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Double ionization and excitation ionization in the Compton scattering of high-energy
photons for metastable states of heliumlike ions
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Zh. Éksp. Teor. Fiz.116, 1889–1902~December 1999!

Double ionization and excitation ionization in Compton scattering for heliumlike ions in
metastable states are investigated. The electron energy distribution for double ionization and the
total cross sections for both processes are calculated. The calculations are carried out in
the zeroth order of perturbation theory with respect to electron-electron interaction, using Coulomb
wave functions as the first approximation. The resulting equations are valid only in the high-
energy nonrelativistic range. It is assumed thatZ@1, butaZ!1 (Z is the charge of
the nucleus, anda is the fine-structure constant!. © 1999 American Institute of Physics.
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1. INTRODUCTION

The interaction of electrons with photons is described
a one-particle operator. Consequently, in the absorption
scattering of a single photon the ejection of two electro
from an atom~double ionization! or the ejection of a single
electron with transition of the second electron to a hig
state ~excitation ionization! are possible only through th
agency of electron-electron interaction. These processes
currently the subject of extensive theoretical and experim
tal studies aimed at acquiring information about electron c
relations in atoms and ions.1 Researchers are devoting co
siderable attention to the helium atom and the heli
isoelectronic sequence as the simplest many-electron
tems. Their application as targets provides a relatively sim
means of testing various models of the role of electr
electron interaction. In lieu of experimental data, the co
parison of calculations utilizing perturbation theory with ca
culations based on diverse variational functions affords
possibility of choosing correlated wave functions that b
describe the behavior of the system in the investigated
cess.

A great many papers address the ground state of hel
Processes in metastable helium are important as well,
cause they can be used to gain information about correlat
between shells. The first such calculations using multipar
eter variational wave functions were carried out for dou
ionization associated with the absorption of a photon hav
an energyv of the order of several keV~Refs. 2 and 3!.
However, if v.h (h is the average momentum of a 1s
electron, h.7 keV1! for He! the dominant process o
electron-photon interaction is not photoabsorption, but
scattering of a photon by an electron~Compton scattering!.4

Double ionization in Compton scattering~the double Comp-
ton effect! in the helium ground 11S state has been invest
gated in several papers.5–8 In the present article we invest
gate double ionization and excitation ionization in t
scattering of high-energy photons in the 21S and 23S states
1021063-7761/99/89(12)/7/$15.00
y
or
s

r

are
n-
r-

s-
le
-
-

e
t

o-

m.
e-
ns
-

e
g

e

of heliumlike ions in the nonrelativistic energy range. T
calculations are based on perturbation theory with respec
electron-electron interaction, Coulomb wave functions se
ing as the zeroth approximation. We assume thatZ@1, but
aZ!1 (Z is the charge of the nucleus, anda is the fine-
structure constant!. The equations derived below can also
used to calculate the double ionization of stable multip
charged ions containing more than two electrons.

2. DERIVATION OF A GENERAL EQUATION FOR THE
AMPLITUDE OF THE PROCESS

We consider the asymptotic nonrelativistic range of ph
ton energiesh!v!m (m is the electron mass!.

The scattering of a photon by an electron is graphica
represented by three Feynman diagrams~Fig. 1!. The graphs
in Figs. 1a and 1b are called pole diagrams and describ
two-photon transition through intermediate states. In m
mentum representation, which we shall use from now on
vertex with an incoming photon line corresponds to the o
eratorg1:

^f8ug1uf&5A2pa

v1

e1

m S f1
i

2
@s–k1# D ^f8uf1k1&,

~1!
^f8uf&5~2p!3d~ f82f!,

and a vertex with an outgoing photon line corresponds to
operatorg2* :

^f8ug2* uf&5A2pa

v2

e2*

m S f2
i

2
@s–k2# D ^f8uf2k2&, ~2!

wheree1 andk1 (e2 andk2) are the polarization vector an
momentum of the absorbed~emitted! photon, respectively. A
vertex with two photon lines@Fig. 1c# corresponds to the
operatorQ:

^f8uQuf&5
2pa

Av2v1

e2* •e1

m
^f8uf1k&, k5k12k2 . ~3!
3 © 1999 American Institute of Physics
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For the scattering of a photon by a bound electron the s
lines in Fig. 1 correspond to Coulomb functions.

We now estimate the graphs of Fig. 1 in the investiga
energy range. We know9 that in scattering by a free electro
the energy of the incident photon (v1) is distributed as fol-
lows between the scattered photon (v2) and the electron
(Ep):

v2.v12
v1

2

m
~12t !, Ep5v12v2.

v1
2

m
~12t !, ~4!

wheret5cosu, andu is the photon scattering angle.
In scattering by a bound electron the main contribut

to the cross section of the process is from the kinem
domain where the momentumq transferred to the nucleus i
small (q;h). As a result, the energies of the scattered p
ton and the ejected electron are also described by Eqs.~4!.
Accordingly, the momentum of the electron isp;v1, for
v1@h the wave function of the ionized electron can be
terpreted as a plane wave, and the Coulomb Green’s func
can be replaced by the free Green’s function, because
intermediate electron has high energyE8 and momentump8:

E85v11E1s'v1@I , p8@h, I 5h2/2m, h5maZ.

Omitting spin terms in the operatorsg i , we obtain the fol-
lowing estimate for the pole diagrams:

Fa.^pug2* Gg1u1s&;
a

v1

e2* p

m

1

E82Ep

e1p

m
^qu1s&

;
a

m2
^qu1s&, ~5!

q5p1k22k1 ,

Fb.^pug1Gg2* u1s&;
a

m2
^qu1s&. ~6!

The spin terms of the operatorsg i provide the same contri
bution, sincep;v2;v1. The contact diagram in Fig. 1c
calculated under the same conditions, is of the order of m
nitude

Fc.^puQu1s&;
a

mv1
^qu1s&. ~7!

Comparing Eqs.~5!–~7!,

Fa

Fc
;

Fb

Fc
;

v1

m
, ~8!

FIG. 1. Feynman diagrams for the scattering of a photon by an elec
Photons are represented by dashed lines, electrons are represented b
lines, andq5p1k22k1.
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we see that in the energy rangeI !v1!m the pole diagrams
are small and can be discarded. The entire discussion thu
is also valid for the double Compton effect~double ioniza-
tion in photon scattering!.8

Inasmuch as the operatorQ is a one-electron operator
the amplitude of the two-electron transition with allowan
for the symmetry properties of the wave functions can
written in the form

M 115^C f~1,2!uQ~1!1Q~2!uC i~1,2!&

52^C f~1,2!uQ~1!uC i~1,2!&. ~9!

Here the numbers in parentheses are abbreviated symbo
the variables of integration associated with electrons 1 an
andC i (C f) is the two-electron wave function of the initia
~final! state.

In the nonrelativistic approximation the wave functio
can be represented by the product of a spatial function an
spin function. The operatorQ does not contain spin matrices
so that the spin part of the wave function in Eq.~9! is invari-
ant and can be dropped from further consideration. Since
total wave function must be antisymmetric with respect
permutation of electrons, the character of the symmetry
the spatial function, being governed by the total electr
spin, is left unchanged.

We seek the wave functionsC i , f in the lowest perturba-
tion order with respect to electron-electron interaction, us
the Coulomb functionsC i , f

(0) as the zeroth approximation:

C i5C i
(0)1Gi

(2)~12Pi !V12C i
(0) ,

C f5C f
(0)1Gf

(2)V12C f
(0) . ~10!

HereV12 is the electron-electron interaction operator@in co-
ordinate representationV125a/ur12r2u, Pi5uC i

(0)&^C i
(0)u

is the projection operator,Gi , f
(2) is the Green’s function for

two noninteracting electrons situated in the field of t
nucleusZ:

~11!
Gi , f

(2)5~Ei , f
(0)2H12H21 i0!21,

Ei
(0)5E1s1E2s , Ef

(0)5Ep1
1Ep2

,

and H1 and H2 are the one-particle Coulomb Hamiltonian
acting on the one-electron functionsc( i ):

Hicnl ~ i !5Enl cnl ~ i !, Hicp~ i !5Epcp~ i !.

Here the subscriptsnl refer to the discrete state, and th
subscriptp refers to the state of the continuous spectru
The energyEf

(0) in Eqs.~11! is written for the case in which
both electrons are free in the final state. The normaliz
zeroth-approximation functions have the form

C i
(0)5

1

A2
$c1s~1!c2s~2!6c1s~2!c2s~1!%, ~12!

C f
(0)5

1

A2
$cp1

~1!cp2
~2!6cp1

~2!cp2
~1!%, ~13!

wherep1 and p2 are the ionized electron momenta, and t
sign1(2) refers to the singlet~triplet! state. Since the sym

n.
solid
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metry of the system is fixed in the investigated process,
same sign—either plus or minus—is used in Eqs.~12! and
~13!.

Substituting Eqs.~10!–~13! into ~9!, we obtain

M 115$^cp1
cp2

uQGc~Ei !V121V12Gc~Ef !Quc1sc2s&

6~1s↔2s!%6$p1↔p2%. ~14!

Here Gc(E)5(E2H1)21 is the one-particle Coulomb
Green’s function with energyE,

Ei5Ei
(0)2Ep2

52
5

4
I 2Ep2

,

Ef5Ef
(0)2E2s5v2I , v5v12v2 . ~15!

Equation~15! takes into account the law of conservation
energy:

Ep1
1Ep2

5v1E1s1E2s5v2
5

4
I . ~16!

The terms occurring in the amplitude expression~14! and
containing the Green’s functionGc(Ei) take into account
electron-electron interaction in the initial state, where
terms containingGc(Ef) take into account the same intera
tion in the final state.

The first two terms in Eq.~14! are graphically repre-
sented in Fig. 2. The momenta are distributed on the lines
the case in whichcp1

can be replaced by a plane wave.
It is a well-known fact10,11 that the energy of the ab

sorbed photon in double photoionization~double photo-
effect! is distributed extremely nonuniformly between ele
trons: one of the electrons carries away almost all the ene
while the other is a low-energy~slow! electron. In the double
Compton effect the energy of the incident photon is sha
by three particles~two electrons and a photon!, so that both
electrons in the final state can be slow. As in photoioni
tion, however, the most probable situation is when one e
tron is slow, and the second acquires large energy in ac
dance with the laws of kinematics~4! for Compton scattering
by a free electron.8 Consequently, the main contribution t
the cross section is from two extreme ranges of the elec
energy spectrum:Ep1

@Ep2
for the graphs in Figs. 2a and 2a8

andEp2
@Ep1

for the same graphs with the momentap1 and
p2 transposed. In determining the total cross section i

FIG. 2. Feynman amplitudes for double ionization in Compton scatter
taking into account electron-electron interaction in the initial~a! and final
~a8! states. A wavy line represents electron-electron interaction~exchange
by a Coulomb photon!. A line between two vertices with a large dot in th
middle corresponds to the Coulomb Green’s function. Energy, but not
mentum, is conserved on this line.
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necessary to take into account the identity of the photoe
trons and to introduce a factor of 1/2. However, it is suf
cient consider only one extreme range, sayEp1

@Ep2
, and

not to divide the cross section by 2.
Let us compare the amplitude contributions from t

graphs in Figs. 2a and 2a8. Inasmuch as these graphs diff
only in their upper lines, we estimate the matrix eleme
involved in the vertex lines. The estimates are given for
case in whichp1@h and, hence,ucp1

&'up1&. Omitting the
common factor for both graphs from the operatorQ, we ob-
tain

Fa5E ^p12kuGc~Ei !uf1&^f11fu1s&
df1

~2p!3

;^quGc~Ei !u1s&5
^qu1s&
Ei2E1s

;
^qu1s&
haZ

, ~17!

Fa85E ^p11fu
1

Ef2H0
uf11k&^f1u1s&

df1

~2p!3

;
^qu1s&

Ef2Ea8

, ~18!

Ea85
~p11f!2

2m
, H0uf&5

f2

2m
uf&.

In estimating the diagrams of Figs. 2a and 2a8, we have
assumed thatf ;h ~the integrals overf are saturated forf
;h). In Fig. 2~a8! the momentum of the intermediate ele
tron is pa8.p1@h, and the Coulomb Green’s function i
Eq. ~18! is therefore replaced by the free Green’s functio
Using Eqs.~15! and ~4! with Ep1

in place ofEp , we obtain

Ef2Ea8.Ep1
2S Ep1

1
1

m
p1fD'2

1

m
p1f;aZv1 , ~19!

becauseEf'Ep1
'(v1

2/m)(12t) and p1;v1. Substituting
Eq. ~19! into ~18!, we have

Fa8;
^qu1s&
v1aZ

,
Fa8
Fa

;
h

v1
. ~20!

If the one-electron final states are transposed (p1↔p2), the
energyEf ~15! does not change, but the energyEi becomes
large: uEi u;Ep1

;v@I . As a result, graphs with the line
cp1

andcp2
transposed have the same order of smallnes

the graph in Fig. 2a8. All these graphs can be discarded in t
investigated photon energy range (h!v1!m). The ampli-
tude expression~14! then retains only two terms:

M 115^cp1
cp2

uQGc~Ei !V12uc1sc2s&

6~1s↔2s!5Ma6Mb , ~21!

which correspond to the two Feynman diagrams in Fig. 3

,

o-
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3. CALCULATION OF THE AMPLITUDE OF THE DOUBLE
COMPTON EFFECT

Here we calculate the amplitudeM 11. In momentum
representation the electron-electron interaction operatorV12

corresponds to the photon propagatorD(f), which is equal to

D~ f!5
4pa

f 2
. ~22!

In the amplitude expression we remove the factor 4pa from
the photon propagator ~22!, and the factor
2pa(v1v2)21/2e2* e1 /m from the operatorQ ~3!, inserting
them into the expression for the cross section. The two
treme ranges provide identical contributions to the cross
tion; hence, we need consider only one of them, say the
in which p1;v1@h andp2!p1. Using a plane wave as th
fast-electron wave functioncp1

, we obtain

Ma5E df

~2p!3

1

f 2
F1~p1 ,f!F2~p2 ,f!, ~23!

F1~p1 ,f!5E df1

~2p!3
^quGcuf1&^f11fu1s&5N1S 2

]

]h1
D

3^quGcVih1
u2f&, ~24!

q5p11k22k1 , h15h5maZ, N1
25h3/p,

F2~p2 ,f!5E df2

~2p!3
^cp2

uf2&^f22fu2s&N2Gh2S 2
]

]h2
D

3^cp2
uVih2

uf&, ~25!

Gh2
511

h

2

]

]h2
, h25

h

2
, N2

25
h2

3

p
,

^f8uViluf&5
4p

~ f82f!21l2
. ~26!

The calculations require the wave functions of 1s and 2s
states in momentum representation, which we borrow fr
Ref. 12. The energyE of an electron in the intermediate sta
~energy of the Green’s functionGc) is identical for the dia-
grams in Figs. 3a and 3b and coincide with the energyEi

~15!:

E52S 5

4
1«2D I , «25

Ep2

I
5

p2
2

h2
. ~27!

FIG. 3. Feynman diagrams showing the main contribution to the dou
Compton effect in the 21S and 23S states of heliumlike ions.
x-
c-
ne

Substituting Eqs.~24! and~25! into ~23!, we writeMa in the
form

Ma5^cauGcuq&, ~28!

^cau5N1N2Gh2

]2

]h2]h1

3E df

~2p!3

1

f 2
^cp2

uVih2
uf&^2fuVih1

. ~29!

An analogous calculation of the diagram in Fig. 3b gives

Mb5^cbuGcuq&, ~30!

^cbu5N1N2Gh2

]2

]h2]h1
E df

~2p!3

1

f 2

3^cp2
uVih1

uf&^2fuVih2
. ~31!

Combining Eqs.~28! and ~30!, we find the total amplitude
M 11 ~21!:

M 115^cuGcuq&, c5ca6cb . ~32!

The sign1(2) is chosen for the singlet~triplet! state.

4. CROSS SECTION OF THE DOUBLE COMPTON EFFECT

The cross section of the double Compton effect, av
aged and summed over the photon polarizations, is equa

dsC
115

~4pa!4

8m2
~11t2!uM 11u2dG, t5cosu, ~33!

dG5
dp1dp2dk2

v1v2~2p!8
d~Ep1

1Ep2
1v22v12E1s2E2s!.

~34!

If Gc is replaced by the free Green’s function in Eq.~32!, we
can readily show thatuM 11u2;(q21h2)24 and, hence, the
cross section is governed by the range of low transfer
momentaq&h. Replacingdp1 by dq and integrating over
v2, we obtain an equation for the phase volumedG in the
nonrelativistic domain:8

dG5
dqdp2

~2p!8
dVk2

. ~35!

Extending the integral overq to all space~this operation is
permissible, because the contribution of large momentaq to
the integral is small!, we find

S~p2!5E dq

~2p!3
uM 11u25^cuGc

2uc&5(
N

u^cuN&u2

~E2EN!2
.

~36!

The summation in Eq.~36! is carried out over all one-
electron Coulomb states of the discrete and continuous s
tra, the numberN replaces the set of quantum numbers, a
the energyE is determined in Eq.~27!.

Integrating over the photon emission angle, we obtai

dsC
115

a2

p
sC

1S~p2!dp2 , ~37!

le
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sC
152sT , sT5

8

3
pr e

2 , r e5
a

m
. ~38!

Here sT is the Thomson cross section of photon scatter
by a free electron,sC

1 is the single ionization cross sectio
for the scattering of a photon by a two-electron atom~ion!.

The exact calculation ofS(p2) poses a difficult problem
It can be simplified considerably on the basis of two essen
considerations. First, as will be shown below, the differen
cross section decreases rapidly as the slow-electron en
«2 increases. The total cross section of the process is d
mined by the range of low energies«2,1, and for its deter-
mination it is sufficient to calculateS(p2) in this range. Sec-
ond, the contribution of the lowest state (N51) in Eq. ~36!
for small «2 is substantially greater than the contributio
from all other states. Within acceptable error limits Eq.~36!
can be restricted to the first term of the sum, i.e., we can

S~p2!.
u^ca6cbu1s&u2

~E2E1s!
2

. ~39!

Using the expression

u1s&5N1S 2
]

]h DVihu0& ~40!

for the vector stateu1s& and invoking the readily verifiable
identity

2
]

]h
VihVil52

]

]h
VilVih5Vi (l1h) , ~41!

we obtain

^cau1s&5N1
2N2Gh2S 2

]

]n D 1

n2
^cp2

uVih2
2Vi (h21n)u0&,

~42!

^cbu1s&5N1
2N2Gh2S 2

]

]h2
D 1

~h21h!2
^cp2

uVih1

2Vi (h21n)u0&, ~43!

where n52h, and u0& is the zero-momentum plane wav
state. The matrix element in Eqs.~42! and ~43! with a Cou-
lomb wave function of the continuous spectrum has b
calculated previously:13,14

^cp2
uVilu0&54pNp2

~l1 ip2! i j221

~l2 ip2! i j211
,

Np2
'A2pj2, j25

h

p2
. ~44!

Substituting Eq.~44! into ~42! and ~43! and performing the
differentiation operations, we arrive at the expressions

^cau1s&5
Np2

N2

h2 H wS 1

2
,1D2w~a,1!1

1

2
wS 1

2
,2D

2
5

2
w~a,2!112w~a,3!J , ~45!
g

al
l

rgy
er-

et

n

^cbu1s&5
Np2

N2

h2

64

3
w~a,3!, a5

5

2
, ~46!

w~q,k!5~q21«2!2k expS 2
2

A«2

arctan
A«2

q D . ~47!

Inasmuch as the matrix elements~45! and ~46! and, hence,
S(p2) do not depend on the angles, slow electrons are e
ted isotropically~the angular distribution of fast electrons
analogous to the angular distribution of electrons in the
dinary Compton effect!. ReplacingdVp2

by 4p and trans-
forming from dp2 to d«2, we obtain

Np2

2 dp25~2p!2h3d«2 . ~48!

Substituting Eqs.~45! and ~46! into ~39!, substituting Eq.
~39! into ~37!, and taking Eq.~48! into account, we find the
energy distribution of slow electrons in the ionization of si
glet (s) and triplet (t) states of heliumlike ions:

dsC
11/d«2

sC
1

5
bC

s,t~«2!

Z2
, bC

s,t~«2!52S fs,t~«2!

1/41«2
D 2

, ~49!

fs,t~«2!5wS 1

2
,1D2w~a,1!

1
1

2
wS 1

2
,2D2

5

2
w~a,2!1As,tw~a,3!, ~50!

As5
100

3
, At52

28

3
. ~51!

The functionsbC
s,t(«2) are plotted in Fig. 4.

As «2 increases from 0 to 1, the values ofbC decrease
more than a hundredfold. In the singlet state both electr
can reside at a single point in space, but this situation
impossible in the triplet state. On the average, the distan
between electrons in the singlet state are shorter, and
interaction between them is stronger, than in the triplet st
Consequently, the values ofbC

s are higher than those ofbC
t

FIG. 4. Energy distributions of slow electrons (bC5Z2dsC
11/d«2sC

1) in
the double Compton effect in the 21S (bC

s ) and 23S (bC
t ) states of heli-

umlike ions.



ly
s

i

w

n

s
p

in
-

e

e
tes
It

the

ote

g-

ed

u-
the

1028 JETP 89 (6), December 1999 A. I. Mikha lov and I. A. Mikha lov
for all «2. As «2 increases,bC
t decreases much more rapid

thanbC
s , because the role of short distances increases a

transferred energy («2) increases.
The values ofbC for «250 will be required below.

Their exact values are

bC
s ~0!51.0424, bC

t ~0!50.3327. ~52!

Evaluating the integral of~49! over«2, we obtain the ratio of
the total cross sections of double and single ionization
Compton scattering:

RC5
sC

11

sC
1

5
BC

s,t

Z2
, BC

s 50.132, BC
t 50.033. ~53!

For scattering in the ground state of a two-electron atom
haveRC50.048/Z2 ~Refs. 8 and 15!, which is equal to 1.2%
for Z52. The recent experimental value of the given qua
tity for a helium atom, measured atv597.8 keV, is equal to
(0.9860.09)% ~Ref. 16!.

5. EXCITATION IONIZATION IN COMPTON SCATTERING

Like double ionization, excitation ionization into state
with n.2 is a two-electron process and in the case of Com
ton scattering is determined entirely by electron-electron
teraction. The amplitudeM 1* of this process can be repre
sented by Feynman diagrams~Fig. 3!, except that now the
slow-electron wave functioncp2

must be replaced by th
bound-state wave functioncnl m . Making use of the
relation14

^cnl muVilu0&54pNn

~l2hn!n21

~l1hn!n11
d l 0dm0 ,

Nn
25

hn
3

p
, hn5

h

n
, ~54!

and comparing Eq.~54! with ~44!, we infer that the ampli-
tudeM 1* is obtained from the amplitudeM 11 by the sub-
stitutionsNp2

→Nn andp2→ ihn . The equation for the ion-
ization excitation cross section then follows from Eq.~37! if
the factordp2 /(2p)3 is discarded, andS(p2) is replaced by

S8~n!5
Nn

2

Np2

2
S~p2!U

p2→ ihn

. ~55!

This cross section has the form

sC
1* ~n!

sC
1

58p2a2S8~n!5
QC

s,t~n!

Z2
, ~56!

QC
s,t~n!5

2

n3
bC

s,t~«2→2n22!5
4

n3 S fn
s,t

2222n22D 2

. ~57!

The functionfn
s,t is given by Eq.~50!, in which it is now

required to make the substitution

w~q,k!→wn~q,k!5
~q2n21!n2k

~q1n21!n1k
. ~58!

The values ofQC
s,t for variousn are given in Table I. It is
the

n

e

-

-
-

evident from Eq.~54! that onlys states are excited under th
stated assumptions. The probability of excitation of sta
with a different angular momentum is substantially lower.
can be determined by including higher-order terms of
expansion in Eq.~36!.

It follows from Eq. ~57! that the following approximate
equality holds for largen:

QC
s,t~n@1!.

2

n3
bC

s,t~0!. ~59!

Substituting the values~52! into this equation, forn510 and
n5100 we obtain

QC
s ~10!.2.085•1023, QC

t ~10!.0.665•1023,

QC
s ~100!.2.085•1026, QC

t ~100!.0.665•1026.

Comparing these numbers with tabulated values, we n
that the discrepancies are approximately 10% forn510,
whereas far better agreement is obtained forn5100.

The authors are indebted to M. Ya. Amus’ya for su
gesting the topic of the paper.

APPENDIX

Here we obtain numerical estimates of the discard
terms in Eq.~39!. The exact value ofS(p2) ~36! differs from
the approximate value~39! by the amount

DS5 (
N52

`
^cuN&^Nuc&

~E2EN!2
'

1

E2
~^cuc&2^cu1s&2!. ~A1!

Since E52I (5/41«2) and EN52I /N2 ~or EN5Ep.0),
when (E2EN)2 is replaced byE2, the contribution of the
discrete spectrum toDS decreases slightly, and the contrib
tion of the continuous spectrum increases. As a result,
approximate estimate~A1! is a little too high; in its deriva-
tion we have invoked the completeness condition

(
N51

`

uN&^Nu51.

Taking Eq.~32! into account, we have

^cuc&5^cauca&1^cbucb&62^caucb&. ~A2!

Making use of Eq.~29!, we obtain

TABLE I. Values ofQC
s,t for variousn.

n QC
s (n) QC

t (n) n QC
s (n) QC

t (n)

3 0.3953 0.1602 8 4.889(23! 1.608(23!
4 0.0731 0.0265 9 3.301(23! 1.079(23!
5 2.728(22!* 0.943(22! 10 2.341(23! 0.762(23!
6 1.347(22! 0.454(22! 20 2.681(24! 0.860(24!
7 7.736(23! 2.569(23! 100 2.087(26! 0.666(26!

*A(2n)[A•102n.
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^cauca&5N2DD8E dfdf8

~2p!6

1

f 2

3^cp2
uVih2

uf&
8pn

@~ f2f8!21n2#2

3^f8uVih
28
ucp2

&
1

f 82
,

N5N1N2 , D5Gh2

]

]h2
, D85Gh

28
]

]h28
, n52h.

~A3!

The calculation of~A3! is greatly facilitated by making the
substitution@(f2f8)21n2#2→( f 21n2)( f 821n2). As a re-
sult, the integrals are uncoupled, and the ensuing calculat
become elementary:

^cauca&'
N2n

2p S DE df

~2p!3
^cp2

uVih2
uf&

1

f 2
^fuVinu0& D 2

5
N2

2pn3
~Gh2

^cp2
uVih2

2Vi (h21n)u0&!2

5
1

4p2
FwS 1

2
,1D2wS 5

2
,1D1

1

2
wS 1

2
,2D

1
3

2
wS 5

2
,2D G2

. ~A4!

An analysis has shown~see also Ref. 8! that the indicated
substitution yields an insignificant overestimation of the m
trix element~A3!.

The other matrix elements on the right hand side of E
~A2! are calculated analogously. The final expressions
them are as follows:

^cbucb&5
2

p2
$F22F@w~2,2!16w~2,3!#12w2~2,2!%,

F5w~1,1!2w~2,1!, ~A5!

^caucb&5
8

9p2
H Fw~1,1!2wS 5

2
,1D G@w~2,2!

22w~2,3!#1wS 5

2
,2D FwS 1

2
,1D2w~2,1!

1
1

2
wS 1

2
,2D1w~2,2!G J . ~A6!
ns

-

.
r

We denote byS1 the approximate value of~39! for
S(p2). Using Eqs.~A4!–~A6! and ~45!–~47!, we obtain

DS

S1
U

«250

,2%,
DS

S1
U

«251/4

,8%,
DS

S1
U

«253/4

,25%.

~A7!

The relative contribution of the terms discarded in Eq.~39!
increases as«2 increases, but the absolute values ofS1 and
DS decrease rapidly as«2 increases. For example, for«2

51/4 the quantitiesS1 and DS are an order of magnitude
smaller, and for«253/4 they are two orders of magnitud
smaller than the corresponding quantities for«250. Conse-
quently, the replacement of the infinite sum~36! by its single
term ~39! introduces an error of 10% or less in the total cro
section~53!.

* !E-mail: mikhailo@thd.pnpi.spb.ru
1!The system of units\5c51 is used in this paper.
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Radiative transition mechanisms in metal clusters
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Experimental data on the absorption of radiation by cold lithium, potassium, and silver clusters
and on the emission of radiation by hot niobium and tungsten clusters are analyzed within
the scope of two interpretive schemes of radiative transitions in clusters. The first scheme
comprises plasmon model of light absorption by valence electrons of metal clusters. The
second scheme treats radiative transitions in metal clusters as transitions of valence electrons
interacting with surrounding electrons and atomic cores. The experimental data exhibit
better agreement with the second interpretation. ©1999 American Institute of Physics.
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1. INTRODUCTION

The investigation of radiative transitions involving met
clusters can lend insight into the character of the interac
of electromagnetic waves with atomic systems. In this pap
we analyze the mechanism of radiative processes involv
clusters on the basis of experimental data. The latter h
been obtained, for the most part, by two experimental me
ods. The first method is based on the concept of phot
duced dissociation,1 whereby the absorption of a photo
causes the cluster to decay and, hence, change its mass
absorption cross section of a cluster ion is deduced from
analysis of the mass spectrum of its absorption products
function of the intensity of the incident laser radiation. T
absorption cross sections for a number of metal cluster
the visible and ultraviolet regions of the spectrum have b
measured on the basis of this method.2–7

The second method is based on measurement of
spectral power of radiation from hot clusters.8,9 The mea-
sured wavelength distribution of the radiation power
clusters of certain sizes can be used determine the radi
temperature of the clusters during their relaxation after e
tation by laser radiation or as a result of oxidation. Mo
over, various spectroscopic measurements provide additi
information about individual aspects of radiative proces
involving clusters,10–13and the details of these processes c
be learned from theoretical studies.14–20The objective of the
present study is to summarize the data on radiative proce
involving clusters and to choose a simple concept to desc
such processes.

2. TWO INTERPRETATIONS OF ABSORPTION BY METAL
CLUSTERS

Regarding a metal cluster as a system of bound ato
we portray a radiative transition in this system as the re
of transition of valence electrons. Choosing different ba
for the interaction of valence electrons, we can propose
1031063-7761/99/89(12)/5/$15.00
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schemes characterizing the process of absorption by a c
ter. In the first scheme interaction between valence electr
is more significant than their interaction with atomic core
so that radiative transitions are an aftermath of interaction
the radiation field with collective degrees of freedom of t
system, which in the given situation are plasmon oscillatio
of the electronic subsystem. This fact imparts a bell-sha
profile to the absorption spectrum.

In the second case, when the main part of the interac
takes place between valence electrons and their atomic c
radiative transitions are similar to those occurring in solita
atoms, so that the absorption spectrum consists of individ
lines broadened by interaction involving neighboring atom
The number of broadened lines or bands in the absorp
spectrum of metal clusters decreases as the temperatur
creases~see, e.g., the experiment of Haberlandet al.12 for
sodium clusters!, and the explanation of this behavior in th
given scheme entails an attendant increase in the numb
new cluster atomic configurations, which create the abso
tion spectrum. Our goal here is to decide which is the m
appropriate interpretation for radiative transitions in a clus
from the standpoint of experimental data.

We note that the absorption spectrum of sodium clus
includes several broadened resonances,6 lending preference
to the second interpretation of interaction of the radiat
field with clusters in application to sodium clusters and silv
Ag11 and Ag15 clusters.2 For lithium, potassium, and silve
Ag9 and Ag21 clusters the absorption spectrum is be
shaped, consistent with either interpretation. Consequen
further analysis of these cases will be needed before we
choose the most suitable mechanism of interaction betwe
radiation field and clusters in the sense of achieving the b
fit with measurement data. Such an analysis follows.

3. CLUSTER ABSORPTION CROSS SECTION

Initially we treat absorption by a large cluster as by
macroscopic particle, using the liquid-drop model for t
0 © 1999 American Institute of Physics
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TABLE I. Parameters of the absorption cross section for metal clusters.

Cluster \v0 , eV G, eV smax/n, Å2 v0A3/vp j f

Li139
1 2.92 0.90 4.5 0.64 2.8 0.58

Li270
1 3.06 1.15 4.4 0.68 3.2 0.73

Li440
1 3.17 1.32 6.4 0.70 4.9 1.20

Li820
1 3.21 1.10 5.4 0.71 3.3 0.85

Li1500
1 3.25 1.15 5.5 0.72 3.5 0.91

Lin ~average! 3.160.1 1.1060.12 5.260.8 0.6960.03 3.560.8 0.8560.23
K9

1 1.93 0.22 2.9 0.79 2.9 0.91
K21

1 1.98 0.16 4.2 0.81 2.9 0.96
K500

1 2.03 0.28 3.5 0.84 4.0 1.40
K900

1 2.05 0.40 2.8 0.84 4.5 1.59
Kn ~average! 2.0060.05 0.2660.10 3.460.6 0.8260.02 3.660.8 1.260.3
Ag9

1 4.02 0.62 1.0 0.82 2.6 0.87
Ag21

1 3.82 0.56 0.9 0.78 2.1 0.64
Agn ~average! 3.960.1 0.5960.03 0.960.1 0.8060.02 2.460.2 0.7560.16
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cluster; in this model the cluster is a spherical particle
radius r, which is small in comparison with the radiatio
wavelengthl:

l@r . ~1!

In this model the densityr of the given particle is assume
to be the same as in a condensed macroscopic system, s
the number of atoms in the clustern is related to its radiusr
by the equation

n5S r

r WS
D 3

, r WS5S 3m

4pr D 1/3

. ~2!

Here r WS is the Wigner–Seitz radius,m is the mass of a
single atom, andr is the density of the macroscopic syste
this relation shows that the investigated cluster can be
tracted from the condensed macroscopic system.

The absorption cross section for the spherical mac
scopic particle is expressed in terms of the dielectric perm
tivity of the particle material«(v)5«8(v)1 i«9(v) by the
equation21

sabs~v!5
12pv

c

«9

~«812!21«92
r 35

12pv

c
r 3g~v!. ~3!

It follows from this equation that the absorption cross sect
sabs is of the order of (r /l)r 2, i.e., is small in comparison
with the transverse cross section of the particlepr 2. More-
over, this quantity is proportional to the cluster volumer 3 or
to the number of atoms in the clustern.

For metal particles interacting with a radiation field w
use the Drude–Sommerfeld theory,22,23which postulates tha
metal electrons are similar to a gas of free electrons, so
the permittivity of this electron gas is equal to

«~v!512vp
2/v2. ~4!

Here vp5(4pNee
2/me)

1/2 is the frequency of plasma—o
Langmuir—waves; accordingly,Ne is the density of elec-
trons,e is the electron charge, andme is the electron mass
The damping of plasma waves is characterized by the im
nary part«9 of the permittivity. The condition«9!1 in con-
junction with Eq. ~4! transforms Eq.~3! as follows in the
vicinity of resonance:
f

that

;
x-

-
t-

n

at

i-

sabs~v!52p
\v2

c2
r 3

G

\2~v2v0!21G2

5smax

G2

\2~v2v0!21G2
, ~5!

where v05vp /A3 is the resonance frequency,G
5\v0«9/6 is the width of the resonance peak, andsmax is
the maximum absorption cross section,

smax52p
\v0

2r 3

Gc
. ~6!

From Eq.~5! we deduce the integral equation

E sabs~v!dv5
p

2

smaxG

\
5p2

v0
2r 3

c
5

p2v0
2r WS

3

c
n, ~7!

wheren is the number of cluster valence electrons, and
width of the resonance peak is assumed to be relativ
small.

Although the given model originally applies to a macr
scopic particle and is crude in application to a cluster
takes into account the character of the interaction of a m
cluster with an electromagnetic wave through valence e
trons. The absorption spectrum of a metal cluster is there
localized in the visible region of the spectrum or close to
and the far infrared region of the spectrum is nonexistent
reality, the absorption spectrum of metal clusters can hav
more complex form than that described by Eq.~5!, and it can
contain several resonances. Table I shows the paramete
the absorption cross section of metal clusters for case
which the spectrum consists of a single resonance. The
sorption cross sections have been measured for silv2

potassium,3,4 and lithium.5 We note that in several cases th
absorption spectrum as a function of the photon energy is
a bell-shaped curve. In particular, this is true of certain An

~Ref. 2! and Nan ~Ref. 6! clusters, whose absorption spect
have a more complex form than predicted by plasm
theory.
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It follows from Eqs.~3! and ~4! that the resonance fre
quency for plasmon-ty8pe interaction of an electromagn
wave with a metal cluster is equal to

v05
vp

A3
5

e

me
1/2r WS

3/2
, ~8!

because the density of valence electrons isNe53/(4pr WS
3 ).

It follows from this equation that\v054.5 eV for large
lithium clusters,\v052.4 eV for large potassium cluster
and\v054.9 eV for large silver clusters. The Wigner-Se
radii are 1.65 Å, 2.65 Å, and 1.66 Å for liquid clusters
lithium, potassium, and silver, respectively, at the melt
point. Also shown in Table I is the ratio of the observ
resonance frequenciesv0 for cluster absorption to the value
obtained from Eq.~8!. Although these ratios differ from
unity, the large-cluster resonance frequency can be corre
by introducing an effective electron massmeff , which differs
from the free-electron massme . Then, according to the dat
in Table I, for the average effective mass we havemeff

5(0.5760.10)me . Consequently, even though the positio
of the resonances in the cluster absorption cross section
fer from those determined on the basis of Eq.~8!, the differ-
ence can be eliminated by introducing an effective mass
electrons in the clusters.

The plasmon absorption mechanism yields Eq.~6! for
the maximum absorption cross section. We can test the
lidity of this relation for the measured parameters of the
sorption cross section. We introduce the parameter

j5
1

2p

smaxGc

\v0
2r 3

5
1

2p

smax

n

Gc

\v0
2r WS

3
, ~9!

which is equal to unity if Eq.~6! is valid. The values of this
parameter for metal clusters with a bell-shaped absorp
spectrum are given in Table I. It is evident that the parame
j deviates farther from unity than can be attributed to
error of measurement of the parameters. This discrepa
implies that the underlying assumptions are false. They
based on the notion of a macroscopic absorption proces
Eq. ~3! and on the notion of plasmon-type interaction of t
electromagnetic wave with cluster valence electrons, wh
leads to Eq.~4!. Hence we infer that the interpretation o
electromagnetic wave absorption by a metal cluster as
result of interaction between the wave and a macrosco
plasmon is unsuitable, even in cases of a proper cluster
sorption spectrum.

The foregoing analysis implies a partial analogy betwe
the system of valence electrons in a metal cluster and
electrons in a plasma. This analogy suggests that elect
are responsible for the interaction of the given atomic sys
with an electromagnetic wave. The nature of the radiat
from metal clusters as systems of bound atoms with inter
ing valence electrons can be depicted on the basis of
second scheme of interaction between the radiation field
electrons. We consider clusters whose atoms have a r
nance excited state, which is linked to the ground state of
atom by dipole radiative transition. For the cases in ques
the lowest resonance state of an atom is characterized b
greatest oscillator strength for transition from the grou
ic
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state of the atom. Constructing a cluster ofn such atoms and
fixing the positions of the nuclei, we obtain a cluster abso
tion spectrum consisting ofn spectral lines. They are ob
tained from the resonance atomic spectral line, which is s
by interaction in the system. Owing to the vibrational moti
of the nuclei in a solid cluster, these lines broaden and p
tially overlap. As a result, the absorption spectrum of t
clusters consists of one or several broad resonances.
form of the absorption spectrum follows from calculations
the cluster absorption cross section.14–20 From these consid-
erations we infer that the cluster absorption cross sectio
proportional to the number of atoms in the cluster. The sa
result is consistent with the macroscopic cluster model~3!.

The radiative transitions in metal clusters for the giv
model are similar to radiative transitions involvin
resonance-excited atoms. This similarity also follows fro
an analysis of the emission spectrum of mercury cluster
the transition is made from a single atom to a macrosco
system10,11by increasing the number of atoms in the syste
The indicated nature of the cluster absorption spectrum
responds to the temperature dependence of the absor
spectrum of sodium Na11

2 clusters.12

We now consider the sum rule for a metal cluster, ma
ing use of the fact that for fixed nuclei the cluster absorpt
spectrum in the investigated spectral region consists of in
vidual lines comparable in number with the number of ato
in the cluster. In the single-atom limit this spectrum is tran
formed into one or more resonance lines of the given ato
We introduce an effective oscillator strengthf associated
with a single valence electron, so that the sum of the os
lator strengths of the given spectrum comprising individu
lines is equal ton f , wheren is the number of valence elec
trons in the cluster. As a result of motion of the nuclei, t
absorption spectrum acquires the form of several broade
resonances, but the sum rule remains the same. Nex
consider the case of a bell-shaped absorption spectrum o
kind encountered for Ag, Li, and K clusters, for which da
are given in Table I.

We invoke the general equation for the absorption sp
trum of an atomic system24

sabs~0→k!5
p2c2

v2

av

t0k

gk

g0
5

2p2e2

mec
f 0kgkav . ~10!

Here me is the electron mass,v is the frequency of the
investigated electron transition between states 0~the lowest
state! and k ~the upper state!, g0 and gk are the statistical
weights of the transition states,t0k is the radiative lifetime in
relation to this transition,av is the frequency distribution
function of emitted photons,*avdv51, andf 0k is the oscil-
lator strength for the given transition; the sum rule for t
oscillator strengths of dipole radiative transitions for valen
electrons in the investigated spectral region, including re
nance transitions, has the form

(
k

f 0k5n f .

For definiteness we consider clusters consisting of ato
with a single valence electron, as is the case for Ag, Li, a
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K clusters~see Table I!. Assuming that the investigated spe
tral region contains two dipole resonance transitions of e
trons, integrating over frequencies in the vicinity of the clu
ter resonance, and summing over all resonance transit
we obtain an integral equation for the cluster absorpt
cross section:

E sabs~v!dv5
2p2e2

mec
n f . ~11!

If the absorption cross section of the clusters is bell-shap
as in the cases of Ag, Li, and K clusters~see Table I!, the
integral equation~7! is valid. We then obtain the following
equation from Eqs.~7! and ~11!:

f 5
1

4p

smaxGmec

e2n\
. ~12!

Table I gives the oscillator strengthsf for metal clusters
at a single valence electron when the absorption cross se
is approximated by a bell-shaped curve. The scatter of va
for each element is clearly dictated by the error limits of t
cited data. On the average, the values off for each element
correspond to the oscillator strengths for the lowest re
nance2S1/2→2P1/2, 2P3/2 transitions of the correspondin
atom. These oscillator strengths are equal to25 0.74 for the
lithium atom, 1.05 for the potassium atom, and 0.77 for
silver atom. The agreement between the cluster and sin
atom oscillator strengths within the error limits of the clus
oscillator strengths confirms the validity of the interpretati
that treats the cluster absorption spectrum as the resu
transformation of the atomic spectral lines under the in
ence of their interaction. Radiative transitions in clusters
therefore be regarded as radiative transitions of single
lence electrons participating in interaction in the clust
where these transitions are broadened by the motion of
nuclei.

4. RADIATION FROM HOT CLUSTERS

The width of the spectral absorption band of a cluste
governed by the scattering of single electrons in the field
the atomic cores for both mechanisms of interaction betw
clusters and the radiation field or is attributable to differe
configurations of the nuclei in the second interpretation. A
ditional information about this interaction can be obtain
from the temperature dependence of the absorption spec
and the absorption cross section. In particular, the varia
of the absorption spectrum for Na11

2 clusters12 as their tem-
perature varies from low to room temperature can be att
uted to new configurations of the cluster nuclei at eleva
temperatures. In this paper we use data on the absorptio
cold lithium, potassium, and silver clusters at close to ro
temperature~Table I! and data on the absorption cross se
tions of hot niobium and tungsten clusters,26 which follow
from an experimental study of the evolution of the spectr
of these clusters8,9 at high temperatures.

In the experiments8,9 the emission spectra of Nb, Hf, an
W clusters were measured after the cluster beams had
irradiated by a laser pulse. The resultant signal was obta
by summing many pulses, which limited the accuracy of
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measurements. These measurements were used to dete
the emission spectrum at different times after irradiation, a
it was approximated by the emission spectrum of a perfe
black particle having a definite temperature. An analys26

shows that the cooling of the irradiated cluster is determin
by its radiation, so that the rate of change of the radiat
intensity can be used to find the absorption cross section
the hot cluster.

The assumption that the absorption cross section is in
pendent of the wavelength yields an absorption cross sec
per atom of (5.260.8)•10218cm2 for tungsten clusters if
they emit in the temperature intervalT5317023550 K, cor-
responding to wavelengthslmax50.6820.76mm for the
maximum spectral power of the radiation. In the case
niobium clusters the absorption cross section per atom
equal to (5.961.0)•10218cm2 if the clusters emit at tem-
peraturesT53200– 3600 K, corresponding to wavelengt
lmax50.6720.75mm for the maximum spectral power o
the radiation. We note the following relation between t
radiative temperatureT and the radiation wavelengthlmax at
the maximum spectral power of the radiation:lmaxT
50.24 cm•K. It refers to the dependence of the absorpti
cross section on the radiation frequencys(v)}v, which
corresponds tog(v)5const in Eq.~3! for the absorption
cross section of a small macroscopic particle.

A significant discrepancy is evident in the specific a
sorption cross sections of cold and hot metal clusters.
analyze this discrepancy on the basis of the second me
nism of interaction between the electronic subsystem and
radiation field, so that the main radiation parameters of
cluster are atomic, which are transformed by interaction
the cluster. Table II shows the parameters of radiative tr
sitions involving the lowest excited states of the atoms co
prised in the investigated clusters. If we assume that radia
transition in a niobium cluster begins with the atom
5p→5s transition, we can discern an analogy between n
bium and silver clusters. The maximum spectral powers
niobium cluster radiation, which correspond to the inves
gated cluster temperatures and have been used to deter
the specific absorption cross sections of these clusters,
to photon energies in the interval\v51.421.5 eV. Using
Eq. ~5! for the absorption cross section of a cluster with t
parameters of silver clusters in Table I, we obtain the spec
absorption cross section in the investigated range of pho
energiess/n5(5.161.7)•10218cm2, corresponding to the
above-indicated specific absorption cross section of a
bium cluster. Consequently, the small specific absorpt

TABLE II. Radiation parameters for the lowest atomic states.

Atom
Transition

electron shell
Energy

range, eV
Transition
time, ns

Li 2 p→2s 1.85 27
K 4p→4s 1.61 27
Ag 5p→5s 3.6–3.8 7–8
Nb 4d35s5p→4d45s 2.5–2.6 100–1000
Nb 4d45p→4d45s 3.1–3.3 8
W 5d46s6p→5d46s2 2.7–3.8 60–800
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cross section of niobium clusters can be attributed to the
typical photon energies associated with the tail of the abs
tion spectrum.

The small specific absorption cross section for tungs
clusters can also be identified with low oscillator streng
for transitions to lower excited states, owing to the long
diative lifetimes of these states~Table II!. We note that the
high temperature associated with the above cluster abs
tion cross sections correspond to increased widths of the
sorption spectrum, because at high temperatures the nuc
the cluster acquire contributions that are inadmissible at
temperatures. The broadening of the spectrum can be
pected to be of the order of the nuclear thermal energy,
since this amount is small in comparison with the lo
temperature width of the spectrum, the broadening ef
does not fundamentally change the width of the cluster
sorption spectrum at high temperatures. It follows from
foregoing analysis, therefore, that the small specific abs
tion cross sections for niobium and tungsten clusters, de
mined from the radiation of hot clusters, can be attributed
the location of the emitted photons in the tail of the clus
emission spectrum and to the weaker interaction of th
clusters with the radiation field in comparison with alkali a
silver clusters.

5. CONCLUSION

Our analysis of the measured parameters associated
the absorption and emission of radiation by metal clus
and the analysis of other papers show that the mode
plasma electrons for the electronic subsystem can lea
conflict with experimental data. In contrast, the metal-clus
spectrum model based on an atomic spectrum contai
lines broadened by the interaction of valence electrons w
surrounding atomic particles is consistent with various
perimental data. It must be emphasized that the noted
crepancy between the two models applies to the mathem
cal description of the process of light absorption by me
clusters and not to the nature of this process, which is
same for both absorption mechanisms. In fact, light is
sorbed by valence electrons in both cases, and the param
of the absorption spectrum and cross section are dictate
the character of the interaction of these electrons with th
surrounding electrons and atomic cores. However, in
plasmon absorption model the width of the absorption sp
trum and the maximum absorption cross section are bo
by a definite relation, but the experimental data do not c
roborate this relation. On the other hand, in the case of w
interaction between valence electrons of the cluster atom
simple relation exists between the cluster oscillator stren
integrated over the spectrum and the oscillator strength in
atom. Even though the interaction between valence elect
w
p-

n
s
-

rp-
b-
i in
w
x-
d

ct
-

e
p-
r-
o
r
e

ith
rs
of
to
r
g

th
-
is-
ti-
l
e
-

ters
by
ir
e
c-
d

r-
k
a

th
e

ns

in the cluster is not weak, this relation holds for metal clu
ters for which the absorption cross sections have been m
sured. It is useful to take these considerations into accoun
analyzing the radiative parameters of systems contain
clusters.
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The multiple scattering of light from an inhomogeneous medium occupying a half-space is
investigated on the basis of the Bethe–Salpeter equation. The latter is integrated over the spatial
variables to obtain an identity having the significance of the energy balance of the incident
and scattered radiations. This relation is then used to derive a length parameter that plays the role
of the Milne interpolation length. The use of this parameter in the method of mirror images
for describing the shape of the coherent backscattering peak in isotropic single scattering yields
results in almost perfect agreement with the predictions of the Milne theory. The application
of the given approach for an anisotropic single-scattering diagram yields quantitative agreement of
the theory with experiments on the angular dependence of coherent backscattering. The new
approach is generalized to an electromagnetic~vector! field, and backscattering polarization effects
are investigated. ©1999 American Institute of Physics.@S1063-7761~99!00312-1#
-
o

at
t

e-

on
us
a

co
in
-

m

ut

ed
a

th
A
o

-
m

oi
re
ar
on
he
a

-
oin-

for
ul-
ted
pic
ent
de-

ned
n

ring
ri-

ral
red
ia-
g a
and
dre
of
red
–
the
m
nce

ions
h is
the
ck-
1. INTRODUCTION

The study of multiple scattering of light in strongly in
homogeneous media has led to the discovery of a wh
series of phenomena caused by coherence and correl
effects ~see Refs. 1–5!. Work continues today on coheren
backscattering,6–9 angular and frequency correlations b
tween reflected and transmitted light,10,11 and memory and
universality effects in the behavior of the time correlati
function.12 Wave propagation in strongly inhomogeneo
media especially began to elicit major interest once it h
been established that techniques of correlation spectros
and, specifically, techniques of the spectroscopy of diffus
photon-density waves1,2,13 could be used to solve the prob
lem of imaging ordered structures and macroscopic inho
geneities in opaque media.14–17 In particular, this realization
launched a new trend in medical technology: diagnostics
lizing visible and infrared radiation.18

To adequately reproduce the structure of opaque m
and achieve a more accurate description of coherence
correlation effects, a concerted effort is underway at
present time to develop a theory of multiple scattering.
major problem in this area is the systematic treatment
boundaries and interfaces.19–23The method of mirror images
fits quite naturally into the diffusion approximation. How
ever, because the diffusion approximation is valid far fro
any boundary, a certain leeway is encountered in the ch
of an effective boundary. Alternative choices of this kind a
discussed in Ref. 19. The position of the effective bound
is usually determined by means of the Milne interpolati
length, which is obtained from the exact solution for t
scalar field in the model of point scatterers. This choice w
1031063-7761/99/89(12)/10/$15.00
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first adopted in Ref. 23. However, the method of mirror im
ages itself does not require that the effective boundary c
cide with the Milne interpolation length.

In this paper we propose a self-consistent method
choosing the effective boundary in the description of m
tiple scattering from a half-space. The solution is construc
for scalar and vector fields. For the scalar field in isotro
single scattering we show that in describing the coher
backscattering peak the result obtained by the approach
veloped here essentially coincides with the result obtai
from the exact Milne solution. The application of the give
approach to systems with an anisotropic angular scatte
function yields good agreement of the theory with expe
mental coherent backscattering data.

The paper is structured as follows. In Sec. 2 gene
expressions are given for the intensity of multiply scatte
radiation due to the contributions of ladder and cyclic d
grams. The scalar field is discussed in Sec. 3, includin
general analysis of the system of equations with zeroth-
first-degree terms included in the expansion in Legen
polynomials. In Sec. 4 an identity having the significance
an energy balance equation for the incident and scatte
light is derived for the scalar field by integrating the Bethe
Salpeter equation. A length parameter analogous to
Milne interpolation length is obtained self-consistently fro
this equation. It is used to calculate the angular depende
of coherent backscattering, and the results of the calculat
are compared with experiment. In Sec. 5 the new approac
extended to the case of an electromagnetic field, and
polarized and depolarized components of coherent ba
scattering are calculated.
5 © 1999 American Institute of Physics
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2. MULTIPLE LIGHT SCATTERING IN A STRONGLY
INHOMOGENEOUS MEDIUM

We consider the propagation of light in a random diele
tric medium. Assuming that variations of the inhomogen
ities of the medium are negligible during wav
propagation,24 we can write the wave equation for the spe
tral field componentE(r ,v)

curl curlE~r ,v!2S v

c D 2

«~v!E~r ,v!

5S v

c D 2

d«~r ,v!E~r ,v!, ~2.1!

whered«(r ,v)5«(r ,v)2«(v) is the fluctuation of the di-
electric permittivity,«(v)5^«(r ,v)& is the average permit
tivity at the frequencyv, c is the light velocity in empty
space. From now on we shall drop the argumentv for brev-
ity. The intensity of multiple scattering of radiation at a poi
r can be written in the form

^udEs~r !u2&5E dr1dr18dr2dr28As j

3~r2r2!Asl* ~r2r28!G j l ,i i ~r2 ,r28 ,r1 ,r18!

3^Ei~r1!&^Ei* ~r18!&. ~2.2!

HeredEs(r )5E(r )2^E(r )& is the fluctuation of the field in
the medium,̂ E(r )& is the average incident field, which w
assumed to be a monochromatic plane wave,^E(r )&
5E exp(ik i•r ), k i is the incident wave vector, andÂ(r
2r2) is the Green’s function of the wave equation. In the
field at large distancesr from the scattering volume thi
function has the form

Â~r2r2!5
1

r S Î 2
ks•ks

k2 D e2 iks•r2, ~2.3!

whereÎ is the unit matrix,ks5kr /r is the unit vector of the
scattered wave,k5«1/2k0 , k05v/c52p/l, and l is the
light wavelength. Summation over repeated subscripts is
itly understood from now on, except for the subscriptsi and
s, which designate the polarizations of the incident and s
tered light, respectively.

The function Ĝ(r2 ,r28 ,r1 ,r18), which characterizes the
scattered field, is represented in general by a power serie
the permittivity fluctuationsd«. This series is summed an
leads to the Bethe–Salpeter equation. In the weak scatte
approximationl! l ( l is the extinction length! this equation
assumes the form

G l j ,mn~r2 ,r28 ,r1 ,r18!

5k0
4G~r22r28!Fd~r22r1!d~r282r18!d lmd jn

1E dr3dr38Ala~r22r3!Ajb* ~r282r38!

3Gab,mn~r3 ,r38 ,r1 ,r18!G , ~2.4!
-
-

-

r

c-

t-

in

ng

where

G~r22r28!5
1

~4p!2
^d«~r2!d«~r28!& ~2.5!

is the correlation function of the permittivity fluctuation
Equation~2.4! is written in the ladder approximation on th
assumption that the fluctuationsd« are essentially Gaussian
This equation is derived on the assumption of smallness
the parameterdnrc

3r, wheredn is the inhomogeneity of the
refractive index of the medium,r c is the correlation length of
the inhomogeneities, or radius of the scatterers, as define
the function~2.5!, andr is the density of inhomogeneities, o
scatterers, in unit volume,r;a23 (a is the average distanc
between scatterers!.

In the functionĜ(r2 ,r28 ,r1 ,r18) it is useful to transform
to ‘‘center of gravity’’ coordinatesRj5(r j1r j8)/2 and rela-
tive coordinates r j95r j2r j8 . For the function

G̃ l j ,mn(R2 ,R28 ;ks ,k i), which represents the Fourier tran
form in the relative coordinates,

G̃ l j ,mn~R2 ,R1 ;ks ,k i !5E dr19r29G l j ,mnS R21
r29

2
,R2

2
r29

2
,R11

r19

2
,R12

r19

2 D
3exp~ ik ir192 iksṙ29!, ~2.6!

Eq. ~2.4! can be written in the form

G̃ l j ,mn~R2 ,R1 ;ks ,k i !5k0
4G̃~k i2ks!d~R21!d lmd jn

1k0
4 E dR3G̃~k232ks!

3L l j ,ab~R23!G̃ab,mn

3~R3 ,R1 ;k23,k i !. ~2.7!

Here

G̃~q!5E dr G~r !e2 iq•r ~2.8!

is the Fourier transform of the correlation function,

L l j ;ab~R!5
e2R/ l

R2 S d la2
RlRa

R2 D S d jb2
RjRb

R2 D , ~2.9!

andk i j 5kRi j /Ri j is the wave vector of the wave propaga
ing between pointsRi andRj .

We now consider scattering from the half-spacez.0,
wherez is the Cartesian coordinate directed along the inw
normal to the boundaryz50 for angles of incidence close t
180° and for normal incidence. In the far field, taking E
~2.3! into account, we can write the mean-square field in
form

^udEs~r !u2&5
1

r 2
I si~ks ,k i !, ~2.10!

where
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I si~ks ,k i !5E dR1dR2expS 2
Z11Z2

l D
3S Î 2

ks•ks

k2 D
s j

S Î 2
ks•ks

k2 D
sl

3Ĝ j l ,i i ~R2 ,R1 ;ks ,k i !uEi u2. ~2.11!

The axial symmetry of the problem reduces the depende
on R2 and R1 to a dependence on the relative transve
variabler215@(X22X1),(Y22Y1)# and the coordinatesZ2

andZ1.
It is evident from Eq.~2.11! that for scattering problem

at normal incidence it is sufficient to consider the functio

Ĝ~r21,Z2 ;ks ,k i !5E
0

`

Ĝ
˜

~R2 ,R1 ;ks ,k i !

3exp~2Z1 / l !dZ1 . ~2.12!

According to Eq.~2.7!, this function satisfies the equation

G l j ,mn~r21,Z2 ;ks ,k i !5k0
4G̃~k i2ks!u~Z2!d~r21!

3exp~2Z2 / l !d lmd jn1k0
4

3E G̃~k232ks!L l j ,ab~R23!

3Gab,mn~r31,Z3 ;k23,k i !dR3 .

~2.13!

In the given geometry we havek i5(0,0,k) and
ks5(k0us,0,2k), whereus is the scattering angle measure
relative to the true backward direction. Equation~2.11! now
assumes the form

I si~ks ,k i !5uEi u2SE dr21E
0

`

dZ2Gss,i i ~r21,Z2 ;ks ,k i !

3exp~2Z2 / l !, ~2.14!

whereS denotes the illuminated region.
For small anglesus , together with the contribution o

ladder diagrams, it is also necessary to include an inter
ence term of the form19

I si
(c)~ks ,k i !5uEi u2SE dr21E

0

`

dZ2@Gsi,is~r21,Z2 ;ks ,k i !

2d~r21!dsik0
4G̃~ks2k i !exp~2Z2 / l !#

3exp~2Z2l 211 ik0us~X22X1!!. ~2.15!

Equation ~2.15! represents the contribution of cyclic dia
grams. In its derivation from the contribution of ladder di
grams it is required, in particular, to permute subscripts
subtract the single-scattering contribution~see, e.g., Ref. 4!.

The anisotropy of single scattering makes the funct

Ĝ(r,Z2 ;ks ,k i) dependent on the orientation of the waveve
tors. Owing to the structure of Eq.~2.13!, we can fix the
orientation of the incident wave vectork i and consider only
the dependence on the orientation ofks . In the general case
this dependence onks can be written as an expansion
ce
e

r-

d

n

-

spherical harmonics. We confine the discussion to the zer
and first-degree Legendre polynomials, which correspond
the diffusion approximation

Ĝ~r21,Z2 ,ks ,k i !5
1

4p l
@ ĝ0~r21,Z2!1ĝn~r21,Z2!

3cosu1ĝ t~r21,Z2!cosu t#, ~2.16!

where

cosu5~ks•e3!k21, cosu t5~ks•r21!k
21r21

21 ,

ande3 is the unit vector along theZ axis. Here we have also
made use of the fact thatk i ie3.

Invoking the orthogonality property of the Legend
polynomials, we can reduce Eq.~2.13! to a system of inte-
gration equations for the functionsĝ0 , ĝn , andĝ t :

ĝ0~r21,Z2!5
3

2
u~Z2!expS 2

Z2

l D d~r21! Î

1
3

8p l E dR3L̂~R23!

3F ĝ0~r31,Z3!1S k23•r31

kr31
D ĝ t~r31,Z3!

1S k23•e3

k D ĝn~r31,Z3!G ,
ĝ t~r21,Z2!5

9m

8p l E dR3

r21•R23

r21R23
L̂~R23!

3F ĝ0~r31,Z3!1S k23•r31

kr31
D ĝ t~r31,Z3!

1S k23•e3

k D ĝn~r31,Z3!G ,
ĝn~r21,Z2 ,t !5

9

2
mu~Z2!exp~2Z2 / l !d~r21! Î

1
9m

8p l E dR3

R23•e3

R23
L̂~R23!

3F ĝ0~r31,Z3 ,t !1S k23•r31

kr31
D ĝ t~r31,Z3!

1S k23•e3

k D ĝn~r31,Z3!G , ~2.17!

whereu(Z) is the Heaviside theta function,m5cosu is the
cosine of the scattering angle, averaged over the sin
scattering angular diagram. In the derivation of Eqs.~2.17!
we have relied on the optical theorem

l 215
2

3
k0

4 E dVsG̃~ks2k i !. ~2.18!

We now consider a medium in which light attenuation
attributable to scattering rather than to absorption, i.e.,
extinction length l is much shorter than the attenuatio
length.
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The system~2.17! is a generalization of the Milne equa
tion to the case of an electromagnetic field. Here the ani
ropy of single scattering is taken into account in t
P1-approximation. The solution of this system of equatio

can be used to find the functionĜ(r21,Z2 ,ks ,k i) and, hence,
to determine the scattering intensity, which is given by E
~2.11!.

The substitution of the solution for an unbounded m

dium in place of the functionĜ in Eq. ~2.11!, of course,
yields a divergent expression. The standard procedure
to remove the divergence, by analogy with electrostatic pr
lems, is based on the method of mirror images. The solu
of the system of equations~2.17! does not result in diver-
gence, because the boundedness of the medium is taken
account explicitly here. However, this system of equation
complex and difficult to solve, even numerically.20,25 In con-
trast with an electromagnetic field, for the scalar case
exact solution exists for a system of point scatterers. In
much as the existence of an exact solution can be use
analyze the degree of validity of approximate approaches
first discuss the case of a scalar field.

3. SCALAR FIELD

In the scalar analog of the system of equations~2.17! we
can readily transform to the Fourier spectrum in transve
variables. We have

g̃0~Q,Z2!5u~Z2!expS 2
Z2

l D1
1

4p l

3E
0

`

dZ3$L̃~Q,Z23!g̃0~Q,Z3!1L̃1~Q,Z23!

3@ g̃t~Q,Z3!1e3g̃n~Q,Z3!#%,

g̃t~Q,Z2!5
3m

4p l E0

`

dZ3$L̃1~Q,Z23!g̃0~Q,Z3!

1 L̂̃2~Q,Z23!@ g̃t~Q,Z3!1e3g̃n~Q,Z3!#%,

g̃n~Q,Z2!53mH u~Z2!expS 2
Z2

l D1
1

4p l

3E
0

`

dZ3e3$L̃1~Q,Z23!g̃0~Q,Z3!

1 L̂̃2~Q,Z23!@ g̃t~Q,Z3!1e3g̃n~Q,Z3!#%J ,

~3.1!

From now on we denote quantities with a tilde by the cor
sponding two-dimensional Fourier transforms

f ~r,Z!5E d2Q

~2p!2
f̃ ~Q,Z!exp~ iQ•r! ~3.2!

of the unknown functionsg0(r,Z), gt(r,Z)5rg t(r,Z)/r,
gn(r,Z) and the integral kernelsL(R), L1(R)5RL(R)/R
and L̂2(R)5R–RL(R)/R2. The quantity
t-

s

.

-

ed
-
n

nto
is

n
s-
to
e

e

-

L~R!5exp~2R/ l !/R2 ~3.3!

is the scalar analog of the tensor~2.8!.
For convenience we transform to the dimensionless v

ablesz5Z/ l andq5 lQ. In the system of equations~3.1! we
go over to the Laplace transform in the variablez. We deter-
mine the Laplace transforms in the form

gm~q,s!5E
0

`

dz g̃m~q,z!e2zs, m50,n,t. ~3.4!

Here the functiong̃t has been parametrized in the formg̃t

5qg t(q,z) by virtue of its orthogonality to thez axis. For
the Laplace transforms the system~3.1! assumes the form

@12p0~w!#g0~q,s!2q2p1~w!gt~q,s!

1sp1~w!gn~q,s!5a0~q,s!,

3mp1~w!g0~q,s!

1H 12
3m

2

s2@p0~w!2p1~w!#22q2p1~w!

w2 J gt~q,s!

1
3ms

w2
@p0~w!23p1~w!#gn~q,s!5at~q,s!,

3msp1~w!g0~q,s!2
3mq2s@p0~w!23p1~w!#

w2
gt~q,s!

1H 12
3m

2

2s2p1~w!2q2@p0~w!2p1~w!#

w2 J gn~q,s!

5an~q,s!, ~3.5!

where

w25s22q2, p0~w!5
1

2w
ln

11w

12w
, p1~w!5

p0~w!21

w2
,

a0~q,s!5
1

11s
2

1

4p E
0

2p

dfE
1

`dr

r

1

x2sFg0~q,x!

2
1

r
gn~q,x!1

q2

r 2
gt~q,x!G ,

at~q,s!5
3m

2 E
1

`dr

r

1

r 2sF 1

r 2
g0~q,r !

2
1

2 S 12
1

r 2D gt~q,r !2
1

2 S 3

r 3
2

1

r D gn~q,r !G ,

an~q,s!5
3m

11s
1

3m

4p E
0

2p

df E
1

`dr

r

1

x2sFg0~q,x!

1
q2

4 S 3

r 2
21D gt~q,x!2

1

r
gn~q,x!G , ~3.6!

andx5r 1 iqlAr 221 cosf. The system of equations~3.5! is
an extension of the Milne equation to anisotropic scatter
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(mÞ0) and includes an interference contribution (qÞ0).
We note that the functionsgn(q,s) and gt(q,s) are first-
order inm.

According to Eqs.~2.13!–~2.15!, the scattering intensity
is the Laplace transform of~2.13! with respect toz for
s51 and the Fourier transform with respect to the transve
variables forq5 lk0us . In the given situation of almost pur
backscattering we have cosu5cos(p2us)'21, cosut'0,
and the interference contribution has the form

I si
(c)~ks ,k i !5uEi u2AH 1

4p
@g0~q,1!2gn~q,1!#

2
1

2
k0

4lG̃~2k!J . ~3.7!

Consequently, to solve the backscattering problem, it is
ficient to find combinations of the componentsg0(q,s)
2s21gn(q,s).

For isotropic scattering (m50) the system of equation
~3.5! reduces to the single equation

@12p0~w!#g0~q,s!5
1

11s
2

1

4p

3E
0

2p

dfE
1

`dr

r

g0~q,x!

x2s
. ~3.8!

In solving Eq.~3.8! ~see Ref. 26!, it is essential to utilize its
following properties. The right-hand side is regular for Rs
,0, the unknown functiong0(q,s) by definition is regular
for Res.0, and the function 12p0(w) is even ins and
analytic in the complex plane ofs, with two cuts (2`,
21) and (1,̀ ). These properties can be used to find a so
tion of the given equation by a method analogous to
Wiener–Hopf method. The solution has the form21

g0~q,s!5
1

p1~ iq !~11s!~11q!~s1q!

3expH 1

2p i E2 i`

i` ds8

s8
S s

s82s

1
1

s821
D lnFp1~w8!

p1~ iq ! G J , ~3.9!

wherew85As822q2.
Setting s51 in Eq. ~3.9! and transforming to the rea

variable of integrations85 iqz , we can write the angula
dependence of the coherent backscattering intensity
m50, according to~3.7!, in the form

I Milne
(c) ~q!;

1

2~11q!2p1~ iq !

3expH 2
1

pE2`

` dqz

qz
211

lnFp1~ iv !

p1~ iq !G J 2
1

2
,

~3.10!

where v5Aqz
21q2. We now compare the angular depe

dence of coherent backscattering according to the e
e

f-

-
e

or

ct

equation~3.10! with the angular dependence obtained by t
well-known method of mirror images according to th
equation4,27

I mir
(c)~q!;E

0

`

dqz

~1/v !arctanv
12~1/v !arctanv

f ~qz!, ~3.11!

where

f ~qz!5
11qz

22~12qz
2!cos~2z* qz!12qzsin~2z* qz!

~11qz
2!2

.

~3.12!

Notice that Eq.~3.12! contains the parameterz* , which can
only be evaluated on the basis of additional consideratio
In the general case the position of the mirror image plan
usually chosen as follows in accordance with the Milne
lution: z* z* 50.7104(12m)21 ~Ref. 23!.

We have calculatedI (c)(q) for m50 according to the
exact equation~3.10! and according to Eqs.~3.11! and~3.12!
with z* 50.7104. The results of the calculations are given
Table I ~columns 2 and 4!. Clearly, the results obtained from
these equations differ by approximately one percent, at le
up to values ofq<1. If only the diffusion pole is included in
the integrand of Eq.~3.11!, so that

v21arctanv

12v21arctanv
→ 3

v2
, ~3.13!

the discrepancy with the exact result increases to 10%~see
column 5 in Table I!.

4. SELF-CONSISTENT DETERMINATION OF THE
INTERPOLATION LENGTH FROM THE ENERGY BALANCE

In general, settingz* equal toz* 50.7104 in the above-
described scheme is not an exclusive choice. For its eva
tion we use an exact integral relation deduced from
Bethe–Salpeter equation. We consider Eqs.~3.1! for q50.
These equations are also formally valid outside the medi
i.e., atZ,0. Integrating the first equation~3.1! overZ2, i.e.,
evaluating the integral ofg0(r21,Z2) over the entire volume,
we obtain

E
2`

`

g̃0~0,Z2!dZ25 l 1
1

4p l E dR2E
0

`

dZ3L~R23!g̃0~0,Z3!.

~4.1!

TABLE I. Coherent backscattering intensity, normalized to the height of
peak, for a scalar field,cosu50, at various scattering angles (q5klsinus).

q IMilne
(c)

I mir
(c)

z* 50.74
I mir

(c)

z* 50.71
I dif

(c)

z* 50.71

0 1 1 1 1
0.1 0.806 0.806 0.808 0.793
0.2 0.663 0.664 0.667 0.642
0.3 0.556 0.556 0.560 0.527
0.4 0.473 0.473 0.478 0.439
0.5 0.409 0.409 0.413 0.374
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The integral of the vector functionL1 over the volume van-
ishes by virtue of symmetry considerations. From Eq.~4.1!,
taking the relation*dR L(R)54p l into account, we obtain

E
2`

0

g̃0~0,Z!dZ5 l . ~4.2!

Equation~4.2! is an exact relation. It has the significance
the energy balance of the incident and scattered radiati
We demonstrate this interpretation for point scattere
m50. According to Eq.~2.2!, the total intensity of multiple
scattering of a plane wave with wave vectork i at a pointr is
written as follows in the ladder approximation:

^udE~R!u2&5g̃0~0,Z!uEu2. ~4.3!

We note that in the given geometry the average intensity
the scattered field depends only on the distance from
boundary of the medium,

^udE~R!u2&5^udE~Z!u2&.

Integrating Eq.~4.3! over the region2`,Z,0, i.e., outside
the scattering medium, and taking Eq.~4.2! into account, we
obtain

l uEu25E
2`

0

^udE~Z!u2&dZ. ~4.4!

The right-hand side represents the total backscattered ra
tion energy per unit area. The expression on the left-h
side can be written in the form

l uEu25E
2`

0

E2 exp@ i ~k i2k i* !•R#dZ. ~4.5!

This integral has the significance of the energy of radiat
that is incident on the interfaceZ50 and is effectively
damped out in a layer of thicknessl. Consequently, Eq.~4.4!
actually represents the balance of the incident and scatt
radiations, because according to~4.4!, the entire radiation
energy incident on unit area is returned in the backward
rection as diffusing radiation energy in the given situation
elastic scattering.

We use the identity~4.2! to evaluate the parameterz* .
We proceed from the first equation of the system~2.17! as
written for the scalar case:

g0~r21,Z2!5
1

2
u~Z2!expS 2

Z2

l D d~r21!1
1

4p l

3E dR3L~R23!G~r31,Z3 ,k23,k i !. ~4.6!

We interpret the functionG in the integrand as the well
known solution given by the method of mirror images.
this method the functionG(R2 ,R1 ,ks ,k i) is replaced by the
difference27

G~R2 ,R1 ,ks ,k i !→G~R2 ,R1!5G0~ uR12R2u!

2G0~ uR12R2
(mir)u!, ~4.7!

where R2
(mir)5(X2 ,Y2 ,2Z222Z* ) is the mirror image of

the pointR2(X2 ,Y2 ,Z2) about the planeZ52z* l , and the
function G0(R)53(12m)/4p l 3R is the solution of the
f
s.

s,

f
e

ia-
d

n

ed

i-
f

Bethe–Salpeter equation for an unbounded medium. Te
describing the anisotropy of multiple scattering in the u
bounded medium are omitted from this solution. As a res
also taking the single-scattering contribution into accou
we can write

G~R2 ,R1!5
3~12m!

4p l 3 F 1

uR12R2u
2

1

uR12R2
(mir)uG

1
1

l
d~R12R2!. ~4.8!

Integrating Eq.~4.6! over the transverse variables and ov
Z2 in the interval (2`,0), we have

E
2`

0

g̃0~0,Z2!dZ25 l 5
1

4p l E2`

0

dZ2

3E
0

`

dZ3L̃~0,Z23!g̃0
(mir)~0,z3!,

~4.9!

where

g̃0
(mir)~0,z3!5E dr31 E

0

`

dZ1e2Z1 / lG~R3 ,R1!. ~4.10!

Substituting Eq.~4.8! into ~4.10!, we obtain

g̃0
(mir)~0,z!53~12m!@11z* 2exp~2z!#1exp~2z!.

~4.11!

As a result, from Eq.~4.9! we find

z* 5
1

12m F1

3
~524 ln 2!1~2 ln 221!mG

'
0.742510.3863m

12m
. ~4.12!

Equation ~4.12! is essentially a consequence of the se
consistency of the diffusion approximation with an ident
deduced from the law of conservation of energy.

We have calculated the angular dependence of cohe
backscattering for an isotropic scattering diagram,m50, ac-
cording to Eq.~3.11!, using the above-determined valuez*
50.7425. The results are given in column 3 of Table I. No
the almost perfect agreement of the given self-consistent
proach with the exact results~to within ;0.1% error limits!,
encouraging hope that this approach to the determinatio
z* will be equally effective for finite values ofm.

It is important to note that the value ofz* obtained for
m50 is fairly close to the Milne interpolation length. Fo
large values ofm, however,z* is appreciably higher than th
value 0.71(12m)21 given by the pure diffusion approach.

We have used Eq.~4.12! to draw a comparison with
experimental data from measurements of the angular de
dence of coherent backscattering by particles of fin
size.28,29 We choose the results of measurements in two s
tems for which the values of the parameterm are given. In
particular, measurements for an aqueous suspension of
particles of diameterd51.091mm are reported in Ref. 28
where the wavelength of the incident radiation
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FIG. 1. Comparison of the results of calculations
the coherent backscattering intensity with expe
mental results for an aqueous suspension of la
particles of diameter 1.091mm ~Ref. 28! ~a! and
0.46mm ~Ref. 29! ~b!. The dashed curves represe
the results of calculations form50.93 ~a! and m
50.85 ~b!.
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l50.633mm, and the refractive index of the medium
n51.33. For this system the authors have measured the
tinction lengthl 52.6mm and from multiple light-scattering
data have obtained the valuem50.93. The measured ful
width at half maximum~FWHM! of the coherent back
scattering peak isWexp51.58 mrad. Our calculations for thi
value of m indicate that the height of the peak calculat
from Eqs.~3.11! and~4.12! decreases by one half for a valu
of the parameterq5klus50.0525. For the given values o
k52pn/l and l we obtainWtheor51.53 mrad, which is rea
sonably consistent with experiment.

In Ref. 29 the FWHM of the peak determined for
suspension of latex particles of diameterd50.46mm and
parametersl50.515mm, n51.33, andl 52.8mm is 2Wexp

54.9 mrad. The values of the parametersl * andm for this
system are given in Ref. 27:l * 519mm, m50.85. Our cal-
culations for these values ofl * and m give 2Wtheor54.4
mrad.

The experimental and calculated data for these two s
tems are shown in Fig. 1 in a unified scale. It is evident t
the theoretical and experimental results are in good ag
ment. Our comparison with experiment demonstrates the
tential interest of measurements over a wider range of an
with a simultaneous determination of the parameters desc
ing the single-scattering diagram. In particular, such an
deavor could reveal how the shape of the coherent ba
scattering peak is influenced not only bycosu, but also by
higher-order momentscosnu ~Ref. 30!. These contributions
can become significant at large angles, where it is evid
from Fig. 1 that the theoretical curves are well above
experimental.

5. ELECTROMAGNETIC FIELD

Here we generalize the above-developed approach
find the analog of the Milne interpolation lengthz* in an
electromagnetic field. Integrating the equation for the ten

ĝ (0)(r21,Z2) in the system~2.17! over the volume, we obtain
x-

s-
t
e-
o-
es
b-
-

k-

nt
e

to

r

E
0

`

g̃ss,11
(0) ~0,z!dz1E

2`

0

g̃ss,11
(0) ~0,z!dz

5
3

2
ds1l 1

3

8p l E dR1

3E
0

`

dZ2Lss, j j ~R12!g̃ j j ,11
(0) ~0,Z2!. ~5.1!

The integrals of the components of the tensorL j j ,l l over the
total volume are readily calculated. We have

E L j j ,i i ~R!dR5
1

8 E L j j , j j ~R!dR5
4p l

15
. ~5.2!

Substituting Eq.~5.2! into ~5.1! and summing over the sub
scripts, we obtain

(
s
E

2`

0

g̃ss,11
(0) ~0,Z!dZ5

3

2
l . ~5.3!

Equation~5.3! is an extension of the integral identity~4.2! to
an electromagnetic field. Here the equivalence of this re
tion to the balance equation is also easily confirmed for i
tropic scattering. In the ladder approximation we can wr
the following equation forZ,0 on the basis of Eq.~2.2!:

^udEs~Z!u2&5
1

lk0
4E G̃~k i2ks!dVs

g̃ss,11
(0) ~0,Z!uEu2.

~5.4!

Integrating this relation in the interval2`,z,0, summing
over the polarizations of the scattered radiation, and mak
use of the optical theorem~2.18! and Eq.~5.3!, we obtain

(
s
E

2`

0

^udEs~Z!u2&dZ5 l uEu2. ~5.5!

Equation~5.5! signifies that the energy of polarized incide
radiation is completely returned from the medium in t
form of scattered radiation of all polarizations.

We integrate the first of the three equations~2.17! over
the half-spaceZ2,0 and sum over the exit polarizations. O
the basis of Eq.~5.3! we obtain
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3

2
l 5

3

8p l (
s
E

2`

0

dZ2E
Z3.0

dR3Lss, j j ~R23!g̃ j j ,11
(0) ~0,Z3!.

~5.6!

As in the scalar case, we replaceĝ (0) on the right-hand side
with the expression obtained by the method of mirror ima

g̃ j j ,11
(0)mir~0,z!5

3

2
~12m!~11z* 2e2z!1

3

2
d1 je

2z. ~5.7!

Direct integration gives

3

4p l 2 E2`

0

dZ2E
Z3.0

dR3Lss,11~R23!exp~2z3!

5H 0.18394, s51,

0.01458, s52,

0.025, s53,

~5.8!

M11,115M22,2253p l S 0.128561
5

16
z* D ,

M11,225M22,1153p l S 0.006251
1

48
z* D ,

M11,335M33,115M22,335M33,2253p l S 0.016661
1

24
z* D ,

M33,335M22,1153p l S 0.076481
1

6
z* D , ~5.9!

where we have introduced the notation

Mss, j j 5
3

2 E
2`

0

dz2 E
0

`

dz3L̃ss, j j ~0,uz23u!

3@11z* 2exp~2z!#. ~5.10!

Substituting Eqs.~5.8!–~5.10! into ~5.6!, we have

z* 5
1

12m
~0.69710.4127m!. ~5.11!

The valuez* 50.697 is very close to the Milne interpo
lation lengthz* 50.7104, so that the result~5.11! can be
regarded as justification for applying to electromagne
fields the Milne interpolation length obtained for sca
fields.

We have used Eq.~5.11! to calculate the polarized an
depolarized components of the backscattering of light
various values ofm.

When the boundary conditions are taken into accoun
the method of mirror images, the polarized and depolari
components of coherent backscattering have the form4,31

I VV
(c)~q!;E

2`

`

dqzf ~qz!g11,11~v !, ~5.12!

I VH
(c) ~q!;E

2`

`

dqzf ~qz!S g12,21~v !
qz

2

v2
1g13,31~v !

q2

v2D ,

where
s

c

r

y
d

g11,115
1

2 H L̃11,112L̃11,22

12j@L̃11,111L̃11,22#

1
~12jL̃33,33!~L̃11,111L̃11,22!12jL̃11,33

2

~12jL̃33,33!@12j~L̃11,111L̃11,22!#22j2L̃11,33
2 J ,

g1 j ,1j5
L̃11,j j

~12jL̃1 j ,1j !
22j2L̃11,j j

2
, j 52,3, ~5.13!

j5
3

8p l
.

The functionsL̃ i j ,kl are the Fourier transforms of the com
ponents of the tensor~2.9! and have the form

L̃11,115
p l

2
~3m012m113m2!,

L̃11,225
1

8
L̃33,335

p l

2
~m022m11m2!,

L̃12,125
p l

2
~m016m11m2!, ~5.14!

L̃11,335
p l

2
~m12m2!,

L̃13,135
p l

2
~m02m2!,

where

m0~v !5
1

v
arctanv, m1~v !5

1

v2
@12m0~v !#,

m2~v !5
1

v2 F1

3
2m1~v !G . ~5.15!

The quantitiesĝ(v) result from the Fourier transforma

tion of the tensorĜ(R1 ,R2uks ,k i) ~2.6! in the unbounded
medium.

The results of calculations of the polarized and depo
ized components of coherent backscattering for various
ues of the parameterm are shown in Fig. 2. It is a well-
known fact that only the polarized component has
triangular peak. It is evident from Fig. 2a that, as in t
scalar case, the steepness of the peak increases sharply
single-scattering anisotropy increases, consistent with
periment and theoretical predictions. The angular dep
dence for a scalar field is shown in the same figure.

The linear slope of the peak is known to be attributa
to the presence of a diffusion pole. For an electromagn
field it is evident from Fig. 2a that the slope of the norma
ized polarized components is somewhat smaller than
slope calculated for a scalar field with the same values om.
This disparity indicates that the relative contribution of no
diffusion terms increases for a vector field.

The diffusion pole contributes absolutely nothing to t
depolarized component, and it is evident from Fig. 2b t
this fact leads to a peak of the Lorentzian type.
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FIG. 2. ~a! Coherent backscattering intensity of the p
larized component, normalized to the height of th
peak, as a function of the angleq5klsinus , calculated
for various values ofm according to Eqs.~5.11! and
~5.12!: ~1! m50; ~2! 0.5; ~3! 0.93. Also shown for com-
parison are the results of calculations~dashed curves!
for a scalar field according to Eqs.~3.11! and ~4.12!
using the same values of the scattering parameter:~4!
m50; ~5! 0.5; ~6! 0.93.~b! Angular dependence of the
depolarized component:~1! m50; ~2! 0.5; ~3! 0.93.
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We have not compared the results of the calculati
according to Eqs.~5.11! and~5.12! with experiment, becaus
the values of the numerical parameters forz* in the scalar
problem~4.12! and the vector problem~5.11! are close and,
taking the experimental error limits into account, essentia
yield identical results for the polarized component.

6. CONCLUSION

We have investigated the Bethe–Salpeter equation f
strongly inhomogeneous medium with an anisotropic sing
scattering diagram. For a medium occupying a half-sp
this equation reduces to a system of equations for the c
ficients of an expansion in Legendre polynomials. By con
lution on the spatial variables we have obtained an inte
equation that can be interpreted as the energy balance o
incident and scattered radiations. The application of
method of mirror images in this integral identity yields
simple expression for the parameter characterizing the p
tion of the effective boundary of the mirror image in th
general case of anisotropic single scattering.

We have compared these results quantitatively, on
one hand, with the exact theoretical results of Milne for is
tropic scattering and, on the other, with existing experim
tal data on the angular dependence of coherent backsca
ing in systems with a large parameterm, which accounts for
the anisotropy of single scattering.

In our description of the peak for isotropic scattering w
have obtained agreement with the predictions of Mi
theory to within fractions of one percent. A rigorous theo
does not yet exist for anisotropic scattering, and we h
drawn on the good agreement with experiment as a crite
of the final results.

We have generalized the newly developed approac
an electromagnetic field. We have calculated and angular
polarization dependences of coherent backscattering for v
ous values ofm. We have compared the predictions of t
theory for the backscattering peak in the model of sca
waves and for an electromagnetic field in order to discern
influence of the vectorial nature of the latter field on coh
ence effects in multiple scattering. We have found that
lowance for the vectorial nature of an electromagnetic fi
produces a relative decrease in the contribution of the di
sion pole responsible for coherent backscattering effects
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The foregoing discussion is valid in the weak scatter
approximation,l! l . However, the parameterl also has an
upper bound imposed by currently existing experimental
curacy. The width of the coherent backscattering peakuw is
determined from the relationkl* uw;1. Assuming that the
error of the angular measurements is of the order of 1023, we
obtain l * ,(1022103)l, i.e., l ,(12m)(1022103)l. This
condition significantly restricts the choice of systems
which the backscattering peak is accessible to observa
and, in particular, excludes systems in which the multi
scattering regime is achieved only at the expense of la
sample thicknesses.

The results obtained in this study can be generalized
more complex scattering system geometries. The method
veloped here is also applicable for calculations of time c
relation functions and for the solution of problems of visu
izing the structure of opaque systems in diffusing wa
spectroscopy.
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~1998! @JETP86, 661 ~1998!#.
18V. V. Tuchin, Usp. Fiz. Nauk167, 517 ~1997!.
19Yu. N. Barabanenkov and V. D. Ozrin, Zh. E´ksp. Teor. Fiz.94~6!, 56

~1988! @Sov. Phys. JETP67, 1117~1988!#.
20M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev.

37, 3575~1988!.
21T. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E48, ’569 ~1993!.
22R. Aronson, J. Opt. Soc. Am. A12, 32532~1995!.
.

23A. A. Golubentsev, Zh. E´ksp. Teor. Fiz.86, 47 ~1984! @Sov. Phys. JETP
59, 26 ~1984!#.

24L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media,
2nd ed.~rev. and enl., with L. P. Pitaevski�!, Pergamon Press, Oxford
New York ~1984!.

25E. Amic, J. M. Luck, and T. M. Nieuwenhuizen, J. Phys. A29, 4915
~1996!.

26B. Davison and J. B. Sykes,Neutron Transport Theory, Clarendon Press,
Oxford ~1957!.

27E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev. Lett.56, 1471
~1986!.

28M. P. van Albada and A. Lagendijk, Phys. Rev. Lett.55, 2692~1985!.
29P. E. Wolf and G. Maret, Phys. Rev. Lett.55, 2696~1985!.
30V. L. Kuz’min and V. P. Romanov, Zh. E´ksp. Teor. Fiz.113, 2022~1998!

@JETP86, 1107~1998!#.
31V. L. Kuzmin and V. P. Romanov, Phys. Rev. E56, 6008~1997!.

Translated by James S. Wood



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 6 DECEMBER 1999
Stabilization of circular states of the hydrogen atom in a strong field
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A solution of the three-dimensional time-dependent Schro¨dinger equation, describing the
ionization dynamics of the hydrogen atom in a circular state in an electromagnetic field, is obtained
by direct numerical integration. It is shown that the observed stabilization effect can be
interpreted on the basis of the Kramers–Henneberger approach. A simple analytical model is
proposed, which qualitatively describes the basic laws of the ionization process under
the conditions of the reported calculations and laboratory experiments on ionization of the circular
hydrogenlike 5g, m54 state of the Ne atom. ©1999 American Institute of Physics.
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1. INTRODUCTION

The stabilization of atomic systems in the presence
ionization by an electromagnetic field, predicted earlie1,2

and observed recently in experimental work,3,4 is one of the
most fascinating phenomena in the physics of interaction
tween a high-intensity laser beam and matter. The crux of
phenomenon is that when the laser intensity is increa
above a certain critical value, called the stabilization thre
old, the ionization probability does not increase~or it even
decreases!. From the theoretical point of view two principa
stabilization mechanisms are discerned at the present t
interference stabilization2,5–7 and stabilization in the
Kramers–Henneberger~KH! regime.1,8–11 However, major
difficulties are encountered in proving experimentally t
prevalence of one mechanism or the other in a specific s
ation.

The swift progress of computer technology in rece
times has set the stage for computer experiments base
direct numerical integration of the time-dependent Sch¨-
dinger equation for a three-dimensional quantum system
an electromagnetic field without any simplifying assum
tions.12–22 Calculations of this kind in application to the dy
namics of the hydrogen atom in a strong electromagn
field have made it possible to observe stabilization in the
regime,13 to corroborate the basic postulates of the theory
interference stabilization,19,20 and to investigate salient cha
acteristics of resonance multiphoton ionization of the grou
state of the hydrogen atom.21

In this paper we discuss the results of calculations of
dynamics of ionization of a Rydberg hydrogen atom exist
initially in a circular state. We determine the probabilities
ionization and population of various atomic states toward
end of the laser pulse. We disclose saturation of the ion
tion probability at a level much lower than unity. We co
struct an analytical model, which integrates the resulting d
based on the KH approach and can be used to describe
qualitative correctness the results of the calculations, al
with those of laboratory experiments on the ionization of
1041063-7761/99/89(12)/6/$15.00
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hydrogenlike neon atom in the circular 5g state. We discuss
the interpretation of the observed dynamics of the atom
system in a wave field in the basis of free-atom states.

2. NUMERICAL MODEL

When a laser pulse with linear polarization of the field
incident on an atom, electromagnetic transitions take pl
without any change in the projection of the electron orbi
momentum onto the direction of the electric field vector«. If
the quantization axis (z axis! of the initial state is directed
along the field vector«(t) ~as is the case in laborator
experiments4!, the electron wave function is written as fo
lows in cylindrical coordinates:

C~r,z,f,t !5c~r,z,t !exp~ imf!,

wherem is the magnetic quantum number governing the p
jection of the orbital momentum onto the quantization ax
The function c(r,z,t) satisfies the two-dimensional time
dependent Schro¨dinger equation

i\
]c

]t
52

\2

2m S 1

r

]

]r
r

]c

]r
1

]2c

]z2 D
1Veff

(m)~r,z!c~r,z,t !2ez«~ t !cos~vt !c~r,z,t !

~1!

with the effective potential

Veff
(m)~r,z!5VC~r,z!1

\2m2

2mr2
, ~2!

which takes into account the presence of a centrifugal bar
for an electron for which the projection of its momentu
onto thez axis is equal tom\. Here VC is the Coulomb
potential.

As in Refs. 19 and 20, in the calculations we use
smoothed Coulomb potential
5 © 1999 American Institute of Physics
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VC52
e2

Aa21r21z2
~3!

with the smoothing parametera50.5a0 , where a0 is the
Bohr radius. It has been shown19 that this potential preserve
the structure of the energy spectrum and the wave funct
of the hydrogen atom, so that for all states with a smo
quantum numbern>3 the difference in the energies of st
tionary states in the real and smoothed Coulomb poten
does not exceed one percent.

We note that the circular state characterized by an orb
quantum numberl 5m and a principal quantum numbe
n5m11 is the ground state in the potential~2!. All lower
states of the hydrogen spectrum are eigenstates of a Ha
tonian with the effective potential~2! for smaller values of
the magnetic quantum number; transitions to these state
forbidden in the presence of a linearly polarized radiat
field.

Many of the calculations discussed in this paper are c
ried out for an initial circular 3d, m52 state. The structure
of this state and of the lowest excited 4d, m52 state are
shown in Fig. 1. The procedure used to calculate the w
functions of stationary states of the hydrogen atom are s
lar to those in Ref. 19.

The ionization dynamics calculations are carried out
radiation with a photon energy\v55.0 eV in the range
P55310112131016 W/cm2. Here the initial 3d state is
associated with a one-photon transition continuum. The
velope of the pulse is assigned a trapezoidal profile w
smoothed edges of durationt f55T and a plateautpl510T
(T52p/v is the duration of the optical cycle!:

«~ t !55
«0 sin2

pt

2t f
, t<t f ,

«0 , t f<t<t f1tpl ,

«0 sin2
p@ t2~2t f1tpl!#

2t f
, t f1tpl<t<2t f1tpl .

~4!

Some of the calculations are also carried out for an ini

FIG. 1. Distribution of the probability density function in the 3d and 4d
states for a magnetic quantum numberm52. Level lines: ~1! 1023; ~2!
1024; ~3! 1024; ~4! 1025.
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5g, m54 state and a photon energy\v52.0 eV to model
conditions similar to those encountered in experiment.4

The procedure used to solve the time-dependent Sc¨-
dinger equation numerically and to calculate the probabilit
of ionization and population of bound atomicunlm& states is
described in Ref. 19. For a givenm all possiblenl( l>m)
states are taken into account for (l 11)<n<nmax513.

3. DISCUSSION OF THE RESULTS

We begin with an analysis of the ionization dynamics
the circular 3d state of the hydrogen atom. The main nume
cal simulation result is the dependence of the ionizat
probability of the hydrogen atom in the 3d, m52 state on
the radiation intensity within the limits of a smoothed tra
ezoidal pulse; this dependence is shown in Fig. 2. Clea
the ionization probability as a function of the intensit
Wi(P), is linear in the weak-field range, attains a maximu
at P* 5631014 W/cm2, and becomes a decreasing functi
of the intensity up to values of the latter;1016 W/cm2. The
distribution of the electron density in the continuum, calc
lated at the end of the laser pulse and shown in Fig. 3 for
intensityP51015 W/cm2, indicates that ionization is a one
photon process in the given range of the parameters.

We have obtained a similarWi(P) curve in calculations
for the initial 5g, m54 state. Here the qualitative form o
the curve and the value of the stabilization threshold ag
with the data of laboratory experiments4 and computer
calculations.22 However, detailed investigations of the caus
of stabilization are not reported in these papers. Another
sue that has not been fully explained is the sizable deviat
even in comparatively weak fields, of theWi(P) curve from
the result of perturbation theory.

FIG. 2. Dependence of the ionization probability of a hydrogen atom ex
ing initially in the circular 3d, m52 state on the radiation intensity within
the limits of a trapezoidal pulse with smoothed leading edges of dura
t f55T and a plateautpl510T.

FIG. 3. Distribution of the electron density in the continuum at terminat
of a laser pulse having an intensity on the lasing ‘‘shelf’’ 1015 W/cm2. The
level lines correspond to Fig. 1.
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A distinctive feature of circular states is their ‘‘squee
ing out’’ from the Coulomb center by the centrifugal pote
tial, a phenomenon that diminishes the matrix element ch
acterizing the ionization probability,dnE5^n,l 5n21,
m5 l udzuE,l 11&. In effect, for pulse durationst such that

G it!1 ~5!

~whereG i is the ionization width of the initial state, calcu
lated by Fermi’s golden rule! and

G i /DEn!1 ~6!

~whereDEn5En112En is the energy distance between co
secutive levels!, perturbation theory should be valid for ca
culating the ionization probability and linear dependence
the ionization probability on the intensity and duration of t
laser pulse:

Wi}uVnEu2t}udnEu2Pt. ~7!

The above-stated criteria of the validity of perturbati
theory yield estimates of the radiation intensity taking in
account the known value of the matrix element for t
3d, m52 state, \v55 eV (dnE.0.32 a.u.; Ref. 23!:
P!431014W/cm2 andP!531015W/cm2, respectively. In
the calculations, however, saturation of the ionization is
served forP.P* 5631014W/cm2, and the linear depen
dence ~7! is observed only in the range of intensitie
P,331013W/cm2. In this case the slope of theWi(P)
curve in the weak-field range can be used to calculate
matrix elementdnE and yields a valuednE.0.27 a.u., which
is in good agreement with previously reported computatio
data.23 Consequently, the data obtained here begin to dev
from the results of perturbation theory in the range of co
paratively weak laser intensitiesP.331013W/cm2. This
conclusion is further corroborated by the results of calcu
tions of the dynamics of population of the ground state in
given effective potentialVeff

(m52) during the laser pulseW0(t)
for various laser intensities.

The validity of perturbation theory rests on the assum
tion that during the active period of the laser pulse the s
tem resides predominantly in theun0l 0& state, i.e.,

W0~ t !5u^c~ t !un0l 0&u2.1,

and the population probabilities of all other states of
discrete and continuous spectra of the atomic Hamilton
are small. For intensitiesP<1013W/cm2 the total population
of all states except the ground 3d state is indeed small, an
perturbation theory is valid. ForP>1014W/cm2 the popula-
tion of the ground state during the entire period of the pu
is a rapidly oscillating function of time with a period equal
half the duration of the optical cycle. During the entire op
cal cycle the population of the ground state is close to ze
and only at times corresponding to the classical turn
points of a free electron oscillating in an electromagne
field does it increase to values close to unity. This dynam
of the process clearly rejects perturbation theory and in
cates the occurrence of strong electromagnetic transition
the system, even though the ionization probability is smal
the final state after termination of the incident laser pul
We note that the observed ionization probability toward
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end of the laser pulse is substantially lower than predicted
perturbation theory, evincing stabilization of the investigat
system.

One possible explanation for the observed stabilizat
could be an interference mechanism.2,5–7 However, signifi-
cant interference of the amplitudes of transition to the c
tinuum, describing transitions of the form

n→E,

n→E8→n8→E,

occurs only under the condition

G i /DEn;1,

which corresponds to intensitiesP>531015W/cm2. Conse-
quently, interference of the amplitudes of the given tran
tions to the continuum is insignificant over essentially t
entire range of our calculations.

According to various estimates, on the other hand,
threshold wave field corresponding to the overbarrier ioni
tion regime for the 3d state does not exceed an intens
;1011W/cm2 ~Refs. 24 and 25!, i.e., over the entire investi
gated range an atomic electron does in fact execute alm
free oscillations. In terms of the populations of states of
atomic basis these oscillations are described as transit
between the initial 3d state and the continuum with allow
ance for free-free transitions between different states of
continuum and, under the stated conditions, cannot be
scribed in the first order of perturbation theory.

The presence of almost free oscillations of an elect
wave packet, corresponding to the overbarrier ionization
gime, suggests that the computational data could be in
preted within the framework of the Kramers-Henneberg
method.16 Indeed, it has been shown26 that, given the condi-
tion \v.I at (I at is the zero-field ionization potential of a
atom!, the basis of KH states is preferable from the physi
standpoint over the basis of field-unperturbed states for
values of the radiation intensity. Under the stated conditio
therefore, the dynamics of population of states of the disc
spectrum and the continuum within the period of the la
pulse should in fact be investigated in the basis of KH sta
In this case stationary states of the system can be soug
the KH potential

VKH5
1

2p E
0

2p

VC~r,z2ae cosj!dj, ~8!

where ae5e«0 /mv2 is the amplitude of the free-electro
oscillations in an electromagnetic field of strength«0 .

Over the entire investigated range of intensities up
P51016W/cm2 the amplitudeae of the free-electron oscil-
lations in the electromagnetic field is found to be smal
than the characteristic localization length of the wave fu
tion a0n259a0 for 3d, m52 states in the potentia
VC(r,z). In this case we can form a series expansion of
integrand in Eq.~8!:
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VC~r,z2ae cosj!5VC~r,z!2ae cosj
]VC

]z

1
ae

2

2
cos2 j

]2VC

]z2
1 . . .

Then, evaluating the integral~8!, we obtain1!

VKH~r,z!.2
e2

r
2

ae
2

2

e2

r 3
P2~cosu!, ~9!

where r 5Ar21z2, P2(cosu)5(1/2)(3 cos2 u21) is a
Legendre polynomial, and cosu5z/r.

Regarding the second term in Eq.~9! as a perturbation
we find the difference between the energy of the KH st
and the energy of the initial atomic state:

DEnl
KH5^nl,m52u2

ae
2

2

e2

r 3
P2~cosu!unl,m52&

5
ae

2

2
e2K 1

r 3L l

2l 13
. ~10!

Making use of the relation

K 1

r 3L 5
1

a0
3n3l ~ l 11/2!~ l 11!

,

we obtain the following expression for the energy levels
the KH potential:

Enl
KH52

e2

2a0

1

n2
2

aKH«0
2

4
, ~11!

where

aKH52
e4

m2v4a0
3

1

n3~ l 11/2!~ l 11!~ l 13/2!
.

It is instructive to compare the resulting expression for
energy of stationary states in the KH potential in the we
field range (ae!a0n2) with the Stark shift of the levels of a
hydrogenlike atom

DEnl52b«0
2/4. ~12!

Calculations of this kind have been carried out previously27

The following equation~in atomic units! was obtained for
states withn. l @1:

b52
1

v2
2

2l

2l 13

l

v4 K 1

r 3L 1 . . . ~13!

Here the first term of the expansion (21/v2) corresponds to
the vibrational energy of a free electron in an electrom
netic field. This term vanishes upon transition to a Kram
oscillating coordinate system. The next term of the exp
sion gives the deviation of the Stark shift of Rydberg lev
from the shift of the continuum boundary. It is evident fro
a comparison of Eqs.~10!, ~11! and~12!, ~13! that under the
conditions of small-amplitude oscillations of the wave pac
the electron energy spectrum in the KH potential coincid
e

e
-

-
s
-

s

t
s

with the atomic spectrum adjusted for the Stark shift of le
els. This result is important from the general physical po
of view and encourages a new look at the modification of
atomic spectrum in the presence of a radiation field: In we
fields the Kramers–Henneberger approach is merely a m
practical method for calculating the shift of the atomic le
els. Moreover, this approach provides a means for visua
ing directly how the atomic potential is distorted under t
influence of an electromagnetic field.

Direct numerical calculations of the energy leve
~Fig. 4! and the wave functions of stationary states in the K
potential in the investigated range of intensities confirm
stated conclusions. The wave functions of the ground stat
ary state in the atomic potential, 3d, m52, and the corre-
sponding KH states with the same projection of the orb
momentum onto the direction of the electric fiel
(3d)KH , m52, for various intensities are close to one a
other, and the energies of stationary KH states in the rang
intensities corresponding to the stabilization threshold dif
at most by 10% from the corresponding free-atom values
addition, forP<1014W/cm2 the dependence ofEnl

KH on the
intensity is linear, i.e., agrees with Eq. 11. The determinat
of the polarizabilityaKH from the slope of theEnl

KH(P) curve
for the (3d)KH state ~Fig. 4, curve1! yields a value that
agrees, within 5% error limits, with the value ofaKH calcu-
lated from Eq.~11!.

Again we note that the stabilization regime emerg
even in weak fields whenae!a0n2, the KH potential has a
single well and differs only somewhat from the atomic p
tential, and the energy levels in it coincide with those in t
atomic potential adjusted for the Stark shift. In this situati
the causes underlying the onset of stabilization require
ther careful study.

In the KH approach the transition of an electron from
bound state to the continuum takes place under the influe
of harmonics of the KH potential:

VKH
( j ) ~r,z!5

1

2p E
0

2p

VC~r,z2ae cosj!exp~2 i j j!dj,

~14!

where thej th harmonic describes transitions in the syste
with an energy increment equal toj \v.

From the physical standpoint the onset of stabilization
the KH regime is attributable to a decrease in the probab
of transition from a bound KH state to the KH continuu

FIG. 4. Dependence of the energy of stationary (3d)KH ~1!, (4d)KH ~2!,
(5g)KH ~3!, and (5d)KH ~4! states in the KH potential on the laser intensit
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under the influence of harmonics of the potentialVKH
( j ) (r,z).

This transition probability is described by matrix elements
the form

^VKH
( j ) &5^~3d!KHuVKH

( j ) uEKH&,

where u(nl)KH& and uEKH& are the wave functions of th
discrete and continuous spectra of the KH potential. In w
fields it is sufficient to restrict the discussion to transitio
occurring only under the influence of the lowest harmo
VKH

(1)(r,z). Allowing for the fact that stabilization is observe
in our calculations forae!a0n2, we writeVKH

(1) in the form

VKH
(1)~r,z!52

1

2

aee
2

r 2
P1~cosu!

2
3

8

ae
3e2

r 4
P3~cosu!1 . . . ~15!

Rewriting Eq.~15! in the form

VKH
(1)~r,z!.2e«0z f~r,z!, ~16!

where

f ~r,z!5
e2

2mv2 H 1

r 3
2

9

8

ae
2

r 5
1

15

8

ae
2z2

r 7
1 . . . J , ~17!

we note that the interaction operatorVKH
(1) can be represente

by a product of two factors, one of which,2ez«0 , corre-
sponds to the operator of interaction with an electromagn
field in d« gauge in the atomic basis. Stabilization in the K
regime sets in because the matrix element^VKH

(1)& does not
increase as the field increases. This behavior is poss
when the increase in the ionization probability with increa
ing intensity, characterized by the operator2ez«0 , is com-
pensated by the contribution of the second factorf (r,z). The
onset of stabilization is also conducive to an increase in
region of localization of a bound KH state in comparis
with the corresponding atomic state and~or! an increase in
the photoelectron energy in the continuum as a result of
decrease in the electron binding energy in the KH poten
as the intensity is increased. However, the overlap integ
of the wave functions of the atomic state and the K
u^(3d)KHunl&u2 states, shown in Table I for various intens
ties, and the curves representing the energies of statio
states of the KH potential in the interval of onset of stab
zation P5101421015W/cm2 ~see Fig. 4! show that these

TABLE I. Squares of the overlap integralsu^nl,m52u(3d)KH , m52&u2 of
the wave functions of stationary Kramers–Henneberger states and the
responding states of the unperturbed atom.

P,W/cm2 3d 4d 5g 5d

0 1 0 0 0
1013 0.995 2.331023 1.431024 6.131024

1014 0.990 4.531023 1.131024 1.231023

631014 0.957 2.0231022 4.031026 5.531023

1015 0.926 3.3131022 2.031025 9.331023

331015 0.786 8.2531022 8.331024 2.6831022

1016 0.500 0.147 6.9031023 6.0031022
f

k

c

ic

le
-

e

e
l
ls

ry

two factors can be disregarded in our situation. Estimat
the amplitude of the probability of transition from the di
crete spectrum to the continuum as

Ci;^EKHuVKH
(1)u~nl !KH&.2e«0 (

n8,l 8
^EKHuzu~n8l 8!KH&

3^~n8l 8!KHu f u~nl !KH&

and ignoring the difference between the wave functions
stationary states in the atomic and KH potentials, we obt

Ci;2e«0^Euzunl&^ f &, ~18!

where

^ f &5^nlu f ~r,z!unl&

is the average value off over the initial quantumunl& state.
Invoking the explicit expression for the radial wave functio
of the circularunl&5un,n21& state,

Rn,n21~r !5A 8

~2n!!n3a0
3S 2r

na0
D n21

expS 2
r

na0
D ,

~19!

for l>2 we obtain

^VKH
(1)&'2e«0znE

e2

2mv2a0
3

1

n4~n21/2!~n21!

3H 12
9

8

ae
2

a0
2n2~n22!~n23/2!

J . ~20!

Making use of the fact that the ionization probabilityW1

;u^VKH
(1)&u2, from Eq.~20! we estimate the circular state st

bilization threshold:

ae
2'~4/9!a0

2n2~n22!~n23/2!. ~21!

Estimates of the stabilization threshold by means of E
~21! for the circular 3d, m52 state with\v55 eV give
ae

2'6a0
2 , so thatP* >3.531014W/cm2, in good agreemen

with the results of our calculations. We also note that un
the conditions of experiments4 on the ionization of the hy-
drogenlike Ne atom in the circular 5g, m54 state by laser
radiation with \v52 eV, from Eq. ~21! we obtain
ae

2'100a0
2 andP* .831013W/cm2, which are also close to

the data of laboratory4 and computer22 experiments.
The most conclusive proof of the validity of th

Kramers–Hennebergen picture under the conditions of
calculations lies in the data shown in Fig. 5. This figu
shows the total population of all bound KH statesWKH

S ~only
the two KH states corresponding to restructured 3d and 4d
states of the atomic potential contribute perceptibly to t
sum in the investigated range of the parameters! during the
active period of the laser pulse for various radiation inten
ties on the lasing ‘‘shelf.’’ The plotted curves are smoo
time functions and do not undergo the typical sharp osci
tions, with a period equal to half the duration of the optic
cycle, of the kind exhibited by the projection of the wav
function c(r,z,t) onto states of the unperturbed atom. He
the time rate of decay of KH states is a monotonic funct
of the laser intensity. The rate of decay of KH states is o

or-
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served to increase as the intensity is increased toP*
5631014W/cm2, and then with a further increase in th
intensity the KH states become increasingly stable aga
ionization, i.e., the stabilization effect is observed. This d
namics of the total population of KH states is complete
consistent with our analytical estimates.

4. CONCLUSION

In summary, the stabilization of circular states observ
in our computer calculations and in the experiments repo
in Ref. 4 can be interpreted on the basis of the Krame
Hennebergen approach. An essential consideration he
the saturation of ionization when the amplitude of the fre
electron oscillations is much smaller than the characteri
length of the atomic potential, and the stationary states in
KH potential are close to those of the free atom. The int
pretation of the results in the basis of free-atom state
interesting in this situation. Under conditions such th
L-type two-photon transitions linking different states of t
discrete spectrum cannot inaugurate the interfere
mechanism,2,5–7 the only possible cause of saturation of t
ionization probability at a level much lower than unity
transitions between states of the continuous spectrum o
system, such transitions being manifested in almost free
cillations of the electron wave packet. This interpretation
the process justifies the contemplation of a new stabiliza
mechanism, which would probably have an interferen
character, viz.: stabilization sets in as a result of cohe
repopulating of the continuum by free-free transitions a
interference of the amplitudes of one-photon and thr
photon transitions to the continuum:

un&→uE&,

un&→uE8&→uE9&→uE&.

We also note that a further increase in the radiation
tensity, on the one hand, will increase the probability of m

FIG. 5. Dynamics of the total population of bound KH states within t
time limits of the laser pulse for various laser intensities:~1! 1014 W/cm2;
~2! 631014 W/cm2; ~3! 1015 W/cm2; ~4! 331015 W/cm2. The arrows indi-
cate the beginning and end of the ‘‘shelf’’ of the laser pulse. The KH sta
correspond to the laser intensity on the lasing ‘‘shelf.’’
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tiphoton transitions, resulting in interference stabilizatio
and, on the other hand, will form a KH potential, whic
differs significantly from the atomic potential. In this situa
tion we are confronted with the conceptual issues of whet
it is possible for the known stabilization mechanisms to ex
and whether there is competition between them.
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Stimulated Brillouin scattering of CO 2 radiation in compressed xenon
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Zh. Éksp. Teor. Fiz.116, 1941–1946~December 1999!

Stimulated Brillouin scattering~STBS! and phase conjugation of CO2 laser radiation have been
demonstrated experimentally for the first time in compressed xenon~59 atm at 21 °C!
located inside the low-Q cavity of this laser. The nonlinear medium was exposed to the action of
counterpropagating focused multimode radiation beams. The difference between the
frequencies of the longitudinal cavity modes was set at the frequency of the acoustic wave (ns

532.260.3 MHz) excited as a result of STBS by 9.584mm radiation. The duration of
the radiation pulsetL was close to the acoustic phonon lifetime (tL,tph'331026 s). The
excitation of STBS was manifested experimentally as the locking of longitudinal modes, an
increase in power and energy, and also an increase in the duration of the lasing pulse and a
reduction in the divergence to the diffraction limit. ©1999 American Institute of Physics.
@S1063-7761~99!00512-0#
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Stimulated Brillouin scattering~STBS! is presently used
for the phase conjugation of laser radiation over almost
entire wavelength range of high-power modern lasers, ra
ing from excimer (lL50.2– 0.3mm) to chemical lasers
(lL52.5– 4.5mm) ~Refs. 1–4!. In the range of CO2 laser
radiation the main and most comprehensively stud
method of obtaining phase conjugation is still four-wa
mixing in nonlinear media. Compared with four-wave mi
ing, the use of low-threshold STBS would substantially si
plify the technical problem of developing phase-conjugat
devices for CO2 laser radiation and would extend the pos
bilities for forming the spatial structure of laser beams. Ho
ever, although STBS has been thoroughly studied in this
ticular spectral range, STBS in the ten micron range has o
been achieved experimentally in a hydrogen plasma at h
intensity 1011– 1013W/cm2 ~Refs. 5 and 6!. The possibilities
for using this STBS in a plasma for phase conjugation h
not yet been clarified. No reliable information is available
the excitation of STBS in condensed or gaseous media.
may be attributable to competition from other nonlinear p
nomena, such as optical breakdown and absorption
radiation.7,8 In the present paper we report results of an
perimental investigation of the STBS of CO2 laser radiation
in compressed xenon~59 atm atT521 °C).

Compressed xenon is a fairly universal STBS medi
because of its transparency over a wide wavelength ra
high Stokes radiation gain, and small Stokes shift. At
selected pressure the velocity of sound in xenon has a m
mum (vs51.443104 cm/s, acoustic wave frequencyns

532.2 MHz), whereas the steady-state Stokes radiation
has a maximum (g'1.1531027 cm/W) ~Ref. 9!. However,
on transition to the middle infrared and high gas pressu
the acoustic phonon lifetime increases proportionately w
the density and the square of the wavelength (tph}rl2). As
a result, for pulsed CO2 lasers at the selected xenon press
the acoustic phonon lifetime is longer than the radiat
1051063-7761/99/89(12)/4/$15.00
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pulse durationtL . For tph.tL the excitation of STBS is
essentially a nonsteady-state process and in order to e
STBS, the pump intensity must be increased compared w
the steady-state regime which causes some deterioratio
the optical breakdown situation. The threshold intensity
the excitation of essentially nonsteady-state STBS as a re
of pulsed pumping of a nonlinear medium by a focus
Gaussian beam~cf. Ref. 10! is given by:

I thr>
M2

8pgld

tph

tL
, M' ln

I L

I n
, l d5

l

p S F

r 0
D 2

,

whereI L andI n}1/l4 are the intensities of the pump and th
noise Stokes radiation, respectively,l is the pump wave-
length,F is the focal length of the focusing lens, andr 0 is
the radius of the Gaussian beam at the lens. In this case
M536, tL'tph, F5146 cm, r 052.5 cm, and g51.15
31027 cm/W, the threshold intensity is I thr'4
3108 W/cm2. The optical breakdown intensity of xenon e
timated using the results of Refs. 11 and 12
107– 108 W/cm2. When the nonlinear medium is pumped b
a focused beam, STBS of CO2 laser radiation cannot be
achieved. Quite clearly, the condition for which the thresh
STBS excitation intensity is lower than the optical brea
down intensity of compressed xenon cannot be satisfied
experiments using conventional systems. We succeede
lowering the probability of optical breakdown by signifi
cantly reducing the STBS excitation threshold. This was
complished by increasing the input Stokes signal~reducing
M ) by pumping the nonlinear medium with focused count
propagating polychromatic beams, with the frequency diff
ence between the monochromatic components being equ
the acoustic wave frequency, achieved by placing the n
linear medium inside the laser cavity.13 This method of ex-
citing STBS can reduce the threshold intensity by almost t
orders of magnitude toI thr'53106 W/cm2.
1 © 1999 American Institute of Physics
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The experiment is shown schematically in Fig. 1. T
laser radiation source was a chemical CO2 laser where the
excitation was transferred from DF* molecules to CO2 mol-
ecules. The laser operated on a single vibrational–rotatio
transition @P(24), ~001–020! vibrational transition#. The
half-height width of the active-medium gain profile for o
laser is'700 MHz. The duration of the radiation pulsetL

was close to the phonon lifetime (tL,tph'331026 s). The
STBS cell was a 760 mm long metal cylinder having an in
diameter of 40 mm and 40 mm thick BaF2 windows. The
windows were sealed with indium. The cell was filled wi

FIG. 1. Optical diagram of CO2 laser with STBS intracavity nonlinearity:1
— active medium,2 — STBS cell filled with xenon to 59 atm at 21 °C,3 —
lens of 146 cm focal length,4 — 2 cm thick plane-parallel BaF2 plate
mounted at Brewster angle,5 — copper mirrors,6 — plane cavity mirror,7
— system to record radiation power and energy , and8 — system to record
radiation power, energy, divergence, and spectral composition.
al

r

xenon via a filter with a 99.99999% filtration efficiency fo
impurity particles larger than 0.1mm.

The CO2 laser cavity was formed by a mirror6 and a
Sagnac ring interferometer. The interferometer was form
by a beam splitter4, in our case a plane-parallel BaF2 plate
mounted at the Brewster angle, and copper mirrors5. The
STBS cell was installed in the focal plane of the lens3. The
initial Q factor of the cavity was set by varying the reflectio
coefficient of the mirror6. This mirror was formed by plane
parallel BaF2 , ZnSe, and NaCl plates with a dielectric coa
ing having a reflection coefficient of 0.28. In order to achie
efficient excitation of STBS, the optical length of the cavi
LR ~length of a circular round trip! was determined from the
condition that the frequency difference between the cav
longitudinal modes should be equal to the acoustic w
frequency, i.e.,LR5LSBS5c/ns'(93161) cm. Any differ-
ence between the frequency difference of the longitudi
modes and the acoustic wave frequency should be less
the half-width of the spontaneous scattering frequency p
file, i.e., the cavity length should have an accuracy be
than DLSBS'LSBS

2 /2ctph5c/2tphns
2'5 cm. It should be

noted that by varying the cavity length, the value oftph can
be estimated from this last relationship by noting wheth
STBS is excited or not. When STBS is excited, the coe
cient of reflection of radiation in the direction of the Sagn
interferometer will increase and consequently the cavity
factor will increase, which should be evident from the ch
acter of the CO2 laser radiation.

The energy, power, spectral composition, and div
gence of the radiation were recorded experimentally. T
FIG. 2. Time profile of CO2 laser radiation power
with STBS excited~a! and fine structure of pulse
at the beginning~b! and end of lasing~c!.
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FIG. 3. Time profile of CO2 laser radiation power
in the absence of STBS~a! (LR5LSBS218 cm)
and fine structure of pulse at the beginning~b!
and end of lasing~c!.
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energy was recorded using IMO-2 calorimeters and
power was recorded using an FP-1 photodetector ('0.7 ns
time resolution! ~Ref. 14!. The photodetector signal was fe
to a 500 MHz Tektronix TDS-540B oscilloscope. The dive
gence of the radiation was recorded using a 50% mi
wedge at the focus of the lens (F5146 cm).

In experiments satisfying the condition for resonance
the Stokes radiation with the longitudinal cavity modesLR

5LSBS we always observed the excitation of STBS rega
less of the initial cavity Q-factor. No STBS was excited
the absence of resonance when the cavity length wasLR

5LSBS218 cm, orLR5LSBS180 cm. When the xenon wa
removed from the STBS cell, no effects associated with
excitation of STBS were recorded regardless of the ca
length.

When STBS is excited, an increase in the number
modes~from four to ten! is observed during the lasing puls
e

r

f

-

e
y

f

and these gradually become phase-locked until comp
locking is achieved. Whereas at the beginning of the pu
~Fig. 2! four-mode beats with arbitrary phases are observ
by the end of the pulse we observe a regular series of h
power 6 ns peaks with a repetition period 1/ns531 ns, i.e.,
we observe the locking of approximately ten modes. S
mode locking at STBS nonlinearity is energetica
favorable15 since in this case all the modes are involved
creating a single acoustic grating which enhances the ca
Q factor. As a result, the increase in the Q factor with tim
increases the power and duration of the radiation~compare
Figs. 2 and 3!. The radiation energy of the CO2 laser was
doubled as a result of the excitation of STBS.

In the absence of STBS, the beginning of the pulse w
also modulated by four modes with arbitrary phases but s
sequently the beats diminish and the pulse profile
f
e:

e

FIG. 4. Traces of far-field zone at the focus o
F5146 cm lens obtained using a 50% wedg
upper trace — in the presence of STBS (LR

5LSBS), radiation energy 1.6 J; lower trac
— in the absence of STBS (LR5LSBS

180 cm), radiation energy 0.6 J.
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smoothed as a result of an increase in the number of mo

and the absence of locking, i.e., the pulse has the nor

profile for a free-running CO2 laser~Fig. 3!.

The excitation of STBS and the onset of phase conju
tion can be seen particularly clearly in the change in
divergence of the laser radiation~Fig. 4!. Whereas in the
absence of STBS the divergence of the radiation was eq
to eight diffraction limits, in the presence of STBS and pha
conjugation the divergence decreased almost to the diff
tion limit and the brightness of the laser radiation increas
64 times. It is also important to note that when STBS
excited, the selected optical cavity system could deli
diffraction-quality radiation with a high Fresnel number (N

'10).
In this study we have demonstrated that a low-thresh

STBS mirror can be developed for long-wavelength radiat
where the influence of competing processes is particula
strong. However, the range of application of these result
not confined to CO2 lasers. In particular, this laser syste
may prove useful for CO and oxygen–iodine lasers, and
studying various types of stimulated Rayleigh scattering p
cesses. For lasers having a uniformly broadened gain pr
the mode locking dynamics can be used to obtain additio
information on the temperature of the inverted medium,
kinetics of the processes leading to the lasing effect, and
to achieve longitudinal mode selection using STBS nonl
earity.
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Angular scattering diagrams of linearly polarized relativistic-intensity electromagnetic
radiation in a plasma
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Instability of the propagation of nonlinear nonmonochromatic relativistic-intensity electromagnetic
waves in a cold subcritical-density plasma is analyzed in three-dimensional geometry.
Angular diagrams of their scattering are presented. The calculations show that forward and
backward scattering may occur. The radiation in a specific direction is a set of harmonics,
propagating against a continuum background, whose frequencies depend on the angle.
Radiation at a specific frequency propagates in a set of scattering cones. The azimuthal cone
angles depend on frequency. ©1999 American Institute of Physics.@S1063-7761~99!00612-5#
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1. INTRODUCTION

Recently an increasing number of studies have been
voted to plasma electrodynamics1 and in particular to the
propagation of relativistic-intensity laser radiation in mat
~see, for example, Refs. 2–8!.

The focusing of ultrashort laser pulses gives rise to
trahigh electromagnetic radiation intensitiesI>1018W/cm2.
A characteristic feature of these fields is the appearanc
relativistic effects in the electron motion caused by an
crease in their mass. In addition, in such strong fields
material is frequently converted to a completely ioniz
state. Under these conditions nonlinear currents of free e
trons make the main contribution to the polarization of t
material2 ~a wider range of phenomena associated with
interaction between high-power electromagnetic radiat
and matter was considered in Ref. 3!.

Below, we consider the scattering of laser radiation i
plasma caused by the formation of nonlinear currents of
electrons. Corresponding instabilities of the electromagn
field are already manifest in a spatially one-dimensional
ometry. The scattering of radiation at relativistic intensit
was analyzed in Refs. 9–13 and also by the pres
authors.14–16

The scattering of laser radiation in matter has been s
ied in broad terms for more than forty years but neverthe
it is extremely difficult to achieve quantitative agreeme
between theory and experiment, evidently because of the
lowing circumstances. First, in an incompletely ionized m
terial several mechanisms contribute simultaneously to
scattering process. Second, a spectral device receives r
tion from different points in the scattering volume, i.e., w
are dealing with an integral effect. Third, the laser radiat
entering the plasma is transformed. The monochromatic p
ton flux emits and absorbs plasmons with the result that
converted into a sum of monochromatic fluxes at frequen
shifted by multiples of the plasma frequencyvp . The
plasma frequency then depends on the intensity of the st
electromagnetic wave. This transformation process take
certain time. The transformed wave is scattered which in
1051063-7761/99/89(12)/8/$15.00
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duces an additional element of indeterminacy into the th
retical interpretation of the scattering. In the present study
consider the scattering of a transformed relativistic-intens
electromagnetic wave~Akhiezer–Polovin wave! in a com-
pletely ionized material by nonlinear currents of the plas
electron current. As in Ref. 14, we shall study the most
teresting case of the scattering of a linearly polarized e
tromagnetic wave.

The local characteristics of the field-plasma system
studied in detail by determining the temporal instabil
growth rates of the electromagnetic radiation and constr
ing angular diagrams of its scattering. In some cases,
instance in the focal spot where the integral and local ch
acteristics differ only slightly, the angular diagrams can
used to interpret the experimental data.

The present paper is also a continuation of Ref. 15 a
16, in which the authors analyzed a three-dimensional the
of the scattering of a circularly polarized, relativistic
intensity, monochromatic electromagnetic wave in a c
subcritical-density plasma. Below, we consider the scatte
of a linearly polarized strong electromagnetic wave which
the case most frequently encountered experimentally. Fir
rigorous linear analysis of this problem is made in thre
dimensional geometry. Until recently the description of t
scattering of relativistic-intensity electromagnetic radiati
was confined to using various approximations. These
clude: ~1! the one-dimensional approximation~see, for ex-
ample, Ref. 9!, ~2! an approximation using a monochromat
linearly polarized reference wave which does not strictly s
isfy a system of relativistic Maxwell and hydrodynam
equations;~3! searching for the growth rates assuming th
one of the transverse components of the wave vector is z
~4! resonance approximations which involve using ex
phase-matching conditions for various wave processes~see,
for instance, Ref. 17!.

In experiments, nearly monochromatic laser radiat
forms a plasma and is transformed in this plasma to giv
nonlinear electromagnetic wave ~nonmonochromatic
Akhiezer–Polovin wave18,16!. This nonlinear electromag
5 © 1999 American Institute of Physics
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netic wave is naturally considered as the reference solu
when analyzing scattering. The results presented below s
that a nonlinear Akhiezer–Polovin wave describes a reg
with the establishment of a doubly-periodic solution.

Hence, this analysis is complex first, because it invol
selecting a rigorous reference solution which is nonmo
chromatic for a linearly polarized wave~as opposed to
monochromatic for a circularly polarized wave! and second,
because of the extreme strictness of the linear analysis o
growth rates performed for a system of partial different
equations with oscillating coefficients, unlike previous a
proximate analyses. The use of a universal approach allo
us ~as for a circularly polarized wave, see Ref. 15! to de-
scribe the generation of stimulated Raman scattering~STRS!
harmonics, the hydrodynamic analog of Compton scatter
continuum generation, and also the interaction of these
cesses for the case of a linearly polarized wave.

We note some characteristic features of this theoret
method of analysis. The temporal growth rate of this ins
bility is defined as the maximum eigenvalue of the matrix
the linear system of ordinary differential equations be
solved. This system is obtained by introducing a travel
variable along the propagation axis, taking the Fourier tra
form with respect to the spatial coordinates, and conver
from an infinite to a finite number of coupled ordinary d
ferential equations. In particular, this approach can avoid
conventional procedure of writing out and analyzing cumb
some dispersion equations. The periodicity of the growth r
with respect to the longitudinal component of the wave v
tor is substantiated below for periodic reference solutions
an earlier study we merely drew attention to the quasip
odicity of the numerically determined growth rates18.

Thus, we present results of a rigorous linear analysis
system of Maxwell and relativistic electron hydrodynam
equations for a linearly polarized reference wave of arbitr
amplitude in three-dimensional geometry. It is shown t
the periodicity of the reference solution generates periodi
of the growth rate in the corresponding perturbation wa
vector space and that the maximum period of the doub
periodic rigorous reference solution determines the perio
the growth rate.

2. INITIAL EQUATIONS

The propagation of relativistic-intensity laser radiation
a plasma is described by a system of Maxwell and relativi
electron hydrodynamic equations:

~D2] t
2!A5“w t1

n

g
~A1“c!, ~1!

Dw5n21, ~2!

“A50, ~3!

c t5w2g, ~4!

nt1S“ n

g
~A1“c! D50, ~5!

g5A11uA1“cu2. ~6!
n
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s
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Here A and w are the vector and scalar potentials of t
electromagnetic field,c is the potential of the generalize
momentum of the field-plasma system, andn is the electron
density. The expression~6! determines the relativistic mas
factor g. The subscriptt indicates a partial time derivative
The system~1!–~6! is normalized as follows:A and w are
normalized tomc2/e,n is normalized to the unperturbe
value of the electron densityn0 , the momentum of the elec
tron liquid is normalized tomc, the time is normalized to
vp

21 ~wherevp is the unperturbed plasma frequency!, and
the spatial coordinates are normalized toc/vp .

Note that when deriving this system of equations
assumed that the generalized electron momentum has no
tex component (“3(p2A)[0) ~the law of frozen curl of
the generalized momentum applies: if this condition is sa
fied initially, it is then satisfied at all subsequent times!.

The initial system of equations~1!–~6! satisfies the con-
servation laws for the material and the field~see, for in-
stance, Ref. 6!.

3. LINEARLY POLARIZED RELATIVISTIC-INTENSITY
REFERENCE WAVE

3.1. Relativistic theory

We shall analyze the Maxwell and relativistic hydrod
namic equations for the plasma electron component~1!–~6!
for x15x250. As was shown by Akhiezer and Polovin,19 the
search for solutions of these equations

A~x,t !5e1A1~j!1e2A2~j!, w5w~j!,

n5n~j!, c5c~j!,

which depend on the single variablej5x32qt, q
5A11e2, whereq is the phase velocity and« is the param-
eter, can be reduced to solving the following problem:

e2Ajj1F~A,w,e!A50, ~7!

e2wjj1F~A,w,e!w2150, ~8!

F~A,w,e!5A 11e2

w21e2~11uAu2!
. ~9!

In this case, the momentum and electron density are
pressed in terms of the vector and scalar potentials of
electromagnetic field19 ~see also Refs. 18 and 16!.

In general, solutions of this problem can be obtain
numerically. Analytic approximations were obtained in R
19 for specific cases such as small-amplitude oscillatio
purely longitudinal oscillations, monochromatic circular
polarized electromagnetic waves, and monochromatic os
lations having a small longitudinal component. In additio
approximate solutions were constructed in Ref. 19 for
case of greatest practical interest, when the phase veloci
the propagating electromagnetic radiation is close to the
locity of light. However, in that study the authors only an
lyzed the particular case when the transverse componen
the electromagnetic wave is monochromatic. In this case
nonlinear amplitude-phase modulation occurs. Claire a
Perkins20 report an analytic investigation of plane linear
polarized electromagnetic waves whose phase velocity c
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siderably exceeds the velocity of light. Kawet al.21 describe
results of a detailed numerical investigation of solutions
the Akhiezer–Polovin equations on the phase plane. Ch
and Clemmow22 also consider small-amplitude waves corr
sponding to solutions of the Akhiezer–Polovin equations a
in addition construct solutions of these equations in the h
amplitude limit.

In previous papers18,16 we studied the nonlinea
amplitude-phase self-modulation of nonmonochroma
Akhiezer–Polovin waves. Figure 1 gives results of a num
cal solution of the Akhiezer–Polovin problem18,16 ~7!–~9!
using the following conditions:A1(0)51.2, A1j

(0)55,
w(0)52, A2(0)50, A2j

(0)50 ~linear polarization!, wj(0)
50, ande50.1. Concentration of electromagnetic radiati
is observed between the crests of the electrostatic pote
~amplitude modulation! and the entire pattern is shifted wit
the phase velocityq. The oscillation frequency of the vecto
potential also varies between the crests and the minimum
the scalar potential~phase modulation!.

3.2. Asymptotic theory of nonlinear self-modulation of
linearly polarized rf electromagnetic waves in plasma

An analytic theory of nonmonochromatic, rf, linearly p
larized, relativistic-intensity electromagnetic waves
plasma~in terms of the Akhiezer–Polovin problem! was de-
veloped in Refs. 18 and 16. When the frequency of
propagating laser radiation is much higher than the plas
frequency, the phase velocity of the electromagnetic waveq
is close to the velocity of light and the parametere is small.
In Refs. 18 and 16 the authors used the following repres
tation to obtain approximate asymptotic solutions for a p
ticular parameter:

A15 (
m50

`

emUm~j,Q~j!!, w5 (
m50

`

emfm~j,Q~j!!,

Qj5e21m~j!.

FIG. 1. Results of a numerical solution of the Akhiezer–Polovin probl
~7!–~9!. Initial conditions:A1(0)51.2, A1j

(0)55, w(0)52, wj(0)521,
ande50.1.
f
n
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h
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Herem~j! is an additional unknown function. As was show
in these studies, the functionf0 only depends onj and is a
solution of the equation

f0jj
5

1

2 S 11~1/2!g2f0
1/2

f0
2 21D , ~10!

and the following relations are also satisfied:

U0~j!5gf0
1/4~j!sinQ, ~11!

m~j!5f0
21/2. ~12!

The constantg is the coupling parameter between the ele
tromagnetic wave and the Langmuir response of the plas

For Eq.~10! the following conservation law is satisfied

f0j

2 1V~f0!5E, ~13!

V~f0!5Vp~f0!1Vl~f0!, ~14!

Vp~f0!5f01f0
21 , ~15!

Vl~f0!5g2f0
21/2. ~16!

In Refs. 18 and 16 the authors also give the correspo
ing principal terms of the asymptotic forms for the dens
and the longitudinal component of the electron momentu

Calculations of higher-order approximations in terms
the small parameter yield the following results:

U1~j,Q!5a1~j!cosQ,

a1~j!5
f0

1/4

2 E g~g2f0
1/223~Ef023f0

211!!

16f0
5/2 dj,

f1[0,

U2~j,Q!5
g3

128f0
5/4~j!

sin 3Q1a2~j!cos~Q1const!,

f2~j,Q!5
g2

16f0
1/2~j!

cos 2Q,

where the last term in the equation forU2 , which corre-
sponds to a small correction to the solution ‘‘at the fund
mental frequency’’ should be determined from the followin
approximations fore. Thus, the second-order corrections d
scribe second and third harmonic generation at the local
quency of the propagating electromagnetic wave.

An integral expression for the period of the slow osc
lations generated by the propagating electromagnetic ra
tion follows explicitly from the relationships~13!–~16!:

T~E,g!5 R df

AE2V~f!
.

We can also introduce the concept of the average wave n
ber for the rf electromagnetic wave::

k05~Te!21 R f0
21/2dj.

In this case, as was shown earlier,18,16 we obtain the simple
dispersion relationship:
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k05Nkp , kp5
2p

T
.

The normalized intensity of an Akhiezer–Polovin wa
averaged over the rf oscillations of the electromagnetic fi
and the plasmon period, is given by:18,16

Ī 5
g2k0

2e
.

3.3. Quasirelativistic approximation

It is possible to have a situation where the electrom
netic waves are such that their propagation in a plasma
be described using a quasirelativistic approximation: wh
relativistic corrections to the masses of the oscillating el
trons are taken into account, we can confine our analysi
an expansion of the gamma factor in powers of the ratio
the electron momentum tomc ~in equations which have no
been reduced to dimensionless form! and we can neglec
corrections of the fourth order or higher~it should then be
borne in mind that in this particular case, the phase velo
of the electromagnetic radiation is higher than the velocity
light!. The mathematically most rigorous implementation
this approach can be found in Ref. 23, where the auth
introduce a small parameter associated with the deviatio
the electromagnetic field and plasma parameters from
equilibrium values and by means of expansions in terms
this small parameter, they derive a corresponding nonste
state nonlinear problem~see also Ref. 24!. Below we con-
sider the steady-state particular case, the quasirelativ
analog of the Akhiezer–Polovin problem, which is obtain
assuming that the partial time derivatives in the problem
scribed in Refs. 23 and 24 are zero.

Mori et al.25 used a quasirelativistic approximation
study the instabilities of circularly polarized monochroma
electromagnetic radiation in a plasma.

A quasirelativistic analog of the Akhiezer–Polovin pro
lem ~considered below for the case of a linearly polariz
electromagnetic wave! is also obtained from the ‘‘complete’
relativistic problem ~7!–~9! if the nonlinearities in these
equations are expanded in terms of«, which corresponds to
the propagation of rf electromagnetic waves, the scalar
tential is expressed in the form

w511 f , ~17!

it is assumed thatf ;A1
2, and corrections of the orderA1

4 are
neglected. The corresponding problem has the form

e2A1jj
1~12 f !A150,

f jj1 f 5
1

2
A1

2 .

For a given external field the second of these equati
becomes a linear problem to determine the scalar pote
and is solved4 using the Green function~provided that the
integral converges!:

f ~j!5E
2`

`

sinuj2j8u
A1

2~j8!

2
dj8.
d
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An expansion in terms of the small parameter«, per-
formed as for the relativistic problem considered in the p
vious section, yields the following results:

A15g~12 f !21/4sinS e21E ~12 f !1/2dj D1O~e2!,

~18!

f jj1 f 5
1

4
g2~12 f !21/2.

The second of these equations corresponds to the cons
tion law

f j
21Vqr~ f !5E8, ~19!

Vqr~ f !5 f 21g2~12 f !1/2. ~20!

These approximate relationships can be obtained fr
the corresponding expressions in relativistic theory. Th
substituting~17! into the expressions~11!, and ~12! for the
vector-potential obtained in Sec. 3.2 of this study we obta
after making an elementary transformation:

A15gS 12 f 2

12 f D 1/4

sinS e21E S 12 f 2

12 f D 21/2

dj D1O~e!.

Neglecting the value off 2 in accordance with the quasirela
tivistic approximation, we quite clearly arrive at the relatio
ship ~18!. We then expand

Vp~w!5Vp~11 f !'21 f 2

and use the obvious representation

Vl~w!5Vl~11 f !5g2A 12 f

12 f 2.

Again neglectingf 2 in this last equation, from the relativisti
conservation law~13!–~16! for the average vector-potentia
we obtain the quasirelativistic conservation law~19! and
~20!.

4. SCATTERING EQUATIONS FOR A LINEARLY POLARIZED
WAVE

As the reference solution we take an arbitrary linea
polarized Akhiezer–Polovin wave~see Fig. 1!. This is an
exact numerical solution of the system~1!–~6! described by
the functionsA0 , w0 , n0 , p05e3p3,0 ~we give these the
subscript ‘‘0’’!. Let us assume that the small perturbatio
dA, dw, dn, and dp5“dc propagate against the back
ground of this reference wave. The system of lineariz
equations for the perturbations has the form

A5A01dA, w5w01dw,

n5n01dn, p5p01dp,

~D2] t
2!dA5“dw t1

n0

g0
~dA1dp!1

1

g0
~A01p0!dn

2
n0

g0
3 ~A01p0!~~A01p0!•~dA1dp!!,

“A50, Ddw5dn,
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dpt5“~dw2g0
21~A01p0!•~dA1dp!!,

dnt1“S n0

g0
~dA1dp!1

1

g0
~A01p0!dn

2
n0

g0
3 ~A01p0!•~~A01p0!•~dA1dp!! D 50.

We introduce the notation for the functions appearing
these equations:

f 1~j!5
n0~j!

g0~j!
, f 2~j!5

A1,0~j!

g0~j!
, f 3~j!5

p3,0~j!

g0~j!
,

f 4~j!5
n0~j!A1,0~j!

g0
2~j!

, f 5~j!5
n0~j!p3,0~j!

g0
2~j!

.

These functions are periodic and can be expanded as Fo
series:

f j~j!5(
m

f m
j exp~ imkpj!. ~21!

f m
4 5(

j
f j

1f m2 j
2 , f m

5 5(
j

f j
1f m2 j

3 .

Substituting Eq.~21! into the linearized equations give
above and using the Fourier transformation:

~dA,dw,dn,dp!T5~2p!23/2E exp~2 ik,~x1 ,x2 ,j!!

3~dA,dw,dn,dp!k
Td3k,

we obtain the following system of equations to describe
instability: (k55(k1 ,k2 ,x)):

2~ uku21~] t1 iqx!2!dA10
5(

m
~am

1 dA12m
1am

2 dA22m

1am
3 dc2m1am

4 dn2m!,

~22!

2~ uku21~] t1 iqx!2!dA20
5(

m
~bm

1 dA12m
1bm

2 dA22m

1bm
3 dC2m1bm

4 dn2m!,

~23!

~] t1 iqx!dn05(
m

~cm
1 dA12m

1cm
2 dA22m

1cm
3 dC2m1cm

4 dn2m!, ~24!

~] t1 iqx!dc05(
m

~dm
1 dA12m

1dm
2 dA22m

1dm
3 dC2m1dm

4 dn2m!, ~25!

where
rier

e

am
1 5S 12

k1
2mkp

uku2~x1mkp!
D f m

1 2(
l

S S 12
k1

2

uku2D f l
4

2
k1x

uku2 f l
5D S f m2 l

2 2
k1

x1mkp
f m2 l

3 D ,

am
2 52

k1k2mkp

uku2~x1mkp!
f m

1 1(
l

S S 12
k1

2

uku2D f l
4

2
k1x

uku2 f l
5D k2

x1mkp
f m2 l

3 ,

am
3 52

ik1xmkp

uku2 f m
1 1 i (

l
S S 12 i

k1
2

uku2D f l
42 i

k1x

uku2 f l
5D

3~k1f m2 l
2 2~x1mkp! f m2 l

3 !,

am
4 5 f m

2 2
k1

uku2 ~k1f m
2 1x f m

3 !,

bm
1 52

k1k2mkp

uku2~x1mkp!
f m

1 1(
l

k2

uku2 ~k1f l
41x f l

5!

3S f m2 l
2 2

k1

x1mkp
f m2 l

3 D ,

bm
2 5S 12

k2
2mkp

uku2~x1mkp!
D f m

1

2(
l

k2
2

uku2~x1mkp!
~k1f l

41x f l
5! f m2 l

3 ,

bm
3 5 i

k2xmkp

uku2 f m
1 2 i

k2

uku2 (
l

~k1f l
41x f l

5!~k1f m2 l
2

1~x1mkp! f m2 l
3 !,

bm
4 52

k2

uku2 ~k1f m
2 1x f m

3 !,

cm
1 5 i

k1mkp

x1mkp
f m

1 2 i (
l

~k1f l
41x f l

5!

3S f m2 l
2 2

k1

x1mkp
f m2 l

3 D ,

cm
2 5 i

k2mkp

x1mkp
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After being converted to the standard form, the equat
to determine the eigenvalues of the matrixB of the system of
ordinary differential equations obtained from the equatio
presented above has the form

detuB2GIu50

and remains unchanged when the argumentx shifts by kp

since the unbounded matrixB transforms back to itself. Con
sequently, all the eigenvalues

Gm5ReGm1 i Im Gm

of the matrixB are periodic functions of the argumentx with
the periodkp . The growth rate of the problem is defined
the maximum positive real part of the eigenvalues of
matrix B:

G5max ReGm .

5. SCATTERING OF A LINEARLY POLARIZED WAVE IN THE
ONE-DIMENSIONAL CASE

Borovski� et al.14 investigated the instability of a linearl
polarized wave using the system given above in the spat
one-dimensional case, i.e., whenk15k250. These authors
established that a linearly polarized nonmonochromatic w
is unstable with respect to forward–backward scattering
the relativistic intensity range. Calculations of specific va
ants showed that the scattering spectrum in the wave ve
space consists of a periodic set of lines comprising ST
harmonics shifted relative to one another by multiples ofkp .
The profile of a particular growth rate line is also influenc
by a relativistic hydrodynamic analog of the Compton sc
tering of photons by electron propagating in the field of t
reference wave at velocities close to the velocity of lig
The profile of the line wings is attributed to the generation
Langmuir noise by the propagating reference wave.

Thus, a plane wave in a plasma is unstable even in o
dimensional geometry.

A comparison between the results of a rigorous lin
analysis of the propagation instability of plane~nonmono-
chromatic! linearly polarized and~monochromatic! circularly
polarized strong waves in a cold plasma reveals substa
differences in the growth rate lines. Both the period betwe
the neighboring harmonics ink space~k0 for circular andkp

for linear polarizations! and the structure of the lines diffe
For circular polarization the hydrodynamic analog of t
Compton effect does not have a significant influence in o
dimensional geometry whereas for linear polarization, t
effect forms the line center. In the nonrelativistic range
growth rate line splits into the Stokes and anti-Stokes co
ponents for the circular polarization whereas for the lin
polarization all the STRS harmonics are represented.

6. ANGULAR SCATTERING DIAGRAMS FOR A LINEARLY
POLARIZED WAVE

The maximum growth rate for the problem~22!–~25!
was investigated as a function of three components of
perturbation wave vectork. Only a graph of the growth rate
as a function of two variables can give a clear representat
It is interesting to examine the dependence of the growth
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on the variables in a spherical coordinate system. In Ca
sian coordinates (e1 ,e2 ,e3) the reference wave propagate
along thee3 axis and is polarized along thee1 axis. The
vectork of the scattered wave forms the angleu with the e3

axis and has the modulusk. The vectork' , being the pro-
jection of the vectork on the plane (e1 ,e2), forms the angle
a with the e1 axis. The anglesa,u are the polar and azi
muthal angles in spherical coordinates. We shall analyze
distributions of the growth rate with a fixed radiusk as a
function of the anglesu anda. The value ofk determines the
frequency of the scattered radiationv5k/c and the anglesu
and a determine the direction of scattering in spherical c
ordinates. Since the experimental measurements are ma
different anglesu and a using spectral devices tuned to
specific frequencyv, the diagrams calculated below can b
used directly to interpret the experimental data.

Figure 2 shows the distribution ofG as a function of
cosu and a for k53.5kp and the reference wave shown
Fig. 1. The scattering structure has the following charac
istic features. The scattering takes place in a discrete rang
nested cones. Within each cone the scattering is anisotr
in terms of the polar angle. The scattering angle is symme
with respect tou5p/2 ~forward–backward! and with respect
to the polarization planea50 ~right-left!.

Figure 3 gives dependences ofG on a for two fixed
scattering cones cosu5mkp /k, wherem51,8 andk58.5kp

~the reference wave is the same as for Fig. 2!. This diagram
gives an idea of the azimuthal scattering anisotropy: the s
tering predominates fora50,p, i.e., in the direction of po-
larization of the reference wave.

Figure 4 givesG as a function of cosu for the polar

FIG. 2. Distribution of the growth rateG as a function of (cosu,a) for
k53.5kp and the reference wave shown in Fig. 1.
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angle a50 corresponding to the scattering maximum f
various values ofk/kp50.5 ~a!, 1.0 ~b!, 3.5 ~c!, and 8.5~d!.
This figure shows the change in the structure of the ang
scattering diagram ask increases~scattered radiation fre
quencies!. For values ofk which are multiples ofkp ~Fig. 4b!
narrow cones of scattered radiation appear in the directio
the anglesu50,p ~forward–backward!, which correspond to
the hydrodynamic analog of Compton scattering. A furth
increase ink shifts the spikes toward the center~on the scale
in Fig. 4! and leads to the formation of a pair of new spik
each timek passes through a value which is a multiple ofkp .

FIG. 3. Dependence of the growth rateG on a for two fixed scattering
cones cosu5mkp /k, wherem51,8 andk58.5kp ~the reference wave is the
same as that for Fig. 2!.
ar

of

r

As a result, in Fig. 4d we have eight pairs of spikes and o
central one. The coordinates of the maxima of all the spi
are given by

cosu5mkp /k, m50,61,62,...

We note that the structure of the growth rate is a co
tinuous background which provides evidence of continu
generation, with a set of discrete spikes. These are attri
able to STRS at plasmons and the hydrodynamic analo
Compton scattering.

7. CONCLUSIONS

A spatially three-dimensional geometry has been use
make a rigorous linear analysis of the propagation instab
of a plane linearly polarized strong electromagnetic wave
a plasma. The nature of this wave is described: this wav
not monochromatic which significantly complicates t
analysis. The wave is a doubly periodic solution of relativ
tic Maxwell and electron hydrodynamic equations~an
Akhiezer–Polovin wave!. From the physical point of view
this amplitude-phase modulated wave is a set of pho
fluxes at frequencies shifted by multiples of the plasma f
quency.

An Akhiezer–Polovin wave was used as the referen
solution to analyze the scattering problem. The theory
scribes the following wave processes: generation of ST
harmonics of the propagating reference radiation in the n
linear medium, a hydrodynamic analog of Compton scat
ing as a result of an electron recoil effect, electromagne
wave interaction in the plasma, and also continuum gen
g

FIG. 4. Dependences of the growth rateG on cosu for
the polar anglea50 corresponding to the scatterin
maximum, for various values ofk/kp : 0.5 ~a!, 1.0 ~b!,
3.5 ~c!, and 8.5~d!.
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tion as a result of the scattering of laser radiation. The co
bination of these wave processes was studied in the rel
istic case.

In the present study we used a relativistic hydrodynam
model of a cold plasma in an electromagnetic field. T
model is valid when the energy of the electron oscillations
the field substantially exceeds their thermal energy. We
use I>231016W/cm2 ~see Ref. 6! as an estimate of the
validity of the model.

The ‘‘model’’ nature of the analysis also involves exce
sive allowance for long-wavelength perturbations, wh
leads to the appearance of divergence in the spectral line
the STRS harmonics. The overall scattering pattern~the fre-
quencies and directions of the scattered waves, the pos
of the scattering cones, and the scattering anisotropy! are
almost independent of this circumstance. This model can
be used to calculate the narrow region of spectral profi
near the maxima. In order to eliminate the contribution
long-wavelength perturbations, we can propose several
cedures: allowance for thermal effects, including shielding
the potential, allowance for the bounded length of the la
radiation pulse, and thus the dimensions of the plasma
gion, and so on. In the numerical investigations the prese
of characteristic features was taken into account using
cial nonuniform grids.

The calculations show that forward and backward sc
tering may occur. Each radiation flux can be expanded a
angular spectrum. The radiation in a specific direction is a
of harmonics propagating against a continuum backgrou
whose frequencies depend on the angle. However, the ra
tion flux has a continuous frequency spectrum. Radiation
specific frequency propagates in a set of scattering co
The polar angles of the cones depend on frequency.

Calculations of the angular distributions show that t
scattering growth rate is symmetrical relative to the polari
tion plane (e1 ,e3) of the reference wave and relative to th
plane perpendicular to the direction of propagation of
reference wave. Despite the symmetry of the growth r
under the experimental conditions the backscattering in
sity is low because of the short interaction time of the rad
tion traveling in opposite directions26. At the same time, the
growth rate exhibits polar anisotropy. The preferential dir
tions of scattering lie in the plane of polarization of the re
erence wave.

The theory also describes a hydrodynamic analog
Compton scattering. This scattering predominates in
forward–backward directions and is a set of harmonics
frequencies which are multiples of the plasma frequency.
electron rotating along a relativistic figure-eight in the pla
of polarization of the reference wave possesses a momen
parallel and anti-parallel to the momentum of the field as
passes through the upper and lower ‘‘tips’’ of the figur
eight. In the corresponding time intervals, effective scat
ing takes place where the electron loses or acquires mom
tum.

Since linearly polarized radiation is predominantly us
in experiments with relativistic-intensity pulses, the angu
distributions obtained in this study can be used to interp
the experimental data.
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To sum up, the instability of an Akhiezer–Polovin wav
has been investigated for the first time in multidimensio
geometry. Note that the results presented are naturally c
verted to the results of the one-dimensional theory.14 It is
shown that the growth rate is periodic with respect to
longitudinal component of the perturbation wave vector. T
condition for periodicity of the growth rate can be applied
any other periodic reference wave, including an approxim
one.
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Characteristics of the coherent excitation of an impurity atom in a photonic crystal
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It is shown that when an optically allowed transition is coherently excited in an impurity atom in
a photonic crystal under conditions where one of the normal relaxation channels is suppressed
by the spectral characteristics of the photonic crystal, new relaxation mechanisms are activated
involving a coherent field quantum. These mechanisms substantially alter the dynamics of
the atomic system, leading to filling of levels of the impurity atom which do not belong to the
coherently excited atomic transition. Under certain conditions this leads to population
inversion as a result of an optically allowed transition which does not interact with the coherent
pump and at a frequency where no photonic band gaps can exist. ©1999 American
Institute of Physics.@S1063-7761~99!00712-X#
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1. INTRODUCTION

The fabrication technology being developed for photo
crystals,1–3 i.e., media having forbidden bands in photon
states, has stimulated interest in the dynamics of excited
purity atoms whose radiative transition frequencies lie in f
bidden bands. Media have now been obtained in which
width of the photonic band gap is of the order of 30% of t
gap-center frequency and the gaps are situated in range
tween the microwave and the visible. Some of the main
amples of photonic crystals are periodic dielectric structu
The specific characteristics of the propagation of electrom
netic radiation in periodic dielectric structures find applic
tions in various important devices such as microlasers,1,4,5

various types of optical fibers,6 and so on. In addition, from
the general physical point of view, photonic crystals prov
a unique possibility of controlling the ‘‘switching on’’ o
‘‘switching off’’ of various fundamental electromagnetic in
teractions. Thus, photonic crystals not only have vario
technical applications but are also of enormous interest
fundamental research, including studies of the dynamics
impurity atoms in which photonic crystals can achieve va
ous scenarios where the frequency of a particular ato
transition falls within the photonic band gap. As a resu
some interaction channels are suppressed and others a
tivated.

Some work on the dynamics of impurity atoms in ph
tonic crystals7–13 has been devoted to mechanisms for
relaxation of impurity atoms whose transition frequencies
in the photonic band gap. Sohn and Wang7 studied a quad-
rupole mechanism for the radiative relaxation of excited i
purity atoms. In Refs. 7–9 the authors studied a mechan
for resonant dipole–dipole interaction of impurity atoms a
the concept of localized photons. Rupasov and Singh10 pro-
posed a model for spontaneous emission from impurity
oms which can be solved analytically. In a series of stud
Rupasov and Singh11,12 consider the influence of dipole
dipole interaction between impurity atoms on the appeara
of the photonic band gap and on the superradiance o
1061063-7761/99/89(12)/9/$15.00
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ensemble of like impurity atoms. Basharov13 discusses an
electric-dipole diatomic mechanism for the spontaneo
emission of an impurity atom.

Other studies have considered the interaction betw
coherent radiation and impurity atoms at whose transit
frequency no photons occur. John and Quang14 investigated
optical bistability and phase transitions when the carrier f
quency of the coherent wave and the excited level of
impurity atoms were situated far~in both directions! from the
edge of the photonic band gap. Quanget al.15 studied the
spontaneous emission of a three-level system in which
frequency of one optically allowed transition was located
the photonic band gap and a neighboring optically forbidd
transition was pumped by a coherent wave. In these
other studies the coherent pumping ‘‘operated’’ under c
ditions where particular relaxation processes discus
earlier7–12 played a dominant role.

In the present study the author discusses the situa
where coherent excitation of an impurity atom in a photo
crystal with a wide photonic band gap leads to the appe
ance of new relaxation channels. It is shown that, as a re
of coherent excitation of a transition at whose frequency
photons occur, these new relaxation channels may under
tain conditions form a population inversion on a normal tra
sition whose frequency does not fall within the photon
band gap and other characteristics of the doped crysta
addition, these same relaxation mechanisms may also b
sponsible for filling an impurity atomic level situated in th
photonic band gap as a result of the normal coherent exc
tion of a neighboring atomic transition lying outside th
spectral characteristics of the photonic crystal.

The essential features of the relaxation mechanism fo
ing the basis of the new relaxation channels under cohe
excitation of an atomic transition in a photonic crystal a
illustrated in Fig. 1. In addition to coherent excitation of a
optically allowed transitionEa→Eb by an electromagnetic
wave of frequencyVcoh ~Fig. 1a!, spontaneous two-photo
processes take place in the field of this wave: the absorp
of a coherent field photon\Vcoh is accompanied by the
3 © 1999 American Institute of Physics
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emission of a photon\vq , vq2Vcoh'(Ea2Ec)/\ ~Fig.
1b! such that a two-quantum transitionEa→Ec takes place.16

The rate of this transition is proportional to the intensity
the coherent wave although under normal conditions it is
lower than the rate of a spontaneous single-photon optic
allowed transition. Hence, this two-quantum relaxation d
not generally appear in normal media. The situation is d
ferent in photonic crystals. Despite its smallness this tw
quantum relaxation process leads to filling of theEc level,
from which it is difficult to depart by the usual relaxatio
channels since it is situated in the photonic band gap
similar process involving the absorption of a photon\Vcoh

and the simultaneous emission of a photon\vp , Vcoh2vp

'(Ea2Ec)/\ leads to depopulation of this level~Fig. 1c!.
The competition between these processes will determine
real population of theEc level. If the impurity atom is suf-
ficiently isolated, its levelEc is some distance from the edge
of the photonic band gap, and the intensity of the coher
wave is sufficiently high, other relaxation channels7–13 may
be neglected. In this case, however, the gradual depopula
of the Ec level accompanied by the emission of a phot
\vp is also insignificant because the frequencies of th
photons fall within the photonic band gap since

vp'Vcoh2~Ea2Ec!/\'~Ea2Eb!/\

2~Ea2Ec!/\5~Ec2Eb!/\.

Nevertheless, this process must be taken into account w
going beyond the representation of the energy structure o
impurity atom using the three levelsEa , Eb , andEc . Note
that when selecting the notation for a particular energy le
we adhere to the convention whereby the pair of levelsEa

and Eb or Ec and Eb forms optically allowed transitions
whereas the levelsEa andEc belong to the optically forbid-
den ~two-quantum! transition.

The filling of theEc level situated in the photonic ban
gap and the establishment of population inversion for
Ec→Eb transition is not the only manifestation of two
quantum relaxation in photonic crystals. Another process
companying the coherent excitation of theEc→Eb transition
is also extremely interesting in our opinion. In the pres
paper we consider the coherent excitation of the optic

FIG. 1. Two-quantum mechanism for level filling in the photonic band g
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allowed Ec→Eb transition as a result of three-photon res
nant interaction with a coherent wave of frequencyV'(Ec

2Eb)/3\ which does not fall within the photonic band ga
Then, the two-quantum mechanism described above lead
filling of the Ea excited level of the neighboring opticall
allowed Ea→Eb transition ~Fig. 2!. In this case, no con-
straints are imposed on the subsequent relaxation from
Ea level. Under certain conditions, population inversion m
occur as a result of theEa→Eb transition, but its appearanc
and magnitude are strictly related to the relaxation para
eters of the problem. Quite clearly, other variants of the
herent excitation of an impurity atom and two-quantum
laxation processes leading to population inversion for a
transition are also possible.

The effects discussed in the present paper are of a fa
general nature for problems involving the coherent excitat
of impurity atoms in photonic crystals since for any oth
configurations of neighboring transitions, it is always po
sible to select those frequencies of the exciting coherent fi
for which the corresponding16 two-quantum relaxation pro
cesses take place efficiently provided that some of the u
relaxation channels are suppressed by the spectral chara
istics of photonic crystals.

The present paper is constructed as follows. The form
lation of the problem and the effective Hamiltonian are giv
in Sec. 2. Kinetic equations for aV-configuration three-leve
impurity atom are derived in Sec. 3 for cases when one of
excited levels lies in the photonic band gap and one of
optically allowed transitions interacts resonantly with the c
herent wave. The dynamics of the coherent excitation of
impurity atom are studied in Secs. 4 and 5 and populat
inversion conditions are determined for a neighboring op
cally allowed transition for various configuration of impurit
atomic levels and various positions of the photonic band g
A bleaching effect induced by two-quantum relaxation a
coherent pumping of an optically allowed transition is d
scribed in Sec. 5. In the Conclusions we briefly discuss
case of aL-configuration of impurity atomic levels wher
the coherent wave interacts resonantly with an optically
lowed transition which is not related to the ground atom
level and a neighboring optically allowed transition is e

.
FIG. 2. Relaxation processes as a result of three-photon excitation o
impurity level located in the photonic band gap.
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posed to the action of the spectral characteristics of the p
tonic crystal. It is shown that in this case, the two-quant
mechanism can be considered as an additional relaxa
channel for the level in the photonic band gap.

2. FORMULATION OF THE PROBLEM AND EFFECTIVE
HAMILTONIAN

We shall first consider the situation where electrom
netic radiation having the electric field intensityE

E5Ee2 iF1E* eiF, F5Vt1w0 , ~1!

is in three-photon resonance (V'(Ec2Eb)/3\) with an op-
tically allowed transitionEc→Eb of an impurity atom whose
excited levelEc lies in the photonic band gap andEb is the
ground level. For the other atomic levels we shall assu
that the field~1! only forms two-quantum resonances with
certain levelEa belonging to the neighboring optically a
lowed Ea→Eb transition: the two-photon resonance (V
1vu'(Ec2Ea)/\) involving quantavu of the photon ther-
mostat Hu and the Raman resonance (vq2V'(Ec

2Ea)/\) involving quanta of the other photon thermos
Hq ~Fig. 2!.

We write the initial Hamiltonian of the system in th
form

H5H01Vcoh1Vv1Vca
u 1Vca

q 1Vab

1HV1Hl1Hu1Hq , ~2!

whereH0 is the Hamiltonian of an isolated impurity atom
Vcoh, Vv , Vab , Vca

u , andVca
q are the operators of the inte

action between an impurity atom and the coherent field~1!,
quanta of the photon thermostat with the central freque
V, quanta of photon thermostats in resonance with the o
cally allowed transitionEa→Eb , and quanta of the photo
thermostat in two-photon resonance@jointly with the wave
~1!# with the optically forbidden transitionEc→Ea , respec-
tively:

Vcoh52Ee2 iF (
a,a8

daa8aa
1aa81H.c.,

Vv52 i (
a,a8

E dvVK~vV!daa8aa
1aa8bvV

1H.c.,

Vab52 i (
a,a85a,b

E dv lK~v l !daa8aa
1aa8bv l

1H.c.,

Vca
u 52 i (

a,a8
E dvuK~vu!daa8aa

1aa8bvu
1H.c.,

Vca
q 52 i (

a,a8
E dvqK~vq!daa8aa

1aa8bvq
1H.c.

HereHV , Hl , Hu , andHq are the Hamiltonians of the cor
responding photon thermostats, which, in accordance w
Ref. 17, can be considered to be independent and which
shall also assume to be Markovian, assuming that their c
tral frequencies do not fall within the photonic band gap a
are located at some distance from the edges of this gap@see
o-

on

-

e

t

y
ti-

th
e

n-
d

also the conditions~7!#. We shall use the index ‘‘th’’ to
indicate that some quantity belongs to the thermostat cha
teristics:

H th5E dv th\v thbv th

1 bv th
, th5V,l ,u,q.

The other quantities are the creationaa
1 and annihilationaa

operators of an atom in the quantum statea, the creationbv th

1

and annihilation operatorsbv th
of thermostat photons, the

coupling constantsK(v), and the matrix elementsdaa8 of
the atomic operator of the dipole momentd. We shall neglect
polarization and spatial effects.

We stress that the role of the photonic band gap can
seen in that the initial Hamiltonian~2! contains no interac-
tion operator with a photon thermostat whose central f
quency matches theEc→Eb transition frequency. The as
sumption that theEc level is some distance from the edges
this gap and that the density of impurity atoms is low~in our
case, we only consider a single impurity atom! means that
we can neglect relaxation mechanisms based on reso
dipole–dipole interaction between like atoms, interacti
with a non-Markovian thermostat, and so on.7–12

Quadrupole7 and diatomic13 mechanisms can be neglecte
because of their smallness compared with those include
Eq. ~2!.

By means of a unitary transformation,16,18 we obtain the
effective Hamiltonian of the problem from Eq.~2!. For this
purpose we transform the density matrix of the system us
the transformationr̃5e2 iSreiS. The new density matrix will
satisfy the equation

i\
]

]t
r̃5@H̃,r̃ #, ~3!

where the transformed Hamiltonian

H̃5e2 iS~H01Vcoh1Vv1Vca
u 1Vca

q 1Vab1HV1Hl

1Hu1Hq!eiS2 i\e2 iS
]

]t
eiS, ~4!

and the Hermitian operatorS, which determines the transfor
mation, are expanded as a series in terms of the coheren
vacuum fields

S5S(10)1S(01)1S(11)1 . . . ,

H̃5H̃ (00)1H̃ (10)1H̃ (01)1H̃ (11)1 . . . ,

where the left-hand index in each pair (m,n) refers to the
coherent field and the right-hand index refers to the vacu
field. Forn>1 we divideS(m,n) and Ĥ (m,n) into four terms

S(m,n)5SV
(m,n)1Sl

(m,n)1Su
(m,n)1Sq

(m,n) ,

H̃ (m,n)5H̃V
(m,n)1H̃ l

(m,n)1H̃u
(m,n)1H̃q

(m,n) ,

corresponding to the contributions of each of the pho
thermostats taken into account. Since
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H̃5H2 i @S,H#2
1

2
@S,@S,H##

1
i

6
@S,@S,@S,H###1 . . . 2 i\e2 iS

]

]t
eiS,

we have

H̃ (0,0)5H01Hl1Hu ,

H̃ (1,0)5Vcoh2 i @S(1,0),H̃ (0,0)#1\
]

]t
S(1,0),

H̃ th
(0,1)5Vth2 i @Sth

(0,1) ,H̃ (0,0)#1\
]

]t
Sth

(0,1) ,

H̃ th
(1,1)52

i

2
@Sth

(0,1) ,Vcoh#2
i

2
@Sth

(1,0) ,Vth#

2
i

2
@Sth

(0,1) ,H̃ (1,0)#2
i

2
@S(1,0),H̃ th

(0,1)#

2 i @Sth
(1,1) ,H̃ (0,0)#1\

]

]t
Sth

(1,1) ,

H̃ (2,0)52
i

2
@S(1,0),Vcoh#2

i

2
@S(1,0),H̃ (1,0)#

2 i @S(2,0),H0#1\
]

]t
S(2,0),

H̃ (3,0)52
i

2
@S(2,0),Vcoh#2

i

2
@S(1,0),H̃ (2,0)#

2
i

2
@S(2,0),H̃ (1,0)#2

1

12
@S(1,0),@S(1,0),Vcoh##

1
1

12
@S(1,0),@S(1,0),H̃ (1,0)##2 i @S(3,0),H0#

1\
]

]t
S(3,0).

Here the subscript ‘‘th’’ indicates one of the photon therm
stats.

We impose the constraint that the following conditio
corresponding to the resonance processes in the problem
the approximation of slowly varying amplitudes are satisfi

H̃ (1,0)5H̃V
(0,1)5H̃u

(0,1)5H̃q
(0,1)50,

H̃ l
(0,1)52 i E dv lK~v l !dabaa

1abbv l
1H.c.,

H̃ (2,0)5( Ea
(2)aa

1aa ,

H̃ (3,0)5ucbac
1abe23iF1H.c.1( Ea

(3)aa
1aa ,

whereEa
(2) , Ea

(3) , anducb contain no oscillating exponentia
functionseisF, s561,62, . . . . Thevalidity of these condi-
tions is confirmed by the absence of any resonant denom
tors in S(m,n):
-

nd
:

a-

S(10)52 i(
daa8Ee2 iFaa

1aa8

\~vaa82V!
1H.c.,

Sl
(01)52E dv l

K~v l !dbaab
1aabv l

\~vab1v!
1H.c.,

Sth
(01)5(

aa8
E dv th

K~v th!daa8aa
1aa8bv th

u~Ea82Ea!

\~vaa82v th!
1H.c.,

~5!

th5V,u,q, S(2,0)5
i

4\V (
a

Pa~V!

3~E 2e22iF2E * 2e2iF!aa
1aa ,

wherevaa85(Ea2Ea8)/\ and the usual notation18 is used
for the parameter determining the Stark level shift:

Pa~V!5(
a8

udaa8u
2

\
S 1

vaa81V
1

1

vaa82V
D .

After various simple calculations, we obtain the effecti
Hamiltonian of the problem in the following form:

Heff5H01HSt1V(3)1VV1Vl1Vu

1Vq1HV1Hl1Hu1Hq , ~6!

where HSt describes the dynamic Stark effect,V(3) deter-
mines the three-photon coherent excitation of theEc→Eb

transition,Vl determines theEa↔Eb relaxation transitions,
Vu andVq determine theEc↔Ea relaxation transitions in an
impurity atom as a result of interaction with the thermost
and VV is responsible for the additional broadening of t
spectral lines when allowance is made for quantum fluct
tions in the Stark effect:

HSt5( uE u2Pa~v!aa
1aa ,

V(3)5ucbac
1abE 3e23iF1H.c.,

ucb5
dcb

8\V
~Pb~V!2Pc~V!!1

1

12\2

3(
ab

dcadabdbbS 2

~vca2V!~vbb2V!

2
1

~vca2V!~vab2V!
2

1

~vab2V!~vbb2V!
D ,

Vth52 i\E dv thK~v th!@ f th~ t !Rth
1bv th

2 f th* ~ t !Rthbv th

1 #,

Rl5ab
1aa , f l~ t !5dba /\,

RV5( aa
1aaPa~V!, f V~ t !52E* eiF/\,

Ru5aa
1ac , f u~ t !5Ee2 iFPac~V!/\,

Rq5aa
1ac , f q~ t !5E* eiFPca~2V!/\.
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The parameterPac(V) introduced determines the two
photon interaction operator:18

Pac~V!5(
b

dabdbc

\
S 1

vba1V
1

1

vbc2V
D .

Note that the subscriptsa, a8, andb number all the energy
levels of the impurity atom.

The effective Hamiltonian~6! can be used to isolate th
relaxation operator by standard methods and obtain defin
kinetic equations describing the dynamics of an impur
atom in a photonic crystal during its coherent excitation p
cess.

3. KINETIC EQUATION FOR AN IMPURITY ATOM

We shall list the main initial assumptions for the phot
thermostatsHV , Hl , andHu introduced in the analysis an
the coupling constants:

^bth
1~ t !bth~ t8!&5Nthd~ t2t8!,

^bth~ t !bth
1~ t8!&5~11Nth!d~ t2t8!,

^bth
1~ t !bth

1~ t8!&5^bth~ t !bth~ t8!&50,

bth~ t !5
1

A2p
E dv thexp@2 iv th~ t2t0!#bv th

, ~7!

K~v th!5Ak th/2p,

whereN is the photon density of the corresponding therm
stat andt0 is a certain initial time to which the photon op
eratorsbv th

and bv th

1 refer. Thus, the photon thermostats

the problem are considered to be wide-band and the coup
constants satisfy the Markov approximation, i.e., they do
depend on frequency and are determined by the central
quency of the corresponding photon thermostat. We s
subsequently assume that the operators of the photon
mostats evolve as the operators of noninteracting syst
and determine the Wiener processes

Bth~ t,t0!5E
t0

t

dt8bth~ t8!,

@Bth~ t,t0!,Bth8
1

~ t,t0!#5~ t2t0!d th th8 ,

whose growth rates satisfy ordinary Ito algebra:

dBth
1~ t !dBth8~ t !5Nthdtd th th8 ,

dBth~ t !dBth8
1

~ t !5~11Nth!dtd th th8 ,

dBth~ t !dBth8~ t !5dBth
1~ t !dBth8

1
~ t !5dBth~ t !dt

5dtdBth~ t !5dBth
1~ t !dt5dtdBth

1~ t !

5dtdt50,

where the subscripts ‘‘th8’’ and ‘‘th’’ denote the photon ther-
mostats, i.e., have values ofV, l, q, andu.

Subject to these assumptions we can use the u
methods16,19,20 to write the kinetic equation for the densit
matrix of an impurity atom in the form
e

-

-

ng
t
e-
ll

er-
s

al

d

dt
r1T& r5

i

\
@r,H01HSt1V(3)# ~8!

with the relaxation operator in the standard Lindblad form

T& r52 (
th5V ,l,u

k th

2
u f th~ t !u2~11Nth!~2RthrRth

12rRth
1Rth

2Rth
1Rthr!2 (

th5V ,l,u

k th

2
u f th~ t !u2Nth~2Rth

1rRth

2rRthRth
12RthRth

1r!. ~9!

Here and subsequently we neglect the tilde over the tra
formed density matrix. It should be stressed that the unit
transformation method gives a far clearer and more comp
physical picture of the various types of relaxation process
including two-quantum ones,16 compared with derivations o
the relaxation operator from the Bloch equations21,22or using
the quantum jump technique.23

The off-diagonal matrix elements of the density mat
of an impurity atom can be conveniently expressed in
form

rcb5r cbexp~23iF!, rca5r caexp~2 ivcat !,

rab5r abexp~2 ivabt !,

and then the following system of equations is obtained fr
Eqs.~8! and ~9!:

d

dt
r cb2 i ~D2DcbuE u2!r cb

5
i

\
~rcc2rbb!ucbE 32gcbuE u2r cb ,

d

dt
rbb5ga

(0)raa1
i

\
~r cb* ucbE 32r cbucb* E * 3!,

d

dt
rcc52gcuE u2rcc2

i

\
~r cb* ucbE 32r cbucb* E * 3!,

d

dt
raa52ga

(0)raa1gcuE u2rcc ,

d

dt
r ca1 iDcauE u2r ca52~gca

(0)1gcauE u2!r ca ,

d

dt
r ab1 iDabuE u2r ab52~gab

(0)1gabuE u2!r ab . ~10!

Here we use the notation

D53V2vcb , Dcb5Pc~V!2Pb~V!,

Dca5Pc~V!2Pa~V!, Dab5Pa~V!2Pb~V!,

gcb5kV~Pc~V!2Pb~V!!2/2\21gc/2,

gab
(0)5gca

(0)5ga
(0)/25k l udabu2/2\2,

gca5kV~Pc~V!2Pa~V!!2/2\21gc/2,

gab5kV~Pa~V!2Pb~V!!2/2\2,

gc5kquPca~2V!u2/\21kuuPca~V!u2/\2. ~11!
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We recall that for a three-dimensional spontaneous emis
geometry

ga
(0)5

4udabu2vab
3

3\c3~2Ja11!
,

wheredab is the reduced dipole moment of theEa→Eb tran-
sition andJa is the angular momentum of theEa level.

When writing the equations~10!, we assumed that th
photon thermostats are vacuum ones containing no pho
with Nth50.

We now write the equations for the density matrix f
the case where the wave~1! is in one-photon resonance wit
the Ea→Eb transition, V'(Ea2Eb)/\, and the spectra
characteristics of the photonic crystal impose no constra
on this transition~Fig. 1!. Let us assume that theEc energy
level lies in a photonic band gap some distance from
edges so that the relaxation mechanisms7–13 are small com-
pared with the two-quantum mechanism being discussed.
r ab5rabexp(iF), raa , rbb , andrcc we then have the equa
tions

d

dt
r ab2 i ~D2DabuE u2!r ab52

i

\
~raa2rbb!dabE

2~ga
(0)/21gabuE u2!r ab ,

d

dt
rbb5ga

(0)raa2
i

\
~r ab* dabE2r abdab* E* !,

d

dt
raa52~ga

(0)1gauE u2!raa

1
i

\
~r ab* dabE2r abdab* E* !,

d

dt
rcc5gauE u2raa . ~12!

Here the quantities introduced have different values@unlike
Eq. ~11!#:

D5V2vab , Dab5Pa~V!2Pb~V!,

gab5kV~Pa~V!2Pb~V!!2/2\21ga/2,

ga5kquPac~2V!u2/\2, ga
(0)5k l udabu2/\2. ~13!

4. FILLING DYNAMICS OF THE Ea LEVEL. POPULATION
INVERSION

In this section we consider the situation shown schem
cally in Fig. 2. The system of equations~10! and ~11! de-
scribing the three-photon excitation of theEc→Ebtransition
under conditions where two-quantum relaxation chann
play a role, can be used to analyze various effects suc
optical nutations, inductions, echo phenomena,24 accompa-
nying the coherent pumping of theEc→Eb transition. At this
point we merely discuss the excitation of theEa level.

The system of equations~10! and~11! has a steady-stat
solution from which we write the quantities relating to th
Ea→Eb : transition:
on

ns

ts

s

or

i-

ls
as

raa5
gcuE u2G

ga
(0)gcuE u21gcuE u2G12ga

(0)G
,

rbb5
ga

(0)G1ga
(0)gcuE u2

ga
(0)gcuE u21gcuE u2G12ga

(0)G
,

rab50, G5
2gcbuucbu2uE u8/\2

gcb
2 uE u41~D2DcbuE u2!2

.

It should be noted that pumping of theEa level as a
result of coherent excitation of theEc→Eb transition takes
place without any coherence appearing for theEa→Eb tran-
sition. This distinguishes this situation from any oth
schemes for excitation of theEa→Eb transition by coherent
fields.

We shall assess the possibility of a steady-state inver
for the Ea→Eb transition. It can be seen that this is main
determined by the relationship between the parame
gcuE u2 and ga

(0) . In the most favorable case we have t
estimate

gcuE u2

ga
(0)

;S vq

vab
D 3

L2

d2
,

whereL;Ed/\ is the characteristic interaction energy a
d is the smallest detuning from the nonresonant level. T
analysis of resonance processes imposes the constrainL2

!d2. By selecting the frequencies and dipole moments
the impurity atom this constraint can be reduced but we m
assume thatgcuE u2,ga

(0) . From this it follows that in the
steady-state regime no inversion is established for
Ea→Eb transition although for an ensemble of impurity a
oms the fraction of atoms excited to theEa level is fairly
high, of the order of

gcuE u2

gcuE u212ga
(0)

,

which may account for 10% of the total number of impuri
atoms.

We consider the nonsteady-state excitation of theEa

level for the simplest case where the field~1! is switched on
at time t50 assuming thatE(t)50 for t,0 andE(t)5E

5const fort>0. As the initial conditions we take those co
responding to the equilibrium state of the impurity atom:

raau t505rccu t505rcbu t505rcau t505rabu t5050,

rbbu t5051.

It follows from Eqs.~10! and~11! that the population of
the Ea level behaves as shown in Fig. 3.

The fluctuations of theEa level population reflect the
Rabi oscillations of the pumpedEc→Eb transition. It can be
seen that for typical values of the parameters the level po
lation reaches a steady-state regime with anEa level popu-
lation of the order of 10%.

Unlike the steady-state regime, the overpopulationraa

2rbb of the levels during a certain time interval may have
population inversion, as shown in Fig. 4.
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It can be seen that inversion of theEa→Eb transition
occurs at the first oscillation maximum. As the amplitude
the electric field intensity of the wave increases, the num
of ‘‘spikes,’’ during which inversion of theEa→Eb transi-
tion occurs, increases. The effect becomes clearer if the
gcuE u2/ga

(0) increases for some reason. We stress that in
absence of two-quantum relaxation, the inequalityraa2rbb

<0. is always satisfied. Moreover, the population of theEa

level is always zero~for these initial conditions!.
Thus, during short time intervals under conditions

nonsteady-state coherent pumping of theEc→Eb transition
at the frequency of the neighboringEa→Eb transition a me-
dium consisting of impurity atoms in a photonic crystal b
comes active~amplifying!. No coherence is observed for th
transition.

5. POPULATION DYNAMICS OF THE Ec LEVEL. BLEACHING
EFFECT

We shall consider the situation when an electromagn
wave interacts coherently with theEa→Eb transition: V
'(Ea2Eb)/\, and theEc level ascribed to a neighborin
optically allowed transition is located in the photonic ba
gap. In the absence of two-quantum relaxation the system
equations~12! and ~13! yields the ordinary Bloch equation
for one-photon resonance. However, the presence of theEc

level whose normal gradual depopulation is impeded beca
of the spectral characteristics of a photonic crystal make
necessary to allow even for weak two-quantum relaxat
processes since this level acts as a particular trap for t
processes, i.e., on reaching this level an impurity atom
mains in this state for a fairly long time. Equations~12! and
~13! can be used to analyze all the characteristic feature

FIG. 3. Filling of theEa level in the nonsteady-state regime assuming t
gcuE u252gcbuE u250.2ga

(0) , ucbuE u3/\5ga
(0) , D5DcbuE u2.

FIG. 4. Behavior of the population inversion for theEa→Eb transition in
the nonsteady-state regime. The values of the parameters are the sam
Fig. 3.
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the dynamics of ordinary optically allowed transitions ass
ciated with the presence of these ‘‘traps.’’ At this point w
shall discuss some of these features.

The steady-state solution of the system~12! and~13! has
the extremely simple form

rcc51, rbb50, raa50, rab50, rbc50,

which confirms the term ‘‘trap’’ for the level of an impurity
atom located in the photonic band gap. It can be seen tha
Ec→Eb transition becomes completely inverted. Howev
the emission as a result of this transition is completely s
pressed by the spectral characteristics of the photonic cry
Figure 5 illustrates the attainment of this steady state w
the field ~1! is switched on at timet50: E(t)50 for t,0
and E(t)5E5const for t>0 The oscillations reflect the
Rabi oscillations of theEa→Eb transition. The time taken to
reach the steady-state regime in a fairly high-intensity fi
~1! is of the order of

\2

kquEPac~2V!u2
.

Thus, if an impurity atom in a photonic crystal has
least one level coupled to the ground level by an optica
allowed transition and falling within the photonic band ga
coherent pumping of any optically allowed transition co
taining the ground energy level will be accompanied
‘‘bleaching’’ of this transition, i.e., depletion of the energ
levels of this transition and filling of the level situated in th
photonic band gap. This directly influences the propagat
of the coherent wave~1! in the medium, i.e., after a certai
time required to transfer the excitation to theEc level, the
impurity atoms become ‘‘transparent’’ for the wave~1! since
they cease to interact with it. However, after a certain ti
interval, relaxation mechanisms come into play7–13which we
neglected compared with two-quantum relaxation chan
but which must be taken into account over a fairly long tim
interval. Such an analysis should be made separately. Fo
simplest quadrupole7 or diatomic13 mechanisms for relax-
ation of theEc→Eb transition these can be taken into a
count by adding to the right-hand sides of the equations~12!
terms proportional to the rate constantgc

(2) of these pro-
cesses:

d

dt
rbb}gc

(2)rcc ,
d

dt
rcc}2gc

(2)rcc . ~14!

t

s in

FIG. 5. Dynamics of overpopulation of theEc→Eb transition, assuming
L5uEdab /\u5510ga

(0)550ga5100gab ,D5DabuE u2.
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The steady-state solution of the system~12!–~14! is then
altered slightly:

rcc.12«~21ga
(0)/G!, rbb.«~11ga

(0)/G!, raa.«,

where

«5
gc

(2)

gauE u2
!1,

G52
udabE /\u2~ga

(0)/21gabuE u2!

~ga
(0)/21gabuE u2!21~D2DabuE u2!2

.

Hence, even when the relaxation of theEc→Eb transi-
tion is taken into account, the neighboring transition ha
negligibly small overpopulation:

raa2rbb52«ga
(0)/G;«ga

(0)2/4L2,

L5udabE /\u2@ga
(0) ,

and the bleaching effect predominates. We stress that in
proposed system for bleaching of the medium the elec
magnetic wave interacts resonantly with impurity atoms
the photonic crystal and propagates outside the phot
band gap, unlike in Ref. 25 where a different bleach
mechanism was discussed whenL-configuration atoms of
the photonic crystal interact with a high-power electroma
netic field whose frequency fell within the band gap. T
differences between the bleaching mechanism described
the familiar bleaching effect caused by saturation of a re
nant transition26 are also obvious and do not require separ
discussion.

6. CONCLUSIONS

In the present paper we have demonstrated how the
pression of the ordinary relaxation channels in impurity
oms in photonic crystals brings new relaxation channels
the forefront, based on two-quantum relaxation mechani
accompanying the action of coherent fields on impurity
oms. In these examples two-quantum relaxation resulte
the filling of levels inside and outside the photonic band g
We confined our analysis to theV configuration of impurity-
atom energy levels involved in the resonant pumping a
two-quantum relaxation processes, although all the ene
levels of the impurity atom were formally taken into accou
in the parameters of the resonant processes. However
dominant role of two-quantum relaxation should also app
in other situations. Depending on the specific conditio
two-quantum relaxation channels can either lead to filling
deactivation of a level in the photonic band gap.

An example may be the situation considered by Qua
et al.15 where the frequency of theEb→Ea transition as-
signed to theL configuration of impurity levelsEa,Ec

,Eb , fell within the zone of action of the spectral chara
teristics of the photonic crystal and theEb→Ec transition
was pumped by a coherent wave. These authors15 suggested
that the frequency of theEb→Ea transition should lie nea
the edge of the photonic band gap so that the rate of re
ation of theEb→Ea transition is not too suppressed. Th
action of the coherent field in Ref. 15 is considered as
a
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herent control of the relaxation mechanism for theEb→Ea

transition. Nevertheless, in this situation we need to allow
two-quantum relaxation channels which, unlike those cons
ered in the present article, lead to additional deactivation
the Eb level. Depending on the parameters in the case c
sidered in Ref. 15, the role of two-quantum relaxation m
be very substantial and may compete with the proces
taken into account in the present study. However, this sit
tion requires separate analysis. We shall illustrate the imp
tance of allowing for two-quantum relaxation in a situatio
similar to that considered in Ref. 15 when theEb level falls
far from the edges of a wide photonic band gap. This
sumption means that relaxation of theEb→Ea . transition
can generally be neglected. Then, for the initially excit
level Eb the ground levelEa would remain empty in this
approach15 and the coherent-wave excitation would be tran
ferred from levelEb to level Ec and back. However, when
allowance is made for two-quantum relaxation in the ca
Eb2Ec,Ec2Ea , the impurity atom will be transferred
from theEc state to the ground levelEa . This has the result
that as a result of the depletion of theEc level, the population
of the Eb level will also decrease and within a time of th
order of

t rel5
\2

kuuEPca~vbc!u2

an impurity atom from the excited stateEb located in the
photonic band gap will be transferred to theEa ground state.
HereE is the amplitude of the coherent field in one-phot
resonance with theEb→Ec transition andku is the coupling
constant with the photon thermostat having the central
quencyvu5vca2vbc . For estimates we can use the form
las

ku5
2\vu

3

c3
, t rel5

\c4

4pIvu
3uPca~vbc!u2

,

whereI is the intensity of the coherent wave averaged o
the period 2p/vbc of the fast oscillations.
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Experimental results are presented of a study of the magnetic and electric dipole absorption of
microwave radiation by a laser plasma which accompanying the evaporation of various
metals. An analysis is made of the influence of the finely dispersed fraction on the absorption
and it is shown that the model of a percolation cluster provides a good explanation for
the entire set of experimental results. ©1999 American Institute of Physics.
@S1063-7761~99!00812-4#
ve

o
ov
th
a
ux
a
iv
th
di
th
ly
a

di
is
ll

a
r o
ti
a
ar
a

an
os
-
ch
g
e

io
i

tt
o

f t
te

nt

b-
ma
cro-
ions
l

be
and

d a

The
ted

r of
ec-
-
all.
es
at

ob-
ef.

we
tric
si-
f a
de
ical
des
r a
he
the
m

ab-
nti-
1. INTRODUCTION

In a pioneering study of a laser jet using microwa
methods, Ageevet al.

1
observed the total reflection~cutoff!

of a microwave from the plasma region in which the electr
density exceeds a critical value. This cutoff occurred ab
the breakdown threshold of air and the time taken for
transparency to recover did not depend on the target m
rial. It was shown in Ref. 2 that at moderate optical fl
densities~which do not cause breakdown of the vapor-g
medium! it is possible to measure the microwave conduct
ity of a laser plasma. The conductivity is determined by
target material and is fairly high when both metals and
electrics evaporate. By placing the jet in the antinode of
electric or magnetic field of a standing microwave, it is fair
easy to separate and measure the conduction current
eddy current losses.3

When various materials are evaporated by laser ra
tion, the material flux almost always contains a finely d
persed condensed phase: small droplets of melt expe
from the crater,4 condensate microclusters,5 and fractal
structures6 formed as a result of the cooling of the plasma
it expands. In addition, as the density of the metal vapo
its oxide increases in the plasma of the laser jet, a percola
transition takes place.2 In the classical percolation model
critical cluster is formed by contacting conducting microp
ticles. In the microscopic model a percolation cluster appe
as a result of the overlap of the wave functions of atoms
molecules for which the density of the material must be cl
to the critical point.7 In a plasma containing a finely dis
persed phase a percolation cluster may be formed on a
otic lattice of noncontacting compact microclusters. Bein
heat source in a laser radiation field, a microcluster is a c
ter of spatial inhomogeneity in the temperature distribut
and the electron density. Additional conductivity appears
the structure when the average distance between the la
points is comparable with the characteristic spatial inhom
geneity scale of the plasma, for instance, the thickness o
electric double layer surrounding an isolated microclus
According to our estimates,8 this situation is achieved for a
laser jet.

In the present paper we report results of an experime
1071063-7761/99/89(12)/6/$15.00
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investigation of the electric-dipole and magnetic-dipole a
sorption of a microwave in a low-temperature laser plas
and we analyze the role of the dispersed phase in the mi
wave absorption. This analysis is based on the conclus
drawn in theoretical studies9,10 which investigated the optica
properties of conducting particles in a dielectric matrix.

2. EXPERIMENT

2.1. Experimental method

Figure 1 shows an experimental apparatus which can
used to study microwave absorption at two frequencies
the optical flash from the laser jet. Heating 1.06mm laser
radiation, having a quasi-cw pulse duration of 10 ms an
power density in the range 105– 106 W/cm2, was focused
onto the surface of the target in a 0.5 mm diameter spot.
laser radiation and the counterpropagating flux of evapora
material from the surface of the target~laser jet! were passed
through 5 mm diameter apertures positioned at the cente
the wide walls of two waveguide sections having cross s
tions of 8317 and 10323 mm2. The sections were in con
tact with one another, having a single common wide w
The directions of propagation of the 2 cm and 3 cm wav
were orthogonal. By measuring the microwave absorption
two frequencies, we were able to compare the signals
tained in different experiments more accurately than in R
3 by using one of the signals as a reference.

In order to study the microwave absorption signals,
used a reflection scheme in which the antinode of the elec
or magnetic field of a standing microwave could be po
tioned in the plane of the jet by changing the position o
short-circuiting plunger in the corresponding wavegui
cross section. Typical profiles of the laser pulse, the opt
flash, and the microwave absorption signals in the antino
of the electric and magnetic fields were given in Ref. 3 fo
3 cm wave. The coefficients of microwave absorption in t
different antinodes cannot be compared directly since
signals, particularly the initial evaporation time, vary fro
one pulse to another. We used thel'2 cm microwave ab-
sorption signal as the reference signal.

The reference signal can be used to normalize the
sorption signal observed when the jet is located in the a
2 © 1999 American Institute of Physics
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node of the electric or magnetic fields of the 3 cm wa
relative to the absorption signal in the 2 cm wavegu
where the position of the jet coincided with the antinode
the magnetic field and remained constant.

The shape and size of the jet are determined by the s
interaction effect in the laser-beam–plasma system and
pends on the target material.3 The time taken for the materia
to pass through the waveguide was much shorter than
duration of the laser pulse and did not exceed 0.5 ms. A
a quasisteady-state evaporation regime had been establ
(<1 ms) neither the transit time nor the transverse dim
sion of the jet depended on the irradiation time. According
Anisimov et al.,4 in the quasisteady-state regime the dens
of the evaporated material is determined by the density of
heating laser radiation and the buffer gas pressure. It sh
be noted that at fairly high optical fluxes the dispersed ph
in the plasma may be destroyed. In our experiments, w
the laser pulse power was increased to 107 W/cm2, a reduc-
tion in the luminescence intensity and the microwave c
ductivity of the jet is observed for some media~e.g. copper!

FIG. 1. Schematic of experiment:1—laser beam,2—target, 3—jet,
4—focusing lens (f 517 cm), 5—2 cm waveguide section,6—3 cm wave-
guide section~turned through 90° about the axis of the laser beam relativ
section5!, 7—short-circuiting plungers,8—microwave radiation generators
9—circulators, and10—microwave radiation detectors.
e
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and this can naturally be attributed to the breakup of
absorbing micro- and macroformations in the jet.

When we switched off the 3 cm klystron during the las
pulse, we did not detect any significant transfer of mic
wave energy from the 2 cm to the 3 cm waveguide chan
The fraction of the microwave radiation scattered by the
material and escaping through the apertures in
waveguides was also negligible. Replacing the sho
circuited 3 cm waveguide section with a transfer section h
ing suitable facilities for detecting the transmitted radiati
yields results in good agreement with those obtained for
standing wave. All the control experiments were carried
for the laser jet plasma and for various absorbing~conduct-
ing! samples having the same shape and size as the
Aqueous solutions of sodium chloride and binary powd
mixtures were selected as the calibration media. The la
contained graphite or metal impurities to provide conduct
ity.

2.2. Plasma parameters

When material is evaporated by moderate-intensity la
pulses, the vapor pressure is equal to the buffer gas pres
In earlier studies we measured the absolute values of
microwave conductivity and the brightness temperature
the visible part of the spectrum of a laser jet near the surf
of various single-component media~including metals!3 and
their binary mixtures.8 At normal pressure the microwav
conductivity of single-component media is comparative
high (.102 S/cm) and the brightness temperature is close
the boiling point of the material. According to the Drud
formula, this conductivity could be provided by an electr
density in excess of 1015cm23. Since the concentration o
neutral particles in the jet is;1018cm23, under conditions
of ionization equilibrium at the boiling point of metals th
electron density in the plasma is between 1.5 and two ord
of magnitude lower than that required by the Drude formu

o

FIG. 2. Evolution of the ratioPH /PE during laser irradiation of
metals:1—dysprosium and2—vanadium. Buffer gas—air.
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Estimates8 show that at normal pressure in the low
temperature plasma of a laser jet the concentration of c
pact microclusters may reach;1015cm23.

In the plasma of a jet having transverse dimensions
the order of 1 mm, such high values of the conductivity le
to effective skinning of the microwave radiation and subst
tial mismatch of the waveguide channel. Thus, in the pres
study the measurements were made at gas pressures an
tical flux densities for which the microwave power absorb
and reflected by the plasma is much lower than the powe
the waveguide and distortions of the microwave field by
jet can be neglected. In the present experiments this co
tion was satisfied as long as the conductivity of the jet
not exceed 1 S/cm. The level of conductivity~absorption! for
each material was selected by varying the buffer gas pres
in the range 1024– 1 atm. These measurements show tha
the pressure is reduced, the brightness temperature decr
in accordance with the saturation curve. Whereas the con
tration of neutral particles can be assessed from the chan
pressure and temperature, at reduced pressures the
plasma parameters of the laser jet require further study w
we did not undertake.

Note that at reduced pressures simples estimates o
electron density using the Drude and Saha formulas yield
even larger mismatch than that obtained at normal press

2.3. The ratio PH /PE for a laser jet plasma

Figure 2 shows typical behavior of the ratio of th
magnetic-dipole to the electric-dipole absorption~subse-
quently denoted asPH /PE! during the establishment of ad
vanced evaporation. For each metal the kinetics are obta
from the ratio of the 3 cm wave absorption signals in tw
successive laser pulses. The initial evaporation times w
matched by using the absorption signals recorded in the 2
waveguide. After the beginning of evaporation (t50), the
ratio PH /PE usually increases monotonically and stabiliz
at a certain level after quasisteady-state evaporation has
established. The initial stage of the kinetics clearly refle
an increase in the vapor density. Table I gives the aver
values of this level together with the error arising from t
fact that the fluctuations of the magnetic-dipole and elect
dipole signals recorded in two successive shots differ. Th
fluctuations are several times the spread of the average
in different series of measurements of the microwave abs
tion. The error associated with the fluctuations can be m
mized by calculating the ratio, not for the instantaneous tim
but for the integral absorption in the steady-state section
the kinetics normalized to the absorption in the 2 cm wa
guide. Figure 3 gives the ratioPH /PE as a function of the
composition of a vanadium–iron mixture obtained by th
method. A small change in the conductivity~approximately
twofold! is accompanied by threshold behavior of the ra
PH /PE which may be attributed to percolation in the van
dium subsystem. It should be noted that the size of the
varies negligibly with the mixture composition. Table I give
the transverse dimensions of the jet (r air) for the various
materials studied using air as the buffer gas. The radius
determined by a densitometric method using photograp
-
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images of the jet integrated over the visible part of the sp
trum and the irradiation time, in the cross section cor
sponding to the center of the 3 cm waveguide. The meas
ment error did not exceed 10%.

2.4. Model experiment

Since percolation occurs in an optical discharge plas
it is interesting to study the behavior of the ratioPH /PE near
the percolation threshold for condensed composites con
tionally used to study the metal–nonmetal transition. W
present results of an investigation of microwave absorpt
in mixtures of graphite and magnesium oxide having a ch
acteristic particle size of;1 mm. Cylindrical samples with
r 51 mm ~or 1.5 mm! andl 53 – 30 mm were drawn through
the waveguides in the experimental system used to study
plasma jet.

Figure 4 gives the results of an experimental study
microwave absorption when the sample is placed in the
tinodes of the electric and magnetic fields. As we predict
the percolation threshold in the powder mixture correspo
to a volume fraction of the percolating component (pv) of
approximately 0.3. Experiments carried out using the sa
mixtures at dc current give the same value for the thresh
It can be seen from Fig. 4 that as the concentration of
percolating component~graphite! increases above the perco
lation threshold, the ratioPH /PE increases, approaching 0.3
In the range of concentrations where absorption takes p
at isolated graphite particles, the ratioPH /PE is approxi-
mately 0.01. For concentrations greater than 0.5 this rati
distorted by the skin effect which reduces the microwa

TABLE I. Values of the ratioPH /PE .

Target
P,

Torr.

Buffer gas

r air , mmAr Air

Graphite 30 1.560.5 261 1.8
Mg 70 0.560.1 0.560.1 3.2
Al 55 0.8560.15 0.860.3 3.9
Si 55 0.660.3 0.660.6 3.2
Ti 25 1.060.5 1.060.6 2.2
V 22 2.060.5 1.760.5 1.1
Cr 33 1.060.2 0.4560.25 1.0
Fe 45 0.2060.05 0.2360.05 1.1
Co 80 0.360.1 0.360.1 2.1
Ni 80 0.0560.02 0.0560.02 2.1
Cu 160 0.360.2 0.160.1 4.7
Y 30 0.5060.25 1.560.5 1.2
Zr 30 0.7560.25 1.0060.25 1.3
Nb 100 2.060.5 2.560.5 1.0
Mo 70 1.7560.50 1.560.5 1.2
La 5 1.060.2 1061 1.2
Sm 5 4.060.5 1362 1.1
Gd 5 0.7560.25 0.260.1 1.1
Dy 5 2.560.5 661 1.2
Ho 5 662 1262 1.4
Hf 30 0.2–2 0.2–1.0 1.45
Ta 55 2.060.2 2.060.5 0.9
W 80 1.260.6 1.060.5 1.2
Re 22 0.760.1 1.060.1 1.2
Al2O3 15 462 461 1.65
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FIG. 3. Dependence of the ratioPH /PE on the composition of a
vanadium–iron mixture. Buffer gas—air andx is the weight frac-
tion of vanadium in the sample.
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absorption in the electric and magnetic fields of the stand
wave. Note that the skin effect weakly influences the ra
PH /PE .

3. DISCUSSION OF RESULTS

The powers dissipated by the material in the antinode
the electricE and magneticH fields of the standing micro
wave are respectively given by

PE5E s~r !uE~r !u2d3r , PH5vE x9~r !uH~r !u2d3r .

~1!

Heres is the real part of the conductivity,x9 is the imagi-
nary part of the polarizability of the sample, andE andH are
the intensities of the electric and magnetic fields of a mic
wave at frequencyv, respectively.

We shall analyze these results using the model of a
mogeneous plasma and a plasma containing a dispe
phase.

3.1. Homogeneous electron–ion plasma flux

When the skin effect can be neglected, the ratio of
eddy current lossesPH ~see Ref. 11! to the powerPE dissi-
g
o

of

-

o-
ed

e

pated by the conduction currents in the plasma flux cross
the waveguide between the wide walls can be expresse
the following form:

PH

PE
5

vx9uHu2V

s8uEu2V
5«0m0v2r2k, ~2!

whereV is the volume occupied by a plasma of cross sect
pr2 in the waveguide,«0 is the dielectric constant, andm0 is
the magnetic constant. The coefficientk52.5 allows for the
change in the magnetic polarizability on changing from
sphere to a cylinder whose axis is perpendicular to
field.12 It follows from Eq. ~2! that the eddy current losse
predominate over the conduction current losses if the tra
verse dimension of the jet isr.0.3 cm. In our case, the
radius of the jet in the waveguide is approximately 1 mm a
the ratioPH /PE should be less than 0.1. Control experimen
using a column of aqueous electrolyte~NaCl! of the same
size yieldedPH /PE'0.03. A similar value was obtained fo
the thermionic flux from copper and aluminum targets hea
by an optical beam before the onset of evaporation and
at the initial stage of the evaporation process~see Fig. 2!. It
can be seen from Table I and Fig. 3, which give the rat
PH /PE , that in the advanced evaporation regime this ra
me
FIG. 4. Power absorbed by sample as a function of the volu
fraction of graphite (pv) in a graphite–MgO composite:1—electric-
dipole and2—magnetic-dipole absorption in arbitrary units,3—the
ratio PH /PE . The relative error in the determination ofPH /PE is
20%.
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may be substantially higher. It changes from one materia
another and does not correlate with the size of the jet. Th
variations in the ratio are clearly related to the internal str
ture of the plasma and in particular, to the presence o
finely dispersed phase. Note that fairly large drople
(>10mm) removed by the vapor-gas flux from the me
make no significant contribution to the microwave abso
tion because of the skin effect of the field in these drople
nor to the optical luminescence because of their comp
tively low temperature.

3.2. Role of compact microclusters

We know that composites comprising a dielectric im
pregnated with small metal particles exhibit anomalou
high absorption in the infrared.13 In this case, the ratio
PH /PE is equal to the ratio of the coefficients of magnet
dipole and electric-dipole absorption9 and may be expresse
in the following form:

PH

PE
5

8p2ā2sm
2

45c2« i
, ~3!

where« i is the dielectric constant of the dielectric,sm is the
active conductivity of the metal,ā is the average radius o
the compact particles, andc is the velocity of light. Formula
~3! was obtained in the approximation of long waveleng
(l@a) and low frequencies~vt!1, wheret is the relax-
ation time of the conduction electrons over the pulse!. For
particles whose conductivity is close to metallic, the ed
current losses predominate over the conduction losses i
radius of the metal particles isa.50 Å. Since the character
istic size of the compact clusters formed in a laser plasm
a result of condensation does not exceed this value,8 the ex-
istence of merely spherical compact metallic clusters can
explain the maximum experimental values of the ra
PH /PE given in Table I. In addition, the transition from
metallic to poorly conducting clusters~such as Al2O3, Si, or
C! should lead to a sharp drop in the ratioPH /PE .

3.3. Role of an absorbing transition layer

The electric-dipole absorption of metal particles i
creases if these are surrounded by a thin poorly conduc
layer ~āsct

21!sm , wheret is the thickness of a layer hav
ing the conductivitysc!. In this case, in the coefficient o
electric-dipole absorption the metal conductivitysm is re-
placed byscā/t ~Ref. 9!. Hence, for metal particles with
poorly conducting coating we can predict that the absorp
will increase by five orders of magnitude ifsc51 S/cm and
t;0.1ā. Such a poorly conducting layer could be formed
oxides or nitrides on the surface of microclusters or partic
Thus, when an inert buffer gas is replaced by air, we sho
expect a significant increase in the electric-dipole absorp
compared with the magnetic-dipole absorption, particula
since the formation of poorly conducting layers should
duce the magnetic dipole absorption. The results presente
Table I do not support this assumption. In most cases, su
replacement is accompanied by a relative increase in
eddy current losses.
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3.4. Role of filamentary and annular structures

When conducting particles coagulate to form filamenta
structures, the electric-dipole absorption increases. First,
conductivity of the filament (s f) will be substantially lower
than the conductivity of the particles themselves becaus
the presence of poorly conducting contacts. Second, an
crease in the electric-dipole absorption is promoted by
absence of any polarization shielding if the filaments are
ented in the direction of the electric field. For a filament
lengthb the depolarization factorL has the form12

L5S a

bD 2F lnS 2b

a D21G , ~4!

which leads to an increase in the coefficient of electric-dip
absorption by the factora f5L22Wfsm /s f ~Ref. 9!, where
W is the probability that a conducting particle is incorporat
in the filament.

The eddy losses increase when large closed conduc
loops appear in the system. For randomly oriented rings
radiusR!l, from Ref. 9 we have~to within a constant of
the order of unity! the factora r5(R/a)2Wr in the coeffi-
cient of magnetic-dipole absorption, whereWr is the prob-
ability that a conducting particle is incorporated in the rin

If the probability isW'1, i.e., all the conducting par
ticles are involved in forming filaments or rings, then f
R/a'10 ~or b/a'10! the corresponding coefficients are in
creased by two orders of magnitude. However, the forma
of these structures with any appreciable probability was
observed in the laser jet. Note that the filamentary structu
appearing after the action of the laser pulse are the resu
the directional aggregation of cooled particles.14

3.5. Role of fractal structures

Quite clearly, branched fractal structures, in particu
percolation structures which form at fairly high micropartic
concentrations in a laser jet, can substantially influence
electric- and magnetic-dipole absorption since both lin
and annular fragments exist in these structures. The natu
the material distribution in a fractal cluster leads to an eff
tive decrease in the conductivity as the radius increase
consequently increases the electric-dipole absorp
whereas the magnetic-dipole absorption in a fractal cluste
increased as a result of the dominant influence of a fa
which depends on its size.

In accordance with Ref. 10, for a three-dimensional fra
tal cluster the amplification factors for electric-dipole a
magnetic-dipole absorption are respectively given by

S Rf

a D 5(32df )/2

and S Rf

a D (11df )/2

, ~5!

whereRf is the cluster size anddf is its fractal dimension-
ality. Hence, the ratioPH /PE will increase if the fractal di-
mensionality exceeds 7/3 which is satisfied in the thr
dimensional case for a percolation cluster (df52.5).

Note that the presence of percolation structures in
laser jet is indicated by characteristic threshold dependen
of the microwave absorption and the optical luminescence
the laser jet on the composition of the target.2,8
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3.6. Role of percolation structures

Percolation models are widely used to interpret
metal–nonmetal transition in disordered conden
media.15,16 The most comprehensive experiments in this
rection have been carried out for island films and comp
ites. We know that as the percolation threshold is
proached, the real part of the permittivity diverges.17,9

According to Bowman and Stroud,18 close to a threshold
with an even larger critical index, the diamagnetic susce
bility diverges.

For two-dimensional objects, an anomalous absorp
peak near the percolation threshold was observed experim
tally in the infrared.19 Generally various percolation
models17,19–21use the electric-dipole absorption mechani
to interpret the peak parameters while reference is only m
to the magnetic-dipole mechanism as a possible sourc
discrepancy between theory and experiment.

No theoretical analyses or numerical experiments
study absorption by a percolation cluster have been repo
for the three-dimensional case. In this context, the result
our experiments to study microwave absorption in obje
whose composition can be varied so they approach the
colation threshold are of particular interest~see Fig. 4!. In
accordance with formula~5! for a three-dimensional perco
lation cluster~df52.5 andRf52 mm! the ratioPH /PE in-
creases by a factor of 45 compared with the case of isol
;1 mm particles which shows good agreement with the
perimental results plotted in Fig. 4. It may be predicted t
by reducing the particles sizes to around 0.01mm this ratio
will increase another ten times provided thatRf remains con-
stant. Note that in a laser plasma the typical size of the c
pact clusters does not exceed;1 nm ~Refs. 5 and 8!. Con-
sequently, the high experimental values for the ratioPH /PE

given in Table I can be explained quite satisfactorily by
suming that percolation clusters are present in a laser pla

4. CONCLUSIONS

Magnetic- and electric-dipole microwave absorption h
been measured experimentally in the low-temperat
plasma of a laser jet and in a condensed graphite–MgO c
posite. It has been established that the magnetic-dipole
sorption increases more rapidly than the electric-dipole
e
d
-
-
-
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n
n-

de
of

o
ed
of
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r-

ed
-
t
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-
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s
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-

sorption as the laser jet evolves and their ratio may h
values of the order of unity in the advanced evaporation
gime. High values of the ratioPH /PE were also obtained for
the condensed composite above the percolation threshol
good qualitative explanation of these results can be provi
by assuming that percolation structures exist in the lo
temperature laser plasma.

This work was supported by the Russian Fund for Fu
damental Research~Grants Nos. 96-02-17606 and 96-1
96537!.

* !E-mail: nek@srdlan.npi.msu.su

1V. P. Ageev, V. I. Konov, T. M. Murinaet al., Kratk. Soobshch. Fiz.5, 6
~1978!.

2N. E. Kask, JETP Lett.60, 212 ~1994!.
3N. E. Kask and G. M. Fedorov, Kvantovaya E´ lektron.~Moscow! 23, 1033
~1996!.

4S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko,Action
of High-Power Radiation on Metals@in Russian#, Nauka, Moscow~1970!.

5B. M. Smirnov, Usp. Fiz. Nauk164, 665 ~1994! @Phys. Usp.37, 621
~1994!#.

6A. A. Lushnikov, A. E. Negin, A. V. Pakhomov, and B. M. Smirnov, Us
Fiz. Nauk161, 113 ~1991! @Sov. Phys. Usp.34, 160 ~1991!#.

7A. A. Likalter, Phys. Rev. B53, 1602~1996!.
8N. E. Kask, S. V. Michurin, and G. M. Fedorov, Teplofiz. Vys. Temp.37,
9 ~1999!.

9P. N. Sen and D. B. Tanner, Phys. Rev. B26, 3582~1982!.
10P. M. Hui and D. Stroud, Phys. Rev. B33, 2163~1986!.
11Y. Watanabe, K. Maeda, S. Saito, and K. Uda, Jpn. J. Appl. Phys.16,

2007 ~1977!.
12L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media,

transl. of 2nd Russ. ed.~Pergamon Press, Oxford, 1984! @Russ original,
later ed., Nauka, Moscow, 1992#.

13P. Gadenne, Y. Yagil, and G. Deutscher, J. Appl. Phys.66, 3019~1989!.
14A. A. Lushnikov, A. E. Negin, and A. V. Pakhomov, Chem. Phys. Le

175, 138 ~1990!.
15S. Kirkpatrick, Rev. Mod. Phys.45, 574 ~1973!.
16D. Stauffer and A. Aharony,Introduction to Percolation Theory, ~Taylor

and Francis, London, 1994!.
17A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B76, 475 ~1976!.
18D. R. Bowman and D. Stroud, Phys. Rev. Lett.52, 299 ~1984!.
19F. Brouers, J. P. Clerc, and G. Girand, Phys. Rev. B44, 5299~1991!.
20T. W. Noh, P. H. Song, S.-I. Leeet al., Phys. Rev. B46, 4212~1992!.
21F. Brouers, J. P. Clerc, G. Girandet al., Phys. Rev. B47, 666 ~1993!.

Translated by R. M. Durham



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 6 DECEMBER 1999
Exact solution of the problem of the equilibrium configuration of the charged surface
of a liquid metal
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A broad class of exact solutions is obtained for the problem of the equilibrium configuration of
the charged surface of a conducting liquid allowing for capillary forces. An analysis of
the solutions showed that when the amplitudes of the perturbations reached certain critical values,
the region occupied by the liquid ceases to be singly connected, which corresponds to the
formation of liquid metal droplets. It is shown that a steady-state liquid metal profile may exist
for which appreciable local amplification of the electric field can be achieved. ©1999
American Institute of Physics.@S1063-7761~99!00912-9#
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1. INTRODUCTION

As we know,1,2 the plane surface of a conducting liqu
~liquid metal! becomes unstable in a fairly strong elect
field. A characteristic feature of this instability which is o
considerable interest for the physics of the evolution
vacuum discharges and the operation of liquid-me
charged-particle emitters~see, for example, Refs. 3–5! is that
nonlinearity does not saturate linear instability but is, in co
trast, a destabilizing factor.6,7 Consequently, even if the sur
face is stable in the linear approximation, a fairly larg
amplitude perturbation can remove the system from equ
brium. The simplest problem which can be used to assess
role of nonlinearity, and in particular to find the thresho
amplitudes of the surface perturbations for the hard exc
tion of instability, is the problem of the steady-state profile
a liquid metal surface in an external electric field. Of cons
erable interest also is the problem of the equilibrium confi
ration of a charged liquid-metal droplet which plays a k
role in understanding the conditions for its breakup.8

A considerable number of studies~see, for example
Refs. 9–11 and the literature cited therein! have considered a
dielectric liquid in an electric field using the approximatio
of small surface perturbations~the case of a liquid metal o
interest to us is obtained in the limit of infinite permittivity!.
Significantly nonlinear liquid configurations have either be
analyzed by numerical methods12 or qualitatively.13 As re-
gards exact analytical solutions of the problem of the stea
state profile of a charged-liquid metal surface, we are p
ently only aware of a single particular nontrivial solution, t
so-called Taylor cone.14 However, the force balance cond
tion for a Taylor cone is violated at the singularity, i.e.,
vertex, so that this solution is of a formal nature.

In the present study we obtain a broad class of ex
analytical solutions for the problem of the equilibrium co
figuration of a charged liquid-metal surface, taking into a
count surface tension forces, for the case of planar geom
when all the quantities depend on the pair of independ
variablesx andy. The approach used to solve the problem
based to a considerable extent on the method used
1071063-7761/99/89(12)/8/$15.00
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Crapper to solve the problem of the capillary wave profile
the free surface of an ideal liquid.15 With a correction for the
known analogy between the distributions of a planar elec
field in the absence of space charge and the velocity field
the two-dimensional potential flow of an ideal liquid, th
method is based on changing from Cartesian coordin
$x,y% to new variables$w,c%, wherew satisfies the equation
for the Laplace potential of the electric field, andc is a
function harmonically conjugate tow ~in Ref. 15 these func-
tions had the meaning of the current function and the vel
ity potential, respectively!. Since the surface of a conductin
liquid is equipotential, and all the important quantities can
expressed in terms of the harmonic functionf 5 lnu¹wu, the
initial problem with an unknown boundary reduces to
analysis of a nonlinear boundary-value problem on the h
plane for the Laplace equation for the functionf (w,c).

A similar procedure was applied to the problem of t
equilibrium configuration of a two-dimensional charge
liquid-metal droplet. It was found that the nonlinear equ
tions obtained can be completely integrated. The short-wa
length limit of the exact solutions constructed by us~the
solutions for this limit are the same as those obtained
Crapper for a capillary wave! corresponds to another impo
tant electrostatics problem, i.e., the steady-state profile
liquid metal in an external electric field.

The article is made up as follows. In Sec. 2 we give t
equations defining the equilibrium configuration of a charg
liquid-metal surface for the case of plane symmetry. By an
ogy with Ref. 15, we show that using a conformal mappi
method can reduce the investigation to solving a nonlin
boundary-value problem on the half-plane for the Lapla
equation. In Sec. 3 we put forward an additional assump
on the distribution of the electric field outside the conducti
liquid and we determine the necessary conditions for
compatibility with the initial equations. In Sec. 4 we obta
exact solutions for the problem of the equilibrium config
ration of a charged two-dimensional liquid-metal droplet a
also for the steady-state profile of a liquid metal in an ext
nal electric field. In Sec. 5 we construct and investigate
8 © 1999 American Institute of Physics
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equilibrium surfaces corresponding to these exact solutio
In the concluding section we discuss their stability with
spect to small perturbations.

2. INITIAL EQUATIONS

1. We first consider the equilibrium configuration of
charged two-dimensional conducting droplet. Let us assu
that a liquid having the free surfaceS occupies a certain
bounded, singly-connected region in the plane$x,y% ~in the
direction perpendicular to this plane the conductor is
bounded, i.e., it occupies a volume bounded by a right cy
drical surface in three-dimensional space!. The distribution
of the electric field potentialw ~the field intensity is given by
E52¹w) in the absence of space charge is described by
Laplace equation:

wxx1wyy50, ~1!

which should be considered jointly with the condition for
equipotential conductor surface:

wuS50, ~2!

and also the condition that at some appreciable distance
the surface, the field of the charged conductor will be
same as the field generated by an infinite, charged, stra
filament:16

w→22q ln r , E5uEu→2q/r , r→`, ~3!

where r 5Ax21y2, and q is the electric charge per un
length of the conductor perpendicular to the plane$x,y%.

The equilibrium relief of the liquid metal boundary
determined by the balance condition for the forces acting
the surface:16

p1
E2

8p U
S

1
a

R
50, ~4!

wherea is the surface tension,p is the difference between
the liquid pressure and the external pressure, andR is the
radius of curvature of the surface.

For convenience we now go over to the dimensionl
variables:

E→4paq21E, r→q2~2pa!21r ,

w→2qw, p→2pa2q22p.

Expressions~3! and ~4! are then rewritten in the form

w→2 ln r , E→1/r , r→`, ~5!

p1E2uS1R2150, ~6!

and Eqs.~1! and ~2! remain as before.
By analogy with Ref. 15, we introduce the auxilia

function c for which

E5$]c/]y,2]c/]x%

~the conditionc5const defines the electric field lines!. The
complex expressionw5w2 ic ~the so-called complex
potential! is an analytic function of the complex variablez
5x1 iy ~Ref. 16!. Then

ln~2dw/dz!5 f 2 iu ~7!
s.
-

e

-
-

e
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ht
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will also be an analytic function, this being the analog of t
Zhukovski� function in the theory of the plane potential flo
of an incompressible fluid, where

f 5 ln E, u5arctan~Ey /Ex!.

The functionu has the meaning of the angle of inclina
tion of the electric field intensity to the direction of thex
axis. Since the intensity vector is normal to the surface of
conductor, we can assume thatuuS defines the angle of incli-
nation of the vector of the external normal to the surfaceS
relative to the abscissa. Then, in accordance with the de
tion, the curvature of the surfaceS is given by: R21

5(]u/]s)uS , where]s is the elementary arc of the surfac
As a result of the Cauchy–Riemann conditions for the fu
tions f and u we obtain:R215(] f /]n)uS , where]/]n de-
notes the normal derivative. Converting to the functionE, we
find on the surfaceS

R215
1

E

]E

]n
52

]E/]n

]w/]n
52

]E

]w
.

That is to say, we have shown that curvature of the liq
metal surface is given byR2152(]E/]w)uS . In this case,
Eq. ~6! is rewritten in the form

]E

]w
5p1E2, w50. ~8!

For the following analysis it is convenient to convert to
system of coordinates wherew andc play the role of inde-
pendent variables. As a result of the analytic nature of
~7!, the functionf in terms of the new variables will satisf
the Laplace equation

f ww1 f cc50 ~9!

with the condition at the conductor boundary derived fro
formula ~8!:

] f

]w
5pe2 f1ef , w50, ~10!

and also the condition at infinity:

f→w, w→2`, ~11!

obtained from the expressions~5! by eliminating the spatial
variabler. Bearing in mind that in the limituzu→` for the
complex potential we have16 w→2 lnz and consequently a
closed surface corresponds to changingc by 2p, we add the
condition for periodicity off with respect to the variablec:

f ~w,c!5 f ~w,c12p!. ~12!

Thus, the problem of finding the steady-state profile o
charged liquid-metal two-dimensional droplet involves an
lyzing the boundary-value problem~9!–~12! on the half-
planew<0. Note that in order for the solutions of this prob
lem to be physically meaningful, the corresponding surfa
must not allow self-intersection. However, using the conf
mal mapping method cannot ensure that this condition
satisfied at this stage.

2. We shall now consider the problem of the equilibriu
configuration of the free surface of a conducting liquid in
external electric fieldE0 . We shall assume that the vector
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the external field intensity is directed along they axis. The
distribution of the electric field potential is described by t
Laplace equation~1! combined with the condition for an
equipotential liquid surface~2! and also the condition at in
finity:

w→2E0y, y→`, ~13!

which means that the perturbations introduced in the fi
distribution by the surface decay over distance. The fo
balance condition for this problem has the form:

2
E0

2

8p
1

E2

8p
U

S

1
a

R
50, ~14!

which corresponds to the pressure differencep
52E0

2/(8p). The conditions~13! and~14! have the simpler
form:

w→2y, E→1, y→`,

]E

]w
5E221, w50,

if we convert to dimensionless variables by substituting:

E→E0E, r→8paE0
22r .

Introducing the functionf 5 ln E as before in coordinate
wherew andc are the independent variables we obtain:

f ww1 f cc50, ~15!

] f

]w
52e2 f1ef , w50, ~16!

f→0, w→2`. ~17!

As far as the conditions forc are concerned, we shall as
sume that the functionf is periodic:

f ~w,c!5 f ~w,c1l!, ~18!

wherel is the wavelength in Cartesian coordinates (w→ iz
for y→` and thus, changingc to l will correspond to
changing thex coordinate to2l).

We have therefore shown that the problem of determ
ing the steady-state profile of a liquid-metal surface in
external electric field taking into account capillary forces c
be reduced to an analysis of the nonlinear boundary-va
problem ~15!–~18!. It should be noted that apart from th
transformations, these equations are the same as thos
rived by Crapper,15 who analyzed the steady-state profile o
progressive capillary wave. The analogy arises because
the mathematical point of view, the equations describing
two-dimensional electric field distribution in the absence
space charge are identical to the equations for the plane
tential flow of an ideal fluid.

3. ADDITIONAL ASSUMPTIONS; COMPATIBILITY
CONDITIONS

In order to find solutions of the nonlinear boundar
value problems~9!–~12! and ~15!–~18!, it is convenient to
make the assumption that, in addition to the Laplace eq
tion, the functionf for w,0 satisfies the equation
d
e

-
n
n
e

de-

m
e
f
o-

a-

] f

]w
5P~w!e2 f1Q~w!ef , ~19!

whereP andQ are certain functions of the variablew, which
satisfy the conditions

P~0!5p, Q~0!51 ~20!

to agree with condition~10! or

P~0!521, Q~0!51 ~21!

to agree with~16!. We shall subsequently show that by usin
this assumption, we can reduce the solution of the ini
boundary-value problems to the successive integration of
dinary differential equations.

We now explain the meaning of this additional relatio
ship. Using the functionE, Eq. ~19! has the form of an ordi-
nary Riccati differential equation with the independent va
ablew:

]E

]w
5P~w!1Q~w!E2, ~22!

or, reverting to dimensional quantities

pP~w!1
E2Q~w!

8p
1

a

R8
50,

whereR8 is the radius of curvature of the equipotential su
face passing through this point. This implies that on the eq
potential surfacew5w1,0 the following relationship mus
be satisfied

p̃1
E2

8p
1

ã

R8
50,

where we have introduced the notation

ã5a/Q~w1!, p̃5pP~w1!/Q~w1!,

which has the same structure as the force balance cond
~4!. In this case, our assumption implies that if all the ne
essary equilibrium conditions are satisfied on a certain s
face~corresponding tow50), any other surfacew5w1 will
also be a solution of this problem for new values of t
surface tensionã(w1) and the difference between the inte
nal and external pressuresp̃(w1).

Quite clearly, in the general case the systems of eq
tions ~9!–~12! and ~15!–~18! combined with condition~19!
are overdetermined. We find the values ofP andQ for which
the Laplace equation~9! or ~15! will be compatible with the
additional condition. Knowing the specific form of thes
functions we can solve Eq.~19! or, which amounts to the
same thing, the Riccati equation~22! which for arbitrary val-
ues ofP(w) andQ(w) is not integrable in quadratures. Fo
this purpose we consider the general equation

] f

]w
5G~ f ,w! ~23!

and we determine the dependence of the functionG on the
variablesf andw required for compatibility with the Laplace
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equation. We first differentiate Eq.~23! with respect tow and
substitute the expression obtained into Eq.~9!, which gives:

f cc52Gw2GGf .

Multiplying both sides byf c and then integrating with re
spect toc, we find:

1

2
f c

25A~w!2E ~Gw1GGf !d f , ~24!

whereA is a certain function of the variablew. Differentiat-
ing this expression with respect tow gives:

f wc f c5Aw22GGw2G2Gf2E Gwwd f . ~25!

The cross derivativef wc can be obtained by differentiatin
expression~23! directly with respect toc: f wc5Gf f c . Sub-
stituting this relationship into Eq.~25! and then eliminating
f c using Eq.~24!, we finally obtain the following integrod-
ifferential equation for the functionG considered as a func
tion of the independent variablesf andw:

2AGf22GfE Gwd f5Aw22GGw2E Gwwd f . ~26!

This expression is a necessary condition for the compatib
of Eqs.~23! and ~9!.

We now substitute into the compatibility criterion~26!
the functionG in the form:

G~ f ,w!5P~w!e2 f1Q~w!ef ,

which corresponds to Eq.~19!. We find:

~Qww12AQ!ef2~Pww12AP!e2 f

5Aw24PwQ24PQw .

This condition is clearly satisfied if

Qww12AQ50,

Pww12AP50,

Aw24PwQ24PQw50.

Integrating this last equation gives:A54PQ1s, wheres is
a certain constant. Eliminating the functionA from our equa-
tions by using this relationship, we finally obtain:

Qww522sQ28PQ2, ~27!

Pww522sP28QP2. ~28!

Thus, we have shown that in order to achieve compatibi
between Eqs.~9!–~12! and ~15!–~18! and the auxiliary con-
dition ~19!, the functionsP and Q must satisfy the linear
ordinary differential equations~27! and ~28!.

4. CONSTRUCTION OF EXACT SOLUTIONS

1. We shall now directly solve the boundary-value pro
lem ~9!–~12!. Equations~27! and ~28! can be integrated
completely, although in order to obtain an exact solution
the problem of the equilibrium configuration of a charg
liquid-metal two-dimensional droplet it is sufficient to an
lyze its particular solutions obtained by substituting:
y

y

-

f

P~w!52~11X~w!!X0ew, Q~w!5X~w!X0
21e2w,

~29!

where we have introduced the notationX05( l 21)/2 and
l 5A124p.

Using the representation~29! for P and Q, we obtain
from Eqs.~27! and ~28!

Xww22Xw1~112s!X28X2~11X!50,

Xww12Xw1~112s!~11X!28X~11X!250.

It is readily seen that the condition for compatibility of the
equations will be

Xw52X12X221/42s/2. ~30!

In order to satisfy condition~20! this equation must be
solved jointly with the conditionX(0)5X0.0. For conve-
nience we rewrite condition~30! in the form

Xw52~X2X1!~X2X2!,

using the notationX1,252(16k)/2 andk5As13/2. We as-
sume thatX1,X0,X2 and therefore 1, l ,k ~an analysis of
other possible cases does not yield a solution of the in
problem!. Integrating this ordinary differential equation the
gives

X5
X21X1 exp$2k~w1w0!%

11exp$2k~w1w0!%
, w05

1

2k
lnS X22X0

X02X1
D . ~31!

These relationships combined with the expressions~29! for
the functionsP andQ ensure that the necessary compatibil
conditions are satisfied for Eq.~19! and the boundary-value
problem~9!–~12!.

We now use Eq.~19!, which may be considered to be a
ordinary differential equation with the independent variab
w ~the variablec appears in it implicitly!, to determine the
dependence off on w. Substituting the expressions~29! into
Eq. ~19! and introducing the new function

F~w,c!5
X02ef 2w

X01ef 2w
,

we obtain the following linear differential equation:

]F

]w
52XF1F11.

Its solution is:

F5
Z~w!2Y~c!

Zw

, Z~w!5E expH 2E ~2X11!dwJ dw,

whereY is a certain function of the variablec. Substituting
Eq. ~31! into the expression for the functionZ and adopting
some arbitrariness in the choice of integration constants,
find

Z5sinh~kw1kw0!. ~32!

Returning to the initial functionf, we find that the solution of
Eq. ~19! can be written in the form
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f ~w,c!5w1 ln X01 lnS Zw2Z1Y

Zw1Z2Y
D . ~33!

Bearing in mind the expression forZ ~32!, we observe that
for w→2` we havef→w, i.e., the necessary conditions
infinity ~11! are naturally satisfied.

We now find the unknown functionY. Substituting ex-
pression~33! into the Laplace equation~9!, we obtain

Zwww2Zww1Ycc

Zw2Z1Y
2

~Zww2Zw!21Yc
2

~Zw2Z1Y!2

5
Zwww1Zww2Ycc

Zw1Z2Y
2

~Zww1Zw!21Yc
2

~Zw1Z2Y!2
.

After simple transformations we arrive at:

F1~c!1Z~w!F2~c!1Z2~w!F3~c!50,

where

F15~Y22k2!~Ycc2k2Y!22Y~Yc
21k2!,

F2522~YYcc2Yc
22k21k4!,

F35~12k2!~Ycc1k2Y!.

This becomes an identity provided thatF15F25F350, i.e.,
if the functionY satisfies three equations simultaneously:

~Y22k2!~Ycc2k2Y!52Y~Yc
21k2!, ~34!

YYcc5Yc
21k22k4, ~35!

Ycc52k2Y. ~36!

We show that the set of solutions of this overdetermin
system of ordinary differential equations is not empty. T
solution of this last equation will then clearly be given by

Y5A cos~kc2kc0!.

Without any loss of generality the integration constantc0

can then be set to zero. Substituting this expression into
~34! and ~35!, we observe that this satisfies these equati
when the following condition is satisfied for the amplitudeA:

A25k221.

Hence the solution of Eqs.~34!–~36! is given by

Y~c!5Ak221 cos~kc!. ~37!

Thus, by using the additional relationship~19!, we have ob-
tained a solution of the Laplace equation~9! satisfying the
conditions~10! and ~11!, i.e., formula~33! combined with
expressions~32! and ~37!.

In order to construct the equilibrium surfaces cor
sponding to our solution~32!, ~33!, and ~37! in the coordi-
nates$x,y% in Sec. 5, we require expressions for the absol
electric field intensityEuw50 relative to the conductor bound
ary and also for the angle of inclination of the electric fie
intensity vector to the direction of the abscissauuw50 . Sub-
stituting the expressions forY and Z into formula ~33! and
bearing in mind thatE5expf, we obtain
d
e

s.
s

-

e

Euw505X0

11a2d212ad cos~kc!

a21d222ad cos~kc!
, ~38!

where we have introduced the notation:

a5Ak21

k11
, d5Ak2 l

k1 l
.

Then, assuming thatf and u are conjugate harmonic func
tions and thus the Cauchy–Riemann condition]u/]c
5] f /]w is satisfied, we obtain from Eq.~10!:

]u

]c
5pe2 f1ef5

p

E
1E, w50.

Then substituting expression~38!, integrating with respect to
c, and selecting the integration constant such thatu(0,0)
5p/2, we find

uuw505
p

2
1c12 arctanS a1d

a2d
tanS kc

2 D D
22 arctanS 12ad

11ad
tanS kc

2 D D . ~39!

We analyze expressions~38! and~39! for the functionsE
andu. Since the functionE is periodic with the period 2p/k
with respect to the variablec, a closed curve evidently cor
responds to a change inc by an integer number of periodsn,
i.e., the value ofc should vary in the range 0<c,2pn/k.
On the other hand, a closed surface corresponds to a ch
in c by 2p, i.e., condition~12!. In fact, it is readily observed
@see Eq.~39!# that asc increases by 2p, the angleu changes
~not necessarily monotonically! by the same amount, i.e., th
curve plotted in Cartesian coordinates has a single comp
revolution. This means that the conditionk5n should be
satisfied, wherenÞ1 is a natural number. In other words, th
solutions of this problem will correspond to a series of nu
bersk52,3,4 . . . , which define the number of branches
the corresponding curve in the coordinates$x,y%.

2. We shall now construct an exact solution for the pro
lem of an equilibrium configuration of the free surface of
conducting liquid in an external electric field. Following Re
15, we shall seek a solution in the form

f ~w,c!5 lnS Z~w!1Y~c!

Z~w!2Y~c! D , ~40!

whereY andZ are unknown functions of the variablesc and
w, respectively. This representation corresponds to the
ticular case when the conditionP(w)52Q(w), which does
not contradict condition~21!, holds for the functionsP andQ
in Eq. ~19!. Substituting expression~40! into Eqs.~15!–~18!,
we observe that the following conditions should be satisfi

Z~w!5~k/211!e2kw1~k/221!ekw,

Y~c!5Ak224 cos~kc!,

k52p/l, k>2,

in conjunction with expression~40!, which define the exac
solutions of this boundary-value problem. Note that the
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rameters in the compatibility conditions~27! and ~28! is
related to the wave number by the simple relationsh
k5As.

We then require the dependences of the functionsE and
u on the variablec at the conductor surface. Substituting t
expressions obtained forZ andY into Eq. ~40! and assuming
thatE5expf, we obtain for the absolute value of the elect
field intensity:

Euw505
11c~k!cos~kc!

12c~k!cos~kc!
, ~41!

where we introduce the notationc(k)5A124/k2. For the
angleuuw50 , using the condition]u/]c5] f /]w, we obtain
from Eq. ~16! after integrating with respect toc

uuw505
p

2
12 arctanS kc~k!

2
sin~kc! D . ~42!

It should be noted that similar expressions can be
tained from Eqs.~38! and ~39! if the values ofk and l are
made to tend to infinity so that their ratiok̃52k/ l remains
finite. In fact, assuming thatc̃5c l /2, and also c̃( k̃)

5A124/k̃2, we obtain in the fundamental order:

Euw50→
l

2

11 c̃~ k̃!cos~ k̃c̃ !

12 c̃~ k̃!cos~ k̃c̃ !
,

uuw50→
p

2
12 arctanS k̃c̃~ k̃!

2
sin~ k̃c̃ !D ,

which agrees with Eqs.~41! and~42!, apart from the constan
factors whose appearance is related to the various metho
dedimensionalizing the quantities. This is because in
short-wavelength limit the problem of the equilibrium co
figuration of a charged liquid-metal droplet is identical to t
problem of the steady-state profile of a liquid metal in
external electric field.

5. STEADY-STATE SURFACE PROFILES

1. We construct equilibrium profiles of the free surfa
of a liquid metal in the coordinates$x,y% using Eq. ~7!,
where the right-hand side is the functionw. Taking this as an
ordinary differential equation for the unknown functionz, we
obtain after integration

z52E exp~2 f 1 iu!dw.

Bearing in mind that at the boundaryw50 and therefore
w52 ic, we obtain the expression

z5z01 i E
0

c exp~ iuuw50!

Euw50

dc,

wherez05x01 iy0 is the integration constant. Having sep
rated the real from the imaginary part we observe that
unknown surfaces are defined parametrically as follows:
:

-

of
e

e

y5y01E
0

c cos~uuw50!

Euw50

dc, x5x02E
0

c sin~uuw50!

Euw50

dc.

~43!

When formulas~38! and ~39! are used in the integrand ex
pressions, these equations define the equilibrium config
tion of a two-dimensional, liquid-metal droplet; the close
surface corresponds to a change in the parameterc in the
range 0<c,2p. The constantsy0 and x0 can be conve-
niently taken so that the geometric center of the curve co
cides with the origin.

It is easy to see that in the limitl→k5n expressions
~38!, ~39!, and~43! define circles of radius 2/(n11). A re-
duction in the parameterl leads to an increase in the amp
tude of the surface perturbations and it was found that
certain n-dependent critical values of the parame
l 5 l c(n), the region occupied by the liquid ceases to be s
gly connected and isolated liquid-metal droplets form. F
1, l , l c the solutions are physically meaningless so that
fixed n the set of solutions of this problem corresponds to
interval l c(n)< l<n.

Figures 1–3 show steady-state configurations of char

FIG. 1. Equilibrium configuration of charged two-dimensional liquid-me
droplet forn52 and the critical value of the parameterl 5 l c(2)'1.86. Also
plotted are typical equipotential surfaces corresponding to three diffe
values of the parameterw (w1520.08, w2520.16, andw3520.24).
These surfaces may be considered to be a family of exact solutions o
problem, mapped in different scales and corresponding to differentl.

FIG. 2. Equilibrium configuration of a charged liquid-metal droplet f
n53 and the critical value of the parameterl 5 l c(3)'2.53. Also plotted is
a family of equipotential surfaces corresponding to three different value
the parameterw (w1520.1, w2520.3, andw3520.6).
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two-dimensional liquid-metal droplets for criticall and
n52, n53, andn54. Also shown are typical equipotentia
surfaces corresponding to different values ofw5const ~we
recall that at the liquid metal boundaryw50). It was noted
in Sec. 3 that these surfaces are also solutions of the prob
of an equilibrium droplet configuration which refer only
those system parameters such as the surface tension an
difference between the internal and external pressures, w
differ from the given ones. Thus, these curves not only g
some idea of the electric field distribution outside a charg
conducting droplet but also of its possible equilibrium co
figurations for variousl and shown in different scales.

We introduce the characteristic of these solutions as
ratio of the maximum and minimum electric field intensiti
at the equilibrium surfaceg5(Emax/Emin)uS. Quite clearly,
for fixed n the highest possible amplification of the field
achieved forl 5 l c(n). For example, using Eq.~38! we obtain
gmax'6.25 for n52, gmax'13.5 for n53, andgmax'18.5
for n54 (gmax increases monotonically with any further in
crease in the integer-value parametern). This demonstrates
that a charged liquid-metal surface may have a steady-s
profile which can ensure appreciable local amplification
the electric field, by more than an order of magnitude.

2. We now construct the steady-state profile of the f
surface of a liquid metal in an external electric field f
which expressions~41! and ~42! should be substituted into
the relationships~43! obtained above where we set:y050
andx05p/k. Integration yields

y512c~k!2
4k22

11c~k!cos~kc!
, ~44!

x5
p

k
2c1

2c~k!k21sin~kc!

11c~k!cos~kc!
, ~45!

which, apart from the substitutionsx→2x and y→2y,
agrees with the expressions obtained by Crapper15 as the
exact solution of the problem of the capillary wave profile
coordinates moving with the wave~the liquid metal in our
case corresponds to the space above the liquid surfac
Ref. 15!.

FIG. 3. Equilibrium configuration of a charged liquid-metal droplet f
n54 and the critical value of the parameterl 5 l c(4)'3.19. Also plotted are
equipotential surfaces corresponding to three different values of the pa
eterw (w1520.1, w2520.3, andw3520.6).
m
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The parametric equations for the equilibrium surfa
~44! and~45! can be used to determine the dependence of
perturbation amplitude of the liquid-metal surface, defined
the difference between the maximum and minimum valu
of y per period (A5ymax2ymin), on the wave numberk:

A52A124/k2. ~46!

Thus, in addition to the trivial solutionA50 of this problem
for k.k052, another nontrivial solution also appears, sho
by the side branch in Fig. 4. It should be noted that a wa
number of two in the initial dimensional variables corr
sponds tok5k05E0

2/(4pa). It follows from the capillary
wave dispersion law that at the plane surface of an ide
conducting fluid in an external electric field in the absence
a gravitational field16

v25
a

r
k32

E0
2

4pr
k2,

wherer is the density of the medium, this wave number
the threshold value: the trivial solution of the problem
stable with respect to small perturbations fork.k0 whereas
for k,k0 , aperiodic instability may develop~see Fig. 4!.

It can be seen from Eq.~46! that ask increases, the
amplitudeA increases monotonically. When the wave nu
ber exceeds the critical valuek'kc'3.042, the curve corre
sponding to expressions~44! and ~45! becomes
self-intersecting.15 Consequently, the solutions of th
boundary-value problem~15!–~18! given in the previous sec
tion are only physically meaningful when

k0<k<kc.1.52k0 ,

and the largest possible amplitude of the surface pertu
tions will correspond tok5kc . Figure 5 shows the equilib
rium surface for this wave number. It can be seen that
region occupied by the liquid metal ceases to be singly c
nected and isolated liquid-metal droplets are formed, c
nected to the bulk of the metal by infinitely thin neck
Clearly, an arbitrarily small increase in the perturbation a
plitude can lead to detachment of the droplets.

We give several figures characterizing the solution pl
ted in Fig. 5. The ratio of the amplitude of the surface p
turbation to the wavelength is

m-

FIG. 4. Dependence of the amplitudeA of the steady-state profile of the fre
surface of a liquid metal in an external electric field on the wave numbek.
The solid curve gives the stable branches of the solutions and the da
curve gives the unstable branches.
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Amax/l5p21Akc
224'0.730.

The ratio of the maximum and minimum electric field p
period, the parameterg introduced above, has the highe
possible value fork5kc :

g~kc!5gmax5S 21Amax

22Amax
D 2

'50.64.

Moreover, the absolute value of the electric field at the eq
librium surface may exceed the external fieldE0 by a factor
of g1/2, i.e., Emax'7.116E0 . At the tip the curvature of the
surface is more than fifty times its minimum value p
period.

6. CONCLUDING REMARKS

As a result of analyzing the force balance conditions
the free surface of a conducting liquid with plane symmet
we have obtained a broad class of exact solutions for two
the most interesting problems, i.e., the problem of the eq
librium configuration of a two-dimensional charged liqui
metal droplet and also the problem of the steady-state pr
of a liquid metal in an external electric field. The questi
naturally arises as to whether these solutions are stable
respect to small perturbations. A comprehensive study of
aspect is outside the scope of the present paper in which
have not investigated the surface dynamics as such. Ne
theless, we have put forward several arguments which i
cate that the liquid metal configurations plotted in Figs. 1
and 5 are unstable.

We consider the equilibrium surface of a liquid metal
an external electric field defined by expressions~44!–~45!.
The dependence of the amplitude of the perturbation of
free surface on the parameters of the problem is given by
relationship

FIG. 5. Single period of the steady-state profile of the free surface
liquid metal in an external electric field for the critical value of the wa
numberk5kc'3.042.
i-
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e
e

A~k!5
4

k S 16p2a2k2

E0
4

21D 1/2

,

obtained from Eq.~46! by converting to dimensional quant
ties. It can be seen that for fixedk the amplitude of the
steady-state solution increases as the external electric
decreases. Conversely, if we increase the amplitude of
surface perturbation, the force balance condition can only
satisfied when the external field is slightly reduced. For
previous value of the field the capillary forces will not b
able to compensate for the destabilizing influence of the e
trostatic forces, which leads to a further increase in am
tude, i.e., to the development of instability. The same m
also apply to liquid-metal droplets.

This reasoning also indicates that the plane surface
liquid metal in an external electric field is globally unstab
with respect to perturbations having wave numbersk.k0 ,
i.e., when the condition for its linear stability is satisfied. T
instability can increase without bound if the amplitude of t
surface perturbation exceeds the equilibrium value ofA(k)
determined by us. A similar condition may well serve as t
simplest criterion for the hard loss of stability by the pla
surface of a conducting liquid.
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Liquid–solid phase transition in a heterogeneous system of solid spheres
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A molecular dynamics method is used to study the influence of a heavy dispersed particle on a
liquid–solid phase transition in a molecular system of solid spheres. It is shown that the
presence of a dispersed particle shifts the transition toward higher densities and pressures. In
addition, in the liquid state the heterogeneous system has a lower pressure, whereas in
the solid state the pressure is higher than that in the corresponding states of a homogeneous
medium. It is established that the pressures of the heterogeneous mixture in the regions before and
after the phase transition can be converted to the pressure of the single-component system
by introducing various scaling factors~effective densities of the medium!. © 1999 American
Institute of Physics.@S1063-7761~99!01012-4#
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1. INTRODUCTION

In their pioneering work Alder and Wainwright1 used a
molecular dynamics method to establish that a liquid–so
phase transition exists in a homogeneous system of s
spheres. However, characteristic features of this phase
sition in an inhomogeneous system have not yet been s
ied. The widespread occurrence of heterogeneous med
nature and in various technological applications makes t
study a topical and important issue. This particularly app
to studies of the phase transition. The present paper is
voted to studying the influence of small dispersed partic
on the liquid–solid phase transition.

We consider the evolution of a heterogeneous system
solid spheres comprising a homogeneous molecular sys
of solid spheres of radiusr and massm in which is immersed
a dispersed particle of radiusR and massM. We studied the
evolution of the system by a molecular dynamics metho2

The mass ratio was taken to beM /m5100. The model was
a cell in the form of a rectangular parallelepiped which co
tained a single particle surrounded by molecules. Initially
molecule was located at the points of a hexagonal clo
packed lattice~this structure is typical, for example, of crys
talline helium 3He and4He). The ratio of the particle and
molecular radii varied experimentally in the rangeR/r
52 – 4. In order to create an empty region in which the p
ticle was located,Nm* molecules were removed from the ce
In order to compensate for the finite number of molecu
studied in this cell, we used periodic boundary conditio
All the numerical experiments were carried out using
533 MHz DEC-Alpha computer. Between 200 and 58
molecules were used for the calculations. The time take
calculate a single point on the isotherm diagrams withNm

;2500 molecules in the cell near the phase transition z
~the time taken for relaxation of the system to the liquid st
is particularly long here! is around 10 h.

2. RESULTS OF CALCULATIONS

The phenomenon of a liquid–solid phase transition i
system of solid spheres is illustrated clearly in Fig. 1. H
1081063-7761/99/89(12)/3/$15.00
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the solid curve shows a typical isotherm of a single-ph
liquid. This isotherm is the dependence of the compressi
ity k5(p2p0)/p0 on the packing density of the molecule
in the system

a f5
V

V0
5

VA2

8r 3Nm
0

, ~1!

wherep is the pressure in the system,p05nkT is the ideal
gas pressure, andNm

0 5Nm1Nm* . The temperatureT is de-
termined by the mean squared molecular velocity 3kT
5m^v2&. The molecular dynamics method is used to calc
late the coordinates and velocities of all the molecules. Th
calculated dynamic variables of the system are then use
determine the thermodynamic variables. In particular,
virial theorem~see, for example, Ref. 3! is used to calculate
the pressure in the system.

In a pure single-phase liquid, as the density of the s
tem increases the compressibility has a discontinuity a
certain densitya f* '1.472~see Fig. 1! and at higher densities
it goes over to a new branch corresponding to the solid st
This phenomenon is interpreted as a first-order phase tra
tion.

In physical terms, the phase transition in the solid sph
model can be explained as follows. Initially the molecul
are situated at points in a hexagonal close-packed lat
This packing corresponds to the maximum average dista
between neighboring molecules for a given density. In t
case, the correction to the pressure caused by the mole
interaction is minimal. If the density of the system is fair
high, the molecule remains near the lattice point for the
tire time. This medium is an analog of a solid. As the m
lecular concentration decreases, the ordered structure is
stroyed and the system is converted to the ‘‘liquid’’ sta
whereupon the pressure increases abruptly.

If one of the molecules in this particular molecular sy
tem is replaced by its ‘‘heavy isotope’’~for example, the
mass of the substituted molecule may be 100m, but the radii
of the heavy and light molecules are the same!, the character
6 © 1999 American Institute of Physics
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of the observed phase transition changes little. The c
pressibility is again described by the solid curve in Fig. 1

However, the nature of the phase transition changes
stantially if a large dispersed particle is added to the hom
geneous liquid. For the calculations the ratio of the parti
and molecular masses was taken asM /m5100 and the ratio
of their radii was taken to beR/r 52, 3, 4. The parameters o
this heterogeneous system are the ratios of the volumenp /nf

and massrp /r f concentrations. Here and subsequently
subscripts ‘‘p’’ and ‘‘ f ’’ refer to the dispersed particles an
molecules of the carrier medium, respectively. Thus, for
stance, we havenf5Nm /V, whereV is the total volume of
the cell. The density of this mixture is determined by t
parameter@cf. Eq. ~1!#

a f p5
VA2

8r 3Nm18R3
, Nm1Nm* 5Nm

0 . ~2!

In the calculations plotted in Fig. 1 the dashed cur
gives the isotherm for this heterogeneous system~liquid 1
dispersed particle!. Here the radius of the dispersed partic
is R54r and the cell containsNm52637 molecules. When a
dispersed particle is present in the system, the phase tr
tion takes place at higher densities and pressures. The
sity at which the phase transition takes place increases w
corresponds to a decrease in the parametera f p to 1.43. In
this case, the compressibilityk increases from 11.9 to 12.95

In addition, in the liquid state the pressure in the mixtu
is lower than that in a single-phase liquid of the same d
sity. This is because in the liquid state the entire reg
around the particle is accessible to molecules. The addi
of a dispersed particle to the homogeneous molecular liq
reduces the accessible volume of the cell for the molec
carrier medium by the particle volumeVp54pR3/3 and
therefore reduces the number of molecules. The effec
density parameter of the mixture in the liquid state can t
be written as

a f p
l 5

~V2Vp!A2

8r 3Nm

. ~3!

FIG. 1. Dependences of the compressibility factors of a ‘‘pure liquid’’ ona f

~solid curve! and of a binary mixture (R54r , Nm52637) ona f p ~dashed
curve!, a f p

s ~squares!, anda f p
l ~circles!.
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It is easy to establish thata f p,a f p
l , and so a dispersed

system in the liquid state has a lower pressure than a ho
geneous system, as shown in Fig. 1~right-hand branch of the
isotherm fora f p.1.43).

Conversely, if the mixture remains in the solid sta
shielded empty regions form around the particle. The eff
tive particle volume increases in the solid state. Quant
tively this is equal to the volume which would be occupi
by Nm* removed molecules. The corresponding density
rameter is given by

a f p
s 5

VA2

8r 3~Nm1Nm* !
. ~4!

Sincea f p
s ,a f p , a dispersed system in the solid state is

fectively denser than a homogeneous system~left-hand
branch of the isotherm fora f p,1.43 in Fig. 1!.

Note that if the branches of the isotherms in the liqu
and solid states of a heterogeneous liquid are plotted as f
tions of the parametersa f p

l anda f p
s , respectively, we arrive

at the branches of the isotherms for a homogeneous liq
These branches are indicated by the circles and squares
spectively, in Fig. 1. Thus, we can say that the parame
a f p

l and a f p
s are scaling factors which can be used to co

struct the isotherms of a homogeneous liquid if we know
isotherms of the heterogeneous system.

The increase in the densitya f p , at which a phase tran
sition is observed is also related to shielding effects. T
critical densitya f p* for a heterogeneous system, i.e., the de
sity at which the isotherm may have a discontinuity, may
obtained from the critical densitya f* for a homogeneous
liquid:

a f p* 5a f*
a f

a f p
l

. ~5!

An analysis of the data plotted in Fig. 1 indicates that t
presence of a dispersed particle in a molecular system
stantially alters the nature of the phase transition in the s
tem. However, it is clear from physical reasoning that as
volume densitynp of the dispersed particles decreases, th
influence on the phase transition in the system should
crease. The experiments confirm this viewpoint. Figure
gives dependences of the critical densitya f p* on the reduced
particle concentrationnp54pr 3np/3 for various particle ra-
dii. The scale on the abscissa is logarithmic. The horizon
line corresponds to the critical densitya f* , and the theoret-
ical curves are obtained using formula~5!. It can be seen tha
for R52 andnp&331024 the influence of the particles o
the isotherms can be neglected. As the radius of the
persed particles increases, the boundary of the ‘‘concen
tions of influence’’ becomes increasingly lower.

Using the virial theorem is not the only method of ma
ing a numerical analysis of the equation of state for a sys
of solid spheres. It is easily shown that for a system of so
spheres, the compressibilityk is proportional to the volume
density and the pair distribution function of the molecules
the interaction pointn2 ~see, for example, Ref. 4!. The func-
tion n2(r 8) is the concentration of molecules at the distan
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r 8 from the center of one of these, normalized to the aver
molecular concentrationnf . Figure 3 gives calculated pa
distribution functions of a homogeneous molecular liqu
~solid curve! and a heterogeneous system~dashed curve,R
54, Nm52637) for the same densitya51.446, i.e., in the
liquid state for a homogeneous system and in the solid s
for a heterogeneous one~see Fig. 1!. This is confirmed by
Fig. 3. The pair function for the heterogeneous system
periodic even for larger 8, which is typical of the ordered
structure of a solid. The first maximum of the functionn2 for
a mixture is substantially higher than that for a homogene
system and thus the pressure is the liquid state is higher
measuring the value ofn2 at the point of the first maximum
we can calculate the pressure in the system. The isothe
calculated by both methods show good agreement ove
most the entire density range~the relative deviation is,2%
for a.1.3). Appreciable changes are only observed in
solid region far from the phase transition point. In this r
gion, however, the adequacy of this equation of state
somewhat doubtful.

3. CONCLUSIONS

The solid-sphere potential is presently the main mo
for studying dense gases and liquids using direct numer

FIG. 2. Dependences of the critical density of a mixture on the part
concentrationnp . Results of numerical experiments:R52 (L), R53 (d)
and , R54 (s). Theoretical curves:R52 ~solid curve!, R53 ~dashed
curve!, andR54 ~dotted curve!.

FIG. 3. Pair distribution functions of a pure gas~solid curve! and a mixture
~dashed curve! of the same density (a51.446, r * 5r 8/r ).
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modeling methods. The distances between the molecule
these media are short so that the main factor in the inter
lecular interactions is the repulsive component of the pot
tial which is accurately modeled by the solid-sphere pot
tial. In this sense, these results not only accurately desc
the qualitative pattern of a liquid–solid phase transition in
heterogeneous system but can also provide important q
titative information.

The modeling of a phase transition in a heterogene
system performed in the present study was limited to l
concentrations of dispersed particles and small sizes.
low concentrations of the dispersed particles (1023– 1025)
imply that the influence of interparticle interaction could
neglected. We essentially studied the influence on the ph
transition of an isolated dispersed particle immersed in a m
lecular medium. The dispersed particles were either la
molecules or nanoparticles, in particular clusters. The wi
spread development of nanotechnologies over the last de
makes it relevant to study such small particles.

The size of the dispersed particle plays a decisive role
liquid–solid phase transition processes. This is because
transition itself is of a geometrical nature to a considera
extent. A variation in the mass of the dispersed particle
tween 50m and 103m negligibly influences the nature of th
isotherms although of course, heterogeneous media con
ing dispersed particles of different mass will have differe
relaxation times.

Of particular note is the fact that these results can
used to calculate the isotherms of heterogeneous sys
from the corresponding data for a homogeneous molec
system~at least at fairly low concentrations of dispersed p
ticles!.

It is predicted that the observed behavior of the ph
transition process will be conserved as the particle sizes
crease. In order to check this, we made trial calculations
several isotherm points for a system withNm513341 and
R58r . A shift of the transition toward higher densities
also observed in this system. The error in estimates of
shift using these formulas does not exceed at most 30%
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This paper discusses two-dimensional mesoscopic clusters of particles that repel according to
dipole, Coulomb, and logarithmic laws and are confined by an external parabolic
potential. These models describe a number of physical systems, in particular, electrons in
semiconductor structures or on a liquid-helium surface allowing for image forces, indirect excitons
in coupled semi-conductor dots, and a small number of vortices in an island of a second-
order superconductor or in superfluid helium. Two competing forms of ordering are detected in
the particles in the mesoscopic clusters—the formation of a triangular lattice or of a shell
structure. The temperature dependences of the potential energy, the mean-square radial and angular
deviations, the radial and angular distributions of the particles, and the distribution of the
particles over the local minima are studied. Melting in mesoscopic clusters occurs in two stages:
at lower temperatures, there is orientation melting, from the frozen phase into a phase with
rotational reorientation of ‘‘crystalline’’ shells with respect to each other; subsequently, a transition
occurs in which the radial order disappears. Melting in dipole macroclusters occurs in a
single stage. However, in Coulomb and logarithmic macroclusters, orientation melting occurs
only for the outer pairs of shells. Orientation melting is also detected in three-
dimensional Coulomb clusters. A connection is established between the character of the melting
and the ratio of the energy barriers that describe the breakdown of the orientational and
radial structure of a cluster. ©1999 American Institute of Physics.@S1063-7761~99!01112-9#
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1. INTRODUCTION

Much attention has been paid in recent years to the st
of the properties of systems made up of a finite numbe
particles with a repulsive interaction potential. Coupled s
tems made up of a small number of particles whose phys
properties do not coincide~because of their small size! with
the properties of crystals are called clusters.

We shall consider here clusters with logarithmic, Co
lomb, and dipole laws for the interaction between the cl
ters. Each of these systems has interesting physical im
mentations~see below!.

Clusters having different interaction laws and a sm
number of particles possess many common properties
particular, a shell structure competing with the appeara
inside the cluster of a nucleation center with the ‘‘bul
phase’’ structure~i.e., a triangular lattice for two-dimen
sional systems!. We shall consider mesoscopic clusters th
possess a shell structure. They are an intermediate cas
tween microscopic clusters consisting of one shell and m
roscopic clusters in which a large part of the particles fo
the bulk phase. For example, in the two-dimensional cas
large part of the particles inside the cluster form a fragm
of a slightly distorted two-dimensional triangular lattice.
mesoscopic clusters, the numberN of particles varies be-
tween 6 and 50–100, depending on the interaction law
tween the particles in the cluster~the longer-range is the
interaction law, the more numerous the particles that co
spond to macroscopic clusters!. The shell structure of a me
soscopic cluster can sharply change when only one ‘‘p
1081063-7761/99/89(12)/14/$15.00
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ticle’’ is added ~structural sensitivity! all the way to some
numberN of particles, at which a region with the structure
the bulk phase appears within this cluster. What is most
teresting, the melting of a mesoscopic cluster can pos
interesting specific features by comparison with the melt
of the bulk phase.1–3 It turns out that these mesoscopic clu
ters melt in two stages—the mutual-orientation melting
the shells first occurs, and the shell structure disappears
higher temperature~magic clusters are an exception!. As will
be shown, these features are common to mesoscopic clu
of different types, and this makes it reasonable to cons
them jointly. At the same time, the criterion for a cluster
be mesoscopic depends on the range of the interaction
tween the particles. Namely, the transition from mesosco
to macroscopic clusters~at which the features of mesoscop
clusters mentioned above disappear! occurs at a lower num-
ber of particles in dipole clusters than, for example, in Co
lomb and logarithmic clusters.

The orientation melting indicated above is also possi
in an extended system made up of repulsive particles exis
in an external~random! field created by impurities, defects
boundary roughness, etc. A structure recalling a cluster
forms close to the minimum of a random potential~or close
to individual defects, if their concentration is small!, and
orientation melting can occur here as the temperature is
creased~it was observed in Ref. 4 for a vortex lattice in a
impurity system!.

We shall now briefly consider physical implementatio
of the clusters under consideration.

We shall first concentrate on the most important physi
9 © 1999 American Institute of Physics
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implementation for logarithmic clusters. A magnetic fie
penetrates into a second-order superconductor in the for
Abrikosov vortices, which form an ideal triangular lattice
the low-temperature region.5 As the temperature increase
this lattice can melt and form a liquid phase made up
vortices, as has been observed for high-temperature su
conductors~see the review in Ref. 6!. There is great interes
in the question of the structure of a vortex system with
small number of vortices included in islands of the superc
ducting phase.

Moreover, the vortices in a rotating vessel with sup
fluid helium also interact according to a logarithmic la
when the number of vortices is small. The electrons in
semiconductor nanostructure surrounded by a medium
low permittivity also interact according to a logarithmic la
in a certain interval.7

The system under consideration is equivalent to
problem of the two-dimensional analog~see Ref. 1! of the
classical Thomson atom8 with a finite number of ‘‘charges’’
obeying the laws of two-dimensional electrostatics and w
a compensating incompressible background.

Physical implementations of two-dimensional Coulom
clusters are, for example, electrons in craters on a liqu
helium surface9 and electrons in a quantum dot.10 A system
of electrons in a three-dimensional quantum dot is an ana
of a Thomson atom.

When the image forces close to the semiconductor-m
boundary are taken into account, the Coulomb interac
law is replaced at large distances by a dipole law, and th
reflected in the phase diagram of the system, leading to
versible quantum melting of a Wigner crystal, with a chan
in the density.11 Repulsion at large distances also follows
dipole law for excitons with spatially separated electrons a
holes,12–16 particles in a layer of magnetic liquid, a layer o
dielectric clusters on the surface of an electrolyte, etc.~see
Ref. 17 and the literature cited therein!.

For this paper, we considered the temperature dep
dence of the cluster structure. We show that a two-dim
sional mesoscopic cluster melts in two stages: inter-s
~orientation! melting occurs first, and the shells smear out
a significantly higher temperature.~Clusters with a small
number of particles but with a structure close to a true tri
gular lattice—magic clusters-can be an exception.! However,
a macrocluster~in the interval of the numbers of particle
studied here! melts in one or two stages, depending on t
interaction law between the clusters. It is shown that this
because the energy barrier relative to reorientation of
shells is substantially less than the barrier with respec
radial jumping of the particles in the case of microcluste
whereas these barriers are of the same order of magnitu
the case of macroclusters. We also have analyzed how
indicated potential barriers disappear as the temperature
creases.

For this paper, we consider the classical regime for e
trons, in which their characteristic de Broglie wavelength
much less than the mean distance between them@the quan-
tum regime, in particular, the quantum melting of cluste
~see, for example, Ref. 18! is not considered here#.

Section 2 briefly describes the physical model. Sectio
of
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presents the numerical methods used in this paper. Secti
describes the configurations of the clusters at the global
local minima of the potential energy. Section 5 presents
results of calculations of the melting in the clusters. Sect
6 analyzes the potential barriers when the shells in the c
ters rotate with respect to each other and when the parti
jump from one shell to another. Section 7 discusses how
anisotropy of the confining potential affects the structure a
the melting of the clusters. Section 8 discusses the meltin
three-dimensional Coulomb clusters. Conclusions are p
sented in Section 9.

2. THE PHYSICAL MODEL

We shall consider two-dimensional clusters with dipo
Coulomb, and logarithmic laws for the interaction betwe
particles confined by external potentialUext(r ). For electrons
in a semiconductor nanostructure, the role of the confin
potential is played by the boundary of the semiconduc
nanostructure. For electrons above a helium film, the role
lateral confining potential can be played by the potential o
~small! metallic electrode immersed in the helium. For vo
tices in a superconducting island, the role of confining p
tential is played by the compensating incompressible ba
ground of charges of opposite sign~effectively taking into
account the correct mean vortex density in the given m
netic field, which determines the minimum of the Ginzbur
Landau functional in the field!. In all these cases, the confin
ing potential can be calculated for small clusters from
quadratic expressionUext(r i)5ar i

2, where a is a positive
constant.

For two-dimensional dipole clusters~the dipoles are per-
pendicular to the plane of the cluster! with pairwise interac-
tion Ui j 5D2/r i j

3 , we carry out the scale transformations

r→ a1/5e1/5

D2/5 r , T→ ke2/5

a3/5D4/5T, U→ e2/5

a3/5D4/5U. ~1!

Likewise, for the Coulomb interaction lawUi j 5q2/r i j , we
obtain dimensionless quantities by means of the transfor
tions

r→ a1/3e1/3

q2/3 r , T→ ke2/3

a1/3q2/3T, U→ e2/3

a1/3q2/3U. ~2!

However, for the logarithmic interactionUi j 52q2 ln rij , we
use the transformation

r→ a1/2

q
r , T→ kB

q2 T, U→ 1

q2 U. ~3!

As a result, the potential energy of a cluster acquires
form

U5(
i . j

Ui j 1(
i

r i
2, ~4!

whereUi j 51/r i j
3 , Ui j 51/r i j , andUi j 52 ln rij , respectively,

for the cases considered above.
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3. NUMERICAL METHODS USED IN THIS PAPER

To search for the equilibrium configurations of the pa
ticles, we used a random search for the potential-ene
minimum of the system, with random motion of the ind
vidual shells as a whole and random motion of the partic
It is convenient to take regular polygons inscribed in circ
as the initial configurations in the case of an isotropic c
fining potential, since the shells have shapes close to circ
and it is convenient to take regular polygons inscribed
ellipses as the initial configurations in the case of anisotro
confinement. In the case of very strong anisotropy, the p
ticles were placed on a straight line as the initial configu
tions. The maximum step was decreased from 131022 to
131026 in dimensionless units. Each 103 steps, the step wa
decreased by a factor of 0.8–0.98.

The potential barrier against rotation~allowing for the
extremely substantial relaxation, i.e., alignment of the p
ticles to rotation of the shell! can be found by the following
procedure: We fix all the particles of the cluster, other th
the particles of a specific shell, in the configuration cor
sponding to the global minimum of the potential energy. W
rotate all the particles of the indicated shell by angledf with
respect to the others. We then fix the angle of one part
from the rotated shell and the angle of one particle from
stationary shell, and we find the minimum of the potent
energy in terms of 2N22 variables by the method of rando
search~N variable radiir andN22 variable anglesf!. We
note the minimum potential energy of this system. We th
repeat this procedure, varyingf, until one shell has been
rotated with respect to the other by an angle equal to
mean angular distance between the particles in the rota
shell. It is possible in this way to find the dependence of
potential energy of the system on the angle of rotationf of
one shell and the potential barrier against rotation.

The potential barrier against the jumping of a partic
from one shell to another characterizes the radial~total! melt-
ing of the shells. We use the following procedure to find
We fix all the particles of the cluster in the configuratio
corresponding to the global minimum of the potential e
ergy, except for one particle at the site, and we move
particle away from the center of the system~or toward the
center! toward its position at the local minimum of the po
tential energy by distancedr . We then fix the distance from
this particle to the center of the system, and we find
minimum of the potential energy in terms of 2N21 vari-
ables by the method of random search (N21 variablesr and
N variablesf!. We note the minimum potential energy o
this system. We then repeat this procedure until the syste
at a local minimum of the potential energy. It is possible
this way to find the dependence of the potential energy
the coordinater of a particle ‘‘by changing shell’’ and the
potential barrier against jumping of a particle. The propos
method of taking into account the ‘‘relaxation’’ of the pos
tions of the particles as the shells rotate or as the parti
jump between shells substantially reduces the barriers
respect to reorientation of the shells and with respect
jumping. Otherwise, as shown by calculation, unrealis
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overestimated values of these barriers are obtained~this ef-
fect is especially large in the former case!.

We can use the techniques described above to find
potential barriers in clusters at zero temperature. Howe
the variation of the barriers with temperature is of intere
The technique for finding the ‘‘temperature’’ potential bar
ers differs from that for the ‘‘nontemperature’’ ones as fo
lows: Instead of finding the minimum in terms of 2N22
variables in the case of the barrier against rotation or in te
of 2N21 variables in the case of the barrier against jum
ing, in the case of the temperature barrier, we find the m
potential energy for fixedT andDf in the case of the angula
barrier and fixedT andr in the case of the radial barrier. Th
averaging is carried out over approximately 13105 Monte
Carlo steps.

The Monte Carlo method with the Metropolis algorith
was used in this paper to study the dependence of the ph
cal quantities on the temperature and the melting of the s
tem. After the equilibrium configurations were found, th
temperature of the system was increased byDT (DT55
31027– 531023), and the system was then confined until
reached equilibrium at the new temperature in (2 – 4)3104

Monte Carlo steps. The statistical characteristics were t
calculated by averaging over 13106 Monte Carlo steps. This
was followed by further heating, using the procedure d
scribed here. The following quantities were computed:

~1! The total potential energyUpot.
~2! The radial mean-square displacements: the to

value,

^dR2&5
1

N (
i 51

N
^r i

2&2^r i&
2

a2 , ~5!

and the individual value for each shell,

^dr 2&5
1

NR
(
i 51

NR ^r i
2&2^r i&

2

a2 , ~6!

whereNR is the number of particles in a shell, and the av
aging, indicated by angle brackets, is carried out over diff
ent Monte Carlo configurations.

~3! The angular mean-square displacements with res
to the nearest particles of its own shell,

^df1
2&5

1

NR
(
i 51

NR ^~f i2f i 1
!2&2^~f i2f i 1

!&2

f0
2 , ~7!

and with respect to the nearest particles of the neighbo
shell,

^df2
2&5

1

NR
(
i 51

NR ^~f i2f i 2
!2&2^~f i2f i 2

!&2

f0
2 , ~8!

where i 1 and i 2 relate to the closest particle from the sam
and from the neighboring shell, and 2f052p/NR is the
mean angular distance between the neighboring particles
the given shell.

Only the relative angular mean-square deviations
calculated, since the rotation of the system as a whole i
no interest.
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TABLE I. Shell structure and potential energy of clusters made up of two-dimensional vortices.

Number Occupation numbers Potential Number Occupation numbers Potentia
of particles of shells energy of particles of shells energy

1 1 0.0000003100 26 3,9,14 21.9405693102

2 2 5.00000031021 27 3,9,15Cr3 22.1561373102

3 3 8.91802331021 28 4,9,15 22.3842943102

4 4 1.0904573100 29 4,10,15 22.6259123102

5 5 9.76405231021 30 4,10,16 22.8810283102

6 1,5 4.35416931021 31 4,10,17 23.1492683102

7 1,6Cr1 27.51244231021 32 4,11,17 23.4313293102

8 1,7 22.5147463100 33 5,11,17 23.7274733102

9 1,8 24.9145103100 34 1,5,11,17 24.0373083102

10 2,8 28.1004143100 35 1,6,11,17 24.3616063102

11 3,8 21.2093333101 36 1,6,12,17 24.7003313102

12 3,9 21.6978583101 37 1,6,12,18Cr1 25.0535343102

13 4,9 22.2716103101 38 1,6,12,19Cr1 25.4209293102

14 4,10 22.9427933101 39 1,7,13,18 25.8031553102

15 4,11 23.7061183101 40 1,7,13,19 26.2004303102

16 5,11 24.5737073101 41 1,7,13,20 26.6123103102

17 1,5,11 25.5413083101 42 1,7,14,20 27.0394163102

18 1,6,11 26.6206923101 43 2,8,14,19Cr2 27.4816663102

19 1,6,12 27.8116553101 44 2,8,14,20Cr2 27.9396063102

20 1,6,13 29.1101993101 45 2,8,14,21Cr2 28.4126193102

21 1,7,13 21.0526963102 46 3,9,14,20Cr3 28.9015143102

22 1,7,14 21.2056833102 47 3,9,15,20Cr3 29.4061223102

23 1,8,14 21.3706473102 48 3,9,15,21Cr3 29.9265543102

24 2,8,14 21.5482033102 49 3,9,15,22Cr3 21.0462503103

25 3,8,14 21.7379683102 50 4,10,15,21 21.1014603103

107 3,9,15,21,27,32Cr3 27.1557303103

108 3,9,15,21,27,33Cr3 27.3166943103 192 3,9,15,21,27,33,39,45Cr3 22.8345683104
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The following quantities were also calculated for tw
dimensional Coulomb clusters withN519 andN520.

~4! The radial distribution function

g~r !5K (
i 51

N

d~r i2r !L .

~5! The correlation function of the angles between t
particles of two shells:

g~f!5K (
i 51

N1

(
j 51

N2

d~f i !d~f j2f i1f!L .

~6! The distribution of particles over local minima, i.e
the probability of detecting the system close to differe
minima of the potential energyWglob,loc. To calculate this
quantity, the system was periodically~once per 104– 105 it-
erations! sharply cooled to a temperature several orders
magnitude lower than all the melting temperatures
31027) for 23104 iterations. The minimum energy wa
then compared with the energy at the different local minim
and, if it was close to the value at some minimum, it w
assumed that the system fell into this minimum~the local
and global minima were calculated ahead of time!.

4. EQUILIBRIUM STRUCTURE OF TWO-DIMENSIONAL
CLUSTERS

We shall investigate the equilibrium structure of cluste
with logarithmic and dipole interaction laws. The Coulom
t

f

,
s

s

interaction is intermediate in range. The equilibrium stru
ture of Coulomb clusters was investigated earlier~see, for
example, Refs. 1 and 3!.

Mesoscopic clusters have a shell structure at low te
peratures, and this is explained by the influence of the c
trally symmetric confining potential. As is well known, a
unbounded two-dimensional crystal has a triangular latt
However, the triangular structure originates inside a clus
with a rather large number of particles~see also Ref. 3!. In
the case of dipole clusters, because of the short-range c
acter of the interaction, the triangular lattice originates wh
N.11, but it is difficult to distinguish the shells whe
N.40; therefore we have studied dipole clusters w
N<40. In logarithmic clusters, a triangular lattice is forme
at much largerN; therefore we investigated logarithmic clu
ters withN<50 and selectively for largerN. The following
were found for two-dimensional clusters:~a! the local, and
~b! the global~the deepest of the local! minima of the poten-
tial energy.

4.1. The structure of logarithmic clusters

The dependences of the internal, external, and total
tential energy per particle on the number of particles
close to linear. In this case, the dependences of the inte
and total potential energy per particle on the number of p
ticlesN are decreasing and smooth forN from 3 to 50, while
the dependence of the external potential energy per par
as the number of particlesN goes from 1 to 50 is increasin
and smooth.
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Table I shows the occupation numbers of the shells
the corresponding potential energies@measured from
CN

2 ln(q/a1/2a)—see above# for the global minima of two-
dimensional logarithmic clusters. The successive filling
the shells recalls to some extent the periodic table of
elements ~compare the filling of the shells in a two
dimensional classical system of particles with thre
dimensional Coulomb interaction3!. Each shell can contain
no more than a definite number of particles. Thus, there
be no more than five particles in the first shell~counting from
the center of the system! and no more than 11 particles in th
second. When all the shells are filled, i.e., when they con
the maximum number of particles, a new shell begins
appear: first one additional particle appears at the cente
the system, then~as the number of particles increases!, two
particles form an inner shell, etc. In this case, one part
appears at the center of the system after a particle is add
a system with configuration~5,...!, two appear after configu
ration ~1,7,...! or ~1,8,...!, three after configuration~2,8,...!,
four after configuration~3,9,...!, and five after configuration
~4,11,...!.

We shall use the following concept of shell~which dif-
fers from the definitions used earlier, which are not univer
for different numbers of particles!. We define a shell as a
convex polygon made up of the maximum possible num
of particles~inside which the preceding shell is found!, sat-
isfying the following rule: The maximum distance from
particle of the given shell to the center of the system mus
less than the minimum distance to the center of the sys
from a particle of the neighboring shell, external with resp
to the given shell. As a result of this definition, the law f
filling the shells in clusters, obtained from our calculatio
using the definition indicated above, is similar to the law
filling the shells in the Thomson atom.3 In particular, in our
work, unlike Ref. 19, the number of shells cannot decreas
the number of particles increases.

Since the confining quadratic potential is centrosymm
ric, it should be expected that the shells in a cluster m
have the shape of regular polygons inscribed in circles. H
ever, this is valid only for clusters consisting of one shell
of two shells the inner of which has only one particle. As t
number of particles in clusters with smallN increases further
the symmetry spontaneously breaks down. This shows
most strongly in a cluster with two particles at the center~in
the clusters withN510 andN524). In these cases, since th
first shell ~counting from the center! consists of two par-
ticles, it is convenient to assign the shape of an ellipse to
second shell.

The basis of certain configurations at the global mini
of the potential energy consists of parts of a crystal latt
with hexagonal symmetry. When describing and analyz
the properties of such configurations, it is suitable to int
duce into the discussion ‘‘crystal shells’’ (Crc)—concentric
groups of nodes of an ideal two-dimensional crystal at
center of which are foundc particles~see Table I!.

An analytical calculation of the radius and potential e
ergy of clusters consisting of one shell, as well as of clus
consisting of two shells the second of which contains o
d
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one particle, confirms that the computer calculation is su
ciently accurate~nine places!.

It can be seen from Fig. 1 that the mean distance
tween the particles monotonically increases as the numbe
particles increases, while the rate at which it grows decrea
somewhat withN. As far as the size of the system is co
cerned, although the overall tendency is for it to increase
cannot be said to monotonically depend onN for all N. Com-
paring Fig. 1 and Table I, it can be concluded that the sizR
of the system experiences discontinuities when a new s
appears and when a particle is added to the first shell~from
the center of the system!. However, if the cluster become
more symmetrical when the numberN is increased by one
the size of the system may just barely increase or e
slightly decrease, as can be seen from Fig. 1. Moreover,
lattice period~the mean distance between the nearest p
ticles! becomes approximately constant forN.9 ~see Fig.
1!. The last two circumstances show that the density of p
ticles is constant.

We should point out that it is a rather difficult task
search for the configuration corresponding to the glo
minimum of the potential energy for largeN, because there
are numerous local minima with a potential energy that d
fers very little from the energy of the system at the glob
minimum. For example, in the case ofN549, the difference
between the potential energy of the system at the glo
minimum ~3,9,15,22! and the local minimum closest to
~3,9,16,21! is only 431024%. For this reason, the search fo
the minimum has to be done very precisely~no less than
seven places!.

4.2. The structure of dipole clusters

For dipole clusters, the inner, outer, and total poten
energy per particleE/N increases almost linearly as the num
ber of particles increases~see Fig. 2!. This indicates that, for
a small number of particlesN<40, the system has the prop
erties of a cluster and has not yet acquired the properties
crystal ~for which E/N5const).

FIG. 1. Mean distancer between particles~1!, sizeR of the system~2!, and
lattice perioda ~3! for two-dimensional logarithmic clusters vs the numb
of particles.
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Table II shows the occupation number of the shells a
the corresponding potential energies for the global minima
two-dimensional dipole clusters. The rules of the filling
the shells are similar to the rules of their filling in logarit
mic clusters.

As N increases, it is found that a triangular lattice beg
to grow inside the cluster. Fragments of a triangular latt
first appear for a cluster of 12 particles@the ~3,9! con-
figuration—see Table II#. Beginning with 32 particles, a tri
angular lattice continually predominates in the cluster: it
impossible to completely assign certain particles to defin
shells—they appear between the shells, forming a fragm
of a triangular lattice~the latter is centered close to th
boundary of the cluster, and not at the center of symmetr
the confining potential!. For example, in a cluster made up

FIG. 2. Potential energy per particle^Upot&/N vs the numberN of particles
for two-dimensional dipole clusters:1—total potential energŷ Upot&/N,
2—mean potential energy of all the interactions between the parti
^U int&N5(1/2N)(^Ui j &5(1/2N)((1/r i j

3 ), 3—external potential energy
^Uext&/N5(1/N)a(r i

2.
d
f

s
e

s
e
nt

of

37 particles, it is no longer possible to unambiguously d
tinguish the shells in the configuration corresponding to
global minimum of the potential energy~see Table II!. A
defect exists in the shell structure, but the particles mai
form a triangular lattice. The ordering thus has two forms
either a triangular lattice or a shell structure—which comp
with each other. The triangular structure appears at a sm
N for dipole clusters than for Coulomb and logarithm
clusters,2 and this can be explained by the fact that the dip
interaction potential has a shorter range. Since a regular
angular lattice possesses hexagonal symmetry, deviation
the shape of the shells from circles are observed
N.30. This phenomenon is analogous to the ‘‘faceting’’
a crystal~see also Ref. 20!. Thus, certain particles in a dipol
cluster are found not at the boundary of the cluster but a
distance from it of the order of a lattice period. The intr
duction of the concept of ‘‘crystal shells’’ (Crc) is more
natural for dipole clusters than for logarithmic, since the m
jority of the configurations at the global minima can be cla
sified in this way~see Table II!.

5. THE MELTING AND PHASE TRANSITIONS OF TWO-
DIMENSIONAL MESOSCOPIC CLUSTERS

We have studied the melting of logarithmic, Coulom
and dipole micro- and macroclusters with increasing te
perature.

5.1. The melting of logarithmic clusters

The temperature dependence of the radial mean-sq
displacement for a two-dimensional logarithmic cluster w
N537 is shown in Fig. 3. The radial mean-square displa
ments for all the shells experience an infection point at
same temperatureTc5831023.

It can be seen from Fig. 4 that the angular mean-squ
displacements with respect to the nearest particles of its

s

TABLE II. Shell structure and potential energy of dipole clusters confined by a harmonic potential.

Number Occupation Potential Number Occupation Potential
of number energy of number energy
particles of shells particles of shells

1 1 0.00000003100 21 2,7,12Cr2 1.17400073102

2 2 1.29320463100 22 2,8,12Cr2 1.27153223102

3 3 3.04182173100 23 3,8,12Cr3 1.37279193102

4 4 5.52083633100 24 3,8,13Cr3 1.47531133102

5 5 8.78564773100 25 3,9,13Cr3 1.58140293102

6 1,5 1.22897693101 26 4,9,13 1.69216793102

7 1,6Cr1 1.62813823101 27 4,9,14Cr4 1.80470793102

8 1,7 2.10833953101 28 4,10,14Cr4 1.91983183102

9 2,7 2.63135473101 29 5,10,14Cr5 2.04043283102

10 3,7Cr3 3.19011633101 30 5,10,15Cr5 2.16163043102

11 3,8Cr3 3.76169553101 31 1,5,10,15Cr1 2.28390873102

12 3,9Cr3 4.39997843101 32 1,6,12,13Cr1 2.40933293102

13 4,9 5.06341053101 33 1,6,12,14Cr1 2.53684683102

14 4,10Cr4 5.78959573101 34 1,6,12,15Cr1 2.66698673102

15 5,10 6.53998933101 35 1,6,12,16Cr1 2.80126403102

16 1,5,10 7.30492283101 36 1,6,12,17Cr1 2.94078783102

17 1,6,10Cr1 8.11362313101 37 1,7,13,16Cr1 3.08250973102

18 1,6,11Cr1 8.95063313101 38 2,8,13,15Cr2 3.22449083102

19 1,6,12Cr1 9.84217733101 39 3,8,13,15Cr3 3.36908833102

20 1,7,12 1.07766503102 40 3,9,14,14Cr3 3.51446903102



tu
a

r
to

t.
r-
di

e

d
e
ra

ul
ct
kl

e
ell

cific
ell
the
ng
er

the
lcu-

es

e

1095JETP 89 (6), December 1999 Yu. E. Lozovik and E. A. Rakoch
shell experience an inflection point at the same tempera
for both shells. Consequently, a phase transition occurs
temperature ofTc5831023 ~see Table III! in a cluster made
up of N537 particles: The system loses its ordered structu
For T.Tc , the number of particles in the shells begins
change, and the shells exchange particles and smear ou
T@Tc , it is impossible to distinguish any shells. The pa
ticles move chaotically. The characteristic value of the
mensionless parameterG5q2/kBTc at which the system
melts is 125 whenN537, and this is not much different from
the value ofG at which a system with a relatively larg
number of vortices melts (G5Gc.130).

It turns out, however, that the angular mean-square
viations with respect to the nearest particles of the adjac
shell experience an inflection point at much lower tempe
tures. For a cluster made up of 37 particles, the ang
mean-square displacements of the outer shell with respe
the nearest particles of the middle shell begin to quic
increase at a temperature ofTc15831024 (G51/Tc1

FIG. 3. Total radial mean-square displacement^dr 2& vs temperature for a
two-dimensional logarithmic cluster withN537 particles.

FIG. 4. Angular mean-square deviations^df1
2& of the outer~1!, middle~2!,

and inner~3! shells with respect to the closest particles from their own sh
vs temperature for a two-dimensional logarithmic cluster withN537 par-
ticles.
re
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51250) ~see Fig. 5a!, while the angular displacements of th
middle shell relative to the closest particles of the inner sh
do this at a temperature ofTc25331023 (G51/Tc25333)
~see Fig. 5b!. This means that, at these temperatures, spe
orientation melting characteristic of clusters with a sh
structure occurs for corresponding pairs of shells; i.e.,
shells in the two-dimensional clusters, while maintaini
their crystallinity, begin to rotate with respect to each oth
at a certain instant.

We should point out that the phase transitions in
mesoscopic system under consideration, as shown by ca
lation, are still fairly well-defined~i.e., the broadeningDT/T
of the transition region is not yet large!.

The potential energy of a logarithmic cluster increas

ll

TABLE III. Melting temperaturesTc and potential barriersU j ,rot of two-
dimensional clusters.

Tc U j ,rot

Logarithmic cluster,N511
Orientation melting of outer shell
with respect to inner shell 4.031027 2.3231026

Complete melting 4.531023 3.7131022

Logarithmic cluster,N537
Orientation melting of outer shell
with respect to the middle shell 8.031024 2.3031023

Orientation melting of the middle shell
with respect to the inner shell 2.431023 1.6131022

Complete melting 8.031023 6.6131022

Logarithmic cluster,N5107
Orientation melting of the outer shell
with respect to the neighboring shell 7.531023 3.031022

Complete melting 8.531023 5.831022

Coulomb cluster,N519
Orientation melting – 4.531022

Complete melting 4.031023 5.031022

Coulomb cluster,N520
Orientation melting of the outner shell
with respect to the middle shell 1.831026 1.231025

Complete melting 1.431022 5.431022

Coulomb cluster,N537
Orientation melting of the outer shell
with respect to the middle shell 4.031025 6.131023

Orientation melting of the middle shell
with respect to the inner shell 4.031025 6.131023

Complete melting 6.531023 5.1731022

Coulomb cluster,N554
Orientation melting of the outer shell
with respect to the neighboring shell 1.531023 4.5931022

Orientation melting of the middle shells 1.531023 5.7231022

Orientation melting of the inner shell
with respect to the adjoining shell 4.031023 1.0131021

Complete melting 4.031023 5.3131022

Dipole cluster,N510
Orientation melting of the outer shell
with respect to inner shell 1.231025 3.531025

Complete melting 7.031023 5.631022

Dipole cluster,N538
Orientation melting absent
Complete melting 9.031023
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FIG. 5. Temperature dependences of the angu
mean-square deviationŝdf2

2& of the middle shell
with respect to the nearest particles from the ou
shell ~a! and of the inner shell with respect to th
nearest particles from the middle shell~b! for a two-
dimensional logarithmic cluster withN537 particles.
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almost linearly with temperature and has no singulariti
Therefore, the temperature dependence of the potentia
ergy of the system cannot be used to determine the me
temperature.

For logarithmic macroclusters withN.100, orientation
melting occurs only for the outer pairs of shells, since
region of a triangular lattice forms inside.

5.2. The melting of Coulomb clusters

The temperature dependences of the total radial
placement and of the radial mean-square displacement
all the shells individually are shown in Fig. 6 for a two
dimensional Coulomb cluster withN554. These depen
dences experience an inflection point at the same temp
ture Tc15431023 for all the shells.

It can be seen from Fig. 7 that the angular displaceme
with respect to the nearest particles of its own shell exp
ence an inflection point at the same temperature for all
shells. Consequently, a phase transition occurs at a temp

FIG. 6. Temperature dependences of the radial mean-square displace
^dr 2& for a two-dimensional Coulomb cluster,N554: 1—total, 2—of the
first shell,3—of the second shell,4—of the third shell.
.
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ture of Tc15431023 in a cluster made up ofN554 par-
ticles: The system loses its ordered structure.

However, it turns out that the angular mean-square d
placements with respect to the nearest particles of the a
cent shell experience an inflection point at a lower tempe
ture Tc251.531023 for the two outer pairs of shells, and a
the same temperatureTc1 for only the inner pair of shells
~see Fig. 7 and Table III!. This means that orientation mel
ing occurs at a temperature ofT5Tc2 for the corresponding
pairs of shells.

The absence of orientation melting of the inner pair
shells is explained by the fact that there is a fragment o

ents

FIG. 7. Temperature dependences of the angular mean-square disp
ments ^df2& for a two-dimensional Coulomb cluster with respect to t
nearest particles of its own and the neighboring shells,N554: 1—of the
first shell with respect to the particles of its own shell,2—of the second
shell with respect to the particles of its own shell,3—of the third shell with
respect to the particles of its own shell,4—of the fourth shell with respect to
the particles of its own shell,5—of the second shell with respect to th
particles of the first shell,6—of the third shell with respect to the particle
of the second shell,7—of the fourth shell with respect to the particles of th
third shell.
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FIG. 8. Distribution functionsg(f) of the angles between the
particles of two shells forN520 at T5131026 ~a! and
T5431026 ~b!.
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triangular lattice inside a cluster made up of 54 particles. T
entire cluster cannot have a triangular lattice, since, beca
of the centrally symmetric confining potential, clearly e
pressed circular shells are observed on the outside.

The potential energy of a Coulomb cluster, like that o
logarithmic cluster, increases almost linearly with tempe
ture and has no singularities.

The melting of a Coulomb cluster made up of 37 p
ticles also occurs in two stages: orientation melting and co
plete melting~see Table III!. Unlike a cluster made up of 54
particles, all the pairs of shells in theN537 case~including
the inner one! experience orientation melting, which is b
cause there is no region of triangular lattice inside a clu
with N537.

We shall consider the melting of clusters made up of
and 20 particles in more detail.

Two-stage melting was observed in a cluster w
N520, as expected for Coulomb mesoscopic clusters, w
the orientation melting temperature and the complete mel
temperature differing by several orders of magnitude. Th
at T5Tc251.831026, the angular mean-square displac
ment with respect to the nearest particles of the adjac
shells experiences an inflection point. Moreover, the fluct
tion amplitude of theg(f) function ~see Section 3! is large
at T,Tc2 ~see Fig. 8a!, whereas the amplitude ofg(f)
sharply decreases atT.Tc2 ~see Fig. 8b!. This all indicates
that orientation melting occurs atT5Tc2 . The radial mean-
square displacements experience an inflection point
T5Tc151.431022 ~see Table III!, which indicates the pres
e
se

-

-
-

r

9

th
g

s,
-
nt
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at

ence of complete melting of a Coulomb cluster withN520
at the pointT5Tc1 .

In a cluster withN519, the radial and angular mean
square displacements with respect to the nearest particle
the adjacent shell experience a discontinuity at the same
perature ofT5Tc15431023 ~see Table III!. For T.Tc1 ,
two sharp maxima of the outer shell that exist in theg(r )
function whenT,Tc1 ~see Section 3! run together~Fig. 9!;
meanwhile, the zeroes that exist in theg(f) function disap-
pear atT,Tc1 ~Fig. 10!. All this indicates that the orienta
tional and radial ordering in a Coulomb cluster withN519
simultaneously disappear atT5Tc1 . Consequently, a Cou
lomb microcluster withN519 melts in one stage—there
no orientation melting. This behavior is unique for meso
copic clusters and results from the fact that theN519 cluster
has the configuration~1,6,12! at the global minimum and is
almost an exact fragment of a triangular lattice.

We also investigated the distribution of the system o
the local minima of the potential energy as the temperat
increases. It turned out for bothN519 andN520 that, at a
temperature below the complete melting temperature,
cluster is continually close to the configuration correspo
ing to the global minimum of the potential energy. At
temperature above that of complete melting, the probab
that a cluster is close to the configuration corresponding
the global minimum~1,7,12! decreases and goes to a co
stant value. The cluster shuffles between configurations
responding to different local minima~1,7,12!, ~1,6,13!, and
~1,8,11!.
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FIG. 9. Radial distribution functionsg(r ) for
N519 at T5331023 ~a! and T5731023

~b!.
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5.3. The melting of dipole clusters

The temperature dependences of the radial mean-sq
displacements, total and for each shell, experience an in
tion point at a temperature ofTc1 for a two-dimensional
dipole cluster withN538 ~see Table III!. At the same tem-
perature, the angular mean-square displacements with
spect to the closest particles of their own and the neighbo
shells experience an inflection point for all shells. Con
quently, a phase transition occurs in a cluster made up
N538 particles at a temperature ofTc1 : The system loses its
ordered structure. ForT.Tc1 , the number of particles in the
shells begins to change, and the shells exchange particle
smear out. ForT@Tc1 , it is no longer possible to distinguis
any shells. The particles move chaotically.

The dimensionless parameterGd at which the system
melts, in units ofD5kB51, equals

Gd5
1

2a3Tc
.

For N538, the valueGd569 does not strongly differ from
the valueGd562 at which a dipole crystal melts.21

The scenario of the melting of a two-dimensional dipo
cluster made up ofN538 particles is analogous to that of th
melting of a two-dimensional dipole crystal with a triangul
lattice, except that there is no jump in the potential energ
the melting temperature.21 However, this is not valid for me-
soscopic clusters consisting of only two shells. Here, des
the short-range character of the dipole interaction, the q
dratic confining potential plays a major role: The shell stru
ture competes with the triangular lattice. The melting o
two-dimensional dipole cluster made up of 10 particles
curs in two stages, as does the melting of logarithmic a
Coulomb clusters.
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It can be seen from Table III and the preceding disc
sion that the melting of two-dimensional logarithmic, Co
lomb, and dipole mesoscopic clusters~except for magic clus-
ters with a triangular structure! occurs in two stages. The
melting of logarithmic and Coulomb macroclusters also o
curs in two stages, but orientation melting occurs only in
outer pairs of shells, and, finally, the melting of dipole ma
roclusters occurs in one stage.

6. POTENTIAL BARRIERS WITH RESPECT TO THE
ROTATION OF SHELLS AND THE JUMPING OF PARTICLES
FROM ONE SHELL TO ANOTHER

We can use the techniques described above to find
potential barrierU rot against rotation of the shells with re
spect to each other and the potential barrierU j against jump-
ing of a particle from one shell to another in the clusters
which melting was studied~see Table III!. Rotation of the
shells is the lowest excitation in the case of mesoscopic c
ters. It turned out that, for mesoscopic clusters, the orien
tion barrier is substantially lower than the radial one. T
fact that the barriers are incommensurate, along with the
continuity of the angular mean-square displacement, is
more powerful evidence that orientation melting can occu
two-dimensional clusters. However, the barriers against r
tion of the inner shells~for logarithmic and Coulomb clus
ters! or of all the shells~for dipole clusters! are of the same
order of magnitude as the barriers against jumping for m
roclusters.

It can be seen from Table III that the ratio between t
potential barriers against rotation and jumping for a giv
number N and a given interaction law equals in order
magnitude the ratio between the temperatures of orienta
melting and complete melting,
FIG. 10. Distribution functionsg(f) of angles
between the particles of two shells forN519 at
T5331023 ~a! andT5731023 ~b!.
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U rot

U j
.

Tc2

Tc1
.

This makes it possible to predict the possibility of orientati
melting in clusters with differentN and different interaction
laws.

We also investigated how the potential barriers aga
rotation and jumping vary as temperature increases. It is e
to see that all the barriers must disappear for a very h
temperatureT@Tc , for which it is no longer possible to
distinguish the shells in a cluster. However, it is interest
to compare the temperatures at which the barriers with
spect to rotation of the shells and with respect to jumping
particles between the shells disappear with the temperat
of orientation melting and complete melting of the cluste

We have studied how the dependences of the pote
energy on the angle of rotation of the shells with respec
each other for two pairs of shells vary with temperature a
how the dependence of the potential energy on the radiu
the particle, changing shell, varies with temperature fo
Coulomb cluster withN537. It turned out that the barrie
against rotation of the outer shell with respect to the mid
shell disappears atT52.531024 ~Fig. 11!, while that of the
middle shell with respect to that of the inner shell disappe
at T56.031024. The barrier against the jumping of pa
ticles between shells disappears atT53.031022. When
these temperatures are compared with the melting temp
tures, it is seen that the melting temperature is less than
temperature at which the corresponding barrier disappear
a factor of about 5–15. This is apparently because the
ticles begin to partly overcome the barrier at the melt
temperature, whereas, when the temperature is increased
ther and the barrier disappears, the particles cease to not
and move chaotically in the direction of the correspond
barrier.

7. CLUSTERS WITH ANISOTROPIC CONFINEMENT

Let us consider how the equilibrium structure of tw
dimensional clusters varies because of the anisotropy of
confining potential. An anisotropic confining potential h
the form

FIG. 11. Temperature variation of the dependence of the potential energ
the angle of rotation of the outer shell with respect to the middle shell fo
two-dimensional Coulomb cluster withN537.
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2, ~9!

where 0<g<2 (g51 corresponds to the isotropic case!.
We shall calculate the equilibrium configurations by th
method described above. The configurations correspond
to the local and global minima of the potential energy wer
considered for logarithmic and Coulomb clusters wit
N537 and for logarithmic clusters withN57 and 11 with
different degrees of anisotropyg ~the configurations of a
Coulomb cluster withN537 are shown in Fig. 12!, and the
following effects were detected:

1. The greater the degree of anisotropy, the larger t
tendency to find the global minimum in the configuratio
with the smallest number of shells and with the smalle
number of particles in the inner shells~see Table IV!. The
shells become more and more elongated and closer in sh
to polygons inscribed in ellipses. We must alter the definitio
of shell given above. Now the greatest value o
r iA(22g)sin2 fi1g cos2 fi for the particles of each shell
must be greater than the smallest value of this quantity f
the particles of the outer shell with respect to the given she
~Because of the anisotropy of the confining potential, th
maximum value ofr i for the particles of each shell can be
much greater than the minimum value ofr i for the particles
of the next outer shell.!

2. If the confinement is strongly anisotropic, the inne
shell can have two tails, directed along they axis ~if g,1,
i.e., g,22g), or can simply turn into a straight line~see
Table IV!. If a cluster consists of one shell, its structure doe
not undergo any more changes after it turns into a straig
line ~other than an increase of the distance between the p
ticles as the degree of anisotropy increases!. The cluster be-
comes one-dimensional. It should be pointed out that t
density of a one-dimensional cluster increases toward its ce
ter.

3. The greater the degree of anisotropy of the confinin
potential, the lower the local minima possessed by a clus
with a given numberN. In particular, a one-dimensional
cluster ~a two-dimensional cluster with very strong anisot
ropy! has only one minimum—the particles lie on a straigh
line.

The effects described above can be traced in Table IV

on
a

FIG. 12. Configurations of a two-dimensional Coulomb cluster wit
N537 and various degrees of anisotropyg.
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We next consider how the degree of anisotropy of
confining potential affects the ratio of the potential barrie
with respect to rotation of the shells and jumping of t
particles between shells. It can be assumed that, in ac
dance with the distortion of the circular symmetry of t
confining potential, the orientation melting disappears, a
the melting becomes single-stage. To prove this hypothe
we investigated the barriers against rotationU2 and against
jumping U1 , using logarithmic and Coulomb clusters co
sisting of 37 particles as examples~see Table V!. As the
degree of anisotropyg increases, the ratioU rot /U j increases
@an exception is the case of a logarithmic cluster w
g50.89, for which this ratio decreases; this is because
global minimum is displaced from configuration~1,6,12,18!,
similar to a fragment of triangular lattice, into configuratio
~6,12,19!, which possesses a clearly expressed shell struc
and does not resemble a fragment of triangular lattice# and
for certain g (g50.50 for a logarithmic cluster and
g50.60 for a Coulomb cluster! becomes larger than unit
for all pairs of shells~see Table V!. This agrees with our
assumptions.

TABLE IV. Structure of two-dimensional anisotropic clusters.

Number Degree of Occupation number Potential
of particles anisotropyg of shellsN1 ,N2 , . . . energy Upot

Coulomb clusters
37 1.00 1,7,12,17 4.7256013102

37 0.90 1,7,13,16 4.7141393102

37 0.75 conc.7,13,17 4.6518113102

37 0.60 L5,14,18 4.5284173102

37 0.50 L4,14,19 4.4032363102

37 0.35 15, 22 4.1245053102

37 0.20 41X31X4, conc.26 3.6524423102

37 0.05 3512*X1 2.5462573102

37 0.01 L37 1.6527353102

Logarithmic clusters
7 1.00 1, 6 27.51244231021

7 0.89 1, 6 28.89130131021

7 0.67 1, 6 22.1368513100

7 0.50 1, 6 24.1726143100

7 0.40 1, 6 26.0290613100

7 0.33 l7 27.8025503100

7 0.18 l7 21.4166983101

11 1.00 3, 8 21.7093333101

11 0.89 2, 9 21.2517533101

11 0.67 2, 9 21.5668263101

11 0.50 11 22.0827523101

11 0.40 11 22.5607933101

11 0.33 11 22.9833093101

11 0.18 L11 24.5487323101

37 1.00 1, 6,12,18 25.0535343102

37 0.89 6,12,19 25.0957703102

37 0.67 L4,13,20 25.4563633102

37 0.50 15, 22 26.0378773102

37 0.40 912*X2, 24 26.5800073102

37 0.33 L9, 28 27.0647803102

37 0.18 37 28.8403173102

37 0.10 3112*X3 21.0731603103

37 0.06 1712*X10 21.2373293103

37 0.03 L37 21.4680883103

Note: The following symbols are used here: Lz is a line consisting ofz
particles; x* Xy are x tails, each of which consists ofy particles; and
‘‘conc.’’ means that this shell is concave.
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On the other hand, in order to confirm that the melting
a two-dimensional cluster has a single stage for strong
isotropy of the confining potential, we calculated the te
perature dependences of the radial and relative angular
placements for a logarithmic cluster withN537 and
g50.50 and for a Coulomb cluster withN537 and g
50.60. We found that the dependences of the radial
relative angular displacements with respect to the nea
particles from their own and from neighboring shells expe
ence a discontinuity at the same temperatures (Tc50.0045
for a logarithmic cluster andTc50.0065 for a Coulomb clus-
ter!. Consequently, a two-dimensional cluster with a su
ciently strong degree of anisotropy melts in one stage.

It should also be pointed out that, for a very strong d
gree of the confinement anisotropy, the melting of a clus
in general does not occur, since the cluster becomes a
dimensional system.

8. THE MELTING OF THREE-DIMENSIONAL COULOMB
CLUSTERS

In this section, we study three-dimensional Coulom
clusters in a quadratic confining potential. Since the con
ing potential is centrosymmetric, the clusters have a s
structure~as do two-dimensional clusters! at low tempera-
tures ~see, for example, Refs. 3 and 22!. However, in the
three-dimensional case, at low values ofN (N,100), the
shells in the clusters have the shape of polyhedra clos
those inscribed in a sphere. Moreover, the larger the dim
sionality, the larger the critical number of particles for whic
a new shell is formed~see Table VI!.

There are a number of papers devoted to the structur
three-dimensional Coulomb clusters~see, for example, Refs
3, 22, and 23!. However, the melting of three-dimension

TABLE V. Potential barriers of clusters withN537 with various degrees of
anisotropy of the confining potential.

g U rot,a U rot,b U j

Logarithmic cluster
1.00 2.3131023 1.6031022 6.6031022

0.89 1.1431024 5.8431022 5.0131022

0.67 1.1731022 6.6731022 3.0431022

0.50 9.4731022 — 4.6431022

Coulomb cluster
1.00 6.131024 6.131023 5.1731022

0.90 1.9631022 5.7331022 5.1231022

0.75 1.1331021 1.7731022 6.9331022

0.60 8.9531022 1.2131021 6.6531022

Note: Hereg is the anisotropy parameter,U rot,a is the barrier against rota-
tion of the outer shell with respect to the middle shell,U rot,b is the barrier
against rotation of the middle shell with respect to the inner shell, andU j is
the barrier against jumping of a particle between shells.

TABLE VI. Formation of new shells in Coulomb clusters.

Formation of shells D52 D53

Formation of a second shell Ncr56 Ncr513
Formation of a third shell Ncr517 Ncr561
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TABLE VII. Potential barriers in three-dimensional Coulomb clusters.

Barrier N533 N548 N560 N5100

Barrier with respect to rotation of the shells 1.4431022 3.0031022 7.531023 3.1331022

Barrier against jumping of particles between shells 6.4231022 6.7431022 1.1831021 5.7131022
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Coulomb clusters has not been studied in detail~preliminary
data were obtained in a paper by one of the authors3!. There-
fore, the interesting question arises of whether orienta
melting ~which is usual for a two-dimensional cluster! is
possible in three-dimensional clusters.

We first found the configurations of the clusters at t
local and global minima of the potential energy f
N533,48,60,100. We next found the potential barriers w
respect to rotation of the shells and jumping of the partic
between shells for the givenN. It turned out that the barrie
against rotation is not much different from the barrier agai
jumping only forN5100, whereas, for clusters consisting
two shells withN533,48,60, the barrier against rotation
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substantially less than the barrier against jumping~see Table
VII !. Therefore, orientation melting is possible in thre
dimensional mesoscopic clusters.

To confirm this fact, we calculated the melting of thre
dimensional Coulomb clusters withN533,100. We studied
the temperature dependences of the following quantit
which are analogs of the quantities presented above for t
dimensional systems:

~1! The total potential energy.
~2! The total radial mean-square displacement, and

radial mean-square displacement for each shell.
~3! The angular mean-square displacement relative to

closest particles from a given shell:
^dV int
2 &5

1

NR
(
i 51

NR ^~f i2f i 1
!21~u i2u i 1

!2&2^~f i2f i 1
1u i2u i 1

!&2

V0
2 . ~10!

~4! The angular mean-square displacement with respect to the nearest particles of the neighboring shell:

^dVext
2 &5

1

NR
(
i 51

NR ^~f i2f i 2
!2&1^~u i2u i 2

!2&2^~f i2f i 2
1u i2u i 2

!&2

V0
2 . ~11!
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Here 2V054p/NR is the mean angular distance between
nearest particles of a given shell.

For N533, the temperature dependences of the ra
mean-square displacement for both shells simultaneously
perience a jump atTc15731023. As the temperature in
creases further, the shells in a cluster flow together, and
cluster loses its ordered structure. Consequently,T5Tc1 is
the temperature of complete melting for a three-dimensio
Coulomb mesoscopic cluster withN533.

However, the temperature dependence of the ang
mean-square displacement with respect to the nearest
ticles of the neighboring shell experiences an inflection po
at the lower temperature ofTc25431024. The dependence
of the radial and angular mean-square displacements
respect to the nearest particles of a given shell also exp
ence inflection points at this temperature for both she
Thus, orientation melting occurs atT5Tc2 in a three-
dimensional cluster withN533; i.e., the ‘‘bulk’’ shells,
maintaining their crystallinity, begin to rotate with respect
each other atT5Tc2 .

However, the melting of a three-dimensional Coulom
macrocluster withN5100 occurs in one stage. The depe
dences of the radial mean-square displacements exper
an inflection point atTc59.031023 for all the shells, while
the angular mean-square displacements with respect to
e
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closest particles of their own and the neighboring shells h
no singularities as a function of temperature. These res
confirm the results of the calculation of the potential barrie

9. CONCLUSIONS

1. It has been shown that two-dimensional mesosco
clusters of particles that repel according to dipole, Coulom
and logarithmic laws and that are confined by an exter
quadratic potential have a shell structure at low temperatu
The configurations of the system at the local and glo
minima of the potential energy have been found. As
number of particles in the clusters increases, a fragment
triangular lattice appears. The longer-range is the interac
potential between the particles, the greater the numbe
particles needed to form the triangular lattice. The followi
physical implementations have been considered: electron
the surface of liquid helium, electrons in a quantum d
particles in a layer of magnetic liquid, and vortices in a sm
superconducting island or in a rotating vessel with superfl
helium, as well as electrons in a semiconductor nanostruc
surrounded by a medium with low permittivity, etc.

2. The temperature dependences of the potential ene
the mean-square radial and angular displacements, the r
and angular distribution functions of the particles, and
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distribution of the particles over the local minima of th
potential energy have been studied in detail. As a result,
melting of the system has been studied. It has been sh
that the melting occurs in one stage in dipole macroclust
In macroclusters with a longer-range interaction poten
and in all mesoscopic clusters~except for magic microclus
ters with a triangular lattice structure!, the melting comes in
two stages: The first stage, at lower temperatures, is orie
tion melting—from the frozen phase into a state with ro
tional reorientation of ‘‘crystalline’’ shells with respect t
each other. The second stage is a transition in which
radial ordering disappears. In Coulomb and logarithmic m
roclusters, orientation melting occurs only for the outer pa
of shells. We should point out that orientation melting
possible in suitable crystals with impurities. There the imp
rity plays the role of the confining potential, and the ent
crystal in a certain sense is broken up into clusters, so tha
the temperature increases, orientation melting occurs aro
the impurities.

3. The cause of the orientation melting is that the pot
tial barrier with respect to rotation of the shells is incomme
surate~small! by comparison with the barrier with respect
jumping of particles from one shell to another~for all the
pairs of shells in mesoscopic clusters and for the outer p
of shells in macroclusters with Coulomb and logarithmic
teraction laws!. When the temperatures at which the poten
barriers disappear are compared with the correspon
melting temperatures, it can be seen that the melting t
perature is lower than the temperature at which the co
sponding barrier disappears by about a factor of 5–15
method is proposed for predicting the character of the m
ing in shell clusters by comparing the potential barrie
against rotation of the shells and against jumping of partic
between the shells. The melting temperatures can be
mated from the temperatures at which the potential barr
disappear.

4. We have studied how the structure of the clust
varies for various degrees of anisotropy of the confining
tential. For a small degree of anisotropy, the global mini
shift to configurations with a smaller number of particles
the inner shells and into configurations with a smaller nu
ber of shells. For a strong degree of anisotropy of the c
fining potential, the inner shell can have two tails direct
along the axis or can even degenerate into a straight lin
the cluster consists of one shell, the cluster becomes
dimensional when it degenerates into a straight line. As
degree of anisotropy increases, the barriers against rota
increase with respect to the barrier against jumping; a
e
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certain degree of anisotropy, the orientation melting dis
pears and the melting becomes single-stage.

5. The higher the dimensionality of the cluster, the larg
the critical number of particles for which a new shell form
Orientation melting also takes place in three-dimensio
Coulomb mesoscopic clusters. However, for largeN values,
orientation melting disappears and the melting of thr
dimensional macroclusters is single-stage.
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A model that takes into account the significant contribution of vacancies at moderate and high
temperatures is proposed to explain the anomalous increase in the mean-square
displacements of atoms in transition-metal surface monolayers. The dependence of the effects on
the orientation of the surface is explained. The vacancy formation energies and the values
of the Debye temperature are obtained within the proposed model for differently oriented surfaces.
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1. Numerous experiments performed by various meth
@medium-energy ion scattering~MEIS!, low-energy electron
diffraction ~LEED!, elastic scattering of He1 ions, electron-
energy-loss spectroscopy~EELS!, angle-resolved photoemis
sion spectroscopy~ARPES!, and Rutherford backscatterin
~RBS!# have revealed significant anomalies in the behav
of atoms in surface monolayers of transition-metal sin
crystals at moderate and high temperatures:

the vibrational amplitudes of the surface atoms sign
cantly exceed the bulk values;1–7

the amplitudes of the in-plane vibrations of atoms are
the same order as the vibrational amplitudes in the perp
dicular direction and, in some cases, appreciably exc
them;3,8,9

considerable anharmonicity has been discovered in
vibrations of surface atoms;10

an anomalous increase in the thermal-expansion co
cient has been noted;11,12

softening of the phonon spectrum has been observed13,14

All these effects are manifested differently for differe
orientations of the single-crystal cut. For fcc crystals t
sharpest dependences are observed for faces having the~110!
orientation, and the weakest dependences are observe
~111! faces.1,4,10,12 In particular, anomalous thermal expa
sion of a Ni~100! surface was observed using LEED at 900
1300 K.10 However, an MEIS investigation of a Ni~111! sur-
face did not reveal any increase in the expansion of
surface layers up to 1100 K.4 Unlike nickel surfaces,
Ag~111! ~Ref. 2! and Cu~111! ~Ref. 6! surfaces expand con
siderably @Ag~111! by up to 10% and Cu~111! by up to
4.3%# at high temperatures.

The atomic potential on a surface differs from the bu
value because of 3D symmetry breaking, which leads to
appearance of anharmonicity of the vibrations of atoms
1101063-7761/99/89(12)/4/$15.00
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the direction perpendicular to the atomic plane. Howev
attempts to explain the observed phenomena only on the
sis of this anharmonicity were unsuccessful~see, for ex-
ample, Ref. 15!. Moreover, this anharmonicity offers no ex
planation for the anomalous in-plane vibrations.

The theoretical approaches proposed to account for
temperature effects just enumerated16–22 utilize molecular
dynamics. The interaction between atoms is described
potentials obtained within the method of pairwise inte
atomic interactions,23 the pseudopotential method,24 and the
embedded-atom method~EAM!.25 Yanget al.16 were able to
attribute the anomalous amplitudes of atomic vibrations
Ag~110! and Cu~100! surfaces to surface phonon modes. F
Ni~100! the anharmonicity of the vibrations was explained
a quasiharmonic approximation using an EAM potential
Ref. 17.

In the theoretical models described in Refs. 16–20
surface is treated as a perfect~defect-free! structure deter-
mined by the volume. However, studies of the Ni~110! ~Ref.
10! and Pb~100! ~Ref. 26! surfaces~using high-resolution
LEED! and the Pt~111! surface27 ~using reflection electron
microscopy! revealed an anomalous decrease in the diffr
tion intensity when the temperature was raised. An incre
in the intensity of the fundamental background was simu
neously observed and was attributed to the formation of s
face vacancies. Adatom-vacancy pairs were introduced to
count for the mean-square displacements on Ag~110! and
Cu~110! surfaces in the models in Refs. 21 and 22. The f
mation of diadatom-divacancy pairs was discussed in Ref
for Ni~110!. Anomalously large~5–30%! enrichment of the
surface with vacancies was obtained in high-resolut
LEED experiments for Ni~110! ~Ref. 10!, Pb~100! ~Ref. 26!,
and Pt~111! ~Ref. 27! surfaces. The authors of these repo
note that vacancy formation plays a dominant role in
3 © 1999 American Institute of Physics
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roughening and disordering of surfaces at moderate temp
tures.

The EAM calculations of the formation energy« f of
surface vacancies in Ref. 29 showed that this paramete
comparatively small and falls in the range« f50.2– 0.8 eV
for the group of metals considered~Ag, Cu, and Ni!. Esti-
mates show that at elevated temperatures the concentr
of surface vacancies corresponding to the formation ener
indicated reach a value of;1.0%. Since the melting of met
als begins already when the bulk concentration of vacan
is ;0.01%, the high concentration of surface vacancies
dicated must have a significant effect on the surface phen
ena at elevated temperatures.

The purpose of the present work was to investigate
role and contribution of vacancies to the mean-square
placements of atoms in transition-metal surface monolay
at elevated temperatures.

2. The microscopic calculation of the mean-square d
placements is carried out within an expansion of the poten
energyF in the deviations of the atomsu(Rk) from their
equilibrium positionsRk :

F5F01
1

2 (
Rk ,Ri

ua~Rk!Dab~Rk2Ri !ub~Ri !1 . . . ,

~1!

whereDab is the dynamic matrix~see, for example, Ref. 23!.
For surface atoms theRk are the positions of the atom

under equilibrium conditions~in a defect-free crystal! at low
temperatures~with consideration of the low-temperature r
laxation of the surface!.

The presence of vacancies leads to a change in the
tential energy of the systemF̃→F1dV due to both the
disappearance of atoms and the associated reorganizati
the electronic structure. The parameters of the dynamic
trix Dab vary as a consequence. A decrease in den
clearly leads to a decrease in the elastic constants. We
that the perturbationdV is not small for crystal-lattice site
next to vacancies. Vacancies make a fundamentally new
tribution to the potential energyF of the system30 by break-
ing the translational symmetry of the crystal. In the abse
of defects, the forces acting on the atom in the site atRk are

FIG. 1. Temperature dependence ofd5A^Du2&s /^Du2&b. The solid line
was obtained by the least-squares method from Eq.~4! using the experimen-
tal data~points! for Cu~110! ~Ref. 1!.
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equal to zero. A different situation is created in the prese
of defects. The force exerted by other atoms on the atom
the site atRk is

Fa52
«F̃

«~Rk!a
→H 50, cv50,

Þ0, cvÞ0.
~2!

Here cv is the concentration of vacancies. As a result
linear term appears in the expansion~1! of the potential en-
ergy in a series in small displacements, and the effect of
forceF ~2! leads to displacement of the equilibrium positio
of the atoms.

Thus, the appearance of vacancies leads to a chang
the mean-square displacements^Du2&s of the atoms in the
outer monolayer: static displacement of the atoms and a
ation of their vibrational amplitudes occur.

The experiments were devised to study the tempera
dependence of the magnitude of the relative displacem
d5A^Du2&s /^Du2&b, where^Du2&b is the mean-square dis
placement of the atoms in the bulk of the sample. In orde
describe the experimental dependences of the behavior o
mean-square displacements of atoms, let us conside
simple model. We assume that all the changes occur onl
the atoms in the local environment of a vacancy (z is the
number of such atoms! and that the appearance of vacanc
does not have any effect on the behavior of other atoms.
vacancies do not interact with one another, and the contr
tion of the vacancies is therefore proportional to their co
centration.

FIG. 2. Same as in Fig. 1 for Cu~100! ~Ref. 3!.

FIG. 3. Same as in Fig. 1 for Cu~111! ~Ref. 6!.
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TABLE I. Vacancy formation energy for differently oriented surfaces of Cu, Ag, and Ni single crystals: va
obtained from experimental data1–7 by the least-squares method using Eq.~4! * , results of EAM calculations,29

and results of charge-density calculations.34 The bulk values of the vacancy formation energy«b ~Refs. 35 and
36! are given for comparison.

«v

Metal ~110! ~100! ~111! «b

Ag 0.16* 0.43* 1.11
0.22 ~Ref. 29! 0.45 ~Ref. 29! 0.58 ~Ref. 29!, 0.67 ~Ref. 34!

Cu 0.35* 0.35–0.5* 0.7* 1.28
0.29 ~Ref. 29! 0.58 ~Ref. 29! 0.72 ~Ref. 29!, 0.92 ~Ref. 34!

Ni 0.5–0.8* 1.8
0.34 ~Ref. 29! 0.66 ~Ref. 29! 0.82 ~Ref. 29!
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Averaging over an ensemble of atoms on a surface,
the mean-square displacement we obtain

^Du2&s5^Du2&01~^Du2&v2^Du2&0!zcv , ~3!

where ^Du2&v and ^Du2&0 are the mean-square displac
ments of the atoms near and far away from a vacancy.

Using the Arrhenius dependence of the vacancy conc
tration on the temperatureT, we obtain the following expres
sion for d(T) ~the Boltzmann constantkB51):

d5Aj1
c

T
expS 2

« f

T D , ~4!

where« f is the effective vacancy formation energy, whic
decreases as the surface is approached,31 j is the ratio of the
mean-square displacements of the atoms on the surface t
corresponding bulk value at low temperatures (T!« f), and
the parameterc is c5z^u2&vKbeDS (DS is the entropy
change caused by the alteration of the properties of the at
as a consequence of the appearance of a defect, particu
by the change in the vibrational frequency, andKb is the
bulk value of the elastic modulus!.

The experimental data for differently oriented Ag, C
and Ni surfaces were used to determine the parameters o
temperature dependence of the relative displacementd ~4! by
the least-squares method. As examples, Figs. 1–3 presen
theoretical plots of~4! obtained for Cu~111!, Cu~100!, and
Cu~110!. The experimental data1,3,6 are shown as points in
Figs. 1–3. The vacancy formation energies on different s
faces are listed in Table I. It is seen that for the same mate
the vacancy formation energy increases successively f
the ~110! surface to the~100! surface and then to the~111!
surface. Consequently, at an assigned temperature the
r
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centration of vacancies on a surface decreases from su
to surface in the following order: (110)→(100)→(111).
This sequence coincides with the experimentally obser
dependence of the magnitude of the mean-square disp
ments of the atoms on the orientation of the surface. T
empirical values of the vacancy formation energies are cl
to the values calculated by the embedded-atom method29 ~see
Table I!.

Apart from the formation energy« f , the dependence~4!
contains two more parameters, viz.,j and c. Let us relate
them to physical quantities. Without allowing for vacancie
the magnitude of the relative deviationd equalsd5Aj. In
the Debye model~for temperatures above the Debye tem
perature! d is the ratio between the Debye temperatu
within the sample and on the surface:d5Qb /Qs . In the
harmonic approximationd is determined by the ratio of the
force constants in the volume to the corresponding const
on the surfaced5AKb /Ks. The values of the Debye tem
peraturesQs that we obtained for differently oriented su
faces from the experimental data are presented in Table
The value ofQs has previously been discussed in the lite
ture ~see, for example, Ref. 1!. The corresponding data1,32 on
Qs are also presented in Table II. A more detailed compa
son of the Debye temperaturesQs requires allowance for the
anisotropy of surfaces with low Miller indices and the sc
tering geometry in the experiments considered.

The values ofc were also obtained from experiment
data by the least-squares method. The values obtained
c for the mean-squares displacements of atoms near va
cies ^Du2&v include both local strains and vibrations. At e
evated temperatures the values ofA^Du2&v are comparable
to the lattice constant. Such a large value for^Du2&v calls for
lues
TABLE II. Debye temperatures for differently oriented surfaces of Cu, Ag, and Ni single crystals: va
obtained from experimental data1–7 by the least-squares method using Eq.~4!* and results of EAM
calculations.1 The bulk values of the Debye temperatureQb ~Ref. 23! are given for comparison.

Qs

Metal ~110! ~100! ~111! Qb

Ag 205* 151* 215
Cu 220* , 250 ~Ref. 32! 185* 260* 315

150–240~Ref. 1!, 125–190~Ref. 1! 150–190~Ref. 1!
Theoret. 224~Ref. 1! 246 ~Ref. 1! 213 ~Ref. 1! 340 ~Ref. 1!
Ni 282* 375
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a more detailed theoretical treatment extending beyond
scope of the model proposed here, which would take i
account the change in the behavior only of atoms next t
vacancy. We note that such a situation corresponds to m
ing according to the Lindemann criterion. In our case
may be dealing with local melting.

It was postulated above that the parametersj and c in
~4! do not depend on temperature. A possible complicat
of the temperature dependence~4! is associated with allow-
ance for the temperature dependence of the mean-squar
placements of atoms near vacancies^Du2&v and the force
constantsKs(T). Calculations showed that the temperatu
dependence of̂Du2&v only slightly reduces the vacancy fo
mation energy.

3. Thus, consideration of the imperfection of the surfa
i.e., the presence of vacancies, enables us to explain th
crease in the mean-square displacements of atoms obta
in the behavior of the last layers of transition-metal sin
crystals at moderate and high temperatures. A vacancy
ates a field for the lattice atoms, which displaces the atom
its local environment and simultaneously alters their vib
tions. In particular, the amplitudes~of both in-plane vibra-
tions and vibrations in the perpendicular direction! and the
anharmonicity of the atomic vibrations increase sharply. T
vibrational frequencies of the atoms in the local environm
also vary.

We note that, apart from the factors taken into accou
the displacement caused by the anharmonicity appearing
consequence of the formation of vacancies, whose diffus
leads to surface melting at high temperatures, makes a
tribution to the mean-square displacement of the atoms
these temperatures the values of the concentration ex
1%, and the vacancies cannot be treated as isolated: th
teraction between the vacancies becomes appreciable, i
fluence increases with increasing concentration. Consi
ation of the interaction between the vacancies leads
lowering of the vacancy formation energy« f and alters their
diffusion coefficient.33 At elevated temperatures the form
tion of vacancies that are not isolated and vacancy–nat
adatom pairs is quite likely. Since native adatoms make t
own contribution to the processes occurring on the cry
surface, their contribution to the observed values should
considered separately.

This research was carried out with partial financial su
port from NATO ~Grant No. HTECH.LG 960939! and the
NSF ~Grant No. DMR-9705367!.
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Berezinski ¢–Kosterlitz–Thouless phase transitions in two-dimensional systems
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The Berezinski�–Kosterlitz–Thouless~BKT! phase transitions in two-dimensional systems with
internal continuous Abelian symmetries are investigated. In order for phase transitions to
occur, the kinetic part of the action of the system must have conformal invariance, and the vacuum
manifold must be degenerate and have a discrete Abelian homotopy groupp1 . In this case
topological excitations have a logarithmically divergent energy and can be described by effective
theories that generalize the two-dimensional Euclidean sine-Gordon theory, which is an
effective theory of the originalXY model. In particular, the effective actions are found for chiral
models on the maximal Abelian toriTG of the simple compact Lie groupsG. The critical
properties of the possible effective theories are found, and it is shown that they are characterized
by the Coxeter numbershG of lattices of theA, D, E, andZ series and can be interpreted
as properties of conformal theories with an integer central chargeC5n, wheren is the rank of
the groupsp1 andG. The possibility of reconstructing the complete symmetry ofG in
the massive phase is also discussed. ©1999 American Institute of Physics.
@S1063-7761~99!01312-8#
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1. INTRODUCTION

The discovery of the possibility of a phase transition
the two-dimensionalXY model1 at once attracted a great de
of interest on the part of theoreticians due to its unus
properties. First and foremost, it seemed that the existenc
such a phase transition contradicts the Peierls–Landau2,3 and
Bogolyubov–Goldstone4,5 theorems, which state that spont
neous symmetry breaking and spontaneous magnetiza
cannot occur in low-dimensional systems (d<2) with con-
tinuous symmetry.6,7 Second, because of the absence
spontaneous magnetization the correlation functions in
low-temperature phase should decay according to a po
law.8,9 This means that the entire low-temperature ph
must be massless.

All these contradictions were brilliantly resolved in
series of papers by Berezinski�,10 Popov,11 Kosterlitz, and
Thouless.12,13 They were the first to demonstrate the impo
tant role of topological excitations, i.e., vortices, with a log
rithmically divergent energy in these phase transitions. V
tices exist because the value manifold of theXY model M

5S1 has a nontrivial topology, which can be described b
discrete Abelian homotopy groupp1(M)5Z, while the
logarithmic divergence of the energy is associated with
conformal symmetry of the model. Allowance for vortice
transforms the continuous compact symmetryU(1) into the
dual discrete symmetryZ23Z, where Z2 is the automor-
phism group of a circleS1, which coincides with the reflec
tion U(1)5S1. Similar phase transitions take place in oth
systems with the same symmetry: two-dimensionalSOSand
6-vertex lattice models, quantum spinXXZ chains,14 and the
Euclidian sine-Gordon model with a noncompact field.15–18

All these systems belong to a single critical universa
1101063-7761/99/89(12)/7/$15.00
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class. The sine-Gordon model can be regarded as an effe
theory of Berezinski�–Kosterlitz–Thouless~BKT! phase
transitions, just as the Ginzburg–Landau–Wilson theor
are effective theories of second-order phase transitions~see,
for example, Ref. 19!.

BKT phase transitions can also be related to a confor
theory, but here there is an additional subtlety. Unlike
ordinary second-order phase transition in a two-dimensio
system, where an infinite-dimensional conformal symme
with a rational central chargeC exists only at the phase
transition point,20 in systems with a BKT phase transition a
infinite-dimensional conformal symmetry with an integ
central chargeC51 exists not only at the transition poin
~with logarithmic corrections!, but also in the entire low-
temperature phase.

Hence it follows that a BKT phase transition is int
mately related to two fundamental properties of tw
dimensional systems: 1! the nontrivial topology described b
the discrete Abelian homotopy groupp1 and 2! the confor-
mal symmetry. It would be interesting to examine the pro
erties of BKT phase transitions in systems having inter
symmetries in addition to these two properties.

Such systems are associated, for example, with t
which are a natural generalization of the circleS1 with the
necessary properties. It is easy to see that the same cr
properties exist in two-dimensional chiral models on toriTn

with p1(Tn)5Zn. This case effectively reduces to the pr
ceding case, since only excitations with the minimal top
logical chargesei561, i 51, . . . ,n, are important and
charges of this kind that correspond to different circles
not interact with one another. The same properties are ex
ited by s models on common tori associated with arbitra
7 © 1999 American Institute of Physics
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nondegenerate latticesL ~Ref. 21!. However, as was show
in Ref. 21, apart from such tori there are maximal Abeli
tori TG of simple compact Lie groupsG, which have~in the
case of simply connectedG) p1(TG)5LvÞZn ~hereLv is
the lattice of dual roots of the corresponding Lie algebraG)
and in which excitations with different vectorial topologic
charges interact with one another.

The following question thus arises: how do the critic
properties of the topological phase transition mention
above depend onG? This question is important, for ex
ample, for string theory, where various aspects of compa
fication onTG are considered~more precisely, it has hereto
fore been considered only on the nondegenerate toriTn

5TU(n) or TL5Rn/L, whereL is a nondegenerate lattice o
rank n),22,23 or for chiral models onG with a reduced~or
partially broken! symmetryG↘TG .24

In this paper it is shown that:
1! all the critical properties of nonlinears models on

compactTG can be described in terms of effective field the
ries with discrete symmetries that generalize the sine-Gor
theory;

2! these properties depend only in the Coxeter num
hL of the corresponding lattice of topological chargesLt;

3! different universality classes of a BKT phase tran
tion are defined by theA, D, E, and Z series of integer-
valued lattices;

4! all the critical and low-temperature properties of the
s models ~apart from the logarithmic corrections at th
phase-transition point! can be described by correspondin
conformal theories with an integer central chargeC5n,
wheren is the rank ofp1(TG) andG.

The possibility of reconstructing the complete symme
groupG in the massive~high-temperature! phase is also dis
cussed.

2. NONLINEAR s MODEL ON TG AND VORTICES

Let us consider the two-dimensional Euclidean chi
field theories onTG that generalize the nonlinears model on
a circleS1 or the continuousXY model. Their action has the
following form:

S 5
1

2aE d2xTrt~ tn
21tn!

5
~2p!2

2a E d2xTrt~H•fn!2

5
~2p!2

2a
NtE d2x ~fn!2, ~1!

where t5exp$2pi(H•f)%PTG , H5(H1 , . . . ,Hn) belongs
to C , i.e., the maximal Cartan subalgebra of the correspo
ing Lie algebraG , @Hi ,H j #50, n is the rank of the groupG,
fn5]nf, andn51,2. Here we have utilized the isotropy o
the system of weights$w%t of any t(G) representation,
which is a consequence of the invariance of systems
weights toward the discrete Weyl groupWGPO(n),

(
a

wi
awk

a5Ntd ik , a51, . . . ,dimt~G!. ~1a!
l
d

ti-

-
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r
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e

l
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Below it will be convenient to include the constantNt as a
normalizing factor in the definition of the trace Trt . This
gives the canonical Euclidean metric in the space of to
logical charges.

The theories~1!, like other two-dimensional chiral mod
els, are invariant with respect to the action of the direct pr
uct of the right-hand (R) and left-hand (L) groupsNG

R(L) ,
which are the semidirect product ofTG andWG :

NG5TG3WG . ~2!

The groupNG , which is called the normalizer of the toru
TG , is the symmetry group of the torusTG .

These theories comprise a multicomponent general
tion of the XY model, which has properties similar to th
properties of theXY model:

1! a zero beta functionb(a) ~due to the flatness ofTG)
and unbroken symmetry when the topology is disregarde

2! a nontrivial homotopy groupp1 and corresponding
vortex solutions.

The classical equations of the theories~1!

~]n!2~H•f!50 ~3!

have the following vortex solutions in the regionR.r .a,
where R is the radius of the system anda is the short-
wavelength cutoff parameter~for example, the vortex core
radius!:

t~q!5exp$2p i ~H•f~q!!%, f5
1

2p
q~q!. ~4!

Hereq andr are the angular and radial coordinates in theR2

plane,q is the vectorial topological charge of the vortex,q
PLt

t 5Lt
21 , Lt

t is the lattice of all possible topologica
charges of thet representation, andLt

21 is the lattice of
vectors which are reciprocals of all the weights of thet
representation:

qPLt
t , waP$wt%, ~q•wa!PZ. ~5!

For the minimal fundamental representations of the sim
connected groupst(G)5min we haveLmin

t 5Lv , and for the
adjoint representationst5ad we have Lad

t 5Lr
215Lw* ,

whereLr is the lattice of roots of the groupG, andLw* is the
lattice of dual weights or the lattice of weights of the du
groupG* . Just these solutions for all the groupsG which are
such thatLt

t $Lw can give a topological interpretation of a
their quantum numbers.21 The energy of these vortices d
verges logarithmically:

E5
~2p!2

2a E ~]mf!2 d2x5
2p

2a
q2 lnS R

a D . ~6!

By virtue of formula~2!, which defines the effective metri
in the space of topological charges,21 there is a logarithmic
interaction between vortices with different vectorial top
logical charges:

E5~q1•q2!
2p

2a
ln

ux12x2u
a

. ~7!

The generalN-vortex solution has the following form:20
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f~x!5(
i 51

N

qi

1

p
arctanS y2yi

x2xi
D , ~8!

qiPLt
t , ~qi•wa!PZ, ~x,y!PR2.

The energy of theNth vortex solution with a zero total to
pological charge( i 51

N qi50 equals

EN5(
i

Eqi

0 1EN int , Eqi

0 5
1

2a
C~a!~qi•qi !,

EN int5
2p

2a (
iÞk

N

~qi•qk!ln
uxi2xku

a
, ~9!

where Eqi

0 is the ‘‘self-energy’’ ~or the core energy! of a

vortex with the topological chargeqi , andC(a) is a nonuni-
versal constant, which depends on the vortex core regu
ization method. Only such solutions make a finite contrib
tion to the partition functionZ of the theory. SinceEq

;q2 andqPLt, the maximal contribution to eachN-vortex
sector of solutions is made by the vortices with the minim
uqu i . Therefore, in the quasiclassical approximation~or in the
low-temperature expansion! we can represent the partitio
function of the theory~5!

Z5E Df exp~2S @f# ! ~10!

in the form of the large partition function of a classica
neutral as a whole, Coulomb gas of vortex solutions with
minimal vectorial topological chargesqiP$q%t , where$q%t

is the set of minimal vectors of the latticeLt
t :

Z5Z0ZCG , ZCG5 (
N50

`
m2N

N! (
$q%

8 ZN~$q%ub!.

~11!

Here the summation(8 is carried out over all the neutra
configurations of the minimal chargesqiP$q%t under the
condition(1

Nqi50, andZ0 is the partition function of a free
massless isovectorial boson field, which corresponds to
‘‘spin waves’’ of theXY model,

Z05E Df exp~2S 0@f# !, ~12!

ZN~$q%ub!5)
i 51

N E d2xi exp~2bHN~$q%!!, ~13!

HN~$q%!5(
i , j

N

~qi•qj !D~xi2xj !, ~14!

D~x!5E d2k

~2p!2
@exp~ i ~k•x!!21#

3
f ~ka!

k2 uxu@̃a

1

2p
lnUxaU, ~15!

where

m25a22y2~det!21/2, y25exp~2Eq
0! ~15a!
r-
-

l

e

he

is the chemical activity of the Coulomb gas, det denotes
determinant of the quadratic fluctuations on a background
the vortex solution~we shall henceforth set det51),

b54p2/a, ~15b!

and f (ka) is a regularizing function, which is such that

lim
k→0

f ~ka!51, lim
k→`

f ~ka!50.

The next section clarifies how allowance for vortices alt
the original symmetry groupNG of a s model.

3. DUALITY OF COMPACT AND NONCOMPACT THEORIES

In the case of theXY model, in the long-wavelength
quasiclassical approximation there is a very important re
tion between the partition function of the compact chi
theory~1! on S1 and the partition function of the noncompa
sine-Gordon theory15–17 with the action~modulo ofZ0)

S SG5E d2x S 1

2b
~]mf!222m2 cosf D . ~16!

This action is invariant relative to the dual discrete gro
Z23Z. There is a similar relation between the compact ch
models onTG and the noncompact generalized sine-Gord
theories.

In order to see this, we note that the large partition fun
tion ZCG from ~11! is, in turn, equivalent to the partition
function of a noncompact scalar isovectorial field theory:

ZCG5E Df exp~2S eff!, S eff5E 1

2b
~]f!22m2V~f!,

~17!

V~f!5(
$q%

exp$ i ~q•f!%, ~18!

where the summation is carried out over the set of minim
topological charges$q%, and fPRn ~Ref. 25!. Strictly
speaking, the theories~17! with the arbitrary parametersm
andb are more general than the originals models~1!. The
latter have only one parameter, viz., the interaction cons
a. Representing thes models in the form of~11! and ~17!
provides a means to fit them into the general theories~17!,
since the constraints~15a! and~15b!, which relate the param
etersm andb, exist. This fact will be important below in a
discussion of the possibility of raising the symmetry ofs
models~Sec. 6!.

Since the set of minimal charges$q%t is invariant toward
the dual Weyl groupWG* , it can be seen that allowance fo
vortices reduces the original symmetry groupNG to the dis-
crete dual groupWG* 3Lq

21 . Here Lq
21 is the periodicity

lattice of the potentialV and is consequently the reciprocal
all qP$q%. It follows from the definition of these lattices tha
Lq

215Lt . This dual group generalizes the dual groupZ2

3Z of the XY model.
Thus, in this quasiclassical and long-wavelength a

proximation the compact theory on the torusTG with the
continuous symmetryNG is equivalent~modulo ofZ0) to the
noncompact theory with a periodic potential and an infin
discrete symmetry. These potentials contain the sum ove
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the minimal vectors$q% and can coincide with the characte
of some representations ofG. For example, in the case o
Lt

215Lv the summation in~18! is carried out over all the
dual minimal roots. Therefore, the corresponding potent
V for simply laced groups from theA, D, andE series coin-
cide with the characters of the adjoint representations
these groups~modulo a constant corresponding to ze
weight!. In this case the general theories~17! can describe
systems with the symmetry ofG broken toNG ~Ref. 25!.

The noncompact theories~17! can also be regarded a
corresponding linears models. As a result, the compact no
linear s models on the toriTG turn out to be equivalent~in
the approximation under consideration! to the noncompac
linear s models on Cartan tori of the dual groupTG* .

The ensuing treatment calls for classification of all t
possible effective theories of this type. It follows from~17!
and ~18! that they are determined by the sets of minim
vectors $q% of the latticeLt

t which satisfies the following
constraint:

Lw* $Lt
t $Lv . ~19!

For t5min we haveLt
t 5Lv , and for t5ad we haveLt

t

5Lw* . The latticesLv and Lw* differ by a factor which is
isomorphic to the centerZG of the groupG:

Lw* /Lv5ZG .

Therefore, the set$q% can vary from the set of minimal vec
tors ~it defines the so-called Voronoi polyhedron or Wigne
Seitz cell of the corresponding lattice! of the weight lattice to
the set of minimal vectors of the root lattice. All the possib
cases are specified by subgroups of the group of the ce
ZG . For groupsG with ZG51 the latticesLv andLw* coin-
cide.

4. PHASE TRANSITION IN CHIRAL MODELS ON TG

In this section we consider topological phase transitio
in chiral models onTG using the approximate equivalenc
obtained above between these theories and the noncom
theories~17!, which generalize the sine-Gordon field theo
These theories can be regarded as effective theories fo
pological phase transitions, just as the Ginzburg–Land
Wilson theories are effective theories for second-order ph
transitions.19

An investigation of the BKT phase transitions for all th
effective field theories of the type~17! by renormalization
group analysis was carried out in Ref. 25. It was shown th
that only theories associated with even integer-valuedA, D,
andE lattices can have new critical properties. They have
structure of the root lattices of the corresponding sim
groupsG from the so-called simply laced groups of theA, D,
andE series. All theories associated with other lattices ha
the same critical properties as the sine-Gordon theory or
perpositions thereof that are associated with the latticeZn.
Therefore, here we give only a brief review of the resu
obtained, focusing mainly on the symmetry and universa
properties.
ls
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Upon renormalization, bothm andb are renormalized. It
is convenient to introduce two dimensionless parameters
the treatment:

~ma!25g, d5
bq228p

8p
, ~20!

whereq2 is the square of the norm of the minimal vectori
topological charges from$q%. The theories~17! are renor-
malizable only if vectors from$q% belong to some lattice~in
our caseLt

t ). New critical properties can appear only if th
geometry of the set$q% is such that each vectorqP$q% can
be presented in the form of a sum of two other vectors fr
$q% ~Ref. 25!. The latter property is very restrictive and co
incides with the definition of the root systems$r% of simple
groups from theA, D, and E series~Ref. 25! or with the
definition of the root system of even integer-valued~on some
scale! lattices of typesA, D, and E ~Ref. 26!. The sets of
minimal roots~or minimal dual roots! of all simple groups
belong to the four series of integer-valued latticesA, D, E,
andZ. For the theories~17!, for which the sets$q%¹A,D,E,
all the critical properties will be the same as for the theor
with $q%PZn ~Ref. 25!.

The renormalization group equations for the theor
~17! with $q% belonging to lattices of the seriesG5A,D,E
have the following form:25

dg

dl
522dg1BGg2,

dd

dl
52CGg2. ~21!

Here BG5puG , uG is the reproduction multiplicity of the
potentialV(f) upon the renormalization of~17! or the num-
ber of different ways of representing each root in the form
a sum of two other roots, andCG52pKG , whereKG is the
value of the second-order Casimir operator in an adjoint r
resentation~wherewa5ra)

(
a

r i
ar j

a5KGd i j . ~22!

Renormalization group equations of the form~21! with co-
efficients corresponding to the caseG5A2 were first ob-
tained in Ref. 27 in a study of the melting of two
dimensional triangular lattices. The renormalization gro
equations for lattices not belonging to theA, D, andE series
have the form~21! with the coefficientBG50.

The value of the second-order Casimir operatorKG for
groups of theA, D, andE series can be expressed in terms
the corresponding Coxeter numberhG :

KG52hG , hG5
~number of roots!

~rank of group!
. ~23!

This definition of the Coxeter number coincides with the o
for the Coxeter number of the corresponding lattices fr
theA, D, andE series. The coefficientBG can be calculated
by different methods and can also be expressed in term
the Coxeter number:

uG5KG2452~hG22!. ~23a!

Thus, we see that all the coefficients in the renormalizat
group equation are expressed in terms of the Coxeter num
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hG or in terms of the value of the second-order Casim
operatorKG . The renormalization group equations~21! have
two separatrices:25,27

u1,2[S g

d D
1,2

5
1

2CG
@6~BG

2 18CG!1/22BG#, ~24!

whereu1 corresponds to the phase separation line. The c
cal exponentnG , which determines the divergence of th
correlation lengthj as the transition point is approache
from above with respect to the temperatureT,

j;a exp~At2nG!, t5
T2Tc

Tc
,

is given by the following expression:

nG51/kG5u1@~BG /CG!218/CG!] 21/2, ~25!

where 1/kG is the Lyapunov exponent on separatrix1.25 Sub-
stituting the corresponding values for the coefficients i
~24!, we obtain the following values for the separatr
slopes:

u1,25H 1/phG ,

21/2p. ~26!

We note that the separatrixu2521/2p does not depend on
G and is equal to a universal constant. This fact is v
important for the possibility of reconstructing the comple
symmetry ofG in the massive~high-temperature! phase~see
Sec. 6 below!. A schematic phase diagram is shown in F
1.

The dotted line of initial values corresponds to the ori
nal s model. This line is specified by the dependences of
parametersb andm on the interaction constanta @Eqs.~15a!
and~15b!#. Region I corresponds to the low-temperature~de-
compactified, massless! phase, and the other regions corr
spond to the high-temperature~compact, massive! phase. In
region I the correlation lengthj5`, and in region II near
separatrix1

j;a exp~At2nG!, nG52/~21hG!54/~41KG!. ~27!

Using known values for the Coxeter numberhG and data on
the geometry of sets of minimal dual roots, we obtain
following expressions for the critical exponentnG :25

G: An Bn Cn Dn G2 F4 E6 E7 E8

nG :
2

n13

1

n

1

2

1

n

2

5

1

4

1

7

1

10

1

16

FIG. 1. Schematic phase diagram.
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The dependence of the critical properties of the theo
~1! and ~17! only on such a fairly rough characteristic o
groups as the Coxeter numberhG or KG leads to their con-
vergence for fairly different groups. In particular, it is inte
esting to note that theD165O(32) andE8 groups, which are
used to construct anomaly-free string theories,22 have identi-
cal values ofnG ~together with theA29 group!. The largest
number of possible values ofnG is given by theAn series:
1/k and 2/(2k11), wherek is an integer. For theories with
the potentialsV containing sets of minimal roots, all the ex
ponents, exceptnBn

and nCn
, remain unchanged. The latte

exponents transform into one another due to the mutual
ality of these groups.

5. LOW-TEMPERATURE PHASE AND CONFORMAL
SYMMETRY

The equality of the correlation lengthj→` everywhere
in the low-temperature phase corresponds to the existenc
conformal symmetry at large distances. This can also be s
from the renormalized effective actionS eff of the theory,
which takes the following asymptotic form in the infrare
~IR! limit:

S eff5E d2x
1

2b̄
~]f!2, ~28!

whereb̄ is the value of the renormalized parameterb( l ) in
the IR limit

b̄5 lim
l→`

b~ l !. ~29!

At the phase-transition pointb̄5b* 58p/qmin
2 . At other

points of the low-temperature phaseb̄ depends on the initia
values of the system parameters. It is generally known
the action~28! describes a free conformal theory with a ce
tral chargeC5n, wheren is the rank of the groupG, which
specifies both the rank of the torusTG and the rank of the
group p1(TG). Hence it follows that the long-wavelengt
low-temperature properties ofs models defined on differen
tori TG , will be identical for all groups with the same rankn.
Only the logarithmic corrections at the phase-transition po
will depend onG through the Coxeter numberhG . It thus
becomes clear why the critical exponent depend only onhG

and KG . This is consistent with the fact that in compa
groups all the quantum anomalies also depend only onhG ~or
the dual Coxeter numberh̃G).28 Here it should be noted tha
nG coincides with the ‘‘screening’’ factor in the formula fo
the central chargeCk of the affine algebraĜ ~Ref. 28!,

Ck5
k

k1hG
dimG, ~30!

at thek52 level or in the formula forCk in the ‘‘coset’’
realization of the minimal unitary conformal modelsĜk

^ Ĝ1 /Ĝk11 ~Ref. 29!,

Ck5nS 12
hG~hG11!

~hG1k!~hG1k11! D , ~31!



f
re

th
tio
ob
c

h
,

n

-

t

e
he

l
re

th
ta

is

ix
a-
th

th-

is

act
e
the

n

ing

imir

of

al

ve

e
po-
t

l-
n

n
ym-
es

s-

1112 JETP 89 (6), December 1999 S. A. Bulgadaev
at thek51 level. It also follows from Eq.~31! and Ref. 29
that the phase-transition point in as model on TG (G
5A,D,E) is the limiting case (k→`) for the sequence o
minimal unitary conformal models corresponding to the
spective expanded conformal groupsWG .

The fact that the theory effectively becomes free in
low-temperature phase permits the calculation of correla
functions. For example, the following expressions are
tained for the correlation functions of the exponential fun
tions of a field:

K )
s51

t

exp~ i ~r s•f~xs!!!L 5)
iÞ j

t Uxi2xj

a U b̄(r i•r j )/2p

,

(
i 51

t

r50. ~32!

At the phase-transition point~where b̄5b* 58p/q254p)
an additional logarithmic factor, which is associated with t
‘‘zero-charge’’ behavior ofg andd on the critical separatrix
appears in them:

)
iÞ j

t S lnUxi2xj

a U D b* (r i•r j )/2pAG

5)
iÞ j

t S lnUxi2xj

a U D hG cos(r i•r j )

.

~33!

Here AG54/hG is the coefficient in the renormalizatio
group equation ford on the critical separatrix.

6. MASSIVE PHASE, ASYMPTOTIC FREEDOM, AND
GLOBAL SYMMETRY

Regions II and III correspond to the IR limit of the high
temperature~in the language of statistical physics! or mas-
sive ~in the language of field theory! phase. In the ultraviole
~UV! limit region III will be asymptotically free. Separatrix
2 with the slopeu2521/2p also plays an important role. In
the UV limit it marks the boundary of asymptotically fre
region III. There is also another possibility for increasing t
symmetry group of the original nonlinears model on this
separatrix. On the classical level thes model ~1! has two
symmetries: 1! gauge~or conformal! symmetry and 2! isoto-
pic global symmetry,NG5TG3WG . On the quantum leve
the former symmetry is spontaneously broken in the IR
gion by vortices in the general case@see~11!#. For this rea-
son thes model has a finite correlation lengthj;m21,
wherem is the characteristic mass scale of the theory, in
massive phase. It should depend on the interaction cons
a or b. The behavior ofm near the phase-transition point
described by formula~27!, where

t;
a2ac

ac
.

In the massive phase there is another region, separatr2,
where the functionm(a) can also be found. Since this sep
ratrix attracts all the renormalization group trajectories in
-

e
n
-
-

e

-

e
nt

e

massive~or high-temperature! phase, it is very important to
know the effective mass scale on it. In the leading logari
mic approximation with respect tog it is given by the pole in
the solution of the renormalization equation on th
separatrix30 or by the formula

m;L expS 2Eg dx

b~x! D ,

where L;a21 is the UV cutoff parameter in momentum
space,b(x) is theb function on separatrix2, and

b~g!52pg2KG/252pg2hG .

Hence we obtain

m;L exp~21/2pghG!5L exp~21/pgKG!. ~34!

The numerical factor in theb function can vary as a function
of the normalization of the interaction constant, but the f
that b;KG;hG on separatrix2 is a consequence of th
aforementioned lack of a dependence of the slope of
separatrixu2 on G.

The expression~34! for the mass scale on separatrix2,
which depends only onKG , coincides with the expressio
for chiral models on the groupsG ~Ref. 30! and the expres-
sion obtained from the exact solution of the correspond
chiral and fermionic theories~in the leading approximation
with respect tog)31

m;L exp~22p/~gKG/2!!.

Thus, it has been shown that on separatrix2 the mass
scale coincides~at least for groupsG5A,D,E) with the one
in G-invariant theories~chiral and fermionic theories! and
can be expressed only in terms of the value of the Cas
operatorKG or the Coxeter numberhG by the universal for-
mula @hereg→g/(2p)2]:

m;L exp~24p/gKG!5L exp~22p/ghG!. ~35!

This means that the theories~1! and~17! can beG-invariant
on separatrix2. This is also indicated by the equivalence
the general theories~17! with $q%5$r% in the case ofG
5An21 ,Dn ,E6,7 to fermionic theories with the same glob
symmetryG ~Ref. 25a!.

It follows from the results obtained that for the massi
phase of chiral theories onTG (G5A,D,E) in the minimal
representation~whereLmin

t 5Lv) there is a strong dependenc
of the mass scale on the interaction constant, which inter
lates between formula~27! near the phase-transition poin
and formula~34! near separatrix2. In the former region the
theory hasTG symmetry, which is described by its norma
izer NG5TG3WG , while in the latter region the theory ca
be more symmetric andG-invariant. Similar crossover in
m(a) also takes place ins models on other groups and i
other representations, but the relationship between the s
metry properties in the two limiting regions in these cas
remains not so clear.

This work was carried out with the support of the Ru
sian Fund for Fundamental Research~Grants 96-02-17331
and 96-15-96861!.
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Cross-phase modulation of surface magnetostatic spin waves
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This paper explains the modulation instability of two surface magnetostatic spin waves
simultaneously propagating in a ferromagnetic film. Self-modulation of the spin waves appears
when their power reaches a threshold, and this is a sign of cross-phase modulation. The
parameters of the unstable process are calculated, and the gains of the perturbation amplitudes
are determined. The results published earlier on the experimental detection of the cross-
phase modulation of spin waves are explained. ©1999 American Institute of Physics.
@S1063-7761~99!01412-2#
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1. INTRODUCTION

Magnetostatic spin waves~MSWs! propagating in mag-
netized films of yttrium iron garnet~YIG! are an extremely
interesting object for research, since the nonlinear effe
that appear when intense MSWs propagate begin to man
themselves at relatively small powers.1,2 Surface MSWs are
especially interesting in this regard, since the energy of
wave is concentrated at the film surface in this case, and
losses are minimal when the signal is generated and dete
When a single surface MSW propagates, an increase in
power of the wave does not cause amplitude modulation
the envelope of the magnetostatic potential to appear s
taneously, and the wave is modulationally stable in t
case.3 However, recent experiments4 with simultaneous
propagation of two surface MSWs of different frequenc
show that modulation instability appears under definite c
ditions. This effect is observed in the form of side freque
cies on the peaks corresponding to the carrier frequencie
the output spectral characteristic. The cause of the instab
is that the dispersion dependence for the MSWs chan
because the second wave propagates in a medium pertu
by the first wave. A phenomenon similar to that observ
was theoretically explained for the first time in Ref. 5, whi
discussed the combined propagation of two waves of dif
ent polarizations in a plasma. Similar effects when sign
propagated in optical waveguides were subseque
detected.6 The instability causes the envelope of the MSW
to be modulated, since the ever-present noise serves a
initial perturbation.7 This phenomenon has become known
modulation instability. The modulation instability that aris
when two modulationally stable waves propagate simu
neously, due to cross-phase modulation,5 is usually caused
by induced modulation instability.6 The derivation of the
conditions for the appearance of modulation instability is o
of the main problems in studying such processes. To do
it is important to obtain the dispersion dependence of
amplitude perturbations of the magnetostatic potential of
1111063-7761/99/89(12)/6/$15.00
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carrier signal. In studying such processes, it is usual to
glect dissipative effects because they are small at the
tances under consideration.2 The output MSWs are attenu
ated if the dissipative terms are included, but the qualitat
picture of the wave propagation does not change. This pa
discusses a model of simultaneous nondissipative prop
tion of two surface MSWs in a ferromagnetic film. The di
persion dependences are derived in Sec. 2 in terms of
model. The equations for the evolution of the amplitudes
the coupled waves are obtained in Sec. 3. After this,
analysis of these equations is given in Sec. 4 in order
derive the conditions for the appearance of modulation in
bility. Finally, in Sec. 5, the results are used to explain t
experimental results of Ref. 4.

2. DERIVATION OF THE DISPERSION DEPENDENCE

Let us consider the propagation of two surface MSWs
a thin ferromagnetic film of thicknessd, placed in a saturat-
ing external magnetic fieldH ~Fig. 1!.

Under these conditions, it is possible to introduce in
the discussion a magnetostatic potential that describes
propagating waves and has in our case the form8

c5A@exp~k1x!1a exp~2k1x!#exp~ ik1y!

1B@exp~k2x!1b exp~2k2x!#exp~ ik2y!1c.c., ~1!

whereA andB are the amplitudes of the two MSWs,k1 and
k2 are the wave numbers, anda and b are factors that de-
pend on the film parameters and the external magnetic fi
and determine the propagation of the waves on some sur
or the other.9 The time dependence of the potential will b
introduced later. It is easy to obtain the high-frequency co
ponents of magnetic fieldh5“c from the given expression
4 © 1999 American Institute of Physics
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hx5
]c

]x
5Ak1@exp~k1x!2a exp~2k1x!#exp~ ik1y!

1Bk2@exp~k2x!2b exp~2k2x!#exp~ ik2y!1c.c.,

~2!

hy5
]c

]y
5 iAk1@exp~k1x!1a exp~2k1x!#exp~ ik1y!

1 iBk2@exp~k2x!1b exp~2k2x!#exp~ ik2y!1c.c.

~3!

The high-frequency part of the magnetization is connec
with h,

m5x̂h, ~4!

by magnetic susceptibility tensorx̂, which is written as

x̂5S x1 ix2 0

2 ix2 x1 0

0 0 1
D , h5S hx

hy

hz

D . ~5!

As a result, we have

mx5x1

]c

]x
1 ix2

]c

]y
,

my52 ix2

]c

]x
1x1

]c

]y
. ~6!

As will become clear later, we are interested only in t
square of the modulus of the components of the magne
tion. We considerumu2 one component at a time:

umxu25x1
2U]c

]xU
2

1x2
2U]c

]yU
2

1 ix1x2F S ]c

]y D S ]c

]x D *
2S ]c

]x D S ]c

]y D * G . ~7!

Recalling that Rec5c, we get

umxu25x1
2U]c

]xU
2

1x2
2U]c

]yU
2

. ~8!

Likewise, formy ,

umyu25x2
2U]c

]xU
2

1x1
2U]c

]yU
2

. ~9!

Finally, we find

FIG. 1. Geometry of the problem. The MSWs propagate along they axis,
and the external magnetic fieldH is directed along thez axis.
d

a-

umu25umxu21umyu25~x1
21x2

2!S U]c

]xU
2

1U]c

]yU
2D . ~10!

For the subsequent discussion, we need the quantity

vM54pgFM02
umxu21umyu2

2M0
G , vM0

54pgM0 , ~11!

which enters into the expression for the dispers
dependence8 for a surface MSW:

v25vH
2 1vHvM1

vM
2

4
@12exp~22kd!#. ~12!

We introduce into the discussion

v0i
2 5vH

2 1vHvM0
1

vM0

2

4
@12exp~22kid!#, ~13!

wherei 5$1,2%. Finally,

v i
25v0i

2 2
pg

M0
$2vH1vM0

@12exp~22kid!#%

3~ umxu21umyu2!. ~14!

Simple but tedious algebraic formations can be used to
tain an expression foru]c/]xu21u]c/]yu2, which contains
terms proportional to exp(iky). In order to introduce the time
dependence into the equations, it is necessary to make
substitution exp(iky)→exp@i(ky2vt)#. This means that the
terms containingt and y disappear after averaging over th
period. These terms can play a role only if the waves
coherent. After this, we obtain

U]c

]xU
2

1U]c

]yU
2

54$uAu2k1
2@exp~2k1x!1uau2

3exp~22k1x!#1uBu2k2
2@exp~2k2x!

1ubu2 exp~22k2x!#%. ~15!

We now have the following dispersion dependence:

v i
25v0i

2 24
pg

M0
$2vH1vM0

@12exp~22kid!#%

3~x1
21x2

2!$uAu2k1
2@exp~2k1x!1uau2

3exp~22k1x!#1uBu2k2
2@exp~2k2x!1ubu2

3exp~22k2x!#%. ~16!

The nonlinear dispersion Eqs.~16! for surface MSWs are
derived in the limit of weak nonlinearity. Namely, nonline
Eq. ~11! describes the magnetization frequency, provid
that the amplitude of the high-frequency magnetization
much less than the amplitude of the magnetization of
ferromagnetic film (umxu,umyu!M0).

3. DERIVATION OF A SYSTEM OF EQUATIONS FOR THE
EVOLUTION OF COUPLED WAVES

The dispersion dependence given by Eq.~16! can be
written in general form as

G~k1 ,k2 ,v1 ,v2 ,uAu2,uBu2,uau2,ubu2!50. ~17!
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Let us introduce the dispersion dependence for an inde
dently propagating wave:

Gi05v0i
2 2H vH

2 1vHvM0
1

vM0

2

4
@12exp~22kid!#J .

~18!

We expand Eq.~16! up to terms corresponding to secon
order in amplitude:

Gi5Gi01
]Gi0

]v i
Dv i1

]Gi0

]ki
Dki1

]2Gi0

]ki]v i
Dv iDki

1
1

2

]2Gi0

]v i
2 ~Dv i !

21
1

2

]2Gi0

]ki
2 ~Dki !

21
]Gi

]uAu2
uAu2

1
]Gi

]uBu2
uBu21

]Gi

]uau2
uau21

]Gi

]ubu2 ubu250. ~19!

Recalling that

Dv i↔ i
]

]t
, Dki↔2 i

]

]y
,

]2

]t2 ↔vgi

]2

]y
,

we get

i
]A

]t
1 ivg1

]A

]y
1

1

2
b1

]2A

]y2 5 f 1~a2uAu21b2uBu2!A,

i
]B

]t
1 ivg2

]B

]y
1

1

2
b2

]2B

]y2 5 f 2~a2uAu21b2uBu2!B,

~20!

with

vgi52d
vM0

2

4v i
exp~22kid!, ~21!

b i52
vgi

v i
@vgi1v id#, ~22!

f i52
vM0

2M0
2v i

$2vH1vM0
@12exp~22kid!#%

3~x1i
2 1x2i

2 !, ~23!

a25k1
2@exp~2k1x!12uau2 exp~22k1x!#,

b25k2
2@exp~2k2x!12ubu2 exp~22k2x!#. ~24!

Parametersa andb characterize the amplitude attenuation
the wave with distance from the surface. Equations~20! are
in essence a system of equations of the type of the nonli
Shrödinger equation and describe the evolution of the am
tudes of the coupled surface MSWs.

4. INVESTIGATION OF MODULATION INSTABILITY

Let us introduce the energy of the wave at depthx from
the surface:

P15a2uAu2, P25b2uBu2. ~25!

Then the steady-state equations have the form

ivg1

]A

]y
1

1

2
b1

]2A

]y2 5 f 1~P11P2!A,
n-

f

ar
i-

ivg2

]B

]y
1

1

2
b2

]2B

]y2 5 f 2~P11P2!B. ~26!

Let us consider, for example, the first equation. We see
solution in the form

A5C exp~2 iay!. ~27!

After substitution, we find

a1,25
vg1

b1
F17A12

2b1f 1~P11P2!

vg1
2 G . ~28!

We have the following solution:

A5C1 exp~2 ia1y!1C2 exp~2 ia2y!. ~29!

The amplitude close to the antenna is constant, and co
quently the envelope is constant:

]A

]y
5C1~2 ia1!exp~2 ia1y!

1C2~2 ia2!exp~2 ia2y!50. ~30!

From this, we obtain the relationship between the am
tudes:

C152
a2

a1
C2 . ~31!

Let us evaluate this relationship for a thin film (kid
!1). In this case, the ratio under the radical in Eq.~28!
equals

e i5
2vM0

vH

M0
2v i

2 ~x1i
2 1x2i

2 !~P11P2!. ~32!

We estimate the factors in Eq.~32! by the following approxi-
mations:

~x1i
2 1x2i

2 !'3,
2vM0

vH

v i
2 '

1

2
,

and consequently we get

e'3~P11P2!/M0
2. ~33!

However, this ratio is small in the approximation consider
here ~in the experiment considered below, it equals 1/1!.
Consequently,e!1. It follows from this thatC1@C2 . We
shall neglect the quantityC2 in the subsequent calculation
Then we can write

a5a15
vg1

b1
F12A12

2b1f 1~P11P2!

vg1
2 G . ~34!

Finally,

A5AP1e2 iay. ~35!

We now impose a perturbation on this solution:

A5@AP11ã~y,t !#e2 iay, ã!AP1. ~36!

After substituting this expression into the equations,
carry out a similar procedure forB, and we linearize the
resulting equations in terms of the perturbations:
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i
]ã

]t
1 ivg1f1

]ã

]y
1

1

2
b1

]2ã

]y2 5 f 1@P1~ ã1ã* !

1AP1P2~ b̃1b̃* !#,

i
]b̃

]t
1 ivg2f2

]b̃

]y
1

1

2
b2

]2b̃

]y2 5 f 2@P2~ b̃1b̃* !

1AP1P2~ ã1ã* !#, ~37!

where

f i5vgiA12
2b i f i~P11P2!

vgi
2 . ~38!

We seekã and b̃ in the following form:

ã5u1 cos@K1~y2f1t !2Vt#1 iv1

3sin@K1~y2f1t !2Vt#,

b̃5u2 cos@K2~y2f2t !2Vt#1 iv2

3sin@K2~y2f2t !2Vt#, ~39!

where K1 and K2 are the wave numbers of the amplitud
perturbations, whileV is their frequency. After substitution
we must set the real and imaginary parts equal to zero.
obtain a system of linear equations with the matrix

M5S m1 q1 l 1 0

n1 p1 0 0

l 2 0 m2 q2

0 0 n2 p2

D , ~40!

where

mi52
1

2
b iKi

2 cos@Ki~y2f i t !2Vt#

22 f i Pi cos@Ki~y2f i t !2Vt#,

qi5~Kif i1V!cos@Ki~y2f i t !2Vt#

2f iKi cos@Ki~y2f i t !2Vt#,

l i522 f iAP1P2 cos@K22 i~y2f22 i t !2Vt#,

ni52~Kif i1V!sin~Ki~y2f i t !2Vt !

1f iKi sin@Ki~y2f i t !2Vt#,

pi5
1

2
b iKi

2 sin@Ki~y2f i t !2Vt#. ~41!

For a nontrivial solution to exist in the system, it is necess
that the determinant of this matrix equal zero:

detM50, ~42!

or

~n1q12p1m1!~n2q22p2m2!2p1p2l 1l 250.

We obtain the following equation forV:

~V22c1
2!~V22c2

2!5z, ~43!

where
e

y

ci5
1

2
b iKi

2, z5b1b2f 1f 2P1P2K1
2K2

2. ~44!

It is easy to expressV2 as

V25
c1

21c2
26A~c1

21c2
2!224~c1

2c2
22z!

2
. ~45!

We find the condition for whichV2,0:

z.c1
2c2

2. ~46!

This is the condition for modulation instability to appear.
this case, it can be seen from Eqs.~44! and ~46! that both
waves are modulationally unstable regardless of the sign
the nonlinearity coefficients given in Eq.~23!. These results
also agree with the results published earlier in Refs. 10
11 concerning the nonlinear interaction between spin
acoustic waves and between spin and electromagnetic wa

5. ANALYSIS OF EXPERIMENT

In Ref. 4, two MSWs with frequenciesv156.55 GHz
and v256.75 GHz, which correspond to wave numbersk1

552.97 cm21 andk25379.6 cm21, were generated in a film
of yttrium iron garnet of thicknessd51.1531023 cm. The
film in this experiment had a saturation magnetization
M05135.6 G and was located in an external magnetic fi
of H051627 Oe, withg52.8 MHz/Oe. The signal from the
film was fed to a spectrum analyzer. The mistuning betwe
the nearest side band and the carrier peak equalled 1.4 M
but the side band is caused by the interaction with ano
wave, and it is consequently necessary to consider the s
ing not between the nearest peaks but between the fart
This makes it possible to explain the presence of the as

FIG. 2. Dependence of gainh on K1 for fixed K2 .

FIG. 3. Dependence of gainh on K2 for fixed K1 .
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FIG. 4. Dependence of gainh on K1 andK2 .
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the
metry of the side bands as the result of the interaction
already modulated waves. Then the modulation freque
V5Dv is 201.4 MHz. Keeping in mind that the gain mu
have a maximum at this frequency, we get a system of eq
tions for K1 andK2 . Solving it, we find

K15283.3 cm21, K25444.4 cm21. ~47!

The power of the wave can be obtained from3

Wk.
1

16p
Ld2vP, ~48!

where L50.3 cm is the length of the antenna, whilek
50.25 is a factor that characterizes the part of the supp
powerW that goes into the generation of MSWs. From th
we get

k5
1

16p
Ld257.8931029 cm3,

P5
Wk

kv
, P15134 Oe2, P2545 Oe2. ~49!

Let us check whether the conditionsz.c1
2c2

2 for modulation
instability are satisfied:
f
y

a-

d

4 f 1f 2P1P2.
1

2
b1K1

2
•

1

2
b2K2

2,

16f 1f 2

b1b2
P1P2.K1

2K2
2,

k21.3831012 cm24.K1
2K2

2,

8.63.1.59. ~50!

As can be seen, the condition for cross-phase modula
is satisfied. In order to understand the spectral content of
received signal, it is necessary to know how the gain of
modulation perturbations depends onK1 and K2 . The gain
of the perturbation amplitudes equals

h~K1 ,K2!52 Im~V!

5A2@A~c1
21c2

2!214~z2c1
2c2

2!2~c1
21c2

2!#.

~51!

Figure 2 shows a graph of theh(K1 ,K2) dependence with
K2 fixed. Figure 3 shows theh(K1 ,K2) dependence withK1

fixed. Theh(K1 ,K2) surface is shown in Fig. 4.
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It can be seen from the curves in the figures that the g
has a maximum at definite values ofK1 andK2 , correspond-
ing to the frequenciesV1 andV2 of the modulation instabil-
ity observed in experiment.

6. CONCLUSION

Instability with respect to the amplitude of intense tra
elling surface MSWs in ferromagnetic films has been th
retically treated. Surface MSWs in the case of propagatio
only one wave are modulationally stable even when
power of the wave varies within wide limits. When tw
waves simultaneously propagate in a ferromagnetic fi
they become modulationally unstable when they reach a
tain threshold power. Such instability cannot be explained
terms of a model of parametric instability. A model of th
phase modulation of two intense waves is proposed here
explains the appearance of modulation instability of
waves. Calculations are carried out for the parameters of
waves, in particular, the threshold powers required for
phenomena discussed here. An explanation is given for
experimental results of Ref. 4, in which cross-phase mo
lation of surface MSWs was observed for the first tim
Qualitative agreement is obtained between the theory de
oped here and the experimental data. Since this paper u
model of nondissipative propagation of surface MSW
while quenching of the waves plays a substantial role in
example studied, which involved a thick film, it is problem
atical to obtain quantitative agreement with experiment. F
ther development of the theory, taking into account wa
dissipation, and additional experimental work should clar
the details of the process of cross-phase modulation of m
netostatic spin waves.
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Multiphonon optical transitions in size-limited systems in a magnetic field
É. P. Sinyavski * ) and E. I. Grebenshchikova
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A study has been performed of optical multiphonon transitions in undoped size-limited systems
in a magnetic field aligned with the spatial quantization axis. A theory is proposed which
allows one to describe the half-width of the luminescence curve for isolated quantum wells and
investigate the frequency and temperature dependence of the light absorption coefficient in
the long-wavelength region. ©1999 American Institute of Physics.@S1063-7761~99!01512-7#
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1. INTRODUCTION

In a longitudinal magnetic field oriented perpendicular
the surface of a quantum well, the spectrum of a free elec
is completely quantized~quasi-zero-dimensional! and for
rectangular quantum wells it is given by

Enn5\vcS n1
1

2 D1«0n2, «05
\2p2

2mca
2

.

Here vc is the cyclotron frequency,«0 is the size-
quantization step in the quantum well,mc is the effective
electron mass,a is the width of the size-limited system,n is
the number of the size-quantized level, andn is the number
of the Landau level.

The appearance of discrete levels should have a sub
tial effect on the optical properties of quantum wells. In t
present paper we present a study of the optical propertie
size-limited systems in a longitudinal magnetic field w
multiphonon effects taken into account. The final results
valid for quantum wells of different shape~rectangular, para-
bolic!, and also for heterostructures. To describe m
tiphonon optical processes in impurity systems, we use
model of shifted adiabatic potentials.1 However, to study
electron–vibrational optical transitions between discr
states of free holes~in the absence of a magnetic fieldB this
is the valence band! and quasi-one-dimensional states of fr
electrons~for B50 this is the conduction band! this model is
inapplicable since the minima of adiabatic potentials for f
carriers are not shifted. This is because the diagonal ma
elements of the electron–phonon interaction~and likewise
the hole–phonon interaction! in the free-carrier wave func
tions are extremely small. In this case, a description of o
cal transitions with multiphonon effects taken into accoun
best constructed in the language of quasilevels,2 as is done in
the case of multiphonon interband transitions.3 In what fol-
lows, we will consider strong, quantized magnetic field
where the Coulomb interaction of the electron with a hole
small in comparison with the distance between the transv
quantization levels. In this case the internal motion of
electron–hole pair is finite, but a free state of the elect
and hole does not, strictly speaking, exist.4 As experimental
studies on photoluminescence in quantum wells has sho
the binding energy of an exciton forB.10 T in InGaAs/
1121063-7761/99/89(12)/5/$15.00
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GaAs ~Ref. 5! and in GaAs/AlGaAs~Ref. 6! is proportional
to B and, consequently, it is possible to use the abo
indicated approximation. A detailed discussion and the cr
ria of this approximation are given in Ref. 7. In what follow
we assume that the electron and hole interact with
phonons independently, as is done in the theory of lar
radius excitons.8 When an electron–hole pair is excited b
light, the momentum of the exciton is equal to the mome
tum of the electromagnetic wave and is very small;9 there-
fore, we will neglect the exciton bands arising in quasi-tw
dimensional semiconductors in a strong magnetic field.4

The theory developed below allows one in a number
cases to describe the half-width of the luminescence cu
for isolated quantum wells and in turn to study the frequen
and temperature dependence of the light absorption co
cient in the long-wavelength region.

2. STATEMENT OF THE PROBLEM. GENERAL RELATIONS

In an intrinsic size-limited semiconductor the Ham
tonian of the system of electrons and holes interacting w
phonons in a uniform magnetic field has the form

Ĥ5Ĥ01V̂, ~1!

Ĥ05(
b

~«b
(c)2j!ab

1ab1(
b

~«b
(v)2j1!ab

1ab

1(
q

\vqbq
1bq , ~2!

V̂5 (
q,b,b1

Cq
(c)I bb1

~q!~bq1b2q
1 !ab

1ab1

1 (
q,b,b1

Cq
(v)I bb1

~q!~bq1b2q
1 !ab

1ab1
. ~3!

Here«b
(c) and«b

(v) are the energy of the electrons~holes! in a
quantum well in a longitudinal magnetic field~see the Intro-
duction!, j is the chemical potential of the electron
j152j1Eg , Eg is the band gap of the semiconductor,\vq

is the energy of a phonon with wave vectorq; ab
1 , ab , ab

1 ,
ab , bq

1 , andbq are creation and annihilation operators r
spectively for the electrons, holes, and phonons.Cq

(c) (Cq
(v))

is the coefficient function describing the interaction of
0 © 1999 American Institute of Physics
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electron ~hole! with lattice vibrations,I bb1
(q)5^buexp(iq

3r )ub1& is the matrix element of the operator exp(iq•r ) in
the wave functionsub& of the free carriers of the size-limite
system in a magnetic field,b5(n,n,Kx), whereKx is a com-
ponent of the carrier wave vector,n is the number of the
Landau level,n is the number of the size-quantized leve
The Hamiltonian~1! does not include terms associated w
the nonadiabaticity operator since we neglect nonradia
transitions in what follows.3

The absorption coefficient for light with frequencyV
associated with a transition of an electron from a comple
discrete state~1! to a quasi-zero-dimensional state~2! is
given by the Kubo formula10

K~V!5
4pe2

Vn0c\V UPcv•j0

m0
U2

(
bb1

E
2`

`

dt exp~ iVt !

3^ab~ t !ab~ t !ab1

1 ~ t !ab1

1 ~ t !&, ~4!

Â~ t !5expS i t

\
Ĥ D Â expS 2

i t

\
Ĥ D , ~5!

whereV is the volume of the size-limited system,n0 is the
index of refraction,c is the speed of light,Pcv is the matrix
element of the momentum operator in Bloch functions,m0 is
the mass of a free electron,j0 is the polarization vector o
the electromagnetic wave, and the angular brackets de
averaging over the Hamiltonian~1!.

The equation of motion for the operatorab(t) according
to Eq. ~5! can be written as

ȧb~ t !52
i

\ H ~«b
(c)2j!ab~ t !1 (

q,b1

Cq
(c)^bu

3exp~ iq•r !ub1&~bq exp~2 ivqt !

1b2q
1 exp~ ivqt !ab1

~ t !!J . ~6!

Formula~6! neglects the influence of carriers on the ph
non spectrum, i.e., it assumes that

bq~ t !.bq exp~2 ivqt !, bq
1~ t !.bq

1 exp~ ivqt !.

This approximation is valid for nondegenerate semic
ductors since corrections to the free-phonon spectrum
pend on the polarization operator, which to lowest order
the electron–phonon interaction is proportional to the c
centration of charged particles.

For rectangular quantum wells of widtha ~the magnetic
field is oriented along the spatial quantization axis!

^buexp~ iq•r !ub1&

5 i
4p2nn1~qza!

~qza!22p2~n1n1!2

1

~qza!22p2~n2n1!2

3F2n1n1!

2n1
n! G1/2

@exp~ iqza!~21!n1n121#

3FexpH 2
1

4
R2~qx

21qy
2!1 iqy~Kx1Kx1

!
1

2
R2J G
e

ly

te

-

-
e-
n
-

3FR

2
~qx2 iqy!Gn2n1

Ln1

n2n1S R2

2
~qx

2

1qy
2! D dKx2Kx1

,qx
~n>n1!. ~7!

HereR25\/mcvc , Ln1

n2n1(z) are associated Laguerre poly

nomials.

Vnn~q!5 i
4p2n2

~qza!22~2pn!2

exp~ iqza!21

qza

3expF2
R2

4
~qx

21qy
2!GLnFR2

2
~qx

21qy
2!G , ~8!

P̂x52 i\]/]x is the momentum operator,uKx& is the wave
function of a free electron along thex axis.

The terms withnÞn1 , nÞn1 in expression~7!, as will
be shown below, make an insignificant contribution to op
cal multiphonon processes. Substituting expression~8! into
Eq. ~6! leads to the following equation of motion forab(t):

ȧb~ t !52
i

\ H ab~ t !~«b
(c)2j!1 (

q,Kx1

Cq
(c)Vnn~q!

3^Kxuexp~ i P̂ !uKx1
&~bq exp~2 ivqt !

1b2q
1 exp~ ivqt !!annKx1

~ t !J . ~9!

The solution of Eq.~9! has the form

annKx
~ t !5(

Kx1

^Kxuexp
i tĤ f

\

3expS 2
i t ~Ĥ f1Wnn

(c)!

\
D uKx1

&

3expS 2
i t

\
~«nnKx

(c) 2j! DannKx1
. ~10!

Here we have introduced the following notation:

Ĥ f5(
q

\vqbq
1bq ,

Wnn
(c)5(

q
Cq

(c)Vnn~q!exp~ i P̂ !~bq1b2q
1 !,

P̂5qxx1
1

\
qyR

2P̂x , ~11!

We can calculateannKx
(t) analogously.

If we substitute the values ofannKx
and annKx

into ex-
pression~4! and take account that for nondegenerate se
conductors

^ab
1ab&5nb

(c)!1, ^ab
1ab&5nb

(v)!1,

the light absorption coefficient takes the following form:
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K~V!5
4pe2

Vcn0\V UPcv•j0

m0
U2

(
n,n,Kx ,Kx1

E
2`

`

dt

3expH i t

\
~\V2«nnKx

(c) 2«nnKx

(v) 2Eg!J
3 K ^KxuexpS i t

\
H f DexpS 2

i t

\
~H f

1Wnn
(c)! D uKx1

&^KxuexpS i t

\
H f D

3expS 2
i t

\
~H f1Wnn

(v)! D uKx1
&L

phon

. ~12!

In expression~12! the averagê . . . &phon is taken over
the system of free phonons since the influence of the in
action of carriers with vibrations on the phonon spectrum
neglected. The average in expression~12! can be found by
the usual methods of the theory of multiphonon transitio1

using, for example, the algebra of Bose operators.11 As a
result, for the light absorption coefficient we obtain the e
pression

K~V!5
2e2

acn0R2V
UPcv•j0

m0
U2

(
n,n

E
2`

`

dt

3expS i tV2
i t

\
«nnDexp~2gnn~ t !!. ~13!

Here

gnn~ t !5(
q

1

~\vq!2
~ uCq

(c)u21uCq
(v)u2!uVnn~q!u2

3$ i tvq1~2Nq11!2~2Nq11!

3cos~vqt !2 i sin~vqt !%,

«nn5\vc* S n1
1

2D1«0* n21Eg , \vc* 5
\eH

mc
,

«0* 5
\2p2

2a2m
,

1

m
5

1

mc
1

1

mv
, ~14!

Nq5@exp(\vq /k0T)21#21 is the distribution function of
equilibrium phonons at the temperatureT.

As follows directly from Eq.~14!, the average over the
system of free phonons is in fact taken independently for
electrons and the holes. Terms of the ty
(qCq

(v)Cq
(c)uVnn(q)u2 make extremely small corrections

(;1/Lx) to the light absorption coefficient.
The spectral radiation intensity is related in a simp

way to the transition probability per unit time12 and is given
by

F~V!5
2V2e2n0

p\Vc3 UPcv•j0

m0
U2

(
bb8

E
2`

`

dt exp~2 i tV!

3^ab
1~ t !ab

1~ t !ab8ab8&. ~15!
r-
s

-

e

The average in expression~15! is calculated in the same wa
as for the light absorption coefficient. As a result, we obt

F~V!5
V2e2n0

ap2c3\R2 UPcv•j0

m0
U2

(
nn

nnn
(c)nnn

(v)E
2`

`

dt

3exp~2 i tV!expS i t

\
«nnDexp~2gnn~ t !!, ~16!

wherennn
(c)5^ab

1ab& and nnn
(v)5^ab

1ab& are the distribution
functions for the electrons and the holes, respectively.
rectangular quantum wells neglecting the polaron effect

nnn
(c)5

nesinh~\vc/2k0T!a2pR2

(
n

exp~2«0n2/k0T!

3expH 2
1

k0T F S n1
1

2D\vc1«0n2G J , ~17!

where ne is the electron density. An analogous express
follows for nnn

(v) .

3. DISCUSSION OF RESULTS

Relations~13! and~16! describe processes of absorptio
and emission of an electromagnetic wave in intrinsic si
limited systems in a longitudinal magnetic field with allow
ance for multiphonon effects. For carriers interacting w
optical vibrations of frequencyv0 ~we neglect the small dis
persion! we can represent expression~14! in the form

gnn~ t !5ann$ i tv01~2N11!cos~v0t2w!%. ~18!

Here

ann5(
q

@ uCq
(c)u21uCq

(v)u2#
uVnn~q!u2

~\v0!2
,

tanw5
i

2N11
, N5

1

exp~\v0 /k0T!21
. ~19!

Let us consider the region of temperatures (3«0* /k0T.1,
\vc /k0T.1) where the electrons are found in the lowe
completely discrete state~2! (n50, n51). If we invoke the
relation13

exp~z cosw!5 (
m52`

`

I m~z!exp~ imw!

(I m(z) are the modified Bessel functions!, then the spectra
radiation intensity can be written as follows:

F~V!5
2pe2n0aR2V2

c3
nenhUPcv•j0

m0
U2

3exp@2a01~2N11!# (
m52`

`

I m~z!

3F11N

N Gm/2

d$\V2 «̃g1m\v0%, ~20!
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z52a0AN~N11! , «̃g5Eg1
1

2
\vc* 1«0* 2\v0a01,

wherenh is the hole density.
As follows directly from Eq. ~20!, for z,1 the fre-

quency dependence of the luminescence is given by a na
d-shaped curve (m50) with phonon satellites (mÞ0) set
off from one another by the distance\v0. If we take into
account the nonstationarity of the electron states, the lu
nescence lines are described by a Lorentzian. The half-w
of the emission lines, determined by inelastic scattering
acoustic vibrations~single-phonon transitions between La
dau levels!, has the form

g5
~2p!3k0TEc

2mc

rw2\2a
S w

avc
D 5

. ~21!

Herer is the density of the semiconductor quantum well,Ec

is the constant of the deformation potential for the electr
and w is the speed of sound. For typical parameters o
GaAs/AlGaAs quantum well (r55.4 g/cm3,
w523105 cm/s, andEc59 eV! for T5100 K,a550 Å, and
\vc51022 eV we have for the half-width
g;631024 meV. However, in strong magnetic fields th
half-width D of the photoluminescence line, as experimen
studies have shown, reaches several meV and its sha
approximated by a Gaussian.6 For example, in the quasi-two
dimensional systems InGaAs/GaAsD55 meV (B,11.8 T,
Ref. 5!, InP/In0.53Ga0.47As D<8 meV (B54 T, Ref. 14!,
InAs/InAs0.09Sb0.91 D<7 meV (B57.6 T, Ref. 15!,
GaAs/AlxGa12xAs D'3 meV (B59 T, Ref. 16!.

In a semiclassical description of vibrations of the crys
lattice gnn(t) can be expanded in its argument to terms;t2

inclusive:

gnn~ t !'
Bnnt2

2
,

Bnn5(
q

1

\2
@~Cq

(c)!21~Cq
(v)!2#uVnn~q!u2~2Nq11!.

~22!

Substituting expression~22! into formula ~16! (n50, n
51) leads to the following expression for the spectral rad
tion intensity:

F~V!5
n0e2aR2V2

c3
nenhUPcv•j0

m0
UA2p

D

3expH 2
~\V2Eg2\vc* /22«0* !2

2D J , ~23!

D5\2B01.

According to formula~23!, the frequency dependenceF(V)
is described by a Gaussian curve with its maximum
\Vm5Eg1\vc* /21«0* and half-width

dV52A2D ln 2 . ~24!

If the frequency dependence of the photoluminescenc
nearly Gaussian, then the position of the maximum, and
ow

i-
th
n

,
a

l
is

l

-

t

is
e

half-width, can be calculated using the method
moments,17 which, in particular, allows one to formulate
criterion for the semiclassical approximation.

For carriers interacting with long-wavelength acous
vibrations (vq5wq) for Nq.k0T/\vq , the half-width of
the emission line according to formulas~24! and ~22! is
given by

dV52Ak0Ta0 ln 2 , a05
3~Ec

21Ev
2!

prw2R2a
, ~25!

whereEv is the constant of the deformation potential for t
holes.

Note that the criterion for use of the ‘‘high-temperature
approximation in the calculation of formula~25! is met for
k0T@\w/RA6 ~for \vc.1022 eV, T@0.5 K!.

For typical parameters of GaAs/AlxGa12xAs quantum
wells (Ev57 eV! for a550 Å, T510 K, and B510 T we
havedV.2 meV, which agrees in order of magnitude wi
the experimental results of Ref. 16. For carriers interact
with optical dispersionless vibrations of frequencyv0 the
heat liberation parametera01 according to formulas~19! is
given by

a105ã0I ~ j̃0!, ~26!

ã05
e2c0

a\v0
,

I ~ j̃ !5E
0

`

dt exp~2t!H 1

2~t1 j̃4p2!
1

1

t

2
~ j̃4p2!2

t~t14p2j̃ !2
Aj̃

t F12expS 2At

j̃
D G J ,

j̃5S R

a D 2

, c05
1

«̃0

2
1

«`
,

where«̃0 and«` are the low-frequency and high-frequenc
dielectric constant, respectively.

Figure 1 plots the dependence ofa10/ã0 on j̃.
The parameterz entering into the argument of the Bess

function in relation ~20! determines the intensity of th
phononless line of the intrinsic luminescence (m50) and
also the phonon satellites (mÞ0). At high temperaturesT

FIG. 1. Dependence of the normalized heat liberation parameterI on j̃.



e
m
N
o-
e

v
ur

is

th

ith

p
ie

n
o

ds

N

we
s
s
y. If

he
20,
ique
ut

-

i-
g-
in

of
in

gi,

-

r
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'190 K (N51) for j̃51, \v0520 meV, anda550 Å, the
parameterz for different quantum wells varies over quit
wide limits. It is equal to 0.3 for GaAs/AlGaAs quantu
wells, 0.34 for InP/InPAs quantum wells, and 1.8 for Ga
AlGaN quantum wells. Consequently, in quasi-tw
dimensional systems withz,1 luminescence lines should b
observed which are separated from one another by\v0 and
whose half-width is given by formula~25! if we take into
account the interaction of the carriers with the acoustic
brations, and the line shape is described by a Gaussian c
If the criterion of ‘‘strong heat liberation’’ is met,17

a01 tanh(\v0/2k0T)@1 (z.1), then the luminescence line
described by a Gaussian curve with half-width

dV52\v0A2a01 tanh~\v0/2k0T!ln 2 . ~27!

For example, for a GaN/AlGaN quantum well at high tem
peratures (T5200 K! for j̃51 and\v050.05 eV, we have
dV5100 meV.

The light absorption coefficient given by relation~13!,
which takes account of the interaction of the carriers with
optical phonons, can be represented in the form

K~V!5K0 (
n,n,p

I p~z!S N

N11D p/2

exp@2ann~2N11!#

3d$\V2«nn1ann\v01p\v0%, ~28!

K05
4pe2

an0cVR2 UPcv•j0

m0
U2

.

If we take account of the interaction of the carriers w
the long-wavelength acoustic vibrations, thenK(V) is de-
scribed by a system of equidistant Gaussian curves, the
sition of the maxima of which corresponds to the frequenc
V5V02pv0:

K~V!5K0A 1

2pD (
p

S N

N11 D p/2

I p~z!

3expH 2
~\V2\V01p\v0!2

2D J . ~29!

Here\V05Eg1\vc* /21«0* 2\v0a01.
Let us investigate the behavior ofK(V) for p5(V0

2V)/v0@1, i.e., in the long-wavelength absorption regio
Following Ref. 18, it can be shown that for a fixed value
p the light absorption coefficient is given by

K~V!.K0

1

A2pD
expH 2

\~V2V0!

k0T
sJ , ~30!

s511 lnS V2V0

e0v0a01~N11! D , e052.7182.

Consequently, in the long-wavelength regionK(V) is
described by the Urbach rule. The parameters increases
with growth of the width of the quantum well and depen
weakly on the strength of the magnetic field~for j̃.1) and
the frequency of the light. For example, for a GaN/AlGa
quantum well forT5190 K andp55 we haves51.87. As
was shown in Ref. 18, relation~30! holds forz!1 as well as
z.1, i.e., in the low-temperature region.
/

i-
ve.

-

e

o-
s

.
f

In the calculation of optical multiphonon processes,
used the diagonal approximation in the quantum numbern,
n @see relation~8!#. It is precisely this approximation that ha
allowed us to average over the phonon subsystem exactl
nÞn1 andnÞn1, then the average in expression~12! can be
found approximately by using the cumulant expansion19 lim-
ited to the second cumulant. This approximation in t
theory of magneto-optical effects, as was shown in Ref.
corresponds in the language of the diagrammatic techn
of Konstantinov and Perel’ to summing over graphs witho
intersecting phonon lines21 and to the usual splitting of the
chain of Green’s functions.22 As calculations show, the con
tribution of the termsnÞn1 , nÞn1 to the heat liberation
parameter~19!, both for the optical and for the acoustic v
brations forj̃.1 is less than 10%. Consequently, the dia
onal approximation turns out to be completely reasonable
the region of large magnetic fields for studying the effects
the electron–vibrational interaction in the optical spectra
size-limited systems.
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Universal description of crossover between the Mott regime and the Coloumb-gap
regime in hopping conductivity: application to compensated CdTe
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A simple approach to describing crossover between the Mott regime and the Coulomb-gap
regime in hopping conductivity with variable-range hopping is described, based on notions of
percolation theory and utilizing an interpolation expression for the density of states. The
theoretically derived equation for the argument of the exponential of the resistance (lnR) can be
solved numerically. The universal function ln(R(T)) found in this way provides a good
description of the experimental curves for crystals of CdTe with varying degree of compensation;
however, for samples near the metal–insulator transition it is necessary to take into account
the temperature dependence of the pre-exponential factor. Both the form of the obtained function
and its comparison with the experimental data show that the crossover region is indeed
very wide and, as a rule, neither in the low-temperature region nor in the high-temperature region,
are the limiting values of the exponent characterizing the Mott law or the Efros–Shklovski�

law reached. With the help of the universal function we obtain values of the parametersT0 andT1

characterizing the density of states and the width of the Coulomb gap, for CdTe samples
with varying degree of compensation and compare them with their theoretical values. Despite
taking the crossover function into account, the values of the parameterT1 turn out to be
almost an order of magnitude lower than those calculated theoretically by Efros and Shklovski�.
© 1999 American Institute of Physics.@S1063-7761~99!01612-1#
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1. INTRODUCTION

Despite the large number of publications that have
dressed the question of the mechanisms of hopping con
tivity with variable-range hopping in doped semiconducto
some questions remain unsolved. These include question
the character of hopping conductivity in the Coulomb-g
regime and the role of many-particle effects~correlated
hops!, etc.

A study of the corresponding details of the mechani
of hopping conductivity obviously requires a comparison
the experimental data, in particular, on the temperature
pendence of the resistance, with the results of theore
calculations over a wide range of temperatures. Here i
necessary to note the following fact~to which attention has
been drawn recently, see, e.g., Refs. 1–3!. As it turns out, for
materials with typical parameters~intermediate impurity
concentration and intermediate compensation! in the tem-
perature region that is typical for the experimen
(;0.01–10 K! crossover is observed from conductivity wi
variable-range hopping~VRH! of Mott type @r(T)
}exp(T0 /T)1/4# to conductivity over states in the Coulom
gap—the Efros–Shklovski� law @r(T)}exp(T1 /T)1/2#. On the
one hand, the nature of the conductivity in the two indica
regimes differs both in its numerical parameters and, po
bly, in its very physical nature, and on the other hand,
crossover region turns out to be quite wide; therefore, a c
parison of the predictions of the theory with experiment
quite complicated. Thus, in order to be able to compare
1121063-7761/99/89(12)/5/$15.00
-
c-
,
of

f
e-
al
is

d
i-
e
-

e

experimental values of the parametersT0 andT1 with their
calculated values

T05b0 /g~« f !a
3, T15b1e2/ka

~whereb0521 andb152.8 are numerical coefficients,a is
the localization radius, andk is the dielectric constant!, it is
important to have a valid description of the crossover regi
Earlier, using a simplified crossover model~based on match-
ing of the effective energy bands corresponding to cond
tivity for the two indicated regimes!, we drew attention to the
possible role of the pre-exponential factors in the express
for the hopping conductivity. The latter, obviously, is esp
cially important for samples hear the metal–insulator tran
tion, for which the interval of variation of the resistance
not too large.4 At the same time, for samples far from th
transition, in a number of cases the pre-exponential fac
can be neglected.

The first attempt to describe the temperature behavio
the conductivity in the crossover region with the aid of
universal expression was made in Ref. 2, where the aut
used an interpolation expression for the effective ene
bands, obtained by simply summing the corresponding
pressions for the two regimes. As was shown later,3 such an
approach is not entirely valid and smears out the crosso
singularities. The latter work proposes a more general
proach to the description of crossover, which leads to a q
complicated multiparameter integral expression, not acc
sible to analytical treatment and requiring quite cumberso
numerical analysis. Note also Ref. 5, in which to descr
5 © 1999 American Institute of Physics
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crossover in the two-dimensional case the authors propos
procedure based on optimization of the argument of the
ponential in the expression for the hopping resistance wh
made use of an interpolation expression for the density
states. Although this approach leads to a comparativ
simple analytical expression, it is less rigorous than an an
sis of the percolation problem. As was shown in Ref. 3
leads to a noticeable overestimate of the width of the cro
over region.

Therefore, the present work proposes a simpler appro
to the description of crossover, based~as in the approach o
Ref. 3! on notions of percolation theory analogous to tho
used by Efros and Shklovski�,6 however, enabling a simple
analysis of the condition of connectedness. The theoretic
obtained equation is applied to determine the tempera
dependences in the crossover region, which are comp
with the experimental dependences for CdTe crystals w
varying degree of compensation.

2. THEORY

We express the dimensionless concentration of sites
isfying the condition of connectedness for the argumen
the exponential less than some valuej, as

n~j!52 E
0

«max
r max

3 g~«!d«. ~1!

Here «max and r max are the maximum values of the energ
and interstitial distance allowing connectedness, andg(«) is
the density of states. Equating the corresponding value to
critical concentration for the percolation thresholdnc ~for the
three-dimensional situation the corresponding value is eq
to ;5.3), we obtain an equation for the critical value ofj
determining the resistance.

Note that the dimensionless concentration is defined
the product of the concentration of sites with«,«max and
the volume accessible to these sites. Correspondingly, fo
density of states we have used the well-known interpola
expression~see, e.g., Ref. 3!

g5g0

~«/«0!2

11~«/«0!2
, ~2!

whereg0 is the density of states in the absence of the C
lomb gap, and

«0.321/2S e6g0

k D 1/2

. ~3!

Note that the given procedure~used by Efros and Shklovski�

6

in application to the Mott regime! for an energy-dependen
density of states is not entirely rigorous, and the condition
connectedness must be considered separately for each
of the energy, which leads to an integral equation.3 We, how-
ever, make use of a simplified procedure which make
possible to simplify the calculations substantially. Note th
the coefficient 321/2 in the expression for«0 is connected
with this specific procedure and provides the corr
asymptotic behavior in the limit of low temperatures. Dire
calculation of the integral on the right-hand side gives
d a
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2~«max2«0 arctan~«max/«0!!r max
3 . ~4!

Taking into account thatr max5(aj/2)3 and«max5Tj, where
j is the critical value of the argument of the exponential
the temperature dependence of the hopping resista
lnR(T)5Aj(T), whereA is a coefficient anda is the localiza-
tion radius, we finally obtain the following equation forj:

S Tj2«0 arctanS jT

«0
D D ~aj!3.21. ~5!

Expressing the parametersa andg0 in terms of the charac-
teristic temperaturesT0 andT1, we obtain for the Mott and
Efros–Shklovski� laws

S Tj20.6
T1

3/2

T0
1/2

arctanS jTT0
1/2

0.6T1
3/2D D j35T0 . ~6!

For comparison we have generalized the results of
calculation in Ref. 5, which also uses an interpolation e
pression for the density of states, but based on optimiza
of the argument of the exponential in the expression for
elementary hopping resistance, to the three-dimensio
case. The given approach leads to a somewhat diffe
equation for the critical valuej governing the magnitude o
the hopping resistance:

S Tj2
1

9

T1
3/2

T0
1/2

arctanS jTT0
1/2

~1/9!T1
3/2D D

3S j21~TT0
1/2/~1/9!T1

3/2!22

j2 D 3/4

5~T3T0!1/4. ~7!

3. EXPERIMENT

We investigated CdTe crystals doped with shallow d
nors. In two of the investigated samples the donor conc
tration was roughly the same,Nd>231017cm23, and the
degree of compensation by native lattice defects was dif
ent: >0.4 and>0.6, and the electron density at 300 K w
respectively 1.231017 and 831016cm23 ~the exact values of
Nd and the degrees of compensation in the give case
impossible to determine due to the absence of a tempera
dependence of the Hall constant!. Sample 3 was doped
lightly, and from the temperature dependence of its Hall c
stant we were able to determine separately the total do
concentrationNd51.131017cm23 and total acceptor con
centrationNa58.531016cm23, the concentration of filled
donors (Nd2Na)5n300 K52.531016cm23, and the degree
of compensationK50.77. All samples were on the insula
ing side of the metal–insulator transition associated w
compensation.

Figures 1 and 2 plot the temperature dependence of
resistanceR(T) for the three samples together with curv
obtained by solving Eq.~6!, which has the formj5A ln R
for optimally chosen values of the parametersT0 andT1. ~As
a consequence of the high values of the resistance at
temperatures, for sample 1 the dependenceR(T) could be
tracked down to only 0.5 K.! It can be seen that for the tw
highest-resistance samples the experimental curves gi
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FIG. 1. Experimental temperature dependence
the resistance for samples 1 (1) and 2 (s); the
curves were calculated by solving Eq.~6! for the
function j(T) for the parameter valuesT056500 K
and T1533 K for sample 1 andT055900 K and
T1536 K for sample 2.
s
nd

v
on
e
p

th
ce

e
nt
-

–
is
n

.

on-
ng

ell-

rule,
-

ed
ion

ith
vity
the

ott

w
e of

the
ave

de-
good description of the functionj(T), which is the solution
of Eq. ~6! with optimally chosen values of the parametersT0

and T1, and that in these two cases the Mott and Efro
Shklovski� laws become valid in the low-temperature a
high-temperature limits. The parameter values are given
Table I. For sample 3 the experimental and theoretical cur
are seen to diverge in the high- and low-temperature regi
From our point of view, this is explained by the fact that w
have neglected the temperature dependence of the
exponential factors in the expression forR(T). The corre-
sponding factor proves to be important for samples near
transition, for which the interval of variation of the resistan
is not too large.4 In Fig. 2 the dependenceR(T) for sample 3
is constructed on scales that take the temperature depend
of the pre-exponential factor in the Mott law into accou
ln(RT21/4) versusT21/4. The agreement in the high- and low
temperature regions is noticeably improved. The values
T0 andT1 obtained in this way are given in the table.

Note that in the region of applicability of the Efros
Shklovski� law a falloff of the negative magnetoresistance
observed. This fact can also serve as an indicator of a cha
in the character of the hopping resistance~in our case, of the
transition to the Efros–Shklovski� law!. We discussed
mechanisms leading to such behavior previously in Refs
and 8.
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4. DISCUSSION

The picture of the temperature dependence of the c
ductivity of doped semiconductors in the region of hoppi
conductivity with variable-range hopping~0.01–10 K! is of-
ten quite complicated and does not obey in detail the w
known Mott and Efros–Shklovski� laws; here we note in
particular the quantitative discrepancies observed, as a
for the parametersT0 and T1 in comparison with the theo
retical estimates of Mott and Efros–Shklovski�. The problem
consists, in particular, in the fact that the generally us
range of temperatures turns out to lie in the transition reg
between the Mott and Efros–Shklovski� laws. Since there is
a competition going on in the high-temperature region w
the activation temperature dependence for the conducti
via nearest neighbors, the high-temperature region for
VRH conductivity is small enough to observe the pure M
law, but the low-temperature region~usually down to 0.01 K!
is not large enough to observe the pure Efros–Shklovski� law
~the impossibility of going lower into the region of superlo
temperatures is often connected with the large resistanc
the sample and heating effects!. In light of what has been
said, it is important to derive a universal expression for
transitional region. As was already noted, such efforts h
been made; however, they are marred by an inadequate
the
FIG. 2. Experimental temperature dependence of
resistance for sample 3; the symbols3 represent the
functional dependence ln(R(T)); the symbolss repre-
sent the functional dependence ln(R(T)T21/4); the
curves were calculated by solving Eq.~6! for the func-
tion j(T) for the parameter valuesT05110 K andT1

53.8 K.
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scription of the experiment or by cumbersomeness of
obtained expressions. The approach proposed above lea
a simple analytical expression, whose solution lnR(T)
5Aj(T), as can be seen from Figs. 1 and 2, provides a g
description of the experimental data.

In order to understand how fast the transition to the c
responding power laws goes as the temperature is decre
or increased, relative to the crossover region, it is custom
~see, e.g., Ref. 9! to use a graph of the dependen
dj/(d logT) in which the changeover to the correspondi
power-law asymptotic limit corresponds to a straightening
the curve with slope equal to the exponent of the power l
Note, however, that determining both the degree of straig
ening and the corresponding slope by purely graphical m
ods is fraught with some difficulty. Therefore, we propose
somewhat different procedure which allows one to iden
the character of the approach to the asymptotic limit in
purely quantitative way. Toward this end, we use the exp
sion

p~ logT!5
d logj

d logT
5

T

j

dj

dT
.

As can be easily seen, for a pure power law this expressio
equal to the exponent of the corresponding dependence
thus the asymptotic behavior is determined by the appro
of the dependencep(logT) to the corresponding constant. I
Fig. 3 the functionp(logT) is constructed forj(T) found
with the help of Eqs.~6! and ~7!. It can be seen that th
proposed procedure leading to Eq.~6! provides a compara
tively rapid approach to the asymptotic limit whereas t

TABLE I.

N n300 K , cm23 Nd , cm23 K T0, K T1, K

1 2.531016 1.131017 0.77 6500 33
2 831016 >231017 >0.6 5900 36
3 1.231017 >231017 >0.4 110 3.8

Remark. n300 K — electron density at 300 K, obtained from Hall measu
ments,Nd — donor concentration,K — degree of compensation,T0 , T1 —
parameters obtained from the temperature dependence of the resistanc
the help of Eq.~6!.

FIG. 3. Asymptotic behavior of the functionj(T), calculated by solving Eq.
~6! — solid curve, and Eq.~7! — dashed curve. ParametersT055900 K and
T1536 K.
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procedure leading to Eq.~7! not only substantially overesti
mates the width of the crossover region, but is also capa
of leading to an erroneous identification of the crossov
Indeed, as can be seen from Fig. 3, the value of the expo
p in the intermediate region even exceeds 1/2 and approa
the asymptotic value only at very low temperatures. Th
the use of the standard procedure for identifying t
asymptotic behavior by estimating the slope of the curve
the logarithmic derivative can lead in this case to an und
estimate of the width of the crossover region@since the value
p51/2 is reached not only in the real asymptotic region b
also, by virtue of the nonmonotonic behavior ofp(logT), in
the crossover region#.

In Fig. 4 we show curves ofp(logT) constructed for
functionsj(T) determined from the experimental curves f
samples 2 and 3. It can be seen that the crossover regio
quite wide~variation of the temperature over three orders
magnitude!; however, at the edges of this region the functi
approaches asymptotically the exponents characteristic o
Mott and Efros–Shklovski� laws ~0.25 and 0.5!. The tem-
perature characterizing the crossover,Tc , is shifted~e.g., for
p50.375! for sample 3 into the low-temperature region,Tc

50.1 K, in comparison with the corresponding temperat
for sample 2,Tc50.2 K. Besides, these values are in go
agreement with those calculated using the expressionTc

5T1
2/T0, which also demonstrates the validity of describi

crossover on the basis of solution of Eq.~6!.
Let us compare the obtained values ofT0 and T1 with

their theoretical values for the most compensated sampl
and 2, which are situated quite far from the insulator–me
transition~for which reason it is possible to neglect the d
vergence ofk and a. The parameterT0 can be calculated
knowing the donor concentration and the width of the imp
rity band and assuming the localization radius to be equa
the radius of an isolated donor,a0550 Å. These parameter
are known most accurately for sample 1:Nd51.131017

cm23, width of the impurity band«350.002 eV. Thus, set-
ting g(« f)5Nd /«3, for this case we obtain the calculate
value T0cal5b0 /g(« f)a

3510000 K, which is not much
higher than the value obtained from the results of an anal
of crossover:T056500 K.~The indicated discrepancy can b
explained by corrections to the localization radius associa

with

FIG. 4. Asymptotic behavior of the functionj(T), calculated by solving Eq.
~6! for sample 2 with parameter valuesT055900 K andT1536 K ~solid
curve! and sample 3 with parameter valuesT05110 K andT153.8 K.
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with scattering by neutral and charged impurities;10 the
maximum value of the correction is;a0, and in this case the
maximum value of the ratioT0cal/T0;8). Thus we can con-
clude that the one-particle density of states provides a g
description of the Mott regime.

We calculate the parameterT1 by settingk511; for the
insulating limit it should be equal to 1000 K. The maximu
value ofT1 obtained from the temperature data for sample
and 2 located far into the insulating side of the meta
insulator transition is 30–40, i.e., it is 25 times smaller th
the theoretical value.~Corrections to the localization radiu
can explain only a discrepancy by a factor of two.!

This latter circumstance is in agreement with the conc
sions of a number of earlier works on doped semiconduc
with intermediate degree of compensation11,12 and is evi-
dence of the role of many-particle correlated hops13 or of a
sequence of assisting hops14 in the conductivity via states o
the Coulomb gap. Note that the role of Coulomb correlatio
should be greatest in the Coulomb-gap regime, where C
lomb interactions determine the character of the ene
scale.

The authors are grateful to R. V. Parfen’ev for consul
tion in regard to low-temperature measurements, and A
Chernyaev for assistance with the measurements. This w
was carried out with the financial support of the Russ
Fund for Fundamental Research~Project No. 97-02-18280!.
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Influence of the interconfigurational interaction on the crystal field of Ln 31 ions
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A theory of the crystal field for Ln31 ions is proposed which takes account of the difference in
the effect of excited configurations on high-lying and low-lying multiplets. The effective-
operator method in third-order perturbation theory is used to obtain the Hamiltonian of the crystal
field, which in addition to the usual terms contains energy-dependent operators. Their role is
discussed in detail. For the new operators we have obtained convenient expressions which make it
possible for the first time to determine the parameters of an odd crystal field on the basis of
an analysis of the structure of the energy spectrum. Theory is compared with experiment for the
laser crystals Y3Al5O12:Tm31 and LiYF4:Pr31. Taking the new terms of the crystal-field
Hamiltonian into account produces an additional shift of individual levels within the limits from
240 cm21 to 40 cm21 and makes it possible in a number of cases not only to substantially
reduce the value of the standard deviation, but also to obtain the correct arrangement of levels.
© 1999 American Institute of Physics.@S1063-7761~99!01712-6#
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1. INTRODUCTION

Crystals with trivalent lanthanide ions (Ln31) have
found wide application as active laser media. Therefore
theoretical and experimental study of the energy spect
and intensity characteristics of the absorption and lumin
cence of such crystals is of great practical importance.
though these crystals are suitable objects of theoretical s
~relatively small influence of the crystal field, narrow line
large number of observable transitions!, it is nevertheless no
possible in the one-electron approximation to obtain the
sired accuracy of description, and sometimes the theore
results even contradict the experimental data.

Efforts to improve the description of the experimen
data by adding electrical dipole transitions of two-partic
operators representing different electron-correlation effe
to the one-electron crystal-field Hamiltonian and the o
electron line-strength operator have had little success.1–7 In
this regard, studies of the influence of the interconfigu
tional interaction on the states of thef N configuration seem
to be more promising.

The point is that the one-electron crystal-field Ham
tonian usually used to interpret optical spectra

Hc f5(
k,q

Bq
kCq

k ~1!

and the one-electron line-strength operator

SJJ85e2 (
k52,4,6

Vk^gJiUkig8J8&2 ~2!

were derived in the weak-configurational interacti
approximation,8–10 where the excited configurations act
the same degree on different multiplets. HereBq

k are the
1131063-7761/99/89(12)/8/$15.00
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crystal-field parameters,Cq
k is the spherical tensor,Vk are

the intensity parameters, and^gJiUkig8J8& are the reduced
matrix elements of the unit tensorUk. In this approximation
the sets of parametersBq

k andVk should be the same for a
multiplets of thef N configuration.

In reality, the energies of the multiplets of rare-earth io
have the same order of magnitude as the energies of
lower excited configurations. Thus, fulfillment of the cond
tions for realization of the weak-configurational interacti
approximation is improbable, and use of Eqs.~1! and ~2!
should encounter contradiction even more often than actu
is the case. Since the energy intervals between the exc
configuration and the high- and low-lying multiplets diffe
significantly from one another, the excited configuratio
will influence different multiplets to a substantially differen
extent. If we take this effect into account in third-order pe
turbation theory, we obtain the following crystal-field Ham
tonian:

~3!

and effective line-strength operator12

~4!

in which the parametersB̃q
k and Ṽk depend linearly on the

energy of the multipletsEJ andEJ8 . HereEf
0 is the energy

of the center of mass of thef N configuration,Gq
k andRk are
0 © 1999 American Institute of Physics
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1131JETP 89 (6), December 1999 Kornienko et al.
additional parameters prescribing the amplitude of the in
configurational interaction. The approximation of such
intermediate-in-strength interconfigurational interaction w
obviously be more adequate for Ln31 ions.

The excited configurations of actinides have a lower
ergy than the corresponding configurations of lanthanid
Therefore, for the actinides the interconfigurational inter
tion should be stronger. The following crystal-field Ham
tonian was obtained in the strong configurational interact
approximation in first-order perturbation theory13:

~5!

with the following effective line-strength operator of th
electric dipole transitions14,15

~6!

HereD is the energy of the excited configuration. In this ca
the crystal-field parametersBq

k and intensity parametersVk

depend on the energy of the multiplets according to a
that is more complicated than linear.

Thus, the effective operators~3!–~6! in the intermediate
and strong configurational interaction approximation w
recently proposed to describe the optical spectra of crys
activated by rare-earth ions. Only under certain condition
it possible to limit the treatment to such a simple tensor fo
of the effective operators as~3!–~6!. Despite the successfu
application of expressions~3!–~6! to the description of the
spectral properties of a number of systems,12–14,16the condi-
tions of their applicability have not yet been sufficiently i
vestigated. This especially holds true in regard to the Ham
tonian ~3!, for which there is only a preliminary
communication.11

Therefore, the main goal of this paper is to presen
detailed study of the conditions of derivation and applicab
ity of the crystal-field Hamiltonian~3! in the intermediate
configurational interaction approximation together with co
prehensive tests. To test the approximation, we chose
optical spectra of the typical generating ions Pr31 and Tm31

with experimentally well-established Stark structure in fie
with symmetryS4 andD2 .

2. EFFECTIVE HAMILTONIAN

Accurate values of the Stark levels can be obtained
diagonalizing the matrix of the Hamiltonian~1! in a basis
consisting of the wave functions of the ground configurat
and all excited configurations. Since this is hard to realize
practice, the method of the effective Hamiltonian see
more acceptable. The effective Hamiltonian, acting in
model space of significantly lower dimensionality, has t
same eigenvalues as the real Hamiltonian.17 The effective
Hamiltonian can be easily constructed with the help o
r-
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method developed in Ref. 18 for a basis of non-orthogo
functions. Toward this end, we write out the most importa
terms from expression~25! of Ref. 18:

^nuHeffun8&5^nuHun8&1(
b

1

Dnb
^nuHnub&^buHnun8&

2
1

2 (
b,n9

1

Dnb
2 @^nuHnub&^buHnun9&

3^n9uWun8&1^nuWun9&^n9uHnub&

3^buHnun8&#2 (
b,n9

1

Dnb
@^nuHnub&^bun9&

3^n9uWun8&1^nuWun9&^n9ub&

3^buHnun8&#, ~7!

where

^nuHnub&5^nuHub&2^nuH0un&^nub&,

W is the perturbation potential,H0 is the unperturbed Hamil-
tonian,n, n8, n9 andb denote the states of the ground co
figuration and the excited configurations, respectively, a
Dnb5En2Eb is the excitation energy.

The method developed in Refs. 19 and 20 makes it c
venient to write out expression~7! in terms of the spherica
tensorsCq

k . The main difficulty here is to make the corre
choice of the unperturbed Hamiltonian, which affects the
terpretation of the matrix elements of the perturbation pot
tial ^nuWun8&. There are several ways of choosing the u
perturbed potentialH0 ~Refs. 21–23!. Here we have applied
a variant of perturbation theory, based on the formalism
projection operators,24 and the following definition ofH0

~Ref. 23! in terms of the projection operator

H05(
n

^nuHun&un&^nu ~8!

is preferable. In expression~8! the sum overn and the mean
value ^nuHun& are calculated over all states of thef N con-
figuration, wherefore

^nuHun&'
(J~2J11!EJ

(J~2J11!
5Ef

0 . ~9!

In such a choice ofH0 the energies of all unperturbe
states are equal to the center-of-mass energyEf

0 , and in the
zeroth approximation thef N configuration is completely de
generate. This is true only in central fields. Consequently,
perturbation potentialW5H2H0 should contain all noncen
tral interactions, i.e.,

a! the noncentral part of the Coulomb interaction of t
electrons with each other and the spin–orbit interact
~these interactions give the main contribution to the ene
of the multiplets!;

b! the Coulomb interaction of the electrons of the imp
rity ion with the electrons of the ligands and their nuc
~these interactions are responsible for formation of the S
structure of the multiplets!.
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From this point of view it seems reasonable to repla
the matrix element̂nuWun8& by the expression

^nuWun8&5~EJ2Ef
0!dnn81^nu(

k52

6

(
q52k

k

Fq
kCq

k

1two-particle operatorsun8&, ~10!

where EJ is the energy of the stateun&. The crystal-field
parametersFq

k are due mainly to interactions enumerated
item ~b! up above, and wave-function overlap effects. It
well known that these interactions give the defining con
bution to the usual crystal-field parametersBq

k . Conse-
quently, the crystal-field parametersFq

k should be similar in
magnitude to the corresponding parametersBq

k .
Using an analogous method for the fragment^nuHnub&

3^buHnun9& from expression~7!, it is easy to obtain

2
1

2
^nuHnub&^buHnun9&/Dbn

2 5^nu(
k52

6

(
q52k

k

Gq
kCq

k

1two-particle operatorsun9&. ~11!

Here the parametersGq
k are due to effects of covalency an

the interconfigurational interaction.
After substituting expressions~10! and~11! into expres-

sion ~7! followed by some simple transformations we obta
the following effective crystal-field Hamiltonian:

~12!

In the description of the experimental data, the parame
Bq

k , Gq
k , andFq

k can be considered as variable paramete
Here to reduce the number of fitting parameters it is expe
ent to setBq

k5Fq
k .

The Hamiltonian~12! is more complicated than the one
electron Hamiltonian~1!: its parametersB̃q

k are linear func-
tions of the energy of the multiplets, and it contains t
‘‘quadratic crystal field’’ operator@the last two lines of Eq.
~12!#. Although energy-dependent terms have been adde
the Hamiltonian~12! from third-order perturbation theory
their role can be substantial since they are multiplied by
energy of a multiplet, whose order of magnitude is appro
mately 10000 cm21. These terms have the sense of ener
dependent corrections to the usual crystal-field parame
That is to say, these corrections depend on the energy o
multiplets.

The center-of-mass energyEf
0 is responsible for a uni-

form shift of the parametersB̃q
k by the amount22Ef

0Gq
k .

This shift can always be compensated by the correspon
e

-

rs
s.
i-

to

e
i-
-
rs.
he

ng

choice of the parametersBq
k . Therefore, in the description o

the experiments, the parameterEf
0 can be assigned any con

venient value. In the present work we setEf
050.

The energy-dependent contributions to the crystal-fi
parameters are determined by all the lines of expression~7!
with the exception of the first. Consequently, their amplitu
is inversely proportional to the square of the energy diff
ence between the ground configuration and the excited c
figuration. Such a dependence gives rise to a rapid fallof
the amplitude of the contribution with growth of the excit
tion energy. Therefore, only the low-lying excited config
rations will give the defining contribution to the paramete
Gq

k . In the case off N systems, these include configuratio
of the types n fN21(n11)d, n fN21(n11)g, (n
11)p5n fN11, and configurations with electron transfer fro
the ligand to thef shell. An analytical expression for th
contributions toGq

k due to admixture of the configuration
n fN21(n11)d, n fN21(n11)g, and (n11)p5n fN11 have
the form

Gq
k~ l !5~2 ! l 11

2k11

2D f l
2 ^ f iCki f & (

k8,k9
q8,q9

~21!q

3S k8 k9 k

q8 q9 2qD H k8 k9 k

f f l J ^ f iCk8i l &

3^ l iCk9i f &Bq8
k8~ l !Bq9

k9~ l !, ~13!

where l 5d,g,p; ^ f iCki l & is the reduced matrix element o
the spherical tensorCk, and we have used the usual notati
for the crystal field:

Bq
k~ l !5^ f ur ku l &Akq . ~14!

The expression for estimating the contributions toGq
k

due to admixture of the configurations with electron trans
can be easily obtained with the aid of methods describe
Refs. 19 and 25:

Gq
k~cov !5

2k11

2^ f iCki f & (b
Cq

k* ~Qb ,Fb!(
m,z

~21! f 2m

3S f k f

2m 0 mD ul f zmu2. ~15!

Here Cq
k(Qb ,Fb) is the spherical tensor of the anglesQb

and Fb defining the direction from the activator ion to th
ligand b. The covalency parameterl f zm corresponds to
transfer of an electron from the orbitz of the ligand to thef
shell of the activator. Thus, the parameterl contains infor-
mation about delocalization of electrons. An analogo
mechanism of electron delocalization was probably inve
gated in Ref. 26, but without an account of the spin–or
interaction and only for the case of crystal fields of cub
symmetry.

3. COMPARISON WITH EXPERIMENT

3.1. LiYF4 :Pr31

A detailed study of the system LiYF4:Pr31 ~with sym-
metryS4! in the weak configurational interaction approxim
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tion ~1! was presented in Ref. 27 where it was establish
that the ordering of the calculated energy levels correspo
ing to the experimental levels withE55201 and 5221 cm21

of the 3F2 multiplet, 7105 and 7116 cm21 of the 3F4 multip-
let, 10112 and 10217 cm21 of the 1G4 multiplet, and 16740
and 16810 cm21 of the1D2 multiplet is inverted. In addition,
the calculated splitting of the1G4 multiplet obtained is 1.5
times smaller than the experimentally measured value.

Results of our calculations based on this approximat
are listed in columna of Table I. The value of the standar
deviation, which is somewhat different than in Ref. 27,
due to the different manner of choosing the centroids~center-
of-mass energies! for the multiplets. The centroids were cho
sen such that the sum of the standard deviations of the
oretical values from the experimental values for the high
and the lowest level of each multiplet was equal to zero.

The results obtained in the intermediate configuratio
interaction approximation with allowance for the ‘‘quadra
crystal field’’ ~12! are listed in columnb of Table I. In this
approximation the theory fails to give the correct arran

TABLE I. Comparison of experimental27 and calculated energy levels in th
irreducible representationsG i of the Pr31 ion in LiYF4.

Calculated in the interconfigurational
interaction approximation

Multiplet
Experiment27 a! weak ~1! b! intermediate~12!

SLJ G E, cm21 G E, cm21 G E, cm21

3H4 2 0 2 8.2 2 24.7
3,4 79 3,4 85.3 3,4 79.9
– – 1 217.9 1 236.3
1 220 1 219.0 1 237.2

3,4 496 3,4 487.8 3,4 500.7
– – 1 512.5 1 512.5
– – 2 514.5 2 540.5

3H5 1 2253 1 2244.9 1 2236.3
3,4 2272 3,4 2253.8 3,4 2245.1

2 2280 2 2275.6 2 2252.8
1 2297 1 2276.7 1 2278.0

3,4 2341 3,4 2326.3 3,4 2327.1
2 2549 2 2557.1 2 2565.7

– – 1 2578.7 1 2566.7
– – 3,4 2597.8 3,4 2597.8

3H6 2 4314 2 4321.4 2 4301.5
3,4 4394 3,4 4421.0 3,4 4410.6
– – 1 4441.7 1 4433.8
– – 2 4470.5 2 4479.6

3,4 4454 3,4 4487.9 3,4 4479.6
1 4486 1 4523.0 1 4539.8
2 4557 2 4570.2 2 4562.0

– – 1 4891.2 1 4890.6
3,4 4907 3,4 4894.1 3,4 4900.7

2 4945 2 4937.6 2 4957.5
3F2 – – 1 5171.3 1 5162.0

2 5201 2 5247.4b 2 5227.7
3,4 5221 3,4 5230.2b 3,4 5227.7

2 5342 2 5332.8 2 5315.3
3F3 3,4 6481 3,4 6463.9 3,4 6447.1

2 6521 2 6512.6 2 6499.2
1 6586 1 6547.9 1 6553.9

3,4 6671 3,4 6659.0 3,4 6652.5
2 6686 2 6703.1 2 6719.9
d
d-

n

e-
st

l

-

ment of levels for the1G4 multiplet. Theoryb) provides a
significantly better description of splitting of the1D2 multip-
let. However, on the whole over all levels the value of t
standard deviation is only slightly less than in theorya). If
we ignore information about the irreducible representatio
of each level, then theoryb) leads to a substantially smalle
value of the standard deviation.11 Comparison of the results
of b) in Table I with the calculation of the energy spectru
based on the Hamiltonian~12!, but without the ‘‘quadratic
crystal field,’’ shows that the ‘‘quadratic crystal field’’ cre
ates additional splitting of the multiplets on the order
2 cm21. This is much less than the observed multiplet sp
ting, and for rare-earth ions it is entirely possible to u
expression~3! as a simplified variant of the Hamiltonia
~12!.

Theoriesa) and b) predict a different arrangement o
some levels of the1I 6 multiplet. However, an experimenta
determination of the energies of these levels is hinder
Therefore, it is hard to conclude which theory gives the m
accurate predictions.

It should be noted that a similar effect of the excit
configurations on the multiplet splitting was investigated
Refs. 28 and 29 by diagonalization of the matrix of t
Hamiltonian ~1! in the basis of states of the configuratio

TABLE I. ~continued!

Calculated in the interconfigurational
interaction approximation

Multiplet
Experiment27 a! weak ~1! b! intermediate~12!

SLJ G E, cm21 G E, cm21 G E, cm21

3F4 1 6920 1 6898.3 1 6883.1
3,4 6942 3,4 6905.1 3,4 6904.1

2 6983 2 6943.0 2 6950.7
1 7105 1 7120.1b 1 7119.7
2 7116 2 7109.7b 2 7136.5

3,4 7142 3,4 7129.3 3,4 7154.2
1 7220 1 7241.7 1 7256.9

1G4 1 9699 1 9702.5 1 9679.5
3,4 9832 3,4 9802.2 3,4 9809.0

2 9930 2 9918.0 2 9899.4
2 10011 2 10007.5 2 10030.5

3,4 10112a 3,4 10157.2b 3,4 10198.1b

1 10217a 1 10126.7b 1 10136.4b

1 10313a 1 10578.8 1 10643.1
1D2 2 16740 2 16865.6b 2 16757.2

1 16810 1 16814.5b 1 16814.0
3,4 17083 3,4 17077.7 3,4 17033.3

2 17406 2 17401.5 2 17388.8
3P0 1 20860 1 20860.0 1 20860.0
1I 6 – – 2 21083.0 2 21175.1

– – 2 21083.3 2 21180.2
– – 3,4 21400.2 2 21306.2
– – 1 21413.1 3,4 21307.3
– – 2 21414.4 1 21331.1

3P1 – – 3,4 21442.9 3,4 21464.8
– – 1 21610.8 1 21591.9

1I 6 – – 3,4 21622.1 3,4 21665.7
– – 1 21758.6 1 21745.2
– – 1 22032.2 3,4 22078.7
– – 3,4 22043.7 2 22084.7
– – 2 22054.5 1 22090.5
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4 f 2, 4f 15d, 4f 16s, and 4f 16p. However, the application o
the Hamiltonian~12! toward these ends is to be preferr
since in the method of the effective Hamiltonian the comm
set of parametersGq

k can easily account for the effect of a
configurations corresponding to one-electron excitations.

3.2. Y3Al5O12 :Tm31

A detailed experimental and theoretical study of t
Tm31 ion in Y3Al5O12 ~with symmetryD2! was given in
Ref. 30. The results of our calculations in the weak interc
figurational interaction approximation with the parameters
Ref. 30 are listed in columna) of Table II.7 Here, as in
Subsection 3.1., because of the special choice of the en
of the centroids the standard deviation differs insignifican
from that obtained in Ref. 30. The large value of the stand
deviation 18.4 cm21, and the incorrect arrangement of th
level corresponding to 252 cm21 are proof of the inadequac
of the weak configurational interaction approximation.

In the intermediate configurational interaction appro
mation the description is improved: the correct arrangem
of all levels is achieved and the standard deviation is redu
to 11.8 cm21 ~see Table II!. For this system the ‘‘quadratic
crystal field’’ also causes an insignificant additional splitti
of the multiplets, around 3 cm21, i.e., to describe the spectr
of the Ln31 ion it is indeed possible to use the simplifie
variant ~3! of the Hamiltonian~12!.

An experimental determination and identification of le
els of the Tm31 ion encounters significant difficulties. It i

TABLE I. ~continued!

Calculated in the interconfigurational
interaction approximation

Multiplet
Experiment27 a) weak ~1! b) intermediate~12!

SLJ G E, cm21 G E, cm21 G E, cm21

3P2 1 22498 1 22507.3 1 22512.9
3,4 22645 3,4 22635.7 3,4 22630.1
– – 2 22679.5 2 22630.9
– – 2 22776.5 2 22760.3

1S0 1 – 1 48831.0 1 46635.0
sc 28.4 27.6

ParametersBq
k ~in cm21) andGq

k ~in 1024, dimensionless!
B0

2 488.9 456.4
B0

4 21043 21087
B4

4 1242 1348
B0

6 242 29.4
B4

6 1213 1284
Im B4

6 22.5 53.2
G0

2 222.3
G0

4 35.2
G4

4 43.7
G0

6 53.3
G4

6 7.8
Im G4

6 225.0
Fq

k5Bq
k

a—levels not included in fitting procedure.
b—inverted level.
c—s5(( i 51

n @Eexp( i )2Ecalc( i )#2/(n2p))1/2 where Eexp and Ecalc are re-
spectively the experimental and calculated levels;p is the nuber of fitting
parameters.
n

-
f

gy
y
d

-
nt
ed

probably for that reason that the authors of Ref. 31 propo
a new scheme of energy levels for this ion, which diffe
substantially from the scheme in Ref. 30. Application of t
Hamiltonian~12! also improves the description of this ne
spectrum, lowering the standard deviation by 26%. In
earlier paper32 they proposed another variant of the spe
trum, but to use this spectrum to test the theory is not w
motivated, because of its dubious realism.

4. CALCULATION OF THE PARAMETERS Gq
k

The dimensionless parametersGq
k prescribe the ampli-

tude of the interconfigurational interaction, which previous
was not taken into account in the description of the exp
mental data. Therefore it is of interest to estimate these
rameters from microscopic arguments. It may be expec
that the largest contribution toGq

k comes from lower excited
configurations of the type 4f N215p5, the configuration with
electron transfer from the ligand to the 4f shell, and the
configurations 4f N215l ( l 5d,g).

The contribution of the excited configuration 4f N115p5

can be estimated from formula~13!, assuming that

TABLE II.

Calculated in the interconfigurational
interaction approximation

Multiplet
Experiment30 a! weak ~1! b! intermediate~12!

SLJ G E, cm21 G E, cm21 G E, cm21

3H6 2 0 2 211.9 2 5.5
1 27 1 15.2 1 23.1
4 216 4 206.3 4 218.8
3 241 3 215.7 3 241.9
– 247 2 253.7a 2 247.6
1 252 1 244.2a 1 262.8
– 588 4 508.5 4 562.9
– 610 3 601.3 3 615.8
– – 1 640.1 1 682.2
– 690 2 674.8 2 687.1
– – 4 689.4 4 693.6
– 730 3 741.9 3 724.5
– – 1 754.9 1 737.9

3F4 1 5556 1 5541.3 1 5537.9
3 5736 3 5762.4 3 5753.6
2 5832 2 5815.4 2 5814.6
4 5901 4 5917.5 4 5910.2
1 6041 1 6045.0 1 6035.7
2 6108 2 6116.5 2 6097.3
1 6170 1 6168.5 1 6182.8
– 6224 4 6232.9 4 6223.4
– 6233 3 6247.7 3 6251.1

3H5 4 8339 4 8340.2 4 8340.7
3 8345 3 8349.6 3 8351.6
3 8516 3 8504.0 3 8510.1
1 8530 1 8513.4 1 8520.1
– – 2 8520.4 2 8531.0
4 8556 4 8555.0 4 8557.3
2 8711 2 8708.4 2 8725.0
– 8773 1 8770.9 1 8770.8
– 8800 3 8800.4 3 8807.9
– – 2 8869.0 2 8867.8
– 8882 4 8880.8 4 8880.3
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Bq
k~5p!'

^5pur ku4 f &

^4 f ur ku4 f &
Bq

k~4 f !. ~16!

The necessary integrals~in atomic units!

^4 f ur 2u4 f &51.064, ^5pur 2u4 f &51.415,

^4 f ur 4u4 f &52.623, ^5pur 4u4 f &55.769 ~17!

were calculated in the 5p and 4f functions of the Pr31 ion
from Ref. 33. Next, using the valueD(5p)560000 cm21

~Ref. 33!, it is possible to obtain the following values, e.g
for the contributions toGq

k :

104G0
4~5p!521.5, 104G0

6~5p!520.9,... ~18!

TABLE II. ~continued!

Calculated in the interconfigurational
interaction approximation

Multiplet
Experiment30 a! weak ~1! b! intermediate~12!

SLJ G E, cm21 G E, cm21 G E, cm21

3H4 1 12607 1 12610.2 1 12611.1
2 12679 2 12674.2 2 12677.9
4 12747 4 12745.0 4 12744.6
– – 2 12814.8 2 12801.7
3 12824 3 12829.3 3 12833.8
– – 1 12951.5 1 12949.5
4 13072 4 13066.7 4 13067.5
3 13139 3 13124.1 3 13129.9
– 13159 1 13155.8 1 13154.9

3F3 4 14659 4 14652.9 4 14654.5
– – 2 14658.0 2 14654.5
– – 2 14670.1 2 14667.9
3 14679 3 14693.0 3 14693.8
– 14705 4 14719.5 4 14714.3
– 14720 3 14740.1 3 14743.6
1 14741 1 14747.1 1 14745.5

3F2 3 15245 3 15244.5 3 15244.8
4 15264 4 15258.7 4 15262.9
– – 1 15300.6 1 15305.6
– – 2 15430.3 2 15436.9
1 15438 1 15438.5 1 15438.2

1G4 1 20805 1 20805.5 1 20804.4
– – 2 21181.7 2 21186.1
3 21227 3 21214.9 3 21240.1
4 21381 4 21376.9 4 21378.2
1 21530 1 21502.6 1 21524.7
2 21687 2 21671.8 2 21698.1
1 21757 1 21756.5 1 21757.6
– – 4 21813.6 3 21839.7
– – 3 21853.6 4 21839.8

1D2 1 27868 1 27895.1 1 27885.4
3 27877 3 27921.8 3 27906.7
2 28023 2 28008.3 2 28014.4
4 28044 4 28030.0 4 28037.4
1 28075 1 28047.9 1 28057.6

1I 6 1 34391 1 34384.4 1 34390.8
4 34422 4 34428.6 4 34423.9
3 34440 3 34450.9 3 34446.6
2 34449 2 34454.4 2 34456.7
4 34520 4 34526.5 4 34542.1
– – 3 34683.8 3 34709.7
Their magnitudes are much smaller than the values obta
in Table I from the experimental data, i.e., admixture of t
configuration 4f N115p5 gives a negligibly small contribu-
tion to Gq

k .
In this situation it may be expected that processes

volving electron transport from the ligand to thef shell of
the rare-earth ion will be especially important. The value
the contributions toGq

k from such processes can be estima
with the aid of expression~15! after the following transfor-
mation:

Gq
k~cov !5(

b
JkCq

k* ~Qb ,Fb!, ~19!

where

TABLE II. ~continued!

Calculated in the interconfigurational
interaction approximation

Multiplet
Experiment30 a! weak ~1! b! intermediate~12!

SLJ G E, cm21 G E, cm21 G E, cm21

1 34748 1 34730.0 1 34742.1
1 35033 1 35039.6 1 35033.2
– – 2 35039.8 2 35035.9
– – 2 35206.4 2 35237.0
– – 4 35230.1 4 35253.3

3P0 1 35372 1 35372.0 1 35372.0
1I 6 – – 3 35390.0 3 35455.8

– – 1 35401.9 1 35462.5
3P1 3 36234 3 36249.0 3 36234.0

4 36391 4 36376.4 4 36405.9
2 36418 2 36403.0 2 36418.0

3P2 3 37932 3 37948.9 3 37925.8
4 38066 4 38015.0 4 38046.0
1 38098 1 38101.8 1 38097.5
2 38398 2 38414.3 2 38402.1
1 38440 1 38423.1 1 38446.2

1S0 1 – 1 79604.0 1 79604.0
s 18.4 11.8

ParametersBq
k ~in cm21! andGq

k ~in 1024, dimensionless!

B0
2 474 392

B2
2 47.0 103

B0
4 2213 282.7

B2
4 21571 21634

B4
4 2824 2835

B0
6 2984 2884

B2
6 2310 2409

B4
6 591 493

B6
6 2193 2153

G0
2 29.0

G2
2 211.9

G0
4 227.3

G2
4 20.5

G4
4 22.3

G0
6 254.6

G2
6 43.2

G4
6 27.3

G6
6 220.5

Fq
k5Gq

k

Remark.a—inverted levels.
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J25
5

28
@2~ls f

2 1ls f
2 !13lp f

2 #,

J45
3

14
@3~ls f

2 1ls f
2 !1lp f

2 #,

J65
13

28
@2~ls f

2 1ls f
2 !23lp f

2 #. ~20!

The covalency parametersl can be found in Refs. 34 and 35

ls f50.02, ls f520.05, lp f50.04.

After summing over nearest neighbors of the Pr31 ion, we
obtain

104G0
2~cov !59.5, 104G0

4~cov !5232.8,

104G4
4~cov !5230.8, 104 Im G4

4~cov !5226.1,

104G0
6~cov !521.5, 104G4

6~cov !525.1;

104 Im G4
4~cov !526.7. ~21!

These values are found to be in satisfactory order
magnitude agreement with the experimental values in Ta
I. For these values ofGq

k the influence of the interconfigura
tional interaction on the multiplet splitting is substantial a
the fact that it is taken into account in formula~12! improves
the description of the energy spectrum of the Ln31 ion in
crystals.

However, there is one circumstance that indicates
besides charge-transfer processes, excited configuration
opposite parity can also play an important role. Indeed,
cording to Eqs.~20!, the quantitiesJ2 andJ4 are formed by
the sum of squares of covalency parameters while the q
tity J6 is formed by a difference. Therefore,J6 should be
significantly smaller in magnitude thanJ2 andJ4 and, con-
sequently,Gq

6(cov) should be much smaller thanGq
k(cov)

for k52,4. This conclusion correlates poorly with the p
rametersGq

k in Tables I and II. This immediately confirm
that the admixture of configurations of opposite parity c
make a significant contribution toGq

k .
Quite detailed information about the parameters of

odd crystal field and the excitation energies for the Y2O3

crystal is given in Ref. 36. Employing this information, w
convinced ourselves that the excited configuration 4f N215g
gives a 5–10-times smaller contribution toGq

k than 4f N215d
and the effects of admixture of the configuration 4f N215g
can be neglected. If we exclude covalent contributions~21!
from Gq

k in Table I, then according to Eq.~13! a one-to-one
correspondence will be observed between the paramete
the odd crystal field and the parameters obtained in this
Gq

k(d). These values ofGq
k(d) correspond to the following

parameters of the odd crystal field:

B2
3~d!51248, ImB2

3~d!522247,

B2
5~d!516610, ImB2

5~d!5405. ~22!

They are of a similar order of magnitude as the parame
~in cm21!
f-
le

at
of

c-

n-

n

n

of
y

rs

B2
3~d!5611, ImB2

3~d!52620,

B2
5~d!528334, ImB2

5~d!52185, ~23!

which we obtained from the quantitiesR(k) calculated in
Ref. 27. A similar correlation is observed between the
rameters of an even crystal field calculated on the basi
microscopic models and obtained from the experimen
data. From this point of view, parameters~22! are entirely
realistic. Thus, the combination of Eqs.~12! and~13! makes
it possible on the basis of an analysis of the Stark multip
structure to obtain information about the parameters of
odd crystal field responsible for the admixture of excit
configurations of opposite parity and, consequently, for
intensity characteristics of absorption and luminescence.

5. CONCLUDING REMARKS

Excited configurations influence high- and low-lyin
multiplets to a substantially different degree. This is t
cause of the dependence of the crystal-field parameters
the intensity parameters on the energy of the multiplets.
Ln31 ions the most acceptable approximation is the interm
diate configurational interaction approximation, in which t
parametersB̃q

k depend on the multiplet energy linearly. In th
case of the actinides the more adequate approximation is
strong configurational interaction approximation with mor
complicated-than-linear dependence of the parametersBq

k.
Microscopic estimates of the parameters prescribing

amplitude of the interconfigurational interaction are in sa
factory agreement with the experimental values, which is
indication of the realism of the proposed crystal-field Ham
tonians.

The new functional dependence of the crystal-field p
rameters makes it possible for the first time to determine
parameters of an odd crystal field from the results of
analysis of the structure of the Stark levels. These parame
can then be used to calculate the intensity characteristic
the absorption and luminescence of laser crystals.
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V. A. Shklovski * ) and A. K. Soroka

Khar’kov State University, 310077 Khar’kov, Ukraine

A. A. Soroka

National Scientific Center ‘‘Khar’kov Physicotechnical Institute,’’ Institute of Theoretical Physics,
310108 Khar’kov, Ukraine
~Submitted 14 May 1999!
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The nonlinear resistive properties of superconductors in the mixed state in the presence of a
system of unidirectional planar defects~twins! have been investigated theoretically within the
framework of the two-dimensional stochastic model of anisotropic pinning based on the
Fokker–Planck equations with a concrete form of the pinning potential. These equations allow
one to obtain an exact analytical solution of the problem. Formulas are obtained for
experimentally observable even and odd~relative to reversal of the direction of the external
magnetic field! nonlinear longitudinal and transverse magnetoresistivitiesr i ,'

6 ( j ,t,a,«)
as functions of the transport current densityj , temperaturet, the anglea between the directions
of the current and the twins, and the relative volume fraction« occupied by the twins. In
light of the great variety of types of nonlinear resistive dependences contained in these expressions
for r i ,'

6 , the most characteristic of them are presented in the form of graphs with
commentary. The desired nonlinear dependencesr i ,'

6 are linear combinations of the even and
odd parts of the functionn( j ,t,a,«), which has the sense of the probability of
overcoming the potential barrier of the twins; this makes it possible to give a simple physical
treatment of the nonlinear regimes. New scaling relations for the Hall conductivity are
obtained and investigated which differ from the previously known relations for isotropic pinning.
The interaction of vortex motion directed along the twins and the Hall effect is considered
for Hall constants which are arbitrary in magnitude and sign, and it is shown that in the case of
small Hall viscosity vortex motion directed along the twins has an effect on the odd
magnetoresistivitiesr i

2 andr'
2 , whereas the reverse effect can be neglected. It is shown that

pinning anisotropy is sufficient to manifest the new nonlinear~in the current!
magnetoresistivitiesr'

1 andr i
2 . © 1999 American Institute of Physics.
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1. INTRODUCTION

Recently, an ever increasing number of experimental
theoretical works have appeared1–19 investigating the influ-
ence of systems of unidirectional planar defects on the
isotropy of the resistive behavior of superconductors in
mixed state. The urgency of this problem is connected w
two circumstances. First, in all of the currently known hig
temperature superconductors~HTSC’s! ~e.g., based on Y and
La! during growth of the crystals twins appear with the
planes oriented parallel to thec axis. If such twins are uni-
directional ~i.e., the twinning planes are parallel! but the
transport currentj flows entirely in the plane of the crysta
line layers, then, as experiment has shown,1,4 the longitudinal
and transverse magnetoresistivities of the sample in an e
nal magnetic fieldHic depend substantially on the anglea
with which the vectorj intersects the boundaries of th
twins. Second, in layered anisotropic HTSC’s the system
parallelab planes itself can be considered as a set of un
rectional planar defects, which are a source of the so-ca
1131063-7761/99/89(12)/16/$15.00
d

n-
e
h

er-

f
i-
d

intrinsic11 pinning for the vortices located parallel to theab
planes and subjected to the action of the Lorentz force
rected along thec axis.

From the theoretical point of view, the two indicate
cases differ only in the specific form of the pinning potent
and, as the following analysis shows, the qualitative conc
sions in both cases coincide. However, the difficulties of p
paring samples with the required configuration of transve
and longitudinal contacts to realize various anglesa in these
two cases are substantially different. Thus, to prep
samples with twins from thin single crystals1,4–6or YBaCuO
epitaxial films19 is technically much simpler than in the cas
when it is necessary to pass a transport current at a ce
angle to theab planes of the film or crystal of YBaCuO~so
far we know of only one attempt of this kind20!. Therefore,
in what follows the main illustrative material that we provid
in this paper~in the form of graphs of evolutions of th
current and temperature dependence of the longitudinal
transverse magnetoresistivity of a sample with variation
the size of the anglea ~see Figs. 8–13 below! is only in
regard to the case of pinning on twins.
8 © 1999 American Institute of Physics
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From a more general point of view, the influence of t
twin boundaries on the transport properties of HTSC’s i
subject of increasingly focused attention.1–19 One of the
main reasons for such interest has to do with the relia
established fact11 that the order parameter in twins i
HTSC’s is easily suppressed. As a consequence of this
isolated twin boundary attracts vortices and pins them.11 The
corresponding pinning force acting on vortices direc
along thec axis, by virtue of the geometry of the problem,
perpendicular to the twins and, as a consequence, its d
tion depends on the anglea between the vectorj and the
direction of the twins. Hence it also follows that the twin
should have almost no effect on the dynamics of the vortic
whose velocity is parallel to their planes~in contrast to point
defects, for which the direction of the pinning force is opp
site the direction of motion of the vortex!.

Recently there have appeared several works in which
influence of the twins on the vortex dynamics in a plan
geometry was examined with the aid of numeric
simulation.12–14Two of these studies12,13examined the inter-
action of moving vortices with an isolated twin boundary a
investigated a number of interesting dynamical peculiari
of this interaction. It should be noted, however, that in a r
transport experiment1,4–6 we are usually studying the sel
averaged dynamics of vortices, which is a consequenc
the interaction of vortices with many twin boundaries distr
uted with some mean density between the measuring
tacts. Such self-averaging apparently ‘‘smears out’’ some
the fine features of the interaction of the vortices with
isolated twin boundary that were detected in Refs. 12 and

A different model was investigated in a recent pape14

In this paper, the equation of motion of a vortex takes
count of the interaction of the vortices with each other, a
also with point defects and planar defects in the presenc
thermal fluctuations. However, the large number of indep
dent physical parameters in the investigated problem gre
hinder the choice of their values, whose variation leads
nontrivial physical results. The latter can be summarized
saying that the vortex dynamics depend substantially on
orientation of the twin boundaries relative to the direction
the transport current and also on its magnitude.

The most specific manifestation of pinning anisotropy
twins are effects associated with directed motion of vorti
along twins~guided motion, the G effect!,6 where there is a
greater probability of the vortices moving probability paral
to the twins than overcoming the twin barriers~slipping, the
S effect!. For aÞ0, p/2 the G effect leads to the appearan
of an even~relative to reversal of the direction of the extern
magnetic field! component of the transverse magnetoresis
ity of the sample,r'

1 , which usually is significantly greate
in magnitude than the familiar odd Hall componentr'

2 .
Earlier, a number of experimental and some theoret

aspects of anisotropic pinning and guided motion of vorti
in the flux-flow ~FF! regime in samples of the Nb–Ta allo
subjected to cold rolling were discussed in detail by Nies
and Weijsenfeld.21 Interest in these questions has grown su
stantially since the discovery of twins in single crystals ba
on Y and La. Besides the experimental works4–9 we should
also mention in this regard the recent theoretical work
a
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Mawatari,16 which discusses the dynamics of anisotrop
pinning within the framework of a stochastic approach ba
on the Fokker–Planck equation. Although the gene
scheme of this approach also includes a derivation of
nonlinear current–voltage characteristics~CVC’s! of
samples with planar defects, Ref. 16 investigated only lin
regimes of motion of vortices.

Note that the specifics of anisotropic pinning created
unidirectional twins do not reduce to just a representation
their role in the formation of guided vortex motion~as was
done in Refs. 6, 12–14! but also includes, as will be show
below, the subtler question of the influence of the twins
the Hall effect. On the phenomenological level, this aspec
anisotropic pinning, as far as we know, was first discusse
Ref. 9 ~see also Ref. 10!. In Ref. 9, on the basis of genera
arguments about the number and symmetry of invariants
an anisotropic conductor in the case where all the current
in the xy plane perpendicular to the magnetic field direct
along thez axis, the authors postulated a phenomenolog
expression for the linear Ohm’s law in such a medium.
superconductor with uniaxial anisotropy caused, for e
ample, by a system of unidirectional twins or a specia
formed texture, according to the form of Ohm’s law in Re
9 is characterized~for arbitrary values of the anglea! by
only four constants:r l , r t , rHl , andrHt , which are com-
ponents of the magnetoresistivity tensor~in the coordinate
system with axes aligned with and perpendicular to
twins! and depend only on the magnitude of the magne
field and the temperature. The physical meaning of th
constants is simple:r l andrHl are the ordinary longitudina
~even! and transverse Hall~odd! magnetoresistivities of the
sample in theL geometry, where the current is perpendicu
to the twins~or j im, wherem is the unit vector in the direc-
tion perpendicular to the twins, Fig. 1!, andr t and rHt are
the analogous quantities for theT geometry, wherej imi ,
wheremi is the unit vector pointing in the direction of th
twins ~Fig. 1!. In fact, the main result of Refs. 9 and 1

FIG. 1. System of coordinatesxy associated with the twins~the anisotropy
vectorm points along thex axis! and the system of coordinatesx8y8 asso-
ciated with the direction of the current~the current density vectorj points
along thex8 axis!; a is the angle between the twin plane~TP! and the
current density vectorj , b is the angle between the velocity vector of th
vorticesv and the current density vectorj ; FL is the Lorentz force.
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consists in writing down formulas which allow one to e
press the longitudinal and transverse~relative to the direction
of the transport current! magnetoresistivities of the samp
r',i(a) in terms of the constantsr l , r t , rHl , andrHt for
arbitrary values of the anglea between the vectorsj andmi.
An analysis of Ohm’s law obtained in this way shows th
for aÞ0, p/2 the observed resistive response contains
only the ordinary longitudinalr i

1(a) and transverser'
2(a)

magnetoresistivity@even~1! and odd~2!# relative to rever-
sal of the direction of the magnetic field, but also two ne
components induced by the pinning anisotropy: an e
transverse componentr'

1(a) and an odd longitudinal com
ponent r i

2(a). If the physical origin of the componen
r'

1(a) is related in an obvious way with the possibility o
guided vortex motion along twins, then the appearance o
odd longitudinal contribution is associated with anisotropy
the Hall conductivity in a sample with twins, as a cons
quence of which in theL and T geometriesrHlÞrHt .
Recently,5 the magnetoresistivityr i

2(H) was observed ex
perimentally for the first time in a single crystal o
YBa2Cu3O72d with twins oriented at an anglea545° rela-
tive to the direction of the transport current, i.e., in the ca
where the quantityr i

2(a) is expected to be maximal.9

Later, in works of one of the authors17,18 within the
framework of a phenomenological approach, a derivation
Ohm’s law~postulated earlier in Refs. 9 and 10! in terms of
both linear ~electronic! and nonlinear, vortex-velocity
dependent ‘‘pinning’’ viscosities was proposed. Taking in
account the relative contribution of both isotropic~on point
defects, Ref. 22! and anisotropic~on twins! pinning, in this
approach it turned out to be possible to clarify the genesi
the four phenomenological constantsr l , r t , rHl , and rHt

introduced earlier in Refs. 9 and 10, mentioned above. It
been shown18 that if isotropic pinning is neglected the ph
nomenologically introduced electronic and pinning visco
ties can be ‘‘reconstructed’’ from CVC measurements in
L andT geometries, after which it is possible to predict t
behavior of the quantitiesr i ,'

6 (a, j ) for any a, 0,a,p/2
~Ref. 18!. In this approach it also turned out to be possible
interpret some general aspects of the anisotropic vortex
namics in terms of physically simple quantities accessible
experimental measurement. In particular, the existence
scaling of the Hall conductivities was discussed, as wel
some aspects of nonlinear regimes of guided vortex mo
and a number of other results of a general nature.

Unfortunately, the phenomenological approach does
enable a direct theoretical calculation of the anisotropic n
linear pinning viscosity, i.e., its dependence on current, te
perature, and angle, starting from more detailed assumpt
of vortex dynamics and the form of the pinning potenti
Therefore, with the intention of performing such calculatio
in substantially nonlinear vortex-dynamics regimes we e
ployed a stochastic pinning model~see, e.g., Refs. 23 an
24!, a two-dimensional anisotropic variant of which has be
proposed by Mawatari.16 We augmented this model with a
anisotropic Hall conductivity and specified the form of t
pinning potential~in regard to the presence of unidirection
twins!, which admits an analytical solution of all interestin
effects. As a result, it became possible to derive and phys
t
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interpret quite simple formulas for the experimentally o
servable nonlinear longitudinal and transverse magnetore
tivities r i ,'

6 ( j ,t,a,«) as functions of the transport curren
density j , temperaturet, anglea, and relative volume frac-
tion « occupied by the twins. In the limiting case«51 these
results describe the effects of intrinsic pinning of an ani
tropic layered HTSC. In light of the wide variety of types o
resistive dependences contained in these expressions
r i ,'

6 , we tabulate the most characteristic of them in the fo
of graphs accompanied by descriptive commentary eluci
ing the physical meaning of the features of these graphs

The organization of the article is as follows. The seco
section presents those general results in the stochastic m
of anisotropic pinning which, for their exposition, do n
require specification of the form of the pinning potentia
Subsection 2.1. is introductory, it describes the Fokke
Planck method in the two-dimensional model of anisotro
pinning. Subsection 2.2. discusses the derivation of exp
sions for the nonlinear conductivity and resistivity tenso
Subsection 2.3. presents general results on the reconstru
of the conductivity tensor from CVC measurements a
from scaling of the anisotropic Hall conductivity in theL and
T geometries. The third section is fundamental. It substitu
a specific form of the pinning potential into the general fo
mulas of the preceding section which enables in one of
limiting cases an analytical description of pinning on an is
lated twin, and in the other, intrinsic pinning of theab planes
of the HTSC. Subsection 3.1. discusses the implemented
ning model and analyzes the behavior of the funct
n( f ,t,«), which is the main nonlinear component of th
model under discussion, where this component has the s
of the probability of overcoming the potential pinning barri
as a function of the external forcef and the temperaturet.
Formulas are also obtained forr i ,'

6 ( j ,t,a,«). Subsection
3.2. is dedicated to an analysis of the nonlinear G effect,
Subsection 3.3. discusses the interaction of the Hall ef
and guided vortex motion in nonlinear regimes. Subsect
3.4. considers scaling relations for pinning on twins and d
cusses their stability with respect to small deviations of
anglea from its values adopted in theL andT geometries.
Finally, the Conclusion discusses the results obtained
formulates conclusions.

2. GENERAL RESULTS IN THE STOCHASTIC MODEL OF
ANISOTROPIC PINNING

2.1. The Fokker–Planck method in the anisotropic pinning
model

Let us consider Mawatari’s microscopic model,16 gener-
alized to the case in which the anisotropic Hall constan
taken into account. The Langevin equation for a vortex m
ing with velocity v in a magnetic fieldB5nB ~B[uBu, n
5nz, z is the basis vector in thez direction, andn561! has
the form

ĥv1nâv3z5FL1Fp1Fth , ~1!

where FL5n(F0 /c) j3z is the Lorentz force~F0 is the
magnetic flux quantum,c is the speed of light, andj is the
current density!, Fp52¹Up is the pinning force~Up is the
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pinning potential!, Fth is the thermal fluctuation force,ĥ is
the electronic viscosity tensor, andâ is the ‘‘Hall’’ tensor,
describing effects associated with anisotropy of the Hall c
stant. If x andy are the coordinates along and transverse
the anisotropy axis~see Fig. 1!, then in thexy representation
the tensorsĥ and â are diagonal, and it is convenient t
defineh0 andg by means of the formulas

h05Ahxxhyy, g5Ahxx /hyy,

hxx5gh0 , hyy5h0 /g. ~2!

Here g is the anisotropy parameter andh0 is the averaged
viscous friction coefficient. Foraxx5ayy5a we regain the
results of Ref. 16. The fluctuational forceFth(t) is repre-
sented by Gaussian white noise, whose stochastic prope
are assigned by the relations

^Fth,i~ t !&50, ^Fth,i~ t !Fth, j~ t8!&52Th i j d~ t2t8!, ~3!

whereT is the temperature in energy units. Employing re
tions ~3!, we can reduce Eq.~1! to a system of Fokker–
Planck equations:

]P

]t
52¹S, ~4!

ĥS1nâS3z5~FL1Fp!P2T¹P, ~5!

whereP(r ,t) is the probability density associated with fin
ing the vortex at the pointr5(x,y) at the time t, and
S„r ,t)[P(r ,t)v(r ,t) is the probability flux density of the
vortex. Since the anisotropic pinning potential is assume
depend only on thex coordinate and is assumed to be pe
odic @Up[Up(x)5Up(x1a), where a is the period#, the
pinning force is always directed along the anisotropy axix
~with unit anisotropy vectorm, see Fig. 1! so that it has no
component along they axis @Fpy52dUp /dy50#. Thus,
Eq. ~5! in the stationary case for the functionsP5P(x) and
S5(Sx(x),Sy(x)) reduces to the equations

gh0Sx1naxxSyS FLx2
dUp

dx D P2T
dP

dx
, ~6!

2nayySx1
h0

g
Sy5FLyP. ~7!

Invoking the condition of stationarity for Eq.~4! and elimi-
natingSy from Eqs.~6! and ~7!, we obtain

T
dP

dx
1S 2F1

dUp

dx D P52gh0~11exey!Sx , ~8!

where ex[axx /h0 , ey[ayy /h0 , and F[FLx2ngexFLy .
From the mathematical point of view, Eq.~8! is the Fokker–
Planck equation of one-dimensional vortex dynamics.23,24

Thus, the problem of two-dimensional vortex motion reduc
to a one-dimensional problem, where a combination ofx and
y components of the Lorentz force enters as the exte
force:

F5n
F0

c
~ j y1ngexj x!5n

F0

c
~cosa1ngex sina! j .

~9!
-
o

ies

-

to
-

s

al

Herea is the angle between the direction of the current a
the vectormi directed perpendicular to the anisotropy ax
~see Fig. 1!. The solution of Eq.~8! for periodic boundary
conditions P(0)5P(a) and pinning potential of genera
form is

P~x!5
gh0~11exey!Sx

T

f ~a! f ~x!

f ~a!2 f ~0!
E

x

x1a dj

f ~j!
, ~10!

where f (x)5exp@(Fx2Up(x))/T#. Hence we obtain an ex
pression for thex component of the vortex mean velocity:

^vx&5
Fn~F !

gh0~11exey!
, ~11!

where

1

n~F !
[

F

Ta~12exp~2Fa/T!!
E

0

a

dxE
0

a

dx8

3expS 2
Fx

T DexpFUp~x1x8!2Up~x8!

T G . ~12!

The dimensionless functionn(F) in the limit F→0 coin-
cides with the analogous quantity introduced in Ref. 16
has the physical meaning of the probability of the vort
overcoming the potential barrier, the characteristic value
which we denote asU0 . This can be seen by considering th
limiting cases of high (T@U0) and low (T!U0) tempera-
tures. In the case of high temperatures we haven'1, and
expression~11! corresponds to the flux-flow regime~FF re-
gime!. Indeed, in this case the influence of pinning can
neglected. In the case of low temperaturesn is a function of
the current. For strong currents (Fa@U0) the potential bar-
rier disappears,n'1, and the FF regime is realized. Fo
weak currents (Fa!U0) we haven;exp(2U0 /T), which
corresponds to the regime of thermally activated flux flow11

~the TAFF regime!. The transition from the TAFF regime to
the FF regime is associated with a lowering of the poten
barrier with growth of the current.

2.2. The nonlinear conductivity and resistivity tensors

The electric field induced by a moving vortex system

E5
1

c
B3^v&5n

B

c
~2^vy&m1^vx&mi!. ~13!

Since the mean velocity of a vortex is equal to

^v&5
**Sd2r

**Pd2r
5

*0
aS~x!dx

*0
aP~x!dx

,

taking Eq.~13! into account, integration of Eq.~7! leads to a
simple linear relation between the electric field compone
Ex ,Ey and the transport current densityj x :

~1/g!Ex1neyEy5r f j x , ~14!

wherer f[F0B/h0c2 is the average@see Eq.~2!# resistance
to flux flow. It follows from Eq.~14! that the components o
the conductivity tensorsxx5(gr f)

21 andsxy5ney /r f obey
linear scaling:

sxy /sxx5ryx /ryy5ngey .



fo

a

a-

s-

a-

-
t

he

ow

-
e

-

f a

h

by

ced

lec-

with

sor
a
he

el
gi-

Hall
e

g

GS

1142 JETP 89 (6), December 1999 Shklovski  et al.
Below we will see that such simple scaling does not exist
the componentssyy andsyx of the conductivity tensor.

From formulas~11!, ~13!, and~14! we obtain the CVC in
the xy coordinate system:

Ex5g j x2
ey n~ f ! f

11exey
, ~15!

Ey5
nn~ f ! f

g~11exey!
. ~16!

Here the dimensionless components of the electric field
measured in units ofE05BU0 /cah0 , and of the current, in
units of j 05cU0 /F0a, and f 5Fa/U05n j(cosa
1ngex sina)5njy1gexjx . From expressions~15! and~16! we
find the conductivity tensor~whose components are me
sured in units of 1/r f! for the nonlinear Ohm’s lawj
5ŝ(E)E:

ŝ5S sxx sxy

syx syy
D 5S 1/g ney

2nex syy~Ey!
D , ~17!

where the only component depending on the electric field~or
current!, syy , is given by

syy~Ey!5
n

Ey
ñ21~ng~11exey!Ey!2gexey , ~18!

ñ21 is the inverse function ofñ( f )[n( f ) f . From physical
arguments it follows that the functionn( f ) is monotonically
increasing inf and, consequently,ñ( f ) is also monotonic
and its inverse functionñ21( f ) is unique. From the defini-
tion ~12! it can be shown that for a periodic potential po
sessing even parity,Up(2x)5Up(x), the functionn( f ) is
even inf , i.e.,n(2 f )5n( f ). Correspondingly,ñ( f ) is odd
in f . The resistivity tensorr̂ ~whose components are me
sured in units ofr f!, which is the inverse tensor toŝ, has the
form

r̂5S rxx rxy

ryx ryy
D

5S g@12exeyn~ f !/~11exey!# 2neyn~ f !/~11exey!

nexn~ f !/~11exey! n~ f !/@g~11exey!#
D .

~19!

It is clear from Eq.~19! that all components of the tensorr̂
~in contrast to the tensorŝ! are functions of the current den
sity j and the anglea between the direction of the curren
and the vectormi .

We introduce theL andT geometries in whichj im and
j'm, respectively. If we neglect the Hall terms in Eq.~19!,
then in theL geometry vortex motion takes place along t
pinning planes~the G effect!, and in theT geometry—
transverse to the pinning planes~the S effect!. In the L ge-
ometry the critical current is equal to zero since the flux-fl
regime ~FF regime! is realized for guided vortex motion
along pinning planes. In theT geometry, i.e., for vortex mo
tion transverse to the pinning planes, a pronounced nonlin
regime is realized forT!U0 , the onset of which corre
sponds to the crossover pointj 5 j cr , and forT50 we have
j cr5 j c , where j c is the critical current.
r

re

ar

Let us consider a diagram of the dynamical states o
vortex system in thej x j y plane~Fig. 2!. For arbitrary anglea
the tip of thej vector can lie in two different regions whic
are different in their physical significance. As long asj y

, j cr guided vortex motion takes place~the G region!. For
j y. j cr guided motion along the pinning planes is joined
motion transverse to the pinning planes~the GS region!.

2.3. Reconstruction of the conductivity tensor from CVC
data, and scaling of the Hall conductivity

The experimentally measured quantities are referen
to the coordinate system associated with the current~see Fig.
1!. The longitudinal and transverse components of the e
tric field relative to the direction of the current,Ei andE' ,
are related in a simple way toEx andEy :

Ei5Ex sina1Ey cosa, ~20!

E'52Ex cosa1Ey sina. ~21!

The fieldEi( j ,a) as a function ofj for a5const is mono-
tonically increasing and reduces toEx( j ) for a5p/2 ~the L
geometry! and Ey( j ) for a50 ~the T geometry!. The field
E'( j ,a) as a function ofj for a5const exhibits a pro-
nounced nonlinearity and has an extremum associated
the G effect~see below!.

We will show that between the components of the ten
ŝ and the CVC in theL and T geometries there exists
definite universal interrelationship. The general form of t
formulas for reconstructing the tensorŝ from CVC data in
the L and T geometries for the anisotropic pinning mod
was formulated within the framework of the phenomenolo
cal approach in Ref. 18:

sHt52 j @nE'
L ~ j !1 f T~Ei

L~ j !!#21, ~22!

sHl52 j @nE'
T~ j !1 f L~Ei

T~ j !!#21, ~23!

s l~x!5
j i
L~x!

x F11
f L

21~x!

f T~x!
G21

, ~24!

FIG. 2. Diagram of dynamic states of the vortex system neglecting the
effect in the (j x j y) plane; G is the region of motion of the vortices along th
pinning plane~the G effect!, GS is the region of motion of the vortices alon
and transverse to the pinning plane~the G and S effects!; j cr is the crossover
current corresponding to a transition from the region G to the region
when they component of the current density is increased.
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s t~x!5
j i
T~x!

x F11
f T

21~x!

f L~x!
G21

, ~25!

where

sHt52ayy

c2

BF0
52

ey

r f
, sHl52axx

c2

BF0
52

ex

r f
,

s l~x!5
sxx~Ex!

r f
, s t~x!5

syy~Ey!

r f
,

Ei ,'
L,T( j ) are the longitudinal and transverse components r

tive to the CVC current in theL andT geometries, and the
functionsf L and f T establish a relation betweenEi andE' in
the L and T geometries, respectively:Ei

L,T5 f L,T(nE'
L,T).

Knowing the CVC’s~15! and ~16!, it is possible within the
framework of the microscopic model to find the analytic
form of all functions entering into formulas~22!–~25!:

E'
L ~ j !5

nñ~gexj !

g~11exey!
, Ei

L~ j !g j 2
eyñ~gexj !

11exey
,

E'
T~ j !5

neyñ~ j !

11exey
, Ei

T~ j !5
ñ~ j !

g~11exey!
,

f T~x!5
1

gey
x,

f L~x!52geyx1
1

ex
ñ21@g~11exey!x#.

Inspection shows that formulas~22!–~25! reconstructing
the tensorŝ within the given model are identities. This
because the diagonal componentsyy of the conductivity ten-
sor @see Eq.~18!# depends only on the corresponding co
ponent of the electric fieldEy ~the componentsxx is a con-
stant in the given model by virtue of the absence of pinn
in the direction of the vectormi!. The fact that the diagona
components of the conductivity tensor depend only on
corresponding components of the field is an important p
tulate of the phenomenological model, on which the deri
tion of formulas ~22!–~25! is based. The general form o
these formulas is essential to the phenomenological
proach. They make it possible from the results of CVC m
surements in theL andT geometries to reconstruct the for
of the conductivity tensor, in other words, to predict t
CVC for an arbitrary anglea, and also to determine exper
mentally the Hall constantsaxx andayy , the electronic vis-
cositieshxx andhyy forming respectively the tensorsâ and
ĥ, and the form of the functionn @see Eq.~17!#. Note that
the function f T(x) in fact expresses linear scaling in theL
geometry~for the componentssxy andsxx! whereas in theT
geometry~for the componentssyx andsyy! such linear scal-
ing is absent.
a-
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3. ANISOTROPIC PINNING ON UNIDIRECTIONAL TWINS.
ANALYSIS OF NONLINEAR REGIMES

3.1. Discussion of the model and analysis of the nonlinear
behavior of the probability n„ j, t,a,«… of overcoming
the twin barrier

The nonlinear properties of the resistivity tensorr̂, as
can be seen from formula~19!, are completely determined b
the behavior of the functionn(F,T), which has the physica
sense of the probability of a vortex overcoming the poten
barriers created by pinning centers. In turn, the funct
n(F,T), according to formula~12!, depends on the form o
the pinning potential. In the present section we specify t
potential for HTSC’s of the type YBaCuO, in which th
experimental realization of anisotropic pinning centers c
sists of twins. As is well known, a twin is a region of low
ered value of the order parameter.11 Therefore, it is energeti-
cally favorable for vortices to localize in the vicinity of
twin. In the present paper we analyze the resistive proper
on the basis of a pinning potential of the form~Fig. 3!

Up5H 2Fpx, 0<x<b,

Fp~x22b!, b<x<2b,

0, 2b<x<a,

~26!

whereFp5U0 /b is the pinning force. Wells of width 2b in
the potential~26! correspond to regions of twins, and ze
pinning potential corresponds to the regions between
twins. As the parameter characterizing the twin concentra
we use«52b/a ~more accurately, this is the volume fractio
occupied by the twins!.

Substituting the potential~26! into formula ~12! for the
probability functionn that a vortex will overcome the poten
tial barrier of a twin gives the following expression:

n~ f ,t,«!5
2 f ~ f 221!2

2 f ~ f 221!~ f 2211«!2«tG
, ~27!

where

FIG. 3. Pinning potential of twinsUp(x): a—potential period~distance
between twins!, 2b—width of the twin potential well,U0—depth of the twin
potential well. Twin concentration is«52b/a. In all of the following rela-
tions «50.001.
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G5F ~3 f 211!coshS f

t« D1~ f 221!coshS f ~122«!

t« D
22 f ~ f 21!coshS f ~12«!

t«
2

1

t D22 f ~ f 11!

3coshS f ~12«!

t«
1

1

t D G Y sinhS f

t« D .

In formula ~27! the effective external forceF acting on the
vortices in the direction perpendicular to the twins and ca
ing them to move in this direction~the S effect! is character-
ized by the parameterf , which gives ratio of this force to the
pinning force Fp5U0 /b on the twins; the temperature
characterized by the parametert, which gives the ratio of the
energy of the thermal fluctuations of the vortices to the de
of the potential wellsU0 created by the twins. The influenc
of the external forceF acting on the vortices is that it lower
the height of the potential barrier for vortices localized
the twins and, consequently, increases the probability of
cape from them. Raising the temperature also increases
probability that a vortex will escape from a twin because
the increase in the energy of the thermal fluctuations of
twins. Thus, the pinning potential of the twins, leading
F,T→0 to localization of vortices, can be suppressed b
by an external force and by an increase in the temperatu

The functionn0( f ) ~see Fig. 4!

n0~ f !5H 0, 0< f <1,

~ f 221!/~ f 2211«!, f .1.
~28!

corresponds to the zero-temperature limit. In the ze
temperature limit, forF,Fp , the vortices are trapped in th
potential wells of the twins and they cannot move, while
F.Fp the potential barrier disappears and they begin
move. The value of the current at whichF5Fp corresponds
to the critical current at zero temperature. Let us conside
turn the dependence of the probability functionn( f ,t,«) on
each of the quantitiesf , t, and« for the remaining quantities
held fixed~denoted by the subscript ‘‘0’’!.

FIG. 4. The dependencen( f ) for the series of values of the parametert0 :
1—0, 2—0.05,3—0.1, 4—0.5.
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The dependencen( f )5n( f ,t0 ,«0) characterizingn as a
function of the external force acting on a vortex at const
temperature for constant twin concentration is monotonica
increasing from the valuen(0,t0 ,«0) to its limiting value of
1 as f→`. By virtue of its even parity, the functionn( f )
has a horizontal tangent at the pointf 50. In the vicinity of
infinity ~for f @1! the functionn( f ) has a divergencen( f )
'12«0f 22. The qualitative form of the dependencen( f ) is
determined by the value of the dimensionless parametet0

characterizing the temperature. From the expansions
n(0,t0 ,«0) in a power series aboutt0 in the vicinity of zero
and infinity

n~0,t0 ,«0!'
exp~21/t0!

«0~12«0!t0
S 12

«0t0

12«0
D , t0!1,

12«0

«0
,

~29!

n~0,t0 ,«0!'12«0S 1

3
2

«0

4 D t0
22 , t0>1, ~30!

it is easy to understand the influence of the temperature
the qualitative form ofn( f ). Specifically, at low tempera
tures (T!U0) a nonlinear transition takes place from th
TAFF regime of vortex motion perpendicular to the twins
the FF regime with growth of the external force, wherein t
function n( f ) has a characteristic nonlinear shape~see Fig.
4!. At high temperatures (T>U0) the FF regime is realized
over the entire range of variation of the external force.

The dependencen(t)5n( f 0 ,t,«0) characterizingn as a
function of temperature for the external force and twin co
centration fixed is also a monotonically increasing functio
and its qualitative form is determined by the value of t
parameterf 0 , on which the quantityn( f 0,0,«)5n0( f 0) de-
pends@see formula~28!#. For t>1 the expansion ofn(t) in a
power series int has the same form as the expansion
n(0,t0 ,«0) in t0 in formula ~30!. Thus, the temperature de
pendencen(t) ~Fig. 5! depicts the nonlinear transition from
the TAFF regime of vortex motion perpendicular to the twi
to the FF regime as the temperature is raised~for f 0<1! or a
smoother transition to the FF regime from the dynami
state corresponding ton0( f 0) ~for f 0.1!. It also follows

FIG. 5. The dependencen(t) for the series of values of the parameterf 0 :
1—0.01,2—0.1, 3—0.5, 4—1.5.
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from the above-said that the width of the transition from t
TAFF to the FF regime, depending ont or f , decreases as«
is decreased@see also formula~28!#.

The dependencen(«)5n( f 0 ,t0 ,«) characterizes the
probability that a vortex will escape from the potential w
of a twin as a function of the twin concentration for fixe
values of the external force and temperature and is mo
tonically decreasing from the valuen( f 0 ,t0,0)[1 corre-
sponding to the absence of twins. The probability dens
associated with finding a vortex on a twin grows with d
crease of the temperature and the external force; there
the smaller the parametersf 0 and t0 , the faster is the falloff
of n~«!. For «51 we regain the results of Ref. 24:

n~ f ,t,1!5~ f 221!2

3F f 2~ f 221!22 f t
cosh~ f /t !2cosh~1/t !

sinh~ f /t ! G21

.

~31!

The dynamics of a vortex system with the Hall effe
taken into account depends substantially on the directio
the magnetic field. According to formula~9!, an effective
external forceF perpendicular to the twins is created by
uniform transport current flowing through the sample; suc
force contains two components—the Lorentz for
n(F0 /c) j y and the Magnus force (F0 /c)gexj x , acting on
the vortex along thex axis. Depending on the direction of th
magnetic field assigned by the factorn561, these two com-
ponents can be identically or oppositely directed, and
resulting force will be different in these two cases. In wh
follows we express the current density in units ofj c

5cU0 /F0b ~in our study of the problem of a potential o
general form we used the unitscU0 /F0a! so that for the
dimensionless parameterf , characterizing the external forc
we obtain

f 5n jf~a!, f~a!5cosa1ngex sina.

Thus, the value of the external forceF5Fp at which the
height of the potential barrier vanishes corresponds to
dimensionless currentj 51/f(a), equal to the critical cur-
rent at T50, and in the case 0,T!U0 , to the crossover
current j cr .

In the functionn( j f(a),t)5n( f ,t,«0) we separate ou
the even componentn15@n(n51)1n(n521)#/2 and the
odd componentn25@n(n51)2n(n521)#/2 in the mag-
netic field. These components determine the observed r
tive characteristics—the even and odd components~in the
magnetic field! of the longitudinal and transverse resistivi
r i ,'

6 . From the definition ofn6 it follows that their possible
values for any values ofj , t, a, ex , and«, like the values of
the functionn, always lie between zero and one. Note th
only the Hall constantex enters into the even and the od
components ofn( j f(a),t) since thex component of the
Magnus force depends on it, and this component contrib
to the effective forceF along thex axis, perpendicular to the
twins. It is easy to see that the componentn1 is even inex ,
i.e., n1(2ex)5n1(ex), and the componentn2 is odd, i.e.,
n2(2ex)52n2(ex). Therefore, forex50 the even compo-
nent n1[n( j y ,t), and the odd componentn2[0. The
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qualitative behavior and the limits of the componentn1( j )
as j→0, ` coincide with the corresponding limits ofn( f ).
The componentn2( j ) tends to zero in the linear regimes~as
j→0, `! and is nonzero in the region of nonlinearity ofn,
forming a characteristic peak~Fig. 6!. The limits of the com-
ponentsn1(t) and n2(t) as t→` are the same as forj
→`, and fort→0 they are equal to the corresponding co
ponentsn0

6 of the functionn0@ j f(a)#.
In the case of a small Hall effect (ex ,ey!1) the function

n( f )5n@ j y(11ngex tana)# can be expanded in the param
eterngex tana, which is small in the range of angles whe
tana!1/gex . In the linear approximation in the paramet
ngex tana the expressions for the even and odd compone
~in the magnetic field! of the functionn are respectivelyn1

5n( j cosa) andn25n8( f )u j cosa jgex sina;ex!1.
The behavior of the probability of overcoming the p

tential barrier of a twin,n, and of its componentsn1 andn2,
as functions of the external force~or current! and the tem-
perature is connected with their influence on the height of
barrier. At zero temperature, the relative decrease in
height of the potential barrier caused by the external fo
~current! can be estimated asd5DU/U0512u f u51
2 j f(a), so that vortex motion is impossible ford.0. The
influence of temperature, with growth of which the probab
ity of overcoming the barrier is increased, is such that fot
<0.1d the TAFF regime of vortex motion transverse to t
twins is realized, and fort@0.1d the FF regime is realized
The nature of the transition from the TAFF to the FF regim
in the functional dependencesn( f ) andn(t) is substantially
different. The dependencen( f ) shifts to the left with growth
of t, and its steepness decreases~see Fig. 4!. Thus, the higher
the temperature, the smoother the transition from the TA
to the FF regime, and the lower the values of the exter
force at which it occurs. The dependencen(t) also shifts to
the left with growth off , but its steepness grows~see Fig. 5!.
Consequently, the lower the barrierd, the steeper the transi
tion from the TAFF to the FF regime and the lower th
temperatures at which it occurs. The behavior ofn1( j ) and
n1(t) is similar to the behavior ofn( f ) and n(t), respec-

FIG. 6. The dependencen2( j ) for the series of values of the parametert0 :
1—0.02,2—0.05,3—0.1, for a545°, g51, andex50.1.
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tively. The location of the peaks determined by the dep
dencesn2( j ) and n2(t) corresponds to the region of th
transition in the current and the temperature from the TA
to the FF regime, and their amplitude is inversely prop
tional to the width of the transition. Depending onn2( j ),
with increasingt the peak shifts to the left, and its amplitud
decreases~see Fig. 6!. Depending onn2(t), with increasing
j the peak shifts to the left, but its amplitude increases~Fig.
7!. These peculiarities of the behavior of the dependen
n6( j ) andn6(t) underlie the behavior of the experimental
observed quantities—the even and odd components~in the
magnetic field! of the longitudinal and transverse resistivi
r i ,'

6 .
We will obtain expressions from formulas~19!–~21!for

the experimentally observed longitudinalr i5Ei / j and trans-
verser'5E' / j resistivities~relative to the current! with the
Hall effect taken into account. We separate out their e
r1@r(n51)1r(n521)#/2 and oddr25@r(n51)2r(n
521)#/2 components relative to the magnetic field:

r i
6

1

11exey
F ~ex2ey!n7 sina cosa1S 1

g
cos2 a

2gexey sin2 a D n6G1
g

2
~161!sin2 a, ~32!

r'
65

1

11exey
F ~ex sin2 a1ey cos2 a!n71S 1

g

1gexeyD n6 sina cosaG2
g

2
~161!sina cosa,

~33!

wheren6 are the above-defined even and odd compone
relative to the magnetic field of the functionn( j f(a),t). In
formulas ~32! and ~33! the nonlinear and linear~nonzero
only for r i ,'

1 ! terms separate out in a natural way. The phy
cal reason for the appearance of linear terms is that in
model under consideration foraÞ0 there is always an FF
regime of vortex motion along the twins.

FIG. 7. The dependencen2(t) for the series of values of the parameterj 0 :
1—0.1, 2—1.0, 3—1.5, for a545°, g51, andex50.1.
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3.2. The nonlinear G effect

Let us proceed now to a treatment of the vortex dyna
ics and the resistive properties associated them them, b
on the anisotropic pinning potential introduced above@see
formula ~26!#. For simplicity we will neglect the usually
small Hall effect, i.e., we takeex5ey50. As a consequence
the nondiagonal components of the resistivity tensor van
(rxy5ryx[0). Neglecting the Hall effect, the formulas fo
the experimentally observed longitudinalr i and transverse
r' resistivities relative to the current can be represented
mally in a manner analogous to the linear case9:

r i5rxx cos2 a1ryy sin2 a,

r'5sina cosa~ryy2rxx!, ~34!

with one substantial difference, namely, that in the nonlin
case one of the components of the resistivity tensor depe
on the currentj and the anglea, whereas the second i
constant:

rxx5g, ryy5~1/g!n~ j y ,t ! ~35!

@here, as earlier, see formula~19!, and the resistance is mea
sured in units ofr f5BF0 /c2h0#. Therefore, under certain
conditions in the current and temperature dependences o
observed resistivities~34! a pronounced nonlinearity appea
while in the dynamics of a vortex system as a conseque
of anisotropy of the pinning viscosity a nonlinear G effect
observed in both the temperature and the current. As a c
sequence of the even parity ofn( f ,t,«) in f the quantitiesr i

andr' in formula~34! are even in the magnetic field, as the
should be neglecting the Hall effect.

As is well known,18 the specifics of anisotropic pinnin
consist in the noncoincidence of the directions of the exter
motive forceFL acting on the vortex, and its velocityv ~for
isotropic pinningFLiv if we neglect the Hall effect!. The
anisotropy of the pinning viscosity along and transverse
the twin boundaries leads to the result that for those value
j ,t,a for which the component of the vortex velocity perpe
dicular to the twins,vx , is suppressed, a tendency is show
toward a substantial prevalence of guided vortex mot
along the twins~the G effect! over motion transverse to th
twins ~the S effect!. Note that the probability functionn de-
scribing the nonlinear properties of the observed resis
characteristics in the model under consideration is invers
proportional to the effective nonlinear viscosity introduced
Ref. 18, where the phenomenological approach was de
oped.

In the experiment, the function

cotb52
r'

r i
5

g22n~ j y ,t !

g2 tana1n~ j y ,t !cota
, ~36!

is used to describe the G effect, whereb is the angle between
the vortex velocity vectorv and the current density vectorj
~see Fig. 1!. The G effect is expressed that much mo
strongly, the larger is the difference in directions ofFL andv,
i.e., the smaller is the angleb. Here it is possible that cotb
@1, i.e., r'@r i . In the T and L geometriesb(a50)
5b(a5p/2)[p/2 since the Lorentz force is directed e
actly perpendicular or parallel to the twins.
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Let us consider the sensitivity of the magnitude of t
angleb to small deviations of the anglea from the values 0
and p/2 corresponding to theT and L geometries, in the
linear approximation, for which we will calculate the deriv
tive db/da at a50 anda5p/2:

db

da U
a50

512
g2

n~ j ,t !
,

db

daU
a5p/2

512
n~0,t !

g2 . ~37!

As can be seen from Eqs.~37!, in theT geometry (a50) the
derivativedb/da depends on both temperature and the c
rent. In the TAFF regime, wheren( j ,t)!1, this derivative
has very large values, consistent with the G effect, while
the FF regime~for j→` and t→`! it has the limit 12g2,
i.e., the dependenceb~a! in this case is due to the anisotrop
of the electronic viscosity. In theL geometry (a5p/2) the
derivativedb/da depends only on the temperature sincej y

[0. For t50 we have (db/da)a5p/251, and in the limitt
→` we obtain (db/da)a5p/25121/g2.

Let us consider the current and temperature depend
of cotb(j,t) for fixed values of the angleaÞ0, p/2. The
limits of cotb(j,t) as j ,t→0 and asj ,t→` are obtained by
substituting the corresponding limits of the functio
n( j cosa,t) into formula ~36!. For the limit of cotb(j,t) as
j→0 we obtain limj→0 cotb'cota correct to within
max@cot2 an(0,t)/g2,n(0,t)/g2#. In the temperature region
corresponding to the TAFF regime, we haveb'a and, con-
sequently, at low currents the G effect arises. At large c
rents (j y@1), where for vortex motion transverse to th
twins the FF regime is set up, the pinning viscosity becom
isotropic so that forg51 we haveviFL for arbitrary values
of the anglea. In the temperature dependence of cotb(j,t)
the G effect is most strongly pronounced for currentsj y

,1, whereb(t50)5a.

3.3. The Hall effect and the G effect in nonlinear regimes

In this subsection we consider peculiarities of the res
tive characteristics in the investigated model due to the H
effect. Experimentally, two types of measurements of
observed resistive characteristics are possible in a presc
geometry defined by a fixed value of the anglea: CVC mea-
surements and resistive measurements, which investigat
dependence of the observed resistivities on the current
sity at a fixed temperaturer i ,'

6 ( j ) and on the temperature fo
fixed current densityr i ,'

6 (t). The form of these dependence
is governed by a geometrical factor—the anglea between
the directions of the current density vectorj and the twin
plane. There are two different forms of the dependence
r i ,'

6 on the anglea @see formulas~32! and~33!#. The first of
these is the ‘‘tensor’’ dependence, also present in the lin
regimes~TAFF and FF!, which is external to the functionn.
The second is through the dependence of the functionn on
its argumentf 5n jf(a), which in the region of the transi
tion from the TAFF to the FF regime is substantially nonli
ear @see Eq.~27!#.

First recall that in the absence of the Hall effect~ex

5ey[0 there exist only even resistivities~in the magnetic
field! r i ,'

1 —the odd resistivitiesr i ,'
2 are zero@see formulas

~32! and ~33!#. The presence of nonzero values ofex ,ey
-

n

ce

r-

s

-
ll
e
ed

the
n-

of

ar

leads not only to the appearance of a Hall contribution to
observed resistivities on account of the even componentn1

of the functionn, but also to the appearance of the odd co
ponentn2, which has a maximum in the region of the no
linear transition from the TAFF to the FF regime and
essentially equal to zero outside this transitional region~see
Figs. 6 and 7!. As a consequence, ‘‘crossover’’ effects aris
contributions fromn2 to effects due ton1, and vice versa:
contributions fromn1 to effects due ton2. Thus, in the even
resistivitiesr i ,'

1 , in addition to the main contribution create
by the G effect and described byn1, there is present a Hal
contribution arising due ton2. The expressions for the od
resistivitiesr i ,'

2 contain, in addition to the Hall terms arisin
due ton1, terms due ton2 @see formulas~32! and ~33!#.

Let us analyze the resistive dependencesr i ,'
6 ( j ) and

r i ,'
6 (t) with allowance for the small Hall effect. We firs

consider the simplest case of isotropy of the electronic v
cosity g51 and a small isotropic Hall effect (ex5ey5e
!1). In this case, the expressions forr i ,'

6 , out to terms of
orderexey!1, have the form

r i
1'n1 cos2 a1sin2 a, r'

1'~n121!sina cosa,
~38!

r i
2'n2 cos2 a, r'

2'en11n2 sina cosa. ~39!

in the case of a small Hall effect (e!1) the expressions fo
the even and odd components ofn( f ) in the linear approxi-
mation in the parametere tana!1 ~see Subsection 3.1.! are
equal respectively to n15n( j cosa) and n2

5n8( f )u j cosa jge sina;e!1, i.e., the functionsn6 are re-
lated ton in a simple way.

Expressions~38! and ~39! with the conditione tana!1
taken into account lead to a new nonlinear scaling relat
for the Hall conductivity having the following form:

e5
~r'

22r i
2 tana!cos2 a

~r i
12sin2 a!

. ~40!

Thus, the isotropic Hall conductivitye!1 is uniquely related
to three experimentally observable nonlinear resistiviti
r i

1 , r i
2 , andr'

2 while the scaling relation depends on th
anglea. This relation differs substantially from the powe
law scaling law obtaining in the isotropic case.22 In the par-
ticular casea50 we regain the results of Ref. 16, speci
cally e5r'

2/r i
1[r' /r i , i.e., a linear relationship betwee

r' andr i .
The nature of the behavior of the current and tempe

ture dependence ofr i ,'
6 is completely determined by the be

havior of the dependencesn6( j ) andn6(t). The linear limit
in formulas~38! and~39! is realized in that region of current
and temperatures wheren15const andn250 while the re-
gion of nonlinearity of the current and temperature dep
dence ofr i ,'

6 corresponds to those current and temperat
intervals where the dependencesn6( j ) and n6(t) are non-
linear. Let us turn our attention now to the fact that t
nonlinearity in the temperature dependencesr i ,'

6 (t) can be
observed even at large currentsj .1 in the case when
j f(a),1, where this this latter relation depends on the m
nitude of the anglea @for f(a),1/j we have f ,1 and
n(t→0)50# and determines the limiting values ofn6(t) as
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t→0. Thus, the linearity or nonlinearity of the dependenc
r i ,'

6 (t) at currents larger than unity depends on the mag
tude of the anglea.

In the even longitudinal resistivityr i
1 and the even

transverse resistivityr'
1 for a small Hall effect, terms pro

portional toe!1 are absent, and only linear terms and co
tributions describing the nonlinear G effect are present. T
qualitative form of the current dependencer i ,'

1 ( j ) and the
temperature dependencer i ,'

1 (t) is determined only by the
even componentn1 of the functionn.

The limiting values of the qualitatively similar depen
dencesr i

1( j ) andr i
1(t) corresponding to the TAFF regim

of vortex motion transverse to the twins are determined
guided vortex motion along the twins and grow with increa
ing magnitude of the anglea since in this case the compo
nent of the Lorentz force along the twins increases. In the
regime, as the pinning viscosity becomes isotropic the c
tribution to the dependencesr i

1( j ) andr i
1(t) due to vortex

motion transverse to the twins becomes substantial, and
limiting values of these dependences are equal to unity~Fig.
8!.

The main contribution to the even transverse resistiv
r'

1 is proportional to the factor sina cosa; therefore, the

FIG. 8. The dependencer i
1( j ) for the series of values of the anglea: 1—

0°, 2—25°, 3—45°, 4—65°, for t050.05, g51, andex5ey50.02.
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angle most favorable for its observation isa5p/4. The cur-
rent dependencer'

1( j ) and the temperature dependen
r'

1(t) have their maximum absolute values in the TAFF
gime of vortex motion transverse to the twins@see Eqs.~38!#
~the same value is approached if the angle is replaced b
complement in the limitj→0 andt→0! and go to zero with
the onset of the FF regime as a consequence of isotropiza
of the pinning viscosity~Fig. 9!. In the case of isotropic
electronic viscosity~the case under consideration! the resis-
tivity r'

1 can serve as a measure of the anisotropy of
pinning viscosity since it is determined by the difference
the pinning viscosities transverse to and along the twins@see
also Eqs.~38!#.

As was noted above, the odd longitudinalr i
2 and even

transverser'
2 resistivities arise thanks to the Hall effect, an

therefore their characteristic scale is proportional toe!1
@see Eqs.~39!#.

Only the odd componentn2 of the functionn contrib-
utes to the current dependencer i

2( j ) and temperature depen
dencer i

2(t) of the odd longitudinal resistivity in the case o
the isotropic Hall effect; therefore, their qualitative form
determined completely by the behavior ofn2 as a function
of the current and temperature. A characteristic peak app
in the dependencesr i

2( j ) andr i
2(t) in the region of nonlin-

earity of n2 as a function of the current and temperatu
while in the TAFF and FF regimes of vortex motion tran
verse to the twins they vanish~Fig. 10!.

In the current dependencer'
2( j ) and temperature depen

dencer'
2(t) of the odd transverse resistivity there are co

tributions both from the evenn1, and from the oddn2 com-
ponent of the functionn, whose relative magnitudes ar
determined by the anglea, the Hall constante, the parameter
t0 @for the dependencer'

2( j )# and the current densityj 0 @for
the dependencer'

2(t)#. Thus, the magnitude of the contribu
tions of en1 andn2 can be of the same order of magnitud
in the current dependencer'

2( j ) at low temperatures (t
!1) and in the temperature dependencer'

2(t) at large cur-
rents@ j .1/f(a)# ~Fig. 11! whereas in the temperature d
pendencer'

2(t) for weak currents (j !1) the contribution of
en1 dominates substantially. The limiting values of the cu
rent dependencer'

2( j ) as j→0, ` are determined by the
corresponding limits ofn1 while the contribution of the odd
FIG. 9. Dependence ofr'
1 on j ~a! for t050.05 and

on t ~b! for j 050.1 for the series of values of the
angle a: 1—10°, 2—25°, 3—45°, 4—65°, 5—
80°, for g51 andex5ey50.02.
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FIG. 10. Dependence ofr i
2 on j ~a! for t050.05

and ont ~b! for j 051.5 for the series of values o
the anglea: 1—10°, 2—25°, 3—45°, 4—65°,
5—80° for g51, andex5ey50.02.
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componentn2 becomes considerable in its nonlinearity r
gion where it forms its characteristic peak. In the temperat
dependencer'

2(t) in the limit as t→0 a substantial contri-
bution from the odd componentn2 is also possible if differ-
ent regimes of vortex motion transverse to the twins are
alized for opposite directions of the magnetic field.

Let us turn now to a discussion of the more gene
formulas withgÞ1 andexÞey , including the case of dif-
ferent signs. The presence of anisotropy of the electro
viscosities leads to a change in the limiting values of
observable resistivitiesr i ,'

6 in those cases when they depe
on the anisotropy parameterg ~Fig. 12!. Whereas forg51
complete isotropization of the system takes place in the
regime of vortex motion transverse to the twins, forgÞ1
anisotropy remains in this regime, due to anisotropy of
electronic viscosity. The anisotropy of the Hall constants
a substantial effect on the odd resistivitiesr i ,'

2 created by the
Hall effect, and no effect on the even resistivitiesr i ,'

1 ,
which are essentially independent of the small Hall effe
The physical reason for the influence of anisotropy of
Hall constants on the behavior of the dependencesr i ,'

2 ( j )

FIG. 11. The dependencer'
2( j ) for the series of values of the anglea: 1—

0°, 2—25°, 3—45°, 4—65°, for t050.05, g51, andex5ey50.02.
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and r i ,'
2 (t) is that the relative values of the Hall constan

determine the angle between the vortex velocity and
Magnus force acting on them and, consequently, they de
mine the direction of the vortex velocity itself~in the aniso-
tropic case,exÞey , this angle deviates from the valuep/2,
which corresponds to the isotropic case,ex5ey!. Anisotropy
of the Hall constants leads to the appearance of a new
tribution to the odd longitudinal resistivityr i

2 , which is ab-
sent in the isotropic Hall effect. In contrast to the isotrop
case, for anisotropy of the Hall constants it is possible for
current and temperature dependencesr i ,'

2 to change sign
~Fig. 13!.

To conclude this discussion, note that the caseuexu,ueyu
;1 is of practical interest for pure superconductors25 by vir-
tue of the fact that the Lorentz and Magnus forces acting
a vortex have the same order of magnitude, but this po
requires separate study due to the large variety of poss
effects.

FIG. 12. The dependencer i
1( j ) for the series of values of the anglea: 1—

0°, 2—25°, 3—45°, 4—60°, 5—80° for t050.05, g52, and ex5ey

50.02.
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FIG. 13. Dependence ofr i
2 ~a, ex50.02! and r'

2 ~b,
ex520.01! on t in the case of anisotropy of the Hal
effect for the series of values of the anglea: 1—10°,
2—45°, 3—50°, 4—55°, 5—60°, 6—80°, 7—85°,
for j 051.5, g51, andey50.1.
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3.4. Scaling relations and their stability

In order to give concrete form to the above-obtain
scaling relations@see Eqs.~22!–~25!#, let us consider the
observed resistivities in theT and L geometries, where the
current is directed exactly parallel (a5p/2) or perpendicu-
lar (a50) to the twins. It follows from formulas~32! and
~33! that in these limiting casesr i

25r'
1[0, and we obtain

for r i
1 andr'

2

r i ,T
1 5

n~ j ,t !

g~11exey!
,

r',T
2 5

eyn~ j ,t !

~11exey!
~a50, T2geometry!, ~41!

r i ,L
1 5gS 12

exeyn~exg j ,t !

~11exey! D ,

r',L
2 5

exn~exg j ,t !

~11exey!
~a5p/2, L2geometry!. ~42!

Let us discuss the case of small Hall effects (ex ,ey!1). The
longitudinalr i

2 and transverser'
1 resistivity for a supercon-

ductor with uniaxial pinning anisotropy vanish in theT and
L geometries. The longitudinal evenr i

1 and transverse odd
r'

2 resistivity in theT geometry are due to vortex motio
transverse to the twins, described by the functionn( j ,t). In
the limit j ,t→` to within terms proportional toexey!1 we
have r i

151/g and r'
25ey . The main contribution to the

resistivityr i
1 in theL geometry, which is equal tog with the

same accuracy, is due to guided vortex motion along
twins, for which pinning is absent. The magnitude of t
resistivityr'

2 in theL geometry is described by the functio
n(exg j ,t). Since its first argument, thex component of the
Magnus force,exg j , is vanishingly small for a small Hal
effect for realistically achievable currentsj !1/exg and the
velocity componentvx is suppressed, the resistivityr'

2 de-
pendence mainly only on the temperature. Fort!1 the re-
sistivity r'

2 is so small it cannot be measured~r'
2[0 in the

limit t50 sinceexg j ,1!, and for t;1 it approaches the
value of the Hall constant,ex ~to within terms proportional to
exey!1!.
e

Formulas~41! and ~42! express simple scaling relation
between the observable resistivitiesr i

1 andr'
2 in the T and

L geometries on the one hand and the constantsex ,ey ,g on
the other. The values of the latter and the form of the fu
tion n(x) can be reconstructed, as can be seen from form
~41! and~42!, from measurements ofr i

1 andr'
2 in theT and

L geometries. Therefore, it makes sense to consider the q
tion of the stability of the measurements in these geomet
since the preparation of the samples can lead to small de
tions Da from the valuesa50,p/2. Here it should also be
borne in mind that besides the resistivitiesr i

1 , andr'
2 as-

signed by formulas~41! and~42!, in the presence of an angl
deviation,Da, the resistivitiesr i

2 andr'
1 , not present in the

T andL geometries, also appear. The expansions ofr i ,'
6 in a

abouta50 ~in the T geometry! and inDa5p/22a about
a5p/2 ~in the L geometry! out to the first nonvanishing
terms neglecting terms of the order ofexey!1 have the form

r i ,T
2 '@~ex2ey!n~ j ,t !1~ j ex /g!n8~ j ,t !#a,

r',T
1 '@~1/g!n~ j ,t !2g#a,

r i ,L
2 '~ex2ey!n~exg j ,t !Da,

r',L
1 '@~1/g!n~exg j ,t !1 j exn8~exg j ,t !2g#Da,

r i ,T
1 '

1

g
n~ j ,t !1Fg2

1

g
n~ j ,t !2

j

2g
n8~ j ,t !Ga2,

r',T
2 'eyn~ j ,t !1@~ex2ey!n~ j ,t !

1 j ~ex2ey/2!n8~ j ,t !#a2,

r i ,L
1 'g1@ j ~ex2ey!n8~exg j ,t !

1~1/g!n~exg j ,t !2g#Da2,

r',L
2 'exn~exg j ,t !1F ~ey2ex!n~exg j ,t !1

j

g
n8~exg j ,t !

1
j 2ex

2
n9~exg j ,t !GDa2,

where the prime denotes the derivativen8( f ,t)
[]n( f ,t)/] f . The resistivitiesr i

2 andr'
1 , equal to zero in
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the T and L geometries, vary linearly witha and Da for
small deviations from theT and L geometries. The more
unstable of them~in both theL and theT geometry! is the
even transverse resistivityr'

1 in the TAFF regime of vortex
motion transverse to the twins, wherer',T

1 '2ga in the T
geometry andr',L

1 '2gDa in theL geometry. The resistiv-
ities r i

1 and r'
2 vary quadratically ina and Da from their

values in theT and L geometries respectively. The relativ
deviation of the resistivity for a small deviation from theT
andL geometries is negligibly small forr'

2 , but for r i
1 it is

of the orderDr i ,T
1 /r i ,T

1 ;a2/n( j ,t) in the T geometry and
Dr i ,L

1 /r i ,L
1 ;Da2 in the L geometry. Thus,r i ,T

1 is the most
unstable in the TAFF regime of vortex motion transverse
the twins, wheren( j ,t)!1. The physical reason for this in
stability is the rapid variation of the angleb from p/2 in the
T geometry, wherevy50, to the anglea!1 corresponding
to the G regime withvy@vx . The stability of theL geometry
is physically clear from the fact that forDa!1 the angleb
varies hardly at all, i.e., the direction of the velocity vectov
varies only slightly~in contrast to the case of theT geom-
etry!.

As was stated above, in an actual experiment small
viationsDa of the anglea from the valuesa50,p/2 corre-
sponding to theT andL geometries are always present. U
lizing experimental measurements ofr',i

6 , these deviations
can be found using the following scheme. First, neglect
small quadratic contributions ina and Da5p/22a to the
resistivitiesr i

1 andr'
2 ~in the region where they are stable!,

it is possible to solve the scaling problem using formu
~41! and~42!, i.e., the reconstruct the values of the consta
ex ,ey ,g and the functionn(x). Knowing this, from the for-
mulas for the resistivitiesr i

2 andr'
1 , which vanish in theT

and L geometries and are linear ina and Da5p/22a for
small deviations from theT andL geometries it is possible to
find the corresponding values ofa and Da. The self-
consistency of this scheme is checked by calculating the q
dratic corrections ina andDa, which should be small rela
tive to the main contribution in theT andL geometries.

4. CONCLUSION

In the present work we have theoretically examined
strongly nonlinear resistive behavior of the two-dimensio
vortex system of a superconductor with unidirectional tw
as a function of the transport current densityj , the tempera-
ture t, and the anglea between the directions of the curre
and the twins. The nonlinear~in j ! resistive behavior of the
anisotropic vortex ensemble can be caused by factors of
an electronic and a ‘‘pinning’’ origin. Digressing here fro
the possible nonlinearity of the electronic viscosity of sup
conductors~see, however, Refs. 26 and 27!, in this work we
take as the one source of nonlinearity the presence of in
sically anisotropic pinning on twins. It is physically obviou
that such pinning at low enough temperatures leads to an
ropy of the vortex dynamics since it is much easier for th
to move along the twins~the G effect in the FF regime
which is linear in the current! than in the perpendicular di
rection, where it is necessary for them to overcome the p
ning potential barrier on the twins, which also is a source
o
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ot-

-
f

resistive nonlinearity. If under variation of one of the ‘‘ex
ternal’’ parametersj ,t,a the intensity of manifestation of the
indicated nonlinearity is weakened, then~neglecting the usu-
ally small Hall terms! this weakening will lead to an ‘‘effec-
tive isotropization’’ of the vortex dynamics, i.e., to a conve
gence~and in the limit of the absence of nonlinearity an
electronic anisotropy, to coincidence! of the directions of the
mean velocity vector of the vortices and the Lorentz forc

It is physically clear that the current, temperature, a
anglea have a qualitatively different effect on the weake
ing of pinning on twins and the corresponding transiti
from anisotropic vortex dynamics to isotropic. With grow
of j the Lorentz forceFL grows and the height of the poten
tial barrierd( j ) decreases, so that forj > j cr ~where j cr is the
crossover current of the indicated transition, whose wi
grows with growth oft! this barrier essentially disappear
The quantityj cr depends ona by virtue of the fact that the
probability of overcoming the barrierd is governed not by
the magnitude of the forceFL , but only by its transverse
componentFL cosa, so thatj cr(a)5 j cr(0)/cosa grows with
growth of a. Since an increase in the temperaturet always
increases the probability of overcoming the pinning barr
d( j ), the transition to isotropization of the vortex dynami
is that much steeper int, the smaller isd( j ).

In order to theoretically analyze the above-describ
physical picture of a nonlinear anisotropic resistive respon
Sections 2 and 3 employed a comparatively simple, but at
same time quite realistic, planar model of stochastic pinni
It allows one to distinctly separate the pinning viscosity fro
the electronic~drift and Hall! viscosity and to reduce the
calculations to the evaluation of analytical formulas~32! and
~33!, which have a simply physical interpretation. A disti
guishing feature of this model is the possibility, within th
framework of a unified approach, to describe consistently
nonlinear transition from the anisotropic dynamics of a v
tex system~for currentsj ! j cr(a) at relatively low tempera-
tures! to isotropic behavior~for currents j . j cr(a) at rela-
tively high temperatures!. In the model under consideratio
this approach corresponds~for t.0! to a substantially non-
linear crossover from the linear low-temperature TAFF
gime to the ohmic FF regime of vortex motion. Physical
this stochastic model provides the most adequate descrip
of resistive behavior of a strongly pinned vortex liquid28 in
the immediate vicinity of its melting temperatureTm(H),
which depends on the magnetic field strengthH ~Ref. 11!.
Note that most resistive experiments on pinning on twins
carried out in this temperature range4–9 since, on the one
hand, here it is already possible in fact to neglect isotro
pinning on point defects and, on the other, the amplitude
the resistive response is still large enough that one does
have to use squid picovoltmeters.

Proceeding now to a brief description of the main the
retical results, we note here that an analytical representa
of the nonlinear resistive response of the investigated sys
in terms only of elementary functions was possible thanks
the use of a simple but physically realistic model of anis
tropic pinning on twins~see Sec. 3 and Fig. 3!. The exact
solution obtained made it possible for the first time to co
sistently analyze not only the qualitatively clear dynamics
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the nonlinear G effect, but also the nontrivial question of
interaction of guided vortex motion along twins and the H
effect. The most important result~and unexpected from th
point of view of ‘‘linear’’ intuition! in our opinion is the
conclusion that the appearance of novel~specific to aniso-
tropic pinning in the linear9,10 variant! r'

1- and r i
2-effects

does not require the existence of linear anisotropy of an e
tronic origin, i.e., anisotropy of the electronic viscosity te
sor ĥ and the Hall conductivity tensorâ ~see Sec. 2!. The
nonlinear formulas~32! and~33! in agreement with physica
intuition ~now already nonlinear! clearly demonstrate that th
most natural and ‘‘sufficient’’ reason for the relatively larg
novel r'

1- and r i
2-effects is the anisotropy of pinning o

twins. At comparatively low temperatures and weak curre
@j ! j cr(a)[ j (0)/f(a), see Eq.~29!# it leads to the realiza-
tion of a quite intense~over a wide interval of angles aroun
a5p/4! guided vortex motion along the twins in the TAF
regime, i.e., to the appearance ofr'

1-effects, and at current
j ' j cr(a), to the appearance of characteristic maxima in
curves of the Hall components of the resistivity tensor,r'

2

andr i
2 @see Subsections 3.1. and 3.3. and Figs. 10, 11,

13a#.
A completely novel result of the present work is al

contained in formulas~32! and ~33!. It is a quantitative de-
scription of the interaction of the G effect and the Hall effe
which is valid for all values of the Hall constants regardle
of magnitude or sign. Formally, this interaction arises a
result of the fact that in the case of anisotropic pinning
twins the motive forceF @see Eq.~9!#, which determines the
probability of overcoming the potential barrier~and there-
with also determines the magnitude of the component of
vortex velocity perpendicular to the twins!, is the sum of two
forces. The first of these is the transverse component of
Lorentz force,FL cosa, and the other is the transverse com
ponent of the Magnus force,FM

' 5nexgFL sina @see Eq.
~9!#, which is proportional to the longitudinal~relative to the
twins! component of the velocity of guided vortex motio
This second forceFM

' , which changes its sign~relative to the
sign ofFL! upon reversal of the sign of the external magne
field, is the reason for the appearance of new, Hall-like
their origin, n2-terms in the formulas for the resistive re
sponses~32! and ~33!. The key point in the physical inter
pretation of these formulas is our treatment of the funct
n( f ,t,«) as the probability of overcoming the potential ba
rier of the twins, from which follows an understanding of th
evolution of the functions associated with it,n6 ~see Sub-
section 3.1.!, as functions of the magnitude of the curre
density j , temperaturet, and anglea. Note that this treat-
ment is not a unique property of the stochastic model
anisotropic pinning considered in this work, but can also
consistently realized within the framework of the nonline
phenomenological approach17,18 under much broader as
sumptions, including, in particular, an account of the int
vortex interaction.

If, as is usually the case in experiment,2,3,5 the Hall con-
stants are sufficiently small (ex ,ey!1), then formulas~32!
and ~33! simplify substantially since under these conditio
n2( f 0);ex(dn/d f0)!1 ~see Subsection 3.1.!. If, in addi-
tion, g51 andex5ey5e!1, then the interaction of the G
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effect and the Hall effect becomes ‘‘unilateral’’: formula
~38! for r i

1 andr'
1 ~and consequently for cotb, see Subsec-

tion 3.2.! cease to depend on the Hall effects whereas
formulas~39! for r i

2 andr'
2 the n1 functions characteristic

of the G effect are preserved.
In conclusion, it should also be noted that the curves

the temperature dependencesr i ,'
6 (t) presented in this work

should not be understood literally since the entire list of p
rameters of the problem~components of the tensorsĥ andâ,
the pinning potentialU0! can also depend implicitly on the
temperature, which enters into the formulas for the resis
ities in terms ofn( f ,t,«). Therefore, these curves should b
understood only as an illustration of possible effects of te
perature depinning of vortices on twins, valid under the co
dition that the indicated implicitlyt-dependent parameter
vary weakly in those temperature intervals that correspon
singularities of the functionsn6(t). Nevertheless, we would
still like to note that in a number of cases for the mod
under consideration@see Fig. 13b# the temperature depen
dence of the Hall magnetoresistivityr'

2 for j 05const is
strongly reminiscent of the ‘‘anomalous’’ Hall behavior i
HTSC’s, which has been actively discussed in a numbe
experimental and theoretical works.2,3,29
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Negative persistent photoconductivity in GaAs „d-Sn… structures
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The effect of illumination with various wavelengthsl (770 nm,l,1120 nm) on the
conductivity of GaAs structures with tind-doping of the vicinal faces was investigated in the
temperature range 4.2–300 K. Negative persistent photoconductivity was found in
strongly doped samples. It was shown on the basis of the results of investigations of the Hall
and Shubnikov–de Haas effects that the negative photoconductivity is due to a large
decrease in the electron mobility with increasing electron density. The decrease of electron
mobility is explained by ionization of DX centers, which destroys the spatial correlation in the
distribution of positively charged donors and negatively charged DX centers. ©1999
American Institute of Physics.@S1063-7761~99!01912-5#
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1. INTRODUCTION

Delta-doped semiconductors, where the impurity ato
are located in a layer one or several atomic monolayers th
are now an object of intense experimental and theoret
investigations.1 The charges of the dopants in thed layer
create a potential well, as a result of which a structure w
two-dimensional electrons is formed. Ind-doped structures
with a high impurity density, electrons fill many size
quantization subbands. The behavior of two-dimensio
electrons in such systems in electric and magnetic field
much more complicated than in ordinary low-dimension
structures with a single filled subband. Intersubband elec
scattering is important, and electron mobilities in each s
band are different.

Interest in the study ofd-doped semiconductors is just
fied not only from the scientific standpoint but also by t
possibility of practical applications of such materials. Del
doping is an example of an extremely narrow doping pro
which gives high current-carrier densities. Even though h
dopant concentrations are important in nanoelectronics,
mechanisms limiting the maximum achievable free-elect
density at high doping levels are still not completely und
stood.

It should be noted that ordinarily silicon is used to pr
ducen-type d-layers in gallium arsenide, and it is importa
to investigate and compare the electronic properties
d-layers with different dopants, for example, tin. As a don
impurity, tin is less amphoteric than silicon,2 and the use of
tin should make it possible to obtain higher densities of tw
dimensional electrons in ad-layer.

Quasi-one-dimensional and one-dimensional electro
systems, produced on the basis of two-dimensional syste
are now being investigated increasingly more active3

Quantization of the conductivity as a function of the width
1151063-7761/99/89(12)/6/$15.00
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the conducting channel, quantum oscillations of a new ty
in a magnetic field, and other fundamental effects are
served in such systems. Ordinarily, submicron electron
thography is used to limit the lateral size in two-dimension
systems.3 To obtain systems with quasi-one-dimension
electronic channels several tens and less nanometers in
a promising method is to grow structures on the vicinal s
face of gallium arsenide,4–10 i.e., on a surface tilted from the
basal plane@for example,~001!# by a small angle, as a resu
of which it becomes stepped.

An important experimental fact is that, usually, pers
tent positive photoconductivity is observed in structures w
d-doped layers at low temperatures, i.e., under illuminat
the conductivity of the structures increases and remains f
long time.11 Various models of persistent photoconductivi
exist. One model involves the photoionization of deep leve
called DX centers. It is believed that a DX center is a ne
tively charged localized state, which traps two fr
electrons.12–15 In a different model, the separation of phot
ionized electron–hole pairs, so that the electrons remain
thed layer while the holes escape into the interior volume
taken into account. In this case, a logarithmic decay of
persistent photoconductivity is expected.16,17 Conductivity
anisotropy4–6,18 and positive photoconductivity and it
quenching by a strong electric field19,20are observed in GaAs
structures with tind-doping of the vicinal face.

In the present paper we report the results of an inve
gation of negative persistent photoconductivity, which w
observed in GaAs structures with tind-doping of the vicinal
faces, in a wide range of photon energies in the tempera
range 4.2 K,T,300 K. Mechanisms of negative and pos
tive persistent photoconductivity ind-doped GaAs structure
are discussed.
4 © 1999 American Institute of Physics
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2. SAMPLES AND MEASUREMENT PROCEDURE

The experimental structures were grown by molecu
beam epitaxy. A 0.45mm thick undoped GaAs buffer laye
was grown on a semi-insulating GaAs$Cr% substrate, disori-
ented by 3° from the~001! plane toward to the~110! plane.
A system of steps formed on the vicinal face of the crystal
1 ML high step is 5.3 nm wide. Next, growth was stopp
and a definite quantity of tin was precipitated onto the s
face. After the tin was deposited, a 40 nm thick galliu
arsenide layer was grown at low epitaxy temperatu
'450 °C, which should make it possible to preserve a n
uniform distribution of tin. Then a 20 nm thick GaAs laye
doped with silicon to 231018 cm23, to fill the surface states
was grown.

Samples in the form of double Hall bridges with th
conducting channel oriented along the@110# direction and
along the@2110# direction were prepared for resistivity an
Hall effect measurements. In all samples the resistivity in
@110# direction was less than in the@2110# direction. At the
same time, the influence of illumination of the conductiv
was qualitatively independent of the direction of the co
ducting channel, so that in the present paper we report
results obtained for samples with the conducting channel
ented along the@110# direction. To investigate the photocon
ductivity the samples were illuminated with an incandesc
lamp through a monochromator, which extracted radiat
with wavelength ranging from 770 nm to 1120 nm wi
spectral linewidth 2.6 nm, and through various filters. C
tain parameters of the experimental samples atT54.2 K are
presented in Table I.

3. EXPERIMENTAL RESULTS

The photoconductivity of the experimental samples
pends on the wavelength of the incident light. In additio
the irradiation intensity was found to be important for o
serving negative photoconductivity with reasonable du
tions of the experiment. The typical dependence of the re
tivity of sample 1 on the illumination time is displayed
Fig. 1. As one can see in this figure, when the sample
irradiated withl5791 nm light ~curve 2!, at first positive
photoconductivity is observed and then, under further illum

TABLE I. Resistivityr, Hall densitynH , and Hall mobilitymH of electrons
and the sum(nSdH of the electron densities in all subbands, which is det
mined from the Shubnikov–de Haas effect, at temperatureT54.2 K.

Sample Form of nH, mH, (nSdH,
No. illumination r, V 1012 cm22 cm2/~V•s! 1012 cm22

In dark 202 31.5 981 26.2
1 l5791 nm 198 31.6 1000 26.3

l.850 nm 232 30.4 886 27.9

In dark 374 25.8 648 25.9
2 l5791 nm 367 24.9 683 26.0

l.850 nm 417 26.0 576 29.6

In dark 1330 8.03 586 8.28
3 l5791 nm 1173 8.62 618 8.39

l.850 nm 1235 8.81 574 8.38
-
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nation, it changes to negative. Forl>1120 nm ~curve 1!

only negative photoconductivity is observed. The dep
dence of the change in the resistivity as a function of
wavelength of the incident light for various radiation inte
sities for sample 1 is presented in Fig. 2. The same dep
dence is observed for sample 2. The resistivity of the
samples, after cooling in the dark to temperature 4.2 K a
illumination with monochromatic light with wavelength les
than 835 nm and intensity less than 20–70 nW/cm2, de-
creases~positive photoconductivity! and saturates in'30
min ~points1, Fig. 2!. Under further illumination of the same
samples with radiation with wavelength 786 nm,l,796
nm and intensityI'10 mW/cm2, the resistivity at first de-
creases to a minimum~point 3 in Fig. 2!, and then starts to
grow, reaching at saturation a value~point 4 in Fig. 2!
greater than the value in the dark~negative photoconductiv
ity!. Under continuous irradiation with light with wavelengt
greater than 835 nm and intensityI'20 nW/cm2 ~this inten-
sity of light is obtained by illuminating through a monochr
mator! the resistivity of the samples remains unchanged

-

FIG. 1. Resistance of sample 1 versus the irradiation time for light w
wavelengthl>1120 nm~1! andl5791 nm~2! and illumination intensity
10mW/cm2.

FIG. 2. Resistivity changeDr of sample 1, measured from the dark res
tivity, versus the wavelengthl of the incident radiation:1—illumination
through a monochromator with intensityI'70 nW/cm2 for 1 h;
2—illumination through a monochromator with intensityI'20 nW/cm2 for
1 h; 3—illumination through a filter 786 nm,l,796 nm withI'10 mW/
cm2 ~minimum value of the resistivity!; 4—illumination through the same
filter and with the same intensityI'10 mW/cm2 to saturation;5—l.850
nm filter to saturation,I'60 mW/cm2; 6—920 nm,l,930 nm filter to
saturation,I'10 mW/cm2; 7—l>1120 nm filter,I'60 mW/cm2 to satu-
ration.
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FIG. 3. Temperature dependences of the resistiv
of samples 1~a! and 2~b! in the dark~curve1! and
after illumination atT54.2 K with l5791 nm light
~curve 2! ~the illumination was switched off after
the minimum resistivity was reached! and l
.1120 nm light ~curve 3! ~the illumination was
switched off after resistivity saturation wa
reached!.
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dark
at least 5 hs~points2 in Fig. 2!. When the samples 1 and
are illuminated with radiation with wavelength greater th
850 nm and intensityI'10260 mW/cm2, the resistivity in-
creases from the dark value and reaches at saturation~points
5, 6, and7 in Fig. 2! the same value as for illumination wit
intense light with wavelength less than 835 nm. In this c
an initial decrease of the resistivity is not observed. In
negative photoconductivity regime, the resistivity rema
unchanged for at least 5 h after the illumination is switched
off at temperature 4.2 K, i.e., negative persistent photoc
ductivity is observed. The critical photon energy correspo
ing to wavelength 835 nm is approximately 35 meV less th
the GaAs band gap. This corresponds to the energy requ
to transfer electrons from shallow acceptors into the cond
tion band.21

The temperature dependences of the resistivityr of
heavily doped samples 1 and 2, measured in the dark
after various forms of illumination atT54.2 K and heating
at a rate of 3 K/min, are presented in Fig. 3. When samp
is heated, after illumination atT54.2 K ~up to saturation of
the resistivity! through a filter transmitting light with wave
length greater than 1120 nm, as the temperature increa
the resistivity decreases and crosses the dark curver(T) at
T'40 K ~Fig. 3a!. For sample 2 the heating curve, aft
illumination with ‘‘long-wavelength’’ radiation~we shall
call radiation with energy less than the band gap in galli
arsenide long-wavelength radiation! crosses the dark tem
perature dependence atT'120 K. After crossing the dark
dependencer(T), the resistivity curve after illumination
with ‘‘long-wavelength’’ radiation lies somewhat above th
resistivity curve after illumination with ‘‘short-wavelength’
radiation~radiation with photon energy greater than the ba
gap in gallium arsenide!, switched on at the moment whe
the resistivity reaches its minimum value. In all samples p
sistent photoconductivity exists up to temperatures'180 K.

For the less heavily doped sample 3 the resistivity
creases after illumination with ‘‘short-wavelength’’ an
‘‘long-wavelength’’ radiation, but the values of the resisti
ity at which saturation occurs are different for these t
forms of illumination—the resistivity decreases mo
strongly for illumination with ‘‘short-wavelength’’ radiation
After illumination at temperature 4.2 K is switched off, th
resistivity of this sample slowly returns to the dark value
several hours. The temperature dependences of the resis
of sample 3, which were measured in the dark, and w
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heating after irradiation atT54.2 K with light with various
wavelengths are presented in Fig. 4.

Besides the temperature dependences of the resisti
in the present work we investigated the Shubnikov–de H
effect to determine the electron density in the siz
quantization subbands. The magnetoresistivities for sam
1 and 2, respectively, atT54.2 K measured in the dark
~curves1! and after various forms of illumination~curves2
and3! are displayed in Figs. 5~a! and 6~a!, and the Fourier
spectra corresponding to the oscillations are displayed
Figs. 5~b! and 6~b!. The Shubnikov–de Haas effect showe
that for positive persistent photoconductivity the frequenc
~proportional to the two-dimensional electron densities in
size-quantization subbands!, observed in the Fourier spec
trum of the magnetoresistivity oscillations, remain prac
cally unchanged~curves2 in Figs. 5 and 6!, while for nega-
tive persistent photoconductivity the frequencies incre
~curves3 in Figs. 5 and 6! compared with the dark value
~curves 1 in Figs. 5 and 6!. The quantum electron
mobilities22 in the size-quantization subbands in the prese
of positive persistent photoconductivity increase by 10–2
~primarily in the upper subbands! compared with the dark
values, and in the presence of negative persistent photo
ductivity they decrease strongly~by a factor of 1.5! in the
lower subbands. This change of the quantum electron mo
ties affects the height and width of the peaks in the Fou
spectrum: For illumination with ‘‘long-wavelength’’ radia

FIG. 4. Temperature dependences of the resistivity of sample 3 in the
~curve1! and after illumination atT54.2 K with l5791 nm light~curve2!
and l5850 nm light ~curve 3!. The illumination was switched off after
resistivity saturation was reached.
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FIG. 5. ~a!—Magnetoresistivity oscillations of
sample 1 atT54.2 K in the dark~1! and after irra-
diation with l5791 nm light ~2! ~the illumination
was switched off after the minimum resistivity wa
reached! andl.850 nm light~3! ~the illumination
was switched off after resistivity saturation wa
reached!. ~b!—Amplitude of the Fourier transform
of the Shubnikov–de Haas oscillations versus t
density of two-dimensional electrons for sample
in the dark and after a corresponding illumination
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tion the height of the peaks corresponding to the lower s
bands is much smaller and the width is much greater tha
the dark@Figs. 5~b! and 6~b!#. The Hall effect investigations
confirmed that the change in the resistivity of the samp
after illumination is determined primarily by the change
the electronic Hall mobilities~see Table I!. For illumination
with ‘‘short-wavelength’’ radiation the Hall mobility aver
aged over all subbands increases, and the ‘‘long-wa
length’’ mobility decreases compared with the values in
dark.

4. DISCUSSION

The long-time character of the negative photoconduc
ity observed in the heavily doped samples 1 and 2 give
basis for inferring that this effect is associated with fillin
and emptying of DX centers. The increase in the total el
tron density, determined from the Shubnikov–de Haas eff
under illumination is 6.5% for sample 1 and 14% for sam
2 ~see Table I!. This appears to be due to the ionization
filled DX centers.12 It is believed that a DX center is a neg
tively charged localized state, trapping two free ele
trons.13–15 The Coulomb interaction between the positive
charged shallow donors and DX centers gives rise to a
relation in the spatial distribution of charged impurity atom
and decreases scattering of electrons by them.23–27Ionization
of DX centers by the light destroys the correlation and t
should decrease the electron mobility23,28 and lead to the
above-described negative persistent photoconductivity eff
It should also be noted that, possibly, the filled tin DX ce
-
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s
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e

-
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-
t,

e
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-
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ct.
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ters in GaAs are still neutral~they contain one electron
each!29 and weakly scatter electrons, while under illumin
tion the tin atoms become positively charged, and the
served decrease of the electron mobility is simply due
increase in the number of scattering centers.

The positive persistent photoconductivity can be e
plained as follows. Under illumination with ‘‘short
wavelength’’ radiation, electron–hole pairs are produc
and they are separated by a weak electric field which ex
at equilibrium in thei-GaAs buffer layer between the sub
strate and thed-layer. In the process, the electrons sli
down into thed-layer, and the holes neutralize the charg
acceptors, which are present in small quantities ini-GaAs, or
slide down into the substrate. The characteristic acce
density in i-GaAs is 431014 cm23, which for buffer layer
thicknessd50.45 mm corresponds to a two-dimension
density 1.831010 cm22. As a result of the spatial separatio
of the electrons and holes in the buffer layer, an additio
electric field arises and completely compensates the in
field, the bands are rectified,11 and the electron–hole pairs n
longer separate. The additional charge-carrier density
quired for such a nonequilibrium situation to arise is appro
mately

Dns5
«0«

ed
DV,

whereDV50.75 V is the potential corresponding to a de
chromium level in the substrate30 and d50.45 mm is the
buffer layer thickness in the experimental structures. T
s

s

he
FIG. 6. ~a!—Magnetoresistivity oscillations of
sample 2 atT54.2 K in the dark~1! and after irra-
diation with l5791 nm light ~2! ~the illumination
was switched off after the minimum resistivity wa
reached! andl.850 nm light~3! ~the illumination
was switched off after resistivity saturation wa
reached!. ~b!—Fourier spectrum of the
Shubnikov–de Haas oscillations for sample 2 in t
dark and after corresponding illumination.
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value of Dns obtained in this manner is 1.231011 cm22,
which corresponds to a small increase of the Shubnikov e
tron densities in the samples~for example,Dns for sample 3
is 1.131011 cm22). The rectification of the conduction ban
bottom increases the effective width of the quantum well.
the same time, the wave functions of the electrons are c
centrated farther away from the charged donors of
d-layer. This decreases the electron scattering and incre
the electron mobility. This should affect the electron mob
ity most strongly precisely in the upper subbands, since
the wave functions of electrons in the upper subbands
are most sensitive to such an increase in the width of
potential well.22

Under ‘‘long-wavelength’’ illumination, together with
ionization of DX centers, the electrons are excited from de
levels of chromium in the substrate and slide down into
d-layer. At the same time, neutralization of the acceptors
the i-GaAs buffer layer by holes, just as with ‘‘shor
wavelength’’ illumination, does not occur. The neutralizati
of charged acceptors under illumination with ‘‘shor
wavelength’’ radiation results in an additional increase of
electron mobilities in the upper subbands,22,31 and for this
reason in the present case the resistivity of the samples
creases more strongly than for illumination with ‘‘long
wavelength’’ radiation.

The fact that positive persistent conductivity arises
cause of the spatial separation of the photogenerated
trons and holes is confirmed by measurements of the tem
ral relaxation of the photoconductivity. The decrease of
conductivity with time after illumination is switched off i
described well by a logarithmic time dependence, which
characteristic for spatial charge separation.16,17 Figure 7 dis-
plays the relaxation of the positive persistent photocond
tivity in sample 3 and a fit of the function

s~0!2s~ t !5A ln~11t/t!, ~1!

obtained in Ref. 16 and valid for the initial time interval,
this photoconductivity. The relaxation parametert for
sample 3 illuminated with ‘‘short-wavelength’’ radiation a
T577 K is 19 s, while for illumination with ‘‘long-
wavelength’’ radiation it is 68 s. AtT54.2 K the relaxation

FIG. 7. Temporal relaxation of the positive photoconductivity of sampl
after illumination atT577 K with l5791 nm light ~1! and l.1120 nm
light ~2. Solid lines—fit of the formula~1!.
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parameter increases and is 23 s for ‘‘short-wavelength’’
diation and several tens of minutes for ‘‘long-wavelength
radiation. Neutralization of charged acceptors under illum
nation with ‘‘short-wavelength’’ radiation results in faste
relaxation of the positive persistent photoconductivity th
for illumination with ‘‘long-wavelength’’ radiation, becaus
of the recombination of the electrons in thed-layer and the
close-lying acceptors. In heavily doped samples 1 and 2
the regime of positive persistent photoconductivity, the
laxation times of the photoconductivity are close to the
laxation times in sample 3.

5. CONCLUSIONS

In summary, we have investigated for the first time neg
tive persistent conductivity in GaAs structures with t
d-doped vicinal faces. This effect is observed only
samples with a high level of doping. An increase in resist
ity is accompanied by an increase in the electron density
a substantial decrease of electron mobility, which is w
determines the negative sign of the photoconductivity. T
increase in electron density is a consequence of the ion
tion with deep metastable levels—DX centers. The decre
of the mobility could be due to breakdown of the spat
correlation in the arrangement of positively charged don
and negatively charged DX centers as well as to an incre
in the density of positively charged scattering centers, if
DX centers were neutral before ionization.

This work was supported by the Russian Fund for Fu
damental Research~Grant 97-02-17396! and the Dutch orga-
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Current transport along the †001‡ axis of YBCO in low-temperature superconductor—
normal metal—high-temperature superconductor heterostructures
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The electrophysical properties of heterojunctions several microns in size, obtained by successive
deposition of the metal-oxide high-temperature superconductor YBa2Cu3Ox , a normal
metal Au, and the low-temperature superconductor Nb, were studied experimentally. Current
flows in the @001# direction of the epitaxial YBa2Cu3Ox film. It is shown, by comparing the
experimental data with existing theoretical calculations, that for the experimentally realizable
transmittances (D̄5102521026) of the YBa2Cu3Ox—normal metal boundary the critical current
of the entire heterostructure is low~of the order of the fluctuation current! because of a
sharp change in the amplitude of the potential of the superconducting carriers at this boundary.
The current–voltage characteristics of the heterostructure studied correspond to tunnel
junctions consisting of a superconductor withdx22y2 type symmetry of the superconducting wave
function and a normal metal. ©1999 American Institute of Physics.@S1063-7761~99!02012-0#
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1. INTRODUCTION

Currently many properties of HTSCs are being estima
using ad-type wave function for the superconducting car
ers. Specifically, this model explains the magnetic field
pendence of the critical current in bimetallic two-junctio
SQUIDs consisting of YBa2Cu3Ox ~YBCO! and Pd1 and the
spontaneous excitation of magnetic flux quanta in HT
structures with three bicrystalline boundaries.2 At the same
time, experiments on electron tunneling in thec direction in
HTSCs give contradictory results. On the one hand,
HTSC—low-temperature superconductor (s-type supercon-
ducting wave function! junctions there is no critical curren
for junctions in thec direction,3–5 which agrees well with the
theory of junctions consisting of superconductors with
d-type wave function for the superconducting carriers and
s-superconductor. On the other hand, an appreciable cri
current, whose amplitude varies nonmonotonically as a fu
tion of the magnetic and microwave fields nonmonotonica
as predicted for junctions withs-superconductors, has bee
observed in a number of experiments.6–8 To explain the ex-
periments of Refs. 6–8, it has been conjectured tha
yttrium-group HTSC materials a mixture of superconduct
s- and d-type carriers arises because of the orthorhom
nature of these materials, and diffuse scattering near
boundary or twinning of HTSC films results in a larger co
tribution from thes component.9,10 We note that an estimat
of the parameters of the Pb/~Au,Ag!/YBCO structures inves-
1161063-7761/99/89(12)/6/$15.00
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tigated in Refs. 6–8 gives transmittancesD5102721029,
averaged over the directions of the moments, for the barr
of the HTSC—normal metal barriers with quite large jun
tion areas,S50.121 mm2.

In the present paper we report the results of an exp
mental investigation of current flow ins-supercon-
ductor—normal metal—HTSC heterojunctions, fabricated
successive deposition of YBCO, a normal metal~ordinarily
Au!, and Nb, with much smaller areas (S'838 mm2) and
higher transmittance (102521026) of the YBCO—normal
metal boundary. The experimental data are analyzed f
two standpoints: on the basis of the isotropic theory os
superconductivity and from the standpoint of the mode
theory, which assumes ad-type wave function in the super
conductor YBCO film.

2. EXPERIMENTAL PROCEDURE AND EXPERIMENTAL
SAMPLES

The junctions were prepared by using the sequence
operations shown in Fig. 1. First, the epitaxial YBCO film
were grown either by laser ablation or using cathodic sp
tering in a diode configuration with dc current and high ox
gen pressure. During YBCO film growth, a temperatu
700– 800 °C was maintained and the pure oxygen pres
was 0.3–1 mbar for laser ablation and 3 mbar for catho
sputtering. Neodymium gallate with~110! orientation or the
r plane of sapphire with a CeO2 buffer layer was used as th
0 © 1999 American Institute of Physics
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FIG. 1. Sequence for the preparation of HTSC–norm
metal–superconductor heterostructures: a! deposition of
a trilayer heterostructure Nb/Au/YBCO; b! formation of
a region of the heterojunction using ionic etching;!
deposition of the insulator CeO2 to prevent contacts with
YBCO in the basal plane; d! fabrication of an Au electric
layout; e! top view of the fabricated heterostructures.
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substrate. Epitaxial YBCO films, 100–150 nm thick, withc
orientation and the following superconducting paramete
measured by the resistive method, were obtained: 1! the criti-
cal temperature at which the resistance of the film depos
on a 535 mm2 substrate is zero,Tc f584289 K; 2! the
width of the superconducting transition~determined at the
levels 0.9 and 0.1 times the resistance of the film at the o
of the transition into the superconducting state!, DTc50.5
21 K; 3! the ratio of the resistances at temperatures 30
and 100 K,r300 K/r100 K'2.8. The number of 0.3–1mm in
diameter particles on the surface of the YBCO film, whi
are caused by the formation of different phases of YBCO
well as Y, Ba, and Cu oxides, was;106 cm22. Evidence of
the high quality of the YBCO films fabricated is the sma
width of the ~005! x-ray peak of YBCO, FWHM~005!
'0.2°, for u/2u scanning with 0.15mm film thickness.

A thin, 20 nm thick, layer of normal metal~Au, Ag, Pt!
was deposited at 100 °C immediately after the YBCO fil
using either laser ablation or high-frequency cathodic sp
tering ~Fig. 1a!. Next, a 100–150 nm thick Nb layer wa
deposited on a water-cooled substrate by a magnetron
thodic sputtering. The critical temperature of the superc
ducting transition in Nb films was 9.1–9.2 K. Niobium
used as the low-temperature superconductor because it
not enter into a solid-phase chemical reaction with Au. W
note that in the experiments of Refs. 4–7, where Pb is u
a superconducting alloy of Au and Pb can form.
s,
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In the trilayer heterostructure obtained, photolithograp
and ion and plasma-chemical etchings were used to f
regions of heterojunctions which during photolithograp
were fixed on sections with the minimum number of partic
on the surface of the YBCO films~Fig. 1b!. To prevent elec-
trical contact in the basal~a–b! plane of the YBCO film, the
lateral region of the junction was insulated with a CuO2 layer
with a central window with the dimensionsS5838 mm2

~Fig. 1c!. At the final stage explosion lithography was us
to form junction areas and Au wiring in the form of tw
stripes, which enable separated input of current and volt
to the top electrode Nb~Figs. 1d, e!. The geometry used fo
the gold contacts~see Fig. 1! makes it possible to investigat
the electrophysical properties of Nb/Au/YBCO structures
the YBCO film in the superconducting state. More than
Nb/normal metal/YBCO samples, where Au, Ag, and
were used as the normal metal, were prepared. In the pre
paper the results of investigations performed on nine Nb/
YBCO samples, in which the variance of the characteris
resistancesRNS (RN is the differential resistance, measure
for V.20 mV) of the boundaries at liquid-helium temper
ture did not exceed a factor of 4~see Table I!.

3. EXPERIMENTAL RESULTS

The dependences of the resistancesR of the heterojunc-
tions on the temperatureT and 4mm wide the test bridges
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consisting of YBCO films placed on the same substrate, w
1–5 mA bias currents and their current-voltage characte
tics ~IVCs! in the temperature 4.2–300 K were measur
Figure 2 shows the temperature dependences for one o
substrates. At temperaturesT.Tc f metallic behavior of
R(T) is observed, i.e., the resistance decreases with temp
ture, as is characteristic for ac-oriented YBCO film with
current flow in the basal plane of YBCO. As a rule,Tc f of
the bridges and heterojunctions was less than the cri
temperature of YBCO films, measured immediately after
trilayer heterostructure was prepared. The degradation o
superconducting properties of the film is evidently due to
decrease in the amount of oxygen during ionic etching. T
inset in Fig. 2 shows the functionR(T) for a heterojunction
at temperaturesT,Tc f , demonstrating that the resistance
the heterojunction increases as temperature decreases
value of R(T) at temperaturesT,Tc f depends on the cur
rent. This attests to a nonlinear current dependence of
differential resistanceRd of the heterojunction.

A family of curves ofRd versus the voltageV at various
temperatures is shown in Fig. 3. It is evident thatRd(0)
increases asT decreases. This growth is reflected in an
crease of the resistanceR(T) ~Fig. 2!. The nonlinearity ob-
served in the IVC in the temperature range 72 K,T,84 K is
due to the destruction of the superconductivity of the YBC
film. The functionRd(V) increases. This is due to the sy
tematic destruction of superconductivity in sections of
YBCO electrode as the currentI increases. We note that th

TABLE I. Electrophysical parameters of superconductor structures m
sured atT54.2 K.

Sample Rd(0), V RN , V RNS, 1026 V•cm2 Rd(0)/RN D̄, 1026

P9J2 12.2 7.0 4.5 1.7 4.8
P9J3 9.8 6.0 3.8 1.6 5.6
P10J2 10.5 5.9 3.8 1.8 5.6
P10J3 10.6 5.9 3.8 1.80 5.6
P11J2 4.9 4.2 2.7 1.2 7.9
P11J3 5.2 3.6 2.3 1.4 9.3
P12J2 2.4 2.0 1.3 1.2 16.7
P13J2 7.2 3.5 2.2 2.1 9.5
P13J3 7.5 6.6 4.2 1.1 5.1

FIG. 2. Temperature dependence of the resistance of the heterostructu
of a 4 mm wide bridge arranged on the same substrate. Inset:R(T), on an
enlarged scale, of the heterojunction at temperaturesT,Tc , where the re-
sistance of the YBCO film is zero.
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junction resistance atT'Tc f is somewhat higher than th
asymptotic resistanceRN , measured forV.20 mV andT
!Tc f .

The results of the measurements of the electrophys
parameters of several samples, prepared by the same me
are presented in Table I. The resistanceRNS of the boundary
at T54.2 K makes it possible to estimate the average~over
the direction of the momentum of the quasiparticles! bound-
ary transmittance, which we shall employ below,11 as

D̄5
2p2\3

e2pF
2

1

RNS
5

2rYBCOl YBCO

3RNS
,

wherepF is the smallest value of the Fermi momentum f
YBCO or Au.11 The values of the transmittance of th
boundaries of the fabricated structures forrYBCOl YBCO'3.2
310211V•cm2 ~Ref. 4! are also presented in Table I.

Test samples with bilayer heterostructures Au/YBC
Nb/YBCO, and Au/Nb, fabricated using a technology wi
the same conditions as for the formation of the experime
Nb/Au/YBCO heterostructures, were also investigated. T
resistancesRNS of these boundaries measured at liqu
nitrogen temperature areRNS(Au/YBCO);1028 V•cm2,
RNS(Au/Nb);10212V•cm2, and RNS(Nb/YBCO)
;1024 V•cm2. Here the series resistance of the YBCO fil
for Tc f,77 K was taken into account. Comparing the
quantities with the data presented in Table I, it is evident t
the resistance of the Au/Nb boundary can be neglected,
the resistance of the Au/YBCO boundary, which increa
when Nd is deposited on top of Au, probably, because of
interaction of Nb with YBCO, makes the main contributio
to the resistance of the experimental heterojunctions.
resistance of a direct Nb/YBCO contact is very large. Mo
likely, the increase in the contact resistance is due to
displacement of oxygen out of the YBCO film into the N
which has good gettering characteristics, deposited on
We note that the oxygen mobility in thea–b planes of
YBCO is much higher than in thec direction.

Figure 4 shows the surface of a bilayer Au/YBCO he
erostructure, measured with an atomic-force microscope.
evident that its surface consists of Au granules separate
;1 mm. The subsequently deposited Nb film covers the s
face of the Au granules, where a good electric contact w
the YBCO film is created, and forms a direct contact w

a-

and

FIG. 3. Family of curves of the differential resistance of the heterojunct
at various temperatures versus voltage. The scale along the resistanc
for Rd(V) at T591 K is shown on the right-hand side.
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FIG. 4. Three-dimensional image of the surface of a bilay
heterostructure Au/YBCO. The image was obtained with
atomic-force microscope.
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YBCO, where, as a result of a decrease in the amoun
oxygen in the basal planes, the contact resistance is m
higher. This could be the reason why the resistance of
trilayer heterostructure Nb/Au/YBCO is higher than that o
bilayer Au/YBCO heterostructure.

4. DISCUSSION OF THE EXPERIMENTAL RESULTS

The experimental trilayer heterostructure can be rep
sented as Nb/Au/YBCO granules connected in parallel
sections of direct contact of Nb and YBCO via pores in t
Au film. Since the characteristic resistance of the Nb/YBC
boundary is several orders of magnitude greater thanRNS of
the trilayer heterostructure Nb/Au/YBCO, and the surfa
area of the granules and pores, according to our estim
differ severalfold~see Fig. 4!, current flows mainly through
the boundary of Nb/Au/YBCO granules. A trilayer Nb/Au
YBCO heterostructure can be described by the model sh
in Fig. 5; a 100–150 nm superconducting YBCO electro
(Sd) with critical superconducting transition temperatu
Tc f587 K; a 1–3 nm YBCO (Sd8) layer with an oxygen
deficit and therefore disrupted superconducting propertie
10–20 nm thick layer of normal metal~Au!; a 100–150 nm
thick superconducting Nb (Ss) electrode withTc59.2 K. A
similar model has been proposed in Ref. 4 to estimate
electrophysical parameters of the system Pb/Au/YBCO.

First, we shall estimate the change in the supercond
ing order parameter in Nb as a result of the contact with A
Since the measured value of the boundary resistance is
small, it can be assumed that the superconducting Gre
function, characterizing the amplitude of the interaction p
tential F of the superconducting carriers and its derivat
with respect to the coordinatex are continuous at the bound
ary. Using the calculations of Refs. 12 and 13, we find t
the superconducting order parameterD1 of Nb at the Nb/Au
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boundary is somewhat less than its equilibrium valueDNb in
the interior volume of the film and isD1 /e'560mV. For
estimates, the following values of the electrophysical para
eters of Nb and Au were used atT54.2 K: rNbl Nb54
310212V•cm2, jNb50.7331026 cm, vF

Nb533107 cm/s,
Tc0

Nb59.2 K and rAul Au58310212V•cm2, jAu51026 cm,
andvF

Au51.43108 cm/s, wherevF
Nb,Au is the Fermi velocity

andl Nb,Au is the mean-free path length in Nb and Au, respe
tively.

Let us estimate the change in the order parameter at
YBCO/Au boundary. We assume that as a result of the
teraction of YBCO and Nb, a superconducting surface la
Sd8 of the order of 3 nm thick with critical temperatur
less than 4 K is formed.4 Assuming that the coherence leng
of Sd8 differs negligibly from jc2YBCO and is jS

d8
55

31028 cm and that the resistivity increases by an ord
of magnitude4—from rc2YBCO51024 V•cm2 to rS

d8
51

31023 V•cm2, we obtain that at the Au/YBCO boundar

FIG. 5. Schematic diagram of the distribution of the order parameter~solid
line! and the amplitude of the pair potential~dashed lines! in a direction
perpendicular to the surface of an Nb/Au/YBCO heterostructure.
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the order parameter decreases on the YBCO side decre
by a factor of approximately 100,D28/e'140mV. A poten-
tial barrier with low transmittance,D̄;1026, is present at
the Au/YBCO boundary. This barrier decreasesD2 by an-
other factor ofD̄, D25D28D̄. Here we used the theoretica
estimates, which are strictly applicable for superconduc
with s-type pairing. However, as the calculations of Refs.
and 14 show, the character of the change in the order pa
eter at the boundary of ad superconductor with a norma
metal or insulator does not differ much from a junction w
an s superconductor for orientations of the normal to thed
superconductor along the principal crystallographic axes

As a result, we can estimate the amplitude of the sup
conducting current through the entire structure by using
model of a superconductor—normal metal—supercondu
(Sd8NS) junction, on the boundaries of whose weak sect
the values of the order parameters are known:D2 /e
'0.004mV and D1 /e'560mV. In what follows, we shall
employ the theory developed forS2N2S junctions. The
thickness of theN layer is of the order of the coherenc
length, so that the change in the superconducting order
rameter in the interlayer can be neglected. As a result,
product of the critical currentI c by RN at low temperature is
I cRN'A(D1D2)/e50.09mV. Taking account of the resis
tance of the heterojunctions (RN510V), we obtain that the
critical current of the structureI c'0.009mA is less than the
fluctuation currentI f51 mA of the measuring system an
does not affect the experiment even if YBCO contains
mixture ofd ands components of the superconducting ord
parameter and the number ofs components is greater tha
the number ofd components. For pured pairing, the super-
conducting current for flow along thec direction in YBCO
must be zero because of the type of symmetry of the su
conducting order parameter. To estimate the critical curr
we assumed that the large width of the potential barrier~sev-
eral coherence lengths! prevents direct tunneling of the su
perconducting current through the barrier. We note that
have considered quite strong suppression of the order pa
eter at the YBCO boundary because of degradation of
superconducting parameters of the HTSC film. Howev
even in the absence of suppression of the order paramet
the surface layer of YBCO,D1 /e514 mV, the critical cur-
rent of the heterojunctions Nb/Au/YBCO will once again
comparable to the fluctuation current because of the decr
in the order parameter on the low-transmittance barrier.

The finite critical current, observed in a number
works,6–8 in Pb~Au,Ag!/YBCO heterostructures with a muc
larger value ofRNS and large junction areas could be due
the fact that treatment of the YBCO electrode with a solut
of bromine and alcohol, as was done in these works, op
up the basal planes of YBCO, the transmittance of wh
boundaries with a normal metal or ordinary superconduc
is three orders of magnitude higher than in thec direction
(RabSab!RcSc). Ultimately, the superconducting curre
flows along the contacts to the basal plane of YBCO, and
normal resistance is determined by parallel connection of
resistances of the boundaries along thec and in the basa
plane. In our case current flow is impeded in the direction
ses
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the basal plane along the Nb/YBCO junctions, most like
because of substantial displacement of oxygen out of YB
into Nb.

It is important that lead can react with Au, forming
superconducting alloy. Then, the Pb/Au/YBCO structu
contains a superconductor instead of a layer of normal me
This is confirmed by the appearance of gap features of l
in the IVCs6–8 at sufficiently low temperatures (T51.2 K).

A new explanation of the experimental data on the flo
of a superconducting current through low-temperat
superconductor—HTSC junctions was proposed recently
has been shown theoretically15 that a strong spin-orbit inter
action, which is observed in Pb/Ag structures, intensifies
perconducting current flow through a barrier. Replacem
of Pb by an Al- or Nb-type superconductor decreases
spin-orbit interaction, and the superconducting current
creases as a result.

Let us discuss the dependencesRd(V) for heterojunc-
tions as a function of temperature in the range 4.2–100
~Fig. 3!. For T!Tc the IVC as a whole corresponds to he
erojunctions of the type superconductor—insulator—norm
metal (S2I 2N): There is a location whereRd increases at
low voltages. However, the feature onRd(V) that is due to
the gap in YBCO is not observed in the experiment. T
corresponds to a junction with a superconductor with gap
superconductivity, including with d-type supercon-
ductivity.14,16,17 According to the calculations performed i
Ref. 14, the feature ateV'D in the density of states of ad
superconductor gives a logarithmic dependenceRd} ln(T),
ln(ueVu2uDu), subjected to strong temperature broaden
just as for a gaplesss superconductor. We note that fors
superconductors with a gap a power-law divergence is
servedRd}T21/2 ((eV)22D2)21/2. The features in the form
of changes inRd(V) at voltagesV,2 mV due to the nio-
bium gap have virtually no effect in our experiment, and w
did not study them in detail.

For s-type symmetry of the order parameter in a sup
conductor at low temperatures,kT!D, the number of ex-
cited quasiparticles decreases exponentially with temp
ture. Therefore the resistance increases proportion
Rd(0)}(2D/T).17 In a superconductor withd-type pairing,
the presence of nodes with a zero order parameter mak
possible to excite a quasiparticle even at very low tempe
ture, T!D. As a result,Rd(0) grows more slowly as tem
perature decreases.14 As one can see in the inset in Fig.
nearly linear growth ofRd(0) with decreasingT is observed
in the experiment. The dependenceRd(V) is quadratic asV
→0, which agrees qualitatively with calculations for ad
superconductor.14

One of the most surprising features of superconduc
with d-type pairing is the appearance of two types of bou
states, which, as a rule, are not observed ins-super-
conductors.17 Surface states with low energies at the boun
ary of thed superconductor with an insulator are due to t
change in sign of the order parameter at the Fermi surface
quasiparticles reflected from the boundary.16,17 The super-
conducting parameter for ad-type superconducting wav
function changes sign with a 90° circuit around thec axis.
Since the direction of the momentum of a quasiparti
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changes on mirror reflection from a boundary, bound sta
arise at zero energies because of Andreev reflection.
leads to the appearance of a dip inRd(V) at smallV, as is
observed experimentally for a transport current in the@110#
direction in a YBCO film~see Refs. 6–8, 18, and 19!. In our
case, the contribution of such quasiparticles is small beca
the normal to the boundary is oriented along one of the p
cipal crystallographic directions in YBCO. For mirro
reflected quasiparticles, there is no Andreev reflection
cause the phases of the order parameter are the sam
incident and reflected quasiparticles.

An additional mechanism was recently predicted th
retically for the appearance of bound states due to the
pression of the order parameter of ad-superconductor for
orientations of the normal with respect to the boundary d
ferent from the principal crystallographic axes or for diffu
reflection at a boundary with an insulator.17 These states ar
observed at energies different from zero, and estimate
Ref. 17 show that they are more stable with respect to
quality of the boundary. The appearance of bound sta
should be observed in the dependencesRd(V) as a decrease
of Rd for eVr of the order of the gap in the
d-superconductor, and in addition the ratioeVr /D depends
on the angle between the normal and the crystallograp
axes of thed-superconductor. The condition for the existen
of bound states with nonzero energy is suppression of
order parameter near the boundary. This occurs in our
periment because of the degradation of the superconduc
properties of the surface. Indeed, in all samples we obs
features atVr515 mV, whereVr is virtually temperature-
independent.

5. CONCLUSIONS

In the present work, heterojunctions with dimensions
several microns, obtained by successive deposition
YBCO, Au, and Nb, with transport current flowing in YBCO
along thec axis were fabricated and studied experimenta
The transmittances of the heterostructures, as estimated
the resistance of the junctions, are two orders of magnit
greater than the existing experimental data, and the area
the heterojunctions are much smaller. The IVCs of the h
erojunctions with resistances differing from one another b
factor of 4 were investigated. Estimates based on the p
imity effect showed that the absence of a critical current
heterojunctions is probably due to a decrease in the am
tude of the potential of the superconducting carriers at
Au/YBCO boundary. The curves of the differential res
tance of the heterojunctions versus the voltage are simila
s
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the case ofS2I 2N junctions with a gapless superconducto
specifically, the absence of a YBCO gap feature could a
correspond tod-type superconductivity, specifically, to th
presence of nodes of the order parameter as the directio
the momentum of the quasiparticles changes by 45°.
dependence ofRd(0) on T also corresponds to ad-type su-
perconductor.

We thank Yu. S. Barash, D. A. Golubev, A. V. Za�tsev,
Z. G. Ivanov, and M. Yu. Kupriyanov for a helpful discus
sion of the experimental results, and D. Ertz, P. B. Mozha
and T. Henning for assisting in the experiment.

This work was supported in part by the program ‘‘Cu
rent Problems of Condensed-State Physics’’~subsection
‘‘Superconductivity’’!, the Russian Fund for Fundament
Research, and the INTAS program of the European Unio

* !E-mail: gena@lab235.cplire.ru

1D. A. Wollman, D. J. Van Harlingen, W. C. Leeet al., Phys. Rev. Lett.
71, 2134~1993!.

2C. C. Tsuei, J. R. Kirtley, C. C. Chiet al., Phys. Rev. Lett.73, 593~1994!.
3H. Akoh, C. Camerlingo, and S. Takada, Appl. Phys. Lett.56, 1487
~1990!.

4J. Yoshida, T. Hashimoto, S. Inoueet al., Jpn. J. Appl. Phys., Part 131,
1771 ~1992!.

5J. Lesueur, L. H. Greene, W. L. Feldmannet al., Physica C191, 325
~1992!.

6A. G. Sun, A. Truscott, A. S. Katzet al., Phys. Rev. B54, 6734~1996!.
7A. S. Katz, A. G. Sun, R. C. Dyneset al., Appl. Phys. Lett.66, 105
~1995!.

8J. Lesueur, M. Aprili, A. Goulonet al., Phys. Rev. B55, 3398~1997!.
9J. R. Kirtley, K. A. Moler, and D. J. Scarlapino, E-print archiv
cond-mat/9703067~1997!.

10L. J. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls, J. Low Tem
Phys.101, 1099~1995!.
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An inhomogeneous medium consisting of a random mixture of three nondissipative~Hall! phases
is studied. An exact expression is obtained for the effective conductivity of such a medium
with arbitrary concentrations of the phases and the additional condition that the concentrations of
two phases are the same. ©1999 American Institute of Physics.@S1063-7761~99!02112-5#
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1. As is well known, randomly inhomogeneous med
have been studied mostly in the two-dimensional case. T
is due to the additional symmetry of the two-dimension
equations for the constant current and Ohm’s law

div j50, curle50, ~1!

j5s̃e, ~2!

and their invariance relative to rotational transformations

j5aj 81 ibe8, e5ce81 id j 8. ~3!

Here the vectorsj and e are the electric current and field
s̃5s/(11 ib) is the conductivity tensor of the medium in
magnetic field,s is the conductivity,b5mB is the Hall
factor,m is the particle mobility, and the coefficientsa,b,c,
and d are real. The imaginary unityi describes rotation by
p/2 in the complex plane. The magnetic field is direct
perpendicular to the plane. Using the transformations~3!, we
obtain an expression for the conductivity tensor of t
primed system:

s̃85
b1 ias̃

ds̃1 ia
. ~4!

A similar expression is also obtained for the effective co
ductivity tensor of the primed system. For two-pha
randomly-inhomogeneous media and equal concentrati
an expression for the effective conductivity tensor follo
from Eq. ~4!.1 We note that this expression is obtained f
equal concentrations of the phases~at one concentration
point!.

In the present paper the effective conductivity of thre
phase nondissipative~Hall! randomly-inhomogeneous med
is calculated and a qualitative description of the results
tained is given. The possibility of solving the problem e
actly is based on the representation of the Dykhne trans
mations in the form of linear-fractional conforma
transformations of the conduction plane of the initial m
dium onto the conduction plane of the transformed, prim
system.2 According to the general theory of conformal tran
formations, they are given by three points in the plane a
their images. This is why it is possible to transform a thre
phase two-dimensional medium into a similar mediu
However, according to Ref. 1, this possibility is realized on
1161063-7761/99/89(12)/2/$15.00
is
l
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-
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d

d
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.

for one value of the conductivity of the third phase:s
5As1s2. We shall show that this limitation becomes imm
terial for current flow under quantum Hall effect condition
(sxx50, sxy5const! or, in other words, for current flow
along nondissipative phases. Thus, a three-phase Hall
dium can be transformed for any values of the conductivit
and arbitrary concentrations of the phases provided that
concentrations of two phases are the same, but they ca
arbitrary in magnitude, just as the concentration of the th
phase~the sum of the three concentrations is 1!. This makes
it possible to solve the problem of the effective conductiv
of three-phase randomly inhomogeneous media in the en
concentration interval.

2. To obtain an exact expression for the effective co
ductivity of nondissipative three-phase random
inhomogeneous media, we return once again to the exp
sion relating the conductivity of the primed and initi
systems@Eq. ~4!#. We shall consider this as a conform
mapping of one plane into another:2

W5L~z!5
b1 iaZ

dZ1 ic
. ~5!

Let us rewrite the expression~4! in the form

ds8s2b5 i ~as2cs!. ~6!

Let us interchange the phases 1 and 2:s185s2 , s285s1.
This is possible if the concentrationsXi of the phases are th
same:

X15X2 . ~7!

The condition~7! is important and will be used below t
obtain the macroscopic equivalence of the initial and prim
systems. Then, from Eq.~6! we obtain two relations betwee
the coefficientsa,b,c, andd:

a52c, ds1s22b5 ia~s12s2!. ~8!

If the conductivities are real, which is the case considered
Ref. 1, the coefficienta in the relation~5! must be set equa
to zero. Otherwise, we obtain complex expressions for
coefficientsa,b,c, andd which are real by definition. In this
case, there arises the above-indicated restriction on the
ductivity of the third phase, because of the fact that there
not enough parameters in the problem. However, if the c
ductivities of the phases are assumed to be purely imagin
6 © 1999 American Institute of Physics
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— capacitive or inductive,s5 ivL, s5( ivC)21, or purely
Hall, s5 isxy ~in the quantum Hall effect regimesxx50,
sxy5 const!, and the coefficienta can be assumed to b
nonzero, the coefficientsb andd will also be real. Then the
condition for the conductivity of the third phase will be sim
ply another condition for determining all coefficients of th
transformations~3!:

ds3s382b5 ia~s31s38!. ~9!

Let s385s3. Then the primed system with the addition
condition~6! is macroscopically equivalent to the initial sy
tem:se85se . From Eq.~6! we also obtain an expression fo
the effective conductivity of a three-phase random
inhomogeneous medium in the entire concentration rang

se5 i H a

d
6F S b

c
1

a

dD a

dG1/2J , ~10!

where the coefficientsa,b,c, andd were determined abov
by the conditions~8! and ~9!.

3. Let us discuss the result obtained. In the derivation
Eq. ~10!, no restrictions on the concentrations of the phas
except for the condition~6!, were used. Therefore the resu
obtained is valid for any concentrations of the phases, s
cifically, when the concentrations of two phases are the s
and arbitrary in magnitude~the sum of the concentrations o
all phases is 1!.

Let us consider the limiting cases following from E
~10! and elucidating the meaning of this equation. Fors3

50, according to Eq.~8!, the coefficientb vanishes and we
obtain for the effective conductivity the two solutions

se
(1)50, se

(2)52i
a

d
5 isxy

(e)5 i
2sxy

(1)sxy
(2)

sxy
(1)1sxy

(2)
. ~11!

Let us clarify the results obtained. For concentrations
the first and second conducting phases such thatX11X2

<1/2, it is impossible to form an infinite cluster — an e
semble of conducting paths going to infinity, so that the
fective conductivity of the medium is zero. This correspon
to the first zero solution. For concentrations of the first a
second phases greater than the critical value, the effec
conductivity changes abruptly and remains constant as
concentration of the dielectric phase decreases. This m
that as the concentration of the dielectric varies, the elec
field in the conducting Hall phases increases in a manne
that the total current in the system remains constant
therefore the effective Hall conductivity also remains co
stant.
-
:

f
s,

e-
e

f

-
s
d
ve
he
ns
ic
so
d
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For s35` the coefficientd vanishes:d50. The effec-
tive conductivity also assumes two values:

se
(1)5`, se

(2)5 i
b

2c
5 isxy

(e)5 i ~sxy
(1)1sxy

(2)!/2. ~12!

The meaning of the results is also obvious. If the sumX1

1 X2 of the concentrations is less than the critical value,
effective conductivity of the medium is determined by t
superconducting phase, shunting the metallic phases. If
sum of the concentrations is greater than the critical va
the effective conductivity is determined by the resistance
the metallic phases. We also note that in the cases consid
above, the effective conductivity reaches its limiting value
the minimum and maximum possible values.

The situation is similar if the conductivity of the thir
phase is finite. If the sum of the concentrations of the fi
and second phases is below a threshold value, where
impossible to construct an infinite cluster without the th
phase, the effective conductivity of the medium has o
value. As the percolation threshold with respect to the co
mon concentration of the first and second phases is cros
the effective conductivity changes abruptly and the cond
tivity of the third phase likewise participates in determinin
the total effective conductivity by a different, completely d
termined, way. We underscore once again that the effec
conductivity is independent of the concentrations of t
phases in a wide range of concentrations.

For a random mixture of Hall and metallic phases, it h
been shown in Ref. 3 that in a wide range of concentratio
specifically, as long as flow along the Hall phase occurs,
effective characteristics of such a system are constant
equal to the corresponding values for a Hall medium. T
corresponds to current flow in the system described with
minimum ~zero! heating. Unfortunately, similar argumen
are not applicable for the system studied, where all pha
are nondissipative.
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Equations describing the temporal dynamics of the order parameterj(t) of a metal–semiconductor
phase transition and the densityn(t) of electron–hole pairs in a Peierls system in a light
field are obtained on the basis of the Lagrange equation for the phonon mode and the Liouville
equation for the density matrix of the electronic subsystem. The equations obtained are
analyzed for a stationary state~with adiabatically slow variation of the light intensityI ) and for
a transient process near the initial and final states of dynamic equilibrium~with the light
field switched on abruptly!. It is shown that for adiabatically slow growth of the intensityI up to
a certain critical valueI c the band gap of the electronic spectrum decreases but the
semiconductor phase of the Peierls system remains stable. ForI .I c the stationary semiconductor
state (jÞ0) becomes unstable. When the light is switched on abruptly, the deviation of the
system parameters from the initial values is described by an exponential law with a characteristic
reciprocal of the rise time of the process linearly dependent on the irradiation intensityI.
As a new position of equilibrium is approached, three qualitatively different regimes of behavior
of the order parameterj and densityn are possible. For low intensitiesI (I ,I 1) a purely
relaxational aperiodic process occurs. For intermediate intensitiesI (I 1,I ,I c) damped
oscillations ofj andn are observed near a new stationary semiconductor state with a
smaller band gap. ForI .I c the stationary semiconductor state withjÞ0 is absent. The
experimental data on the irradiation of a vanadium dioxide film with a powerful laser pulse is
interpreted on the basis of the theory developed. ©1999 American Institute of Physics.
@S1063-7761~99!02212-X#
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1. INTRODUCTION

It is well known that as temperatureT decreases below
certain critical valueT0 , a chain of equidistant atoms, eac
of which contains a single external electron, undergoe
reversible thermodynamically equilibrium phase transit
characterized by a change in the crystal structure~pairwise
convergence of atoms in the chain! and the formation of a
band gap in the electronic spectrum at the Fermi level.1 This
transition, for which, in addition, a uniform deformation o
the atomic chain occurs,2 is called a Peierls transition, an
the system in which the transition occurs is called a Pei
system.

A thermodynamically equilibrium metal–semiconduct
~or semiconductor–metal! phase transition in a Peierls sy
tem can also be initiated by pressure~uniaxial or hydro-
static!,3,4 breakdown of the ideality of the crystal lattice~spe-
cifically, as a result of doping with substitution impur
ties!,1,4–8 a constant electric field,9 adsorption of molecules
from the gas phase, and so on.4,10,11Near the critical pointT0

of the thermodynamically equilibrium metal–semicondu
tor phase transition, a one-dimensional spatial, periodic,
erophase structure of alternating metallic and semicondu
phases forms in a film consisting of a Peierls material o
substrate.12

There is great interest in theoretical and experimen
investigation of a thermodynamically nonequilibrium pha
transition in a low-temperature semiconductor phase o
1161063-7761/99/89(12)/12/$15.00
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Peierls system, each atom of which containsn (0,un21
u,1) external electrons, in a constant electric field direc
along the principal axis of the quasi-one-dimension
crystal.13–18This transition, manifested as a sharp increase
the electrical conductivity when the intensity of the elect
field is greater than a certain threshold value, is due to
appearance of a charge-density wave and an initially st
Fröhlich phonon mode, associated with the charge-den
wave and formed by the displacement of atoms accompa
ing the Peierls metal–semiconductor phase transition, m
ing along the atomic chain.

Different types of thermodynamically nonequilibrium
photostimulated instabilities and phase transitions in
Peierls system have been studied in Refs. 19–25. Spe
cally, it was shown19–22that when a Peierls semiconductor
irradiated with light with frequency greater than the band g
Eg of the electronic spectrum, the densityn of nonequilib-
rium electron–hole pairs increases and, in consequence
band gap decreases smoothly. When the densityn reaches a
certain critical valuenc , the band gapEg abruptly vanishes
~photoinduced semiconductor–metal phase transition!.

On account of the characteristic features of the electro
spectrum of a Peierls semiconductor~the presence of van
Hove singular points,23 sharp24 or smeared25 band-gap edges!
in a light field with a specially selected central frequency
the optical spectrum, sharp photoinduced transitions fr
one semiconductor state into another are also possible.23–25

Optical bistability with increasing absorption without a res
8 © 1999 American Institute of Physics
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nator is observed near the critical point of these transition
a Peierls system.26

The temporal dynamics of the development of a pho
induced phase transition, consisting of a change in the st
ture of the crystal lattice and the band gap of the electro
spectrum of the semiconductor when the semiconducto
irradiated with light, has been investigated for various ma
rials in an entire series of works.27–34 It has been shown tha
for high nonequilibrium carrier densities temporal27–29 and
spatial30 periodic oscillations of the parameters of the syst
can arise. Depending on the specific conditions, the new s
forming can be a metal,27 a semiconductor with a differen
crystal modification,31 an amorphous solid,31 a heterophase
structure,19,21,30,32and so on.33,34

In the present paper the dynamics of a photoindu
phase transition in a Peierls system is investigated unde
assumption that the characteristic phonon and interband e
tronic relaxation times are constant. In contrast to Refs. 2
34, where the density of nonequilibrium electrons in the c
duction band was as an externally controllable parameter
the method for producing this density either was not cons
ered or was considered at a qualitative level, in the pres
paper the mechanism of the interaction of the electronic s
system with the electromagnetic field is specified and
possibility of the nonequilibrium carrier density changing
the course of the phase transition is taken into account.
light intensity is chosen as an externally controllable para
eter. This is more justified from the physical standpoint. T
light field is treated as a quasimonochromatic stationary r
dom process, in which photostimulated generation of n
equilibrium electron–hole pairs occurs as a result of
electric-dipole interaction of the photons with the electro
subsystem of the semiconductor. An increase of this den
via the electron–phonon interaction gives rise to readju
ment of the crystal structure and the electronic spectrum
the Peierls system.

In the present paper the expressions describing the t
dependence of the band gap in the course of a phase tr
tion at the initial stage of evolution during the developme
of an instability of the initial, stable~in the absence of a ligh
field! phase and at the final stage near the new station
state of dynamic equilibrium are obtained. An interpretat
of the experimental data of Ref. 35 on a photostimula
semiconductor–metal phase transition in a vanadium diox
film irradiated with powerful laser radiation is given on th
basis of the theory developed.

2. HAMILTONIAN AND ELECTRONIC SPECTRUM OF THE
SYSTEM

Let us consider a chain of atoms with each atom c
taining a single external electron. We write the Hamiltoni
of the electronic subsystem in the form

He5 (
n,m(m.0)

Bn,n1m~an
1an1m1an1m

1 an!, ~2.1!

wheren is the number of the atom in the chain,Bn,n1m is the
in
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overlap integral between the wave functions of thenth and
n1m-st atoms, andan

1 and an are operators creating an
annihilating an electron on thenth atom.

For narrow-gap systems~specifically, for the Peierls
model considered here! the distancer n,n11 between the
nearest-neighbor atoms is several times greater than th
fective radiusR of the atomic wave function of an electron
In this case the overlap integralBn,n1m is determined ap-
proximately by the relation36

Bn,n1m;exp~2r n,n1m /R!. ~2.2!

We write the coordinatexn of the annth atom in a chain with
pairwise convergence of the atoms in the form

xn5nr01
cos~pn!Rj

2
, ~2.3!

wherer 0 is the interatomic distance in the metallic phase a
j is the period-doubling parameter of a one-dimensio
crystal~the order parameter of a metal–semiconductor ph
transition!. Then we obtain for the distancer n,n1m

r n,n1m5mr01~21!nRj
~~21!m21!

2
. ~2.4!

Taking account of Eq.~2.4!, the overlap integralBn,n1m

~2.2! becomes

Bn,n1m5b expS 2x~m21!1
~21!n~12~21!m!

2
j D ,

~2.5!

wherex5r 0 /R is a dimensionless parameter characteriz
the relative separation of the nearest-neighbor atoms, ab
is the overlap integral of the wave functions of the neare
neighbor atoms in the metallic phase (j50). The phases of
the atomic wave functions in the form~2.1! are chosen so
that b in Eq. ~2.5! is a real quantity.

To diagonalize the Hamiltonian~2.1! we employ
Bogolyubov’s method of canonical transformations.37 We
switch to collective Fermi second-quantization operatorsck

andck
1 according to the formula

an5
1

AN
(

k
cke

ikn, ~2.6!

where N is the number of atoms in the chain,k50,
62p/N, . . . ,6p, ck12p5ck . In the new operator represen
tation the Hamiltonian~2.1! becomes

He5(
k

b~Qkck
1ck1 iRkck

1ck2p!, ~2.7!

where

Qk5
coshj cosk~exp~2x!21!1cos~2k!expx2exp~2x!

cosh~2x!2cos~2k!
,

~2.8!

Rk52
sinhj sink~exp~2x!21!

cosh~2x!2cos~2k!
. ~2.9!

Let us perform in Eq.~27! another canonical transformatio
to Fermi operatorsak , ak

1 in accordance with the formula
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ck5
ak1 iwkak2p

A11wk
2

. ~2.10!

The functionwk in Eq. ~2.10! is chosen so that the Hami
tonian obtained is diagonal in the new variablesak , ak

1 :

He5(
k

«kak
1ak . ~2.11!

Substituting the expression~2.10! into Eq. ~2.7! and
equating to zero the off-diagonal elements, we findwk and
the dispersion law«k :

wk5
Qk2Qk2p2sign~Qk2Qk2p!A~Qk2Qk2p!214Rk

2

2Rk
,

~2.12!

«k5
b

2
~Qk1Qk2p1sign~Qk2Qk2p!A~Qk2Qk2p!214Rk

2 !.

~2.13!

It is evident from the relations~2.13!, ~2.8!, and ~2.9!
that the spectrum«k with jÞ0 has two bands, the lowe
band being completely filled in the ground state and the
per band being empty~semiconductor phase!. For j50 the
spectrum~2.13!, ~2.8!, and ~2.9! consists of a single half
filled band~metallic phase!.

3. DIPOLE MOMENT OPERATOR

The dipole moment operator of a Peierls system is
termined by the relation

d5 (
n,m(m.0)

~dn,n1man
1an1m1dn,n1m* an1m

1 an!, ~3.1!

where the dependence ofdn,n1m on j is similar to the ex-
pression~2.5!:

dn,n1m52eE cn* ~r !rcn1m~r !dr5~d11 id2!

3expS 2x~m21!1~21!n~12~21!m!
j

2D .

~3.2!

Here cn(r ) is the atomic wave function of an electron lo
cated at thenth site ande is the electron charge. The choic
of the phases of the wave functionscn(r ) ensuring that the
overlap integral~2.5! is a real quantity uniquely determine
d1 andd2 in Eq. ~3.2!.

Substituting the expression~2.6! into Eq.~3.1! and using
Eq. ~3.2!, we find

d5(
k

@~d1Qk1d2Pk!ck
1ck1 i ~d1Rk1d2Sk!ck

1ck2p#,

~3.3!

where

Pk52
coshj sink~exp~2x!11!1sin~2k!expx

cosh~2x!2cos~2k!
, ~3.4!
-

-

Sk52
sinhj cosk~exp~2x!21!

cosh~2x!2cos~2k!
. ~3.5!

Switching in Eq.~3.3! to Fermi operatorsak andak
1 and

using Eqs.~2.10! and ~2.12! we obtain, finally,

d5(
k

F S d1

«k

b
1d2

Pk1Pk2pwk
222Skwk

11wk
2 D ak

1ak

1 id2

wk~Pk2Pk2p!1Sk~12wk
2!

11wk
2

ak
1ak2pG . ~3.6!

It should be noted that the operators~2.1! and~3.1! with
d250 are formally similar. Therefore, the operators~2.11!
and ~3.6! are also similar.

Let the total dipole moment of the system be zero in
absence of an external electric field. Then it follows fro
Eqs. ~3.6! and ~2.13! that d150. Therefore the choice o
phases of the wave functionscn(r ) for which the integral
Bn,n1m in Eq. ~2.1! is a real quantity makes in the prese
case the intersite matrix element of the dipole moment
eratordn,n1m in Eq. ~3.1! imaginary. The cased1Þ0, appar-
ently, can be realized in systems possessing ferroele
properties. Such systems are not studied in the present w
In the limit j→0, as is evident from Eq.~2.12!, wk→0 for all
kÞ6p/2. Therefore in Eq.~3.6! dk,k2p→0, and all dipole
transitions are forbidden. IfjÞ0, then in Eq.~3.6! dk,k2p

Þ0, and the corresponding dipole transitions are allow
Since in this case the first Brillouin zone is the regionkP
@2p/2,p/2#, these transitions are vertical interband tran
tions in the spectrum~2.13!.

4. DYNAMICAL EQUATION FOR THE ORDER PARAMETER
OF A THERMODYNAMICALLY NONEQUILIBRIUM
PEIERLS SYSTEM

Let us examine the behavior of the low-temperatu
phase of a Peierls system when nonequilibrium electro
hole pairs are excited in it. We shall assume that the exc
tion is due to induced transitions of electrons from the v
lence into the conduction band on account of, for exampl
dipole electron–photon interaction with the incident rad
tion. It is known that the characteristic intraband relaxati
time of electronste;10214s is much shorter than the inte
band relaxation timet;10211s.38 For this reason, when the
system is irradiated with light with a constant amplitude,
can be assumed approximately39 that thermodynamic equi
librium of electrons with their own Fermi quasilevel corr
sponding to the given band is established within each e
tronic band. The breakdown of thermodynamic equilibriu
caused between the bands by the external irradiation is
pressed by the difference of the corresponding Fermi qu
levels between one another.

The above-examined approach to the description o
thermodynamically nonequilibrium system, consisting of
collection of weakly interacting thermodynamically equilib
rium subsystems, can also be extended to the case wher
incident radiation has an adiabatically slowly varying amp
tudeA ~the changeDA in the field amplitude over the time
te;10214s is much less thanA). This is due to the fact tha
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the electronic subsystem within each band can follow co
pletely the change in the field and therefore at any momen
time it is in a state of thermodynamic equilibrium. This sit
ation is similar, to some extent, to the situation ordinar
encountered in the description of thermodynamically equi
rium systems with adiabatically slow variation of extern
parameters. In what follows, we shall confine our attention
constructing a theory for this particular case. In so doing,
shall not discuss the transient processes occurring in e
electronic band over a characteristic time not exceeding
intraband electronic relaxation timete;10214s.

The free energyF j of the electronic subsystem of thejth
band (j 51,2) is determined by the relation

F j5m jNj2kBT(
k

lnS 11expS m j2«k

kBT D D , ~4.1!

wherem j andNj are, respectively, the Fermi quasilevel a
the number of electrons in thejth band. The summation ove
k in Eq. ~4.1! extends over the range of thejth band of the
spectrum~2.13! (uku,p/2 for j 51 andp/2,uku,p for j
52).

Treating the parameterj as a generalized coordinate, w
write the dynamic equation of the thermodynamically no
equilibrium Peierls system

d

dt

]L

]j̇
2

]L

]j
5Q, ~4.2!

where

L5(
n

m~ ẋn!2

2
2F12F22Fc ~4.3!

is the Lagrangian function,Q is a generalized dissipativ
force @see Eq.~5.17!# characterizing the relaxation of th
order parameterj of a metal–semiconductor phase transiti
to a stable position of equilibrium. In Eq.~4.3! m is the mass
of an atom,

Fc5Aj2/2 ~4.4!

is the free energy of the crystal lattice, written in the sta
molecular-field approximation,1 and in the harmonic ap
proximation, taking account of only the first nonvanishi
term in the Taylor series expansion in terms of the or
parameterj of the metal–semiconductor phase transiti
with expansion coefficientA.

Substituting the relation~4.3! into Eq. ~4.2! and using
Eqs.~4.4!, ~4.1!, and~2.3!, we obtain

d2j

dt2
5

4

NmR2 S (
uku<p/2

]«k

]j
tanhS «k2m

2kBT D2Aj1QND .

~4.5!

The expression~4.5! is the dynamical equation of the Peier
system, determining the behavior of the order parameterj of
the metal–semiconductor phase transition with excitation
nonequilibrium electron–hole pairs. In addition to the re
tion ~4.5!, we shall write an equation expressing electric
neutrality, relating the densityn of electron–hole pairs and
the Fermi quasilevelm:
-
in

-
l
o
e
ch
e

-

c

r

f
-
l

n5
N

2
2 (

uku<p/2
tanhS «k2m

2kBT D . ~4.6!

The expansion coefficientA in Eqs. ~4.4! and ~4.5! can be
expressed in terms of the critical temperatureT0 of the ther-
modynamically equilibrium~in the absence of a light field!
metal–semiconductor phase transition and other charact
tics of the system. The condition of an equilibrium meta
semiconductor phase transition is instability of the meta
phase:

]2F~T0 ,j50!/]j250,

whereF is the free energy of the thermodynamically equ
librium Peierls system. In the absence of a light field, in t
state of thermodynamic equilibrium there is no dissipat
(Q50), and the Fermi quasilevels of the valence and c
duction bands of the spectrum~2.13! are zero:

m1,257m50.

Hence we have, using Eqs.~4.5! and ~2.13!,

A52 (
uku<p/2

S ]2«k

]j2
tanhS «k

2kBT0
D D U

j50

. ~4.7!

Calculating the sum in Eq.~4.7!, we find approximately

A5
4bN

p S lnS pb

2kBT0
D11D . ~4.8!

Thus, we have obtained Eq.~4.6!, expressing the dependenc
of the densityn of electron–hole pairs at the Fermi quas
level m and the order parameterj of the metal–semicon-
ductor phase transition, i.e.,n(m,j), as well as the dynami-
cal equation~4.5!, describing the relation between the p
rameterj of the Peierls system andm, i.e.,j(m). In turn, the
Fermi quasilevelm is determined by the degree of to whic
the light affects the system. The equation describing this
fect should depend on the specific mechanism of the inte
tion of the radiation with the electronic subsystem.

5. RELAXATION OF THE ORDER PARAMETER j

To calculate the generalized dissipative forceQ in Eq.
~4.5!, we note that the order parameterj ~2.3! characterizes a
phonon mode with wave vectorq at the edge of the Brillouin
zone (q5p,q is parallel to the principal axis of the Peier
crystal!. Assuming that the relaxation of the phonon mode
the thermodynamically equilibrium value is due to phono
phonon and phonon–electron interactions, we write
Hamiltonian of the system in the form

H5H01He1V1U, ~5.1!

where

H05(
k

\vk~bk
1bk11/2!, He5(

k
«kak

1ak ~5.2!

are, respectively, the Hamiltonians of the noninteract
phonons and electrons (vk is the phonon spectrum,«k is the
electron spectrum,bk , bk

1 (ak , ak
1) are, respectively, the

operators creating and annihilating a phonon~electron! with
wave ~quasiwave! vectork, and it is assumed that the sum
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mation in Eqs.~5.2! and subsequent formulas in this secti
extends over all branches of the phonon and electron s
tra!;

V5(
k,q

~Vk,qbk1q
1 bkbq1h.c.! ~5.3!

is the phonon–phonon interaction operator, in writing wh
we confined ourselves only to three-phonon processes, w
occur in a crystal lattice with cubic anharmonicity31,40 (Vk,q
is the matrix element for two phonons with wave vectorsk
andq to merge into a phonon with wave vectork1q);

U5(
k,q

Uk,qak1q
1 ak~bq2b2q

1 ! ~5.4!

is the Fröhlich electron–phonon interaction Hamiltonian1,41

(Uk,q is the matrix element of the transition of an electr
with quasiwave vectork and a phonon with wave vectorq
into an electron with quasiwave vectork1q).

The time variation of the operatorf k,p[bp
1bq at the ki-

netic stage of evolution in second order perturbation the
in V1U can be described by the equation42

d fk,p

dt
5 i\ Tr r@H0 , f k,p#1Lk,p

(1)1Lk,p
(2), ~5.5!

where

Lk,p
(1)5 i\ Tr r@U1V, f k,p#, ~5.6!

Lk,p
(2)52\E

2`

0

dt eht Tr rFU~t!1V~t!,@U1V, f k,p#

1 i(
q,s

f q,s

]Lk,p
(1)

]gq,s
G , h→10. ~5.7!

Here

U~t!1V~t!5expH i
H01He

\
tJ ~U1V!

3expH 2 i
H01He

\
tJ ~5.8!

is the operatorU1V in the interaction representation,r is a
statistical operator~density matrix! of an ideal nonequilib-
rium gas of phonons and electrons, which determines
c-number functionsgk,p by means of the equations

Tr r51, Trr f k,p5gk,p . ~5.9!

SubstitutingU andV from Eqs.~5.3! and~5.4! into Eqs.
~5.5!–~5.8! and using Wick’s theorem,43 we obtain an equa
tion for the numberNk of phonons in a state with wav
vectork:

dNk

dt
54p(

q
uVq,k2qu2$NqNk2q~11Nk!

2~11Nq!~11Nk2q!Nk%d~vq1vk2q2vk!

18p(
q

uVq,ku2$~11Nq!~11Nk!Nq1k
c-

ch

y

e

2NqNk~11Nq1k!%d~vq1vk2vq1k!

12p(
q

uUq,ku2$~12nq!nq1k~11Nk!

2nq~12nq1k!Nk%d~vk2~«q1k2«q!/\!, ~5.10!

wherenk is the number of electrons in a state with quasiwa
vectork.

Using the expression~5.10!, we find for the deviation
dNk5Nk2Nk

(0) of the number of phononsNk from the ther-
modynamically equilibrium valueNk

(0)

ddNk

dt
52

dNk

tp
, ~5.11!

where

1

tp
54p(

q
uVq,k2qu2~Nq

(0)1Nk2q
(0) 11!d~vq1vk2q2vk!

18p(
q

uVq,ku2~Nq
(0)2Nk1q

(0) !d~vq1vk2vq1k!

12p(
q

uUq,ku2~nq
(0)2nk1q

(0) !d~vk2~«q1k2«q!/\!

~5.12!

is the reciprocal of the phonon relaxation time. Here

Nq
(0)5~exp$\vq /kBT%21!21 ~5.13!

is the Bose–Einstein distribution,

nq
(0)5~exp$~«q2m!/kBT%11!21 ~5.14!

is the Fermi–Dirac distribution, andm is the Fermi quasi-
level. The first and second terms on the right-hand side
Eq. ~5.12! correspond to the phonn–phonon relaxation a
the third term corresponds to phonon–electron relaxation

It follows from Eq. ~5.11! that in the classical limitNk
@Nk

(0) the statistical average value of the energy of a phon
mode~2.3!

^W&5
mR2

4
^j̇2& ~5.15!

satisfies the equation

d^W&
dt

52
^W&
tp

5^Qj̇&. ~5.16!

The second equality in Eq.~5.16!, taking account of Eq.
~5.15!, holds if the generalized dissipative forceQ satisfies

Q52
mR2

4tp
j̇, ~5.17!

characterizing the linear damping of the phonon mode.

6. INTERACTION WITH RADIATION

We shall describe the interaction of the system with
light field by means of the operatorV1 , which in the dipole
approximation has the form
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V152d–E~ t !52d–E Ev exp~2 ivt !dv, ~6.1!

where Ev and v are, respectively, the amplitude and fr
quency of the spectral component of the light field.

Let us consider the case where the incident radia
E(t) is a linearly polarized~along the axis of the crystal!
quasimonochromatic stationary random process.44 Then all
spectral componentsEv are statistically independent44,45

^Ev•Ev1
&5G~v!d~v1v1!. ~6.2!

HereG(v) is the spectral density of the light field, which fo
a quasimonochromatic signal can be represented as44

G~v!5Ig~ uvu2v0!, ~6.3!

wherev0 is the carrier frequency, andg(x) is a nonnegative
bell-shaped function with a maximum at the pointx50 and
satisfies the normalization condition

E g~x!dx51. ~6.4!

The widthDv of the spectrumG(v) satisfies the inequality
Dv!v0 . The quantity

I 5E G~v!dv/2 ~6.5!

characterizes the light intensity~in a Gaussian system, t
within the factorcn/2p, where in the present casec is the
speed of light andn is the index of refraction of the me
dium!.

Using the Liouville equation46

i\
]r

]t
5@He1V1 ,r#, ~6.6!

taking account of Eqs.~6.1! and ~6.2!, we find an equation
for the diagonal elementsrkk of the density matrixr of the
electronic subsystem in second-order perturbation theor
V1 :

]rkk

]t
5

2p

\2 (
s

udksu2GS «s2«k

\ D ~rss2rkk!, ~6.7!

wheredks is the matrix element of the dipole moment ope
tor ~3.6!. In the particular case of a monochromatic light fie

E~ t !5E0 cos~v0t1w! ~6.8!

with a uniformly distributed phasew, the spectral density
G(v) has the form

G~v!5
E0

2~d~v2v0!1d~v1v0!!

4
. ~6.9!

Then Eq.~6.7! becomes the well-known Fermi golden ru
for the probability of induced transitions:45

]rkk

]t
5

p

2\
uE0•dkku2d~2«k2\v0!. ~6.10!

In Eq. ~6.10!, it is assumed that the lower level~with quasi-
wave numberk2p) is filled, and the upper level~with
quasiwave numberk) is empty.
n

in

-

Taking account of Eqs.~3.6! and~2.13!, we obtain from
Eq. ~6.7!

]rkk

]t
5

2p

\2
dk

2GS 2«k

\ D tanhS «k2m

2kBT D , ~6.11!

where

dk5Ud2

wk~Pk2Pk2p!1Sk~12wk
2!

11wk
2 U . ~6.12!

Taking into consideration the relation~2.13!, we find
from Eq. ~6.11! the kinetic equation for the densityn
52( uku,p/2rkk of electron–hole pairs in a Peierls system:

]n

]t
5

4p

\2 (
uku<p/2

dk
2 tanhS «k2m

2kBT DGS 2«k

\ D2
n2n0

t
,

~6.13!

wheren0 is the density of electron–hole pairs in the absen
of light and, using the relation~4.6!, can be written in the
approximate form

n05n~m50!

5H NAkBT sinhj

pb
expH 2

2b sinhj

kBT J , bj@kBT,

N

p S kBT

b
ln 22

b

2kBT
j2D , bj!kBT.

~6.14!

The last term on the right-hand side of Eq.~6.13! takes ac-
count of interband electronic relaxation with characteris
interband electronic relaxation timet. The timet for radia-
tive and nonradiative recombination of electron–hole pa
and for recombination with participation of impurities an
defects depends, in the general case, on the density of
trons and holes~see Ref. 39, p. 297!, but in what follows we
shall neglect this dependence, assumingt to be a prescribed
parameter. The expression~6.13! shows that the change i
the densityn of electron–hole pairs is due to the interactio
of the electronic subsystem with the spectral component
the light which have the frequencyvk52«k /\.

The relations~4.6!, ~4.5!, and ~6.13!, taking account of
Eq. ~5.17!, form a closed system of dynamical equations
the internal parametersm, n, andj of a thermodynamically
nonequilibrium Peierls system with prescribed external
rametersT, I , v0 , and so on.

7. DYNAMICAL EQUATION FOR A NONDEGENERATE OR
WEAKLY DEGENERATE SEMICONDUCTOR WITH
EXCITATION OF ELECTRON–HOLE PAIRS INTO THE
CONDUCTION BAND BY MONOCHROMATIC LIGHT

We shall analyze Eqs.~4.5! and~4.6! under the assump
tion that the Peierls system is a nondegenerate or we
degenerate semiconductor:

m22b sinhj,2kBT. ~7.1!

The relation~7.1!, which imposes a restriction on th
range of variation of the Fermi quasilevelm, taking account
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of Eq. ~4.6!, is equivalent to an approximate inequality lim
iting the densityn of electron–hole pairs from above:

n,n15
8N

3p
AkBT sinhj

b
. ~7.2!

Using the formulas~4.5! and~4.6!, and taking account of Eq
~5.17!, we find an approximate equation for the order para
eterj of a metal–semiconductor phase transition:

d2j

dt2
1

1

tp

dj

dt
5

4

NmR2 S 4bN

p
sinhjK~A12tanh2 j !

24bn coshj2Aj D , ~7.3!

where K(x) is the complete normal elliptic integral of th
first kind.

Since in real physical systems the density of electro
hole pairs satisfiesn!N, and the order parameter of th
metal–semiconductor phase transition of the systemj
<0.5,1–4 from Eq.~7.3! we obtain approximately the follow
ing equation:

d2j

dt2
1

1

tp

dj

dt
5

16b

NmR2 S Nj

p
lnUj0

j U2n signj D , ~7.4!

where

j05
p

2
expH ArcsinS p

4 D2
Ap

4bNJ ~7.5!

is the order parameter of the metal–semiconductor ph
transition forn50.
c
w

r
is

n

ec
-

–

se

We note that Eq.~7.4!, obtained assuming the inequalit
~7.1! @or under the assumption~7.2!, which is equivalent to
~7.1!#, is valid, as our analysis shows, even in the import
particular case where the temperatureT50 and the densityn
of electron–hole pairs is arbitrary.

Let us analyze the relation~6.13!, describing the change
in the densityn of electron–hole pairs under irradiation, fo
monochromatic light, where the form factorg(x) in Eq. ~6.3!
is determined by the relation

g~x!5d~x!.

We switch in Eq.~6.13! from summation to integration, i.e.
(→*dE, keeping in mind the fact that the electron dens
of statesn(E) corresponding to the spectrum~2.13! for the
casex@1 has the form

n~E!5
2NuEu

pA~4b2 cosh2 j2E2!~E224b2 sinh2 j!
, ~7.6!

and the matrix element of the dipole moment operatordk

~6.12! with «k5E is determined, in accordance with Eq
~2.12!, ~2.13!, ~3.4!, and~3.5!, by the relation

d~E![dk~«k5E!5
4bd2 coshj sinhj

E
. ~7.7!

Then, assuming that there is no saturation of interband o
cal transitions, so that the relation

tanh~~\v0/22m!/2kBT!51, ~7.8!

holds approximately, we obtain from Eq.~6.13!
dn

dt
52

n2n0

t
1

512Ib2d2
2 cosh2 j sinh2 j

\2v0A~16b2 cosh2 j2~\v0!2!~~\v0!2216b2 sinh2 j!
. ~7.9!
on-
g

Let us consider the case where the frequencyv0 of the
incident light is such that optical transitions of electrons o
cur from the valence band into the conduction band, Then
can set approximately in Eq.~7.9!

16b2 cosh2 j2~\v0!2'~\v0!2216b2 sinh2 j. ~7.10!

Then we find approximately

dn

dt
52

n2n0

t
1

64Id2
2Nj2

\2v0

. ~7.11!

Thus, we have obtained Eq.~7.11!, describing the behavio
of the densityn(t) of electron–hole pairs when the system
irradiated with monochromatic light with intensityI (t), and
Eq. ~7.4!, determining the time dependencej(t) of the order
parameter with a variation of the densityn. These equations
~7.4! and~7.11! are the basic dynamical equations for a no
degenerate or weakly degenerate@see Eq.~7.1!# semiconduc-
tor state of a Peierls system with optical excitation of el
trons in the system into the allowed band.
-
e

-

-

8. STATIONARY SOLUTION AND ITS STABILITY

Let us consider first the case where a Peierls semic
ductor is irradiated with light with constant intensity. Settin
in the system of equations~7.4! and ~7.11!

dn

dt
[

dj

dt
[0, ~8.1!

we find its stationary solutionjs ,ns as a function of the
intensity I in the implicit form

I 5
\2v0

64d2
2Njs

2t
S Nujsu

p
lnUj0

js
U2n0~js ,T! D , ~8.2!

ns5
Nujsu

p
lnUj0

js
U. ~8.3!

In order that the stationary solution~8.2! and~8.3! satisfy the
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approximation~7.2!, used above, in the entire range of var
tion of j (0,j<j0), the relation limiting the temperatureT
of the system from below

S 3

4eD 2

j0b,kBT. ~8.4!

must be satisfied.
At lower temperatures, where the relation~8.4! is in-

valid, the solution~8.2! and~8.3! satisfies the condition~7.2!
only in the region

jP~0,j1!ø~j2 ,j0#,

where j1 , j2 (j1,j2) are the roots of the transcenden
equation

Aj lnUj0

j U5 8

3
AkBT

b
. ~8.5!

Analysis of the system of equations~7.4! and ~7.11!
shows that the solution~8.2! and ~8.3! is stable if

js.jc , ~8.6!

where

jc5j0 expH 212
pmR2

16btpt J . ~8.7!

Using the solution~8.2! and ~8.3!, we find a condition,
equivalent to the inequality~8.6!, that imposes an uppe
bound on the light intensityI

I ,I c , ~8.8!

where

I c5
\2v0

64d2
2Njc

2t
~nc2n0~jc ,T!!, ~8.9!

nc5
Nj0

p S 11
pmR2

16btpt DexpH 212
pmR2

16btpt J . ~8.10!

Thus, for adiabatically slow increase of intensityI of the
incident monochromatic light from zero to the valueI c , de-
termined in Eq.~8.9!, the densityn of electron–hole pairs in
the accordance with the description~8.2! and~8.3! increases
from the thermodynamically equilibrium~no irradiation!
value n0 ~6.14! to the critical valuenc determined by Eq.
~8.10!, and the order parameterj decreases from a valu
approximately equal toj0 to jc determined by Eq.~8.7!.
When I .I c , the stationary semiconductor state correspo
ing to Eqs.~8.2! and~8.3! becomes unstable, and there is
other stable stationary solution of the system of equati
Eqs. ~7.4! and ~7.11! corresponding to a semiconduct
phase.

We shall make numerical estimates ofnc and I c for va-
nadium dioxide, whose one-dimensional electronic cond
tion band is formed by overlapping of the 3d wave functions
of vanadium atoms arranged in the form of chains paralle
the crystal axisc.4 At temperatures below the critical valu
T05340 K the vanadium atoms in the chain converge
pairs, and a gap forms in the electronic spectrum at the Fe
l

-

s

c-

o

mi

level, so that the low-temperature phase of VO2 can be re-
garded as a one-dimensional~quasi-one-dimensional! Peierls
semiconductor.2–4

Taking characteristic values of the physical quantit
for VO2 b'0.3 eV, N'1023 cm23, j0'0.5,3,4 t'3
310211s, tp;10213s,38 d2;10218CGS,45,47 \v0

51.17 eV,35 m'8.5310223g, R'0.531028 cm, we obtain
from Eqs.~8.9! and ~8.10!, taking account of Eq.~8.7!,

nc;1021 cm23, I c;108W/cm2. ~8.11!

The condition~8.4! givesT.100 K.

9. DYNAMICS OF THE SYSTEM AT SHORT TIMES

We shall investigate the behavior of a Peierls syst
irradiated by monochromatic light whose intensityI is a step
function of the time:

I ~ t !5H 0, t,0,

I 5const, t>0.
~9.1!

Let us examine the solution at the initial stage of evolutio
when the order parameterj of the metal–semiconducto
phase transition is close to its initial valuej0 . Then the
system of equations~7.4! and ~7.11! can be approximately
linearized, and in the approximation48

Ud2j

dt2
U!

1

tp
Udj

dtU ~9.2!

it can be written as

dj

dt
5

16btp

NmR2 S N

p
~j02j!2nD , ~9.3!

dn

dt
52

n2n0

t
1

64d2
2Nj0

\2v0

I j. ~9.4!

The initial conditions for~9.3! and ~9.4! are

j~ t50!5j02
pn0

N
, n~ t50!5n0 . ~9.5!

Solving the problem~9.3!–~9.5!, we obtain

j5j11
j02j12pn0 /N

l22l1
~l2el1t2l1el2t!, ~9.6!

n5n12
~j02j1!N2pn0

l22l1
S l2S l1mR2

16btp
1

1

p Del1t

2l1S l2mR2

16btp
1

1

p Del2tD , ~9.7!

where

j15S j02
pn0

N D \2v0

\2v0164ptI j0d2
2

, ~9.8!

n15S Nj0

p
2n0D 64ptI j0d2

2

\2v0164ptI j0d2
2

, ~9.9!
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l1,252
8btp

pmR2 F16A12
pmR2

4btpt S 11
64ptI j0d2

2

\2v0
D G .

~9.10!

Taking account of the characteristic numerical values of
basic parameters~see below or the numerical estimates at
end of Sec. 8! and confining ourselves to the caseI
!1010W/cm2, we find approximately from Eq.~9.10!

l152
16btp

pmR2
, ~9.11!

l252
1

t
2

64pI j0d2
2

\2v0

. ~9.12!

It is evident from Eqs.~9.11! and ~9.12! that for the charac-
teristic numerical values of the parameters~see the end of
Sec. 8! the inequalityul1u@ul2u is satisfied. For this reason
in accordance with the expression~9.6!, the characteristic
time t0 of a transition into a new phase is determined a
proximately by the relation

t05
1

ul2u
5

\2v0t

\2v0164pI j0d2
2t

. ~9.13!

The condition for the applicability of our approximatio
~9.2!, taking account of the expression~9.6!, can be written
in the formt0@tp . Hence, using the relation~9.13!, we find
an inequality that gives an upper bound on the light inten
I:

I !
\2v0

64pj0d2
2 S 1

tp
2

1

t D . ~9.14!

Substituting into Eq.~9.14! the characteristic numerical va
ues of the parameters for vanadium dioxide, specifically,j0

'0.5,3,4 t'3310211s, tp;10213s,38 d2;10218CGS,45,47

and\v051.17 eV,35 we obtain the condition of applicability
of the approximation~9.2!: I !1010W/cm2, which is the
same as the approximation which we used in the deriva
of Eqs.~9.11! and ~9.12!.
e
d

-

e
e

-

y

n

In the experiment of Ref. 35, where a vanadium dioxi
film was irradiated with powerful laser radiation with inten
sity I .7•108 W/cm2, a photoinduced semiconductor–met
phase transition, occurring over a characteristic timet0

.10212s, was observed. A numerical estimate using E
~9.13! gives t0.1.6310212s. Therefore the theoretica
value t0 calculated on the basis of the theory develop
agrees well with the experimental data of Ref. 35.

10. DYNAMICS OF THE SYSTEM AT LONG TIMES

We shall now investigate the behavior of a Peierls s
tem under irradiation by monochromatic light, whose inte
sity I is a step function~9.1! of the time, at the final stage o
evolution when the order parameterj of the metal–
semiconductor phase transition is close to its new sta
value corresponding to a position of dynamic equilibriu
j'js(I ) @see Eq.~8.2!#. We shall confine ourselves to th
intensitiesI ,I c , where the final state of the system is th
semiconductor phase~8.2!, ~8.3!.

The system of equations~7.4! and~7.11!, linearized near
the stationary solutionjs ,ns , determined by Eqs.~8.2! and
~8.3!, has in the approximation~9.2! the form

dj

dt
5

16btp

NmR2 FN

p
lnU j0

ejs
U~j2js!2~n2ns!G , ~10.1!

dn

dt
5

128Id2
2Njs

\2v0

~j2js!2
n2ns

t
. ~10.2!

The solution of the system of equations~10.1! and~10.2! can
be written as

S j

nD 5S js

ns
D 1S a11a12

a21a22
D S exp$l1t%

exp$l2t%
D , ~10.3!

where
l1,25
8btp

pmR2
lnU j0

ejs
U2 1

2t
6AS 8btp

pmR2
lnU j0

ejs
U2 1

2t D 2

1
16btp

pmR2t
lnU j0

ejs
U2 211btpd2

2NjsI

\2v0

, ~10.4!
and the constant coefficientsai j in the matrix are determined
from Eqs.~10.1! and ~10.2! and the initial conditions.

It is evident from the relation~10.4! that when
the condition ~8.6! is satisfied @or the inequality ~8.8!
equivalent to it# the solution ~10.3! has the form of
a process in whichj and n relax to a stationary stat
js ,ns of stable dynamic equilibrium determine
by Eqs. ~8.2!–~8.3!. For low light intensities I,
whenjs5js(I ) @see Eq.~8.2!# satisfies the approximate in
equality
j0.js~ I !.jcS 11ApmR2

2bttp
D , ~10.5!

the radicand in Eq.~10.4! is positive, and therefore, ast
→`, the asymptotic behavior ofj(t) and n(t) has the ex-
ponential form

H j2js}exp~2gt !,

n2ns}exp~2gt !
~10.6!
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with relaxation constantg52l1.0 ~10.4! ~in Eq. ~10.3! at
long timest the exponential with the smaller decay consta
plays the main role!.

The inequality~10.5! for js is equivalent to the condition
bounding the light intensityI from above

I ,I 1 , ~10.7!

where

I 1[I S j0S 11ApmR2

2bttp
D expH 212

pmR2

16bttp
J D , ~10.8!

and the functional dependenceI (js) is determined by the
expression~8.2!.

If the light intensityI satisfies the condition

I 1,I ,I c , ~10.9!

for which for js5js(I ) @see Eq.~8.2!# the approximate in-
equality

jc,js~ I !,jcS 11ApmR2

2bttp
D ~10.10!

is satisfied, then the radicand in Eq.~10.4! is negative, and a
long timest the behavior ofj(t) andn(t) has the characte
of damped oscillations

H j2js}exp~2gt !cos~vt1w1!,

n2ns}exp~2gt !cos~vt1w2!
~10.11!

with circular frequency

v5
8btp

pmR2
ApmR2

2bttp
2 ln2Ujs

jc
U ~10.12!

and decay constant

g5
8btp

pmR2
lnUjs

jc
U. ~10.13!

It is evident from Eqs.~10.12! and ~10.13! that as the
intensity I approaches the critical valueI c from below ~and
js→jc10), the frequencyv ~10.12! of the oscillations of
the order parameterj of the metal–semiconductor phas
transition and the densityn of electron–hole pairs increase
to its maximum valuevm :

vm5A 32btp

pmR2t
, ~10.14!

and the damping coefficientg decreases to zero.
Let us make some numerical estimates. Taking the

merical values characteristic for the physical paramete
VO2, specifically, b'0.3 eV, N'1023cm23, j0'0.5,3,4

t'3310211s, tp;10213s,38 d2;10218CGS,45,47

\v051.17 eV,35 m'8.5310223g, and R'0.531028 cm,
we obtain from Eqs.~10.14! and ~10.13!

v~ I 5I 1!50, g~ I 5I 1!>A 32btp

pmR2t
'331012 s21,

vm5v~ I 5I c!'331012 s21, g~ I 5I c!50. ~10.15!
t

u-
f

Therefore near the critical pointI'I c (I ,I c) the char-
acteristic relaxation timeg21 ~10.13! of a Peierls system to
the position of stable dynamic equilibriumjs'jc (js.jc)
becomes anomalously long (g21→` for I→I c20).

11. DISCUSSION OF THE EXPERIMENT

To check experimentally the solution~8.2!–~8.3! de-
scribing the behavior of the order parameterj of the metal–
semiconductor phase transition and the densityn of
electron–hole pairs in the stationary state or with adiab
cally slow variation of the light intensityI, when the charac-
teristic time of the smooth increase of the intensity in a pu
is much longer than the characteristic relaxation time of
processt0;10212s ~9.13!, it is desirable to use a Peierls
unstable material in the form of a thin film placed into
material which is transparent at the frequency of the la
radiation and possesses good heat removal~for example, in
superfluid helium!. This makes it possible to avoid excessi
heating of the system even for quite high irradiation inten
ties I close toI c @see Eq.~11!#.

For a light field~9.1! switched on abruptly~or for irra-
diation with a square laser pulse of long duration!, the ex-
perimental check of the formula~9.13! for the characteristic
time t0 of the photoinduced transition into a new state
dynamic equilibrium can be performed under ordinary co
ditions. Specifically, the behavior of a vanadium dioxide fi
on an aluminum substrate irradiated with a laser pulse w
intensity I'7•108 W/cm2 and duration 6•10212s was stud-
ied experimentally in Ref. 35. It was found that when t
energy of the exciting photons\v051.17 eV, VO2 passes
from the semiconductor into the metallic state in timet0

;10212s after the onset of the pulse. After this, the meta
phase remains stable for a quite long timet (t.1029 s). If
the energy of the exciting photons\v052.34 eV, the semi-
conductor state of vanadium dioxide becomes unstabt
;1029 s after the onset of irradiation.

To explain the experimentally observed phenomenon
scribed above, we shall make a numerical estimate of
maximum possible temperature changeDT in the sample
under the action of the laser irradiation. For this, we sh
examine a very thin (;1 nm) most strongly heated region o
the film near the surface, neglecting heat transfer and ass
ing that there is enough time for all of the absorbed radiat
energy to be converted into heat~at short timest,10212s
this assumption is quite nominal!. Using the approximate
formula

DT5
aIDt

cr
, ~11.1!

wherea, c, and r are, respectively, the optical absorptio
coefficient, the specific heat, and the density of the fill m
terial, andDt is the irradiation time, and taking the numeric
values of the parameters characteristic for VO2 a
;105 cm21,4 c;1 J/gK, r'10 g/cm3, Dt5t0;10212s, we
obtain DT'10 K. Since the temperature of the thermod
namically equilibrium semiconductor–metal phase transit
in vanadium dioxide isT05340 K, we conclude that at room
temperature a photoinduced transition into the meta
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phase, occurring in a timet0;10212s, cannot be explained
from the standpoint of a thermal mechanism.

At the same time, the stability of the metallic phase
vanadium dioxide after the passage of the entire pulseDt
;6310212s) appears to be due to the quite high tempe
tureT of the film (T.T05340 K), since in accordance wit
Eq. ~11.1! DT'60 K in this case.

We note that the time delayt;1029 s, observed with
energy of exciting photons\v052.34 eV, in the photoin-
duced semiconductor–metal phase transition from our sta
point is due to the long lifetimetp of nonequilibrium elec-
trons and holes in thep* band,35,4 which delays by a corre
sponding time the process leading to heating of the film
contrast to Ref. 35, we assume that in this case the pho
duced transition into the metallic phase is due to a pur
thermal mechanism, sincetp;1029 s @t;10211s,38 and
for this reason the density of nonequilibrium electron–h
pairs in thed band is negligibly small (n!nc).

We shall interpret the experimental results of Ref. 35
the photoinduced semiconductor–metal phase transition
curring in a characteristic timet0;10212s, from the stand-
point of the theory developed in the present paper for
electron–phonon instability of the semiconductor phase o
Peierls system. We note first that the intensity of the la
pulse in the experiment of Ref. 35I'73108 W/cm2 exceeds
the critical valueI c ~8.11! and therefore, as shown in Sec
8–10, a transition should occur into the metallic pha
which was in fact observed in Ref. 35. The experimenta
measured transition timet0;10212s is close to the value
calculated on the basis of the present theory~see the numeri-
cal estimate for Eq.~9.13! at the end of Sec. 9!.

12. CONCLUSIONS

In summary, in the present paper the dynamics of a n
stationary thermodynamically nonequilibrium photoinduc
phase transition in a one-dimensional system with a Pe
instability was investigated under the assumption that
characteristic interband electronic relaxation timet and the
phonon relaxation timetp are constant and greatly excee
the intraband electron relaxation timete .

It was shown that when the system is irradiated w
light of intensityI ,I c ~8.9! the Peierls semiconductor pass
into a new semiconductor state with a smaller band gap
the electronic spectrum. This transition is an aperiodic rel
ation process@for I ,I 1 ~10.8!# or it has the form of damped
oscillations~for I 1,I ,I c).

For irradiation intensitiesI .I c the system passes int
the metallic phase, and the slow~with characteristic timet
;10211s) interband relaxation of electrons becomes ra
~with characteristic timet;10214s) intraband relaxation. If
in the process the temperature of the sample increases a
the critical temperatureT0 of the thermodynamically equilib
rium metal–semiconductor phase transition, then the met
phase is stable. In the opposite case, the question of the
bility of the metallic state requires additional analysis, taki
account of the deviation of the electron energy distribution
the conduction band from the quasi-Fermi distribution, an
not studied in the present paper.
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A study is made of an effect observed experimentally by Mesyats which involves, prior to the
electrical explosion, as such, the accumulation of an energy on the order of a few times
the sublimation energy by a microscopic cathode spike during explosive emission from a cathode
in a vacuum or gaseous discharge. The same effect is observed during electrical explosion
of a wire. Simple estimates by various authors imply that the temperature of the wire should rise
to 105 K. In reality, when energy is applied very rapidly the wire cannot expand and it is
superheated into a metastable state~essentially to the crystal-liquid spinodal!. When the
temperature rises above 104 K, the specific heat of the metal increases as electronic
degrees of freedom are unfrozen. Thus, the temperature attained prior to an electrical explosion
does not exceed 17000 K. ©1999 American Institute of Physics.@S1063-7761~99!02312-4#
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1. INTRODUCTION

Mesyats1 has developed some new ideas on the exp
sive character of emission and introduced the concept of
tons, or explosion microcenters. It has been shown tha
variety of experimental data on cathode processes can
explained by making the simple hypothesis that, before t
explode, microscopic cathode spikes absorb an energy e
to several times the sublimation energy. This can be in
preted as superheating of the microscopic spikes to temp
tures on the order of 105 K if the simplest equation of state i
used. Because of the paradoxical nature of this conclus
special experiments have been done on the electrical ex
sion of thin wires.2 The results were in complete agreeme
with Mesyats’ hypothesis. Here the effect was enhan
when the rate of energy input was raised. The maxim
superheating was obtained at the highest rate of energy in
1012W/g.

Heating of wires to temperatures of'105 K during elec-
trical explosion was noted in the early experiments
Kvartskhava, Plyutto,et al.3 and later by Tucker.4 ~See the
review by Kotov,et al.5! No convincing explanation of this
effect, however, has been given.

The transition of a solid object into a superheated me
stable state was noted by Urlin6 in an analysis of experiment
on powerful shock waves in solids. The transition into
metastable state during rapid ('1026 s) Joule heating ha
been studied by Ba�kov and Shestak.7 For a copper wire with
a diameter of 3•1022 cm, a superheatingq5(T2Tm)/Tm

.0.13 was observed, whereTm is the melting temperature
The kinetics of the bulk melting of metals has been stud
theoretically by Motorin and Musher.8 Their estimate of a
maximum superheatingq of up to 20% or, in absolute num
bers,T2Tm5150– 200 K, was in agreement with the earli
work.7 Computer simulations of metastable superheated
nite crystalline solids have been done by molecular dynam
and Monte Carlo methods.9–14 The results of Refs. 7–14
1181063-7761/99/89(12)/4/$15.00
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were not drawn upon in the analysis of high temperat
superheating in Refs. 1–6.

In this paper we show that the experimental data
Mesyats,et al.1,2 have an entirely rational explanation. Th
Mesyats effect occurs when the rate of energy input is
high that a wire cannot expand significantly. The high ma
netic pressure at high current densities also inhibits exp
sion. The possible heating regimes for copper are exam
in Sec. 2. Two extreme scenarios for this process are con
ered: constant pressure and constant volume. The the
and caloric equations of state15 are used in analyzing both
regimes. The final temperatures were less than 17000 K
both scenarios. Temperatures below 17000 K correspond
liquid state of copper if equilibrium melting is assumed. T
possibility of maintaining copper in a metastable solid st
during rapid heating1,2 is examined in Section 3, drawing o
the data of Refs. 7–14. It is shown that a wire can ente
superheated metastable state and continue to absorb en
while remaining at near its initial specific volume. Even
melting sets in later, an increase in the volume~radius! of the
wire may not be noticed experimentally prior to an electric
explosion~sudden increase in the volume and electrical
sistivity of the wire!. The heating processes at constant pr
sure and volume are compared in Section 4.

2. HEATING REGIMES

As an example of an estimate of the final state of a w
immediately prior to an electrical explosion, we have chos
one of the intense energy input regimes described in Re
for copper. In particular, the radius of the wire isr 53
31023 cm, the current density isj '108 A/cm2, and the en-
ergy input prior to an electrical explosion is roughly 9 kJ/
Then the magnetic pressurePM5m0m( j r )2/8 (m0m is the
magnetic permeability! at the boundary of the wire is
;0.1 Mbar.

Since the data given in Ref. 2 are inadequate for
accurate determination of the heating dynamics up to
0 © 1999 American Institute of Physics
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time of the explosion, here we consider two limiting sc
narios for the process:

~A! heating along an isochore until a pressurePM is
reached, followed by expansion along an isobar until
time of an explosion. This scenario initially seems mo
natural, so it will not be justified further, and

~B! heating along an isochore leading to a superhea
metastable state of the solid. Arguments in favor of this s
nario will be presented in the next section. This scenario
well as the scenarios intermediate between A and B are
possible as a result of rapid heating and the inertia of exp
sion.

The final states are determined graphically from d
grams for the energy-volume (E2V), enthalpy-volume (I
2V), and pressure-volume (P2V) isotherms constructed in
accordance with the equations of state of copper.15 For ex-
ample, for an isochore on theE2V diagram, we seek the
point of intersection of the horizontal and vertical lines co
responding to the known experimental values of the spec
internal energy and volume. The temperature at the inter
tion point is determined by interpolation from tabular da
surrounding this point. The final state~pressure! corresponds
to the intersection of the experimental isochore and the
therm found on theP2V diagram.

Both heating regimes are represented in Fig. 1, toge
with the equation of state for copper6,15–17and our estimates
of the spinodal for solid copper.

3. SUPERHEATED CRYSTALS

Superheated inert gas crystals have been studied by c
puter simulation using Monte Carlo9–11 and molecular
dynamics12,13 methods. Calculations were done along t
isotherm9,10 and along the isobar.12,13 Calculations along the
isotherm have been done for solids up to the range of par
eters where the derivative of the pressure with respec
volume, (]P/]V)T , becomes greater than zero. The po
where (]P/]V)T50 is the point where the spinodal crysta
liquid phase transition takes place. The specific volume

FIG. 1. Pulsed heating regimes. The vertical toPM plus the horizontal line
correspond to scenario A, and plus the vertical line, to regime B; the po
denote the final states preceding an electrical explosion. The thermal e
tion of state for copper: the numbers on the isotherms denote the tem
ture in units of 103 K, the thick lines are the solid-liquid binodal, and th
dashed curve is the estimated spinodal for the superheated solid.
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the crystal at the spinodal exceeded that on the binoda
25%.10 Note that the difference in specific volumes at t
binodal between the crystal and liquid was only 10% in t
calculations of Ref. 10.

The spinodal of superheated crystalline copper was p
ted for a 25% excess. Note that, for a model crystal form
by charges of the same sign against a compensating b
ground, Monte Carlo calculations show that the spinoda
shifted relative to the binodal by 70% in volume for consta
temperature or by 20% in temperature for constant volum14

A similar shift in the temperature at the isobars of inert g
crystals has been obtained by molecular dynam
methods12,13 using a mechanical stability criterion.

Thus, the results of computer simulations obtained
different authors using different schemes differ little fro
one another. They are also in agreement with anal
estimates.8 Therefore, we may expect that the estimated p
sition of the spinodal in the figure is suitable as a start
point for further derivations. The fundamental difficulty lie
elsewhere.

In fact, since the formation of the liquid phase at t
surface of a melting object does not involve the expendit
of work to form the new surface, superheating of a solid
in general, impossible.18 It has, however, been pointed out18

that the situation changes if the body is heated from wit
and its surface is kept at a temperature below the mel
point. This situation is close to the experimental conditio
in Refs. 1 and 2, where the magnetic pressure~and, therefore,
the melting point for most metals! increases at the surface o
the sample, the surface is cooled by radiation, there is
skin effect, and heating is uniform throughout the entire v
ume of the wire. Note that the large amount of experimen
data on the melting of metals by high power laser radiat
have nothing to do with the theme of this paper, since m
ing takes place within a thin surface skin layer in those
periments. Here, as in Refs. 1–8, we are concerned w
volume melting. Note that the computer simulations of Re
9–14 involve uniformly heated infinite crystals~without an
open surface!.

With heating from inside, the probability of forming nu
clei of the liquid phase depends on elastic deformations
companying the appearance of droplets of liquid inside
solid.18 It has been shown,8 however, that the energy of elas
tic deformations makes a significant contribution to the fr
energy of nucleation only for small amounts of superheati
Then the nucleation rate per unit volume,v, depends on the
relaxation of elastic stresses and is determined by the d
sion time for the vacancies formed during nucleation. H
the ratev is low, and, for pulsed energy input into a sma
volume, cannot reach the critical level~where the nucleation
probability ;1) while satisfying the requirement of a sma
amount of superheating. The crystal melts with pulsed he
ing only for large amounts of superheating, when the ela
deformation of the crystal lattice can be neglected. In t
case, the rate of growth of microscopic droplets is det
mined by heat conduction andv is substantially higher than
for small amounts of superheating.

Therefore, we can expect that melting sets in only
large amounts of superheating, and that the nucleation p

ts
ua-
ra-
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ability is highest on the axis of the conductor, where there
no magnetic pressure. Even if a nucleus is formed, the pro
gation time of the melting front is extremely long compar
to the energy input time in this case. The velocity of t
melting front has been calculated for copper by the mole
lar dynamics method.19 It was up to 100 m/s for 20% supe
heating. Thus, over the characteristic times;1028 s for the
Mesyats effect, the melting front can only move a distan
1022 R.

An additional argument in favor of scenario B is the fa
that, for these energy inputs, the exploding wire effect
natural, as the destruction of a metastable state of a solid
the spinodal when the system is perturbed. On the o
hand, in the case of scenario A, it is not clear why an exp
sion should happen, when a wire that is in an equilibriu
liquid state, still far from the liquid-vapor binodal, still has
metallic conductivity. Note that the effect of the shift in th
phase equilibrium for a liquid-vapor phase transition exa
ined in Ref. 20, and caused by an inhomogeneity of
magnetic pressure in the different phases, is far weaker f
solid-liquid transition owing to the much smaller differen
in the conductivity of the phases.

4. DISCUSSION

In this paper we have only made qualitative estimat
For example, the pressure is assumed constant over th
dius of the wire, the time dependence of the energy inpu
neglected, and the difference between the equilibrium
metastable isotherms is neglected, both in the thermal
the caloric equations of state, although the energies in th
states are different. The specific heat of the metastable
increases near the spinodal, as noted in the case of
heating of superheated liquids.21

The figure shows aP2V diagram for copper in the pa
rameter region corresponding to the onset of an electr
explosion. Initially, scenarios A and B are indicated by
single vertical line, and then by horizontal and vertical lin
respectively. In these estimates we have used caloric e
tions of state for the internal energy and enthalpy15 and the
melting curve of Ref. 6. This curve is consistent with co
temporary data16,17 at the triple point.

It is clear that the final temperature in both scenarios
less than 17000 K. This resolves the paradox mentione
the introduction. This reduction in the temperature is so l
compared to the estimates based on the sublimation en
because, at temperatures of;104 K, electrons begin to make
a significant contribution to the specific heat. The ou
shells of the copper atom have ad10s1 structure, so the elec
tronic structure of crystalline copper has six Brillouin zone
a half filleds-zone and five filledd-zones. The energy level
of all thed-zones lie within 1 eV of the Fermi energy. Thu
at temperatures on the order of 104 K, all 11 electrons begin
to contribute to the electronic specific heat, which, of cour
has been taken into account in the data15 we have used. The
earlier estimates1–5 of superheating to 105 K were a conse-
quence of an incorrect extrapolation of the low temperat
equations of state to high temperatures.
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Note that electron emission causes cooling of the e
trons in the metal.~This fact was pointed out to us by S
Barengol’ts.! Since the electrons make a substantial con
bution to the specific heat under these conditions, elec
emission not only cools the electrons, but also causes a
tional cooling of the metal, itself, i.e., of the surface of th
microscopic spikes on the cathode, which, as noted abov
important for the existence of a superheated crystal.

The end point of scenario B lies near the estimated sp
odal for the solid. Thus, it is more or less clear why electri
explosions occur in scenarios close to B~the entry into a
superheated state of the solid! at these energy input levels
On the other hand, is not at all clear why an electrical exp
sion ~assuming equilibrium melting! should take place in
scenario A at these energy input levels. We note, again,
the end point for this scenario is still far from the binodal
the liquid-vapor phase transition.

A more exact calculation of the initial stage of the ele
trical explosion process will have to avoid the approxim
tions mentioned above.

We thank G. A. Mesyats, whose brought our attention
this problem, S. A. Barengol’ts for discussing the results, a
K. V. Khishchenko who kindly provided the equation o
state for copper.
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cow ~1992!, p. 377.

7A. P. Ba�kov and A. F. Shestak, Pis’ma Zh. Tekh. Fiz.5, 1335 ~1979!
@Sov. Tech. Phys. Lett.5, 562 ~1979!#.

8V. I. Motorin and S. L. Musher, J. Chem. Phys.81, 465 ~1984!.
9M. Ross and B. Alder, Phys. Rev. Lett.16, 1077~1966!.

10V. G. Ba�dakov, S. P. Protsenko, and V. P. Skripov, Trudy MOPI, Izd-v
vysshe� shkoly, Moscow~1976!.

11V. M. Zamalin, G. É. Norman, and V. S. Filinov,Monte Carlo Methods in
Statistical Thermodynamics@in Russian#, Nauka, Moscow~1977!, p. 88.

12V. G. Ba�dakov, A. E. Galashev, and V. P. Skripov, Fiz. Tekhn. Polup
vodn.22, 2681~1980! @sic#.

13J. Solca, A. J. Dyson, G. Steinebrunner, B. Kirchner, and H. Huber
Chem. Phys.108, 4107~1998!.

14H. E. DeWitt and W. L. Slattery, inStrongly Coupled Coulomb System,
ed. by G. Kalman, M. Rommel, K. Blagoev, New York, Plenum Pre
~1998!, p. 1.

15V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonoso
Nucl. Instrum. Methods Phys. Res. A415, 604 ~1998!.

16E. Yu. Tonkov,Phase Transitions of Compounds at High Pressures@in
Russian#, Vol. 1, Metallurgiya, Moscow~1988!.

17V. I. Severin, Yu. A. Priselkov, A. V. Tseplayevaet al., Teplofiz. Vys.
Temp.36, 577 ~1998!.



1183JETP 89 (6), December 1999 A. A. Valuev and G. É. Norman
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Granular ferromagnetic metals are usually regarded as systems with weakly interacting
superparamagnetic particles whose magnetization is described by a Langevin model. It is shown
that this approach is inadmissible. A correct description of the magnetic properties of
granular ferromagnetic metals requires that the magnetic anisotropy of the granules, the spread in
their orientations, and the variety of their shapes be taken into account. A model with
magnetically anisotropic granules, as opposed to the Langevin model, predicts a weak temperature
dependence for the magnetization of granular ferromagnetic metals that is in agreement with
experiment and provides averaged information on the grain shapes. The glassy nature of the
magnetic state of these systems is demonstrated. The magnetic correlations owing to the
dipole interaction of the magnetic moments of the granules are examined. ©1999 American
Institute of Physics.@S1063-7761~99!02412-9#
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Experiments have shown that the magnetization of
nanocomposite Fex(SiO2)12x with an iron contentx'0.5
close to the critical value for a dielectric-metal transition h
a very weak dependence on temperature within the ra
T54 – 300 K.1 Thus, a description of the magnetization
such a system using the Langevin function2,3 is inadmissible.
This means that the conventional model of single doma
superparamagnetic~and noninteracting with one another! Fe-
granules is not applicable to this case. There are several
sons for this, but the main reason is the large magnetic
ergy WA associated with the~crystalline and geometrical!
anisotropy of the granules. The weak temperature dep
dence of this energy~at least, far from the Curie point!
causes the magnetization to be temperature independen
the other hand, this anisotropy can show up as glassy be
ior in granular ferromagnetic metals, especially in the w
their magnetization depends on the prehistory and rate
measurements and in magnetization creep, i.e., its de
dence on time when the external conditions are const
This paper is an attempt to examine all these question
terms of a simple model where the magnetic anisotropy
the granules is related to their nonspherical shape and
distributions of the orientations and shapes of the granule
real systems are taken into account statistically. This pa
continues the examination of the magnetic properties
nanocomposites with spherical ferromagnetic granules be
in Ref. 4.

1. MAGNETIZATION OF NANOCOMPOSITES AT LOW
TEMPERATURES

We first examine the applicability of the superparama
netic approximation. The magnetization of this system c
be independent of temperature only when the energyWA

required to change the orientation of the magnetic mome
of the individual single domain granules is much greater th
the thermal energykT. In the absence of an external ma
1181063-7761/99/89(12)/5/$15.00
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netic field, the orientation of these moments is determined
the intragranular crystalline anisotropy or by the asymme
geometric shape of the granules. In these cases,WA;VK1 or
WA;VIs

2n, respectively, whereV is the granule volume,K1

is the crystalline anisotropy constant (K1;105 erg/cm3 for
iron!, I s is the saturation magnetization (I s'1700 G for
iron!, andn;1 is the difference in the demagnetization c
efficients for nonspherical granules. For granules of s
a;1026 cm we haveWA;103 K ~for the crystalline anisot-
ropy! andWA;104 K ~for the geometric anisotropy!, which
exceeds the experimental temperature.

In order to establish which of the two anisotropy mech
nisms really occurs, it is necessary to compare the meas
fields H;10 kOe at which the magnetization begins to sa
rate~regardless of the temperature!! with the effective anisot-
ropy field HA5WA /VIs , which amounts toHA;K1 /I s

;1 kOe ~for a crystalline anisotropy! or HA;I s
2n;10 kOe

~for a geometric anisotropy!. It is evident that, in this case
the field dependence of the magnetization is determined
the anisotropy associated with the nonspherical shape o
granules.

In the following we shall assume that the Fe-granules
in the shape of prolate ellipsoids of rotation with semiax
a.b5c. In the absence of an external magnetic field t
magnetic moment of each single domain granule will be
rected along its major axis. An external magnetic field wh
does not coincide in direction with this axis will tend to tu
the magnetic moment of the granule so that its direct
approaches that of the field. We define the equilibrium o
entation of the magnetic field by the angleu between its
direction and that of the major axis of a granule. Then
anisotropy energy can be written in the form5

WA5
1

2
I s

2n sin2 u,

wheren5Nb2Na , andNb andNa are the demagnetizatio
4 © 1999 American Institute of Physics
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1185JETP 89 (6), December 1999 E. Z. Me likhov
coefficients of the ellipsoid along theb anda axes. The total
magnetic energyW of the ellipsoid in an external magnet
field is given by

W

V
5

1

2
I s

2n sin2 u2HI s cosg, ~1!

where the last term corresponds to the energy of the inte
tion of the magnetic moment of the granule with the ma
netic field andg is the angle between the magnetic mome
of the granule and the magnetic field. Since in equilibriu
~and neglecting thermal fluctuations; see below!, the mag-
netic field, major axis of an ellipsoidal granule, and its ma
netic moment lie in a single plane, we haveg5b2u, where
b is the angle between the magnetic field and the major
of the ellipsoid.

The equilibrium angleg(H,b) of orientation of the
magnetic moment corresponds to the minimum of the ene
~1! and can be found using the equation

sin 2~b2g!

sing
5hn , hn5

2H

I sn
, ~2!

which determines the field dependence of this angle for g
ules with a specified~by the angleb! orientation. It is clear
that, as the field increases, the direction of the magnetic
ment should approach that of the magnetic field. Howev
the corresponding functionsg(H,b) are different in two
cases:ubu,p/2 ~initial magnetic moment inclined at a
acute angle to the ‘‘future’’ magnetic field! and ubu.p/2
~the same, but with an obtuse angle!. This is related to the
presence of two minima in the magnetic energy~1! of a
granule in a weak magnetic field~Fig.1!. As Fig. 2 shows, in
the first case the angleg approaches zero monotonically an
in the second, with a sudden change of sign correspondin
a ‘‘jump’’ of the magnetic moment from one minimum o
the magnetic energy~1! to the other.

If the granules had the same shape (n5const) and their
axes were distributed uniformly in space, then the field

FIG. 1. The magnetic energyW of a single domain ellipsoidal granule as
function of the angleg between its magnetic moment and the external m
netic field for different values of the reduced fieldhn . The initial (hn50)
orientation of the magnetic moment is:b5p/4 ~the magnetic moment al-
ways ‘‘sits’’ in the right hand minimum of theW(g) curve! or b53p/4 ~in
a fieldhn'1 the magnetic field ‘‘jumps’’ from the left hand minimum to th
one on the right!.
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pendence of the total magnetic momentM of the system
~normalized to its saturation valueMs) could be found by
simple summation~over the orientations!:

mn~hn!5
M

Ms
5

1

p E
0

p

cosg~hn ,b!db. ~3!

The resultingmn(hn) is also shown in Fig. 2. It can be see
that it still preserves a ‘‘memory’’ of the sudden ‘‘jumps’’ o
the magnetic moments in half the granules at fieldshn;1.
Clearly, this behavior of the system magnetization, which
inconsistent with experiment, is related to the simplifyin
assumption that all the granules are similar (n5const). In
real systems, this condition is not, in general, satisfied, si
they consist of granules with different shapes. Assuming
simplicity that all the granules are ellipsoidal, as before,
that the distribution of their volume fractions with respect
the parametern has a distributionc~n!, then instead of Eq.
~3! we obtain

m~H !5E
nmin

nmax
mn

2H

I sn
c~n!dn, ~4!

where the limits of integration are determined by the dis
bution of granule shapes.

As an example, let us consider the uniform distributi
c(n)5(nmax2nmin)

21 for the case in which the shape of th
granules varies from spherical (nmin50) to prolate ellipsoidal
with an axis ratio ofa/b510 (nmin55.9).1! The m(H) de-
pendence obtained for this case is shown in Fig. 3.2! Also
shown there is the corresponding experimental depende
~curve 1! for the magnetization of the Fex(SiO2)12x

(x'0.5) system, measured atT577 K ~Ref. 1!. It is clear
that the theoretical dependence is the same as the experi
tal one everywhere except at intermediate fieldsH
;10 kOe, where the calculated magnetizations are so
what higher~up to ;20%) than the experimental value
This model essentially applies toT50. Thus, the agreemen
obtained here, which is not based on using any fit para
eters, indicates that a Langevin model for the thermal fl

-

FIG. 2. The angleg of inclination of the magnetic moment of ellipsoida
single domain granules as a function of the field. The initial direction of
moment is determined by the orientation of the major axis of the ellips
~the angleb!. The monotonically increasing curve is the total magne
moment of a system of ellipsoidal granules with a uniform random dis
bution of the orientation anglesb.
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tuations of the magnetic moment is not applicable and
the magnetic anisotropy associated with the shape of
granules must be taken into account.

The model considered here can be used to obtain sim
formulas which might make it possible to obtain informati
on the ‘‘average’’ granule shape beginning with experime
tal dependences for the magnetization of the granular me
For this, we can use the simple solutions of Eq.~1! for the
two limiting cases corresponding, respectively, to the ini
segment of the magnetization curve~low fields! and to its
saturation region~high fields!. In the first case, the solutio
of Eq. ~1! has the form

cosg'cosb1~1/2!hn sin2 b,

so that

mn5
1

p E
0

p

cosg~b!db5
H

2I sn
,

m~H !5E
0

`

mn~H/n!c~n!dn5
H

2I s
^n21&.

This last equation makes it possible to determine the mom
^n21& of the distribution. In the second case, the solution
Eq. ~1! has the form

cosg'12
1

2hn
2 sin2 2b,

so that

mn512n2S I s

4H D 2

, m~H !512^n2&S I s

4H D 2

,

which makes it possible to determine the moment^n2& of the
distribution.

FIG. 3. Field dependences of the magnetization of a granular ferromag
material~Fe!: 1—experimental dependence for the dielectric nanocompo
Fex(SiO2)12x ~x'0.5, T577 K); 2—theoretical ‘‘fast’’ dependence for a
system of ellipsoidal Fe-granules with uniform random distributions of th
orientations and axis ratios~see text!; 3—theoretical ‘‘infinitely slow’’ ~ther-
modynamic! dependence for a system of ellipsoidal Fe-granules of eq
volume with uniform random distributions of their orientations and a
ratios ~see text! corresponding to a reduced temperature ofT15kT/VIs
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The accuracy of the experiments in the magnetizat
saturation region, however, is usually not sufficient for
reliable determination of̂n2&. Thus, it makes sense to app
the above recipe only to the initial segment of the expe
mental curve in Fig. 3, which yieldŝn21&'0.5.

As for the discrepancies between the calculated and
perimentalm(H) curves at intermediate fields, they are r
lated, first, to thermal fluctuations in the magnetic mom
and, second, to the fact that, at these fields, a granular m
is a magnetic ‘‘glass.’’

2. NANOCOMPOSITES AS MAGNETIC GLASSES

In the Langevin model, the magnetic anisotropy is n
glected and the granule energy is described by the sec
~Zeeman! term of Eq.~1!. In this case, the depthVIsH of the
potential well~for the magnetic moment! is large compared
to the thermal energy only in strong magnetic fiel
H@kT/VIs . In low fields, this well is shallow, so that th
fluctuation thermal spread in the orientation anglesg of the
magnetic moments is large, and this leads to a strong t
perature dependence for the magnetization in low magn
fields. A nonspherical granule with a large magnetic anis
ropy is another matter. Here, as noted above, two situat
are possible: the initial~for H50) magnetic moment of a
granule directed along the large axis of an ellipsoid can
inclined to an applied field at an acute or obtuse angle. In
first case (b,p/2, see Fig. 1!, that minimum in the orienta-
tional dependence of the magnetic energy~1! in which the
magnetic moment of the granule (g'b) was initially ‘‘ar-
ranged’’ is either separated from the symmetric second m
mum (g'b2p) by a high energy barrier of height;VIs

2

@kT ~in low magnetic fields! or it is the only minimum~in
high magnetic fields!. In both cases, it is a single deep min
mum with a small effective spreadD(cosg) in the orienta-
tions of the magnetic moment owing to thermal fluctuatio

D~cosg!;H ~kT/VIs
2!1/2!1, H!I s

~kT/VIsH !1/2!1, H@I s
. ~5!

The magnetization of granules of this sort is essentially te
perature independent.

In the second case (b.p/2), the situations for low and
high magnetic fields are similar to the first case (b,p/2),
but there is a region of intermediate fields~the same one
where the magnetic moment of a granule jumps from o
initial energy minimum into the other! where the two minima
in the energyW are separated by a low barrier~whose height
goes entirely to zero for some value ofH; cf. Fig. 1!. Here
the initial minimum also becomes shallow. In this range
fields, the granule magnetic moment can no longer be
garded as localized in one of the energy minima. It can be
either with finite probability. The result of a measurement
the magnetization will depend on the time allotted to t
measurement. In ‘‘fast’’ measurements, the magnetic m
ment will not be able to undergo a transition from one mi
mum to the other, and the effective spread in the actual
ues of D(cosg) is related only to the initial minimum. In
‘‘slow’’ measurements, the magnetic moment is ‘‘smear
out’’ ~owing to thermal fluctuations! over the two minima.
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Thus, the magnetization obtained from fast measurem
should differ from that obtained from slow measuremen
The characteristic time for the jump in the magnetic mom
is

t~H !;t0 exp@dW~H !/kT#,

wheret0;mc/eH is the period of the precession in the ma
netic moment anddW(H) is the barrier height between th
energy minima, which depends on the field.6 The height of
the initial barrier is dW(0);VIs

2;1042105 K and the
height of the final barrier~in a magnetic fieldH@I s

;1 kOe) isdW(`);VHIs;1042105 K, so that any mea-
surements in low or high fields are fast. A jump time
t;1 s is obtained fordW(H);20kT!dW(0), which oc-
curs only within a narrow range of intermediate field
H51210 kOe~see Fig. 1!. However, even in this case, th
measurements will not really be slow, since when there
large spread in the orientations, shapes, and volumes o
granules, the condition for slowness at each value of the fi
will be satisfied only for an isolated group of granules.

This all means that it is almost impossible to actua
observe a slow~i.e., thermodynamically equilibrium! field
dependence of the magnetization of a nanocomposite. H
ever, it is possible to try to detect magnetization creep~i.e., a
slow change in the magnetization with time! in the course of
prolonged measurements in a constant field. The magni
of the possible creep can be estimated by comparing
above fast dependence with the limiting form of the mag
tization as a function of field for infinitely slow measur
ments. In the latter case, the field dependence of the ma
tization mbn(H) of a group of granules whose orientatio
and shape are characterized by the parametersb and n is
given by

mbn~H !}E
g50

p E
f50

2p

expF2
W~g,f!

kT GcosgdV, ~6!

where one of the arguments in Eq.~1! for the granule energy
~the angleu! is replaced, for convenience in taking the int
gral, by the azimuthal angle of the magnetic moment,f,
which is related to the anglesu, g, and b by cosu
5cosg cosb1sing sinb cosf and dV5singdgdf is the
solid angle.~In the Langevin model, which neglects the ma
netic anisotropy, the energyW depends only ong, so that
Eq. ~6! reduces to the Langevin function.!

Equation~6! is valid for a system of granules in thermo
dynamic equilibrium. Averages can be taken over the ori
tations and shapes of the granules, as before, using Eqs~3!
and~4!. Since the effective temperatureT15kT/VIs

2 depends
on the granule volumeV in this case, we have takenV
5const for all the granules in order to simplify the calcu
tions. The infinitely slow field dependence ofm(H) obtained
in this way forT150.1 ~for V510219cm3 this corresponds
to T'200 K) is plotted in Fig. 3~curve 3!. The above re-
marks imply that it should not agree with experiment. Ho
ever, as might be predicted, the thermodynamicm(H) de-
pendence~curve 3! does lie above the experimental cur
everywhere and, for fields 1,H,10 kOe, where the mag
netic moment is spread out between the two energy min
ts
.
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in a real experiment, it also lies above the theoretical f
field dependence~curve2!. The difference between curves3
and1, .50% for a field ofH.5 kOe, provides an estimat
of the change in the magnetization owing to creep~over an
infinite time!.

3. THE ROLE OF CORRELATIONS IN THE MAGNETIZATION

In intermediate magnetic fields (H51210 kOe for the
system under consideration here!, the magnetic anisotropy
no longer plays a decisive role, and the ordering influence
the external magnetic field no longer leads to a ‘‘force
alignment of the magnetic moments of all the granules alo
the field. Thus, the magnetic moment of each granule c
more or less, freely align itself along the direction of th
local magnetic field produced at that granule by the res
the granules. This leads to correlation effects which influe
the total magnetic moment of the system.3!

For simplicity, we shall consider a system consisting
identical granules in the following. Since the shape anis
ropy is now unimportant, we can assume them to be ident
spheres with magnetic momentsm of different magnitudes.
The magnetic moment of thei th granule,m i , precesses
about the direction of the magnetic field at a frequencyv
;eHi /mec, whereHi5H1dHi is the sum of the externa
field and the fielddHi created by all the other granules at th
site of the granule being considered. Including the fielddHi

means taking the interaction between the magnetic mom
of the granules into account. For granules in a dielectric m
trix, the most important interaction is the long range dipo
interaction, whose energy~on the order ofm2/ l 3, wherel is
the average distance between granules! can be fully compa-
rable to the thermal energykT. It has been shown7 that the
dipole interaction among granules consisting of a large nu
ber of ‘‘magnetic’’ atoms can be calculated by replaci
them with effective magnetic moments located at the cen
of mass of the granules.

The disorientation angleu between the directions of th
magnetic moments of neighboring granules, which de
mines the probability of intergranular electron tunnelling,
related to their orientation anglesg1,2 andf1,2 by

cosu5cosg1 cosg21sing1 sing2 cos~f12f2!. ~7!

Because of random perturbations of thermal origin,
precessional motion of the magnetic moments of the gr
ules is subject to random interruptions which, in gene
change the angles of inclination of the precession (g1,2), as
well as its phase~the anglesf1,2). Since changing the angl
of inclination of a magnetic moment requires a much grea
expenditure of energy than changing the phase of the pre
sion, it is natural to assume that the timetf over which
coherent precession is maintained is much shorter than
time tg over which the angles of inclination are maintain
constant.4! Thus, assuming that the anglesf1,2 are not corre-
lated, we can average Eq.~7! over a timetf!t!tg and
obtain

cosu5cosg1 cosg2. ~8!
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Averaging Eq.~8! over timest@tg is equivalent to av-
eraging over space~i.e., over different granules!:

^cosu&5^cosg1 cosg2&. ~9!

Here cosg1,25m(H)1d1,2, whered i is the local fluctuation
associated with the difference between the local field and
average~naturally, on the average,^d i&50 over the gran-
ules! andm(H) is the reduced~normalized to unity! magne-
tization of the system.

The correlation of the fluctuations of this type for diffe
ent granules can be described using the correlator

^d idk&5^d i
2&expS 2

r ik

r g
D ,

where r g is the correlation radius andr ik is the distance
between granulesi andk. It is easy to see that

^d i
2&5^@cosg i2m~H !#2&5^cos2 g&2m2~H !.

Finally,

^cosu&5m2~H !1@^cos2 g&2m2~H !#exp~2l /r g!,
~10!

wherel is the distance between granules 1 and 2. This
plies, in particular, that when there is no correlation betwe
the angles of inclinationg1,2 (r g50), the disorientation
angleu is given simply by^cosu&5m2(H).

The field at thei th granule isHi5H1dHi , where the
collective contribution to the external field,dHi

5m(b ikdk , is determined by the ‘‘geometry’’~through the
‘‘geometric’’ parametersb ik) and the fluctuationsdk of the
neighboring granules. Sincêcosgi&5m(Hi), we have cosgi

5m(H1dHi)'m(H)1dHi m8(H), which implies that

d i5mm8~H !( b ikdk , ~11!

where m8(H) is the derivative of the magnetization as
function of the field.

On the other hand, the fluctuationsd i ~and, thereby, the
correlation radiusr g) are determined by the intensity of th
intergranular interaction and the geometry~i.e., the mutual
positions of the granules!:

d i5( l ikdk . ~12!

In the continuum approximation, which is applicable
r g@l ~otherwise, the correlations of the magnetic mome
can be neglected!, we can introduce a smooth function o
position,d5d(r ), such thatd(r ik)5dk . Then,

d'dS ( l ik D1~¹d!S ( l ikr ik D1
1

2
~¹2d!( l ikr ik

2 ,

where, because of the isotropy of the system, the first
terms in the expansion equal zero. Thus, the spatial varia
of d(r ) obeys the equation

¹2d5d/r g
2 , r g

25
1

2 ( l ikr ik
2 .

The solution of this equation has the formd } exp(2r/rg)
and describes the spatial correlation of the magnetic
ments of the granules. Equations~11! and ~12! imply that
l ik5mm8(H)b ik , so that
e

-
n

s

o
n

o-

r g
25

1

2
mm8~H !( b ikr ik

2 . ~13!

The magnetic field dependence of the correlation rad
r g is, therefore, determined by the derivative of the mag
tization as a function of the magnetic field. Since the lat
saturates in high fields, an increase in the magnetic fi
leads to a reduction in the correlation radius, so that in
magnetization saturation regime, the correlations of the m
netic moments of the granules can be neglected.

For estimating the correlation radius we note thatb12

;(1/l 3), so that (b ikr ik
2 ;1/l . As for the derivative

m8(H), Fig. 3 implies thatm8(H)5102421025 Oe21. In a
system consisting of granules with different sizes, the co
lation of the magnetic moments is associated mainly with
large granules. They have large magnetic moments,m
5(103– 104)mB , and ‘‘align’’ the magnetic moments of the
smaller surrounding granules to themselves. For an ave
distance between the large and small granules ofl ;30 Å
we find r g;1027– 1026 cm.

Correlation effects may be important in gigantic ma
netic resistance effects in ferromagnetic materials made u
granulated metals.4,8 A separate paper will be devoted to th
question.

The author thanks B. A. Aronzon and V. V. Ryl’kov fo
useful discussions. This work was supported by the Rus
Fund for Fundamental Research~Grant Nos. 96-02-18429-a
and 98-02-17412-a! and the PICS-Russian Fund for Fund
mental Research program~Grant No. 98-02-2237!.

* !E-mail: meilikhov@imp.kiae.ru
1!Electron microscope studies show that the granules of a real composit

nonspherical, and the ratio of their maximum and minimum dimensi
can vary by an order of magnitude. The variant examined here mus
considered as purely illustrative. Note, however, that calculations for ot
not very ‘‘exotic’’ distributions c~n!, are qualitatively similar to those
shown in the text.

2!The calculated curve ‘‘joins’’ the absolute magnitudes of the magne
field beginning withI s51700 G.

3!Correlations in a system of superparamagnetic~Langevin! granules have
been discussed in Ref. 2, which we shall follow here.

4!Note, however, that for ferromagnetic granules with large effective m
ments, the corresponding fluctuations are small.
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Parametric interaction of magnetostatic waves with a nonstationary local pump
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A solution is obtained for the general problem of the nonstationary interaction of backward
volume magnetostatic waves in films of yttrium-iron garnet with local parametric pumping. In the
case of a large pump region,l @l, wherel is the wavelength of the backward volume
magnetostatic waves, the problem reduces to a system of truncated equations for two packets of
counter propagating waves. In the opposite case,l ,l, the exact problem of parametric
interactions of the eigenmodes of a ferrite film~both counterpropagating and in the same direction!
is solved numerically. Both cases are studied experimentally and good qualitative and
quantitative agreement is obtained with the theory. For the first time, the reversal of a wave front
and the time reversal of the shape of backward volume magnetostatic wave pulses are
observed and a change in the propagation time for the peak of the signal pulse and a reduction
in its width owing to pumping are recorded. Two operating regimes are identified for a
nonstationary parametric backward volume magnetostatic wave amplifier with local pumping,
which differ in the ratio of the duration of the pump pulse to the transit time for the
wave through the local pump region, and the effect of the parametric excitation of two-
dimensional spin waves on the interaction of backward volume magnetostatic waves with a local
nonstationary parametric pump is determined. ©1999 American Institute of Physics.
@S1063-7761~99!02512-3#
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1. INTRODUCTION

Wave interactions in solids are widely used to study
physical properties of solids, as well as for creating devi
for a wide range of purposes. For example, an optical p
metric interaction has been used to amplify waves and
reverse their wave fronts.1–3 Here the limited spatial and
temporal extents of the region where the waves interact w
the pump, i.e., its localization and nonstationarity, are
some importance.

In general, every interaction is local, since it actua
takes place within a limited region of space. However, loc
ization does not always have a significant effect on the ch
acteristics of the interaction. If we are concerned with a pa
metric wave interaction or Raman scattering, then locali
tion becomes important only when the dimensionsl of the
interaction region are comparable to the mean free pat
the waves. Then all the parameters of the interaction cha
beginning with the threshold for wave excitation and end
with such technical characteristics as the transmission b
pass, which are now determined by the sizel of the space
~i.e., the active region! where it takes place. In optics, whe
the mean free path of the waves in fiber optics can be as
as tens of kilometers,1 parametric pumping is always loca
and this fact is taken into account in the analysis of nonlin
interactions, as well as in their practical applications.1–3 In
magnetic crystals, especially the ferrites, two-dimensio
exchange spin waves with a short mean free pa
(<1022 mm) are most often excited and, for quite unde
standable reasons, the pump localization is usually not ta
1181063-7761/99/89(12)/11/$15.00
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into account in the calculations.4 In addition to two-
dimensional spin waves, a rich spectrum of long waveleng
dipole-exchange spin, or~in accordance with the magneto
static approximation often used to analyze them! magneto-
static waves, can be excited in the ferrites. In high qua
ferrite films of yttrium-iron garnet~YIG!, the mean free path
for the latter is hundreds of times longer and the localizat
of the pump begins to play an important role. It was fi
taken into account in parametric excitation of spin waves
Ref. 5, and was, subsequently to Ref. 6, taken into acco
everywhere.7–9 Until recently, this accounting was quite lim
ited; only the change in the excitation threshold was includ
under stationary pump conditions. However, as noted rep
edly before that,6 the pumping cannot be stationary durin
parametric amplification of long wavelength oscillations a
waves in ferromagnetic materials; its duration must be c
siderably shorter than the characteristic relaxation times
exchange two-dimensional spin waves. This happens
cause of the multimode character of the spin-wave spectr
for a single frequency in the crystal there is an infinite set
eigenmodes and waves with different magnitudes and di
tions of the wave vector. In order to prevent two-dimensio
spin waves from being excited from the thermal level
levels detectable in an experiment, nonstationary pumpin
necessary. Using nonstationary pumping makes it possib
operate beyond the threshold for generation of magnetos
waves, which ensures much higher gains and conversion
efficients for these waves. A first brief discussion of the
teraction of travelling magnetostatic waves with local no
stationary pumping, with the problem of the reversal of t
9 © 1999 American Institute of Physics
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wave front of backward volume magnetostatic waves in Y
films as an example, was given by Gordon,et al.10 It is
known that backward volume magnetostatic waves pro
gate in ferrite films with saturation magnetization along t
direction of the superposed magnetization fieldH0 and are
characterized by opposite directions of the phase and g
velocity vectors.11 We have chosen them for experimen
study because backward volume magnetostatic waves ar
ciprocal with respect to reversal of the direction of the wa
vector and can also interact efficiently with longitudinal ele
tromagnetic pumping at twice the frequency.11 Backward
volume magnetostatic waves have all the characteristic p
erties of magnetostatic waves and all the conclusions dr
here are directly applicable to any type of magnetost
wave.

This paper is a generalization of Ref. 10 to the case
backward, as well as forward waves. Here we present
results of a theoretical and experimental study of the pa
metric interaction of incident magnetostatic waves with
local nonstationary, longitudinal pump with frequencyvp

whose variable magnetic field vectorhp is collinear with a
constant magnetic field vectorH0 . This interaction cause
amplification of a forward wave with frequencyv1 at the
exit from the active region, and an idling backward wa
~parametric echo! counter to the forward wave appears at t
entrance to the active region with the complex conjug
amplitude and a frequencyv2 that obeys the condition for a
parametric resonance,v25vp2v1 . In the case of active
regions with very short lengthsl, on the order of or less tha
the magnetostatic wavelengthl[2p/k, a passing idling
wave that obeys the same parametric resonance condi
may appear along with the counterpropagating wave
propagate in the same direction as the forward wave.

In Sec. 2 of this paper we describe the experimen
setup. Section 3 contains the results of a theoretical ana
of the interaction of waves with local parametric pumpin
including a model based on solving the truncated equat
for coupled waves12–15 that is valid for l @l. An analytic
solution of these equations for nonstationary pumping is
tained in terms of Bessel functions of an imaginary arg
ment. These solutions are used to analyze the dependenc
the gain coefficientK1 for the forward wave and the conve
sion coefficientK2 for conversion of the forward into a back
ward wave on the pump powerPp , pump pulse durationtp ,
and signal durationts , as well as on the mutual position o
the pulses. Some nontrivial consequences of the interac
of the incident wave with a nonstationary pump are fou
compression of the signal pulse and a change in the pr
gation time for its peak. In the opposite case of a small ac
region, l<l, the interactions of co- and counterpropagati
magnetostatic waves are analyzed using a numerical solu
of the equations of motion for the amplitudes of spin wav
in momentum space. The results of an experimental stud
the parametric interaction of magnetostatic waves with a
cal, nonstationary pump are presented in Sec. 4. The dat
in good agreement with the theory.

Regarding the significance of these results we can
the following. The solution for the parametric interaction
magnetostatic waves with a local, nonstationary pump
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tained here can be used to describe the parametric excita
of any other waves, including light, for which it is only nec
essary to change the interaction coefficients of the waves
of the conclusions of this paper remain valid. The interact
of magnetostatic waves with a local parametric pump may
applied in spin-wave magnetoelectronics16 for amplifying
waves and reversing their wave fronts, for correlation p
cessing of signals, and correcting the wave front and sh
of pulses, as is done in adaptive optics,3,17 for echo genera-
tion, and, finally, for physical research on nonlinear pr
cesses in magnetic and other materials. In fact, spin-w
studies are quite simple; they are done in the well explo
and accessible microwave bands with extremely mode
pump powers ofPp;1 W. Thus, they provide a convenien
model for many nonlinear processes in other media and
other wavelengths, including optical wavelengths, that
quire complicated apparatus. For various reasons, some
tical processes have not yet been observed, such as w
front reversal during first order parametric processes~owing
to difficulties in satisfying the conservation laws!. In optics,
higher order processes, mainly of second order,3 are studied.
These difficulties do not arise when magnetostatic waves
used.10 They have many other advantages, including the p
sibility of exciting forward and backward waves~with oppo-
site group and phase velocities! and creating interaction re
gions with dimensions on the order of, or smaller than,
wavelength, i.e., simultaneous excitation of co- and coun
propagating waves.

2. DESCRIPTION OF THE EXPERIMENTAL MODEL AND
MEASUREMENT TECHNIQUES

In these experiments we used to experimental mod
with different lengthsl of the active region. Model I~Fig. 1!
is a structure consisting of three thin metallic conductors
direct contact with a rectangular sample of YIG film on
gadolinium-gallium garnet substrate, a waveguide for ba
ward volume magnetostatic waves. The dimensions of
sample in the plane of the film were 1.6318 mm2 and the
film thickness was 4.9mm. The waveguide is oriented with
its long side perpendicular to the axes of the conductors
parallel to the direction of the magnetization fieldH0 . The
conductors are made of silver wire with a diameterd
550mm and are placed 3.75 mm apart from one another
the free surface of a shielded polycor (Al2O3) plate. The
plate is 0.5 mm thick. The outer conductors, which perfo

FIG. 1. The experimental model:1, 3—input and output antennas
2—inductor for the pump magnetic field;4—polycor substrate;5—shield;
6—YIG film on a substrate of gadolinium-gallium garnet. The dashed arr
indicates the direction of propagation of the input signal.
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the function of exciting and receiving the magnetosta
waves, serve as antennas for the magnetostatic waves w
separation between the input and output antennas oL
57.5 mm. Antennas of this sort excite waves propagat
along the normals to their axes most efficiently. In this ca
these waves are backward volume magnetostatic waves
wave numbersk<p/d. The middle conductor is the pum
inductor and serves to create a longitudinal, high frequen
magnetic pump fieldhpiH0 in the film. It is made in the form
of a half wave resonator, open at the ends, which is tune
the pump frequency and has a loadQ-factor of Q.20. The
small width of the inductor, plus the fact that the reson
frequency of the latter is considerably higher than that of
signal, ensures that it has little effect on the propagation
the backward volume magnetostatic wave when there is
pumping. No reflection of the incident wave from this stru
ture was observed.

During the measurements, microwave pulses with du
tions of 15 ns or more are incident on the antenna1 ~Fig. 1!
and generate a packet of backward volume magnetos
waves which propagate along the model. When the pum
turned on, a region develops around the inductor2 in which
the pump magnetic fieldhp interacts parametrically with the
spin subsystem of the ferromagnetic material. The effec
lengthl of this region along the long side of the waveguide
determined mainly by the diameterd of the conductor and
the thickness and dielectric constant of the substrate, an
usually several timesd. The exact value ofl can be deter-
mined by the method to be described in paragraph 10 of S
3 of this paper. For this model,l .220mm. The amplifica-
tion and reversal of the spin waves take place within t
region ~referred to as the active region below!.

It was possible to increase the interaction length to
mm in model II by replacing the microcavity pump induct
~Fig. 1! by an open dielectric resonator. The parameters
the excitation, transmission, and receiver systems for
backward volume magnetostatic waves were identical
those for model I.

Before making the measurements associated the p
metric effects, we determined the location of the operat
point on the dispersion curve for the backward volum
magnetostatic waves. It is known that, fork50, the fre-
quencyv of the backward volume magnetostatic waves
bounded by the ferromagnetic resonance frequencyv'

5gA(H014pM )H0 and that fork→`, v approaches a
lower bound ofvH5gH0 . HereM is the saturation magne
tization andg is the gyromagnetic ratio for the electron spi
H0 was chosen so that, even for backward volume magn
static waves with frequencies near the upper boundv' , the
band where they exist excluded the possibility of a first or
parametric decay. For this, it is enough thatv' exceed twice
the lower bound of the frequency band for the spin wav
vH . The upper frequency limitv' for the backward volume
magnetostatic waves was determined from the amplitu
frequency characteristic of the experimental model and,
H051020 Oe, it equalled 2p•4775 MHz. For our film,
4pM51750 G, and a calculation yields the above value
the frequency of the ferromagnetic resonance whenH0 is
replaced by the effective~superposed! magnetization field
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H0122 Oe. This substitution is justified by the need to a
count for the influence of the anisotropy of the actual ferr
sample and corresponds to a rather typical value of the t
field of the cubic and uniaxial anisotropies for YIG film
grown in the~111! plane,286 Oe.

In the following, it is precisely the effective magnetiza
tion field which was used for determining all the paramet
of the backward volume magnetostatic wave. An element
calculation indicates that here the working frequen
v52p•4720 MHz corresponds to a wave numb
k5155 cm21, a group velocityv522.21 cm/ms, and a de-
lay of TL5339 ns for propagation from the input to the ou
put antenna. Given the actual weak inhomogeneity of
magnetization field, the calculated delay is in good agr
ment with the experimental value of 336 ns. The short
duration of the signal pulses at the input antenna was 15
in the experiments. The limited actual transmission ba
width of the system and dispersion effects distort the ba
ward volume magnetostatic wave pulse shape and trans
it from a rectangular to a bell shape.

The width of the ferromagnetic resonance line for o
samples was 2DH.0.4 Oe. The relaxation parameter for th
backward volume magnetostatic waves wasG5gDH53.52
3106 s21 and the calculated loss for a backward volum
magnetostatic wave over a 1 mmpath is 1.6 dB.

The experiment was done in a linear regime with resp
to the power of the input signals. The pulsed power at
antenna1 ~Fig. 1! was less thanPin55 mW.

As a preliminary estimate of the effect of two
dimensional exchange spin waves on our results, we h
measured the threshold for parametric generation of th
waves. A weak continuous signal with a frequencyv
Þvp/2 was applied to the input of the model. After pumpin
above the threshold for two-dimensional spin waves was
plied, the losses of the backward volume magnetost
waves increased owing to scattering on two-dimensional s
waves that had been parametrically excited in the active
gion. Attainment of the threshold was indicated by the a
pearance of a dip in the continuous output signal during
time of the pump pulse, and the pump duration was increa
to 10 ms for low power levels above critical in order t
establish this time more precisely. The measureme
showed, for example, that for model II the threshold for ge
eration of two-dimensional spin waves is 10 mW for t
maximum attainable pump power in our experiment,Pp max

55 W.
A word about the measurement technique and accur

Times~the signal delayTL and its width and shift caused b
the pump! were measured on a wide band analog osci
scope. Time intervals shorter than 50 ns were determi
with an accuracy of60.5 ns. The relative amplitude of th
output signals was measured by an insertion method usi
precision polarization attenuator with an accuracy
60.5 dB. Pump power with a pulse duration of from 10 ns
10 ms at a repetition rate of 300 Hz was also varied usin
polarization attenuator with an accuracy of better than
dB.
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3. THEORY

1. The equation of motion for the amplitudesck of
waves travelling along thez axis acted on by a spatiall
inhomogeneous longitudinal pump can be written in
form15

]ck

]t
52 ivkck2Gkck1(

k8
hk1k8 exp~2 ivpt !Vkk8ck8

* ,

~1!

wherevk andGk are, respectively, the frequency and dam
ing parameter for the spin wave andVkk8 is the parametric
interaction coefficient for waves with wave vectorsk andk8.
For the case of parametric amplification of backward volu
magnetostatic waves in a longitudinally magnetized Y
film of interest to us,

Vkk85
vkvk82~gH0!2

4H0Avkvk8

, ~2!

where hk is the kth Fourier harmonic of the nonuniform
pump fieldhp(z),

hk5
1

VEV
hp~z!exp~2 ikz!dV, ~3!

andV is the volume of the ferrite film.
Equation~1! describes the parametric coupling of wav

with wave numbersk andk8. The Fourier harmonichk1k8 in
Eq. ~1! can be regarded as the amplitude of a pump w
with an effective wave vectorkp5k1k8. According to Eq.
~3!, the amplitude of the effective pump wave depends on
scale lengthl for localization of the pumping. For uniform
pumping, l→` and all the Fourier harmonics go to zer
except the uniform one withkp50; this implies the possi-
bility of a parametric coupling only for two waves,k1k8
5kp50, i.e.,k52k8. In principle, for nonuniform pumping
hp(z), waves with arbitrary effectivekp exist, but, in reality,
their amplitudes differ from zero only forkp<2p/ l . This
circumstance leads to a substantial change in the charact
the parametric interaction of the waves as the pump
length l is varied. In order to explain this, we turn to th
dispersion characteristics of the backward volume magn
static waves shown in Fig. 2. With homogeneous pumpi
only waves 1 and 2, which propagate counter to one ano

FIG. 2. Frequencies and wave numbers of backward volume magneto
waves which interact parametrically through nonstationary local pump
The smooth curve is the dispersion curve of the backward volume ma
tostatic wave.
e
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with k1 andk252k1 , interact. Asl decreases, the number o
waves that actually interacts rises, and now, besides 1 an
waves 3 and 6, and 4 and 5, for whichuk3,52k4,6u<kp

;2p/ l , also interact, but the interacting waves are, as
fore, counterpropagating. Finally, for 2p/ l>uk1u5uk2u, the
interaction of copropagating waves moving in the same
rection~e.g., 3 and 5, or 4 and 6 in Fig. 2! becomes possible
The above condition implies that, because of the inhomo
neity of the pumping, a copropagating interaction is possi
only for sizesl of the pumping region that are on the order
the wavelength of the backward volume magnetosta
waves,l[2p/k. It is this circumstance which makes it ex
tremely difficult to observe these sorts of effects in nonline
optics, where they have not even been studied theo
cally.3,14 The presence of a copropagating interaction alo
with the counterpropagating interaction leads to the propa
tion, in both the forward and backward directions, of tw
waves with different phases relative to the pump phase~for
example, wave 4 may develop as a result of an interac
with wave 5 and with wave 6!. In the experiment, because o
the randomness in the pump phase, this leads to beatin
the output signals.

It is clear from all of the above that a correct theoretic
description of the parametric wave interaction under the
fluence of nonuniform pumping will require some extreme
careful simplifications of the equation of motion~1!. For
example, the standard approach using truncated equation
the wave packets12–15,18,19 is valid, strictly speaking, only
when the copropagating interaction is included for active
gions of lengthl @l: only in this case can we assume th
the spread of the wave numbers in the packet obeysDk
!k. For l<l, the wave packet approximation is valid on
for low pump levels~substantially below critical! in the pres-
ence of input signals considerably above the thermal le
for the excited waves. In general, forl<l, Eq. ~1! can only
be solved numerically, which we shall do, despite the
diousness and lack of clarity.

2. First we shall examine the case of long pumpingl
@l). As shown above, then it is possible to use a system
truncated equations for the wave packets.14,18,19

Truncated equations are obtained from Eq.~1! by trans-
forming to thez-representation.15 Assuming that two narrow
packets of waves are excited near waves 1 and 2~see Fig. 2!
with wave vectorsk1 andk2 and frequenciesv1 andv2 such
that k11k250 and v11v25vp , and taking the inverse
Fourier transform of Eq.~1!, we obtain a system of equation
for the slowly varying complex amplitudes~envelopes! of
the signala1(z,t) and idlera2(z,t) waves:

S ]

]t
1G11v1

]

]zDa15hpV1,2a2* ,

~4!S ]

]t
1G22v2

]

]zDa2* 5hpV1,2* a1 .

For the case of parallel pumping of backward volume m
netostatic waves of interest to us,G15Gk1

5G25Gk2
[G,

v15vk1
5v25vk2

[v is the group velocity of the waves in
the packets, andV1,25Vk1 ,k2

[V.

tic
.
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The system of Eqs.~4! has been studied in most detail
Ref. 14. It has been solved in the case where the sp
pumping profile has the form of a hyperbolic secant,hp(z)
5hp0 /cosh(z/l). On the other hand, in the case of parama
netic amplification of magnetostatic waves with a long act
region, l @l ~model II, where the active region is create
using an open dielectric resonator!, the spatial pumping pro
file has a shape closer to rectangular. Since the pum
shape has a strong influence on the output signal profi14

for best correspondence with the experimental situation
have assumed that the pump field amplitudehp is locally
uniform within an active region 0<z< l and equal to zero
outside it.

We shall also assume that the pump is applied to the
at time t50 and that it has a rectangular shape of durat
tp . Signal and idler waves with arbitrary shapes can be
cident on the left (z<0) and right (z> l ). Thus, the initial
and boundary conditions for the system of Eqs.~4! can be
written in the form

a1~ t50!5a1
0~z!, a1~z50!5a1

S~ t !,
~5!

a2* ~ t50!5a2
0* ~z!, a2* ~z5 l !5a2

S* ~ t !.

3. The solution of Eq.~4! with Eq. ~5! was obtained by
the Green functionGi j (t,z,z8) method;20 here the ampli-
tudes of the signal and idler waves are given by

a1~ t,z!5E
0

t

dt8E
0

l

dz8@G11~ t2t8,z,z8!F1~ t8,z8!

1G12~ t2t8,z,z8!F2~ t8,z8!#, ~6!

a2* ~ t,z!5E
0

t

dt8E
0

l

dz8@G21~ t2t8,z,z8!F1~ t8,z8!

1G22~ t2t8,z,z8!F2~ t8,z8!#,

where

F1~ t,z!5a1
0~z!d~ t !1v1a1

S~ t !d~z!,

F2~ t,z!5a2
0* ~z!d~ t !1v2a2

S* ~ t !d~ l 2z!.

Hered(x) is the Dirac delta function.
Now, in place of Eqs.~4! and~5! we have to solve sim-

pler equations for the four Green functions with zero bou
ary and initial conditions:

S ]

]t
1G11v1

]

]zDG115VhpG211d~ t !d~z2z8!,

S ]

]t
1G22v2

]

]zDG215VhpG11,

~7!S ]

]t
1G22v2

]

]zDG225VhpG121d~ t !d~z2z8!,

S ]

]t
1G11v1

]

]zDG125VhpG22.

It is clear from Eq.~7! that it is actually necessary to solv
only one pair of equations, since the solution of the othe
obtained automatically on switching the subscripts 1↔2 and
making the substitutionsz→ l 2z, z8→ l 2z8.
ial
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The equations forGi j were solved by the Laplace trans
form method in the time domain, which yielded a system
ordinary differential equations whose solution presents
special difficulty. After in inverse Laplace transform, we
nally obtain

G11~ t,z,z8!5
r

v1
GFrt1hS z

l
2

z8

l D ,
z

l
,
z8

l G
3exp~2v r t1kr~z2z8!!,

~8!

G21~ t,z,z8!5
r

Av1v2

HFrt1hS z

l
2

z8

l D ,
z

l
,
z8

l G
3exp~2v r t1kr~z2z8!!.

Here

H~t,z,z8!5
s

2 (
n50

`

@P2n~t,an!2P2n~t,bn!

2P2n12~t,gn!1P2n12~t,dn!#,

G~t,z,z8!5
s

2 (
n50

`

@P2n11~t,an!2P2n11~t,bn!

2P2n11~t,gn!1P2n11~t,dn!#

for z,z8 and

G~t,z,z8!5d~t2a0!1
s

2 (
n50

`

@P2n21~t,an!

2P2n11~t,bn!2P2n11~t,gn!

1P2n13~t,dn!#

for z.z8. In these equations

Pn~t,j!5u~t2j!S t2j

t1j D n/2

I n~sAt22j2!,

u(x) is the Heaviside unit function,I n(x) is the Bessel func-
tion with an imaginary argument, and

an52n1uz2z8u, bn52n122~z1z8!,

gn52n1~z1z8!, dn52n122uz2z8u,

s5
Vhpl

Av1v2

, r5
2v1v2

~v11v2!l
, h5

v12v2

v11v2
,

v r5
v1G21v2G1

v11v2
, kr5

G22G1

v11v2
.

4. The expressions for the Green functions~8! together
with Eqs. ~6! are the general solution for the parametric i
teraction of waves with nonstationary, locally-uniform par
metric pumping for an interaction regionl @l. In deriving
them, we have not imposed any restrictions on the form
the initial and boundary conditions, or on the duration a
power of the pump pulse. It can be shown that our solut
yields all the particular cases obtained before.1–3,8,18,19For
example, an expression for the generation threshold follo
from Eq. ~8! in the limit t→`. As a result, we obtain a
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generalization of the threshold formula for parallel pumpi
first derived, as far as we know, in Ref. 5 for identical wav
(v15v2[v; G15G2[G):

~hp thV!25
~v1G21v2G1!2

4v1v2
1v1v2x2, ~9!

wherex is the solution of the equation

2v1v2x52~v1G21v2G1!tan~x l !, p/2l<x<p/ l .

The gain coefficient for a signal passing from the input to
output of the active region in the stationary subthresh
regime (t→`,hp,hp th) is given by

K15FcosAs21V22 i
V

As21V2
sinAs21V2G21

,

~10!

whereV5(Dv1 iG)( l /v), which expression is a general
zation of the one obtained in Ref. 6 for the resonanceDv
[v2vp/250.

Without going into detailed comparisons here, we n
only that we have obtained the same results as Ref. 3
stationary pumping and zero initial conditions, as Ref. 21
zero initial conditions, as Refs. 8 and 19 for stationary init
and boundary conditions, as Ref. 14 for uniform (l→`)
pumping, and so on, which confirms the validity and gen
ality of our results.

5. The purpose of this paper is to study parametric
fects in detail, with backward volume magnetostatic wav
in YIG ferrite films as an example. Thus, we shall begin
discussing the peculiarities of that case. First, let us exam
the effect of the multiwave character of the ferrite sample.
the frequencies of the pump, signal, and idler, there is
infinite set of eigenmodes and waves that differ in the m
nitude and direction of the wave vectork. Only in an ideal
crystal and only for small amplitudes are these waves in
pendent. When the wave amplitudes are finite, various ki
of nonlinear effects become significant, in particular, t
parametric effects that form the basis of the effects con
ered in this paper. At the same time, the conservation l
for parametric interactions (k11k25kp and v11v25vp)
simultaneously permit a parametric coupling between an
finite number of eigenmodes and waves in ferrite films; th
excitation will be determined solely by the condition that t
threshold amplitudehp th ~9! be exceeded. Unfortunately,
seems that in ferrite films there are waves~exchange two-
dimensional spin waves! whose excitation threshold, becau
their propagation velocity (v;104 cm/s) is low, lies consid-
erably below the threshold for excitation of the backwa
volume magnetostatic waves, whose velocity is usually
the order of 106 cm/s. According to Eq.~9!, for the typical
dimensions of the active region,l .0.1-1 mm, even when
the damping parameters of the two-dimensional spin wa
and the backward volume magnetostatic waves are e
(G;(2 –4)•106 s21), the excitation threshold for the forme
is more than order of magnitude below that for the latter.
on the other hand, we note that the parametric effects
crease significantly only near the threshold, then it becom
clear that in order to achieve significant gain for backwa
s
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volume magnetostatic waves with parametric pumping,
amplitudes of the variable magnetic pump fields must be
order of magnitude higher than the excitation thresholds
the two-dimensional spin waves. Here the amplitudes of
two-dimensional spin waves increase exponentially, s
pressing ~owing to phase limiting and other nonlinea
mechanisms11,15! the parametric coupling of the pump wit
other degrees of freedom and damping them further, so
the excitation threshold for the backward volume magne
static waves cannot be reached at all, even for pump field
these levels.6,22 These undesired effects can be eliminat
without letting the amplitudes of the two-dimensional sp
waves reach significant values, by, for example, using
pulsed pump oscillator6 with a maximum pulse length
tp max!G21. tp max certainly depends on the pump pow
~the higherPp is, the more rapidly the amplitude of the two
dimensional spin waves increases! and, as we shall see be
low, for real YIG films andPp;1 W, tp max should not ex-
ceed a few tens of nanoseconds.

Strong dispersion is yet another feature of backward v
ume magnetostatic waves.4 Their diffusion length is only a
few millimeters.23 Thus, as a signal pulse propagates fro
the input converter to the active region, it loses its init
rectangular shape and becomes bell shaped.23 This is facili-
tated by the finite bandpass of the input converters, whic
usually less than 100 MHz, comparable to the reciproca
the duration of the nanosecond pulses. Thus, besides re
gular signal pulse shapes, we have examined bell sha
ones with a hyperbolic secant form, 1/cosh(1.76t/ts), where
ts is the full width of the bell shaped pulse at a level
approximately 0.7 times the maximum. In practice,ts is
close to the width of the initial rectangular pulse.

6. Because of the complexity of Eqs.~6! and~8!, at first
we shall carry out the subsequent analysis for two limiti
cases corresponding to the two operating regimes of a p
metric amplifier with local pumping. The first regime is qu
sistationary, with a pump pulse durationtp that is consider-
ably longer than the transit timet l for the signal across an
active region of lengthl, i.e., tp@t l5 l /v. Here, however,
the restrictions ontp and l should be kept in mind: becaus
of the multiwave property of the ferrite film,tp<tp max

!G21, while l @l in the case where there is no copropag
ing interaction and the truncated Eqs.~4! are not generally
valid. Thus, this regime is referred to as quasistationa
rather than stationary. The second regime is nonstation
and is characterized by the opposite inequality,tp!t l . The
difference in these regimes is that, in the first case of a sm
pump regionl and long pump pulsetp (tp@t l), the para-
metrically coupled waves~see Fig. 2, waves 3–6 or 4 and 5!
are rigidly coupled by the frequency condition for a param
ric resonance (v31v65v41v55vp), but their wave num-
bers k3 ,k6 or k4 ,k5 ~see Fig. 2! can differ by an amount
Dk<1/l . In the second case of a long pump region and
short pump pulse (t l@tp), on the other hand, the conditio
for conservation of the wave number of the parametrica
interacting waves must be satisfied rigorously~waves 3, 4 or
5, 6 in Fig. 2;k35k4 , k55k6), but, because of the pum
duration tp , the frequency condition has a set of spect
components within the frequency intervalsvp61/tp , and
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can be smeared out by that amount; i.e.,v31v45v51v6

5vp61/tp . Even from this simple analysis, it is clear th
in the quasistationary regime the frequency bands and t
sition processes in a parametric amplifier will be determin
mainly by the lengthl of the interaction region and the trans
time for a wave across this region,t l5 l /v. In the second,
nonstationary regime the decisive parameter will be
pump pulse durationtp . Of course, in general, the chara
teristics of a parametric amplifier with local pumping will b
determined by both quantities (t l andtp), but the shorter the
characteristic time is, the more effect it will have.

7. Let us first consider the quasistationary regime,
which t l!tp , in more detail. The gain and bandpass can
obtained from Eq.~10! in this case. The resonant~at v
5vp/2) gain for the forward wave withG21@t l ,ts ,tp is
given by

K1S v5
vp

2 D5K105
1

coss
5

1

cosS p

2 D S hp

hp th
D

5
1

cosS p

2 DAS Pp

Pp th
D , ~11!

wherePp andPp th are, respectively, the pump power and
threshold value. The bandpass forK10>5 is

D f .
1

2K10t l
, K10D f .

1

2t l
. ~12!

As might be expected, all the characteristics of the quasi
tionary regime depend significantly on the length of the
teraction region. Similar results hold for the backward wa
and these can be obtained easily from Eqs.~11! and ~12!
using the Manley-Rowe relations, which state that the ene
inputs from the pump into the circuits of the signal and id
waves are the same if their frequencies are equal.24 Thus,
K20

2 5K10
2 21 and the resonant reversal coefficient takes

form

K2S v5
vp

2 D5K205tans. ~13!

All the parameters of the quasistationary regime dep
significantly on the pump power. According to Eqs.~11! and
~12!, as the pump power approaches the threshold, the
coefficient increases and the passbands become narrow
that the pulse shape is strongly distorted. Thus, the quas
tionary regime can be used in parametric amplifiers with
cal pumping only for small gains, when the amplified puls
are not significantly distorted. The pump power in this
gime must not exceed the thresholdPp th .

8. We now turn to an analytic study of the other limitin
case, for whichtp!t l , i.e., to the nonstationary regime. A
especially simple expression for the resonant gainK10 is ob-
tained here fortp<ts/2 ~in this case, each spectral comp
nent of the amplified signal corresponds to a freque
doubled spectral component of the pump!:

K105cosh~Vhptp!, tp<ts/2. ~14!
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For tp@ts ~actually, fortp>5ts),

K105I 0~VhpA2tstp!, tp@ts . ~15!

Here the Manley-Rowe relations can also be used to ob
the conversion coefficients for the backward wave. For
ample, fortp<ts/2, we haveK205sinh(Vhptp).

It is most interesting that the pulse shapes in an ess
tially nonstationary regime are practically independent of
pump power. In this case, the threshold power does not h
the same significance as in the quasistationary case. This
be confirmed by comparing Eqs.~11!–~13! and ~14!, ~15!.
For example, at high pump powersVhptp@1, the time to
reach the amplitude is now on the order of 5tp /AVhptp

55tp /Aln(2K10), i.e., it even decreases as the power
raised. In this regard, the nonstationary regime is of pract
interest for signal processing in parametric amplifiers w
local pumping. In this regime, as opposed to the quasistat
ary regime, the pump power can exceed the thresholdPp th .
It should be kept in mind that increasing the pump power
its negative aspects: in order to reduce the influence of p
sitic two-dimensional spin waves, it is necessary to red
the pump pulse lengthtp . As we shall see below, in the
nonstationary regime we actually havetp max.30– 40 ns.

An exact analysis of the transition of an amplifier fro
the quasistationary regime into the nonstationary regime
made with the aid of Eqs.~6! and ~8!. Figure 3 shows the
relative passbandsD f t l as functions ofPp /Pp th for differ-
ent pump pulse durationstp . Curve1 for the quasistationary
regime was constructed using Eq.~10!. It is quite clear from
the figure that, while the passband approaches zero asPp

→Pp th in the quasistationary regime, when the pump pu
duration is reduced it becomes possible to maintain a fi
passband for arbitrary powers. Bytp<3t l the passbandD f
>2/t l for arbitrary powers, although the passband becom
narrower near the thresholdPp th . For tp;t l the passband
increases by more than a factor of two, and the powerPp th

ceases altogether to play any special role in the plots of
transmission bandwidth as a function of pump power. H
the gains and conversion coefficients exceed 10 dB.

9. In the casetp!t l studied here, there is the possibilit
of obtaining a backward wave with a signal whose tim
variation is reversed in time relative to the timetp the pump
power pulse is applied.3 In other words, the leading edge o
the pulse becomes the trailing edge, andvice versa. In the

FIG. 3. The relative passbandD f t l as a function of the relative powe
Pp /Pp th for different values of the ratiotp /t l : 1—`; 2—3; 3—2; 4—1.5;
5—1.
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FIG. 4. The resonant gainK10 for the incident wave~a! and
the resonant conversion coefficientK20 for the incident
wave into a backward wave~b! as functions of pump power
for different pump pulse durationstp : 1—10 ns;2—20 ns;
3—30 ns;4—40 ns;5—60 ns;6—80 ns; t l5150 ns,ts

520 ns,Pp th540 mW. The smooth curves are theoretic
calculations for the same parameters.
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the
case of a pump pulse with ad-function form (Vhp;d(tp

2t)), the signal amplitude of the reversed wave has
form3

a2* ~z50,t !5const•a1~2tp2t !, ~16!

i.e., a signal pulse that is in the active region at timetp

begins to move backwards from the point where
d-function shaped pump pulse found it and, after a timetp

reaches the beginning of the active region, but now is
trailing edge of a pulse in the input converter.

We have studied the case of non-d-function pump pulses
lasting a finite timetp>0, while remaining, as before, in th
nonstationary approximation, i.e.,tp!t l . Here, instead of
an ideal reversal of the time evolution of the pulse of E
~16!, distortions arise owing to the finite pump durationtp :

a2* ~z50,t !5sinh~Vhptp!F a1~2tp1tp2t !

1S Vhptp

tanh~Vhptp!
21D 1

2V2hp
2

]2a1

]t2 G . ~17!

The distortions in the pulse shape are caused by the se
term in the square brackets of Eq.~17!; they are proportiona
to the steepness of the pulse fronts of the signal wave an
expected, go to zero fortp50. An analysis of Eq.~17!
shows that the duration of the transition processes is on
order oftp in this case, as before.

10. We have studied the passage of real bell-shaped
nals with shapes}1/cosh(1.76t/ts) through a locally
pumped parametric amplifier. Here we note some nontri
features of the amplified signal profiles.

One of these is a change in the timeDt l for propagation
of the maximum of the output signal as the pumping is v
ied, which usually shows up as an apparent slowing down
the signal. This effect occurs because the trailing part in
acts with the large amplitude idler wave which increases
ponentially with time at each point in the active mediu
The time Dt l depends on the pump power and the pu
durationsts and tp , and increases as these quantities
crease.
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Yet another feature of the output signal profiles is th
the duration of the output signals can be reduced compa
to the input signals in certain cases. This means that
spectral composition of the input signal can be broade
during nonstationary parametric amplification, while it c
only be cut off during ordinary linear amplification becau
of the finiteness of the transmission bandpass. The phys
reason for this narrowing is quite clear: if the pump pulse
shorter than the signal pulse, while the former, in turn,
longer than the interaction lengtht l , then only part of the
signal pulse will be amplified, so that the output signal
narrowed. One nontrivial result of solving Eqs.~6! and~8! is
that for high pump powers the signal can be narrowed e
for ts,t l . For example, whents50.5t l , tp50.2t l , and
Pp510Pp th , the output signal is narrowed by a factor
1.3. The backward wave pulse can also be narrowed. It tu
out to be shorter thants .

The limiting case of a long, quasimonochromatic sign
(ts→`), where the total duration of the output signal equ
tp1t l , while its amplitude increases resonantly asv
→vp/2, is of special interest. In fact, this is a filter with
resonant frequency that is determined by the pump freque
and with an output pulse shape that is independent of
signal duration. In addition, by measuring the total durat
tp1t l of the output signal experimentally, in this case w
can determine the timet l and, from it, the lengthl 5vt l of
the interaction region, which plays a decisive role in all t
theoretical calculations.

We have only shown the results of the nontrivial the
retical inferences here. As for the conventional dependen
such as the dependence of the gains on the pump power,
will be presented below during a comparison of the theo
ical and experimental results.~See Fig. 4, for example.!

11. We now consider the case of a small pump regio
l<l, where the co-propagating interaction begins to pla
larger role alongside the counter-propagating interaction.
opposed to optics, this case is easy to realize in practice
backward volume magnetostatic waves. In our experime
for example,l52p/k.400mm, while l could be reduced
to 200mm by using a wire resonator. As indicated above,
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1197JETP 89 (6), December 1999 Melkov et al.
approximation of wave packets can be used only for l
pumping, so we do not show an analytic solution of Eq.~1!
by this method. We note only that the modulation coe
cients for the forward and backward signals are the same
equal to 2s exp(22kl) (s!1), i.e., they decrease expone
tially as the sizel of interaction region increases and increa
linearly with the pumping. It turned out, as well, that a c
propagating interaction changes the generation threshold
ducing it by roughly a factor of@12exp(22kl)#21. In the
case of arbitrary pumping, the system of Eqs.~1! must be
solved numerically; in the calculations we included the th
hundred primary waves of the lowest mode of the backw
volume magnetostatic waves within the wave vector inter
6300 cm21. The results of these calculations differ substa
tially from those of the wave packet approximation, even
s>0.5.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section primary attention is devoted to quanti
tive comparison of the preceding theoretical results with
periment. All the major conclusions of the theory were eith
confirmed experimentally, or the reason for any disagr
ment was understood.

1. A large pump region,l @l52p/k, was realized in
model II, with l .3.3 mm andt l5150 ns. In this case it wa
easy to create the most tolerable nonstationary regime
parametric amplification (tp!t l) and there was almost n
beating of the output signals, which corresponds just
counterpropagating parametric interactions of the wav
Here the truncated equations~4! for coupled wave packet
can be used for a theoretical description.

Figure 4 shows the measured resonant gain coeffic
K10 for the transmitted wave and the resonant convers
coefficientK20 for conversion of the input signal into a bac
ward wave as functions of the pump powerPp for different
pump pulse durationstp . The signal pulse duration in th
pump region ists520 ns. Theoretical calculations usin
Eqs. ~6! and ~8! are also shown as smooth curves f
the following parameters of the experimental mod
t l5150 ns, v52.2•106 cm/s, l 5t lv53.3 mm, and
Pp th540 mW. The timet l for the signal wave to cross th
active region and the length of the latter were determin
experimentally from the measured duration of the out
pulse (tp1t l) in regimes with a continuous signal an
pulsed pumping, as mentioned in paragraph 10 of the pr
ous section. The pump power was lowered in order to m
mize the effect of parametrically excited two-dimension
spin waves on the result.

There is good agreement between the experimental
and theoretical curves in Fig. 4. The saturation of
K10(Pp) and K20(Pp) curves at a level of 30–35 dB is ap
parently caused by the effect of parametric two-dimensio
spin waves whose amplitude reaches levels of experime
significance during the timetp the pump is acting. The
higher the pump powerPp is, the shorter the timetp re-
quired for this to happen. According to Fig. 4, for this mod
the maximum pump pulse durationtp max for operation of a
parametric amplifier without two-dimensional spin waves
-
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the maximum pump power ofPp55 W wastp max.40 ns.
When the pump power is lowered to 1.5 W, the pump pu
duration can be raised to 80 ns.

Figure 5 shows the results of using the phenomenon
reversing the wave front of magnetostatic waves to perfo
the operation of time reversal of a signal shape. In the
periment we used a sequence of two pulses with differ
amplitudes, whose ordering in time in the wave reversed
the model~Fig. 5, the two pulses on the right! was opposite
to their order in a signal that had not interacted with t
pump and had been reflected from the input to the model~the
pulses on the left!, which was actually a copy of the inpu
signal~given the imperfect reflection!. Prior to experiment, a
sequence of two signal pulses of equal duration and am
tude was fed to the input, while the time of delivery and t
duration of the pump were chosen so as to ensure equali
the amplitudes of the reversed signals. This procedure is
essary in order to compensate the effect of damping of
backward volume magnetostatic waves in the YIG on
shape of the reversed signal~in our case, the ratio of the
amplitudes of the backward pulses!. For the case in Fig. 5
this compensation was possible using a pump signal w
tp530 ns. As discussed in the theoretical section, the us
such a long pump pulse led to significant distortions of
output pulses relative to the input pulses, but in Fig. 5
reversal of the shape in the backward wave is clearly vis
for the case of input pulses with different amplitudes.

2. The opposite case of a short active region withl<l
52p/k was realized using model I with a wire half-wav
pump resonator. Here the length of the active regionl
.220mm, t l510 ns) was more than an order of magnitu
shorter than in the case of an open dielectric resonator. T

FIG. 5. Time reversal of an input signal waveform:1, 2—signals reflected
from the input of the experimental model without having interacted with
pump;18, 28—signals at the input to the experimental model formed by
reversed wave. The amplitudes of the signals1 and2 are attenuated by 20
dB relative to the signals18 and28. The large divisions represent 50 ns. Th
arrows denote the time the pump is applied.
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led to significant changes in the properties of the param
netic amplifier for magnetostatic waves. First, because of
enhanced role of the copropagating interaction~see the pre-
vious section!, beating of the amplitudes of the forward an
backward waves took place. The modulation coefficient~i.e.,
the ratio of the difference between the maximum and m
mum amplitude of the beats to their sum! was as high as
80–90% for the highest pumping levels. This indicates t
the copropagating interaction could be of the same orde
magnitude as the counterpropagating interaction. Second
cording to Eq.~9!, there was a sharp~about an order of
magnitude! increase in the threshold for excitation of bac
ward volume magnetostatic waves owing to an increa
role for energy losses from the interaction space. The thre
old for backward volume magnetostatic waves increase
1.9 W while the threshold for excitation of two-dimension
spin waves was essentially unchanged (;10 mW), since the
mean free path for the latter was, as before, smaller than
size of the active region, even withl .220mm, and energy
loss processes were insignificant. All this led to an increa
contribution from the two-dimensional spin waves and to
further reduction in the duration of the maximum possib
pump pulses,tp max, to 10–20 ns.

The experimental data on the maximum~because of
beating, the readout was taken from the upper edge of
output pulse that had been smeared out by the beating! reso-
nant gain and conversion coefficients as functions of
pump power are in good agreement with the theoret
curves obtained by numerical solution of Eq.~1!. Here the
best agreement with experiment was obtained for a pu
field distribution that was not rectangular, as assumed
solving the truncated equations, but had a Lorentz form

hp5h~z!5
hp max

11~2z/ l !2

that was closer to that in the experiment. In the experim
with tp530 ns, saturation of theK10(Pp) and K20(Pp)
curves was observed. As before~Fig. 4!, this was caused by
the parametric excitation of spin waves. We do not sh
these curves here, since they are fundamentally the sam
those in Fig. 4, except that the gain is substantially lower~by
roughly 10 dB!. We show only the change in the time ev
lution of the output signal under the influence of the pum
in order to illustrate clearly two nontrivial features of th
nonstationary parametric amplifier: the change in the pro
gation time for the signal peak,Dt l , and the reduced dura
tion of the output signals compared to the input. As noted
the theoretical section, a real narrowing of the pulses is
served only whentp ,t l<ts , which, for the experimenta
possibilities available to us, could be easily achieved in
case of model I with its small active region.

Figure 6 shows the time evolutions of the forward sign
passing through the active region measured at the ou
antenna for various pump powersPp . ~See Fig. 1.! Curve1,
measured without pumping (Pp50), represents the initia
shape of the signal pulse with a duration ofts;30 ns. It is
quite clear from this figure that after pumping starts, t
delay to the peak of the pulse is increased~to Dt l<15 ns)
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and it is narrowed substantially~from 30 ns to 12 ns!. This
last effect may be important for amplifying the envelopes
solitons, for which an increase in the pulse amplitude m
be accompanied by a simultaneous reduction in its durat
In the case of an open dielectric pump resonator conside
above, there was also a narrowing of the signal, but only
ts>100 ns, which was related to the longer length of t
active region in model II.

5. CONCLUSIONS

The interaction of travelling backward volume magne
static waves with a local nonstationary electromagne
pump at twice their frequency in YIG films has ben studi
theoretically and experimentally. In our experiments w
have, for the first time, been able to observe the reversal
wave front and the time reversal of the shape of backw
volume magnetostatic wave signals. During reversal and
plification of backward volume magnetostatic wave puls
the shape of the output signals is found to have chan
significantly, with narrowing under certain conditions, a
an increase in the time delay of the pulse maximum wh
pumping is applied. Experimental dependences of the g
and of the conversion coefficient for conversion of backwa
volume magnetostatic waves into backward waves as fu
tions of the power and duration of the pump signal have b
obtained.

In order to explain the experimental results we ha
solved the general problem of the interaction of a travell
linear wave with a spatially localized parametric puls
pump. In the case of a large region where the backw
volume magnetostatic waves interact with the pump, wh
the lengthl of this region greatly exceeds the wavelengthl
of the backward volume magnetostatic waves (l @l), the
problem was reduced to a system of two truncated equat
for the wave packets that only take counterpropagating in
actions~i.e., with oppositely directed wave vectors! of the
waves into account. A Green function method was used
obtain a general solution for this system in terms of t
Bessel function with an imaginary argument. Because
features of the interaction between backward volume mag
tostatic waves and a variable magnetic pump field only sh
up through the constant coupling parameter, this solution
easily be extrapolated to any type of waves in various me
with only a change in the coupling parameter. In the oppo

FIG. 6. The variation in the signal profile at the output antenna as the p
power Pp is raised:1—0 W; 2—0.3 W; 3—0.63 W; 4—1.25 W; 5—2 W;
6—5 W; tp520 ns,t l510 ns.
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limiting case of a small pumping region (l<l), numerical
methods were used to solve the exact problem of the in
action of the eigenmodes of a ferrite film with a nonunifor
nonstationary pump taking both counterpropagating and
propagating~with the wave vectors of the interacting wav
in the same direction! interactions of the backward volum
magnetostatic waves into account. Both of these cases
realized in the experiments.

Two amplification regimes have been found to exi
quasistationary and nonstationary. In the first case, the p
power Pp is below the threshold for excitation of backwa
volume magnetostatic waves,Pp th , while tp.t l , wheret l

is the time for a magnetostatic wave to cross the pump
gion. Here the usual behavior of a parametric amplifier
manifested, in particular, there is an unlimited growth in t
gain asPp→Pp th and the gain bandwidth then goes to ze
In the nonstationary regime,tp,t l , and the pump powe
can exceed the threshold power, i.e.,Pp.Pp th . In this case,
both the gain and the passband increase when the p
power is raised and they become greater than the value
the first regime. Yet another feature of the nonstationary a
plification regime is the possibility of narrowing the outp
pulse, i.e., expanding its frequency spectrum, while a stat
ary linear amplifier can only cut off the signal spectrum.

Essentially all of the measured experimental dep
dences are in qualitative, but also good quantitative ag
ment with the corresponding theoretical curves at low po
ers and for short pump pulse durations. The discrepan
which arise when these parameters are increased can b
plained by the influence of parasitic excitation of volum
two-dimensional spin waves which are degenerate in
quency with the backward volume magnetostatic wave
nals.

Some problems that require further study include
gain processes for nonlinear magnetostatic waves, in par
lar the formation and amplification of soliton envelopes
forward and backward waves.
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@S1063-7761~99!02612-8#

This article contains the following important misprints:
1. The second formula in Eq.~11! on p. 14 should read (g̃5)251.
2. The last term in Eq.~12a! on p. 14 should beg̃arg̃bs.
3. The last term in the second formula of Eq.~12d! on p. 14 should be«abg̃rs.
4. In expression~13! on p. 15 the denominator should appear raised to the power 1/2.
5. In Eq. ~14! on p. 15e in the numerator of the fraction should be replaced withe3.
6. The eleventh and twelfth lines of Eq.~17! on p. 16 should read

1~q«k!«aa8~k9«!a9]2
1

~m22m̃2!3
@~q«k!~ka

~1!ka8
~2!ka9

~3!

1ka
~1!~k~2!«!a8~k

3«!a91~k~1!«!aka8
~2!

~k~3!«!a91~k~1!«!a~k~2!«!a8ka9
~3!)2

7. In ~17a! on p. 16 in the second term of the expression form̃2 the first factor should be (q2k9)2.
12001063-7761/99/89(12)/1/$15.00 © 1999 American Institute of Physics
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