peaks, on the other.

For a given time interval, the sensor of the detector’s
segment records one or several ion peaks within a
desired ion mass subrange. The electrostatic filter has a
weak effect on the ions passing toward the MP chevron
assembly, scattering them in the xy plane (Fig. 2a).
Since the sensitive element (MP) is at a distance from
the focal plane, the dynamic range of the detector may
reach a level of ~107 ions/s. This value is two orders of
magnitude higher than that provided by MPs incorpo-
rated into the conventional coordinate-sensitive detec-
tor.

NUMERICAL AND EXPERIMENTAL 
SIMULATION OF THE MASS SPECTROGRAPH

The parameters of the electrostatic and magnetic
lenses of the portable mass spectrograph were taken
based on the results of numerical simulation. For the
electrostatic spherical capacitor, the mean radius and
the sector angle were taken to be 60 mm and 60°,
respectively. For the magnetic system, the angle of
arrival of the ions at the system was taken to be β = 45°,
the sector angles were varied between 55° and 90°, the
radius of the exit boundary of the magnetic lens was
taken to be equal to 130 mm, and the radii of the pole
pieces of the magnets (14–100 mm) depended on the
ion trajectory radius. Due to z focusing, the sensitivity
of such a mass spectrograph is roughly one order of
magnitude higher than that of the scanning mass spec-
trometer with the same dimensions (150 × 250 ×
400 mm) described in [6].

A developmental version of the mass analyzer was
tested experimentally. In the experiments, the linear
sectional detector was not used and the parameters of
the prototype in different mass ranges were determined
in the scanning mode: the voltages on the spherical
capacitor plates were varied simultaneously with and in
proportion to the accelerating voltage in the ion source.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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Figure 3 shows the ion mass spectrum of orthoxylene
obtained with a VÉU-6 channel detector placed at a dis-
tance of 0.4 mm behind the collimator. The collimator,
in turn, was placed at the point where the ions traveling
along the largest radius trajectory in the magnetic field
meet the focal plane of the mass analyzer. It is in this
region (corresponding to the heavy ion range) that the
instrument must provide the highest resolution. As fol-
lows from Fig. 3, the resolution of the prototype is close
to the rated value, ≈130 at 5%. The prototype allows for
measurements in the mass range from 4 to 200 u. How-
ever, in the absence of the multichannel detector, the
time to record the total spectrum is the same as in the
scanning instruments, ≈1 min.

SIMULATION OF THE DETECTOR
OPERATION

The numerical simulation and the selection of the
electrostatic filter parameters were performed using the
SIMION 7 program. The transmission functions of the
system are presented in Fig. 4. Here, the responses of
the system are shown for the case when the angular
spread of the ions arriving at the entrance to the filter is
absent and the ions are uniformly distributed in the
space. The angular spread can be neglected, since the
magnet–filter distance far exceeds the ion path in the
field of the filter. The response was calculated for dif-
ferent angles of incidence of ions on the entrance win-
dow of the detector and for the numbers of electrodes
that form a window in the potential barrier of the mul-
tichannel deflector varying from one to three, since the
ion directions and the resolution differ in various parts
of the spectrum.

The simulation results show that an electrostatic fil-
ter equipped with a set of electrodes the parameters and
location of which are determined for each subrange can
provide the controllable spatial separation of ions with
different masses and effective collection of the ions at
the exit from the mass analyzer.

RESULTS AND DISCUSSION

The ion–optical scheme presented in this work, on
the one hand, makes it possible to improve the sensitiv-
ity of the mass spectrograph and, on the other hand,
matches the instrument to the multichannel sectional
detector providing more effective measurements. In the
mass spectrograph under consideration, selective scan-
ning within each subrange of the detector is carried out
independently by applying control potentials to the
electrodes of the filter. The time it takes for the detector
to record each ion peak depends on the intensity of the
peak (the higher the intensity, the shorter the time).
Therefore, the ion flux intensity may be estimated from
the time interval over which the signal reaches a preset
level. In this operating mode, the recording time may be
varied according to the concentration of a component.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
In the operating mode suggested, the speed of anal-
ysis is little inferior to the speed when ion spectra are
recorded with a coordinate-sensitive detector, since the
total measurement time is controlled by the time neces-
sary to record low-concentration components. At the
same time, the mode suggested offers a much wider
dynamic range of the detecting unit. Moreover, unlike
the Mattauch–Hertzog scheme, which alone is used in
combination with coordinate-sensitive detectors, our
scheme allows the designers to place the MP assembly
away from the magnetic field of the mass analyzer.

In comparison with sweeping the mass spectra by
means of separating fields of the mass analyzer, the
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Fig. 4. Response of the multichannel system normalized by
the number of ions falling into its entrance window as a uni-
formly distributed unidirectional flux. The angle of inci-
dence is (a) 50°, (b) 45°, and (c) 35°. The number of elec-
trodes forming a window in the potential barrier of the mul-
tichannel deflector is (1) one, (2) two, and (3) three.
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measuring mode suggested in this paper raises the
speed of analysis by several tens of times.

CONCLUSIONS

We considered an ion–optical scheme for a mass
spectrograph featuring a spherical electrostatic capaci-
tor, as well as an inclined entrance and curved exit
boundaries of the magnetic lens, that allows a signifi-
cant rise in the sensitivity of the instrument. An original
multichannel linear sectional detector intended for
rapid parallel and/or sequential spectral measurements
of many-component chemical compounds is designed.

The high sensitivity, speed, and dynamic range of
the instrument combined with the possibility of simul-
taneously recording partial (componentwise) spectra in
a wide ion mass range renders it superior not only to
static but also to dynamic mass spectrometers. Due to
the advantages mentioned above, the portable mass
spectrometer can be applied for tackling a variety of
scientific and applied problems needing express mea-
surement. The instrument may also be helpful in moni-
toring the composition of gases and volatiles in space
research, environmental engineering, medicine, geo-
physics, seismology, and other fields of science and
technology.
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Abstract—The method of large particles, which is applied in one-dimensional numerical simulation of pro-
cesses in electron devices, such as traveling-wave tubes, is suggested. With the number of large particles fixed,
the amount of computation remains virtually the same, while the accuracy attained under strong nonlinearity
rises significantly. © 2005 Pleiades Publishing, Inc.
The approach that consists in replacing the electron
beam with a set of “large particles” which are few in
number compared to the electrons in a real beam is
being widely used in numerical simulation of processes
taking place in microwave electron devices, such as
traveling-wave tubes, backward-wave tubes, gyrotrons,
etc. The simplest version of this method dates back to
the early works of Nordsieck and Vaœnshteœn on numer-
ical solution of the equations used in the one-dimen-
sional nonlinear theory of traveling-wave tubes [1–3].
In the dimensionless form without regard to space-
charge and energy losses in the slow-wave structure,
these equations are written as [4, 5]

(1)

(2)

(3)

The first relationship here is the equation of motion
of electrons, where θ is the particle’s phase relative to
the wave, F is the normalized complex amplitude of the
wave, and ξ is the dimensionless coordinate. The sec-
ond relationship is the equation of wave excitation,
where parameter b characterizes the asynchronism
between the wave and electron beam and right-hand
side J is the normalized complex amplitude of the first
harmonic of the high-frequency current. These equa-
tions are supplemented by initial conditions for the par-
ticles and field at the entrance to the space of interac-
tion. In the expression for the current harmonic ampli-
tude in terms of quantity θ, which is associated with
beam particles, integration is over initial phase θ0 of the
particles. The dimensionless quantities and their rela-

∂2θ
∂ξ2
-------- ReFeiθ, θ ξ 0=– θ0, ∂θ

∂ξ
------

ξ 0=

0,= = =

∂F
∂ξ
------ ibF+ J , F ξ 0= F0,= =

J
1
π
--- eiθ θ0.d

0

2π

∫–=
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tion to the related dimensional quantities are discussed
in more detail elsewhere [4].

The essence of the method of large particles is in
replacing the continuous distribution of electrons over
their initial phase by finite set K of particles that have

phases  = 2πk/K at the entrance to the space of inter-
action. Then, integration in expression (3) for the com-
plex amplitude of the first harmonic of the bunched
beam current may be replaced by summation,

(4)

Formally, calculation by formula (4) corresponds to
rectangular integration, which is mentioned in calculus
classes as the simplest method of numerical integration
and is generally deprecated due to a large computa-
tional error. However, when a periodic function is inte-
grated over an interval whose length is exactly the same
as the period (the case under study), the error turns out
to be relatively low and comparable to that produced by
seemingly more accurate trapezoidal integration, which
is based on the linear interpolation of the integrand
between equidistant points on the initial phase axis. In
effect, integration by formula (4) fails under strong
nonlinearity, when the relative displacement of neigh-
boring large particles is of order 1. Formally, it is nec-
essary to decrease the step of integration over the initial
phase in this case, i.e., to increase the number of parti-
cles (the higher the nonlinearity, the larger the number
of particles). In practice, this circumstance is often dis-
regarded, because the results obtained with a small
number of particles are still acceptable. Actually, how-
ever, a relatively small number of particles (say, three)
is the major source of the error in the current harmonic,
which varies as 1/K. When fine points, such as the type
of dynamic regime in numerical solution of nonstation-
ary problems, stability of stationary regimes, etc., are

θk
0

J
2
K
---- e

iθk.
k 0=

K 1–

∑–=
© 2005 Pleiades Publishing, Inc.



 

800

        

DOLOV, KUZNETSOV

                                                         
analyzed, such errors may become crucial. Accord-
ingly, one has to drastically increase the number of par-
ticles, which is unfortunately scarcely efficient because
of a slow decrease of 1/K.

Our idea of modifying the method consists in aban-
doning the conventional approach to numerical integra-
tion and applying linear interpolation of the exponent
rather than the whole integrand. Physically, this means
the following. Instead of being discretely concentrated
on the particles, the charge is assumed to be uniformly
distributed between any pair of particles whose coordi-
nates are involved in the calculation. Within each inter-
val from 2π/K to 2π(k + 1)/K of θ0, the exponential
whose exponent is a linear function of argument is inte-
grated analytically. As a result, the problem reduces to
finding a solution to the following system of differential
equations:

(5)

(6)

∂2θk

∂ξ2
---------- Re F iθk( )exp( ), θk ξ 0=–

2πk
K

---------,= =

∂θk

∂ξ
--------

ξ 0=

0,=

∂F
∂ξ
------ ibF+ J , F ξ 0= F0,= =
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Fig. 1. Wave field amplitude distribution along the system
for various initial phases of the input signal. The conven-
tional method of large particles for K = (a) 20 and (b) 60.
(7)

It should be taken into account in summation that
θK ≡ θ0 + 2π according to the equations of motion.

The error involved in such a scheme can hardly be
formally (mathematically) estimated, since it depends
on function θ(θ0) appearing in the equations, which
itself is determined in the course of nonlinear calcula-
tion. Therefore, to demonstrate the improved efficiency
of the method, we turn to a numerical experiment.

Figures 1 and 2 show numerical solutions to the
equation of the one-dimensional nonlinear theory of
traveling-wave tubes: the dependences of the wave field
dimensionless amplitude |F| on the dimensionless coor-
dinate ξ. Figure 1 corresponds to the conventional
method of large particles; Fig. 2, to its modified ver-
sion. In either figure, the set of curves corresponds to
different phases of input signal F0 = A0eiϕ with the max-
imal amplitude fixed, A0 = 0.5, and argument ϕ varying
in the range from 0 to 2π/K. The number K of particles
is set equal to 20 in Figs. 1a and 2a and 60 in Figs. 1b
and 2b.

It can be analytically demonstrated that, in the con-
tinuous case (see Eqs. (1)–(3), where integration, rather
than summation, is used), the dependence on the initial

J  = 
2
K
----

θk θk 1+–( )/2( )sin
θk θk 1+–( )/2

--------------------------------------------- i θk θk 1++( )/2( )exp .
k 0=

K 1–

∑–

0.6

0 2

|F|

ξ1 3 4 5 6

1.2

1.8

2.4

(a)

0.6

0 2

|F|

ξ1 3 4 5 6

1.2

1.8

2.4

(b)

Fig. 2. The same as in Fig. 1 for the modified method at K =
(a) 20 and (b) 60.
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phase is absent. Then, the phase-dependent discrepancy
between the curves obtained numerically gives an idea
of the methodical error due to beam discretization. If
the degree of nonlinearity corresponds to the first min-
imum of the field amplitude, the error introduced by the
conventional method is rather high, while decreasing
with an increase in the number of large particles. As for
the method modified, even at K = 20, it yields the
results close to those yielded by the original method at
K = 60.

If only Eqs. (1)–(3) of the elementary nonlinear the-
ory of traveling-wave tubes were to be solved, it would
not be a problem to increase the number of particles
many times in order to ensure a high accuracy using
advanced computing facilities. However, in many cases
(e.g., in solving nonstationary problems of microwave
electronics [6–8], especially with regard to the space
charge), the modification of the method may be of great
value. It would be of particular benefit in investigation
into microwave electron devices by the methods of non-
linear dynamics, where numerical calculations imply a
comprehensive analysis of oscillatory modes corre-
sponding to various parameters, bifurcation analysis,
and stability analysis of stationary modes.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
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Abstract—A nonlinear diffusion-type evolutionary equation that describes the effect of sense anisotropy of
velocity when the front of a solitary wave (kink) moves with unequal velocities in the forward and (when an
external field reverses sign) backward directions is suggested. A prerequisite for such behavior is space sym-
metry breaking in the system. The equation is applied to describing the dynamics of 180° domain walls in fer-
romagnets with negative cubic crystalline anisotropy. The amount of the sense anisotropy effect in YIG may
reach 20%. © 2005 Pleiades Publishing, Inc.
It is known that nonequilibrium Langevin random
forces (with a zero mean) may cause directional motion
(transport) of particles in systems with broken space
symmetry of the potential in oscillatory fields. Such a
mechanism acting like a ratchet is considered to be
common in the dynamics of various objects with
“Brownian engines,” such as bacteria, nanoparticles,
etc. [1]. Before passing to description of another mech-
anism, we note that space symmetry breaking, a prereq-
uisite for the transport, may be related not only to the
external potential but also to the structure of the parti-
cle, where a preferential direction is thus specified. This
situation is described well by the model of umbrella [2],
where the viscous force involves both odd and even
powers of velocity. In terms of this model, sense asym-
metry (anisotropy) of velocity (unequal velocities in the
forward and backward directions) is a straightforward
effect even if external fields are invariable.

The above speculation is obviously equally valid for
continuous phenomenological nonlinear evolutionary
equations. For example, the author showed [3, 4] that
180° domain walls (DWs) with a kink in magnets with
negative crystalline anisotropy (Ni, YIG, etc.) exhibit
sense anisotropy of velocity when constant driving field
H reverses. Analytical estimates accurate to H2 (weak
field approximation) were made using the Landau–Lif-
shitz equations.

With the aim to considerably extend the domain of
nonlinearity, the author suggests a simple one-compo-
nent evolutionary equation similar to the nonlinear
equation of diffusion that applies to a wide class of sys-
tems (including nonmagnetic systems). Results accu-
rate to the second order of smallness in field that follow
from this equation are totally coincident with those
obtained previously [3, 4]. A numerical extrapolation
toward higher order fields discovers a noticeable sense
1063-7842/05/5006- $26.00 ©0802
anisotropy of velocity in YIGs, which may amount to
20%, as follows from estimates.

To illustrate the aforesaid, consider a nonlinear
dimensionless equation for some field-related quantity
ψ(x, t) that depends on spatial coordinate x and time t,

(1)

where H is the driving field and w(ψ) is the energy den-
sity.

It is supposed that the right of (1) has two saddle
points for dψ(y  ±∞)/dy  0, (ψ = 0, ψ' = 0) and
(ψ = π, ψ' = 0), which are connected by two separatrices
(180° kinks) with spatial derivatives of opposite sign.
The assumption of key importance is that energy den-
sity w(ψ) is noninvariant under substitution ψ  –ψ.
Then, one can show that velocity V in the local frame of
reference x = y – Vt where ∂tψ = –V∂xψ involves terms
that are even in H.

A solution to (1) is sought as series in H with sub-
scripts indicating the order of relevant quantities. In the
zeroth-order approximation, expression (1) yields the
equation (x) – (1/2)dw/dψ0 = 0, the first integral of

which is  = w(ψ0) by virtue of autonomy. Let us
show that there is no need for calculating corrections
ψ1, 2 in order to discover the desired effect in the second
order of smallness: it suffices to know only V1 (ψ0 is
known from the first integral) for this purpose. Multi-
plying (1) by dψ/dx (putting for the moment dψ/dx > 0
for definiteness) and integrating the result in infinite
terms yields the exact relationship V = 2H/〈ψ'2〉  for the
kink, from which we derive the expansion

(2)

∂tψ H ψsin+ ∂yyψ 1/2dw/dψ,–=

ψ0''

ψ0
'2

V V1 V2 …, V1+ + 2H/ ψ'2〈 〉 ,= =

V2 4H ψ0' ψ1'〈 〉 / ψ0'
2〈 〉

2
,–=
 2005 Pleiades Publishing, Inc.
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where 〈…〉  is the integral over dx in infinite terms.

Note that 〈ψ'2〉  is proportional to the dissipation
function for (1). Next, it will be demonstrated that
quantity 〈 〉 can also be expressed in quadratures
and does not require knowledge of ψ1.

In the first order of smallness, (1) yields the inhomo-
geneous equation

(3)

where  = –d2/dx2 + /  is the Hermitean operator

and f(ψ0) = – V1 + Hsinψ0. Since  = 0, the right

of (3) must be orthogonal to ; that is, 〈 f(ψ0)〉  = 0
(from which V1 is determined). Multiplying both sides
of (3) by dψ0/dx and integrating first over dx from –∞
to y and then over dy by parts in infinite terms, we get
for 〈 〉 the expression

(4)

where f(x) ~ H is the right of (3) and function x(ψ0) is
found from the first integral.

In space symmetry is lacking, integral (4) is other
than zero and velocity (2) has even-in-field compo-
nents.

As applied to magnetic systems, consider the non-
linear motion of a 180° DW in cubic ferromagnets with
negative magnetic anisotropy (this problem was studied
in terms of the Landau–Lifshitz equations earlier
[3, 4]). Here, magnetostatic interactions prevail, so that
the DW structure is similar to the Bloch structure.
Then, when allowing for dynamic deviations of the
magnetic moment, we can restrict analysis to only one
angular variable (instead of two, as in [3, 4]) lying in
the DW plane. The anisotropy energy in this plane can
be expressed through angular variable ψ alone in the
form (see, e.g., [5])

(5)

where b > 0 is a small constant (in YIGs, b ~ 0.01). In
this case, relationship (5) in [1] applies. The two com-
plementary separatrices mentioned above (180° DWs)
with < 0 and  > 0 have the form

(6)

ψ0' ψ1'

L̂ψ1 f ψ0 x( )( ),=

L̂ ψ0''' ψ0'

ψ0' L̂ψ0'

ψ0' ψ0'

ψ0' ψ1'

1
2
--- y xf x( )ψ0' x( )d

∞–

y

∫d

∞–

∞

∫–
1
2
--- xxf x( )ψ0' x( )d

∞–

∞

∫=

≡ 1
2
--- ψ0x ψ0( ) f ψ0( ),d

ψ0 ∞–( )

ψ0 ∞( )

∫

w ψ b
1
12
------ ψsin 8 ψcos–( )2

+ ,sin
2

=

ψ0' ψ0'

ψ0cot A B Bxsinh+−[ ] b
2
3
---+ 

  1–

,=
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where A = 1/(3 (b + 2/3)), B = /(b + 2/3),

and C = b + 2/3.

In view of (6), dynamic results (2) and (4) are totally
coincident with those obtained in [3, 4] in the second
order of smallness. In formulas (2) and (4), b = 0.01,

〈 〉 ≈  0.95, and 〈 〉  ≈ ±0.6H. Here, dimension-
less applied magnetic field H is given in units of mag-
netic anisotropy field Ha and velocity V is measured in
units of γHa∆/α (where γ > 0 is the gyromagnetic ratio,
∆ is a width-related parameter of the DW, and α is the
Gilbert dimensionless damping parameter).

The results of numerical calculations for YIGs per-
formed at fields H < 2/3 + b, at which an unfavorably

2 b b
3
4
---+ 
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Fig. 1. Structures ψ(x) of π links for H = 0 (dotted lines),
H < 0 (dashed lines), and H > 0 shown by the curves (con-
tinuous lines).

Fig. 2. Field dependence of the velocity of the kink moving
in the forward and backward directions.
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magnetized domain (ψ = π) is stable (i.e., d2w(ψ)/dψ2 >
0), are shown in Figs. 1 and 2 for the upper sign in (6).
It is seen that the DW structure changes considerably
not only when the magnitude of the field varies but also
when its direction (sense of velocity) reverses. The
dependence of the structure on the sense of the field
(see (3)) in the case when the symmetry of the initial
structure is broken (see (6)) causes a difference in dis-
sipation losses at ±H and, hence, a difference in the
velocities. In general terms, sense symmetry is recov-
ered if both structures described by (6) are taken into
account.

To evaluate the effect of sense asymmetry, consider,
instead of energy density (5), the expression

(7)

which coincides with (6) if  = . While the
structure of 180° DWs coincides with (6), the parame-
ters A, B, and C change:

ψ b
3
4
--- ψ ψ00–( )sin

2
+ 

  ,sin
2

ψ00tan 8

A
3
4
--- ψ00 ψ00cos / b

3
4
--- ψ00sin

2
+ 

  ,sin=

B b b
3
2
--- ψ00sin

2
+ 

  / b
3
4
--- ψ00sin

2
+ 

  ,=
Introducing sense asymmetry coefficient χ(b, ψ00) =
〈 〉 /H, we find, in view of (4), (6), and (7), that χ(b,
ψ00) = χ(b, χ00 + nπ), where n = ±1, ±2… . Within the
interval 0 < ψ00 < π, we have χ(b, 0) = χ(b, π) = 0 and
a single zero, χ(b, π/2) = 0. Numerical estimates give
the following extrema for this coefficient: maxχ(b =
0.1, ψ00 ≈ 0.77) = 0.9 and minχ(b = 0.1, ψ00 ≈ 2.37) ≈
–0.9 (note that |χ(b  0, ψ00)| ~ ln(1/b)). These
extrema determine the amount (extrema) of sense
anisotropy.
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Abstract—Computer-aided simulation of the temperature field in a thermoelectric branch is performed under
the conditions of a maximal temperature difference and a maximal refrigerating capacity. A differential equa-
tion of stationary heat conduction with temperature-dependent kinetic coefficients is used in the simulation. The
optimal concentration of charge carriers in the branch is determined in terms of the classical statistics. © 2005
Pleiades Publishing, Inc.
Wide application of thermoelectric coolers to a great
extent is hindered by their low efficiency. Prospects in
this field are associated largely with the search for new,
more efficient thermoelectric materials. However, it is also
worth thoroughly revising the potential of the materials
currently available. It is common knowledge that the key
quality index of semiconductors used in thermoelectric
coolers is the thermoelectric figure of merit [1]

(1)

where α is the thermopower, σ is the conductivity, and
χ is the thermal conductivity.

The temperature dependence of the kinetic coeffi-
cients is taken into account by averaging them over the
working temperature interval [2],

(2)

The fact that the kinetic coefficients depend on the
free carrier concentration makes it possible to reach a
maximal value of the thermoelectric figure of merit by
optimizing the concentration. As was justly noted in
[3], optimization is usually carried out separately for
either thermoelectric branch, which poorly aids in
attaining a maximal efficiency (figure of merit) of the
thermocouple as a whole. Parameter Z in p- and n-semi-
conductors reaches the highest value at a certain carrier
concentration. It was shown [3] that a relevant calcula-
tion may be brought to an end only if the kinetic coeffi-
cients are simple functions of the concentration. How-
ever, in that work, the concentration dependence of the
thermal conductivity is disregarded and the procedure
of averaging the coefficients over the temperature inter-
val remains somewhat unclear.

In this work, a numerical technique of thermoele-
ment optimization is suggested. Specifically, it allows

Z
α2σ
χ
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T1

∫=
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for optimization of the carrier concentration in a ther-
moelectric branch intended for a given temperature
interval. Obviously, first of all, one should know the
band structure of the semiconductor and choose rele-
vant statistics. Consider a model of a one-valley nonde-
generate impurity semiconductor with a spherical
Fermi surface in terms of charge carrier classical statis-
tics. For scattering by acoustic phonons, the kinetic
coefficients have the following form [4]:

the differential thermopower,

(3)

the electric conductivity,

(4)

the thermal conductivity,

(5)

Here, χph = a/  is the lattice component of the ther-
mal conductivity and u = bT–3/2 is the charge carrier
mobility.

Coefficients a and b in formulas (4) and (5) were
taken such that the temperature dependences closely fit
the respective experimental data for compound
(Bi, Sb)2Te3. The effective mass was set equal to 0.7m0.
At 300 K, Z was estimated as 3 × 10–3 K–1. The maximal
temperature difference and the optimal carrier concen-
tration, both defined by classical methods, were 75.8 K
and n0 = 7.5 × 1024 m–3, respectively.

Along with this calculation, the boundary-value
problem for a thermoelectric branch that is similar to
the problem considered in [5] was solved. In our
approach, the carrier concentration in either branch
may be optimized separately, since the thermal effect of
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the other is allowed for as load q0. For the active
branch, q0 > 0; for the passive one, q0 < 0 [6]. In the
steady-state conditions with allowance for the Thom-
son effect, the temperature field of a one-dimensional
adiabatically insulated homogeneous thermoelectric
branch is described by the equation for stationary heat
conduction

(6)

with the boundary conditions

(7)

where q0 = Q0l/S is the specific thermal loss of the
branch and Y = Jl/S is the specific current in the branch.

The boundary-value problem was solved numeri-
cally with simultaneous optimization of the solution in
terms of specific current and carrier concentration. The
calculation was carried out for both a maximal temper-
ature drop and a maximal refrigerating capacity in the
temperature range 100–300 K. The calculation results
are shown in Figs. 1 and 2. The former shows the tem-
perature fields in the branch for a maximal temperature
difference (curve 5) and a maximal refrigerating capac-
ity (curves 1–4) at a hot-junction temperature of 300 K.
The latter plots the optimal carrier concentration
against the hot-junction temperature for a maximal
temperature difference (curve 5) and a maximal refrig-
erating capacity (curves 1–4). From Fig. 2, it follows
that, at a certain temperature difference, the optimal
concentration depends on the operating conditions.
According to the solution to the boundary-value opti-
mization problem, the optimal concentration at a zero
temperature difference equals 16.1 × 1024 m–3, which is
more than twice n0. Since the temperature difference in
this case is zero, no averaging over the temperature

d
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Fig. 1. Temperature distribution along the thermoelectric
branch for temperature differences of (1) 0, (2) 15, (3) 35,
and (4) 55 K. Curve 5 corresponds to the maximal temper-
ature difference.
interval is required and the optimal value should be n0 =
7.5 × 1024 m–3. This result can be accounted for by the
fact that the branch is overheated in its central part
(Fig. 1, curve 1). The optimal concentration is higher
than n0, since an appreciable part of the branch is
heated above 300 K. At the zero difference, the specific
refrigerating capacity calculated for n0 = 7.5 × 1024 m–3

turns out to be 12.5% lower than that calculated for an
optimal concentration of 16.1 × 1024 m–3. Conse-
quently, the optimal concentration determined by the
conventional method of average parameters for the
active branch will contain a systematic error.

Hence, it follows that the conventional method of
designing thermoelectric coolers may fail in determin-
ing the charge carrier optimal concentration in the
branches. When using the method of average parame-
ters, one should average the kinetic coefficients over the
temperature distribution along the branch rather than
over the working temperature interval.
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Fig. 2. Charge carrier optimal concentration vs. the hot-
junction temperature at different temperature drops. (1–5)
the same as in Fig. 1.
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Abstract—The conductivity dependence of the real part of the permittivity of a paraffin–graphite macrosystem
with a variable graphite concentration is studied experimentally. © 2005 Pleiades Publishing, Inc.
The dependence of the real part of permittivity, ε',
on conductivity σ in microsystems has been extensively
studied both theoretically [1, 2] and experimentally
[2, 3]. However, as applied to macrosystems, this issue
has received only cursory attention [2, 3]. By macrosys-
tems are meant those in which the quantum effects in
transfer processes may be ignored and, hence, the con-
ductivity of the system as a whole depends on the
geometry of the system, the conductivity of conducting
phase particles, and the contact resistance between
them. It seems that knowing the dependence ε' = f(σ)
may be of value in designing capacitors, cermet resis-
tors, and other electronic components, as well as in pre-
paring conducting pastes.

In this communication, the author reports the exper-
imentally found dependence of the real part of the per-
mittivity on the volume conductivity of a macroscopi-
cally disordered paraffin–graphite system.

The reason why this system was taken as a model
was discussed at length in [4]. The sample preparation
and measuring techniques are described in [4–6]. The
test samples were capacitors with plates made of elec-
trolytic copper that were filled with a paraffin–graphite
mixture with a given concentration of the conducting
phase. The experiments were carried out with plane and
cylindrical capacitors. The resistance, capacitance, and
Q factor were measured by the standard techniques
[7, 8]. The resistance was measured at a constant volt-
age. The capacitance and Q factor were measured at a
frequency of 1 kHz. The final result of this study is
shown in the figure. It is seen that the curve  =
f( ) can be represented as consisting of two por-
tions: AB and BC. The kink B corresponds to volume
graphite concentration x ≈ 0.15; i.e., point B is near the
percolation threshold xper ≈ 0.16 [4]. Portion AB can be
approximated by the power-type relationship ε' =
104σ0.35; portion BC, by ε' = 103.5σ2.4. Generally, such a
behavior of the dependence ε' = f(σ) is predictable,

ε'log
σlog
1063-7842/05/5006- $26.00 0807
since the system’s conductivity changes abruptly at the
percolation threshold, which, according to currently
existing ideas [1, 2], is bound to change the real part of
the permittivity. However, the experimental data
reported here introduce important refinements; namely,
(i) the dependence ε' = f(σ) for the macrosystem is non-
linear throughout the range of conducting phase vol-
ume concentrations and (ii) this nonlinearity grows
considerably as the conducting phase concentration
exceeds the percolation threshold, i.e., at x > xper.
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Log–log dependence of the real part of the permittivity on
the volume concentration for the paraffin–graphite macro-
system.
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Abstract—The effect of high-power pulsed laser radiation on the morphology and field emission of electrons
from nanocrystalline graphite films is studied. The films are prepared by dc-discharge-activated CVD from a
hydrogen–methane mixture. The material of the films partly evaporates under the action of the laser pulse.
Threshold laser power densities at which the emissivity and geometry of the cathode surface change are deter-
mined. A direct correlation between the morphology and emission characteristics is shown to be absent. © 2005
Pleiades Publishing, Inc.
Application of carbon nanotubes (CNTs) as field-
emission cathodes has recently attracted considerable
interest. Field (or cold) emission results from quantum
electron tunneling from a cathode into a vacuum
through a potential surface barrier. The emission effi-
ciency depends mainly on the electric field strength at
the cathode surface and on the work function of the
cathode material [1, 2]. A large body of experimental
data indicates that CNT cathodes provide a high emis-
sion current density at comparatively low cathode volt-
ages [2]. This property of CNT cathodes is extremely
promising for vacuum devices [3]. In [4], we showed
that electrons could also be effectively emitted from
nanodimensional graphite crystallites. The similarity of
the behavior and basic parameters of CNT emitters and
nanocrystalline graphite (NCG) emitters suggests that
the same physical mechanisms govern the emission
characteristics of nanocrystalline carbon materials [5].
However, this assumption needs further experimental
and theoretical support.

The aim of this work is to experimentally find a cor-
relation between the electron emission efficiency and
morphology of NCG cathodes.

NCG films were prepared by dc-discharge-activated
CVD of carbon on conducting substrates. The sub-
strates were 25 × 25-mm silicon platelets. The gas mix-
ture consisted of hydrogen and methane taken in the
ratio 10 : 1 [4, 6]. The carbon films deposited were
porous and consisted of graphite crystallites, each
including 5–50 parallel atomic layers, which corre-
sponds to a thickness of 2–20 nm, respectively. The
idea that these crystallites have a graphite-like atomic
structure is based on experimental data obtained by var-
ious methods, including Raman scattering, high-resolu-
1063-7842/05/5006- $26.00 0809
tion electron microscopy, electron diffraction, etc. [4–
6]. Using these methods, it has also been found that
atomic layers in the graphite nanocrystallites are ori-
ented mostly along the normal to the substrate surface.
Other dimensions (i.e., the length and height) of the
crystallites are typically about 1 µm. Figure 1a shows
the typical image of such a NCG film taken with a LEO
1550 scanning electron microscope (SEM).

The NCG films were irradiated by linearly polarized
pulsed radiation from a YAG : Nd laser (λ = 1064 nm).
The pulse maximum energy was 50 mJ at a pulse dura-
tion of about 22 ns. The laser beam was directed nor-
mally to the film surface. To determine the threshold
powers of the laser radiation that variously influence
the emissivity and morphology of the film, we divided
the sample surface into 5 × 5-mm squares (Fig. 2a).
Then, the sample was scanned relative to the laser beam
so that some of the squares were irradiated by a single
pulse. In so doing, a given square was subjected to a
pulse of given power density. The irradiation was car-
ried out in air with the substrate kept at room tempera-
ture. After the irradiation, the emissivity and morphol-
ogy of the sample were analyzed.

The electron emission characteristics were mea-
sured by the techniques described in [4, 5]. The sample
was placed in an evacuated measuring cell (at a residual
pressure of about 10–4 Pa) parallel to a glass plate
coated by ITO and phosphor layers. The sample–glass
plate distance was 0.5 mm. A voltage of 1 kV, which is
sufficient to initiate electron emission, was applied
between the cathode (sample) and anode (ITO layer
between the phosphor and glass plate). The changes in
the emission from different squares after the laser irra-
diation were estimated from the changes in the phos-
© 2005 Pleiades Publishing, Inc.
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phor glow intensity that were induced by incident elec-
trons.

The laser radiation causes rapid heating of the film
due to light absorption followed by evaporation of the
film. In particular, we found that a radiation power den-
sity above 18 MW/cm2 induces substantial changes in
the initial morphology of the films. Their initially vel-
vety black surfaces become light gray with a metallic
luster, which is characteristic of normal graphite. SEM
examination shows that irradiation at such a power den-
sity causes graphite nanocrystallites to be arranged
along the substrate surface rather than normally to it. A
similar change in the morphology of the film surface is
observed when the films are subjected to a mechanical
action. For comparison, Fig. 3 shows the SEM images
of the NCG film surface after the laser irradiation
(Fig. 3a) and after scratching by tweezers with Teflon
tips (Fig. 3b). In both cases, the changes in the crystal-
lite orientation were irreversible. Such behavior can be
explained by anisotropic evaporation of graphite
nanocrystallites under the action of linearly polarized
laser radiation (see [7]). Due to this effect, only those
crystallites (or their fragments) remain on the film sur-
face subjected to a high-power laser pulse whose
atomic layers are arranged normally to the plane of
polarization. Without mechanical support on their

1 µm

(a)

(b)

Fig. 1. SEM images of the NCG film surface (a) before and
(b) after pulsed laser irradiation at a power density of
7 MW/cm2.
sides, these crystallites “fall” on the substrate surface
and are held in this position by van der Waals forces, as
it takes place under the mechanical action. In both cases
(after the high-power irradiation and mechanical
action), the emission from the NCG films virtually
ceases (an emission-initiating voltage increases by one
or two orders of magnitude, and the densities of emis-
sion centers and emission current decrease by several
orders).

The effect of pulsed laser irradiation on the emissiv-
ity of the films was also observed at much lower power
densities. As follows from the anode image (Fig. 2b),
the emissivity starts changing at a power density of
about 7 MW/cm2. Irradiation with such a density also
causes morphological changes in the initial surface, as
follows from the SEM images in Fig. 1b. These mor-
phological changes are likely to be associated with the
redeposition of the carbon material evaporated by a
laser pulse. It is natural to assume that the redeposited
carbon is amorphous. The characteristic dimensions of
such amorphous carbon aggregates do not exceed sev-
eral nanometers.

4

(a)

(b)

2

8
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1

Fig. 2. (a) NCG film subdivided into squares on the 25 ×
25-mm silicon platelet and (b) the corresponding cathod-
oluminescent anode plate (shown are the emission center
distribution and efficiency in various regions on the surface
of the sample shown in (a)). The radiation power density in
these regions is (1) 1.6, (2) 2.9, (3) 3.3, (4) 6.9, (5) 9.9,
(6) 14.4, (7) 21, and (8) 31.7 MW/cm2. The unmarked
squares were not irradiated.
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Low-power laser irradiation does not have any
noticeable effect on the emission characteristics. How-
ever, as the radiation power density increases, the emis-
sivity decreases gradually and disappears at
20 MW/cm2. The initial surface morphology also
changes; specifically, the density of the amorphous car-
bon aggregates gradually grows. It should be noted that,
up to the maximum radiation power density used in the
experiments, the dimensions (height and thickness) of
graphite nanocrystallites on the film surfaces remain
virtually the same; only their amount changes. This fact
indicates that the geometry of the NCG films, which is
specified by the dimensions of individual emitters
(crystallites), is not a decisive factor here. Indeed, the
constancy of the geometrical dimensions of the crystal-
lites implies the constancy of the field-enhancing geo-
metrical factor, which is estimated from the ratio
between the height of the emitter and the radius of its
top. Moreover, extra conducting amorphous carbon
aggregates present on the tops of the crystallites are
also bound to contribute to the geometrical factor [8].

2 µm
(a)

(b)

Fig. 3. SEM images taken of the NCG film surface sub-
jected to (a) linearly polarized pulsed irradiation with a
power density of 30 MW/cm2 and (b) mechanical action.
TECHNICAL PHYSICS      Vol. 50      No. 6      2005
Similarly, the field-enhancing geometrical factor is
expected to grow as the crystallite spacing increases
and, accordingly, the electrostatic screening efficiency
drops [2].

Thus, it seems natural to suppose that the emission
from graphite nanocrystallites depends mainly on the
structure and electronic properties of the material rather
than on their geometrical characteristics. This conclu-
sion fully agrees with our model of emission centers
and the mechanism of low-voltage electron emission,
which were proposed for nanocrystalline carbon mate-
rials [4, 5]. Results following from these model and
mechanism suggest that the ordered graphite-like
atomic structure of graphite nanocrystallites, carbon
nanotubes, and other similar materials provides a good
electric conductivity and mechanical stability of nanoc-
rystalline carbon emitters. Significantly, these graphite-
like nanocrystalline carbon materials allow for forma-
tion of surface clusters with modified electrical proper-
ties, the result of which is a decrease in the effective
thickness of the surface potential barrier and a corre-
sponding increase in the emissivity [9].
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Abstract—A hypothesis is discussed according to which the variation of the solar activity in 11-year intervals
stems from the need for convective heat transfer regularization. It is not improbable that such regularization is
disturbed during the Mounder minimum of solar activity, when heat transfer is most likely chaotic. The obsta-
cles resulting from a sharp decrease in the density of the medium in going to the uppermost strata of the con-
vective zone are considered. The hypothesis for solar wind formation in these strata seems to be the only valid
one. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In his recent work [1], the author touched upon the
problem of finding the distribution of the rate of rota-
tion of the solar convective zone. The rate of rotation
was represented as a series in full orthogonal basis. The
coefficients of the series were determined by minimiz-
ing the mean discrepancy between the rate predicted
theoretically and the rate that can be calculated based
on helioseismic data currently available [2]. It is essen-
tial that those calculations were carried out in terms of
a hypothetical stationary model that generally disre-
garded the condition of symmetry of rotation about the
equatorial plane.

Eventually, it turned out that, in terms of the stan-
dard model, which assumes symmetric rotation of the
medium about the equator, agreement between theory
and experiment is possible only in particular cases, for
example, at relative latitudes (depths) of the convective
zone roughly equal to 0.840 or 0.925, as well as at all
depths if the absolute latitude is roughly equal to 42°.
This value is very close to that (41°) at which torsional
waves, which manifest themselves as periodic small
variations of the rate of rotation (see, e.g., [3]), are not
generated on the Sun. Since these waves are observed
at any other latitude throughout the convective zone,
the hypothesis that nonstationary processes on the Sun
play an important part seems the most plausible. We
believe that they are responsible for convective heat
transfer regularization.

The fact that, in the nonmagnetic convective zone,
any radial movement of a convection element generates
an unbalanced azimuth force was discussed earlier [4].
If longitude-dependent (longitudinal) modes can be
excited, this force can be counterbalanced; however,
longitudinal modes can be excited only in the presence
of an appropriate axisymmetric toroidal magnetic field.
If we are dealing with the lowest mode of this field, its
value at the bottom of the solar convective zone must be
equal to 110 kG.
1063-7842/05/5006- $26.00 0812
Thus, we assume that the rotation of the medium
meets the condition of self-excitation of motions that
are necessary for convective heat transfer regulariza-
tion, with the rotation distribution being near-symmet-
ric about the equator. Regular convective heat transfer
may be disturbed with the transition to chaotic heat
transfer. Chaotic processes are likely to take place dur-
ing the Mounder minimum of the solar activity, when
the solar activity level is known [5] to be greatly
depressed.

The problem of determining the state of the rotating
magnetized convective zone with allowance for small
time variations of the rate of rotation and other param-
eters implies the solution of a set of complicated equa-
tions. However, in a number of limiting cases, the equa-
tions simplify. For example, at the upper boundary of
the solar convective zone, the density of the medium
changes drastically and the problem becomes nearly
one-dimensional. This situation is considered in Sect. 2.
Concise conclusions are drawn in the final section.

2. EQUILIBRIUM CONDITIONS AT THE UPPER 
BOUNDARY OF THE CONVECTIVE ZONE

In general form, the equilibrium equations repre-
sented as expansions in the full basis of orthogonal vec-
tor spherical harmonics were presented in [6]. For an
arbitrary vector U, such a representation is written as

(1)

where  = irYJM,  = (r/dJ)∇ ⊥ YJM, and  =
−i(r/dJ)ir × ∇ ⊥ YJM. Here, ∇ ⊥  is the horizontal compo-
nent of the gradient operator; YJM is the spherical func-
tion; dJ = [J(J + 1)]1/2; and λ = 0, 1, or –1. Subscripts J
and M are integer numbers: J ≥ 0 and M = –J, –J + 1,
…, J. Summation in formula (1) is over λ, J, and M.

U UJM
λ( )YJM

λ( ) ,
λJM

∑=

YJM
1–( ) YJM

+1( ) YJM
0( )
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In our case with axial symmetry, M = 0 and, accord-
ing to the results obtained in [4, 7], the azimuth equilib-
rium equations have the form

(2)

(3)

The continuity condition and the equation for the
magnetic induction flux are written as

(4)

(5)

where

(6)

 is the Clebsch–Gordan coefficient,  =

[a(a + 1) + b(b + 1) – c(c + 1)], and Ia = [a(a + 1)]1/2.

Quantities  and  specify the velocity and
magnetic field distributions. Note that possible time
variations of the meridian circulation velocity are disre-
garded in continuity condition (4). In the state symmet-
ric about the equator, coefficients J in Eqs. (2) and (3)
are odd and even, respectively. In the right-hand sides
of these equations, the sum J + J1 + J2 is even.

Earlier [1], we performed numerical calculations to
see whether it is possible to derive a stationary nonmag-
netic model. As was mentioned above, the stationary
conditions and the conditions of symmetry of rotation
about the equator are consistent with the helioseismic
data by Schou et al. [2] in exceptional cases. In general,
a model of the solar convective zone must include tran-
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sient processes. Below, we will consider the upper
region of this zone, r/R ≥ 0.99 (where R = R(), which
was not studied in [1]. At the very boundary (r/R =
0.99), provided that the rotation is symmetric about the
equator, the velocity ratios at latitudes of 0, 30°, 45°,
and 60° equal, respectively, 1.02, 0.974, 0.903, and
0.810, which are close to the data reported in [2]. In this
work, we refine the results of calculations that were
made using the figure in [1].

In the near-surface region, r/R ≥ 0.99, the density of
the medium drops sharply with increasing r. Essen-
tially, matter effluxion due to the rotation of the
medium takes place in this region. In a crude approxi-
mation, only the radial dependence of the equilibrium
quantities is taken into account, so that the term con-

taining  will dominate in Eq. (2). Then, we have

 = 0 and

(7)

(8)

(9)

Equation (8) also follows from one-dimensional
equilibrium equations.

Guenther et. al. [8, Table 3B], analyzing the upper-
most strata of the solar convective zone, found that the
relative density gradient equals 4000 and decreases
twice when the relative radius decreases by as little as
0.1%. Because of such a drastic drop in the density with
increasing r, variations in the rate of rotation in the
uppermost strata are expected to be considerable and,
therefore, extremely difficult to describe.

According to Eq. (8), the rate of rotation in these
strata might be roughly constant if the condition

r  ≈ const were satisfied. However, detailed heli-
oseismic investigations [9–11] performed at altitudes of
up to 20000 km show that a complicated radius- and
time-dependent asymmetric-about-equator state of
rotation sets in at these altitudes. Clearly, such a com-
plex equilibrium state cannot be described by simple
equation (8). Any solutions to Eqs. (7) and (8) will be
in considerable disagreement with the observations.

In light of the aforesaid, the hypothesis that the
uppermost region of the medium stratifies, causing
fluxes moving with different velocities, seems to be the
most plausible. To put it differently, it is assumed that
Eq. (8) describes the mean rate of rotation of the
medium as a whole but bunches of fast charged parti-
cles (ions) whose mean radial velocity is specified by
the heat transfer equation are always present in these
strata. The energy needed for acceleration of these fast
ions may be essential. The helioseismic data [9–11]
also indicate the formation of fluxes in the medium that
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are asymmetric about the equatorial plane. Therein lies
a fundamental difference between the stellar convec-
tion and that in the laboratory conditions.

The above hypothesis might explain both heating of
the solar chromosphere and the appearance of fast ions
in the solar corona. These phenomena were discussed,
e.g., in [5, 12, 13] on the assumption that a heat source
is located at high altitudes. Our calculations testify that
the fast ions are generated in the uppermost strata of the
convective zone.

It is worth noting that the effluxion of fast ions may
slow down the rate of rotation of the Sun. It is common
knowledge that stars like the Sun rotate more slowly
than predicted from the simple theory (this problem
was discussed, e.g., in [14]). Our calculations count in
favor of this effect.

3. CONCLUSIONS
Leaving aside the problem of the solar tachocline,

one can conventionally divide solar activity phenomena
taking place in the magnetized differentially rotating
zone into three groups. The first one covers those where
instability is self-excited in the presence of both an axi-
symmetric toroidal magnetic field and meridian circu-
lation of matter. The typical time of instability develop-
ment depends on the radial gradient of the angular rate
of rotation [15, 16]. Instability of this type seems to be
the reason for emerging magnetic fields appearing on
the Sun.

The other group of solar activity phenomena is
related to the need for convective heat transfer regular-
ization. As was already mentioned, the radial displace-
ment of convection elements (which move along the
axis of rotation) is only possible in the presence of lon-
gitude-dependent (longitudinal) modes, which are neu-
trally stable if an appropriate toroidal magnetic field
(on the order of 105 G) is present in the medium. Tor-
sional waves sustaining a necessary distribution of the
mean rate of rotation of the medium are also of great
importance. Theoretical calculations aimed at predict-
ing the distribution of the rate of rotation are on the
agenda.

The specific situation occurs in the uppermost strata
of the convective zone (third group). The difficulty here
is that the variation of the rate of rotation that follows
from the heat balance condition turns out to be unac-
ceptably high. This bottleneck can be remedied by tak-
ing into consideration the formation of fast ion beams.
If such beams do form, problems such as heating of the
chromosphere, solar wind formation, and rapid slowing
down of the rate of rotation of stars with a convective
sheath can be tackled.
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