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Double ionization and excitation ionization in Compton scattering for heliumlike ions in
metastable states are investigated. The electron energy distribution for double ionization and the
total cross sections for both processes are calculated. The calculations are carried out in

the zeroth order of perturbation theory with respect to electron-electron interaction, using Coulomb
wave functions as the first approximation. The resulting equations are valid only in the high-
energy nonrelativistic range. It is assumed thatl, butaZ<1 (Z is the charge of

the nucleus, and is the fine-structure constant © 1999 American Institute of Physics.
[S1063-776(199)00112-7

1. INTRODUCTION of heliumlike ions in the nonrelativistic energy range. The
calculations are based on perturbation theory with respect to
The interaction of electrons with photons is described byelectron-electron interaction, Coulomb wave functions serv-
a one-particle operator. Consequently, in the absorption dnhg as the zeroth approximation. We assume #atl, but
scattering of a single photon the ejection of two electronsvZ<1 (Z is the charge of the nucleus, amdis the fine-
from an atom(double ionizatioh or the ejection of a single structure constantThe equations derived below can also be
electron with transition of the second electron to a highemused to calculate the double ionization of stable multiply
state (excitation ionization are possible only through the charged ions containing more than two electrons.
agency of electron-electron interaction. These processes are
currentl_y the_ subject of ex@ens_ive theqretical and experimené_ DERIVATION OF A GENERAL EQUATION FOR THE
tal studies aimed at acquiring information about electron cor,y\p| TUDE OF THE PROCESS
relations in atoms and iorlsResearchers are devoting con-
siderable attention to the helium atom and the helium We consider the asymptotic nonrelativistic range of pho-
isoelectronic sequence as the simplest many-electron syt energiesy<w<m (m is the electron mags
tems. Their application as targets provides a relatively simple ~ The scattering of a photon by an electron is graphically
means of testing various models of the role of electrontepresented by three Feynman diagrdFfig. 1). The graphs
electron interaction. In lieu of experimental data, the comJn Figs. 1a and 1b are called pole diagrams and describe a
parison of calculations utilizing perturbation theory with cal- tWo-photon transition through intermediate states. In mo-
culations based on diverse variational functions affords théne€ntum representation, which we shall use from now on, a
possibility of choosing correlated wave functions that best/ertex with an incoming photon line corresponds to the op-
describe the behavior of the system in the investigated proeratorya:
cess.
A great many papers address the ground state of helium. (f'|y|f)=
Processes in metastable helium are important as well, be-
cause they can be used to gain information about correlations  (f'|f)=(27)38(f' —f), @
between shells. The first such calculations using multiparam- . . .
eter variational wave functions were carried out for doubleand a vert*e?< with an outgoing photon line corresponds to the
ionization associated with the absorption of a photon having? peratory; :
an energyw of the order of several ke\Refs. 2 and 8 2T €
However, if >7 (7 is the average momentum of & 1 ('3l =
electron, =7 ke\V® for He) the dominant process of
electron-photon interaction is not photoabsorption, but thavheree, andk; (e, andk,) are the polarization vector and
scattering of a photon by an electré@ompton scattering ~ Momentum of the absorbédmitted photon, respectively. A
Double ionization in Compton scatteririthe double Comp-  Vertex with two photon linegFig. 1c| corresponds to the
ton effeci in the helium ground 1S state has been investi- OPeratorQ:

2Tae
m

f+i§[a'-kl])<f’|f+k1>,

(f— Slokal[(Fli-k), @

wzm

gated in several papets® In the present article we investi- 2ma € e
gate double ionization and excitation ionization in the  (f'|Q|f)= l(f’|f+ k), k=k;—k,. (3
scattering of high-energy photons in thé®and 23S states Vo071
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Kk k, , ., Koo, K we see that in the energy ranb& w,<<m the pole diagrams
"N ," k,,\ k, 2 \ ! are small and can be discarded. The entire discussion thus far
e TR - Is + <=l is also valid for the double Compton effeouble ioniza-
P Ptk q P P-k 4 L tion in photon scattering’
a b ¢ Inasmuch as the operat@ is a one-electron operator,

FIG. 1. Feynman diagrams for the scattering of a photon by an electrortN€ amplitude of the tWO'?leCtron transition With allowance
Photons are represented by dashed lines, electrons are represented by sé0d the symmetry properties of the wave functions can be
lines, andg=p+k,—k;. written in the form

M**=(¥¢(1,2|Q(1)+Q(2)|¥i(1,2)

For the scattering of a photon by a bound electron the solid =2(V(1,2|Q(1)|¥i(1,2). (€)
lines in Fig. 1 correspond to Coulomb functions.

We now estimate the graphs of Fig. 1 in the investigate
energy range. We knd\that in scattering by a free electron
the energy of the incident photom() is distributed as fol-
lows between the scattered photow,f and the electron

Here the numbers in parentheses are abbreviated symbols for
Yhe variables of integration associated with electrons 1 and 2,
and¥; (V) is the two-electron wave function of the initial
(final) state.

In the nonrelativistic approximation the wave functions
(Ep): can be represented by the product of a spatial function and a

wi wi spin function. The operatd does not contain spin matrices,
Wr=wq— ﬁ(l_t)' Ep=w;—w,= F(l_t)’ (4)  sothat the spin part of the wave function in E®). is invari-
ant and can be dropped from further consideration. Since the

wheret=cos#, and ¢ is the photon scattering angle. total wave function must be antisymmetric with respect to

In scattering by a bound electron the main contributionpermutation of electrons, the character of the symmetry of
to the cross section of the process is from the kinemati¢he spatial function, being governed by the total electron
domain where the momentuqtransferred to the nucleus is Spin, is left unchanged.
small (g~ 7). As a result, the energies of the scattered pho- We seek the wave functiong; ; in the lowest perturba-
ton and the ejected electron are also described by @ys. tion order with respect to electron-electron interaction, using
Accordingly, the momentum of the electron fis-w,, for  the Coulomb functions?(} as the zeroth approximation:
w1> 7 the wave function of the ionized electron can be in- (0 2 0
terpreted as a plane wave, and the Coulomb Green'’s function \Pi_lpi( )+G‘( (1~ Pi)vlzqii( g
can be r_eplaced by the frge Green'’s function, because the Wf=w§°)+ G$2>v12~1f$°>. (10)
intermediate electron has high enefgyand momentunp’:
HereV,, is the electron-electron interaction operafior co-
ordinate representatioN;,=a/|r,—r,|, P;=|¥{®)(¥ )
Omitting spin terms in the operatons, we obtain the fol- IS the projection operatoG(? is the Green's function for

E,:(l)l+ Els~wl>|, p,> 7, |:772/2m, 77=maZ

lowing estimate for the pole diagrams: two noninteracting electrons situated in the field of the
nucleusz:
a&p 1 ep 2 0 ‘= 1D
Fa=(pl%2 Gralls)~ -~ 7y (alls) G{?=(E{?—Hi—H,+i0)

EO=Ei+Eys,  EV=E,+Ep,

o
~ E<Q|1S>’ (®  andH, andH, are the one-particle Coulomb Hamiltonians
acting on the one-electron functiongi):

a=ptke—ky, Hutn ()= En b (D), Hitho(1)=Epi(i).

_ . a Here the subscripta/” refer to the discrete state, and the
Fb_<p|71672|1s>~ﬁ<q|13>' ©) subscriptp refers to the state of the continuous spectrum.
The energyE!?) in Egs.(11) is written for the case in which
The spin terms of the operatofs provide the same contri- poth electrons are free in the final state. The normalized

bution, sincep~w,~w;. The contact diagram in Fig. 1c, zeroth-approximation functions have the form
calculated under the same conditions, is of the order of mag-

itud 1
e VO (DD DD}, (12)
o V2
Fe=(plQI18)~ o~ (alLs). ) )
Comparing Eqs(5)~(7), V=Sl (e D2 U Dup, (L), (13
E~ E~ w1 ®) wherep; andp, are the ionized electron momenta, and the

Fo F. m sign +(—) refers to the singletriplet) state. Since the sym-
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k., Sk K k, necessary to take into account the identity of the photoelec-

b N M-k f, f+f B, Bt L Q\\ ,;'}l trons and to introduce a factor of 1/2. However, it is suffi-
hY: is s £ cient consider only one extreme range, $ay>Ep,, and

f t not to divide the cross section by 2.
+ Let us compare the amplitude contributions from the
f f- fzs f f-f 28 graphs in Figs. 2a and 2alnasmuch as these graphs differ
, only in their upper lines, we estimate the matrix elements
a . . . . .
involved in the vertex lines. The estimates are given for the
FIG. 2. Feynman amplitudes for double ionization in Compton scatteringcase in whichp,>» and, hencelwpl>~|p1>. Omitting the

ta!dng into account glectron-electron interaction in thg inital gnd final common factor for both graphs from the operafrwe ob-
(') states. A wavy line represents electron-electron intera¢gechange .
by a Coulomb photon A line between two vertices with a large dot in the &N
middle corresponds to the Coulomb Green’s function. Energy, but not mo-
mentum, is conserved on this line.

%

X

a

df,
(2m)?

(alts) (dlis)

Fom | (P KIGUEDIR 29

metry of the system is fixed in the investigated process, the

same sign—either plus or minus—is used in Ed®) and ~{(0|G.(E)|1s) = , 1
(13) <Q| C( I)| > Ei_Els 77az ( 7)
Substituting Eqs(10)—(13) into (9), we obtain
M ¥ ={(tp, 1| QG Ei) V1o V1,Go(Er) Q| hisihzs) Fa,:J<pl+f|E o [ftk)(fal Ls) df13
f— Mo (2)
*(1s28)} ={p1+>Pa}. (14 (ql1s)
S
Here G.(E)=(E—H;) ! is the one-particle Coulomb - , (18
Green’s function with energig, Ei—Ea
5 2 2
=EO_g =_Z|— +f f
Ei=Ej Epz 4I Epz' Ea’:(plzm) ) H0|f>:ﬁ|f>'
Ei=E—Ey=0—1, w=0,-o0,. (15)

In estimating the diagrams of Figs. 2a and,2ae have
assumed thaf~ 7 (the integrals ovef are saturated fof

~ ). In Fig. 2a’) the momentum of the intermediate elec-
tron is p,»=p,>n, and the Coulomb Green’s function in
Ep,tEp,= 0+ ExstExs=0—71. (16 Eq. (18) is therefore replaced by the free Green’s function.
Using Egs.(15) and(4) with Epl in place ofE,, we obtain

Equation(15) takes into account the law of conservation of
energy:

The terms occurring in the amplitude expressidd) and
containing the Green’s functios.(E;) take into account
electron-electron interaction in the initial state, whereas Ef—Ea=E, —
terms containinds.(E;) take into account the same interac- !
tion in the final state.

The first two terms in Eq(14) are graphically repre- becauseEi~E; ~(w7/m)(1—t) and p;~w;. Substituting
sented in Fig. 2. The momenta are distributed on the lines foleq. (19) into (18), we have
the case in which//pl can be replaced by a plane wave.

It is a well-known fact®! that the energy of the ab- _(alls) Fa 7 20
sorbed photon in double photoionizatiddouble photo- " wiaZ' F, wy 20
effect is distributed extremely nonuniformly between elec-
trons: one of the electrons carries away almost all the energy the one-electron final states are transposeg-p,), the
while the other is a low-energiglow) electron. In the double energyE; (15) does not change, but the energybecomes
Compton effect the energy of the incident photon is sharedarge: |Ei|~Ep1~w>|. As a result, graphs with the lines

. . : _ 1
electrons in the final state can be slow. As in photmomza—the graph in Fig. 2a Al these graphs can be discarded in the

tion, however, the most probable situation is when one ele(‘l’nvestigated photon energy range<w;<m). The ampli-
tron is slow, and the second acquires large energy in accoy ! '
dance with the laws of kinemati¢4) for Compton scattering

by a free electrofl. Consequently, the main contribution to i+ _
the cross section is from two extreme ranges of the electron M7= (o, Y, | QBB Vad Yrsihas)

energy spectrunt, >E; for the graphs in Figs. 2a and2a +(1s25)=M,+M,, (21)
and Ep,>Ep, for the same graphs with the momemtaand

p, transposed. In determining the total cross section it isvhich correspond to the two Feynman diagrams in Fig. 3.

1 1
Ep1+ Ep:ﬁ) ~ — Eplf’vaZwl, (19)

ude expressiofi14) then retains only two terms:
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FIG. 3. Feynman diagrams showing the main contribution to the double

Compton effect in the 2S and 23S states of heliumlike ions.

3. CALCULATION OF THE AMPLITUDE OF THE DOUBLE
COMPTON EFFECT

Here we calculate the amplitudd ™ *. In momentum
representation the electron-electron interaction opendier
corresponds to the photon propagdidif), which is equal to

dra
f2
In the amplitude expression we remove the factetadfrom

the  photon propagator (22, and the factor
27a(wiw,) Y% e /m from the operatoQ (3), inserting

D(f)=

(22

A. |. Mikha lov and I. A. Mikha lov

Substituting Eqs(24) and(25) into (23), we write M in the
form

Ma:<¢a|Gc|q>v (28
2
<¢a|:N1N2Fn2m
df
XJ(Z )3 f2<¢p2|v|772|f>< f|V|77 (29)

An analogous calculation of the diagram in Fig. 3b gives

M= (¥p|G¢|a), (30
2 df 1
(el =N f (2m)3 2
X<¢p2|vi7]l|f><_flvi772' (31)

Combining Eqgs.(28) and (30), we find the total amplitude
M*t (20):

MT =(YlGcla), &= ha* iy
The sign+(—) is chosen for the singldtriplet) state.

(32)

them into the expression for the cross section. The two X3 cross SECTION OF THE DOUBLE COMPTON EFFECT

treme ranges provide identical contributions to the cross sec- )

tion; hence, we need consider only one of them, say the one The cross section of the double Compton effect, aver-
in which p;~ w;> 5 andp,<p,. Using a plane wave as the aged and summed over the photon polarizations, is equal to

fast-electron wave functiowpl, we obtain

1
Fi(p1.HF2(p2.f), (23

" _J df
) (2m)3 f2

J
Fi(p1.f)= c|f1><f1+f|1s>:N1(_&_m)
X(AlGViy, [—1), (24)
q=pi+ky—ky, m=n=maZ, Ni=7%m,
Fz(pzif):f . 3<¢p [f2)(f2—f|28)N, T, ( _)
(2m)® ™2 a2
X (W, Viy,IT), (25
3
<f'|vm|f>=4—”. @9
(f' =12+ )2

The calculations require the wave functions of 4nd

states in momentum representation, which we borrow fro
Ref. 12. The energi of an electron in the intermediate state

(energy of the Green'’s functioB.) is identical for the dia-

grams in Figs. 3a and 3b and coincide with the endggy

(15):

5
_+82 I, 82:_:_.

~2 (27)

4
da++—( )(1+t )IM*H|2dIl, t=cosf, (33
¢ 8m?
dp,dp.dk;
:W&(Epl“rEp2+w2_wl_Els_EZS).
(34)

If G, is replaced by the free Green'’s function in E82), we

can readily show thatM * *|2~(g?+ %) % and, hence, the
cross section is governed by the range of low transferred
momentaq=< n. Replacingdp, by dg and integrating over
w,, We obtain an equation for the phase voludié in the
nonrelativistic domairt:

dagd
ar=— pZko
(2m)®
Extending the integral ovey to all space(this operation is
permissible, because the contribution of large momerta
the integral is smal| we find

(39

b (U2
s<p2>—f(2W)3|M =etn=3 "o
(36)

Mrhe summation in Eq(36) is carried out over all one-

electron Coulomb states of the discrete and continuous spec-
tra, the numbeN replaces the set of quantum numbers, and
the energ)E is determined in Eq(27).
Integrating over the photon emission angle, we obtain
2

a
do¢ " =—0o¢S(p2)dpz, (37)
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R
=

gt=207, 0'-|—=§7Tr§, Fe=r—. (39 10
Here o1 is the Thomson cross section of photon scattering
by a free eIectronag is the single ionization cross section
for the scattering of a photon by a two-electron atGom).

The exact calculation d8(p,) poses a difficult problem.
It can be simplified considerably on the basis of two essential
considerations. First, as will be shown below, the differential
cross section decreases rapidly as the slow-electron energy
€, increases. The total cross section of the process is deter-
mined by the range of low energies<<1, and for its deter-
mination it is sufficient to calculat§(p,) in this range. Sec-
ond, the contribution of the lowest statl€ 1) in Eq.(36) N R I S
for small &, is substantially greater than the contribution 6 02 04 06 08 1O
from all other states. Within acceptable error limits E3f)
can be restricted to the first term of the sum, i.e., we can sijg. 4. Energy distributions of slow electrongd=2z2do *Ide,08) in

the double Compton effect in the'S (82) and 23S (85) states of heli-

S(py)~ [(a™ ¢b|152>|2. (39 umlike ions.
(E-Ey)
Using the expression Np,N> 64 5
P (lls)=—5F¢(@3), a=s, (46)
|15)= Nl( - 5) Viy|0) (40) 7

_ 2 €2
for the vector statéls) and invoking the readily verifiable ©(9,k)=(g°+&,) kGXP( = arctan—) : (47)
identity \/8—2 a
Inasmuch as the matrix elemeni#gb) and (46) and, hence,

d a .
_ a_vi Vin=— (9—VixV' =Vini ) (41) S(p;) do not depend on the apgl_es, _slow electrons are emit-
7 Uj ted isotropically(the angular distribution of fast electrons is
we obtain analogous to the angular distribution of electrons in the or-

dinary Compton effegt Replacinngp2 by 47 and trans-
forming fromdp, to de,, we obtain

0\ 1
(Yal18)=NiN, I, (_—)—2<¢p Vi, = Vign,+10),
2\ vy 2 2 Ngzdp2=(277)2773d82. (48)

(42)
Substituting Egs(45) and (46) into (39), substituting Eq.
) (o IV, (39) into (37), and taking Eq(48) into account, we find the
2/ (m,+ 7)? P2l "7 energy distribution of slow electrons in the ionization of sin-
glet (s) and triplet ¢) states of heliumlike ions:

(Upl18) = NN, (

_Vi(172+v)|0>u (43) .. )
. dod'lde, Bg'(ey) ot P (g,)\2
where v=27, and|0) is the zero-momentum plane wave T T Bc(e2a)=2|Ta—| + (49
state. The matrix element in Eqggl2) and(43) with a Cou- gc 2
lomb wave function of the continuous spectrum has been 1
calculated previously® >'(e2)= @(5 ) e(a1)
(A+ipy)'ée
. = DR 1 /1 5
(| Vial O =4y, 2 " +So 52) - o2 +Ap(a3), (50
n 100 28
Np, ~\27és, §z=p—- (44) AS="—, Al=——_ (51)
2 3 3
Substituting Eq(44) into (42) and (43) and performing the  The functionsg'(z,) are plotted in Fig. 4.
differentiation operations, we arrive at the expressions As g, increases from 0 to 1, the values 8¢ decrease
N N more than a hundredfold. In the singlet state both electrons
can reside at a single point in space, but this situation is
(Yalls)= 21— (611)+1 E2 d ng! int i but this situation |
a ?2 ¢ 2 impossible in the triplet state. On the average, the distances

between electrons in the singlet state are shorter, and the
interaction between them is stronger, than in the triplet state.

5
- = + .
2 (a2 12<p(a,3)], (45) Consequently, the values @f are higher than those @
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for all &,. As &, increasesf; decreases much more rapidly TABLE I. Values of Q' for variousn.

than B¢, because the role of short distances increases as lirlle

transferred energye() increases.
The values of B¢ for €,=0 will be required below.
Their exact values are

BL(0)=1.0424, BL(0)=0.3327. (52)

Evaluating the integral of49) overe,, we obtain the ratio of

Qe(n) Qt(n) n Qe(n) Qt(n)
3 0.3953 0.1602 8  4.8893)  1.608(-3)
4 0.0731 0.0265 9  3.30K3) 1.079(-3)
5 2.728(-2* 0.943(-2) 10  2.341¢3)  0.762(-3)
6 1.3472)  0.454(-2) 20 26814  0.860(-4)
7 7.736(-3)  2.569(-3) 100  2.087¢-6)  0.666(—6)

the total cross sections of double and single ionization ifA(~n)=A-10"

Compton scattering:

. o_é+ B?:,t
c= =—,
o& z?

£=0.132, BL=0.033. (53

evident from Eq(54) that onlys states are excited under the
stated assumptions. The probability of excitation of states

For scattering in the ground state of a two-electron atom wavith a different angular momentum is substantially lower. It

haveR.=0.04872 (Refs. 8 and 1f which is equal to 1.2%

can be determined by including higher-order terms of the

for Z=2. The recent experimental value of the given quan-£Xpansion in Eq(36).

tity for a helium atom, measured at=97.8 keV, is equal to
(0.98+0.09)% (Ref. 186.

5. EXCITATION IONIZATION IN COMPTON SCATTERING

Like double ionization, excitation ionization into states

It follows from Eq. (57) that the following approximate
equality holds for large:

st 2 s,t
&'(n>1)=— p&(0). (59
n

with n>2 is a two-electron process and in the case of CompSubstituting the value&?2) into this equation, fon=10 and
ton scattering is determined entirely by electron-electron inn=100 we obtain

teraction. The amplitud& ** of this process can be repre-

sented by Feynman diagranSig. 3), except that now the

slow-electron wave functionbp2 must be replaced by the

bound-state wave functiony,,,,. Making use of the

relation*
(7\_77n)n_1
Vi |0y=4mN, —" 5, 50,
<¢n/m| |)\| > n()\+7]n)n+l /0¢m0
3
7 7
NG=— =1, (54

and comparing Eq(54) with (44), we infer that the ampli-
tudeM ** is obtained from the amplitudel * * by the sub-
stitutionsz2—>Nn andp,—i#,. The equation for the ion-
ization excitation cross section then follows from Egj7) if

the factordp,/(27)3 is discarded, an&(p,) is replaced by

N2
’ n
S'(n)= 5 S(P) (55)
p2 p2~>i’)7n
This cross section has the form
0_+* n) S,t(n)
c +( =8m?a?S' (n)= C2 , (56)
oc Z
2 4 st )2
é‘<n>=§ﬂét<sﬁ—n-2>=ﬁ(—22_“n2) . (57)

The function 5! is given by Eq.(50), in which it is now
required to make the substitution

(q_n—l)n—k
(q+n71)”+k'

The values oRZ' for variousn are given in Table I. Itis

¢(0,k)— en(g,k)= (58)

Qi(10)=2.08510"3, QL(10)=0.66510"3,

Q3(100=2.08510"5 QL(100=0.66510 .

Comparing these numbers with tabulated values, we note
that the discrepancies are approximately 10% tiet 10,
whereas far better agreement is obtainednfer100.

The authors are indebted to M. Ya. Amus'ya for sug-
gesting the topic of the paper.

APPENDIX

Here we obtain numerical estimates of the discarded
terms in Eq.(39). The exact value oB(p,) (36) differs from
the approximate valuéd9) by the amount

_ s (NN 1

— _ 2
AS= 2 “E gz N (Wl19%. (A

Since E= —1(5/4+¢,) and Ey=—1/N? (or Ey=E,>0),
when E—Ey)? is replaced byE?, the contribution of the
discrete spectrum tA S decreases slightly, and the contribu-
tion of the continuous spectrum increases. As a result, the
approximate estimatéAl) is a little too high; in its deriva-
tion we have invoked the completeness condition

> IN)(N[=1.
N=1
Taking Eq.(32) into account, we have

<¢| lﬂ>:<lﬂa| ¢a>+<¢b|‘//b>i2<‘//a| o)
Making use of Eq(29), we obtain

(A2)



JETP 89 (6), December 1999 A. 1. Mikha lov and I. A. Mikha lov 1029

dfdf’ 1 We denote byS; the approximate value of39) for
(0l h2) = N?DD’ f i S(p,). Using Eqs.(A4)—(A6) and (45)—(47), we obtain
<2% <8% as <25%
X (Y. |Vi |f>—8m} Sil, o N 1l =1/4 > 1lg,=3/4 >
P (1) 2 7 ’ )
1 The relative contribution of the terms discarded in E2f)
X(f' |V 7,§|lﬂp2>f72, increases as, increases, but the absolute valuesSpfand
AS decrease rapidly as, increases. For example, fer,
P =1/4 the quantitiesS; and AS are an order of magnitude
N=N;N,, D=F,,2(9—, D'= T v=217. smaller, and fore,=3/4 they are two orders of magnitude
2 a1 smaller than the corresponding quantities ég.=0. Conse-

(A3) quently, the replacement of the infinite s&®) by its single
The calculation ofA3) is greatly facilitated by making the term(39) introduces an error of 10% or less in the total cross
substitution[ (f—f')2+ v?]2— (f2+ %) (f'2+1%). As a re-  section(53).
sult, the integrals are uncoupled, and the ensuing calculations
become elementary:
2

= DJ W v 1nL v o

(Yaltha)~ 27 (277)3<¢p2 17 >f2< 1»/0) *)E-mail: mikhailo@thd.pnpi.spb.ru

YThe system of unité =c=1 is used in this paper.
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Experimental data on the absorption of radiation by cold lithium, potassium, and silver clusters
and on the emission of radiation by hot niobium and tungsten clusters are analyzed within

the scope of two interpretive schemes of radiative transitions in clusters. The first scheme
comprises plasmon model of light absorption by valence electrons of metal clusters. The
second scheme treats radiative transitions in metal clusters as transitions of valence electrons
interacting with surrounding electrons and atomic cores. The experimental data exhibit

better agreement with the second interpretation. 1999 American Institute of Physics.
[S1063-776(199)00212-1

1. INTRODUCTION schemes characterizing the process of absorption by a clus-

The investigation of radiative transitions involving metal j[er. n the_ﬁrs.t. scheme mtergc_uon betyv een.valence. electrons
is more significant than their interaction with atomic cores,

luster n lend insight into the character of the interaction T . . .
clusters can lend insig 0 the character ot Ine Interactio o that radiative transitions are an aftermath of interaction of

of electromagnetic waves with atomic systems. In this paper L : . .
g 4 pap e radiation field with collective degrees of freedom of the

we analyze the mechanism of radiative processes involvin —_ : L A
stem, which in the given situation are plasmon oscillations

clusters on the basis of experimental data. The latter hav

been obtained, for the most part, by two experimental meth9f the electronic subsystem. This fact imparts a bell-shaped

ods. The first method is based on the concept of photoinprOfIIe to the absorption spectrum. . . .
In the second case, when the main part of the interaction

duced dissociatioh,whereby the absorption of a photon kes place between valence electrons and their atomic cores
causes the cluster to decay and, hence, change its mass. -IIrﬁ%iatit)/e transitions are similar to those occurring in solitar ’
absorption cross section of a cluster ion is deduced from an 9 y

analysis of the mass spectrum of its absorption products as toms, so that the absorption spectrum consists of individual

function of the intensity of the incident laser radiation. ThelmeS broadened by interaction involving neighboring atoms.

. .Ihe number of broadened lines or bands in the absorption
the visible and ultraviolet regions of the spectrum have bee|§|‘peCtrum of metal clusters d_ecreases as the temﬁ)ze rature in-
measured on the basis of this metRod creasegsee, e.g., the experiment of Haberlagidal.“ for
' sodium clusters and the explanation of this behavior in the

The second method is based on measurement of thewen scheme entails an attendant increase in the number of
spectral power of radiation from hot clustésThe mea- 9

sured wavelength distribution of the radiation power forNeW cluster atomic configurations, which create the absorp-

clusters of certain sizes can be used determine the radiati\}lé)n spe.ctrurn. our gogl here is FO Qe0|de V‘.’h'Ch 'S the more
temperature of the clusters during their relaxation after excigpproprlate mterpretatlon for'radlatlve transitions in a cluster
tation by laser radiation or as a result of oxidation. More-fromv\ﬁzenzzrlﬂz?k%teogs;;ezzrgfgteg;l?:ﬁ% of sodium clusters
over, various spectroscopic measurements provide additional P P

information about individual aspects of radiative processe gcLﬁiezeii\rl]%rﬁ:“zr:)?gfar:;i rgf?&ifgmﬂngf F:;Zferftggﬁon
involving clusters:®=*3and the details of these processes ca P

be learned from theoretical studiés2°The objective of the r’ﬁeld with clusters in application to sodium clusters and silver

present study is to summarize the data on radiative process§§11 :rr:g ':%25 Célljj;feri Ft?]:-}“tahlI)l;rcT)]r’pFigrt]assspl)L(jal;nt}‘uamndisSII\l;(;I
9 1 -

involving clusters and to choose a simple concept to describe , : . ; :
such processes. shaped, consistent with either interpretation. Consequently,

further analysis of these cases will be needed before we can

choose the most suitable mechanism of interaction between a

radiation field and clusters in the sense of achieving the best

fit with measurement data. Such an analysis follows.
Regarding a metal cluster as a system of bound atoms,

we portray a radiative transition in this system as the resulf- CtUSTER ABSORPTION CROSS SECTION

of transition of valence electrons. Choosing different bases Initially we treat absorption by a large cluster as by a

for the interaction of valence electrons, we can propose twanacroscopic particle, using the liquid-drop model for the

2. TWO INTERPRETATIONS OF ABSORPTION BY METAL
CLUSTERS

1063-7761/99/89(12)/5/$15.00 1030 © 1999 American Institute of Physics
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TABLE |. Parameters of the absorption cross section for metal clusters.

Cluster fwg, eV T, eV Tmaxd Ny A? wo\3lw, ¢ f
Liag 2.92 0.90 45 0.64 2.8 0.58
Lizzo 3.06 1.15 4.4 0.68 3.2 0.73
Lizso 3.17 1.32 6.4 0.70 4.9 1.20
Ligoo 3.21 1.10 5.4 0.71 3.3 0.85
Lizs00 3.25 1.15 55 0.72 35 0.91
Li, (average 3.1+0.1 1.10+0.12 5.2:0.8 0.69:0.03  3.5:0.8  0.85:0.23
Kg 1.93 0.22 2.9 0.79 2.9 0.91
Ks, 1.98 0.16 4.2 0.81 2.9 0.96
Koo 2.03 0.28 35 0.84 4.0 1.40
Ksoo 2.05 0.40 2.8 0.84 45 1.59
K, (averagg 2.00+0.05  0.26+0.10 3.4:0.6 0.82:0.02  3.6:0.8 1.2:0.3
Agy 4.02 0.62 1.0 0.82 2.6 0.87
Agy, 3.82 0.56 0.9 0.78 2.1 0.64
Ag, (average 3.9+0.1 0.59+0.03 0.9-0.1 0.80:0.02  2.4:0.2  0.75:0.16
cluster; in this model the cluster is a spherical particle of 7 w2 r
radius r, which is small in comparison with the radiation Oapd w)=27 5 r3 5 P
wavelengthi : ¢ h(o—w) "+l
AST. (1) 2
. . . o P —— )
In this model the density of the given particle is assumed A(w—wg)“+T

to be the same as in a condensed macroscopic system, so that
the number of atoms in the clusteiis related to its radius ~ where wozwp/\/§ is the resonance frequencyl’

by the equation =hwee"l6 is the width of the resonance peak, ang,, is
3 13 the maximum absorption cross section,
el el @
n=\—/_, Tws=|7
ws 4mp L hed?
Here rys is the Wigner—Seitz radiusy is the mass of a Omax= 27 Tc ° ®

single atom, ang is the density of the macroscopic system;
this relation shows that the investigated cluster can be exsrom Eq.(5) we deduce the integral equation
tracted from the condensed macroscopic system.

The absorption cross section for the spherical macro-

2I'3 2 2r3
scopic particle is expressed in terms of the dielectric permit- j Oapd w)dw= g Um;xr =772 w(; T wé) Wsn, (7)
tivity of the particle materiak(w)=¢'(w)+ie"(w) by the
equatio® .
wheren is the number of cluster valence electrons, and the
127w g . 127w . width of the resonance peak is assumed to be relatively
Tapd @) = — (8,+2)2+8”2f == 9(®). 3  smal.

Although the given model originally applies to a macro-
It follows from this equation that the absorption cross sectiorscopic particle and is crude in application to a cluster, it
oapsis Of the order of (/\)r?, i.e., is small in comparison takes into account the character of the interaction of a metal
with the transverse cross section of the partiglé. More-  cluster with an electromagnetic wave through valence elec-
over, this quantity is proportional to the cluster volunieor  trons. The absorption spectrum of a metal cluster is therefore
to the number of atoms in the cluster localized in the visible region of the spectrum or close to it,
For metal particles interacting with a radiation field we and the far infrared region of the spectrum is nonexistent. In
use the Drude—Sommerfeld thedA?>which postulates that reality, the absorption spectrum of metal clusters can have a
metal electrons are similar to a gas of free electrons, so thamore complex form than that described by Es), and it can
the permittivity of this electron gas is equal to contain several resonances. Table | shows the parameters of
()= 1— 02 w? @) the absorption cross section of metal clusters for cases in
P which the spectrum consists of a single resonance. The ab-
Here wp:(477Nee2/me)1’2 is the frequency of plasma—or sorption cross sections have been measured for Silver,
Langmuir—waves; accordingly, is the density of elec- potassiunt;* and lithium? We note that in several cases the
trons, e is the electron charge, amd, is the electron mass. absorption spectrum as a function of the photon energy is not
The damping of plasma waves is characterized by the imaga bell-shaped curve. In particular, this is true of certain, Ag
nary parte” of the permittivity. The conditioz”<1 in con-  (Ref. 2 and Na (Ref. 6 clusters, whose absorption spectra
junction with Eq.(4) transforms Eq.{3) as follows in the have a more complex form than predicted by plasmon
vicinity of resonance: theory.
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It follows from Egs.(3) and(4) that the resonance fre- state of the atom. Constructing a clustemafuch atoms and
guency for plasmon-ty8pe interaction of an electromagnetidixing the positions of the nuclei, we obtain a cluster absorp-

wave with a metal cluster is equal to tion spectrum consisting af spectral lines. They are ob-
tained from the resonance atomic spectral line, which is split
_@p_ € ) by interaction in the system. Owing to the vibrational motion
“o 12372 . : : i
V3 mEdE of the nuclei in a solid cluster, these lines broaden and par

tially overlap. As a result, the absorption spectrum of the
clusters consists of one or several broad resonances. This
form of the absorption spectrum follows from calculations of
the cluster absorption cross sectfdn?’ From these consid-

. S erations we infer that the cluster absorption cross section is
radii are 1.65 A, 2.65 A, and 1.66 A for liquid clusters of proportional to the number of atoms in the cluster. The same

I|th_|uthIpotashS|um, _an? Z||Ivelr,_ retipectlt\_/ely,f ?:] thebmelt'ngresult is consistent with the macroscopic cluster mad@dgl
point. Also shown in Table 1 1S the ratio of the observe The radiative transitions in metal clusters for the given

resonance frequencies, for cluster absorptipn 0 Fhe values model are similar to radiative transitions involving
obFamed from Eq.(8). Although these ratios differ from resonance-excited atoms. This similarity also follows from
unl_ty, the Igrge—cluster resonance frequency can be. correct analysis of the emission spectrum of mercury clusters as
by introducing an effective electron masgy, which differs the transition is made from a single atom to a macroscopic

fror_p tgle f:ei—eletﬁtron MasBe . 'I;fhertl., according to t::e data system®! by increasing the number of atoms in the system.
In 1able 1, for the average efieclive mass We NdVigh  ng jngicated nature of the cluster absorption spectrum cor-

=(0.57x0.10)m. (_:onsequently, even thOUQh the pos!tlons_ esponds to the temperature dependence of the absorption
of the resonances in the cluster absorption cross section dli—

t f sodi lusters?
fer from those determined on the basis of E), the differ- pectrum of sodium Ng cluster

be eliminated by introduci frocti ¢ We now consider the sum rule for a metal cluster, mak-
ence can be eliminated by introducing an eflective mass C)fng use of the fact that for fixed nuclei the cluster absorption
electrons in the clusters.

The bl b i hani ield ¢ spectrum in the investigated spectral region consists of indi-
th €p asmog a stprp lon mec ?_nlsmv\yle S iﬁ)'t% vidual lines comparable in number with the number of atoms
I'd?t ma;xtlrr]r'\um Iat_sor]P 'Ot?] Cross sec 33”' € ctan e? th € \ﬁﬁ the cluster. In the single-atom limit this spectrum is trans-
Ial yt'o IS reid 'o?. or We mfazure tﬁarame erst OFtN€ aD35:med into one or more resonance lines of the given atom.
sorption €ross section. ¥ve Introduce the parameter We introduce an effective oscillator strengthassociated

1 omalC 1 omax TC with a single valence electron, so that the sum of the oscil-
=5 =5 ) 9 lator strengths of the given spectrum comprising individual
2 ﬁwer 27 n ﬁwer . . .

0 o' ws lines is equal tanf, wheren is the number of valence elec-
which is equal to unity if Eq(6) is valid. The values of this trons in_the cluster. As a r_esult of motion of the nuclei, the
parameter for metal clusters with a bell-shaped absorptioabsorption spectrum acquires the form of several broadened
spectrum are given in Table I. It is evident that the parametefesonances, but the sum rule remains the same. Next we
¢ deviates farther from unity than can be attributed to theconsider the case of a bell-shaped absorption spectrum of the
error of measurement of the parameters. This discrepandgind encountered for Ag, Li, and K clusters, for which data
implies that the underlying assumptions are false. They ar@reé given in Table I. ' '
based on the notion of a macroscopic absorption process in We invoke the general equation for the absorption spec-
Eq. (3) and on the notion of plasmon-type interaction of thetrum of an atomic systeff
electromagnetic wave with cluster valence electrons, which

- - - m’c? a, g, 2m’e?
leads to Eq.(4). Hence we infer that the interpretation of 0—K)= Fo Jk_ f 10

: : Tapd 0—k) 2 ok9k8 - (10)

electromagnetic wave absorption by a metal cluster as the w* Tok 90  MeC

result of interaction between the wave and a macroscopi

plasmon is unsuitable, even in cases of a proper cluster a&ere Me 1S the electron massy 15 the frequency of the
sorption spectrum. investigated electron transition between statéth® lowest

The foregoing analysis implies a partial analogy betweer?tate andk (the upper stae go and gy are the statistical

the system of valence electrons in a metal cluster and fre}g/eights of the transition states is the radiative lifetime in
lation to this transitiona, is the frequency distribution

electrons in a plasma. This analogy suggests that electro gall . o . .
are responsible for the interaction of the given atomic syste nction of emitted phot_ong,awdwi L, _andfOk s the oscil-
with an electromagnetic wave. The nature of the radiatio ator strength for the given transition; the sum rule for the

from metal clusters as systems of bound atoms with interactQSC'"ator strengths of dipole radiative transitions for valence

ing valence electrons can be depicted on the basis of th%lectrons in the investigated spectral region, including reso-

second scheme of interaction between the radiation field and@"'c® transitions, has the form

electrons. We consider clusters whose atoms have a reso-

nance excited state, which is linked to the ground state of the Zk fok=nf.

atom by dipole radiative transition. For the cases in question

the lowest resonance state of an atom is characterized by the For definiteness we consider clusters consisting of atoms
greatest oscillator strength for transition from the groundwith a single valence electron, as is the case for Ag, Li, and

because the density of valence electronklis 3/(477r\3,\,5).

It follows from this equation thatiwy=4.5eV for large
lithium clusters,iwy=2.4eV for large potassium clusters,
andzwy=4.9 eV for large silver clusters. The Wigner-Seitz
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K clusters(see Table)l Assuming that the investigated spec- TABLE II. Radiation parameters for the lowest atomic states.
tral region contains two dipole resonance transitions of elec=

- . f ies in the vicini fthe cl Transition Energy Transition
trons, integrating over requencies in the vicinity of the clus-prom electron shell range, eV time. ns
ter resonance, and summing over all resonance transitions;
we obtain an integral equation for the cluster absorptiort' ip—’is 1-2*13 ;;

. . p—4s .
cross section: Ag 5p—5s 36-38 78
2 2e2 Nb 4d%5s5p—4d*5s 2.5-2.6 100-1000
J oapd w)dw= nf. (11 Nb 4d*5p—4d*5s 3.1-33 8
meC W 5d*6s6p— 5d*6s? 2.7-3.8 60-800

If the absorption cross section of the clusters is bell-shaped;,
as in the cases of Ag, Li, and K clusteisee Table)l the
integral equation(7) is valid. We then obtain the following
equation from Eqs(7) and (11): measurements. These measurements were used to determine
the emission spectrum at different times after irradiation, and
(12) it was approximated by the emission spectrum of a perfectly
black particle having a definite temperature. An anaf{sis
shows that the cooling of the irradiated cluster is determined
(?ﬁ/ its radiation, so that the rate of change of the radiation

at a single valence electron when the absorption cross secti . ) . :
) ) intensity can be used to find the absorption cross section for
is approximated by a bell-shaped curve. The scatter of valueﬂsm hot cluster

for each element is clearly dictated by the error limits of the The assumption that the absorption cross section is inde-

cited data. On the average, the valued @r each element . . .
: pendent of the wavelength yields an absorption cross section
correspond to the oscillator strengths for the lowest resot

1018 ;
nance2S,, 2Py, 2P, transitions of the corresponding per atom of (5.20.8)-10 *¥cn? for tungsten clusters if

atom. These oscillator strengths are equat 74 for the they emit in the temperature intervai= 3170-3550K, cor-

lithium atom, 1.05 for the potassium atom, and 0.77 for theresppndlng to wavelengthi ma 0'68._ 0.'76’“m for the
. . maximum spectral power of the radiation. In the case of
silver atom. The agreement between the cluster and single- . . . .

. o L niobium clusters the absorption cross section per atom is
atom oscillator strengths within the error limits of the cluster

. : o . ——_equal to (5.91.0)-10 8cn? if the clusters emit at tem-
oscillator strengths confirms the validity of the interpretation :
. raturesT=3200—-3600 K, corresponding to wavelengths
that treats the cluster absorption spectrum as the result

transformation of the atomic spectral lines under the influ- max 0.67—0.75um for the maximum spectral power of

_ i o " . the radiation. We note the following relation between the
ence of their interaction. Radiative transitions in clusters can

therefore be regarded as radiative transitions of single v radiative _temperatur@ and the radiation wavelgng%ax at
lence electrons participating in interaction in the cluster he maximum spectral power of the radiationmal .
p pating _

where these transitions are broadened by the motion of the 0.24cm K It refers to the'dependence of the absprptlon
nuclei. cross section on the radlatl_on frequenefw) > w, wh|(_:h
corresponds t@(w)=const in Eq.(3) for the absorption
cross section of a small macroscopic particle.

A significant discrepancy is evident in the specific ab-

The width of the spectral absorption band of a cluster issorption cross sections of cold and hot metal clusters. We
governed by the scattering of single electrons in the field oknalyze this discrepancy on the basis of the second mecha-
the atomic cores for both mechanisms of interaction betweenism of interaction between the electronic subsystem and the
clusters and the radiation field or is attributable to differentradiation field, so that the main radiation parameters of the
configurations of the nuclei in the second interpretation. Ad<cluster are atomic, which are transformed by interaction in
ditional information about this interaction can be obtainedthe cluster. Table Il shows the parameters of radiative tran-
from the temperature dependence of the absorption spectrusitions involving the lowest excited states of the atoms com-
and the absorption cross section. In particular, the variatioprised in the investigated clusters. If we assume that radiative
of the absorption spectrum for I&aclusteré2 as their tem- transition in a niobium cluster begins with the atomic
perature varies from low to room temperature can be attrib5p— 5s transition, we can discern an analogy between nio-
uted to new configurations of the cluster nuclei at elevatedium and silver clusters. The maximum spectral powers of
temperatures. In this paper we use data on the absorption ofobium cluster radiation, which correspond to the investi-
cold lithium, potassium, and silver clusters at close to roongated cluster temperatures and have been used to determine
temperaturgTable ) and data on the absorption cross sec-the specific absorption cross sections of these clusters, refer
tions of hot niobium and tungsten clustéfsyhich follow  to photon energies in the intervakw=1.4—1.5eV. Using
from an experimental study of the evolution of the spectrumEg. (5) for the absorption cross section of a cluster with the
of these clustefs at high temperatures. parameters of silver clusters in Table I, we obtain the specific

In the experimenfs’ the emission spectra of Nb, Hf, and absorption cross section in the investigated range of photon
W clusters were measured after the cluster beams had beenergieso/n=(5.1+1.7)- 10 8cn?, corresponding to the
irradiated by a laser pulse. The resultant signal was obtaineabove-indicated specific absorption cross section of a nio-
by summing many pulses, which limited the accuracy of thebium cluster. Consequently, the small specific absorption

1 opad'mec
T Am enp

Table I gives the oscillator strengthfigor metal clusters

4. RADIATION FROM HOT CLUSTERS
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cross section of niobium clusters can be attributed to the lovin the cluster is not weak, this relation holds for metal clus-
typical photon energies associated with the tail of the absorpters for which the absorption cross sections have been mea-
tion spectrum. sured. It is useful to take these considerations into account in

The small specific absorption cross section for tungstemnalyzing the radiative parameters of systems containing
clusters can also be identified with low oscillator strengthsclusters.
for transitions to lower excited states, owing to the long ra-  This work has received partial support from the Russian
diative lifetimes of these statgFable Il). We note that the Fund for Fundamental Resear@RFFI Grant 99-02-16094
high temperature associated with the above cluster absorp-
tion cross sections correspond to increased widths of the ab; o
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The multiple scattering of light from an inhomogeneous medium occupying a half-space is
investigated on the basis of the Bethe—Salpeter equation. The latter is integrated over the spatial
variables to obtain an identity having the significance of the energy balance of the incident

and scattered radiations. This relation is then used to derive a length parameter that plays the role
of the Milne interpolation length. The use of this parameter in the method of mirror images

for describing the shape of the coherent backscattering peak in isotropic single scattering yields
results in almost perfect agreement with the predictions of the Milne theory. The application

of the given approach for an anisotropic single-scattering diagram yields quantitative agreement of
the theory with experiments on the angular dependence of coherent backscattering. The new
approach is generalized to an electromagneicton field, and backscattering polarization effects

are investigated. ©1999 American Institute of Physids$$1063-776(99)00312-1

1. INTRODUCTION first adopted in Ref. 23. However, the method of mirror im-

ages itself does not require that the effective boundary coin-
The study of multiple scattering of light in strongly in- cide with the Milne interpolation length.

homogeneous media has led to the discovery of a whole In this paper we propose a self-consistent method for

series of phenomena caused by coherence and correlatigposing the effective boundary in the description of mul-

effects (see Refs. 15 Work continues today on coherent tjpje scattering from a half-space. The solution is constructed

backscattering;® angular and fre.querllcy correlations be- o1 scalar and vector fields. For the scalar field in isotropic

tween reflected and transmitted ligfit," and memory and single scattering we show that in describing the coherent

unive_rsallizty effects in the behavior of the time correlation 5y scattering peak the result obtained by the approach de-
function.” Wave propagation in strongly inhomogeneous eloped here essentially coincides with the result obtained

media especially began to elicit major interest once it ha rom the exact Milne solution. The application of the given

been esta_b_lished that t_echniques of correlation spec_trosgo%proach to systems with an anisotropic angular scattering
and, specifically, techniques of the spectroscopy of dlffusmghmCtion yields good agreement of the theory with experi-
photon-density waveég*® could be used to solve the prob- mental coherent backscattering data

lem of imaging ordered structures and macroscopic inhomo- .
ging P The paper is structured as follows. In Sec. 2 general

geneities in opaque medi&:*In particular, this realization . . ) : .
launched a new trend in medical technology: diagnostics utic <Presslons are given for the intensity of multiply scattered
lizing visible and infrared radiatiot? radiation due to the contributions of ladder and cyclic dia-

To adequately reproduce the structure of opaque medigrams. The scalar field is discussed in Sec. 3, including a

and achieve a more accurate description of coherence ar%:neral analysis of .the system of equations. With zeroth- and
correlation effects, a concerted effort is underway at thdi'Stdegree terms included in the expansion in Legendre
present time to develop a theory of multiple scattering. aAPolynomials. In Sec. 4 an identity having the significance of

major problem in this area is the systematic treatment oft" €nergy balance equation for the incident and scattered
boundaries and interfacé%:2 The method of mirror images light is derived for the scalar field by integrating the Bethe—
fits quite naturally into the diffusion approximation. How- Salpeter equation. A length parameter analogous to the
ever, because the diffusion approximation is valid far fromMilne interpolation length is obtained self-consistently from
any boundary, a certain leeway is encountered in the choic#is equation. It is used to calculate the angular dependence
of an effective boundary. Alternative choices of this kind areof coherent backscattering, and the results of the calculations
discussed in Ref. 19. The position of the effective boundarn@re compared with experiment. In Sec. 5 the new approach is
is usually determined by means of the Milne interpolationextended to the case of an electromagnetic field, and the
length, which is obtained from the exact solution for thepolarized and depolarized components of coherent back-
scalar field in the model of point scatterers. This choice wascattering are calculated.

1063-7761/99/89(12)/10/$15.00 1035 © 1999 American Institute of Physics
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2. MULTIPLE LIGHT SCATTERING IN A STRONGLY where
INHOMOGENEOUS MEDIUM
1
We consider the propagation of light in a random dielec- ~ G(ro—ry)= W<5S(fz)58(fz)> (2.9

tric medium. Assuming that variations of the inhomogene-
ites of the medium are negligible during wave is the correlation function of the permittivity fluctuations.
propagatiorf! we can write the wave equation for the spec-Equation(2.4) is written in the ladder approximation on the

tral field componen&(r, w) assumption that the fluctuatiods are essentially Gaussian.
5 This equation is derived on the assumption of smallness of

curl curIE(r,w)—(2> e(w)E(r, ) the pa'ram'eteﬁnrg’p, Wherelén is'the inhomoggneity of the

c refractive index of the mediunn, is the correlation length of

)2 the inhomogeneities, or radius of the scatterers, as defined by
= (—) de(r,w)E(r,w), (2.1  the function(2.5), andp is the density of inhomogeneities, or
¢ scatterers, in unit volume,~a > (a is the average distance

where 8&(r,w) = &(r,») —&(w) is the fluctuation of the di- between scattereys

electric permittivity,e (w) =(e(r,w)) is the average permit- In the functionf(rz,ré,rl,ri) it is useful to transform
tivity at the frequencyw, c is the light velocity in empty to “center of gravity” coordinateé?j=(rj+rj’)/2 and rela-
space. From now on we shall drop the argumerfor brev-  tive  coordinates rj=r;—r{. For the function
ity. The intensity of multiple scattering of radiation at a pomtflj,mn(RZyRé;kSvki)a which represents the Fourier trans-
r can be written in the form form in the relative coordinates,

o , , _ "

(9E0)= [ aradriaradria, T ol RaRyike k) = [ A0 o Rt 2 R,
X(r=ra) AG(r=r)li(ra,ra,ra,ry) o . +r_§ . _"_{)
X(Ei(r)WEF(r))). (2.2 27127 2

Here SE4(r) =E(r) —(E(r)) is the fluctuation of the field in xexpikiry—ikq), (2.6

the medium{E(r)) is the average incident field, which we
assumed to be a monochromatic plane wayE(r))
=Ee>.<pdki~r), ki is the_mmdent wave vectqr, and(r Fu,mn(Rz,Rl:ks,ki):kéé(ki—ks)5(Rz1)5|m5jn
—r5,) is the Green’s function of the wave equation. In the far
field at large distances from the scattering volume this
function has the form

Eq. (2.4) can be written in the form

ko J dR:G(kza—ks)

X AIj ,ab( I:223)1—‘z:1b,mn

X (R3,R1;K23,Kj). 2.7

1(. ke ks

A(r—rz):F(l— 2 )e‘ikS"Z, 2.3

wherel is the unit matrixks=kr/r is the unit vector of the Here

scattered wavek=zs"%,, ko=w/c=27/\, and \ is the

light wavelength. Summation over repeated subscripts is tac- (”;(q)zf dr G(r)e ar (2.9
itly understood from now on, except for the subscrip&nd

s, which designate the polarizations of the incident and scats the Fourier transform of the correlation function,
tered light, respectively. .

The functionT'(r,,r;,r.,r;), which characterizes the Ajian(R) = e - RiRa
scattered field, is represented in general by a power series in e R? * R2
the permittivity fluctuationsSe. This series is summed and
leads to the Bethe—Salpeter equation. In the weak scatteri
approximatiom\ <| (I is the extinction lengththis equation
assumes the form

Rij
ib™ R2

. (29

dk;;=kR;;/R;; is the wave vector of the wave propagat-
ing between point&; andR; .
We now consider scattering from the half-space0,
wherez is the Cartesian coordinate directed along the inward

Lijmn(T2,15.71,17) normal to the boundary= 0 for angles of incidence close to
180° and for normal incidence. In the far field, taking Eq.
=kéG(rz—ré)[é(rz—rl)é(ré— ') Bimdin lgcz)rrST)] into account, we can write the mean-square field in the
+f dradrgAj(ro—ra) Al (rp—r3) (|6E«(1)|?)= izlsi(ks,ki), (2.10
r

Xrab,mn(r:saré,rlari)}, (2.4  where
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Z,+7, spherical harmonics. We confine the discussion to the zeroth-
Isi(kSvki):f dRydRzexp — — and first-degree Legendre polynomials, which correspond to
the diffusion approximation
o[ Ksks) [ keks i 1 )
k2 | k2 I'(p21,Z5,Ks,Ki) = ﬂ[?’o(leyzz)+ Yn(P21,Z2)
Sj sl v
ijl,ii(RZ!Rl;ks!ki)|Ei|2' (21]) X cosO+ A’yt(p21,ZZ)C030t], (216)

The axial symmetry of the problem reduces the dependenoghere
on R, and R; to a dependence on the relative transverse B . B 1 1
variable p,;=[(X>—X1),(Y2—Y3)] and the coordinate®, Cost=(ks )k, €oSt= (ks p2)k “pr

andZ;. ande; is the unit vector along thg axis. Here we have also
It is evident from Eq(2.11) that for scattering problems made use of the fact thég| e,.
at normal incidence it is sufficient to consider the function Invoking the orthogonality property of the Legendre
R o polynomials, we can reduce E@®.13 to a system of inte-
L'(pa1.Z5:7ks ki) = fo I'(R2,R1;ks ki) gration equations for the functiong,, v,, and y,:
R 3 z N
Xexp(—Z,/1)dZ;. (212 Yolp21.Z2)= 5 a<zz)exp( - ,—2) 3(pay)]
According to Eq.(2.7), this function satisfies the equation
3 N
Tij mn(P21,Z2:Ks ki) = koG (K —Ks) 6(Z5) 8( po1) tea J dR3A (Rzg)

X exXp(—Zy/1) 8+ Ko Koz pa1

X| Yo(Pa1.Za) + k—) N(pa1.Zo)
P3

Xfé(kzs_ Ks)Ajj an(R23)

Koz €3
XL abm( P21, Z3 Ko,k )dRs. Tk )Vn("slyzﬂ}
(2.13
In the given geometry we havek;=(0,0k) and V(P21 Z2)= 8 IJ'd 3 p,R A(R23)

ks= (ko0s,0,—K), wheredy is the scattering angle measured

i i i i A Koz P31 ~
relative to the true backward direction. Equati@l11 now X| Yo pa1,Z3) + 5 Y pa1rZa)
assumes the form P31
2 ® ] 23 €3 ~
Isi(ks ki) =|Ei[*S| dpy . dZ,l ssii(P21,Z2:Ks ki) M Yo(pa1,Z3) |,

xexp(—Z,/l), (2.19

whereS denotes the illuminated region.

For small anglesd, together with the contribution of Rys: e3
ladder diagrams, it is also necessary to include an interfer- t 8 J dR; A(Rgg)
ence term of the forf{

9
Yo(P21,Zo 1) = ﬂe(zz)exﬁ Z,/)8(pyp)1

. ~ Kos: P31> A
|g)(ks,ki):|Ei|25f delfo dZ,[ T is(p21,Z2;Ks ki) x| Yo(Par, 23, 1)+ kp 7(Pa, )
47 k23' €3 ~

— 8(p21) OsiKoG(ks— ki) exp(—Z,/1)] K Yn(P31.Z3) |, (2.17

X exp(—Zol " ikofs(Xo = Xp). (.19 where §(Z) is the Heaviside theta functiop,= cosé is the
Equation (2.15 represents the contribution of cyclic dia- cosine of the scattering angle, averaged over the single-
grams. In its derivation from the contribution of ladder dia- scattering angular diagram. In the derivation of E@s17)
grams it is required, in particular, to permute subscripts andve have relied on the optical theorem
subtract the single-scattering contributisee, e.g., Ref.)4

. . . . 2 ~

i The anisotropy of single scattering makes the function |71:§kg f dQG(ke—k). (2.18
I'(p,Z,;ks,k;) dependent on the orientation of the wavevec-
tors. Owing to the structure of Eq2.13, we can fix the We now consider a medium in which light attenuation is
orientation of the incident wave vect&r and consider only attributable to scattering rather than to absorption, i.e., the
the dependence on the orientationkgf In the general case extinction lengthl is much shorter than the attenuation
this dependence okg can be written as an expansion in length.
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The systen{2.17) is a generalization of the Milne equa- A(R)=exp —R/I)/R? (3.3
tion to the case of an electromagnetic field. Here the anisot-
ropy of single scattering is taken into account in thelS the scalar analog of the tens@8). _ _ _
P,-approximation. The solution of this system of equations For convenience we transform to the dimensionless vari-

) o ablesz=Z/1 andq=1Q. In the system of equatior(8.1) we
can be usgd to find the fl.mCt!d?(pﬂ.’ZZ ’ks.’ki).am.j’ hence, go over to the Laplace transform in the variabl&Ve deter-
to determine the scattering intensity, which is given by Eq

(2.10). mine the Laplace transforms in the form

The substitution of the solution for an unbounded me-

dium in place of the functiod” in Eq. (2.11), of course,
yields a divergent expression. The standard procedure used - -
to remove the divergence, by analogy with electrostatic probtere the functiom, has been parametrized in the forp
lems, is based on the method of mirror images. The solutiorr d7:(d,2) by virtue of its orthogonality to the axis. For
of the system of equation&@.17 does not result in diver- the Laplace transforms the systél) assumes the form
gence, because the boundedness of the medium is taken into r, _ e

account explicitly here. However, this system of equations is [1=Po(W)190(0:5) = a°P2(W)9:(a.9)

complex and difficult to solve, even numericatf?°In con- +sp(W)gn(a,S)=ao(q,s),

trast with an electromagnetic field, for the scalar case an

exact solution exists for a system of point scatterers. Inas3#P1(W)9o(d,S)

gm(q,s)=J dzyn(g,2)e67%5 m=0n,t. (3.4
0

much as the existence of an exact solution can be used to 2 2

.y . — _2
analyze the degree of validity of approximate approaches, we + [ 1— 3—'““ STPo(W) pl(V\;)] a pl(w)] 0«(q,s)
first discuss the case of a scalar field. 2 w

3us
3. SCALAR FIELD + V[Po(w) —3p1(W)]gn(a,s)=ay(q,s),

In the scalar analog of the system of equatith4?) we
g y quatiéhs ) 3G2S[ Po(W) — 3p,(W)]

can readily transform to the Fourier spectrum in transversg , sp, (w)gy(q,s) — 9:(a,s)
variables. We have w?
~ Z 1 3u 252 ] _
10(Q.Z2)= 0(Zz)exp( - |—2 o +|1— 7’“ L [QO(W) pl(w)]] In(,S)
w
X fo dZa{A(Q,Z29) 70(Q.Z3) + A1(Q,Z29) =a,(a,9), (3.5
where
X['}/t(Q,Z3)+e3’yn(Q,Zg)]}, 1 p (W) 1
o(W)—
- 3u (= o - w2=s?=g?, po(w)=5oIn T, puw)=———,
n(Q.Z3)= e jo dZ5{A1(Q,Z23) v0(Q,Z3) w
R _ _ 1 1 (2= edr 1
+A2(Q.Z29[n(Q,Z3) +€37,(Q,Z3) 1}, a(q,8) = 1+s 47 ), do LT x—s 9o(a, x)
Tn(Q.,Z,)=3u| 6(Z )exp( 22)+ ! 1 q2
1£L2) = 2 I Ry
n 1) anl ~ 7O+ 50X |,
Xfo dZ3e3{A1(Q,Z29 70(Q.Z5) 3u (=dr 1 [1
a(a,8)=—- LT s r—zgo(Q.r)
+K2<Q,zzg>[}t<Q,zg>+e3”yn<Q,zs>]}], 11 13 1
3. —5(1—r—2)9t(q,f)—E(ﬁ‘;)Qn(q,f)],
From now on we denote quantities with a tilde by the corre- 34 3u (2 edr 1
sponding two-dimensional Fourier transforms == . C - =
ponding an(A8)= 135 77 |, 92 | 7 X_S[go(q,x)
d’Q . .
f(p,Z)=f S (QZ)exaiQ-p) (3.2 @[ 3 1
(2m) 7|zt e@n-Tam@n|. @9

of the unknown functionsyy(p,Z), n(p,Z)=py(p,2)!/p,
¥n(p,2) and the integral kemnela (R), A1(R)=RA(R)/R  andy=r+iqglyr?—1 cosp. The system of equation8.5) is
andA,(R)=R-RA(R)/R?. The quantity an extension of the Milne equation to anisotropic scattering
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(n#0) and includes an interference contributiog#0). TABLE I. Coherent backscattering intensity, normalized to the height of the

We note that the functiong,(q,s) and gt(q’s) are first- peak, for a scalar fieldos9=0, at various scattering angleg=klsindy).

order inu. [© © )
According to Eqs(2.13—(2.15, the scattering intensity |, 1 =074 #4071 #4071

is the Laplace transform of2.13 with respect toz for

s=1 and the Fourier transform with respect to the transversé 1 L L L
; : Lo . 0.806 0.806 0.808 0.793
variables forg=1ky6s. In the given situation of almost pure > 0663 0.664 0667 0642
backscattering we have a@scos@@—6)~—1, cos6~0, 03 0.556 0.556 0.560 0.527
and the interference contribution has the form 0.4 0.473 0.473 0.478 0.439
0.5 0.409 0.409 0.413 0.374
19 (ks ki) =|E; IZA[—[gom 1)-gn(9,1)]
1,
— 5Kl G(2K) . (3.7 equation(3.10 with the angular dependence obtained by the

well-known method of mirror images according to the
Consequently, to solve the backscattering problem, it is sufequ;,uioﬁa27

ficient to find combinations of the componengs(q,s)
-s1g9,(q,s). 1©

For isotropic scatteringi=0) the system of equations mr
(3.5) reduces to the single equation

(@)~ Jd (1N)arctanv ). (3.11

%1 1—(1A)arctany

where
1 1 ~(1-a})cos22°q,) +20,sin22"q,)
(1+92)?
2m  (=dr go(q, 1
XJ d¢’J dr go(dx) oo (3.12
0 1 x—s Notice that Eq(3.12 contains the parametet, which can

only be evaluated on the basis of additional considerations.
In the general case the position of the mirror image plane is
usually chosen as follows in accordance with the Milne so-
lution: z* z* =0.7104(1 )~ (Ref. 23.

In solving Eq.(3.8) (see Ref. 2§ it is essential to utilize its
following properties. The right-hand side is regular forRe
<0, the unknown functiorgy(q,s) by definition is regular

for Res>0, and the function * py(w) is even ins and h leulated(© di h
analytic in the complex plane of, with two cuts (~ We have calculated™(q) for u=0 according to the

—1) and (1%). These properties can be used to find a soluexaCt equatior3.10 and according to Eq¢3.11 and(3.12
tion of the given equation by a method analogous to thé"”th Zz* =0.7104. The results of the calculations are given in

Wiener—Hopf method. The solution has the f8m Table I (columns 2 and ¥ Clearly, the results obtained from
these equations differ by approximately one percent, at least

_ 1 up to values ofj=<1. If only the diffusion pole is included in
9(A8) =5 L r oLt qi(st Q) the integrand of Eq(3.11), so that
1 (= ds'| s v~ tarctarv 3 (3.13
XD o f_iws_' s'—s 1-v tarctanv V2’
1 , the discrepancy with the exact result increases to 188é
Pa(W’) column 5 in Table).
+ In| —— (3.9
s'—1/) [ Pu(ia)
wherew’ = \/s'?—¢?.

Settings=1 in Eqg. (3.9 and transforming to the real 4. SELF-CONSISTENT DETERMINATION OF THE
variable of integratiom’:iqz' we can write the angu|ar INTERPOLATION LENGTH FROM THE ENERGY BALANCE
dependence of the coherent backscattering intensity for

1=0, according to3.7), in the form In general, setting* equal toz* =0.7104 in the above-

described scheme is not an exclusive choice. For its evalua-

1 tion we use an exact integral relation deduced from the
Mllne(q) P Bethe—Salpeter equation. We consider Egsl) for g=0.
2(1+a)°pa(ia) These equations are also formally valid outside the medium,
1(> da, p1(iv) 1 i.e., atZ<O0. Integrating the first equatiai8.1) overZz,, i.e.,
X ex f In[ - - =, evaluating the integral ofy(p.1,Z,) over the entire volume,
pi = e+l (Pa(ia) 2 we obtain
(3.10

® 1 * ~
0,Z2,)dZ,=1+—| dR dZ;A(R 0,Z3).
wherev=/q?+q?. We now compare the angular depen- J_w%( 2)dZ; 477|f 2f0 3/ (R3) 70(025)
dence of coherent backscattering according to the exact (4.
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The integral of the vector functioA; over the volume van- Bethe—Salpeter equation for an unbounded medium. Terms

ishes by virtue of symmetry considerations. From Eql), describing the anisotropy of multiple scattering in the un-

taking the relationfldR A(R) =4l into account, we obtain bounded medium are omitted from this solution. As a result,
also taking the single-scattering contribution into account,

0
f Y0(0,2)dZ=1. (4.  we can write

Equation(4.2) is an exact relation. It has the significance of I'(Ry,Ry)= 3a-p) ! — ! i

the energy balance of the incident and scattered radiations. 4m1® |IRi—Re| R, —R{™)

We demonstrate this interpretation for point scatterers, 1

wn=0. According to Eq(2.2), the total intensity of multiple + 28R~ R,). (4.9

scattering of a plane wave with wave veckprat a pointr is !

written as follows in the ladder approximation: Integrating Eq.(4.6) over the transverse variables and over

~ Z, in the interval (-=,0), we have
(|6E(R)%)=70(0.2) EI2 43y €.0)

We note that in the given geometry the average intensity of JO 0(0,Z,)dZ,=1= 1 fo dz,
the scattered field depends only on the distance from the — 4ml |-
boundary of the medium,

(ISER)E) =(|5E@)]). [ 42:310.22077 02,
Integrating Eq(4.3) over the region-»<Z<0, i.e., outside (4.9
the scattering medium, and taking E4.2) into account, we
obtain where

0 ~ (mi ” .
||E|2=f (|6E(2)[*)dZ. (4.4 vém")(O,zs):f dps1 fo dz,e"#/T(Rg,Ry).  (4.10

The right-hand side represents the total backscattered radig4Pstituting Eq(4.8) into (4.10, we obtain
tion energy per unit area. The expression on the left-hand ",}'/gmir)(o’z):S(l_M)[l_’_z*_exq_z)]_i_exq_z)_

side can be written in the form (4.11)

0 .
||E|2:f E2exdi(ki—k*)-R]dZ. (4.5) As a result, from Eq(4.9) we find

i 1

This integral has the significance of the energy of radiation 2 = 1-u 3(5-4In2)+(2In2— 1)#}

that is incident on the interfacé=0 and is effectively

damped out in a layer of thicknessConsequently, Eq4.4) _0.7425+0.386 412

actually represents the balance of the incident and scattered 1—n ' ’

rad|at|or_13,_because apcordmg .4, the.entlre radiation .Equation (4.12 is essentially a consequence of the self-
energy incident on unit area is returned in the backward di-

" diffusi diati in the ai ituati fconsistency of the diffusion approximation with an identity
rection as diniusing radiation energy in the given situation olyq y,ceqd from the law of conservation of energy.
elastic scattering.

. . We have calculated the angular dependence of coherent
We use the identity4.2) to evaluate the parametef . 9 P

) . backscattering for an isotropic scattering diagras 0, ac-
W_e proceed from the f'rSt_ equation of the syster7) as cording to Eq.(3.11), using the above-determined valg®
written for the scalar case:

=0.7425. The results are given in column 3 of Table I. Note

1 Z, the almost perfect agreement of the given self-consistent ap-
Yo(P21,Z2)= 5 9(Zz)eXF< - I_) 8P+ 7 proach with the exact resultg within ~0.1% error limits,
encouraging hope that this approach to the determination of
z* will be equally effective for finite values qg.

It is important to note that the value af obtained for
u=0 is fairly close to the Milne interpolation length. For
large values ofe, howeverz* is appreciably higher than the
value 0.71(}+ ) ! given by the pure diffusion approach.

XfdRsA(st)F(Pslnzsakzsaki)- (4.6)

We interpret the functiorl” in the integrand as the well-
known solution given by the method of mirror images. In
this method the functiol’'(R,,R,Ks,K;) is replaced by the

differencé’ We have used Eq@4.12 to draw a comparison with
experimental data from measurements of the angular depen-
I'(Ry,Ry ks, ki) =T (Ry,R) =To(|R1—Ry|) dence of coherent backscattering by particles of finite

Ty(|Ry— R @7 size?®?°We choose the results of measurements in two sys-

_ 2 ' ' tems for which the values of the paramegerare given. In
where R(Zm'r)z(XZ,Yz,—ZZ—ZZ*) is the mirror image of particular, measurements for an aqueous suspension of latex
the pointR,(X,,Y,,Z,) about the plan&=—Zz*I, and the particles of diameted=1.091um are reported in Ref. 28,
function T'o(R)=3(1— u)/47I°R is the solution of the where the wavelength of the incident radiation is
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1, arb. units

I, arb. units
3

FIG. 1. Comparison of the results of calculations of
the coherent backscattering intensity with experi-
mental results for an agueous suspension of latex
particles of diameter 1.094m (Ref. 28 (a) and
0.46um (Ref. 29 (b). The dashed curves represent
the results of calculations for=0.93 (a) and u
=0.85(b).
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A=0.633um, and the refractive index of the medium is ~ 0) 0 ~(0)
n=1.33. For this system the authors have measured the ex- |, Yss11(0,2)dz+ 73073311(0,2)(12
tinction lengthl =2.6 um and from multiple light-scattering

data have obtained the valye=0.93. The measured full _§5 I+ 3 J’ dR

width at half maximum(FWHM) of the coherent back- 275t gl 1

scattering peak i8Ve,,= 1.58 mrad. Our calculations for this .

value of u indicate that the height of the peak calculated XJ deAssjj(Rlz);’,(?,)u(olz)- (5.1
from Egs.(3.11) and(4.12 decreases by one half for a value 0

of the parameteq=k|05-= 0.0525. For the giveq va!ues of The inte
k=2mn/\ andl we obtainW,q,~=1.53 mrad, which is rea-
sonably consistent with experiment.

In Ref. 29 the FWHM of the peak determined for a
suspension of latex particles of diamet+0.46um and
parameters. =0.515um, n=1.33, and =2.8um is 2We,,
=4.9 mrad. The values of the parametEtsand . for this
system are given in Ref. 27¥=19um, ©=0.85. Our cal-

i i =4, U 3
;:]:Jrlgg.ons for these values df and u give 2Wieo=4.4 Es: fﬁwvé%’n(o,z)dzjl- 5.3

The experimental and calculated data for these two sys- ) ) . ] ) ]
tems are shown in Fig. 1 in a unified scale. It is evident thaEduation(5.3) is an extension of the integral identit¢.2) to
the theoretical and experimental results are in good agred €lectromagnetic field. Here the equivalence of this rela-
ment. Our comparison with experiment demonstrates the pdion o the balance equation is also easily confirmed for iso-
tential interest of measurements over a wider range of angld&OPIC scattering. In the ladder approximation we can write
with a simultaneous determination of the parameters descri€ following equation foZ<0 on the basis of E¢2.2):

grals of the components of the tendgy over the
total volume are readily calculated. We have

1 A7l
f Ajj,ii(R)dRzginjin(R)dR:]__S' (5.2

Substituting Eq(5.2) into (5.1) and summing over the sub-
scripts, we obtain

ing the single-scattering diagram. In particular, such an en- 1

deavor could reveal how the shape of the coherent back- (|SE¢(Z)|%)= }gg>11(o,2)|5|2.
scattering peak is influenced not only bysy, but also by |k6‘f G(k;—kg)dQq

higher-order momentsos'd (Ref. 30. These contributions (5.4)

can become significant at large angles, where it is evident

from Fig. 1 that the theoretical curves are well above thdntegrating this relation in the intervat«<z<0, summing
experimental. over the polarizations of the scattered radiation, and making

use of the optical theoreif2.18 and Eq.(5.3), we obtain

0
S [* qoe@paz-er 5

5. ELECTROMAGNETIC FIELD Equation(5.5) signifies that the energy of polarized incident
radiation is completely returned from the medium in the
Here we generalize the above-developed approach tgrm of scattered radiation of all polarizations.
find the analog of the Milne interpolation leng#f in an We integrate the first of the three equatid@sl?) over
electromagnetic field. Integrating the equation for the tensothe half-spac&,<0 and sum over the exit polarizations. On
YO(p,1,Z,) in the systen(2.17) over the volume, we obtain the basis of Eq(5.3) we obtain
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3 1 Ay~ A
E = 87T| 2 J dzzf dR3ASS]] (R23) 7” 11(0 Z3) yll,llzi 1~l’ll li'zz
1= A1 11t A2l

(5.6
(1=EA3339(Aq1101 A1 29+ 2§A§1 33

As in the scalar case, we replag€ on the right-hand side

with the expression obtained by the method of mirror images (1= ERga 391 €Ay a1t Ayg 21— 28°A T, 59
3 3 A1
~ (0)mir _ _ * _ A—Z -z _ 11jj -
Y1 (02)=5(1—p)(l+z*—e 9+ 56 % (5.7 Y11= = , =23, (5.13
. 2 2 M- ERy )P ER Y
Direct integration gives 3
= gl

0
f dzzf dR3A s511(Roz)exp(—z3)
—o 750

A2 The functionsT\ijlm are the Fourier transforms of the com-
0.18394 1 ponents of the tensdR.9) and have the form
. , S=
~ l
= 001458, S:2, (58) A11Y11=?(3m0+ 2m1+ 3m2),
0.025, s=3

~ 1. a7l
A11,22=§A33,33=?(mo— 2m;+m,),
M11,15= Mpp 25= 37| 0.12856+ —z

- l
M 11,95~ M 11—3w|(o 00625+ —z*) A1207= 5 (Mo + 6my +my), (5.14

1 ~ a
M1133—M3311—M2233—M3322—37T|(0 01666+ 52 ) A1155=7 (M= My),
1 . - l
M33133:M22‘11:37T| 007648‘|‘ 62 y (59) Al3’13=?(m0—m2),
where we have introduced the notation where
3 (o © 1 1
Mssjjzzf dz, f dz3A 50, 224]) mo(v)=varctam, ml(v):F[l—mo(v)],
— 0
X[1+Z* —exp —2z)]. (5.10

(5.195

11
my(v)= —2[5 —my(v)|.
Substituting Eqs(5.8)—(5.10 into (5.6), we have v

The quantities}(v) result from the Fourier transforma-

1 b
Z*Zﬁ(0-697+0-4127ﬂ)- (5.1)  tion of the tensod'(R;,R,|ks.k;) (2.6) in the unbounded
medium.
The valuez* =0.697 is very close to the Milne interpo- The results of calculations of the polarized and depolar-

lation lengthz* =0.7104, so that the resu{6.11) can be ized components of coherent backscattering for various val-
regarded as justification for applying to electromagneticues of the paramete are shown in Fig. 2. It is a well-
fields the Milne interpolation length obtained for scalarknown fact that only the polarized component has a
fields. triangular peak. It is evident from Fig. 2a that, as in the
We have used E(q5.1)) to calculate the polarized and scalar case, the steepness of the peak increases sharply as the
depolarized components of the backscattering of light forsingle-scattering anisotropy increases, consistent with ex-
various values oju. periment and theoretical predictions. The angular depen-
When the boundary conditions are taken into account bylence for a scalar field is shown in the same figure.
the method of mirror images, the polarized and depolarized The linear slope of the peak is known to be attributable
components of coherent backscattering have the46tm to the presence of a diffusion pole. For an electromagnetic
field it is evident from Fig. 2a that the slope of the normal-
(c)(q)wf da,f(d,) yir14V), (5.12 ized polarized components i_s somewhat smaller than the
slope calculated for a scalar field with the same valueg.of
This disparity indicates that the relative contribution of non-
© » qs q diffusion terms increases for a vector field.
a(a)~ fﬁmdqu(qz) 7’12,21(V)ﬁ+ 713,31(")? , The diffusion pole contributes absolutely nothing to the
depolarized component, and it is evident from Fig. 2b that
where this fact leads to a peak of the Lorentzian type.

2 2
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Ivv Ivh
1.0 1.0
N a b
0.8t NN 3 FIG. 2. (a) Coherent backscattering intensity of the po-
\\\ larized component, normalized to the height of the
3 N peak, as a function of the angig=klsiné;, calculated
0.6 “ \ \\ 0.9+ ! for various values ofu according to Eqgs(5.11) and
3 ‘\\ \ L 2 (5.12: (1) »=0;(2) 0.5;(3) 0.93. Also shown for com-
~<_ parison are the results of calculatiofdashed curves
0.4 2 [ 3 for a scalar field according to Eq§3.11) and (4.12
\ e using the same values of the scattering paraméfer:
0.2} N o8t u=0; (5) 0.5;(6) 0.93.(b) Angular dependence of the
) \\3 depolarized componentl) x=0; (2) 0.5; (3) 0.93.
. . .6 . . X .

We have not compared the results of the calculations The foregoing discussion is valid in the weak scattering
according to Egs(5.11) and(5.12 with experiment, because approximation\ <|. However, the parametéralso has an
the values of the numerical parameters f6rin the scalar upper bound imposed by currently existing experimental ac-
problem(4.12 and the vector problertb.11) are close and, curacy. The width of the coherent backscattering p&als
taking the experimental error limits into account, essentiallydetermined from the relatiokl* 6,,~1. Assuming that the

yield identical results for the polarized component. error of the angular measurements is of the order of1@e
obtain I* <(10?—10%)\, i.e., I<(1—u)(10P—10°)\. This
6. CONCLUSION condition significantly restricts the choice of systems in

We have investigated the Bethe—Salpeter equation for ghmh. the bgckscattenng peak is acce Ss'bl.e to observgtlon
and, in particular, excludes systems in which the multiple

strongly inhomogeneous medium with an anisotropic single- . . . .
scattering diagram. For a medium occupying a half_spacécattermg.reglme is achieved only at the expense of large
this equation reduces to a system of equations for the coe?—am_l?r!e th'CkrlleSsz'. d'in this stud b lized t
ficients of an expansion in Legendre polynomials. By convo- € reslu S0 tfm.e n tIS study c?r} eTgheneratlhzed do
lution on the spatial variables we have obtained an integrarln(l)re c(cj)rﬂp ex scall ering Is_*ysbelmfgeomle rllets. efrr:_e od de-
equation that can be interpreted as the energy balance of ty&'OP€d Nere 1S aiso applicable for cajcuiations of ime cor-
incident and scattered radiations. The application of the(e_Iatlon functions and for the solution of pr_oble_ms 9f visual-
method of mirror images in this integral identity yields alzmgtthe structure of opaque systems In diffusing wave
simple expression for the parameter characterizing the pos?—pec roscopy.

tion of the effective boundary of the mirror image in the . TIE"S (\j/v]?rk':hasdrecen/tefir\l:lnancglfillpg)ortterc>m égeogus_
general case of anisotropic single scattering. sian Fund for Fundamental Resea( rant No. 96-Ue-
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A solution of the three-dimensional time-dependent Sdimger equation, describing the

ionization dynamics of the hydrogen atom in a circular state in an electromagnetic field, is obtained
by direct numerical integration. It is shown that the observed stabilization effect can be
interpreted on the basis of the Kramers—Henneberger approach. A simple analytical model is
proposed, which qualitatively describes the basic laws of the ionization process under

the conditions of the reported calculations and laboratory experiments on ionization of the circular
hydrogenlike §, m=4 state of the Ne atom. €999 American Institute of Physics.
[S1063-776(19900412-9

1. INTRODUCTION hydrogenlike neon atom in the circulag State. We discuss
the interpretation of the observed dynamics of the atomic
The stabilization of atomic systems in the presence ogystem in a wave field in the basis of free-atom states.
ionization by an electromagnetic field, predicted eatfer
and observed recently in experimental wofkis one of the
most fascinating phenomena in the physics of interaction be-

S . 2. NUMERICAL MODEL
tween a high-intensity laser beam and matter. The crux of the

phenomenon is that when the laser intensity is increased \When a laser pulse with linear polarization of the field is
above a certain critical value, called the stabilization threShi-ncident on an atom, electromagnetic transitions take place
old, the ionization probability does not increa@e it even  without any change in the projection of the electron orbital
decreases From the theoretical point of view two principal momentum onto the direction of the electric field veatoitf
stabilization mechanisms are discerned at the present tim@iie quantization axisz( axis) of the initial state is directed
interference  stabilizatior~’ and stabilization in the along the field vectors(t) (as is the case in laboratory
Kramers—HennebergeiKH) regime-®~** However, major  experimentd, the electron wave function is written as fol-
difficulties are encountered in proving experimentally thelows in cylindrical coordinates:

prevalence of one mechanism or the other in a specific situ- )
ation. ‘If(p,z,q&,t): lﬁ(PaZ,t)eXmmd’):

The swift progress of computer technology in recent, heremis the magnetic quantum number governing the pro-

“T“es has se.t thg stage for compute.r experiments bgsed ?él:tion of the orbital momentum onto the quantization axis.
direct numerical integration of the time-dependent Sehro . fnction W(p.z.t) satisfies the two-dimensional time-
dinger equation for a three-dimensional quantum system i'aependent Schidinger equation

an electromagnetic field without any simplifying assump-

tions!2=%2 Calculations of this kind in application to the dy- gy K2[1 9 oy Py

namics of the hydrogen atom in a strong electromagnetic iﬁﬁ=— 2ul a0l an —2)

field have made it possible to observe stabilization in the KH AP op op oz

regime® to corroborate the basic postulates of the theory of +V(p.2)ih(p,z,t) —eze(t)cog wt) h(p,z,t)
interference stabilizatiof;?°and to investigate salient char- ¢

acteristics of resonance multiphoton ionization of the ground (@)
state of the hydrogen atoft. with the effective potential

In this paper we discuss the results of calculations of the
dynamics of ionization of a Rydberg hydrogen atom existing (m)
initially in a circular state. We determine the probabilities of ~ Vefr (p,2)=Vc(p,2)+ el v
ionization and population of various atomic states toward the mp
end of the laser pulse. We disclose saturation of the ionizawhich takes into account the presence of a centrifugal barrier
tion probability at a level much lower than unity. We con- for an electron for which the projection of its momentum
struct an analytical model, which integrates the resulting datanto thez axis is equal tom#A. Here V¢ is the Coulomb
based on the KH approach and can be used to describe witjotential.
qualitative correctness the results of the calculations, along As in Refs. 19 and 20, in the calculations we use the
with those of laboratory experiments on the ionization of thesmoothed Coulomb potential

2m2

1063-7761/99/89(12)/6/$15.00 1045 © 1999 American Institute of Physics
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39l ad FIG. 2. Dependence of the ionization probability of a hydrogen atom exist-
X ing initially in the circular 31, m=2 state on the radiation intensity within
P the limits of a trapezoidal pulse with smoothed leading edges of duration

o . . . 7¢=5T and a plateau,=10T.
FIG. 1. Distribution of the probability density function in thel 3and 4

states for a magnetic quantum number=2. Level lines:(1) 1073 (2)
1074 (3) 10°%; (4) 10°°. 5 — 4 stat d hot _ del
g, m state and a photon energyn=2.0 eV to mode
conditions similar to those encountered in experinfent.
The procedure used to solve the time-dependent 'Schro

dinger equation numerically and to calculate the probabilities

e? of ionization and population of bound atomjitim) states is
Ve=— ———— (3)  described in Ref. 19. For a givem all possiblenl(I=m)
vai+p?+2z° states are taken into account forH{1)<n=ng,,=13.

with the smoothing parametex=0.5a,, where a, is the
Bohr radius. It has been shoWrthat this potential preserves 3. DISCUSSION OF THE RESULTS

the structure of the energy spectrum and the wave functions  \ye begin with an analysis of the ionization dynamics of
of the hydrogen atom, so that for all states with a smoothne circular 3! state of the hydrogen atom. The main numeri-
quantum numben=3 the difference in the energies of sta- ¢a| simulation result is the dependence of the ionization
tionary states in the real and smoothed Coulomb pOtent'a|§robabiIity of the hydrogen atom in thed3 m=2 state on
does not exceed one percent. . _ the radiation intensity within the limits of a smoothed trap-
We note that the circular state characterized by an orbitad,gidal pulse; this dependence is shown in Fig. 2. Clearly,
quantum numbed=m and a principal quantum number the jonization probability as a function of the intensity,
n=m-+1 is the ground state in the potenti@. All lower . (p), is linear in the weak-field range, attains a maximum
states of the hydrogen spectrum are eigenstates of a Hami p» =gx 10 W/cn?, and becomes a decreasing function
tonian with the effective potentigR) for smaller values of  of the intensity up to values of the latter10*® W/cn®. The
the magnetic quantum number; transitions to these states a@stribution of the electron density in the continuum, calcu-
forbidden in the presence of a linearly polarized radiationated at the end of the laser pulse and shown in Fig. 3 for an
field. . _ o intensity P= 10> W/cn?, indicates that ionization is a one-
Many of the calculations discussed in this paper are Carlphoton process in the given range of the parameters.
ried out for an initial circular 8, m=2 state. The structures We have obtained a similal;(P) curve in calculations
of this state and of the lowest excitedl 4 m=2 state are for the initial 53, m=4 state. Here the qualitative form of
shown in Fig. 1. The procedure used to calculate the wavghe curve and the value of the stabilization threshold agree
functions of stationary states of the hydrogen atom are simigith the data of laboratory experimefitand computer
lar to those in Ref. 19. _ _ calculations’? However, detailed investigations of the causes
_The lonization dynamics calculations are carried out forgf stabilization are not reported in these papers. Another is-
radiation with a photon energiw=5.0 eV in the range gye that has not been fully explained is the sizable deviation,

P=5x10"-1x10" W/cn?. Here the initial 8l state is  even in comparatively weak fields, of thé(P) curve from
associated with a one-photon transition continuum. The enge result of perturbation theory.

velope of the pulse is assigned a trapezoidal profile with
smoothed edges of duratian=5T and a plateau,=10T

(T=27/w is the duration of the optical cycle 0—50 =30 -10 10 30 zA
wt 10 T >
i — t<t;,
€p 5|n2 2tf, f 20! 3
e(t)={ €o, t<t<t;+tpy, 3or
40¢ -
mlt— (2t +t 2
sosinz#, trHty=t<2t;+tp. pA
f

(4) FIG. 3. Distribution of the electron density in the continuum at termination
. . " of alaser pulse having an intensity on the lasing “shelf'*3\//cr?. The
Some of the calculations are also carried out for an initialevel lines correspond to Fig. 1.
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A distinctive feature of circular states is their “squeez- end of the laser pulse is substantially lower than predicted by
ing out” from the Coulomb center by the centrifugal poten- perturbation theory, evincing stabilization of the investigated
tial, a phenomenon that diminishes the matrix element charsystem.
acterizing the ionization probability,d,g=(n,I=n—1, One possible explanation for the observed stabilization
m=1|d,|E,l+1). In effect, for pulse durations such that could be an interference mechaniém.’ However, signifi-
cant interference of the amplitudes of transition to the con-

Tir<1 ) tinuum, describing transitions of the form
(whereT’; is the ionization width of the initial state, calcu-
lated by Fermi’s golden rujeand n—E,

I'/AE,<1 (6)

n—E —n'—E,
(whereAE,=E,, —E, is the energy distance between con-
secutive levelg perturbation theory should be valid for cal- occurs only under the condition
culating the ionization probability and linear dependence of
the ionization probability on the intensity and duration of the I JAE.~1
laser pulse: ! now

W, |V el? 7 |d,g| 2P . (7)  which corresponds to intensiti&=5x 10**W/cm?. Conse-
quently, interference of the amplitudes of the given transi-
tions to the continuum is insignificant over essentially the
entire range of our calculations.

According to various estimates, on the other hand, the
threshold wave field corresponding to the overbarrier ioniza-
tion regime for the 8 state does not exceed an intensity
~10"Wi/cn? (Refs. 24 and 25 i.e., over the entire investi-
gated range an atomic electron does in fact execute almost

dence (7) Is observed only in the range of intensities free oscillations. In terms of the populations of states of the
P<3x10¥Wi/cn?. In this case the slope of the/(P) : o S ot the pop ) .
atomic basis these oscillations are described as transitions

curve in the weak-field range can be used to calculate thSetween the initial @ state and the continuum with allow-

matrix element, ¢ and yields a valué,c=0.27 a.u., which - .
L . . . nce for free-free transitions between different states of the
is in good agreement with previously reported computationall " "

continuum and, under the stated conditions, cannot be de-

datas® Consequently, the data obtained here begin to dev'atgcribed in the first order of perturbation theory.

from the results of perturbation theory in the ran f com- "
° € results of perturbation theory & range ot co The presence of almost free oscillations of an electron

paratively weak laser intensitieB>3x 10"*W/cn?. This ) > =
o wave packet, corresponding to the overbarrier ionization re-
conclusion is further corroborated by the results of calcula-

. . ) : ime, suggests that the computational data could be inter-
tions of the dynamics of P,T?:pzlflatlon of the ground state in thegreted within the framework of the Kramers-Henneberger

given effective potentiaVey " during the laser pulséVo(t) o016 |ndeed; it has been sho@that given the condi-

for various laser intensities. : ] e .
- . tion Aw>14 (14 is the zero-field ionization potential of an
The validity of perturbation theory rests on the assump- ; . .
. . . ' atom), the basis of KH states is preferable from the physical
tion that during the active period of the laser pulse the sys- . : )
tem resides predominantly in theglo) state, i.e standpoint over t_he_ ba§|s of _fleld—unperturbed states fgr any
00 T values of the radiation intensity. Under the stated conditions,
Wo(t) = [{g(t)[nolo)|?=1, therefore, the dynamics of population of states of the discrete

. rum and th ntinuum within th ri f the laser
and the population probabilities of all other states of theSpect um and the continuu thin the period of the lase

discrete and continuous spectra of the atomic Hamiltonialﬁ)mse should in fact be investigated in the basis of KH states.
. L ; In thi [ f th hti
are small. For intensitieB=< 10**W/cn? the total population n this case stationary states of the system can be sought in

of all states except the groundl 3tate is indeed small, and the KH potential

perturbation theory is valid. Fd®= 10W/cn? the popula- ,

tion of the ground state during the entire period of the pulse VKHzi f ﬁVc(P,Z—ae cosé)d¢, (8)

is a rapidly oscillating function of time with a period equal to 27 Jo

half the duration of the optical cycle. During the entire opti-

cal cycle the population of the ground state is close to zerowhere a,=ecy/mw~ is the amplitude of the free-electron
and only at times corresponding to the classical turningoscillations in an electromagnetic field of strength

points of a free electron oscillating in an electromagnetic  Over the entire investigated range of intensities up to
field does it increase to values close to unity. This dynamic®=10W/cn? the amplitudea, of the free-electron oscil-
of the process clearly rejects perturbation theory and inditations in the electromagnetic field is found to be smaller
cates the occurrence of strong electromagnetic transitions ithan the characteristic localization length of the wave func-
the system, even though the ionization probability is small intion agn®=9a, for 3d, m=2 states in the potential
the final state after termination of the incident laser pulseV¢(p,z). In this case we can form a series expansion of the
We note that the observed ionization probability toward theintegrand in Eq(8):

The above-stated criteria of the validity of perturbation
theory yield estimates of the radiation intensity taking into
account the known value of the matrix element for the
3d, m=2 state, iw=5eV (d,g=0.32 a.u.; Ref. 28
P<4x10*W/cm? andP<5x 10" W/cn?, respectively. In
the calculations, however, saturation of the ionization is ob
served forP>P* =6x10"W/cn?, and the linear depen-

2
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Ne -0.5 £
Ve(p,z— aecos§)=vc(p,z)—aecos§E Pl 3
o2 2V 3 /’_—7——
+ =2 coF E——t .. &-1.01
2 972 o 1
L

Then, evaluating the integré8), we obtair

e2 ale? 0 4000 8000
Vku(p,2)=— T2 r_3 Pa(cos6), 9 Radiation intensity, TW/cm®
FIG. 4. Dependence of the energy of stationarg)(@ (1), (4d)xy (2),

where r=yp?+2%, Py(cosf)=(1/2)(3c086-1) is a (55 (3 and (a)., (4) states in the KH potential on the laser intensity.

Legendre polynomial, and c@s-z'r.
Regarding the second term in E@®) as a perturbation,

we find the difference between the energy of the KH stat&yith the atomic spectrum adjusted for the Stark shift of lev-
and the energy of the initial atomic state: els. This result is important from the general physical point

o2 2 of view and encourages a new look at the modification of the

AEKP=(nl,m=2|- ?e —3P2(cosa)|nl,m=2> atomic spectrum in the presence of a radiation field: In weak
r fields the Kramers—Henneberger approach is merely a more

o2 1 | practical method for calculating the shift of the atomic lev-
—_%e2( = ) (10) els. Moreover, this approach provides a means for visualiz-

2 <r3> 21+3 ing directly how the atomic potential is distorted under the

influence of an electromagnetic field.
Direct numerical calculations of the energy levels
< 1 > 1 (Fig. 4) and the wave functions of stationary states in the KH
3/ 33 , potential in the investigated range of intensities confirm the
' il (+1/21+1) stated conclusions. The wave functions of the ground station-
we obtain the following expression for the energy levels inary state in the atomic potentiald3 m=2, and the corre-

Making use of the relation

the KH potential: sponding KH states with the same projection of the orbital
) 5 momentum onto the direction of the electric field,
EKH_ _ & i_ dKHEQ (11) (3d)kn, m=2, for various intensities are close to one an-

n 2ag n2 4 other, and the energies of stationary KH states in the range of

intensities corresponding to the stabilization threshold differ

where at most by 10% from the corresponding free-atom values. In
ot 1 addition, forP<10"W/cn? the dependence @' on the

H= " "5 23 3 ) intensity is linear, i.e., agrees with Eq. 11. The determination
m-w"ag n*(1+1/2)(1+1)(1+3/2) of the polarizabilityayy, from the slope of th&X(P) curve

It is instructive to compare the resulting expression for thed®" the (3d)kn s(;cate(Fig._ 4, curvel) yields a value that
energy of stationary states in the KH potential in the weak-29r€es, within 5% error limits, with the value ay calcu-

field range @o<agn?) with the Stark shift of the levels of a lated frqm Eq.(1D. o i
hydrogenlike atom Again we note that the stabilization regime emerges

even in weak fields wher,<ayn?, the KH potential has a
AEq=—Bedl4. (12)  single well and differs only somewhat from the atomic po-
tential, and the energy levels in it coincide with those in the
atomic potential adjusted for the Stark shift. In this situation
the causes underlying the onset of stabilization require fur-
ther careful study.

In the KH approach the transition of an electron from a
B=——- ol1+3 —4<—3> .. (13)  bound state to the continuum takes place under the influence

of harmonics of the KH potential:

Calculations of this kind have been carried out previodly.
The following equation(in atomic unit$ was obtained for
states withn=[>1:

Here the first term of the expansior (/w?) corresponds to 1 (2

the vibrational energy of a free electron in an electromag-  V{)\(p,z)= =— f Ve(p,z— agcosé)exp —ij §)dE,
netic field. This term vanishes upon transition to a Kramers 2m Jo

oscillating coordinate system. The next term of the expan- (14)
sion gives the deviation of the Stark shift of Rydberg levelswhere thejth harmonic describes transitions in the system
from the shift of the continuum boundary. It is evident from with an energy increment equal {é w.

a comparison of Eqg10), (11) and(12), (13) that under the From the physical standpoint the onset of stabilization in
conditions of small-amplitude oscillations of the wave packetthe KH regime is attributable to a decrease in the probability
the electron energy spectrum in the KH potential coincidef transition from a bound KH state to the KH continuum
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TABLE I. Squares of the overlap integrdinl,m=2|(3d), , m=2)|? of
the wave functions of stationary Kramers—Henneberger states and the c
responding states of the unperturbed atom.

two factors can be disregarded in our situation. Estimating
Yhe amplitude of the probability of transition from the dis-
crete spectrum to the continuum as

P, Wicn? 3d 4d 5g 5d
1
0 1 0 0 0 Ci~ (Exnl VIl (NDiy=—e20 2 (Exnl2/(n1))
10t 0.995 2.%x10°3 1.4x10°4 6.1x10 4 nol
104 0990  45¢10°° 1.1x10°4 1.2x10°3 <"1 wul (N1
6x 10 0.957 2.0%10 2 4.0x10°© 5.5x10 ° {( el Fl (D)
101 0.926  3.3Kx10°2 2.0x10°° 9.3x10°3 and ignoring the difference between the wave functions of
3x10%° 0786 825102  83x10‘  2.68<10°° stationary states in the atomic and KH potentials, we obtain
10% 0.500 0.147 6.9810° 6.00x10°2
Ci~ —eeo(E|zZ|nl){f), (18
where

i fy=(nl|f I
under the influence of harmonics of the poten\!&&(p,z). (H=(nllf(p.2)Inl)

This transition probability is described by matrix elements ofis the average value dfover the initial quantunjnl) state.
the form Invoking the explicit expression for the radial wave function

(VIN = ((3d) VY Exc. of the circular|nl)=|n,n—1) state,

-1
where |(nl)yy) and |[Exy) are the wave functions of the Ry 1(F)= /L 2_r)n ex;{ _L)
m (2n)!nda3! Nag nag/’

discrete and continuous spectra of the KH potential. In weak
fields it is sufficient to restrict the discussion to transitions (19
occurring only under the influence of the lowest harmonicfor =2 we obtain

V(KlH) p,2). Allowing for the fact that stabilization is observed

in our calculations for,<agn?, we write V() in the form W e’ 1
(Vki) =~ —eeoZqe 5.3 2
2 2mw“ag N*(n—1/2)(n—1)
1 1 o€ 0
ViH(p,2)=— 5 ——P1(coso)
KH 2 r2 2
X 1—2 e (20)
3 ale? 8 a3n?(n—2)(n—3/2)|
— s ——P3(cosH)+ ... (15 , o )
8 4 Making use of the fact that the ionization probabiliy,

~(VE|?, from Eq.(20) we estimate the circular state sta-
bilization threshold:

a’~(4/9)a2n?(n—2)(n—3/2). (21)

Rewriting Eq.(15) in the form
Vidi(p.2)=—esozf(p,2), (16

where Estimates of the stabilization threshold by means of Eq.

e [1 9a2 15027

+
2mw?|r3 8> 8 (7

f(p,2)= + ..., (17

we note that the interaction operadg;) can be represented

by a product of two factors, one of which;eze,, corre-

(21) for the circular 3, m=2 state withiw=5 eV give
a?~6a3, so thatP* =3.5x 10**W/cn?, in good agreement
with the results of our calculations. We also note that under
the conditions of experimerft®n the ionization of the hy-
drogenlike Ne atom in the circulargh m=4 state by laser

sponds to the operator of interaction with an electromagneticadiation with Aw=2 eV, from Eg. (21) we obtain
field in de gauge in the atomic basis. Stabilization in the KH a2~ 10083 andP* =8X 10'*W/cn?, which are also close to
regime sets in because the matrix elem@i)) does not the data of laboratofyand computéf experiments.

increase as the field increases. This behavior is possible The most conclusive proof of the validity of the
when the increase in the ionization probability with increas-Kramers—Hennebergen picture under the conditions of our
ing intensity, characterized by the operateezs, is com-  calculations lies in the data shown in Fig. 5. This figure
pensated by the contribution of the second faéfar,z). The  shows the total population of all bound KH staW%H (only
onset of stabilization is also conducive to an increase in théhe two KH states corresponding to restructuredahd 4d
region of localization of a bound KH state in comparisonstates of the atomic potential contribute perceptibly to this
with the corresponding atomic state afad) an increase in  sum in the investigated range of the parametdrsing the
the photoelectron energy in the continuum as a result of thactive period of the laser pulse for various radiation intensi-
decrease in the electron binding energy in the KH potentiaties on the lasing “shelf.” The plotted curves are smooth
as the intensity is increased. However, the overlap integral8me functions and do not undergo the typical sharp oscilla-
of the wave functions of the atomic state and the KHtions, with a period equal to half the duration of the optical
|((3d)ky|n1)|? states, shown in Table | for various intensi- cycle, of the kind exhibited by the projection of the wave
ties, and the curves representing the energies of stationafynction ¢(p,z,t) onto states of the unperturbed atom. Here
states of the KH potential in the interval of onset of stabili- the time rate of decay of KH states is a monotonic function
zation P=10"—10""W/cn? (see Fig. 4 show that these of the laser intensity. The rate of decay of KH states is ob-
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| R T — tiphoton transitions, resulting in interference stabilization,
and, on the other hand, will form a KH potential, which
differs significantly from the atomic potential. In this situa-
tion we are confronted with the conceptual issues of whether
it is possible for the known stabilization mechanisms to exist
and whether there is competition between them.
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Stimulated Brillouin scatteringSTBS and phase conjugation of GQaser radiation have been
demonstrated experimentally for the first time in compressed xés@atm at 21 °¢C

located inside the low-Q cavity of this laser. The nonlinear medium was exposed to the action of
counterpropagating focused multimode radiation beams. The difference between the
frequencies of the longitudinal cavity modes was set at the frequency of the acousticmyave (
=32.2£0.3 MHz) excited as a result of STBS by 9.58 radiation. The duration of

the radiation pulse_ was close to the acoustic phonon lifetimg € 7,~3X 10 ©s). The

excitation of STBS was manifested experimentally as the locking of longitudinal modes, an
increase in power and energy, and also an increase in the duration of the lasing pulse and a
reduction in the divergence to the diffraction limit. €99 American Institute of Physics.
[S1063-776(199)00512-0

Stimulated Brillouin scatteringSTBS is presently used pulse durationr,_ . For ,,>7, the excitation of STBS is
for the phase conjugation of laser radiation over almost th@ssentially a nonsteady-state process and in order to excite
entire wavelength range of high-power modern lasers, rangsTgs, the pump intensity must be increased compared with
ing from excimer §,=0.2-0.3um) to chemical lasers the steady-state regime which causes some deterioration in
(A =2.5-4.5um) (Refs. 1-4. In the range of C@laser the optical breakdown situation. The threshold intensity for
radiation the main and most comprehensively studiedhe excitation of essentially nonsteady-state STBS as a result

method of Obtaining phase Conjugation is still fOUr'WaVeof pu'sed pump|ng of a nonlinear medium by a focused
mixing in nonlinear media. Compared with four-wave mix- Gaussian beartcf. Ref. 10 is given by:

ing, the use of low-threshold STBS would substantially sim-
plify the technical problem of developing phase-conjugation M? Toh I N F
devices for CQ laser radiation and would extend the possi- = 8mgly 7' M~In=, Id_;(
bilities for forming the spatial structure of laser beams. How-
ever, although STBS has been thoroughly studied in this pawherel, andl,=1/\* are the intensities of the pump and the
ticular spectral range, STBS in the ten micron range has onlyioise Stokes radiation, respectively,is the pump wave-
been achieved experimentally in a hydrogen plasma at higlength, F is the focal length of the focusing lens, anglis
intensity 131-10"Wwi/cn? (Refs. 5 and B The possibilities  the radius of the Gaussian beam at the lens. In this case for
for using this STBS in a plasma for phase conjugation havél =36, 7 ~7,,, F=146cm, ro=2.5cm, andg=1.15
not yet been clarified. No reliable information is available onx10 “cm/W, the threshold intensity is ly,~4
the excitation of STBS in condensed or gaseous media. This 10° W/cn?. The optical breakdown intensity of xenon es-
may be attributable to competition from other nonlinear phetimated using the results of Refs. 11 and 12 is
nomena, such as optical breakdown and absorption of0’—1C W/cn?. When the nonlinear medium is pumped by
radiation’*® In the present paper we report results of an ex-a focused beam, STBS of GQaser radiation cannot be
perimental investigation of the STBS of Gaser radiation achieved. Quite clearly, the condition for which the threshold
in compressed xenof®9 atm atT=21°C). STBS excitation intensity is lower than the optical break-
Compressed xenon is a fairly universal STBS mediumdown intensity of compressed xenon cannot be satisfied in
because of its transparency over a wide wavelength rangexperiments using conventional systems. We succeeded in
high Stokes radiation gain, and small Stokes shift. At thdowering the probability of optical breakdown by signifi-
selected pressure the velocity of sound in xenon has a mingantly reducing the STBS excitation threshold. This was ac-
mum (v¢=1.44x<10%cm/s, acoustic wave frequencys complished by increasing the input Stokes sigfmatucing
=32.2 MHz), whereas the steady-state Stokes radiation gail) by pumping the nonlinear medium with focused counter-
has a maximumd~1.15< 10"’ cm/W) (Ref. 9. However, propagating polychromatic beams, with the frequency differ-
on transition to the middle infrared and high gas pressuregnce between the monochromatic components being equal to
the acoustic phonon lifetime increases proportionately wittthe acoustic wave frequency, achieved by placing the non-
the density and the square of the wavelengt,gp,o(p)\z). As linear medium inside the laser cavityThis method of ex-
a result, for pulsed CPlasers at the selected xenon pressureciting STBS can reduce the threshold intensity by almost two
the acoustic phonon lifetime is longer than the radiationorders of magnitude tby,~5x 10° W/cn?.
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xenon via a filter with a 99.99999% filtration efficiency for
impurity particles larger than 04m.

The CQ laser cavity was formed by a mirrd and a
Sagnac ring interferometer. The interferometer was formed
by a beam splitted, in our case a plane-parallel Baplate
mounted at the Brewster angle, and copper mirr§he
STBS cell was installed in the focal plane of the I&She
initial Q factor of the cavity was set by varying the reflection
coefficient of the mirrol. This mirror was formed by plane-
parallel Bak, ZnSe, and NaCl plates with a dielectric coat-
ing having a reflection coefficient of 0.28. In order to achieve
efficient excitation of STBS, the optical length of the cavity
FIG. 1 Optica_ll diagram of Cplas_er with STBS intracavity nonlinearityt: Lr (Iength of a circular round truowas determined from the
— active medium2 — STBS cell filled with xenon to 59 atm at 21 °G— i . .
lens of 146 cm focal lengthd — 2 cm thick plane-parallel BaFplate COI’]C#ItIOITI that the frequency difference between th? cavity
mounted at Brewster angls,— copper mirrorsp — plane cavity mirror? longitudinal modes should be equal to the acoustic wave
— system to record radiation power and energy , &re system to record  frequency, i.e.Lg=Lggs=Cc/vs~(931+ 1) cm. Any differ-
radiation power, energy, divergence, and spectral composition. ence between the frequency difference of the longitudinal

modes and the acoustic wave frequency should be less than
the half-width of the spontaneous scattering frequency pro-

The experiment is shown schematically in Fig. 1. Thefile, i.e., the cavity length should have an accuracy better
laser radiation source was a chemical Q@ser where the than AlLgge~ LéBS{ZCTphz c/ZTphv§~5 cm. It should be
excitation was transferred from DFnolecules to C@mol-  noted that by varying the cavity length, the valuergf can
ecules. The laser operated on a single vibrational—rotationdde estimated from this last relationship by noting whether
transition [ P(24), (001-020 vibrational transitioh The  STBS is excited or not. When STBS is excited, the coeffi-
half-height width of the active-medium gain profile for our cient of reflection of radiation in the direction of the Sagnac
laser is=700 MHz. The duration of the radiation pulse interferometer will increase and consequently the cavity Q
was close to the phonon lifetime (< Tph%3><10*63). The factor will increase, which should be evident from the char-
STBS cell was a 760 mm long metal cylinder having an inneracter of the CQ laser radiation.
diameter of 40mm and 40 mm thick Bakvindows. The The energy, power, spectral composition, and diver-
windows were sealed with indium. The cell was filled with gence of the radiation were recorded experimentally. The
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Power, MW

FIG. 3. Time profile of CQ laser radiation power
in the absence of STB&) (Lg=Lggs— 18 cm)
and fine structure of pulse at the beginnitiy

L . and end of lasingc).
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energy was recorded using IMO-2 calorimeters and thend these gradually become phase-locked until complete
power was recorded using an FP-1 photodetecte®.7 ns  locking is achieved. Whereas at the beginning of the pulse
time resolution (Ref. 14. The photodetector signal was fed (Fig. 2) four-mode beats with arbitrary phases are observed,
to a 500 MHz Tektronix TDS-540B OSCillOSCOpe. The diver- by the end of the pu'se we observe a regu'ar series of h|gh_
gence of the radiation was recorded using a 50% mirropower 6ns peaks with a repetition periotv 31 ns, i.e.,

wedge at th? focus of _thellen§(=146 c_m). we observe the locking of approximately ten modes. Self-
In experiments satisfying the condition for resonance Ofmode locking at STBS nonlinearity is energetically

the Stokes radiation with the longitudinal cavity modas favorablé® since in this case all the modes are involved in

=L ggs We always observed the excitation of STBS regard- . : . . . .
less of the initial cavity Q-factor. No STBS was excited in creating a single acoustic grating which enhances the cavity
Q factor. As a result, the increase in the Q factor with time

the absence of resonance when the cavity length kg@s | , i
= Lsgs— 18cm, orLg=Lsgst80cm. When the xenon was increases the power and duration of the radiaticompare

removed from the STBS cell, no effects associated with th&i9s. 2 and B The radiation energy of the GQOaser was

excitation of STBS were recorded regardless of the cavityloubled as a result of the excitation of STBS.

length. In the absence of STBS, the beginning of the pulse was
When STBS is excited, an increase in the number ofilso modulated by four modes with arbitrary phases but sub-

modes(from four to ten is observed during the lasing pulse sequently the beats diminish and the pulse profile is

FIG. 4. Traces of far-field zone at the focus of
F=146 cm lens obtained using a 50% wedge:

upper trace — in the presence of STBIS;(
I_I 200m =Lggg, radiation energy 1.6 J; lower trace
— in the absence of STBSLkg=Lggs
+80 cm), radiation energy 0.6 J.
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Gorky (1982.

~10). 8V. V. Ragul'skii, Phase Conjugation Accompanying Stimulated Light

In this study we have demonstrated that a low-threshold, Scattering[in Russia, Nauka, Moscow(1990. _ .
. . L. I. Zykov, S. A. Buyko, Yu. V. Dolgopolovet al, in Optical
STBS mirror can be developed for long-wavelength radiation resonators-Science and Engineeriegited by R. Kossovskgt al. (Klu-

where the influence of competing processes is particularly wer, Dordrecht, 1996 p. 233,

h f licati fth Its | B. Ya. Zel'dovich, N. F. Pilipetski and V. V. Shkunov Principles of
strong. However, the range of application of these results is Phase ConjugatioSpringer-Verlag, Berlin, 198fRuss. original, Nauka,

not confined to CQ lasers. In particular, this laser system Moscow, 1985
. 11yy. P. Razer, Laser-Induced Discharge Phenomei@onsultants Bureau,
may prove useful for CO and oxygen-iodine lasers, and for ., York, 1977 [Russ. original, Nauka, Moscow, 1974
studying various types of stimulated Rayleigh scattering pro*?Yu. V. Dolgopolov, S. M. Kulikov, M. N. Solov'evaet al, lzv. Akad.
; : ; . _Nauk SSSR, Ser. Fi52, 549 (1988.
cesses. For lasers having a uniformly broadened gain profllgA' 7. Grasyuk, V. V. Ragul'ski and F. S. Faulov, JETP Lett9, 6
the mode locking dynamics can be used to obtain additional (1969.

: ; ; ; 1P, M. Valov, K. V. Goncherenket al, Kvantovayalﬂinktron. (Moscow)
|r_1forr_nat|on on the temperature of the mve_rted medium, the 4,95 (1977 [Sov. J. Quantum Electrof, 50 (1977,

kinetics of the processes leading to the lasing effect, and alsér. A. Korolev, O. M. Vokhnik, and V. I. Odintsov, JETP Lett8, 32
to achieve longitudinal mode selection using STBS nonlin- (1973

earity. Translated by R. M. Durham



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 6 DECEMBER 1999

Angular scattering diagrams of linearly polarized relativistic-intensity electromagnetic
radiation in a plasma

A. V. Borovski , A. L. Galkin, and O. B. Shiryaev*)

Institute of General Physics, Russian Academy of Sciences, 117942, Moscow, Russia
(Submitted 17 June 1999
Zh. Eksp. Teor. Fiz116 1947-1962December 1999

Instability of the propagation of nonlinear nonmonochromatic relativistic-intensity electromagnetic
waves in a cold subcritical-density plasma is analyzed in three-dimensional geometry.

Angular diagrams of their scattering are presented. The calculations show that forward and
backward scattering may occur. The radiation in a specific direction is a set of harmonics,
propagating against a continuum background, whose frequencies depend on the angle.
Radiation at a specific frequency propagates in a set of scattering cones. The azimuthal cone
angles depend on frequency. 8999 American Institute of PhysidsS1063-776(99)00612-5

1. INTRODUCTION duces an additional element of indeterminacy into the theo-
retical interpretation of the scattering. In the present study we
Recently an increasing number of studies have been dewonsider the scattering of a transformed relativistic-intensity
voted to plasma electrodynamicand in particular to the electromagnetic wavéAkhiezer—Polovin wavein a com-
propagation of relativistic-intensity laser radiation in matterpjetely ionized material by nonlinear currents of the plasma
(see, for example, Refs. 28 electron current. As in Ref. 14, we shall study the most in-
The focusing of ultrashort laser pulses gives rise to Ulteresting case of the scattering of a linearly polarized elec-
trahigh electromagnetic radiation intensities 10°°W/cn?.  romagnetic wave.
A characteristic feature of these fields is the appearance of  The |ocal characteristics of the field-plasma system are
relativistic effects in the electron motion caused by an in-gy,gied in detail by determining the temporal instability
crease in their mass. In addition, in such strong fields ey, rates of the electromagnetic radiation and construct-
material is frequently converted to a completely |on|zeding angular diagrams of its scattering. In some cases, for

state. Under these conditions nonlinear currents of free ele¢: .-\~ in the focal spot where the integral and local char-

trons make the main contribution to the polar!zatlon .Of theacteristics differ only slightly, the angular diagrams can be
materiaf (a wider range of phenomena associated with thPUsed to interpret the experimental data

interaction between high-power electromagnetic radiation The present paper is also a continuation of Ref. 15 and

and matter was c0n_5|dered n Ref._3 ... .16, in which the authors analyzed a three-dimensional theory
Below, we consider the scattering of laser radiation in a . . . s

. . of the scattering of a circularly polarized, relativistic-

plasma caused by the formation of nonlinear currents of frelentensit monochromatic electromaanetic wave in a cold
electrons. Corresponding instabilities of the electromagnetic Y, 9

field are already manifest in a spatially one-dimensional ge§,ubcr|t|cal—den5|ty plasma. Below, we consider the scattering

ometry. The scattering of radiation at relativistic intensitiesOf a linearly polarized strong electromagnetic wave which is

was analyzed in Refs. 9-13 and also by the presentpe case most frequently encountered experimentally. First, a
authorsl4-16 ' rigorous linear analysis of this problem is made in three-

The scattering of laser radiation in matter has been studdimensional geometry. Until recently the description of the
ied in broad terms for more than forty years but neverthelesScattering of relativistic-intensity electromagnetic radiation
it is extremely difficult to achieve quantitative agreementWas confined to using various approximations. These in-
between theory and experiment, evidently because of the foflUde: (1) the one-dimensional approximatidsee, for ex-
lowing circumstances. First, in an incompletely ionized ma-@mple, Ref. § (2) an approximation using a monochromatic
terial several mechanisms contribute simultaneously to thénearly polarized reference wave which does not strictly sat-
scattering process. Second, a spectral device receives radigfy a system of relativistic Maxwell and hydrodynamic
tion from different points in the scattering volume, i.e., we equations;(3) searching for the growth rates assuming that
are dealing with an integral effect. Third, the laser radiationone of the transverse components of the wave vector is zero;
entering the plasma is transformed. The monochromatic phd4) resonance approximations which involve using exact
ton flux emits and absorbs plasmons with the result that it ighase-matching conditions for various wave processes,
converted into a sum of monochromatic fluxes at frequenciefor instance, Ref. 1)7
shifted by multiples of the plasma frequenay,. The In experiments, nearly monochromatic laser radiation
plasma frequency then depends on the intensity of the strorfigrms a plasma and is transformed in this plasma to give a
electromagnetic wave. This transformation process takes @onlinear electromagnetic  wave (nonmonochromatic
certain time. The transformed wave is scattered which introAkhiezer—Polovin wav€!9. This nonlinear electromag-

1063-7761/99/89(12)/8/$15.00 1055 © 1999 American Institute of Physics
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netic wave is naturally considered as the reference solutioklere A and ¢ are the vector and scalar potentials of the

when analyzing scattering. The results presented below shoelectromagnetic fieldys is the potential of the generalized

that a nonlinear Akhiezer—Polovin wave describes a regimenomentum of the field-plasma system, an the electron

with the establishment of a doubly-periodic solution. density. The expressiof6) determines the relativistic mass
Hence, this analysis is complex first, because it involvedactor y. The subscript indicates a partial time derivative.

selecting a rigorous reference solution which is nonmonoThe system(1)—(6) is normalized as followsA and ¢ are

chromatic for a linearly polarized wavéas opposed to normalized tomc?/e,n is normalized to the unperturbed

monochromatic for a circularly polarized wavend second, value of the electron density,, the momentum of the elec-

because of the extreme strictness of the linear analysis of thteon liquid is normalized tanc, the time is normalized to

growth rates performed for a system of partial differentialw, 1 (where wp, is the unperturbed plasma frequepcgnd

equations with oscillating coefficients, unlike previous ap-the spatial coordinates are normalizeccta,, .

proximate analyses. The use of a universal approach allowed Note that when deriving this system of equations we

us (as for a circularly polarized wave, see Ref) 16 de- assumed that the generalized electron momentum has no vor-

scribe the generation of stimulated Raman scattgf®1RS  tex component ¥ X (p—A)=0) (the law of frozen curl of

harmonics, the hydrodynamic analog of Compton scatteringhe generalized momentum applies: if this condition is satis-

continuum generation, and also the interaction of these prdied initially, it is then satisfied at all subsequent times

cesses for the case of a linearly polarized wave. The initial system of equationd)—(6) satisfies the con-
We note some characteristic features of this theoreticadervation laws for the material and the figlsee, for in-

method of analysis. The temporal growth rate of this instastance, Ref. 6

bility is defined as the maximum eigenvalue of the matrix of

the linear system of ordinary differential equations being; |\ e x| v polL ARIZED RELATIVISTIC-INTENSITY

sol\_/ed. This system is obt{;uned _by mtroducmg a t.ravellngREFERENCE WAVE

variable along the propagation axis, taking the Fourier trans-

form with respect to the spatial coordinates, and converting-1- Relativistic theory

from an infinite to a finite number of coupled ordinary dif- We shall analyze the Maxwell and relativistic hydrody-
ferential equations. In particular, this approach can avoid thggmic equations for the plasma electron comport&)(6)

conventional procedure of writing out and analyzing cumber+oy x, = x,=0. As was shown by Akhiezer and Polovitthe
some dispersion equations. The periodicity of the growth rat@earch for solutions of these equations

with respect to the longitudinal component of the wave vec-
tor is substantiated below for periodic reference solutions. In A =&AL +&A(E),  ¢=¢(£),
an earlier study we merely drew attention to the quasiperi- — —

- . : n=n(§), ¢=y(é),
odicity of the numerically determined growth ratés _ _ _

Thus, we present results of a rigorous linear analysis of #/hich_depend on the single variablg=x;—qt, q

system of Maxwell and relativistic electron hydrodynamic = V1+ €, whereq is the phase velocity andis the param-
equations for a linearly polarized reference wave of arbitranyeter, can be reduced to solving the following problem:

amplitude in three-dimensional geometry. It is shown that  2p +F(A,0,6)A=0 7)
. . . & P, )

the periodicity of the reference solution generates periodicity 5

of the growth rate in the corresponding perturbation wave € ¢:+F(A,¢,€)9—1=0, (8)

vector space and that the maximum period of the doubly- 15 &2

periodic rigorous reference solution determines the period of F(A ¢, €)= \/——5———" (9

the growth rate. o*+e(1+]Al%)

In this case, the momentum and electron density are ex-
pressed in terms of the vector and scalar potentials of the
electromagnetic field (see also Refs. 18 and J16

The propagation of relativistic-intensity laser radiation in In general, solutions of this problem can be obtained
a plasma is described by a system of Maxwell and relativisticdumerically. Analytic approximations were obtained in Ref.

2. INITIAL EQUATIONS

electron hydrodynamic equations: 19 for specific cases such as small-amplitude oscillations,
purely longitudinal oscillations, monochromatic circularly
(A—B)A=V o+ E(A+V¢/l), (1)  Polarized electromagnetic waves, and monochromatic oscil-
Y lations having a small longitudinal component. In addition,
Ap=n—1, ) approximate solutions were constructed in Ref. 19 for the
case of greatest practical interest, when the phase velocity of
VA=0, (3)  the propagating electromagnetic radiation is close to the ve-
Y=oy @) locity of light. However, in that study the authors only ana-

lyzed the particular case when the transverse component of

n the electromagnetic wave is monochromatic. In this case, no

ne+ ( V;(A'*‘Vlﬂ)) =0, (5 nonlinear amplitude-phase modulation occurs. Claire and
Perkin€® report an analytic investigation of plane linearly

y=V1+|A+Vyl|2 (6) polarized electromagnetic waves whose phase velocity con-
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4 Here w(¢) is an additional unknown function. As was shown
in these studies, the functiap, only depends o and is a

3 o solution of the equation
2 11+ (12g2¢d?
1 Y ¢—é =1}, (10
] ]
o ’i'}‘" A and the following relations are also satisfied:
|
-1 Uo(§)=0¢g(£)sin®, (11)
-2 p(&)=do 2. (12
=3 L S AARsas : The constang is the coupling parameter between the elec-
0 10 20 30 ‘ 40 tromagnetic wave and the Langmuir response of the plasma.
For Eq.(10) the following conservation law is satisfied:
FIG. 1. Results of a numerical solution of the Akhiezer—Polovin problem 2 .
(7)~(9). Initial conditions: Ay(0)=1.2, Ay (0)=5, ¢(0)=2, ¢(0)=—1, bo, V(o) =E, (13
ande=0.1.
V(o) =Vp( o) + V(o). (14
Vp( o) = o+ ¢bg " (15

siderably exceeds the velocity of light. Kaat al?* describe 5,1
results of a detailed numerical investigation of solutions of Vi) =g7¢o . (16
the Akhiezer—Polovin equations on the phase plane. Chian |n Refs. 18 and 16 the authors also give the correspond-
and ClemmoW also consider small-amplitude waves corre-ing principal terms of the asymptotic forms for the density
sponding to solutions of the Akhiezer—Polovin equations anhnd the longitudinal component of the electron momentum.
in addition construct solutions of these equations in the high  Calculations of higher-order approximations in terms of
amplitude limit. the small parameter yield the following results:

In previous papefé!® we studied the nonlinear
amplitude-phase  self-modulation of nonmonochromatic ~ Y1(£,©)=a;(£)cos0,
Akhiezer—Polovin waves. Figure 1 gives results of a numeri- 1/4

2 412 2
—3(E¢pg—3pp+1
cal solution of the Akhiezer—Polovin probléfi® (7)—(9) a1(§)=—OJ 9(9°¢0 "~ 3( (i?z % ))dg,
using the following conditions:A;(0)=1.2, A1§(0)=5, 2 164,
¢(0)=2, A,(0)=0, A2§(0)=0 (linear polarization, ¢.(0) $1=0,

=0, ande=0.1. Concentration of electromagnetic radiation

is observed between the crests of the electrostatic potential |, (£,0)=
(amplitude modulationand the entire pattern is shifted with 2

the phase velocity. The oscillation frequency of the vector )

potential also varies between the crests and the minimum of _ 9 cos 20
the scalar potentigphase modulation $2(£.0) 1665 (£) '

3

ﬁm(—g) sin 30 + a,(&)cog O + consy,

where the last term in the equation for,, which corre-
sponds to a small correction to the solution “at the funda-
3.2. Asymptotic theory of nonlinear self-modulation of mental frequency” should be determined from the following
linearly polarized rf electromagnetic waves in plasma approximations fok. Thus, the second-order corrections de-
An analytic theory of nonmonochromatic, rf, linearly po- scribe second and third harmonic generation at the local fre-

larized, relativistic-intensity electromagnetic waves induency of the propagating electromagnetic wave.

plasma(in terms of the Akhiezer—Polovin problénvas de- _ An integral expression for the period of the slow_ oscil—_
veloped in Refs. 18 and 16. When the frequency of théatlons generated by the propagating electromagnetic radia-

propagating laser radiation is much higher than the plasmg{On follows explicitly from the relationshipgl3)—(16):

frequency, the phase velocity of the electromagnetic wgves do
is close to the velocity of light and the parametas small. T(E,g)= ¢ ———.
In Refs. 18 and 16 the authors used the following represen- VE=V(¢)
tation to obtain approximate asymptotic solutions for a paryye can also introduce the concept of the average wave num-
ticular parameter: ber for the rf electromagnetic wave::
- - — -1 -1/2
A= 3 MUn(£0(8), o= X "dn(£,0(£)), Ko=(Te) §£ bo dE.

In this case, as was shown earftéft® we obtain the simple
0,= e tu(é). dispersion relationship:
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2 An expansion in terms of the small parametgrper-
ko=Nkp, kp=— formed as for the relativistic problem considered in the pre-
vious section, yields the following results:
The normalized intensity of an Akhiezer—Polovin wave
averaged over the rf oscillations of the electromagnetic field 5 —g(1—f)~4gjn 6—1f (1—f )1’2dg) +0(€d),

and the plasmon period, is given H*®

’ (18)
9 Ko .
o feet f=Z0%(1-1)"2
3.3. Quasirelativistic approximation The second of these equations corresponds to the conserva-
It is possible to have a situation where the electromag:[Ion law
netic waves are such that their propagation in a plasma may f§+vqr(f )=E’, (19
be described using a quasirelativistic approximation: when o "
relativistic corrections to the masses of the oscillating elec- Vor(F)=F+g%(1-1)"< (20)

trons are taken into account, we can confine our analysis to These approximate relationships can be obtained from
an expansion of the gamma factor in powers of the ratio othe corresponding expressions in relativistic theory. Then,
the electron momentum tmc (in equations which have not substituting(17) into the expressionél1), and(12) for the
been reduced to dimensionless forand we can neglect vector-potential obtained in Sec. 3.2 of this study we obtain,
corrections of the fourth order or highét should then be after making an elementary transformation:
borne in mind that in this particular case, the phase velocity 2\ 14 2\ _1/2

. o . 1-f 1-f
of the electromagnetic radiation is higher than the velocity of Alzg( sin( 671J‘ ) dg) +0(e).
light). The mathematically most rigorous implementation of 1-f 1-f

this approach can be found in Ref. 23, where the authorfeglecting the value of? in accordance with the quasirela-

introduce a small parameter associated with the deviation fyistic approximation, we quite clearly arrive at the relation-
the electromagnetic field and plasma parameters from thegnip (18). We then expand

equilibrium values and by means of expansions in terms of )

this small parameter, they derive a corresponding nonsteady- V(@) =Vp(1+f)~2+f

state nonlinear problertsee also Ref. 24 Below we con-  and use the obvious representation

sider the steady-state particular case, the quasirelativistic

analog of the Akhiezer—Polovin problem, which is obtained _ f1=q2 1-f
. o L Vi(e)=V(1+f)=g 2

assuming that the partial time derivatives in the problem de- 1-f

scribed in Refs. 23 and 24 are zero.

Again neglecting? in this last equation, from the relativistic

. 25 . . . . . .
Morr: etal. ,Il_‘tc‘ed ? quaflrclalanv:stlp approxmstlon 10 conservation law(13)—(16) for the average vector-potential
study the instabilities of circularly polarized monochromatic, e opain the quasirelativistic conservation 14#9) and
electromagnetic radiation in a plasma. 0

A gquasirelativistic analog of the Akhiezer—Polovin prob- @
lem (considered below for the case of a linearly polarized
electromagnetic wayes also obtained from the “complete” 4. SCATTERING EQUATIONS FOR A LINEARLY POLARIZED
relativistic problem (7)—(9) if the nonlinearities in these wAVE
equations are expanded in termsepfwhich corresponds to

the propagation of rf electromagnetic waves, the scalar po- AS the reference solution we take an arbitrary linearly
tential is expressed in the form polarized Akhiezer—Polovin wavésee Fig. 1 This is an

exact numerical solution of the systdih)—(6) described by
p=1+f, (17 the functionsAq, ¢o, Ng, Po=€spso (We give these the
subscript “0”). Let us assume that the small perturbations
S6A, S¢, on, and Sp=V Sy propagate against the back-
) ground of this reference wave. The system of linearized
€Ay, +(1-F)A=0, equations for the perturbations has the form

A:A0+5A, (P:(P0+ 6QD,

it is assumed that~ A2, and corrections of the orde} are
neglected. The corresponding problem has the form

1
foetf=—A3
& 2"t n=ny+dn, p=pe+ p,
For a given external field the second of these equations No 1
becomes a linear problem to determine the scalar potential (A —d7) SA=V @i+ — (SA+ 8p)+ — (Ag+po) on
and is solved using the Green functiofprovided that the Yo Yo

integral converges No
2 — 3 (Aot Po)((Ag+Po) - (6A+ 3p)),
0 ARE) %
f(§)=Jiwsm|§—§ | 5 dé’.

VA=0, Adp=én,
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8pi=V (89— vy (Aot po)- (5A+5p)),
Ng 1
N+ V| —(6A+8p)+ — (Ap+pg)dn
Yo Yo

- :—%(Ao+po)'((Ao+po)'(5A+59)) 0

We introduce the notation for the functions appearing in
these equations:

flog)— No(§) (2= Ard ) 3 P3d(€)
Po=s "9 @m "9 e
No(£)Ar d€) ()P €)
f4 — : , f5 — :
©=— % O= 2

These functions are periodic and can be expanded as Fourier
series:

fi(g)=2 fhexplimkyé). (D)

4 1¢2 5 1¢3
fr Efjfm],f }‘,f,fmJ

Substituting Eq.(21) into the linearized equations given
above and using the Fourier transformation:

(5A,5<p,5n,5p)T=(277)_3/2f exp(—ik,(X1,X5,£))
X (6A, 8¢,6n,p) d3k,

we obtain the following system of equations to describe the
instability: (k== (kq,ks,x)):

— (kP (atian)) oAy, =2, (andAy  +andh,

+an Yt apdn_p),

(22
— (k]2 (a9 +igx)?) oAz = 2 (bmdA; +baoA,
+b2 oW _,+bion_),
(23
(r?t+iq)()5n0=% (ChoAy__+ChoA,
+C2 oWt Cmdn_ ), (24)
(at+iqx)5l//o=§m‘, (dhoA,  +dnoA,
+d3 oW +disn_), (25)

where
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A= 2T k(e + mky) ] k[

Kix k
5 _ 1 3
e )(f x+mkpfm')'
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2 _ 2 1 1 s
=" ke r gy '™ 2((1 |k|2)f'
_kl_Xf5 K < 43
k|2 +mkp m-1>
. 2
a__ Tkoxmky ;o _-ﬁ A KX s
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After being converted to the standard form, the equation
to determine the eigenvalues of the maBixf the system of
ordinary differential equations obtained from the equations
presented above has the form

de{B-GI|=0

and remains unchanged when the argumemshifts by k,
since the unbounded matr transforms back to itself. Con-
sequently, all the eigenvalues

Gn=ReG,+iImG,,

of the matrixB are periodic functions of the argumeptvith

the periodk,. The growth rate of the problem is defined as
the maximum positive real part of the eigenvalues of the
matrix B:

G=maxReG,,.

5. SCATTERING OF A LINEARLY POLARIZED WAVE IN THE
ONE-DIMENSIONAL CASE

Borovski et all*investigated the instability of a linearly
polarized wave using the system given above in the spatially
one-dimensional case, i.e., wh&p=k,=0. These authors
established that a linearly polarized honmonochromatic wave
is unstable with respect to forward—backward scattering irFIG. 2. Distribution of the growth rat& as a function of (co#,a) for
the relativistic intensity range. Calculations of specific vari-k=3.5%; and the reference wave shown in Fig. 1.
ants showed that the scattering spectrum in the wave vector
space consists of a periodic set of lines comprising STRS

harmonics shifted relative to one another by multiple&f ) yhe variables in a spherical coordinate system. In Carte-

The proﬁlg 'of.a particular grqwth rate line is also |anuencedSian coordinatese ,e,,e;) the reference wave propagates
by a relativistic hydrodynamic analog of the Compton scat-

. o _ along thee; axis and is polarized along thg axis. The
tering of photons by electron propagating in the field of thevectork of the scattered wave forms the anglavith the e,
reference wave at velocities close to the velocity of light.

h file of the i . ) buted to th : faxis and has the modulds The vectork, , being the pro-
The pro ile o_t e line wings is att_n uted to the generation Ojection of the vectok on the plane &, ,e,), forms the angle
Langmuir noise by the propagating reference wave.

h | . | _ bl _ a with the e; axis. The anglesy, 6 are the polar and azi-
di T us, alp ane wave in a plasma is unstable even in ongz, i angles in spherical coordinates. We shall analyze the
|meAnS|ona ggomegry. h | fari i distributions of the growth rate with a fixed radiksas a
comparison between the results of a rigorous lin€ak, , .oy of the angle® and . The value ok determines the
analy5|s. Of. the propaggtlon instability of plall(lec.)nmono- frequency of the scattered radiatiar=k/c and the angle®
chror_natlc) linearly polarlz_ed andmonochromaticircularly _zﬁnd « determine the direction of scattering in spherical co-
p_olanzed st_rong Waves in a C(.Jld plasma reveal_s SUbStantI%rdinates. Since the experimental measurements are made at
d|ffere_nces n the growth rate lines. Both th_e period betWeerﬁiifferent anglesf and « using spectral devices tuned to a
the pelghbormg hqrmonlcs b spacelk, for C'rC“"’?‘r andl_<p specific frequency, the diagrams calculated below can be
for linear polarizationsand the structure of the lines differ. used directly to interpret the experimental data
For circular polarization the hydrodynamic analog of the Figure 2 shows the distribution @& as a fljnction of
Compton effect does not have a significant influence in ON€z0sp and « for k=3.5. and the reference wave shown in
~Fp

dimensional geometry whereas for linear polarization, thigiy 1 The scattering structure has the following character-
effect forms j[he Ilng cgnter. In the nonrelat|V|§t|c range the|stic features. The scattering takes place in a discrete range of
growth rate line s_phts Into the_ Stt_)kes and anti-Stokes CO0MAested cones. Within each cone the scattering is anisotropic
pone_nts _for the circular polanzatl_on whereas for the Imearin terms of the polar angle. The scattering angle is symmetric
polarization all the STRS harmonics are represented. with respect tod= /2 (forward—backwardand with respect
to the polarization plane=0 (right-left).

Figure 3 gives dependences Gf on « for two fixed
scattering cones cas=mk,/k, wherem=1,8 andk=8.5k

The maximum growth rate for the problef22)—(25) (the reference wave is the same as for Fig.This diagram
was investigated as a function of three components of thgives an idea of the azimuthal scattering anisotropy: the scat-
perturbation wave vectde. Only a graph of the growth rate tering predominates fow=0,7, i.e., in the direction of po-
as a function of two variables can give a clear representatiorarization of the reference wave.
It is interesting to examine the dependence of the growth rate  Figure 4 givesG as a function of co8 for the polar

cosd 1

6. ANGULAR SCATTERING DIAGRAMS FOR A LINEARLY
POLARIZED WAVE
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Gsina As a result, in Fig. 4d we have eight pairs of spikes and one
I5¢ central one. The coordinates of the maxima of all the spikes
10k are given by
T, cosf=mk,/k, m=0,£1,%2,...
st ... Jf‘u‘\ N s s s s
.-' f ‘ | We note that the structure of the growth rate is a con-
0f i : im= tinuous background which provides evidence of continuum
st " _-‘ generation, with a set of discrete spikes. These are attribut-
able to STRS at plasmons and the hydrodynamic analog of
~10f N Compton scattering.
~-15¢
7. CONCLUSIONS
-20 A . A . . ; . . .
-20 -10 0 10 A spatially three-dimensional geometry has been used to

Gceosa make a rigorous linear analysis of the propagation instability

FIG. 3. Dependence of the growth raBe on « for two fixed scattering of a plane linearly polarize(_j strong _electromagnetit_: wave ir_]
cones co®=mk, /k, wherem= 1,8 andk=28.5,, (the reference wave is the @ plasma. The nature of this wave is described: this wave is
same as that for Fig.)2 not monochromatic which significantly complicates the

analysis. The wave is a doubly periodic solution of relativis-

tic Maxwell and electron hydrodynamic equatiorian
angle «=0 corresponding to the scattering maximum for Akhiezer—Polovin wave From the physical point of view,
various values ok/k,=0.5(a), 1.0 (b), 3.5(c), and 8.5(d). this amplitude-phase modulated wave is a set of photon
This figure shows the change in the structure of the anguldtuxes at frequencies shifted by multiples of the plasma fre-
scattering diagram ak increases(scattered radiation fre- quency.
quencies For values ok which are multiples ok, (Fig. 4b An Akhiezer—Polovin wave was used as the reference
narrow cones of scattered radiation appear in the direction cfolution to analyze the scattering problem. The theory de-
the angle®)= 0,7 (forward—backwary which correspond to scribes the following wave processes: generation of STRS
the hydrodynamic analog of Compton scattering. A furthetharmonics of the propagating reference radiation in the non-
increase irk shifts the spikes toward the centen the scale linear medium, a hydrodynamic analog of Compton scatter-
in Fig. 4) and leads to the formation of a pair of new spikesing as a result of an electron recoil effect, electromagnetic
each timek passes through a value which is a multiplgf ~ wave interaction in the plasma, and also continuum genera-

T
—
N

B

12F

FIG. 4. Dependences of the growth r&eon cosé for
the polar anglea=0 corresponding to the scattering
maximum, for various values df/k;,: 0.5 (a), 1.0 (b),
3.5(c), and 8.5(d).
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tion as a result of the scattering of laser radiation. The com-  To sum up, the instability of an Akhiezer—Polovin wave
bination of these wave processes was studied in the relatilras been investigated for the first time in multidimensional
istic case. geometry. Note that the results presented are naturally con-
In the present study we used a relativistic hydrodynamio/erted to the results of the one-dimensional thédrit. is

model of a cold plasma in an electromagnetic field. Thisshown that the growth rate is periodic with respect to the
model is valid when the energy of the electron oscillations inlongitudinal component of the perturbation wave vector. The
the field substantially exceeds their thermal energy. We canondition for periodicity of the growth rate can be applied to
use | =2x 10*W/cn? (see Ref. § as an estimate of the any other periodic reference wave, including an approximate
validity of the model. one.

The “model” nature of the analysis also involves exces-
4 This work was partly financed by INTASGrant No.

sive allowance for long-wavelength perturbations, which
leads to the appearance of divergence in the spectral lines gfl-l%‘l and by the RFBRGrants Nos. 96-02-18264 and

the STRS harmonics. The overall scattering patténa fre- 9-02-18242
guencies and directions of the scattered waves, the position
of the scattering cones, and the scattering anisojrepg
: I ; *)E-mail: obs@kapella.gpi.ru
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It is shown that when an optically allowed transition is coherently excited in an impurity atom in

a photonic crystal under conditions where one of the normal relaxation channels is suppressed

by the spectral characteristics of the photonic crystal, new relaxation mechanisms are activated
involving a coherent field quantum. These mechanisms substantially alter the dynamics of

the atomic system, leading to filling of levels of the impurity atom which do not belong to the
coherently excited atomic transition. Under certain conditions this leads to population

inversion as a result of an optically allowed transition which does not interact with the coherent
pump and at a frequency where no photonic band gaps can exist99® American

Institute of Physicg.S1063-776(199)00712-X

1. INTRODUCTION ensemble of like impurity atoms. Bashatdwiscusses an
electric-dipole diatomic mechanism for the spontaneous
The fabrication technology being developed for photonicemission of an impurity atom.
crystals; i.e., media having forbidden bands in photonic  Other studies have considered the interaction between
states, has stimulated interest in the dynamics of excited imeoherent radiation and impurity atoms at whose transition
purity atoms whose radiative transition frequencies lie in for-frequency no photons occur. John and Quémgvestigated
bidden bands. Media have now been obtained in which theptical bistability and phase transitions when the carrier fre-
width of the photonic band gap is of the order of 30% of thequency of the coherent wave and the excited level of the
gap-center frequency and the gaps are situated in ranges lepurity atoms were situated féin both directiongfrom the
tween the microwave and the visible. Some of the main exedge of the photonic band gap. Quaeal® studied the
amples of photonic crystals are periodic dielectric structuresspontaneous emission of a three-level system in which the
The specific characteristics of the propagation of electromagrequency of one optically allowed transition was located in
netic radiation in periodic dielectric structures find applica-the photonic band gap and a neighboring optically forbidden
tions in various important devices such as microladérs, transition was pumped by a coherent wave. In these and
various types of optical fibefsand so on. In addition, from other studies the coherent pumping “operated” under con-
the general physical point of view, photonic crystals provideditions where particular relaxation processes discussed
a unique possibility of controlling the “switching on” or earlier ~*? played a dominant role.
“switching off” of various fundamental electromagnetic in- In the present study the author discusses the situation
teractions. Thus, photonic crystals not only have variousvhere coherent excitation of an impurity atom in a photonic
technical applications but are also of enormous interest focrystal with a wide photonic band gap leads to the appear-
fundamental research, including studies of the dynamics o&nce of new relaxation channels. It is shown that, as a result
impurity atoms in which photonic crystals can achieve vari-of coherent excitation of a transition at whose frequency no
ous scenarios where the frequency of a particular atomiphotons occur, these new relaxation channels may under cer-
transition falls within the photonic band gap. As a result,tain conditions form a population inversion on a normal tran-
some interaction channels are suppressed and others are aition whose frequency does not fall within the photonic
tivated. band gap and other characteristics of the doped crystal. In
Some work on the dynamics of impurity atoms in pho- addition, these same relaxation mechanisms may also be re-
tonic crystal§™® has been devoted to mechanisms for thesponsible for filling an impurity atomic level situated in the
relaxation of impurity atoms whose transition frequencies liephotonic band gap as a result of the normal coherent excita-
in the photonic band gap. Sohn and Wastudied a quad- tion of a neighboring atomic transition lying outside the
rupole mechanism for the radiative relaxation of excited im-spectral characteristics of the photonic crystal.
purity atoms. In Refs. 7—9 the authors studied a mechanism The essential features of the relaxation mechanism form-
for resonant dipole—dipole interaction of impurity atoms anding the basis of the new relaxation channels under coherent
the concept of localized photons. Rupasov and Sthgto-  excitation of an atomic transition in a photonic crystal are
posed a model for spontaneous emission from impurity atillustrated in Fig. 1. In addition to coherent excitation of an
oms which can be solved analytically. In a series of studiespptically allowed transitiorE,— E,, by an electromagnetic
Rupasov and Sindf'? consider the influence of dipole— wave of frequency) ., (Fig. 18, spontaneous two-photon
dipole interaction between impurity atoms on the appearancprocesses take place in the field of this wave: the absorption
of the photonic band gap and on the superradiance of aof a coherent field photok ()., is accompanied by the

1063-7761/99/89(12)/9/$15.00 1063 © 1999 American Institute of Physics
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Density of A
photon states Emitted photons
coh i }
@Yy 1 Q
P | E, Photonic band
E, S, E, Y coh 3 X otonic band gap
Q Q
Q E, E, Y a%l .................
coh 1 o | T
E E Yy T, a
i -L———— A 2ot T
Coherent Relaxation Relaxation o GHe - Et%tt'it;‘s
excitation excitation depopulation P A
of level E, of level E, of level E, E—Y 2
a b c Impurity atom Density of

photon states
FIG. 1. Two-quantum mechanism for level filling in the photonic band gap.
FIG. 2. Relaxation processes as a result of three-photon excitation of an
impurity level located in the photonic band gap.

emission of a photorhw,, wq— Q= (Ea—E)/h (Fig. "
P @ar @q- " Ceon (Ea—Eo)lh ( 36 allowed E.— E,, transition as a result of three-photon reso-
1b) such that a two-quantum transitiéy— E. takes place: ) : i
. e : . . nant interaction with a coherent wave of frequertty- (E.
The rate of this transition is proportional to the intensity of . - .
. .~ _..—Ep)/3f which does not fall within the photonic band gap.
the coherent wave although under normal conditions it is stllLI_hen the two-quantum mechanism described above leads to

lower than the rate of a spontaneous single-photon optlcallq(i”mg of the E, excited level of the neighboring optically

allowed transition. Hence, this two-quantum relaxation does " . :
q allowed E,— E,, transition (Fig. 2). In this case, no con-

not generally appear in normal media. The situation is dif-_, ~. . .
) ! o . straints are imposed on the subsequent relaxation from the
ferent in photonic crystals. Despite its smallness this two- . » L .
; - E, level. Under certain conditions, population inversion may
guantum relaxation process leads to filling of t&g level,

from which it is difficult to depart by the usual relaxation oceur as a result of thE? E, transition, but its appearance
. N ) . nd magnitude are strictly related to the relaxation param-
channels since it is situated in the photonic band gap. . .
L . . , eters of the problem. Quite clearly, other variants of the co-
similar process involving the absorption of a photofl ., S : .
. S herent excitation of an impurity atom and two-quantum re-
and the simultaneous emission of a photan,, n—

~(E,—E,)/% leads to depopulation of this levéFig. 10. laxation processes leading to population inversion for any

. . . transition are also possible.
The competition between these processes will determine the . : .
The effects discussed in the present paper are of a fairly

real population of theé=; level. If the impurity atom is suf- . . o
ficiently isolated, its leveE, is some distance from the edges general nature for problems involving the coherent excitation
f ¢ f impurity atoms in photonic crystals since for any other

of the photonic band gap, and the intensity of the coheren?

wave is sufficiently high, other relaxation chanriel$ may c_onf|gurat|ons of nelghborlng transitions, .'t. Is always pos-
sible to select those frequencies of the exciting coherent field

be neglected. In this case, however, the gradual depopulatic*gr which the correspondif two-quantum relaxation pro-

of the E; level accompanied by the emission of a photon . X
. ST . cesses take place efficiently provided that some of the usual
fiw, is also insignificant because the frequencies of thesg :
o . . relaxation channels are suppressed by the spectral character-
photons fall within the photonic band gap since . .
istics of photonic crystals.
0p~Q o= (Ea—E)/h~(E;—Ep)/h The present paper is constructed as follows. The formu-
lation of the problem and the effective Hamiltonian are given
—(Ea—E)/h=(E.—Ep)/h. . A . ) X
in Sec. 2. Kinetic equations for\&configuration three-level
Nevertheless, this process must be taken into account whempurity atom are derived in Sec. 3 for cases when one of the
going beyond the representation of the energy structure of aexcited levels lies in the photonic band gap and one of the
impurity atom using the three levels,, E,, andE;. Note  optically allowed transitions interacts resonantly with the co-
that when selecting the notation for a particular energy levelherent wave. The dynamics of the coherent excitation of an
we adhere to the convention whereby the pair of legg)s impurity atom are studied in Secs. 4 and 5 and population
and E, or E. and E,, forms optically allowed transitions, inversion conditions are determined for a neighboring opti-
whereas the levelg, andE. belong to the optically forbid- cally allowed transition for various configuration of impurity
den (two-quantum transition. atomic levels and various positions of the photonic band gap.
The filling of the E. level situated in the photonic band A bleaching effect induced by two-quantum relaxation and
gap and the establishment of population inversion for theeoherent pumping of an optically allowed transition is de-
E.—E, transition is not the only manifestation of two- scribed in Sec. 5. In the Conclusions we briefly discuss the
guantum relaxation in photonic crystals. Another process accase of aA-configuration of impurity atomic levels where
companying the coherent excitation of thge— E,, transition  the coherent wave interacts resonantly with an optically al-
is also extremely interesting in our opinion. In the presentowed transition which is not related to the ground atomic
paper we consider the coherent excitation of the opticallyevel and a neighboring optically allowed transition is ex-
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posed to the action of the spectral characteristics of the phalso the conditiong7)]. We shall use the index “th” to
tonic crystal. It is shown that in this case, the two-quantumindicate that some quantity belongs to the thermostat charac-
mechanism can be considered as an additional relaxaticeristics:

channel for the level in the photonic band gap.

ch:f dwthhwthbotthb th:Q,I,e,q

Oth?
2. FORMULATION OF THE PROBLEM AND EFFECTIVE

The other quantities are the creatiafi and annihilatiora,,
HAMILTONIAN

operators of an atom in the quantum statehe creatiorb;jm
We shall first consider the situation where electromag-and annihilation operatorlsya,th of thermostat photons, the

netic radiation having the electric field intensiy coupling constant& (w), and the matrix elements,,,. of
E=Ze P+ 2%e®  d=0t+ g, (1) the aFom.ic operator of the dipole momehiWe shall neglect

o _ polarization and spatial effects.

is in three-photon resonanc® ¢ (E.— E,)/37) with an op- We stress that the role of the photonic band gap can be

tically allowed transitiorE.— Ej, of an impurity atom whose  seen in that the initial Hamiltoniaf2) contains no interac-
excited levelE, lies in the photonic band gap aifit} is the  tion operator with a photon thermostat whose central fre-
ground level. For the other atomic levels we shall assumeuency matches th&,—E, transition frequency. The as-
that the field(1) only forms two-quantum resonances with a symption that th&_ level is some distance from the edges of
certain levelE, belonging to the neighboring optically al- thjs gap and that the density of impurity atoms is lémour
lowed E;—E, transition: the two-photon resonancél ( case, we only consider a single impurity afomeans that

+ w0y~ (E.—E,)/#) involving quantaw, of the photon ther- e can neglect relaxation mechanisms based on resonant
mostat H, and the Raman resonancew{-Q~(E; dipole—dipole interaction between like atoms, interaction
_Ea)/fl) inVOlVing quanta of the other photon thermostatwith a non-Markovian thermostat, and so 7O_Tj|2

Hq (Fig. 2). Quadrupolé and diatomi¢® mechanisms can be neglected
We write the initial Hamiltonian of the system in the pecause of their smallness compared with those included in
form Eq. (2).
H=Ho+ Vgt Vo + VO 4+ VI 4V, By means of a unitary transformatiohil® we obtain the
effective Hamiltonian of the problem from E¢R). For this
+Ho+H+Hy+Hg, (2)  purpose we transform the density matrix of the system using

whereHy is the Hamiltonian of an isolated impurity atom, the transformatiop=e~'pe'®. The new density matrix will
Veon Vy, Vap, V2., andV9, are the operators of the inter- Satisfy the equation

action between an impurity atom and the coherent fi&)d

quanta of the photon thermostat with the central frequency iz —5=[H ], 3
), quanta of photon thermostats in resonance with the opti- d

cally allowed transitiorE,—E,, and quanta of the photon
thermostat in two-photon resonangeintly with the wave
(1)] with the optically forbidden transitiok.—E,, respec-

tively:

where the transformed Hamiltonian

H= e_iS(HO_FVcoh'*_ Vv+Vga+ Vga"' VaptHq+H,

I
Veor=—2€71%Y, dypala, +H.c, tHotHyeS—ihe S e, ()
_ . and the Hermitian operat@ which determines the transfor-
Vy=—i> f dogK(wg)d,qa,a,b,,+H.C., mation, are expanded as a series in terms of the coherent and
aa vacuum fields

Vap=—1 2, fdw,K(w|)daa/a;aa/bwl+H.c., S=5104+ g0 gy
a,a':a,b
H=R00+ {0 {OD, Hany
V0=—i> Jdw(,K(w(,)dmlaZaa,bwaJrH.c.,
aa! where the left-hand index in each paim(n) refers to the

o _ . coherent field and the right-hand index refers to the vacuum
Vea= 1 2 f dwgK(@g)daar@y aarby, +H.C. field. Forn=1 we divideS(™" andH(™™ into four terms
HereHq, H,, H,, andH,, are the Hamiltonians of the cor- S = gt 4 M 4 g 4 gimn)

responding photon thermostats, which, in accordance with

Ref. 17, can be considered to be independent and which we ﬁ(m,n):ﬁbm,nuﬁl(mynbrﬁ%m,n)Jrggm,n)7

shall also assume to be Markovian, assuming that their cen-

tral frequencies do not fall within the photonic band gap andcorresponding to the contributions of each of the photon
are located at some distance from the edges of thifgm® thermostats taken into account. Since
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H=H-i[SH]- %[S,[S,H]]

. —iﬁe“sieiS

i
+€[S,[S,[S,H]]]+ .. pn

we have

HOO=H +H,+H,,

~ ~ 0
HO=v ,—i[S®9 HO0]+2 = S(1.0)
£(0.) 10D T4 5 0 o
Hin7=Vp—i[Sy'~ H ']+hﬁsth ;
~ i i
R == SIS Vool = 5 1SR Vel
i ~ i ~
— 5[Sh A0 - S[SHO,REY]
ira(l,1) £(0,0) J (1,1)
—i[Sy,H ']+ﬁﬁsth ,
- i i -
H(20=— E[5(1,0),\/(:%] _ E[5(1,0),H(1,0)]
irg(2,0 J (2,0)
—i[S= ,H0]+hES )
- i i -
HGO= — E[5(2,0),\/coh] _ E[8(1,0)’|_|(2,0)]
i (2,0) F(1,0) 1 (1,0) 1 g(1,0)
~ 5[SEORAM - S[SE0[S19,v ]
1 ~ .
+ 1_2[5(1,0),[5(1,0), H@O1—i[SEO H,

]
+h—S@O,
ﬁ&tS

Here the subscript “th” indicates one of the photon thermo-

stats.

We impose the constraint that the following conditions
corresponding to the resonance processes in the problem and
the approximation of slowly varying amplitudes are satisfied:

I _14(0,1)_15(0,1)_13(0,1) _
HEO=RPD=RPH=HP=0,
ﬁl(o,l):—if dw|K(w|)daba;rabbwl+H.C.,
RCO=3 EPa’a,,

HEO=y atae ®®+H.c+ > EPala,,

WhereEEf)., Eff), andu,, contain no oscillating exponential
functionse’s®, s=+1,+2 .. .. Thevalidity of these condi-

A. M. Basharov

K(wl)dbaat;r aabw|

+H.c.,

S|(01): - J do,

fi(wapt )

K(wth)daa’a;aa’bwtha(Ea’ - Ea)
+

H.c.,
6)

aa’ ﬁ(waa’_wth)

i
_ 20_____
th=0,6,9, S*9=_-o Ea, I1,(Q)

X (((g’Ze*ZilIJ_ g* 2e2i(b)azaa ’

wherew,,,=(E,—E,/)/#% and the usual notatidhis used
for the parameter determining the Stark level shift:

|d o |? 1 1
II,(Q)= +
() ; h oo T ©

al
After various simple calculations, we obtain the effective
Hamiltonian of the problem in the following form:

HEf=Hy+HS4+VE+ Vv +V+V,

aa’

+Vgt+Ho+H+Hy+Hg, (6)

where HS! describes the dynamic Stark effest®) deter-
mines the three-photon coherent excitation of Eye—E,
transition,V, determines thde < E,, relaxation transitions,
Vy andV, determine theée .« E, relaxation transitions in an
impurity atom as a result of interaction with the thermostat,
and V, is responsible for the additional broadening of the
spectral lines when allowance is made for quantum fluctua-
tions in the Stark effect:

HY=2 |41 (w)aa,,
V@ =ugala, % 3 ®+H.c,

dcb
850 (II(Q2) — 1 (Q2)) + e

Ucp=

2
(0= Q) (wgp— Q)

xzﬁ dcadaﬁdﬂb(

1 1
(0ca— D) (@ap— Q)  (@ap— Q) (wgo—Q))’

Vir= =i [ doK (on)[To(ORGD,, ~ FHORADE,

R|:agaa, f|(t):dba/ﬁ,

Ro=2 a,8,I1,(Q),  fo(t)=—c*en,

Rp=azac, fo(t)=re "I (Q)/h,

tions is confirmed by the absence of any resonant denomina-

tors in S(M"):

Ry=asac, fo()=2*e P (—Q)/h.
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The parametefl,-({)) introduced determines the two- d

- i
photon interaction operatof: giPt7P=7lpHot HS4 V)] (8)
dapd 1 1 with the relaxation operator in the standard Lindblad form

Mo @)= 2 + ) P

B h (l)‘Ba‘l' Q (J)BC_ Q R Kih
T e o 2 + +
Note that the subscripts, «’, and number all the energy 7P mgw > [Fin(D*(L1+ New) (2RoRen — PR Rey
levels of the impurity atom.

The effective Hamiltoniari6) can be used to isolate the . Kin 5 .
relaxation operator by standard methods and obtain definitive — R Rinp) _tn=%:| , ?lfth(t” Nin(2RinpRin
kinetic equations describing the dynamics of an impurity b
atom in a photonic crystal during its coherent excitation pro- — pRuRt,— RiRmp)- (9)
cess.

Here and subsequently we neglect the tilde over the trans-
formed density matrix. It should be stressed that the unitary
3. KINETIC EQUATION FOR AN IMPURITY ATOM transformation method gives a far clearer and more complete
physical picture of the various types of relaxation processes,
We shall list the main initial assumptions for the photonincluding two-quantum one'$,compared with derivations of
thermostatd,, H;, andH , introduced in the analysis and the relaxation operator from the Bloch equatfdrféor using

the coupling constants: the quantum jump techniqé.
The off-diagonal matrix elements of the density matrix
by (t)b (t’ Ny o(t—t’
(B (DBr(t))=Nin ) of an impurity atom can be conveniently expressed in the
(bin(t)bg(t'))=(1+Ny) 8(t—t'), form
(b(Db(t")) = (bu(D)by(t')) =0, Peb=Tcp®XP(—=3IP),  pea=ea®XP i wcal),
1 Pab= I ab€XP — i @gapt),
bin(t) = 2n f dogexd —iwn(t—to)Ib,, , (7)  and then the following system of equations is obtained from

Egs.(8) and(9):
K( ) = K27,

whereN is the photon density of the corresponding thermo-
stat andtg is a certain initial time to which the photon op-
eratorsbu,th and b;th refer. Thus, the photon thermostats of

the problem are considered to be wide-band and the coupling
constants satisfy the Markov approximation, i.e., they do not i
depend on frequency and are determined by the central fre- giPeo= YgO)Paa+ g(r:bucbgs_rcbu:bg* %),
qguency of the corresponding photon thermostat. We shall

subsequently assume that the operators of the photon ther- _ o - 3 v %3
mostats evolve as the operators of noninteracting systems apcc__%bfl Pcc_g(rcbucb"( ~Teplep” ™),
and determine the Wiener processes

d i,
arcb_|(A_Acb|”{1 )rcb

i
:%(PCC_Pbb)ucbgg_ 7cb| azrcb:

‘ 2 e — 7 Vpaat 7l 1%
Bm(t,to>=f dt’by(t’), deres ra e e e

to

d 2
[Bin(t,to), By (t,t0) 1= (t—1t0) Sty » giFeatidcal? =—(Yea A1) cas
whose growth rates satisfy ordinary Ito algebra: d

ABg (1)d By (1) = Nyt Sy, gy gt i8ad Arap=— (7 + vad Arep- (10
dBy(t)dBy, (1) =(1+ Ny dtS g » Here we use the notation

A=30—w¢,, Ap=II(Q)—-1II,(Q),
Aca=I1(Q)—114(Q), Aup=I1,(Q)—II,(Q),
Yob= Ka(I1o(Q) —ITy(Q))228%+ y,/2,

dBy(1)dByy (1) =dByi(1)dBL (1) = dBy(t)dt
— dtdBy(t) = dB; (t)dt=dtdB; (1)

=dtdt=0,
g Y= 73 = ¥012= | da| 12157,
where the subscripts “th and “th” denote the photon ther-
mostats, i.e., have values 6, |, g, and 6. Yea= Ko (Io(Q) = TT4(Q))%/2h%+ y,/2,

Subject to these assumptions we can use the usual
method$®1°?°to write the kinetic equation for the density
matrix of an impurity atom in the form ¥e= kgl Hcal = Q)| 2172+ kgl T eo( Q)| 2152, (11

Yar= ko (I14(Q) —TIp(Q)) %242,
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We recall that for a three-dimensional spontaneous emission 7121
geometry Paa=
, 3 (0)70|((12+7c|((|zr+2')’(0)r
y(o) 4|dab| Wap (O)
% 3hcd(23,+1)° Pob="T5 —,
. . ’)’g) c —’42F+2')’g T
whered,,, is the reduced dipole moment of tkg— E,, tran-
sition andJ, is the angular momentum of the, level. 27Cb|ucb|2|;{]8/ﬁ2
When writing the equationél0), we assumed that the pap=0, I'=—; CAA A2
photon thermostats are vacuum ones containing no photons +( 19
with Ng,=0. It should be noted that pumping of tHe, level as a

We now write the equations for the density matrix for result of coherent excitation of the,— E,, transition takes
the case where the wayg) is in one-photon resonance with place without any coherence appearing for e E,, tran-
the E,—E, transition, Q~(E,—E,)/%, and the spectral sjtion. This distinguishes this situation from any other
characteristics of the photonic crystal impose no constraintschemes for excitation of tHe,— E,, transition by coherent
on this transition(Fig. 1). Let us assume that tHe, energy fields.
level lies in a photonic band gap some distance from its  \We shall assess the possibility of a steady-state inversion
edges so that the relaxation mechaniSttisare small com-  for the E,—E,, transition. It can be seen that this is mainly
pared with the two-quantum mechanism being discussed. I:Qfetermined by the relationship between the parameters
Fab=Pap€XP(P), paa: pop, andpcc we then have the equa- | #12 and y*). In the most favorable case we have the

tions est|mate
d i 2 342
arab i(A—A 2)rab__ g(Paa_Pbb)dab;ﬁ(' 'yc|(j N(ﬂ) A_Z’
© ')’g ) wap) O
_ 2

(7a 12+ Yapl A1) ap, where A~ Zd/# is the characteristic interaction energy and
d i ¢ is the smallest detuning from the nonresonant level. This
JpPob= YO paa— %(r;bdab?f rapdap@*), analysis of resonance processes imposes the consixaint

< 8. By selecting the frequencies and dipole moments of

d © s the impurity atom this constraint can be reduced but we must
giPaa™ —(va"+ valZ1°) paa assume thaty.|Z] (O) From this it follows that in the

steady-state regime no inversion is established for the
E.— E,, transition although for an ensemble of impurity at-
oms the fraction of atoms excited to tlg, level is fairly
high, of the order of

( abdab(( rabd b((*)

d ,
apcc: 'Ya|g]zpaa- (12

12 0)’
Here the quantities introduced have different valigdike vel#1"+ 27,

Eq. (1D)]: which may account for 10% of the total number of impurity

atoms.
A== 0, Aap=Ia(Q)=TTp(2), We consider the nonsteady-state excitation of Eye
Yab= ko (IT,(Q) —TI(Q))2/2h%+ y,/2, level for the simplest case where the fiéld is switched on
at timet=0 assuming that’(t)=0 for t<0 and Z(t)=#
Ya= kgl Hac —Q)|H12, ¥ 0= k| dap| 272 (13)  =const fort=0. As the initial conditions we take those cor-
responding to the equilibrium state of the impurity atom:
4, FILLING DYNAMICS OF THE E, LEVEL. POPULATION paclico=pedico=petlico=Pealico=pasli—o=0,
INVERSION
Pobli=0=1.

In this section we consider the situation shown schemati-
cally in Fig. 2. The system of equatiori$0) and (11) de- It follows from Egs.(10) and(11) that the population of
scribing the three-photon excitation of tkg— Egtransition  the E, level behaves as shown in Fig. 3.
under conditions where two-quantum relaxation channels The fluctuations of theée, level population reflect the
play a role, can be used to analyze various effects such d@abi oscillations of the pumpef.— E,, transition. It can be
optical nutations, inductions, echo phenomé&haccompa- seen that for typical values of the parameters the level popu-
nying the coherent pumping of th&.— E,, transition. At this  lation reaches a steady-state regime withEgnlevel popu-
point we merely discuss the excitation of thg level. lation of the order of 10%.

The system of equatiorid0) and(11) has a steady-state Unlike the steady-state regime, the overpopulaiigg
solution from which we write the quantities relating to the — p,, of the levels during a certain time interval may have a
E,—E,: transition: population inversion, as shown in Fig. 4.
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FIG. 5. Dynamics of overpopulation of the.— E, transition, assuming

FIG. 3. Filling of theE, level in the nonsteady-state regime assuming that ) )
¥ y ¢ J 9 N =1 £y /1] = = 1099 = 50y, = 100y, A = Ay 7|2,

Yl 2= 2yeol A2=0.2/, ucel %1 =D, A=Ag| ]2

It can be seen that inversion of tie,— E, transition
occurs at the first oscillation maximum. As the amplitude of
the electric field intensity of the wave increases, the numb
of “spikes,” during which inversion of thee,— Ey, transi-
tion occurs, increases. The effect becomes clearer if the rati
vl €114 increases for some reason. We stress that in the
absence of two-quantum relaxation, the inequality— ppp, Pec=1, ppp=0, paa=0, pap=0, pp=0,
<0. is always satisfied. Moreover, the population of e
level is always zerdfor these initial conditions

Thus, during short time intervals under conditions of
nonsteady-state coherent pumping of te—E,, transition
at the frequency of the neighborirfigy, — E}, transition a me-
dium consisting of impurity atoms in a photonic crystal be-
comes activéamplifying). No coherence is observed for this
transition.

the dynamics of ordinary optically allowed transitions asso-
ciated with the presence of these “traps.” At this point we
€hall discuss some of these features.

The steady-state solution of the systét#) and(13) has
e extremely simple form

which confirms the term “trap” for the level of an impurity
atom located in the photonic band gap. It can be seen that the
E.—E, transition becomes completely inverted. However,
the emission as a result of this transition is completely sup-
pressed by the spectral characteristics of the photonic crystal.
Figure 5 illustrates the attainment of this steady state when
the field (1) is switched on at timé=0: #(t)=0 for t<0

and Z(t)=#=const fort=0 The oscillations reflect the
Rabi oscillations of th&,— E,, transition. The time taken to

5. POPULATION DYNAMICS OF THE E. LEVEL. BLEACHING  reach the steady-state regime in a fairly high-intensity field
EFFECT (1) is of the order of

We shall consider the situation when an electromagnetic 5
wave interacts coherently with thE,— E, transition: O h—
~(E,—Ep)/%, and theE, level ascribed to a neighboring Kq|?5Hac(—Q)|2
optically allowed transition is located in the photonic band
gap. In the absence of two-quantum relaxation the system cr(fa a
equationg12) and (13) yields the ordinary Bloch equations
for one-photon resonance. However, the presence oEthe
level whose normal gradual depopulation is impeded becau

Thus, if an impurity atom in a photonic crystal has at
st one level coupled to the ground level by an optically
allowed transition and falling within the photonic band gap,
coherent pumping of any optically allowed transition con-

e. . . .
of the spectral characteristics of a photonic crystal makes ?&amlng _the”grour)d energy Ieyel wil be. accompanied by
bleaching” of this transition, i.e., depletion of the energy

necessary t(.) aIIow. even for weak two-q.uantum r(_:‘Iaxatloqevels of this transition and filling of the level situated in the
processes since this level acts as a particular trap for thes

processes, i.e., on reaching this level an impurity atom rep%otonic band gap. Thig directly ir]fluer!ces the propaggtion
mains in this state for a fairly long time. Equatioft) and of the coherent wavé€l) in the medium, i.e., after a certain

(13) can be used to analyze all the characteristic features cH‘m N r_equwed o transfe‘r‘ the excnat!f)n to the Ievel,_ the
impurity atoms become “transparent” for the wa{® since

they cease to interact with it. However, after a certain time
© interval, relaxation mechanisms come into pldywhich we
4 6 87" 10 neglected compared with two-quantum relaxation channel
. N : . but which must be taken into account over a fairly long time
interval. Such an analysis should be made separately. For the
simplest quadrupoleor diatomi¢® mechanisms for relax-
ation of theE.—E, transition these can be taken into ac-
count by adding to the right-hand sides of the equatid2s
terms proportional to the rate constapf) of these pro-

cesses:
FIG. 4. Behavior of the population inversion for tkg— E,, transition in d d
the nonsteady-state regime. The values of the parameters are the same as in __ (2) _ _ (2
Fig. 3. Y g vai p : dtpbbC>C Yc "Pcc> dtpccC>c Yc Pcc- (14)
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The steady-state solution of the systéi®?)—(14) is then
altered slightly:

poc=1-8(2+yQIT),  ppp=e(1+yIT),  paa=e,
where

R

'}’a| ;/(12
_ |dabe’/{/ﬁ|2( 7;0)/2"' Yab
(Y124 yap| &

e <1,

o5
2)2+(A_Aab &

Hence, even when the relaxation of thg— E, transi-

2)2'

A. M. Basharov

herent control of the relaxation mechanism for the—E,
transition. Nevertheless, in this situation we need to allow for
two-quantum relaxation channels which, unlike those consid-
ered in the present article, lead to additional deactivation of
the Ey, level. Depending on the parameters in the case con-
sidered in Ref. 15, the role of two-quantum relaxation may
be very substantial and may compete with the processes
taken into account in the present study. However, this situa-
tion requires separate analysis. We shall illustrate the impor-
tance of allowing for two-quantum relaxation in a situation
similar to that considered in Ref. 15 when thg level falls

far from the edges of a wide photonic band gap. This as-
sumption means that relaxation of tlig—E,. transition

tion is taken into account, the neighboring transition has &an generally be neglected. Then, for the initially excited

negligibly small overpopulation:
Paa™ Ppp= — € 7210)/F~ € 7;0)2/4/\2,
A=dap?1H |2y,

and the bleaching effect predominates. We stress that in t

proposed system for bleaching of the medium the electro;
magnetic wave interacts resonantly with impurity atoms in
the photonic crystal and propagates outside the photoni8
band gap, unlike in Ref. 25 where a different bleachingOr

mechanism was discussed whdnconfiguration atoms of

the photonic crystal interact with a high-power electromag- 7
netic field whose frequency fell within the band gap. The

level Ey, the ground levelE, would remain empty in this
approacf? and the coherent-wave excitation would be trans-
ferred from levelg, to level E. and back. However, when
allowance is made for two-quantum relaxation in the case
pb— E.<E.—E,, the impurity atom will be transferred
rom theE, state to the ground levé, . This has the result
that as a result of the depletion of tke level, the population

f the E,, level will also decrease and within a time of the
der of

ﬁZ

el ., 2
Kﬁlmca(wbc)|2

differences between the bleaching mechanism described amgh impurity atom from the excited statg, located in the
the familiar bleaching effect caused by saturation of a resophotonic band gap will be transferred to g ground state.
nant transitiof® are also obvious and do not require separateHere £ is the amplitude of the coherent field in one-photon

discussion.

6. CONCLUSIONS

resonance with th&,— E transition andk, is the coupling
constant with the photon thermostat having the central fre-
guUEeNCYw y= w.,— wpe. FOr estimates we can use the formu-

las
In the present paper we have demonstrated how the sup-

pression of the ordinary relaxation channels in impurity at-
oms in photonic crystals brings new relaxation channels to
the forefront, based on two-quantum relaxation mechanisms

fict

Zﬁwg
4l w3| [ca( wpe) | 2’

Kop=—"—%5
C3

Trel

accompanying the action of coherent fields on impurity atwherel is the intensity of the coherent wave averaged over
oms. In these examples two-quantum relaxation resulted ithe period 21/ wy, of the fast oscillations.

the filling of levels inside and outside the photonic band gap.

We confined our analysis to théconfiguration of impurity-

This work was supported by INTA$Grant No. 96-
0339.

atom energy levels involved in the resonant pumping and
two-quantum relaxation processes, although all the energye mail: ashat@ashat.mephi.su, ashat@amicom.ru

levels of the impurity atom were formally taken into account

in the parameters of the resonant processes. However, the
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An example may be the situation considered by Quang

et al’® where the frequency of th&,—E, transition as-
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teristics of the photonic crystal and thg,—E, transition
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that the frequency of th&,— E, transition should lie near

the edge of the photonic band gap so that the rate of relaxs
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Experimental results are presented of a study of the magnetic and electric dipole absorption of
microwave radiation by a laser plasma which accompanying the evaporation of various
metals. An analysis is made of the influence of the finely dispersed fraction on the absorption
and it is shown that the model of a percolation cluster provides a good explanation for

the entire set of experimental results. 1®99 American Institute of Physics.
[S1063-776(199)00812-4

1. INTRODUCTION investigation of the electric-dipole and magnetic-dipole ab-
sorption of a microwave in a low-temperature laser plasma
In a pioneering study of a laser jet using microwaveand we analyze the role of the dispersed phase in the micro-
methods, Ageeet al. observed the total reflectiofcutoff)  wave absorption. This analysis is based on the conclusions
of a microwave from the plasma region in which the electrondrawn in theoretical studi&$®which investigated the optical
density exceeds a critical value. This cutoff occurred aboveroperties of conducting patrticles in a dielectric matrix.
the breakdown threshold of air and the time taken for the
transparency to recover did not depend on the target matg- experIMENT
rial. It was shown in Ref. 2 that at moderate optical flux _
densities(which do not cause breakdown of the vapor-gas?-1- Experimental method
medium) it is possible to measure the microwave conductiv-  Figure 1 shows an experimental apparatus which can be
ity of a laser plasma. The conductivity is determined by theused to study microwave absorption at two frequencies and
target material and is fairly high when both metals and di-the optical flash from the laser jet. Heating 1.061 laser
electrics evaporate. By placing the jet in the antinode of theadiation, having a quasi-cw pulse duration of 10 ms and a
electric or magnetic field of a standing microwave, it is fairly power density in the range 1010 W/cn?, was focused
easy to separate and measure the conduction current aneto the surface of the target in a 0.5 mm diameter spot. The
eddy current losses. laser radiation and the counterpropagating flux of evaporated
When various materials are evaporated by laser radiamaterial from the surface of the targédser je} were passed
tion, the material flux almost always contains a finely dis-through 5 mm diameter apertures positioned at the center of
persed condensed phase: small droplets of melt expellettie wide walls of two waveguide sections having cross sec-
from the cratef, condensate microclustetsand fractal tions of 817 and 1(x 23 mnt. The sections were in con-
structure§ formed as a result of the cooling of the plasma astact with one another, having a single common wide wall.
it expands. In addition, as the density of the metal vapor oiThe directions of propagation of the 2 cm and 3 cm waves
its oxide increases in the plasma of the laser jet, a percolatiowere orthogonal. By measuring the microwave absorption at
transition takes placeln the classical percolation model a two frequencies, we were able to compare the signals ob-
critical cluster is formed by contacting conducting micropar-tained in different experiments more accurately than in Ref.
ticles. In the microscopic model a percolation cluster appear8 by using one of the signals as a reference.
as a result of the overlap of the wave functions of atoms and In order to study the microwave absorption signals, we
molecules for which the density of the material must be closeaised a reflection scheme in which the antinode of the electric
to the critical point. In a plasma containing a finely dis- or magnetic field of a standing microwave could be posi-
persed phase a percolation cluster may be formed on a chtened in the plane of the jet by changing the position of a
otic lattice of noncontacting compact microclusters. Being ashort-circuiting plunger in the corresponding waveguide
heat source in a laser radiation field, a microcluster is a cercross section. Typical profiles of the laser pulse, the optical
ter of spatial inhomogeneity in the temperature distributionflash, and the microwave absorption signals in the antinodes
and the electron density. Additional conductivity appears inof the electric and magnetic fields were given in Ref. 3 for a
the structure when the average distance between the latti@cm wave. The coefficients of microwave absorption in the
points is comparable with the characteristic spatial inhomodifferent antinodes cannot be compared directly since the
geneity scale of the plasma, for instance, the thickness of theignals, particularly the initial evaporation time, vary from
electric double layer surrounding an isolated microclusterone pulse to another. We used the-2 cm microwave ab-
According to our estimatésthis situation is achieved for a sorption signal as the reference signal.
laser jet. The reference signal can be used to normalize the ab-
In the present paper we report results of an experimentajorption signal observed when the jet is located in the anti-

1063-7761/99/89(12)/6/$15.00 1072 © 1999 American Institute of Physics
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10 and this can naturally be attributed to the breakup of the
7t 9 absorbing micro- and macroformations in the jet.
8 When we switched off the 3 cm klystron during the laser
pulse, we did not detect any significant transfer of micro-
S5l la—g wave energy from the 2 cm to the 3 cm waveguide channel.
2@@ - The fraction of the microwave radiation scattered by the jet
material and escaping through the apertures in the
V waveguides was also negligible. Replacing the short-
3 circuited 3 cm waveguide section with a transfer section hav-
17 ing suitable facilities for detecting the transmitted radiation
3 9 yields results in good agreement with those obtained for the
10 standing wave. All the control experiments were carried out
. . _ for the laser jet plasma and for various absorbiognduct-
FIG. 1. Schematic of experimentl—laser beam,2—target, 3—jet, . . . .
4—focusing lens {=17 cm),5—2 cm waveguide sectioiE—3 cm wave- ing) samples havmg the ;ame Sh"’.‘pe and S!Ze as the jet.
guide sectioriturned through 90° about the axis of the laser beam relative toAQUEOUS solutions of sodium chloride and binary powder
section5), 7—short-circuiting plungerss—microwave radiation generators, mixtures were selected as the calibration media. The latter
9—circulators, andl0—microwave radiation detectors. contained graphite or metal impurities to provide conductiv-

ity.

node of the electric or magnetic fields of the 3 cm wave
relative to the absorption signal in the 2 cm waveguide
where the position of the jet coincided with the antinode of
the magnetic field and remained constant.

The shape and size of the jet are determined by the self- When material is evaporated by moderate-intensity laser
interaction effect in the laser-beam—plasma system and dgulses, the vapor pressure is equal to the buffer gas pressure.
pends on the target materialhe time taken for the material In earlier studies we measured the absolute values of the
to pass through the waveguide was much shorter than thmicrowave conductivity and the brightness temperature in
duration of the laser pulse and did not exceed 0.5 ms. Aftethe visible part of the spectrum of a laser jet near the surface
a quasisteady-state evaporation regime had been establishefvarious single-component mediamcluding metal§® and
(<1 ms) neither the transit time nor the transverse dimentheir binary mixture$. At normal pressure the microwave
sion of the jet depended on the irradiation time. According toconductivity of single-component media is comparatively
Anisimov et al.* in the quasisteady-state regime the densityhigh (>10? S/cm) and the brightness temperature is close to
of the evaporated material is determined by the density of théhe boiling point of the material. According to the Drude
heating laser radiation and the buffer gas pressure. It shoulidrmula, this conductivity could be provided by an electron
be noted that at fairly high optical fluxes the dispersed phasdensity in excess of #cm 3. Since the concentration of
in the plasma may be destroyed. In our experiments, wheneutral particles in the jet is-10"cm™3, under conditions
the laser pulse power was increased té\Wdcn?, a reduc-  of ionization equilibrium at the boiling point of metals the
tion in the luminescence intensity and the microwave conelectron density in the plasma is between 1.5 and two orders
ductivity of the jet is observed for some medeg. copper  of magnitude lower than that required by the Drude formula.

2.2. Plasma parameters

o]
T
g

L]
o® ‘. I
Q..I & f« Q: FIG. 2. Evolution of the ratidP, /Pg during laser irradiation of
[}

s metals:1—dysprosium an®@—vanadium. Buffer gas—air.
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Estimate® show that at normal pressure in the low- TABLE I. Values of the ratioP /Pe.
temperature plasma of a laser jet the concentration of conr

pact microclusters may reach10cm 3, P, Buffer gas

In the plasma of a jet having transverse dimensions ofarget Torr. Ar Air Fair, MM
the order of 1 mm, such high values of the conductivity IeadGralohite 30 1505 o1 18
to effective skinning of the microwave radiation and substanmg 70 0.5+0.1 0.5-0.1 3.2
tial mismatch of the waveguide channel. Thus, in the preserl 55 0.85+0.15 0.8:0.3 3.9
study the measurements were made at gas pressures and 8p- 55 0.6:0.3 0.6:0.6 3.2
tical flux densities for which the microwave power absorbe ! ;2 ;$8§ i'gg'g ﬁ
and reflected by the plasma is much lower than the power ig, 23 1002 0.45-0 25 10
the waveguide and distortions of the microwave field by there 45 0.26:0.05 0.23-0.05 11
jet can be neglected. In the present experiments this condéo 80 0.3:0.1 0.3-0.1 2.1
tion was satisfied as long as the conductivity of the jet didNi 80 0.05-0.02 0.05:0.02 2.1
not exceed 1 S/cm. The level of conductivigbsorption for cu 136(? 0%&8'25 2‘58'2 ‘1‘;
each material was selected by varying the buffer gas pressuge 30 0750 25 1.06-0.25 13
in the range 10%—1 atm. These measurements show that agp 100 2.0:0.5 2505 1.0
the pressure is reduced, the brightness temperature decreas®es 70 1.75-0.50 15-0.5 1.2
in accordance with the saturation curve. Whereas the conceh2 5 1.0:0.2 101 12
tration of neutral particles can be assessed from the change g 047&8'25 01;502 1 ﬁ
pressure and temperature, at reduced pressures the ot 5 25105 61 12
plasma parameters of the laser jet require further study whicho 5 62 12+2 1.4
we did not undertake. Hf 30 0.2-2 0.2-1.0 1.45

Note that at reduced pressures simples estimates of tHeé 55 2.0-0.2 2.0:0.5 0.9
electron density using the Drude and Saha formulas yield aﬁ/e 2% tig'f 1'(58'? 12
even larger mismatch than that obtained at normal pressurg; o, 15 py vy 165

2.3. The ratio Py /Pg for a laser jet plasma

Figure 2 shows typical behavior of the ratio of the images of the jet integrated over the visible part of the spec-
magnetic-dipole to the electric-dipole absorptigsubse- trum and the irradiation time, in the cross section corre-
quently denoted aB /Pg) during the establishment of ad- sponding to the center of the 3 cm waveguide. The measure-
vanced evaporation. For each metal the kinetics are obtaingdent error did not exceed 10%.
from the ratio of the 3 cm wave absorption signals in two
successive laser pulses. The initial evaporation times were _
matched by using the absorption signals recorded in the 2 o Model experiment
waveguide. After the beginning of evaporatior=Q), the Since percolation occurs in an optical discharge plasma,
ratio Py /Pg usually increases monotonically and stabilizesit is interesting to study the behavior of the rallq /Pg near
at a certain level after quasisteady-state evaporation has betre percolation threshold for condensed composites conven-
established. The initial stage of the kinetics clearly reflectgionally used to study the metal-nonmetal transition. We
an increase in the vapor density. Table | gives the averagpresent results of an investigation of microwave absorption
values of this level together with the error arising from thein mixtures of graphite and magnesium oxide having a char-
fact that the fluctuations of the magnetic-dipole and electricacteristic particle size of~1 um. Cylindrical samples with
dipole signals recorded in two successive shots differ. These=1 mm(or 1.5 mm) andl =3-30 mm were drawn through
fluctuations are several times the spread of the average leviéiie waveguides in the experimental system used to study the
in different series of measurements of the microwave absorplasma jet.
tion. The error associated with the fluctuations can be mini-  Figure 4 gives the results of an experimental study of
mized by calculating the ratio, not for the instantaneous timemicrowave absorption when the sample is placed in the an-
but for the integral absorption in the steady-state section aofinodes of the electric and magnetic fields. As we predicted,
the kinetics normalized to the absorption in the 2 cm wavethe percolation threshold in the powder mixture corresponds
guide. Figure 3 gives the ratiBy /Pg as a function of the to a volume fraction of the percolating componept X of
composition of a vanadium—iron mixture obtained by thisapproximately 0.3. Experiments carried out using the same
method. A small change in the conductivitgpproximately = mixtures at dc current give the same value for the threshold.
twofold) is accompanied by threshold behavior of the ratiolt can be seen from Fig. 4 that as the concentration of the
Py /Pg which may be attributed to percolation in the vana- percolating componer{graphite increases above the perco-
dium subsystem. It should be noted that the size of the jefation threshold, the rati®,, /P increases, approaching 0.3.
varies negligibly with the mixture composition. Table | gives In the range of concentrations where absorption takes place
the transverse dimensions of the jet;) for the various at isolated graphite particles, the ratRy /Pg is approxi-
materials studied using air as the buffer gas. The radius wamately 0.01. For concentrations greater than 0.5 this ratio is
determined by a densitometric method using photographidistorted by the skin effect which reduces the microwave
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absorption in the electric and magnetic fields of the standingated by the conduction currents in the plasma flux crossing
wave. Note that the skin effect weakly influences the ratiothe waveguide between the wide walls can be expressed in

Py /Pg. the following form:
PH 0‘))(”|H|2V 2 2

3. DISCUSSION OF RESULTS — = ——>—— = ggiow-p°k, 2
Pe J'|E|?V

The powers dissipated by the material in the antinodes of
the electricE and magnetid fields of the standing micro- WhereV is the volume occupied by a plasma of cross section
wave are respectively given by mp? in the waveguides,, is the dielectric constant, ang, is
the magnetic constant. The coefficidat 2.5 allows for the
PE:J o(r)|E(r)|2d%, PH:wf X"(N)[H(r)|2d3. change in the magnetic polarizability on changing from a
sphere to a cylinder whose axis is perpendicular to the
(D field22 It follows from Eq. (2) that the eddy current losses
Here o is the real part of the conductivity” is the imagi-  predominate over the conduction current losses if the trans-
nary part of the polarizability of the sample, aBcandH are  verse dimension of the jet ip>0.3cm. In our case, the
the intensities of the electric and magnetic fields of a micro+adius of the jet in the waveguide is approximately 1 mm and
wave at frequency, respectively. the ratioPy /Pg should be less than 0.1. Control experiments
We shall analyze these results using the model of a hodsing a column of aqueous electroly@daCl) of the same
mogeneous plasma and a plasma containing a disperssite yieldedP, /Pg~0.03. A similar value was obtained for
phase. the thermionic flux from copper and aluminum targets heated
by an optical beam before the onset of evaporation and also
at the initial stage of the evaporation procésse Fig. 2 It
When the skin effect can be neglected, the ratio of thecan be seen from Table | and Fig. 3, which give the ratios

3.1. Homogeneous electron—ion plasma flux

eddy current losseBy; (see Ref. 11to the powerPg dissi- Py /Pg, that in the advanced evaporation regime this ratio
1.0
®
e -/ o
0.8
v -2
®
o-3 ® L
0.6}
@ FIG. 4. Power absorbed by sample as a function of the volume
I e t] O fraction of graphite §,) in a graphite—MgO compositd:—electric-
‘%—Cb 0O a dipole and2—magnetic-dipole absorption in arbitrary unig;-the
041 /’Tj ® ratio Py /Pg . The relative error in the determination Bf; /P is
e P 20%.
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may be substantially higher. It changes from one material t®.4. Role of filamentary and annular structures
another and does not correlate with the size of the jet. These
variations in the ratio are clearly related to the internal struc
ture of the plasma and in particular, to the presence of

flgelly(/) dispersed pgabse.thNote that fa|1rEIIy I?rge ?hropletslt than the conductivity of the particles themselves because of
(=10um) removed by the vapor-gas flux from the me the presence of poorly conducting contacts. Second, an in-

make no significant contribution to the microwave absorp- - . N
. . Co crease in the electric-dipole absorption is promoted by the
tion because of the skin effect of the field in these droplets P P p y

o th ical lumi b f thei absence of any polarization shielding if the filaments are ori-
nor 1o the optical luminescence because of helr Compargsiaq in the direction of the electric field. For a filament of
tively low temperature.

lengthb the depolarization factdr has the forn?
I [2b

When conducting particles coagulate to form filamentary
structures, the electric-dipole absorption increases. First, the
%onductivity of the filament ¢;) will be substantially lower

a

b

We know that composites comprising a dielectric im- hich leads t . inth ficient of electric-dinol
pregnated with small metal particles exhibit anomalouslyW ichieads lo an Increase in the Coetlicient ot etectric-cipole

: -2
high absorption in the infraréd. In this case, the ratio 20SOrption by the factor=L""Woy/oy (Ref. 9, where

P,,/Pe is equal to the ratio of the coefficients of magnetic—w is the probability that a conducting particle is incorporated

dinol d electric-dinole ab tSand b g in the filament. . .
ir:F)tﬁ:firlllovar?g fr(;crm{po © absorplioand may be expresse The eddy losses increase when large closed conducting

loops appear in the system. For randomly oriented rings of

3.2. Role of compact microclusters L= In -1

; 4

Py 8772520?“ radiusR<\, from Ref. 9 we havdto within a constant of
P. 45c%,; 3 the order of unity the factor o, =(R/a)?W, in the coeffi-

cient of magnetic-dipole absorption, whefé is the prob-

. o , , ability that a conducting particle is incorporated in the ring.
active conductivity of the metah is the average radius of If the probability isW~1, i.e., all the conducting par-

the compact 'parti(_:les, aradis thg veI(_)city of light. Formula  ji-jes are involved in forming filaments or rings, then for
(3) was obtained in the approximation of long wavelengthsg, 5 19 (or b/a~ 10) the corresponding coefficients are in-

(A>a) and ][ovr\ll frequenc[emrfl, wherer |shthe rlelax- creased by two orders of magnitude. However, the formation
atlon It|me ﬁ the cor(ljduc_tlc_)n _eecltrons over t ”E_z phhﬁ)rdd of these structures with any appreciable probability was not
particles whose conductivity Is close to metallic, the eddy,psered in the laser jet. Note that the filamentary structures

current losses predominate over the conduction losses if th&ppearing after the action of the laser pulse are the result of
radius of the metal particles &>50A. Since the character- the directional aggregation of cooled partictés

istic size of the compact clusters formed in a laser plasma as

a result of condensatior} does not exceed this Vatbe, ex- 3.5. Role of fractal structures

istence of merely spherical compact metallic clusters cannot

explain the maximum experimental values of the ratio  Quite clearly, branched fractal structures, in particular
Py /Pg given in Table I. In addition, the transition from percolation structures which form at fairly high microparticle
metallic to poorly conducting clustefsuch as AJO,;, Si, or ~ concentrations in a laser jet, can substantially influence the

C) should lead to a sharp drop in the raig /Pg . electric- and magnetic-dipole absorption since both linear
and annular fragments exist in these structures. The nature of

the material distribution in a fractal cluster leads to an effec-

3.3. Role of an absorbing transition layer tive decrease in the conductivity as the radius increase and

The electric-dipole absorption of metal particles in- consequently increases the electric-dipole absorption
creases if these are surrounded by a thin poorly conduc’[in@’hereas the magnetic-dipole absorption in a fractal cluster is
layer (@o ¢t '<o,,, Wheret is the thickness of a layer hav- increased as a result of the dominant influence of a factor
ing the conductivityo). In this case, in the coefficient of Which depends on its size.
electric-dipole absorption the metal conductivity, is re- In accordance with Ref. 10, for a three-dimensional frac-
placed byo.a/t (Ref. 9. Hence, for metal particles with a tal cluster the amplification factors for electric-dipole and
poorly conducting coating we can predict that the absorptiorinagnetic-dipole absorption are respectively given by
will increase by five orders of magnitudedf,=1 S/cm and R 5(3—dy)/2 Ry (1+d)2
t~0.1a. Such a poorly conducting layer could be formed by ( ) and (— , 5)
oxides or nitrides on the surface of microclusters or particles. a
Thus, when an inert buffer gas is replaced by air, we shoulavhereR; is the cluster size ands is its fractal dimension-
expect a significant increase in the electric-dipole absorptiomlity. Hence, the ratid®y /Pg will increase if the fractal di-
compared with the magnetic-dipole absorption, particularlymensionality exceeds 7/3 which is satisfied in the three-
since the formation of poorly conducting layers should re-dimensional case for a percolation clustdf=2.5).
duce the magnetic dipole absorption. The results presented in Note that the presence of percolation structures in the
Table | do not support this assumption. In most cases, suchlaser jet is indicated by characteristic threshold dependences
replacement is accompanied by a relative increase in thef the microwave absorption and the optical luminescence of
eddy current losses. the laser jet on the composition of the tar@&t.

whereg; is the dielectric constant of the dielectrig,, is the
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3.6. Role of percolation structures sorption as the laser jet evolves and their ratio may have

Percolation models are widely used to interpret th values of the order of unity in the advanced evaporation re-

metal—-nonmetal transiton in disordered condensed'M¢: High values of thg ratiby /P were also pbtained for
medial>'6 The most comprehensive experiments in this di_the condensed composite above the percolation threshold. A

rection have been carried out for island films and Composgood qualitative explanation of these results can be provided

ites. We know that as the percolation threshold is a by assuming that percolation structures exist in the low-

proached, the real part of the permittivity diverddd. emperature laser plasma.

According to Bowman and Strodd, close to a threshold This work was supported by the Russian Fund for Fun-
with an even larger critical index, the diamagnetic susceptigamental ResearctGrants Nos. 96-02-17606 and 96-15-
bility diverges. 96537.
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A broad class of exact solutions is obtained for the problem of the equilibrium configuration of

the charged surface of a conducting liquid allowing for capillary forces. An analysis of

the solutions showed that when the amplitudes of the perturbations reached certain critical values,
the region occupied by the liquid ceases to be singly connected, which corresponds to the
formation of liquid metal droplets. It is shown that a steady-state liquid metal profile may exist

for which appreciable local amplification of the electric field can be achieved19@9

American Institute of Physic§S1063-776(99)00912-9

1. INTRODUCTION Crapper to solve the problem of the capillary wave profile at
the free surface of an ideal liquid With a correction for the
As we know;* the plane surface of a conducting liquid known analogy between the distributions of a planar electric
(liquid meta) becomes unstable in a fairly strong electric field in the absence of space charge and the velocity field for
field. A characteristic feature of this InStablllty which is of the two-dimensional potentia| flow of an ideal ||qu|d’ this
considerable interest for the phySiCS of the evolution Ofmethod is based on Changing from Cartesian coordinates
vacuum discharges and the operation of liquid-metaly yi to new variablege,}, whereg satisfies the equation
charged-particle emittesee, for example, Refs. 3B that o, the Laplace potential of the electric field, andis a
nonlinearity does not saturate linear instability but is, in con+,ction harmonically conjugate tp (in Ref. 15 these func-
trast, a destabilizing fac_:tc?r? Consequently, even if the Sur- ions had the meaning of the current function and the veloc-
face is stable in the linear approximation, a fairly large-jy, notential, respectively Since the surface of a conducting
amplitude perturbation can remove the system from equiliyiq )i is equipotential, and all the important quantities can be
brium. The simplest problem which can be used to assess trb%(pressed in terms of the harmonic functiba In|V¢l, the

role Qf nonlinearity, and in parUcqur to find the thresho!d initial problem with an unknown boundary reduces to an
amplitudes of the surface perturbations for the hard excita:

fi f instability. is th bl f the steadv-stat il fanalysis of a nonlinear boundary-value problem on the half-
ion ot Instability, 1S IN€ problem ot the steady-state proflie o plane for the Laplace equation for the functibfy, ¢).
a liquid metal surface in an external electric field. Of consid- - .

. . L ) A similar procedure was applied to the problem of the
erable interest also is the problem of the equilibrium configu-

. I . equilibrium configuration of a two-dimensional charged
ration of a charged liquid-metal droplet which plays a key" uid-metal droplet. It was found that the nonlinear equa-
role in understanding the conditions for its breaRup. q plet q

A considerable number of studigsee, for example, tions obtained can be completely integrated. The short-wave-

Refs. 9—11 and the literature cited thepdiave considered a Iengt_h limit of t_he_e>_<act solutions constructed by (l.nbe
dielectric liquid in an electric field using the approximation SCIUtions for this limit are the same as those obtained by

of small surface perturbatiorghe case of a liquid metal of Crapper for a capillary wayecorresponds to another impor-
interest to us is obtained in the limit of infinite permittivity t@nt electrostatics problem, i.e., the steady-state profile of a

Significantly nonlinear liquid configurations have either beerfiduid metal in an external electric field. _
analyzed by numerical methddor qualitatively!® As re- The article is made up as follows. In Sec. 2 we give the

gards exact analytical solutions of the problem of the Steadygqu-ations defining the equilibrium configuration of a charged
state profile of a charged-liquid metal surface, we are pregiquid-metal surface for the case of plane symmetry. By anal-
ently only aware of a single particular nontrivial solution, the 09y With Ref. 15, we show that using a conformal mapping
so-called Taylor con& However, the force balance condi- method can reduce the investigation to solving a nonlinear

tion for a Taylor cone is violated at the singularity, i.e., its boundary-value problem on the half-plane for the Laplace
vertex, so that this solution is of a formal nature. equation. In Sec. 3 we put forward an additional assumption

In the present study we obtain a broad class of exac®n the distribution of the electric field outside the conducting
analytical solutions for the problem of the equilibrium con- liquid and we determine the necessary conditions for its
figuration of a charged liquid-metal surface, taking into ac-compatibility with the initial equations. In Sec. 4 we obtain
count surface tension forces, for the case of planar geometigxact solutions for the problem of the equilibrium configu-
when all the quantities depend on the pair of independentation of a charged two-dimensional liquid-metal droplet and
variablesx andy. The approach used to solve the problem isalso for the steady-state profile of a liquid metal in an exter-
based to a considerable extent on the method used hyal electric field. In Sec. 5 we construct and investigate the

1063-7761/99/89(12)/8/$15.00 1078 © 1999 American Institute of Physics
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equilibrium surfaces corresponding to these exact solutionwill also be an analytic function, this being the analog of the
In the concluding section we discuss their stability with re-Zhukovski function in the theory of the plane potential flow
spect to small perturbations. of an incompressible fluid, where

f=InE, 6=arctatE,/E,).

_ _ o _ _ The functiond has the meaning of the angle of inclina-

1. We first consider the equilibrium configuration of a tjon of the electric field intensity to the direction of the
charged two-dimensional conducting droplet. Let us assumg,is. since the intensity vector is normal to the surface of the
that a liquid having the free surfac occupies a certain  congyctor, we can assume tiig defines the angle of incli-
bounded, singly-connected region in the plgrey} (in the  pation of the vector of the external normal to the surfsce
direction perpendicular to this plane the conductor is Unygative to the abscissa. Then, in accordance with the defini-
bounded, i.e., it occupies a volume bounded by a right cylln-[ion, the curvature of the surfacé is given by: R™%
drical surface in three-dimensional spac€he distribution =(961/9s)|s, whereds is the elementary arc of the surface.
of the electric field potentiap (the field intensity is given by  aq 3 result of the Cauchy—Riemann conditions for the func-
E=—Vy) in the absence of space charge is described by thgys f and 9 we obtain:R™1=(4f/an)|s, wherea/on de-

2. INITIAL EQUATIONS

Laplace equation: notes the normal derivative. Converting to the functignve
@xxt Pyy=0, (1)  find on the surfac&s

which should be considered jointly with the condition for an R‘l—i JE _ oElon _ JE

equipotential conductor surface: "Eodn delon  de’
¢|s=0, (2)  That is to say, we have shown that curvature of the liquid

etal surface is given bR~ 1= —(JE/d¢)|s. In this case,

and also the condition that at some appreciable distance fror@ (6) is rewritten in the form

the surface, the field of the charged conductor will be the q-
same as the field generated by an infinite, charged, straight JE

filament™® 9 PT E?  ¢=0. (8)
¢——2qinr, E=|E|-2q/r, r—o, 3 For the following analysis it is convenient to convert to a

where r=\x?+y?, and q is the electric charge per unit System of coordinates wheteand ¢ play the role of inde-

length of the conductor perpendicular to the pldrey}. pendent variables. As a result of the analytic nature of Eq.

The equilibrium relief of the liquid metal boundary is (7), the functionf in terms of the new variables will satisfy
determined by the balance condition for the forces acting ofhe Laplace equation

5
the surface" fopt T =0 9)
2
E a with the condition at the conductor boundary derived from
87 s R formula (8):
where « is the surface tensiom is the difference between ﬁ_ o 4ef _o (10
the liquid pressure and the external pressure, Rrid the e =P R A

radius of curvature of the surface.
For convenience we now go over to the dimensionles
variables: f—p, @——x, (12

Sand also the condition at infinity:

E—4maq E, r—q?(2ma) *r, obtained from the expressioiis) by eliminating the spatial
variabler. Bearing in mind that in the limitz| -« for the

2~—2
¢—20¢, p—2matq p. complex potential we hav®é w— —Inz and consequently a

Expressiong3) and (4) are then rewritten in the form closed surface corresponds to changingy 27, we add the
o—Inr, E—1f, r—w, ) condition for periodicity off with respect to the variablé:
f(o,h)=F(p,p+2m). 12

. Thus, the problem of finding the steady-state profile of a
and Eqs(1) and(2)_ remain as befor_e_ . charged liquid-metal two-dimensional droplet involves ana-
By analogy Wlth Ref. 15, we introduce the auxiliary lyzing the boundary-value probler®)—(12) on the half-
function ¢ for which planeg=<0. Note that in order for the solutions of this prob-

E={aylay,— dpl ox} lem to be physically meaningful, the corresponding surfaces
must not allow self-intersection. However, using the confor-
mal mapping method cannot ensure that this condition is
satisfied at this stage.

(the conditiony= const defines the electric field line§he
complex expressionw=¢—i¢ (the so-called complex

potentia) is an analytic function of the complex variatie 2. We shall now consider the problem of the equilibrium

=x+iy (Ref. 16. Then configuration of the free surface of a conducting liquid in an
In(—dw/dz)=f—i6 (7) external electric field&€,. We shall assume that the vector of
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the external field intensity is directed along thexis. The of

distribution of the electric field potential is described by the 7= P(e)e” "+Q(p)e', (19
Laplace equation(1l) combined with the condition for an

equipotential liquid surfacé2) and also the condition at in- whereP andQ are certain functions of the varialdg which
finity: satisfy the conditions

¢——Eoy, y—, 13 P(0)=p, Q(0)=1 (20

which means that the perturbations introduced in the fieldo agree with conditiori10) or
distribution by the surface decay over distance. The force

balance condition for this problem has the form: P(0O)=-1, Q(0)=1 (21)
E2 g2 o to agree with(16). We shall subsequently show that by using
A ﬁ:0, (14)  this assumption, we can reduce the solution of the initial
8w 8w s boundary-value problems to the successive integration of or-

dinary differential equations.
We now explain the meaning of this additional relation-
ship. Using the functioik, Eq. (19) has the form of an ordi-

which corresponds to the pressure difference
=— ES/(877). The conditiong13) and(14) have the simpler

form: : . . . . . .
orm nary Riccati differential equation with the independent vari-
p—-y, E—=1 y—o, able ¢:
E—E2—1 =0 &E—P + E? 22
dg I A P (¢)+Q(¢)E?, (22)

if we convert to dimensionless variables by substituting:  or, reverting to dimensional quantities

E—EoE, r—8maE,?r.

E’Q(e) a

Introducing the functiorf =In E as before in coordinates PP(e)+ 8 + E =0,

wheree and ¢ are the independent variables we obtain:
fo4f =0 (15) whereR’ is the radius of curvature of the equipotential sur-

e Tyyp™ Y face passing through this point. This implies that on the equi-

of P potential surfacep= ¢;<<0 the following relationship must
G0 € Te. ¢=0, (16 be satisfied
-0, @——c. (17 5+E—2+3,=0,

As far as the conditions fog are concerned, we shall as- 87 R

sume that the functiofiis periodic: where we have introduced the notation
fle.4)=F(@,y+N\), (18)

j . j . _ a=alQ(¢1), P=PP(¢1)/Q(¢1),
where\ is the wavelength in Cartesian coordinates—£iz ! ! !
for y—o and thus, changings to A will correspond to Which has the same structure as the force balance condition

changing thex coordinate to—\). (4). In this case, our assumption implies that if all the nec-
We have therefore shown that the problem of determin€ssary equilibrium conditions are satisfied on a certain sur-
ing the steady-state profile of a liquid-metal surface in arface(corresponding tgo=0), any other surface = ¢, will
external electric field taking into account capillary forces can@lso be a solution of this problem for new values of the
be reduced to an analysis of the nonlinear boundary-valusurface tensiom(¢,) and the difference between the inter-
problem (15—(18). It should be noted that apart from the nal and external pressure$e;).
transformations, these equations are the same as those de- Quite clearly, in the general case the systems of equa-
rived by Crappef; who analyzed the steady-state profile of ations (9)~(12) and (15)—(18) combined with conditior(19)
progressive capillary wave. The analogy arises because froye overdetermined. We find the valuesPadndQ for which
the mathematical point of view, the equations describing thehe Laplace equatiof®) or (15) will be compatible with the
two-dimensional electric field distribution in the absence ofadditional condition. Knowing the specific form of these
space charge are identical to the equations for the plane p@unctions we can solve Eq19) or, which amounts to the

tential flow of an ideal fluid. same thing, the Riccati equati¢®2) which for arbitrary val-
ues of P(¢) andQ(¢) is not integrable in quadratures. For
3. ADDITIONAL ASSUMPTIONS; COMPATIBILITY this purpose we consider the general equation
CONDITIONS .
Jd
In order to find solutions of the nonlinear boundary- ——=G(f,¢) (23

d
value problemg9)—(12) and (15)—(18), it is convenient to ¢

make the assumption that, in addition to the Laplace equaand we determine the dependence of the func@oan the
tion, the functionf for ¢ <0 satisfies the equation variablesf and ¢ required for compatibility with the Laplace
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equation. We first differentiate E¢R3) with respect tap and P(e)=—(1+X(¢))Xee?, Q(e)=X(¢)X,e
substitute the expression obtained into ER), which gives: (29
fyy=—G,—GGt. where we have introduced the notatidy=(l—1)/2 and
Multiplying both sides byf, and then integrating with re- I= Vl__4p- ) )
spect toy, we find: Using the representatio(29) for P and Q, we obtain
from Egs.(27) and (28)
zfﬁ/:A(‘P)—J (G, +GGy)df, (24 X o= 2X,+ (1+25)X—8X%(1+X) =0,
whereA is a certain function of the variable. Differentiat- XeoT 2X¢+(1+25)(1+X)—8X(1+X)2:O.

ing this expression with respect to gives: . . . -
g P pectiog It is readily seen that the condition for compatibility of these

equations will be
f¢¢f¢=A¢—ZGG¢—GZGf—f G,,df. (25)

o _ _ o X,=2X+2X?~1/4—s/2. (30
The cross derivativé ., can be obtained by differentiating ) N ) .
expressior(23) directly with respect tay: f,,=Gf . Sub- In orde.r to satisfy cond|t|o_r_(20) this equation must be
stituting this relationship into Eq25) and then eliminating Solved jointly with the conditiorX(0)=Xo>0. For conve-
f, using Eq.(24), we finally obtain the following integrod- Nience we rewrite conditiof80) in the form

ifferential equation for the functio® considered as a func- X, = 2(X—X1)(X=Xy),

tion of the independent variablésand ¢:
using the notatioiX; ,= — (1*k)/2 andk= ys+3/2. We as-
2AG;— 2fo G, df=A,—2GG,— f G,.df. (26)  sume thaiX;<Xy<X, and therefore £l <k (an analysis of
other possible cases does not yield a solution of the initial
This expression is a necessary condition for the compatibilityproblem. Integrating this ordinary differential equation then

of Egs.(23) and(9). gives
We now substitute into the compatibility criterid@6)
the functionG in the form: v X+ Xy exp[2k(¢+@o)} . 1 In( Xz_xo) (31)
= 7 0= ]
G(f,0)=P(p)e "+Q(g)e, 1+exp{2k(¢+ @)} 2k T\ Xo= Xy
which corresponds to Eq19). We find: These relationships combined with the expressi@ for

_ the functions® andQ ensure that the necessary compatibility
f_ f

(Qqe+2AQ)e" (P, +2AP)E conditions are satisfied for E¢L9) and the boundary-value
=A,—4P,Q—-4PQ,. problem(9)—(12).

We now use Eq(19), which may be considered to be an
ordinary differential equation with the independent variable
Q,,+2AQ=0, ¢ (the variableys appears in it implicitly, to determine the

dependence dfon ¢. Substituting the expressiol29) into

This condition is clearly satisfied if

Peet2AP=0, Eqg. (19 and introducing the new function
A,—4P,Q—-4PQ,=0. Xo—e' ¢
Integrating this last equation give&=4PQ+s, wheresis Fle.g)= —X el
a certain constant. Eliminating the functiérfrom our equa- 0
tions by using this relationship, we finally obtain: we obtain the following linear differential equation:
Qpp=—25Q—8PQ7, (27) IF
) So=2XF+F+1.
P,,=—2sP—8QP~. (29 ¢

Thus, we have shown that in order to achieve compatibilityits solution is:
between Eqs(9)—(12) and (15)—(18) and the auxiliary con-
dition (19), the functionsP and Q must satisfy the linear _ _ (¢) (llf)’ Z(fP)=f exp{—f (2X+1)d(p]d(p,

ordinary differential equation&7) and(28). z,

whereY is a certain function of the variablg. Substituting
Eq. (31 into the expression for the functichand adopting

1. We shall now directly solve the boundary-value prob-SOme arbitrariness in the choice of integration constants, we
lem (9)—(12). Equations(27) and (28) can be integrated find
completely, although in order to obtain an exact solution of Z=sinhko+k
the problem of the equilibrium configuration of a charged ke +keo).
liquid-metal two-dimensional droplet it is sufficient to ana- Returning to the initial functiom, we find that the solution of
lyze its particular solutions obtained by substituting: Eqg. (19 can be written in the form

4. CONSTRUCTION OF EXACT SOLUTIONS

(32
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Z,~Z+Y
Z,+Z-Y

1+a?d?+ 2ad cog k)
® a2+ d?—2adcogky) |

f(@,d)=@+INXo+In . (33 El,—0=X (38)

Bearing in mind the expression f@ (32), we observe that where we have introduced the notation:

for ¢— —o we havef— ¢, i.e., the necessary conditions at
infinity (11) are naturally satisfied. — A /k_l d= k-1
We now find the unknown functiolY. Substituting ex- k+1’ k+1

pression(33) into the Laplace equatiof8), we obtain Then, assuming thdtand 6 are conjugate harmonic func-

7 7 4y 7 _7321y2 tions and thus the Cauchy—Riemann conditig@d/Jdys
coo” Zoo™ Yoy (ZoeT 2o H Yy =ofldg is satisfied, we obtain from EGL0):

Z,~Z+Y (Z,~Z+Y)? 0 )
2 —_— 7f+ f:—+E =0.
_ Z¢¢¢+ZW—Y¢”{/_ (Z¢¢+Z¢)2+Yl// P pe € E » ¢=0
_ _v)2
ZytZ=Y (Zp+Z-Y) Then substituting expressi@@8), integrating with respect to
After simple transformations we arrive at: ¥, and selecting the integration constant such #id,0)
5 =q/2, we find
Fi(¢)+Z(@)Fa() +Z5(@)F3() =0,
P _’7T+ o a+d ki
where |¢=0—E 1/ arctal ﬁta 7
_ 2_ 1,2 _ 12 _ 2 2
Fi=(Y2=Kk?)(Y,—K2Y) = 2Y(Y5+K?), - ,él_adt I_(Wf)) -
—2 arctapn———tan —| |.
Fa=—2(Y Y~ Yi,—k2+k%), 1+ad “\ 2
Fa=(1— kz)(YwJr K2Y). We analyze expressioi(38) and(39) for the functionsE

_ o _ _ and#. Since the functiorft is periodic with the period z/k
This becomes an identity provided tHa{=F,=F3=0, i.e.,  with respect to the variablg, a closed curve evidently cor-
if the functionY satisfies three equations SimultaneOUS|y: responds to a Change mby an integer number of periodﬁ

2_ 12 12y — 22 i.e., the value ofy should vary in the rangeQ¢<<2mn/k.
(Y =Ky —kY) =2Y(Y, + K5, 34 On the other hand, a closed surface corresponds to a change
Y Y= Yfﬁ k2—k4, (35) in ¢ by 27, i.e., condition(12). In fact, it is readily observed
[see Eq(39)] that asys increases by 2, the angled changes
Y=~ K2Y. (36)  (not necessarily monotonicajlpy the same amount, i.e., the

We show that the set of solutions of this overdetermined™ "o plotted in Cartesian coordinates has a single complete

. ) . . . revolution. This means that the conditide=n should be
system of ordinary differential equations is not empty. The .~ .
. : . . . satisfied, wher@+ 1 is a natural number. In other words, the
solution of this last equation will then clearly be given by

solutions of this problem will correspond to a series of num-
Y=Acogky—Kuiy). bersk=2,34 ..., which define the number of branches of

With | f ity the i ) the corresponding curve in the coordinafesy}.
ithout any loss of generality the Integration constait 2. We shall now construct an exact solution for the prob-

can then be set to zero. Substituting this expression into qusem of an equilibrium configuration of the free surface of a

(34) and (35), we observ_g th"?‘t thi; ;atisfies these e.quationionducting liquid in an external electric field. Following Ref.
when the following condition is satisfied for the amplitutte 15 we shall seek a solution in the form

A?=k*-1.

f V=1 M (40)
Hence the solution of Eq$34)—(36) is given by (¢:¢)=In Z(e)—Y())’
Y ()= Vk?*—1 cogky). (370  whereY andZ are unknown functions of the variablésand

: . . _ ¢, respectively. This representation corresponds to the par-
Thus, by using the additional reIauonsk_([m), we hgve ob-  iicular case when the conditid®(¢) = — Q(¢), which does
tame.d. a solution of the !_aplace equaties) satgfymg the not contradict conditioi21), holds for the function® andQ
conditions(10) and (11), i.e., formula(33) combined with in Eq. (19). Substituting expressiof0) into Eqs.(15)—(18),

expressions32) and (37). o we observe that the following conditions should be satisfied:
In order to construct the equilibrium surfaces corre-

sponding to our solutiorf32), (33), and (37) in the coordi- Z(@)=(k/2+1)e K¢+ (k/2—1)eke,
nates{x,y} in Sec. 5, we require expressions for the absolute

electric field intensityE|,_, relative to the conductor bound- Y(¢)=Vk*—4 cogky),

ary and also for the angle of inclination of the electric field _

) ; e . k=27m/\, k=2,

intensity vector to the direction of the abscig§a_,. Sub-
stituting the expressions forf and Z into formula(33) and  in conjunction with expressiofd0), which define the exact
bearing in mind thaE=expf, we obtain solutions of this boundary-value problem. Note that the pa-
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rameters in the compatibility conditiong27) and (28) is

related to the wave number by the simple relationship:

k=\s.

We then require the dependences of the functibrsd
0 on the variable/ at the conductor surface. Substituting the
expressions obtained f@andY into Eq.(40) and assuming
thatE=expf, we obtain for the absolute value of the electric
field intensity:

_1+c(k)cos(kz,//)
¢=0"1—c(k)cogky)’
where we introduce the notation(k)=1—4/k?. For the
angled|,_o, using the conditiom 6/ 9= 9f/ ¢, we obtain
from Eq. (16) after integrating with respect t¢
kc(k

2

E| (41

77 )
—+2 arctaré sin( kd;)) . (42

0|<p=0: 2
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FIG. 1. Equilibrium configuration of charged two-dimensional liquid-metal
droplet forn=2 and the critical value of the parameter|.(2)~1.86. Also
plotted are typical equipotential surfaces corresponding to three different
values of the parametep (¢,=—0.08, ¢,=—0.16, andp;=—0.24).
These surfaces may be considered to be a family of exact solutions of the
problem, mapped in different scales and corresponding to différent

It should be noted that similar expressions can be ob-

tained from Eqs(38) and (39) if the values ofk and| are
made to tend to infinity so that their ratio=2k/I remains
finite. In fact, assuming thaty=y1/2, and alsoc(k)

=+/1—4/k?, we obtain in the fundamental order:
| 1+c(k)cogKy)

E|¢,:0—> PP AP
1—-c(k)cog ki)

ke(k)

a ~—~
=+2 arctar{ sin(kzp)),

0|¢p=0—> 2

which agrees with Eq$41) and(42), apart from the constant
factors whose appearance is related to the various methods

_ ¢C0i0|¢:0)
Y=Yot J’o —E|‘p:0 .
(43

When formulas(38) and (39) are used in the integrand ex-
pressions, these equations define the equilibrium configura-
tion of a two-dimensional, liquid-metal droplet; the closed
surface corresponds to a change in the paramgtar the
range G=¢<2w. The constanty, and x, can be conve-
niently taken so that the geometric center of the curve coin-
cides with the origin.

It is easy to see that in the limit—=k=n expressions
@9), (39), and(43) define circles of radius 2A(+1). A re-

¥ sin( 6|, -
diy, X=Xo— Sin6l,-o) )
0 E|<p:0

dedimensionalizing the quantities. This is because in th@uction in the parametdrleads to an increase in the ampli-

short-wavelength limit the problem of the equilibrium con- tude of the surface perturbations and it was found that for
figuration of a charged liquid-metal droplet is identical to thecertain n-dependent critical values of the parameter
problem of the steady-state profile of a liquid metal in an|=|(n), the region occupied by the liquid ceases to be sin-
external electric field. gly connected and isolated liquid-metal droplets form. For
1<I<l, the solutions are physically meaningless so that for
fixed n the set of solutions of this problem corresponds to the
intervall(n)<I=n.

Figures 1-3 show steady-state configurations of charged

5. STEADY-STATE SURFACE PROFILES

1. We construct equilibrium profiles of the free surface
of a liquid metal in the coordinatesx,y} using Eq.(7),

where the right-hand side is the functian Taking this as an y
ordinary differential equation for the unknown functiprwe Lot
obtain after integration ’
0.5
z:—f exp(—f+if)dw. o
Bearing in mind that at the boundaky=0 and therefore _osk
w= —iy, we obtain the expression
-1.0r

t//exp(i0|¢:0)d

z=74ti f
0 El(p=0
_ . . . . . _FIG. 2. Equilibrium configuration of a charged liquid-metal droplet for
wherezy,=xotiyy is the integration constant. Having sepa n=3 and the critical value of the parameter|(3)~2.53. Also plotted is

rated the real from the imaginary part we observe that thg family of equipotential surfaces corresponding to three different values of
unknown surfaces are defined parametrically as follows: the parametep (¢;=—0.1, ¢,=—0.3, ande;=—0.6).

W, -1.0 05 0
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X FIG. 4. Dependence of the amplituBeof the steady-state profile of the free
o ) . o surface of a liquid metal in an external electric field on the wave nurkber
FIG. 3. Equilibrium configuration of a charged liquid-metal droplet for g gojig curve gives the stable branches of the solutions and the dashed
n=4 and the critical value of the parameter| (4)~3.19. Also plotted are ;e gives the unstable branches.
equipotential surfaces corresponding to three different values of the param-

etero (¢;=—0.1, ¢,=—0.3, andp;=—0.6).

The parametric equations for the equilibrium surface
di ional liquid | dropl ; iticall and (44) and(45) can be used to determine the dependence of the
two-dimensional ‘liquid-metal droplets for criticall an perturbation amplitude of the liquid-metal surface, defined as

gu:rfza,cr;: ?:L)?rrelzggo:nti r’:;s; ngévrzrirignggggﬁ?a:'al the difference between the maximum and minimum values
of y per period A= —Vmin), ON the wave numbek:
recall that at the liquid metal boundag=0). It was noted ¥ PECP B=YmaxYimin)

in Sec. 3 that these surfaces are also solutions of the problem A=21—4/k?>. (46)

of an equilibrium droplet configuration which refer _only to hus, in addition to the trivial solutioA=0 of this problem

those system parameters such as the surface tension and %%Pk> ko= 2, another nontrivial solution also appears, shown

difference between the internal and external pressures, whm&, the side branch in Fig. 4. It should be noted that a wave

differ from the given ones. Thug, theS(? curves not only IV&umber of two in the initial dimensional variables corre-

some idea of the electric field distribution outside a Charge%ponds tok=ko=E2/(4a). It follows from the capillary
=ko=E3 )

conducting droplet but also of its possible equilibrium con-,, ove dispersion law that at the plane surface of an ideally

flguratlops for various and shov.vn. in different Scalles. conducting fluid in an external electric field in the absence of
We introduce the characteristic of these solutions as thg gravitational fieldf

ratio of the maximum and minimum electric field intensities
at the equilibrium surface/= (Ea/Emin)ls- Quite clearly, , @ o E(z, )
for fixed n the highest possible amplification of the field is w :;k - Ik ,
achieved fot =1.(n). For example, using E¢38) we obtain P
Ymax<6.25 forn=2, y,,~13.5 forn=3, and y,,x~18.5  wherep is the density of the medium, this wave number is
for n=4 (ymaxincreases monotonically with any further in- the threshold value: the trivial solution of the problem is
crease in the integer-value paramet@r This demonstrates stable with respect to small perturbations kor k, whereas
that a charged liquid-metal surface may have a steady-stafer k<<k,, aperiodic instability may develofsee Fig. 4
profile which can ensure appreciable local amplification of It can be seen from Eq46) that ask increases, the
the electric field, by more than an order of magnitude. amplitudeA increases monotonically. When the wave num-
2. We now construct the steady-state profile of the freéber exceeds the critical valle=k,~3.042, the curve corre-
surface of a liquid metal in an external electric field for sponding to expressions(44) and (45 becomes
which expression$41) and (42) should be substituted into self-intersecting® Consequently, the solutions of the
the relationshipg43) obtained above where we sety=0 boundary-value problerf15)—(18) given in the previous sec-
andxy= w/k. Integration yields tion are only physically meaningful when

4k=2 Kosks=k,=1.5X,,

y=1-c(k)= (44 and the largest possible amplitude of the surface perturba-

tions will correspond tk=k.. Figure 5 shows the equilib-

T 2c(k)k ™~ tsin(ky) rium surface for this wave number. It can be seen that the
K + 1+ c(k)cog ki) ' (49) region occupied by the liquid metal ceases to be singly con-

nected and isolated liquid-metal droplets are formed, con-
which, apart from the substitutions——x and y— —vy, nected to the bulk of the metal by infinitely thin necks.
agrees with the expressions obtained by Craipes the Clearly, an arbitrarily small increase in the perturbation am-
exact solution of the problem of the capillary wave profile in plitude can lead to detachment of the droplets.
coordinates moving with the waughe liquid metal in our We give several figures characterizing the solution plot-
case corresponds to the space above the liquid surface tad in Fig. 5. The ratio of the amplitude of the surface per-
Ref. 15. turbation to the wavelength is

1+c(k)cogky)
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obtained from Eq(46) by converting to dimensional quanti-
ties. It can be seen that for fixekd the amplitude of the
steady-state solution increases as the external electric field
decreases. Conversely, if we increase the amplitude of the
N surface perturbation, the force balance condition can only be
satis_fied when the external field is §Iightly reduce_d. For the
. ) ) previous value of the field the capillary forces will not be
-1.0 05 0 0.5 . 1.0 able to compensate for the destabilizing influence of the elec-
trostatic forces, which leads to a further increase in ampli-
FIG. 5. Single period of the steady-state profile of the free surface of gude, i.e., to the development of instability. The same may
liquid metal in an external electric field for the critical value of the wave also apply to liquid-metal droplets.
numberk= Kk ~3.042. . . .

This reasoning also indicates that the plane surface of a
liquid metal in an external electric field is globally unstable
with respect to perturbations having wave numbersk,,

i.e., when the condition for its linear stability is satisfied. The
The ratio of the maximum and minimum electric field per instability can increase without bound if the amplitude of the
period, the parametey introduced above, has the highest surface perturbation exceeds the equilibrium value\¢)

Ama/ A\ =7 1\k2—4~0.730.

possible value fok=Kk,: determined by us. A similar condition may well serve as the
24 A 2 simplest criterion for the hard loss of stability by the plane
y(ke)= 7ma><=(—maj) ~50.64. surface of a conducting liquid.
—Ana The author is grateful to E. A. Kuznetsov for stimulating

Moreover, the absolute value of the electric field at the equig|scussmns, and also to A. M. Iskol'dslkind N. B. Bolkov

librium surface may exceed the external fi€lgl by a factor Lor trr:eermte_restFm tz";‘ w'o;rk. Jh's worIkF\{/vas pargy fmanced
of y*2 i.e., Emay~7.116E,. At the tip the curvature of the 9>7/ t(); 16uls73|an und for Fundamental ResegRebject No.
surface is more than fifty times its minimum value per~" <" V.

period. L _
*)E-mail: nick@ami.uran.ru.
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A molecular dynamics method is used to study the influence of a heavy dispersed particle on a
liquid—solid phase transition in a molecular system of solid spheres. It is shown that the

presence of a dispersed patrticle shifts the transition toward higher densities and pressures. In
addition, in the liquid state the heterogeneous system has a lower pressure, whereas in

the solid state the pressure is higher than that in the corresponding states of a homogeneous
medium. It is established that the pressures of the heterogeneous mixture in the regions before and
after the phase transition can be converted to the pressure of the single-component system

by introducing various scaling factofsffective densities of the mediym © 1999 American

Institute of Physicg.S1063-776(199)01012-4

1. INTRODUCTION the solid curve shows a typical isotherm of a single-phase

In their pioneering work Alder and Wainwrightised a liquid. This isotherm is the dependence of the compressibil-
molecular dynamics method to establish that a liquid—solid®y <=(P—Po)/Po on the packing density of the molecules
phase transition exists in a homogeneous system of solith the system
spheres. However, characteristic features of this phase tran-
sition in an inhomogeneous system have not yet been stud- af:i: V\/E 1)
ied. The widespread occurrence of heterogeneous media in Vo 8r3N21'
nature and in various technological applications makes their
study a topical and important issue. This particularly appliegvherep is the pressure in the systemy=nkT is the ideal
to studies of the phase transition. The present paper is d@as pressure, andy=N+Ny . The temperaturd is de-

voted to studying the influence of small dispersed particle$ermined by the mean squared molecular velocityT3
on the liquid—solid phase transition. =m(v?). The molecular dynamics method is used to calcu-

We consider the evolution of a heterogeneous System dﬂte the coordinates and velocities of all the molecules. These
solid Spheres Comprising a homogeneous molecular Systeﬁ@.'CUlated dynamic variables of the system are then used to
of solid spheres of radiusand massn in which is immersed determine the thermodynamic variables. In particular, the
a dispersed particle of radil®and masdvl. We studied the Virial theorem(see, for example, Ref,)3s used to calculate
evolution of the system by a molecular dynamics method.the pressure in the system.

The mass ratio was taken to M/m=100. The model was In a pure single-phase liquid, as the density of the sys-
a cell in the form of a rectangular parallelepiped which con-tem increases the compressibility has a discontinuity at a
tained a single particle surrounded by molecules. Initially thecertain densityrf ~1.472(see Fig. 1and at higher densities
molecule was located at the points of a hexagonal closelt goes over to a new branch corresponding to the solid state.
packed |atticdthis structure is typicaL for examp|e, of crys- This phenomenon is interpreted as a first-order phase transi-
talline helium®He and“*He). The ratio of the particle and tion.

molecular radii varied experimentally in the rand®r In physical terms, the phase transition in the solid sphere
=2—4. In order to create an empty region in which the parmodel can be explained as follows. Initially the molecules
ticle was locatedN?, molecules were removed from the cell. are situated at points in a hexagonal close-packed lattice.
In order to compensate for the finite number of moleculeslhis packing corresponds to the maximum average distance
studied in this cell, we used periodic boundary conditionsbetween neighboring molecules for a given density. In this
All the numerical experiments were carried out using acase, the correction to the pressure caused by the molecular
533 MHz DEC-Alpha computer. Between 200 and 5800interaction is minimal. If the density of the system is fairly
molecules were used for the calculations. The time taken t§igh, the molecule remains near the lattice point for the en-
calculate a Sing|e point on the isotherm diagrams VNm tire time. This medium is an analog of a solid. As the mo-
~2500 molecules in the cell near the phase transition zonkecular concentration decreases, the ordered structure is de-

(the time taken for relaxation of the system to the liquid statestroyed and the system is converted to the “liquid” state,

is particularly long hergis around 10 h. whereupon the pressure increases abruptly.
If one of the molecules in this particular molecular sys-
2. RESULTS OF CALCULATIONS tem is replaced by its “heavy isotope(for example, the

The phenomenon of a liquid—solid phase transition in amass of the substituted molecule may berhp®ut the radii
system of solid spheres is illustrated clearly in Fig. 1. Hereof the heavy and light molecules are the sanige character

1063-7761/99/89(12)/3/$15.00 1086 © 1999 American Institute of Physics
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& It is easy to establish that;,< a'fp, and so a dispersed

X system in the liquid state has a lower pressure than a homo-
geneous system, as shown in Figrigght-hand branch of the
isotherm fora;,>1.43).

Conversely, if the mixture remains in the solid state
shielded empty regions form around the particle. The effec-
tive particle volume increases in the solid state. Quantita-
tively this is equal to the volume which would be occupied
by Ny, removed molecules. The corresponding density pa-
rameter is given by

v

A= .
" Br3 (Nt N2
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FIG. 1. Dependences of the compressibility factors of a “pure liquid’agn
(solid curve and of a binary mixture R=4r, N,=2637) onay, (dashed Sincea?p< atp, a dispersed system in the solid state is ef-
curve, af, (square anday, (circles. fectively denser than a homogeneous systéaft-hand
branch of the isotherm fow,<1.43 in Fig. 1.
Note that if the branches of the isotherms in the liquid

of the observed phase transition changes little. The com"%‘”d solid states of a hetlerogenesous liquid are plotted as func-
pressibility is again described by the solid curve in Fig. 1. tions of the parameters;, anday, , respectively, we arrive
However, the nature of the phase transition changes suft the branches of th_e |_sotherms for a_homogeneous liquid.
stantially if a large dispersed particle is added to the homod N€S€ branches are indicated by the circles and squares, re-
geneous liquid. For the calculations the ratio of the particles?eCt'Velyé in Fig. 1. Thus, we can say that the parameters
and molecular masses was takerMasn= 100 and the ratio “fp @nd @, are scaling factors which can be used to con-
of their radii was taken to bB/r =2, 3, 4. The parameters of struct the isotherms of a homogeneous liquid if we know the
this heterogeneous system are the ratios of the volytie isotherms of the heterogeneous system.
and massp,/p; concentrations. Here and subsequently the The increase in the density;,, at which a phase tran-
subscripts ‘b” and “ f” refer to the dispersed particles and sition is observed is also related to shielding effects. The
molecules of the carrier medium, respectively. Thus, for in-C_”tlcal deUS'tya?p_ for a heterogeneous system, i.e., the den-
stance, we have;=N,./V, whereV is the total volume of Sity gt which the |soth-e.rm may hav*e a discontinuity, may be
the cell. The density of this mixture is determined by theOPtained from the critical density for a homogeneous

parametefcf. Eq. (1)] liquid:
V2 x % Of .
=—————, Np+Ny=Nj. 2 afp=aj — . (5)
g, r8RE @ gy

An analysis of the data plotted in Fig. 1 indicates that the
presence of a dispersed particle in a molecular system sub-

dispersed particle Here the radius of the dispersed particle stantially alters _the nature of the phase transn_lon in the sys-
tem. However, it is clear from physical reasoning that as the

is R=4r and the cell containhl,,= 2637 molecules. When a . . . .
. L . volume densityn, of the dispersed particles decreases, their
dispersed particle is present in the system, the phase transi-, o

. ; o influence on the phase transition in the system should de-
tion takes place at higher densities and pressures. The den-

. . - . .crease. The experiments confirm this viewpoint. Figure 2
sity at which the phase transition takes place increases whic i :
: gives dependences of the critical densﬁ% on the reduced
corresponds to a decrease in the parametgrto 1.43. In

. B _ 3 . .
this case, the compressibiligyincreases from 11.9 to 12.95. pgrtlcle concentratlomfp—47rr nP/3 for various part|cle.ra-
In addition, in the liquid state the pressure in the mixtured”' The scale on the abscissa is logarithmic. The horizontal

is lower than that in a single-phase liquid of the same den!—Ine corresponds to the critical densisf , and the theoret-

sity. This is because in the liquid state the entire regio ical curves are obtained using formufs. It can be seen that

O . - = <=3x10 4 [ i
around the particle is accessible to molecules. The addnm?tor R=2 andy,=3X10 " the influence of the particles on

of a dispersed particle to the homogeneous molecular quuig1e isotherms can be neglected. As the radius of the dis-

reduces the accessible volume of the cell for the molecul [:r?ersed particles increases, the boundary of the “concentra-

caer mecium b he parice ok~ 4ri¥s ana U0 ILENCe becomes noesenab over,
therefore reduces the number of molecules. The effective gm . . y
density parameter of the mixture in the liquid state can thug 9 2 numerical analysis of the equation of state for a system
be written as of solid spheres. It is easily shown that for a system of solid
spheres, the compressibility is proportional to the volume
(V—V )2 density and the pair distribution function of the molecules at
L =2 P (3)  the interaction poinh, (see, for example, Ref)4The func-

tion n,(r') is the concentration of molecules at the distance

In the calculations plotted in Fig. 1 the dashed curve
gives the isotherm for this heterogeneous systeguid +

T gy
m
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af modeling methods. The distances between the molecules in
e these media are short so that the main factor in the intermo-
lecular interactions is the repulsive component of the poten-
tial which is accurately modeled by the solid-sphere poten-
tial. In this sense, these results not only accurately describe
the qualitative pattern of a liquid—solid phase transition in a
heterogeneous system but can also provide important quan-
titative information.

The modeling of a phase transition in a heterogeneous
system performed in the present study was limited to low
concentrations of dispersed particles and small sizes. The
low concentrations of the dispersed particles (3010 °)
imply that the influence of interparticle interaction could be

o _ _ . neglected. We essentially studied the influence on the phase
FIG. 2. Dependences of the critical density of a mixture on the particle i . . . . .
concentrationv, . Results of numerical experimen®=2 (<), R=3 (@) transition of .an isolated @spersed par.tlcle Immerse.d Inamo-
and ,R=4 (O). Theoretical curvesR=2 (solid curvé, R=3 (dashed lecular medium. The dispersed particles were either large
curve, andR=4 (dotted curvg molecules or nanoparticles, in particular clusters. The wide-

spread development of hanotechnologies over the last decade
, ) makes it relevant to study such small particles.

r’ from the center of one of these, normalized to the average e sjze of the dispersed particle plays a decisive role in
molecular concentration;. Figure 3 gives calculated pair jiqiq_solid phase transition processes. This is because the
distribution functions of a homogeneous molecular liquidyansition itself is of a geometrical nature to a considerable
(solid curve and a heterogeneous systedashed curveR o iant A variation in the mass of the dispersed particle be-
=4, Np,=2637) for the same density=1.446, i.e., in the  yyean 560 and 16m negligibly influences the nature of the
liquid state for a homogeneous system and in the solid statg,iherms although of course, heterogeneous media contain-

fqr a heterogeryeous qr(eee Fig. 1 This is confirmed by _ing dispersed particles of different mass will have different
Fig. 3. The pair function for the heterogeneous system i$q|axation times.

> 1O ThE TS
periodic even for large’, which is typical of the ordered Of particular note is the fact that these results can be

structure of a solid. The first maximum of the functionfor  seq to calculate the isotherms of heterogeneous systems
a mixture is substantially higher than that for a homogeneOUﬁom the corresponding data for a homogeneous molecular

system and thus the pressure is the liquid state is higher. By gtennyat least at fairly low concentrations of dispersed par-
measuring the value af, at the point of the first maximum, ticles).

we can calculate the pressure in the system. The isotherms It is predicted that the observed behavior of the phase

calculated by both methods show good agreement over afz,sition process will be conserved as the particle sizes in-
most the entire density rangthe relative deviation is<2%  reaqe In order to check this, we made trial calculations of
for «>1.3). Appreciable changes are only observed in theyaral isotherm points for a system with,=13341 and
solid region far from the phase transition point. In this re-p_ g * A shift of the transition toward higher densities is
gion, however, the adequacy of this equation of state i$s, ghserved in this system. The error in estimates of the
somewhat doubtful. shift using these formulas does not exceed at most 30%.

The authors thank the referee for comments which have
3. CONCLUSIONS resulted in improvements to the content of the article.
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This paper discusses two-dimensional mesoscopic clusters of particles that repel according to
dipole, Coulomb, and logarithmic laws and are confined by an external parabolic

potential. These models describe a number of physical systems, in particular, electrons in
semiconductor structures or on a liquid-helium surface allowing for image forces, indirect excitons
in coupled semi-conductor dots, and a small number of vortices in an island of a second-

order superconductor or in superfluid helium. Two competing forms of ordering are detected in
the particles in the mesoscopic clusters—the formation of a triangular lattice or of a shell
structure. The temperature dependences of the potential energy, the mean-square radial and angular
deviations, the radial and angular distributions of the particles, and the distribution of the
particles over the local minima are studied. Melting in mesoscopic clusters occurs in two stages:
at lower temperatures, there is orientation melting, from the frozen phase into a phase with
rotational reorientation of “crystalline” shells with respect to each other; subsequently, a transition
occurs in which the radial order disappears. Melting in dipole macroclusters occurs in a

single stage. However, in Coulomb and logarithmic macroclusters, orientation melting occurs
only for the outer pairs of shells. Orientation melting is also detected in three-

dimensional Coulomb clusters. A connection is established between the character of the melting
and the ratio of the energy barriers that describe the breakdown of the orientational and

radial structure of a cluster. @999 American Institute of Physids$§1063-776(99)01112-9

1. INTRODUCTION ticle” is added (structural sensitivity all the way to some
numberN of particles, at which a region with the structure of
Much attention has been paid in recent years to the studghe bulk phase appears within this cluster. What is most in-
of the properties of systems made up of a finite number oferesting, the melting of a mesoscopic cluster can possess
particles with a repulsive interaction potential. Coupled sysinteresting specific features by comparison with the melting
tems made up of a small number of particles whose physicalf the bulk phasé=3 It turns out that these mesoscopic clus-
properties do not coincidébecause of their small sig@ith  ters melt in two stages—the mutual-orientation melting of
the properties of crystals are called clusters. the shells first occurs, and the shell structure disappears at a
We shall consider here clusters with logarithmic, Cou-higher temperaturémagic clusters are an exceptjoAs will
lomb, and dipole laws for the interaction between the clusbe shown, these features are common to mesoscopic clusters
ters. Each of these systems has interesting physical implef different types, and this makes it reasonable to consider
mentationgsee below. them jointly. At the same time, the criterion for a cluster to
Clusters having different interaction laws and a smallbe mesoscopic depends on the range of the interaction be-
number of particles possess many common properties, itween the particles. Namely, the transition from mesoscopic
particular, a shell structure competing with the appearanceo macroscopic clustergt which the features of mesoscopic
inside the cluster of a nucleation center with the “bulk- clusters mentioned above disappezccurs at a lower num-
phase” structure(i.e., a triangular lattice for two-dimen- ber of particles in dipole clusters than, for example, in Cou-
sional systems We shall consider mesoscopic clusters thalomb and logarithmic clusters.
possess a shell structure. They are an intermediate case be- The orientation melting indicated above is also possible
tween microscopic clusters consisting of one shell and madn an extended system made up of repulsive particles existing
roscopic clusters in which a large part of the particles formin an externalrandon) field created by impurities, defects,
the bulk phase. For example, in the two-dimensional case, boundary roughness, etc. A structure recalling a cluster also
large part of the particles inside the cluster form a fragmentforms close to the minimum of a random potentiat close
of a slightly distorted two-dimensional triangular lattice. In to individual defects, if their concentration is smaland
mesoscopic clusters, the numbidrof particles varies be- orientation melting can occur here as the temperature is in-
tween 6 and 50—100, depending on the interaction law beereasedit was observed in Ref. 4 for a vortex lattice in an
tween the particles in the clustéthe longer-range is the impurity system.
interaction law, the more numerous the particles that corre- We shall now briefly consider physical implementations
spond to macroscopic cluster§he shell structure of a me- of the clusters under consideration.
soscopic cluster can sharply change when only one “par- We shall first concentrate on the most important physical

1063-7761/99/89(12)/14/$15.00 1089 © 1999 American Institute of Physics
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implementation for logarithmic clusters. A magnetic field presents the numerical methods used in this paper. Section 4
penetrates into a second-order superconductor in the form afescribes the configurations of the clusters at the global and
Abrikosov vortices, which form an ideal triangular lattice in local minima of the potential energy. Section 5 presents the
the low-temperature regichAs the temperature increases, results of calculations of the melting in the clusters. Section
this lattice can melt and form a liquid phase made up of6 analyzes the potential barriers when the shells in the clus-
vortices, as has been observed for high-temperature supéers rotate with respect to each other and when the particles
conductorgsee the review in Ref.)6 There is great interest jump from one shell to another. Section 7 discusses how the
in the question of the structure of a vortex system with aanisotropy of the confining potential affects the structure and
small number of vortices included in islands of the superconthe melting of the clusters. Section 8 discusses the melting of
ducting phase. three-dimensional Coulomb clusters. Conclusions are pre-
Moreover, the vortices in a rotating vessel with super-sented in Section 9.
fluid helium also interact according to a logarithmic law
when the number of vortices is small. The electrons in a
semicond_ugt_or nano_structure surrognded by a medigm with e PHYSICAL MODEL
low permittivity also interact according to a logarithmic law
in a certain interval. We shall consider two-dimensional clusters with dipole,
The system under consideration is equivalent to theCoulomb, and logarithmic laws for the interaction between
problem of the two-dimensional anald¢gee Ref. 1 of the  particles confined by external potentidl,(r). For electrons
classical Thomson atdhwith a finite number of “charges” in a semiconductor nanostructure, the role of the confining
obeying the laws of two-dimensional electrostatics and withpotential is played by the boundary of the semiconductor
a compensating incompressible background. nanostructure. For electrons above a helium film, the role of
Physical implementations of two-dimensional Coulomblateral confining potential can be played by the potential of a
clusters are, for example, electrons in craters on a liquidésmal) metallic electrode immersed in the helium. For vor-
helium surfacg and electrons in a quantum d8tA system tices in a superconducting island, the role of confining po-
of electrons in a three-dimensional quantum dot is an analotgntial is played by the compensating incompressible back-
of a Thomson atom. ground of charges of opposite sigeffectively taking into
When the image forces close to the semiconductor-metaccount the correct mean vortex density in the given mag-
boundary are taken into account, the Coulomb interactiometic field, which determines the minimum of the Ginzburg-
law is replaced at large distances by a dipole law, and this ikandau functional in the fie)d In all these cases, the confin-
reflected in the phase diagram of the system, leading to réng potential can be calculated for small clusters from the
versible quantum melting of a Wigner crystal, with a changequadratic expressiot .,(r;) = ariz, where « is a positive
in the density:! Repulsion at large distances also follows aconstant.
dipole law for excitons with spatially separated electrons and  For two-dimensional dipole clustetthe dipoles are per-
holes!?~%8 particles in a layer of magnetic liquid, a layer of pendicular to the plane of the clustavith pairwise interac-
dielectric clusters on the surface of an electrolyte, &tee  tion Uj; =D2/ri‘°}, we carry out the scale transformations
Ref. 17 and the literature cited thergin
For this paper, we considered the temperature depen- e ke?® e?®
. — r, T— T, U— u.
dence of the cluster structure. We show that a two-dimen- DZ5 a3PDs a3PD B
sional mesoscopic cluster melts in two stages: inter-shell ) )
(orientation melting occurs first, and the shells smear out at-ikewise, for the Coulomb interaction laWj;=g?/r;; , we
a significantly higher temperaturéClusters with a small qbtaln dimensionless quantities by means of the transforma-
number of particles but with a structure close to a true triantONns
gular lattice—magic clusters-can be an excepjibtawever, JRTCRTE Ke2l3 23
a mgcroclustel(ln the interval of the numbers of.partlcles r——mrt, T——ma:T, U—o—masU. (2
studied hergmelts in one or two stages, depending on the a a™q a™q
interaction law between the clusters. It is shown that this 'Syowever, for the logarithmic interactidd;; = — g2Inr; , we
because the energy barrier relative to reorientation of th%se the transformation J |
shells is substantially less than the barrier with respect to
radial jumping of the particles in the case of microclusters, al? kg
whereas these barriers are of the same order of magnitude in r——r, T——T, U——U. (3
the case of macroclusters. We also have analyzed how the q q
indicated potential barriers disappear as the temperature ixs a result, the potential energy of a cluster acquires the
creases. form
For this paper, we consider the classical regime for elec-

trons, in which their characteristic de Broglie wavelength is B 2

much less than the mean distance between tfthe quan- U—Ej Uij +Z i “)
tum regime, in particular, the quantum melting of clusters

(see, for example, Ref. 18 not considered hete WhereUijzllrf}, Uij=1/r;, andU;; = —Inr;, respectively,

Section 2 briefly describes the physical model. Section 3or the cases considered above.
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3. NUMERICAL METHODS USED IN THIS PAPER overestimated values of these barriers are obtaftied ef-
fect is especially large in the former case

To search for the equilibrium configurations of the par-  We can use the techniques described above to find the
ticles, we used a random search for the potential-energgotential barriers in clusters at zero temperature. However,
minimum of the system, with random motion of the indi- the variation of the barriers with temperature is of interest.
vidual shells as a whole and random motion of the particlesThe technique for finding the “temperature” potential barri-
It is convenient to take regular polygons inscribed in circlesers differs from that for the “nontemperature” ones as fol-
as the initial configurations in the case of an isotropic condows: Instead of finding the minimum in terms oN2-2
fining potential, since the shells have shapes close to circlegariables in the case of the barrier against rotation or in terms
and it is convenient to take regular polygons inscribed inof 2N—1 variables in the case of the barrier against jump-
ellipses as the initial configurations in the case of anisotropiéng, in the case of the temperature barrier, we find the mean
confinement. In the case of very strong anisotropy, the parPotential energy for fixed andA¢ in the case of the angular
ticles were p|aced on a straight line as the initial Configurabarrier and fixedl andr in the case of the radial barrier. The
tions. The maximum step was decreased from10-2 to ~ averaging is carried out over approximately 10> Monte

1% 10~ in dimensionless units. Each36teps, the step was Carlo steps. _ _ _
decreased by a factor of 0.8—0.98. The Monte Carlo method with the Metropolis algorithm

The potential barrier against rotatigallowing for the ~ Was used in this paper to study the dependence of the physi-
extremely substantial relaxation, i.e., alignment of the parC@! quantities on the temperature and the melting of the sys-
ticles to rotation of the shélican be found by the following €M- After the equilibrium configurations were found, the
procedure: We fix all the particles of the cluster, other tharfSTPerature oj3the system was increased My (AT=5
the particles of a specific shell, in the configuration corre- 10 '=5X10 ), and the system was then confined until it
sponding to the global minimum of the potential energy. Wereached equilibrium at the new temperature in (2x4p*

rotate all the particles of the indicated shell by angfewith Ma?cr:]lflfatcezr::? ‘Z[\?g; Lheoit:;?i@a:w%ﬁ;aégjgii \;ve_lr_(:“;hen
respect to the others. We then fix the angle of one particlg y ging PS.

from the rotated shell and the angle of one particle from the'as followed by further heating, using the procedure de-

stationary shell, and we find the minimum of the potentialscn?f)d.rhheret' tTTe f?llo;/_w:wg quantities were computed:
energy in terms of R — 2 variables by the method of random @) Thee Or;idiz? ?r?elsn-esr(]qiragr%pogisplacements the total
search(N variable radiir andN—2 variable angles)). We value '
note the minimum potential energy of this system. We then '
repeat this procedure, varying, until one shell has been 1 N (fi2>—<fi>2
rotated with respect to the other by an angle equal to the (SR%)= N& a2 5
mean angular distance between the particles in the rotating -
shell. It is possible in this way to find the dependence of theand the individual value for each shell,
potential energy of the system on the angle of rotatfoof N ) )
one shell and the potential barrier against rotation. o i E'\j (ri)—(ri) 6

The potential barrier against the jumping of a particle (or5)= Ng =1 a’ ' ©
from one shell to another characterizes the radcbl) melt- ] . ]
ing of the shells. We use the following procedure to find it: WhereNg is the number of particles in a shell, and the aver-
We fix all the particles of the cluster in the configuration 29ing, indicated by angle brackets, is carried out over differ-

corresponding to the global minimum of the potential en-€Nt Monte Carlo configurations. _
ergy, except for one particle at the site, and we move this (3 The angular mean-square displacements with respect

particle away from the center of the systéor toward the to the nearest particles of its own shell,
centej toward its position at the local minimum of the po- 1 MR (- )2>_<(¢i_¢i )>2
1 1

tential energy by distancér. We then fix the distance from (5(;5%): — 2 > , (7)

this particle to the center of the system, and we find the Nr =1 %o

minimum of the potential energy in terms oN2-1 vari- 54 \yith respect to the nearest particles of the neighboring
ables by the method of random searéh+1 variables and shell,

N variables¢). We note the minimum potential energy of

this system. We then repeat this procedure until the system is 1 Nr ((¢i— ¢i2)2>—<(¢i— ¢i2)>2

at a local minimum of the potential energy. It is possible in <5¢§>= N_R izl ¢>3 , (8

this way to find the dependence of the potential energy on
the coordinate of a particle “by changing shell” and the wherei, andi, relate to the closest particle from the same
potential barrier against jumping of a particle. The proposedind from the neighboring shell, andgg=2m/Ng is the
method of taking into account the “relaxation” of the posi- mean angular distance between the neighboring particles for
tions of the particles as the shells rotate or as the particlethe given shell.

jump between shells substantially reduces the barriers with  Only the relative angular mean-square deviations are
respect to reorientation of the shells and with respect t@alculated, since the rotation of the system as a whole is of
jumping. Otherwise, as shown by calculation, unrealistic,no interest.
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TABLE |. Shell structure and potential energy of clusters made up of two-dimensional vortices.

Number Occupation numbers Potential Number Occupation numbers Potential
of particles of shells energy of particles of shells energy
1 1 0.000006x 10° 26 3,9,14 —1.94056% 107
2 2 5.00000 10" * 27 3,9,15Crg —2.15613K 107
3 3 8.91802% 10! 28 49,15 —2.384294 107
4 4 1.09045% 10° 29 4,10,15 —2.62591X 107
5 5 9.76405X 10 ! 30 4,10,16 —2.881028 107
6 1,5 4.35416% 1071 31 4,10,17 —3.149268& 10
7 1,6Cr, —7.51244% 10! 32 4,11,17 —3.43132% 10?
8 1,7 —2.514746< 10° 33 511,17 —3.72747X 107
9 1,8 —4.914510< 1¢° 34 1,5,11,17 —4.03730& 107
10 2,8 —8.100414 10° 35 1,6,11,17 —4.361606< 10
11 3,8 —1.20933% 10" 36 1,6,12,17 —4.70033K 107
12 3,9 —1.697858 10 37 1,6,12,18Cr, —5.053534 107
13 4,9 —2.271610x 10 38 1,6,12,1Cr, —5.42092% 107
14 4,10 —2.942793% 10 39 1,7,13,18 —5.803155< 10?
15 4,11 —3.706118 10 40 1,7,13,19 —6.200430x 107
16 5,11 —4.57370K 10 41 1,7,13,20 —6.612310x 107
17 1,511 —5.541308 10 42 1,7,14,20 —7.039416< 107
18 1,6,11 —6.62069% 10 43 2,8,14,1Cr, —7.481666< 107
19 1,6,12 —7.811655 10 44 2,8,14,2(Cr, —7.939606< 107
20 1,6,13 —9.11019% 10" 45 2,8,14,21Cr, —8.41261% 107
21 1,7,13 —1.052696< 10 46 3,9,14,20Crg —8.901514 107
22 1,7,14 —1.205683 107 47 3,9,15,20Cr4 —9.40612X 107
23 1,8,14 —1.37064K 107 48 3,9,15,21Cr,4 —9.926554 107
24 2,8,14 —1.548203% 107 49 3,9,15,2Cr, —1.04625x 10°
25 3,8,14 —1.73796& 107 50 4,10,15,21 —1.10146x 1C°
107 3,9,15,21,27,32r, —7.15573x 10°

108 3,9,15,21,27,38r, —7.316694 10° 192 3,9,15,21,27,33,39,45r, —2.834568 10*

The following quantities were also calculated for two- interaction is intermediate in range. The equilibrium struc-

dimensional Coulomb clusters witki=19 andN=20. ture of Coulomb clusters was investigated earlisze, for
(4) The radial distribution function example, Refs. 1 and)3
N Mesoscopic clusters have a shell structure at low tem-
g(r)=<z b‘(ri—r)>. peratures, and this is explained by the influence of the cen-
i=1 trally symmetric confining potential. As is well known, an
(5) The correlation function of the angles between theunbounded two-dimensional crystal has a triangular lattice.
particles of two shells: However, the triangular structure originates inside a cluster
Ny N v;/]ith a rath;a;l_lar?e r:umber %f particI«ésfeehals,c;1 Ref.)3 In A
B the case of dipole clusters, because of the short-range char-
9(¢)= < ,21 121 o i) 8= it ¢)> : acter of the interaction, the triangular lattice originates when

o . . . N>11, but it is difficult to distinguish the shells when
©) The.c_ilstr|but|on OT particles over local minima, 1.€., N>40; therefore we have studied dipole clusters with
th_e .probablllty of det_ectmg the system close to dlffe.rentN$40. In logarithmic clusters, a triangular lattice is formed
minima of the potential energWgop,oc. TO calcg_latgs tis 4t much largeN; therefore we investigated logarithmic clus-
quai_nnty, tEe s?/stemlw(?s; perltodlcallgrlce per 1 Il (;t' }ers withN=<50 and selectively for largeX. The following
eration3 sharply cooled to a temperature several orders Olvere found for two-dimensional cluster@) the local, and

magnitude lower than all the melting temperatures (1 S |
x10°7) for 2x10* iterations. The minimum energy was 'Eiba?I tgﬁe?;c;bal(the deepest of the logaiinima of the poten

then compared with the energy at the different local minima,
and, if it was close to the value at some minimum, it was4.1. The structure of logarithmic clusters
assumed that the system fell into this minimithe local

C ) The dependences of the internal, external, and total po-
and global minima were calculated ahead of time P P

tential energy per particle on the number of particles are

close to linear. In this case, the dependences of the internal

and total potential energy per particle on the number of par-

ticlesN are decreasing and smooth féifrom 3 to 50, while

the dependence of the external potential energy per particle
We shall investigate the equilibrium structure of clustersas the number of particle$ goes from 1 to 50 is increasing

with logarithmic and dipole interaction laws. The Coulomb and smooth.

4. EQUILIBRIUM STRUCTURE OF TWO-DIMENSIONAL
CLUSTERS
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Table I shows the occupation numbers of the shells and
the corresponding potential energigsneasured from
C2 In(g/at?a)—see abovkfor the global minima of two-
dimensional logarithmic clusters. The successive filling of I 2
the shells recalls to some extent the periodic table of the
elements (compare the filling of the shells in a two- 3t
dimensional classical system of particles with three-
dimensional Coulomb interacti®dn Each shell can contain ot
no more than a definite number of particles. Thus, there can
be no more than five particles in the first sHethunting from
the center of the systémand no more than 11 particles in the
second. When all the shells are filled, i.e., when they contain
the maximum number of particles, a new shell begins to . y v .

. . . 0 10 20 30 40 50
appear: first one additional particle appears at the center of N

the system, thel(las the number of pamCIes mcrea)sawo FIG. 1. Mean distance between particlegl), sizeR of the system(2), and

particles form an inner shell, etc. In this case, one particlgatice perioda (3) for two-dimensional logarithmic clusters vs the number
appears at the center of the system after a particle is added ¢bparticles.

a system with configuratio(b,..), two appear after configu-
ration (1,7,..) or (1,8,..), three after configuratior2,8,..),
four after configuration(3,9,..), and five after configuration one particle, confirms that the computer calculation is suffi-
(4,11,.). ciently accuratenine places
We shall use the following concept of shéhich dif- It can be seen from Fig. 1 that the mean distance be-
fers from the definitions used earlier, which are not universatween the particles monotonically increases as the number of
for different numbers of particlesWe define a shell as a particles increases, while the rate at which it grows decreases
convex polygon made up of the maximum possible numbesomewhat withN. As far as the size of the system is con-
of particles(inside which the preceding shell is foundat-  cerned, although the overall tendency is for it to increase, it
isfying the following rule: The maximum distance from a cannot be said to monotonically dependifor all N. Com-
particle of the given shell to the center of the system must b@aring Fig. 1 and Table |, it can be concluded that the Rize
less than the minimum distance to the center of the systeraf the system experiences discontinuities when a new shell
from a particle of the neighboring shell, external with respectappears and when a particle is added to the first gfrelin
to the given shell. As a result of this definition, the law for the center of the systemHowever, if the cluster becomes
filling the shells in clusters, obtained from our calculationsmore symmetrical when the numbiris increased by one,
using the definition indicated above, is similar to the law forthe size of the system may just barely increase or even
filling the shells in the Thomson atofrin particular, in our  slightly decrease, as can be seen from Fig. 1. Moreover, the
work, unlike Ref. 19, the number of shells cannot decrease dgttice period(the mean distance between the nearest par-
the number of particles increases. ticles becomes approximately constant fde>9 (see Fig.
Since the confining quadratic potential is centrosymmetd). The last two circumstances show that the density of par-
ric, it should be expected that the shells in a cluster musticles is constant.
have the shape of regular polygons inscribed in circles. How- ~We should point out that it is a rather difficult task to
ever, this is valid only for clusters consisting of one shell orsearch for the configuration corresponding to the global
of two shells the inner of which has only one particle. As theminimum of the potential energy for lardé, because there
number of particles in clusters with smallincreases further, areé numerous local minima with a potential energy that dif-
the symmetry spontaneously breaks down. This shows uf¢rs very little from the energy of the system at the global
most strongly in a cluster with two particles at the cerier ~ Minimum. For example, in the case N=49, the difference
the clusters withN=10 andN=24). In these cases, since the P€tween the potential energy of the system at the global
first shell (counting from the centgrconsists of two par- Minimum (3,9,15,22 and the local minimum closest to it

. 74 -
ticles, it is convenient to assign the shape of an ellipse to th€3:9:16,21is only 4X10""%. For this reason, the search for
second shell. the minimum has to be done very precisého less than

The basis of certain configurations at the global minimaS€ven Places

of the potential energy consists of parts of a crystal lattice
with hexagonal symmetry. When describing and analyzing

the properties of such configurations, it is suitable to intro-*-2- The structure of dipole clusters

(¥ile ]

duce into the discussion *“crystal shells'C{.)—concentric For dipole clusters, the inner, outer, and total potential
groups of nodes of an ideal two-dimensional crystal at theenergy per particl&/N increases almost linearly as the num-
center of which are found particles(see Table )l ber of particles increasdésee Fig. 2 This indicates that, for

An analytical calculation of the radius and potential en-a small number of particled<40, the system has the prop-
ergy of clusters consisting of one shell, as well as of clustergrties of a cluster and has not yet acquired the properties of a
consisting of two shells the second of which contains onlycrystal (for which E/N= const).
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(oot IN 37 particles, it is no longer possible to unambiguously dis-
1 tinguish the shells in the configuration corresponding to the
8r global minimum of the potential energigee Table . A
defect exists in the shell structure, but the particles mainly
ol form a triangular lattice. The ordering thus has two forms—
2 { either a triangular lattice or a shell structure—which compete
with each other. The triangular structure appears at a smaller
ar N for dipole clusters than for Coulomb and logarithmic
r clusters’ and this can be explained by the fact that the dipole
5l interaction potential has a shorter range. Since a regular tri-
angular lattice possesses hexagonal symmetry, deviations of
the shape of the shells from circles are observed for
0 10 20 30 20 N>30. This phenomenon is analogous to the “faceting” of

N a crystal(see also Ref. 20Thus, certain particles in a dipole
FIG. 2. Potential energy per partiof&) ,,p/N vs the numbeN of particles CI_USter are fou,nd not at the boundarx of the.CIUSter b.“t ata
for two-dimensional dipole clusters—total potential energy U /N, d'Stance from it of the order of a lattice pe”0d-_The Intro-
2—mean potential energy of all the interactions between the particleduction of the concept of “crystal shells”"Gr;) is more
(Ui N=(1/2N)2(U;;)=(L/2N)2(1/r}), 3—external potential energy natural for dipole clusters than for logarithmic, since the ma-
(Uexd/N=(IN)a=r?. jority of the configurations at the global minima can be clas-
sified in this way(see Table ).

Table Il shows the occupation number of the shells and
the corresponding potential energies for the global minima of- THE MELTING AND PHASE TRANSITIONS OF TWO-
two-dimensional dipole clusters. The rules of the filling of DIMENSIONAL MESOSCOPIC CLUSTERS
the shells are similar to the rules of their filling in logarith- We have studied the melting of logarithmic, Coulomb,
mic clusters. and dipole micro- and macroclusters with increasing tem-
As N increases, it is found that a triangular lattice beginsperature.
to grow inside the cluster. Fragments of a triangular lattice _ e
first appear for a cluster of 12 particldthe (3,9 con- > The melting of logarithmic clusters
figuration—see Table ]I Beginning with 32 particles, a tri- The temperature dependence of the radial mean-square
angular lattice continually predominates in the cluster: it isdisplacement for a two-dimensional logarithmic cluster with
impossible to completely assign certain particles to definittN=37 is shown in Fig. 3. The radial mean-square displace-
shells—they appear between the shells, forming a fragmemhents for all the shells experience an infection point at the
of a triangular lattice(the latter is centered close to the same temperaturg,=8x10 3.
boundary of the cluster, and not at the center of symmetry of It can be seen from Fig. 4 that the angular mean-square
the confining potential For example, in a cluster made up of displacements with respect to the nearest particles of its own

TABLE Il. Shell structure and potential energy of dipole clusters confined by a harmonic potential.

Number Occupation Potential Number Occupation Potential
of number energy of number energy
particles of shells particles of shells

1 1 0.000000& 1¢° 21 2,7,12Cr, 1.174000% 10
2 2 1.293204& 10° 22 2,8,12Cr, 1.271532X 107
3 3 3.041821% 1¢° 23 3,8,12Crg 1.372791%X 10
4 4 5.520836% 10° 24 3,8,13Cry 1.475311% 107
5 5 8.785647% 1P 25 3,9,13Cry 1.581402% 107
6 1,5 1.2289768 10" 26 49,13 1.6921679107
7 1,6Cr, 1.628138% 10 27 4,9,14Cr, 1.804707X 107
8 1,7 2.108339% 10" 28 4,10,14Cr, 1.919831& 10
9 2,7 2.631354% 10 29 5,10,14Cr5 2.040432& 107
10 3,7Cry 3.190116% 10 30 5,10,15Crs 2.161630K 107
11 3,8Crg 3.761695% 10 31 1,5,10,1%Cr, 2.283908% 107
12 3,9Cr, 4.3999784 10 32 1,6,12,1%Cr, 2.409332% 107
13 4,9 5.0634108 10 33 1,6,12,14Cr, 2.536846& 107
14 4,10Cr, 5.789595% 10 34 1,6,12,1%Cr, 2.666986K 107
15 5,10 6.5399898 10" 35 1,6,12,16Cr, 2.801264( 10
16 1,5,10 7.304922810" 36 1,6,12,17Cr, 2.940787& 107
17 1,6,10Cr, 8.113623k 10 37 1,7,13,16€Cr, 3.082509% 107
18 1,6,11Cr, 8.950633% 10 38 2,8,13,1%Cr, 3.224490% 107
19 1,6,12Cr, 9.842177% 10 39 3,8,13,1%Cr, 3.369088% 107
20 1,7,12 1.077665010 40 3,9,14,14Cr, 3.514469( 107




JETP 89 (6), December 1999

FIG. 3. Total radial mean-square displaceméht?) vs temperature for a

(ér% - 10°

101

10

12 14
T 10°

two-dimensional logarithmic cluster with= 37 particles.

shell experience an inflection point at the same temperature
for both shells. Consequently, a phase transition occurs at
temperature of .=8x 102 (see Table Il in a cluster made

up of N=37 particles: The system loses its ordered structuregomplete melting
For T>T., the number of particles in the shells begins to
change, and the shells exchange particles and smear out.

Yu. E. Lozovik and E. A. Rakoch 1095

TABLE lll. Melting temperaturesT and potential barriers); . of two-
dimensional clusters.

Tc Uj,rot
Logarithmic clusterN=11
Orientation melting of outer shell
with respect to inner shell 40107 2.32x10°©
Complete melting 4%10°%  3.71x10°?2

Logarithmic clusterN=237
Orientation melting of outer shell
with respect to the middle shell 8qalo4
Orientation melting of the middle shell
with respect to the inner shell

2.30x10°8

2402 1.61x10°?

Complete melting 881072 6.61x 1072
Logarithmic clusterN=107

Orientation melting of the outer shell

with respect to the neighboring shell K803 3.0x107?
Complete melting 8510 ° 5.8x 10 ?

Coulomb clusterN=19
Orientation melting - 4%10°?
Complete melting 48108 5.0<10 ?

oulomb clusterN=20
rientation melting of the outner shell
with respect to the middle shell 810 © 1.2x107°

14102 5.4x107?

I:Coulomb clusterN=37
Gentation melting of the outer shell

T>T,, it is impossible to distinguish any shells. The par- with respect to the middle shell 40105 6.1x10°3
ticles move chaotically. The characteristic value of the di-Orientation melting of the middle shell

mensionless parametdf=q%/kgT. at which the system with respect to the inner shell 400°°  6.1x10°
melts is 125 wheN =237, and this is not much different from Complete melting 6510°  5.17x10°°

the value ofl" at which a system with a relatively large Coulomb clusterN=54
number of vortices meltsI{=1I";=130).

It turns out, however, that the angular mean-square deYith respect to the neighboring shell
viations with respect to the nearest particles of the adjacerg

Orientation melting of the outer shell
K80°%  4.59x10?
rientation melting of the middle shells 8072 5.72x 102

rientation melting of the inner shell

shell experience an inflection point at muc_h lower temperayith respect to the adjoining shell 400°°  1.01x10°
tures. For a cluster made up of 37 particles, the angulaComplete melting 4810%  531x10°2
mean-square displacements of the outer shell with respect [ _
. . . . Ipole clusterN=10
the nearest particles of the middle shell begin to quicklygyientation melting of the outer shell
increase at a temperature af,;=8x10* (I'=1/T,;  with respect to inner shell 1:210°° 3.5x10°°
Complete melting 781073 5.6x 10 2

FIG. 4. Angular mean-square deviatio(r&bf) of the outer(1), middle (2),
and inner(3) shells with respect to the closest particles from their own shell
vs temperature for a two-dimensional logarithmic cluster vtk 37 par-

ticles.

(Go})

16
141
12¢
10f

12

10°

Dipole clusterN=38
Orientation melting absent
Complete melting 981078

=1250) (see Fig. 53 while the angular displacements of the
middle shell relative to the closest particles of the inner shell
do this at a temperature @f,,=3x10 2 (I'=1/T.,=333)
(see Fig. 5h This means that, at these temperatures, specific
orientation melting characteristic of clusters with a shell
structure occurs for corresponding pairs of shells; i.e., the
shells in the two-dimensional clusters, while maintaining
their crystallinity, begin to rotate with respect to each other
at a certain instant.

We should point out that the phase transitions in the
mesoscopic system under consideration, as shown by calcu-
lation, are still fairly well-definedi.e., the broadening T/T
of the transition region is not yet large

The potential energy of a logarithmic cluster increases
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FIG. 5. Temperature dependences of the angular
0.41 mean-square deviation&¢3) of the middle shell

L3 with respect to the nearest particles from the outer
shell (a) and of the inner shell with respect to the
nearest particles from the middle sh@d) for a two-

1.0t dimensional logarithmic cluster witNh= 37 particles.

0.2
0.5+
0 0.5 1.0 1.5 2.0 25 0 1 2 3 4
T 10° T 10°

almost linearly with temperature and has no singularitiesture of T;;=4x10 2 in a cluster made up oll=54 par-

Therefore, the temperature dependence of the potential etieles: The system loses its ordered structure.

ergy of the system cannot be used to determine the melting However, it turns out that the angular mean-square dis-

temperature. placements with respect to the nearest particles of the adja-
For logarithmic macroclusters witN=100, orientation cent shell experience an inflection point at a lower tempera-

melting occurs only for the outer pairs of shells, since ature T.,=1.5x 10 2 for the two outer pairs of shells, and at

region of a triangular lattice forms inside. the same temperaturg,; for only the inner pair of shells
(see Fig. 7 and Table Il This means that orientation melt-
5.2. The melting of Coulomb clusters ing occurs at a temperature o= T, for the corresponding

The t ture depend t the total radial dicP@"s of shells.
e temperature dependences of the total radial dis- 15 Jpsence of orientation melting of the inner pair of

placement anq OT t_he radial mean-sqL_Jare_displacements f%ells is explained by the fact that there is a fragment of a
all the shells individually are shown in Fig. 6 for a two-

dimensional Coulomb cluster wittN=54. These depen-
dences experience an inflection point at the same tempera-
ture T, =4x 103 for all the shells.

It can be seen from Fig. 7 that the angular displacements 66%)- 10"
with respect to the nearest particles of its own shell experi-
. . . 251
ence an inflection point at the same temperature for all the 5
shells. Consequently, a phase transition occurs at a tempera- ”0
’ 3
6 3
6r- 103 15} 4
1.6 y
1.4¢ LO} y3 |
1.27 05} 1
1.01 4 1
4 : ; .

0.8
0.6+

o 1 2 3 4 5 6
T-10°

FIG. 7. Temperature dependences of the angular mean-square displace-
ments{54?) for a two-dimensional Coulomb cluster with respect to the
nearest particles of its own and the neighboring shélls,54: 1—of the
first shell with respect to the particles of its own shé#-of the second
shell with respect to the particles of its own shél-of the third shell with

T- 103 respect to the particles of its own shdh—of the fourth shell with respect to

the particles of its own shelb—of the second shell with respect to the

FIG. 6. Temperature dependences of the radial mean-square displacemeptsticles of the first shelb—of the third shell with respect to the particles
(&r?) for a two-dimensional Coulomb clusted=>54: 1—total, 2—of the of the second shell—of the fourth shell with respect to the particles of the
first shell, 3—of the second sheld—of the third shell. third shell.
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triangular lattice inside a cluster made up of 54 particles. Thence of complete melting of a Coulomb cluster wiNk= 20
entire cluster cannot have a triangular lattice, since, becauss the pointT=T,;.

of the centrally symmetric confining potential, clearly ex- In a cluster withN=19, the radial and angular mean-
pressed circular shells are observed on the outside. square displacements with respect to the nearest particles of

The potential energy of a Coulomb cluster, like that of athe adjacent shell experience a discontinuity at the same tem-
logarithmic cluster, increases almost linearly with temperaperature ofT=T.;=4x10 2 (see Table Ill. For T>T,,
ture and has no singularities. two sharp maxima of the outer shell that exist in te)

The melting of a Coulomb cluster made up of 37 par-function whenT<T.; (see Section 3run together(Fig. 9);
ticles also occurs in two stages: orientation melting and commeanwhile, the zeroes that exist in thép) function disap-
plete melting(see Table lll. Unlike a cluster made up of 54 pear atT<T_; (Fig. 10. All this indicates that the orienta-
particles, all the pairs of shells in tié=37 casgincluding tional and radial ordering in a Coulomb cluster with=19
the inner ong experience orientation melting, which is be- simultaneously disappear at=T.;. Consequently, a Cou-
cause there is no region of triangular lattice inside a clustelomb microcluster withN=19 melts in one stage—there is

with N=237. no orientation melting. This behavior is unique for mesos-
We shall consider the melting of clusters made up of 19copic clusters and results from the fact that e 19 cluster
and 20 particles in more detail. has the configuratiofil,6,129 at the global minimum and is

Two-stage melting was observed in a cluster withalmost an exact fragment of a triangular lattice.
N=20, as expected for Coulomb mesoscopic clusters, with We also investigated the distribution of the system over
the orientation melting temperature and the complete meltinghe local minima of the potential energy as the temperature
temperature differing by several orders of magnitude. Thusincreases. It turned out for bothi=19 andN=20 that, at a
at T=T,,=1.8x10 6 the angular mean-square displace-temperature below the complete melting temperature, the
ment with respect to the nearest particles of the adjacerdluster is continually close to the configuration correspond-
shells experiences an inflection point. Moreover, the fluctuaing to the global minimum of the potential energy. At a
tion amplitude of theg(¢) function (see Section Bis large  temperature above that of complete melting, the probability
at T<T., (see Fig. 88 whereas the amplitude aj(¢) that a cluster is close to the configuration corresponding to
sharply decreases @t>T,, (see Fig. 8h This all indicates the global minimum(1,7,12 decreases and goes to a con-
that orientation melting occurs @t=T.,. The radial mean- stant value. The cluster shuffles between configurations cor-
square displacements experience an inflection point atsponding to different local minimél,7,12, (1,6,13, and
T=T.=1.4X10 2 (see Table I}, which indicates the pres- (1,8,11.
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5.3. The melting of dipole clusters It can be seen from Table Il and the preceding discus-

The temperature dependences of the radial mean-squ %on that th? melting of twq—dimensional Iogarithmic, Cou-
displacements, total and for each shell, experience an infleazlgmb’ and dipole mesoscopic clustéexcept for magic clus-
tion point at a temperature of.; for a two-dimensional

dipole cluster withN=38 (see Table Il). At the same tem-
perature, the angular mean-square displacements with r
spect to the closest particles of their own and the neighborin
shells experience an inflection point for all shells. Conse-
guently, a phase transition occurs in a cluster made up of

N =38 particles at a temperature Bf; : The system loses its 6- POTENTIAL BARRIERS WITH RESPECT TO THE
ordered structure. FoF>T,,, the number of particles in the ROTATION OF SHELLS AND THE JUMPING OF PARTICLES

shells begins to change, and the shells exchange particles ahg©M ONE SHELL TO ANOTHER

ters with a triangular structuyeoccurs in two stages. The
melting of logarithmic and Coulomb macroclusters also oc-
gurs in two stages, but orientation melting occurs only in the

uter pairs of shells, and, finally, the melting of dipole mac-
goclusters occurs in one stage.

smear out. Fol>T,,, itis no longer possible to distinguish We can use the techniques described above to find the
any shells. The particles move chaotically. potential barrierU,, against rotation of the shells with re-
The dimensionless parametEy at which the system spect to each other and the potential bardergainst jump-
melts, in units ofD =kg=1, equals ing of a particle from one shell to another in the clusters in
1 which melting was studiedsee Table Il). Rotation of the
szm- shells is the lowest excitation in the case of mesoscopic clus-
¢ ters. It turned out that, for mesoscopic clusters, the orienta-
For N= 38, the valuel'y=69 does not strongly differ from tion barrier is substantially lower than the radial one. The
the valuel' ;=62 at which a dipole crystal meltd. fact that the barriers are incommensurate, along with the dis-

The scenario of the melting of a two-dimensional dipolecontinuity of the angular mean-square displacement, is still
cluster made up dfl =38 particles is analogous to that of the more powerful evidence that orientation melting can occur in
melting of a two-dimensional dipole crystal with a triangular two-dimensional clusters. However, the barriers against rota-
lattice, except that there is no jump in the potential energy ation of the inner shellgfor logarithmic and Coulomb clus-
the melting temperatur’é.However, this is not valid for me- terg or of all the shellgfor dipole clustersare of the same
soscopic clusters consisting of only two shells. Here, despiterder of magnitude as the barriers against jumping for mac-
the short-range character of the dipole interaction, the quaoclusters.
dratic confining potential plays a major role: The shell struc- It can be seen from Table Il that the ratio between the
ture competes with the triangular lattice. The melting of apotential barriers against rotation and jumping for a given
two-dimensional dipole cluster made up of 10 particles ochumberN and a given interaction law equals in order of
curs in two stages, as does the melting of logarithmic andnagnitude the ratio between the temperatures of orientation

between the particles of two shells fdr=19 at

ot f \
4y } ! _‘ 2r \ ' T=3%10"2 (8 andT=7x10"3 (b).
i \ 1k
T & §

Coulomb clusters. melting and complete melting,
o) - 10° o) - 10°
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xf 3"! ! x FIG. 10. Distribution functiong)(¢) of angles
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FIG. 11. Temperature variation of the dependence of the potential energy on
the angle of rotation of the outer shell with respect to the middle shell for a
two-dimensional Coulomb cluster witi=37.

Uex= vZ x?+<2—y>2 yZ, 9)
Urot Tc2

U Ta where 0<y<2 (y=1 corresponds to the isotropic case

This makes it possible to predict the possibility of orientationV& shall calculate the equilibrium configurations by the
melting in clusters with differenl and different interaction Method described above. The configurations corresponding
laws. to the local and global minima of the potential energy were

We also investigated how the potential barriers agains?o_”Sidered for logarithmic and Cc_mlo_mb clusters with
rotation and jumping vary as temperature increases. It is ea __37 and for Iogarlthm_lc clusters W'tN__7 and_ 11 with
to see that all the barriers must disappear for a very higififferent degrees of anisotropy (the configurations of a
temperatureT>T,, for which it is no longer possible to Coulomb cluster wittN=37 are .shown in Fig. 12and the
distinguish the shells in a cluster. However, it is interesting’!lOWing effects were detected: ,
to compare the temperatures at which the barriers with re- 1~ The greater the degree of anisotropy, the larger the
spect to rotation of the shells and with respect to jumping of€ndency to find the global minimum in the configuration
particles between the shells disappear with the temperaturd4th the smallest number of shells and with the smallest
of orientation melting and complete melting of the clusters."Umber of particles in the inner shelisee Table V. The

We have studied how the dependences of the potentieﬁhe"S become more and more elongated and closer in shape
energy on the angle of rotation of the shells with respect td0 polygons i_nscribed in ellipses. We must alter the definition
each other for two pairs of shells vary with temperature and’ _Shell _?]'Q’en ab(?e. Now the greatest value of
how the dependence of the potential energy on the radius &f V(2— Y)SI* ¢+ ycos ¢ for the particles of each shell
the particle, changing shell, varies with temperature for gnust be greater than the smallest value of this quantity for
Coulomb cluster withN=37. It turned out that the barrier the particles of the outer shell with respect to the given shell.
against rotation of the outer shell with respect to the middldBecause of the anisotropy of the confining potential, the
shell disappears at=2.5x 10"* (Fig. 11, while that of the = Maximum value ofr; for the particles of each shell can be
middle shell with respect to that of the inner shell disappear§Uch greater than the minimum valuergffor the particles
at T=6.0x10"%. The barrier against the jumping of par- Of the next outer shejl. , , _
ticles between shells disappears Bt 3.0x 10"2. When 2. If the confinement is strongly anisotropic, the inner
these temperatures are compared with the melting temperdh€ll can have two tails, directed along $exis (if y<1,
tures, it is seen that the melting temperature is less than tHe~ Y<2— ), Or can simply turn into a straight linesee
temperature at which the corresponding barrier disappears Bg,able IV). If a cluster consists of one shell, its s_tructure dc_)es
a factor of about 5-15. This is apparently because the pa{IOt undergo any more changes aftgr it turns into a straight
ticles begin to partly overcome the barrier at the melting'!”e (other than an increase of the _d|stance between the par-
temperature, whereas, when the temperature is increased f(i€/es as the degree of anisotropy increas&ge cluster be-
ther and the barrier disappears, the particles cease to notice@Mes one-dimensional. It should be pointed out that the

and move chaotically in the direction of the correspondingdensny of a one-dimensional cluster increases toward its cen-
barrier. ter.

3. The greater the degree of anisotropy of the confining
potential, the lower the local minima possessed by a cluster
with a given number\. In particular, a one-dimensional

Let us consider how the equilibrium structure of two- cluster(a two-dimensional cluster with very strong anisot-
dimensional clusters varies because of the anisotropy of thepy) has only one minimum—the particles lie on a straight
confining potential. An anisotropic confining potential hasline.
the form The effects described above can be traced in Table IV.

7. CLUSTERS WITH ANISOTROPIC CONFINEMENT
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TABLE V. Structure of two-dimensional anisotropic clusters. TABLE V. Potential barriers of clusters with= 37 with various degrees of
anisotropy of the confining potential.

Number Degree of Occupation number Potential

of particles  anisotropy  of shellsN;,N,, . .. erergy U o y Urota Urotp U;
Coulomb clusters Logarithmic cluster

37 1.00 1,7,12,17 4.72566110° 1.00 231078 1.60x10°? 6.60< 102

37 0.90 1,7,13,16 471413907 0.89 1.14<10°* 5.84x 102 5.01x 102

37 0.75 conc.7,13,17 4.6518¢1 (7 0.67 1.1% 102 6.67x 102 3.04x10°2

37 0.60 L5,14,18 4.52841710° 0.50 9.4 102 — 4.64x10°2

37 0.50 L4,14,19 4.40323610° Coulomb cluster

37 0.35 15,22 4.12450510° 1.00 6.1x 104 6.1x10° 3 5.17x 1072

37 0.20 4+ X3+ X4, conc.26 3.65244210° 0.90 1.96<10 2 5.73x 10 2 5.12x10 2

37 0.05 35-2*X1 2.54625% 107 0.75 1.13%x 10! 1.77X107? 6.93< 1072

37 0.01 L37 1.652738 107 0.60 8.95¢10 2 1.21x10°* 6.65x10 2

Logarithmic clusters

7 1.00 1,6 —7.51244%10°* Note: Here y is the anisotropy parametay,, , is the barrier against rota-

7 0.89 1,6 —8.891301x 101! tion of the outer shell with respect to the middle shel}y, is the barrier

7 0.67 1,6 —2.136851 10° against rotation of the middle shell with respect to the inner shell ljnid

7 0.50 1,6 —4.172614 10° the barrier against jumping of a particle between shells.

7 0.40 1,6 —6.02906 10°

7 0.33 17 —7.802550< 10°

7 0.18 I7 —1.416698¢10" On the other hand, in order to confirm that the melting of
11 1.00 3,8 —1.70933%10¢ a two-dimensional cluster has a single stage for strong an-
11 0.89 2,9 —1.25175% 10" . o .

1 0.67 2.9 _1.566826¢ 10" isotropy of the confining potential, we calculated the tem-
11 0.50 11 —2.08275% 10t perature dependences of the radial and relative angular dis-
11 0.40 11 —2.560793 10" placements for a logarithmic cluster witiN=37 and

11 0.33 11 —2.98330% 10! y=0.50 and for a Coulomb cluster witNN=37 and y

5 (1):33 1 é‘lllz 18 :g:ggg;giig =0.60. We found that the dependences of the radial and
37 0.89 6,12.19 _5.095770¢ 102 relative angular displacements with respect to the nearest
37 0.67 L4,13,20 —5.456363 102 particles from their own and from neighboring shells experi-
37 0.50 15,22 —6.03787K 107 ence a discontinuity at the same temperatuigs=(0.0045

37 0.40 9r2*X2,24 —6.58000% 10* for a logarithmic cluster an@,=0.0065 for a Coulomb clus-

g; g:ig L93'728 :;:gig;?gig tgr). Consequently, a two—t_jimensional clgster with a suffi-
37 0.10 31 2% X3 _1.073160< 106° ciently strong degree of anisotropy melts in one stage.

37 0.06 174 2%X10 —1.23732%K 10 It should also be pointed out that, for a very strong de-
37 0.03 L37 —1.468088¢ 10° gree of the confinement anisotropy, the melting of a cluster

in general does not occur, since the cluster becomes a one-

Note: The following symbols are used herez lis a line consisting ofz . .
dimensional system.

particles; x* Xy are x tails, each of which consists of particles; and
“conc.” means that this shell is concave.
8. THE MELTING OF THREE-DIMENSIONAL COULOMB

CLUSTERS
We next consider how the degree of anisotropy of the

confining potential affects the ratio of the potential barriers [N this section, we study three-dimensional Coulomb
with respect to rotation of the shells and jumping of theplusters in a quadratlc conflnlng potential. Since the confin-
particles between shells. It can be assumed that, in accof?d Potential is centrosymmetric, the clusters have a shell
dance with the distortion of the circular symmetry of the Structuré(as do two-dimensional clustgrat low tempera-
confining potential, the orientation melting disappears, andures (see, for example, Refs. 3 and)22iowever, in the

the melting becomes single-stage. To prove this hypothesidlrée-dimensional case, at low values f(N<100), the

we investigated the barriers against rotatlop and against shells in the clusters have the shape of polyhedra close to
jumping U;, using logarithmic and Coulomb clusters con- tr_]ose .|nscr|bed in a sphe_rg. Moreover, the Igrger the dlr_nen-
sisting of 37 particles as examplésee Table V. As the sionality, the larger the critical number of particles for which

degree of anisotropy increases, the ratid ,/U; increases & NeW shell is formedsee Table V).
[an exception is the case of a logarithmic cluster with There are a number of papers devoted to the structure of

¥=0.89, for which this ratio decreases; this is because thirée-dimensional Coulomb clusteeee, for example, Refs.
global minimum is displaced from configurati¢h,6,12,18, 3, 22, and 28 However, the melting of three-dimensional
similar to a fragment of triangular lattice, into configuration

(6’12’19’ which possesses a clearly expr_essed shell _StrUCtUEPABLE VI. Formation of new shells in Coulomb clusters.

and does not resemble a fragment of triangular |ajtared

for certain v (y=0.50 for a logarithmic cluster and Formation of shells D=2 D=3
vy=0.60 fpr a Coulomb clustgelbecome_s larger tha_n unity o ion of a second shell No—6 Ng—13
for all pairs of shells(see Table V. This agrees with our Eormation of a third shell N =17 N, =61

assumptions.
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TABLE VII. Potential barriers in three-dimensional Coulomb clusters.

Barrier N=33 N=48 N=60 N=100

Barrier with respect to rotation of the shells 14280 2 3.00x102 7.5x10° 3.13x10°?
Barrier against jumping of particles between shells &42 2 6.74x10°2 1.18<10°! 5.71x10 2

Coulomb clusters has not been studied in deéfaiéliminary  substantially less than the barrier against jumpsee Table

data were obtained in a paper by one of the authofiere-  VII). Therefore, orientation melting is possible in three-

fore, the interesting question arises of whether orientatiomlimensional mesoscopic clusters.

melting (which is usual for a two-dimensional cluskes To confirm this fact, we calculated the melting of three-

possible in three-dimensional clusters. dimensional Coulomb clusters with=33,100. We studied
We first found the configurations of the clusters at thethe temperature dependences of the following quantities,

local and global minima of the potential energy for which are analogs of the quantities presented above for two-

N=33,48,60,100. We next found the potential barriers withdimensional systems:

respect to rotation of the shells and jumping of the particles (1) The total potential energy.

between shells for the giveN. It turned out that the barrier (2) The total radial mean-square displacement, and the

against rotation is not much different from the barrier againstadial mean-square displacement for each shell.

jumping only forN=100, whereas, for clusters consisting of (3) The angular mean-square displacement relative to the

two shells withN=233,48,60, the barrier against rotation is closest particles from a given shell:

1 Ne (=i )2+ (0= 6,)2)— (i~ bi,+ 6,— 6,))?

2 [ Jpe—
(6000 =~ 2 oY - (10
(4) The angular mean-square displacement with respect to the nearest particles of the neighboring shell:
N — b )2 — 0 )2y — b — 0. ))2
<5Q§Xt>: iER <(¢| d)lz) >+<(0| 0|2) z <(¢| ¢|2+0| 6|2)> . (11)

Here 2),=4m/Ng is the mean angular distance between theclosest particles of their own and the neighboring shells have

nearest particles of a given shell. no singularities as a function of temperature. These results
For N=33, the temperature dependences of the radiatonfirm the results of the calculation of the potential barriers.

mean-square displacement for both shells simultaneously ex-

perience a jump al,,=7x10 3. As the temperature in-

creases further, the shells in a cluster flow together, and the CONCLUSIONS

cluster loses its ordered structure. Consequeftly,Tc; is 1. It has been shown that two-dimensional mesoscopic
the temperature of complete melting for a three-dimensionat|ysters of particles that repel according to dipole, Coulomb,
Coulomb mesoscopic cluster witl=33. and logarithmic laws and that are confined by an external

However, the temperature dependence of the angulajyadratic potential have a shell structure at low temperatures.
mean-square displacement with respect to the nearest pafhe configurations of the system at the local and global
ticles of the neighboring shell experiences an inflection poinfninima of the potential energy have been found. As the
at the lower temperature af,,=4x10"*. The dependences number of particles in the clusters increases, a fragment of a
of the radial and angular mean-square displacements Witftiangular lattice appears. The longer-range is the interaction
respect to the nearest particles of a given shell also experpotential between the particles, the greater the number of
ence inflection points at this temperature for both shellsparticles needed to form the triangular lattice. The following
Thus, orientation melting occurs at=T., in a three- physical implementations have been considered: electrons on
dimensional cluster wititN=33; i.e., the “bulk” shells, the surface of liquid helium, electrons in a quantum dot,
maintaining their crystallinity, begin to rotate with respect to particles in a layer of magnetic liquid, and vortices in a small
each other aT=T,,. superconducting island or in a rotating vessel with superfluid

However, the melting of a three-dimensional Coulombhelium, as well as electrons in a semiconductor nanostructure
macrocluster withN=100 occurs in one stage. The depen-surrounded by a medium with low permittivity, etc.
dences of the radial mean-square displacements experience 2. The temperature dependences of the potential energy,
an inflection point aff ;=9.0x 102 for all the shells, while the mean-square radial and angular displacements, the radial
the angular mean-square displacements with respect to ttend angular distribution functions of the particles, and the
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distribution of the particles over the local minima of the certain degree of anisotropy, the orientation melting disap-
potential energy have been studied in detail. As a result, thpears and the melting becomes single-stage.

melting of the system has been studied. It has been shown 5. The higher the dimensionality of the cluster, the larger
that the melting occurs in one stage in dipole macroclusterghe critical number of particles for which a new shell forms.
In macroclusters with a longer-range interaction potentialOrientation melting also takes place in three-dimensional
and in all mesoscopic clustefexcept for magic microclus- Coulomb mesoscopic clusters. However, for lahjgalues,
ters with a triangular lattice structyrghe melting comes in  orientation melting disappears and the melting of three-
two stages: The first stage, at lower temperatures, is orientaimensional macroclusters is single-stage.

tion melting—from the frozen phase into a state with rota- ) .
tional reorientation of “crystalline” shells with respect to This work was supported by INTAS, the Russian Fund
each other. The second stage is a transition in which th&" Fundamental Research, and the Atomic Surface Struc-

radial ordering disappears. In Coulomb and logarithmic mactures Program.

roclusters, orientation melting occurs only for the outer pairs

of shells. We should point out that orientation melting is*E-mail: lozovik@isan.msk.su
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A model that takes into account the significant contribution of vacancies at moderate and high
temperatures is proposed to explain the anomalous increase in the mean-square
displacements of atoms in transition-metal surface monolayers. The dependence of the effects on
the orientation of the surface is explained. The vacancy formation energies and the values

of the Debye temperature are obtained within the proposed model for differently oriented surfaces.
© 1999 American Institute of Physids$1063-776(99)01212-3

1. Numerous experiments performed by various methodshe direction perpendicular to the atomic plane. However,
[medium-energy ion scatterindEIS), low-energy electron attempts to explain the observed phenomena only on the ba-
diffraction (LEED), elastic scattering of Heions, electron- sis of this anharmonicity were unsuccessfske, for ex-
energy-loss spectroscopELS), angle-resolved photoemis- ample, Ref. 1k Moreover, this anharmonicity offers no ex-
sion spectroscopyARPES, and Rutherford backscattering planation for the anomalous in-plane vibrations.

(RBS)] have revealed significant anomalies in the behavior  The theoretical approaches proposed to account for the
of atoms in surface monolayers of transition-metal singletemperature effects just enumerdfed? utilize molecular

crystals at moderate and high temperatures: dynamics. The interaction between atoms is described by
the vibrational amplitudes of the surface atoms signifi-potentials obtained within the method of pairwise inter-
cantly exceed the bulk valués’ atomic interactioné® the pseudopotential methétiand the

the amplitudes of the in-plane vibrations of atoms are ofembedded-atom meth@#AM).?® Yanget al1® were able to
the same order as the vibrational amplitudes in the perperattribute the anomalous amplitudes of atomic vibrations on
dicular direction and, in some cases, appreciably exceedg(110) and Cy{100 surfaces to surface phonon modes. For
them?389 Ni(100) the anharmonicity of the vibrations was explained in

considerable anharmonicity has been discovered in tha quasiharmonic approximation using an EAM potential in
vibrations of surface atom$; Ref. 17.

an anomalous increase in the thermal-expansion coeffi- In the theoretical models described in Refs. 16—20 the
cient has been noteld;*? surface is treated as a perfgdefect-fre¢ structure deter-

softening of the phonon spectrum has been obser®d. mined by the volume. However, studies of thg Ni0) (Ref.

All these effects are manifested differently for different 10) and PK100) (Ref. 26 surfaces(using high-resolution
orientations of the single-crystal cut. For fcc crystals theLEED) and the Rtl11) surfacé’ (using reflection electron
sharpest dependences are observed for faces havifgli)e microscopy revealed an anomalous decrease in the diffrac-
orientation, and the weakest dependences are observed fion intensity when the temperature was raised. An increase
(111 faces™*1%12|n particular, anomalous thermal expan- in the intensity of the fundamental background was simulta-
sion of a N{100 surface was observed using LEED at 900—neously observed and was attributed to the formation of sur-
1300 K1° However, an MEIS investigation of a {il1) sur-  face vacancies. Adatom-vacancy pairs were introduced to ac-
face did not reveal any increase in the expansion of theount for the mean-square displacements of1AQ and
surface layers up to 1100 K.Unlike nickel surfaces, Cu(110 surfaces in the models in Refs. 21 and 22. The for-
Ag(11]) (Ref. 2 and Cy111) (Ref. 6 surfaces expand con- mation of diadatom-divacancy pairs was discussed in Ref. 28
siderably[Ag(111) by up to 10% and CU11) by up to  for Ni(110. Anomalously largg5—-30% enrichment of the
4.3%) at high temperatures. surface with vacancies was obtained in high-resolution

The atomic potential on a surface differs from the bulk LEED experiments for NL10 (Ref. 10, Ph(100) (Ref. 26,
value because of 3D symmetry breaking, which leads to thend P{111) (Ref. 27 surfaces. The authors of these reports
appearance of anharmonicity of the vibrations of atoms imote that vacancy formation plays a dominant role in the

1063-7761/99/89(12)/4/$15.00 1103 © 1999 American Institute of Physics
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FIG. 1. Temperature dependence & {Au%),/(AUZ),. The solid line ~ F!C- 2. Same as in Fig. 1 for €100 (Ref. 3.
was obtained by the least-squares method from&aqusing the experimen-

tal data(pointg for Cu(110 (Ref. 1).

equal to zero. A different situation is created in the presence
of defects. The force exerted by other atoms on the atom in
roughening and disordering of surfaces at moderate temperghe site atR, is
tures. ~
The EAM calculations of the formation energy of F—_ e® _ =0, ¢,=0, @
surface vacancies in Ref. 29 showed that this parameter is = “ e(Ry), #0, c,#0.

comparatively small and falls in the range=0.2-0.8 eV Here c, is the concentration of vacancies. As a result, a

for the group of metals considerédg, Cu, and NJj. Esti- i . . .
oo linear term appears in the expansidn of the potential en-
mates show that at elevated temperatures the concentrati n bp pansidn P

f surf dina to the f i gy in a series in small displacements, and the effect of the
of surface vacancies corresponding to the formation energl(':‘f%rceF (2) leads to displacement of the equilibrium positions
indicated reach a value of1.0%. Since the melting of met-

of the atoms.

als begmos already when the bulk concentration of vacancies Thus, the appearance of vacancies leads to a change in

is ~0.01%, the high concentration of surface vacancies 'nthe mean-square dlsplacement‘mz)S of the atoms in the

dicated must have a significant effect on the surface phenonE)uter monolayer: static displacement of the atoms and alter-

ena‘l?r:edel\;? tggetirpfheeraurg:nt work was to investigate the gtion of their vibrational amplitudes occur.

role andpcogtrlbutlon ofpvacanmes to the mean- sql?are dIS The experiments were devised to study the temperature

placements of atoms in transition-metal surface monolayer dependence of the magnitude of the relative displacement
3=\ (Au?)s/{Au?),, where(Au?), is the mean-square dis-

at elevated temperatures. placement of the atoms in the bulk of the sample. In order to
2. The microscopic calculation of the mean-square dis-
escribe the experimental dependences of the behavior of the
placements is carried out within an expansion of the potentia

. L . ean-square displacements of atoms, let us consider a
ene_rgyfb n thg .deV|at|ons of the atoms(R,) from their simple model. We assume that all the changes occur only in
equilibrium positionsR; :

the atoms in the local environment of a vacaneyig the

1 number of such atomsand that the appearance of vacancies
P=Po+ 3 > Ul(ROD,s(R—R)UR(R)+ .. ., does not have any effect on the behavior of other atoms. The
RicRi (1) vacancies do not interact with one another, and the contribu-

tion of the vacancies is therefore proportional to their con-

whereD ,; is the dynamic matrixsee, for example, Ref. 23 centration.
For surface atoms thR, are the positions of the atoms

under equilibrium conditiongin a defect-free crystaht low

temperaturegwith consideration of the low-temperature re-

laxation of the surfade
The presence of vacancies leads to a change in the po- 201
tential energy of the syste—®+ 5V due to both the 1.8}
disappearance of atoms and the associated reorganization of
the electronic structure. The parameters of the dynamic ma- L6}
trix D,z vary as a consequence. A decrease in density 14l
clearly leads to a decrease in the elastic constants. We note .
that the perturbatiodV is not small for crystal-lattice sites 1.2t .
next to vacancies. Vacancies make a fundamentally new con- . . . .
tribution to the potential energ® of the systerif by break- 400 600 800 1000 1200

’

ing the translational symmetry of the crystal. In the absence
of defects, the forces acting on the atom in the sitRjaiire  FIG. 3. Same as in Fig. 1 for Cld1) (Ref. 6.
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TABLE I. Vacancy formation energy for differently oriented surfaces of Cu, Ag, and Ni single crystals: values
obtained from experimental datd by the least-squares method using E).*, results of EAM calculation$®

and results of charge-density calculatidh3he bulk values of the vacancy formation eneegy(Refs. 35 and

36) are given for comparison.

Metal (110 (100 (111 ey

Ag 0.16° 0.43 1.11
0.22 (Ref. 29 0.45 (Ref. 29 0.58 (Ref. 29, 0.67 (Ref. 34

Cu 0.35 0.35-0.3 0.7 1.28
0.29 (Ref. 29 0.58 (Ref. 29 0.72(Ref. 29, 0.92(Ref. 34

Ni 0.5-0.8 1.8
0.34 (Ref. 29 0.66 (Ref. 29 0.82 (Ref. 29

Averaging over an ensemble of atoms on a surface, focentration of vacancies on a surface decreases from surface
the mean-square displacement we obtain to surface in the following order: (116}(100)—(111).
This sequence coincides with the experimentally observed
Au?)=(Au?)o+ ((AU?),—(Au?)o)zC,, 3 . .
(AU%)s=(AUT)o T ((AU%) —(AUT)o) 2, _ @ dependence of the magnitude of the mean-square displace-
where (Au?), and (Au?), are the mean-square displace- ments of the atoms on the orientation of the surface. The
ments of the atoms near and far away from a vacancy.  empirical values of the vacancy formation energies are close

Using the Arrhenius dependence of the vacancy conceno the values calculated by the embedded-atom méttisee
tration on the temperaturg we obtain the following expres- Table |).

sion for 5(T) (the Boltzmann constarkz=1): Apart from the formation energy; , the dependenc@)
m” . contains two more parameters, viZ.and . Let us relate
5=\ &+ TeXF< - ?f , (4)  them to physical quantities. Without allowing for vacancies,

the magnitude of the relative deviatiohequalss=/&. In
wheree; is the effective vacancy formation energy, which the Debye modelfor temperatures above the Debye tem-
decreases as the surface is approachéds the ratio of the ~ peraturg & is the ratio between the Debye temperatures
mean-square displacements of the atoms on the surface to tivthin the sample and on the surfacé=®,/04. In the
corresponding bulk value at low temperatur@s<e;), and harmonic approximatio is determined by the ratio of the
the parametery is ¢=z(u?),K,e*S (AS is the entropy force constants in the volume to the corresponding constants
change caused by the alteration of the properties of the atonm the surfaceS= K, /K. The values of the Debye tem-
as a consequence of the appearance of a defect, particulapgratures® that we obtained for differently oriented sur-
by the change in the vibrational frequency, ag is the  faces from the experimental data are presented in Table II.
bulk value of the elastic modulus The value of®4 has previously been discussed in the litera-
The experimental data for differently oriented Ag, Cu, ture(see, for example, Ref)1The corresponding dat# on
and Ni surfaces were used to determine the parameters of ti, are also presented in Table Il. A more detailed compari-
temperature dependence of the relative displaced®éfitby  son of the Debye temperatur®s, requires allowance for the
the least-squares method. As examples, Figs. 1-3 present thrisotropy of surfaces with low Miller indices and the scat-
theoretical plots of4) obtained for Cil11), Cu100), and tering geometry in the experiments considered.
Cu(110. The experimental datd® are shown as points in The values of were also obtained from experimental
Figs. 1-3. The vacancy formation energies on different surdata by the least-squares method. The values obtained from
faces are listed in Table I. It is seen that for the same material for the mean-squares displacements of atoms near vacan-
the vacancy formation energy increases successively fromies(Au?), include both local strains and vibrations. At el-
the (110 surface to thg100) surface and then to th@11) evated temperatures the values\@fAuz)v are comparable
surface. Consequently, at an assigned temperature the caw-the lattice constant. Such a large value(fdu?),, calls for

TABLE Il. Debye temperatures for differently oriented surfaces of Cu, Ag, and Ni single crystals: values
obtained from experimental datd by the least-squares method using H4)* and results of EAM
calculationst The bulk values of the Debye temperatg (Ref. 23 are given for comparison.

05
Metal (110 (100 (111 0,
Ag 205 151* 215
Cu 220, 250 (Ref. 32 185° 260 315
150—-240(Ref. 1), 125-190(Ref. 1 150-190(Ref. 1)
Theoret. 224Ref. 1 246 (Ref. 1) 213 (Ref. 1) 340 (Ref. 1)

Ni 282 375
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The Berezinski-Kosterlitz—Thoules$BKT) phase transitions in two-dimensional systems with
internal continuous Abelian symmetries are investigated. In order for phase transitions to

occur, the kinetic part of the action of the system must have conformal invariance, and the vacuum
manifold must be degenerate and have a discrete Abelian homotopy group this case

topological excitations have a logarithmically divergent energy and can be described by effective
theories that generalize the two-dimensional Euclidean sine-Gordon theory, which is an

effective theory of the originakKY model. In particular, the effective actions are found for chiral
models on the maximal Abelian tofig of the simple compact Lie grougs. The critical

properties of the possible effective theories are found, and it is shown that they are characterized
by the Coxeter numbels; of lattices of theA, D, E, andZ series and can be interpreted

as properties of conformal theories with an integer central ch@rg@, wheren is the rank of

the groupsm; andG. The possibility of reconstructing the complete symmetrysoh

the massive phase is also discussed. 1999 American Institute of Physics.

[S1063-776(19901312-§

1. INTRODUCTION class. The sine-Gordon model can be regarded as an effective
theory of Berezinski-Kosterlitz—Thouless(BKT) phase

The discovery of the possibility of a phase transition intransitions, just as the Ginzburg—Landau—Wilson theories
the two-dimensionaXY modef at once attracted a great deal gre effective theories of second-order phase transiiises,
of interest on the part of theoreticians due to its unusuajgy example, Ref. 19
properties. First and foremost, it seemed that the existence of pgkT phase transitions can also be related to a conformal
such a phase transition contradicts the Peierls—Laitand  theory, but here there is an additional subtlety. Unlike an
Bogolyubov—GoIdstonAer"theorems, which state that sponta- orginary second-order phase transition in a two-dimensional
neous symmetry breaking and spontaneous magnetizatiQ)stem, where an infinite-dimensional conformal symmetry

cannot occur in low-dimensional systemb<(2) with con- yiun 4 rational central charg€ exists only at the phase-

: 7
tinuous symmetry. S_eC(_)nd, because (_)f the at_)senge Oftransition point® in systems with a BKT phase transition an
spontaneous magnetization the correlation functions in th

. finite-dimensional conformal symmetry with an integer
low-temperature phase should decay according to a power _ : . ]
89 -1 . Central chargeC=1 exists not only at the transition point
law.>® This means that the entire low-temperature phas

must be massless efwith logarithmic corrections but also in the entire low-

All these contradictions were brilliantly resolved in a tempHerature.tpfhﬁse. that a BKT oh ¢ ition is inti
series of papers by Berezingki Popov!! Kosterlitz, and ence 1t Toflows that a phase transition 1S inti-

Thouless13 They were the first to demonstrate the impor- Mately related to two fundamental properties of two-
tant role of topological excitations, i.e., vortices, with a |oga_d|men3|onal systems) 1he nontrivial topology described by

rithmically divergent energy in these phase transitions. Vorthe discrete Abelian homotopy group, and 2 the confor-
tices exist because the value manifold of % model.~ ~ Mal symmetry. It would be interesting to examine the prop-
=5t has a nontrivial topology, which can be described by serties of BKT phase transitions in systems having internal
discrete Abelian homotopy groupr,(.#)=7, while the symmetries in addition to these two properties.

logarithmic divergence of the energy is associated with the ~Such systems are associated, for example, with tori,
conformal symmetry of the model. Allowance for vortices Which are a natural generalization of the cir@e with the
transforms the continuous compact symmail) into the  necessary properties. It is easy to see that the same critical
dual discrete symmetr¥,Xx 7, whereZ, is the automor- properties exist in two-dimensional chiral models on ot
phism group of a circles!, which coincides with the reflec- with m1(T")=Z". This case effectively reduces to the pre-
tion U(1)=S!. Similar phase transitions take place in otherceding case, since only excitations with the minimal topo-
systems with the same symmetry: two-dimensid@Sand  logical chargesej==*1,i=1,...,, are important and
6-vertex lattice models, quantum spirXZ chains* and the  charges of this kind that correspond to different circles do
Euclidian sine-Gordon model with a noncompact field'®  not interact with one another. The same properties are exhib-
All these systems belong to a single critical universalityited by o models on common tori associated with arbitrary

1063-7761/99/89(12)/7/$15.00 1107 © 1999 American Institute of Physics
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nondegenerate latticas (Ref. 21). However, as was shown Below it will be convenient to include the constaxt as a

in Ref. 21, apart from such tori there are maximal Abeliannormalizing factor in the definition of the trace /[ TrThis

tori T of simple compact Lie group8, which have(in the  gives the canonical Euclidean metric in the space of topo-
case of simply connecte@) 7(Tg)=L,#Z" (hereL, is logical charges.

the lattice of dual roots of the corresponding Lie alge@ya The theorieg1), like other two-dimensional chiral mod-
and in which excitations with different vectorial topological els, are invariant with respect to the action of the direct prod-
charges interact with one another. uct of the right-hand R) and left-hand ) groupsNE(L),

The following question thus arises: how do the critical which are the semidirect product @ and W :
properties of the topological phase transition mentioned
above depend o1G? This question is important, for ex- Ne=TeX W )
ample, for string theory, where various aspects of compactithe groupNg, which is called the normalizer of the torus
fication onTg are considere@more precisely, it has hereto- 1. s the symmetry group of the tor(; .
fore been considered only on the nondegenerate Tori These theories comprise a multicomponent generaliza-
=Ty or T, =R"/L, whereL is a nondegenerate lattice of tjon of the XY model, which has properties similar to the

rank n),?*? or for chiral models orG with a reducedor  properties of thexY model:
partially broken symmetryG\Tg 24 1) a zero beta functiop(«) (due to the flatness df )
In this paper it is shown that: _ and unbroken symmetry when the topology is disregarded:

compactl g can be described in terms of effective field theo-yqrtex solutions.
ries with discrete symmetries that generalize the sine-Gordon  The classical equations of the theori@s
theory;
2) these properties depend only in the Coxeter number ~ (d,)%(H- ¢)=0 3

h, of the corresponding lattice of topological chardes have the following vortex solutions in the regiét»>r>a

3) different universality classes of a BKT phase tranS|—Where R is the radius of the system aralis the short-

tion are d_efmed by thet, D, E, andZ series of integer- wavelength cutoff parametdfor example, the vortex core
valued lattices; radius:

4) all the critical and low-temperature properties of these

o models (apart from the logarithmic corrections at the 1

phase-transition pointcan be described by corresponding ~ H(®)=exp(2mi(H-&(9))}, ¢=5_a(9). 4
conformal theories with an integer central charGe=n,

wheren is the rank ofr,(Tg) andG. Hered andr are the angular and radial coordinates inife

The possibility of reconstructing the complete symmetryplane,q is the vectorial topological charge of the vortex,
groupG in the massivehigh-temperatunephase is also dis- eL'=L;*, L! is the lattice of all possible topological

cussed. charges of ther representation, and;1 is the lattice of
vectors which are reciprocals of all the weights of the
2. NONLINEAR ¢ MODEL ON T5 AND VORTICES representation:
Let us consider the two-dimensional Euclidean chiral qel!, w,e{w,}, (q-w,)eZ. (5

field theories ol 5 that generalize the nonlinearmodel on
a circleS* or the continuouY model. Their action has the
following form:

For the minimal fundamental representations of the simply
connected groups(G)=min we havel !, =L,, and for the
adjoint representations=ad we havelL! =L, =L,
whereL, is the lattice of roots of the group, andL« is the
lattice of dual weights or the lattice of weights of the dual
5 groupG*. Just these solutions for all the groupsvhich are
_ (2m) f d?XTr(H- )2 such that.! DL, can give a topological interpretation of all
2a 7 v their quantum numbers. The energy of these vortices di-
(2m)? verges logarithmically:

N, | d’x(¢,)?, (1) 2
2a T v (2m) 27
j = f (&Mg‘b)zdzx—— > g?In

1
e 2 -1
3% 2af d2Tr(t; ')

R

a

. (6)

wheret=exp2#i(H- ¢)} e Tg, H=(H4, ... H,) belongs
to 7, ie. the r[l(:mmal Cartan subalgebra of the correspondgy virtye of formula(2), which defines the effective metric
ing Lie algebra?, [H; ,H;]=0,nis the rank of the grouf, i the space of topological charg®@sthere is a logarithmic

#,=3,¢, andv=1,2. Here we have utilized the isotropy of jnteraction between vortices with different vectorial topo-
the system of weightgw}, of any 7(G) representation, |qgical charges:

which is a consequence of the invariance of systems of

weights toward the discrete Weyl groWigs € O(n), 21 X=Xyl
E:(Qr%)z'n a

()

wwi=N_,8,, a=1,...,dim7(G). 1 . .
; Pk Tk m(G) (13 The generaN-vortex solution has the following forrff



JETP 89 (6), December 1999 S. A. Bulgadaev 1109

N1 y—y
d(X)=2, qi—arctaré—
i=1 aa

is the chemical activity of the Coulomb gas, det denotes the
) , (8) determinant of the quadratic fluctuations on a background of

i
X=X the vortex solutionwe shall henceforth set detl),

gell, (g-w)eZ (xy)eR? B=4m%a, (15h)

The energy of theNth vortex solution with a zero total to- andf(ka) is a regularizing function, which is such that
pological charge!! ;q;=0 equals lim f(ka)=1, lim f(ka)=0.
k—0 k— o0

1
_ 0 _ 0o_ — A
EN_Z Eqi+EN int Eqi ZaC(a)(q' %), The next section clarifies how allowance for vortices alters

\ the original symmetry grouplg of a o model.

™ I — Xl
Enin=5, ;k (Gi- G In———, ) 3 DUALITY OF COMPACT AND NONCOMPACT THEORIES

where Eg. is the “self-energy” (or the core energyof a Iq the lcase of th.@(Y.modeI, in_ the Iong.—wavelength
vort xwi'lch the topoloaical char ndC(a) is a nonuni- quasiclassical approximation there is a very important rela-
vgrseal constailto\?vcr)li?:?l Cche Cer?dzzﬂo,nathe \(/ﬁztesxaco(r)e l;e ula;[i-On between the partition function of the compact chiral
o ' P . - 9 theory(1) on S' and the partition function of the noncompact
ization method. Only such solutions make a finite contrlbu-sine_Gordon theoﬁ?‘”with the action(modulo of Z,)
tion to the partition functionZ of the theory. Sincek, =0
~@? andgelL!, the maximal contribution to eadi-vortex o , 1

"/SG: d X| ==

sector of solutions is made by the vortices with the minimal 28
|q|; . Therefore, in the quasiclassical approximationin the , L ) . ,
This action is invariant relative to the dual discrete group

low-temperature expansipiwe can represent the partition . L . .
: Z,X 7. There is a similar relation between the compact chiral
function of the theory5) . .
models onTg and the noncompact generalized sine-Gordon
- b A 10 theories.
~= dexp— 1)) (10 In order to see this, we note that the large partition func-
tion Z.¢ from (11) is, in turn, equivalent to the partition

in the form of the large partition function of a clas§|cal, function of a noncompact scalar isovectorial field theory:
neutral as a whole, Coulomb gas of vortex solutions with the

(9,¢)?—2u?cosg|. (16)

minimal vectorial topological chargeg e {q},, where{q}, ~ _ _ o i 2_ 2
is the set of minimal vectors of the lattidé : <ce= | DA Ten). Sen= 2,3((94)) V),
o 17)
B=2. 2 Zee= D B3 2y (alp)
K 0<CG:  =<CG NZO N & TN ' w V(¢)=% expli(q- @)}, (18)
q

Here the summatiort’ is carried out over all the neutral Where the summation is carried out over the set of minimal
configurations of the minimal chargege {q}, under the topological charges{q}, and ¢eR" (Ref. 23. Strictly
condition=Yq;=0, andZ, is the partition function of a free SPeaking, the theoried7) with the arbitrary parameterg
massless isovectorial boson field, which corresponds to th@hd 3 are more general than the originalmodels(1). The

“spin waves” of the XY model, latter have only one parameter, viz., the interaction constant
a. Representing the models in the form of11) and (17)
~ i fit them into the general theoti&s,
2 - | Ddbexa - , 12 prowdes a means to ' \
0 f pex o ¢ (12 since the constrain{d5g and(15b), which relate the param-

N etersu and B, exist. This fact will be important below in a
Z _ 2, _BH 1 discussion of the possibility of raising the symmetry of
Zu(ap) =11 J dxexpt—pHN(ah), 1y R O
Since the set of minimal chargég} . is invariant toward

" the dual Weyl groupVgx, it can be seen that allowance for
HN({q}):;j (G- ) D(Xi = xj), (14 vortices reduces the original symmetry grong to the dis-
crete dual groupNgs xL,*'. HereL " is the periodicity

d?k ) lattice of the potential/ and is consequently the reciprocal to

D(x)= f (2m)? [exp(i(k-x))—1] all qe{q}. It follows from the definition of these lattices that

L;lzLT. This dual group generalizes the dual grodp

f(ka) 1 Ix X 7, of the XY model.
7|xgaz na, (19 Thus, in this quasiclassical and long-wavelength ap-
proximation the compact theory on the torlig with the
where continuous symmetris is equivalen{imodulo of Z) to the

s o e 5 0 noncompact theory with a periodic potential and an infinite
po=a cy“(dey 74 y“=exp(—Eg) (158 discrete symmetry. These potentials contain the sum over all
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the minimal vectorgq} and can coincide with the characters ~ Upon renormalization, botp and are renormalized. It

of some representations &. For example, in the case of IS convenient to introduce two dimensionless parameters into
L. '=L, the summation in(18) is carried out over all the the treatment:

dual minimal roots. Therefore, the corresponding potentials BG2— 8
V for simply laced groups from th&, D, andE series coin- (pa)’=g, 6=—7—,
cide with the characters of the adjoint representations of 8w
these groups(modulo a constant corresponding to zerowhereq? is the square of the norm of the minimal vectorial
weighy. In this case the general theoriel?) can describe topological charges fromig}. The theories17) are renor-
systems with the symmetry @ broken toNg (Ref. 23. malizable only if vectors fronjq} belong to some latticén

The noncompact theorigd7) can also be regarded as our casel!). New critical properties can appear only if the
corresponding lineas models. As a result, the compact non- geometry of the sefq} is such that each vectare {g} can
linear o models on the torTg turn out to be equivalerin  pe presented in the form of a sum of two other vectors from
the approximation under consideratiolo the noncompact {q! (Ref. 25. The latter property is very restrictive and co-
linear o models on Cartan tori of the dual grodj«. incides with the definition of the root systerfig of simple

The ensuing treatment calls for classification of all thegroups from theA, D, and E series(Ref. 25 or with the
possible effective theories of this type. It follows fraiti7)  definition of the root system of even integer-valied some
and (18) that they are determined by the sets of minimalscalg lattices of typesA, D, and I (Ref. 26. The sets of
vectors{g} of the latticeL’ which satisfies the following minimal roots(or minimal dual roots of all simple groups
constraint: belong to the four series of integer-valued latticgsD, [,
andZ. For the theorie$17), for which the setgq} ¢ A, D,E,
all the critical properties will be the same as for the theories
with {g} e Z" (Ref. 25.

The renormalization group equations for the theories
(17) with {q} belonging to lattices of the seri€d=A,D,E
have the following forn?>

d9__ 289+ Bgg?
Therefore, the seig} can vary from the set of minimal vec- dl 97 5e0
tors (it defines the so-called Voronoi polyhedron or Wigner—

Seitz cell of the corresponding latticef the weight lattice to potentialV/( ) upon the renormalization d.7) or the num-

the set of minimal vectors of the root lattice. All the possible ) ; .
. ber of different ways of representing each root in the form of
cases are specified by subgroups of the group of the center

Z. For groupsG with Zg=1 the latticed, andL,« coin- 250 of two other roots, aldg=2mKg, whereKg is the
cide. value of the second-order Casimir operator in an adjoint rep-

resentationNwherew,=r,)

(20

LuxDLiDL, . (19

For r=min we havelL'!=L,, and for 7=ad we havel'
=Ly«. The latticesL, andL, differ by a factor which is
isomorphic to the centeZg of the groupG:

Lys/Ly=Z¢. d4s
7=~ Ced® (21)

Here Bg=m6g, 6 is the reproduction multiplicity of the

> rri=Ked; . (22)
4. PHASE TRANSITION IN CHIRAL MODELS ON Tg a

In this section we consider topological phase transitiond?€normalization group equations of the fot@t) with co-
in chiral models oriT using the approximate equivalence €fficients corresponding to the ca&=A, were first ob-
obtained above between these theories and the noncompd@ined in Ref. 27 in a study of the melting of two-
theories(17), which generalize the sine-Gordon field theory_d|men3|onal triangular lattices. The renormalization group

These theories can be regarded as effective theories for t§auations for lattices not belonging to the D, andk series

pological phase transitions, just as the Ginzburg—Landauhave the form21) with the coefficientBs=0.
The value of the second-order Casimir operafey for

Wilson theories are effective theories for second-order phase

transitionst® groups of theA, D, andE series can be expressed in terms of
An investigation of the BKT phase transitions for all the the corresponding Coxeter numbes :
effective field theories of the typ€l7) by renormalization _ (number of roots

group analysis was carried out in Ref. 25. It was shown there Kg=2hg, hg (23
that only theories associated with even integer-valied,
andE lattices can have new critical properties. They have thelhis definition of the Coxeter number coincides with the one
structure of the root lattices of the corresponding simplefor the Coxeter number of the corresponding lattices from
groupsG from the so-called simply laced groups of theD,  the A, DD, andk series. The coefficierBg can be calculated
andE series. All theories associated with other lattices havéy different methods and can also be expressed in terms of
the same critical properties as the sine-Gordon theory or suhe Coxeter number:

erpositions thereof that are associated with the laftite
?heprefore, here we give only a brief review of the results fo=Ke=4=2(he=2). (233
obtained, focusing mainly on the symmetry and universalityThus, we see that all the coefficients in the renormalization
properties. group equation are expressed in terms of the Coxeter number

~ (rank of group
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2 g The dependence of the critical properties of the theories
(1) and (17) only on such a fairly rough characteristic of
groups as the Coxeter numbleg or K leads to their con-

™. ! vergence for fairly different groups. In particular, it is inter-
[ esting to note that thB ;4= 0O(32) andEg groups, which are
m el used to construct anomaly-free string theoffelsave identi-
cal values ofrg (together with theA,q group. The largest
0 s number of possible values of; is given by theA, series:

1k and 2/(%+1), wherek is an integer. For theories with
the potentials/ containing sets of minimal roots, all the ex-
ponents, exceptg and ve, remain unchanged. The latter
exponents transform into one another due to the mutual du-
hg or in terms of the value of the second-order Casimira”ty of these groups.

operatorK s . The renormalization group equatiof&l) have

two separatrice$>?’

g) 1 5. LOW-TEMPERATURE PHASE AND CONFORMAL
12

FIG. 1. Schematic phase diagram.

Up=|=%| =5~[*(B&+8C¢s)¥*~Bgl], (24  SYMMETRY
5. .~ 2Cq

whereu; corresponds to the phase separation line. The criti- thThIe eqtuallty oftthe cErreIatlon Ieng&;—m: et\éeryw'htere f
cal exponentvg, which determines the divergence of the In the low-temperature phase corresponds 1o the existence o

correlation lengthé as the transition point is approached conformal symmetw at large c_hstanc_es. ,Th's can also be seen
from above with respect to the temperatifie from the renormalized effective actio¢ of the theory,

which takes the following asymptotic form in the infrared

T-T imit:
E~aexpAr'e), 1= c (IR) limit:
T, 1
is given by the following expression: -Veff:f dZXZ—E(M’)Z, (28
vg=1kg=Uy[(Bg/Cg)?+8/Cs)] 2 (25)

where 3 is the value of the renormalized paramegdt) in
where 1kg is the Lyapunov exponent on separattiX Sub-  the IR limit

stituting the corresponding values for the coefficients into

(24), we obtain the following values for the separatrix  B=lim B(l). (29
slopes: 1=
lmhg, At the phase-transition poinﬁzﬁisz/q%in. At other
U o=\ —1/2a. (26) points of the low-temperature phagedepends on the initial

values of the system parameters. It is generally known that

o the action(28) describes a free conformal theory with a cen-
We note that the separatrig=—1/27 does not depend on tral chargeC=n, wheren is the rank of the groufs, which

.G and is equal to a gmyersal constant. .Thls fact is Veryspecifies both the rank of the tordg and the rank of the
important for the possibility of reconstructing the complete

symmetry ofG in the massivéhigh-temperatujephase(see group 74(Tg). Hence it follows that the long-wavelength
) . . -~ . low-temperature properties of models defined on different
Sec. 6 below A schematic phase diagram is shown in Fig.

1 tori T, will be identical for all groups with the same rank
' . Only the logarithmic corrections at the phase-transition point

The dotted line of initial values corresponds to the orlgl—WiII depend onG through the Coxeter numbérs . It thus

nal o model. This line is specified_ by the dependences of th%ecomes clear why the critical exponent depend onljign
parameterg andu on the interaction constan[Egs. (159 and Kg. This is consistent with the fact that in compact

and(15b)]. Region | corresponds to the low-temperat(de- :

compactified, masslesphase, and the other regions corre- 9rOUPS all the quantum gnorggahes a!so depend onlycp(or

spond to the high-temperatufeompact, massiyephase. In the dgal 'Coxet(.ar num?é’rG). .He’r,e it shquld be noted that

region | the correlation lengt§=c, and in region Il near »G coincides with the “screening factorAln the formula for

separatrixl the central charg€, of the affine algebr& (Ref. 28,
E~aexp AT "6), vg=2/(2+hg)=4/(4+Kg). (27

Using known values for the Coxeter numitgy and data on k+hg
the geometry of sets of minimal dual roots, we obtain theat thek=2 level or in the formula forC, in the “coset”

Cy dimG, (30)

following expressions for the critical exponeng :*° realization of the minimal unitary conformal mode@,
G: A, B, C, D, G, F, Es E, Eg ®G,/Gy. 1 (Ref. 29,

2 1 1 1 2 1 1 1 1 ha(hg+1)
53 n 2 n 5 4 7 1076 SN et kD)) o
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at thek=1 level. It also follows from Eq(31) and Ref. 29 massive(or high-temperatupephase, it is very important to
that the phase-transition point in @ model onTg (G know the effective mass scale on it. In the leading logarith-
=A,D,E) is the limiting case K—x) for the sequence of mic approximation with respect @it is given by the pole in
minimal unitary conformal models corresponding to the re-the solution of the renormalization equation on this
spective expanded conformal groups; . separatriX’ or by the formula

The fact that the theory effectively becomes free in the
low-temperature phase permits the calculation of correlation m~ A ex;{ _ fgﬁ)
functions. For example, the following expressions are ob- B(x))’

tained for the correlation functions of the exponential func- 1 ,
where A~a™~ is the UV cutoff parameter in momentum

tions of a field: : . .
space,B(x) is the 8 function on separatri2, and

t t | Bri-r) 2w
i(r.. T B(9)=27mg’Kg/2=2mg’hg.
<51]l expli(rs ¢<xs>))> 1= , |
Hence we obtain
Et r=0 (32) m~ A exp(— 1/2mghg) = A exp(— 1/mgKg). (34)
= '

The numerical factor in thg function can vary as a function

At the phase-transiti irwhere B= 8* — 8m/q?—4 of the normalization of the interaction constant, but the fact
€ phase-transition poirtwhere =" =8n/q"=4m) w5 K b on separatrix? is a consequence of the

f'fm additional 'I,oganthmm factor, which is a;_somated W'th theaforementioned lack of a dependence of the slope of the
zero-charge” behavior ofy and § on the critical separatrix,

i i separatrixu, on G.
appears in them: The expressior34) for the mass scale on separat8ix
t t
11 (In =H_ (In
1#] 1#]

(33)  chiral and fermionic theorieén the leading approximation
with respect tag) 3!

which depends only oiKg, coincides with the expression
Here Ag=4/hg is the coefficient in the renormalization

B (rj-r)i2mAg .
for chiral models on the groups (Ref. 30 and the expres-
group equation fo on the critical separatrix. m~ A exp(—27/(gKg/2)).

Xi_xj
a

Xi_X]'
a

hg cos(;-rj)

sion obtained from the exact solution of the corresponding

Thus, it has been shown that on separafithe mass
scale coincidesat least for group&=A,D,E) with the one

6. MASSIVE PHASE, ASYMPTOTIC FREEDOM, AND in G-invariant theories(chiral and fermionic theori¢sand
GLOBAL SYMMETRY can be expressed only in terms of the value of the Casimir
Regions Il and Il correspond to the IR limit of the high- operatorKg or the Coxeter numbéig by the universal for-

27.
temperaturgin the language of statistical physjosr mas- mula[hereg— g/(2m)7]:

sive(in the Ianguage qf field theo}phgse. In the uItravioIgt m~ A exp — 4m/gKe) = A exp(—2m/ghg). (35)
(UV) limit region 11l will be asymptotically free. Separatrix

2 with the slopeu,= — 1/27 also plays an important role. In  This means that the theori€¥) and(17) can beG-invariant
the UV limit it marks the boundary of asymptotically free on separatriX2. This is also indicated by the equivalence of
region lll. There is also another possibility for increasing thethe general theorie¢l?7) with {q}={r} in the case ofG
symmetry group of the original nonlinear model on this =A,_;,D,,Eq7to fermionic theories with the same global
separatrix. On the classical level tlee model (1) has two  symmetryG (Ref. 25a.

symmetries: 1gauge(or conforma) symmetry and Risoto- It follows from the results obtained that for the massive
pic global symmetryNg=TgXWg. On the quantum level phase of chiral theories ohg (G=A,D,E) in the minimal
the former symmetry is spontaneously broken in the IR retepresentatiowhereL !, .=L,) there is a strong dependence
gion by vortices in the general caggee(11)]. For this rea- of the mass scale on the interaction constant, which interpo-
son theo model has a finite correlation lengtf~m™1, lates between formul&27) near the phase-transition point
wherem is the characteristic mass scale of the theory, in theand formula(34) near separatri. In the former region the
massive phase. It should depend on the interaction constatiteory hasTg symmetry, which is described by its normal-
a or B. The behavior om near the phase-transition point is izer No=TgX W, while in the latter region the theory can

described by formul#27), where be more symmetric an@-invariant. Similar crossover in
m(«) also takes place i models on other groups and in
a—ag other representations, but the relationship between the sym-
™ a, metry properties in the two limiting regions in these cases
remains not so clear.
In the massive phase there is another region, separgtrix This work was carried out with the support of the Rus-

where the functiom(«) can also be found. Since this sepa- sian Fund for Fundamental Researhrants 96-02-17331
ratrix attracts all the renormalization group trajectories in theand 96-15-9686)1
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This paper explains the modulation instability of two surface magnetostatic spin waves
simultaneously propagating in a ferromagnetic film. Self-modulation of the spin waves appears
when their power reaches a threshold, and this is a sign of cross-phase modulation. The
parameters of the unstable process are calculated, and the gains of the perturbation amplitudes
are determined. The results published earlier on the experimental detection of the cross-

phase modulation of spin waves are explained. 1899 American Institute of Physics.
[S1063-776(199)01412-2

1. INTRODUCTION carrier signal. In studying such processes, it is usual to ne-
glect dissipative effects because they are small at the dis-

Magnetostatic spin waved1SWs) propagating in mag- tances under considerati®rThe output MSWs are attenu-

netized films of yttrium iron garnetYIG) are an extremely ated if the dissipative terms are included, but the qualitative

interesting object for research, since the nonlinear effectpicture of the wave propagation does not change. This paper

that appear when intense MSWSs propagate begin to manifediscusses a model of simultaneous nondissipative propaga-

themselves at relatively small powersSurface MSWs are tion of two surface MSWs in a ferromagnetic film. The dis-

especially interesting in this regard, since the energy of th@ersion dependences are derived in Sec. 2 in terms of this

wave is concentrated at the film surface in this case, and theodel. The equations for the evolution of the amplitudes of

losses are minimal when the signal is generated and detectatie coupled waves are obtained in Sec. 3. After this, an

When a single surface MSW propagates, an increase in thenalysis of these equations is given in Sec. 4 in order to

power of the wave does not cause amplitude modulation oflerive the conditions for the appearance of modulation insta-

the envelope of the magnetostatic potential to appear spomility. Finally, in Sec. 5, the results are used to explain the

taneously, and the wave is modulationally stable in thisexperimental results of Ref. 4.

case® However, recent experimefitswith simultaneous

propagation of two surface MSWs of different frequencies

show that modulation instability appears under definite con-

ditions. This effect is observed in the form of side frequen-

cies on the peaks corresponding to the carrier frequencies ¢h DERIVATION OF THE DISPERSION DEPENDENCE

the output spectral characteristic. The cause of the instability

is that the dispersion dependence for the MSWSs changes, Letus consider the propagation of two surface MSWs in

because the second wave propagates in a medium perturb@dhin ferromagnetic film of thicknes$ placed in a saturat-

by the first wave. A phenomenon similar to that observednd external magnetic fielt (Fig. 1).

was theoretically explained for the first time in Ref. 5, which ~ Under these conditions, it is possible to introduce into

discussed the combined propagation of two waves of differthe discussion a magnetostatic potential that describes the

ent polarizations in a plasma. Similar effects when signal$ropagating waves and has in our case the form

propagated in optical waveguides were subsequently

detected. The instability causes the envelope of the MSWs = Al expkiX) + a exp — ki x) Jexplik,y)

to be modulated, since the ever-present noise serves as an .

initial perturbation’ This phenomenon has become known as +Blexpkox) + B expl —kox) Jexp(ikpy) +c.c., (1)

modulation instability. The modulation instability that arises

when two modulationally stable waves propagate simultawhereA andB are the amplitudes of the two MSWs, and

neously, due to cross-phase modulafids, usually caused k, are the wave numbers, ardand 8 are factors that de-

by induced modulation instability. The derivation of the pend on the film parameters and the external magnetic field

conditions for the appearance of modulation instability is oneand determine the propagation of the waves on some surface

of the main problems in studying such processes. To do thigyr the othef, The time dependence of the potential will be

it is important to obtain the dispersion dependence of theéntroduced later. It is easy to obtain the high-frequency com-

amplitude perturbations of the magnetostatic potential of thgponents of magnetic field=V ¢ from the given expression:

1063-7761/99/89(12)/6/$15.00 1114 © 1999 American Institute of Physics
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FIG. 1. Geometry of the problem. The MSWSs propagate alongytaris,
and the external magnetic fiel is directed along the axis.

hxzi—f = Akq[expkiX) — a exp( —kix) Jexp(ik1y)

+ Bky[ exp(kox) — B expl — kox) Jexp(ik,y) +c.c.,
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X

Iy
ay
For the subsequent discussion, we need the quantity

2
| o

=l 2= (1 53

|my?+[m,|?

2My
which enters into the expression for the dispersion
dependendefor a surface MSW:

2 wiy
wZZwH+wHwM+T[l—exp{—de)]. (12

wy=4my| Mg—

, wM0=47T‘yMO, (11

We introduce into the discussion

2 2 wﬁlo
wg=whtoqoy t T[l—exr{—Zkid)], (13

wherei ={1,2}. Finally,
I

0=l — %{mHmMo[l—exq—zkid)]}

X (|myf2+]my|?). (14)

Simple but tedious algebraic formations can be used to ob-
tain an expression fody/ dx|?+ |dyl dy|?, which contains

The high-frequency part of the magnetization is connectederms proportional to exjKy). In order to introduce the time

)
. .
hy=W=|Ak1[exp(k1x)+aexp(—klx)]exp(|k1y)
+iBks[ expkyx) + B exp( — kyx) Jexplik,y) +c.c.
©)
with h,
m= xh, (4)
by magnetic susceptibility tens@r, which is written as
X1 ix2 O hy
= —ix2 xx 0], h=|hy]. (5
0 0 1 h,
As a result, we have
Ay Y
mx_Xlﬁ_X'HXZWr
9y 2
my= —I)(Zﬁ"—)(lw. (6)

As will become clear later, we are interested only in the

dependence into the equations, it is necessary to make the
substitution exgky)—exgi(ky—wt)]. This means that the
terms containing andy disappear after averaging over the
period. These terms can play a role only if the waves are
coherent. After this, we obtain

2
Z—f = 4{|A|PK3[ exp(2k.x) + | a|?

2

Jd
L|2
ay

X exp( — 2k;x) ]+ | B|?ka[ exp( 2k,x)

+[B1% exp( — 2kx) 1} (15
We now have the following dispersion dependence:

s
w?:wgi—4M—Z{2wH+wMO[l—exq—Zkid)]}

X X5+ XA exp(2kyx) + | al?

square of the modulus of the components of the magnetiza-

tion. We considefm|? one component at a time:

2 2

P P
Imy?=xi| - +X§W
. I\ [op\* [ o\ [ I\ *
+IX1X2[(W X —(0—)( oyl | (7
Recalling that Re/=, we get
aw 2 31# 2
|mx|2:X§(9—X +X§W : (8)
Likewise, form,,
ayl? apl?
|my|2=X§5 +X§W : 9

Finally, we find

X exp( — 2k;x) ]+ | B|?k3[ exp( 2k,x) + | 8|
X exp( — 2k,x) 1} (16)

The nonlinear dispersion Eq§l6) for surface MSWs are
derived in the limit of weak nonlinearity. Namely, nonlinear
Eq. (11) describes the magnetization frequency, provided
that the amplitude of the high-frequency magnetization is
much less than the amplitude of the magnetization of the
ferromagnetic film {my/,|my[<My).

3. DERIVATION OF A SYSTEM OF EQUATIONS FOR THE
EVOLUTION OF COUPLED WAVES

The dispersion dependence given by Ef6) can be
written in general form as

G(ky,ky,w1,0,,|A[%|B|%|al?,|8]?)=0. (17)
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Let us introduce the dispersion dependence for an indepen- aB 1 °B
dently propagating wave: 'ng +3 ,32 =fo(P1+P3)B. (26)
2
“wm Let us consider, for example the first equation. We seek a
-2 {2 SR o —2k: ' '
Gio=wpi —| Wit wnom+ 4 [1—exp(—2kd)] /. solution in the form
(18 A=Cexp —iay). (27
We expand Eq(16) up to terms corresponding to second . )
order in amplitude: After substitution, we find
é’Gio (?GiO 0”2Gi0 o Vgl 1% \/1 2Blfl(Pl_’—PZ)
=G . . Ak 2= - (28
Gi=Gjot+ o, Aw;+ oK, Ak'+&ki&wiAw'Ak' 127 B, vZ,
1 82Gy, 152G IG; We have the following solution:
+ 5 — (Aw)?+ 5 — 5 (Ak)?+ -5 | A2 : :
2 Jo 2 9K d|A| A=C exp —iayy)+Coexp—iayy). (29
G , . 9Gi X ; ) The amplitude close to the antenna is constant, and conse-
+ W|B| + MZM + WW =0. (19  quently the envelope is constant;
i dA
Recalling that - 2 Cy—iayexa —iaLy)
9 ) 32 & y
AwiHIE, Akﬁ—)—lw, WHVWW’ +Co(—ia)exp —iasy)=0. (30)
we get From this, we obtain the relationship between the ampli-
A iR L g TR a2 b2iBl)A Hee
Vg1t 5 b1 7> =hi(a @
ot gy  27tay C,=— a_ZCZ- (31
B B 1 4B i a o !
= +iveo— 2y Eﬂza—yzzfz(a |Al*+Db%B|*)B, Let us evaluate this relationship for a thin filnk;@
(20) <1). In this case, the ratio under the radical in EB8)
. equals
with
wz ZCUMO(.UH
i=2d4—zﬂ)0exp(—2kid), (22) 6i_W(X1|+X2|)(P1+P2) (32
i
V.. We estimate the factors in E2) by the following approxi-
Bi=— f[vgﬁ w;d], (22)  mations:
i
20y 0y 1
©Oug (Gt x3)=~3, —7—=~3,
fi= = sz {20+ oy 1—exa —2kd) )} XXz wf 2
0 and consequently we get
X (X5i+ X5 (23

e~3(P,+P,)/M3. (33

=ka[ exp(2k,x) + 2| a|? exp( — 2k1x)], o : I :
1L exp(2kyx) + 2] ol expl 1X)] However, this ratio is small in the approximation considered

=k3[ exp(2kox) + 2| 8|2 exp( — 2k,x)]. (24)  here(in the experiment considered below, it equals 1/11
p i db ch terize th litude att i fConsequently,.=<1. It follows from this thatC,>C,. We

arametera anab characterize the ampiitude attenuation ot g, neglect the quantit¢, in the subsequent calculations.
the wave with distance from the surface. Equati@® are Then we can write

in essence a system of equations of the type of the nonlinear

Shradinger equation and describe the evolution of the ampli- gl 2B.1f1(P1+Py)
tudes of the coupled surface MSWs. a= “1:,3_ 1- - V2 : (34)
1 gl

4. INVESTIGATION OF MODULATION INSTABILITY Finally,

Let us introduce the energy of the wave at depfhom A= \/P_le‘i“y. (35
the surface: We now impose a perturbation on this solution:

P,=a?%|A]?, P,=b?B|2 25 _

1m@AR, PamblB 29 A=[\VPi+a(y,)]e ', a<\P,. (36)
Then the steady-state equations have the form o ) o )
) After substituting this expression into the equations, we
oA 1 A carry out a similar procedure fdB, and we linearize the

Z B =f1(P1+Py)A . nrar. .
Ivglay Zﬁlay2 1(P1+P2)A, resulting equations in terms of the perturbations:
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A A 1 oA o

|E+|Vgl¢lw+§Ble:fl[Pl(a+a )
+P1P,(b+b*)],

db b 1 % —

|E+|ng¢2w+zﬂza_y2:f2[l:)2(b+b )

+ P P,(a+3*)], (37)
where

2B,F (PP
prmvgJ1- 2EPD) (39

Vgi

We seeka andb in the following form:
a=uy co§ Ki(y— p1t) —Qt]+iv,
XsinKy(y—éit) —Qt],
b=u,cog K,(y— ¢,t)— Qt]+iv,
XsinKo(y — ¢ot) —Qt], (39

whereK,; and K, are the wave numbers of the amplitude
perturbations, while) is their frequency. After substitution,
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FIG. 2. Dependence of galmon K for fixed K.
_1 2 _ 21,2
Ci=5BiKT, =B TP1PaKIKS. (44)
It is easy to expres8? as
2, 2 2 22 22
ci+c i\/(c +c5) —4(ciec5—0)
Q212 17 C2 1C2 _ (45)
2
We find the condition for whict)2<0:
{>cicl, (46)

obtain a system of linear equations with the matrix

m q I, O

n, p, 0 O

M= , (40)
l, 0 m; q

0O 0 n, py

where
1
m;= — EIBiKiZ cog Ki(y—¢it) —Qt]

—2fiPicog Ki(y — ¢it) — Ot],
0i= (Ki ¢ +Q)cog Ki(y — ¢it) — Qt]

— ¢iKi cog Ki(y — ¢it) — Ot],
li=—2f;\P1P,codKy_i(y— o it) — Qt],
ni=— (K¢ + Q)sin(K;(y— ¢it) —Qt)

+ ¢iKi sinK;(y— ¢it) — Qt],

pi=3 K SinK,(y— 1)~ Q1] (@1

For a nontrivial solution to exist in the system, it is necessary

that the determinant of this matrix equal zero:
detM =0, (42
or
(N101—P1My)(N202— P2My) — P1P2l1l2=0.
We obtain the following equation fdn:
(Q2-c)(Q?-c))=¢, (43

where

this case, it can be seen from E@44) and (46) that both
waves are modulationally unstable regardless of the signs of
the nonlinearity coefficients given in E(R3). These results
also agree with the results published earlier in Refs. 10 and
11 concerning the nonlinear interaction between spin and
acoustic waves and between spin and electromagnetic waves.

5. ANALYSIS OF EXPERIMENT

In Ref. 4, two MSWs with frequencie®;=6.55GHz
and w,=6.75 GHz, which correspond to wave numb&ss
=52.97 cm! andk,=379.6 cm'!, were generated in a film
of yttrium iron garnet of thicknesd=1.15<10 3cm. The
film in this experiment had a saturation magnetization of
My=135.6 G and was located in an external magnetic field
of Hy=1627 Oe, withy=2.8 MHz/Oe. The signal from the
film was fed to a spectrum analyzer. The mistuning between
the nearest side band and the carrier peak equalled 1.4 MHz,
but the side band is caused by the interaction with another
wave, and it is consequently necessary to consider the spac-
ing not between the nearest peaks but between the farthest.
This makes it possible to explain the presence of the asym-

h, 10°

2.0t
1.5¢
1.0
0.5t

200 400 600 800 1000
K,

FIG. 3. Dependence of gaimon K, for fixed K .
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FIG. 4. Dependence of gaimon K; andK,.

metry of the side bands as the result of the interaction of 1 1
already modulated waves. Then the modulation frequency 4f1f2P1P2>§ﬂ1Ki‘ §B2K2'
O =Aw is 201.4 MHz. Keeping in mind that the gain must

have a maximum at this frequency, we get a system of equa-  16f,f, 2

tions forK; andK,. Solving it, we find mP1P2>K1K ,

K,;=283.3 cm?!, K,=444.4 cm. (47

k?1.38< 10" cm *>K3K3,
The power of the wave can be obtained ffom

1 8.63>1.59. (50)
—_ 2
Wik = 167 Ld“wP, (48
where L=0.3cm is the length of the antenna, while ]
=0.25 is a factor that characterizes the part of the suppliegﬁ
powerW that goes into the generation of MSWs. From this
we get

As can be seen, the condition for cross-phase modulation
is satisfied. In order to understand the spectral content of the
ceived signal, it is necessary to know how the gain of the
odulation perturbations depends Kp andK,. The gain
of the perturbation amplitudes equals

1 h(K1,K2)=21m(Q)
k=-—Ld?=7.89x10"° cn?,

16m = 2[\(cZ+cB)%+4({—c2cd) — (c2+cd)]-
Pz%, P,=134 0é&, P,=45 O¢. (49 ()

Figure 2 shows a graph of thgK,,K,) dependence with
Let us check whether the conditiotis cfc% for modulation K, fixed. Figure 3 shows thie(K;,K,) dependence witK;
instability are satisfied: fixed. Theh(K,,K,) surface is shown in Fig. 4.
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It can be seen from the curves in the figures that the gain  This work was carried out with the partial support of the
has a maximum at definite valueskf andK,, correspond- Russian Fund for Fundamental Reseaf&oject 99-02-
ing to the frequencie® ; and(), of the modulation instabil- 17660 and the Ministry of Science and Education of the
ity observed in experiment. Russian Federatiorithe Atomic Surface Structures Pro-

gram.
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. . . . G. Gurevich and G. A. Melkowlagnetic Vibrations and WavéMos-
phase modulation of two intense waves is proposed here that. . "Nauka 1994
explains the appearance of modulation instability of the2p. p. Stancil, Theory of Magnetostatic WaveSpringer-Verlag, New
waves. Calculations are carried out for the parameters of theYork, 1993. . _
waves, in particular, the threshold powers required for the ’[A\S.olf/. g‘r’]‘;;d'J”E";’;’féS% (fgggﬁ"" Zh. ksp. Teor. Fiz.84, 606, (1983
phenqmena discussed here. An expllanatlon is given for the; '\ goyle, S. A. Nikitov, A. D. Boardman, and K. Xie, J. Magn. Magn.
experimental results of Ref. 4, in which cross-phase modu- Mater. 173 241 (1997. ]
lation of surface MSWs was observed for the first time. °A. L. Berkhoer and V. E. Zakharov, ZhK&p. Teor. Fiz58, 903 (1970
Qualitative agreement is obtained between the theory devels-50¥- Phys. JETRL, 486(1970]
. . . G. P. Agrawal, Phys. Rev. Letb9, 880 (1987).

oped here and t_he_eXp_e”mental dat_a- Since this paper U5957E‘. L. Savchenko, S. A. Nikitov, A. F. Popkov, and M. V. Chetkin, Zh.
model of nondissipative propagation of surface MSWSs, Eksp. Teor. Fiz114, 628(1998 [JETP87, 342(1999].
while quenching of the waves plays a substantial role in thezi- I\D’V-BDanaon ancé JWR- Esgbﬁxth_Jk-_tPhyJS- SChhemWS%@ﬁf’%OS D(19M€f>|1|)- .

H H . H . s _ . D. Boaraman, Q. Wang, o. A. NIKItov, J. en, . en, D. Mills, an
e>§ample stu@ed, wh|.ch.|nvolved a thick .f|Im, it |s_problem J. S. Bao, IEEE Trans. Mag80, 14 (1994
atical to obtain quantitative agreement WIFh experiment. Furioyy v. Gulyaev and S. A. Nikitov, Fiz. Tverd. Te26, 2620(1984 [Sov.
ther development of the theory, taking into account wavellPhys. Solid Stat@6, 1589(1984].
dissipation, and additional experimental work should clarify ;E V-gul_'é/a;" f“;?d fe?zi ’\ig(g;‘]’ Fiz. Tverd. Tel#7, 2710(1983 [Sov.
the details of the process of cross-phase modulation of mag-" "S- SOlid Stat@7, 1624(1989].

netostatic spin waves. Translated by W. J. Manthey



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 89, NUMBER 6 DECEMBER 1999

Multiphonon optical transitions in size-limited systems in a magnetic field
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A study has been performed of optical multiphonon transitions in undoped size-limited systems
in a magnetic field aligned with the spatial quantization axis. A theory is proposed which
allows one to describe the half-width of the luminescence curve for isolated quantum wells and
investigate the frequency and temperature dependence of the light absorption coefficient in

the long-wavelength region. @999 American Institute of Physid$$1063-776(99)01512-7

1. INTRODUCTION GaAs(Ref 5 and in GaAs/AlGaAgRef. 6 is proportional

o B and, consequently, it is possible to use the above-
indicated approximation. A detailed discussion and the crite-
Ha of this approximation are given in Ref. 7. In what follows
we assume that the electron and hole interact with the
phonons independently, as is done in the theory of large-

In a longitudinal magnetic field oriented perpendicular to
the surface of a quantum well, the spectrum of a free electro
is completely quantizedquasi-zero-dimensionaland for
rectangular quantum wells it is given by

1 B2 radius exciton§.When an electron—hole pair is excited by
En,=fiwc| n+ 5) +egr?, o= 5" light, the momentum of the exciton is equal to the momen-
2mca tum of the electromagnetic wave and is very smalhere-

Here w. is the cyclotron frequency,e, is the size- fore, we will neglect the exciton bands arising in quasi-two-
guantization step in the quantum weth, is the effective dimensional semiconductors in a strong magnetic field.

electron massa is the width of the size-limited system,is The theory developed below allows one in a number of
the number of the size-quantized level, anis the number cases to describe the half-width of the luminescence curve
of the Landau level. for isolated quantum wells and in turn to study the frequency

The appearance of discrete levels should have a substa@nd temperature dependence of the light absorption coeffi-
tial effect on the optical properties of quantum wells. In thecient in the long-wavelength region.
present paper we present a study of the optical properties of
size-limited systems in a longitudinal magnetic field with 2. STATEMENT OF THE PROBLEM. GENERAL RELATIONS
multiphonon effects taken into account. The final results are
valid for quantum wells of different shageectangular, para-
bolic), and also for heterostructures. To describe mul-
tiphonon optical processes in impurity systems, we use th

In an intrinsic size-limited semiconductor the Hamil-
tonian of the system of electrons and holes interacting with
ghonons in a uniform magnetic field has the form

model of shifted adiabatic potentidisHowever, to study H=Hy+V, (1)
electron—vibrational optical transitions between discrete

states of free hole@n the absence of a magnetic fiedthis 2 (S(c)_ Hataz+ > (eV—¢)ala

is the valence bandnd quasi-one-dimensional states of free BB G TR VEETE

electrongfor B=0 this is the conduction banhthis model is

inapplicable since the minima of adiabatic potentials for free + Z ﬁwqb; by, 2
carriers are not shifted. This is because the diagonal matrix q

elements of the electron—phonon interacti@amd likewise

the hole—phonon interactiprin the free-carrier wave func- . V= Z Cff)lﬁﬁl(q)(qur bﬁq)a;;aﬂl

tions are extremely small. In this case, a description of opti- a.8.h1

cal transitions with multiphonon effects taken into account is L

best constructed in the language of quasile¥als is done in + qﬁiﬁl c (D (Dgtb agag . 3

the case of multiphonon interband transitidris. what fol-

lows, we will consider strong, quantized magnetic fields,Heree!y ande}? are the energy of the electrofi®oles in a
where the Coulomb interaction of the electron with a hole isqguantum well in a longitudinal magnetic fieldee the Intro-
small in comparison with the distance between the transversduction, ¢ is the chemical potential of the electron,
quantization levels. In this case the internal motion of ané;=—§+E,, Eg is the band gap of the semlconduc'rﬁm,)q
electron—hole pair is finite, but a free state of the electronis the energy of a phonon with wave vecthraB , ag, aB ,
and hole does not, strictly speaking, eXi#s experimental ag, b , andb, are creation and annihilation operators re-
studies on photoluminescence in quantum wells has showspecnvely for the electrons, holes, and phon@@ (C("))
the binding energy of an exciton fad>10T in InGaAs/ is the coefficient function describing the mteractlon of an

1063-7761/99/89(12)/5/$15.00 1120 © 1999 American Institute of Physics
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electron (hole) with lattice vibrations,IBBl(q)=<,B|expﬁq
Xr)|B1) is the matrix element of the operator eip() in
the wave function$g) of the free carriers of the size-limited
system in a magneFic fiequz(n,v,Kx), whereK, is a com- +q§)) Se k. q (n=ny). )
ponent of the carrier wave vectan, is the number of the X
Landau level,v is the number of the size-quantized level.
The Hamiltonian(1) does not include terms associated with
the nonadiabaticity operator since we neglect nonradiativéomials.
transitions in what follows. - _

The absorption coefficient for light with frequendy , Amy explig,a)—1

R n—nq
X E(qx_lqy)} I—; nl( (qx

Here R?=#%/m.w,, L:;"l(z) are associated Laguerre poly-

associated with a transition of an electron from a completely V(@)= (g,2)%— (27v)? g,a
discrete statg1) to a quasi-zero-dimensional statg) is 5 5
given by the Kubo formuf® X exq — R 5, > R 2 2
ex Z(qx+qy) Ln ?(qx—*—qy) ' (8)
4me? Pev- &o 2 .
K= VneckiQ | mg ,%1 f_mdtexmm) P,=—i#aldx is the momentum operatd,) is the wave
function of a free electron along theaxis.
X(ap(t aB(t)aﬁl(t)aﬁl( 2 (4) The terms withn#n,, v+ v, in expressior(7), as will

be shown below, make an insignificant contribution to opti-
(5) cal multiphonon processes. Substituting expres$&rinto
Eq. (6) leads to the following equation of motion far,(t):

- it.\. it .
A(t)=ex zH AEXF{—gH ,

whereV is the volume of the size-limited system, is the

. i
index of refractiong is the speed of lightP,, is the matrix ag()=—+ agt) (e -+ ; CPV,,(a)
element of the momentum operator in Bloch functiang,is %
the mass of a free electrod is the polarization vector of ><(Kx|exp(i|5)|le>(b exp—iwgh)

the electromagnetic wave, and the angular brackets denote
averaging over the Hamiltoniai).

The equation of motion for the operata(t) according +b’, expli wqt))aanxl(t)] : 9
to Eq. (5) can be written as

The solution of Eq(9) has the form
aﬁ(t)——%[( (C)—g)aﬁ(t)+qEﬁ C((f)<,8| p
. itH
Xexp(iq-r)|B1)(bgexp —iwgt) anqu(t)—KEx1 (leexpT

+ . W(C)
+bqexqut)aﬁl(t))]. ©®) Xexp( it(H & ) )|KX1>
Formula(6) neglects the influence of carriers on the pho- ;
non spectrum, i.e., it assumes that xex;{ - —(sﬁ,cV)K =& |anx, - (10

by(t)=bgexp(—iwgt), by (t)=b; expiwgt).
) =bgexp(=Twgl) a()=bq exptiwql) Here we have introduced the following notation:

This approximation is valid for nondegenerate semicon-

ductors since corrections to the free-phonon spectrum de- [ _ +
A : S A= hagbg by,

pend on the polarization operator, which to lowest order in
the electron—phonon interaction is proportional to the con-
centration of charged particles.

For rectangular quantum wells of widéh(the magnetic
field is oriented along the spatial quantization axis

W(n?=§ CEVp (@)expiP)(bg+bTy),

(Blexp(iq )| ) P=gx+ % ayR?Py, (11
=i 4m*vvi(9,2) ! We can calculatey,,,« (t) analogously.
(0,8)%— m2(v+v1)? (0,8)°— m2(v—r1)? If we substitute the values @k, and ap,k into ex-
2Mn,! |12 _ . pression(4) and take account that for nondegenerate semi-
{H [expligza)(—1)"""1—1] conductors

atas) =n )<1 ata =n(")<1,
BB/ 1B BYB B
X

1 1
T P22 N2\ L T R2
EXP[ 4 RE(G T aly) Ty (Kt Ky 2 R H the light absorption coefficient takes the following form:
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47e? |Pg, - &|? @ The average in expressiohb) is calculated in the same way
K(Q)= m Mo | n KE K j dt as for the light absorption coefficient. As a result, we obtain
VR Byy ST
. 0%e’ng [Py, &|° °°
it d(Q)= & n(C)n(V)f dt
<] (0o ~elth €| 0= e my | 2
it it X expl —itQ)exd - —gn(1), (16)
X (Ky|ex +Hr|exp — = (H; exp(—itd)exp -en, | €XP— gn,(1)),
it wheren{®)=(aja,) andn(!)=(ajap) are the distribution
+VV§1CV)))|KX1><KX|9XF{ng) functions for the electrons and the holes, respectively. For
rectangular quantum wells neglecting the polaron effect
it .
X exp( - %(Hf+wgvy>)) |le>> : (12) ol NeSinh(f wo/2koT)a27R?
phon nv
_ , > exp—eor?/koT)
In expression(12) the average . . .)pnon iS taken over v
the system of free phonons since the influence of the inter- 1 1
action of carriers with vibrations on the phonon spectrum is Xexpl’ — || n+ S| hot+eor? ] (17)
neglected. The average in expressi@2) can be found by koT 2

the usual methods of the theory of multiphonon transifions yhere n, is the electron density. An analogous expression
using, for example, the algebra of Bose operatbrds a  foliows for n)
)

result, for the light absorption coefficient we obtain the ex-

pression
2e2  |p..&|2 oo 3. DISCUSSION OF RESULTS
K(Q)Z . cv 50‘ 2 dt
acnR“Q2 | Mo ‘ ny J—o Relations(13) and(16) describe processes of absorption
it and emission of an electromagnetic wave in intrinsic size-
xex;{ itQ— —snv)exp(—gnv(t)), (13)  limited systems in a longitudinal magnetic field with allow-
h ance for multiphonon effects. For carriers interacting with
Here optical vibrations of frequency, (we neglect the small dis-
persion we can represent expressi@¥) in the form
9= p 2(|C§,°)|2+|Cév)|2)|Vny(Q)|2 On,(t)=ap,{itwg+ (2N+1)cog wot— ¢)}. (18
@ (o) Here
X{itwg+(2Ng+1)—(2Ng+1) V. (@)
- - ©)24 |[cW2q AT
X cog wqt) =i sinwgt)}, any zq: [ICq" I +1Cq” "] (hag)?
€ =ﬁw*(n+£ +eX1’+E ﬁw*Zﬁe—H — i N= 1 19
ol 2] e e e BCTNTL N exphaolkoT)—1° 19
3272 1 1 1 Let us consider the region of temperaturesB,T>1,
£y = 7 Tt —, (14 hw./koT>1) where the electrons are found in the lowest
2au  MH M my

completely discrete stai®) (n=0, v=1). If we invoke the

Ng=[expfiwy/koT)—1]"* is the distribution function of relation®
equilibrium phonons at the temperature >
As follows directly from Eq.(14), the average over the exp(zcosy) = E I m(Z)exp(ime)
system of free phonons is in fact taken independently for the -
electrons and the holes. Terms of the type(| (z) are the modified Bessel functionshen the spectral

2,CYCI|V,,(a)|? make extremely small corrections radiation intensity can be written as follows:
(~1/L,) to the light absorption coefficient.

The spectral radiation intensity is related in a simply D(Q)= 2me’n,aRP0? F’cv'§o|2
way to the transition probability per unit tirffeand is given )= c3 MeMn my |
by
202e?n, [Py, &2 ([ xexl —ap(2N+1)] X 1y(2)
CD(Q):—OCV—&) Z f dteXF(_th) m< m
WﬁVC3 Mg 7 J -
BB 1+N]|™2 -
X(ag(t)ag(t)agag). (15) X AhQ—egtmhal, (20)
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I
z=2apyN(N+1), zg=Eg+ %hwé‘+s§—hwoam, 6.0
4.8
wheren,, is the hole density.
As follows directly from Eq.(20), for z<1 the fre- 36
guency dependence of the luminescence is given by a narrow 24
s-shaped curveri=0) with phonon satellitesni#0) set
off from one another by the distandaw,. If we take into 1.2
account the nonstationarity of the electron states, the lumi- . ; . .
nescence lines are described by a Lorentzian. The half-width 0 2 4 6 8 _ 10
of the emission lines, determined by inelastic scattering on q

acoustic vibrationgsingle-phonon transitions between Lan-

FIG. 1. Dependence of the normalized heat liberation paramemE.
dau level$, has the form

(27)%koTE2m, 5

pw?h2a

w

Y (21) half-width, can be calculated using the method of

_ _ _ moments” which, in particular, allows one to formulate a
Herep is the density of the semiconductor quantum well,  criterion for the semiclassical approximation.

is the constant of the deformation potential for the electron,  For carriers interacting with long-wavelength acoustic
and w is the speed of sound. For typical parameters of ajiprations @q=wq) for Ng=koT/hwg,, the half-width of
GaAs/AlGaAs quantum well  d=5.4glcnf,  the emission line according to formuld&4) and (22) is
w=2X10°cm/s, ancE.=9 eV) for T=100K,a=50A, and  gjven by

ﬁwc=10’24ev we have for the half-width e+ ED)
y~6x10""meV. However, in strong magnetic fields the ctEy
half-width A of the photoluminescence line, as experimental 92~ 2VkoTaIn2,  ao=

studies have shown, reaches several meV and its shape is . ) )
approximated by a Gaussifor example, in the quasi-two- whereE, is the constant of the deformation potential for the

dimensional systems InGaAs/GaAs=5meV (B<11.8T, holes.

aw,

’ 25)
mpW?R%a (

Ref. 5, INP/InysGa4As A<8meV B=4T, Ref. 14, Note that the criterion for use of the “high-temperature”
InAs/InAs, ogStb'gl A<7 meV B=7.6T, Ref 15, approximation in the calculation of formul@5) is met for
GaAs/ALGa_,As A~3meV (B=9 T, Ref. 16. koT>AW/R\6 (for fiwg=10"2eV, T>0.5K).

In a semiclassical description of vibrations of the crystal ~ For typical parameters of GaAs/&a _As quantum
lattice g,,,(t) can be expanded in its argument to termg ~ Wells (E,=7 eV) for a=50 A, T=10K, andB=10T we

inclusive: have 6Q0=2 meV, which agrees in order of magnitude with
) the experimental results of Ref. 16. For carriers interacting
()~ Bn,t with optical dispersionless vibrations of frequeney the
v 2 heat liberation parametex,; according to formulagl9) is
given by
1 -~ o~
Bny=§ 2L(CEN 2+ (CED IV @) (2N + ). a10=aol (Zo), (26)
(22) ~ €%
ag= ,
Substituting expressiori22) into formula (16) (n=0, v O ahw,
=1) leads to the following expression for the spectral radia-
tion intensity: 1(3) = fdeeXIi— 7 - + 1
2 22 0 2(r+&4m?) T
()= nge“aR°() Pev- & 2
Q)= 3 NeNp my V7 (Fam?)? \/Eé
.

o e |

According to formula23), the frequency dependendg}) wherez, ande., are the low-frequency and high-frequency
is described by a Gaussian curve with its maximum adielectric constant, respectively.

T(7+ 47722)2

2 1 1

Co==
1 80 830,

hQ—Ey—hw*/2—ck)?
xexp{—( g ZAC o) } (23)

A = hZBOl'

hQn=Eg+hod/2+e5 and half-width Figure 1 plots the dependenceaf,/a, on .
S0=22AIn2 . (24) The parametez entering into the argument of the Bessel

function in relation (20) determines the intensity of the
If the frequency dependence of the photoluminescence ighononless line of the intrinsic luminescenaa=0) and
nearly Gaussian, then the position of the maximum, and thalso the phonon satellitesn@ 0). At high temperature§
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~190K (N=1) for ¢=1, hwe=20meV, anda=50A, the In the calculation of optical multiphonon processes, we
parameterz for different quantum wells varies over quite Used the diagonal approximation in the quantum numbers
wide limits. It is equal to 0.3 for GaAs/AlGaAs quantum v [see relatior{8)]. Itis precisely this approximation that has
wells, 0.34 for InP/InPAs quantum wells, and 1.8 for GaN/allowed us to average over the phonon subsystem exactly. If
AlGaN quantum wells. Consequently, in quasi-two- N#Nn; andv# vy, then the average in expressidr2) can be
dimensional systems with< 1 luminescence lines should be found approximately by using the cumulant expanidim-
observed which are separated from one anotheibyand ited to the second cumulant. This approximation in the
whose half-width is given by formulé25) if we take into  theory of magneto-optical effects, as was shown in Ref. 20,
account the interaction of the carriers with the acoustic vi-corresponds in the language of the diagrammatic technique
brations, and the line shape is described by a Gaussian cunv@. Konstantinov and Perel’ to summing over graphs without
If the criterion of “strong heat liberation” is méf,  intersecting phonon linésand to the usual splitting of the
ao tanhwy/2k,T)>1 (z>1), then the luminescence line is chain of Green’s function& As calculations show, the con-
described by a Gaussian curve with half-width tribution of the termsn#n,, v+# v, to the heat liberation
parameter(19), both for the optical and for the acoustic vi-
0= 2 wo\2agy tanttfiwo/2koT)IN 2. @7 brations foré>1 is less than 10%. Consequently, the diag-
For example, for a GaN/AlGaN quantum well at high tem- onal approximation turns out to be completely reasonable in
peratures T=200K) for €=1 and%wy=0.05€V, we have the region of large magnetic fields for studying the effects of
6Q=100meV. the electron—vibrational interaction in the optical spectra in
The light absorption coefficient given by relatioh3), size-limited systems.

which takes account of the interaction of the carriers with the
optical phonons, can be represented in the form
p/2

exd —an,(2N+1)]

*)E-mail: exciton@phys.asm.md

K(Q>=Kon2p 15(2)

N+1
X S{hQ—epn,+apnfiogt phog}, (28
2 2 1 i i
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A simple approach to describing crossover between the Mott regime and the Coulomb-gap
regime in hopping conductivity with variable-range hopping is described, based on notions of
percolation theory and utilizing an interpolation expression for the density of states. The
theoretically derived equation for the argument of the exponential of the resistariRecdn be

solved numerically. The universal function R{T)) found in this way provides a good

description of the experimental curves for crystals of CdTe with varying degree of compensation;
however, for samples near the metal—insulator transition it is necessary to take into account

the temperature dependence of the pre-exponential factor. Both the form of the obtained function
and its comparison with the experimental data show that the crossover region is indeed

very wide and, as a rule, neither in the low-temperature region nor in the high-temperature region,
are the limiting values of the exponent characterizing the Mott law or the Efros—ShKiovski

law reached. With the help of the universal function we obtain values of the paranigtensi T,
characterizing the density of states and the width of the Coulomb gap, for CdTe samples

with varying degree of compensation and compare them with their theoretical values. Despite
taking the crossover function into account, the values of the parameteirn out to be

almost an order of magnitude lower than those calculated theoretically by Efros and Shklovski

© 1999 American Institute of Physids$1063-776(99)01612-1

1. INTRODUCTION experimental values of the parametd@gand T, with their
calculated values

Despite the large number of publications that have ad-
dressed the question of the mechanisms of hopping conduc- To=p8,/g(gs)a, T,=pe%«ka
tivity with variable-range hopping in doped semiconductors,
some questions remain unsolved. These include questions 6Fhere 5o=21 andp;=2.8 are numerical coefficients,is
the character of hopp|ng Conductivity in the C0u|omb_gapthe localization radius, and is the dielectric Constahtit is
regime and the role of many-particle effectsorrelated Important to have a valid description of the crossover region.
hopg, etc. Earlier, using a simplified crossover modbased on match-

A study of the corresponding details of the mechanismd Of the effective energy bands corresponding to conduc-
of hopping conductivity obviously requires a comparison oftivity for the two indicated regimgswe drew attention to the

the experimental data, in particular, on the temperature deqossible role of the pre-exponential factors in the expression

pendence of the resistance, with the results of theoretica“?r th(_e hopping conductivity. The latter, ObV'.O usly, is espe-
calculations over a wide range of temperatures. Here it iC|aIIy important for samples hear the metal—insulator transi-

. : : ?ion, for which the interval of variation of the resistance is
necessary to note the following fa¢tb which attention has . .
b d " Ref it ¢ f not too large’ At the same time, for samples far from this
een drawn recently, see, €.9., k€ ,S')l It turns out, 1or 4 ansition, in a number of cases the pre-exponential factors
materials with typical parameterntermediate impurity

. . . N can be neglected.
concentration and intermediate compensationthe tem- The first attempt to describe the temperature behavior of

perature region that is typical for the experimentShe conductivity in the crossover region with the aid of a
(~0.01-10K crossover is observed from conductivity with niversal expression was made in Ref. 2, where the authors
variable-range hopping(VRH) of Mott type [p(T)  ysed an interpolation expression for the effective energy
<exp(Tp/T)¥*] to conductivity over states in the Coulomb pands, obtained by simply summing the corresponding ex-
gap—the Efros—Shklovsiiaw [ p(T)=exp(T1/T)?]. Onthe  pressions for the two regimes. As was shown I&euch an

one hand, the nature of the conductivity in the two indicatedapproach is not entirely valid and smears out the crossover
regimes differs both in its numerical parameters and, posskingularities. The latter work proposes a more general ap-
bly, in its very physical nature, and on the other hand, theroach to the description of crossover, which leads to a quite
crossover region turns out to be quite wide; therefore, a comeomplicated multiparameter integral expression, not acces-
parison of the predictions of the theory with experiment issible to analytical treatment and requiring quite cumbersome
quite complicated. Thus, in order to be able to compare th@umerical analysis. Note also Ref. 5, in which to describe

1063-7761/99/89(12)/5/$15.00 1125 © 1999 American Institute of Physics
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crossover in the two—dimgn_sional case the authors proposed a 2(g, ..~ &, arCtamsmaX/SO))rﬁ']ax- (4
procedure based on optimization of the argument of the ex-
ponential in the expression for the hopping resistance whicH ! . A
made use of an interpolation expression for the density of is the critical value of the argument of the exponential in
e temperature dependence of the hopping resistance

states. Although this approach leads to a comparativel - ) . ) ,
simple analytical expression, it is less rigorous than an analyNR(T)=A&(T), whereAis a coefficient ana is the localiza-

sis of the percolation problem. As was shown in Ref. 3, ittion radius, we finally obtain the following equation fer
leads to a noticeable overestimate of the width of the cross- ET
over region. (Tf— &0 arctar(s—
Therefore, the present work proposes a simpler approach 0
to the description of crossover, bas@d in the approach of EXxpressing the parametessandg, in terms of the charac-
Ref. 3 on notions of percolation theory analogous to those€ristic temperature$, and T, we obtain for the Mott and
used by Efros and Shklovsid however, enabling a simpler Efros—Shklovskilaws
analysis of the condition of connectedness. The theoretically 312 TTL2
obtained equation is applied to determine the temperature (Tf—o-ﬁ—i/z arctay( 2/2
dependences in the crossover region, which are compared T 0.6T7
with the experimental dependences for CdTe crystals with
varying degree of compensation.

aking into account that,,,= (a&/2)® ande .= T€, where

(aé)3=21. (5)

E=T. (6)

For comparison we have generalized the results of the
calculation in Ref. 5, which also uses an interpolation ex-
pression for the density of states, but based on optimization
of the argument of the exponential in the expression for the
elementary hopping resistance, to the three-dimensional
We express the dimensionless concentration of sites sagase. The given approach leads to a somewhat different
isfying the condition of connectedness for the argument ofquation for the critical valug governing the magnitude of

2. THEORY

the exponential less than some vafjeas the hopping resistance:
€ max 1 T3 TTY?
n(§)=2J haxd(e)de. D) Té— 2 s arcta 5—03/2
0 9715 (19T

Here g0 @andrnax are the maximum values of the energy
and interstitial distance allowing connectedness, @) is

the density of states. Equating the corresponding value to the
critical concentration for the percolation threshald(for the
three-dimensional situation the corresponding value is equal
to ~5.3), we obtain an equation for the critical value &f 3. EXPERIMENT

determining the resistance. We investigated CdTe crystals doped with shallow do-

the Nf’;gutgtagmﬁedgﬁg;ﬁ?ﬁ;i C;ngi?gg%\t/g; 'S de;':gd @Rors. In two of the investigated samples the donor concen-
P ©max tration was roughly the samé&4=2x10"cm 3, and the

:jheen\sli(ilug}esii(;is:\;slﬁ;%hj;: ds'::\ees;/viﬁrli?]f)?/\(/)r??r:?grly;)]lcgtri;h egree of compensation by native lattice defects was differ-
y P Lnt: =0.4 and=0.6, and the electron density at 300K was

expression(see, e.g., Ref.)3 respectively 1.% 10'7 and 8x 10**cm™3 (the exact values of
(eleg)? Ny and the degrees of compensation in the give case are
gzgom’ 2 impossible to determine due to the absence of a temperature
0 dependence of the Hall constanSample 3 was doped
whereg is the density of states in the absence of the Coutightly, and from the temperature dependence of its Hall con-

( E+(TTHIUYTT?)
X

2\ 3/4
; ) —(TT™ (@)

lomb gap, and stant we were able to determine separately the total donor
€5g, | 12 concentrationNg=1.1x 10 cm™ 2 and total acceptor con-
8023_1/2<—> (3)  centrationN,=8.5x10%cm™3, the concentration of filled
K

donors (Ng—N,) =nN300x=2.5X10%cm 3, and the degree
Note that the given procedutesed by Efros and Shklovaki  of compensatioriC=0.77. All samples were on the insulat-

in application to the Mott regimefor an energy-dependent ing side of the metal—insulator transition associated with
density of states is not entirely rigorous, and the condition otompensation.

connectedness must be considered separately for each value Figures 1 and 2 plot the temperature dependence of the
of the energy, which leads to an integral equafiade, how-  resistanceR(T) for the three samples together with curves
ever, make use of a simplified procedure which makes ibbtained by solving Eq(6), which has the formé=AInR
possible to simplify the calculations substantially. Note thatfor optimally chosen values of the paramet€gsandT;. (As

the coefficient 312 in the expression fok, is connected a consequence of the high values of the resistance at low
with this specific procedure and provides the correctemperatures, for sample 1 the dependeR¢€) could be
asymptotic behavior in the limit of low temperatures. Directtracked down to only 0.5 K.It can be seen that for the two
calculation of the integral on the right-hand side gives highest-resistance samples the experimental curves give a
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InR, £(T) InR, £(T)
25

a 14 b {

FIG. 1. Experimental temperature dependence of
the resistance for samples *J and 2 ©); the
10 curves were calculated by solving E@) for the
function &(T) for the parameter valuégy= 6500 K
and T,=33K for sample 1 andl,=5900K and

8r T,=36 K for sample 2.
6
08 10 12 14 16

T—l/4’ K—l/4

good description of the functio&(T), which is the solution 4. DISCUSSION
of Eq. (6) with optimally chosen values of the paramet&gs
and T,, and that in these two cases the Mott and Efros— The picture of the temperature dependence of the con-
Shklovski laws become valid in the low-temperature andductivity of doped semiconductors in the region of hopping
high-temperature limits. The parameter values are given igonductivity with variable-range hoppir@.01-10K is of-
Table I. For sample 3 the experimental and theoretical curveten quite complicated and does not obey in detail the well-
are seen to diverge in the high- and low-temperature regionknown Mott and Efros—Shklovskilaws; here we note in
From our point of view, this is explained by the fact that we particular the quantitative discrepancies observed, as a rule,
have neglected the temperature dependence of the présr the parameter§, and T, in comparison with the theo-
exponential factors in the expression fe(T). The corre- retical estimates of Mott and Efros—Shkloviskihe problem
sponding factor proves to be important for samples near theonsists, in particular, in the fact that the generally used
transition, for which the interval of variation of the resistancerange of temperatures turns out to lie in the transition region
is not too largé' In Fig. 2 the dependend®(T) for sample 3  between the Mott and Efros—Shklovskaws. Since there is
is constructed on scales that take the temperature dependereceompetition going on in the high-temperature region with
of the pre-exponential factor in the Mott law into account: the activation temperature dependence for the conductivity
In(RT Y4 versusT~ 4 The agreement in the high- and low- via nearest neighbors, the high-temperature region for the
temperature regions is noticeably improved. The values o¥RH conductivity is small enough to observe the pure Mott
T, and T, obtained in this way are given in the table. law, but the low-temperature regigusually down to 0.01 K
Note that in the region of applicability of the Efros— is not large enough to observe the pure Efros—Shkl@Vawi
Shklovski law a falloff of the negative magnetoresistance is(the impossibility of going lower into the region of superlow
observed. This fact can also serve as an indicator of a changemperatures is often connected with the large resistance of
in the character of the hopping resistariteour case, of the the sample and heating effectdn light of what has been
transition to the Efros—Shklovdkilaw). We discussed said, it is important to derive a universal expression for the
mechanisms leading to such behavior previously in Refs. Transitional region. As was already noted, such efforts have

and 8. been made; however, they are marred by an inadequate de-
(RT ), £(T) m(RT™"). £(1)
15 . 7
a 12+ b
101
10} A FIG. 2. Experimental temperature dependence of the
4 :x”‘ 8 resistance for sample 3; the symbots represent the
o & functional dependence IR(T)); the symbolsO repre-
% % 6 sent the functional dependence RADT *4); the
> curves were calculated by solving E&) for the func-
5 4 tion &(T) for the parameter values,=110 K andT,
=3.8K.
2
. R - 0 " \ L N
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TABLE I. dig £/dlogT
0.25
N N30 K, CM 3 Ng, cm 3 K To, K T, K
1 2.5x10% 1.1x 10" 0.77 6500 33 0.30r
2 8x 10'° =2x10Y =0.6 5900 36
3 1.2¢107 =2x107 =04 110 3.8 0.35¢
Remark. gy k — electron density at 300 K, obtained from Hall measure- 0.40
ments,Ny — donor concentratior. — degree of compensatiofg, T, —
parameters obtained from the temperature dependence of the resistance with L
0.45
the help of Eq.(6).
0.50 . .
o . 0.01 0.1 1 10
scription of the experiment or by cumbersomeness of the T,K

obtained expressions. The approach proposed above leads to

: : : : FIG. 4. Asymptotic behavior of the functiaf(T), calculated by solving Eq.
a simple analytical expression, whose solutionR) (% " ™ i o meter valuds—5900 K andT,— 36 K (solid

=A§(T), _aS can be Seen.from Figs. 1 and 2, provides a goo rve and sample 3 with parameter valug=110 K andT,;=3.8 K.
description of the experimental data.

In order to understand how fast the transition to the cor-
responding power laws goes as the temperature is decreasgcedure leading to Eq7) not only substantially overesti-
or increased, relative to the crossover region, it is customargnates the width of the crossover region, but is also capable
(see, e.g., Ref. )9to use a graph of the dependenceof leading to an erroneous identification of the crossover.
dé/(dlogT) in which the changeover to the correspondingindeed, as can be seen from Fig. 3, the value of the exponent
power-law asymptotic limit corresponds to a straightening ofp in the intermediate region even exceeds 1/2 and approaches
the curve with slope equal to the exponent of the power lawthe asymptotic value only at very low temperatures. Thus,
Note, however, that determining both the degree of straightthe use of the standard procedure for identifying the
ening and the corresponding slope by purely graphical methasymptotic behavior by estimating the slope of the curve of
ods is fraught with some difficulty. Therefore, we propose athe logarithmic derivative can lead in this case to an under-
somewhat different procedure which allows one to identifyestimate of the width of the crossover reg[since the value
the character of the approach to the asymptotic limit in gp=1/2 is reached not only in the real asymptotic region but
purely quantitative way. Toward this end, we use the expresalso, by virtue of the nonmonotonic behaviorpfflog T), in
sion the crossover regidn
dlogé T de Ir_1 Fig. 4 we ShOW curves op(logT) constructed for
I functions&(T) determined from the experimental curves for
dlogT &dT samples 2 and 3. It can be seen that the crossover region is

As can be eas”y seen, for a pure power law this expression guite wide(variation of the temperature over three orders of
equal to the exponent of the corresponding dependence afi@agnitudg; however, at the edges of this region the function
thus the asymptotic behavior is determined by the approacfPproaches asymptotically the exponents characteristic of the
of the dependence(log T) to the corresponding constant. In Mott and Efros—Shklovskilaws (0.25 and 0.5 The tem-

Fig. 3 the functionp(logT) is constructed fori(T) found  Perature characterizing the crossovky, is shifted(e.g., for

with the help of Egs(6) and (7). It can be seen that the P=0.379 for sample 3 into the low-temperature regidn,
proposed procedure leading to H6) provides a compara- =0.1K, in comparison with the corresponding temperature

tively rapid approach to the asymptotic limit whereas thefor sample 2,T.=0.2K. Besides, these values are in good
agreement with those calculated using the expresSion

=T3/T,, which also demonstrates the validity of describing
(‘)"2855 /dlogT crossover on the basis of solution of H6).
’ Let us compare the obtained valuesTof and T, with
their theoretical values for the most compensated samples 1
and 2, which are situated quite far from the insulator—metal
transition (for which reason it is possible to neglect the di-
vergence ofk anda. The parametelly can be calculated,
knowing the donor concentration and the width of the impu-
rity band and assuming the localization radius to be equal to
the radius of an isolated donaiy="50A. These parameters
are known most accurately for sample Ny=1.1x 10"
0.55 . . cm 3, width of the impurity band:3=0.002 eV. Thus, set-
0.001 001 0.1 1 10 ting g(e;) =Ng/e3, for this case we obtain the calculated
T.K value Toea=B0/9(es)a>=10000K, which is not much
FIG. 3. Asymptotic behavior of the functiaf(T), calculated by solving Eq. higher than the value Obtameq frqm the r?S“'tS of an analysis
(6) — solid curve, and Eq7) — dashed curve. Parametdig=5900K and ~ Of crossoverT,=6500 K. (The indicated discrepancy can be
T,=36K. explained by corrections to the localization radius associated

p(logT)=

0.30

0.35

0.401r

0.45

0.50F
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with scattering by neutral and charged impurittésthe  *E-mail: nina.agrins@pop.ioffe.rssi.ru
maximum value of the correction isa, and in this case the "E-mail: ven.kozub@pop.ioffe.rssi.ru
maximum value of the rati@ ¢,/ To~8). Thus we can con-
clude that the one-particle density of states provides a good
description of the Mott regime. NV, Adrinsk d A. N. Aleshin, Fiz. Tverd. Tefheningrad 31, 277
. A, . V. Agrinskaya and A. N. Aleshin, Fiz. Tverd. eningrad 31,
. Wg cal'cu.IaFe the paramete&y by settingk=11; for t'he (1989 [Sov. Phys. Solid Stat81, 1996(1989].
insulating limit it should be equal to 1000 K. The maximum 2a_ Aharony, Y. Zhang, and M. P. Sarachik, Phys. Rev. L&&, 3900
value of T, obtained from the temperature data for samples 13(1992_.
and 2 located far into the insulating side of the metal— 4L- \'\;'QZ' :Dir}:glféF\’ae;-née\;tylzlfozzeusb(lgﬁglé Teor, Fiz108 848(1994
insulator transition is 30—40, i.e., it is 25 times smaller than [J'ET'W% 466({994)]_ o P NS o
the theoretical value(Corrections to the localization radius Snguen Van Lien, Phys. Lett. 207, 379 (1999; R. Rosenbaum and
can explain only a discrepancy by a factor of two. Nguen Van Lien, J. Phys. €, 6247(1997.
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A theory of the crystal field for L# ions is proposed which takes account of the difference in

the effect of excited configurations on high-lying and low-lying multiplets. The effective-

operator method in third-order perturbation theory is used to obtain the Hamiltonian of the crystal
field, which in addition to the usual terms contains energy-dependent operators. Their role is
discussed in detail. For the new operators we have obtained convenient expressions which make it
possible for the first time to determine the parameters of an odd crystal field on the basis of

an analysis of the structure of the energy spectrum. Theory is compared with experiment for the
laser crystals YAl:O,,:Tm3" and LiYF,:Pr**. Taking the new terms of the crystal-field

Hamiltonian into account produces an additional shift of individual levels within the limits from
—40cm ! to 40 cm ! and makes it possible in a number of cases not only to substantially

reduce the value of the standard deviation, but also to obtain the correct arrangement of levels.
© 1999 American Institute of PhysidsS1063-776(99)01712-9

1. INTRODUCTION crystal-field parameterf,'é is the spherical tensof), are

. . o the intensity parameters, afigid||U|y’J’) are the reduced
Crystals with trivalent lanthanide ions (£f) have matrix elements of the unit tenst*. In this approximation

found wide application as active laser media. Therefore, %he sets of parameteEﬁé and Q. should be the same for all
theoretical and experimental study of the energy spectrunljnultiplets of thefN configuratign

and intensity characteri_stics of the absqrptiqn and lumines- In reality, the energies of the multiplets of rare-earth ions
fhe ncehotl;]such cr;istlals IS of.tgrgalat %Faci'ca'f |trr1]1port?.ncia. tAI' ave the same order of magnitude as the energies of the
ough these crystais are suitable objects of Ineoretical SIUqy, o oy cited configurations. Thus, fulfillment of the condi-

(relatively small influence of the crystal field, narrow lines, tions for realization of the weak-configurational interaction

large number of observable transitipnis is nevertheless not L
: . ; . ; roximation is impr I n f E nd (2
possible in the one-electron approximation to obtain the deg—lep oximation is improbable, and use of E¢$) and (2)

sired accuracy of description. and sometimes the theoreticSIhOUId encounter contradiction even more often than actually
y SCrption, anc % the case. Since the energy intervals between the excited
results even contradict the experimental data.

) - . configuration and the high- and low-lying multiplets differ
Efforts tq improve the qlescrlptlon_qf the experlmental significantly from one another, the excited configurations
data by adding electrical dipole transitions of two-particle

X . : will influence different multiplets to a substantially different
operators representing different electron-correlation effem%xtent If we take this effect into account in third-order per-
to the one-electron crystal-field Hamiltonian and the one- :

. . turbation theory, we obtain the following crystal-field Hamil-
electron line-strength operator have had little sucéeSn y gery

. . . . . nian:
this regard, studies of the influence of the mterconﬁgura—t0 a

tional interaction on the states of tfi# configuration seem

= k 0y (k7 k
to be more promising. Hcf_gl [B,+(E;+E;—2E;)G,]C, 3
The point is that the one-electron crystal-field Hamil- P
tonian usually used to interpret optical spectra B
and effective line-strength operatdr
Hcf=k2q BXCE (1)
' . J=e? Q[ 14 2R(E,+E; —2E9
and the one-electron line-strength operator Sir=e k=;,4,6 il {EsTE, 7]
23 K 2 &
S;y=e QYUY y' I’ 2 S
3] a6 k(¥ Uy ) 3] ><<‘yJ||UI‘||‘y J >2, 4)

were derived in the weak-configurational interactionin which the parameter8f and (), depend linearly on the
approximatior° where the excited configurations act to energy of the multiplet&, andE; . Here E? is the energy
the same degree on different multiplets. HeBE are the of the center of mass of the' configuration,G'é andR, are

1063-7761/99/89(12)/8/$15.00 1130 © 1999 American Institute of Physics
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additional parameters prescribing the amplitude of the intermethod developed in Ref. 18 for a basis of non-orthogonal
configurational interaction. e approximation of such anfunctions. Towar is end, we write out the most importan

f t | int t Th t f h f t T d th d t t th t tant
intermediate-in-strength interconfigurational interaction willterms from expressiof25) of Ref. 18:
obviously be more adequate for thions. .

The excited configurations of actinides have a lower en- / / /

. . . . NHe N )={(n|H|n")+ —(n|H,|b){b|H,|n
ergy than the corresponding configurations of lanthanides. (nlHegln")=(n[H|n") zb: Anb< [Hi[b){b[Hn|n")
Therefore, for the actinides the interconfigurational interac- 1 1
tlon_ should be s_tronger. The foIIowmg_ cryst_al-flel_d Ham|_l- EE —-[{n|Hu|b)(b|H,|n")
tonian was obtained in the strong configurational interaction b Anb
approximation in first-order perturbation thebty (" [WIn'y 4+ (n[WIn")n"[H, | b)
n

Hcf=2
k.q

Bk+( =R )Gk}c" ><<b|Hn|n’>]—Zi[(ﬂlHnlb><bln”>
q A_EJ A‘EJ/ q q (5) b,ﬂ” Anb

x(n"[W[n’)+(n|W[n"){n"|b)

with the following effective line-strength operator of the X(b[Hg[n")], ()

electric dipole transitiort§:*®
where

A AT : (n[Hy|b)=(n[H|b)—(n[H°n)(n|b),
Sip=e* 2 Qk{y_—E—JFA—_,;—,} (WIUtly' 7). "
k=246 J 7l (6)  Wis the perturbation potentiah © is the unperturbed Hamil-
o tonian,n, n’, n” andb denote the states of the ground con-
. _ ) . . figuration and the excited configurations, respectively, and
HereA is the energy of the excited configuration. In this caseAg =E,—E, is the excitation en?argy P y
. . N . n n .

the crystal-field paramete§ and intensity paramete The method developed in Refs. 19 and 20 makes it con-
depend on the energy of the multiplets according to a laW,enjent to write out expressidf?) in terms of the spherical
that is more complicated than linear. _ _ tensorsCf. The main difficulty here is to make the correct

Thus, the effective operatof8)—(6) in the intermediate  cpgjce of the unperturbed Hamiltonian, which affects the in-
and strong configurational interaction approximation Weregrretation of the matrix elements of the perturbation poten-
recently proposed to describe the optical spectra of crystalg, (n|W|n’). There are several ways of choosing the un-
activated by rare-earth ions. Only under certain conditions i?)erturbed potentiat® (Refs. 21—28 Here we have applied
it possible to limit the treatment to such a simple tensor formy \ arjant of perturbation theory, based on the formalism of
of th_e e_ffectlve operatprs d8)—(6). Despite th_e §uccessfu| projection operator¥ and the following definition ofH°
application of expression@)—(6) to the description of the (Ref. 23 in terms of the projection operator
spectral properties of a number of systeffig*°the condi-

tions of their applicability have not yet been sufficiently in-

0_
vestigated. This especially holds true in regard to the Hamil- M _En: (n[H[n)[n)(n| 8
tonian (3), for which there is only a preliminary
communicatiort! is preferable. In expressidB) the sum oven and the mean

Therefore, the main goal of this paper is to present avalue (n|H|n) are calculated over all states of th& con-
detailed study of the conditions of derivation and applicabil-figuration, wherefore
ity of the crystal-field Hamiltonian(3) in the intermediate
configurational interaction approximation together with com-
prehensive tests. To test the approximation, we chose the
optical spectra of the typical generating ions'Pand Tn?+

i | K . i - O .
with experimentally well-established Stark structure in fields N such a choice oH" the energies of all unperturbed
with symmetryS, andD,. states are equal to the center-of-mass enE@g,yand in the

zeroth approximation thé" configuration is completely de-
generate. This is true only in central fields. Consequently, the
perturbation potentialv=H — H° should contain all noncen-
Accurate values of the Stark levels can be obtained byral interactions, i.e.,
diagonalizing the matrix of the Hamiltoniafl) in a basis a) the noncentral part of the Coulomb interaction of the
consisting of the wave functions of the ground configurationelectrons with each other and the spin—orbit interaction
and all excited configurations. Since this is hard to realize ir(these interactions give the main contribution to the energy
practice, the method of the effective Hamiltonian seemsf the multiplets;
more acceptable. The effective Hamiltonian, acting in a  b) the Coulomb interaction of the electrons of the impu-
model space of significantly lower dimensionality, has therity ion with the electrons of the ligands and their nuclei
same eigenvalues as the real HamiltorliaiThe effective  (these interactions are responsible for formation of the Stark
Hamiltonian can be easily constructed with the help of astructure of the multiplejs

3,23+ 1)E,

(nlHI~~5 551y =Ef- )

2. EFFECTIVE HAMILTONIAN
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From this point of view it seems reasonable to replacechoice of the parameteEﬁs. Therefore, in the description of

the matrix elemen{n|W|n’) by the expression the experiments, the parameh‘a? can be assigned any con-
6 Kk venient value. In the present work we ﬁ= 0.
<n|W|n’>=(EJ—E?) o +(N| >y Fgcg The energy-depeno_lent Contributior_ls to the crystal-field
k=2 q=—k parameters are determined by all the lines of express§ipn

with the exception of the first. Consequently, their amplitude
is inversely proportional to the square of the energy differ-
where E; is the energy of the statg). The crystal-field ence between the ground configuration and the excited con-
parameterst:'a are due mainly to interactions enumerated infiguration. Such a dependence gives rise to a rapid falloff of
item (b) up above, and wave-function overlap effects. It isthe amplitude of the contribution with growth of the excita-
well known that these interactions give the defining contri-tion energy. Therefore, only the low-lying excited configu-
bution to the usual crystal-field parametﬁ. Conse- rations will give the defining contribution to the parameters

quently, the crystal-field parametelFﬁ should be similar in Gg. In the case ofN systems, these include configurations

+two-particle operatofs’), (20

magnitude to the corresponding parameBzEs of the types nfVN"i(n+1)d, nfVN"i(n+1)g, (n
Using an analogous method for the fragméntH,|b) ~ +1)p°nfN*1, and configurations with electron transfer from
X(b|H,|n") from expression(7), it is easy to obtain the ligand to thef shell. An analytical expression for the

contributions toGX due to admixture of the configurations

6 k
1 N—1 -1 54 fN+1
f§<n|Hn|b><b|Hn|n”)/A§n=<n|2 2 GECE nf* *(n+1)d, nf""*(n+1)g, and (+1)p>nf have
k=2 q=—k

the form
+ two-particle operatorgn”). (12) GK(l)= (= )1+ 22k+1k S (—1y0
q
Here the parametel@g are due to effects of covalency and 285(flICIf) k'K
the interconfigurational interaction. a-q
After substituting expressior40) and(11) into expres- k' kK" k\[k' kK" k .
sion (7) followed by some simple transformations we obtain X 9 o -q/lf f I (flcen
the following effective crystal-field Hamiltonian:
(n|Hegln')=E 8, X(1[C¥[£)Bg, (1Bg(1), (13
6 Kk \ o wherel =d,g,p; (f|C¥I) is the reduced matrix element of
+<"|k22 ;_k [B,+(E;+Ep—2E{)G,] Cyln') the spherical tensaZ®, and we have used the usual notation
o > for the crystal field:
q
6 Kk 6 k BE(I):<f|rk|I)Akq. (149
+> (n|kE2 Ek F’;CI;I”"><""|IZ EL GiChln") The expression for estimating the contributionsGg
" =2 g=- =2 qg=—k

due to admixture of the configurations with electron transfer
can be easily obtained with the aid of methods described in

6 k 6 k
+2 (n Y, X G| Y X Fickn') Refs. 19 and 25:
o F=2 g=—k =2 ¢=—k

2k+1
... (12 G4(coV)= 5richm 2 Co (@ Pp) 2 (-1
In the description of the experimental data, the parameters Fok ot
By, Gg. andFy can be considered as variable parameters. % )I)\f 2, (15)
Here to reduce the number of fitting parameters it is expedi- -m 0 m em

ent to Se‘Bg:_F: g _ _ Here C§(©y,®y,) is the spherical tensor of the anglés,
The Hamiltonian(12) is more complicated than the one- 4 ¢, “defining the direction from the activator ion to the

electron Hamiltonian(1): its parameterﬁ'; are linear func-  ligand b. The covalency parametex,, corresponds to
tions of the energy of the multiplets, and it contains thetransfer of an electron from the orhjtof the ligand to thef
“quadratic crystal field” operatofthe last two lines of Eq. shell of the activator. Thus, the paramekecontains infor-
(12)]. Although energy-dependent terms have been added t@ation about delocalization of electrons. An analogous
the Hamiltonian(12) from third-order perturbation theory, mechanism of electron delocalization was probably investi-
their role can be substantial since they are multiplied by thejated in Ref. 26, but without an account of the spin—orbit

energy of a multiplet, whose order of magnitude is approxi-interaction and only for the case of crystal fields of cubic
mately 10000 cm!. These terms have the sense of energysymmetry.

dependent corrections to the usual crystal-field parameters.
That is to say, these corrections depend on the energy of the coMmPARISON WITH EXPERIMENT
multiplets.

The center-of-mass enerdsf is responsible for a uni-

form shift of the parameter‘gI by the amount—ZE?Gg. A detailed study of the system LiyEPr" (with sym-
This shift can always be compensated by the correspondingnetry S,) in the weak configurational interaction approxima-

3.1. LiYF,:Pr3*
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TABLE |. Comparison of experimentdland calculated energy levels in the TABLE I. (continued
ireducible representatiord of the PF" ion in LiYF,.

Calculated in the interconfigurational
Calculated in the interconfigurational interaction approximation
interaction approximation

) Experiment’ a) weak (1) b) intermediate(12)

) Experiment’ a) weak (1) b) intermediate(12) Multiplet — — -
Multiplet SLJ r Ecm? T E, cm?! r E, cm!
SLJ r E,em* I  E, cm? r E, cm* 3

F, 1 6920 1 6898.3 1 6883.1
3H4 2 0 2 8.2 2 —4.7 3,4 6942 3,4 6905.1 3,4 6904.1
3,4 79 3,4 85.3 3,4 79.9 2 6983 2 6943.0 2 6950.7
- - 1 217.9 1 236.3 1 7105 1 7120 1 7119.7
1 220 1 219.0 1 237.2 2 7116 2 7109% 2 7136.5
3,4 496 3,4 487.8 3.4 500.7 3,4 7142 3,4 7129.3 3,4 7154.2
- - 1 512.5 1 512.5 1 7220 1 7241.7 1 7256.9
- - 2 514.5 2 540.5 1G4 1 9699 1 9702.5 1 9679.5
3H5 1 2253 1 2244.9 1 2236.3 34 9832 34 9802.2 3,4 9809.0
3,4 2272 3,4 2253.8 3,4 2245.1 2 9930 2 9918.0 2 9899.4
2 2280 2 2275.6 2 2252.8 2 10011 2 10007.5 2 10030.5
1 2297 1 2276.7 1 2278.0 34 10112 34 10157.2 3,4 10198.1
3,4 2341 3,4 2326.3 3,4 2327.1 1 10217 1 10126.% 1 10136.4
2 2549 2 2557.1 2 2565.7 1 10313 1 10578.8 1 10643.1
- - 1 2578.7 1 2566.7 lDz 2 16740 2 16865% 2 16757.2
- - 3,4 2597.8 3,4 2597.8 1 16810 1 168145 1 16814.0
3H6 2 4314 2 4321.4 2 4301.5 3,4 17083 3,4 17077.7 3,4 17033.3
3,4 4394 3,4 4421.0 3,4 4410.6 2 17406 2 17401.5 2 17388.8
- - 1 4441.7 1 4433.8 3P0 1 20860 1 20860.0 1 20860.0
- - 2 4470.5 2 4479.6 l|5 - - 2 21083.0 2 21175.1
3,4 4454 3,4 4487.9 3,4 4479.6 - - 2 21083.3 2 21180.2
1 4486 1 4523.0 1 4539.8 - - 3,4 21400.2 2 21306.2
2 4557 2 4570.2 2 4562.0 - - 1 214131 3,4 21307.3
- - 1 4891.2 1 4890.6 - — 2 21414.4 1 21331.1
3,4 4907 3,4 4894.1 3,4 4900.7 3P1 - - 3,4 21442.9 3,4 21464.8
2 4945 2 4937.6 2 4957.5 - - 1 21610.8 1 21591.9
3F2 - - 1 5171.3 1 5162.0 l|5 - - 3,4 21622.1 3,4 21665.7
2 5201 2 524712 2 5227.7 - - 1 21758.6 1 21745.2
3,4 5221 3,4 52302 3,4 5227.7 - - 1 22032.2 3,4 22078.7
2 5342 2 5332.8 2 5315.3 - - 3,4 22043.7 2 22084.7
3F3 3,4 6481 3,4 6463.9 3,4 6447.1 — - 2 22054.5 1 22090.5
2 6521 2 6512.6 2 6499.2
1 6586 1 6547.9 1 6553.9
3,4 6671 3,4 6659.0 3,4 6652.5
2 6686 2 67031 2 67199  ment of levels for thé G, multiplet. Theoryb) provides a

significantly better description of splitting of tH®, multip-

let. However, on the whole over all levels the value of the
standard deviation is only slightly less than in theay If
tion (1) was presented in Ref. 27 where it was establishedve ignore information about the irreducible representations
that the ordering of the calculated energy levels correspondsf each level, then theorly) leads to a substantially smaller
ing to the experimental levels with=5201 and 5221 cmt  value of the standard deviatidh Comparison of the results
of the 3F, multiplet, 7105 and 7116 cit of the3F, multip-  of b) in Table | with the calculation of the energy spectrum
let, 10112 and 10217 cm of the G, multiplet, and 16740 based on the Hamiltoniafl2), but without the *“quadratic
and 16810 cm? of the 'D, multiplet is inverted. In addition, crystal field,” shows that the “quadratic crystal field” cre-
the calculated splitting of théG, multiplet obtained is 1.5 ates additional splitting of the multiplets on the order of
times smaller than the experimentally measured value. 2 cm L. This is much less than the observed multiplet split-

Results of our calculations based on this approximatioriing, and for rare-earth ions it is entirely possible to use
are listed in columra of Table I. The value of the standard expression(3) as a simplified variant of the Hamiltonian
deviation, which is somewhat different than in Ref. 27, is(12).
due to the different manner of choosing the centroaster- Theoriesa) and b) predict a different arrangement of
of-mass energiggor the multiplets. The centroids were cho- some levels of théls multiplet. However, an experimental
sen such that the sum of the standard deviations of the theletermination of the energies of these levels is hindered.
oretical values from the experimental values for the highesTherefore, it is hard to conclude which theory gives the more
and the lowest level of each multiplet was equal to zero. accurate predictions.

The results obtained in the intermediate configurational It should be noted that a similar effect of the excited
interaction approximation with allowance for the “quadratic configurations on the multiplet splitting was investigated in
crystal field” (12) are listed in columrb of Table I. In this Refs. 28 and 29 by diagonalization of the matrix of the
approximation the theory fails to give the correct arrange-Hamiltonian (1) in the basis of states of the configurations
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TABLE I. (continued TABLE II.
Calculated in the interconfigurational Calculated in the interconfigurational
interaction approximation interaction approximation
Experiment’ a) weak (1 b) intermediate(12 Experiment® a) weak (1 b) intermediate(12
Multiplet P ) @ ) 12 Multiplet P ) @ ) 12
SLJ r E,cm?! r E,cm?! r E,cm?! SLJ r E,cm*t r E,cm? r E, cm?
3p, 1 22498 1 22507.3 1 225129  3Hq 2 0 2 -11.9 2 55
34 22645 3,4 226357 3,4 22630.1 1 27 1 15.2 1 23.1
- - 2 22679.5 2 22630.9 4 216 4 206.3 4 218.8
- - 2 22776.5 2 22760.3 3 241 3 215.7 3 241.9
s, 1 - 1 48831.0 1 46635.0 - 247 2 253.9 2 247.6
o° 28.4 27.6 1 252 1 2442 1 262.8
- 588 4 508.5 4 562.9
Parameter8}; (in cm™*) and G (in 10 %, dimensionless _ 610 3 601.3 3 615.8
) ) )
Bg 488.9 456.4 _ ~ 1 6401 1 682.2
Bo —1043 —1087 - 690 2 674.8 2 687.1
By 1242 1348 - - 4 689.4 4 693.6
Bo —42 —-9.4 - 730 3 741.9 3 724.5
Ba ; 1213 1284 - - 1 754.9 1 737.9
'ng Bs 22.5 532 3p, 1 5556 1 5541.3 1 5537.9
Gg —22.3 3 5736 3 5762.4 3 5753.6
Gg 35.2 2 5832 2 5815.4 2 5814.6
Gg 43.7 4 5901 4 5917.5 4 5910.2
Gg 53.3 1 6041 1 6045.0 1 6035.7
Gy 7.8 2 6108 2 6116.5 2 6097.3
Im G§ ~25.0 1 6170 1 61685 1 6182.8
Fe=B4 - 6224 4 62329 4 6223.4
- 6233 3 6247.7 3 6251.1
a—levels not included in fitting procedure. 34 4 8339 4 8340.2 4 8340.7
b_inverted level. ° ' ’
. n , - " 3 8345 3 8349.6 3 8351.6
—0 = (2{L [ Eex(i) = Ecadi) 1/(n—p)) " where Eg,, and E¢, are re- 3 8516 3 8504.0 3 8510.1
spectively the experimental and calculated levpl$s the nuber of fitting 1 8530 1 8513.4 1 8520.1
parameters. - - 2 85204 2 8531.0
4 8556 4 8555.0 4 8557.3
by 1 N N o 2 8711 2 8708.4 2 8725.0
4f<, 4f°5d, 4f°6s, and 4 -6p. However, the application of - 8773 1 8770.9 1 8770.8
the Hamiltonian(12) toward these ends is to be preferred - 8800 3 8800.4 3 8807.9
since in the method of the effective Hamiltonian the common - . i 8869.0 i 8867.8
set of parameter@ﬁ can easily account for the effect of all _ 888 8880.8 8880.3
configurations corresponding to one-electron excitations.
. 3+
3.2. Y3Al501, Tm probably for that reason that the authors of Ref. 31 proposed

A detailed experimental and theoretical study of thed new scheme of energy levels for this ion, which differs
Tm3* ion in YsAlLO;, (with symmetryD,) was given in  Substantially from the scheme in Ref. 30. Application of the
Ref. 30. The results of our calculations in the weak interconHamiltonian(12) also improves the description of this new
figurational interaction approximation with the parameters ofsPectrum, lowering the standard deviation by 26%. In an
Ref. 30 are listed in columm) of Table 17 Here, as in earlier papef they proposed another variant of the spec-
Subsection 3.1., because of the special choice of the enerdf/m, but to use this spectrum to test the theory is not well
of the centroids the standard deviation differs insignificantlymotivated, because of its dubious realism.
from that obtained in Ref. 30. The large value of the standard
deviation 18.4cm?, and the incorrect arrangement of the
level corresponding to 252 crh are proof of the inadequacy
of the weak configurational interaction approximation. The dimensionless parameteﬁé prescribe the ampli-

In the intermediate configurational interaction approxi-tude of the interconfigurational interaction, which previously
mation the description is improved: the correct arrangemenivas not taken into account in the description of the experi-
of all levels is achieved and the standard deviation is reducethental data. Therefore it is of interest to estimate these pa-
to 11.8cm?® (see Table Ii. For this system the “quadratic rameters from microscopic arguments. It may be expected
crystal field” also causes an insignificant additional splitting that the largest contribution 1@'(‘1 comes from lower excited
of the multiplets, around 3 cnt, i.e., to describe the spectra configurations of the typefd'~15p%, the configuration with
of the Lr*" ion it is indeed possible to use the simplified electron transfer from the ligand to thef 4hell, and the
variant(3) of the Hamiltonian(12). configurations 4N~ 15| (I1=d,q).

An experimental determination and identification of lev- The contribution of the excited configuratiori™' 15p®
els of the Tri" ion encounters significant difficulties. It is can be estimated from formuld3), assuming that

4. CALCULATION OF THE PARAMETERS Gg
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TABLE Il. (continued TABLE Il. (continued
Calculated in the interconfigurational Calculated in the interconfigurational
interaction approximation interaction approximation
I . . N ) )
Multiplet Experiment a) weak (1) b) intermediate(12) Multiplet Experiment a) weak (1) b) intermediate(12)
SLJ r Eocom?! T E, cm?! r E, cm?! SLJ r Eocom? T E, cm? r E, cm?
3H, 1 12607 1 12610.2 1 12611.1 1 34748 1 347300 1 34742.1
2 12679 2 12674.2 2 12677.9 1 35033 1 350396 1 35033.2
4 12747 4 12745.0 4 12744.6 - - 2 35039.8 2 35035.9
- - 2 12814.8 2 12801.7 - - 2 35206.4 2 35237.0
3 12824 3 12829.3 3 12833.8 - - 4 35230.1 4 35253.3
- - 1 12951.5 1 129495 3P, 1 35372 1 353720 1 35372.0
4 13072 4 13066.7 4 13067.5 g - - 3 353900 3 35455.8
3 13139 3 13124.1 3 13129.9 - - 1 35401.9 1 35462.5
- 13159 1 13155.8 1 131549 %P, 3 36234 3 36249.0 3 36234.0
3F, 4 14659 4 14652.9 4 14654.5 4 36391 4  36376.4 4 36405.9
- - 2 14658.0 2 14654.5 2 36418 2 36403.0 2 36418.0
- - 2 14670.1 2 146679  °P, 3 37932 3 379489 3 37925.8
3 14679 3 14693.0 3 14693.8 4 38066 4 38015.0 4 38046.0
- 14705 4 14719.5 4 14714.3 1 38098 1 381018 1 38097.5
- 14720 3 14740.1 3 14743.6 2 38398 2 384143 2 38402.1
1 14741 1 14747.1 1 147455 1 38440 1 384231 1 38446.2
°F, 3 15245 3 15244.5 3 152448 'S, 1 - 1 79604.0 1 79604.0
4 15264 4 15258.7 4 152629 o 18.4 11.8
- - 1 15300.6 1 15305.6
- - 2 15430.3 2 15436.9 Parameter8; (in cm™?) and G (in 10~ “, dimensionless
1 15438 1 15438.5 1 15438.2
G, 1 20805 1 20805.5 1 20804.4 B3 474 392
- - 2 211817 2 21186.1 B 47.0 103
3 21227 3 21214.9 3 21240.1 B} —-213 -82.7
4 21381 4  21376.9 4 213782 B} -1571 —-1634
1 21530 1 21502.6 1 215247 B} —824 —-835
2 21687 2 21671.8 2 21698.1 B —-984 —884
1 21757 1 21756.5 1 21757.6  BS -310 —409
- - 4 21813.6 3 21839.7 B¢ 591 493
- - 3 21853.6 4 21839.8  BS —-193 —153
p, 1 27868 1 27895.1 1 278854  G3 29.0
3 27877 3 27921.8 3 27906.7 G2 -11.9
2 28023 2 28008.3 2 28014.4  Gi -27.3
4 28044 4 28030.0 4 280374 G4 20.5
1 28075 1 28047.9 1 28057.6 G —23
e 1 34391 1 34384.4 1 34390.8 ¢ 546
4 34422 4 34428.6 4 344239 g8 43.2
3 34440 3 34450.9 3 344466  G¢ 27.3
2 34449 2 34454.4 2 34456.7  GS 205
4 34520 4 345265 4 34542.1 Fk=Gk
- - 3 34683.8 3 34709.7
Remarlé—inverted levels.
(5p|rk|4f) Their magnitudes are much smaller than the values obtained
Ba(5P)~ 7erwize Ba(4f)- (16) | i i i
q (4f|rK4f) " in Table | from the experimental data, i.e., admixture of the
configuration 4N*15p® gives a negligibly small contribu-
The necessary integrals atomic unitg tion to G';.
In this situation it may be expected that processes in-
(4f|r2|4f)=1.064, (5p|r?|4f)=1.415, volving electron transport from the ligand to thieshell of
the rare-earth ion will be especially important. The value of
(4f|r%|4f)=2.623, (5p|r*4f)=5.769 (17)  the contributions tcﬁg from such processes can be estimated

) ) with the aid of expressiofl5) after the following transfor-
were calculated in thefsand 4f functions of the Pf" ion  mation:

from Ref. 33. Next, using the valuA(5p)=60000cm?

(Ref. 33, it is possible to obtain the following values, e.g., p Kk
for the contributions ta3: Gq(COV)=% JCg* (0, ), (19

10°G§(5p)=—1.5, 1dG§(5p)=-0.9,... (18 where
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5 B3(d)=611, ImB3(d)=—620,
I2=a[2005+ 150+ 30T ], A9 A9

B5(d)=—8334, ImB3(d)=—185, (23

which we obtained from the quantitid®(k) calculated in
Ref. 27. A similar correlation is observed between the pa-
rameters of an even crystal field calculated on the basis of
microscopic models and obtained from the experimental
data. From this point of view, parametgi22) are entirely
realistic. Thus, the combination of Eq4.2) and(13) makes
it possible on the basis of an analysis of the Stark multiplet
Aer=0.02, A\ ;=—0.05, A\, ;=0.04. structure to obtain information about the parameters of an
odd crystal field responsible for the admixture of excited
After summing over nearest neighbors of thé‘Pion, we  configurations of opposite parity and, consequently, for the
obtain intensity characteristics of absorption and luminescence.

10°GZ(cov)=9.5, 10Gg(cov)=—32.8,

3
I= 2B+ gD+ AT,

™

13
°=2g[200GH A5) = 3N, (20

The covalency parametexscan be found in Refs. 34 and 35:

5. CONCLUDING REMARKS

104G2(C0V): —308, 1dIm Gi(cov)z —26.1, Excited configurations influence high- and low-lying
6 . 6 _ . multiplets to a substantially different degree. This is the
10%Gg(cov)=—1.5, 10Gs(cov)=—5.1; causz of the dependence o); the crystal-figld parameters and
10 Im Gj(cov)= —6.7. (22) the3 in.tensity parameters on the energy of Fhe .multip_lets. For
Ln®* ions the most acceptable approximation is the interme-
These values are found to be in satisfactory order-ofdiate configurational interaction approximation, in which the
magnitude agreement with the experimental values in Tab'ﬁarameterﬁg depend on the multiplet energy linearly. In the
|. For these values dBj the influence of the interconfigura- case of the actinides the more adequate approximation is the
tional interaction on the multlplet Spllttlng is substantial andstrong Configurationa| interaction approximation with more-
the fact th_at _it is taken into account in formulk2) improv_es complicated-than-linear dependence of the param%rs
the description of the energy spectrum of the’Lrion in Microscopic estimates of the parameters prescribing the
crystals. _ _ o amplitude of the interconfigurational interaction are in satis-
However, there is one circumstance that indicates thafyciory agreement with the experimental values, which is an
besides charge-transfer processes, excited configurations gfjication of the realism of the proposed crystal-field Hamil-
opposite parity can also play an important role. Indeed, acgypians.
cording to Eqs(20), the quantities)? andJ* are formed by The new functional dependence of the crystal-field pa-
the sum of squares of covalency parameter36wh|le the quaRameters makes it possible for the first time to determine the
tity J° is formed by a difference. Thereforé,4shou|d be  parameters of an odd crystal field from the results of an
S|gn|f|cantlyssmaller in magnitude thalf andJ ankd, Con- analysis of the structure of the Stark levels. These parameters
sequently Gq(cov) should be much smaller thaBq(cov)  can then be used to calculate the intensity characteristics of

for k=2,4. This conclusion correlates poorly with the pa-he absorption and luminescence of laser crystals.
rametersGE| in Tables | and II. This immediately confirms

that the admixture of configurations of opposite parity can  This work was carried out with the partial financial sup-

make a significant contribution t@g port of the Russian Fund for Fundamental Research and the
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crystal is given in Ref. 36. Employing this information, we note that their corporation in the Joint Open Laboratory “La-

convinced ourselves that the excited configuratibN45g  ser Crystals and Precision Laser Systems” facilitated in a

gives a 5—-10-times smaller contribution(Bé than 4N~ 15d substantial way the completion of the studies reported here.
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The nonlinear resistive properties of superconductors in the mixed state in the presence of a
system of unidirectional planar defedftsvins) have been investigated theoretically within the
framework of the two-dimensional stochastic model of anisotropic pinning based on the
Fokker—Planck equations with a concrete form of the pinning potential. These equations allow
one to obtain an exact analytical solution of the problem. Formulas are obtained for
experimentally observable even and ddelative to reversal of the direction of the external
magnetic fielgl nonlinear longitudinal and transverse magnetoresistivjifgs(j tae)

as functions of the transport current dengitytemperature, the anglex between the directions

of the current and the twins, and the relative volume fractiaccupied by the twins. In

light of the great variety of types of nonlinear resistive dependences contained in these expressions
for pfl , the most characteristic of them are presented in the form of graphs with
commentary. The desired nonlinear dependem@gsare linear combinations of the even and

odd parts of the functionv(j,t,a,e), which has the sense of the probability of

overcoming the potential barrier of the twins; this makes it possible to give a simple physical
treatment of the nonlinear regimes. New scaling relations for the Hall conductivity are

obtained and investigated which differ from the previously known relations for isotropic pinning.
The interaction of vortex motion directed along the twins and the Hall effect is considered

for Hall constants which are arbitrary in magnitude and sign, and it is shown that in the case of
small Hall viscosity vortex motion directed along the twins has an effect on the odd
magnetoresistivitiep, andp, , whereas the reverse effect can be neglected. It is shown that
pinning anisotropy is sufficient to manifest the new nonlinéar the current
magnetoresistivitieg” and py - © 1999 American Institute of Physics.

[S1063-776(9901812-0

1. INTRODUCTION intrinsic** pinning for the vortices located parallel to ta®
planes and subjected to the action of the Lorentz force di-
Recently, an ever increasing number of experimental andected along the axis.
theoretical works have appeatetf investigating the influ- From the theoretical point of view, the two indicated
ence of systems of unidirectional planar defects on the arsases differ only in the specific form of the pinning potential
isotropy of the resistive behavior of superconductors in thetnd, as the following analysis shows, the qualitative conclu-
mixed state. The urgency of this problem is connected witi$ions in both cases coincide. However, the difficulties of pre-
two circumstances. First, in all of the currently known high- Paring samples with the required configuration of transverse
temperature superconductdHTSC’S) (e.g., based on Y and and longitudinal contacts to realize various angldas these

La) during growth of the crystals twins appear with their two cases are substann.ally. different. 1:2”5’ to prepare
. . . . samples with twins from thin single crystafs®or YBaCuO
planes oriented parallel to theaxis. If such twins are uni-

o . - epitaxial films® is technically much simpler than in the case
directional (i.e., the twinning planes are para)ldbut the pitaxial y P .
) . when it is necessary to pass a transport current at a certain
transport current flows entirely in the plane of the crystal-

X i - angle to theab planes of the film or crystal of YBaCu®o
line layers, then, as experiment has shdwithe longitudinal  5"\we know of only one attempt of this kifd. Therefore,

and transverse magnetoresistivities of the sample in an extef; \yhat follows the main illustrative material that we provide
nal magnetic fielcHlic depend substantially on the angle  jn this paper(in the form of graphs of evolutions of the
with which the vectorj intersects the boundaries of the current and temperature dependence of the longitudinal and
twins. Second, in layered anisotropic HTSC's the system ofransverse magnetoresistivity of a sample with variation of
parallelab planes itself can be considered as a set of unidithe size of the angler (see Figs. 8—13 belowis only in
rectional planar defects, which are a source of the so-calletegard to the case of pinning on twins.

1063-7761/99/89(12)/16/$15.00 1138 © 1999 American Institute of Physics
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From a more general point of view, the influence of the y'
twin boundaries on the transport properties of HTSC's is a F,
subject of increasingly focused attentibit® One of the
main reasons for such interest has to do with the reliably
established fatt that the order parameter in twins in

HTSC's is easily suppressed. As a consequence of this, an my ’
isolated twin boundary attracts vortices and pins tiéifhe b <7
corresponding pinning force acting on vortices directed 1P j x
along thec axis, by virtue of the geometry of the problem, is

perpendicular to the twins and, as a consequence, its direc- B®

tion depends on the angle between the vector and the
direction of the twins. Hence it also follows that the twins
should have almost no effect on the dynamics of the vortices, <
whose velocity is parallel to their planés contrast to point
defects, for which the direction of the pinning force is oppo-
site the direction of motion of the vortg‘:x FIG. 1. System of coordinatesy associated with the twindhe anisotropy

" Recently there have appeared several works in which thSS% ™ O 8o s and e syster of coordnatesy ssee
influence of the twins on the vortex dynamics in a planaraiong thex’ axis); « is the angle between the twin plariéP) and the
geometry was examined with the aid of numericalcurrent density vectoy, 8 is the angle between the velocity vector of the
simulation??2~Two of these studiééexamined the inter- Vorticesv and the current density vectprF, is the Lorentz force.
action of moving vortices with an isolated twin boundary and
investigated a number of interesting dynamical peculiarities
of this interaction. It should be noted, however, that in a reaMawataril® which discusses the dynamics of anisotropic
transport experimeht—® we are usually studying the self- pinning within the framework of a stochastic approach based
averaged dynamics of vortices, which is a consequence ain the Fokker—Planck equation. Although the general
the interaction of vortices with many twin boundaries distrib-scheme of this approach also includes a derivation of the
uted with some mean density between the measuring comonlinear current—voltage characteristic€CVC'’s) of
tacts. Such self-averaging apparently “smears out” some ofamples with planar defects, Ref. 16 investigated only linear
the fine features of the interaction of the vortices with anregimes of motion of vortices.
isolated twin boundary that were detected in Refs. 12 and 13. Note that the specifics of anisotropic pinning created by
A different model was investigated in a recent pader. unidirectional twins do not reduce to just a representation of
In this paper, the equation of motion of a vortex takes actheir role in the formation of guided vortex motigas was
count of the interaction of the vortices with each other, anddone in Refs. 6, 12—24%ut also includes, as will be shown
also with point defects and planar defects in the presence dfelow, the subtler question of the influence of the twins on
thermal fluctuations. However, the large number of indepenthe Hall effect. On the phenomenological level, this aspect of
dent physical parameters in the investigated problem greatlgnisotropic pinning, as far as we know, was first discussed in
hinder the choice of their values, whose variation leads tdref. 9 (see also Ref. )0In Ref. 9, on the basis of general
nontrivial physical results. The latter can be summarized aarguments about the number and symmetry of invariants for
saying that the vortex dynamics depend substantially on than anisotropic conductor in the case where all the currents lie
orientation of the twin boundaries relative to the direction ofin the xy plane perpendicular to the magnetic field directed
the transport current and also on its magnitude. along thez axis, the authors postulated a phenomenological
The most specific manifestation of pinning anisotropy inexpression for the linear Ohm’s law in such a medium. A
twins are effects associated with directed motion of vorticesuperconductor with uniaxial anisotropy caused, for ex-
along twins(guided motion, the G effex? where there is a ample, by a system of unidirectional twins or a specially
greater probability of the vortices moving probability parallel formed texture, according to the form of Ohm’s law in Ref.
to the twins than overcoming the twin barrigsdipping, the 9 is characterizedfor arbitrary values of the angle) by
S effec). Fora#0, 7/2 the G effect leads to the appearanceonly four constantsp,, p;, pn;,» andpy:, which are com-
of an ever(relative to reversal of the direction of the external ponents of the magnetoresistivity tendar the coordinate
magnetic fielgd component of the transverse magnetoresistivsystem with axes aligned with and perpendicular to the
ity of the samplep,”, which usually is significantly greater twins) and depend only on the magnitude of the magnetic
in magnitude than the familiar odd Hall component. field and the temperature. The physical meaning of these
Earlier, a number of experimental and some theoreticatonstants is simpley, and p,y, are the ordinary longitudinal
aspects of anisotropic pinning and guided motion of vorticeseven and transverse Hallodd magnetoresistivities of the
in the flux-flow (FF) regime in samples of the Nb—Ta alloy sample in the. geometry, where the current is perpendicular
subjected to cold rolling were discussed in detail by Niessemo the twins(or jllm, wherem is the unit vector in the direc-
and Weijsenfeld! Interest in these questions has grown sub-tion perpendicular to the twins, Fig),1and p, and p,, are
stantially since the discovery of twins in single crystals basedhe analogous quantities for the geometry, whergiim,,
on Y and La. Besides the experimental wdfksve should ~wherem, is the unit vector pointing in the direction of the
also mention in this regard the recent theoretical work oftwins (Fig. 1). In fact, the main result of Refs. 9 and 10
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consists in writing down formulas which allow one to ex- interpret quite simple formulas for the experimentally ob-
press the longitudinal and transve(selative to the direction servable nonlinear longitudinal and transverse magnetoresis-
of the transport curreptmagnetoresistivities of the sample tivities p”i(j,t,a,s) as functions of the transport current
py i(a) in terms of the constants,, p¢, py;, andpy, for  densityj, temperaturd, anglea, and relative volume frac-
arbitrary values of the angle between the vectosandm,. tion & occupied by the twins. In the limiting cage=1 these
An analysis of Ohm’s law obtained in this way shows thatresults describe the effects of intrinsic pinning of an aniso-
for a#0, 7/2 the observed resistive response contains notropic layered HTSC. In light of the wide variety of types of
only the ordinary longitudinap, (a) and transverse (a) resistive dependences contained in these expressions for
magnetoresistivityeven(+) and odd(—)] relative to rever- Pfl , we tabulate the most characteristic of them in the form
sal of the direction of the magnetic field, but also two newof graphs accompanied by descriptive commentary elucidat-
components induced by the pinning anisotropy: an eveing the physical meaning of the features of these graphs.
transverse componept («) and an odd longitudinal com- The organization of the article is as follows. The second
ponent p, (). If the physical origin of the component section presents those general results in the stochastic model
pi () is related in an obvious way with the possibility of of anisotropic pinning which, for their exposition, do not
guided vortex motion along twins, then the appearance of arequire specification of the form of the pinning potential.
odd longitudinal contribution is associated with anisotropy ofSubsection 2.1. is introductory, it describes the Fokker—
the Hall conductivity in a sample with twins, as a conse-Planck method in the two-dimensional model of anisotropic
quence of which in theL and T geometriespy# pu: - pinning. Subsection 2.2. discusses the derivation of expres-
Recently; the magnetoresistivity, (H) was observed ex- sions for the nonlinear conductivity and resistivity tensors.
perimentally for the first time in a single crystal of Subsection 2.3. presents general results on the reconstruction
YBa,Cw,0,_ s with twins oriented at an angle=45° rela- of the conductivity tensor from CVC measurements and
tive to the direction of the transport current, i.e., in the casdrom scaling of the anisotropic Hall conductivity in theand
where the quantity, () is expected to be maximal. T geometries. The third section is fundamental. It substitutes

Later, in works of one of the authdfs® within the  a specific form of the pinning potential into the general for-
framework of a phenomenological approach, a derivation ofulas of the preceding section which enables in one of the
Ohm’s law (postulated earlier in Refs. 9 and)lif terms of  limiting cases an analytical description of pinning on an iso-
both linear (electroni¢ and nonlinear, vortex-velocity- lated twin, and in the other, intrinsic pinning of taé planes
dependent “pinning” viscosities was proposed. Taking intoof the HTSC. Subsection 3.1. discusses the implemented pin-
account the relative contribution of both isotrogan point  nhing model and analyzes the behavior of the function
defects, Ref. 2Rand anisotropidon twing pinning, in this ~ »(f,t,e), which is the main nonlinear component of the
approach it turned out to be possible to clarify the genesis ofnodel under discussion, where this component has the sense
the four phenomenological constants, p;, pu, and py; of the probability of overcoming the potential pinning barrier
introduced earlier in Refs. 9 and 10, mentioned above. It hags a function of the external fordeand the temperature
been showt that if isotropic pinning is neglected the phe- Formulas are also obtained far (j.t,a,). Subsection
nomenologically introduced electronic and pinning viscosi-3.2. is dedicated to an analysis of the nonlinear G effect, and
ties can be “reconstructed” from CVC measurements in theSubsection 3.3. discusses the interaction of the Hall effect
L and T geometries, after which it is possible to predict theand guided vortex motion in nonlinear regimes. Subsection
behavior of the quantitieﬁ‘i(a,j) for any a, 0<a<m/2  3.4. considers scaling relations for pinning on twins and dis-
(Ref. 18. In this approach it also turned out to be possible tocusses their stability with respect to small deviations of the
interpret some general aspects of the anisotropic vortex dyangle« from its values adopted in thie and T geometries.
namics in terms of physically simple quantities accessible td-inally, the Conclusion discusses the results obtained and
experimental measurement. In particular, the existence dprmulates conclusions.
scaling of the Hall conductivities was discussed, as well as
some aspects of nonlinear regimes of guided vortex motiog' GENERAL RESULTS IN THE STOCHASTIC MODEL OF
and a number of other results of a general nature. ANISOTROPIC PINNING

Unfortunately, the phenomenological approach does not
enable a direct theoretical calculation of the anisotropic non2-1- The Fokker—Planck method in the anisotropic pinning
linear pinning viscosity, i.e., its dependence on current, tem™d€!
perature, and angle, starting from more detailed assumptions Let us consider Mawatari’s microscopic mod&gener-
of vortex dynamics and the form of the pinning potential. alized to the case in which the anisotropic Hall constant is
Therefore, with the intention of performing such calculationstaken into account. The Langevin equation for a vortex mov-
in substantially nonlinear vortex-dynamics regimes we eming with velocity v in a magnetic fieldB=nB (B=|B|, n
ployed a stochastic pinning modédee, e.g., Refs. 23 and =ngz, zis the basis vector in thedirection, anch= + 1) has
24), a two-dimensional anisotropic variant of which has beerthe form
proposed by Mawataff We augmented this model with an
anisotropic Hall conductivity and specified the form of the
pinning potentiakin regard to the presence of unidirectional where F . =n(®,/c)j Xz is the Lorentz force(®, is the
twins), which admits an analytical solution of all interesting magnetic flux quantunx is the speed of light, anfis the
effects. As a result, it became possible to derive and physicalurrent density, F,= —VU, is the pinning forcgU,, is the

pv+navxz=F +F,+Fy, 1)
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pinning potentiadl, F;, is the thermal fluctuation forcey is
the electronic viscosity tensor, arddis the “Hall” tensor,
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Here a is the angle between the direction of the current and
the vectorm, directed perpendicular to the anisotropy axis

describing effects associated with anisotropy of the Hall con{see Fig. 1. The solution of Eq(8) for periodic boundary
stant. Ifx andy are the coordinates along and transverse t¢onditions P(0)=P(a) and pinning potential of general

the anisotropy axigsee Fig. 1, then in thexy representation
the tensorsy and & are diagonal, and it is convenient to
define g and y by means of the formulas

0= N MxxMyys Y= N xx! Myys
o= Y0, Tyy= 70! V- 2)

Here vy is the anisotropy parameter ang is the averaged
viscous friction coefficient. Fot,,= a, = a we regain the
results of Ref. 16. The fluctuational fordg,(t) is repre-
sented by Gaussian white noise, whose stochastic properti
are assigned by the relations

(Fin,i(1))=0, (Feni()Fj(t")=2Ty;8(t—t"), (3

whereT is the temperature in energy units. Employing rela-

tions (3), we can reduce Eql) to a system of Fokker—
Planck equations:

P vs 4
E__ y ()
7S+naSxz=(F_+F,)P-TVP, ©)

whereP(r,t) is the probability density associated with find-
ing the vortex at the point=(x,y) at the timet, and
S(r,t)=P(r,t)v(r,t) is the probability flux density of the
vortex. Since the anisotropic pinning potential is assumed t
depend only on the& coordinate and is assumed to be peri-
odic [Up,=U,(x)=Uy(x+a), wherea is the period, the
pinning force is always directed along the anisotropy axis
(with unit anisotropy vectom, see Fig. 1 so that it has no
component along theg axis [F,,=—dU,/dy=0]. Thus,
Eq. (5) in the stationary case for the functioRs= P(x) and
S=(5«(x),Sy(x)) reduces to the equations

du, dP
77705x+naxxsy FLX_W P_Tav (6)
U
—Nay, S+ 7OSY=FL),P. (7)

Invoking the condition of stationarity for Eq4) and elimi-
nating S, from Egs.(6) and(7), we obtain

dP ( du,

Tax T\ 7P ax
where e,=a,,/ 19, €,=ay,/ny, and F=F ,—nyeF .
From the mathematical point of view, E®) is the Fokker—
Planck equation of one-dimensional vortex dynamic¥.

P 8

—yno(1+ exey)sx )

Thus, the problem of two-dimensional vortex motion reduces

to a one-dimensional problem, where a combinatior ahd

form is
yno(l+ece))S, f(a)f(x) [(x+a d§
T f(@—f(0) Jx (&’

where f(x) =exd (Fx—Uy(X))/T]. Hence we obtain an ex-
pression for thex component of the vortex mean velocity:

P(x)= (10)

B Fuv(F) 11
M= S T ey (0
es
1 F a [a
VG)ETal—aq—Fanw_LdXde
Xex;{—? exp{up(x+x_|)__up(x ) (12

The dimensionless functiom(F) in the limit F—0 coin-
cides with the analogous quantity introduced in Ref. 16. It
has the physical meaning of the probability of the vortex
overcoming the potential barrier, the characteristic value of
which we denote ably. This can be seen by considering the
limiting cases of high T>U,) and low (T<U,) tempera-
tures. In the case of high temperatures we hawel, and
expression(11) corresponds to the flux-flow regim&F re-

gime). Indeed, in this case the influence of pinning can be
. heglected. In the case of low temperaturds a function of

the current. For strong currents>U,) the potential bar-
rier disappearsy~1, and the FF regime is realized. For
weak currents Ea<U,) we havev~exp(—Uy/T), which
corresponds to the regime of thermally activated flux How
(the TAFF regimé The transition from the TAFF regime to
the FF regime is associated with a lowering of the potential
barrier with growth of the current.

2.2. The nonlinear conductivity and resistivity tensors

The electric field induced by a moving vortex system is

1 B
E EBX(V)znE(—<vy>m+(vx>mH). (13

Since the mean velocity of a vortex is equal to
_Jrsdir [5S(x)dx
=Trpdr = fapcodx

taking Eq.(13) into account, integration of Eq7) leads to a
simple linear relation between the electric field components
Ex.E, and the transport current density.

(l/Y)Ex+nEyEy:Pijy

(14)

y components of the Lorentz force enters as the eXtem%{/hereprqboB/nocz is the averagésee Eq(2)] resistance

force:

Qo : g o
F=n?(1y+ n'yexjx)=nT(COSa+ Nye,Sina)j.

9)

to flux flow. It follows from Eq.(14) that the components of
the conductivity tensor,,= (yp;s) ! ando,,=ne,/p; obey
linear scaling:

ny/Uxxz pyx/pyy= nyey.
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Below we will see that such simple scaling does not exist for

the components,, and o, of the conductivity tensor.
From formulag11), (13), and(14) we obtain the CVC in
the xy coordinate system:

o e, v(F)f
EX_ yJX_ l+EXEy ] (15)
ny(f)f
v(f) 16

vy Y(1+ ecey)

Here the dimensionless components of the electric field are

measured in units dE;,=BUj/cazg, and of the current, in
units of jo=cUy/dya, and f=Fa/Uyg=nj(cosa
+nyeSina)=nj,+ yejy. From expressionél5) and(16) we
find the conductivity tensofwhose components are mea-
sured in units of IJ;) for the nonlinear Ohm’s law

—&5(E)E:
(o )= i)
Oyy oyy(Ey) )’

where the only component depending on the electric fieid
curreny, oy, is given by

1y

—Ney

Tyx ne

7

Oyx

n
oyy(Ey)= E 1 Ny(1+ exey)Ey) — yexey (18
771 is the inverse function 6&(f )=»(f)f. From physical
arguments it follows that the function(f ) is monotonically
increasing inf and, consequentlyy(f) is also monotonic
and its inverse functio () is unique. From the defini-
tion (12) it can be shown that for a periodic potential pos-
sessing even parity) ,(—Xx)=U,(x), the functionv(f) is
eveninf, i.e.,v(—f)=w(f). Correspondinglyp(f ) is odd

in f. The resistivity tensop (whose components are mea-
sured in units op;¢), which is the inverse tensor to, has the
form

Pxx pxy)

Pyx Pyy

Y[1—exeyv(f)/(1+ €]
necv(f)/(1+ ecey)

_( —ne,v(f)/(1+ ecey)
a V(f)/[7(1+exey)]
(19

It is clear from Eq.(19) that all components of the tenspr
(in contrast to the tensdr) are functions of the current den-
sity j and the anglex between the direction of the current
and the vectom; .

We introduce the. and T geometries in whichllm and
jL m, respectively. If we neglect the Hall terms in E49),

Shklovski et al.
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FIG. 2. Diagram of dynamic states of the vortex system neglecting the Hall
effect in the {,j,) plane; G is the region of motion of the vortices along the
pinning plang'the G effect, GS is the region of motion of the vortices along
and transverse to the pinning plaftike G and S effec}sj, is the crossover
current corresponding to a transition from the region G to the region GS
when they component of the current density is increased.

Let us consider a diagram of the dynamical states of a
vortex system in the,j, plane(Fig. 2). For arbitrary anglex
the tip of thej vector can lie in two different regions which
are different in their physical significance. As long Bs
<|j¢ guided vortex motion takes pladéhe G region. For
Jy>] ¢ guided motion along the pinning planes is joined by
motion transverse to the pinning plangise GS region

2.3. Reconstruction of the conductivity tensor from CVC
data, and scaling of the Hall conductivity

The experimentally measured quantities are referenced
to the coordinate system associated with the curisse Fig.
1). The longitudinal and transverse components of the elec-
tric field relative to the direction of the currerf; andE, ,
are related in a simple way ®#, andE,:

(20
(21)

The fieldE;(j,«) as a function off for «=const is mono-
tonically increasing and reducesE(j) for = /2 (theL
geometry andEy(j) for «=0 (the T geometry. The field
E,(j,a) as a function of] for e«=const exhibits a pro-
nounced nonlinearity and has an extremum associated with
the G effect(see below.

We will show that between the components of the tensor
o and the CVC in theL and T geometries there exists a
definite universal interrelationship. The general form of the

E=Exsina+E, cosa,

E, =—Excosa+Eysina.

then in theL geometry vortex motion takes place along theformulas for reconstructing the tensarfrom CVC data in

pinning planes(the G effect, and in theT geometry—
transverse to the pinning planébe S effect In theL ge-

the L and T geometries for the anisotropic pinning model
was formulated within the framework of the phenomenologi-

ometry the critical current is equal to zero since the flux-flowcal approach in Ref. 18:

regime (FF regime is realized for guided vortex motion
along pinning planes. In th€& geometry, i.e., for vortex mo-

tion transverse to the pinning planes, a pronounced nonlinear oy, =—j[nE (j)+f (E/(j))]" %,

regime is realized forT<U,, the onset of which corre-
sponds to the crossover poipt ., and forT=0 we have
ja=1ic, Wherej, is the critical current.

om=—J[NE; () +fr(Ef())]Y, (22)
(23)
cr|(x)=JHf( 1+ fLT((X) , (24)
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T -1 -1 U
§i (%) fr (%) (o
= + 0 b 2
o(X) " 1 ) (25) a x
where
c? €y c? €

THE TR, p THIT T MBR, T oy

oxx(Ey) oyy(Ey) -l
T (X)= o=,

i pf FIG. 3. Pinning potential of twindJ,(x): a—potential period(distance

between twing 2b—width of the twin potential welllJ ;—depth of the twin
EII\_iT(J) are the Iongitudinal and transverse components re|a[_?otential well. Twin concentration is=2b/a. In all of the following rela-
tive to the CVC current in thé and T geometries, and the °"s¢~%-00
functionsf_andf establish a relation betweé&n andE, in
the L and T geometries, respectivehE[""=f, (nE:'").
Knowing the CVC’s(15) and (16), it is possible within the
framework of the microscopic model to find the analytical 3. ANISOTROPIC PINNING ON UNIDIRECTIONAL TWINS.
form of all functions entering into formula®2)—(25): ANALYSIS OF NONLINEAR REGIMES

3.1. Discussion of the model and analysis of the nonlinear

No(yey) €,7(v6]) behavior of the probability  »(j,t,, £) of overcoming

Ei(]): y(l-l-—exéy)' E\I\'(l)?’] Ttee, ' the twin barrier
The nonlinear properties of the resistivity tenggras

. ne,w(j) () can be seen from formuld9), are completely determined by

E ()= 7 , El()= it the behavior of the functiom(F, T), which has the physical
€x€y V(1T exey) sense of the probability of a vortex overcoming the potential
barriers created by pinning centers. In turn, the function

1 v(F,T), according to formulg12), depends on the form of
fr(x)= ),_eyxi the pinning potential. In the present section we specify this

potential for HTSC’s of the type YBaCuO, in which the

experimental realization of anisotropic pinning centers con-

sists of twins. As is well known, a twin is a region of low-

ered value of the order parametéiTherefore, it is energeti-

cally favorable for vortices to localize in the vicinity of a
Inspection shows that formul&&2)—(25) reconstructing twin. In the present paper we analyze the resistive properties

the tensors within the given model are identities. This is ON the basis of a pinning potential of the fofig. 3

because the diagonal componert, of the conductivity ten-

sor [see Eq.(18)] depends only on the corresponding com- —F X, 0<x<b,

ponent of the electric fiel&, (the componentr,, is a con-

stant in the given model by virtue of the absence of pinning

in the direction of the vectom,). The fact that the diagonal 0, Zb=x=a,

components of the conductivity tensor depend only on the

corresponding components of the field is an important poswhereF ,=U,/b is the pinning force. Wells of width 2 in

tulate of the phenomenological model, on which the derivathe potential(26) correspond to regions of twins, and zero

tion of formulas(22)—(25) is based. The general form of pinning potential corresponds to the regions between the

these formulas is essential to the phenomenological apwins. As the parameter characterizing the twin concentration

proach. They make it possible from the results of CVC meawe uses = 2b/a (more accurately, this is the volume fraction

surements in thé and T geometries to reconstruct the form occupied by the twins

of the conductivity tensor, in other words, to predict the Substituting the potential6) into formula(12) for the

CVC for an arbitrary angler, and also to determine experi- probability functiony that a vortex will overcome the poten-

mentally the Hall constanta,, anday,, the electronic vis- tjal barrier of a twin gives the following expression:

cosities 7, and 5, forming respectively the tensofs and

77, and the form of the functiow [see Eq.(17)]. Note that

the functionf(x) in fact expresses linear scaling in the v(fte)=

geometry(for the components,, ando,,) whereas in thd 2f

geometry(for the components,, ando,) such linear scal-

ing is absent. where

1
_ ~-1
fL(X)=—yex+ . v y(1+ €€y X].

Up=1 Fp(x—2b), b=x=2b, (26)

2 f(f2—1)?
(f°—1)(f°—1+¢e)—&tG’

(27)
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FIG. 4. The dependence(f ) for the series of values of the parametigr FIG. 5. The dependencgt) for the series of values of the parametgr
1—0, 2—0.05,3—0.1,4—0.5. 1—0.01,2—0.1,3—0.5,4—1.5.

£ f(1-2¢) The dependence(f )=v(f,ty,eq) characterizingy as a
G=[(3f2+ 1)cos}‘(— +(f2—1)cosl’( —> function of the external force acting on a vortex at constant
te te temperature for constant twin concentration is monotonically

f(l—e) 1 increasing from the value(0ty,e,) to its limiting value of

-2 f(f—l)COS”( P Y) —2f(f+1) 1 asf—o. By virtue of its even parity, the function(f)

has a horizontal tangent at the pofit 0. In the vicinity of

f(l-e) 1 o f infinity (for f>1) the functionv(f) has a divergence(f)

XCOS"( te T f) / S'”*(g)- ~1—¢g,f 2. The qualitative form of the dependenegf ) is

determined by the value of the dimensionless parantgter
In formula (27) the effective external forcE acting on the characterizing the temperature. From the expansions of
vortices in the direction perpendicular to the twins and caus»(0,ty,g,) in a power series abot in the vicinity of zero
ing them to move in this directiofthe S effectis character- and infinity
ized by the parametdr, which gives ratio of this force to the

pinning force Fy,=U,/b on the twins; the temperature is »(0ito,e0)~ exp(~ o) ( _ eolo ) t0<1,1 80,
characterized by the parametemwhich gives the ratio of the (120t 1-eo €0
energy of the thermal fluctuations of the vortices to the depth (29)
of the potential welldJ, created by the twins. The influence 1 &) ,

of the external forc& acting on the vortices is that it lowers v(0tp,e0)~1—e0| 5~ Z) L% =1, (30

the height of the potential barrier for vortices localized on

the twins and, consequently, increases the probability of edt is easy to understand the influence of the temperature on
cape from them. Raising the temperature also increases tfe qualitative form ofv(f). Specifically, at low tempera-
probability that a vortex will escape from a twin because oftures (T<Up) a nonlinear transition takes place from the
the increase in the energy of the thermal fluctuations of thd AFF regime of vortex motion perpendicular to the twins to
twins. Thus, the pinning potential of the twins, leading asthe FF regime with growth of the external force, wherein the
F,T—0 to localization of vortices, can be suppressed botHunction »(f) has a characteristic nonlinear shapee Fig.

by an external force and by an increase in the temperatured). At high temperaturesT=U) the FF regime is realized

The functionvy(f) (see Fig. 4 over the entire range of variation of the external force.
The dependence(t)=v(fq,t,eq) characterizingr as a
0, o=f=<l, function of temperature for the external force and twin con-
vo(f)= (f2—1)/(f2—1+8), F>1. (28 centration fixed is also a monotonically increasing function,

and its qualitative form is determined by the value of the
corresponds to the zero-temperature limit. In the zeroparameterfy, on which the quantity(f,,0.e)=rq(fy) de-
temperature limit, foF <F, the vortices are trapped in the pendgsee formulg28)]. Fort=1 the expansion of(t) in a
potential wells of the twins and they cannot move, while forpower series int has the same form as the expansion of
F>F, the potential barrier disappears and they begin tov(0tg,&0) in to in formula (30). Thus, the temperature de-
move. The value of the current at whiéh=F, corresponds pendencer(t) (Fig. 5 depicts the nonlinear transition from
to the critical current at zero temperature. Let us consider inthe TAFF regime of vortex motion perpendicular to the twins
turn the dependence of the probability functieff,t,e) on  to the FF regime as the temperature is raidedfy,<1) or a
each of the quantitief, t, ande for the remaining quantities smoother transition to the FF regime from the dynamical
held fixed(denoted by the subscript “0" state corresponding tey(fy) (for fo>1). It also follows
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from the above-said that the width of the transition from the Vo

TAFF to the FF regime, depending oror f, decreases as 0.57

is decreasefisee also formul&28)]. I I
The dependencev(e)=v(fy,tg,e) characterizes the 0.41

probability that a vortex will escape from the potential well
of a twin as a function of the twin concentration for fixed
values of the external force and temperature and is mono-
tonically decreasing from the value(f,,t;,0)=1 corre-

sponding to the absence of twins. The probability density 0.2F N
associated with finding a vortex on a twin grows with de-
crease of the temperature and the external force; therefore
the smaller the parametefg andt,, the faster is the falloff 0.1r
of v(e). Fore=1 we regain the results of Ref. 24: r 3
v(f t,1)=(f>-1)? o 04 08 12 16
J
5 cosh(f/t)—cosh1/t)] !
X| fo(fe—1)—2ft SINH(FTD) . FIG. 6. The dependence (j) for the series of values of the parametigr

1—0.02,2—0.05,3—0.1, for «=45°, y=1, ande,=0.1.
(31

The dynamics of a vortex system with the Hall effect
taken into account depends substantially on the direction ofualitative behavior and the limits of the componeiit(j)
the magnetic field. According to formul@®), an effective asj—0, o« coincide with the corresponding limits of(f ).
external forceF perpendicular to the twins is created by a The component™(j) tends to zero in the linear regiméss
uniform transport current flowing through the sample; such §—0, ) and is nonzero in the region of nonlinearity of
force contains two components—the Lorentz forceforming a characteristic pedkig. 6). The limits of the com-
n(®gy/c)j, and the Magnus forcedfy/c) ye,jy, acting on ponentsy*(t) and v~ (t) ast—« are the same as for
the vortex along th& axis. Depending on the direction of the —«, and fort— 0 they are equal to the corresponding com-
magnetic field assigned by the factor + 1, these two com-  ponentsy, of the functionvg[j ¢(a)].
ponents can be identically or oppositely directed, and the In the case of a small Hall effect(,e,<1) the function
resulting force will be different in these two cases. In whatv(f ) =[], (1+ nye,tana)] can be expanded in the param-
follows we express the current density in units pf  eternye,tana, which is small in the range of angles where
=cUy/dgb (in our study of the problem of a potential of tana<1/ye,. In the linear approximation in the parameter
general form we used the unitdJy/®qa) so that for the nye,tana the expressions for the even and odd components
dimensionless parametéy characterizing the external force (in the magnetic fielfof the functiony are respectively™
we obtain =v(j cosa) andv™ =v'(f)|j cosa] Y& SiNa~ <1,

The behavior of the probability of overcoming the po-
tential barrier of a twiny, and of its components™ andv ™,
Thus, the value of the external forée=F, at which the as functions of the external ford¢er currenj and the tem-
height of the potential barrier vanishes corresponds to theerature is connected with their influence on the height of the
dimensionless currerjt=1/¢(«), equal to the critical cur- barrier. At zero temperature, the relative decrease in the
rent atT=0, and in the case 9T<U,, to the crossover height of the potential barrier caused by the external force
currentj,. (curreny can be estimated ass=AU/U,=1-|f|=1

In the functionv(j ¢(a),t)=v(f,t,eq) we separate out —j¢(a), so that vortex motion is impossible fér>0. The
the even component™ =[v(n=1)+v(n=—1)]/2 and the influence of temperature, with growth of which the probabil-
odd component™ =[v(n=1)—v»(n=-1)]/2 in the mag- ity of overcoming the barrier is increased, is such thattfor
netic field. These components determine the observed resis=0.15 the TAFF regime of vortex motion transverse to the
tive characteristics—the even and odd componéimisghe  twins is realized, and for>0.16 the FF regime is realized.
magnetic fieldl of the longitudinal and transverse resistivity The nature of the transition from the TAFF to the FF regime
p‘i . From the definition of= it follows that their possible in the functional dependence$f ) and(t) is substantially
values for any values df, t, «, €, andg, like the values of different. The dependenadf ) shifts to the left with growth
the functiony, always lie between zero and one. Note thatof t, and its steepness decrea&e Fig. 4 Thus, the higher
only the Hall constank, enters into the even and the odd the temperature, the smoother the transition from the TAFF
components ofv(j ¢(a),t) since thex component of the to the FF regime, and the lower the values of the external
Magnus force depends on it, and this component contributeforce at which it occurs. The dependengg) also shifts to
to the effective forcd= along thex axis, perpendicular to the the left with growth off, but its steepness growsee Fig. 5.
twins. It is easy to see that the componeiitis even ine,, Consequently, the lower the barriérthe steeper the transi-
i.e., vt (—e)=v"(¢), and the component™ is odd, i.e., tion from the TAFF to the FF regime and the lower the
v (—e)=—v (¢). Therefore, fore,=0 the even compo- temperatures at which it occurs. The behaviowd{j) and
nent v*Ev(jy,t), and the odd component =0. The »*(t) is similar to the behavior of(f) and »(t), respec-

f=nj¢(a), ¢(a)=cosa+nye,sina.
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v 3.2. The nonlinear G effect

3 Let us proceed now to a treatment of the vortex dynam-
ics and the resistive properties associated them them, based
on the anisotropic pinning potential introduced abdsee
formula (26)]. For simplicity we will neglect the usually
small Hall effect, i.e., we take,= €,=0. As a consequence,

the nondiagonal components of the resistivity tensor vanish
(pxy=pyx=0). Neglecting the Hall effect, the formulas for
the experimentally observed longitudingl and transverse

p, resistivities relative to the current can be represented for-
mally in a manner analogous to the linear Case

PI= Pxx cos a+ Pyy Sir? a,

0 0.05 0.10 0.15

r pL=sina Cosa(Pyy_ Pxx)s (34)
FIG. 7. The dependence (t) for the series of values of the parametgr  With one substantial difference, namely', thqt in the nonlinear
1—0.1,2—1.0,3—1.5, fora=45°, y=1, ande,=0.1. case one of the components of the resistivity tensor depends
on the currentj and the anglex, whereas the second is
constant:
tively. The location of the peaks determined by the depen- pPx=7: pyy=(Uy)v(jy,1) (35

dencesv(j) and v~ (1) corresponds to the region of the [here a5 earlier, see formulag), and the resistance is mea-
transition in the current and the temperature from the TAFFg .o in units ofp;=Bd,/c27,]. Therefore, under certain

to the FF regime, and their amplitude is inversely propor-qngitions in the current and temperature dependences of the
tional to the width of the transition. Depending on(j),

. . ; . 4 observed resistivitie€34) a pronounced nonlinearity appears
with increasing the peak shifts to the left, and its amplitude \\hile in the dynamics of a vortex system as a consequence
decreasessee Fig. 6. Depending onv™ (t), with increasing

- i i i ) ! of anisotropy of the pinning viscosity a nonlinear G effect is
j the peak shifts to the left, but its amplitude increa&g.  ,pserved in both the temperature and the current. As a con-
7). These peculiarities of the behavior of the dependence§equence of the even parity off,t,¢) in f the quantities,

v=(j) andw™(t) underlie the behavior of the experimentally andp, in formula(34) are even in the magnetic field, as they
observed quantities—the even and odd componéntshe should be neglecting the Hall effect.

magnetic fieldl of the longitudinal and transverse resistivity As is well known!® the specifics of anisotropic pinning

PiL - ] ] ] consist in the noncoincidence of the directions of the external
We will obtain expressions from formuld&9)—(21for  gtive forceF, acting on the vortex, and its velocity (for

the experimentally observed longituding=E,; /j and trans- isotropic pinningF,llv if we neglect the Hall effegt The

versep, =E, /] resistivities(relative to the curreptwith the  4nisotropy of the pinning viscosity along and transverse to

Hf” effect taken into account. We separate out their eveRyq yin houndaries leads to the result that for those values of

p Lp(n=1)+p(n=—-1)J/2 and oddp =[p(n=1)=p(n ¢ , for which the component of the vortex velocity perpen-

= —1)1/2 components relative to the magnetic field: dicular to the twinsy,, is suppressed, a tendency is shown

1 toward a substantial prevalence of guided vortex motion

—cof a along the twingthe G effect over motion transverse to the

Y twins (the S effect Note that the probability functiom de-

(ex—€y) v* sina cosa+

P 1y ExEy

y _ scribing the nonlinear properties of the observed resistive
+5(1= 1)sir? a, (32 characteristics in the model under consideration is inversely
proportional to the effective nonlinear viscosity introduced in

— VExEy Sir? a) v*

. 1 /1 Ref. 18, where the phenomenological approach was devel-
Pl TTee (exsin2a+ey00§a)v++ — oped.
-y 4 In the experiment, the function
+yexey) v™ Sina cosa —%(1i1)sinac05a, CotB:_p_l Y= v(jy.t) (36)

P - y? tana+ v(jy,t)cota’

33 is used to describe the G effect, whetes the angle between
where v* are the above-defined even and odd componentthe vortex velocity vectov and the current density vectpr
relative to the magnetic field of the functiarfj ¢(a),t). In (see Fig. L The G effect is expressed that much more
formulas (32) and (33) the nonlinear and lineafnonzero  strongly, the larger is the difference in directiondefandv,
only fOI’pL_) terms separate out in a natural way. The physi-i.e., the smaller is the ang|e. Here it is possible that cgt
cal reason for the appearance of linear terms is that in the-1, i.e., p,>p;. In the T and L geometriesB(a=0)
model under consideration far#0 there is always an FF = gB(a=w/2)==/2 since the Lorentz force is directed ex-
regime of vortex motion along the twins. actly perpendicular or parallel to the twins.
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Let us consider the sensitivity of the magnitude of theleads not only to the appearance of a Hall contribution to the
angle3 to small deviations of the anglke from the values 0 observed resistivities on account of the even componént
and 7r/2 corresponding to thd and L geometries, in the of the functiony, but also to the appearance of the odd com-
linear approximation, for which we will calculate the deriva- ponentr™, which has a maximum in the region of the non-

tive dB/da at «=0 anda= 7/2: linear transition from the TAFF to the FF regime and is
2 essentially equal to zero outside this transitional regsse
dﬂ y dﬁ V(Oit) H 13 1 H .
- =1-— — =1-——. (37) Figs. 6 and Y. As a consequence, ‘“crossover” effects arise:
daf, _, v daf,_ ), Y contributions fromy~ to effects due tar*, and vice versa:

contributions fromwv* to effects due ta~. Thus, in the even

resistivitiesp, | , in addition to the main contribution created

by the G effect and described by, there is present a Hall

has very large values, consistent with the G effect, while ifcontribution arising due te~. The expressions for the odd

the FF regime(for j—= andt—) it has the limit 1— y2 resistivitiesp, , contain, in addition to the Hall terms arising
] + ’ —

i.e., the dependeng@(a) in this case is due to the anisotropy due tov™, terms due ta-~ [see formulag32) and (33)].

of the electronic viscosity. In the geometry @=/2) the Let us analyze the resistive dependenpes(j) and

derivatived8/da depends only on the temperature sirige pi.(t) with allowance for the small Hall effect. We first
=0. Fort=0 we have @g/da),_ ,,=1, and in the limitt consider the simplest case of isotropy of the electronic vis-

— we obtain €8/da),_ ,=1—1/y2. cosity y=1 and a small isotropic Hall effecte{=e,=€
Let us consider the current and temperature dependencgl)- In this case, the expressions fgr, , out to terms of
of cot(j,t) for fixed values of the angle#0, =/2. The Orderece,<1, have the form

As can be seen from Eq&7), in the T geometry @¢=0) the
derivatived8/da depends on both temperature and the cur
rent. In the TAFF regime, where(j,t)<<1, this derivative

Iimits_of _cot,B(j b asj,t—0 angl asj,_t—_>OO are obtained b_y P\T”’ﬁ cofa+sifa, pl~(v"—1)sinacosa,
substituting the corresponding limits of the function (38
v(j cosa,t) into formula (36). For the limit of cot8(j,t) as - - L

j—0 we obtain lim_,cotp~cota correct to within py~v coSa, p ~ev' +v sinacosa. (39

maxcot a(0t)/v?,v(01)/vy?]. In the temperature region
corresponding to the TAFF regime, we ha¥e a and, €on-  yhe eyen and odd componentsff ) in the linear approxi-

sequently, at low currents the G effept arises. At large CUlnation in the parametertana<1 (see Subsection 3)lare
rents (,>1), where for vortex motion transverse to the equal respectively to v*=w(jcosa) and v

twins the FF regime is set up, the pinning viscosity becomes. v ()], jyesina~e<1, i.e., the functions* are re-
isotropic so that fory=1 we havevilF_ for arbitrary values | iad ton in a simple way T

of the anglea. In the temperature dependence of 4tt) Expressiong38) and (39) with the conditione tana<1
the G effect IS most strongly pronounced for Currefys  yaxen into account lead to a new nonlinear scaling relation
<1, wherep(t=0)=a. for the Hall conductivity having the following form:

in the case of a small Hall effeck1) the expressions for

(p.—py tana)cos «

3.3. The Hall effect and the G effect in nonlinear regimes
(pj —sirt a)

€= (40)
In this subsection we consider peculiarities of the resis-
tive characteristics in the investigated model due to the HalThus, the isotropic Hall conductivity<1 is uniquely related
effect. Experimentally, two types of measurements of theo three experimentally observable nonlinear resistivities:
observed resistive characteristics are possible in a prescribeﬁ , py » andp, while the scaling relation depends on the
geometry defined by a fixed value of the angleCVC mea- anglea. This relation differs substantially from the power-
surements and resistive measurements, which investigate thav scaling law obtaining in the isotropic ca&en the par-
dependence of the observed resistivities on the current deticular casea=0 we regain the results of Ref. 16, specifi-
sity at a fixed temperaturﬁ;fl(j) and on the temperature for cally €=pI/p”+Epl/p”, i.e., a linear relationship between
fixed current density;li(t). The form of these dependences p, andp,.
is governed by a geometrical factor—the angldetween The nature of the behavior of the current and tempera-
the directions of the current density vectoand the twin  ture dependence (p;ffL is completely determined by the be-
plane. There are two different forms of the dependence ohavior of the dependences (j) and»=(t). The linear limit
p‘i on the anglex [see formulag32) and(33)]. The first of  in formulas(38) and(39) is realized in that region of currents
these is the “tensor”’ dependence, also present in the lineaand temperatures whet€ = const andv™ =0 while the re-
regimes(TAFF and FF, which is external to the function. gion of nonlinearity of the current and temperature depen-
The second is through the dependence of the function  dence ofplfl corresponds to those current and temperature
its argumentf =nj¢(a), which in the region of the transi- intervals where the dependence$(j) and »*(t) are non-
tion from the TAFF to the FF regime is substantially nonlin- linear. Let us turn our attention now to the fact that the
ear[see Eq.(27)]. nonlinearity in the temperature dependenpgs(t) can be
First recall that in the absence of the Hall effdef,  observed even at large currenis1 in the case when
=¢€,=0 there exist only even resistivitigs the magnetic j ¢(a)<1, where this this latter relation depends on the mag-
field) pL—the odd resistivitiep, , are zergsee formulas nitude of the anglex [for ¢(a)<1/j we havef<1 and
(32 and (33)]. The presence of nonzero values &f, e, v(t—0)=0] and determines the limiting values of (t) as
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ﬁ* angle most favorable for its observationds- /4. The cur-
1.0 rent dependence, (j) and the temperature dependence

p/ (t) have their maximum absolute values in the TAFF re-
gime of vortex motion transverse to the twisee Eqs(38)]
(the same value is approached if the angle is replaced by its
complement in the limif —0 andt—0) and go to zero with
the onset of the FF regime as a consequence of isotropization
of the pinning viscosity(Fig. 9). In the case of isotropic
electronic viscosity(the case under consideratjahe resis-
tivity p, can serve as a measure of the anisotropy of the
pinning viscosity since it is determined by the difference of
the pinning viscosities transverse to and along the tsege
also Eqs.(38)].
0 05 10 15 30 As was noted above, the odd longitudingl and even
J transverse, resistivities arise thanks to the Hall effect, and
therefore their characteristic scale is proportionalete 1
[see Eqs(39)].
Only the odd component™ of the functionv contrib-
utes to the current dependensge(j) and temperature depen-

t—0. Thus, the linearity or nonlinearity of the dependenceglencep; (t) of the odd longitudinal resistivity in the case of

pH:J_(t) at currents |arger than unity depends on the magniIhe iSOtrOpiC Hall effect; therefore, their qualitative form is
tude of the angler. determined completely by the behavior of as a function

In the even longitudinal resistivityy,” and the even of the current and temperature. A characteristic peak appears

transverse resistivity,” for a small Hall effect, terms pro- in the dependences (j) andp, (t) in the region of nonlin-
portional toe<1 are absent, and only linear terms and con-€arity of »~ as a function of the current and temperature
tributions describing the nonlinear G effect are present. Thavhile in the TAFF and FF regimes of vortex motion trans-
qualitative form of the current dependengg, (j) and the  verse to the twins they vanidfrig. 10.
temperature dependengg (t) is determined only by the In the current dependenge (j) and temperature depen-
even component™ of the function. dencep, (t) of the odd transverse resistivity there are con-
The limiting values of the qualitatively similar depen- tributions both from the even™, and from the odd~ com-
denceSplr(j) andP||+(t) corresponding to the TAFF regime ponent of the functionv, whose relative magnitudes are
of vortex motion transverse to the twins are determined byletermined by the angle, the Hall constang, the parameter
guided vortex motion along the twins and grow with increas-to [for the dependence, (j)] and the current density, [for
ing magnitude of the angle since in this case the compo- the dependence; (t)]. Thus, the magnitude of the contribu-
nent of the Lorentz force along the twins increases. In the Fiions of e»™ and v~ can be of the same order of magnitude
regime, as the pinning viscosity becomes isotropic the conin the current dependence, (j) at low temperaturest(
tribution to the dependences (j) andp, (t) due to vortex <1) and in the temperature dependepcét) at large cur-
motion transverse to the twins becomes substantial, and thrents[j>1/¢(«)] (Fig. 11 whereas in the temperature de-
limiting values of these dependences are equal to Rity. = pendence (t) for weak currentsj<1) the contribution of
8). ev’ dominates substantially. The limiting values of the cur-
The main contribution to the even transverse resistivityrent dependence, (j) as j—0, « are determined by the
p, is proportional to the factor simcosa; therefore, the corresponding limits of* while the contribution of the odd

FIG. 8. The dependengg’ (j) for the series of values of the angle 1—
0°, 2—25°, 3—45°, 4—65°, forty=0.05, y=1, ande,= €,=0.02.

0 005 010 015 0.20

FIG. 9. Dependence gf] onj (a) for t;=0.05 and
ont (b) for j,=0.1 for the series of values of the
angle a: 1—10°, 2—25°, 3—45°, 4—65°, 5—
80°, for y=1 ande,=€,=0.02.
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P 10°
il
a
20
15F 3 4 FIG. 10. Dependence qf; onj (a) for t,=0.05
and ont (b) for j,=1.5 for the series of values of
the anglea: 1—10°, 2—25°, 3—45°, 4—65°,
10F 5—80° for y=1, ande,=€,=0.02.
5 -
L
0 0.5 1.0 1.5 2.0

componenty~ becomes considerable in its nonlinearity re-and p, |, (t) is that the relative values of the Hall constants
gion where it forms its characteristic peak. In the temperatureletermine the angle between the vortex velocity and the
dependence, (t) in the limit ast—0 a substantial contri- Magnus force acting on them and, consequently, they deter-
bution from the odd component is also possible if differ-  mine the direction of the vortex velocity itsgiifh the aniso-
ent regimes of vortex motion transverse to the twins are retropic case e, # €y, this angle deviates from the valug2,
alized for opposite directions of the magnetic field. which corresponds to the isotropic casgr €,). Anisotropy

Let us turn now to a discussion of the more generalyf the Hall constants leads to the appearance of a new con-
formulas with y#1 ande,# €y, including the case of dif-  trihution to the odd longitudinal resistivity, , which is ab-
ferent signs. The presence of anisotropy of the electronigent in the isotropic Hall effect. In contrast to the isotropic
viscosities leads to a change in the limiting values of theyase for anisotropy of the Hall constants it is possible for the
observable resistivities; , in those cases when they depend . ;irent and temperature dependenpgs to change sign
on thtla ani.sotrOD}/ pé_lram?teg(Fig. 12. W:ereals for?/:il FlgFig' 13. ’
complete isotropization of the system takes place in the " ;
regime of vortex motion transverse to the twins, fo¥ 1 TO concluFie thls discussion, note that the C|&§E|€.y|

~1 is of practical interest for pure superconductdtsy vir-

anisotropy remains In this regime, due to anisotropy of the[ue of the fact that the Lorentz and Magnus forces acting on
electronic viscosity. The anisotropy of the Hall constants has

a substantial effect on the odd resistivitjgs created by the ?evﬁ:rf;( 2:\/;;?: Sii?e dc:;set:) ?{1?; grjngu\(/j;,iek:utotfhlsosggte
Hall effect, and no effect on the even resistivitipg, |, q P y g yorp

which are essentially independent of the small Hall eﬁect.effeCtS'

The physical reason for the influence of anisotropy of the
Hall constants on the behavior of the dependengesj)

Ao 10 2.0
5 ‘_ 5

16F 4 ]
4_

1.2F
3r b3

08|
2- L

0.4f 2
ir i

L ] 1 L i i

0 05 1.0 s 20

0 i

FIG. 12. The dependengs (j) for the series of values of the angie 1—
FIG. 11. The dependengg (j) for the series of values of the angle 1— 0°, 2—25°, 3—45°, 4—60°, 5—80° for t;=0.05, y=2, and ¢,=¢,
0°, 2—25°, 3—45°, 4—65°, forty=0.05, y=1, ande,= €,=0.02. =0.02.
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10 3 5 6 7 FIG. 13. Dependence ¢f, (a, ,=0.02 andp; (b,
r e,=—0.01) ont in the case of anisotropy of the Hall
4 “4_' effect for the series of values of the angle 1—10°,
5 L 2—45°, 3—-50°, 4—55°, 5—60°, 6—80°, 7—85°,
L for jo=1.5, y=1, ande,=0.1.
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Formulas(41) and (42) express simple scaling relations

goetween the observable resistivitigs andp | in the T and

L geometries on the one hand and the constapts, ,y on

the other. The values of the latter and the form of the func-

tion v(x) can be reconstructed, as can be seen from formulas

(41) and(42), from measurements <pﬁ andp, intheT and

L geometries. Therefore, it makes sense to consider the ques-

tion of the stability of the measurements in these geometries

since the preparation of the samples can lead to small devia-

3.4. Scaling relations and their stability

In order to give concrete form to the above-obtaine
scaling relationgsee Eqs.(22)—(25)], let us consider the
observed resistivities in th& andL geometries, where the
current is directed exactly parallek& 7/2) or perpendicu-
lar (¢=0) to the twins. It follows from formulag32) and
(33) that in these limiting cases, =p, =0, and we obtain
for p,” andp,

. v tions Aa from the valuesae=0,7/2. Here it should also be
PLT= (17 €xey)’ borne in mind that besides the resistivitigs, andp, as-

) signed by formula$41) and(42), in the presence of an angle
o= &v(j,t) (a=0, T—geometry, (47  Jeviation Aa, the resistivitiesp; andp;, not present in the
(14 exey) T andL geometries, also appear. The expansions; ofin a

e v(eyit) abouta=0 (in the T geometry and inAa= w/2— « about
prL=v1- Seyriedt , a=1/2 (in the L geometry out to the first nonvanishing
' (1+eey) terms neglecting terms of the orderef, <1 have the form
_ _GXV(6XYJ!t)(a:7T/2’ L—geometl’y. (42) p\[T%[(Ex_Ey)V(j1t)+(jexl’)/)y’(j1t)]ai

PLL=™ (.-

’ (1+€€,) )
ccuss the ol =) u(i0~ Yla,
Let us discuss the case of small Hall effeatg,,<1). The

longitudinalp,” and transversp|" resistivity for a supercon-
ductor with uniaxial pinning anisotropy vanish in tfieand
L geometries. The longitudinal evgn” and transverse odd
p, resistivity in theT geometry are due to vortex motion
transverse to the twins, described by the functigp,t). In
the limit j,t—co to within terms proportional te,e, <1 we
have p=1/y and p; =¢€,. The main contribution to the
resistivity p,” in theL geometry, which is equal tp with the

p\[L%(ex_ ey) v(eyj,DAa,
pl L =L v(eyiH+]er (evit) —v]Aa,

- wlv(J t)+ y_l,,(j t)—Lv'(J t)|a?
P Y M 2y ) )

pL T EyV(j A+ (e~ Ey) v(j,t)

same accuracy, is due to guided vortex motion along the
twins, for which pinning is absent. The magnitude of the
resistivity p, in theL geometry is described by the function
v(eyyj,t). Since its first argument, the component of the
Magnus force,e,yj, is vanishingly small for a small Hall
effect for realistically achievable currents<1/e,y and the
velocity component, is suppressed, the resistivipy, de-
pendence mainly only on the temperature. Egrl the re-
sistivity p, is so small it cannot be measurgg =0 in the
limit t=0 sincee,yj<1), and fort~1 it approaches the

value of the Hall constang, (to within terms proportional to where

exey<1).

+j(ex—€l2)v'(j ]a?,
p\tL% vt [J (ex— Ey) V,(ex')’j 1)
+(1y)v(exyit)— y]Aa?,

pL_,LN GXV(EX'YJ. ,t) +

i2

€
+ JTX V' (e,yj,t) |Aa?,

the prime denotes

: j :
(e, &) v(exy) )+ ; v'(&xy],t)

the derivative/'(f,t)

=gv(f,t)/of. The resistivitiegp, andp/, equal to zero in
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the T and L geometries, vary linearly witler and A« for resistive nonlinearity. If under variation of one of the “ex-
small deviations from thél and L geometries. The more ternal” parameters,t,a the intensity of manifestation of the
unstable of theniin both theL and theT geometry is the indicated nonlinearity is weakened, thereglecting the usu-
even transverse resistivigy, in the TAFF regime of vortex ally small Hall terms this weakening will lead to an “effec-
motion transverse to the twins, whes€ ~—ya inthe T tive isotropization” of the vortex dynamics, i.e., to a conver-
geometry and)vaw— vAa in theL geometry. The resistiv- gence(and in the limit of the absence of nonlinearity and
ities p,” and p, vary quadratically ina and Ae from their  electronic anisotropy, to coincidenoef the directions of the
values in theT andL geometries respectively. The relative mean velocity vector of the vortices and the Lorentz force.
deviation of the resistivity for a small deviation from the It is physically clear that the current, temperature, and
andL geometries is negligibly small fqr, , but forpH+ itis  anglea have a qualitatively different effect on the weaken-
of the orderAplfT/p”fT~ a?/v(j,t) in the T geometry and ing of pinning on twins and the corresponding transition
Ap,/p/ ~Aa?in theL geometry. Thusp,; is the most from anisotropic vortex dynamics to isotropic. With growth
unstable in the TAFF regime of vortex motion transverse toof j the Lorentz forcé=; grows and the height of the poten-
the twins, wherev(j,t)<1. The physical reason for this in- tial barrier8(j) decreases, so that fpe | (wherej, is the
stability is the rapid variation of the angfefrom /2 in the  crossover current of the indicated transition, whose width
T geometry, wherey, =0, to the anglex<1 corresponding grows with growth oft) this barrier essentially disappears.
to the G regime witlv,>v, . The stability of the. geometry =~ The quantityj., depends onx by virtue of the fact that the
is physically clear from the fact that faxa<1 the anglg8  probability of overcoming the barrie$ is governed not by
varies hardly at all, i.e., the direction of the velocity vector the magnitude of the forc&, , but only by its transverse
varies only slightly(in contrast to the case of tfie geom-  componenf, cosa, so thatj . (a) = j(0)/cosa grows with
etry). growth of a. Since an increase in the temperattiralways

As was stated above, in an actual experiment small deincreases the probability of overcoming the pinning barrier
viations A of the anglea from the valuesx=0,7/2 corre-  §(j), the transition to isotropization of the vortex dynamics
sponding to thél andL geometries are always present. Uti- is that much steeper ity the smaller is5(j).
lizing experimental measurements of |, these deviations In order to theoretically analyze the above-described
can be found using the following scheme. First, neglectinghysical picture of a nonlinear anisotropic resistive response,
small quadratic contributions i and Aa=m/2—«a to the  Sections 2 and 3 employed a comparatively simple, but at the
resistivitiesp,” andp | (in the region where they are staple same time quite realistic, planar model of stochastic pinning.
it is possible to solve the scaling problem using formulasit allows one to distinctly separate the pinning viscosity from
(41) and(42), i.e., the reconstruct the values of the constantshe electronic(drift and Hal) viscosity and to reduce the
€4, €y,y and the functiorv(x). Knowing this, from the for-  calculations to the evaluation of analytical formu(&g) and
mulas for the resistivitiep, andp, , which vanish in théf  (33), which have a simply physical interpretation. A distin-
andL geometries and are linear mandAa=w/2—a for  guishing feature of this model is the possibility, within the
small deviations from th& andL geometries it is possible to framework of a unified approach, to describe consistently the
find the corresponding values of and Aa. The self- nonlinear transition from the anisotropic dynamics of a vor-
consistency of this scheme is checked by calculating the quaex system(for currentsj <j(a) at relatively low tempera-
dratic corrections inv and Ae, which should be small rela- ture9 to isotropic behavioi(for currentsj>j.(«) at rela-
tive to the main contribution in th& andL geometries. tively high temperaturgsIn the model under consideration
this approach correspondfor t>0) to a substantially non-
linear crossover from the linear low-temperature TAFF re-
gime to the ohmic FF regime of vortex motion. Physically,

In the present work we have theoretically examined thehis stochastic model provides the most adequate description
strongly nonlinear resistive behavior of the two-dimensionalof resistive behavior of a strongly pinned vortex ligtfich
vortex system of a superconductor with unidirectional twinsthe immediate vicinity of its melting temperatuiig,(H),
as a function of the transport current dengifythe tempera- which depends on the magnetic field strengthRef. 11).
turet, and the anglex between the directions of the current Note that most resistive experiments on pinning on twins are
and the twins. The nonlinedin j) resistive behavior of the carried out in this temperature rarigesince, on the one
anisotropic vortex ensemble can be caused by factors of botiand, here it is already possible in fact to neglect isotropic
an electronic and a “pinning” origin. Digressing here from pinning on point defects and, on the other, the amplitude of
the possible nonlinearity of the electronic viscosity of superthe resistive response is still large enough that one does not
conductorgsee, however, Refs. 26 and)2ih this work we  have to use squid picovoltmeters.
take as the one source of nonlinearity the presence of intrin- Proceeding now to a brief description of the main theo-
sically anisotropic pinning on twins. It is physically obvious retical results, we note here that an analytical representation
that such pinning at low enough temperatures leads to anisodf the nonlinear resistive response of the investigated system
ropy of the vortex dynamics since it is much easier for themin terms only of elementary functions was possible thanks to
to move along the twingthe G effect in the FF regime, the use of a simple but physically realistic model of aniso-
which is linear in the curreptthan in the perpendicular di- tropic pinning on twins(see Sec. 3 and Fig.).3The exact
rection, where it is necessary for them to overcome the pinsolution obtained made it possible for the first time to con-
ning potential barrier on the twins, which also is a source ofsistently analyze not only the qualitatively clear dynamics of

4. CONCLUSION
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the nonlinear G effect, but also the nontrivial question of theeffect and the Hall effect becomes *“unilateral”: formulas
interaction of guided vortex motion along twins and the Hall(38) for p,” andp " (and consequently for c@, see Subsec-
effect. The most important resuland unexpected from the tion 3.2) cease to depend on the Hall effects whereas in
point of view of “linear” intuition) in our opinion is the formulas(39) for p,; andp; the »* functions characteristic
conclusion that the appearance of noygbecific to aniso- of the G effect are preserved.
tropic pinning in the linedr'® variany p; - and p; -effects In conclusion, it should also be noted that the curves of
does not require the existence of linear anisotropy of an eledhe temperature dependenqq%(t) presented in this work
tronic origin, i.e., anisotropy of the electronic viscosity ten- should not be understood literally since the entire list of pa-
sor » and the Hall conductivity tensak (see Sec. 2 The  rameters of the problefftomponents of the tensofsand ¢,
nonlinear formulag32) and(33) in agreement with physical the pinning potentiall,) can also depend implicitly on the
intuition (now already nonlineaclearly demonstrate that the temperature, which enters into the formulas for the resistiv-
most natural and “sufficient” reason for the relatively large ities in terms ofy(f,t,e). Therefore, these curves should be
novel p, - and p, -effects is the anisotropy of pinning on understood only as an illustration of possible effects of tem-
twins. At comparatively low temperatures and weak currentgerature depinning of vortices on twins, valid under the con-
[i<ia(@)=j(0)/¢(a), see Eq(29)] it leads to the realiza- dition that the indicated implicitlyt-dependent parameters
tion of a quite intenséover a wide interval of angles around vary weakly in those temperature intervals that correspond to
a=7/4) guided vortex motion along the twins in the TAFF singularities of the functions™(t). Nevertheless, we would
regime, i.e., to the appearancemf-effects, and at currents still like to note that in a number of cases for the model
i~ju(a), to the appearance of characteristic maxima in theunder consideratiofisee Fig. 13b the temperature depen-
curves of the Hall components of the resistivity tenggr, ~ dence of the Hall magnetoresistivily, for j,=const is
andp, [see Subsections 3.1. and 3.3. and Figs. 10, 11, angfrongly reminiscent of the “anomalous” Hall behavior in
134. HTSC's, which has been actively discussed in a humber of
A completely novel result of the present work is also experimental and theoretical work&?®
contained in formulag32) and(33). It is a quantitative de-
scription of the interaction of the G effect and the Hall effect,
which is valid for all values of the Hall constants regardlessE-mail: Valerij.A.Shklovskij@univer.kharkov.ua
of magnitude or sign. Formally, this interaction arises as a
result of the fact that in the case of anisotropic pinning on
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The effect of illumination with various wavelengths(770 nm<A <1120 nm) on the

conductivity of GaAs structures with ti-doping of the vicinal faces was investigated in the
temperature range 4.2—300 K. Negative persistent photoconductivity was found in

strongly doped samples. It was shown on the basis of the results of investigations of the Hall
and Shubnikov—de Haas effects that the negative photoconductivity is due to a large
decrease in the electron mobility with increasing electron density. The decrease of electron
mobility is explained by ionization of DX centers, which destroys the spatial correlation in the
distribution of positively charged donors and negatively charged DX centersl9%®

American Institute of Physic§S1063-776(99)01912-5

1. INTRODUCTION the conducting channel, quantum oscillations of a new type
in a magnetic field, and other fundamental effects are ob-

Delta-doped semiconductors, where the impurity atomseryved in such systems. Ordinarily, submicron electron li-
are located in a layer one or several atomic monolayers thic‘%hography is used to limit the lateral size in two-dimensional
are now an object of intense experimental and theoreticagystemg_ To obtain systems with quasi-one-dimensional

investigations. '!'he charges of the dopa_nts in téelayer . electronic channels several tens and less nanometers in size,
create a potential well, as a result of which a structure with

i . . a promising method is to grow structures on the vicinal sur-
two-dimensional electrons is formed. Fdoped structures ; 410 .
; . . . . 3 . face of gallium arsenid&;*°i.e., on a surface tilted from the
with a high impurity density, electrons fill many size-

guantization subbands. The behavior of two-dimensionatf)asal plangfor example (001)] by a small angle, as a result

electrons in such systems in electric and magnetic fields igf Wh'Ch it becomes stgpped. ] )
An important experimental fact is that, usually, persis-

much more complicated than in ordinary low-dimensional o o _ )
structures with a single filled subband. Intersubband electrofnt Positive photoconductivity is observed in structures with

scattering is important, and electron mobilities in each subd-doped layers at low temperatures, i.e., under illumination
band are different. the conductivity of the structures increases and remains for a
Interest in the study of-doped semiconductors is justi- long time!* Various models of persistent photoconductivity

fied not only from the scientific standpoint but also by theexist. One model involves the photoionization of deep levels,
possibility of practical applications of such materials. Delta-called DX centers. It is believed that a DX center is a nega-
doping is an example of an extremely narrow doping profiletively charged localized state, which traps two free
which gives high current-carrier densities. Even though highelectronst>=1°In a different model, the separation of photo-
dopant concentrations are important in nanoelectronics, thgnized electron—hole pairs, so that the electrons remain in
mechanisms limiting the maximum achievable free-electronpe 5 layer while the holes escape into the interior volume, is
density at high doping levels are still not completely under-yen into account. In this case, a logarithmic decay of the

stood. . L 7 7
T , persistent photoconductivity is expectéd’ Conductivity
It should be noted that ordinarily silicon is used to pro- anisotrop§518 and positive photoconductivity and its

ducen-type S-layers in gallium arsenide, and it is important hind b ¢ lectric ik b din GaA
to investigate and compare the electronic properties o uenching by & strong €1eciric el “are observed in S
S-layers with different dopants, for example, tin. As a donorStructures with tind-doping of the vicinal face. . )
impurity, tin is less amphoteric than silicérand the use of In the present paper we report the results of an investi-
tin should make it possible to obtain higher densities of two-9ation of negative persistent photoconductivity, which we
dimensional electrons in a-layer. observed in GaAs structures with tihdoping of the vicinal

Quasi-one-dimensional and one-dimensional electroniaces, in a wide range of photon energies in the temperature
systems, produced on the basis of two-dimensional systemgange 4.2 KXT<300 K. Mechanisms of negative and posi-
are now being investigated increasingly more actively. tive persistent photoconductivity ifrdoped GaAs structures
Quantization of the conductivity as a function of the width of are discussed.

1063-7761/99/89(12)/6/$15.00 1154 © 1999 American Institute of Physics
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TABLE I. Resistivity p, Hall densityn,; , and Hall mobility . of electrons 5 Q
and the sun®ngy, of the electron densities in all subbands, which is deter- 240
mined from the Shubnikov—de Haas effect, at temperafurd.2 K.
Sample Form of Ny, M SNgg
No. illumination p, @  102cm 2 cn?(V-s) 10%2cm2 220
In dark 202 315 981 26.2
1 A=791 nm 198 31.6 1000 26.3
A>850 nm 232 30.4 886 27.9
In dark 374 25.8 648 25.9 200
2 A=791 nm 367 24.9 683 26.0
A>850 nm 417 26.0 576 29.6 FRETITY ST TIYY SN ST YITY SN T TTTT BATETGTITY" )
TR U R T\ S T S T L (|
In dark 1330 8.03 586 8.28 s
3 AN=791 nm 1173 8.62 618 8.39
A>850 nm 1235 8.81 574 8.38 FIG. 1. Resistance of sample 1 versus the irradiation time for light with
wavelengthh=1120 nm(1) andA =791 nm(2) and illumination intensity

10 pWicn?.

2. SAMPLES AND MEASUREMENT PROCEDURE

The experimental structures were grown by molecular-nat'on' it changes to negative. Far=1120 nm(curve 1)

beam epitaxy. A 0.45.m thick undoped GaAs buffer layer only negative photoconductivity is observed. The depen-
was grown on a semi-insulating Ga{s} substrate, disori- dence of the change in the resistivity as a function of the
ented by 3° from thé001) plane toward to th¢110) plane. ~Wavelength of the incident light for various radiation inten-
A system of steps formed on the vicinal face of the crystal. ASities for sample 1 is presented in Fig. 2. The same depen-
1 ML high step is 5.3 nm wide. Next, growth was stoppeddence is observed for sample 2. The resistivity of these
and a definite quantity of tin was precipitated onto the surSamples, after cooling in the dark to temperature 4.2 K and
face. After the tin was deposited, a 40 nm thick ga"iumlllummann with monochromatic light with wavelength less
arsenide layer was grown at low epitaxy temperaturedNan 835 nm and intensity less than 20-70 nWicrde-
~450°C, which should make it possible to preserve a noncréases(positive photoconductivity and saturates in=30
uniform distribution of tin. Then a 20 nm thick GaAs layer, Min (points1, Fig. 2). Under further illumination of the same
doped with silicon to X 10! cm™3, to fill the surface states Samples with radiation with wavelength 786 fn <796
was grown. nm and intensityl ~10 pWi/cn?, the resistivity at first de-
Samples in the form of double Hall bridges with the Créases to a minimurgpoint 3 in Fig. 2), and then starts to
conducting channel oriented along tfL0] direction and ~ 9roW, réaching at saturation a valdpoint 4 in Fig. 2)
along thel — 110] direction were prepared for resistivity and 9reater than the value in the daikegative photoconductiv-
Hall effect measurements. In all samples the resistivity in thdty)- Under continuous irradiation with light with wavelength
[110] direction was less than in tHe- 110] direction. At the ~ greater than 835 nm and intensity 20 nW/cnf (this inten-
same time, the influence of illumination of the conductivity Sity Of light is obtained by illuminating through a monochro-
was qualitatively independent of the direction of the con-Matoy the resistivity of the samples remains unchanged for
ducting channel, so that in the present paper we report the
results obtained for samples with the conducting channel ori-

ented along th¢110] direction. To investigate the photocon- Ap.0
ductivity the samples were illuminated with an incandescent 0 v @ +
lamp through a monochromator, which extracted radiation
with wavelength ranging from 770 nm to 1120 nm with 201 !
spectral linewidth 2.6 nm, and through various filters. Cer- 1oF %3
tain parameters of the experimental sampleg-a#.2 K are vs
presented in Table I. oF s b
saxana®
-10 . . L .
3. EXPERIMENTAL RESULTS 800 900 1000 HO?L 1200
nm

The photoconductivity of the experimental samples de- o _
pends on the Wavelength of the incident Iight. In addition,F'G' 2. Resistivity changdp of sample 1, measured from the dark resis-

he irradiati . . f d be i f b tivity, versus the wavelength of the incident radiation1—illumination
the Irradiation intensity was found to be important for o “through a monochromator with intensity=70 nWicnt for 1 h;

serving negative photoconductivity with reasonable dura2—ijumination through a monochromator with intensity 20 nWren? for
tions of the experiment. The typical dependence of the resist h; 3—illumination through a filter 786 nr<\ <796 nm withl ~10 uW/
tivity of sample 1 on the illumination time is displayed in cn? (minimum value of the resistivity 4—illumination through the same

. . P filter and with the same intensity~10 uW/cn? to saturation5—\ >850
Fig. 1. As one can see in this figure, when the sample I%m filter to saturation] ~60 uW/cnm?; 6—920 nm <\ <930 nm filter to

irradiated withh =791 nm light(curve 2), at first positive  satyration|~10 uWicm?; 7—\=1120 nm filter,| ~60 xWi/cn? to satu-
photoconductivity is observed and then, under further illumi-ration.
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P Q P Q
440 .
240 4201
\ FIG. 3. Temperature dependences of the resistivity
of samples Xa) and 2(b) in the dark(curvel) and
400 after illumination afT =4.2 K with A =791 nm light
220 (curve 2) (the illumination was switched off after
the minimum resistivity was reachedand \
380r >1120 nm light(curve 3) (the illumination was
switched off after resistivity saturation was
200 360 reachedl
2 i 1 J. -l
0 50 100 150 200 250 0 100 200 300

T, K T,K

at least 5 hgpoints2 in Fig. 2). When the samples 1 and 2 heating after irradiation af=4.2 K with light with various
are illuminated with radiation with wavelength greater thanwavelengths are presented in Fig. 4.
850 nm and intensity~ 10— 60 wW/cn?, the resistivity in- Besides the temperature dependences of the resistivity,
creases from the dark value and reaches at saturg@nts in the present work we investigated the Shubnikov—de Haas
5, 6, and7 in Fig. 2) the same value as for illumination with effect to determine the electron density in the size-
intense light with wavelength less than 835 nm. In this cas@uantization subbands. The magnetoresistivities for samples
an initial decrease of the resistivity is not observed. In thel and 2, respectively, at=4.2 K measured in the dark
negative photoconductivity regime, the resistivity remains(curvesl) and after various forms of illuminatiotcurves2
unchanged for at lea$ h after the illumination is switched and3) are displayed in Figs.(8 and Ga), and the Fourier
off at temperature 4.2 K, i.e., negative persistent photoconspectra corresponding to the oscillations are displayed in
ductivity is observed. The critical photon energy correspondfigs. 5b) and 6b). The Shubnikov—-de Haas effect showed
ing to wavelength 835 nm is approximately 35 meV less tharthat for positive persistent photoconductivity the frequencies
the GaAs band gap. This corresponds to the energy requirdgroportional to the two-dimensional electron densities in the
to transfer electrons from shallow acceptors into the conducsize-quantization subbandsobserved in the Fourier spec-
tion band?! trum of the magnetoresistivity oscillations, remain practi-
The temperature dependences of the resistipityof  cally unchangedcurves2 in Figs. 5 and § while for nega-
heavily doped samples 1 and 2, measured in the dark artive persistent photoconductivity the frequencies increase
after various forms of illumination af=4.2 K and heating (curves3 in Figs. 5 and § compared with the dark values
at a rate of 3 K/min, are presented in Fig. 3. When sample Icurves 1 in Figs. 5 and & The quantum electron
is heated, after illumination & =4.2 K (up to saturation of mobilities’? in the size-quantization subbands in the presence
the resistivity through a filter transmitting light with wave- of positive persistent photoconductivity increase by 10-20%
length greater than 1120 nm, as the temperature increasdgrimarily in the upper subbangsompared with the dark
the resistivity decreases and crosses the dark cufVg at  values, and in the presence of negative persistent photocon-
T~40 K (Fig. 33. For sample 2 the heating curve, after ductivity they decrease stronglypy a factor of 1.5 in the
illumination with “long-wavelength” radiation(we shall lower subbands. This change of the quantum electron mobili-
call radiation with energy less than the band gap in galliunties affects the height and width of the peaks in the Fourier
arsenide long-wavelength radiatjoorosses the dark tem- spectrum: For illumination with “long-wavelength” radia-
perature dependence at=120 K. After crossing the dark
dependencep(T), the resistivity curve after illumination
with “long-wavelength” radiation lies somewhat above the A Q
resistivity curve after illumination with “short-wavelength”
radiation(radiation with photon energy greater than the band 1300
gap in gallium arsenide switched on at the moment when
the resistivity reaches its minimum value. In all samples per-
sistent photoconductivity exists up to temperatures30 K. ,
For the less heavily doped sample 3 the resistivity de- 1200
creases after illumination with ‘“short-wavelength” and
“long-wavelength” radiation, but the values of the resistiv-
ity at which saturation occurs are different for these two
forms of illumination—the resistivity decreases more “000 100 2(')0 300
strongly for illumination with “short-wavelength” radiation. T, K
After illumination at temperature 4.2 K is switched off, the o ]
resistivity of this sample slowly returns to the dark value in .FCIUG,'\,:i)T::épaef:Z:uiﬂirﬂ?np;ir;dnegﬁsf; tgiv'iﬁs'fi";g’lor:;""Igﬁfjrage dark
several hours. The temperature dependences of the resistivififq x 50 nm light (curve 3). The illumination was switched off after
of sample 3, which were measured in the dark, and withesistivity saturation was reached.
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P Q
a 8
260 “. o _
Lt o 26 FIG. 5. (a)—Magngtoresmthlty oscﬂlatlong of
3. e T g sample 1 aff=4.2 K in the dark(1) and after irra-
240+ R = diation with A =791 nm light(2) (the illumination
g E was switched off after the minimum resistivity was
S reachegland A >850 nm light(3) (the illumination
220 S was switched off after resistivity saturation was
kol reachegl (b)—Amplitude of the Fourier transform
g 2 of the Shubnikov—de Haas oscillations versus the
200 density of two-dimensional electrons for sample 1
. ' . in the dark and after a corresponding illumination.

0 10 20 30 0

tion the height of the peaks corresponding to the lower subters in GaAs are still neutralthey contain one electron
bands is much smaller and the width is much greater than irach?® and weakly scatter electrons, while under illumina-
the dark[Figs. §b) and @b)]. The Hall effect investigations tion the tin atoms become positively charged, and the ob-
confirmed that the change in the resistivity of the sampleserved decrease of the electron mobility is simply due to
after illumination is determined primarily by the change inincrease in the number of scattering centers.

the electronic Hall mobilitiegsee Table)l For illumination The positive persistent photoconductivity can be ex-
with “short-wavelength” radiation the Hall mobility aver- plained as follows. Under illumination with “short-
aged over all subbands increases, and the “long-wavewavelength” radiation, electron—hole pairs are produced,
length” mobility decreases compared with the values in theand they are separated by a weak electric field which exists

dark. at equilibrium in thei-GaAs buffer layer between the sub-
strate and thes-layer. In the process, the electrons slide
4. DISCUSSION down into thed-layer, and the holes neutralize the charged

) ) _acceptors, which are present in small quantitieis@aAs, or
The long-time character of the negative photoconductivgjige down into the substrate. The characteristic acceptor
ity observed in the heavily doped samples 1 and 2 gives Bensity ini-GaAs is 4< 104 cm~3, which for buffer layer
basis for inferring that this effect is associated with filling thicknessd=0.45 um corresponds to a two-dimensional
and emptying of DX centers. The increase in the total E|ecdensity 1.8<10° cm 2. As a result of the spatial separation
tron density, determined from the Shubnikov—de Haas effeCiyf the electrons and holes in the buffer layer, an additional
under illumination is 6.5% for sample 1 and 14% for samplegectric field arises and completely compensates the initial
2 (see Table)l Tkzus appears to be due to the ionization of fig|q, the bands are rectifiéd and the electron—hole pairs no
filled DX centerst? It is believed that a DX center is a nega- longer separate. The additional charge-carrier density re-

tively charged localized state, trapping two free elec-qyired for such a nonequilibrium situation to arise is approxi-
trons.~~*> The Coulomb interaction between the positively mately

charged shallow donors and DX centers gives rise to a cor-

relation in the spatial distribution of charged impurity atoms £o€

and decreases scattering of electrons by tf&ft lonization A”SZEAVv

of DX centers by the light destroys the correlation and this

should decrease the electron mobfits® and lead to the whereAV=0.75V is the potential corresponding to a deep
above-described negative persistent photoconductivity effecehromium level in the substrafeand d=0.45 um is the

It should also be noted that, possibly, the filled tin DX cen-buffer layer thickness in the experimental structures. The

FIG. 6. (a—Magnetoresistivity oscillations of
sample 2 aff =4.2 K in the dark(1) and after irra-
diation with A=791 nm light(2) (the illumination
was switched off after the minimum resistivity was
reachedl and A >850 nm light(3) (the illumination
was switched off after resistivity saturation was
reachegl  (b)—Fourier  spectrum of the
Shubnikov—de Haas oscillations for sample 2 in the
dark and after corresponding illumination.

Amplitude, arb. units
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o 100! parameter increases and is 23 s for “short-wavelength” ra-
8.28 diation and several tens of minutes for “long-wavelength”
radiation. Neutralization of charged acceptors under illumi-
nation with “short-wavelength” radiation results in faster
8.24 relaxation of the positive persistent photoconductivity than
] for illumination with “long-wavelength” radiation, because
of the recombination of the electrons in tlhdayer and the
8.20 close-lying acceptors. In heavily doped samples 1 and 2, in
the regime of positive persistent photoconductivity, the re-
2 laxation times of the photoconductivity are close to the re-
8.16 C—e— laxation times in sample 3.
0 2000 4000 ' 6000
’ 5. CONCLUSIONS
FIG. 7. Temporal relaxation of the positive photoconductivity of sample 3 . . . .
after illumination atT=77 K with A=791 nm light(1) and \>1120 nm In summary, we have investigated for the first time nega-
light (2. Solid lines—fit of the formula1). tive persistent conductivity in GaAs structures with tin

S5-doped vicinal faces. This effect is observed only in
samples with a high level of doping. An increase in resistiv-
2 ity is accompanied by an increase in the electron density and

value of Ang obtained in this manner is x210'* cm™2, , = e
. . . a substantial decrease of electron mobility, which is what
which corresponds to a small increase of the Shubnikov elec;

tron densities in the samplér example An, for sample 3 determines the negative sign of the photoconductivity. The

. _ e . incr in electron density i n n f the ioniza-
is 1.1 101 cm™2). The rectification of the conduction band o cae N €IECtro density is a consequence of the ioniza

. . . tion with deep metastable levels—DX centers. The decrease
bottom increases the effective width of the quantum well. At hy .

. . of the mobility could be due to breakdown of the spatial
the same time, the wave functions of the electrons are “Oorrelation in the arrangement of positively charged donors
centrated farther away from the charged donors of the g P Y g

S-layer. This decreases the electron scattering and increas%gd negatively charged DX centers as well as to an increase

the electron mobility. This should affect the electron mobil-m the density of positively charged scattering centers, if the

ity most strongly precisely in the upper subbands, since it isDX centers were neutral before ionization.
y gy p Y P ! This work was supported by the Russian Fund for Fun-

the wave functions of electrons in the upper subbands tha&
- : : . amental Researdi@rant 97-02-17396and the Dutch orga-
are most sensitive to such an increase in the width of the._ .’ s 6a 9
. 22 nization N.W.O.
potential wells
Under “long-wavelength” illumination, together with
ionization of DX centers, the electrons are excited from deeys'E-mail: kulb@mig.phys.msu.su
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The electrophysical properties of heterojunctions several microns in size, obtained by successive
deposition of the metal-oxide high-temperature superconducto,QB8&,, a normal

metal Au, and the low-temperature superconductor Nb, were studied experimentally. Current
flows in the [001] direction of the epitaxial YBZu;O, film. It is shown, by comparing the
experimental data with existing theoretical calculations, that for the experimentally realizable
transmittances =10 °—10°) of the YBaCu,O,—normal metal boundary the critical current
of the entire heterostructure is loff the order of the fluctuation curréntbecause of a

sharp change in the amplitude of the potential of the superconducting carriers at this boundary.
The current—voltage characteristics of the heterostructure studied correspond to tunnel
junctions consisting of a superconductor witfr 2 type symmetry of the superconducting wave
function and a normal metal. @999 American Institute of Physid§1063-776099)02012-(

1. INTRODUCTION tigated in Refs. 6—8 gives transmittand@s=10"'—10"°,
averaged over the directions of the moments, for the barriers
Currently many properties of HTSCs are being estimateaf the HTSC—normal metal barriers with quite large junc-
using ad-type wave function for the superconducting carri- tion areasS=0.1—1 mn?
ers. Specifically, this model explains the magnetic field de-  In the present paper we report the results of an experi-
pendence of the critical current in bimetallic two-junction mental investigation of current flow ins-supercon-
SQUIDs consisting of YB# w0, (YBCO) and Pd and the  ductor—normal metal—HTSC heterojunctions, fabricated by
spontaneous excitation of magnetic flux quanta in HTSGsuccessive deposition of YBCO, a normal mdtidinarily
structures with three bicrystalline boundarfeat the same  Au), and Nb, with much smaller areaS48x 8 um?) and
time, experiments on electron tunneling in thelirection in  higher transmittance (I6—10 °) of the YBCO—normal
HTSCs give contradictory results. On the one hand, inmetal boundary. The experimental data are analyzed from
HTSC—Ilow-temperature superconducta@-type supercon- two standpoints: on the basis of the isotropic theorysof
ducting wave functionjunctions there is no critical current superconductivity and from the standpoint of the modern
for junctions in thec direction®~°which agrees well with the ~ theory, which assumesdtype wave function in the super-
theory of junctions consisting of superconductors with aconductor YBCO film.
d-type wave function for the superconducting carriers and an
s-superconductor. On the other hand, an appreciable critical
current, whose amplitude varies nonmonotonically as a funcZ EXPERIMENTAL PROCEDURE AND EXPERIMENTAL
. . . ) : SAMPLES
tion of the magnetic and microwave fields nonmonotonically
as predicted for junctions witk-superconductors, has been The junctions were prepared by using the sequence of
observed in a number of experimefté.To explain the ex- operations shown in Fig. 1. First, the epitaxial YBCO films
periments of Refs. 6-8, it has been conjectured that irwere grown either by laser ablation or using cathodic sput-
yttrium-group HTSC materials a mixture of superconductingtering in a diode configuration with dc current and high oxy-
s- and d-type carriers arises because of the orthorhombigen pressure. During YBCO film growth, a temperature
nature of these materials, and diffuse scattering near the00—800 °C was maintained and the pure oxygen pressure
boundary or twinning of HTSC films results in a larger con-was 0.3—1 mbar for laser ablation and 3 mbar for cathodic
tribution from thes component:'® We note that an estimate sputtering. Neodymium gallate witt110) orientation or the
of the parameters of the RBU,Ag)/YBCO structures inves- r plane of sapphire with a CeMuffer layer was used as the

1063-7761/99/89(12)/6/$15.00 1160 © 1999 American Institute of Physics
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Au l_‘l/ Photoresist

Nb Nb Au
YBCO YBCO
a b
Au
Photoresist Nb
Nb Ce0, FIG. 1. Sequence for the preparation of HTSC—normal
| metal—superconductor heterostructuresdeposition of
Vv a trilayer heterostructure Nb/Au/YBCO) liormation of
Au 4 - Au a region of the heterojunction using ionic etching; c
= el deposition of the insulator Ce@o prevent contacts with
YBCO ] YBCO YBCO in the basal plane;)dabrication of an Au electric
layout; @ top view of the fabricated heterostructures.
c d
Au Au

> Window in CeO,

Nb

YBCO

substrate. Epitaxial YBCO films, 100—150 nm thick, with In the trilayer heterostructure obtained, photolithography
orientation and the following superconducting parametersand ion and plasma-chemical etchings were used to form
measured by the resistive method, were obtaingthelcriti-  regions of heterojunctions which during photolithography
cal temperature at which the resistance of the film depositedere fixed on sections with the minimum number of particles
on a 5x5mn? substrate is zeroJ.=84—89K; 2) the  on the surface of the YBCO film&ig. 1b. To prevent elec-
width of the superconducting transitiqdetermined at the trical contact in the bas&b—b plane of the YBCO film, the
levels 0.9 and 0.1 times the resistance of the film at the onsdateral region of the junction was insulated with a Gu&yer
of the transition into the superconducting sjatd®T,=0.5  with a central window with the dimensior8=8x8 um?
—1K; 3) the ratio of the resistances at temperatures 300 KFig. 19. At the final stage explosion lithography was used
and 100 K,p3p0k/p100k=2.8. The number of 0.3—m in  to form junction areas and Au wiring in the form of two
diameter particles on the surface of the YBCO film, whichstripes, which enable separated input of current and voltage
are caused by the formation of different phases of YBCO aso the top electrode NkFigs. 1d, ¢. The geometry used for
well as Y, Ba, and Cu oxides, was1(® cm 2. Evidence of the gold contactésee Fig. 1 makes it possible to investigate
the high quality of the YBCO films fabricated is the small the electrophysical properties of Nb/Au/YBCO structures for
width of the (005 x-ray peak of YBCO, FWHMO05  the YBCO film in the superconducting state. More than 30
~0.2°, for /26 scanning with 0.15wm film thickness. Nb/normal metal/'YBCO samples, where Au, Ag, and Pt
A thin, 20 nm thick, layer of normal metéAu, Ag, PY  were used as the normal metal, were prepared. In the present
was deposited at 100 °C immediately after the YBCO film,paper the results of investigations performed on nine Nb/Au/
using either laser ablation or high-frequency cathodic sputYBCO samples, in which the variance of the characteristic
tering (Fig. 13. Next, a 100—150 nm thick Nb layer was resistance®RyS (Ry is the differential resistance, measured
deposited on a water-cooled substrate by a magnetron cér V>20mV) of the boundaries at liquid-helium tempera-
thodic sputtering. The critical temperature of the superconture did not exceed a factor of (4ee Table)l
ducting transition in Nb films was 9.1-9.2 K. Niobium is
used as the Iow-temperature supe_rconduct(_)r bec_ause it dogsEXPERIMENTAL RESULTS
not enter into a solid-phase chemical reaction with Au. We
note that in the experiments of Refs. 4—7, where Pb is used, The dependences of the resistanResf the heterojunc-
a superconducting alloy of Au and Pb can form. tions on the temperaturé and 4 um wide the test bridges,
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TABLE I. Electrophysical parameters of superconductor structures mea-
sured afT=4.2 K.

Sample Ry(0), @ Ry, @ RS, 10°Q-cn? Ry(0)/Ry D, 10°©
P9J2 12.2 7.0 4.5 1.7 4.8
P9J3 9.8 6.0 38 1.6 5.6
P10J2 10.5 5.9 3.8 1.8 5.6
P10J3 10.6 5.9 3.8 1.80 5.6
P1132 4.9 4.2 2.7 1.2 7.9
P1133 5.2 3.6 2.3 1.4 9.3 ettt ettt
P12J2 2.4 2.0 1.3 1.2 16.7 -40 20 0 20 40
P13J2 7.2 35 2.2 2.1 9.5 V.mv
P1313 7.5 6.6 4.2 1.1 5.1

FIG. 3. Family of curves of the differential resistance of the heterojunction
at various temperatures versus voltage. The scale along the resistance axis
for Ry(V) at T=91 K is shown on the right-hand side.

consisting of YBCO films placed on the same substrate, with
,{1__5 ("I‘\'/A‘Cb')a_s (;tLrJ]rretnts andtthe|r 403”288\"2“&96 CharaCte”;]unction resistance al~T.; is somewhat higher than the
Ics S In the temperature 4.2- were measure asymptotic resistanc®y, measured foV>20mV andT
Figure 2 shows the temperature dependences for one of tg.l.

substrates. At temperatureB>T.; metallic behavior of of

R(T) is observed, i.e., the resistance decreases with temper. The resuilts of the measurements of the electrophysical
. SR . ! . arameters of several samples, prepared by the same method
ture, as is characteristic for @oriented YBCO film with 8 P prep y

. are presented in Table I. The resistafR¢S of the boundar
current flow in the basal plane of YBCO. As a rulk,; of P y

the bridges and heter(_)junctions was _Iess than the criticet teT diféft:f)nmoa;l(tise I:nzcrf;ki:i;%fe f;g?&g;gi;;gggﬁr_
te_mperature of YBCO films, measured immediately _after theary transmittance, which we shall employ belbvas
trilayer heterostructure was prepared. The degradation of the
superconducting properties of the film is evidently due to a
decrease in the amount of oxygen during ionic etching. The
inset in Fig. 2 shows the functidR(T) for a heterojunction
at temperature$<T.;, demonstrating that the resistance o
the heterojunction increases as temperature decreases.
value of R(T) at temperature3 <T.; depends on the cur-
rent. This attests to a nonlinear current dependence of th
differential resistanc&® of the heterojunction.

A family of curves ofRy versus the voltag¥ at various
temperatures is shown in Fig. 3. It is evident tli#(0)
increases a3 decreases. This growth is reflected in an in-
crease of the resistan&{T) (Fig. 2. The nonlinearity ob-
served in the IVC in the temperature range 2 K<84 K is

277'2ﬁ3 1 2pYBCO| YBCO

D=z RS~ 3RS

sWherepg is the smallest value of the Fermi momentum for

THBCO or Au'! The values of the transmittance of the
boundaries of the fabricated structures 8P YB€0~3 2

%107 Q-cn? (Ref. 4 are also presented in Table I.

Test samples with bilayer heterostructures Au/YBCO,
Nb/YBCO, and Au/Nb, fabricated using a technology with
the same conditions as for the formation of the experimental
Nb/Au/YBCO heterostructures, were also investigated. The
resistancesRyS of these boundaries measured at liquid-
nitrogen temperature ar&®yS(Au/YBCO)~10 8Q-cn?,

—12
due to the destruction of the superconductivity of the YBCORNS(_’AZ‘lL‘/’\'b)N10 Q-cn?, - and  RyS(Nb/YBCO)
~10"%Q-cn?. Here the series resistance of the YBCO film

film. The functionRy(V) increases. This is due to the sys- . )

tematic destruction of superconductivity in sections of thel®f Tcr<77K was taken into account. Comparing these

YBCO electrode as the currehincreases. We note that the duantities with the data presented in Table I, it is evident that
the resistance of the Au/Nb boundary can be neglected, and

the resistance of the Au/YBCO boundary, which increases
when Nd is deposited on top of Au, probably, because of the
interaction of Nb with YBCO, makes the main contribution

to the resistance of the experimental heterojunctions. The
resistance of a direct Nb/YBCO contact is very large. Most
likely, the increase in the contact resistance is due to the
displacement of oxygen out of the YBCO film into the Nb,

0 Structure
30 50 70 9%

400} LK which has good gettering characteristics, deposited on top.
200 We note that the oxygen mobility in tha—b planes of
YBCO is much higher than in the direction.
0 40 80 120 160 200 240 280 Figure 4 shows the syrface of a bilayer Ag/YBCO het—.
T, K erostructure, measured with an atomic-force microscope. It is

6.2 T denend e resi e h egident that its surface consists of Au granules separated by
. 2. Temperature dependence of the resistance of the heterostructure an Mm- The subsequently deposited Nb film covers the sur-

of a 4 um wide bridge arranged on the same substrate. IRdt), on an ) )
enlarged scale, of the heterojunction at temperatiired . , where the re-  face of the Au granules, where a good electric contact with

sistance of the YBCO film is zero. the YBCO film is created, and forms a direct contact with
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FIG. 4. Three-dimensional image of the surface of a bilayer
heterostructure Au/YBCO. The image was obtained with an
atomic-force microscope.

YBCO, where, as a result of a decrease in the amount dboundary is somewhat less than its equilibrium valyg in
oxygen in the basal planes, the contact resistance is mughe interior volume of the film and id,/e~560uV. For

higher. This could be the reason why the resistance of thestimates, the following values of the electrophysical param-
trilayer heterostructure Nb/Au/YBCO is higher than that of aeters of Nb and Au were used dt=4.2K: pNINP=4

bilayer Au/YBCO heterostructure. X10 120 -cn?, &N°=0.73<10 ®cm, vN’=3x10"cm/s,
TN=9.2K and pAIA'=8x10"2Q-cn?, ¢=10 ®cm,

4. DISCUSSION OF THE EXPERIMENTAL RESULTS and vé“= 1.4x10° cm/s, Where«/ﬁb’A“ is the Fermi velocity
andINPA! s the mean-free path length in Nb and Au, respec-

The experimental trilayer heterostructure can be repre

. fively.
sented as Nb/Au/YBCO granules connected in parallel and Let us estimate the change in the order parameter at the

sections of direct contact of Nb and YBCO via pores in they gy, boundary. We assume that as a result of the in-
Au film. Sl.nce the characteristic res!stance of the Nb/YBCOteraction of YBCO and Nb, a superconducting surface layer
boundary is several orders of magnitude greater Rig of Sy of the order of 3 nm thick with critical temperature
the tnl?yﬁr heterolstructtére Nb/AU/YB%Q’ and the su_rfaceless tha 4 K is formed? Assuming that the coherence length
area of the granules and pores, according to our estimate roo - : L

differ severalfold(see Fig. 4, current flows mainly through o SES differs - negligibly fro_m,g,c_Y_BCO and is £g;=5
the boundary of Nb/Au/YBCO granules. A trilayer Nb/Ay/ <10 ~¢m and that the reS|st|V|ty7£|1ncreases by an order
YBCO heterostructure can be described by the model shovvﬂf magmtudé—from Pc-yeco=10 Q-cnt to pSt’,:l

in Fig. 5; a 100-150 nm superconducting YBCO electrodeX 10”2 Q- cn¥, we obtain that at the Au/YBCO boundary
(Sy) with critical superconducting transition temperature
T.=87K; a 1-3 nm YBCO §)) layer with an oxygen
deficit and therefore disrupted superconducting properties; a

10-20 nm thick layer of normal metéAu); a 100—150 nm YBCO Au Nb
thick superconducting NbS;) electrode withT,=9.2K. A A
similar model has been proposed in Ref. 4 to estimate the #"\
electrophysical parameters of the system Pb/Au/YBCO. @ AN \ A’

First, we shall estimate the change in the superconduct- \_/ 2 A A
ing order parameter in Nb as a result of the contact with Au. /"__T____L
Since the measured value of the boundary resistance is quite A g

. . 2 P

small, it can be assumed that the superconducting Green’s s s S s
function, characterizing the amplitude of the interaction po- a PPN s
tential ® of the superconducting carriers and its derivative x

with res_pect to the Coo.rdmateare continuous at the bpund- FIG. 5. Schematic diagram of the distribution of the order parantstéid
ary. Using the Ca!CU|at|0nS of Refs. 12 and 13, we find thajine) and the amplitude of the pair potenti@ashed linesin a direction
the superconducting order parametgrof Nb at the Nb/Au  perpendicular to the surface of an Nb/Au/YBCO heterostructure.
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the order parameter decreases on the YBCO side decreadbg basal plane along the Nb/YBCO junctions, most likely
by a factor of approximately 10@5/e~140uV. A poten-  because of substantial displacement of oxygen out of YBCO
tial barrier with low transmittanceD ~107%, is present at into Nb.
the Au/YBCO boundary. This barrier decreasks by an- It is important that lead can react with Au, forming a
other factor ofD, A,=A,D. Here we used the theoretical Superconducting alloy. Then, the Pb/Au/YBCO structure
estimates, which are strictly applicable for superconductor§ontains a superconductor instead of a layer of normal metal.
with s-type pairing. However, as the calculations of Refs. 10This is confirmed by the appearance of gap features of lead
and 14 show, the character of the change in the order parari! the IVCS~® at sufficiently low temperaturesTE 1.2 K).
eter at the boundary of d superconductor with a normal A new explanation of the experimental data on the flow
metal or insulator does not differ much from a junction with Of @ superconducting current through low-temperature
an's superconductor for orientations of the normal to the Superconductor—HTSC junctions was proposed recently. It
superconductor along the principal crystallographic axes. Nas been shown theoreticaffythat a strong spin-orbit inter-
As a result, we can estimate the amplitude of the super@ction, Whlc_h is observed in Pb/Ag structures, intensifies su-
conducting current through the entire structure by using th&€rconducting current flow through a barrier. Replacement
model of a superconductor—normal metal—superconductof’ PP by an Al--or Nb-type superconductor decreases the
(S,N'S) junction, on the boundaries of whose weak sectiopsPin-orbit interaction, and the superconducting current de-

the values of the order parameters are knowks/e  Creases asaresult. _
~0.004nV and A, /e~560uV. In what follows, we shall Let us discuss the dependendeg(V) for heterojunc-

employ the theory developed f&—N—S junctions. The tio_ns as a function of temperature in the range 4.2-100 K
thickness of theN layer is of the order of the coherence (Fig- 3. For T<T, the IVC as a whole corresponds to het-

length, so that the change in the superconducting order pg_rojunctions of the type_superconductor—ins_ulator—normal
rameter in the interlayer can be neglected. As a result, thlg"atal (|S—I—N). There |sha :cocanon wherBdhmc_ree(ljses at
product of the critical current; by Ry at low temperature is ow voltages. However, the feature (V) that is due to

_ : .. the gap in YBCO is not observed in the experiment. This
[.Ry~V(A1A5)/e=0.09uV. Taking account of the resis- . . X .
tecmge of(thia ﬁt)eterojunctlif)nsR(F 1090)' we obtain that the corresponds to a junction with a superconductor with gapless

critical current of the structurk.~0.009uA is less than the S“p?r?o’l‘}‘fgﬁ'y“y’ mcludmg with d—t_ype supercon-
) B . ductivity.”**>*" According to the calculations performed in
fluctuation currenti;=1 wA of the measuring system and

does not affect the experiment even if YBCO contains aREf' 14, the feature aV=~A in the density of states of &

mixture ofd ands components of the superconducting Ordersuperconductor gives a logarithmic _dependefRge In(T), .
: In(lev|—|A|), subjected to strong temperature broadening
parameter and the number sfcomponents is greater than

the number ofl components. For buré pairing. th ) just as for a gapless superconductor. We note that fer
€ humber okl components. For pure pairing, the supe superconductors with a gap a power-law divergence is ob-
conducting current for flow along the direction in YBCO

servedR =T~ 2 ((eV)?2—A?) Y2 The features in the form

must be zero because of the type of symmetry of the supets changes inRy(V) at voltagesv<2 mV due to the nio-

conducting order parameter. To estimate the critical currenfi gap have virtually no effect in our experiment, and we
we assumed that the large width of the potential bafgev- did not study them in detail

eral cohere_nce lengthprevents direct tgnnehng of the su- For s-type symmetry of the order parameter in a super-
perconducting current through the barrier. We note that we. 4. ctor at low temperaturekT<A, the number of ex-
have considered quite strong suppression of the order paraizeq quasiparticles decreases exponentially with tempera-
eter at the YBCO boundary because of degradation of thg,re  Therefore the resistance increases proportionally
superponductlng parameters of'the HTSC film. Howeveer(o)x(_A/T)_nm a superconductor withi-type pairing,
even in the absence of suppression of the order parameter jfle presence of nodes with a zero order parameter makes it
the surface layer of YBCQJ,/e=14mV, the critical cur- - possible to excite a quasiparticle even at very low tempera-
rent of the heterojunctions Nb/Au/YBCO will once again be e T<A. As a resultRy(0) grows more slowly as tem-
comparable to the fluctuation current because of the decreag@rature decreasébAs one can see in the inset in Fig. 2,
in the order parameter on the low-transmittance barrier.  nearly linear growth oR,(0) with decreasing is observed
The finite critical current, observed in a number of jn the experiment. The dependerRg(V) is quadratic a®/
works?~®in Pb(Au,Ag)/YBCO heterostructures with a much .0 which agrees qualitatively with calculations forda
larger value ofRyS and large junction areas could be due tosuyperconductot*
the fact that treatment of the YBCO electrode with a solution  One of the most surprising features of superconductors
of bromine and alcohol, as was done in these works, opengith d-type pairing is the appearance of two types of bound
up the basal planes of YBCO, the transmittance of whosgtates, which, as a rule, are not observed sisuper-
boundaries with a normal metal or ordinary superconductorgonductors.’” Surface states with low energies at the bound-
is three orders of magnitude higher than in thelirection  ary of thed superconductor with an insulator are due to the
(RapbSap<R:S.). Ultimately, the superconducting current change in sign of the order parameter at the Fermi surface for
flows along the contacts to the basal plane of YBCO, and thquasiparticles reflected from the bound&ty’ The super-
normal resistance is determined by parallel connection of theonducting parameter for d-type superconducting wave
resistances of the boundaries along thand in the basal function changes sign with a 90° circuit around thexis.
plane. In our case current flow is impeded in the direction ofSince the direction of the momentum of a quasiparticle
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changes on mirror reflection from a boundary, bound statethe case o65—1—N junctions with a gapless superconductor,
arise at zero energies because of Andreev reflection. Thispecifically, the absence of a YBCO gap feature could also
leads to the appearance of a dipRg(V) at smallV, as is correspond tad-type superconductivity, specifically, to the
observed experimentally for a transport current in [th&0] presence of nodes of the order parameter as the direction of
direction in a YBCO film(see Refs. 6—8, 18, and 19n our = the momentum of the quasiparticles changes by 45°. The
case, the contribution of such quasiparticles is small becausdependence dRy(0) onT also corresponds to @type su-
the normal to the boundary is oriented along one of the prinperconductor.
cipal crystallographic directions in YBCO. For mirror- We thank Yu. S. Barash, D. A. Golubev, A. V. Zsev,
reflected quasiparticles, there is no Andreev reflection beZ. G. lvanov, and M. Yu. Kupriyanov for a helpful discus-
cause the phases of the order parameter are the same ®&ion of the experimental results, and D. Ertz, P. B. Mozhaev,
incident and reflected quasiparticles. and T. Henning for assisting in the experiment.

An additional mechanism was recently predicted theo-

retically for the appearance of bound states due to the sup- 'S Work was supported in part by the program “Cur-
pression of the order parameter ofdasuperconductor for '€nt Problems of Condensed-State Physidsubsection

orientations of the normal with respect to the boundary dif- SuPerconductivity”), the Russian Fund for Fundamental
ferent from the principal crystallographic axes or for diffuse R€S€arch, and the INTAS program of the European Union.

reflection at a boundary with an insulafdrThese states are

observed at energies different from zero, and estimates iPg_mail: gena@lab235.cplire.ru

Ref. 17 show that they are more stable with respect to the

quality of the boundary. The appearance of bound states

should be observed in the dependenRgéV) as a decrease _
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An inhomogeneous medium consisting of a random mixture of three nondissipdale phases

is studied. An exact expression is obtained for the effective conductivity of such a medium

with arbitrary concentrations of the phases and the additional condition that the concentrations of
two phases are the same. 99 American Institute of Physid$S1063-776(99)02112-5

1. As is well known, randomly inhomogeneous mediafor one value of the conductivity of the third phase:
have been studied mostly in the two-dimensional case. This-+/o,0,. We shall show that this limitation becomes imma-
is due to the additional symmetry of the two-dimensionalterial for current flow under quantum Hall effect conditions
equations for the constant current and Ohm’s law (0xx=0, axy=cons} or, in other words, for current flow

- along nondissipative phases. Thus, a three-phase Hall me-
divi=0, curle=0, (1) dium can be transformed for any values of the conductivities
i=oe @) and arbitrary concentrations of the phases provided that the
' concentrations of two phases are the same, but they can be
and their invariance relative to rotational transformations: arbitrary in magnitude, just as the concentration of the third
phase(the sum of the three concentrations js This makes
it possible to solve the problem of the effective conductivity
Here the vector§ and e are the electric current and field, of three-phase randomly inhomogeneous media in the entire

o=0/(1+i ) is the conductivity tensor of the medium in a concentration interval. _ _
magnetic field,o is the conductivity, 3= B is the Hall 2. To obtain an exact expression for the effective con-

factor, 4 is the particle mobility, and the coefficierasb,c, ~ ductivity —of — nondissipative ~ three-phase  randomly-
andd are real. The imaginary unity describes rotation by Inhomogeneous media, we return once again to the expres-
712 in the complex plane. The magnetic field is directedSion relating the conductivity of the primed and initial
perpendicular to the plane. Using the transformati@swe ~ SYStems[EQ. (4)]. We shall consider this as a conformal
obtain an expression for the conductivity tensor of theMaPPing of one plane into anothfer:

i=aj’+ibe’, e=ce +idj’. 3)

primed system: Wel b+iaZ c
-, btiag Az ®

7 dotia @ | et us rewrite the expressigd) in the form
do'oc—b=i(ac—co). (6)

A similar expression is also obtained for the effective con-
ductivity tensor of the primed system. For two-phaseLet us interchange the phases 1 ando2=o0,, o5=03.
randomly-inhomogeneous media and equal concentrationFhis is possible if the concentratios of the phases are the
an expression for the effective conductivity tensor followssame:
from Eq. (4).! We note that this expression is obtained for X=X 7
equal concentrations of the phasés one concentration 172 )
point). The condition(7) is important and will be used below to
In the present paper the effective conductivity of three-obtain the macroscopic equivalence of the initial and primed
phase nondissipativigdall) randomly-inhomogeneous media systems. Then, from E@6) we obtain two relations between
is calculated and a qualitative description of the results obthe coefficientsa,b,c, andd:
tained is given. The possibility of solving the problem ex-
actly is based on the representation of the Dykhne transfor-
mations in the form of linear-fractional conformal If the conductivities are real, which is the case considered in
transformations of the conduction plane of the initial me-Ref. 1, the coefficien& in the relation(5) must be set equal
dium onto the conduction plane of the transformed, primedo zero. Otherwise, we obtain complex expressions for the
systen? According to the general theory of conformal trans- coefficientsa,b,c, andd which are real by definition. In this
formations, they are given by three points in the plane andase, there arises the above-indicated restriction on the con-
their images. This is why it is possible to transform a three-ductivity of the third phase, because of the fact that there are
phase two-dimensional medium into a similar medium.not enough parameters in the problem. However, if the con-
However, according to Ref. 1, this possibility is realized onlyductivities of the phases are assumed to be purely imaginary

a=—¢C, d0'10'2—b=ia(0'1—0'2). (8)

1063-7761/99/89(12)/2/$15.00 1166 © 1999 American Institute of Physics
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— capacitive or inductiveg=iwL, o= (iwC) %, or purely For a3=2 the coefficientd vanishesd=0. The effec-

Hall, o=io,, (in the quantum Hall effect regime,,=0, tive conductivity also assumes two values:

oyy= cons}, and the coefficient can be assumed to be b

nonzero, the coefficients andd will also be real. Then the V=00, =i —=ia§‘§):i(a§§)+o§(§))/2. (12)

condition for the conductivity of the third phase will be sim- 2

ply another condition for determining all coefficients of the The meaning of the results is also obvious. If the SGm

transformationg3): + X, of the concentrations is less than the critical value, the

dosoi—b=ia(os+al). 9) effective conQuctivity of the m_edium is dete_rmined by the

superconducting phase, shunting the metallic phases. If the

Let o3=03. Then the primed system with the additional sum of the concentrations is greater than the critical value,

condition(6) is macroscopically equivalent to the initial sys- the effective conductivity is determined by the resistance of

tem: o,=0,. From Eq.(6) we also obtain an expression for the metallic phases. We also note that in the cases considered

the effective conductivity of a three-phase randomly-above, the effective conductivity reaches its limiting values:

inhomogeneous medium in the entire concentration range: the minimum and maximum possible values.

a

a b alall? The situation is similar if the conductivity of the third

—+ = (10 phase is finite. If the sum of the concentrations of the first
c d and second phases is below a threshold value, where it is
where the coefficienta,b,c, andd were determined above impossible to construct an infinite cluster without the third
by the conditiong8) and (9). phase, the effective conductivity of the medium has one
3. Let us discuss the result obtained. In the derivation ofvalue. As the percolation threshold with respect to the com-
Eq. (10), no restrictions on the concentrations of the phasesnon concentration of the first and second phases is crossed,
except for the conditioli6), were used. Therefore the result the effective conductivity changes abruptly and the conduc-
obtained is valid for any concentrations of the phases, spdivity of the third phase likewise participates in determining
cifically, when the concentrations of two phases are the samiae total effective conductivity by a different, completely de-
and arbitrary in magnitudéhe sum of the concentrations of termined, way. We underscore once again that the effective

all phases is 1L conductivity is independent of the concentrations of the
Let us consider the limiting cases following from Eq. phases in a wide range of concentrations.
(10) and elucidating the meaning of this equation. fear For a random mixture of Hall and metallic phases, it has
=0, according to Eq(8), the coefficiento vanishes and we been shown in Ref. 3 that in a wide range of concentrations,
obtain for the effective conductivity the two solutions specifically, as long as flow along the Hall phase occurs, the
effective characteristics of such a system are constant and
a 202 . . X
oW=0, o@=2i==i¢c®=i Xy Txy (11) equal to the corresponding 'values for a Hall m'edlum: This
d y ()'ij)'/)—i- gfy) corresponds to current flow in the system described with the

tminimum (zero heating. Unfortunately, similar arguments

Let us clarify the results obtained. For concentrations ofre not applicable for the system studied, where all phases

the first and second conducting phases such X¥at X, are nondissipative

=<1/2, it is impossible to form an infinite cluster — an en- This work was supported by the Russian Fund for Fun-
semble of conducting paths going to infinity, so that the ef'damental ResearolGrant 99-02-17356

fective conductivity of the medium is zero. This corresponds
to the first zero solution. For concentrations of the first and,, . . .
L. . )E-mail: varkhin@bsc.buryatia.ru
second phases greater than the critical value, the effective
conductivity changes abruptly and remains constant as the————
concentration of the dllelectrlc phgse dgcrea§es. This MEANS, \1 pykhne, zh. Fsp. Teor. Fiz59, 110, 641(1970 [Sov. Phys. JETP
that as the concentration of the dielectric varies, the electric 3 3, 348(1971].
field in the conducting Hall phases increases in a manner s@V. E. Arkhincheev, JETP Let67, 1004 (1998.
therefore the effective Hall conductivity also remains con-
stant. Translated by M. E. Alferieff
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Equations describing the temporal dynamics of the order parafdeof a metal-semiconductor
phase transition and the densitft) of electron—hole pairs in a Peierls system in a light

field are obtained on the basis of the Lagrange equation for the phonon mode and the Liouville
equation for the density matrix of the electronic subsystem. The equations obtained are
analyzed for a stationary stat@ith adiabatically slow variation of the light intensity and for

a transient process near the initial and final states of dynamic equilikixiutm the light

field switched on abruptly It is shown that for adiabatically slow growth of the intendityp to

a certain critical valué . the band gap of the electronic spectrum decreases but the
semiconductor phase of the Peierls system remains stablé>Hgrthe stationary semiconductor
state €+ 0) becomes unstable. When the light is switched on abruptly, the deviation of the
system parameters from the initial values is described by an exponential law with a characteristic
reciprocal of the rise time of the process linearly dependent on the irradiation intensity

As a new position of equilibrium is approached, three qualitatively different regimes of behavior
of the order parametef and densityn are possible. For low intensitidg(1 <I;) a purely

relaxational aperiodic process occurs. For intermediate intenditiés;<I<I.) damped
oscillations of¢ andn are observed near a new stationary semiconductor state with a

smaller band gap. Fdr>1. the stationary semiconductor state wik 0 is absent. The
experimental data on the irradiation of a vanadium dioxide film with a powerful laser pulse is
interpreted on the basis of the theory developed. 1999 American Institute of Physics.
[S1063-776(99)02212-X]

1. INTRODUCTION Peierls system, each atom of which contam$0<|n—1
|<1) external electrons, in a constant electric field directed
It is well known that as temperatuiiedecreases below a along the principal axis of the quasi-one-dimensional
certain critical valueT, a chain of equidistant atoms, each crystal**~*®This transition, manifested as a sharp increase of
of which contains a single external electron, undergoes e electrical conductivity when the intensity of the electric
reversible thermodynamically equilibrium phase transitionfield is greater than a certain threshold value, is due to the
characterized by a change in the crystal structparwise  appearance of a charge-density wave and an initially static
convergence of atoms in the chpiand the formation of a Frohlich phonon mode, associated with the charge-density
band gap in the electronic spectrum at the Fermi I&Wélis  wave and formed by the displacement of atoms accompany-
transition, for which, in addition, a uniform deformation of ing the Peierls metal-semiconductor phase transition, mov-
the atomic chain occursjs called a Peierls transition, and ing along the atomic chain.
the system in which the transition occurs is called a Peierls  Different types of thermodynamically nonequilibrium,
system. photostimulated instabilities and phase transitions in a
A thermodynamically equilibrium metal—semiconductor Peierls system have been studied in Refs. 19-25. Specifi-
(or semiconductor—-metaphase transition in a Peierls sys- cally, it was show’~??that when a Peierls semiconductor is
tem can also be initiated by pressumniaxial or hydro- irradiated with light with frequency greater than the band gap
statig,>* breakdown of the ideality of the crystal latticspe- Eg of the electronic spectrum, the densityof nonequilib-
cifically, as a result of doping with substitution impuri- rium electron—hole pairs increases and, in consequence, the
ties),1*® a constant electric fieldadsorption of molecules band gap decreases smoothly. When the demsiBaches a
from the gas phase, and so bi:!Near the critical poinT,  certain critical valuen,, the band gajcy abruptly vanishes
of the thermodynamically equilibrium metal-semiconduc-(photoinduced semiconductor—metal phase trangition
tor phase transition, a one-dimensional spatial, periodic, het- On account of the characteristic features of the electronic
erophase structure of alternating metallic and semiconduct@pectrum of a Peierls semiconductdhe presence of van
phases forms in a film consisting of a Peierls material on aove singular points® sharg* or smearet band-gap edges
substraté? in a light field with a specially selected central frequency of
There is great interest in theoretical and experimentathe optical spectrum, sharp photoinduced transitions from
investigation of a thermodynamically nonequilibrium phaseone semiconductor state into another are also possitie.
transition in a low-temperature semiconductor phase of @ptical bistability with increasing absorption without a reso-

1063-7761/99/89(12)/12/$15.00 1168 © 1999 American Institute of Physics
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nator is observed near the critical point of these transitions imverlap integral between the wave functions of tile and
a Peierls systerff n+m-st atoms, anda, and a, are operators creating and
The temporal dynamics of the development of a photo-annihilating an electron on thath atom.
induced phase transition, consisting of a change in the struc- For narrow-gap systemsspecifically, for the Peierls
ture of the crystal lattice and the band gap of the electronienodel considered herethe distancer, ,.; between the
spectrum of the semiconductor when the semiconductor isearest-neighbor atoms is several times greater than the ef-
irradiated with light, has been investigated for various matefective radiusR of the atomic wave function of an electron.
rials in an entire series of work$**1t has been shown that In this case the overlap integr8l, .. is determined ap-
for high nonequilibrium carrier densities tempdfaf®and  proximately by the relatioi?
spatiaf® periodic oscillations of the parameters of the system
can arise. Depending on the specific conditions, the new state Bonm™~€XPp(~rnnsm/R). 22
forming can be a met&f, a semiconductor with a different We write the coordinatg, of the annth atom in a chain with
crystal modificatior’* an amorphous solitf a heterophase pairwise convergence of the atoms in the form
structure'®?13932and so o>
. : cog mn)R¢
In the present paper the dynamics of a photoinduced x =nry+ ————,
phase transition in a Peierls system is investigated under the 2

assumption that the characteristic phonon and interband elegmerer  is the interatomic distance in the metallic phase and
tronic relaxation times are constant. In contrast to Refs. 27+« s the period-doubling parameter of a one-dimensional

34, where the density of nonequilibrium electrons in the congrystal(the order parameter of a metal—semiconductor phase
duction band was as an externally controllable parameter angansitior). Then we obtain for the distaneg .

the method for producing this density either was not consid-
ered or was considered at a qualitative level, in the present (-1™-1)
paper the mechanism of the interaction of the electronic sub- 2 '
system with the electromagnetic field is specified and thel’aking account of Eq(2.4), the overlap integraB,, ..
possibility of the nonequilibrium carrier density changing in , > pecomes ’ am
the course of the phase transition is taken into account. The

light intensity is chosen as an externally controllable param- (=D"(1-(=1)M

eter. This is more justified from the physical standpoint. The Bonem=D exp( —x(m=1)+ 2 ’
light field is treated as a quasimonochromatic stationary ran- (2.5

dom.pr.ocess, in which photo_stlmulated generation of non\'/vhere)(=ro/R is a dimensionless parameter characterizing
equilibrium electron—hole pairs occurs as a result of th

S . . i She relative separation of the nearest-neighbor atomsband
electric-dipole interaction of the photons with the electronic;,

. . : ~is the overlap integral of the wave functions of the nearest-
subsystem of the semiconductor. An increase of this dens”ﬁeighbor atoms in the metallic phase<0). The phases of

via the electron—phonon interaction gives rise to readjust: e atomic wave functions in the forf2.1) are chosen so
ment of the crystal structure and the electronic spectrum Omatb in Eq. (2.5 is a real quantity '

the Peierls system. To diagonalize the Hamiltonian(2.1) we employ

In the present paper the expressions describing the timeEiogolyubov’s method of canonical transformatiGhswe

?eperldt(ra]ncg '(t)'f lth(ta bandfgapllnt.the dcogrsethof 3 ph?se trant§\7vitch to collective Fermi second-quantization operatqgrs
ion at the initial stage of evolution during the developmen andc; according to the formula

of an instability of the initial, stablén the absence of a light
field) phase and at the final stage near the new stationary 1 _

state of dynamic equilibrium are obtained. An interpretation an:\/_ﬁ Ek: ce ™, (2.6)
of the experimental data of Ref. 35 on a photostimulated

semiconductor—metal phase transition in a vanadium dioxidevhere N is the number of atoms in the chaik=0,

(2.3

rn,n+m:mro—"(_]-)nRg (2.4

film irradiated with powerful laser radiation is given on the =2#/N, ..., =&, ¢, ».=Ci. In the new operator represen-
basis of the theory developed. tation the Hamiltonian(2.1) becomes
He= 20 b(Qui it IRWC Cic- ), 2.7
2. HAMILTONIAN AND ELECTRONIC SPECTRUM OF THE where
SYSTEM
coshé cosk(exp(2y) — 1)+ cog 2k)expyx —exp — x)
Let us consider a chain of atoms with each atom con-Qk— cosh2y)—cogq2k) '
taining a single external electron. We write the Hamiltonian (2.9

of the electronic subsystem in the form sinhé sink(exp(2y) — 1)

cosh2y)—cogq2k)

Let us perform in Eq(27) another canonical transformation
wheren is the number of the atom in the chaBy, . isthe  to Fermi operatorsy,, ay in accordance with the formula

(2.9

He= 2 Bunsm(@r @nsmtan man), (2.0
n,m(m>0)
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atieag o
V1+ gpﬁ .

The functiongy in Eq. (2.10 is chosen so that the Hamil-
tonian obtained is diagonal in the new variablgs «; :

(2.10

Cx=

He=2k gka:ak. (2.11)

Substituting the expressiof2.10 into Eg. (2.7) and
equating to zero the off-diagonal elements, we fisdand
the dispersion lave, :

Q= Qe »—SIgN Qi Qi ) V(Qu— Qi)+ 4Ry
B 2Ry ’

Pk
(2.12

b ) > 7
8k=§(Qk+Qk—w+S|gr(Qk_ Q) V(Qr— Qy— )2+ 4RE).
(2.13

It is evident from the relation$2.13), (2.8), and (2.9
that the spectrunz, with £#0 has two bands, the lower

A. L. Semenov

sinh& cosk(exp(2y)—1)
cosh2y)—cog2k)

Switching in Eq.(3.3) to Fermi operators, anda{ and
using Egs(2.10 and(2.12 we obtain, finally,

(3.5

PwL Py - 08— 2S5k
d= d ay @
2 ( lb 1+(,Dﬁ k ¢k
L er(P= P )+ S1-9f)
+|d2 K K K ZSk K a:ak,w . (36)
1+ ¢p

It should be noted that the operat@gsl) and(3.1) with
d,=0 are formally similar. Therefore, the operatd&1])
and(3.6) are also similar.

Let the total dipole moment of the system be zero in the
absence of an external electric field. Then it follows from
Egs. (3.6) and (2.13 that d;=0. Therefore the choice of
phases of the wave functiong,(r) for which the integral
Bnn+m in EQ. (2.1) is a real quantity makes in the present
case the intersite matrix element of the dipole moment op-
eratord, 4+ iN EQ. (3.1) imaginary. The casd; #0, appar-

band being completely filled in the ground state and the upently, can be realized in systems possessing ferroelectric

per band being empt{semiconductor phageFor £=0 the
spectrum(2.13), (2.8), and (2.9 consists of a single half-
filled band(metallic phasg

3. DIPOLE MOMENT OPERATOR

properties. Such systems are not studied in the present work.
In the limit £é—0, as is evident from Eq2.12), ¢,— 0 for all

k# = /2. Therefore in Eq(3.6) dy x— ,—0, and all dipole
transitions are forbidden. 1+ 0, then in Eq.(3.6) dy k-,

#0, and the corresponding dipole transitions are allowed.
Since in this case the first Brillouin zone is the regioa
[—#=/2,712], these transitions are vertical interband transi-

The dipole moment operator of a Peierls system is detions in the spectruni2.13).

termined by the relation

d= (dn,n+ma;an+m+d:,n+ma;+man)a (3-1)

n,m(m>0)

where the dependence df, ., on £ is similar to the ex-
pression(2.5):

dn,n+m: -

ef Y (D hnem(r)dr=(d;+idy)

Xex;{ —X(m—1)+(—1)“(1—(—1)m)§ .

(3.2

Here ¢,(r) is the atomic wave function of an electron lo-
cated at thenth site ande is the electron charge. The choice
of the phases of the wave functiogig(r) ensuring that the
overlap integral2.5) is a real quantity uniquely determines
d; andd, in Eq. (3.2).

Substituting the expressid@.6) into Eq.(3.1) and using
Eq. (3.2, we find

d=; [(d1Qi+daPy)cy C+i(daRe+ oS ¢yl G 1,
(3.3
where

_ coshésink(exp(2y) +1) +sin(2k)expy
kK= cosh{2y) —cog 2K) :

(3.9

4. DYNAMICAL EQUATION FOR THE ORDER PARAMETER
OF A THERMODYNAMICALLY NONEQUILIBRIUM
PEIERLS SYSTEM

Let us examine the behavior of the low-temperature
phase of a Peierls system when nonequilibrium electron—
hole pairs are excited in it. We shall assume that the excita-
tion is due to induced transitions of electrons from the va-
lence into the conduction band on account of, for example, a
dipole electron—photon interaction with the incident radia-
tion. It is known that the characteristic intraband relaxation
time of electronsr,~ 10~ '*s is much shorter than the inter-
band relaxation time~ 10 *'s.28 For this reason, when the
system is irradiated with light with a constant amplitude, it
can be assumed approximat&lyhat thermodynamic equi-
librium of electrons with their own Fermi quasilevel corre-
sponding to the given band is established within each elec-
tronic band. The breakdown of thermodynamic equilibrium
caused between the bands by the external irradiation is ex-
pressed by the difference of the corresponding Fermi quasi-
levels between one another.

The above-examined approach to the description of a
thermodynamically nonequilibrium system, consisting of a
collection of weakly interacting thermodynamically equilib-
rium subsystems, can also be extended to the case where the
incident radiation has an adiabatically slowly varying ampli-
tude A (the change\A in the field amplitude over the time
7e~10 s is much less thaA). This is due to the fact that
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the electronic subsystem within each band can follow com- N E— M

pletely the change in the field and therefore at any momentin N= 2 |kgw/2 tanr( 2KaT ) . (4.6)

time it is in a state of thermodynamic equilibrium. This situ-

ation is similar, to some extent, to the situation ordinarily The expansion coefficierA in Egs. (4.4) and (4.5 can be
encountered in the description of thermodynamically equilibexpressed in terms of the critical temperatligeof the ther-

rium systems with adiabatically slow variation of external modynamically equilibrium(in the absence of a light field
parameters. In what follows, we shall confine our attention tanetal—semiconductor phase transition and other characteris-
constructing a theory for this particular case. In so doing, wdics of the system. The condition of an equilibrium metal—
shall not discuss the transient processes occurring in eagemiconductor phase transition is instability of the metallic
electronic band over a characteristic time not exceeding thghase:

intraband electronic relaxation time~10"1s. 2 _ 2_
I°F(Ty,£=0)/0£°=0,
The free energy; of the electronic subsystem of tiié (To.£=0)/0¢
band (=1,2) is determined by the relation whereF is the free energy of the thermodynamically equi-
librium Peierls system. In the absence of a light field, in the

_ Mj— &k
Fj_M]NJ_kBTEk In( 1+eXF< kBT

) 4.1) state of thermodynamic equilibrium there is no dissipation
' ' (Q=0), and the Fermi quasilevels of the valence and con-

. . . duction bands of the spectru(@.13 are zero:
whereu; andN; are, respectively, the Fermi quasilevel and P @.13

the number of electrons in theh band. The summation over wy=Fu=0.

k in Eq. (4.1) extends over the range of thgh band of the Hence we have. using E and (2.1
spectrum(2.13 (|k|< /2 for j=1 and w/2<|k|< for j ' 9 East.5 (2.13,

=2). €k €k
Treating the parametéras a generalized coordinate, we A~ 2|k%ﬁ2 (a—gztanl-( KaTo ) 4.7
write the dynamic equation of the thermodynamically non- £=0
equilibrium Peierls system Calculating the sum in EJ4.7), we find approximately
d oL 4L _4bN( ( b
TR =Q, (4.2) A - In kaTo +1]. 4.9
Thus, we have obtained E@L.6), expressing the dependence
where . . : .
of the densityn of electron—hole pairs at the Fermi quasi-
m(x,,)? level . and the order parametér of the metal-semicon-
LZE 5> FimFaFe (4.3 ductor phase transition, i.e(u,£), as well as the dynami-

cal equation(4.5), describing the relation between the pa-

is the Lagrangian functionQ) is a generalized dissipative rameteré of the Peierls system ang, i.e.,&(u). In turn, the
force [see Eq.(5.17)] characterizing the relaxation of the Fermi quasilevel is determined by the degree of to which
order parametef of a metal-semiconductor phase transitionthe light affects the system. The equation describing this ef-
to a stable position of equilibrium. In E¢4.3) mis the mass fect should depend on the specific mechanism of the interac-
of an atom, tion of the radiation with the electronic subsystem.

Fe=Ag2 44 5. RELAXATION OF THE ORDER PARAMETER £
is the free energy of the crystal lattice, written in the static
molecular-field approximatioh,and in the harmonic ap-
proximation, taking account of only the first nonvanishing
term in the Taylor series expansion in terms of the orde
parameteré of the metal—-semiconductor phase transition
with expansion coefficienA.

Substituting the relatiori4.3) into Eq. (4.2) and using
Egs.(4.4), (4.1, and(2.3), we obtain

dey e M
‘kéﬂz a_gta”"(—ZkBT ) —AE+QN
(4.9

The expressioii4.5) is the dynamical equation of the Peierls ~ Ho=2, fw(bib+1/2), He=2 siafa (5.2
system, determining the behavior of the order paraméetdr K .

the metal-semiconductor phase transition with excitation ofire, respectively, the Hamiltonians of the noninteracting
nonequilibrium electron—hole pairs. In addition to the rela-phonons and electrons(, is the phonon spectrumg, is the
tion (4.5, we shall write an equation expressing electricalelectron spectrumb,, by (ay, a;) are, respectively, the
neutrality, relating the density of electron—hole pairs and operators creating and annihilating a phorielectron with

the Fermi quasilevel: wave (quasiwave vectork, and it is assumed that the sum-

To calculate the generalized dissipative fo@en Eq.
(4.5), we note that the order parametef2.3) characterizes a
phonon mode with wave vectgrat the edge of the Brillouin
Zone = ,q is parallel to the principal axis of the Peierls
crysta). Assuming that the relaxation of the phonon mode to
the thermodynamically equilibrium value is due to phonon—
phonon and phonon—electron interactions, we write the
Hamiltonian of the system in the form

H=Ho+He+V+U, (5.1

where

dzg_ 4
dt?® NmR
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mation in Eqs(5.2) and subsequent formulas in this section —NgNk(1+Ngs )} 8 0g+ 0k — 0g4k)
extends over all branches of the phonon and electron spec-
e +273) [Ugul((L-ngng.(1+Ny
_ +
V=2 (Vieabicepibath€) 63 —g( 1= Ng N @y (eqri—eg)/h), (510

is the phonon—phonon interaction operator, in writing whichwhereny is the number of electrons in a state with quasiwave

we confined ourselves only to three-phonon processes, whicfEctork.

occur in a crystal lattice with cubic anharmoniéity® (Vy lising th(((a))expressioﬂs.lo), we find for the deviation
is the matrix element for two phonons with wave vectors ONk=Ni— Ni” of the number of phonoris from the ther-

. . i ilibri (0)
andq to merge into a phonon with wave vectiot-q); modynamically equilibrium valuélj
doN,  ON, 510
_ + + —_— =, .
U=2, Ukqaksqa(bg=b"g) (5.4 dt .

. . . . . wher
is the Fralich electron—phonon interaction Hamiltontsh ere

(Uyq is the matrix element of the transition of an electron 1 4 E v 2NOLNO +1)8
with quasiwave vectok and a phonon with wave vectoy 7 =74 [Vak—dl “(Ng "+ Ni2 g+ 1) (g + 0 g~ @)
into an electron with quasiwave vectot-q).

The time variation of the operc'atcﬁkpzb;bq at the ki-
netic stage of evolution in second order perturbation theory

+87r§q: IV AN =N ) 8( g+ 0k — 0g44)
in V+U can be described by the equaftdn

dfyp +27 2 [Uqul (=) (@~ (eq1k—eg)/h)
ZkP I :
where is the reciprocal of the phonon relaxation time. Here
L& =i% Trp[U+V,fy ], (5.6 N = (explfiwg /kgT}H—1) (5.13
0 is the Bose—Einstein distribution,
(2)— _ nT + +
Lice ﬁﬁdee Trpl V(D +V(n),[UHV, Tl n{P= (expl(eq—u)/KeT}+1) " (5.14
aLM is the Fermi—Dirac distribution, ang is the Fermi quasi-
+iY, quSa—’p , m—+0. (5.7 level. The first and second terms on the right-hand side of
as Yas Eq. (5.12 correspond to the phonn—phonon relaxation and
Here the third term corresponds to phonon—electron relaxation.
It follows from Eg. (5.12) that in the classical limitN,
() +V(r)= exp{ i Ho+He Autw >N(?) the statistical average value of the energy of a phonon
f mode(2.3)
"Ho+Hg mr .
Xexp —i——r (5.8 (W>=T<§ ) (5.19
is the operatot) +V in the interaction representatiop,is a  satisfies the equation
statistical operatofdensity matrix of an ideal nonequilib- d
. . X wy (w) .
rium gas of phonons and electrons, which determines the ——=——"=(Q¢¥). (5.16
c-number functionsy, , by means of the equations dt Tp
_ _ The second equality in Eq5.16), taking account of Eq.
Trp=1, Trpfip=vip- 5.9 (5.15), holds if the generalized dissipative for€esatisfies
SubstitutingU andV from Egs.(5.3) and(5.4) into Egs. mi2
(5.5—(5.8 and using Wick’s theorerf¥ we obtain an equa- Q=- g (5.17
tion for the numberN, of phonons in a state with wave 4
vectork: characterizing the linear damping of the phonon mode.
dN,

W:M% Vg ol ANgNi—g(1+Ny)
6. INTERACTION WITH RADIATION
_(1+ Nq)(1+ Nk_q)Nk}(S(a)q‘F wk_q—wk) . ) . )
We shall describe the interaction of the system with a
+8772 |Vq,k|2{(1+Nq)(1+Nk)Nq+k light flqld by means of the operatdf;, which in the dipole
q approximation has the form
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Taking account of Eq43.6) and(2.13, we obtain from

V1=—d-E(t)=—d-f E,exp—iwt)dw, (6.1 Eq. (6.7)

whereE, and o are, respectively, the amplitude and fre- dpuk 2T ., _[2&x e— M

quency of the spectral component of the light field. a2 kG B ta 2kgT )" (6.11
Let us consider the case where the incident radiation

E(t) is a linearly polarizedalong the axis of the crystal Where

quasimonochromatic stationary random pro¢ésghen all _ + 2

spectral componenis,, are statistically independéft'® de=|d, k(P P 7) 28k(1 ¢k _ (6.12

1+

(Ey Eu)=G(0) 3w+ wy). (6.2 Pk

Taking into consideration the relatiof2.13, we find
HereG(w) is the spectral density of the light field, which for from Eq. (6.11) the kinetic equation for the density

a quasimonochromatic signal can be represent&l as =23 |y < =12Pxk Of electron—hole pairs in a Peierls system:
G((x))zlg(|(,()|_(1)0), (63) an A ) K— M 28k n_no

wherewy is the carrier frequency, arg{x) is a nonnegative ot ﬁ ‘kgﬂz di tan 2kgT N

bell-shaped function with a maximum at the poxit 0 and (6.13

satisfies the normalization condition . . _
whereng is the density of electron—hole pairs in the absence

of light and, using the relatio4.6), can be written in the
f g(x)dx=1. 6.4 approximate form
The widthA w of the spectrunG(w) satisfies the inequality No=n(u=0)
Aw<wqy. The quantity - .
kgT sinhé p{ 2b smhg]
N\/————exp —————, b&>kgT,
|=J G(w)dw/2 (6.5 _ 7b keT
N[ kgT b,
characterizes the light intensit§n a Gaussian system, to ;(T'” 2‘@5 ) b&é<kgT.
within the factorcn/27, where in the present caseis the
speed of light anch is the index of refraction of the me- (6.14
dium). The last term on the right-hand side of .13 takes ac-
Using the Liouville equatiof? count of interband electronic relaxation with characteristic
ap interband electronic relaxation time The timer for radia-
iﬁE=[He+V1,p], (6.6)  tive and nonradiative recombination of electron—hole pairs

and for recombination with participation of impurities and
taking account of Eq96.1) and (6.2), we find an equation defects depends, in the general case, on the density of elec-
for the diagonal elements,, of the density matrixp of the  trons and holegsee Ref. 39, p. 297but in what follows we
electronic subsystem in second-order perturbation theory ishall neglect this dependence, assumirig be a prescribed
Vi: parameter. The expressidf.13 shows that the change in
the densityn of electron—hole pairs is due to the interaction
6.7) of the electronic subsystem with the spectral components of
the light which have the frequenay,=2¢,/%.

The relations(4.6), (4.5), and(6.13), taking account of
Eqg. (5.17), form a closed system of dynamical equations for
the internal parameters, n, and ¢ of a thermodynamically
E(t)=Epcoqwot+ ¢) (6.8  nonequilibrium Peierls system with prescribed external pa-
rametersT, |, wg, and so on.

dpxk 2w 5
gz 2 A

Eg— €k
ST) (Pss™Pi)>

whered,, is the matrix element of the dipole moment opera-
tor (3.6). In the particular case of a monochromatic light field

with a uniformly distributed phase, the spectral density
G(w) has the form

E2(8(w— wg)+ 8(w+ wg)) 7. DYNAMICAL EQUATION FOR A NONDEGENERATE OR
G(w)= 0 0 o (6.9  WEAKLY DEGENERATE SEMICONDUCTOR WITH
4 EXCITATION OF ELECTRON-HOLE PAIRS INTO THE
Then Eq.(6.7) becomes the well-known Fermi golden rule CONDUCTION BAND BY MONOCHROMATIC LIGHT
for the probability of induced transitior{s: We shall analyze Eq¢4.5) and (4.6) under the assump-
I T tion that the Peierls system is a nondegenerate or weakly
"o |Eq- dil?8(2e—Frawg). (6.10  degenerate semiconductor:

In Eq. (6.10, it is assumed that the lower levelith quasi- p—2b sinhE<2kgT. (7.1
wave numberk— ) is filled, and the upper leve{with The relation(7.1), which imposes a restriction on the
guasiwave numbek) is empty. range of variation of the Fermi quasileve| taking account
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of Eq. (4.6), is equivalent to an approximate inequality lim- We note that Eq(7.4), obtained assuming the inequality
iting the densityn of electron—hole pairs from above: (7.1) [or under the assumptiof7.2), which is equivalent to
8N [kaTsinhé (7.1).], is valid, as our analysis shows, even in the important
nN<ng=—— 2B > (7.2)  particular case where the temperatlire0 and the densitp
3m b of electron—hole pairs is arbitrary.
Using the formulag4.5) and(4.6), and taking account of Eq. Let us analyze the relatiof®.13), describing the change
(5.17), we find an approximate equation for the order paramin the densityn of electron—hole pairs under irradiation, for
eter ¢ of a metal-semiconductor phase transition: monochromatic light, where the form facigfx) in Eq. (6.3)

is determined by the relation
d?¢ 1d¢é 4 (4bN
di? 7 dt NmR

Tsinth(\/l—tanr?g) g(x)=48(x).

We switch in Eq.(6.13 from summation to integration, i.e.,
, (7.3  =—JdE, keeping in mind the fact that the electron density
of statesv(E) corresponding to the spectru¢®.13 for the
whereK(x) is the complete normal elliptic integral of the casex>1 has the form

—4bncoshé—Aé

first kind.
Since in real physical systems the density of electron— (E)= 2N|E| (7.6
hole pairs satisfies<N, and the order parameter of the mJ(4bZcosi é— E?)(EZ—4bZsint &) =

metal-semiconductor phase transition of the systém ) )
<0.5*from Eq.(7.3) we obtain approximately the follow- and the matrix element of the dipole moment operatpr

ing equation: (6.12 with &, =E is determined, in accordance with Egs.
(2.12, (2.13, (3.4), and(3.5), by the relation
i L (Ngl 9 s f) (7.4 4bd, coshé sinh
T —In|=| —nsigné&|, . cosh¢ sin
di? 7 dt NmR\ 7 | ¢ d(E)=d(s,=E)= —= Eg ¢ (7.7)
where
Then, assuming that there is no saturation of interband opti-
fo%exp[ Arcsin( ;) _ fbil} (75 cal transitions, so that the relation
_ . tanh((hwel2— u)/2kgT) =1, (7.9
is the order parameter of the metal-semiconductor phase
transition forn=0. holds approximately, we obtain from E(.13
|
dn  n—ng 512b2d3 coslt ¢ sint? & 79
= + . .
dt T $#2we\(1602 cosi é— (hwo)?) ((hwy)>— 1602 sint? )

Let us consider the case where the frequengyof the 8. STATIONARY SOLUTION AND ITS STABILITY
incident light is such that optical transitions of electrons oc-
cur from the valence band into the conduction band, Thenwe Let us consider first the case where a Peierls semicon-
can set approximately in E7.9) ductor is irradiated with light with constant intensity. Setting

in the system of equatior@.4) and (7.1
1607 cos? £— (hwg)?~ (hwg)?— 1602 sinf £, (7.10 M e System of equationd.4) and (7.11

Then we find approximately

o

nd§0 8.1
G a 8.9

dn n—no 641 daNE?

dt T #2w (7.17 we find its stationary solutiorfs,ng as a function of the
intensity| in the implicit form

Thus, we have obtained E¢r.11), describing the behavior

of the densityn(t) of electron—hole pairs when the system is 720 N|&d |é

irradiated with monochromatic light with intensityt), and | = —O( |2 —no(gs,T)), (8.2
Eq. (7.4), determining the time dependengg) of the order 64dINEST| T s

parameter with a variation of the density These equations

(7.4) and(7.11) are the basic dynamical equations for a non- NI&l . | €o

degenerate or weakly degenerfgee Eq(7.1)] semiconduc- nS:Tln & 83

tor state of a Peierls system with optical excitation of elec-
trons in the system into the allowed band. In order that the stationary solutid8.2) and(8.3) satisfy the
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approximation(7.2), used above, in the entire range of varia-
tion of ¢ (0<é<§y), the relation limiting the temperatuiie
of the system from below

2

&ob<kgT. (8.9

-
must be satisfied.
At lower temperatures, where the relatio®.4) is in-

valid, the solution8.2) and(8.3) satisfies the conditiofi7.2)
only in the region

£e(0,61)U(&2.60],

where &, & (£1<&,) are the roots of the transcendental

equation
[kgT
b

\/Eln

Analysis of the system of equation(§.4) and (7.11)
shows that the solutiofB8.2) and(8.3) is stable if

8

3

(8.5

&
£

&s>&c, (8.6)
where
- amR2
Ec=&pexp —1— 16prT . (8.7

Using the solution8.2) and (8.3), we find a condition,
equivalent to the inequality8.6), that imposes an upper
bound on the light intensity

I<lg, (8.9
where
o oo T 8.9
C—64d§N§§T(nC n0(§C1 ))1 .
_Ngo( WmRZ) TmR
nC_? 1+ 1607,7 exp —1- 16b7,7 ) (8.10

Thus, for adiabatically slow increase of intensltyof the
incident monochromatic light from zero to the valye de-
termined in Eq(8.9), the densityn of electron—hole pairs in
the accordance with the descriptit2) and(8.3) increases
from the thermodynamically equilibriunino irradiation
value ny (6.14) to the critical valuen, determined by Eq.
(8.10, and the order parametér decreases from a value
approximately equal t&, to &; determined by Eq(8.7).
Whenl>I., the stationary semiconductor state correspond
ing to Egs.(8.2 and(8.3) becomes unstable, and there is no
other stable stationary solution of the system of equation
Egs. (7.4 and (7.11) corresponding to a semiconductor
phase.

We shall make numerical estimatesmgfand| for va-

nadium dioxide, whose one-dimensional electronic conduc-

tion band is formed by overlapping of thel vave functions

of vanadium atoms arranged in the form of chains parallel to

the crystal axis.* At temperatures below the critical value

Tp=340K the vanadium atoms in the chain converge inn,=
pairs, and a gap forms in the electronic spectrum at the Fermi
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level, so that the low-temperature phase of M&n be re-
garded as a one-dimensioriglasi-one-dimensionaPeierls
semiconductof*

Taking characteristic values of the physical quantities
for VO, b=~0.3eV, N=10% cm 3, ¢£,~0.52% =3
x10™ s, 7,~108s®  dy~108CGSPY  fiw,
=1.17eV¥¥ m~8.5x10 g, R~0.5x 10 &cm, we obtain
from Eqgs.(8.9) and(8.10, taking account of Eq(8.7),

n.~10Ftem 3, 1.~10Wicn?. (8.11
The condition(8.4) givesT>100K.

9. DYNAMICS OF THE SYSTEM AT SHORT TIMES

We shall investigate the behavior of a Peierls system
irradiated by monochromatic light whose intenditi a step
function of the time:

p— 0’
I(v= | =const,

Let us examine the solution at the initial stage of evolution,
when the order parametef of the metal-semiconductor
phase transition is close to its initial valug. Then the
system of equation$7.4) and (7.11) can be approximately
linearized, and in the approximati

t<0,

t=0. ©.D

d?¢l  1]|dé¢
e <T—p at (9.2
it can be written as
dé  16b7, (N 03
i G RI ©3
dn n—no, 64d2N
dn__n7no  HABNG, 9.4
dt T 72w,
The initial conditions for(9.3) and(9.4) are
7Tn0
Et=0)=¢~ 1 N(t=0)=no. 95
Solving the problen9.3)—(9.5), we obtain
— &, —mng/N
gm gy 2T oo, 9.6
Np—Ag
- (§o— €1)N—7ng MmMRE 1)
- n_nl_ 7\2_)\1 )\2 16b’7'p +; e
A,mR 1
S (22 T gt
)\1( 16b7, +7T eZ), (9.7
where
g —(E Wno) hzwo (9 8)
VYN R20 0+ 64mrl £d2 '
N¢ 647l £4d>
<_O_no) ; ol 99
m ﬁ w0+64’777'| §0d2
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8br,
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In the experiment of Ref. 35, where a vanadium dioxide
film was irradiated with powerful laser radiation with inten-
sity 1=7-108 W/cn?, a photoinduced semiconductor—metal
phase transition, occurring over a characteristic time

Taking account of the characteristic numerical values of the= 107123_, was observed.l,zA numerical estimate using Eg.
basic parametersee below or the numerical estimates at the(9-13 gives 7,=1.6xX10 *“s. Therefore the theoretical

end of Sec. 8 and confining ourselves to the case
<10*Wi/cn?, we find approximately from E¢9.10

Nm 2T (9.11
TmR
1 64wl éyds

7\2——;—%2—(1}0. (912)

It is evident from Eqs(9.11) and(9.12 that for the charac-
teristic numerical values of the parametésee the end of

value 7y calculated on the basis of the theory developed
agrees well with the experimental data of Ref. 35.

10. DYNAMICS OF THE SYSTEM AT LONG TIMES

We shall now investigate the behavior of a Peierls sys-
tem under irradiation by monochromatic light, whose inten-
sity | is a step functionf9.1) of the time, at the final stage of
evolution when the order parameter of the metal—
semiconductor phase transition is close to its new stable

Sec. 8 the inequality|\1|>[X,| is satisfied. For this reason, yajye corresponding to a position of dynamic equilibrium,
in accordance Wlt.h. thg expressid8.6), thg charactgrlstlc g~&(1) [see EQ.(8.2]. We shall confine ourselves to the
time 7o of a transition into a new phase is determined apintensitiesl <I., where the final state of the system is the

proximately by the relation
1 h2wgT

=TT = .
oI\ h2wo+ 64l £qd5T

(9.13

The condition for the applicability of our approximation
(9.2), taking account of the expressi@8.6), can be written
in the form7,> 7,. Hence, using the relatia®.13, we find

semiconductor phas@.2), (8.3.

The system of equation@.4) and(7.11), linearized near
the stationary solutiol,,ns, determined by Eqg8.2) and
(8.3), has in the approximatio(®.2) the form

an inequality that gives an upper bound on the light intensity

h2wg (1 1)
(9.14

<——|=—=].
647750d2 Tp T

Substituting into Eq(9.14) the characteristic numerical val-
ues of the parameters for vanadium dioxide, specificdlly,
~0.5%% r~3x10 Ms, 7,~10 53 d,~10"BCGS>

dg_ 1&)Tp N fo

a— NmR2 ;Ine_gs('f_fs)_(n_ns) ’ (101)
dn_ 128d3Né, n—ng
a—ﬁz—%@—gs)— . (10.2

The solution of the system of equatiofi®.1) and(10.2 can
be written as

andZwy=1.17 eV we obtain the condition of applicability ( 5) :( € . allal?) ( exp{)\lt}) (10.3
of the approximation(9.2): 1<10°W/cn?, which is the n Ng Ap18,) | eXpA,t})’ '
same as the approximation which we used in the derivation
of Egs.(9.11) and(9.12. where
|
2 11 2
8b 1 8b 1 16b 2 b7 d5NEd
12:_Tpné__i\/ TDmé__ + v |né_p—zfs, (10.4)
“ TmRe €&l 27 TmRE  |€&s| 27 mmRr  |€&s h2wq
|
and the constant coefficierds in the matrix are determined TMR2
from Egs.(10.1) and(10.2 and the initial conditions. §o>&s(1)>6c| 1+ brr ) (1095
p

It is evident from the relation(10.4 that when
the condition (8.6) is satisfied [or the inequality (8.9
equivalent to if the solution (10.3 has the form of
a process in whiché and n relax to a stationary state
&,ng  of stable dynamic equilibrium  determined
by Egs. (8.2—(8.3. For low light intensities I,
when é=&4(1) [see Eq.(8.2)] satisfies the approximate in-
equality

the radicand in Eq(10.4 is positive, and therefore, as

—oo, the asymptotic behavior df(t) andn(t) has the ex-
ponential form

—Egx — 1),
‘6 Esxexp(— ) 20.6

n—ngcexp — yt)
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with relaxation constany=—X;>0 (10.4 (in Eq.(10.3 at Therefore near the critical point=1. (1<I;) the char-
long timest the exponential with the smaller decay constantacteristic relaxation time/~* (10.13 of a Peierls system to
plays the main role the position of stable dynamic equilibriudy~ &, (&> &.)

The inequality(10.5 for &4 is equivalent to the condition becomes anomalously long/(*— for | —1.—0).
bounding the light intensity from above

I<lq, (10.7  11. DISCUSSION OF THE EXPERIMENT

where To check experimentally the solutio8.2—(8.3) de-
scribing the behavior of the order paramegesf the metal—

1+,/ﬂ )exp{—l— mmR ]) (10.8 semiconductor phase transition and the density of
2br ' '

Tp 16b77, electron—hole pairs in the stationary state or with adiabati-
and the functional dependent¢t,) is determined by the cal_ly _slo_w variation of the I_ight intensity, when th_e qharac-
expression8.2). f[enstlc time of the smooth increase o_f the |nter_13|ty_|n a pulse
If the light intensity! satisfies the condition is much Iongeﬁ?an the cha_racten_shc relaxation t|me_ of the
processty~10 "°s (9.13), it is desirable to use a Peierls-
1 <I<lIg, (10.9  unstable material in the form of a thin film placed into a
material which is transparent at the frequency of the laser
radiation and possesses good heat remealexample, in
superfluid helium This makes it possible to avoid excessive

[mmR heating of the system even for quite high irradiation intensi-
1+ 2brr,

|1E|(§o

for which for £&,=¢£4(1) [see Eq.(8.2)] the approximate in-
equality

Ec<&s()<éc (10.10  ties| close tol . [see Eq(11)].
_ o _ _ _ _ For a light field(9.1) switched on abruptlyor for irra-
is satisfied, then the radicand in E40.4) is negative, and at  djation with a square laser pulse of long durafiothe ex-

long timest the behavior of(t) andn(t) has the character perimental check of the formul®.13 for the characteristic

of damped oscillations time 7, of the photoinduced transition into a new state of
&— Ecexp— yt)cog wt+ 1), d_y_namlc equ!I!brlum can be pgrformed undgr ordma}ry con-
(10.19) ditions. Specifically, the behavior of a vanadium dioxide film
N=nsxexp(— yt)cogwt + ¢y) on an aluminum substrate irradiated with a laser pulse with

with circular frequency intensity | ~7- 108 W/cn? and duration 610 *2s was stud-
ied experimentally in Ref. 35. It was found that when the
8bry, TmR? &s energy of the exciting photonswy=1.17 eV, VG passes
- MR zbﬂ-p_ & from the semiconductor into the metallic state in timg
~10 25 after the onset of the pulse. After this, the metallic
and decay constant phase remains stable for a quite long timg>10°s). If
the energy of the exciting photorisng=2.34 eV, the semi-
= 8b7p E (10.13 conductor state of vanadium dioxide becomes unstable
7TmR2 gc

~10 °s after the onset of irradiation.
It is evident from Eqs(10.12 and (10.13 that as the .TO explain the experimentally observgd phenpmenon de-
. : o scribed above, we shall make a numerical estimate of the
intensity | approaches the critical valug from below (and
¢(—E.+0), the frequencyw (10.12 of the oscillations of

maximum possible temperature chany& in the sample
the order parameteé of the metal-semiconductor phase

under the action of the laser irradiation. For this, we shall
. . L examine a very thin1 nm) most strongly heated region of

transition and the density of electron—hole pairs increases Y € ) gy 9

to its maximum valuew,:

the film near the surface, neglecting heat transfer and assum-
ing that there is enough time for all of the absorbed radiation

2

In (10.12

w

In

Y

3% energy to be converted into he@tt short times<10"'?s
Om= = (10.19  this assumption is quite nominalUsing the approximate
mmReT formula
and the damping coefficient decreases to zero. al At
Let us make some numerical estimates. Taking the nu- AT= ?, (111

merical values characteristic for the physical parameter of
VO,, specifically, b~0.3eV, N~10%cm™3, §0%0.5’3,4 where a, ¢, andp are, respectively, the optical absorption

7~3x10 s, Tp~10*13s,38 d,~10718CcGs®4’  coefficient, the specific heat, and the density of the fill ma-
hwe=1.17eV® m~8.5x10 g, and R~0.5x10 8cm, terial, andAt is the irradiation time, and taking the numerical
we obtain from Eqgs(10.14 and(10.13 values of the parameters characteristic for VQx
~10Pcm 1, c~1 J/gK, p~10g/cn?, At=14~10 1?s, we
N o 37, o 1 obtain AT~10K. Since the temperature of the thermody-
o(1=11)=0, »(=ly)= mezr~3X 1057, namically equilibrium semiconductor—metal phase transition

in vanadium dioxide i§ =340 K, we conclude that at room
om=w(l=1.)~3x102s1  y(I=1,)=0. (10.19 temperature a photoinduced transition into the metallic
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A study is made of an effect observed experimentally by Mesyats which involves, prior to the
electrical explosion, as such, the accumulation of an energy on the order of a few times

the sublimation energy by a microscopic cathode spike during explosive emission from a cathode
in a vacuum or gaseous discharge. The same effect is observed during electrical explosion

of a wire. Simple estimates by various authors imply that the temperature of the wire should rise
to 1 K. In reality, when energy is applied very rapidly the wire cannot expand and it is
superheated into a metastable stéssentially to the crystal-liquid spinoglalWhen the
temperature rises above K, the specific heat of the metal increases as electronic

degrees of freedom are unfrozen. Thus, the temperature attained prior to an electrical explosion
does not exceed 17000 K. @999 American Institute of Physid§1063-776(199)02312-4

1. INTRODUCTION were not drawn upon in the analysis of high temperature
superheating in Refs. 1-6.

Mesyat$ has developed some new ideas on the explo- In this paper we show that the experimental data of
sive character of emission and introduced the concept of edvlesyats,et al>? have an entirely rational explanation. The
tons, or explosion microcenters. It has been shown that Mesyats effect occurs when the rate of energy input is so
variety of experimental data on cathode processes can Wuégh that a wire cannot expand significantly. The high mag-
explained by making the simple hypothesis that, before theyetic pressure at high current densities also inhibits expan-
explode, microscopic cathode spikes absorb an energy equeipn. The possible heating regimes for copper are examined
to several times the sublimation energy. This can be interin Sec. 2. Two extreme scenarios for this process are consid-
preted as Superheating of the microscopic Spikes to tempergfed: constant pressure and constant volume. The thermal
tures on the order of £ if the simplest equation of state is @nd caloric equations of stateare used in analyzing both
used. Because of the paradoxical nature of this conclusiof€dimes. The final temperatures were less than 17000 K in
special experiments have been done on the electrical expl®Oth scenarios. Temperatures below 17000 K correspond to a
sion of thin wires? The results were in complete agreement/iduid state of copper if equilibrium melting is assumed. The
with Mesyats' hypothesis. Here the effect was enhance®©SSibility of maintaining copper in a metastable solid state
when the rate of energy input was raised. The maximungurmg rapid heatint? is examined in Section 3, drawing on

superheating was obtained at the highest rate of energy inp ,e data of Refs. 7=14. It is shown tha_t a wire can enter a
102W/g. superheated metastable state and continue to absorb energy,

while remaining at near its initial specific volume. Even if
melting sets in later, an increase in the volufragliug of the
wire may not be noticed experimentally prior to an electrical
! 5 o . . explosion(sudden increase in the volume and electrical re-
review by Kotov,et al”) No convincing explanation of this sistivity of the wire. The heating processes at constant pres-

effect, howevgr, has beeq g|vgn. ) sure and volume are compared in Section 4.
The transition of a solid object into a superheated meta-

stable state was noted by Ufiim an analysis of experiments

on powerful shock waves in solids. The transition into a2- HEATING REGIMES
metastable state during rapid=(0 ¢s) Joule heating has
been studied by Biov and Shestaf(For.a copper wire With iy mediately prior to an electrical explosion, we have chosen
a diameter of 310" 2cm, a superheatind=(T—Tm)/Tn  one of the intense energy input regimes described in Ref. 2
=0.13 was observed, whefk, is the melting temperature. for copper. In particular, the radius of the wire iis=3

The kinetics of the bulk meltlng of metals has been Studiedx 10_3 cm, the current density |B¥ 108 A/0m2, and the en-
theoretically by Motorin and MushérTheir estimate of a ergy input prior to an electrical explosion is roughly 9 kJ/g.
maximum superheating of up to 20% or, in absolute num- Then the magnetic pressuRy,= uoum(jr)?/8 (uoum is the
bers, T—T,,=150-200K, was in agreement with the earlier magnetic permeability at the boundary of the wire is
work.” Computer simulations of metastable superheated infi~0.1 Mbar.

nite crystalline solids have been done by molecular dynamics Since the data given in Ref. 2 are inadequate for an
and Monte Carlo methods!* The results of Refs. 7—14 accurate determination of the heating dynamics up to the

Heating of wires to temperatures of10° K during elec-
trical explosion was noted in the early experiments of
Kvartskhava, Plyuttoet al® and later by Tucket.(See the

As an example of an estimate of the final state of a wire

1063-7761/99/89(12)/4/$15.00 1180 © 1999 American Institute of Physics
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P, bar the crystal at the spinodal exceeded that on the binodal by
£ 25%2° Note that the difference in specific volumes at the
L2.10°p7 \ binodal between the crystal and liquid was only 10% in the
:; calculations of Ref. 10.

The spinodal of superheated crystalline copper was plot-
ted for a 25% excess. Note that, for a model crystal formed
by charges of the same sign against a compensating back-
ground, Monte Carlo calculations show that the spinodal is
shifted relative to the binodal by 70% in volume for constant
temperature or by 20% in temperature for constant voltfme.

A similar shift in the temperature at the isobars of inert gas

0 012 0.‘16 0.50 crystals has been obtained by molecular dynamics

V. cm%g method$?*2 using a mechanical stability criterion.
Thus, the results of computer simulations obtained by

FIG. 1. Plﬁi";;:ﬁg:‘ig TQ;TSS-IJS*‘?h‘e’e\:g;?g?Iﬂgstgh?eh?r:éog_tigneointsdifferent authors using different schemes differ little from
Zg:gfep?r?e final states précedir?g an electrical explésion.gThe th’erma?equg—n? another. They are also in agreement Wllth analytic
tion of state for copper: the numbers on the isotherms denote the temper@Stlmateg- Therefore, we may expect that the estimated po-
ture in units of 18K, the thick lines are the solid-liquid binodal, and the sition of the spinodal in the figure is suitable as a starting
dashed curve is the estimated spinodal for the superheated solid. point for further derivations. The fundamental difficulty lies
elsewhere.

In fact, since the formation of the liquid phase at the
surface of a melting object does not involve the expenditure
of work to form the new surface, superheating of a solid is,
dn general, impossibl& It has, however, been pointed &t
that the situation changes if the body is heated from within
and its surface is kept at a temperature below the melting
d)oint. This situation is close to the experimental conditions
in Refs. 1 and 2, where the magnetic presgarel, therefore,

e melting point for most metglincreases at the surface of

e sample, the surface is cooled by radiation, there is no
skin effect, and heating is uniform throughout the entire vol-
ume of the wire. Note that the large amount of experimental
data on the melting of metals by high power laser radiation
have nothing to do with the theme of this paper, since melt-
ing takes place within a thin surface skin layer in those ex-
periments. Here, as in Refs. 1-8, we are concerned with
volume melting. Note that the computer simulations of Refs.
9-14 involve uniformly heated infinite crystaleithout an

time of the explosion, here we consider two limiting sce-
narios for the process:

(A) heating along an isochore until a pressirg is
reached, followed by expansion along an isobar until th
time of an explosion. This scenario initially seems more
natural, so it will not be justified further, and

metastable state of the solid. Arguments in favor of this sce
nario will be presented in the next section. This scenario, a
well as the scenarios intermediate between A and B are onl
possible as a result of rapid heating and the inertia of expal
sion.

The final states are determined graphically from dia-
grams for the energy-volumeE(-V), enthalpy-volume I
—V), and pressure-volumé(- V) isotherms constructed in
accordance with the equations of state of coppéfor ex-
ample, for an isochore on the—V diagram, we seek the
point of intersection of the horizontal and vertical lines cor-
responding to the known experimental values of the speciﬁ(‘?pen _surfac)e_ - . .
internal energy and volume. The temperature at the intersec- .W'th he.atlr]g from inside, the probab|l!ty of formmg nu-
tion point is determined by interpolation from tabular datade' of the liquid phase depends on elastic deformations ac-

surrounding this point. The final staferessurgcorresponds companying the appearance of droplets of liquid inside the

418
to the intersection of the experimental isochore and the iso§0"d' It has been showfihowever, that the energy of elas-

therm found on the®—V diagram. tic deformations makes a significant contribution to the free

Both heating regimes are represented in Fig. 1, togethe‘?nergy of nucleation only for small amounts of superheating.

with the equation of state for copfer~1'and our estimates Then the nucleation rate per unit volume, depends on the
of the spinodal for solid copper. relaxation of elastic stresses and is determined by the diffu-

sion time for the vacancies formed during nucleation. Here
the ratew is low, and, for pulsed energy input into a small
volume, cannot reach the critical lev@here the nucleation
Superheated inert gas crystals have been studied by comrobability ~1) while satisfying the requirement of a small
puter simulation using Monte Caflo'' and molecular amount of superheating. The crystal melts with pulsed heat-
dynamic$?'3 methods. Calculations were done along theing only for large amounts of superheating, when the elastic
isothern?"*® and along the isobdf*® Calculations along the deformation of the crystal lattice can be neglected. In this
isotherm have been done for solids up to the range of parancase, the rate of growth of microscopic droplets is deter-
eters where the derivative of the pressure with respect tmined by heat conduction andis substantially higher than
volume, @P/dV);, becomes greater than zero. The pointfor small amounts of superheating.
where @P/dV)1=0 is the point where the spinodal crystal- Therefore, we can expect that melting sets in only for
liquid phase transition takes place. The specific volume ofarge amounts of superheating, and that the nucleation prob-

3. SUPERHEATED CRYSTALS
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ability is highest on the axis of the conductor, where there is  Note that electron emission causes cooling of the elec-
no magnetic pressure. Even if a nucleus is formed, the propdrons in the metal(This fact was pointed out to us by S.
gation time of the melting front is extremely long comparedBarengol’ts) Since the electrons make a substantial contri-
to the energy input time in this case. The velocity of thebution to the specific heat under these conditions, electron
melting front has been calculated for copper by the molecuemission not only cools the electrons, but also causes addi-
lar dynamics methodf It was up to 100 m/s for 20% super- tional cooling of the metal, itself, i.e., of the surface of the
heating. Thus, over the characteristic time40 8s for the  microscopic spikes on the cathode, which, as noted above, is
Mesyats effect, the melting front can only move a distancamportant for the existence of a superheated crystal.
10 2R. The end point of scenario B lies near the estimated spin-
An additional argument in favor of scenario B is the fact odal for the solid. Thus, it is more or less clear why electrical
that, for these energy inputs, the exploding wire effect isexplosions occur in scenarios close to(fBe entry into a
natural, as the destruction of a metastable state of a solid neauperheated state of the soliat these energy input levels.
the spinodal when the system is perturbed. On the othe®n the other hand, is not at all clear why an electrical explo-
hand, in the case of scenario A, it is not clear why an explosion (assuming equilibrium meltingshould take place in
sion should happen, when a wire that is in an equilibriumscenario A at these energy input levels. We note, again, that
liquid state, still far from the liquid-vapor binodal, still has a the end point for this scenario is still far from the binodal of
metallic conductivity. Note that the effect of the shift in the the liquid-vapor phase transition.
phase equilibrium for a liquid-vapor phase transition exam- A more exact calculation of the initial stage of the elec-
ined in Ref. 20, and caused by an inhomogeneity of therical explosion process will have to avoid the approxima-
magnetic pressure in the different phases, is far weaker for tons mentioned above.
solid-liquid transition owing to the much smaller difference

in the conductivity of the phases. We thank G. A. Mesyats, whose brought our attention to

this problem, S. A. Barengol'ts for discussing the results, and
K. V. Khishchenko who kindly provided the equation of

state for copper.
4. DISCUSSION
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Granular ferromagnetic metals are usually regarded as systems with weakly interacting
superparamagnetic particles whose magnetization is described by a Langevin model. It is shown
that this approach is inadmissible. A correct description of the magnetic properties of

granular ferromagnetic metals requires that the magnetic anisotropy of the granules, the spread in
their orientations, and the variety of their shapes be taken into account. A model with
magnetically anisotropic granules, as opposed to the Langevin model, predicts a weak temperature
dependence for the magnetization of granular ferromagnetic metals that is in agreement with
experiment and provides averaged information on the grain shapes. The glassy nature of the
magnetic state of these systems is demonstrated. The magnetic correlations owing to the

dipole interaction of the magnetic moments of the granules are examined99® American

Institute of Physicg.S1063-776(099)02412-9

Experiments have shown that the magnetization of theetic field, the orientation of these moments is determined by
nanocomposite K€SiO,), , with an iron contentx~0.5  the intragranular crystalline anisotropy or by the asymmetric
close to the critical value for a dielectric-metal transition hasgeometric shape of the granules. In these casdgs; VK, or
a very weak dependence on temperature within the rangWA~VI§v, respectively, wher® is the granule volumex;
T=4-300K! Thus, a description of the magnetization of is the crystalline anisotropy constari {~10° erg/cn? for
such a system using the Langevin funcfidis inadmissible. iron), I is the saturation magnetizatior (&1700G for
This means that the conventional model of single domainiron), andv~1 is the difference in the demagnetization co-
superparamagnetiand noninteracting with one anothé&e-  efficients for nonspherical granules. For granules of size
granules is not applicable to this case. There are several rea~10 ¢ cm we havew,~ 10K (for the crystalline anisot-
sons for this, but the main reason is the large magnetic emopy) andW,~ 10*K (for the geometric anisotropywhich
ergy W, associated with thécrystalline and geometrical exceeds the experimental temperature.
anisotropy of the granules. The weak temperature depen- In order to establish which of the two anisotropy mecha-
dence of this energyat least, far from the Curie point nisms really occurs, it is necessary to compare the measured
causes the magnetization to be temperature independent. @alds H~ 10 kOe at which the magnetization begins to satu-
the other hand, this anisotropy can show up as glassy beharate(regardless of the temperaturelith the effective anisot-
ior in granular ferromagnetic metals, especially in the wayropy field Hy,=W,/VIls, which amounts toH,~K; /I
their magnetization depends on the prehistory and rate of 1 kOe (for a crystalline anisotropyor HA~I§V~ 10kOe
measurements and in magnetization creep, i.e., its depeffor a geometric anisotropylt is evident that, in this case,
dence on time when the external conditions are constanthe field dependence of the magnetization is determined by
This paper is an attempt to examine all these questions ithe anisotropy associated with the nonspherical shape of the
terms of a simple model where the magnetic anisotropy ofranules.
the granules is related to their nonspherical shape and the In the following we shall assume that the Fe-granules are
distributions of the orientations and shapes of the granules iim the shape of prolate ellipsoids of rotation with semiaxes
real systems are taken into account statistically. This papea>b=c. In the absence of an external magnetic field the
continues the examination of the magnetic properties ofmagnetic moment of each single domain granule will be di-
nanocomposites with spherical ferromagnetic granules beguected along its major axis. An external magnetic field which
in Ref. 4. does not coincide in direction with this axis will tend to turn
the magnetic moment of the granule so that its direction
approaches that of the field. We define the equilibrium ori-
entation of the magnetic field by the angebetween its
direction and that of the major axis of a granule. Then the

We first examine the applicability of the superparamag-anisotropy energy can be written in the form
netic approximation. The magnetization of this system can
be independent of temperature only when the enéigy
required to change the orientation of the magnetic moments
of the individual single domain granules is much greater than
the thermal energkT. In the absence of an external mag- wherev=N,—N,, andN, andN, are the demagnetization

1. MAGNETIZATION OF NANOCOMPOSITES AT LOW
TEMPERATURES

1

WA:2

Iﬁvsinz 0,
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W, rel. units

o

LB = 3al4 B = nl4

. . ) . FIG. 2. The angley of inclination of the magnetic moment of ellipsoidal
FIG. 1. The magnetic energl( of a single domain ellipsoidal granule as a gjngje domain granules as a function of the field. The initial direction of the

function of the angley between its magnetic moment and the external mag-poment is determined by the orientation of the major axis of the ellipsoid
netic field for different values of the reduced fidig. The initial (h,=0) (the angleB). The monotonically increasing curve is the total magnetic

orientation of the magnetic moment i{g:= /4 (the magnetic moment al-  oment of a system of ellipsoidal granules with a uniform random distri-
ways “sits” in the right hand minimum of th&V(y) curve) or 3=3=/4 (in bution of the orientation angles.

afieldh,~1 the magnetic field “jumps” from the left hand minimum to the
one on the right

pendence of the total magnetic momevit of the system

coefficients of the ellipsoid along theanda axes. The total  (normalized to its saturation valuds) could be found by
magnetic energyV of the ellipsoid in an external magnetic Simple summatiorfover the orientations

field is given by M 1 (=
w1, mv(hv)=M—s=;fo cosy(h,,B)dg. €
vzilsvsm2 6—HIscosy, )

The resultingm,(h,) is also shown in Fig. 2. It can be seen
where the last term corresponds to the energy of the interadhat it still preserves a “memory” of the sudden “jumps” of
tion of the magnetic moment of the granule with the mag-the magnetic moments in half the granules at fieigs-1.
netic field andy is the angle between the magnetic momentClearly, this behavior of the system magnetization, which is
of the granule and the magnetic field. Since in equilibriuminconsistent with experiment, is related to the simplifying
(and neglecting thermal fluctuations; see belothe mag- assumption that all the granules are similar=(const). In
netic field, major axis of an ellipsoidal granule, and its mag-real systems, this condition is not, in general, satisfied, since
netic moment lie in a single plane, we haye 3— 6, where  they consist of granules with different shapes. Assuming for
B is the angle between the magnetic field and the major axisimplicity that all the granules are ellipsoidal, as before, but
of the ellipsoid. that the distribution of their volume fractions with respect to
The equilibrium angley(H,B) of orientation of the the parameter has a distribution/(»), then instead of Eq.
magnetic moment corresponds to the minimum of the energ{3) we obtain
(1) and can be found using the equation

sin2(,8—y)_ _2H
siny gy’

vmax  2H
m(H)=f m, — ¢ (v)dv, 4
(2) Ymin I sV
where the limits of integration are determined by the distri-
which determines the field dependence of this angle for grarbution of granule shapes.
ules with a specifiedby the angleB) orientation. It is clear As an example, let us consider the uniform distribution
that, as the field increases, the direction of the magnetic mo#(v) = (Ymax— ¥min) - fOr the case in which the shape of the
ment should approach that of the magnetic field. Howevergranules varies from sphericat,;,=0) to prolate ellipsoidal
the corresponding functiong(H,B) are different in two  with an axis ratio ofa/b=10 (v,,;,=5.9).Y The m(H) de-
cases:|B|< /2 (initial magnetic moment inclined at an pendence obtained for this case is shown in Fig. Blso
acute angle to the “future” magnetic fieldand |8|>n/2  shown there is the corresponding experimental dependence
(the same, but with an obtuse angl&his is related to the (curve 1) for the magnetization of the KESIO);_«
presence of two minima in the magnetic ener@y of a  (x=~0.5) system, measured @t=77K (Ref. 1. It is clear
granule in a weak magnetic fie(ffig.1). As Fig. 2 shows, in  that the theoretical dependence is the same as the experimen-
the first case the anglegapproaches zero monotonically and, tal one everywhere except at intermediate fielts
in the second, with a sudden change of sign corresponding te 10 kOe, where the calculated magnetizations are some-
a “jump” of the magnetic moment from one minimum of what higher(up to ~20%) than the experimental values.
the magnetic energgl) to the other. This model essentially applies To=0. Thus, the agreement
If the granules had the same shape=(const) and their obtained here, which is not based on using any fit param-
axes were distributed uniformly in space, then the field deeters, indicates that a Langevin model for the thermal fluc-

h
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1”6 The accuracy of the experiments in the magnetization
ol saturation region, however, is usually not sufficient for a
reliable determination ofv?). Thus, it makes sense to apply
the above recipe only to the initial segment of the experi-
mental curve in Fig. 3, which yieldsy~)~0.5.

As for the discrepancies between the calculated and ex-
perimentalm(H) curves at intermediate fields, they are re-
lated, first, to thermal fluctuations in the magnetic moment
and, second, to the fact that, at these fields, a granular metal
is a magnetic “glass.”

0.8r

0.6

04

0.2

2. NANOCOMPOSITES AS MAGNETIC GLASSES

0 10 20 H KOe 30 In the Langevin model, the magnetic anisotropy is ne-
’ glected and the granule energy is described by the second
FIG. 3. Field dependences of the magnetization of a granular ferromagneticZeemai term of Eq.(1). In this case, the depMI H of the
Ea‘esf_ia'(':e)i %—eg%e”Tme;;a}'(qegentgencet_forltﬂ? dtif;"zcmc ’(‘janocofmposnepotential well(for the magnetic momehts large compared
S)Z(terlT?zc))fléﬁipzoidél,Fe-granu)lt‘es Witheuo;:?c:fr: rar?csi;om gig(:r?bi?grfs gfrtﬁeirto the thermal engrgy On_ly in §trong magnetic fields
orientations and axis ratigsee text; 3—theoretical “infinitely slow” (ther- ~ H>KT/VIs. In low fields, this well is shallow, so that the
modynamig dependence for a system of ellipsoidal Fe-granules of equafluctuation thermal spread in the orientation angjesf the
vol.ume with uniform randqm distributions of their orientations and2 axis magnetic moments is large, and this leads to a strong tem-
ratios (see text corresponding to a reduced temperatureTE=KT/VIg perature dependence for the magnetization in low magnetic
0L fields. A nonspherical granule with a large magnetic anisot-
ropy is another matter. Here, as noted above, two situations
are possible: the initia{for H=0) magnetic moment of a
tuations of the magnetic moment is not applicable and thagranule directed along the large axis of an ellipsoid can be
the magnetic anisotropy associated with the shape of thiaclined to an applied field at an acute or obtuse angle. In the
granules must be taken into account. first case B< /2, see Fig. }, that minimum in the orienta-
The model considered here can be used to obtain simplgonal dependence of the magnetic enefdy in which the
formulas which might make it possible to obtain information magnetic moment of the granule/4 8) was initially “ar-
on the “average” granule shape beginning with experimenranged” is either separated from the symmetric second mini-
tal dependences for the magnetization of the granular metalsaum (y~g— ) by a high energy barrier of height V12
For this, we can use the simple solutions of Ef.for the  >KkT (in low magnetic fieldsor it is the only minimum(in
two limiting cases corresponding, respectively, to the initialhigh magnetic fields In both cases, it is a single deep mini-
segment of the magnetization curdlew fields) and to its ~ mum with a small effective spreati(cosy) in the orienta-
saturation regiorthigh fieldg. In the first case, the solution tions of the magnetic moment owing to thermal fluctuations:

of Eq. (1) has the form (KTIVIDY2<1, He<l,

cosy~cosB+ (1/2)h,sir? B, A(cosy)~ (KTIVIH) <1, H>1, (5
so that The magnetization of granules of this sort is essentially tem-
1 (= H perature independent.
m,,=;f cosy(B)dB= TR In the second casest>7/2), the situations for low and
0 s

high magnetic fields are similar to the first cagg<(w/2),
w0 H but there is a region of intermediate fieldhe same one
m(H)=J m,(H/v)y(v)dv= T(u*). where the magnetic moment of a granule jumps from one
0 s initial energy minimum into the othgwhere the two minima

This last equation makes it possible to determine the momert the energy\ are separated by a low barrigvhose height

(v~1 of the distribution. In the second case, the solution ofdoes entirely to zero for some value laf cf. Fig. 1). Here
Eq. (1) has the form the initial minimum also becomes shallow. In this range of

fields, the granule magnetic moment can no longer be re-
garded as localized in one of the energy minima. It can be in
either with finite probability. The result of a measurement of
the magnetization will depend on the time allotted to the

1 ! i’ 2
cosy~ 2h,2,SI B,

so that measurement. In “fast” measurements, the magnetic mo-
I )2 s )2 ment will not be able to undergo a transition from one mini-
m,=1— ”Z(E) : m(H)=1—(v2>(m) : mum to the other, and the effective spread in the actual val-

ues of A(cosy) is related only to the initial minimum. In
which makes it possible to determine the mom@rth of the  “slow” measurements, the magnetic moment is “smeared
distribution. out” (owing to thermal fluctuationsover the two minima.
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Thus, the magnetization obtained from fast measuremenis a real experiment, it also lies above the theoretical fast
should differ from that obtained from slow measurementsfield dependencéurve2). The difference between curv8s
The characteristic time for the jump in the magnetic momentand1, =50% for a field ofH=5 kOe, provides an estimate
is of the change in the magnetization owing to créeper an

infinite time).
7(H)~ 79 exd SW(H)/KT],

wherery~mdeH is the period of the precession in the mag-
netic moment andW(H) is the barrier height between the 3. THE ROLE OF CORRELATIONS IN THE MAGNETIZATION
energy minima, which depends on the fiél@he height of ) _ o
the initial barrier is SW(0)~VI2~10*~10°K and the In intermediate magnetic fieldH=1-10 _kOe for the
height of the final barrier(in a magnetic fieldH>1,  System under consideration hgréhe magnetic anisotropy
~1kOe) is SW()~VHI~10*—10°K, so that any mea- NO longer plays a decisive role, and the ordering influence of
surements in low or high fields are fast. A jump time of the external magnetic field no longer leads to a “forced”
7~1s is obtained forSW(H)~20kT< sW(0), which oc- alignment of the magnetic moments of all the granules along
curs only within a narrow range of intermediate fields, the field. Thus, the magnetic moment of each granule can,
H=1-10kOe(see Fig. 1. However, even in this case, the MOre or less, freely align itself along the direction of the
measurements will not really be slow, since when there is &¢al magnetic field produced at that granule by the rest of
large spread in the orientations, shapes, and volumes of e granules. Thi_s leads to correlation effects which influence
granules, the condition for slowness at each value of the fielhe total magnetic moment of the systdm. o
will be satisfied only for an isolated group of granules. ~ For simplicity, we shall consider a system consisting of
This all means that it is almost impossible to actua"yldentlcal granules in the following. Since the shape anisot-
observe a slow(i.e., thermodynamically equilibriupnfield ~ FOPY is now unimportant, we can assume them to be identical
dependence of the magnetization of a nanocomposite. HovgPheres with magnetic momenisof different magnitudes.
ever, it is possible to try to detect magnetization créep, a "€ magnetic moment of theth granule, u;, precesses
slow change in the magnetization with tijria the course of ~about the direction of the magnetic field at a frequency
prolonged measurements in a constant field. The magnitude €Hi/MeC, whereH;=H+ 6H; is the sum of the external
of the possible creep can be estimated by comparing thtield and the fieldSH; created by all the other granules at the
above fast dependence with the limiting form of the magneSite of the granule being considered. Including the fiétt]
tization as a function of field for infinitely slow measure- Means taking the interaction between the magnetic moments
ments. In the latter case, the field dependence of the magn@f the granules into account. For granules in a dielectric ma-
tization m4,(H) of a group of granules whose orientation f[rix, the_ most important interaction is the long range Qipole
and shape are characterized by the paramegeasd » is  interaction, whose energypn the order ofu?/13, wherel is

given by the average distance between granutes be fully compa-
rable to the thermal energyT. It has been showrthat the
™ (27 W(y,¢) dipole interaction among granules consisting of a large num-
va(H)“LzoL):OeXF{_T}Cos“ydﬂ* ®)  per of “magnetic” atoms can be calculated by replacing

them with effective magnetic moments located at the centers
where one of the arguments in E@) for the granule energy of mass of the granules.
(the angled) is replaced, for convenience in taking the inte- The disorientation anglé between the directions of the
gral, by the azimuthal angle of the magnetic momefit, magnetic moments of neighboring granules, which deter-
which is related to the angle®, y, and B8 by cosf#  mines the probability of intergranular electron tunnelling, is
=cosycospB+sinysingcos¢ and d(=sinydyd¢ is the related to their orientation angles , and ¢, , by
solid angle(In the Langevin model, which neglects the mag-
netic anisotropy, the energy depends only ony, so that

Eq. (6) reduces to the Langevin function. . Because of random perturbations of thermal origin, the
Equation(6) is valid for a system of granules in thermo- precessional motion of the magnetic moments of the gran-
dynamic equilibrium. Averages can be taken over_the orieNyles is subject to random interruptions which, in general,
tations and shapes of the granules, as before, using(8qgs. change the angles of inclination of the precessigp.f, as
and(4). Since the effective temperatufg=kT/VI2 depends well as its phaséthe anglesp; ,). Since changing the angle
on the granule volume/ in this case, we have take¥t  of jnclination of a magnetic moment requires a much greater
=const for all the granules in order to simplify the calcula- expenditure of energy than changing the phase of the preces-
tions. The infinitely slow field dependencerafH) obtained sion, it is natural to assume that the timig over which
in this way forT;=0.1 (for V=10"**c’ this corresponds coherent precession is maintained is much shorter than the
to T~200K) is plotted in Fig. 3(curve 3). The above re- time 7 over which the angles of inclination are maintained
marks imply that it should not agree with experiment. How- constanf) Thus, assuming that the anglés , are not corre-

ever, as might be predicted, the thermodynamidi) de-  |ated, we can average E(7) over a timers<t<r, and
pendence(curve 3) does lie above the experimental curve gptain

everywhere and, for fields<tH<10kOe, where the mag-
netic moment is spread out between the two energy minima  cosf=cosy; COSYy». (8

COSH= COSy4 COSy,+SiNy, SiNy, COY p1— ¢»). (7)
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Averaging Eq.(8) over timest> 7, is equivalent to av-

eraging over space.e., over different granules
(cosf) =(cosy; COSY,).

©)

Here cosy, ,=m(H) + 8 ,, wheres; is the local fluctuation

E. Z. Me likhov

1
ri=5pm ()X Burf. (13)

The magnetic field dependence of the correlation radius
r, is, therefore, determined by the derivative of the magne-

associated with the difference between the local field and theézation as a function of the magnetic field. Since the latter

average(naturally, on the averagés;)=0 over the gran-
ules andm(H) is the reducednormalized to unity magne-
tization of the system.

The correlation of the fluctuations of this type for differ-
ent granules can be described using the correlator

(5 ak>=<5$>exp( -

wherer , is the correlation radius andy is the distance
between granulesandk. It is easy to see that

(87)=([cosy;—m(H)]?)=(cos y)—m?(H).
Finally,

(cosf)=m?(H)+[(cos y)—m?(H)]exp(—/Ir.),
(10

lik

saturates in high fields, an increase in the magnetic field
leads to a reduction in the correlation radius, so that in the
magnetization saturation regime, the correlations of the mag-
netic moments of the granules can be neglected.

For estimating the correlation radius we note t{#a
~(1/®), so that 2By ra~1//. As for the derivative
m’(H), Fig. 3 implies tham’(H)=10%-10°0e % Ina
system consisting of granules with different sizes, the corre-
lation of the magnetic moments is associated mainly with the
large granules. They have large magnetic momepis,
=(10°-10") ug, and “align” the magnetic moments of the
smaller surrounding granules to themselves. For an average
distance between the large and small granules’of30 A
we findr,~10""-10 ®cm.

Correlation effects may be important in gigantic mag-

where/ is the distance between granules 1 and 2. This im#etic resistance effects in ferromagnetic materials made up of
plies, in particular, that when there is no correlation betweergranulated meta® A separate paper will be devoted to this

the angles of inclinationy, , (r,=0), the disorientation
anglef is given simply by<c050>=_mz(H).

The field at theith granule isH;=H+ éH;, where the
collective contribution to the external field,dH;
=u2Bi Sk, is determined by the “geometryl(through the
“geometric” parameters3;,) and the fluctuations, of the
neighboring granules. Singeosy)=m(H;), we have co%,
=m(H+ sH;)~m(H)+ sH; m’(H), which implies that

S=pm' (H)X Bid, (11

question.
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DElectron microscope studies show that the granules of a real composite are

where m’(H) is the derivative of the magnetization as a nonspherical, and the ratio of their maximum and minimum dimensions

function of the field.

On the other hand, the fluctuatiods (and, thereby, the
correlation radiug ,) are determined by the intensity of the
intergranular interaction and the geometne., the mutual
positions of the granulgs

8= Ny (12

In the continuum approximation, which is applicable if

can vary by an order of magnitude. The variant examined here must be
considered as purely illustrative. Note, however, that calculations for other,
not very “exotic” distributions (v), are qualitatively similar to those
shown in the text.

IThe calculated curve “joins” the absolute magnitudes of the magnetic
field beginning withl ;=1700 G.

SCorrelations in a system of superparamagnétiangevin granules have
been discussed in Ref. 2, which we shall follow here.

“Note, however, that for ferromagnetic granules with large effective mo-
ments, the corresponding fluctuations are small.

r,>/ (otherwise, the correlations of the magnetic moments

can be neglectgdwe can introduce a smooth function of
position, 8= §(r), such thats(r; ) = ;. Then,

6~0 2 Mk)+(V5)(E Aikrik)+%(V25)Z NikT ik
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A solution is obtained for the general problem of the nonstationary interaction of backward
volume magnetostatic waves in films of yttrium-iron garnet with local parametric pumping. In the
case of a large pump regiohs>\, where\ is the wavelength of the backward volume
magnetostatic waves, the problem reduces to a system of truncated equations for two packets of
counter propagating waves. In the opposite casey, the exact problem of parametric

interactions of the eigenmodes of a ferrite filooth counterpropagating and in the same diregtion

is solved numerically. Both cases are studied experimentally and good qualitative and
quantitative agreement is obtained with the theory. For the first time, the reversal of a wave front
and the time reversal of the shape of backward volume magnetostatic wave pulses are
observed and a change in the propagation time for the peak of the signal pulse and a reduction
in its width owing to pumping are recorded. Two operating regimes are identified for a
nonstationary parametric backward volume magnetostatic wave amplifier with local pumping,
which differ in the ratio of the duration of the pump pulse to the transit time for the

wave through the local pump region, and the effect of the parametric excitation of two-
dimensional spin waves on the interaction of backward volume magnetostatic waves with a local
nonstationary parametric pump is determined. 1899 American Institute of Physics.
[S1063-776(199)02512-3

1. INTRODUCTION into account in the calculatiodfs.In addition to two-
dimensional spin waves, a rich spectrum of long wavelength,
Wave interactions in solids are widely used to study thedipole-exchange spin, din accordance with the magneto-
physical properties of solids, as well as for creating devicestatic approximation often used to analyze thenmagneto-
for a wide range of purposes. For example, an optical parastatic waves, can be excited in the ferrites. In high quality
metric interaction has been used to amplify waves and tderrite films of yttrium-iron garnetYIG), the mean free path
reverse their wave fronfs2 Here the limited spatial and for the latter is hundreds of times longer and the localization
temporal extents of the region where the waves interact witlof the pump begins to play an important role. It was first
the pump, i.e., its localization and nonstationarity, are oftaken into account in parametric excitation of spin waves in
some importance. Ref. 5, and was, subsequently to Ref. 6, taken into account
In general, every interaction is local, since it actually everywhere~® Until recently, this accounting was quite lim-
takes place within a limited region of space. However, local-ted; only the change in the excitation threshold was included
ization does not always have a significant effect on the chamnder stationary pump conditions. However, as noted repeat-
acteristics of the interaction. If we are concerned with a paraedly before thaf, the pumping cannot be stationary during
metric wave interaction or Raman scattering, then localizaparametric amplification of long wavelength oscillations and
tion becomes important only when the dimensiéref the  waves in ferromagnetic materials; its duration must be con-
interaction region are comparable to the mean free path dfiderably shorter than the characteristic relaxation times for
the waves. Then all the parameters of the interaction changexchange two-dimensional spin waves. This happens be-
beginning with the threshold for wave excitation and endingcause of the multimode character of the spin-wave spectrum:
with such technical characteristics as the transmission bander a single frequency in the crystal there is an infinite set of
pass, which are now determined by the sizaf the space eigenmodes and waves with different magnitudes and direc-
(i.e., the active regionwhere it takes place. In optics, where tions of the wave vector. In order to prevent two-dimensional
the mean free path of the waves in fiber optics can be as longpin waves from being excited from the thermal level to
as tens of kilometersparametric pumping is always local levels detectable in an experiment, nonstationary pumping is
and this fact is taken into account in the analysis of nonlineanecessary. Using nonstationary pumping makes it possible to
interactions, as well as in their practical applicatiofi§In  operate beyond the threshold for generation of magnetostatic
magnetic crystals, especially the ferrites, two-dimensionalvaves, which ensures much higher gains and conversion co-
exchange spin waves with a short mean free path efficients for these waves. A first brief discussion of the in-
(<10 2mm) are most often excited and, for quite under-teraction of travelling magnetostatic waves with local non-
standable reasons, the pump localization is usually not takestationary pumping, with the problem of the reversal of the

1063-7761/99/89(12)/11/$15.00 1189 © 1999 American Institute of Physics
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wave front of backward volume magnetostatic waves in YIG 6 R, P P,

flms as an example, was given by Gordat,al® It is FT F1 P
known that backward volume magnetostatic waves propa- / /
gate in ferrite films with saturation magnetization along the € 3 g
direction of the superposed magnetization fielgl and are @V/ &
characterized by opposite directions of the phase and group¢ 4

velocity vectors'! We have chosen them for experimental

study because backward volume magnetostatic waves are re- T 3

ciprocal with respect to reversal of the direction of the wave

vector and can also interact efficiently with longitudinal elec-FIG. 1. The experimental modell, 3—input and output antennas;
tomagnetic pumping at twice the frequerktyBackward _ 2 4ydlr or e pure magnelc ek pooor sbsiter st
volume magnetostatic waves have all the characteristic profindicates the direction of propagation of the input signal.

erties of magnetostatic waves and all the conclusions drawn

here are directly applicable to any type of magnetostatic . . o
wave. tained here can be used to describe the parametric excitation

This paper is a generalization of Ref. 10 to the case oPf any other waves, including light, for which it is only nec-
backward, as well as forward waves. Here we present thESSary to change the interaction coefficients of the waves; all
of the conclusions of this paper remain valid. The interaction

results of a theoretical and experimental study of the para X X .
metric interaction of incident magnetostatic waves with a°f magnetostatic waves with a local parametric pump may be
lied in spin-wave magnetoelectrortftsor amplifying

local nonstationary, longitudinal pump with frequenay, ~ @PP : , _
whose variable magnetic field vectby is collinear with a waves and reversing their wave fronts, for correlation pro-

constant magnetic field vectd,. This interaction causes C€SSING Of signals, and correcting the wave front and shape
amplification of a forward wave with frequenay, at the Of Pulses, as is done in adaptive optics for echo genera-

exit from the active region, and an idling backward wave!io". and, finally, for physical research on nonlinear pro-
(parametric echiocounter to the forward wave appears at theC€SSes In magnetic and other materials. In fact, spin-wave

entrance to the active region with the complex conjugatetudies are quite simple; they are done in the well explored
amplitude and a frequenay, that obeys the condition for a and accessible microwave bands with extremely moderate

parametric resonancey,=w,— ;. In the case of active PUMP POWETS oP,~1W. Thus, they provide a convenient
regions with very short lengts on the order of or less than Model for many nonlinear processes in other media and at
the magnetostatic wavelength=27/k, a passing idling other wavelengths, including optical wavelengths, that re-

wave that obeys the same parametric resonance conditiof&li'® complicated apparatus. For various reasons, some op-

may appear along with the counterpropagating wave puical processes h.ave'not yet been obsgrved, such'as wave
propagate in the same direction as the forward wave. front reversal during first order parametric processsgng

In Sec. 2 of this paper we describe the experimenta?o difficulties in satisfying the conservation laws$n optics,

setup. Section 3 contains the results of a theoretical analysfddher order processes, mainly of second oF(me_studied.
of the interaction of waves with local parametric pumping,These difficulties do not arise when magnetostatic waves are

including a model based on solving the truncated equation's!_s‘?‘_j%0 They have many other advantages, including the pos-
for coupled wave-15 that is valid forl>\. An analytic s!b|I|ty of exciting forward aqd backward_wa\_/amth oppo-
solution of these equations for nonstationary pumping is obSit® group and phase velocitiesnd creating interaction re-
tained in terms of Bessel functions of an imaginary argu-9ions with dimensions on the order of, or smaller than, the
ment. These solutions are used to analyze the dependences/¥velength, i.e., simultaneous excitation of co- and counter-
the gain coefficienK , for the forward wave and the conver- Propagating waves.
sion coefficienK, for conversion of the forward into a back-
ward wave on the pump pow®,, pump pulse duratiom,,
and signal duratiorrg, as well as on the mutual position of
the pulses. Some nontrivial consequences of the interaction In these experiments we used to experimental models
of the incident wave with a nonstationary pump are foundwith different lengthd of the active region. Model (Fig. 1)
compression of the signal pulse and a change in the propas a structure consisting of three thin metallic conductors in
gation time for its peak. In the opposite case of a small activelirect contact with a rectangular sample of YIG film on a
region,l <\, the interactions of co- and counterpropagatinggadolinium-gallium garnet substrate, a waveguide for back-
magnetostatic waves are analyzed using a numerical solutiomard volume magnetostatic waves. The dimensions of the
of the equations of motion for the amplitudes of spin wavessample in the plane of the film were X@8 mn? and the
in momentum space. The results of an experimental study dflm thickness was 4.9um. The waveguide is oriented with
the parametric interaction of magnetostatic waves with a loits long side perpendicular to the axes of the conductors and
cal, nonstationary pump are presented in Sec. 4. The data agparallel to the direction of the magnetization figtg). The
in good agreement with the theory. conductors are made of silver wire with a diametér
Regarding the significance of these results we can say50um and are placed 3.75 mm apart from one another on
the following. The solution for the parametric interaction of the free surface of a shielded polycor ¢8%) plate. The
magnetostatic waves with a local, nonstationary pump obplate is 0.5 mm thick. The outer conductors, which perform

2. DESCRIPTION OF THE EXPERIMENTAL MODEL AND
MEASUREMENT TECHNIQUES
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the function of exciting and receiving the magnetostaticH,+ 22 Oe. This substitution is justified by the need to ac-
waves, serve as antennas_for the magnetostatic waves withcgunt for the influence of the anisotropy of the actual ferrite
separation between the input and output antennad of sample and corresponds to a rather typical value of the total

=7.5mm. Antennas of this sort excite waves propagatingie|d of the cubic and uniaxial anisotropies for YIG films
along the normals to their axes most efficiently. In this casegrown in the(111) plane,—86 Oe.

these waves are backward vo_Iume magnetostgtic waves With |, the following, it is precisely the effective magnetiza-
wave numberks/d. The middle conductor is the pump ion field which was used for determining all the parameters
inductor and serves to create a longitudinal, high frequencyy¢ ine ackward volume magnetostatic wave. An elementary
magnetic pump fieldh,, |Hg in the film. It is made in the form

S calculation indicates that here the working frequenc
of a half wave resonator, open at the ends, which is tuned to ¢ q y

w=2m-4720MHz corresponds to a wave nhumber
the pump frequency and has a lo@efactor of Q=20. The k=155cni L, a group velocity = — 2.21 cmjus, and a de-

small width of the inductor, plus the fact that the resonan N ! .
. . ) ay of T, =339 ns for propagation from the input to the out-
frequency of the latter is considerably higher than that of the . . :
ut antenna. Given the actual weak inhomogeneity of the

signal, ensures that it has little effect on the propagation o tization field. th lculated delav is i d

the backward volume magnetostatic wave when there is nglagtne 'fr? ![ch]n 1€ld, the cta lcu al € fesagG's n _?ﬁo r?gt[ee;

pumping. No reflection of the incident wave from this struc-Ment Wi € experimental vaiue o ns. 1he shortes
duration of the signal pulses at the input antenna was 15 ns

ture was observed. ) . o o
During the measurements, microwave pulses with dural the experiments. The limited actual transmission band-

tions of 15 ns or more are incident on the antefir&ig. 1) width of the system and dispersion effects distort the back-
and generate a packet of backward volume magnetostat\?;‘ard volume magnetostatic wave pulse shape and transform
waves which propagate along the model. When the pump i from a rectangular to a bell shape.

turned on, a region deve|ops around the induétar which The width of the ferromagnetic resonance line for our
the pump magnetic fieltd, interacts parametrically with the Samples was 2H=0.4 Oe. The relaxation parameter for the
spin subsystem of the ferromagnetic material. The effectivéackward volume magnetostatic waves WasgAH=3.52
lengthl of this region along the long side of the waveguide is<10°s™! and the calculated loss for a backward volume
determined mainly by the diametdrof the conductor and magnetostatic wave ov@ 1 mmpath is 1.6 dB.

the thickness and dielectric constant of the substrate, and is The experiment was done in a linear regime with respect
usually several timesl. The exact value of can be deter- to the power of the input signals. The pulsed power at the
mined by the method to be described in paragraph 10 of Seantennal (Fig. 1) was less thaP;,=5 mW.

3 of this paper. For this model=220um. The amplifica- As a preliminary estimate of the effect of two-
tion and reversal of the spin waves take place within thisdimensional exchange spin waves on our results, we have
region(referred to as the active region below measured the threshold for parametric generation of these

It was possible to increase the interaction length to 3.3yaves. A weak continuous signal with a frequenay
mm in model Il by replacing the microcavity pump inductor « , /2 was applied to the input of the model. After pumping
(Fig. 1) by an open dielectric resonator. The parameters ofpove the threshold for two-dimensional spin waves was ap-
the excitation, transmission, and receiver systems for thﬁlied the losses of the backward volume magnetostatic

?hackwl?rd vo(;uznle magnetostatic waves were identical 1Qy4yes increased owing to scattering on two-dimensional spin
ose for model I.

point on the dispersion curve for the backward volume,. . .
- . ime of th m | nd th m ration was incr
magnetostatic waves. It is known that, far=0, the fre- time of the pump pulse, and the pump duration was increased

. . to 10 us for low power levels above critical in order to
guencyw of the backward volume magnetostatic waves is k N .
establish this time more precisely. The measurements

bounded by the ferromagnetic resonance frequengy

—gJ(Hot 47M)H, and that fork—o,  approaches a shoyved, for example, t.hat for n_10de| Il thg threshold for gen-
lower bound ofw,=gH,. HereM is the saturation magne- eraU_on of two_—dlmensmnal spin waves is 10 _mW for the
tization andg is the gyromagnetic ratio for the electron spin. Maximum attainable pump power in our experime?max

Ho was chosen so that, even for backward volume magneto?5W' )

static waves with frequencies near the upper bownd the ~ A word about the measurement technique and accuracy:
band where they exist excluded the possibility of a first order! mes (the signal delayr, and its width and shift caused by
parametric decay. For this, it is enough that exceed twice ~the pump were measured on a wide band analog oscillo-
the lower bound of the frequency band for the spin wavesSCOPe. Time intervals shorter than 50 ns were determined
wy . The upper frequency limib, for the backward volume with an accuracy oft 0.5ns. The relative amplitude of the
magnetostatic waves was determined from the amplitudeoutput signals was measured by an insertion method using a
frequency characteristic of the experimental model and, foprecision polarization attenuator with an accuracy of
Ho=10200e, it equalled #-4775MHz. For our film, =*0.5dB. Pump power with a pulse duration of from 10 ns to
47M=1750G, and a calculation yields the above value ofl0 us at a repetition rate of 300 Hz was also varied using a
the frequency of the ferromagnetic resonance whignis  polarization attenuator with an accuracy of better than 0.1
replaced by the effectivésuperposedmagnetization field dB.
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with k; andk,= —k,, interact. Ad decreases, the number of
waves that actually interacts rises, and now, besides 1 and 2,
waves 3 and 6, and 4 and 5, for whitkss—k,d <Kk
~2x/l, also interact, but the interacting waves are, as be-
fore, counterpropagating. Finally, fornZl =|k,|=|k5|, the
interaction of copropagating waves moving in the same di-
rection(e.g., 3 and 5, or 4 and 6 in Fig) Becomes possible.
The above condition implies that, because of the inhomoge-
L 0 & X neity of the pumping, a co_propagating interaction is possible
only for sized of the pumping region that are on the order of
FIG. 2. Frequencies and wave numbers of backward volume magnetostatthe wavelength of the backward volume magnetostatic
waves which interact parametrically through nonstationary local pumpingwaves,)\zzﬂ./k_ It is this circumstance which makes it ex-
;Z?afi':svc’;c;uwe 's the dispersion curve of the backward volume magn&go a1y difficult to observe these sorts of effects in nonlinear
optics, where they have not even been studied theoreti-
cally.®* The presence of a copropagating interaction along
with the counterpropagating interaction leads to the propaga-
tion, in both the forward and backward directions, of two
1. The equation of motion for the amplitudes of  waves with different phases relative to the pump phése
waves travelling along the axis acted on by a spatially example, wave 4 may develop as a result of an interaction
inhomogeneous longitudinal pump can be written in thewith wave 5 and with wave)6In the experiment, because of

aVZ:aﬁ:ab

3. THEORY

form®® the randomness in the pump phase, this leads to beating of
Je the output signals.
k- _j o Ck—TiCit > N exp( —i @pt) Vi Crr » It _is _clear from all of the_ above that a correct theoretic_al
Jt K’ description of the parametric wave interaction under the in-

(1) fluence of nonuniform pumping will require some extremely
wherew, andI', are, respectively, the frequency and damp-careful simplifications of the equation of motidid). For
ing parameter for the spin wave aWj, is the parametric €xample, the standard approach using truncated equations for
interaction coefficient for waves with wave vectérandk’.  the wave packet§ '>*®1%is valid, strictly speaking, only
For the case of parametric amplification of backward volumevhen the copropagating interaction is included for active re-
magnetostatic waves in a longitudinally magnetized YIGgions of lengthi>X\: only in this case can we assume that

film of interest to us, the spread of the wave numbers in the packet ohkls
) <k. Forl=\, the wave packet approximation is valid only
Voo, = wywy —(gHo) @ for low pump levelqsubstantially below criticalin the pres-
T Ao ence of input signals considerably above the thermal level

for the excited waves. In general, foe\, Eq. (1) can only
be solved numerically, which we shall do, despite the te-
diousness and lack of clarity.

where hy is the kth Fourier harmonic of the nonuniform
pump fieldh,(2),

1 _ 2. First we shall examine the case of long pumping (
hk:Vf hp(z)exp(—ikz)dV, (3 >\). As shown above, then it is possible to use a system of
v truncated equations for the wave packét®°
andV is the volume of the ferrite film. Truncated equations are obtained from Eq.by trans-

Equation(1) describes the parametric coupling of wavesforming to thez-representatiof> Assuming that two narrow
with wave number& andk’. The Fourier harmonib . in packets of waves are excited near waves 1 atgk@ Fig. 2
Eg. (1) can be regarded as the amplitude of a pump wavevith wave vectork, andk, and frequencies; andw, such
with an effective wave vectdk,=k+k’. According to Eq. that k;+k,=0 and w;+w,=w,, and taking the inverse
(3), the amplitude of the effective pump wave depends on théourier transform of Eq(1), we obtain a system of equations
scale length for localization of the pumping. For uniform for the slowly varying complex amplitude@nvelopep of
pumping, | —o and all the Fourier harmonics go to zero, the signala,(z,t) and idlera,(z,t) waves:
except the uniform one witk,=0; this implies the possi- ; 5
bility of a parametric coupling only for two wave&+k’ 7 o *
=k,=0, i.e..k=—Kk’. In principle, for nonuniform pumping (at Flatvag Ja=hpVas
h,(2), waves with arbitrary effectivk, exist, but, in reality, (4)
their amplitudes differ from zero only fok,<2#/I. This (£+F _y 9
circumstance leads to a substantial change in the characterof (gt  ~ 2 "24z
the parametric interaction of the waves as the pumpingi: .
length | is varied. In order to explain this, we turn to the FOF the case of parallel pumping of backward volume mag-
dispersion characteristics of the backward volume magnetdietostatic waves of interest to ub, =1’ =I'y=I' =T,
static waves shown in Fig. 2. With homogeneous pumpingy1=Vk,=V2=V,,=V is the group velocity of the waves in
only waves 1 and 2, which propagate counter to one anotheéhe packets, an¥; ,= Vi, k,=V.

a; = thIZal .




JETP 89 (6), December 1999

The system of Eqg4) has been studied in most detail in
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The equations foG;; were solved by the Laplace trans-

Ref. 14. It has been solved in the case where the spatidrm method in the time domain, which yielded a system of

pumping profile has the form of a hyperbolic secany(z)

ordinary differential equations whose solution presents no

=hyo/cosh@l). On the other hand, in the case of paramag-special difficulty. After in inverse Laplace transform, we fi-

netic amplification of magnetostatic waves with a long activenally obtain
region, >\ (model Il, where the active region is created

- : . . . p z 7'\ z 7
using an open dielectric resongtathe spatial pumping pro- Gy(t,z2,2)=—G|pt+y|-——|, -, —
file has a shape closer to rectangular. Since the pumping Vi A
shape has a strong influen_ce on the OL_Jtput sign_al pr_16file, X exp — o t+k (z—2')),
for best correspondence with the experimental situation we )
have assumed that the pump field amplitdggeis locally , p 7'\ z 7'
uniform within an active region €z<I| and equal to zero Ga(t,z,2")= \/WH S A

1v2

outside it.
We shall also assume that the pump is applied to the film
at timet=0 and that it has a rectangular shape of duration
7,. Signal and idler waves with arbitrary shapes can be in'¢"®

Xexp —w t+k (z—2")).

)

cident on the left £<0) and right g=1). Thus, the initial
and boundary conditions for the system of E@Y. can be
written in the form

a(t=0)=al(2),
aj(t=0)=ad*(2), aj(z=l)=a3*(1).

3. The solution of Eq(4) with Eq. (5) was obtained by
the Green functionG;(t,z,z2") method?° here the ampli-
tudes of the signal and idler waves are given by

a,(z=0)=a3(t),

©)

t [
al(t,z)=fodt’Jodz’[Gll(t—t’,z,z’)Fl(t’,z’)

+G(t—t',2,2" )F,(t",2')], (6)

t [
a’z‘(t,z)zfodt’fodz’[621(t—t’,z,z’)Fl(t’,z’)

+G(t—t,2,2')F,(t',2')],
where
Fi(t,2)=a3(2) 8(t) +v,ai(t) 8(2),
Fo(t,2)=a%* (2) 8(t) +v,a5* (1) 8(1 —z).

Here 6(x) is the Dirac delta function.
Now, in place of Eqs(4) and(5) we have to solve sim-

pler equations for the four Green functions with zero bound-

ary and initial conditions:

(9+F+ i
1le7Z

It Glj[:VhpG21+ 5(t)5(Z—Z'),

1% Jd
(E—FI‘Z_VZE) GZl:VhpG:Ll!

; ™
E'FFZ_VZ

J
0z

)GZZZVhpG12+ 8(t)8(z—2'),

J
—+
at

It is clear from Eq.(7) that it is actually necessary to solve

J
F1+V15) G12:VhpG22.

H(r8,0) =% 3 [Pan(m )= Pan(7.80)

n=0
—Poni2(7,v0) + Panio(7,60) ],
o
G(n.6,¢") =5 2 [Pansa(T,@n) = Pansa(7.80)
—Pons1(7,vn) +Ponia(7,60)]
for (<¢’ and
G(rl)= 810t 5 3 [Pors(raan)

—Ponia(7,8n) = Ponga(7,vn)
+Pon+3(7,0n)]

for {>¢'. In these equations

g n/2
|n(0'\/7'2—§2),

e

Pn(7.6)=0(7— &)

6(x) is the Heaviside unit function,,(x) is the Bessel func-
tion with an imaginary argument, and

ap=2n+|{—¢'|, Bi=2n+2—(¢+¢),

Yn=2n+({+{"), 5n:2n+2_|§_§,|'
\/V1V2, P (vitvo)l’ g Vitvy'
Vil tvoly R

wr_ V1+V2 _V]_+V2.

4. The expressions for the Green functioi@$ together
with Egs.(6) are the general solution for the parametric in-
teraction of waves with nonstationary, locally-uniform para-
metric pumping for an interaction regide>\. In deriving
them, we have not imposed any restrictions on the form of
the initial and boundary conditions, or on the duration and
power of the pump pulse. It can be shown that our solution

only one pair of equations, since the solution of the other igjields all the particular cases obtained befbre®81°For

obtained automatically on switching the subscripts 2 and
making the substitutiong—1—-2z, z' —1-2'.

example, an expression for the generation threshold follows
from Eq. (8) in the limit t—«. As a result, we obtain a
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generalization of the threshold formula for parallel pumpingvolume magnetostatic waves with parametric pumping, the
first derived, as far as we know, in Ref. 5 for identical wavesamplitudes of the variable magnetic pump fields must be an

(vi=vo=v; I'1=T=0): order of magnitude higher than the excitation thresholds for
Fotvola)2 the two-dimensional spin waves. Here the amplitudes of the
ZZM 2 two-dimensional spin waves increase exponentially, sup-
(hp V) ViVoX©, C) . . L .
4vyvy pressing (owing to phase limiting and other nonlinear

mechanisms19 the parametric coupling of the pump with
other degrees of freedom and damping them further, so that
2vvox=— (vl vl ptanxl), w/2l<xy=ll. the excitation threshold for the backward volume magneto-

The gain coefficient for a signal passing from the input to theStat'C waves cannot be reached at all, even for pump fields at

. e . Jhese level§:?? These undesired effects can be eliminated
output of the active region in the stationary subthreshol without letting the amplitudes of the two-dimensional spin
regime ¢—«,h,<h,,) is given by 9 P P

waves reach significant values, by, for example, using a
QO -1 pulsed pump oscillatdr with a maximum pulse length
K,=|cosyo?+Q°—i ——=sinJo*+0?| Tomax<I . Tpmax Certainly depends on the pump power
Vo +Q 10 (the higherP, is, the more rapidly the amplitude of the two-
(10 dimensional spin waves increasesd, as we shall see be-
whereQ)=(Aw+iI')(1/v), which expression is a generali- low, for real YIG films andP,~1 W, 7, 5, Should not ex-
zation of the one obtained in Ref. 6 for the resonaee  ceed a few tens of nanoseconds.
=w—wp/2=0. Strong dispersion is yet another feature of backward vol-
Without going into detailed comparisons here, we noteume magnetostatic wav&sTheir diffusion length is only a
only that we have obtained the same results as Ref. 3 fdiew millimeters?® Thus, as a signal pulse propagates from
stationary pumping and zero initial conditions, as Ref. 21 forthe input converter to the active region, it loses its initial
zero initial conditions, as Refs. 8 and 19 for stationary initialrectangular shape and becomes bell shapdthis is facili-
and boundary conditions, as Ref. 14 for uniformi—() tated by the finite bandpass of the input converters, which is
pumping, and so on, which confirms the validity and gener-usually less than 100 MHz, comparable to the reciprocal of
ality of our results. the duration of the nanosecond pulses. Thus, besides rectan-
5. The purpose of this paper is to study parametric efgular signal pulse shapes, we have examined bell shaped
fects in detail, with backward volume magnetostatic wavesones with a hyperbolic secant form, 1/cosh(1/7§, where
in YIG ferrite films as an example. Thus, we shall begin by is the full width of the bell shaped pulse at a level of
discussing the peculiarities of that case. First, let us examinapproximately 0.7 times the maximum. In practiceg, is
the effect of the multiwave character of the ferrite sample. Atclose to the width of the initial rectangular pulse.
the frequencies of the pump, signal, and idler, there is an 6. Because of the complexity of Eq&) and(8), at first
infinite set of eigenmodes and waves that differ in the magwe shall carry out the subsequent analysis for two limiting
nitude and direction of the wave vectkr Only in an ideal cases corresponding to the two operating regimes of a para-
crystal and only for small amplitudes are these waves indemetric amplifier with local pumping. The first regime is qua-
pendent. When the wave amplitudes are finite, various kindsistationary, with a pump pulse duratiep that is consider-
of nonlinear effects become significant, in particular, theably longer than the transit timg for the signal across an
parametric effects that form the basis of the effects considactive region of length, i.e., 7,> 7 =I/v. Here, however,
ered in this paper. At the same time, the conservation lawthe restrictions on, and! should be kept in mind: because
for parametric interactionsk+k,=k, and w;+ w,=wp) of the multiwave property of the ferrite filmz,< 7y, nax
simultaneously permit a parametric coupling between an in<I'"%, while |>\ in the case where there is no copropagat-
finite number of eigenmodes and waves in ferrite films; theiring interaction and the truncated Edd) are not generally
excitation will be determined solely by the condition that thevalid. Thus, this regime is referred to as quasistationary,
threshold amplitudéa, ¢, (9) be exceeded. Unfortunately, it rather than stationary. The second regime is nonstationary
seems that in ferrite films there are wavexchange two- and is characterized by the opposite inequalify< 7, . The
dimensional spin wavesvhose excitation threshold, because difference in these regimes is that, in the first case of a small
their propagation velocity~ 10* cm/s) is low, lies consid- pump regionl and long pump pulse, (7,> 1), the para-
erably below the threshold for excitation of the backwardmetrically coupled waveésee Fig. 2, waves 3—6 or 4 an§l 5
volume magnetostatic waves, whose velocity is usually orare rigidly coupled by the frequency condition for a paramet-
the order of 16cm/s. According to Eq(9), for the typical  ric resonanced;+ wg= w4+ ws= wp), but their wave num-
dimensions of the active regioh=0.1-1 mm, even when bersks;, ks or k,,ks (see Fig. 2 can differ by an amount
the damping parameters of the two-dimensional spin wavedk=<1/. In the second case of a long pump region and a
and the backward volume magnetostatic waves are equahort pump pulse#> 7,), on the other hand, the condition
(I'~(2-4)- 1P s 1), the excitation threshold for the former for conservation of the wave number of the parametrically
is more than order of magnitude below that for the latter. If,interacting waves must be satisfied rigorousiaves 3, 4 or
on the other hand, we note that the parametric effects in5, 6 in Fig. 2;k;=k,, ks=Kkg), but, because of the pump
crease significantly only near the threshold, then it becomeduration 7,, the frequency condition has a set of spectral
clear that in order to achieve significant gain for backwardcomponents within the frequency intervalg,+1/7,, and

wherey is the solution of the equation
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can be smeared out by that amount; i@s;+ ws= w5+ wg Afy
=w,* 1/7,. Even from this simple analysis, it is clear that 6
in the quasistationary regime the frequency bands and tran-

sition processes in a parametric amplifier will be determined af

mainly by the length of the interaction region and the transit
time for a wave across this regiom,=I/v. In the second,

[{f

nonstationary regime the decisive parameter will be the 5
pump pulse duratiorr,. Of course, in general, the charac-
teristics of a parametric amplifier with local pumping will be 0 5 n 5 >0

determined by both quantities|(and,), but the shorter the BIP,
characteristic time is, the more effect it will have.

7. Let us first consider the quasistationary regime, forFIG. 3. The relative passbantif, as a function of the relative power
which 1< 7,, in more detail. The gain and bandpass can be»/Pp w for different values of the ratiay, /7, : 1—; 2—3;3—2,4—15;
obtained from Eq.(10) in this case. The resonarat o
=wp/2) gain for the forward wave with ~ 1> 7 1 Ts, Tp IS
given by For 7,> 75 (actually, for7,=57),

ﬂ) B 1 1 Kio=1o(Vho277,),  7p> 5. (15)
— IN10

Cosa cos( _) (_D) Here the Manley-Rowe relations can also be used to obtain
the conversion coefficients for the backward wave. For ex-

ample, forry<r74/2, we haveK,;=sinh(Vh,7,).
_ , (11) . It is mosF interestiqg that the pglse shapes in an essen-
cos( 77) ( Py ) tially nonstationary regime are practically independent of the

2 pump power. In this case, the threshold power does not have
. ~ the same significance as in the quasistationary case. This can
whereP, andP, i are, respectively, the pump power and its pe confirmed by comparing Eql1)—(13) and (14), (15).

Ppth

threshold value. The bandpass #{>5 is For example, at high pump powe¥h,,>1, the time to
1 reach the amplitude is now on the order of 3yVh,7,
MZZK - KlOAfZE- (12 =57,/4In(2Kyg), i.e., it even decreases as the power is
1071 |

raised. In this regard, the nonstationary regime is of practical
As might be expected, all the characteristics of the quasistadnterest for signal processing in parametric amplifiers with
tionary regime depend significantly on the length of the in-local pumping. In this regime, as opposed to the quasistation-
teraction region. Similar results hold for the backward waveary regime, the pump power can exceed the thresRglg .

and these can be obtained easily from Edd) and (12) It should be kept in mind that increasing the pump power has
using the Manley-Rowe relations, which state that the energits negative aspects: in order to reduce the influence of para-
inputs from the pump into the circuits of the signal and idlersitic two-dimensional spin waves, it is necessary to reduce
waves are the same if their frequencies are effu@hus, the pump pulse length,. As we shall see below, in the
K3,=K3,—1 and the resonant reversal coefficient takes theonstationary regime we actually havgy,,~30-40ns.

form An exact analysis of the transition of an amplifier from
the quasistationary regime into the nonstationary regime was
K2< 0= “p =K o=tano. (13 madg with the aid of Eq96) ar_1d (8). Figure 3 shoyvs the
2 relative passbandafr as functions ofP, /P, for differ-

gnt pump pulse durations,. Curvel for the quasistationary
regime was constructed using E40). It is quite clear from

(12), as the pump power approaches the threshold, the game figu_re that, wh_ile the passba_nd approaches zerBpas
HoPpth in the quasistationary regime, when the pump pulse

coefficient increases and the passbands become narrower, e : . S -
uration is reduced it becomes possible to maintain a finite

that the pulse shape is strongly distorted. Thus, the quasista-

tionary regime can be used in parametric amplifiers with Io_passband for arbitrary powers. By=3r, the passband f

cal pumping only for small gains, when the amplified pulses>2/7-' for arbitrary powers, although the passband becomes

are not significantly distorted. The pump power in this re-narrower near the t?\resho:c%lpth. F;)r TP thﬁ passband
gime must not exceed the threshdld ;. increases by more than a factor o 'two, anpl the poRer,

8. We now turn to an analytic study of the other limiting ceases a[together tq play any speqal role in the plots of the
case, for whichr,< 7, i.e., to the nonstationary regime. An tLansmlssmndbandWldth as a ;tm_cnon of purgp p%wer. Here
especially simple expression for the resonant d&jgis ob- the gains and conversion coefficients excee 10 dB. -
tained here forr,<74/2 (in this case, each spectral compo- 9. In t_he caserp< 7 studied her(_a, there_ Is the pOSS|b|I_|ty
nent of the amplified signal corresponds to a frequencff obtaining a backward wave with a signal whose time

doubled tral t of th : variation is rgverseq in time relative to the tir‘q)the pump
oubled spectral component of the pump power pulse is appliedlin other words, the leading edge of

Ki=coshtVhyrp), 71p<742. (14)  the pulse becomes the trailing edge, anicke versa In the

All the parameters of the quasistationary regime depen
significantly on the pump power. According to E¢$1) and
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FIG. 4. The resonant gald,, for the incident wavea) and
the resonant conversion coefficiekt,, for the incident
wave into a backward wau®) as functions of pump power
for different pump pulse durations, : 1—10 ns;2—20 ns;
3—30 ns;4—40 ns;5—60 ns;6—80 ns; 7,=150 ns, 7
=20ns,P, ;=40 mW. The smooth curves are theoretical
calculations for the same parameters.

case of a pump pulse with &function form (Vh,~ é(t, Yet another feature of the output signal profiles is that

—1)), the signal amplitude of the reversed wave has thehe duration of the output signals can be reduced compared

form® to the input signals in certain cases. This means that the
a}(z=01)=const a(2t,t), (16) spectral composition of the input signal can be broadened

during nonstationary parametric amplification, while it can
i.e., a signal pulse that is in the active region at tige only be cut off during ordinary linear amplification because
begins to move backwards from the point where theof the finiteness of the transmission bandpass. The physical
o-function shaped pump pulse found it and, after a tipe reason for this narrowing is quite clear: if the pump pulse is
reaches the beginning of the active region, but now is thghorter than the signal pulse, while the former, in turn, is
trailing edge of a pulse in the input converter. longer than the interaction length, then only part of the
We have studied the case of nérfunction pump pulses signal pulse will be amplified, so that the output signal is
lasting a finite timer,=0, while remaining, as before, in the narrowed. One nontrivial result of solving Eq8) and(8) is
nonstationary approximation, i.ery<7. Here, instead of that for high pump powers the signal can be narrowed even
an ideal reversal of the time evolution of the pulse of Eq.for r,<7, . For example, wher¢=0.57, 7,=0.27, and
(16), distortions arise owing to the finite pump duratigg: P,=10P,,, the output signal is narrowed by a factor of
1.3. The backward wave pulse can also be narrowed. It turns
a;(2ty+ 17— 1) out to be shorter than;.
The limiting case of a long, quasimonochromatic signal

a(z=0y)=sinhVhyr,)

Vh,7, 1 dPay (7s—0), where the total duration of the output signal equals
+ — i . . . .
tanh(Vh,7,) )szhz pe 17 o7, yvh|le its _amplltude increases r(_esona_mtly as
p —wpl2, is of special interest. In fact, this is a filter with a

The distortions in the pulse shape are caused by the secomeisonant frequency that is determined by the pump frequency
term in the square brackets of E47); they are proportional and with an output pulse shape that is independent of the
to the steepness of the pulse fronts of the signal wave and, aggnal duration. In addition, by measuring the total duration
expected, go to zero for,=0. An analysis of Eq.(17) 7,1 7 of the output signal experimentally, in this case we
shows that the duration of the transition processes is on thean determine the time and, from it, the length=v 7, of
order of 7, in this case, as before. the interaction region, which plays a decisive role in all the
10. We have studied the passage of real bell-shaped sigheoretical calculations.
nals with shapesx1/cosh(1.767s) through a locally We have only shown the results of the nontrivial theo-
pumped parametric amplifier. Here we note some nontriviatetical inferences here. As for the conventional dependences,
features of the amplified signal profiles. such as the dependence of the gains on the pump power, they
One of these is a change in the time, for propagation  will be presented below during a comparison of the theoret-
of the maximum of the output signal as the pumping is var4cal and experimental result6See Fig. 4, for examplg.
ied, which usually shows up as an apparent slowing down of 11. We now consider the case of a small pump region,
the signal. This effect occurs because the trailing part intert<<\, where the co-propagating interaction begins to play a
acts with the large amplitude idler wave which increases exlarger role alongside the counter-propagating interaction. As
ponentially with time at each point in the active medium. opposed to optics, this case is easy to realize in practice for
The time A7, depends on the pump power and the pulsebackward volume magnetostatic waves. In our experiments,
durations7s and 7,, and increases as these quantities in-for example,\ =27/k=400um, while | could be reduced
crease. to 200,um by using a wire resonator. As indicated above, the
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approximation of wave packets can be used only for low
pumping, so we do not show an analytic solution of E. 1 2
by this method. We note only that the modulation coeffi-
cients for the forward and backward signals are the same and
equal to Zrexp(—2kl) (0<1), i.e., they decrease exponen-
tially as the sizé of interaction region increases and increase
linearly with the pumping. It turned out, as well, that a co-
propagating interaction changes the generation threshold, re-
ducing it by roughly a factor of 1—exp(—2kl)]"*. In the
case of arbitrary pumping, the system of E¢b. must be
solved numerically; in the calculations we included the three
hundred primary waves of the lowest mode of the backward
volume magnetostatic waves within the wave vector interval
+300cm L. The results of these calculations differ substan-
tially from those of the wave packet approximation, even for s
0=0.5.

11t bt 1kl
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4. EXPERIMENTAL RESULTS AND DISCUSSION

\
\

In this section primary attention is devoted to quantita-
“Ve. comparison of the precedlng theoretical results th EXFIG. 5. Time reversal of an input signal waveforfty: 2—signals reflected
periment. All the major conclusions of the theory were eitherfrom the input of the experimental model without having interacted with the

confirmed experimenta"y, or the reason for any disagreepump; 1’, 2’—signals at the input to the experimental model formed by a
d wave. The amplitudes of the sigrialnd 2 are attenuated by 20
ment was understood. reverse

. . . dB relative to the signals’ and2’. The large divisions represent 50 ns. The
1. A large pump region]>\=2w/k, was realized in  arows denote the time the pump is applied.

model I, with1=3.3 mm andr;=150ns. In this case it was
easy to create the most tolerable nonstationary regime for
parametric amplificationf,< ) and there was almost no the maximum pump power dP,=5W was 7, na=40 ns.
beating of the output signals, which corresponds just tdNhen the pump power is lowered to 1.5 W, the pump pulse
counterpropagating parametric interactions of the wavedduration can be raised to 80 ns.
Here the truncated equatioé) for coupled wave packets Figure 5 shows the results of using the phenomenon of
can be used for a theoretical description. reversing the wave front of magnetostatic waves to perform
Figure 4 shows the measured resonant gain coefficierthe operation of time reversal of a signal shape. In the ex-
Ko for the transmitted wave and the resonant conversioperiment we used a sequence of two pulses with different
coefficientK 5o for conversion of the input signal into a back- amplitudes, whose ordering in time in the wave reversed by
ward wave as functions of the pump powRy for different  the model(Fig. 5, the two pulses on the rightvas opposite
pump pulse durations,. The signal pulse duration in the to their order in a signal that had not interacted with the
pump region is7s=20ns. Theoretical calculations using pump and had been reflected from the input to the m@tel
Egs. (6) and (8) are also shown as smooth curves forpulses on the left which was actually a copy of the input
the following parameters of the experimental model:signal(given the imperfect reflectionPrior to experiment, a
7=150ns, v=2.210°cm/s, I=7rv=3.3mm, and sequence of two signal pulses of equal duration and ampli-
P, iw=40mW. The timer, for the signal wave to cross the tude was fed to the input, while the time of delivery and the
active region and the length of the latter were determinedluration of the pump were chosen so as to ensure equality of
experimentally from the measured duration of the outputhe amplitudes of the reversed signals. This procedure is nec-
pulse (rp,+7) in regimes with a continuous signal and essary in order to compensate the effect of damping of the
pulsed pumping, as mentioned in paragraph 10 of the prevbackward volume magnetostatic waves in the YIG on the
ous section. The pump power was lowered in order to minishape of the reversed sign@h our case, the ratio of the
mize the effect of parametrically excited two-dimensionalamplitudes of the backward pulse&or the case in Fig. 5,
spin waves on the result. this compensation was possible using a pump signal with
There is good agreement between the experimental datg,=30ns. As discussed in the theoretical section, the use of
and theoretical curves in Fig. 4. The saturation of thesuch a long pump pulse led to significant distortions of the
K1o(Pp) andKyo(Pp) curves at a level of 30—-35 dB is ap- output pulses relative to the input pulses, but in Fig. 5 the
parently caused by the effect of parametric two-dimensionateversal of the shape in the backward wave is clearly visible
spin waves whose amplitude reaches levels of experimentébr the case of input pulses with different amplitudes.
significance during the timer, the pump is acting. The 2. The opposite case of a short active region wWith\
higher the pump poweP,, is, the shorter the time, re- =2w/k was realized using model | with a wire half-wave
quired for this to happen. According to Fig. 4, for this modelpump resonator. Here the length of the active regibn (
the maximum pump pulse duratiafy . for operation of a ~ =220um, 7,=10ns) was more than an order of magnitude
parametric amplifier without two-dimensional spin waves atshorter than in the case of an open dielectric resonator. This
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led to significant changes in the properties of the paramag- Fous» rel. units
netic amplifier for magnetostatic waves. First, because of the 1.0F
enhanced role of the copropagating interactisee the pre-
vious sectioy, beating of the amplitudes of the forward and
backward waves took place. The modulation coefficiest, 0.6
the ratio of the difference between the maximum and mini- 0.4k
mum amplitude of the beats to their synvas as high as
80—-90% for the highest pumping levels. This indicates that
the copropagating interaction could be of the same order of 0
magnitude as the counterpropagating interaction. Second, ac-

cordmg to -Eq.(9), there was a SharmbOUt. an order of FIG. 6. The variation in the signal profile at the output antenna as the pump
magnitude increase in the threshold for excitation of back- power P, is raised:1—0 W; 2—0.3 W; 3—0.63 W; 4—1.25 W;5—2 W;
ward volume magnetostatic waves owing to an increaseé—5 W; r,=20ns, r,=10ns.

role for energy losses from the interaction space. The thresh-

old for backward volume magnetostatic waves increased to | i ,

1.9 W while the threshold for excitation of two-dimensional @1d it is narrowed substantialljrom 30 ns to 12 ns This
spin waves was essentially unchangedL0 mW), since the last effect may be important for amplifying the envelopes of

mean free path for the latter was, as before, smaller than grelitons, for V\,’h'Ch an |r_1cre|ase in the pulsg ar_rlp!ltude myst
size of the active region, even with=220.m, and energy be accompanied by a simultaneous reduction in its duration.

loss processes were insignificant. All this led to an increased! te case of an open dielectric pump resonator considered
contribution from the two-dimensional spin waves and to a2P0Ve: there was also a narrowing of the signal, but only for
further reduction in the duration of the maximum possibles> 100 NS, which was related to the longer length of the
PUMD PUISEST, may, t0 1020 ns. active region in model Il.
The experimental data on the maximufbecause of
beating, the readout was taken from the upper edge of the CONCLUSIONS
output pulse that had been smeared out by the beatisg- The interaction of travelling backward volume magneto-
nant gain and conversion coefficients as functions of thetatic waves with a local nonstationary electromagnetic
pump power are in good agreement with the theoreticahump at twice their frequency in YIG films has ben studied
curves obtained by numerical solution of Hd). Here the theoretically and experimentally. In our experiments we
best agreement with experiment was obtained for a pumpave, for the first time, been able to observe the reversal of a
field distribution that was not rectangular, as assumed fofvave front and the time reversal of the shape of backward
solving the truncated equations, but had a Lorentz form  yolume magnetostatic wave signals. During reversal and am-
plification of backward volume magnetostatic wave pulses
Np max the shape of the output signals is found to have changed
1+(22/1)2 significantly, with narrowing under certain conditions, and
an increase in the time delay of the pulse maximum when
that was closer to that in the experiment. In the experimenpumping is applied. Experimental dependences of the gain
with 7,=30ns, saturation of theé;o(P,) and Ky(Pp) and of the conversion coefficient for conversion of backward
curves was observed. As befdifeig. 4), this was caused by volume magnetostatic waves into backward waves as func-
the parametric excitation of spin waves. We do not showtions of the power and duration of the pump signal have been
these curves here, since they are fundamentally the same alstained.
those in Fig. 4, except that the gain is substantially lo(gr In order to explain the experimental results we have
roughly 10 dB. We show only the change in the time evo- solved the general problem of the interaction of a travelling
lution of the output signal under the influence of the pumplinear wave with a spatially localized parametric pulsed
in order to illustrate clearly two nontrivial features of the pump. In the case of a large region where the backward
nonstationary parametric amplifier: the change in the propavolume magnetostatic waves interact with the pump, when
gation time for the signal peald 7;, and the reduced dura- the lengthl of this region greatly exceeds the wavelength
tion of the output signals compared to the input. As noted irof the backward volume magnetostatic wavés X), the
the theoretical section, a real narrowing of the pulses is obproblem was reduced to a system of two truncated equations
served only whenr,,7<7s, which, for the experimental for the wave packets that only take counterpropagating inter-
possibilities available to us, could be easily achieved in theactions(i.e., with oppositely directed wave vectprsf the
case of model | with its small active region. waves into account. A Green function method was used to
Figure 6 shows the time evolutions of the forward signalobtain a general solution for this system in terms of the
passing through the active region measured at the outplBessel function with an imaginary argument. Because the
antenna for various pump powels,. (See Fig. 1.Curvel, features of the interaction between backward volume magne-
measured without pumpingP(=0), represents the initial tostatic waves and a variable magnetic pump field only show
shape of the signal pulse with a duration@f-30ns. Itis  up through the constant coupling parameter, this solution can
quite clear from this figure that after pumping starts, theeasily be extrapolated to any type of waves in various media
delay to the peak of the pulse is increageml A 7;<15ns)  with only a change in the coupling parameter. In the opposite

0.8F

h,=h(2)=
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ERRATA

Erratum: The (ayyy) vertex and three-photon axion decay in external magnetic
fields [JETP 89, 13-17 (July 1999)]

V. V. Skobelev

Moscow State Industrial University, 109280 Moscow, Russia
Zh. Eksp. Teor. Fiz116, 2212 (December 1999

[S1063-776(99)02612-9

This article contains the following important misprints:

. The second formula in Eq11) on p. 14 should readyf)?=1.

. The last term in Eq(12a on p. 14 should bg*”g~’.

. The last term in the second formula of E@2d on p. 14 should be *gre.

. In expressior{13) on p. 15 the denominator should appear raised to the power 1/2.
. In Eq.(14) on p. 15e in the numerator of the fraction should be replaced eith

. The eleventh and twelfth lines of E(L7) on p. 16 should read

1
TGerean (Ke)w] — 7 —mryl(Ce ()

o Ul WN P

1 2 3
+ K<a )(K(Z)S)ar(K38)arr + (K(l)s)aK(a,)(K(s)S)au +(kVe) (KPe) K(a,,)) -

7.In (173 on p. 16 in the second term of the expressionfdrthe first factor should beg(—k”)2.
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