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Abstract—An analogue of z pinch is considered for a finite-conductivity liquid in a cylindrical nonconducting
tube through which an exponentially decaying current pulse is passed. The distributions of magnetic induction,
current density, and volume electromagnetic force pressure in the conducting liquid cylinder are found by solv-
ing an equation for a quasi-stationary electromagnetic field and the equation of magnetohydrostatics with the
operational method. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

One method of monitoring the contamination of the
metal melt by foreign inclusions (in particular, noncon-
ducting solid particles) is based on passing current
pulses through a quiescent liquid under test contained
in a long cylindrical nonconducting tube [1]. The
essence of such a method is based on the electromag-
netic buoyancy force acting on foreign inclusions in a
current-carrying liquid.

The electromagnetic buoyancy force arises when
the pressure initial (in the absence of the current) distri-
bution in the liquid changes under the action of a vol-
ume electromagnetic force, which results from interac-
tion of the electric current with its self-magnetic field
(Lorentz force). This force expels particles with a con-
ductivity lower than that of the surrounding current-
carrying liquid, while higher conductivity particles
move inward the liquid [2]. Naturally, the gravitational
field does not influence the magnitude and direction of
the electromagnetic buoyancy force.

When the current density distribution in a liquid-
metal cylinder is stationary and axisymmetric, the dis-
tributions of the electromagnetic field and Lorentz
force pressure are described by an exact solution to the
magnetohydrodynamic equations used in the z pinch
theory [3–6].

For particles of a simple shape (spherical or cylin-
drical), the results of calculating the electromagnetic
buoyancy force (EBF) by the expressions for the pres-
sure produced by a uniform electric current passing
through a liquid cylinder are given in a first approxima-
tion in [2, 7] (electromagnetic field distortions caused
by the particles are neglected).

It is well known that a high-frequency current con-
centrates near the surface of a conductor (the skin
effect) [3, 8]. The current density distribution over the
conductor’s cross section may also be nonuniform
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when a solitary current pulse is applied. For this reason,
finding the nonstationary electromagnetic field distri-
bution in a liquid-metal cylinder becomes a key issue in
the EBF calculation.

In this work, we use the equations of quasi-station-
ary electromagnetic field and magnetohydrostatics to
derive expressions for the induction, current density,
and pressure in a liquid conducting cylinder with a cur-
rent whose intensity (density integrated over the cylin-
der’s cross sections) exponentially decays with time.

STATEMENT OF THE PROBLEM

Let us consider a long nonconducting cylindrical
tube closed at both ends and completely filled with a
quiescent homogeneous conducting liquid. At the zero
time t = 0, an electric current is passed through the liq-
uid along the axis of the cylinder. It is assumed that the
current intensity (i.e., density integrated over the cross
section of the liquid cylinder) varies by the law

(1)

We use the cylindrical frame of reference (r, ϕ, z)
where the z axis is coincident with the axis of the tube
and codirected with the current. Ignoring the effect of
the end faces, though which the current is applied to the
liquid, we assume that the desired functions, namely,
magnetic induction B = (0, B, 0), current density j = (0,
0, j), and electric pressure pe due to the current pulse,
depend on variables r and t.

The system being considered represents an equilib-
rium magnetohydrodynamic configuration, z pinch
[3−6], since the volume density of Lorentz force j × B
is potential and has only the radial component whose
action on the liquid is counterbalanced by the gradient
of the nonstationary part of pressure pe(r, t). Clearly, the
total pressure in the liquid, which is the sum of pe and
the hydrodynamic pressure, depends on the position of
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the tube relative to the vertical axis and, generally, is a
function of r, ϕ, z, and t.

The distributions of the magnetic induction, current
density, and the nonstationary part of the pressure in the
liquid cylinder are described by the equations [3]

(2)

(3)

(4)

Here, ν = (µ0σ)–1 is the magnetic viscosity, µ0 = 4π ×
10–7 N/m is the magnetic constant, and σ is the conduc-
tivity of the liquid. Having calculated the current den-
sity, we can determine electric field E = (0, 0, E) from
the Ohm’s law j = σE.

At the zero time, the magnetic field inside the liquid
cylinder is absent,

(5)

Let us find the boundary condition for the magnetic
field at the surface of the liquid cylinder. For this pur-
pose, we take advantage of the fact that the total current
passing through the cylinder is known.

In view of (1), we find from differential form (3) of
the Ampere law that

(6)

where c is the radius of the liquid cylinder.
The problem of calculating the magnetic induction

defined by (2), (5), and (6) refers to problem with dis-
continuous initial conditions [8]. This problem
describes the diffusion of the magnetic field across the
conducting cylinder in the case when an external elec-
tric current of intensity I is initially (t = 0) concentrated
at the lateral (r = c) surface of the cylinder. Conse-
quently, the tangential component of the magnetic field
(the total field in our case) experiences a discontinuity
at r = c, t = 0.

DISTRIBUTIONS OF THE ELECTROMAGNETIC 
FIELD AND PRESSURE

The boundary-value problem stated by (2) and (6)
with initial condition (5) is solved by the operational
method [9]. Let + be the operator of Laplace transfor-
mation (in time) and s be a parameter of this transfor-
mation. We put +[B(r, t)] = @(s, r). Passing to trans-
forms in induction equation (2) and boundary condition
(6), we obtain, in view of initial condition (5),

∂B
∂t
------ ν ∂2B
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---------

1
r
---∂B

∂r
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r2
----–+ 

  ,=

j
1

µ0r
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∂ pe
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B r 0,( ) 0.=

B c t,( )
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2πc
--------- I α t–( ) ωt,cosexp=

d2@
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1
r
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d@
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ν
--- 1
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----+ 

  @–+ 0,=
Substitution u = iλr and λ = , where i is the
imaginary unity, yields

(7)

Particular solutions of differential equation (7) are
[9] the Bessel functions of the first, J1(u), and second,
Y1(u), kind, respectively; however, only function J1(u)
satisfies the boundedness condition at u = 0. Therefore,
@ = AJ1(u), where A is an arbitrary constant. Boundary
condition (7) leads to

Thus, the solution of operator problem (7) has the
form

(8)

Function @(s, r) defined by equality (8) is a single-
valued function in s. In accordance with the expansion
theorem following from the theory of inverse Laplace
transformation [9], original B(r, t) can be written as a
sum of the residues of function @(s, r)exp(st) calcu-
lated in all the poles of function @(s, r). It is easy to see
that function @(s, r) has an infinite number of first-
order poles. In the complex domain, the poles of s are
points s01 = –α + iω and s02 = –α – iω, as well as points

sk = –ν /c2 (k = 1, 2, 3, …) defined by roots βk of the
equation J1(u) = 0 (point s = 0 is not a pole).

Straightforward computations lead to the following
result for original B(r, t):

(9)
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where τm = c2/ν is the characteristic time of magnetic

field diffusion [6] and ζ = .

In this expression, the first and second terms are the
residues at poles s01 and s02, respectively, and an nth
term of the series is the residue at pole sn.

Using expression (9), it is easy to derive the steady-
state (α = 0, t  ∞) magnetic field distribution in
a liquid cylinder carrying a variable current of fre-
quency ω,

(10)

where δ =  is the characteristic depth of electro-
magnetic field penetration into the conductor [3].

Using Kelvin functions bern(z) and bein(z) given
by [10]

we can represent expression (10) in the form

(11)
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Substituting magnetic field distribution (11) into
Eq. (3) with regard to the recurrence relations for the
Kelvin functions [11], we arrive at the following
expression for the steady-state distribution of the ac
current density in the liquid cylinder:

(12)

Up to notation, formula (12) coincides with the
expression alternatively derived in [8], where the vari-
able current distribution over the cross section of an
infinitely long homogeneous cylindrical wire was cal-
culated.

We will consider an exponentially decaying current
pulse (ω = 0). From expressions (3), (8), and (9), we
obtain

(13)
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(15)

For a current pulse decaying exponentially, quantity
ζ2 = ατm is the ratio of the characteristic time of mag-
netic field diffusion, τm = c2/ν, to characteristic pulse
duration τp = α–1.

The distributions of the magnetic field and current
density ((14) and (15), respectively) over the conduc-
tor’s cross section are applicable only if all the poles of
operator solution (13) are first-order poles (i.e., for α ≠
sk, k = 1, 2, 3, …). If, however, the equality ζ = βn holds
for any of indices k (e.g., for k = n), i.e., if point s = –α
is a second-order pole, the inversion of expression (13)
yields

(16)

Hereafter, the primed summation sign indicates that
subscript k = n is omitted from summation. Using

expressions (16) and (3), we obtain for α = /τm

(17)
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Since zeros βk (k = 1, 2, 3, …) of Bessel function
J1(u) increase substantially with number k [11], the
series appearing in formulas (14) and (15) converge
rapidly for t > 0 and, with time, initial terms of the
series start dominating over the remaining terms. Con-
sequently, for ζ ≠ βk (k = 1, 2, 3, …), the developed
stage of current pulse passage is described by simpli-
fied formulas (14) and (15), in which only the initial
terms of the series that involve β1 = 3.8317 should be
taken into account, along with the terms proportional to
exp(–αt).

Further simplification of expressions (14) and (15)
depends on the value of dimensionless parameter ζ =

. For the developed stage of the process, we
have (at ζ < β1)

(18)

Taking into account these relationships and using
Eq. (4) of magnetohydrostatics, we find the Lorentz
force pressure distribution in the liquid conductor,

(19)

where pw is the pressure at the tube wall (r = c).

In the case of a long pulse (ε = ζ2 ! 1), the leading
terms of expansions of formulas (18) and (19) in pow-
ers of small parameter ε are easy to write using the rep-
resentation of the Bessel functions in the form of power
series [11],

(20)

The magnetic induction distribution described by
the first formula in (20) is an obvious generalization of
the corresponding expression for a cylindrical conduc-
tor carrying a steady-state electric current to the quasi-
steady-state case.

+
βk

2

βk
2 βn

2–
----------------

J0

βkr
c

------- 
 

J1' βk( )
-------------------

βk
2t

τm
-------– 

 exp
k 1=

∞

∑






.'

τm/τp

B r t,( )
µ0I
2πc
---------

J1
ζr
c
----- 

 

J1 ζ( )
---------------- α t–( ),exp=

j r t,( ) ζ I

2πc2
-----------

J0
ζr
c
----- 

 

J1 ζ( )
---------------- α t–( ).exp=

pe r t,( ) pw

µ0I2

8π2c2
-------------

J0
2 ζr

c
----- 

  J0
2 ζ( )–

J1
2 ζ( )

------------------------------------ 2α t–( ),exp+=

B r t,( )
µor
2

-------- j t( ), j t( ) j0 α t–( ), j0exp
I

πc2
--------,= = =

pe r t,( ) pw

µ0c2 j0
2

4
--------------- 1

r
c
-- 

 
2

– 2α t–( ).exp+=
TECHNICAL PHYSICS      Vol. 50      No. 7      2005



PRESSURE PULSE INDUCED BY A PULSED ELECTRIC CURRENT 819
For ζ = β1, expressions (16) and (17) for the devel-
oped stage of the process yield

(21)

Substituting expressions (21) into magnetohydro-
static equation (4), we obtain

Integration of the second and third terms on the right
of this equation using formula 5.54.2 in [12] gives

(22)

B r t,( )
µ0I
2πc
--------- r

c
--

J0

β1r
c

-------- 
 

J1' β1( )
-------------------=

–
J1

β1r
c

-------- 
 

β1J1
' β1( )

--------------------- 1
2β1

2t
τm

----------+ 
  β1

2t
τm
-------– 

  ,exp

j r t,( ) I

2πc2
-----------

J0

β1r
c

-------- 
 

J1' β1( )
------------------- 1

2β1
2t

τm
----------– 

 =

–
r
c
--
β1J1

β1r
c

-------- 
 

J1' β1( )
-------------------------

β1
2t

τm
-------– 

  .exp

∂ pe

∂r
--------

µ0I2

4π2c3
-------------

2β1
2t

τm
----------– 

 exp

J1' β1( )[ ] 2
----------------------------- J0

β1r
c

-------- 
  J1

β1t
c

------- 
 =

× 1
β1
-----

4β1
3t2

τm
2

------------–
β1r2

c2
----------+

 
 
  r

c
--J0

2 β1r
c

-------- 
 –

× 1
2β1

2t
τm

----------– 
  r

c
--J1

2 β1r
c

-------- 
  1

2β1
2t

τm
----------+ 

 – .

pe r t,( ) pw

µ0I2

4π2c2
-------------

2β1
2t

τm
----------– 

 exp

J1' β1( )[ ] 2
-----------------------------+=

× r
β1c
--------J0

β1r
c

-------- 
  J1

β1r
c

-------- 
  1

2β1
2t

τm
----------+ 

 




–
r
c
-- 

 
2

J0
2 β1r

c
-------- 

  1
2
---J1

2 β1r
c

-------- 
 + J1' β1( )[ ] 2

+

+
1

2β1
2

-------- 1
4β1

4t2

τm
2

------------–
 
 
 

J1' β1( )( )2
J0

2 β1r
c

-------- 
 –





.

TECHNICAL PHYSICS      Vol. 50      No. 7      2005
If ζ > β1, we proceed similarly to the case ζ < β1 and,
using relations (4), (14), and (15), come to

(23)

Thus, as electric current pulse g(t) = Iexp(–αt) prop-
agates along the cylinder, the electromagnetic field–
pressure distribution, in the general case, takes a regu-
lar, in a sense, pattern with time: the characteristic pro-
files of magnetic induction, current density, and pres-
sure (see (18)–(20) and (23)) are no longer time-vari-
able and their amplitudes decay exponentially. The
exponent of the exponential is a function of dimension-

less parameter ζ = . In the special case ζ = β1,
the regular regime does not set in, as follows from for-
mulas (21) and (22).

CONCLUSIONS

Using the equation for the magnetic field and the
Laplace transformation in time, we solved the axisym-
metric problem (with a discontinuous initial condition)
of electromagnetic field distribution in a liquid cylindri-
cal conductor along which an exponentially decaying
current pulse propagates.

In the special case of nondecaying variable current,
the result obtained in this work coincides with the solu-
tion to the problem of skin effect [8] up to notation.

If characteristic duration τp of the current pulse
mentioned above is much longer than characteristic
time τm of magnetic field diffusion across the liquid cyl-
inder, the leading term in the expansion of the solution
found in small parameter ε = τm/τp extends the formula
for the magnetic field distribution in a cylindrical con-
ductor with uniform current to the quasi-stationary
case.

Using the equation of magnetohydrostatics, we
found the distribution of the pressure produced by the
exponentially decaying current pulse in the liquid cyl-
inder.
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In the general case, the electromagnetic field–pres-
sure distribution becomes in a sense regular with time:
the characteristic profiles of the magnetic field, current
density, and pressure become time-invariable and decay
exponentially. The exponents of the exponentials

depend on dimensionless parameter ζ = .
In the special case ζ = β1, where β1 is the first non-

trivial zero of Bessel function J1(z), the regular regime
does not set in.
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Abstract—The special role of low-frequency secondary harmonics with frequencies that are sums of and dif-
ferences between primary frequencies entering into the Hamiltonian in explicit form has been already discussed
in the literature. These harmonics are of the second order of smallness and constitute a minor fraction of the
disturbance. Nevertheless, under certain conditions, their contribution to the amplitude of the separatrix map of
the system may be several orders of magnitude higher than the contributions from primary harmonics and,
thereby, govern the formation of dynamic chaos. This work generalizes currently available theoretical and
numerical data on this issue. The role of secondary harmonics is demonstrated with a pendulum the disturbance
of which in the Hamiltonian is represented by two asymmetric closely spaced high-frequency harmonics. An
analytical expression for the contribution of the secondary harmonics to the separatrix map amplitude for this
system is derived, and the range of very low secondary frequencies not studied earlier is considered using this
equation. The domains where the separatrix map amplitude linearly grows with frequency and the chaotic layer
size is frequency-independent are indicated. Theoretical predictions are compared with numerical data. © 2005
Pleiades Publishing, Inc.
INTRODUCTION

It is known that, in Hamiltonian systems with the
phase space separated into regular and chaotic compo-
nents, chaos forms via interaction between nonlinear
resonances. One of the resonances is usually taken to be
primary and specifies initial conditions, and others are
considered as disturbances. The dynamics has turned
out to be the most interesting and unexpected near pri-
mary resonance separatrices, special trajectories sepa-
rating out domains with circulating (out of a resonance)
and oscillating (within a resonance) phase. New
recently discovered fine points concerning this issue
deserve attention.

It was common knowledge that chaos arises just
near separatrices, since the period of motion along
them is infinite and the interaction of resonances has an
essential effect [1–3]. It turned out, however, that such
a view is adequate only if the Fourier amplitudes of the
system’s analytical potential decay exponentially. Here,
a disturbance splits each of the separatrices into two
branches, which occupy a narrow domain, forming a
chaotic layer. It is remembered that the chaotic layer
emerging instead of the separatrices can be subdivided
into three parts: upper (phase x circulates at the top, p > 0),
middle (the phases oscillates), and lower (phase x cir-
culates at the bottom, p < 0).

In the case of a smooth potential with a power-law
decay of Fourier amplitudes, the situation may become
qualitatively different. Examples of unsplit separatrices
(of both integer and fractional resonances) and the
1063-7842/05/5007- $26.00 0821
absence of a chaotic layer at their places in piecewise
linear systems are discussed elsewhere [4–6]. It should
be emphasized that the systems remain nonintegrable in
this case and their separatrices are retained under strong
local chaos.

It was also revealed that the formation of chaos con-
siderably affects the disturbance itself, especially its
spectral composition. Below, we will synopsize the his-
tory of this problem.

Let a system be represented by a Hamiltonian pen-
dulum

(1)

with a single disturbance harmonic

(2)

where parameters n and Ω are positive. This harmonic,
which is also a resonance harmonic, lies above the fun-
damental resonance of the system in the phase plane;
therefore, it is convenient to refer to as the upper har-
monic.

Chirikov [1] showed theoretically that upper distur-
bance harmonic (2) is responsible for amplitude W of
the separatrix map of the upper part of the chaotic layer
and that amplitude w obeys the relationship

(3)

H x p t, ,( ) p2

2
----- x( ) V x t,( )+cos+=

V x t,( ) ε n
2
---x Ωt– 

  ,cos=

W Ω n,( ) εΩAn Ω( )=
© 2005 Pleiades Publishing, Inc.
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where

(4)

are the Mel’nikov–Arnold integrals. Functions fn(Ω)
appearing in the brackets are defined by the recurrence
relations

(5)

Substitution of –Ω for Ω turns the upper harmonic
into the lower one; then, in formula (3) for its contribu-
tion to the amplitude of the separatrix map of the upper
part of the layer, An(Ω) should be taken in a much dif-
ferent form,

(6)

It should be emphasized that, when deriving rela-
tionships (3)–(6), Chirikov [1] did not make any simpli-
fying assumptions; hence, they are valid for any Ω from
the interval 0 < |Ω| < ∞. Note also that, when Ω varies,
integrals (4) pass through zeros along with the brack-
eted factor, the number of zeros being dependent on
index n of the Mel’nikov–Arnold integral.

Chirikov’s studies showed that, for a system with a
symmetric disturbance of type

(7)

separatrix map amplitude W and the energy size of the
chaotic layer,

(8)

exponentially decay with increasing frequency in the
high-frequency limit Ω  ∞ and that all the three
parts of the chaotic layer have the same width (in (8),
w = p2/2 + cosx – 1 is the relative deviation from the
undisturbed separatrix in terms of energy.

In his recent work [7], the author, considering the
low-frequency (Ω  0) asymptotics of system (1)
with symmetric disturbance (7), found that, in this
limit, the separatrix map amplitude linearly grows with
frequency and the width of the layer is frequency-inde-
pendent. Both asymptotics are relatively simple, so that
the medium-frequency range (corresponding to either a
high or low adiabaticity parameter) is the most difficult
to analyze. Here, the so-called resonance invariants,
which fairly adequately reflect the topology of a spe-
cific resonance, proved to be of great value. For the
Chirikov standard mapping, such invariants of first
three orders, which correspond to 1 : 1, 1 : 2, and 1 : 3
resonances, were constructed in [8]; for the single-fre-
quency separatrix mapping, in [9]. The expressions for
double-frequency invariants, which were purposely

An Ω 0>( )

=  
2π

n 1–( )!
------------------ πΩ/2( )exp

πΩ( )sinh
---------------------------- 2Ω( )n 1– 1 f n Ω( )+[ ] ,

f 1 f 2 0,= =

f n 1+ f n 1 f n 1–+( )n n 1–( )
4Ω2

--------------------, n 3.≥–=

An Ω 0<( ) 1–( )nAn Ω( ) π Ω–( ).exp=

V x t,( ) ε n
2
---x Ωt– 

 cos
n
2
---x Ωt+ 

 cos+ ,=

wup wmd wbt ΩW ,= = =
introduced for studying chaos in the neighborhood of
the zeros of the Mel’nikov–Arnold integrals, have been
deduced only recently [10].

It seems that the author was the first to consider an
asymmetric disturbance [11, 12]. This situation was
exemplified with Hamiltonian (1) of a pendulum sub-
jected to two harmonics with different frequencies,

(9)

The amplitudes of the harmonics were assumed to
be small (ε1, ε2 ! 1), while their frequencies high
(|Ω1|, |Ω2| @ 1).

It is in this case where secondary harmonics of order
~ε1ε2 with frequencies

(10)

arise, which are much weaker than the primary harmon-
ics if ε1, ε2 ! 1 (see below).

Even early experiments with system (1) with distur-
bance (9) discovered the seemingly surprising fact that
just these weak secondary harmonics define the separa-
trix map amplitude and chaotic layer size under certain
conditions.

In [12], the author considered a system with param-
eters ε1 = ε2 = 0.075, Ω1 = 13, and Ω2 = –10, where the
secondary harmonic with aggregate frequency ∆Ω+ = 3
entering into the disturbance had an amplitude of
≈4.5 × 10–5, which is ≈1700 times as small as the
amplitudes of the primary harmonics. Yet, its contribu-
tion to the amplitude of the separatrix map of the cha-
otic layer upper part (this mapping is responsible for the
formation of the chaotic layer) exceeds the total contri-
bution from the primary harmonics almost 400 times.
The sizes of the layer parts turned out to differ substan-
tially. This is a consequence of the above-mentioned
exponential frequency dependence of the width of the
layer at Ω @ 1, which allows very weak but low-fre-
quency secondary harmonics to have a decisive effect
on formation of chaos. An important role of secondary
harmonics at aggregate frequencies was also discov-
ered in smooth systems [13].

Finally, an asymmetric disturbance in the rather
general form

(11)

(where m1 and m2 are arbitrary positive integers) was
considered in [14].

It is remembered that disturbance parameters m1 and
m2 specify the structure of Mel’nikov–Arnold integrals (4)
and (5), in particular, the number of zeros. In the neigh-
borhood of these zeros, dynamic chaos has a number of
specific features, which were discussed in [14, Sect. 3].
Below, we will consider system (1) with disturbance
(11) again. Note in passing that we will deal with inte-
grals (4) and (5) that have only even indices n, since m1
and m2 are integers.

V x t,( ) ε1 x Ω1t–( )cos ε2 x Ω2t–( ).cos+=

∆Ω+ Ω1 Ω2, ∆Ω–+ Ω2 Ω1,–= =

V x t,( ) ε1 m1x Ω1t–( ) ε2 m2x Ω2t–( )cos+cos=
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SECONDARY-HARMONIC AMPLITUDES

The amplitudes of disturbance secondary harmonics
are not known in advance and are to be determined. A
relevant rigorous theory is still lacking; however, a gen-
eral approach to tackling the problem and finding
approximate analytical relationships was suggested in
[11]. Following [11], we change variables in (1) and
(11); namely, instead of coordinate x(t) and momentum
p(t), we will use deviations from their values xs(t) =
4arctan(et) and ps(t) = 2sin(xs(t)) on the undisturbed
separatrix,

(12)

Then, using generating function F2(u, x, t) = [ps(t) –
u][x – xs(t)], we will construct new Hamiltonian

(13)

Since the disturbance is small, we put |y(t)| ! 1 and
change variables in (13), cos(my)  1 – (my)2/2 and
sin(my)  my, to arrive at the equation

Let ∆yε be the difference between the left- and right-
hand sides of this equation,

(14)

We are interested in only “induced” solution yε (i.e.,
that vanishing at ε  0), which can be conveniently
found by the method of successive approximations in
the limit ∆yε  0 [11]. After two approximations, we

y t( ) x t( ) xs t( ),–=

u t( ) p t( ) ps t( ).–=

H y u t, ,( ) u2

2
----- y xs t( ) y xs t( )sinsin–coscos+=

+ y xs t( ) εk[ mky( )cos mkxs t( ) Ωkt–( )cos
k 1=

2

∑+sin

– mky( ) mkxs t( ) Ωkt–( )sinsin ] .

d2y/dt2 y xs εkmk
2 mkxs Ωkt–( )cos

k 1=

2

∑+cos=

+ εkmk mkxs Ωkt–( ).sin
k 1=

2

∑

∆yε
d2y

dt2
-------- y xs εkmk

2 mkxs Ωkt–( )cos
k 1=

2

∑+cos–=

– εkmk mkxs Ωkt–( ).sin
k 1=

2

∑
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have

(15)

where minor terms are omitted and m+ = m1 + m2 and
m– = m2 – m1.

In [14], attention was focused mainly on the neigh-
borhoods of the zeros of integrals (4), which are
expandable when ∆Ω± is on the order of unity; there-
fore, in [14], to simplify the resulting expressions, the
terms proportional to mps were omitted in all the
denominators of formula (16) (here, formula (15)). In
this work, we will concentrate on the case of very low
secondary frequencies, ∆Ω± ! 1 (see next section);
therefore, we dismiss these simplifications and use rig-
orous formulas.

Turning back to system (1) with disturbance (11),

we put in it x = xs(t) + (t). Since the motion is near
the undisturbed separatrix, we make change of vari-

ables, cosmy  1 and sinmy ≈ m , and recast
expression (11) for the disturbance as

(16)

Substituting (15) into (16) shows that the low-fre-
quency harmonics at the aggregate and difference fre-
quencies (which alone are of interest) may arise in the
disturbance in two ways. One is the interaction of
sum (15) with primary harmonics in (16), which gives
rise to harmonics at both the aggregate frequency,

(17)

yε
2( ) t( )

εkmk

mk ps Ωk–( )2
------------------------------- mkxs Ωkt–( )sin

k 1=

2

∑–≈

–
ε1ε2m1m2

2
-----------------------

m2

m1 ps Ω1–( )2
-------------------------------

m1

m2 ps Ω2–( )2
-------------------------------+





×
m+xs ∆Ω+t–( )sin

m+ ps ∆Ω+–( )2
-------------------------------------------

+
m1

m2 ps Ω2–( )2
-------------------------------

m2

m1 ps Ω1–( )2
-------------------------------–

×
m–xs ∆Ω–t–( )sin

m– ps ∆Ω––( )2
------------------------------------------





…,+

yε
2( )

yε
2( )

V y t,( ) yε
2( ) xssin εkmk mkxs Ωkt–( )sin

k 1=

2

∑+ .–≈

ε+ m+xs ∆Ω+t–( ),cos

ε+

ε1ε2m1m2

2
-----------------------

m2

m1 ps Ω1–( )2
-------------------------------

m1

m2 ps Ω2–( )2
-------------------------------+ ,–=
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and difference frequency,

(18)

Note that formulas (17) and (18) describe the contri-
butions from harmonic–harmonic interaction.

The other way is the interaction of terms ~ε1ε2 in
(15) with the term sinxs in (16), which is born by the
fundamental resonance. Here, two harmonics arise at
the aggregate frequency,

(19)

(ε+ is given by (17)), and two at the difference fre-
quency,

(20)

(where ε– is given by (18)).
Formulas (19) and (20) describe the contributions

due to interaction between the disturbance-induced
terms and fundamental resonance.

Knowing the amplitudes of secondary harmonics
entering into the disturbance, one can, with (3), repre-
sent the amplitudes of their separatrix maps through
Mel’nikov–Arnold integrals (4),

(21)

(22)

Here, the plus and minus signs in the subscripts refer to
the aggregate and difference frequencies, respectively,
and a+ and a– in relationships (21) are empiric adjusting
coefficients.

Experience in applying formula (21) suggests that
the first term in the brackets play a dominant role.

As was mentioned above, no simplifications were
made in deriving formulas (21) and (22); hence they are

ε– m–xs ∆Ω–t–( )cos[ ] ,

ε–

ε1ε2m1m2

2
-----------------------

m1

m2 ps Ω2–( )2
-------------------------------

m2

m1 ps Ω1–( )2
-------------------------------– .–=

ε+

2
-----

m+ 1–( )xs ∆Ω+t–( )cos

m+ 1–( )ps ∆Ω+–[ ] 2
----------------------------------------------------------





–
m+ 1+( )xs ∆Ω+t–( )cos

m+ 1+( )ps ∆Ω+–[ ] 2
----------------------------------------------------------





ε–

2
----

m– 1–( )xs ∆Ω–t–( )cos

m– 1–( )ps ∆Ω––[ ] 2
---------------------------------------------------------





–
m– 1+( )xs ∆Ω–t–( )cos

m– 1+( )ps ∆Ω––[ ] 2
----------------------------------------------------------





W± ε̃±a±∆Ω± A2m±
∆Ω±( )-----–=

+
A2m± 2– ∆Ω±( )

2 m± 1–( )ps ∆Ω±–[ ] 2
-----------------------------------------------------

A2m± 2+ ∆Ω±( )

2 m± 1+( )ps ∆Ω±–[ ] 2
-----------------------------------------------------– ,

ε̃±
m1m2ε1ε2

2
-----------------------

m1

m2 ps Ω2–[ ] 2
-------------------------------

m2

m1 ps Ω1–[ ] 2
-------------------------------± .=
valid for any primary-harmonic frequencies [14]. In the
next section, we will consider at length the case of a
very-low-frequency secondary harmonic (arising at the
sum of primary-harmonic frequencies that are close in
absolute value), where simplifications seem to be
appropriate.

THE CASE OF CLOSELY SPACED PRIMARY 
HARMONICS

Suppose that a disturbance in the Hamiltonian
involves two frequencies close in absolute value and
opposite in sign, Ω1 ≈ |Ω2| @ 1. Here, of interest is only
the low-frequency secondary harmonic at aggregate
frequency ∆Ω+ = Ω1 + Ω2 ! 1. The secondary harmonic
at the difference frequency is much weaker (or does not
arise at all if the disturbance parameters are equal to
each other, m1 = m2; see (22)). Therefore, the sign
minus in the subscripts will be omitted.

Consider now Mel’nikov–Arnold integrals (4) in the
low-frequency limit, ∆Ω+  0. Here, the asymptotic
expression for the bracketed sum is essential. For even
n = 2, 4, 6, …, it can be represented as

(23)

where coefficients cn are found by recurrence relations (5),

(24)

With (24), it is easy to check that integrals (4)
become frequency-independent in the low-frequency
limit and tend to some constants Kn that depend only on n,

(25)

Thus, the separatrix map amplitude in the low-fre-
quency limit becomes a linear function of frequency,

(26)

It was shown [7] that, when the separatrix map
amplitude varies by a linear law, the size of the upper
part of the chaotic layer becomes frequency-indepen-
dent. This statement will be verified in the next section;
here, it seems reasonable to recall the essence of sepa-
ratrix mapping.

1 f n ∆Ω+( ) sn ∆Ω+( )+
cn

∆Ω+
n 2–

----------------,=

∆Ω+ 0,

c2 1, c4 2, c6–
23
2
------,= = =

c8 132, c10–
5067

2
------------….= =

Kn An Ω 0( ) 2n

n 1–( )!
------------------cn.= =

W+ ε̃+∆Ω+ K2m+

K2m+ 2–

2 m+ 1–( )ps[ ] 2
------------------------------------+–=

–
K2m+ 2+

2 m+ 1+( )ps[ ] 2
------------------------------------ ε̃+C+∆Ω+.–≈
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This mapping, first introduced in [15], describes the
behavior of a Hamiltonian system moving near the sep-
aratrix of the fundamental resonance. In the case of a
pendulum, separatrix mapping is stated as

(27)

where w = p2/2 + cosx – 1 is the relative energy devia-
tion from the undisturbed separatrix (see (8)) and tπ are
time instants the system passes through the positions of
stable equilibrium (x = π).

The summation sign must cover all harmonics that
are significant for a chaotic layer part under study, both
primary (explicitly entering into disturbance (11)) and
secondary (which are absent in (11)).

If frequencies Ωl are incommensurate, time instants
tπ are counted on the continuous time scale. If the fre-
quencies are multiples of some reference frequency Ω0,
the second relationship in (27) may be recast as

(28)

The quickest way of determining the sizes of the
parts of the chaotic layer is iteration of the separatrix
map; therefore, efforts spent on separatrix mapping
prove out.

Our goal is to compare the separatrix map ampli-
tudes found analytically and numerically. Prior to doing
this, an algorithm for numerically constructing the map
is worth outlining (for details, see [11]). First, a central
homoclinic point phb is found on the line of symmetry
x = π with a high accuracy, this point being the bound-
ary between phase circulation and oscillation. In the
vicinity of this point, a narrow momentum interval x =
π, phb < p < phb + δp is taken from which a random tra-
jectory is issued. This trajectory either executes a preset
number of periods of motion or is interrupted passing to
other part of the layer. In both cases, another random
trajectory is issued from the same interval and so on
until the number of periods reaches a desired value N.
For each of the periods, an energy deviation from the
undisturbed separatrix is determined,

(29)

where T is the time interval between two successive
passings through the position of stable equilibrium
x = π.

Determining a change in the energy deviation, δw =
 – w, for each pair of successive periods and assigning

it to time instant tπ shared by this pair of periods, one
can construct separatrix map (δw)k, tπ, k, where k = 1, 2,
…, N – 1 (see (27)). To be definite, we will study the

w w Wl Ωltπ,sin
l

∑+=

tπ tπ
32
w
------ 

  ; lln+ 1 2 …,, ,= =

ψπ ψπ Ω0
32
w
------ 

  ,ln+=

ψπ Ω0tπ mod2π( ).=

w 32 T–( ),exp=

w
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upper part of the chaotic layer. The outer (upper and
lower) parts of the layer are of special interest, since
they are responsible for resonance overlap and global
chaos formation.

THEORETICAL RESULTS VERSUS NUMERICAL 
DATA

As was noted above, the neighborhoods of the zeros
of Mel’nikov–Arnold integrals were considered in [14]
and so here they are not discussed. Therefore, in this
section, we will consider disturbance (11) with fixed
parameters,

(30)

and different primary-harmonic frequencies Ω1 and Ω2.
Note that, with the disturbance thus selected,
Mel’nikov–Arnold integrals (4) do not have zeros
throughout the frequency range 0 < Ω < ∞.

To handle quantities on the order of unity, we will
use the reduced separatrix map amplitude and reduced
energy size of the upper part of the chaotic layer,

(31)

To begin with, consider the (symmetric) case of fre-
quencies that are equal in magnitude and opposite in
sign,

(32)

The separatrix map amplitude and the half-width of
the layer calculated by Chirikov’s formulas (3)–(6)
were found to be W* = 3.92 × 10–2 and  ≈ 0.65,
respectively. Numerical construction of the map by for-
mulas (27) and (28) and subsequent iterations confirm

ε1 ε2 0.01, m1 1, m2 1= = = =

W*
103W
ε1ε2

-------------, wup*
103wup

ε1ε2
----------------.= =

Ω1 16.0, Ω2 16.0.–= =

wup*

1

–1.0

2 3 4 5 6
∆Ω+tπ, mod(2π)

–1.5
0

–0.5

0

0.5

1.0

1.5
107 × W

Fig. 1. Numerical construction of separatrix maps (27) and
(28) for system (1) with disturbance (11) for frequencies
Ω1 = 16.0, Ω2 = –15.9, and ∆Ω+ = 0.1. Wmax = 1.20 × 10–7.
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these values, so that the pattern has the form of a sinu-
soid with frequency Ω = 16.0.

Seemingly, that a small change in one of the fre-
quencies cannot dramatically change the result
obtained. This assumption can be checked by making
the disturbance slightly asymmetric,

(33)

Figure 1 shows the results of numerical simulation.
The separatrix map is seen to remain single-frequency,
but its amplitude increased by roughly 30 times (W* =

Ω1 16.0, Ω2 15.9, ∆Ω+– 0.1.= = =

10–2

0.2

28765 3 4 5 6 7 8 10–1

∆Ω+

0

0.4

0.6

0.8

1.0

1.2

1.4

1.6
W*, w*up

Fig. 2. System (1) with disturbance (11) for Ω1 = 16.0, Ω2 =
var, and ∆Ω+ > 0. The continuous curve, the run of the
reduced separatrix map amplitude W* calculated by for-
mula (21) at a+ = 0.4; (n) numerical calculation of W*;
(d) numerical iteration of separatrix map (27) of reduced
size  of the chaotic layer upper part; and the dashed

line, domain where  ≈ const.

wup*

wup*

10–2

0.2

5
–∆Ω+

0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W*, w*up

1.8

10–12 5 2 5

Fig. 3. System (1) with disturbance (11) for Ω1 = 16.0, Ω2 =
var, and ∆Ω+ < 0. The designations are the same as in Fig. 2.
1.20) and, more importantly, the frequency of the map,
initially high (Ω = 16.0) became very low (∆Ω+ = 0.1).
The upper part of the layer expanded by more than
twice,  ≈ 1.55. Note in passing that the total contri-
bution of the primary harmonics of the disturbance to
amplitude W is as low as less than 2%. Here, we again
face the situation where the formation of chaos in the
upper part of the layer fully depends on the weak but
low-frequency secondary harmonic [11, 12].

Studying the low-frequency limit, Ω  0, for a
pendulum subjected to a symmetric disturbance [7], the
author discovered domains where the separatrix map
amplitude is a linear function of frequency and the size
of the upper part of the chaotic layer is frequency-inde-
pendent. However, in [7], low frequencies were
assigned to primary harmonics, which entered into the
Hamiltonian in explicit form (such a case is rarely
encountered in practice), and secondary ones did not
arise at all. The situation considered in this work is
qualitatively different: the disturbance involves both
high-frequency primary and low-frequency secondary
harmonics. It is of interest to see how the above depen-
dences change when the sum of high primary frequen-
cies tends to zero.

Figure 2 and 3 demonstrate the behavior of the
reduced (see (31)) separatrix map amplitude and
reduced size of the upper size of the chaotic layer for
the upper and lower harmonics (the superscript “+” in

 is omitted). Good agreement between the theory
and calculation is obvious. We see that, when the distur-
bance is symmetric, the limit ∆Ω+  0 for secondary
harmonics leads to the same dependences as for low-
frequency primary ones: the separatrix map amplitude
linearly grows with frequency, while the size of the
layer varies with frequency insignificantly. At the same
time, it is noteworthy that the frequency independence
of the size of the chaotic layer predicted by the theory
is approximate and is markedly violated at the extremes
of the interval. At the right extreme, the growth of the
layer is naturally related to the fact that the curve leaves
the range of low-frequency asymptotics. At the left, the
contribution from the secondary harmonic to the sepa-
ratrix map amplitude becomes comparable to that from
the primary harmonic and the map is no longer single-
frequency.

CONCLUSIONS

The above-mentioned studies of dynamic chaos for-
mation in Hamiltonian systems widely exploit the
model of a pendulum subjected to different harmonic
disturbances. This model, along with its discrete ana-
logue, the Chirikov standard map, is very popular in
investigations into nonlinear dynamics.

The case when the disturbance in the Hamiltonian is
represented by two harmonics with different frequen-
cies is considered most comprehensively. The theoreti-

wup*

W+*
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cal results and experimental data reported suggest that
secondary harmonics with frequencies that are the sum
of or difference between primary-harmonic frequencies
are real objects. Under certain conditions, it is the sec-
ondary harmonics that govern the formation of the cha-
otic component of motion.

However, the analytical relationships presented in
this work are approximate and need empirical adjusting
coefficients to fit numerical experiment data (see for-
mula (21)); the essence of these coefficients yet to be
understood. The author believes that elaboration of an
exhaustive theory of Hamiltonian systems needs addi-
tional experimental and theoretical insight into the role
of secondary harmonics in formation of dynamic chaos.
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Abstract—Interaction of a high-temperature gas with a heat-reflecting coating is accompanied by many inter-
related processes. The need for thermal protection arises when an unprotected structure is bound to inevitably
fail under the action of heat fluxes. It seems that heat fluxes on the order of 2.5 × 105 W/m2, which corresponds
to equilibrium surface temperatures exceeding 1500 K, set the upper operating temperature limit for unpro-
tected refractory metals. However, this limit is to some extent conditional, since mechanical and corrosion
effects may often aggravate the thermal action, causing the structure to fail at much lower temperatures. © 2005
Pleiades Publishing, Inc.
(1) Generally, this problem should be tackled by
solving a set of differential equations describing tran-
sient heat and mass transfer in a gas–solid system [2, 4].
Elucidation of a failure mechanism, i.e., insight into
elementary physicochemical processes responsible for
the failure of heat-reflecting materials, is a great chal-
lenge. Only a few of the materials that have a high heat
of sublimation can actually be used as heat-reflecting
materials. For example, the low heat-absorption effi-
ciencies of metals and ice are due to the fact that, when
melting, they form a low-viscosity film of the melt,
which is instantly blown off the surface by the incom-
ing gas flow [3]. Strictly speaking, destructible heat-
reflecting systems perform two functions: they absorb
heat and simultaneously block the incident heat flux by
injecting the gas into the boundary layer (as is the case
of cooling by mass exchange). It is important to empha-
size that the idea of destructible heat protection implies
some phase or (in the general case) physicochemical
transformation taking part of the material to the gas-
eous state. Note also that analysis of transient heat
transfer in the heat-reflecting coating is necessary in
two cases: (i) for determining the thickness of the coat-
ing and (ii) for calculating the temperature of the outer
surface (and, at the same time, the thickness of the layer
removed if the material fails on this surface).

(2) Let us consider the flow of a high-temperature
gas about a hemispherical body of surface area S and
wall thickness L. Under the action of the steady high-
temperature flow, the coating fails and sublimates from
the surface. Each kilogram of the sublimating material
carries away a certain amount of heat ∆Q. The thermal
and physical properties of the material are assumed to
be invariable. Physicochemical transformations in the
1063-7842/05/5007- $26.00 0828
bulk of the material and emission from the outer surface
are absent. In the general case, the convective and
radiant heat fluxes arriving at the surface of the coating
from the outside are absorbed in the following
scheme [1]:

(1)

where GΣ∆Qmel is the thermal effect of melting, Gw∆Qw
is the thermal effect of physicochemical transforma-

tions at the wall surface, εσ  is the radiation from the
walls, qλ is the thermal flux heating the inner layers, and
qinj is the heat removed by gas injection.

According to the Fourier law,

(2)

where n is the normal to the surface of the body.
The net mass flow in Eq. (1), GΣ = Gw + Gg + Gmel,

is the sum of the mass flow of the material formed dur-
ing surface transformations, the mass flow of the gas
liberated from the coating, and the mass flow of the
material being carried away with the film of the melt.
For a certain known law of variation of heat flux, q0(τ),
performance analysis of a destructible heat-protecting
coating consists of three stages: (i) determination of the
heating time to failure, (ii) calculation of the thickness
of the layer blown off, and (iii) determination of the
depth of the heated zone after the heat flux and, hence,
mass removal from the outer surface have been termi-

q0 qR+
α
cp

----- Ie Iw–( ) qR+=

=  GΣ∆Qmel Gw∆Qw εσTw
4 qλ qinj,+ + + +

Tw
4

qλ λ∂T
∂n
------

w

,–=
© 2005 Pleiades Publishing, Inc.
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nated. Under the action of the heat flux on the heat-
reflecting coating, direct solid–gas transformation of
the material may take place. If this process occurs on
the surface exposed to the heat flux, we are dealing with
a sublimating coating.

(3) Let us consider the 2D problem of heat transfer
in a homogeneous cylindrical sheath of radius R and
thickness L (Fig. 1). The outer surface steadily erodes
at a constant temperature under the action of a heat flux
directed normally to the surface, and the inner surface
is just maintained at a constant temperature. If the
thickness of the sheath is much smaller than its inner
radius (i.e., L ! R), heating is uniform; i.e., the 2D
problem reduces to the 1D case. The depth of heating
(the distance normal to the wall along which the tem-
perature difference is Tw – T0) is assumed to be substan-
tially smaller than the distance along which the same
temperature difference takes place on the surface. Note
that this assumption is invalid if heat flux q changes
sharply over the surface or the thermal conductivity of
the material is high.

To solve the problem posed, it is necessary to apply
a more general equation of conservation of energy in
the condensed phase (heat conduction equation) in
which processes due to heat absorption and/or evolu-
tion inside the heat-reflecting layer are taken into
account.

A physical equivalent of the given computational
model is melting or sublimation of crystals under
intense aerodynamic heating [3, 5]. The heating process
itself can be divided into two stages. At the first stage
(τ < τT), the surface temperature increases monotoni-
cally until it reaches failure temperature Tf. At this tem-
perature, crystals intensely evaporate and the vapor is
immediately taken away by the incoming gas. We
assume that the failure temperature and its associated
thermal effect ∆Q remain constant.

The value of Tf depends on the failure mechanism in
a given heat-reflecting material [1, 3]. Obviously, this
temperature may not be attained under certain heating
conditions. For invariable thermal and physical proper-
ties of the material and in the absence of internal phys-
icochemical transformations, the temperature field is
described by the classical heat conduction equation
[6, 7]

(3)

where a = λ/cρ is the thermal diffusivity.

Disregarding radiation from the outer surface, injec-
tion, and fusion, we can reduce heat balance equa-
tion (1) to the simplest boundary condition

(4)

∂T t z,( )
∂t

------------------- a
∂2T t z,( )

∂z2
---------------------,=

q0 t( ) qλ λ∂T
∂z
------

z 0=

.–= =
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For the second boundary condition, we take

This condition meets the requirements for heat-
reflecting coatings used in practice, since the sheath
they coat must be kept low temperatures most of the
time under transient heating [3]. As the initial condi-
tion, we take the equality of the temperature inside the
coating to T0.

Heating depth δT in a heat-reflecting coating is
defined as the distance from the failure surface to a cer-
tain isothermal surface [6] whose temperature T1 meets
the condition T1 – T0 = 0.1(Tf – T0).

(4) If the failure temperature is reached, the solution
of the problem reduces to solving the 1D nonstationary
heat conduction equation

(5)

(where a = λ/cρ) with the boundary conditions

(6)

and the initial condition

(7)

The inhomogeneity of the boundary conditions does
not allow us to seek a solution to the problem with the
Fourier method. Consequently, we must use the integral

T z 0=( ) T0.=

∂T t z,( )
∂t

------------------- a
∂2T t z,( )

∂z2
---------------------=

λ∂T t z,( )
∂z

-------------------– q for z 0,= =

T t z,( ) TC for z L,= =

T 0 z,( ) T0, T0 TC.= =

L

R

V
0

T0

z

x

q

Fig. 1. Spherical sheath exposed to normally incident heat
flux.
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Laplace transformation in variable t [7],

(8)

where Laplace transform (p, z) depends on z and
parameter p (the latter is complex in our case).

It should be noted that the problem splits into two
subproblems: finding a solution in transforms and then
returning to the original.

Applying transformation (8) with the initial condi-
tion to Eq. (5) with conditions (6) and (7), we obtain the
expression

for transform (p, z) with the boundary conditions

and the initial conditions

The solution to this problem has the form

Substituting the boundary conditions yields the set
of linear algebraic equations

Thus, the desired solution in transforms has the
form

T̃ p z,( ) T t z,( ) pt–( )exp t,d

0

∞

∫=

T̃
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p
----- for z 0,= =
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T 0 z,( ) 0, T0 TC.= =
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T0

p
----- C1

p
a
---z 

 sinh C2
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---z 

  .cosh++=

p
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λqλ
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p
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p
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qλ

λp
------ a

p
---

p
a
--- L z–( ) 

 sinh

p
a
---L 

 cosh

-----------------------------------------

 
 
 
 
 

.+=
Now we return to the original of the solution, using
the standard theorems of operational calculus [7].

In accordance with the third expansion theorem, the
original of the desired solution is equal to the sum of the

residues of function (p, z) in its poles. The poles of

function (p, z) are the roots of the equation

These roots are p0 = 0, p1, …, pk (k ∈  N). In this case,

The root p0 = 0 deserves special consideration.
Using the definition of residue to calculate a residue at
this point, we can write

As applied to the given case, this equality assumes
the form

The equation

has no real roots. Therefore, making the substitution

 = iµ, we get

This equation has a countable set of simple roots

They all are simple poles, so that the residue in them
can be calculated by the formula

T̃

T̃

p
p
a
---L 

 cosh 0.=

T t z,( ) Res T̃ p z,( ) pt( )exp( ).
n 0=

∞

∑=
p = pn

Res f p( )( ) f p( ) p pn–( ).
p pn→
lim=

p = pn

Res T̃ p z,( ) pt( )exp( ) pt( )pT̃ p z,( )exp{ }
p 0→
lim=

p = 0

=  T0

qλ

λ
-----lim 

1

p
a
---L 

 cosh
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a
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 sinh

p
a
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+
p 0→

=  T0

qλ

λ
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a
---L 

 cosh 0=

p

Lµ
a

------- 
 cos 0.=

µk
a

L
------- π

2
--- πk+ 

  , k N .∈=

Res f p( )( )
ϕ pn( )
ψ' pn( )
----------------,=

p = pn
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where

Here, Fo = (a/L2)t is the dimensionless Fourier number
[7].

The desired solution has the form

from whence we can calculate the time to failure τT, the
depth of heating, and the prefailure temperature profile.

(5) For constant thermal and physical properties of
the material, the energy conservation equation in the
stationary coordinate system has the form

(9)

The thermal balance on the outer surface of the body
can be written as

(10)

ϕ pn( ) 0, ψ pn( )≠ 0, ψ' pn( ) 0,≠=
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where Gi, w is the mass rate of evaporation from the sur-
face [1].

It is well known that Gi, w can be determined by the
Knudsen–Langmuir formula

where a∗  is the accommodation coefficient (for metals,

a∗  = 1),  is the saturated vapor pressure at tempera-
ture Tw, pi is the vapor pressure above the surface, Mi is
the molecular mass, Tw is the temperature of the surface
of the sublimating material, and R is the gas constant.

In accordance with the Clausius–Clapeyron equa-
tion, the saturated vapor pressure along the phase equi-
librium curve is given by

where M is the molecular mass and K is an constant
found experimentally.

In the stationary frame of reference, the mass flow
rate and the coordinate of the outer surface are related
as

(11)

From the zero time t = 0 on, the temperature of the
body at a large distance from the outer surface (y  L)
is assumed to be constant and equal to T0 (Fig. 2). Let
ρν equal Gi, w. We introduce a new time frame,

(12)

where t = 0 corresponds to the onset of failure and t = tk

corresponds to the instant when S(tk + τT) = L.

Gi w,
a* pi

s pi–( )
2πRTw/Mi

------------------------------,=

pi
s

ps Tw( ) K ∆QM/RTw–( ),exp=

Gi w, ρdS
dτ
------ or S

1
ρ
--- Gi w, τ .d

0

τ

∫= =

t τ τ T , 0 t tk,≤ ≤–=

Tf

T0

y
x

1 2

0

qw

Fig. 2. Model of the melting body with constant failure sur-
face temperature Tf: (1) initial and (2) current position of the
failure surface. Zero is the stagnation point.
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The need for specifying a boundary condition at the
moving surface is eliminated by introducing a dimen-
sionless coordinate and temperature θ,

(13)

For all t in the range 0 ≤ t ≤ tk, z = 0 corresponds to
the failure surface.

With regard to the above substitutions, Eq. (9)
assumes the form

(14)

for z = 0, we have θ(t, 0) = 1 and

(15)

for z = L,

and for t = 0,

In the general case, the vapor pressure at the surface
depends on its temperature and, hence, on time. It is
easy to check that, for L  ∞, linear velocity v  of the
failure surface increases gradually, tending to steady-
state value v |τ → ∞ = . Since this transient lasts indefi-
nitely long, one usually speaks of quasi-stationary,
rather than stationary, failure parameters [1].

The quasi-stationary failure conditions, when the
temperature profile stops changing with time, can be

z y S τ( ), 0 z L, θ≤ ≤–
T T0–
T f T0–
----------------.= =
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∂z
------;+=

∂θ t z,( )
∂z

------------------
z 0=

ρ∆Q
λ

------------v q
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T p T0–
----------------------------------, v 0( ) 0.= =

v

2.5 L, m × 10–30

Tf

T0

1
2

3
4

5

Fig. 3. Temperature distribution across the wall at t = (1) 1,
(2) 5, (3) 10, (4) 15, and (5) 20 s.
described by Eqs. (14) and (15) in which ∂θ/∂t  0.
Then, there exists a solution to the equation

where

Substituting boundary conditions (13) and consider-
ing that L  ∞, we find that

or

Thus, at t = 0, v(0) = 0; at t = ∞, we obtain

from whence

where C > 0.
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Fig. 4. Temperature distribution across the wall at the time
of failure.
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Fig. 6. Temperature profiles at various depths before and at
the time of failure. Temperature distributions at depths of
(1) 0L (over the surface), (2) 0.02L, (3) 0.05L, (4) 0.1L,
(5) 0.2L, (6) 0.4L, (7) 0.55L, and (8) 0.8L are shown. The
failure time τf = 20 s.
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Fig. 7. Depth of wall heating. I, disintegrated part of the
wall.
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(6) By way of example, we considered a flow about
a hemispherically blunted body coated by a heat-
reflecting layer of thickness L = 0.005 m. The wall
parameter at 20°C were λ = 293 W/(m K), c =
0.92 kJ/(kg K), ρ = 2700 kg/m3, and Tmel = 950 K.

Figures 3–7 show the results of numerical calcula-
tions. It is remarkable that, when the heat flux due to the
incoming gas takes a steady-state value, the tempera-
ture profile stops varying with time when plotted in the
reference frame related to the moving boundary. Even
a minor mass removal from the outer surface changes
the temperature field configuration.

Figure 3 shows the temperature distribution across
the wall at various time instants up to failure. The tem-
perature field across the wall at the time of failure is
shown in Fig. 4. As the temperature reaches failure tem-
perature Tf, the heat flux becomes time-independent
and linear velocity v∞ of the failure surface increases
gradually, tending toward a constant value (Fig. 5). The
wall heats up uniformly until the failure temperature is
reached at its surface. In this case, a certain amount of
heat is carried away by the material, the temperature
field changes, and the temperature decreases slightly;
however, heat is supplied again and failure continues
(Fig. 6). It can be seen that the rate of wall failure
becomes constant with time (Fig. 5). Under the condi-
tions of mass transfer, the depth of heating decreases,
since almost all the heat supplied is immediately car-
ried away by the disintegrating coating. In addition,
when the material is carried away (i.e., when the tem-
perature of the outer surface is maintained at a constant
level), a heat wave propagates across the wall and the
temperature profile is described by the same function at
any time instant. Figure 7 shows the temperature field
distribution during failure. Even if the mass transfer
from the surface is minor, the temperature field recon-
figures. This effect shows up most vividly at high tem-
peratures. The mass transfer (i.e., the travel of the sur-
face) leads to a situation in which any point, initially
being inside the coating, emerges on the outer surface.

From the aforesaid, we can formulate general
requirements for heat-reflecting systems based on
physicochemical transformations. First, heat-reflecting
materials must absorb a large amount of heat during
these transformations. Second, they must offer a high
heat capacity per unit volume and a high thermal resis-
tance to minimize mechanical mass transfer. Finally, it
is desirable that the failure surface have a high temper-
ature and emissivity.
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Abstract—An asymptotic analytical expression for the generatrix of a viscous charged liquid drop is for the
first time derived in the second order of smallness in the axisymmetric initial deformation of the drop. The
expression is represented as an infinite series in the roots of the dispersion relation and a finite sum of the num-
bers of modes specifying the initial deformation. In some of the terms of the analytical expression, the denom-
inators involve the differences between the mode frequencies. These differences may become small under cer-
tain values of the charge, causing internal nonlinear resonant mode interaction. Analytical and numerical inves-
tigations of the effect of viscosity on the vibrating frequency show that the resonant values of the self-charge of
the drop tend to increase with increasing viscosity. The viscosity of the liquid does not affect the spectrum of
modes excited via nonlinear mode interaction. © 2005 Pleiades Publishing, Inc.
(1) Capillary vibration and stability of charged
drops are of great scientific and applied interest. This
problem has therefore been thoroughly examined in
both the linear and nonlinear statements. While in the
former case a rigorous solution to the problem consid-
ering a viscous drop is easy to find, nonlinear analysis,
which became possible about 20 years ago with the
advent of advanced computing facilities and dedicated
software packages, has been performed for an ideal liq-
uid alone (a total of about 50 publications) (see, e.g., [1]
and Refs. cited therein). The most plausible explanation
for such a situation is the awkwardness of the mathe-
matics used in calculating nonlinear vibrations of a vis-
cous liquid drop [2]. Nevertheless, taking account of
viscosity in such problems brings mathematical models
closer to reality and, thus, seems to be of importance.

Below, we report the results of investigation into the
effect of viscosity on the positions of internal reso-
nances of a vibrating charged drop. To simplify the
mathematics, our consideration is restricted to analysis
of an expression for the generatrix of a nonlinearly
vibrating viscous liquid drop that is derived for simple
forms of initial deformation of the drop (integral terms
in this expression are retained) and to analysis of simple
(degenerate) internal nonlinear resonances.

(2) Let a spherical drop of an ideal conducting
incompressible liquid have radius r0, density ρ, kine-
matic viscosity ν, surface tension coefficient σ, and
charge Q. In the spherical coordinate system (r, ϑ , ϕ)
with the origin at the center of the drop, the equation for
the surface of the drop executing axisymmetric vibra-
tions is written in the form

(1)

where t is the time.

F r ϑ t, ,( ) r r0– ξ ϑ t,( )– 0,= =
1063-7842/05/5007- $26.00 0835
The initial deformation of the drop is specified by
the relationship

(2)

where ε is a small parameter proportional to the initial
deformation amplitude; Pm(µ) is the Legendre polyno-
mial of order m; Ω is a set of indices of the modes spec-
ifying the initial deformation; and hm are the constants
characterizing the partial contribution of an mth mode
to the initial deformation of the drop,  =
O(1).

The flow velocity field in the drop is designated as
U(r, ϑ , t); the pressure field, as p(r, ϑ , t); and the electric
field potentials near the drop and on its surface, as φ(r,
ϑ , t) and φs(t), respectively.

Mathematically, the problem of capillary vibration
of a viscous incompressible conducting charged liquid
drop whose shape is defined by (1) and (2) is formu-
lated as [1]

(3)

t 0: ξ ε hmPm µ( ); µ ϑ( ),cos≡
m Ω∈
∑= =

hmm Ω∈∑

∂tU U —⋅( )U+
1
ρ
---grad p– ν∆U; divU+ 0;= =

∆φ 0;=

t 0: U 0; r 0: U ∞;<= =

r +∞: —φ 0;

r r0 ξ ϑ t,( ): ∂tF U —⋅( )F+ + 0;= =

t n —⋅( )U n t —⋅( )U⋅+⋅ 0;=

– p 2ρνn n —⋅( )U⋅ 1
8π
------ —φ( )2– σ — n⋅( )+ + 0;=
© 2005 Pleiades Publishing, Inc.
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where symbol ∂t means the partial derivative with
respect to t and n and t are the unit vectors of the nor-
mal to the tangent, and ∆ is the Laplacian.

The above set of equations is nonlinear; therefore,
solving it by the method of direct expansion [3]
requires that all desired quantities be represented as
expansions in small parameter ε,

(4)

where er and ev are the unit vectors of the spherical
coordinate system.

(3) Substituting expansions (4) into set (3) and
equating the coefficients multiplying terms with differ-
ent powers of the small parameter, we formulate the
problem in the zeroth, first, and second orders of small-
ness.

(i) In the zeroth order of smallness, we have
∆φ(0) = 0.

r = r0: φ(0) = (t), ∂rφ(0)d(cosϑ) = –2Q,

φ φS t( );=

n
S

∫ —φdS⋅ 4πQ;–=

S r ϑ ϕ r r0= ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+, ,{ } ;=

r2 ϑsin rd ϑd ϕd

V

∫ 4π
3

------r0
3;=

V r ϑ ϕ 0 r r0≤ ≤ ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+, ,{ } ;=

rr2 ϑsin rd ϑd ϕd

V

∫ 0,=

ξ ϑ t,( ) εξ 1( ) ϑ t,( ) ε2ξ 2( ) ϑ t,( ) O ε3( );+ +=

U r ϑ t, ,( ) εUr
1( ) r ϑ t, ,( )er ε2Ur

2( ) r ϑ t, ,( )er+=

+ εUϑ
1( ) r ϑ t, ,( )eϑ ε2Uϑ

2( ) r ϑ t, ,( )eϑ O ε3( );+ +

p r ϑ t, ,( ) p 0( ) r ϑ t, ,( ) εp 1( ) r ϑ t, ,( )+=

+ ε2 p 2( ) r ϑ t, ,( ) O ε3( );+

φ r ϑ t, ,( ) φ 0( ) r t,( ) εφ 1( ) r ϑ t, ,( )+=

+ ε2φ 2( ) r ϑ t, ,( ) O ε3( );+

φs t( ) φs
0( ) t( ) εφs

1( ) t( ) ε2φs
2( ) t( ) O ε3( ),+ + +=

r +∞: —φ 0( ) 0;

φs
0( ) r0

2

1–

1

∫

p 0( ) Q2

8πr0
4

-----------+
2σ
r0
------.=
Solving this problem yields

(5)

(ii) In the first order of smallness, we get

(6)

where ∆Ω is the angular part of the Laplacian.

A solution to problem (6) is easy to find in the form
[1]

(7)

φ 0( ) Q
r
----; φs

0( ) Q
r0
----.= =

∂tUr
1( ) 1

ρ
---∂r p 1( )– ν 1

r2
----∂ϑϑ Ur

1( ) ϑ( )cot

r2
----------------∂ϑ Ur

1( )+
+=

–
1
r
---∂rϑ Uϑ

1( ) ϑ( )cot
r

----------------∂rUϑ
1( )–

1

r2
----∂ϑ Uϑ

1( )–
ϑ( )cot

r2
----------------Uϑ

1( )

– ;

∂tUϑ
1( ) = 

1
ρ
---1

r
---∂ϑ p 1( )– ν ∂rrUϑ

1( ) 2
r
---∂rUϑ

1( ) 1
r
---∂rϑ Ur

1( )–+ 
  ;+

∂rUr
1( ) 2

r
---Ur

1( ) 1
r
---∂ϑ Uϑ

1( ) ϑ( )cot
r

---------------Uϑ
1( )+ + +  = 0; ∆φ 1( ) = 0;

t 0: U 1( ) 0; ξ 1( ) ε hmPm µ( );
m Ω∈
∑= = =

r 0: U 1( ) ∞; r +∞: —φ 1( ) 0;<

r r0: φ 1( ) ξ 1( )∂rφ
0( )+ φs

1( ) t( ); ∂tξ
1( ) Ur

1( );= = =

∂rUϑ
1( ) 1

r
---∂ϑ Ur

1( ) 1
r
---Uϑ

1( )–+ 0;=

– p 1( ) 2ρν∂rUr
1( ) 1

4π
------∂rφ

0( ) ∂rφ
1( ) ξ 1( )∂rrφ

0( )+( )–+

–
σ
r0

2
---- 2 ∆Ω+( )ξ 1( ) 0;=

r0∂rφ
1( ) ξ 1( ) r0∂rrφ

0( ) 2∂rφ
0( )+( )+( ) µ( )d

1–

1

∫ 0;=

ξ 1( ) µ( )d

1–

1

∫ 0; ξ 1( )P1 µ( ) µ( )d

1–

1

∫ 0,= =

ξ 1( ) ϑ t,( ) ξn
1( ) t( )Pn µ( );

n Ω∈
∑=

Ur
1( ) r ϑ t, ,( ) Urn

1( ) r t,( )Pn µ( );
n Ω∈
∑=

Uϑ
1( ) r ϑ t, ,( ) Uϑ n

1( ) r t,( )∂ϑ Pn µ( );
n Ω∈
∑=
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where

pn
1( ) r ϑ t, ,( ) pn

1( ) r t,( )Pn µ( ),
n Ω∈
∑=

ξn
1( ) t( ) aξn

Sn
j( )( ) Sn

j( )t( );exp
j 1=

+∞

∑=

Urn
1( ) r t,( ) an Sn

j( )( ) r
r0
---- 

  n 1–




j 1=

+∞

∑=

+ bn Sn
j( )( )1

r
---

jn χn
j( )r( )

jn χn
j( )r0( )

----------------------




Sn
j( )t( );exp

Uϑ n
1( ) r t,( ) = an Sn

j( )( ) r
r0
---- 

  n 1–

bn Sn
j( )( )

1
r
---

jn χn
j( )r( )

jn χn
j( )r0( )

----------------------




+




j 1=

+∞

∑

+
χn

j( )

n 1+
------------

jn 1+ χn
j( )r( )

jn χn
j( )r0( )

--------------------------






 Sn

j( )t( )exp
n

------------------------;

aξn
Sn

j( )( ) = Sn
j( ) 2 n 1–( ) 2n 1+( )

ν
r0

2
---- 2 n 1–( )2 n 1+( )+ +



× ν
ηn

0( ) χn
j( )( )r0

2
--------------------------

 hn

∂
Sn

j( )Dn Sn
j( )( )

----------------------------;

an Sn
j( )( ) 2 n2 1–( ) r0χn

j( )( )2
+( )---

=

× 1

2χn
j( )r0

----------------
jn χn

j( )r0( )
jn 1+ χn

j( )r0( )
---------------------------- 1–



 hn

ηn
0 χn

j( )( )
-------------------

ωn
2

∂
Sn

j( )Dn Sn
j( )( )

----------------------------;

bn Sn
j( )( ) 2 n2 1–( ) 1

2

χn
j( )r0

------------
jn 1+ χn

j( )r0( )
jn χn

j( )r0( )
----------------------------–

 
 
 

1–

=

×
hnωn

2ν
r0Sn

j( )∂
Sn

j( )Dn Sn
j( )( )

-----------------------------------------; χn
j( ) Sn

j( )

ν
-------;=

∂
Sn

j( )Dn Sn
j( )( ) 2Sn

j( ) 2 n 1–( ) 2n 1+( ) ν
r0

2
----+=

+ n 1–( )2 n 1+( ) ν
r0

2
---- 2

2n 1+( )χn
j( )r0

2
---------------------------------

jn χn
j( )r0( )

jn 1+ χn
j( )r0( )

----------------------------+




+
χn

j( )r0( )2

2
------------------- 1

jn χn
j( )r0( )

jn 1+ χn
j( )r0( )

----------------------------
 
 
 

2

–
 
 
 



 1

ηn
0 χn

j( )( )
-------------------;
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Here,  is the root of the dispersion relation

Dn( ) = 0 and jn( r0) is the modified spherical

Bessel function of r0 of the first kind [4].

(iii) To find the components of a second-order solu-
tion, we write

Dn Sn
j( )( ) Sn

j( )( )2
2 n 1–( ) 2n 1+( )

Sn
j( )ν

r0
2

-----------+=

+ 2 n 1–( )2 n 1+( )
Sn

j( )ν
r0

2
----------- 1

χn
j( )r0

2
------------

jn χn
j( )r0( )

jn 1+ χn
j( )r0( )

----------------------------–
 
 
 

1–

ωn
2;+

ωn
2 σ

ρr0
3

--------n n 1–( ) n 2 W–+( ); W
Q2

4πσr0
3

---------------;= =

ηn
0 χn

j( )( ) 1
r0χn

j( )

2
------------

jn χn
j( )r0( )

jn 1+ χn
j( )r0( )

----------------------------.–=

Sn
j( )

Sn
j( ) χn

j( )

χn
j( )

∂tUr
2( ) Ur

1( )∂rUr
1( ) 1

r
---Uϑ

1( )∂ϑ Ur
1( ) 1

r
--- Uϑ

1( )( )2
–+ +

=
1
ρ
---∂r p 2( )– ν 1

r2
----∂ϑϑ Ur

2( ) ϑ( )cot

r2
----------------∂ϑ Ur

2( ) 1
r
---∂rϑ Uϑ

2( )–+
+

–
ϑ( )cot

r
----------------∂rUϑ

2( ) 1

r2
----∂ϑ Uϑ

2( )–
ϑ( )cot

r2
----------------Uϑ

2( )– 
 ;

∂tUϑ
2( ) Ur

1( )∂rUϑ
1( ) 1

r
---Uϑ

1( )∂ϑ Uϑ
1( ) 1

r
---Ur

1( )Uϑ
1( )+ + +

=  
1
ρ
---1

r
---∂ϑ p 2( )– ν ∂rrUϑ

2( ) 2
r
---∂rUϑ

2( ) 1
r
---∂rϑ Ur

2( )–+ 
  ;+

∂tUr
2( ) 2

r
---Ur

2( ) 1
r
---∂ϑ Uϑ

2( ) ϑ( )cot
r

----------------Uϑ
2( )+ + + 0;=

∆φ 2( ) 0;=

t 0: U 2( ) 0; ξ 2( ) 1
r0
----

hm
2

2m 1+
----------------P0 µ( )

m Ω∈
∑–= = =

–
9
r0
----

m 1+( )hmhm 1+

2m 1+( ) 2m 3+( )
-------------------------------------------P1 µ( );

m Ω∈
∑

r 0: U 2( ) ∞; r +∞: —φ 2( ) 0;<

r r0:=

φ 2( ) ξ 2( )∂rφ
0( ) 1

2
--- ξ 1( )( )2∂rrφ

0( ) ξ 1( )∂rφ
1( )+ + + φs

2 t( );=
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r0
2∂rφ

2( ) r0ξ
1( ) r0∂rrφ

1( ) 2∂rφ
1( )+( ) r0ξ

2( )(r0∂rrφ
0( )---+ +

1–

1

∫

(8)

Substituting the quantities of the zeroth, (5), and
first, (7), orders of smallness into (8) gives a set of inho-
mogeneous partial differential equations, which can be
solved using the Laplace transformation

+ 2∂rφ
0( ) ) ξ 1( )( )2 1

2
---r0

2∂rrrφ
0( ) 2r0∂rrφ

0( ) ∂rφ
0( )+ + 

 +

---– ∂ϑξ 1( )∂ϑφ 1( ) d µ( ) 0;=

r0ξ
2( ) ξ 1( )( )2

+( ) µ( )d

1–

1

∫ 0;=

2r0ξ
2( ) 3 ξ 1( )( )2

+( )P1 µ( ) µ( )d

1–

1

∫ 0;=

∂tξ
2( ) ϑ t,( )– Ur

2( ) ∂rUr
1( )ξ 1( ) ϑ t,( )+ +

–
1
r0
----Uϑ

1( )∂ϑξ 1( ) ϑ t,( ) 0;=

1
r0
----∂ϑ Ur

2( ) ∂rUϑ
2( ) 1

r0
----Uϑ

2( )–
1
r0
----∂rϑ Ur

1( ) 1

r0
2

----∂ϑ Ur
1( )–

+ +

+ ∂rrUϑ
1( ) 1

r0
----∂rUϑ

1( )–
1

r0
2

----Uϑ
1( )+ 

 ξ 1( ) ϑ t,( )

– 2
1

r0
2

----∂ϑ Uϑ
1( ) 1

r0
2

----Ur
1( ) 1

r0
----∂rUr

1( )–+ 
  ∂ϑξ 1( ) ϑ t,( ) 0;=

– p 2( ) σ
r0

2
---- 2 ∆Ω+( )ξ 2( )–

2σ
r0

3
------ξ 1( ) 1 ∆Ω+( )ξ 1( )+

–
1

8π
------ 2ξ 2( )∂rrφ

0( )∂rφ
0( ) ξ 1( )( )2 ∂rrφ

0( )( )2(+[

+∂rrrφ
0( )∂rφ

0( )) 1

r0
2

---- ∂ϑφ 1( )( )
2

∂rφ
1( )( )2

2∂rφ
2( )∂rφ

0( )+ + +

+ 2ξ 1( ) ∂rrφ
0( )∂rφ

1( ) ∂rrφ
1( )∂rφ

0( )+( ) ] 2ρν∂rUr
2( )+

– ∂r p 1( ) 2ρν∂rrUr
1( )–( )ξ 1( ) ϑ t,( ) 2ρν 1

r0
2

----∂ϑ Ur
1( )


–

+
1
r0
----∂rUϑ

1( ) 1

r0
2

----Uϑ
1( )– 

 ∂ϑξ 1( ) ϑ t,( ) 0.=

f S( ) f t( ) St–( )exp td

0

+∞

∫ ^ f t( )[ ] .= =
The Laplace transforms of the second-order quanti-
ties are now expanded in an infinite set of Legendre
polynomials or their derivatives,

(9)

Substituting expansions (5), (7), and (9) into (8)
yields a fourth-order inhomogeneous differential equa-

tion for (r, S),

(10)

Here,

ξ 2( ) ϑ S,( ) ξn
2( ) S( )Pn µ( );

n 0=

+∞

∑=

φ 2( ) r ϑ S, ,( ) φn
2( ) r S,( )Pn µ( );

n 0=

+∞

∑=

Ur
2( ) r ϑ S, ,( ) Urn

2( ) r S,( )Pn µ( );
n 0=

+∞

∑=

Uϑ
2( ) r ϑ S, ,( ) Uϑ n

2( ) r S,( )∂ϑ Pn µ( );
n 0=

+∞

∑=

p 2( ) r ϑ S, ,( ) pn
2( ) r S,( )Pn µ( ).

n 0=

+∞

∑=

Urn
2( )

∂rr
4
r
---∂r

n 1–( ) n 2+( )
r2

----------------------------------–+ 
 

× ∂rr
4
r
---∂r

n 1–( ) n 2+( )
r2

----------------------------------– S
ν
---–+ 

  Urn
2( ) r S,( )

=  
n n 1+( )

ν
--------------------

f kmn
lg r Sk

l( ) Sm
g( ), ,( )

S Sk
l( )– Sm

g( )–
---------------------------------------.

l g, 1=

+∞

∑
k m Ω∈,
∑

f kmn
lg r Sk

l( ) Sm
g( ), ,( ) = f kmn

1 ak Sk
l( )( )am Sm

g( )( )rm k 5–+ /r0
m k 2–+

+ f kmn
2 χm

g( )r( )2
f kmn

3+( )ak Sk
l( )( )bm Sm

g( )( )rk 5–

× jm χm
g( )r( )/ r0

k 1– jm χm
g( )r0( )( ) f kmn

4 χm
g( )r( )2

f kmn
5+( )+

× ak Sk
l( )( )bm Sm

g( )( )χm
g( )rk 4– jm 1+ χm

g( )r( )/ r0
k 1– jm χm

g( )r0( )( )

+ f kmn
2 χm

g( )r( )2
f kmn

1+( )bk Sk
l( )( )bm Sm

g( )( ) jk χk
l( )r( )

× jm χm
g( )r( )/ r5 jk χk

l( )r0( ) jm χm
g( )r0( )( ) f kmn

4 χm
g( )r( )2(+
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and  and  are Clebsch–Gordan coeffi-
cients.

At r  0, Eq. (10) has a limited solution of type

+ f kmn
6 χk

l( )r( )2
f kmn

5 )bk Sk
l( )( )bm Sm

g( )( )χm
g( ) jk χk

l( )r( )+

× jm 1+ χm
g( )r( )/ r4 jk χk

l( )r0( ) jm χm
g( )r0( )( ) f kmn

7 bk Sk
l( )( )+

× bm Sm
g( )( )χk

l( )χm
g( ) jk 1+ χk

l( )r( )

× jm 1+ χm
g( )r( )/ r3 jk χk

l( )r0( ) jm χm
g( )r0( )( );

f kmn
1 m 1–( ) m2 k m 2+( ) 2–+( )Γ kmn/ m m 1+( )( )(=

+ 2Γmkn/ k k 1+( )( ) k m 4+( ) m 2–+( )Λkmn(+

+ k m 2–( ) m 4+ +( )Λmkn )/ k k 1+( )m m 1+( )( ) Kkmn–

– k2 2m 1+ +( )α kmn/ k k 1+( )m m 1+( )( ) );

f kmn
4 Γ kmn/ m m 1+( )( );=

f kmn
2 m k+( )Γ kmn/ m m 1+( )( )=

+ Λkmn Λmkn+( )/ km m 1+( )( );

f kmn
3 k m 2–+( ) Γ kmn Γmkn Kkmn–+(=

+ Λkmn Λmkn α kmn–+( )/ km( ) );

f kmn
5 Γ kmn Γmkn Kkmn k 2–( ) Λkmn Λmkn+(+–+=

– α kmn )/ km m 1+( )( );

f kmn
6 Γmkn/ k k 1+( )( )=

+ Λkmn Λmkn+( )/ k k 1+( )m m 1+( )( );

χk
l( ) Sk

l( )/ν;=

f kmn
7 2Λkmn 4Λmkn– α kmn+( )/ k k 1+( )m m 1+( )( );=

χm
g( ) Sm

g( )/ν;=

α kmn Ck0m0
n0 Ck 1–( )m1

n0 k k 1+( )m m 1+( );–=

Γ kmn 2n 1+( )αnmk/ n n 1+( ) 2k 1+( )( );=

Kkmn Ck0m0
n0( )2

; Λkmn 2n 1+( ) αn k m 2 j–, ,

j 1=

m/2[ ]

∑



= =

∫ – m2αnkm/ 2m 1+( )




/ n n 1+( )( );

Ck0m0
n0 Ck 1–( )m1

n0

Urn
2( ) r S,( ) An S( )rn 1– Bn S( )1

r
--- jn χr( )+=
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(11)

where yn(χr) is the nth-order spherical modified Bessel
function of the second kind [4], An(S) and Bn(S) are

arbitrary constants, and χ = .

Substituting (11) into the boundary conditions, we
arrive at a set of three linear algebraic equations in

An(S), Bn(S), and (S), which is very awkward. In
view of this circumstance and the goal of our investiga-

tion, we present only the expression for (S),

(12)

Here,

+
n n 1+( )

S Sk
l( )– Sm

g( )–
------------------------------ 1

2n 1+( )
--------------------1

S
--- τn 3+

rn 2+
---------- rn 1–

τn 2–
----------– 

 




0

r

∫
l g, 1=

+∞

∑
k m Ω∈,
∑

+ 1–( )n 1

S ν
--------------τ3

r
---- jn χr( )yn χτ( ) yn χr( ) jn χτ( )–( )





× f kmn
lg τ Sk

l( ) Sm
g( ), ,( )dτ ,

S/ν

ξn
2( )

ξn
2( )

ξ0
2( ) S( ) 1

r0
---- 1

2m 1+
----------------^ ξm

1( ) t( )( )2[ ] ;
m Ω∈
∑–=

ξ1
2( ) S( )

=  
9
r0
---- m 1+( )

2m 1+( ) 2m 3+( )
-----------------------------------------^ ξm

1( ) t( )ξm 1+
1( ) t( )[ ] ;

m Ω∈
∑–

ξn
2( ) S( )

ζ kmn
lg S Sk

l( ) Sm
g( ), ,( )

Dn S( ) S Sk
l( )– Sm

g( )–( )
--------------------------------------------------; n 2.≥

l g, 1=

+∞

∑
k m Ω∈,
∑=

ζ kmn
lg S Sk

l( ) Sm
g( ), ,( ) χr0( )2 n 1–( ) 3n 1+( )---+

=

+
n2 1–( )
ηn

0 χ( )
------------------ 2n 1–

r0χ
2

--------
jn χr0( )

jn 1+ χr0( )
-----------------------– 

 



× 2n n 1+( )
2n 1+

-----------------------
r0

n 3–

χ2
----------

f kmn
lg r Sk

l( ) Sm
g( ), ,( )

rn 2–
--------------------------------------- rd

0

r0

∫

– χr0( )2 2 n 1+( ) n n 3–( ) 1–( ) 2 n 1+( )
ηn

0 χ( )
--------------------+ +



× n 2n2 n 1–+( ) 1 n n 2+( )
r0χ
2

--------
jn χr0( )

jn 1+ χr0( )
-----------------------–+ 

 



× n
2n 1+
--------------- 1

χ2
----- 1

r0
n 4+

---------- rn 3+ f kmn
lg r Sk

l( ) Sm
g( ), ,( ) rd

0

r0

∫
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– n n 1+( )
jn χr0( )
ηn

0 χ( )
----------------- 2 χr0( )2 4n n 1–( ) n 2+( )---+



– χr0 χr0( )2 2 n 1–( ) 2n 1+( )
jn χr0( )

jn 1+ χr0( )
-----------------------+ 
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(4) The form of expression (12) implies that it has an
infinite countable number of singular points that are

defined by the conditions Dn(S) = 0 and S –  –

 = 0 and are simple poles. In addition, expression
(12) tends to zero at S  ∞. Accordingly, we may
replace the integral along the straight line ReS = γ in the
inverse Laplace transform

by a contour integral over the left-hand side of the com-
plex plane and apply the residue theorem to the latter.
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As a result, the inverse Laplace transform will take the
form

(13)

where summation is over all roots of the dispersion

relations Dn(S) = 0 and S –  –  = 0.

Applying formula (13) to coefficient (S), we
find that

(14)

where  is the root of the dispersion relation

Dn( )) = 0.

Coefficients (t) and (t) will have the form

Using the explicit form of coefficients (t) and

(t), as well as expansions (4), (7), and (9), we can
write an analytical expression for the generatrix of a
nonlinearly vibrating charged drop of a viscous liquid
up to second-order terms,
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(15)

Compared with (10), (12), and (14), expression (15)
is much more awkward. Here, initially cumbersome
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Fig. 1. Dimensional amplitudes of the vibration modes of
the liquid viscous drop that are excited in the second order
of smallness due to nonlinear interaction vs. dimensionless
time at the initial excitation of the fundamental (n = 2) mode
for W = 0 and dimensionless viscosity ν = (a) 0.02 and
(b) 0.2. The figure by the curves indicates the mode number.
Hereafter, the parameters are made dimensionless at ρ =
r0 = σ = 1.
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coefficients  (see (12)) are expressed through the
integrals of not less cumbersome inhomogeneity func-

tions  (i.e., the functions appearing in inhomoge-
neous equation (10)). Thus, direct use of expression
(15) seems problematic. Even with simple (single-
mode) initial deformations of the drop, the calculation
procedure is a big bugaboo even if the modes excited
are not too high (i.e., even though the spectrum of
modes excited via nonlinear interaction is relatively
narrow). Therefore, a solution to (15) is illustrated
(Fig. 1) for the nonlinear vibration of a viscous liquid
drop when its initial deformation is specified by the
lowest (fundamental) mode (n = 2).

(5) An important issue related to nonlinear vibra-
tions of a viscous liquid drop is finding the viscosity
dependence of the spectrum of modes excited through
nonlinear interaction. Note, first of all, that the spec-
trum of these modes depends on inhomogeneity func-

tion  on the right of (10), through which coeffi-

cients  (defining the second-order corrections in
(15)) are expressed in the integral form.

Performing calculations by (15), we revealed that
the inhomogeneity function in differential equation

(10) may take a simpler form, since coefficients ,

, , and  have the properties

 = 0,  = – ,  = 0,  = 0,

 = 0,  = – ,

at least if any set of modes with numbers from 2 to 20
is initially excited (i.e., for any k and m ∈  Ω and n ≥ 2
when Ω ⊆  Ω0 and Ω0 = {k| 2 ≤ k ≤ 20, k ∈  N}). It should
be noted that this mode interval is of the greatest inter-
est, since higher modes decay quickly and have no
essential effect in physically significant applications.

With regard to the above relationships, function (r,

, ) on the right of (10) can be represented in the
more compact form

If at least one mode is initially excited, the zeroth-
order mode will be excited in the second order of small-
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ness because of the constancy of the volume of the
drop. The first mode in the second order of smallness
will be excited only if two neighboring modes (with
their numbers differing by unity) are excited in the first
order of smallness [5, 6]. The higher mode amplitudes
(n ≥ 2), which are given by (15), are proportional to
coefficients Kkmn, αkmn, Γkmn, Γmkn, Λkmn, and Λmkn. The
first four of them are proportional to Clebsch–Gordan
coefficients

(16)

and the remaining two are representable as a sum of two
terms: one is a sum of type

(17)

and the other is proportional to coefficients  and

. As for coefficients (16), they are other than zero
only if k + m + n is an even number and the triangle ine-
quality |k – m| ≤ n ≤ k + m is fulfilled. Coefficients

(18)

are other than zero if min{|k – m + 2j|} ≤ n ≤ k + m – 2
(j = 1, 2, …, m/2) and min{|m – k + 2j|} ≤ n ≤ m + k – 2
(j = 1, 2, …, k/2). For example, if one mode with num-
ber n1 (i.e., Ω = {ni}) is initially excited, coefficients
(16) will be other than zero for even n satisfying the ine-
quality 2 ≤ n ≤ 2n1 and coefficients (18), for n such that
2 ≤ n ≤ 2n1 – 2. Hence, the zero mode and even modes
with numbers from the range 2 ≤ n ≤ 2n1 will be excited
in the second order of smallness in this case. Now let
two modes with numbers n1 and n2 (Ω = {n1, n2}) be ini-
tially excited. Then, if both n1 and n2 are even or odd,
only those coefficients given by (16) and (18) will be
nonzero for which n is even and satisfies the conditions
2 ≤ n ≤ max{2n1, 2n2} and 2 ≤ n ≤ max{2n1, 2n2} – 2.
If one of numbers n1 and n2 is even and the other odd,
those coefficients given by (16) will be nonzero for
which n either is even and satisfies the inequality
2 ≤ n ≤ max{2n1, 2n2} or is odd and such that |n1 – n2| ≤
n ≤ n1 + n2. Of coefficients (18) those will be other than
zero for which n is either even and meets the inequality
1 ≤ n ≤ max{2n1, 2n2} – 2 or is odd and such that 3 ≤
n ≤ n1 + n2 – 2. Note that the last inequality for odd n is
formulated for expressions (18). Actually, however, for
modes with odd numbers such that 3 ≤ n ≤ n1 + n2 – 2
be present in the second-order spectrum, it is necessary

that coefficients  in (10) be other than zero. Look-
ing through values of n1 and n2 of which one is even and
the other odd in the interval from 2 to 20, we get the
conclusion that, for 3 ≤ n ≤ |n1 – n2|, coefficients (17) are
always zero, since sums (17) always have terms that
cancel out.
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Thus, for a viscous liquid drop, the spectrum of
modes excited in the second order of smallness through
the nonlinear interaction coincides with that for a drop
of an ideal liquid [7–9].

(6) From expression (15), it follows that the solution
to the problem of capillary vibration of a viscous
incompressible liquid is of a resonant character: the
denominators of some of the terms in the analytical
expression for the generatrix of the drop become small
under definite conditions. In particular, for nonlinearly
interacting modes, a combined three-mode resonance

may take place at Re  ! Im , when the imaginary
part of the difference between the dimensionless (at ρ =
1, r0 = 1, σ = 1) frequencies in the denominator van-

ishes, Im(  –  – ) = 0, where  is the root

of the dispersion relation Dn( ) = 0. It should be
remembered that, for an ideal liquid, the resonance con-
dition sets in when the difference between the (real) fre-
quencies of interacting modes vanishes.

The dispersion relation Dn( ) = 0 has an infinite
number of roots, among which two are complex conju-
gate at a subcritical (in terms of stability against self-

charge) value of W:  = –δn + iϖn and  = –δn – ϖn,

where δn = –Re( ) = –Re( ) is the damping dec-

rement and ϖωn = Im( ) = –Im( ) is the vibration
frequency. The rest of the roots of the dispersion rela-

tion Dn( ) = 0 are real and negative. At a supercritical
value of W, all the roots are real and at least one of them
is larger than zero. Consequently, at subcritical W, res-
onance may take place if ϖn = ϖk + ϖm. Under reso-
nance, the denominators of the terms in series (15) will

contain expressions  –  –  =  –  –

 = –δn + δk + δm, whose numerical values depend on
the viscosity and tend toward zero at ν  0.

Let us take a closer look at two degenerate nonlinear
resonances involving the fourth and sixth and the fifth
and eighth modes. Degenerate resonances occur if only
one mode, e.g., with number k is initially excited. The
resonance condition in this case is

(19)

From (19), one can find a relationship between the
resonance value of W, Wr, and viscosity ν (Fig. 2). It is
seen that resonance value Wr of the Rayleigh parameter
grows with viscosity at least for degenerate resonances.
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(i) For a low-viscosity liquid, the above statement is
strengthened by approximate calculation under the
assumption that [4]

With this assumption, we can find an approximate
expression for the first root of the dispersion relation

Dn( ) = 0 in the form  = –δn + iϖn, where damp-
ing decrement δn and frequency ϖn are given by

(20)

(21)

Substituting (21) into (19), one easily finds the vis-
cosity dependence of Wr ,
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it can be fairly accurately fitted by a finite number of its ini-
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less (at ρ = r0 = σ = 1) viscosity ν and parameter W
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Here,  and  are the resonant value of parame-
ter W and the capillary vibration frequency for an ideal
liquid,
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Fig. 2. Resonance value of parameter W vs. dimensionless
viscosity ν for degenerate resonances between (4–6) the
fourth and sixth modes and (5–8) fifth and eighth modes.
The continuous curve, exact solution; the dotted curve, cal-
culation by (15).
Substituting (22) into (20) yields approximate
expressions for the resonant values of the damping dec-
rement and vibration frequency,
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Fig. 3. Resonance frequency ϖn vs. dimensional viscosity
ν. The continuous curve, exact solution; the dotted curve,
calculation by (17). For the figures by the curves, see Fig. 1.
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Expressions (20)–(23) adequately describe the vis-
cosity dependences of the physical parameters only
when the viscosity is low, as follows from Figs. 2 and 3.
Under resonance, the differences between the complex

frequencies,  – 2  =  – 2  = –δn + 2δk

remain finite at ν ≠ 0, indicating the finiteness of the
resonating mode amplitudes (Figs. 4 and 5).

Viscosity affects not only the resonance frequencies
and the resonance values of the Rayleigh parameter but
also the convergence of series (14). As the viscosity
grows, the minimal number of the roots of the disper-
sion relation that provide a good convergence of series

Sn
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(14) (i.e., the minimal number of terms that can approx-
imate infinite series (14) to such a degree that the dif-
ference between the exact and approximate solutions is
within the thickness of the lines in Figs. 4 and 5)
decreases drastically (see table). This necessitates the

search for a more compact expression for (t) at
moderate and high viscosity values, i.e., under the con-
ditions where one or two (according to the value of ν)
roots of the dispersion relation (one or two terms of
series (14)) will suffice (the case of two terms is exem-
plified in [1]).

ξn
2( )
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CONCLUSIONS

Considering a real (viscous), rather than ideal, liq-
uid drop in the problem of nonlinear vibration does not
extend the spectrum of modes specifying the shape of
its surface (compared with the ideal case) but increases
the resonance value of the self-charge and limits the
mode amplitudes in exact resonance.
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Abstract—The clustering of CF2HCl (Freon-22 refrigerant) molecules is found to take place when these mol-
ecules are dynamically cooled in a pulsed supersonic beam. A method of CF2HCl cluster beam diagnostics is
developed that combines UV multiphoton ionization, time-of-flight mass spectroscopy, and cluster IR photo-
dissociation. The velocity of directed motion of (CH2HCl)n clusters, as well as the longitudinal and transverse
velocities of their thermal motion, are measured at different stagnation pressures P0. The cluster mean size and
the degree of clustering in the flow are estimated depending on supersonic flow conditions. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

It has been proved thus far that laser separation of
13C and 12C carbon isotopes, which is based on IR mul-
tiphoton dissociation of Freon-22 molecules under the
action of CO2 laser pulsed radiation, is feasible [1].
Research is now underway that is aimed at improving
the yield and selectivity of laser isotope separation. One
way to improve the selectivity is narrowing the IR
absorption spectrum of the molecules via gasdynamic
cooling in pulsed supersonic beams [2–7]. However,
profound cooling may cause clustering in the beam [8,
9] and change its parameters to the point where the
method of laser isotope separation loses isotope selec-
tivity. In light of this, the development of techniques
measuring Freon-22 parameters in supersonic molecu-
lar beams (specifically, under clustering conditions)
seems topical. One such technique using a time-of-
flight ionization mass spectrometer is presented in this
work. Preliminary studies of CF2HCl molecule cluster-
ing are reported elsewhere [10].

Gasdynamic cooling and clustering taking place in
a supersonic gas flow into a vacuum have received
much attention (see, e.g., [8, 9, 11–13]). It has been
shown that these processes depend on the thermody-
namic properties of the gas (or gas mixture), stagnation
parameters (T0, P0), and nozzle geometry (diameter)
and design (the presence or absence of an extension).
Clustering occurs if (i) the flow is rapidly cooled pass-
ing into the supersaturated nonequilibrium state;
(ii) condensation centers are available: in the homoge-
neous gas, these are ultrasmall (n < 5, where n is the
number of molecules) clusters produced by three-body
collisions; and (iii) there exists a collision area where
1063-7842/05/5007- $26.00 0846
the relatively slow condensation process is observed,
which terminates when the collisionless flow sets in.

The main goal of our study is to find CF2HCl mole-
cule condensation conditions and measure the basic
cluster flow (beam) parameters (degree of condensation
q; cluster mean size N; velocity U of directed motion;
and longitudinal, V||, and transverse, V⊥ , components of
the thermal velocity of clusters in the beam) depending
on supersonic flow conditions.

1. MEASURING SEUUP AND TECHNIQUE

The measuring setup was described in detail else-
where [14]. All experiments were carried out with pure
(without a carrier gas) Freon-22 flowing out from a
supersonic nozzle without a conic extension (at temper-
ature T0 = 298 K). The measuring geometry is shown in
Fig. 1a. In the source chamber, skimmer Sk (Beam
Dynamics Co., DS = 0.66 mm) placed at distance
∆ZNS = 38.5 mm from pulsed electromagnetic nozzle
PN (General Valve Co., d = 0.8 mm, ∆t = 200 µs) cuts
a molecular beam from a supersonic flow (jet) pro-
duced by the nozzle. The molecular beam thus formed
enters the chamber of a mass spectrometer, where it
meets the mutually orthogonal axes of the mass spec-
trometer (the Y axis) and focused ( f = 12 cm) pulsed (a
pulse width of 7 ns) ionizing UV (λ ≈ 232 nm) laser
radiation at distance ∆ZSD = 96.5 mm from the entrance
to the skimmer. The vibrational excitation of the parti-
cles is accomplished with 150-ns-wide pulses from a
CO2 laser. Varying the delay time between nozzle
switching and UV pulse application, one can record
time-of-flight (TOF) spectrum S(t, y = 0) of the beam,
i.e., the time dependence of the beam molecule concen-
tration as the molecules pass through the detection area.
(Fig. 1b). With the delay fixed, particle distribution S(y)
© 2005 Pleiades Publishing, Inc.
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over the cross section of the beam can be taken by mov-
ing the detection area along the Y axis. Taken together,
distributions S(t, y = 0) and S(y) allowed us to derive the
space–time characteristics of the beam versus the laser
radiation parameters and beam formation parameters
(T0, P0) for signals with different mass numbers, S(t, y;
T0, P0; EUV, λUV; ΦIR, νIR; M/e).

The onset of developed condensation shows up usu-
ally as a sharp increase in the beam intensity versus
stagnation pressure curve [15, 16]. In addition, the pres-
ence of clusters in our case was detected from the
breakdown of the cluster component due to IR radiation
(see below). In the course of experiments, multiphoton
fragmentation and ionization of the particles was
observed when the UV radiation intensity was suffi-
ciently high. One of the basic photoionization products
in this case are ions with peaks at M/e = 31 (CF+) and
M/e = 51 (CF2H+). Special measurements showed that
both monomers and clusters contribute to signal S(31),
while signal S(51) (at EUV = 100–270 µJ, ΦUV = 10–
27 J/cm2), λ = 232 nm) is due to monomers alone.
Accordingly, one can separately trace the behavior of
monomers and clusters in the beam.

Velocity U of directed motion of clusters was deter-
mined from the difference between time tD the front of
a step disturbance (“mark”) arrives at the detection
zone with coordinate ZD and time tIR of generation of
this disturbance at the entrance to the skimmer with
coordinate ZS, U = ∆ZSD /(tD – tIR) (Fig. 1b). The mark
resulted from IR photodissociation of clusters near the
skimmer when the radiation of the CO2 laser resonantly
acted on vibrations ν3 and ν8 of CF2HCl molecules
(νlas = 1037.4 cm–1). The energy density of the IR radi-
ation was ΦIR ≈ 0.4 J/cm2, which is much lower than the
IR multiphoton dissociation threshold for CF2HCl mol-
ecules (Φth ≈ 3 J/cm2) [7]. The transverse, V||, and lon-
gitudinal, V⊥ , components of the thermal velocity of
clusters in the beam were determined by comparing the
experimental and analytical data: V|| was estimated
from the smearing of the mark front along the Z axis
(Fig. 1b) in spectrum S(t, y = 0); V⊥ , from the evolution
of corresponding distributions S(y) over the cross sec-
tion of the beam (Fig. 1a).

Fraction q of condensed molecules in the jet and
mean cluster size N were found from the set of the
above dependences taken at different stagnation pres-
sures.

We also measured efficiency ∆Q of the pulsed noz-
zle as a function of stagnation pressure P0 (see Fig. 2).
With regard to the gas flow rate, the estimated effective
cross-sectional area of the nozzle turns out to be
30 times as small as its clear area. When the valve
opens, the gas is likely to flow out through a narrow
annular slit between valve 1 and Teflon cock plug 2 into
a short cylinder (Fig. 2) and gasdynamic cooling starts
in this cylinder, continuing as the jet further expands in
the source chamber. Such flow conditions seem to be
the reason for the nonlinear dependence of the nozzle
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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Fig. 1. (a) Geometry of measurement: PN, pulsed nozzle;
Sk, skimmer; IR and UV, beams of IR and UV pulsed laser
radiation; the Y axis is aligned with the axis of the TOF mass
spectrometer; and S(t, y; T0, P0), transverse distribution of
the signal (in the Y direction). (b) Simulation of the TOF
spectrum: F(t, ZS), the source function with a photodisso-
ciative mark at time instant tIR applied to the entrance to the
skimmer; S(t, ZD), calculated TOF signal near the detector
at V|| = 10 and 30 m/s and U = 500 m/s.
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Fig. 2. Mass flow rate per pulse vs. the pressure. At the top,
part of the pulsed valve is shown: (1) body of the valve and
(2) Teflon cock plug.
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Fig. 3. (a) Photoionic signals S(P0,M/e) for mass numbers M/e = (1) 31 (CF+) and (2) 51 (CF2H+) vs. stagnation pressure. (b) Trans-
verse distributions S(y) for (1–3) P0 = 4.5, 3.0, and 2.0 bar, respectively, and M/e = 31 and (4) P0 = 2.0 bar and M/e = 51. The appa-
ratus functions are disregarded.
efficiency on the stagnant pressure (∆Q(P0) in Fig. 2).
Since no appreciable variation of the pulse duration was
observed in the CF2HCl pressure range used (0.1–
4.5 bar), so that a pressure shock in the chamber of the
mass spectrometer is proportional to ∆Q, one may
assume that the total concentration of molecules in the
jet is proportional (at least at the entrance to the skim-
mer, NS) to the gas mass rate per pulse, NS ∝  ∆Q(P0),
rather than directly to P0. This circumstance was taken
into account in analyzing the results of measurement.

2. RESULTS OF MEASUREMENT

The experimental dependences of the photoionic
signal on stagnation pressure P0 for S(P0, M/e = 31) and
S(P0, M/e = 51), as well as transverse distributions S(y)
for several stagnation pressures, are shown in Figs. 3a
and 3b.

The curve S(P0, M/e = 31) (curve 1 in Fig. 3a) is typ-
ical of the condensation process, specifically, of con-
densation of molecular gases (CO2, SF6, CF2Cl2) in
expanding jets [15, 16]. As the pressure exceeds a cer-
tain value (marked by arrow B in Fig. 3a), the intensity
of the central part of the beam increases greatly, reflect-
ing the formation of stable larger-than-critical clusters
(n = 5–10 or higher). At this stage (developed conden-
sation), cluster nuclei grow largely by molecule con-
densation via two-body collisions when the jet is super-
saturated. At the precondensation stage (lower pressure
portion A–B), ultrasmall (n < 5) clusters nucleate via
three-body collisions, which favor removal of the latent
heat of vaporization and the vibrational excitation
energy, enhancing the rate of vibrational (V–T) relax-
ation [17].

Comparing the pressure dependences of the photo-
ionic signal at different masses (M/e = 31 and 51,
curves 1 and 2 in Fig. 3a), one can see that general
curve 1 (including the cluster component) and partial
(monomer) curve 2 behave in a different fashion. In
addition, Fig. 3b shows that, at pressures above PB, the
sharp increase in the intensity is accompanied by nar-
rowing of the beam’s cross-sectional area: its width
approaches that defined by the geometry of the experi-
ment (i.e., by the diameter and position of the skim-
mer). As will be shown later, such behavior is due
mainly to the cluster component of the signal. Signal
S(51), corresponding to the monomer component, has a
much lower intensity, as well as exhibits a less pro-
nounced pressure dependence and a wider distribution
throughout the pressure range used (in Fig. 3b, signal
S(51) is shown only for P0 = 2 bar).

As was noted, the contribution of the monomer
component to S(M/e = 31) can be taken into account,
making it possible to separate out the corresponding
dependences for the cluster component. Figure 4 plots
the cluster component of the signal against the mass
flow rate per pulse. This curve was constructed based
on Fig. 2. The rapid rise of the signal in portion B–C
(see below) is due both to a rise in the total concentra-
tion of clusterized molecules in the beam and to a
decrease in the transverse diffusion of the beam. The
latter fact leads to a fast growth of the particle concen-
TECHNICAL PHYSICS      Vol. 50      No. 7      2005



FORMATION AND MEASUREMENT OF CLUSTER BEAMS 849
tration in the central part of the beam, because the trans-
verse component of the thermal velocity is to a great
extent suppressed. As the pressure rises further, above
point C, the diffusion factor loses significance and the
dependence SC(∆Q) characterizes the run of the mole-
cule concentration in the cluster near the skimmer, qNS,
as a function of the mass flow rate per pulse. Here, NS
is the molecule concentration in the jet near the skim-
mer and q is the fraction of molecules condensed. It is
seen that qNS ∝  SC(∆Q) ∝  (∆Q)2 in this region; hence,
the degree of clustering is q ∝  ∆Q.

The velocity characteristics of the longitudinal
motion of the cluster beam (U and V||) were found from
modulated TOF spectra S(t, y = 0). Fragments of the
TOF spectra for the cluster component of the signal
near the front of the step mark that were taken at several
pressures are shown in Fig. 5, which also shows the cor-
responding model spectra for comparison. Both spectra
are seen to be in good agreement. Below, the problem
of determining the beam parameters will be considered
in greater detail.

1

2

Scluster(∆Q)

∆Q, 1016 mol/pulse
3 4

10

1

10

50

20

5

100

B

C

N

1

2
3

∆QC

SC = S – SM

∝∆ Q2

1
2

Fig. 4. (1) Cluster component of the signal vs. mass flow
rate per pulse; (2) total concentration of molecules entering
into the clusters near the skimmer vs. mass flow rate per
pulse, qNS ∝  ∆Q2; and (3) estimated mean cluster size (the
vertical axis on the right) vs. mass flow rate per pulse,
N(∆Q) = NB(∆Q/∆QB)2 (the corresponding curve coincides
with dashed curve 2).
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3. SIMULATION AND ANALYSIS
OF EXPERIMENTAL DATA

When processing and analyzing the experimental
data, we used the following model. It is assumed that
the total concentration of molecules at the entrance to
the skimmer, NS, is defined by the contribution of
monomers and molecules entering into the clusters:
NS(∆Q(P0)) = (1 – q)NS + qNS. It is also assumed that
the molecules of the cluster component are distributed
among clusters of different size n with certain normal-
ized distribution f(n): (n) = 1. Then, the concen-
tration of clusters of given size n is given by

where N is the cluster mean size and nCn is the concen-

tration of molecules in these clusters, Cn = qNS.

In our experiments, the measured amplitude of sig-
nal S(M/e = 31) is defined by the total concentration of
molecules in the detection volume,

f
n∑

Cn f n( )qNS/ nf n( )
n

∑ f n( )qNS/N ,= =

n
n∑

S t y; T0 P0, ,( ) S1 SC+=

=  ζ1ϕ1
2B1 t y; U1 V1, ,( ) 1 q–( )NS

0

170

SC(t)

∆t, µs
180 190 200

0.5

1.0

Fig. 5. Normalized experimental and calculated TOF spec-
tra for the cluster component of the beam near the front of
the step mark for P0 = (h) 2.0, (m) 3.25, and (() 3.5 bar.
∆t is the time delay between the probing UV pulse and the
IR photodissociating pulse. The values of the directed
motion velocity determined from the time of arrival of the
front (at its half-height) are U = 509.5, 507.4, and 505.6 m/s,
respectively. The calculated spectra were taken for the lon-
gitudinal component of the thermal velocity of clusters V|| =
30.4, 9.4, and 7.3 m/s, respectively.

..
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .
.

. .
.



850 LOKHMAN et al.
(1)

Here, ζ1 and ζn are the parameters taking into account
the ionization efficiency and apparatus functions for
monomers and n-molecule clusters, respectively; ϕ2 =
ND/NS = (DS/2R0)2 (where DS is the diameter of the
entrance opening of the skimmer) is a geometrical fac-
tor allowing for a decrease in the concentration because
of beam divergence; R0 is the geometrical radius of the
beam near the detector; and Bn(t, y; Un, Vn) are the
respective normalized functions that describe the
space-dependent concentration of particles of different
size n at their collisionless motion in the post-skimmer
space according to their velocity distributions fn(v ).
This model uses the elliptical drift Maxwellian distribu-
tion [6]

(2)

where U is the velocity of directed motion of the beam
and V|| and V⊥  are the corresponding components of the
most probable thermal velocity of beam particles.

To correctly simulate the signal due to the cluster
component, one must know a specific form of cluster
size distribution f(n) and of velocity distribution V(n)
versus particle size in an ensemble of clusters (with ∆Q
fixed). The distribution V = V(n) implies that, by the
time the jet switches to collisionless flow, the energy
distribution over particles of different size is nonequi-
librium. Here, one can separate two limiting cases.

(i) The situation is essentially nonequilibrium.
Then, as was demonstrated for small water clusters
(5 < n < 40), the velocity of random motion under the
same flow conditions for clusters of different size
(within a given ensemble) can be characterized by sin-

gle parameter Vn =  =  =
V*(∆Q), where m is the molecular mass [18]. Hence, it
follows that the temperature depends on the cluster
size, Tn = nT*. Basically, the values of T* may differ for
V|| and V⊥ .

(ii) The situation is totally equilibrium. In this case,
the particles of different size have the same tempera-
ture, Tn = T(∆Q), while their velocities are size-depen-

dent, V(n) ∝  1/ .
As follows from [18], where experimental ultras-

mall (n < 5) and small (5 < n < 40) water cluster distri-
butions were obtained, the general small particle size
distributions may be fairly accurately approximated by
a sum of two exponentials (for either subsystem), each
with its own weights and mean size parameter (N). In
our experiments, the contribution of ultrasmall clusters

+ ζnϕn
2Bn t y; Un Vn, ,( )nCn.

n

∑

f v( ) 1

πV ||

------------- 
 ∝

×
v || U–( )2–

V ||
2
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exp
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πV ⊥
2

---------- 
  v ⊥

2

V ⊥
2

------–
 
 
 

,exp

2nkT*( )/ nm( ) 2kT*/m

n

to the signals measured is insignificant. Supposedly,
this is because the number of molecules in such clusters
is very small and the thermal velocity of these clusters
is high (because of which they readily leave the beam).
Therefore, the effect of ultrasmall clusters will be gen-
erally ignored. We will restrict analysis to only small
clusters, which will be assumed to follow the exponen-
tial size distribution. With the effect of clusters with
“magic” numbers of molecules neglected, the distribu-
tion of clusters with mean size parameter N can be rep-
resented as

(3)

3.1. Transverse Component
of the Thermal Velocity of Clusters

If, when simulating cluster component SC of the sig-

nal, we assume that the product ζn  = ζN  is the
same for clusters of any size and Vn⊥  ≡ V⊥ (∆Q) for the
nonequilibrium case, this component, in view of (1),
can be written as

(4)

When finding B(V⊥ ), we considered the divergent
beam with its cross-sectional area in the detection zone
being dependent on geometric factor R0 (Fig. 1a). An
additional broadening of the beam due to the transverse
thermal motion of the particles was also taken into con-
sideration.

The normalized particle concentration distribution
over the cross section of the beam at distance ∆ZSD from
the skimmer at time instant ∆t = ∆ZSD/U has the form

(5)

In particular, at y = 0, B(y = 0, V⊥ ) characterizes the
thermal-diffusion-induced relative variation of the par-
ticle concentration in the central part of the beam as a
function of the transverse velocity,

(6)

The form of this diffusion versus velocity function,
B = B(V⊥ ), is shown in Fig. 6a, and Fig. 6b demon-
strates the space distributions of B(y, V⊥ ) calculated for
a number of velocities. The diffusion factor is seen to
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considerably influence the particle concentration in the
central part of the beam only if V⊥  > 3 m/s. At lower
velocities, its effect is negligible in our experimental
conditions. Therefore, at pressures above PC (or at cor-
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responding mass flow rates ∆QC), when the thermal
velocity of the particles is sufficiently low, B(y = 0) . 1
and, accordingly, the cluster component of the signal is

given by SC = ζN (qNS). Then, based on the experi-ϕN
2

Fig. 6. Transverse diffusion factor B vs. flow
conditions. (a) Model dependences of B vs. V⊥
for the (1) nonequilibrium and (2) equilibrium
cases. (b) Model transverse distributions
B(y; V⊥ ) (continuous curves) for several V⊥  in
the nonequilibrium case, along with the normal-
ized experimental transverse distributions of the
cluster component of the signal for stagnation
pressures P0 = 2.0, 3.0, and 3.65 bar. (c) (1)
Experimental dependence of the cluster compo-
nent of the signal on the mass flow rate per pulse
normalized by the total concentration of mole-
cules in clusters at the entrance to the skimmer;
(2) calculated values of diffusion factor B(∆Q) in
view of the dependence B(V⊥ ) and fitting depen-

dence V⊥ (∆Q) ∝  ∆Q–5 (nonequilibrium case);
(3) dependence BΣ(∆Q) for the equilibrium case,

VN(∆Q) ∝  ∆Q–5; and (4–6) normalized signals at
the stagnation pressures for which the experi-
mental transverse distributions in Fig. 1b are
shown.
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mental dependence SC(∆Q) (see Fig. 4), we can con-
clude that the total concentration of the molecules in
clusters near the skimmer is a quadratic function of the
mass flow rate (when ∆Q > ∆QC),

Assuming that the molecule concentration in the
clusters near the skimmer, ζC(NS(∆Q)), follows this
dependence at lower mass flow rates as well and nor-
malizing the signal associated with the cluster compo-
nent by qNS = ζC(∆Q), we can separate out the effect of
the diffusion factor on the concentration of the mole-
cules observed in the cluster component at the detector
versus the mass flow rate per pulse,

(7)

The experimental data normalized in this way are
shown in Figs. 6b and 6c. They are seen to be in good
agreement with the calculated run of the particle rela-
tive concentration near the detector with regard to the
beam diffusion factor versus transverse velocity V⊥  (the
curves B(V⊥ ) and B(y, V⊥ )). If fitting dependence

(∆Q) is introduced into functional dependence
B(y = 0, V⊥ ) (6) instead of V⊥ , then, fitting the calcu-
lated dependence B( (∆Q) to the experimental
dependence Bexp(∆Q) yields the functional dependence

(∆Q). The fitting dependence shown in Fig. 6c

(curve 2) was derived at (∆Q) ∝  ∆Q–5.

Note that above we did not use a specific form of the
cluster size distribution in the ensemble.

In the equilibrium case, calculation of the cluster
component of the signal necessitates summation of the
contributions from particles of different size with
regard to their spreads and specific size distributions in

the cluster ensemble, SC = Bn(v ⊥ (n))nCn(n).

For the equilibrium case, the normalized diffusion
factor has the form

(8)

Here, the thermal velocity of the particles depends

on their size, v n = VN , where VN is the velocity
parameter for particles with n = N in a given ensemble.
If the cluster size distribution is exponential, an expres-
sion for the diffusion factor in the central part of the

qNS( )
SC ∆Q P0( )( )

ζ NϕN
2

------------------------------ ξC NS ∆Q( ) ∆Q( )2∝( ).= =

SC ∆Q( )
ζ NϕN

2 ξC ∆Q( )
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V ⊥*
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V ⊥*

V ⊥*

ζnϕn
2

n∑

BΣ y V N,( )

Bn y v n,( )n f N n( )
n

∑
n f N n( )

n

 

∑
-------------------------------------------------.=

N /n
beam can be derived analytically,

(9)

The dependence BΣ(VN) is shown in Fig. 6a by the
dashed line, and the ∆Q dependence of the diffusion
factor, BΣ(∆Q), at VN ∝  ∆Q–5 is demonstrated in Fig. 6c
(dashed line). It is seen that, early in condensation (near
point B), the latter dependence is similar to that in the
equilibrium case, while at the stage of developed con-
densation, the experimental dependence is closer fitted
by the curve calculated for the nonequilibrium case
(Figs. 6a–6c). Analysis shows that, if the effect of non-
equilibrium on the cluster system is not taken into
account, the ∆Q dependence of the transverse compo-
nent of the thermal velocity may be approximated by
the power law V(∆Q) ∝  ∆Q–m. It should be noted that
exponent m may vary between 4 and 5, depending on
experimental and methodic errors. ∆Q dependences of
V⊥  for the nonequilibrium case are shown in Fig. 7
(curves 2 and 3). It is seen that, when mass flow rate ∆Q
varies in the range (2.2–3.5) × 1016 mol/pulse, the value
of V⊥  varies from 11 to 1.4 m/s.

3.2. Mean Size of Clusters

In many works devoted to clustering at different
properties of the gas, nozzle designs, and flow condi-
tions (flow temperatures and stagnation pressures), it
has been found that the cluster mean size and scaling
parameter Γ* (introduced by Hagena [19]) are related
by a simple power law, N ∝  (Γ*)a. The scaling parame-
ter characterizes flow conditions for a given nozzle
design and gas properties. Note that this parameter is a
linear function of the gas density in the source, n0;
hence, N ∝  (n0)a. Measurements carried out by various
techniques strengthened the validity of this relationship
both for clusters of noble (atomic) gases (XeN, KrN [20]
and ArN [20–22]) and for molecular gases ((H2O)N,
(NH3)N [23] and (CO2)N [24, 25]). Experiments show
that exponent a = 2 provides a good fit to experimental
data for clusters with a small mean size (N < 100).

If it is assumed that the sharp increase in the signal
amplitude with mass flow rate ∆Q (pressure P0) is asso-
ciated with condensation (formation of stable clusters
with n > 5) and that stable clusters consist, on average,
of 5–10 molecules [15], we obtain an estimator for
cluster mean size NB as a function of the mass flow rate
per pulse in the form N(∆Q) = NB(∆Q/∆QB)2. The cor-
responding curve is shown by the dashed line in Fig. 4
(curve 3, right-hand axis), where NB = 7.5 for definite-
ness, and in Fig. 7 (curve 8). It is seen that the cluster
mean size does not exceed N = 30–50 molecules under
the given experimental conditions and assumptions
made above.

Now, with regard to the relationship N ∝  ∆Q2 and
the dependence V⊥ (∆Q) ∝  ∆Q–5 for the nonequilibrium

BΣ y 0= V N,( ) 1
∆t2V N

2

R0
2 ∆t2V N

2+
---------------------------

 
 
 

2

.–=
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case, we can relate the velocity parameter and the mean
size of clusters forming under different initial condi-
tions, V⊥ (N) ∝  1/N2.5.

3.3. Degree of Condensation

The degree of condensation in the flow near the
skimmer can be found from the ratio of the monomer
and cluster components of the signal (see (1)),

(10)

For ∆Q > ∆QC, the diffusion factor for the cluster
component is close to unity (BC ≈ 1). For the monomer
component, it is found from the dependence B1(V⊥ ), the
corresponding transverse velocity being determined
from the monomer transverse distribution in the beam.
Unfortunately, the transverse distribution of monomers
is wide throughout the pressure range, so that V⊥  is hard
to estimate with a reasonable accuracy from it. For
example, at ∆Q = 3.4 × 1016 mol/pulse (P0 = 4 bar) for
monomers, the velocity estimated from the width of the
profile exceeds 40 m/s, which corresponds to B1 < 1/50.
At the given mass flow rate, the fraction of condensed
molecules (near the skimmer) is estimated as q < 0.16.
It is worth noting that, under these flow conditions, the
mean concentration of molecules in the clusters at the
beam axis near the detector is 10 times higher than the
concentration of monomers (SC/SM ≈ 10). Since qNS ∝
(∆Q)2 and NS ∝  ∆Q, we have q ∝  ∆Q under the condi-
tions of developed condensation. The corresponding
estimator is plotted in Fig. 7 (curve 7).

3.4. Velocity of Cluster Directed Motion 
and Its Spread

Velocity U of cluster directed motion and longitudi-
nal component V|| of the thermal velocity of clusters in
the beam were determined by comparing the experi-
mental data with relevant calculated dependences of the
modulated TOF spectrum, S(t, y = 0).

For particles with given velocity parameters U and
V||, the TOF spectrum near the detector is defined by the
convolution

(11)

where F(t) is the source function modulated by a rect-
angular pulse and

(12)
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is the response of the “volume” detector (with coordi-
nate zd) to the action of a source of type δ(z0, t0) [26]
(the solution is given in the normalized form).

To correctly calculate the TOF spectrum, it is neces-
sary to sum the contributions from clusters of different
size with regard to the density of cluster size distribu-
tion f(n), size-dependent mean velocity Un of directed
motion, and variance V|| of the directed motion velocity.
Then, the normalized signal takes the form

(13)SΣ t( )

nf n( ) Yn Un V ||n t τ–( )F τ( ) τd, ,( )
t0

t

∫
n

∑
nf n( )

n

 

∑
-----------------------------------------------------------------------------------------.=

2

V, m/s; q, %; N

∆Q, 1016 mol/pulse
3 4

10

N

1

∆QC

q %

1

40

2
3
4
5
6
7
8

V⊥
V⊥ (∆Q)
V⊥ (∆Q)
V (∆Q)
V
Veff
q
N(∆Q)

2 
ba

r

3 
ba

r

3.
65

 b
ar

3.
25

 b
ar

3.
5 

ba
r

2 
ba

r

V

Veff

V⊥

Fig. 7. Basic parameters of the cluster component of the
beam vs. mass flow rate per pulse. (1) Experimental values
of V⊥  obtained from the corresponding transverse distribu-
tions for a number of stagnation pressures (see Fig. 6b);
(2) model dependence V⊥ (∆Q) ∝  ∆Q–5 obtained by fitting
the calculated values of B(∆Q) to Bexp(∆Q); (3) the depen-

dence V⊥  ∝  ∆Q–4 shown for comparison; (4) the depen-
dence of the longitudinal component of the cluster’s thermal
velocity, V||(∆Q); (5) values of V|| corresponding to the
experimental conditions in Fig. 5; (6) values of effective
velocities Veff formally derived from the front width (Fig. 5)
at γC = 0; (7) degree of condensation q of molecules in the
jet near the skimmer; and (8) estimated dependence of clus-
ter mean size N in the jet on the mass flow rate per pulse.
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Below, we will assume that, for an ensemble of
small clusters, the density of their concentration distri-
bution over sizes, fN(n), varies exponentially with
parameter N depending on flow conditions, N(∆Q). To
simplify calculations, our consideration will be
restricted to the nonequilibrium case, when the vari-
ance of velocities in the cluster ensemble is character-
ized by single parameter VN||(∆Q), which depends on
flow conditions alone. Let the dependence of the
directed motion velocity on the cluster size, U(n), be
similar to that obtained in [18] for small water clusters.
From experimental data in [18], it follows that this
dependence can be approximated as

(14)

where UC and γC may generally depend on flow condi-
tions and nC = 6.

Fragments of the TOF spectrum near the front of the
step mark are shown in Fig. 5 for P0 = 2.0, 3.25, and
3.50 bar). As the pressure rises from 2.0 to 3.5 bar, the
directed motion velocity determined from the time of
arrival of the half-height of the front mark insignifi-
cantly drops from 509.5 to 505.6 m/s. A rise in the pres-
sure is accompanied by narrowing of the front; that is,
the variance of the directed motion velocity of clusters
in the beam decreases. Note that the diffusion of the
front in solution (13) is due both to the longitudinal
component of the random motion velocity of clusters,
V||, and to the dependence U = U(n; UC, γC, nC). There-
fore, at given distribution fN(n), the mark diffuses even if
V|| = 0. The contribution of both factors can be approxi-

mately taken into account through Veff ≈ ,
where Veff is the formally introduced velocity describ-
ing the width of the mark front that includes the vari-
ance of the longitudinal velocity. In simulation, addi-
tional contribution  depends on parameter γC. This
contribution noticeably distorts the shape of the front,
making it asymmetric. When the experimental data are
fitted by the model spectrum, the relative contribution
of either factor to the front diffusion depends on a set of
interrelated adjusting parameters. As applied to the
model approximations used, one can choose several
sets of these parameters that provide a reasonable fit to
TOF spectra found experimentally (within the experi-
mental errors). For the calculated spectra shown in
Fig. 5, the mean sizes of clusters (N = 15, 24, and 26.5
for pressures P0 = 2.0, 3.25, and 3.5 bar, respectively)
are taken according to the estimator N(∆Q) obtained
earlier with regard for the dependence ∆Q(P0). The cal-
culated front of the step was fitted to its experimental
shape by varying γC. It was found that γC = 0.04 gives
the best fit to each of the spectra taken in the given pres-
sure range. The corresponding (fitting) values of the
thermal velocities (V|| = 30.4, 9.4, and 7.3 m/s) are
related to the cluster mean size as V|| ∝  N–2.5 (or V|| ∝

U n( ) UC 1 γC

n nC–
n nC+
---------------– 

  ,=

V ||
2 ∆||

2+

∆||
∆Q–5). The same relationship is true for V⊥ . The ∆Q
dependences of both velocities are shown in Fig. 7,
which also plots effective velocity Veff that was formally
obtained from the front width simulated at γC = 0. Since

Veff ≈ , the additional velocity-related contri-
bution is estimated as ∆|| ≈ 5.3 m/s (at P0 = 3.5 bar, V|| =
7.3 m/s, and Veff = 9 m/s). This contribution is seen to
become comparable with the contribution from the ran-
dom motion velocity with rising pressure.

Supposing that the relationship between velocities
V|| and V⊥  that is observed in Fig. 7 is explained by a
decrease in V⊥  because of the geometrical cooling fac-
tor, which influences the process over the distance
between the point of freezing of translational degrees of
freedom (the point of transition to collisionless flow)
and the skimmer, one can locate this point (it is ≈11 mm
distant from the nozzle or ≈27.5 mm from the skim-
mer). Hence, the conditions favorable for jet particle
condensation last ∆tC ≈ 22 µs).

4. CONCLUSIONS

Thus, we studied the clustering of CF2HCl mole-
cules flowing out of a supersonic nozzle. Using original
cluster beam diagnostics methods based on UV mul-
tiphoton ionization, IR photodissociation, and TOF
mass spectrometry, as well as the model presented in
this work, the basic characteristics of (CF2HCl)n cluster
beams were determined.

It is shown that, in the normal operating mode of the
nozzle (pure Freon-22 without a carrier gas), developed
condensation sets even if the stagnation pressure is as
low as P0 = 1.25 bar. Under the conditions of developed
condensation, the total concentration of molecules
entering into the clusters of the jet is qNS ∝  ∆Q2.

It is found that the variation of the cluster compo-
nent intensity in the beam near the detector with mass
flow rate per pulse, SC(∆Q), is associated both with a
change in the fraction of molecules in the condensed
phase of the jet, q(∆Q) ∝  ∆Q, and with the diffusion of
the cluster beam in the transverse direction. The
amount of diffusion depends on the transverse compo-
nent of the random motion velocity of clusters in the
beam. If the effect of equilibrium conditions (which are
assumed in simulation) in the cluster system is ignored,
this velocity as a function of ∆Q can be approximated
as V(∆Q) ∝  ∆Q–m, where exponent m may vary between
4 and 5 with regard to experimental and methodic
errors. The best agreement between the measured and
calculated dependences is observed on the assumption
that an ensemble of small clusters is nonequilibrium.
Under these conditions, the random motion velocity of
the clusters is characterized by single cluster-size-inde-
pendent parameter Vn = V*(∆Q) (and V(∆Q) ∝  ∆Q–5).

It is found that the velocity of directed motion of
small clusters slightly drops (from 509.5 to 505.6 m/s)
as pressure P0 rises from 2.0 to 3.5 bar. However, lon-

V ||
2 ∆||

2+
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gitudinal component V|| of the thermal velocity drops
quickly from 30.4 to 7.3 m/s as P0 rises from 2.0 to
3.5 bar. This velocity varies with the mass flow rate as
V||(∆Q) ∝  ∆Q–5.

Translational velocity U(n) depends on the cluster
size within a cluster ensemble. This fact causes an addi-
tional asymmetric broadening of the mark front in TOF
measurements.

Mean cluster size N and degree of clustering q in the
jet are estimated. Depending on the pressure in the
range 1.5 < P0 < 4 bar, N varies from 10 to 30 and q does
not exceed 0.16 at P0 = 4 bar.
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Abstract—An analytical asymptotic expression for the field strength near an ideal incompressible electrically
conducting liquid drop nonlinearly vibrating in external electrostatic field E0 is found in an order of 5/2 in a
small parameter. The small parameter here is the amplitude of deformation of the spherical shape of the drop.
It is found that the strength of the electric field resulting at the tops of the drop exceeds the corona-initiating
field even if E0 is one order of magnitude lower than the value at which the drop becomes unstable against the
induced charge (that is, at such values of E0 as are observed in storm clouds in full-scale experiments). © 2005
Pleiades Publishing, Inc.
(1) According to one of the existing models, a light-
ning discharge in storm clouds is triggered by a corona
near a large drop [1–3]. It therefore seems to be of inter-
est to calculate the electric field strength near a charged
water drop nonlinearly vibrating in an external uniform
electrostatic field. In such a general statement, the prob-
lem is too complicated to be treated analytically; so, it
is reasonable to split it into subproblems that are much
simpler for nonlinear analysis. For example, in [3], we
analyzed the possibility of corona initiation near a
charged nonlinearly vibrating spherical drop and
showed that such a phenomenon may take place when
the charge of the drop is sufficiently high but still is
three times as small as a value critical in terms of Ray-
leigh instability. Yet, the problem persists, since charges
close to one-third of the Rayleigh critical value are
rarely encountered in cloud drops in full-scale mea-
surements [4]. For a drop in a uniform external electro-
static field, such calculations turn out to be much more
complicated, because the equilibrium shape of the drop
under these conditions becomes nearly spheroidal
rather than being spherical. This circumstance has
impeded investigations into nonlinear vibration of the
drop in external fields, although nonlinear vibration of
spherical charged drops has been studied at length for
the two last decades (see, for example, [5–8] and Refs.
therein). When asymptotic calculations of the vibration
of the drop are conducted in the spherical coordinate
system, the spheroidicity of its equilibrium shape in a
uniform electrostatic field gives rise to two small
parameters: the amplitude of the equilibrium spheroidal
deformation and the amplitude of nonlinear vibration
(in the spheroidal coordinate system, the calculations
are even more awkward and less illustrative). Note that
calculations of spheroidal drop vibration in a uniform
1063-7842/05/5007- $26.00 0856
electrostatic field have been performed to date only in
an approximation linear in vibration amplitude [9–14].

As a dimensionless parameter characterizing the
equilibrium spheroidal deformation of a conducting
drop in an electrostatic field, it is natural to take its
eccentricity e. The ratio ξ/R (where ξ is the amplitude
of capillary vibrations of a spheroidal drop and R is the
radius of the equivalent sphere) is the second small
parameter, ε ≡ ξ/R, which has the meaning of the
dimensionless vibration amplitude. In practice, when
calculating vibrations of a spheroidal drop in the first
order of smallness in amplitude ε, one should also take
into account the second order of smallness in eccentric-
ity e (i.e., in electrostatic field dimensionless strength)
[9–14]. In other words, the problem becomes in a sense
nonlinear when expansions in both small parameters
and terms ~ε · e2 are left in the solution.

In asymptotic calculations using expansions in sev-
eral small parameters, it is necessary to correlate their
orders of smallness. For example, if, in the problem
considered, it is assumed that ε ~ e2 (see [11–13]), cal-
culations made in the approximation ~ε · e2 should also
involve terms ~ε2. This was not done in [11–13], so that
the results obtained in those works are incorrect.

In this paper, we analyze nonlinear vibrations of an
uncharged drop in a uniform electrostatic field, assum-
ing that ε ~ e2 and leaving terms ~ε · e2 and ~ε2. The
strength of the electrostatic field near the surface of the
drop is calculated accurate to ~ε5/2, which is necessary
for due regard to interaction between the stationary
spheroidal deformation and vibration modes.

(2) Consider the evolution of the surface shape of an
uncharged drop nonlinearly vibrating in uniform elec-
trostatic field E0. We assume that the ideal incompress-
© 2005 Pleiades Publishing, Inc.
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ible perfectly conducting liquid has density ρ and sur-
face tension coefficient σ.

In the absence of an external field, the drop is an
equilibrium sphere of radius R. Weak external uniform
electrostatic field E0 causes a small distortion of the
spherical shape of the drop: it elongates in the field
direction, taking the form a prolate spheroid up to terms

proportional to e2 = (9 R/16πσ). The equation of the
generatrix of the surface of such an equilibrium drop is
written in the form

(1)

where P2(µ) is the Legendre polynomial.

Dimensionless quantity We ≡ R/σ is the so-called
Taylor parameter, which characterizes the stability of
the drop against the surface charge induced by external
uniform electrostatic field E0. The critical (in terms of
instability) value of this parameter is WE ≡  ≈ 2.62
[10].

Let, at initial time instant t = 0, an equilibrium
weakly spheroidal drop with eccentricity e and the gen-
eratrix defined by (1) experience axisymmetric pertur-
bation ξ(θ, t) of fixed amplitude ξ, which is much
smaller than the radius of the drop (ξ/R) ≡ ε ! 1. The
perturbation makes the drop vibrate about its equilib-
rium spheroidal shape. Our aim is to find the shape of
the drop’s generatrix as a function of time (i.e., at t > 0).
In the dimensionless variables such that ρ = σ = R = 1
(we retain the previous notation), the equation of the
generatrix in the spherical coordinate system with the
origin at the center of mass of the drop has the form

(2)

The liquid flow in the drop that is caused by the dis-
tortion of its equilibrium shape is assumed to be poten-
tial with velocity field potential ψ(r, t) and velocity
field V(r, t) = grad(ψ(r, t)). Taking into account that the
velocities of gasdynamic liquid flows in the drop are
much lower than the rate of propagation of electromag-
netic interactions, we may assume the electric field near
the drop to be electrostatic and describe it through
potential Φ(r, t), which is related to field strength E by
the well-known expression E = –grad(Φ).

Mathematically, the problem of analytical asymp-
totic calculation of nonlinear vibrations of a conducting
liquid drop in an external uniform electrostatic field is
stated as

(3)
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2

r θ( ) 1
1
3
---e2P2 µ( ); µ θ,cos≡+≡
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r θ t,( ) r θ( ) ξ θ t,( )+≡

≡ 1
1
3
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(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(where ∆ is the Laplacian).

Conditions (8) and (9) must be fulfilled at any time
instant t ≥ 0. Therefore, at t = 0, they specify the ampli-
tudes of the zeroth, ξ0, and first, ξ1, modes in the expan-
sion of initial perturbation ξ(θ) in Legendre polynomi-
als. In other words, the amplitudes of the zeroth and
first modes cannot be taken arbitrary and are specified
by the form of the initial deformation.

In expressions (6)–(11), ∆p is the difference
between constant pressures inside and outside the drop
in the equilibrium state;

is the electric field pressure; pσ = divSn is the surface
tension force pressure (divS is the surface divergence);
n is the unit vector normal to surface (2); ε is the dimen-
sionless amplitude of the initial perturbation of the
shape of the drop (one of the small parameters of the
problem); hi is the coefficient specifying the partial
contribution of an ith vibration mode to the total initial
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∂ξ
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∂r
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1
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∂ψ
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1
2
--- —ψ( )2– pE+ pσ;=
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r2 r θsind θd ϕd

V

∫ 4
3π
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V 0 r r θ( ) ξ θ t,( ), 0 θ π, 0 ϕ 2π≤ ≤ ≤ ≤+≤ ≤[ ] ;=

er r3 r θsind⋅ θd ϕd

V

∫ 0;=

n —Φ•( )dS

S

∫° 0,=

S r r θ( ) ξ θ t,( ), 0 θ π, 0 ϕ 2π≤ ≤ ≤ ≤+=[ ] ;=

t 0: ξ θ t,( ) ξ0P0 µ( ) ξ1P1 µ( ) ε hiPi µ( ),
i Ξ∈
∑+ += =

∂ξ θ t,( )
∂t

------------------- 0; hi

i Ξ∈
∑ 1= =

pE
1

8π
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perturbation; Ξ is the set of the numbers of initially
excited vibration modes;

(12)

are constants that are found from conditions (8) and (9)
at the initial time instant accurate to terms of order of
smallness ~ε · e2 and ~ε2; and δi, j is the Kronecker delta.

To simplify subsequent expansions and have a
chance to easily separate out terms due to the sphe-
roidicity of the drop in the final expressions, we intro-
duce formal parameter β such that e2 ≈ βε. Since it was
assumed that e2 ~ ε, it is obvious that β ~ 1. The product
βε can then be replaced with e2. It is also remembered
that, when seeking for the equilibrium shape of the drop
in the field, we obtained a relationship between the
eccentricity and electric field strength that in the dimen-
sionless variables has the form

(3) To solve the problem considered, we will use the
method of many scales (see also [3, 5–8]). Desired
functions ξ(θ, t), ψ(r, t), and Φ(r, t) will be represented
in the form of expansions in powers of small parameter
ε under the assumption that these functions depend not
merely on time t but on various time scales defined via
small parameter pε, Tm ≡ εmt (m = 0, 1, 2, …). Our anal-
ysis will be restricted to the quadratic approximation,
allowing us to find the dependences of the desired
quantities on only two time scales T0 and T1,

(13)

The electric field potential is expanded in half-inte-

ger powers of parameter ε, since ε ~ ; consequently,
ε1/2 ~ E0. Potential component ε1/2Φ(0)(r, θ) is deter-
mined near the equilibrium weakly spheroidal shape of
the drop,

and corrections Φ(1)(r, θ, T0, T1) and Φ(2)(r, θ, T0) are
related to the distortion of the equilibrium shape.

ξ0 ε2 hi
2

2i 1+( )
------------------- εe2 2

15
------hiδi 2,+

i Ξ∈
∑– O ε3( ),+≈

ξ1 ε2 9ihi 1– hi

2i 1–( ) 2i 1+( )
------------------------------------ εe2 9

35
------hiδi 3,+

i Ξ∈
∑– O ε3( ),+≈

e2 9
16π
---------E0
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ξ θ t,( ) εξ 1( ) θ T0 T1, ,( ) ε2ξ 2( ) θ T0,( ) O ε3( );+ +=

ψ r t,( ) εψ 1( ) θ T0 T1, ,( ) ε2ψ 2( ) θ T0,( ) O ε3( );+ +=

Φ r t,( ) ε1/2 Φ 0( ) r θ,( ) εΦ 1( ) r θ T0 T1, , ,( )+(=

+ ε2Φ 2( ) r θ T0, ,( ) ) O ε7/2( ).+
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2

ε1/2Φ 0( ) r θ,( ) 16π
9

---------εβ 
 

1/2 1

r2
---- 1 r3–( ) θcos=

≡ E0
1

r2
---- 1 r3–( ) θ,cos
For the pressures of the electric field, pE, and surface
tension forces, pσ, entering into dynamic boundary con-
dition (6), the expansions are as follows:

(14)

where components

and

are independent of perturbation ξ(θ, t). These are the
pressures at the surface of the equilibrium spheroidal
drop, i.e., satisfy the pressure balance

and, consequently, compensate one another.
Substituting expansions (13) and (14) into system

(3)–(11), one can obtain a set of boundary-value prob-
lems of various orders of smallness for functions ξ(m),
ψ(m), and Φ(m) (m = 1, 2). It is obvious that either of func-
tions ψ(m) and Φ(m) must satisfy linear equations (3).

Solutions to Eqs. (3) for the first- and second-order
functions that meet conditions (4) and (5) are written
the form

Corrections to the equilibrium shape of the drop are
also represented in the form of expansions in Legendre
polynomials,

(4) Eventually, we arrive at the following analytical
expression for the shape of an uncharged drop vibrating
in an external uniform electric field:

pE pE
eq( ) ε2 pE

2( ) ξ( ) O ε3( );+ +=

pσ pσ
eq( ) εpσ

1( ) ξ( ) ε2 pσ
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1
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1( ) t( )Pn µ( )
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+ ε2 Mn
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∞
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where

(15)
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and  and  are the Clebsch–Gordan coeffi-
cients, and δm, n is the Kronecker delta.

Remarkably, in these relationships, the positions of
internal nonlinear resonances (taking place when the

denominators in coefficients  vanish) are indepen-
dent of the spheroidicity (eccentricity) of a drop having
the equilibrium shape of a prolate spheroid. Thus, there
arises the need to carry out calculations in the next
order of smallness for the model considered to
approach to reality.

(5) Note that correction Φ(1) alone will suffice to
determine the shape of a nonlinearly vibrating drop up
to terms of order ~ε2 in expansion (13) for the electro-
static potential, since the electrostatic field influences
the shape only via pressure pE and the addition to this
pressure due to perturbation ξ(θ, t) is quadratic in
amplitude ε of this perturbation and has the form

that is, depends only on Φ(0) and Φ(1).
Now our goal is to calculate electrostatic field

strength E = –grad(Φ) at the surface of the nonlinearly
vibrating drop. It is easy to check that the expression for
the magnitude of strength E written with allowance for
terms of order ~ε3/2 inclusive misses the most intriguing
effect, namely, interaction of the equilibrium spheroi-
dal shape of the drop with vibration-induced perturba-
tion ξ(θ, t) of the shape. Indeed, in this approximation,
the expression for the field strength near the surface,

does not involve terms proportional to the product of
the spheroidal deformation and the amplitude of the
surface profile perturbation.

To take into account the effect of interest, it is nec-
essary to leave terms of order ~ε5/2 in the expression for
field strength E. This, in turn, requires correction Φ(2) in
expansion (13) for the electrostatic potential to be cal-
culated.

(6) The closed electrostatic problem consists of
Eq. (3) for potential Φ(r, t), as well as boundary and
additional conditions (5), (7), and (10). A solution is
sought in the form of expansion (13). Substitution of
(13) into (3), (5), (7), and (10) splits the general prob-
lem into partial problems of various orders of smallness
the solution of which allows one to find corrections
Φ(1)(r, t) and Φ(2)(r, t) to the potential.
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-----------------+ 
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It is remembered that, by definition, component
ε1/2Φ(0)(r, θ) of the potential describes the field near an
uncharged equilibrium weakly spheroidal drop placed
in an external uniform field. An exact expression for the
potential of such a field was derived in [15]. In the
spherical coordinates, expansion of this expression in
powers of eccentricity e (and, consequently, in powers
of parameter ε, since e2 =βε) has the form

The potential of the electrostatic field near a nonlin-
early vibrating weakly spheroidal drop is sought in the
spherical coordinate system with the origin at the center
of mass of the drop. Consequently, boundary condi-
tions (5) and (7) can be expanded into a Taylor series in
the vicinity of an equivalent spherical drop of radius R.
Then, boundary condition (7) takes the form

(16)

(i) For corrections Φ(1) of order ~ε3/2 to the potential,
the problem is stated as follows:

A solution has the form

(17)
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(ii) In order of smallness of ~ε5/2, the electrostatic
problem for correction Φ(2) to the potential is written in
the form

A solution to this problem has the form

(18)
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In the above expressions for Φ(1)(r, θ, t) and Φ(2)(r,
θ, t), it is implied that the subscripts at amplitudes

(t) (m = 1, 2) cannot be negative (the correspond-
ing terms must be rejected).

(iii) A final expression for the electrostatic potential
near a nonlinearly vibrating conducting drop in the
desired order of smallness takes the form

(19)

(7) An expression for the electric field strength near
the drop is easily found from the relationship E =
−grad(Φ),

Immediately on the surface of a conducting drop,
r(θ, t) = 1 + f(θ, t), only the field component normal to
the surface is other than zero. In the spherical coordi-
nate system, it has the form
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Fig. 1. (a) Dimensionless electric field strength E at one of
the tops of the drop vs. dimensionless time for the case
when the initial deformation is specified by superposition of
the fundamental and 20th modes for E0 ≈ 0.167, h2 = 0.75,
and h20 = 0.25. (b) Electric field strength vs. angle θ at var-
ious time instants: the thin line, zero time; medium-thick-
ness line, t = 0.75T; and thick line, t = 0.5645T (the instant
the amplitude reaches a maximum at the axis of symmetry).
T is the vibration period of the fundamental mode.
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0.5–0.5 1.51.0–1.0–1.5

Fig. 2. Generatrix of the drop at the instant the electric field
strength reaches a maximum (thick line). The initial shape
of the drop (thin line) is specified by superposition of the
virtually excited fundamental and 20th modes. The calcula-
tions were performed for the same values of the physical
parameters as in Fig. 1.
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(20)

where functions Φ(1)(r, θ, t) and Φ(2)(r, θ, t) are defined
by expressions (17) and (18).
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Fig. 3. (a, b) The same dependences as in Fig. 1 calculated
for E0 ≈ 0.53 and halved vibration amplitude.
When writing (20), we used expansion (16) for the
boundary conditions.

(8) Figure 1 shows the results calculated for the
electric field strength near the drop using (20). Specifi-
cally, Fig. 1a is the time evolution of the field at one of
the tops of the drop (at the other top, the field differs
only in sign) and Fig. 1b plots the field against angle θ
at different time instants. In the calculation, the dimen-
sionless strength of the external uniform electrostatic
field was taken to be equal to ≈0.167, which corre-
sponds to dimensional field E0 ≈ 1.2 kV/cm for water
drops with a radius of 100 µm (such fields are measured
in full-scale experiments in storm clouds [4]). Such a
value of the electrostatic field strength provides an
equilibrium spheroidal deformation of the drop with an
eccentricity squared equal to e2 ≈ 5 × 10–3.

It was also assumed that the initial deformation of
the drop causing nonlinear vibrations is specified by
superposition of the fundamental (n = 2) and 20th (n =
20) modes. Vibrations at the fundamental mode (sphe-
roidal vibrations) with an amplitude close to the radius
of the drop are detected in full-scale measurements [16]
and are explained by interaction of the drop with vorti-
ces separated from its surface in the turbulent air.
Higher modes are excited in large drops (with radius
R ≈ 100 µm) of storm clouds by collisions with fine
droplets (r ≈ 10 µm), whose concentration in clouds is
insignificant [4]. In the calculations, the dimensionless
vibration amplitude of the fundamental mode was set
equal to ≈0.3 and that of the 20th mode was estimated
from the ratio of the colliding drop radii as (r/R) ≈ 0.1.
In Fig. 2 shows the generatrix of the axisymmetric drop
for the parameter values mentioned above and various
time instants.

The straight lines at E = ±2.52 in Fig. 1 show the
dimensionless field strength that is critical for corona
discharge initiation. It is easy to see that the field due to
the charge induced at the tops of the drop is sufficient
for corona initiation. It is worthy to note that the

–0.5

–1.0

0.5

1.0

0.5–0.5–1.0 1.0

Fig. 4. The same as in Fig 2 for the same values of the phys-
ical parameters as in Fig. 3.
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strength of the external uniform electrostatic field used
in the calculations is only a tenth of the critical value at
which the drop becomes unstable against the induced
charge [10, 17].

Figure 3 demonstrates dependences similar to those
shown in Fig. 1. Here, external uniform electrostatic

field E0 is  times higher than the strength used in
the calculations shown in Fig. 1, while the vibration
amplitude is half as large. Figure 4 shows the drop’s
generatrix corresponding to the calculations presented
in Fig. 3.

CONCLUSIONS
Thus, the electric field strength at the tops of a con-

ducting liquid drop nonlinearly vibrating in external
uniform electrostatic field E0 was calculated. It is
shown that, for those values of E0 observed in full-scale
measurements in storm clouds, the field at the top of the
drop may exceed the critical corona-initiating value.
For this reason, a detailed consideration of lighting dis-
charge initiation by a corona near a large drop seems to
be topical.
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Abstract—A 2D generalized Gardner equation is used to describe 2D nonlinear internal waves in a two-layer
fluid. Unlike the previous model based on the Kadomtsev–Petviashvili equation, the model considered here
allows for the instability of a plane internal solitary wave. Such a possibility causes the wave to be localized in
any direction. Relationships between the thicknesses and densities of the layers under the instability conditions
are obtained. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Nonlinear wave processes in a two-layer fluid are of
great practical importance, primarily, in oceanology. Of
special interest are localized or solitary waves, which
usually result from the balance between nonlinearity
and dispersion. Having originated from an initial per-
turbation, they are capable of traveling with invariable
shape and velocity. Having a finite, sometimes signifi-
cant, amplitude, they can transfer a considerable
amount of energy over long distances. The localization
of the initial perturbation may be attended by a rise in
the wave amplitude. Along with localization in the
direction of propagation, which gives rise to a plane
solitary wave, localization in the transverse direction is
also possible. In the latter case, a rise in the amplitude
may far exceed that during the plane wave formation.

It is known that solitary waves as solutions to differ-
ent equations have different properties. The type of
model equation for both surface and internal waves
considerably depends on the ratios between the thick-
nesses and densities of fluid layers [1]. In particular, for
comparable thicknesses, the long-wave limit is
described by the one-dimensional Korteweg de Vries
equation [1–5]. However, experiments often cast doubt
on the adequacy of this description. To remedy the sit-
uation, it was suggested [3–5] that cubic nonlinearity be
taken into account. Then, model equations take the
form of the modified Korteweg de Vries equation or the
Gardner equation with cubic and quadratic nonlineari-
ties.

Two-dimensional localized constant-shape waves
can form via interaction of plane waves propagating at
an angle to each other or result from the balance
between nonlinearity, dispersion, and diffraction. A
comprehensive analytical and numerical study of the
first opportunity is given, for example, in [6, 7] for the
most popular Kadomtsev–Petviashvili (KP) 2D model
1063-7842/05/5007- $26.00 0864
equation. The second can be described either in terms
of transverse instability analysis [8, 9] or by an exact
solution in the form of “lump” [1, 10]. In terms of the
KP equation, the 2D localization of a wave is accompa-
nied by a considerable rise in its amplitude, as was
established analytically for an initial plane solitary
wave in [11]. An even higher rise in amplitude is pre-
dicted when an initial localized perturbation evolves
into a lump in solving the KP equation [12].

As applied to internal waves, the KP equation was
derived earlier (see, e.g., [1, 2]). It seems of interest to
investigate the transverse instability of a plane solitary
internal wave in terms of a model based on the Gardner
equation. In this study, we (i) generalize the Gardner
equation to 2D internal waves in a two-layer fluid;
(ii) study the transverse instability of a solitary wave
resulting from the Gardner equation; and (iii) establish
a correlation between the instability conditions, thick-
nesses and densities of the layers, and the sign of the
solitary wave amplitude.

2D GENERALIZATION OF THE GARDNER 
EQUATION

Consider a system of two horizontal layers of
immiscible ideal fluids (the lower and upper layers have
constant thickness H and H', respectively). For simplic-
ity, the upper boundary of the upper layer is assumed to
be unperturbed and the densities of fluids are taken to
be constant. The case of the perturbed upper boundary
was studied earlier [3], and the types of stratification
were considered in [5]. The plane z = 0 of the Cartesian
system coincides with the unperturbed interface. The
constant density of the lower fluid is denoted by ρ and
the components of the velocity vector along axes x, y,
and z, by u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t), respec-
tively. Similarly, for the upper fluid, we have ρ', u'(x, y,
z, t), v '(x, y, z, t), and w'(x, y, z, t), where t is the time.
© 2005 Pleiades Publishing, Inc.
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Let η(x, y, t) be the perturbation of the interface. Then,
the lower and upper fluids occupy the domains –H < z <
η and η < z < H', respectively.

It seems convenient to introduce velocity potentials
u = Φx, v  = Φy, w = Φz, u' = , v ' = , and w' = 
into the equations and boundary conditions. As a result,
we have

(1)

(2)

(3)

(4)

while for z = η,

(5)

(6)

(7)

To derive a model equation, we impose a number of
restrictions. Only long waves with typical length L and
small, while finite, amplitude A are considered.
Accordingly, we introduce the following scales for the

variables: L for x, Y for y, H for z, L/  for t, A for η,

and AL /H for Φ and Φ'. We denote σ = H'/H and
∆ = ρ'/ρ, introduce small parameter ε = H/L, and
assume that variations in the y direction are weaker than
in the x direction (Y = L/ε). Then, the solutions to
dimensionless Laplace equations (1) and (2) with
boundary conditions (3) and (4) have the form

(8)

(9)

where φ(x, y, t) and φ'(x, y, t) are new unknown func-
tions.

Consider first the case A/H = O(ε2). To derive a
model equation, we assume that a solution depends on
phase variable θ = x – v t, y, and slow time τ = ε2t. Sub-
stituting Eqs. (8) and (9) into dimensionless boundary
conditions (5)–(7), we find that phase velocity v  is

Φx' Φy' Φz'

Φxx Φyy Φzz+ + 0 at H– z η ,< <=

Φxx' Φyy' Φzz'+ + 0 at η z H',< <=

Φz 0 at z H ,–= =

Φz' 0 at z H';= =

ρ Φt 1/2 Φx
2 Φy

2 Φz
2+ +( ) gη+ +( )

=  ρ' Φt' 1/2 Φx'
2 Φy'

2 Φz'
2

+ +( ) gη+ +( ),

η t Φxη x Φyη y+ + Φz,=

η t Φx' η x Φy' η y+ + Φz' .=

gH

gH

Φ φ x y t, ,( ) ε2 z 1+( )2

2
------------------φxx–=

+ ε4 z 1+( )4

24
------------------φxxxx

z 1+( )2

2
------------------φyy– 

  O ε6( ),+

Φ' φ' x y t, ,( ) ε2 z σ–( )2

2
------------------φxx'–=

+ ε4 z – σ( )4

24
-------------------φxxxx' z σ–( )2

2
------------------φyy'– 

  O ε6( ),+
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given by

(10)

and perturbation η of the interface is described by the
KP equation [8]

(11)

where

It is easy to see that b > 0 and d > 0 and that the coef-
ficient multiplying the square nonlinearity may be of
either sign. In particular, if the ratio between the thick-
nesses of the layers is σ = σ*,

(12)

we have a* = 0. In this case, the nonlinearity–disper-
sion balance, which is the condition for wave localiza-
tion, is impossible for the relationship between A/H and
ε accepted. Therefore, we change this relationship in
the initial dimensionless equations to A/H = O(ε) and
also put v  = v* + εv 1 + …, and σ = σ* + εσ1 + …. Solv-
ing the problem in the zeroth approximation leads to
Eq. (10) for v*, which, in view of (12), takes the form

(13)

The first-order correction to the velocity has the
form

The square and cubic nonlinearities turn out to be of
the same order of smallness; then, from the condition of
solvability of the next-order approximation, we arrive
at a 2D generalization of the Gardner equation for per-
turbation η of the fluid surface in the form

(14)

where

We notice that b > 0 and d > 0 again, the coefficient
multiplying the cubic nonlinearity is always negative,
c < 0, and the sign of a is defined by the sign of σ1.

STABILITY OF AN INTERNAL PLANE WAVE

When b > 0 and d > 0, the KP equation has a stable
solution in the form of a plane solitary wave, while a

v 2 σ 1 ∆–( )
σ ∆+

---------------------,=

ητ a*ηθ
2 bηθθθ+ +( )θ dη yy+ 0,=

a*
3v σ2 ∆–( )
4σ σ ∆+( )
---------------------------, b

σv 1 σ∆+( )
6 σ ∆+( )

------------------------------, d
v
2
----.= = =

σ* ∆,=

v *2 1 σ*.–=

v 1

σ1v *
2 σ* 1+( )
------------------------.=

ητ aηθ
2 cηθ

3 bηθθθ+ + +( )θ dη yy+ 0,=

a
3v *σ1

2σ* σ* 1+( )
-------------------------------, b

v * 1 σ* σ*2+ +( )
6σ*

--------------------------------------------,= =

c
3v *
σ*

----------, d–
v *
2

-------.= =
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plane solitary wave into (b) a sequence of 2D localized
waves.
solution in the form of a 2D localized lumped wave can
take place at b > 0, d < 0 or b < 0, d > 0 [1, 8].

At a = 0 (σ1 = 0), Eq. (14) transforms, in the one-
dimensional approximation, to the modified Korteweg
de Vries equation for function η. For the adopted signs
of the nonlinear cubic and linear dispersion terms, this
equation does not have a solution in the form of a local-
ized wave vanishing at infinity [1–3].

The well-known single-soliton solution to the Gard-
ner equation has the form [3, 13]

(15)

where

At k  , solution (15) tends to
acquire the shape of an extended trough; accordingly,
the wave amplitude tends toward the limiting value
−2a/3c (Fig. 1). This mode is evidently realized in the
case at hand bc < 0. In the 2D statement, Eq. (15)
describes the propagation of a plane trough (Fig. 2). It
is important to know whether such a wave is stable
against transverse perturbations. Let a solution to
Eq. (14) have the form

where δ ! 1.

Then, correction w is found from the linear equation

(16)

whose asymptotic solution in the case of small p (weak
transverse modulation) is sought in the form

Substituting these power series into Eq. (16) and
equating terms with the same powers of p, we obtain

From the condition of solvability in the p2 approxi-
mation, an equation for λ1 follows,

η0
3bk2

a B1 kξ( )cosh 1+( )
----------------------------------------------,=

B1 1 9bck2

2a2
--------------+ , ξ θ bk2τ .–= =

2a2/ 9bc( )–

η θ τ y, ,( ) η0 δw θ τ,( )Exp λτ ipy+( ),+=

wτ 2a η0w( )θ 3c η0
2w( )θ bwθθθ+ + +( )θ

+ λwθ p2dw– 0,=

w w0 pw1 p2w2 …, λ+ + + pλ1 p2λ2 ….+ += =

w0 η0 θ, ,=

w1

3λ1 B1
2kξ kξ( )sinh 1 B1

2+( ) kξ( )cosh 2B1––( )
2aB1 1 B1 kξ( )cosh+( )2

----------------------------------------------------------------------------------------------------------------.=

λ1
2 a2dB1

2

2c 1 B1
2–( )

--------------------------F,=
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where 

It is easy to check that F < 0 for allowable values of
B1 (0 < B1 < 1). Hence, whether the wave is stable or
unstable depends on the sign of c: it is unstable for neg-
ative c and stable for positive c.

CONCLUSIONS
Thus, we generalized the Gardner equation for inter-

nal waves in a two-layer fluid to the 2D case and
derived an explicit dependence of the transverse insta-
bility of a plane solitary wave on the coefficients
involved in the equation. The instability thus obtained
depends on coefficient a multiplying the nonlinear
cubic term, as distinct from the instability following
from the Kadomtsev–Petviashvili equation. The sign of
coefficient a depends on the sign of σ1, i.e., on the ratio
between the thicknesses and densities of the layers, as
follows from the definition of σ and σ*,

In addition, the sign of a defines that of the ampli-
tude of solitary wave (15); namely, when a < 0, only
waves with troughs are unstable. Taking into account
surface tension at the interface may change the sign of
coefficient b in Kadomtsev–Petviashvili equation (11)
to negative. Then, the condition a* > 0 corresponds to
unstable troughs and a* < 0, to unstable hump-shaped
solitons.

In the unstable case, one may expect the formation
of 2D localized troughs similarly to the evolution of a
plane hump resulting from Kadomtsev–Petviashvili
equation (11) at b < 0 and a* < 0 [11]. Figure 3 presents
the initial and final phases of this solution. Importantly,
the wave amplitude grows during this process. As
regards to the formation of the plane wave itself, the
formation of solitary wave (15) resulting from the one-
dimensional Gardner equation was numerically ana-
lyzed for an arbitrary initial perturbation in [13]. It

F 1
2

1 B1
2–

------------------- 1 B1–( )/ 1 B1+( )arctan .–=

εσ1
H'
H
----- ρ'

ρ
----.–=
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turned out that, unlike ordinary solitons, wave (15) may
appear only if the initial pulse (perturbation) is suffi-
ciently wide. Moreover, only one wave may arise in this
case rather than a sequence of solitons with various
amplitudes, as follows, for example, from the Korteweg
de Vries equation.

Note finally that we restricted our consideration to
the unperturbed free surface of the upper layer and con-
stant densities. Both the perturbation of the surface and
stratification can be taken into consideration by gener-
alizing the results of [3, 5] for the 2D case.
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Abstract—The optical and current characteristics of spark discharges between a grounded electrode and a
strongly charged artificial water-aerosol cloud are studied experimentally. The spectral characteristics of the
discharge current are investigated using wavelet and Fourier analyses. Three main types of discharge with dif-
ferent final stages are revealed and investigated. It is found that the parameters of a discharge in its final stage
depend substantially on the discharge trajectory and the depth to which it penetrates into the aerosol cloud. It
is shown that the parameters of the most powerful type of discharge (the brightness of the discharge channel,
the current growth rate in the final stage, and the penetration depth into the charged aerosol cloud) are close to
the discharge parameters in the main stage of natural lightning. It is also shown that such a discharge neutralizes
up to 5% of the cloud charge. In contrast to Fourier analysis, wavelet analysis shows that the signal amplitude
(i.e., the energy deposition rate in the discharge channel) is maximum at high frequencies for all types of dis-
charge. Of special interest is the most powerful type of discharge, in which the signal amplitude (which is one
to two orders of magnitude larger than in other discharges) is maximum at frequencies of several hundred mega-
hertz. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Studies of discharges in charged water-aerosol
clouds are important for both understanding the physics
of thunderstorms and predicting the action of lightning
on ground and flying objects [1–3]. At present, it is not
quite clear what discharge processes occur in different
thunderstorm regions and how lightning is initiated and
propagates inside the thundercloud and near it. The rea-
son is that the mechanisms for the development of a dis-
charge in strongly charged aerosol clouds (thunder-
storm cells) and for the neutralization of the thunder-
cloud charge both during the development of a
downward leader and in the main stage of lightning
have been examined very poorly (especially experi-
mentally). Experimental facilities [4, 5] do not allow
one to produce and study discharges of a length of more
than 10 cm.

At present, mechanisms for the interaction between
channeled atmospheric discharges and local regions of
a charged aerosol cloud (thunderstorm cells) still
remain unclear. At the same time, these processes play
an important role in the development of lightning and in
damaging ground and flying objects by it [1, 3]. It is
commonly accepted that the first component of an
upward lightning proceeds without the main stage,
which takes place only in the subsequent components
1063-7842/05/5007- $26.00 0868
that start from the cloud, propagate toward the ground,
and are essentially identical to the components of
downward lightning [1]. However, not every upward
lightning penetrating into a thundercloud is accompa-
nied by a return stroke [3, 6, 7]; i.e., the start-up of the
“dart leader–return stroke” system is determined by the
interaction between an upward leader and a thunder-
storm cell. Moreover, an important role in the develop-
ment of different types of bipolar lightning is played by
upward discharges and the processes accompanying the
development of the discharge inside the cloud, as well
as by the switching of different regions of the charged
cloud to the lightning discharge [8].

Another problem is related to determining mecha-
nisms for the development of the main stage of light-
ning, which manifests itself through acoustic and elec-
tromagnetic emission [1]. Lightning discharges gener-
ate intense radio signals—the so-called “spherics.” The
frequency spectrum of the spherics spans from several
hertz to several hundred megahertz [3, 9]. The fre-
quency spectra of the current in different stages of
lightning also lie in this range [10, 11]. Note that the
frequency ranges of different types of natural lightning
differ substantially from one another. The frequency
spectrum of an ordinary cloud-to-ground lightning usu-
ally lies in the range 3–30 MHz [12]. The typical fre-
© 2005 Pleiades Publishing, Inc.
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quencies of intracloud lightnings are one order of mag-
nitude higher [13, 14]. The frequency characteristics of
discharges between the vertex of a cloud and the iono-
sphere depend substantially on the type of discharge
[15, 16]. The majority of the spectral characteristics of
natural lightning were obtained by analyzing the elec-
tromagnetic radiation from lightning discharges. As for
the spectral characteristics of the current in different
stages of various types of lightning, they have been
studied in less detail. Basically, there are only data for
return strokes and trigger lightning. This is related to
difficulties in measuring the lightning current, espe-
cially in the intracloud parts of the discharge.

Estimates of the current characteristics of lightning
are especially important in analyzing the situation in
which an aircraft approaching a thundercloud initiates
a bidirectional leader [17]. The parameters of this
leader and the subsequent action of lightning on the air-
craft are determined by the interaction of one of the
leaders with the space charge of the thunderstorm cell
that initiates it [18].

The study of strongly charged aerosol clouds capa-
ble of initiating channeled discharges allows one to
determine the current characteristics of discharges
propagating both inside the charged aerosol cloud and
between the cloud and ground.

In this paper, we describe and analyze results from
experimental studies of the development of a discharge
between a negatively charged artificial water-aerosol
cloud and a metal rod installed on a grounded plane
under the cloud. By varying the parameters of the
cloud, one can investigate all the discharge phenomena
that can occur during a natural thunderstorm, including
the leader and main stages of lightning [19]. Attention
is mainly focused on the study of the development of a
discharge within a charged water-aerosol cloud. The
results from experimental studies of the development of
a discharge between a strongly charged artificial water-
aerosol cloud and the grounded electrode are used to
analyze the amplitude, temporal, and spectral charac-
teristics of the discharge current in different stages of
the discharge.

1. EXPERIMENTAL STUDY OF THE OPTICAL 
AND CURRENT CHARACTERISTICS

OF A DISCHARGE BETWEEN A CHARGED 
WATER-AEROSOL CLOUD AND THE GROUND

The experimental setup consists of a 250-m3 aerosol
chamber, a condensation-type generator of charged
aerosol (GCA), an electrode system, and a diagnostic
complex. A schematic of the experimental setup is
shown in Fig. 1. The GCA is used to produce a charged
water-aerosol cloud above a grounded plane. The gen-
erator has a converging subsonic nozzle with an outlet
diameter of 6 mm. The nozzle unit is enclosed by an
electrostatic screen and is installed at a height of 0.8 m
above the grounded plane. The axis of the charged aero-
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
sol jet can be inclined at an angle of 0°–30° relative to
the horizontal grounded plane. These experiments were
performed at an inclination angle of 12°. The length of
the charged aerosol jet was varied using a large-mesh
electrostatic screen oriented perpendicular to the gas-
dynamic flow. At a pressure in the stream generator of
3–8 atm, the vapor outflow velocity was 400–430 m/s.

The volume of the aerosol cloud was a few cubic
meters. The charging unit of the GCA produced an out-
put current of up to 150 µA. The space charge density
on the axis of the cloud was in the range 1.5 × 10–4–
1.0 × 10–2 C/m3. The electric potential of the cloud
reached 1.5 MV. As a result, a strong electric field was
produced between the charged aerosol cloud and the
grounded plane. The electric field strength reached
12 kV/cm near the grounded plane and 22 kV/cm at the
boundary of the charged aerosol cloud. In the standard
operating regime of the experimental setup (i.e., at an
output GCA current of 130 µA and a vapor pressure in
the steam generator of 5–6 atm), the region of the max-
imum electric potential (~1.4 MV) lies at a distance of
1.6–1.8 m from the nozzle and at a height of about 1 m
above the horizontal grounded plane. At the boundary
of the charged aerosol flow, the potential reached
1.0 MV in the cross section that lay at a distance of 1.4–
1.5 m from the nozzle. The parameters of the experi-
mental setup and the aerosol clouds produced are
described in more detail in [20, 21].

Between the lower boundary of the charged aerosol
cloud and the grounded plane, at heights of up to 0.4 m
above the horizontal grounded plane and at distances of
1.0–2.0 m from the nozzle, the electric field is almost
uniform. It increases rather slowly (by no more than
30–40%) with height: from ~10 kV/cm near the
grounded plane to 13–14 kV/cm at a height of 0.4 m.
Thus, rod electrodes (or other types of electrodes) of
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6 5
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3
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11

Fig. 1. Schematic of the experimental setup: (1) condensa-
tion-type generator of charged aerosol, (2) grounded elec-
trostatic screens, (3) charged aerosol cloud, (4) rod elec-
trode with a spherical tip, (5) low-inductance shunt, (6) Tek-
tronix TDS 754D and TDS 3052 digital oscilloscopes,
(7) Canon PowerShot G1 digital camera, (8) spark dis-
charge, (9) electric strength detector, (10) dynamic antenna,
and (11) large-mesh grounded screen.
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Table 1.  Parameters of different types of discharge between a charged aerosol cloud and a grounded electrode

Parameter Type I Type II Type III Incomplete discharge

L, m Up to 2.0 1.0–1.7 1.0–1.3 0.4–0.7

N 2–4 1–2 1 1–2

M 2–4 1–3 1–2 1–2

Imax, A Up to 8 Up to 20 >20 <4

Tf, µs 2–5 0.7–1.9 0.3–1.1 1–4

τf, ns (over all the spikes) 50–70 30–50 5–30 100–180

a, kA/µs 0.03–0.09 0.13–0.19 0.4–2.8 ~0.02

Qn.f, µC 4.5–6.0 4.0–5.1 5.0–6.5 2.0–3.0

Qn.cl, µC ~2 ~1 ~2.5–3.0 ~0
height less than 0.4 m are exposed to approximately the
same electric field.

To initiate a controlled discharge between the aero-
sol cloud and the ground, a rod ending with a sphere
was installed on the plane. The sphere was insulated
from the rod and was grounded through a low-induc-
tance shunt. The height of the rod electrode was varied
from 100 to 580 mm, and the radius of the sphere was
varied from 0.5 to 25 mm. The rod was installed at a
distance of 1.3–1.8 m from the nozzle, where the elec-
tric field produced by the charged aerosol cloud was the
strongest. In the region where the sphere was located,
the electric field was almost uniform.

The discharge current signal taken from the low-
inductance shunt was fed to a Tektronix TDS 754D and
a TDS 3052 digital oscilloscope (Fig. 1). The electric
field strength and the charge of the aerosol cloud were
measured by a string field meter installed in the
grounded plane. Variations in the cloud charge in the
course of discharge were measured by a dynamic
antenna, the signal from which was fed to the Tektronix
TDS 754D oscilloscope. The process of propagation of
a discharge and its penetration into the cloud was pho-
tographed by a Canon PowerShot G1 digital camera.

Fig. 2. Final stage of type I discharge.
Three types of spark discharge penetrating into a
charged water-aerosol cloud were revealed. The first
and third types differed significantly in their optical
characteristics and the parameters of the current pulse
in the final stage of the discharge, when the space
charge of the aerosol cloud was neutralized. Besides
these three types, we also observed an incomplete dis-
charge, which did not reach the cloud and was charac-
terized by a feeble glow and small current in its final
stage. The optical and current characteristics of differ-
ent types of discharge (the length L of the spark chan-
nel, the number of large segments N, the number of the
current peaks M, the maximum discharge current Imax,
the duration of the final stage Tf, the current rise time τf
at a level of (0.3–0.9)Imax, the current growth rate at a
level of (0.3–0.9)Imax, the charge Qn.f. neutralized dur-
ing the final stage, and the charge of the aerosol cloud
Qn.cl. neutralized by the spark discharge) obtained by
processing the data from several hundred discharges
are presented in Table 1.

The first type of spark discharge (type I) is charac-
terized by sparks of length up to 2 m, which are feebly
glowing even during the final stage of the discharge and
consist of several segments. A characteristic feature of
type I discharges is the presence of a pronounced bridge
at a height of 30–50 cm above the grounded electrode.
The bridge is perpendicular to the discharge segments
that are connected by it. The length of the bridge is 5–
15 cm. An example of type I discharge is shown in
Fig. 2. Another important feature of this type of dis-
charge is that it develops only along the periphery of the
charged aerosol cloud. The discharge can bypass
regions with an elevated space charge density along two
paths: along the cloud toward the nozzle screen and
along a shorter trajectory that is perpendicular to the jet
and passes around the region with the maximal poten-
tial. Type I discharges never penetrate into the cloud,
but rather propagate along the periphery of the aerosol
cloud, where the space charge density is low and the
electric field strength is high.

The current waveforms of type I discharges have a
multipeak structure (two peaks or more) with an ampli-
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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tude of up to 8 A. The duration of the final stage is 2–
5 µs, and the minimum current rise time is 50–70 ns.
The charge neutralized in the final stage of this type of
discharge is usually 4.5–6.0 µC. The fraction of the
charge neutralized just in the charged aerosol cloud is
30–40% (~2 µC). This is related to the fact that the dis-
charge covers a fairly large distance in the cloud
(although along its periphery).

In the final stage of type III discharge, very bright
sparks merge into one channel of length 1.0–1.3 m. The
final stage of this type of discharge is illustrated in
Fig. 3. A specific feature of such a powerful discharge
is that it enters the charged aerosol cloud at an angle of
40°–60° with respect to its boundary and penetrates
into the cloud to a depth of more than 20–30 cm.

The current waveforms in the final stage of type III
discharges have only one peak with an amplitude of
more than 20 A. The duration of the final stage of such
a discharge is 0.3–1.1 µs, and the minimum current rise
time is 5–30 ns. This type of discharge is characterized
by higher current growth rate in the final stage: up to
~3 kA/µs, which is by more than one order of magni-
tude higher than in other types of discharge. The charge
neutralized in the final stage of type III discharge is usu-
ally 5.0–6.5 µC, and the charge neutralized just in the
cloud is ~2.5–3.0 µC. Such a development of the dis-
charge near the boundary of the cloud and inside it can
be regarded as “optimal” from the standpoint of maxi-
mum neutralization of the charged water-aerosol cloud.

The optical and current characteristics of the final
stage of type II discharge lie between those of type I
and III discharges. The charge neutralized by this type
of discharge is as low as ~1 µC. The reason is that the
discharge propagates inside the cloud toward the region
with the maximum potential and the electric field
strength decreases along the discharge trajectory, while
the space charge density of aerosol particles increases.
As a result, the discharge propagates inside the cloud in
a rapidly decelerating mode. The discharge enters the
cloud almost perpendicularly to its boundary, covers a
distance of no more than 5–10 cm, and then stops.

2. SPECTRAL CHARACTERISTICS
OF THE DISCHARGE CURRENT

To determine the spectral characteristics of the dis-
charge current and its dynamics in the course of dis-
charge, we used Fourier and wavelet analyses.

Wavelet analysis has been successfully used in
studying complex unsteady signals. Fourier analysis
allows one to obtain the spectrum of the entire signal or
certain segments of the signal within given time inter-
vals and thus is appropriate only for steady-state sig-
nals.

To trace the evolution of an unsteady signal and
obtain the time–frequency representation of the signal,
which allows one to analyze the temporal behavior of
the signal spectrum, we used not only the window Fou-
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
rier transformation, but also the wavelet transforma-
tion, which possesses a number of important advan-
tages. Wavelet analysis allows one to examine the inner
structure of nonuniform objects, such as multiscale or
unsteady processes, and to investigate its local proper-
ties. Such an approach is especially helpful when
studying rapidly varying signals that have both high-
and low-frequency components. These capabilities of
wavelet analysis have been successfully used to process
random signals [22].

It should be noted that there are many different types
of wavelets; this allows one to choose a wavelet that is
most appropriate for studying some particular problem.
This is why, together with the wavelet spectrum of the
signal, it is always indicated with which type of wavelet
it is obtained. The following wavelets are used most fre-
quently: (a) DOG wavelets (derivatives of a Gaussian
function), (b) COS and SIN Morlet wavelets, (c) com-
plex Morlet wavelets, and (d) Battle–Lemarie wavelets.

In recent years, wavelet analysis has been used to
study gas discharges and atmospheric electricity. In
studying thunderstorms, wavelet analysis was applied,
e.g., to processing signals characterizing variations in
the pressure and temperature of air and the parameters
of the wind in a thunderstorm cloud. The coefficients of
the wavelet transform were then used to describe the
thunderstorm activity [23]. A similar approach was
employed in [24, 25] to determine the fine structure of
the developing clouds.

Wavelet analysis is even more often applied in
studying electromagnetic fields generated by lightning
[26, 27]. Attempts have been made to identify the ele-
ments of the obtained time–frequency spectrum with
different stages of lightning: prebreakdown pulses, the
return shock, and the main stage of lightning. For this
purpose, Haar wavelets [28] are frequently used. These
wavelets are successfully employed to analyze discrete
signals as well as to study partial discharges in insulat-
ing systems [29].

Fig. 3. Final stage of type III discharge.
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In the present study, the wavelet spectra of the cur-
rent of a discharge excited between a charged aerosol
cloud and the ground are obtained using a specially
designed computer program based on complex Morlet
wavelets:

The Morlet wavelet contains the parameter T (the
oscillation period), which determines the maximum
frequency that can be detected using this wavelet.

Such a wavelet transformation can be interpreted as
a continuous set of window Fourier transformations
with windows of different widths that vary with fre-
quency. This allows one to optimally localize, in fre-
quency and time, all the processes occurring on differ-
ent time scales. This property is the main advantage of
the wavelet transformation as applied to the analysis of
multiscale signals, as well as signals undergoing jumps
in the amplitude or phase or signals containing several
unsteady components with different carrier frequencies
(multimode signals). Therefore, this wavelet transfor-
mation can be successfully used to analyze the behavior
of the discharge current in a charged aerosol cloud.

Figures 4 and 5 present examples of the discharge
current waveforms and the relevant wavelet spectra of
type I and III discharges. These wavelet spectra corre-
spond to the discharges shown in Figs. 2 and 3. Figure 6
shows the corresponding Fourier spectrum of the type
III discharge.

Wavelet analysis of the current waveforms in differ-
ent types of discharge yielded the characteristic fre-
quencies and the corresponding signal intensities for
each type of discharge. Seven characteristic frequency
ranges were revealed: <1, 2–5, 6–10, 11–18, 19–30,
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Fig. 4. Wavelet spectrum of type I discharge.
31–50, 51–150, and 151–300 MHz. The frequency
ranges and the corresponding signal intensities (i.e., the
rates of energy deposition in a discharge) were found to
differ substantially for different types of discharge and
for the first and subsequent current pulses in each type
of discharge. The results of processing wavelet spectra
of the current waveforms in the final stage of discharge,
in an incomplete discharge, and in the preceding leader
discharge are presented in Table 2.

In the final stage of type I discharges, three fre-
quency ranges (<1, 2–5, and 6–10 MHz) can be distin-
guished in the wavelet transform of the current signal.
These frequency ranges are present throughout the
entire final stage, and the signal intensity is maximum
in the first frequency range. It should be noted that there
is also a more feeble (but rather pronounced) signal at
the front of the first pulse in the final stage of the dis-
charge in the frequency ranges of 11–18 and 19–
30 MHz.

For an incomplete discharge with a feeble final
stage, only two first frequency ranges (<1 and 2–
5 MHz) are observed in the current waveform and the
signal intensity is a factor of three to five lower than that
for the first type of discharge.

Wavelet analysis of the current waveforms shows
that, for type II discharges, the frequency range is wider
and the signal intensity is higher than those for type I
discharges, especially in the frequency ranges of 11–
18, 19–30, and 31–50 MHz, which are untypical of type
I discharges. Note that the signal in the last frequency
range is present only during the first current pulse in the
final stage of discharge.

Wavelet analysis shows that the final stage of type
III discharge is distinguished among other types of dis-
charge by a wider frequency range and a higher signal
intensity at each frequency. Intense signals appear in
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Fig. 5. Wavelet spectrum of type III discharge.
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Table 2.  Results from wavelet analysis for different types of discharge

Characteristic frequencies, MHz <1 2–5 6–10 11–18 19–30 31–50 51–150 151–300

Type I + + + + + – – –

Type II + + + + + + – –

Type III + + + + + + + +

Incomplete discharge + + – – – – – –

Leader discharge – – – + + + + +

Table 3.  Results from Fourier analysis for different types of discharge

Type of discharge Incomplete
discharge Type I Type II Type III

Characteristic frequencies, MHz Up to 3–5 Up to 15–25 Up to 25–50 Up to 150–200

Interval between characteristic frequencies 
in the Fourier spectrum, MHz

0.4–0.6 0.8–2.5 1.8–4.0 5.0–20.0

Signal intensity at a frequency of 5 MHz 10–9 7 × 10–8 5 × 10–7 4 × 10–5
the frequency ranges of 51–150 and 151–300 MHz,
which are typical of the leader stage. However, in the
final stage of type III discharges, the signal intensity at
these frequencies is several hundred times higher than
that in the leader. In nature, such intense signals at fre-
quencies of several hundred megahertz were observed
during compact (but very powerful) intracloud dis-
charges [14]. In [14], such a strong emission was attrib-
uted to the development of powerful intracloud
streamer discharges.

It was found that the maximum current growth rate
a in the final stage of any type of discharge is nearly
proportional to the maximum characteristic frequency
Fmax in the wavelet spectrum of the discharge current
(Fig. 7): the higher the current growth rate, the higher
the maximum frequency. It should be noted that such a
linear dependence is typical of first current pulses in the
final stage of discharge; the current growth rate is max-
imum just in these pulses in any type of discharge. It
was also found that the higher the characteristic fre-
quency of the wavelet spectrum, the higher the signal
intensity at this frequency. This result, which was
obtained by processing experimental curves using
wavelet analysis, differs substantially from the results
of Fourier analysis of lightning discharges: generally,
the amplitude of the Fourier spectrum rapidly decreases
with increasing characteristic frequency [30]. Such a
decrease in the amplitude of the Fourier spectrum of the
measured signal with increasing characteristic fre-
quency takes place even for very powerful lightning
discharges [31]. The same result was obtained for dis-
charges in strongly charged artificial aerosol clouds.

Fourier analysis of the current waveforms also
shows that the frequency spectra are very different in
different types of discharge. It was found that the more
powerful the final stage of a discharge, the larger the
interval between the characteristic frequencies in the
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
Fourier spectrum for each type of discharge. The results
of Fourier analysis are presented in Table 3.

Along with the intervals between the characteristic
frequencies, the frequency ranges in which these fre-
quencies were observed were also very different for dif-
ferent types of discharge. For incomplete discharges,
the highest frequency did not exceed 5 MHz, whereas
in the final stage of the most powerful type III dis-
charges, the signal was observed at frequencies higher
than 150 MHz.

It is well known that electric discharges are accom-
panied by the generation of electromagnetic waves. The
leader channel and the channel of the main discharge
are filled with a highly conductive plasma. Such a
plasma channel plays the role of an emitting antenna.
Therefore, knowing the time behavior of the discharge
current, we can find the spectrum of electromagnetic
waves emitted during a discharge. In the dipole approx-
imation, the intensity of the emitted electromagnetic
radiation is proportional to the square of the Fourier
transform of the time derivative of the discharge cur-
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Fig. 6. Fourier spectrum of type III discharge.
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rent, i.e., to the square of the Fourier transform of the
discharge current multiplied by the frequency squared.
Figure 8 shows the Fourier spectrum of the electromag-
netic radiation generated by a type III discharge. Thus,
the above frequency characteristics of the discharge
current provide information on the spectra of electro-
magnetic waves emitted during a discharge.

CONCLUSIONS

Our experimental studies of the development of a
discharge between a charged aerosol cloud and a metal
rod installed on a grounded plane have revealed three
different types of discharge. It has been shown that the
discharge parameters and the charge neutralized in the
aerosol cloud depend substantially on the trajectory of
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Fig. 7. Maximum characteristic frequency of the wavelet
transform of the current signal for different types of dis-
charge vs. current growth rate: (A) incomplete discharge
and (I–III) different types of discharge.

Fig. 8. Electromagnetic radiation spectrum generated by a
type III discharge.
the preceding leader discharge relative to the charged
aerosol cloud, the place and angle at which the leader
enters the cloud, and the probability of generating a
counterpropagating discharge from the charged aerosol
cloud.

Among other types of discharge between a charged
aerosol cloud and a grounded electrode, type III dis-
charges, which are characterized by the high brightness
of the discharge channel, high current growth rate in the
final stage (~1 kA/µs), and deep penetration into the
charged aerosol cloud, are the closest to the main stage
of natural lightning. A specific feature of powerful type
III discharges, which best neutralize the cloud charge,
is that such discharges enter the cloud at an angle of
40°–60° to its boundary, penetrate into the cloud to a
depth of more than 20–30 cm, and neutralize up to 3 µC
of the space charge of the aerosol cloud.

An analysis of wavelet and Fourier spectra of the
discharge current has shown that the characteristic fre-
quency ranges for different types of discharge between
a charged water-aerosol cloud and a grounded electrode
are close to one another, whereas the signal intensities
at the characteristic frequencies are quite different.
Wavelet analysis has shown that the signal intensity
(i.e., the energy deposition rate in a discharge) is maxi-
mum at high frequencies. The more powerful the dis-
charge (according to optical and current characteris-
tics), the wider the characteristic frequency range and
the higher the signal intensity in both the Fourier and
wavelet spectra.

Among the discharges in a charged aerosol cloud,
type III discharges are the most powerful. For such dis-
charges, the maximum signal intensity (which is by one
to two orders of magnitude higher than for other types
of discharge) is achieved at frequencies of several hun-
dred megahertz. Intense electromagnetic emission at
such frequencies is typical of long streamer discharges,
especially of negative streamers [14, 32]. A possible
reason for the generation of an intense signal at such
high frequencies in powerful discharges penetrating
deep into the charged aerosol cloud is the development
of a negative streamer corona propagating from the
cloud boundary toward the upward leader approaching
the cloud.
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Abstract—The diffuse phase of high-voltage nanosecond atmospheric-pressure discharges in insulating gaps
with a highly nonuniform electric field has been studied experimentally with the purpose of developing methods
for protecting power supply equipment from natural and man-caused overvoltages. The structure of the dis-
charge glow in 6- to 12-cm rod–plane gaps has been investigated for five configurations of the rod cathode. It
is found that the discharge can exist in different forms and that the occurrence of one or another type of dis-
charge is probabilistic in character. The electric characteristics of the discharge have been studied as functions
of the electrode gap length for two types of cathode that provide the preferential development of volume and
multichannel discharges. It is shown that the main factors governing the shape of the discharge glow are the
distribution of the electric field near the cathode in the voltage growth phase and the dynamics of the accompa-
nying discharge processes. © 2005 Pleiades Publishing, Inc.
Interest in studying high-voltage diffuse discharges
in elevated-pressure gaseous media (≤105 Pa) in a
highly nonuniform electric field stems, in particular,
from the problem of protecting energy supply equip-
ments. The amplitude and temporal characteristics of
the overvoltages exerted on the elements of power sup-
ply systems and resulting in the breakdown of insulat-
ing gaps can vary in rather wide ranges. In particular,
nanosecond overvoltages can arise under the action of
both natural (e.g., in some stages of lightning [1]) and
man-caused factors. The breakdown (short-circuiting)
of a gap can be regarded as a stage completing the for-
mation phase of a diffuse discharge. It is this phase that
determines the possibility of transforming the dis-
charge into an arc with a descending current–voltage
characteristic. After such a transformation, the current
continues to flow through the insulation gap after the
end of the overvoltage pulse, being maintained by the
operating voltage of the energy supply equipment.

Nanosecond discharges in ~1-cm-long gaps have
been thoroughly investigated both experimentally and
theoretically [2, 3]. However, in order to solve the prob-
lem of protecting energy supply equipments, it is nec-
essary to study atmospheric-pressure discharges in air
at gap lengths of ≥10 cm. Experimental studies in this
field are rather limited in number because of the techni-
cal difficulties; this is why publications devoted to
investigation of nanosecond breakdowns of long gaps
are dominated by theoretical and computational works
[4, 5]. At the same time, the strong dependence of the
discharge characteristics on the external conditions
1063-7842/05/5007- $26.00 0876
(such as the gap geometry and the parameters of the
applied voltage pulse) makes it necessary to carry out
additional experiments. In this paper, we present results
from experimental studies of nanosecond diffuse dis-
charges developing in a rod–plane gap in atmospheric-
pressure air. The appearance and the main electrical
parameters of a diffuse discharge were investigated for
different gap lengths h and different degrees of the elec-
tric field nonuniformity. The experiments were per-
formed with five different configurations of the rod
cathode. The gap length h was varied from 6 to 12 cm.
The duration of the applied voltage pulse was limited so
that the initial, slightly luminous phase of breakdown
had not time to pass into a spark phase.

A schematic of the experimental setup is shown in
Fig. 1. As a power supply (1), we used a BING-6 pulsed
nanosecond 60-kV voltage generator [6] loaded on a
Lewis transformer [7]. The transformer was assembled
of six 17-m segments of a coaxial cable (with a wave
impedance of 55 Ω), whose outputs were connected in

BING-6

C A D

S

21

Fig. 1. Schematic of the experimental setup.
© 2005 Pleiades Publishing, Inc.
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series in the upper part of the discharge chamber (2).
The discharge chamber was a metal cylinder 60 cm in
diameter and 60 cm in height. The maximum voltage
was applied to the center of the chamber. 1-cm-diame-
ter 15-cm-long rod cathode C was installed at the cham-
ber axis so that the distance h between the cathode end
and the anode could be varied. We used cathodes with
axisymmetric 1-cm-diameter 4-cm-long stainless-steel
tips of different shape (Fig. 2). The radius r0 of tips b−e
was ~0.2 mm (some experiments were performed with
radii of r0 = 0.01–1.6 mm). An 18-cm-diameter plane
aluminum anode A was installed coaxially with the
cathode at the bottom of the chamber. The anode was a
part of the plane grounded basis of the chamber; this
ensured the uniformity of the electric field near the
plane electrode.

In our experiments, the discharge voltage was mea-
sured using resistive divider D and the discharge cur-
rent was measured with the help of low-inductance
shunt S. We also recorded the integral (over the gap
length) radiation from the discharge in the wavelength
range of 300–600 nm using a fast-operating photomul-
tiplier. The electric signals were recorded by a digital
oscilloscope with a passband of 500 MHz and time res-
olution of no worse than 0.5 ns for current and voltage
signals and of ~2 ns for radiation pulses. The discharge
glow was observed visually and was photographed (in
all, about 1000 photographs were taken) by a reflex
camera located at a distance of 0.4–1.0 m from the dis-
charge axis (the cathode region of the discharge was
photographed using a telescopic lens). As a photosensi-
tive material, we used color and black-and-white films
with a spectral sensitivity of up to 640 nm. The number
and diameter of the discharge channels were deter-
mined by photographing and by the method of auto-
graphs [8].

It was found experimentally that, for the same
geometry of the discharge gap and the same power sup-
ply parameters, the shape of the diffuse discharge var-
ied from shot to shot. The shapes of the glow can be
divided into three main types: multichannel, volume,
and transitional. As a rule, a multichannel discharge
(Fig. 3a) consists of four to sixty channels with nearly
the same diameters and intensities. The channels are
evenly distributed over the anode plane. In a volume
discharge (Fig. 3d), the diameter and intensity of the
central channel substantially exceed those of the
remaining channels. By transitional discharges
(Figs. 3b, 3c) we mean intermediate types of discharge
that cannot be ascribed to any of the above types
because of their very different (including asymmetric)
and, as a rule, poorly reproducible shapes.

In terms of the above classification, the probability
of the occurrence of one or another type of discharge is
almost independent of the discharge gap length. At the
same time, the geometric parameters of the glowing
regions, as well as the emission characteristics of the
discharge, depend substantially on h. The shorter the
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
gap length h, the smaller (on average) the diameter of
the discharge channels and the higher the intensity of
the discharge glow. At large h, the volume discharge has
the shape of two separate cones with a 7-cm-diameter
common base in the central region of the discharge gap.
As h decreases, the volume discharge acquires the
shape of a cylinder with a diameter of ~1 cm. At h =
6 cm, among diffuse discharges, brightly glowing spark
discharges with a small current-channel diameter are
sometime observed.

In spite of the absence of breakdown as it is under-
stood in [5] (i.e., in spite of the absence of a highly con-
ductive spark channel with a descending current–volt-
age characteristics), the process of discharge develop-
ment at 6 < h ≤ 12 cm quite adequately reflects the
prebreakdown stage of a discharge. This follows from a
comparative analysis of the current and voltage wave-
forms of diffuse and spark discharges in short gaps (h =
5–6 cm). Under these conditions, the formation of a

R3 cm

(a) (b) (c) (d) (e)

4 
cm

\ 1 cm R1.5 cm r0

\ 2 cmα

Fig. 2. Shapes of the cathode tips.

(‡)

Cathode

h = 8 cm h = 9 cm

h = 12 cm h = 9 cm

(a) (b)

(c) (d)

Fig. 3. Different types of discharge for a bullet-shaped cath-
ode (Fig. 2c): (a) multichannel, (b, c) transitional, and
(d) volume.
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highly conductive spark channel is usually observed
either at the end of the voltage pulse or at its backswing.
The segments of the current and voltage waveforms
preceding the formation of a spark coincide (within the
shot-to-shot scatter) with analogous segments for dif-
fuse discharges. Moreover, variations in the frontal seg-
ments of the current and voltage waveforms correlate
with the temporal parameters of a spark discharge.

Figure 4 shows typical waveforms of the discharge
voltage and current. Variations in the shape of the dis-
charge glow under the same formation conditions is
accompanied by variations in the electric and emission
parameters. Moreover, for discharges with the same
shape of the glow, there is a statistical scatter in these
parameters from shot to shot. The electric characteris-
tics of the discharge were examined most thoroughly
for hemispheric (Fig. 2a) and bullet-shaped (Fig. 2c)
cathodes. It has been found that the increase in h from
6 to 12 cm leads to an increase in the peak voltage from
150 to 240 kV for a bullet-shaped cathode and from 140
to 230 kV for a hemispheric cathode. In this case, the
discharge current amplitude exponentially drops from
800 to 150 A for a bullet-shaped cathode and to 300 A
for a hemispheric cathode. At small gap lengths, the

0
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10 20 30 40 50 60 70 80 90 100110120

0
0

80

160

240

10 20 30 40 50 60 70 80 90 100110120

t, ns
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U, kV
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1

Fig. 4. Typical waveforms of the discharge voltage and cur-
rent: (1) the initial phase of the conduction current.

Probability of the occurrence of the different types of dis-
charge as a function of α for r0 = 0.2 mm and h = 10 cm

Cathode 
(Fig. 2) α, deg

Type of discharge

multichan-
nel

transi-
tional volume

a 180 0.7 0.2 0.1

b 90 0.2 0.3 0.5

c 60 0.1 0.2 0.7

d 30 0.1 0.3 0.6

e 15 0.1 0.2 0.7
total duration of the current pulse is 170 ns. As h
decreases, the total duration of the current pulse
decreases to ~140 ns for a hemispheric cathode and to
~110 ns for a bullet-shaped cathode.

At the instant of the maximum current, the discharge
resistance at h = 6 cm is ~100 Ω for both types of cath-
ode. It increases with increasing gap length and, at h =
12 cm, reaches 1.2 kΩ for a bullet-shaped cathode and
600 Ω for a hemispheric cathode. The time during
which the gap is bridged by the discharge channels (this
time is defined as a delay between the beginning of the
voltage growth and the start of the conduction current,
which corresponds to a sharp drop in the gap resistance)
increases nearly linearly from 10 to 17 ns as h increases
from 6 to 12 cm. Thus, the average propagation velocity
of streamers in the gap depends slightly on h and is no
less than 6 × 108 cm/s.

Special experiments carried out at a constant gap
geometry did not reveal any external factors affecting
the occurrence of different types of discharge glow. It
was found that the probability of the occurrence of one
or another type of discharge is independent of the elec-
trode roughness; of small variations in the pressure,
humidity, and temperature of air; and of the presence in
the discharge gap of microparticles and long-lived
products of the preceding discharges (singlet oxygen,
ozone, etc.). A decrease in the total discharge current
(by shunting the discharge gap) and the limitation of the
current at the discharge periphery (by placing an annu-
lar dielectric plate on the anode) also did not affect the
probability of the occurrence of one or another type of
discharge. Hence, the structure of the discharge glow is
determined exclusively by the internal mechanisms of
the discharge.

It was also found that the probability of the occur-
rence of one or another type of discharge (the ratio of
the number of discharges with a given shape of glow to
the total number of discharges) depends on the shape of
the cathode tip and is primarily determined by the cath-
ode vertex angle α and the point radius r0 (see table). It
can be seen from the table that the probability of the
occurrence of a multichannel discharge decreases with
decreasing α, while the probability of the occurrence of
a volume discharge increases. For a hemispheric cath-
ode (Fig. 2a), multichannel discharges predominate,
whereas for cathodes (Figs. 2b–2e) with r0 = 0.2 mm,
volume discharges prevail. An increase in the point
radius of cathodes (Figs. 2b–2e) leads to an increase in
the probability of the occurrence of transitional and
multichannel discharges. As r0 decreases to 10 µm, the
probability of the occurrence of volume discharges
increases by ~10–20%.

Apparently, the structure of the discharge glow
forms in the initial phase of discharge due to the onset
of instabilities of the cathode plasma sheath, as it
occurs in high-voltage diffuse discharges between a
plane and a wire parallel to this plane [9, 10]. This is
confirmed by the similarity of the conditions under
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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which a discharge forms (the voltage and current ampli-
tudes, the voltage growth rate, the parameters of the
working gas, and the discharge gap length) in our
experiments and in [9, 10], by the similarity of the dis-
charge glow structure (a multichannel discharge), and
by the experimentally found dependence of the dis-
charge glow structure on the cathode geometry.

In order to consider the influence of the cathode tip
geometry on the shape of the discharge glow in more
detail, we calculated the electric field strength around
the cathode. The calculations were performed in real
three-dimensional geometry with allowance for the
influence of the zero potential of the discharge chamber
wall on the electric field distribution in the electrode
gap. We performed calculations for five cathode config-
urations shown in Fig. 2 at h = 10 cm and r0 = 0.2 mm.
For each configuration, the field was calculated at
~106 points. To improve the calculation accuracy, the
density of the node points was increased near the criti-
cal regions of the cathode surface.

The results of calculations for hemispheric, bullet-
shaped, and conical cathode tips (Figs. 2a, 2c, and 2e,
respectively) are presented in Figs. 5 and 6. Calcula-
tions show that an increase in the angle α (a transition
from a conical to a hemispheric cathode) leads to a sub-
stantial decrease in the maximum value of the electric
field at a fixed applied voltage and to the smoothing of
the field distribution along the cathode surface (Fig. 6).
A the same time, Fig. 6 shows that, at small angles α,
the length of the region in which the field strength is
close to its maximum value for a hemispherical cathode
increases. The experiments demonstrate that such a
field is quite sufficient for a discharge to occur. By anal-
ogy with [9, 10], this would lead to an increase in the
number of discharge channels and, thus, to an increase
in the probability of the occurrence of a multichannel
discharge with decreasing α, which contradicts the
experimental data (see table).

In our experiments (in contrast to [9, 10]), the highly
nonuniform distribution of the field along the cathode
surface at small α, together with the finite value of the
voltage growth rate, leads to a situation in which the
electric field strength that is sufficient for the develop-
ment of a discharge is reached at different times in dif-
ferent regions of the cathode surface, starting from the
axial region. An analysis of the current waveforms and
the relevant waveforms of discharge radiation in the
UV and visible spectral regions shows that, in the gap
bridging phase (the segment of the current waveform
preceding to the conduction current; see Fig. 4), the
charges begin to move (which apparently corresponds
to the beginning of the formation of the discharge cur-
rent structure) before the gap voltage reaches its maxi-
mum value. (More detailed data from studying the ini-
tial stage of discharge will be published in the near
future.) The time delay between the beginning of the
voltage growth and the instant at which the charges start
moving depends on the cathode shape and the type of
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
the forming discharge glow. For the types of discharge
that are dominant for the cathodes in Figs. 2a, 2c, and
2e, the time delay is on average 14, 8, and 6 ns, respec-
tively. The gap voltage at these instants is about 65, 20,
and 15% of its maximum value. The calculated distri-
butions of the electric field strength E0 at these voltages
are shown in Fig. 7.

It can be seen that the field distribution differs con-
siderably from that shown in Fig. 5. At the instant at
which the charges begin to move, the size of the region
bounded by a surface of the same value of the electric
field strength in the case of a hemispheric cathode is
much larger than in case of cathodes with small angles
α. A decrease in the radius r0 of the cathode end leads
to a further decrease in this size. If we assume that the
formation of the discharge structure is governed by the
instability of the cathode plasma sheath [9, 10], then, in
accordance with the experimental results, we find that
the probability of the occurrence of a multichannel dis-
charge for a hemispheric cathode is higher than that for
the other cathode configurations under study and, in
contrast, the probability of the occurrence of a volume
discharge is higher for cathodes with small α and r0.

1 cm

(a) (c) (e)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 >3.5

Fig. 5. Distribution of the electric field E near the ends of
different cathodes (Figs. 2a, 2c, and 2e) at the same voltage
of 200 kV.
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Fig. 6. Distribution of the electric field E along the surfaces
of cathodes (Figs. 2a, 2c, and 2e) at a voltage of 200 kV.
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Moreover, the weak dependence of the field strength
near the cathode on the electrode gap length leads to the
weak influence of h on the probability of the occurrence
of one or another type of discharge. Indeed, an increase
in the gap voltage should appreciably change the dis-
charge structure, the development of which starts when
the charges begin to move. An increase in the voltage
leads to an increase in the calculated size of the region
where the field strength is sufficient for the beginning
of breakdown; the actual distribution of the field, how-
ever, differs from that shown in Fig. 5 because of the
screening and distortion of the field by the space charge
in the gap. Moreover, perturbations that have already
been formed on the surface of the cathode plasma
sheath will develop with the highest growth rate. Their
growth will suppress the development of new perturba-
tions, at least at distances exceeding the characteristic
distance between them. For cathodes with small angles
α, only one discharge channel (a volume discharge)
develops. This is probably explained by the too small
size of the region in which the charges start moving
before the development of perturbations of the cathode
sheath. Moreover, the perturbation that is the forerun-
ner of the discharge channel does not develop until the
sheath reaches a certain size. This is confirmed by the
fact that, as the angle α decreases, the calculated maxi-
mum electric field strength at the instant at which the
charges begin to move increases from ~2 × 107 V/m for

1 mm(a) 1 mm1 mm(c) (e)

0 0.3 0.6 0.9 1.2 1.5 1.8 >2.1

Fig. 7. Distribution of the electric field E0 near the ends of
the cathodes (Figs. 2a, 2c, and 2e) at the instant at which the
charges begin to move.

(a) (c) (e)

Fig. 8. Discharge glow near the cathodes (Figs. 2a, 2c,
and 2e).
a hemispheric cathode and to ~5.5 × 107 V/m for a con-
ical cathode.

Figure 8 shows the cathode region of the discharge.
It can be seen that the channels of a multichannel dis-
charge are evenly distributed over the surface of a hemi-
spheric cathode. For a volume discharge with a bullet-
shaped cathode, the peripheral channels are, as a rule,
absent. With a conical cathode, for which the region of
a strong field is more extended along the cathode sur-
face (see Fig. 5), the channels are formed at a substan-
tial distance from the main channel. In this case, how-
ever, the current flowing through the side channels is
very low and they do not disturb the general pattern of
the discharge glow, apparently, because of their late
start and large length, which is determined by the field
distribution in the discharge gap.

Thus, the observed features of a diffuse discharge
can be explained using the model proposed in [9, 10],
which describes the formation of the discharge struc-
ture in gaps with a highly nonuniform electric field in
terms of the instability of the cathode plasma sheath.
The main factors governing the shape of the discharge
glow are the distribution of the electric field near the
cathode surface in the voltage growth phase and the
dynamics of the accompanying discharge processes.
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Abstract—A study is made of the formation of a volume discharge in atmospheric-pressure air in a nonuniform
electric field without additional preionization. It is shown that the spatial distribution of the plasma glow
between a plane and a spherical (as well as a point) electrode at a subnanosecond rise time of the high-voltage
pulse is volumetric in character. The change of the voltage polarity does not qualitatively affect the character of
the glow. The propagation of a spherical ionization wave in nitrogen is calculated in the drift-diffusion approx-
imation. The fact that the character of the discharge glow is essentially independent of the voltage polarity is
explained by the multiplication of the background electrons in the dense working gas. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION

High-pressure pulsed volume discharges are widely
used in different fields of science and technology. The
results of investigations on the formation of such dis-
charges are described in numerous reviews and mono-
graphs (see, e.g., [1–6]). There were also studies in
which pulsed volume discharges in atmospheric-pres-
sure air were formed without additional preionization
[7–17]. In [7–16], the discharges were excited between
a plane anode and a point cathode by applying nanosec-
ond voltage pulses with an amplitude of ~100 kV and a
rise time of ~1 ns. It was pointed out in [18–21] that,
under certain conditions, the propagation of an ioniza-
tion wave in a dense gas is determined not by the trans-
port of electrons or photons, but rather by the multipli-
cation of the background electrons, whose density rap-
idly increases in the external electric field preceding the
breakdown [20, 21]. This mechanism for discharge
propagation does not depend on the direction of the
electric field. This allows one, in particular, to abandon
the well-known photon hypothesis of streamer propa-
gation [22]. The study of the propagation of an ioniza-
tion wave in a dense gas is also important for under-
standing mechanisms for the generation of strong sub-
nanosecond beams in gases at atmospheric pressure
[8−10, 12, 15, 23, 24].

The aim of the present study is to investigate the
influence of the voltage polarity on the formation of
volume discharges excited in a dense gas by nanosec-
ond voltage pulses with a subnanosecond rise time. It is
shown that the spatial distribution of the plasma glow
1063-7842/05/5007- $26.00 0881
between a plane and a spherical electrode is essentially
independent of the voltage polarity. Computation
results demonstrating the effect of multiplication of the
background electrons in a dense gas are also presented.

EXPERIMENTAL SETUP AND DIAGNOSTIC 
TECHNIQUES

Experiments were performed using a nanosecond
pulsed generator from an ARINA X-ray unit [6]. The
pulsed generator produced voltage pulses with an
amplitude of up to 150 kV (the idle voltage at a high-
resistance load). The FWHM of the voltage pulse was a
few nanoseconds and depended on the load. The rise
time of the voltage pulse was less than 1 ns. A specially
designed insulator with an external diameter of 160 mm
was installed at the generator output. With this insula-
tor, no surface breakdown occurred even at a distance
of 67 mm between the cathode and anode. A chamber
made of 200-µm copper foil was attached to the gener-
ator. The inner diameter of the chamber was 160 mm.
On the side opposite to the generator, the chamber ter-
minated with a plane copper electrode. The cylindrical
sidewall of the chamber had an 11 × 5 cm rectangular
window. An aluminum sphere with a radius of 40 mm
(cathode 1) or a 6-mm-diameted tube made of 50-µm
steel foil (cathode 2) was used as a powered electrode.
The experiments were conducted at an air pressure of
1 atm and electrode gap lengths of 22, 54, and 67 mm.
In the course of experiments, we changed the voltage
polarity, varied the distance between the electrodes, and
used electrodes of various designs. The time-integrated
© 2005 Pleiades Publishing, Inc.
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pattern of the discharge glow was recorded by a Zenith
camera on an RF-3 film. We also measured the dis-
charge current and discharge voltage pulses. A TDS-
330 oscilloscope with a bandwidth of 300 MHz and res-
olution of 2.5 GS/s (2.5 dots per 1 ns) was used to

(‡) (b)

(c) (d)

Fig. 1. Discharge glow observed in a 22-mm-long gap with
cathode 2: (a, b) negative voltage polarity and (c, d) positive
voltage polarity. Photographs (b) and (d) are obtained in one
pulse, while photographs (a) and (c) are obtained by averag-
ing over ten pulses. The powered electrode is on the right.

(a) (b)

(c) (d)

Fig. 2. The same as in Fig. 1, but for a 67-mm-long gap.
record signals from the shunt and capacitive divider.
X-ray emission was detected by the darkening of an
RF-3 film, which was enclosed by black paper and was
positioned at the side window of the chamber.

EXPERIMENTAL RESULTS

At the negative voltage polarity, a volume discharge,
as in [7–16], was formed on the electrode with a small
radius of curvature (Figs. 1a, 1b). Bright spots from
which volume “jets” originated were observed only on
the cathode. In [8], this type of discharge was called a
volume discharge initiated by an electron avalanche
beam (VDIEAB). An important feature of such a dis-
charge with a point cathode [8–12] is the absence in the
voltage signal of both the characteristic overvoltage
peak and the phase of the fast voltage drop, which were
observed in [1–3, 5, 6]. The discharge current starts to
grow at the front of the voltage pulse and reaches its
maximum essentially simultaneously with the voltage
maximum, which corresponds to the voltage in the
quasi-steady stage of the discharge.

With the reversed voltage polarity (i.e., with a plane
cathode and a point anode), the volumetric character of
the discharge was preserved (see Figs. 1c, 1d). In this
case, however, the brightness of spots on the powered
electrode decreased, bright spots on the plane cathode
were absent, and the shape of the discharge glow was
somewhat different. When the polarity of the powered
electrode was positive, the size of the glowing area on
the plane electrode was smaller and a minimum in the
glow intensity was observed on the axis passing
through the centers of the electrodes (see Fig. 1). More-
over, at the positive voltage polarity, the discharge glow
expanded toward the insulator. This is clearly seen in a
photograph of the plasma glow integrated over ten
pulses (Fig. 1c). At a long discharge gap (>6 cm),
regardless of the voltage polarity, the discharge had the
shape of a diffuse torch on the powered electrode
(Fig. 2); such a discharge can be classified as a pulsed
corona discharge. In this case, the amplitude of the dis-
charge current decreased significantly. When taking
photographs averaged over ten pulses, discharges in
which the plasma reached the cathode were sometimes
observed (Figs. 2a, 2c); i.e., with the 67-mm discharge
gap, it could be possible to obtain either a purely pulsed
corona discharge or a discharge of an intermediate type.

The volumetric character of the discharge was also
preserved when the electric field in the gap was signif-
icantly (by more than one order of magnitude)
decreased. In this case, a metal sphere with a diameter
of 40 mm was used as a powered electrode. Under these
conditions, no spark channels were observed for either
(positive or negative) voltage polarity. Bright spots
were observed only on the powered electrode. Figure 3
shows the discharge glow in the case of a 22-mm dis-
charge gap. Bright spots onto which the discharge
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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closes through individual jets can be seen on the pow-
ered electrode. Two types of jets can be distinguished:
type I jets bridge the discharge gap and have a higher
brightness (a pulsed volume discharge), while type II
jets start on the powered electrode and do not reach the
opposite electrode (a pulsed corona discharge).

We believe that the main reason for the formation of
a volume discharge under our experimental conditions
(the subnanosecond rise time, large amplitude, and low
duration of the voltage pulses) is preionization of the
discharge gap by the runaway electrons and X radia-
tion. Observations of X radiation and/or runaway elec-
trons in the case of a point cathode were reported in
many papers (see, e.g., [7–17] and references therein).
For example, in optimizing a gas diode, the current of a
subnanosecond electron beam formed in atmospheric-
pressure air and withdrawn through a foil reached
240 A [16]. In our experiments, we also recorded
pulsed X radiation when the polarity of the powered
electrode was negative. No X radiation was observed
when the polarity was positive.

ELECTRON MULTIPLICATION WAVE

Computation of a Spherical Multiplication Wave
in Nitrogen

In [25], numerical simulations of electron multipli-
cation in a cylindrical discharge gap filled with xenon
were performed in order to determine conditions for the
formation of an electron beam in a gas at atmospheric
pressure. The simulations were performed in the drift-
diffusion model proposed in [26, 27]. Here, we have
developed a one-dimensional drift-diffusion model that
allows one to qualitatively model ionization waves in
nitrogen in a spherical (rather than cylindrical) sector.

Let us consider a plasma between spherical elec-
trodes: r0 = 0.05 cm < r < r1 = 3 cm, where r0 and r1 are
the radii of the external and internal electrodes, respec-
tively. Plasma generation and electric field screening
are described by the equations for momentum transfer
and the continuity equations for ions and electrons, as
well as Poisson’s equation for the electric field. The
dependences of the quantities entering in the drift-dif-
fusion equations (the ionization frequency, drift veloci-
ties, and diffusion coefficients) on the electric field are
specified using the data for nitrogen from [26]. The
electrodes voltage is assumed to be a known function of
time. For the computation results presented below, it
was assumed that the voltage first grew linearly, reach-
ing U = 150 kV at t = 0.7 ns, and then remained con-
stant. The initial moderate background electrons den-
sity was set at N0 = 106 cm–3.

Our calculations show that the primary role in the
plasma propagation is played by the multiplication of
the background electrons (rather than by electron trans-
port). Plasma starts to quickly approach the anode
when the electrode voltage reaches a value of U ~
50 kV. The propagation velocity of the multiplication
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
wave in this case turns out to be very high: at U =
150 kV (t ≈ 1 ns), the plasma approaches the anode
with a velocity on the order of 3 × 109 cm/s (Fig. 4).
This agrees with a simple formula for the propagation

(a) (b)

Fig. 3. Discharge glow observed in a 22-mm-long gap with
cathode 1: (a) negative voltage polarity and (b) positive
voltage polarity. The photographs are obtained in one pulse.
The powered electrode is on the right.
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Fig. 4. Radial profiles of the (a) ion density N and (b) elec-
tric field E in the stage when the ionization wave approaches
the anode: t = (1) 0.634, (2) 0.904, (3) 1.2, and (4) 1.38 ns.
Curves 5 and 6 show the distribution of the field in empty
space,

for U = 150 kV; r1 = 3 cm; and r0 = 1.27 and 1.9 mm,
respectively.
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velocity of an ionization wave obtained in [18–21]:

(1)

where νi is the ionization frequency, E0 = E(z(0)) is the
electric field at the front of the ionization wave, r0 is the
radius of the spherical surface approximating the front,
p is the neutral gas pressure, Ln ≡ ln(Ncr/N0), N0 is the
background plasma density, and Ncr is the critical
plasma density at which the electric field is completely
screened by the plasma. The ionization frequency can
be written as the product νi = αiude, where αi(E, p) =
pξ(E/p) is the Townsend coefficient (with ξ(E/p) being
a function depending on the sort of gas) and ude(E/p) is
the electrons drift velocity.

Let us assume, based on the data presented in Fig. 4,
that E0 ≈ 150 kV/cm, E0/p ≈ 200 V(cm torr), r0 ≈ 1.5 cm,
and Ncr = 1013 cm–3. Taking into account the computa-
tion data from [28], we can write νi ≈ 1.4 × 1011 s–1 and
ζ ≈ 75. Then, according to Eq. (1), we have ν ≈ 3 ×
109 cm/s.

Criterion for the Streamer Appearance

The condition αi d > 20 (where d is the distance
between plane electrodes) is usually used as a criterion
for the transformation of an avalanche into a streamer.
When this condition is satisfied, the amount of charges
produced in the avalanche is sufficient to provide the
concentration of the electric field at its head.

It seems that this condition is insufficient, at least in
the presence of background ionization. Actually, the
volumetric multiplication of electrons can occur before
the spark channel bridges the electrodes. A criterion for
the transformation of a volume discharge into a spark
can be written as

where E is the electric field between the electrodes (this
field is significantly lower than the field E0 in the
streamer head).

Therefore, if the electric field in the gap is suffi-
ciently high to provide fast volumetric multiplication of
electrons, the spark channel may not have time to
appear. Of course, for this to occur, the field in the gap
must increase sufficiently fast to avoid spark break-
down in the stage of the field growth. In other words,
the rise time of the voltage applied to the electrodes
must be sufficiently short.

In our opinion, there are sufficient reasons to assume
that, in our experiments, we were dealing with a multi-
plication wave of background electrons. Since the char-

ν
ν ir0

ζ E0/ p( )
-------------------,=

ζ E0/ p( ) 2Ln
d ude E/ p( )ξ E/ p( )( )ln

d E/ p( )ln
----------------------------------------------------- 

 
E/ p E0/ p=

,=

ν E0( )
d

-------------- ν i E( ) or
ν i E0( )r0

ν i E( )ζ E0( )d
------------------------------- 1,> >
acter of the multiplication wave does not depend on the
field direction, the shape of the discharge in Figs. 1–3
remains qualitatively the same when the voltage polar-
ity changes its sign.

CONCLUSIONS

It has been shown that the breakdown of a relatively
long (a few centimeters) discharge gap in atmospheric-
pressure air by a high-voltage (~100 kV) pulse with a
nanosecond duration and subnanosecond rise time in
the absence of additional preionization leads to the for-
mation of a volume discharge. In this case, the volumet-
ric character of the discharge is preserved when the
voltage polarity changes its sign, as well as when the
electric field in the gap is decreased. It has also been
shown that the volumetric character of the discharge at
different voltage polarities can be explained by the for-
mation of a multiplication wave of background elec-
trons.
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Abstract—The feasibility of dimensional maskless etching in a localized gas discharge is studied. The shape
of the discharge is specified by the patterned surface of one of the electrodes. Patterning of SiO2-on-Si films
using this technique with a resolution of ≈5 µm is reported for the first time. The basic resolution-controlling
parameters of this process are determined. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In [1], we showed that a localized gas discharge
(LGD) can be used for maskless patterning of the sur-
faces of various materials. Here, an rf capacitive dis-
charge itself serves as an “engraver.” In this case, the
negative image of a desired pattern is preapplied on a
planar electrode located over a surface to be processed.
We found that, at a certain combination of gas pressure
P and discharge gap length L, the discharge configura-
tion may completely follow the arrangement of features
on the electrode surface that stand out toward the target;
namely, in a chemically active discharge environment,
etching occurs only under these features. Since the gap
is extremely narrow (L may be less than 100 µm), the
discharge power density may be raised by four to five
times compared with that in conventional plasma-
chemical etchers without additional power consump-
tion. Therefore, the etching rate is also higher by sev-
eral orders of magnitude. Such a discharge can be used
to advantage for both masked and maskless rapid etch-
ing of materials surfaces. In this work, we consider the
feasibility of applying an LGD in dimensional mask-
less etching of Si and SiO2 with the aim to find the main
factors governing the resolution of this process.

EXPERIMENTAL

The discharge chamber was evacuated with an
NVR-5D pump. A 13.56-MHz discharge-initiating
voltage was applied from a UV-1 generator, which
makes it possible to control microwave power Prf
absorbed by a load. The topological features of the
electrode surface and the profiles of etch grooves were
measured with an MII-4 interferometer. During the
experiments, the gas pressure was varied in the range
104–105 Pa. A homogeneous glow discharge under the
prominent parts of the electrode surface was sustained
1063-7842/05/5007- $26.00 0886
at P × L = (2–10) Pa m. This range of P × L is near a
minimum in the Paschen curve and corresponds to the
conditions of existence of a normal glow discharge. At
effective voltage drop Urf = 150–300 V across the dis-
charge, the LGD power density may reach 10 kW/cm3.
Gas overheating and so glow-to-arc changeover were
eliminated because of efficient heat removal (owing to
small L). The values of P × L mentioned above provide
the relationship L ≈ 10λe, where λe is the electron mean
free path. Note for comparison that the discharge power
density in standard plasma-chemical etchers does not
exceed 1 W/cm3 [2].

RESULTS AND DISCUSSION

Etching mechanism. Our experiments show that
LGD etching of Si and SiO2 is basically of a chemical
nature, like conventional plasma-chemical etching, as
indicated by, e.g., the selectivity of the process: the Si-
to-SiO2 etch rate ratio changes from 6 to 0.5 when the
etching gas changes from SF6 to CF4. Another fact in
favor of the chemical nature of the etching process is
that etching of Si through an aluminum mask in the
same gases is isotropic. Experiments on LGD etching
of Si and SiO2 in argon demonstrate that the physical
sputtering of these materials can be neglected because
of a low ion energy, which is less than several tens of
electron volts. However, both experimental and simula-
tion data indicate that ion bombardment contributes to
surface activation and cleaning [3] and, thus, plays an
important role in the LGD etching of Si and especially
SiO2.

It should be noted that the etching process under
study has considerable distinctions from plasma-chem-
ical etching and reactive ion-plasma etching. First, this
process offers an extremely high etching rate due to a
high concentration of reactive particles in the dis-
© 2005 Pleiades Publishing, Inc.
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charge. There are also other important, while not so
apparent, differences stemming from the specific con-
ditions of LGD existence. For example, the conven-
tional methods of etching are based on the α-shape of
the rf discharge, while the LGD is initiated in the tran-
sition regime from the rf γ discharge to the ac discharge.
Its shape depends mainly on the relationships between
the voltage frequency, gas pressure, and electrode dis-
tance [4]. For an electric field strength of 104–105 V/cm,
which is characteristic of the LGD, the electron drift
path length is much greater than L. Under such condi-
tions, the discharge becomes impulsive and a cathodic
layer forms at either of the electrodes alternatively in
either half-cycle of the voltage oscillations. The surface
being processed is subjected to ion bombardment at the
times the glow is at the prominent parts of the electrode
placed oppositely. The ions are accelerated normally to
the surface being processed, which improves the accu-
racy of pattern transfer from the electrode surface.
These features of the discharge favor etching localiza-
tion. Note that the Debye screening length is compara-
ble to L under these conditions; therefore, a stripped
plasma cannot form.

Etching uniformity. A necessary condition for
etching to be uniform is strict parallelism between a
surface to be processed and the plane of the patterned
electrode. Figure 1 shows the profiles of an etch pit and
a cylindrical projection on the electrode that is coaxial
with the pit. The profile of the pit is seen to copy that of
the projection. The smaller the initial electrode–surface
distance, the larger etch depth H. In our case, the initial
scatter in these distances over the discharge’s cross sec-
tion was about 2 µm. The effect of scatter in L across
the discharge on the etch uniformity is likely to be due
to two factors. First, the discharge may not entirely
cover the electrode surface at once, initially forming at
places with smaller L; correspondingly, the etch time is
longer at these places. Second, as the discharge current
increases and the discharge occupies the whole elec-
trode surface, the electric field strength, charged parti-
cles density, and, hence, reactive particle concentration
are higher where L is shorter. Thus, to achieve the etch
uniformity required, it is necessary to ensure the con-
stancy of L across the discharge area and provide con-
ditions for the gas composition in the discharge to be
uniform. The fact that, under certain conditions, the dis-
charge is initiated at sites where the gap between the
patterned electrode and surface being processed is the
shortest can be used for smoothing out the surface. This
property of the etching technique considered is another
specific feature distinguishing it from conventional
methods.

Resolution. The most important characteristic of
any process of dimensional etching is its resolution. For
the conventional methods of masked plasma-chemical
etching, this parameter is restricted, first, by a finite
value of anisotropy coefficient A, which is equal to the
ratio of H to the undercut. Second, etching may damage
the mask via chemical interaction with plasma particles
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
and physical sputtering. In our case, A can be defined as
the ratio of H to ∆l, where ∆l is the distance from the
boundary of the projection of an electrode feature onto
the surface being processed to the boundary of the etch
area [1]. One should bear in mind that ∆l takes a final
value virtually at the instant of discharge initiation and
depends on time and H only slightly (at H ! L). There-
fore, A increases with etch depth and should be consid-
ered only hand in hand with H.

Our experiments show that the discharge can be
localized at prominent features even if the depth of the
electrode pattern is well below L. In one experiment, as
an rf electrode, we used a silicon wafer covered by a
thermally evaporated 1-µm-thick Al film with regularly
spaced holes 60 (Fig. 2a) and 40 µm (Fig. 2b) in diam-
eter obtained by etching. In the former case, the hole
spacing was ≈10 µm; in the latter, ≈3 µm. On the other
(grounded) electrode, we placed an oxidized silicon
wafer (the SiO2 thickness was 0.3 µm) so that the dis-
tance between the surfaces of these two wafers facing
each other (L) was 85 ± 0.5 µm. A discharge initiated
between the wafers at P = 3 × 104 Pa in the SF6 atmo-
sphere for 1 s made it possible to etch patterns (Figs. 2c,
2d) in the SiO2 film that were negative relative to the
pattern in the Al film. This is not surprising, since the
discharge was sustained only under the aluminum-cov-
ered surface areas on the wafer. Under each of the holes
60 µm in diameter, there were separate intact SiO2 areas
slightly less than 50 µm in diameter (Fig. 2c). It is easy
to see that the undercut in this case is ≈5 µm; i.e., ∆l !
L. This is because the boundaries of SiO2 etching are
specified largely by the ion flux density distribution
over the surface being processed and also because the
ion flux is incident normally to this surface. In general,
LGD charged components are distributed over a
smaller volume than uncharged reactive particles,
although the electron mean free path is longer. The
point is that the electric field strength decreases with
increasing distance from a protrusion on the electrode;
hence, so do the electron energy and the molecule ion-

1

2

5

0 2 4 6

H, µm

x, mm

Fig. 1. Profiles of (1) the prominent feature on the electrode
and (2) the pit etched in Si under the feature. The SF6 atmo-
sphere, P = 2 × 104 Pa, Prf = 30 W, Urf = 200 V, L = 300 µm,
and t = 10 s.
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Fig. 2. (a, b) Patterned areas on the electrode ((1) Si and (2) Al) and (c, d) the patterns etched off in the SiO2-on-Si film under these
areas ((1) Si and (2) SiO2).
ization frequency. Moreover, as the electron energy
decreases, the probability of electron attachment to
molecules grows. The attachment is, in fact, the basic
obstacle to electron runaway from the place of their
generation. Comparing Figs. 2b and 2d shows that,
when the hole spacing in the Al film is 3 µm, the etch-
ing resolution is insufficient to produce an adequate
negative image of the electrode pattern. Under the nar-

Fig. 3. Anisotropy of oxidized silicon etching vs. (1) Ar and
(2) O2 content in SF6. Prf = 20 W, Urf = 175 V, L = 100 µm,
H = 20 µm, and P = 3 × 104 Pa.
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row regions of the aluminum film, the SiO2 layer was
not etched off completely. Here, the flux densities of
reactive particles and ions incident on the surface being
processed are likely to be insufficient because of scat-
tering.

It should be noted that uncharged reactive particles
may leave the discharge region and cause radical etch-
ing. However, nonvolatile reaction products arising in
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Fig. 4. Anisotropy of oxidized Si etching vs. the pressure of
the gas mixture. Urf = 170 V, Prf = 25 W, L = 100 µm, and
H = 10 µm. (1) CF4, (2) CF4 + 10% Ar, (3) CF4 + 20% Ar,
(4) CF4 + 30% Ar, and (5) CF4 + 40% Ar.
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the discharge region are deposited on the target material
and suppress this process. The masking effect of these
products increases with distance from a prominent fea-
ture on the electrode, since the energy and density of
the charged particle flux decline and become insuffi-
cient to activate and clean the surface.

The profiles of grooves etched off under the same
conditions in the oxidized and unoxidized silicon
shows that, in the latter case, A is several times higher.
Remarkably, for the oxidized Si, ∆l is lower and H is
higher than for the uncovered Si surface. In these exper-
iments, the etch time of Si was much longer than the
time of SiO2 removal. The fact that the etch grooves in
the oxidized Si are narrower than in the oxidized silicon
is explained by the masking effect of SiO2. The oxide
cannot be etched off if incident ions are not sufficiently
intense. However, the SiO2 etching area is smaller;
accordingly, the concentration of reactive particles over
the SiO2 and, hence, the etching rate are higher. Fur-
thermore, SiO2 is an insulator and the discharge used in
this work is an ac discharge. Therefore, the discharge
current, being a conduction current, is likely to be con-
fined toward the SiO2-free region. This circumstance is
bound to facilitate discharge localization and raise the
etching rate.

We studied the dependence of A on the percentage
of argon or oxygen additions to SF6 and CF4 at etching
of 10-mm-long grooves on oxidized Si (the SiO2 thick-
ness was 0.72 µm) using a nickel electrode 100 µm
wide. The etching anisotropy first increases with Ar
content in CF4 (up to 50%) and then decreases. A simi-
lar dependence is observed for an SF6–argon mixture;
however, here A reaches a maximum at about 20% Ar
(Fig. 3). This result can be explained by the fact that
argon, being added to a fluorine-containing gas, raises
the fraction of positive ions in the net flux of positive
ions and reactive particles. Therefore, the role of ion
bombardment as a contributor to etching anisotropy
increases. When the argon content in the mixture is
higher than 20%, A begins to decrease, since the dis-
charge expands as a result of the lowering probability of
electron attachment. With oxygen added to SF6 or CF4,
the etching anisotropy decreases virtually linearly
because of long-lived oxygen-containing compounds,
such as COF2, OF2, etc., forming in the discharge. The
dissociation energies of these compounds are well
below those of initial molecules of fluorine-containing
gases [5, 6]. These compounds may dissociate much
farther from a protrusion on the electrode, i.e., in those
areas where the electric field strength and the electron
temperature are lower. Moreover, these compounds
may dissociate on the silicon surface as a result of dis-
sociative chemisorption. Oxygen added to fluorine-
containing gases may also extend the lifetime of reac-
tive particles in these gases, oxidizing the particles and,
thus, decelerating their reaction with other particles [7].
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
Figure 4 shows the dependence of A on P when a
SiO2 film 0.3 µm thick was etched at H = 10 µm. It is
seen that the anisotropy increases with P. Earlier, the
same dependence was observed for etching of unoxi-
dized Si [1]. Such behavior can be accounted for by the
fact that the electron concentration in the discharge
depends on the pressure only slightly and the electron
diffusion coefficient decreases in inverse proportion to
P. In addition, as P grows, the electron energy
decreases, which raises the probability of their attach-
ment to molecules and also favors discharge localiza-
tion in a smaller volume. It should be noted that the
etching anisotropy can be increased by increasing P
until the glow discharge transforms into an arc dis-
charge. Since an increase in the pressure at a fixed L
results in an increase in the breakdown voltage, it is
necessary to decrease the electrode spacing as P
increases.

Under the same conditions of Si etching by a local-
ized discharge in SF6 or CF4, ∆l in SF6 is approximately
two to three times smaller owing to electron attach-
ment.

CONCLUSIONS

Our investigation shows that an LGD can be used
for maskless dimensional etching of materials, which,
basically, makes it possible to exclude the lithography
stage from the fabrication process. The etching resolu-
tion is found to rise with increasing gas pressure and the
electronegativity of the gas, as well as with shrinking
the discharge gap. The resolution can also be substan-
tially improved by optimizing the role of ion bombard-
ment in etching. This can be done by appropriately
choosing the composition of the plasma-forming gas
with regard to the physicochemical properties of a
material to be processed. Thus, the basic factors influ-
encing the resolution of LGD etching are revealed. Tak-
ing into account that the characteristics of this process
can be improved further and also its extremely high
productivity, we believe that LGD etching may find
application in various industries.
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Abstract—(001)La0.67Sr0.33MnO3/(001)(BaxSr1 – xTiO3/(001)La0.67Sr0.33MnO3 (x = 0–0.25) three-layer het-
erostructures are grown by laser evaporation on (001)La0.3Sr0.7Al0.65Ta0.35O3 single-crystalline substrates. In a
wide temperature range (≈150 K), effective permittivity ε of (1000 nm)Ba0.25Sr0.75TiO3 and (1000 nm)SrTiO3

films grown obeys the relationship ε ~ (T – TCW)–1, where TCW is the Curie–Weiss temperature for related bulk crys-
tals. Using experimental dependences ε(T), the capacitance of the (001)La0.67Sr0.33MnO3/(001)BaxSr1 − xTiO3 and
(001)La0.67Sr0.33MnO3/(001)SrTiO3 interfaces, which is due to electric field penetration into the manganite elec-
trode, is estimated (Cint ≈ 4 µF/cm2). At bias voltages of ±2.5 V, the change in the permittivity of the STO and BSTO
films in the heterostructures studied reaches 25 and 45%, respectively. © 2005 Pleiades Publishing, Inc.
INTRODUCTION
Growth and properties of multilayer heterostruc-

tures consisting of thin films of conducting perovskite-
like manganites La1 – y(Sr,Ca)yMnO3 spaced by epitax-
ial layers of nonlinear ferroelectrics BaxSr1 – xTiO3 have
recently become a subject of extensive research [1, 2].
These heterostructures are promising for capacitors
controlled by an electric [3] or magnetic [4] field. At
temperatures below Curie temperature TC, the concen-
tration of localized holes in La0.67(Sr,Ca)0.33MnO3 solid
solutions reaches 6 × 1021 cm–3 and the electrical con-
ductivity is comparable to that of “impure” metals. The
Curie temperature of La0.67Sr0.33MnO3 (LSMO) is
roughly equal to 360 K [5], and the room-temperature
conductivity of this compound is rather high. The
inherent similarity of the La0.67(Sr,Ca)0.33MnO3 and
BaxSr1 – xTiO3 structures, along with their good chemi-
cal compatibility (at T < 800°C), makes it possible to
grow perfect epitaxial heterostructures where mangan-
ite layers are in contact with insulating (ferroelectric)
spacings.

At present, available data for the electronic parame-
ters of interfaces between conducting oxide electrodes
and ferroelectric spacers in multilayer epitaxial systems
are sparse and fragmentary [6, 7]. Also, very little is
known about the effect of mechanical stresses or nons-
toichiometry on the properties of these interfaces.

In this work, we study the structure and permittivity
of SrTiO3 (STO) and Ba0.25Sr0.75TiO3 (BSTO) films in
parallel-plate capacitor heterostructures with LSMO
electrodes and estimate the capacitance induced by
electric field penetration into the manganite electrode.
1063-7842/05/5007- $26.00 0891
EXPERIMENTAL

Manganite and ferroelectric layers in the order
LSMO  BSTO(STO)  LSMO were grown on a
(001)La0.3Sr0.7Al0.65Ta0.35O3 (LSATO) substrate by
laser evaporation (ComPex 205 KrF 248-nm laser,
pulse width τ = 30 ns). The intermediate BSTO (STO)
layer was d = 1000 nm thick, and the thickness of the
upper and lower manganite layers was d1 = 120 nm.
During growth of three-layer manganite–ferroelectric–
manganite heterostructures, the substrate temperature
was kept at 770°C and the oxygen pressure in the
growth chamber was about 0.3 mbar.

The phase composition of the LSMO/STO/LSMO
and LSMO/BSTO/LSMO structures, lattice parameters
in the manganite and ferroelectric layers, and their ori-
entation were determined by X-ray diffraction (Philips
X’pert MRD diffractometer, ω/2θ and φ scannings).
The lattice parameters of the films were measured both
in and normally to the substrate plane by visualizing the
ω/2θ scannings when the incident and reflected X-ray
beams lay in the plane normal to the (001) or (101)
plane of the LSATO.

The surface morphology was examined with a
NanoScope-IIIa atomic force microscope.

Square contact pads (S = 200 × 200 µm) on the
upper manganite layer and contact vias in the insulating
film (to provide the contact with the common (lower)
LSMO electrode) were made by photolithography and
Ar ion etching (500 V, 0.2 mA).
© 2005 Pleiades Publishing, Inc.
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Capacitance C and dielectric loss tangent tanδ of the
parallel-plate film capacitors were measured with a
Hewlett–Packard LCR 4263A meter ( f = 1–100 kHz)
with and without bias voltage Vb = ±2.5 V applied to the
manganite electrodes. Permittivity ε of the intermediate
insulator was calculated by the formula ε = Cd/S. The
bias voltage was assumed to be positive when the upper
electrode was positively biased. Resistance R of the
manganite electrodes was measured by the van der
Pauw technique with the same LCR meter ( f = 100 Hz),
and resistivity ρ was calculated by the formula ρ =
Rd1π/ln2 [8].
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Fig. 1. (a) Fragment of the X-ray diffraction pattern (CuKα1
radiation, ω/2θ scan) for the
(001)LSMO/(001)STO/(001)LSMO/(001)LSATO epitax-
ial heterostructure in the case when the incident and
reflected beams lie in the plane normal to the substrate
plane. The inset shows the ω/2θ rocking curves for the (002)
reflection from the intermediate (1) BSTO and (2) STO lay-
ers in the LSMO/BSTO/LSMO/LSATO and
LSMO/STO/LSMO/LSATO heterostructures. (b) Fragment
of the X-ray diffraction pattern for the
(001)LSMO/(001)BSTO/(001)LSMO/(001)LSATO epi-
taxial heterostructure that is taken under identical condi-
tions.
RESULTS AND DISCUSSION

Lattice mismatch m = (as – af)/as (where as and af are
the lattice parameters of the substrate and film, respec-
tively) between the LSMO (pseudocubic lattice cell
with a1 = 3.871 Å [9]) and LSATO (pseudocubic lattice
cell with a2 = 3.868 Å [10]) is less than 0.1%. There-
fore, a LSATO compound was chosen as a substrate for
the LSMO/ferroelectric/LSMO heterostructures. The
lattice parameter of BaxSr1 – xTiO3 increases with x;
accordingly, the lattice mismatch in the LSMO/BSTO
system (m ≈ 1.5%) is nearly twice that in the
LSMO/STO system (m ≈ 0.8%). The linear thermal
expansion coefficients for LSMO, BSTO, and LSATO
are close to each other [11, 12].

(i) Structure of the manganite and ferroelectric
films. The X-ray patterns taken of the
LSMO/STO/LSMO/(001)LSATO and LSMO/BSTO/
LSMO/(001)LSATO heterostructures (Figs. 1a and 1b)
exhibit peaks only from the substrate, intermediate fer-
roelectric layer, and manganite electrodes. Thus, the
three-layer heterostructures grown were free of second-
ary macroprecipitates. The ω/2θ and φ scans indicate
that the ferroelectric and manganite films had a clear-
cut orientation both in and normally to the plane of the
substrate. Below, the lower and upper manganite layers
in the manganite/ferroelectric/manganite heterostruc-
tures will be denoted as LSMO-1 and LSMO-2, respec-
tively.

The lattice parameters in the LSMO-1 layer of the
LSMO/STO/LSMO heterostructure measured in the
substrate plane, a1p = 3.870 ± 0.005 Å, and along the
normal to the substrate plane, a1n = 3.878 ± 0.005 Å,
were virtually coincident with those measured in the
lower manganite layer of the LSMO/BSTO/LSMO het-
erostructure. The LSMO-1 layer in these heterostruc-
tures was structurally coherent to the substrate plane,
which suggests that parameter a1p equals the lattice
parameter of the LSATO. The slight difference between
a1p and a1n observed for the LSMO-1 may be due to
biaxial compression stresses acting in the substrate
plane. The effective volume of the lattice cell in the

lower manganite electrode, Veff =  × a1n = 58.08 Å3,
was close to the corresponding value for bulk stoichio-
metric LSMO samples (≈58.01 Å3 [9]).

The lattice parameters of the 1000-nm-thick STO
layer in the LSMO/STO/LSMO heterostructure mea-
sured in the substrate plane, a|| = 3.903 ± 0.003 Å, and
normally to it, a⊥  = 3.908 ± 0.003 Å, differed insignifi-
cantly from each other and from the lattice parameter
for stoichiometric bulk STO samples. Nearly identical
values (≈3.932 ± 0.003 Å) were also found for the par-
allel and normal lattice parameters of the 1000-nm-
thick BSTO film in the LSMO/BSTO/LSMO hetero-
structure. At a thickness of the intermediate
BaxSr1 − xTiO3 film of 1000 nm, most of the mechanical
stresses in it relax during growth and oxygen saturation.

a1p
2
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The FWHM of the (002) reflection from the BSTO
film in the LSMO/BSTO/LSMO heterostructure was
measured to be 0.26°, which is roughly 50% larger than
the FWHM of the (002) reflection from the STO in the
LSMO/STO/LSMO heterostructure. The FWHM val-
ues for the STO and BSTO films in the heterostructures
grown agree well with those for epitaxial ferroelectrics
grown on oxide electrodes [11]. The degradation of the
BSTO film microstructure in the heterostructures (com-
pared with the microstructure of the STO film) may be
attributed to the noticeably higher LSMO/BSTO lattice
mismatch.

Because of the difference between the lattice param-
eters of LSMO and BSTO (STO), the LSMO-2 layer
grown on the STO/LSMO/LSATO or
BSTO/LSMO/LSATO was under tensile stresses acting
in the plane of the substrate. The lattice parameter of
the LSMO-2 in the STO/LSMO/LSATO and
BSTO/LSMO/LSATO heterostructures measured nor-
mally to the substrate plane varied in the interval 3.85
and 3.86 Å, i.e., was markedly smaller than a1. Since
(n0n) reflections from the LSMO-2 and intense peaks
from the substrate overlapped, the lattice parameter of
the LSMO-2 in the plane of the substrate was difficult
to measure.

(ii) Resistivity of the film LSMO electrodes. The
temperature dependence of the resistivity of the
120-nm-thick LSMO film grown on the (001)LSATO is
shown in Fig. 2. Resistivity ρ of this film increases with
temperature in the range 77–400 K, the increase being
the most pronounced between 330 and 360 K. Such
behavior is consistent with resistivity data for bulk sto-
ichiometric LSMO samples [5]. The resistivity of the
manganite film remained almost the same after its sur-
face had been covered by the 1000-nm-thick BSTO
(STO) ferroelectric. (To measure the resistivity of the
LSMO film in the BSTO/LSMO/LSATO and
STO/LSMO/LSATO heterostructures, four silver con-
tacts capacitively coupled with the manganite film were
applied on the insulating layer.)

Starting with roughly the same temperature, the
resistivity of the LSMO films grown on the
BSTO/LSMO/(001)LSATO, STO/LSMO/(001)LSA-
TO, and (001)LSATO drastically drops (Fig. 2). This
means that the temperatures of spin ferromagnetic
ordering in the LSMO-1 and LSMO-2 electrodes are
almost the same. The resistivity of the LSMO-2 electrodes
in the LSMO/BSTO/LSMO and LSMO/ STO/LSMO
heterostructures exceeds that of the LSMO-1 electrodes
by a factor of two to five (Fig. 2). To an extent, this is
associated with grain boundaries present in the LSMO
films (see inset in Fig. 2). As follows from the inset,
grains in the LSMO-2 films were about 30 nm across on
average. The resistivity of intergranular spacings in the
manganite films may considerably exceed ρ inside the
grains because of a high density of structural defects
(primarily oxygen vacancies) and stoichiometry break-
ing [13].
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
(iii) Permittivity of the STO and BSTO films. The
temperature dependences of permittivity ε for the
1000-nm-thick STO and 1000-nm-thick BSTO films in
the LSMO/BSTO/LSMO and LSMO/STO/LSMO het-
erostructures are shown in Fig. 3. The permittivity max-
ima for the STO (≈1300ε0) and BSTO (≈1350ε0) are
achieved at temperatures Tm ≈ 20 and 100 K, respec-
tively. Figure 3 also shows the temperature dependence
of ratio ε0/ε for the STO and BSTO films at f = 100 kHz
and Vb = 0. In a wide (≈150 K) temperature range, the
curves (ε0/ε)(T) for the intermediate insulating layer in
the LSMO/BSTO/LSMO and LSMO/STO/LSMO het-
erostructures obey the relationship

(1)

where parameter TCW coincides with the Curie–Weiss
temperature for STO (≈30 K [14]) and BSTO (≈145 K
[15]) single crystals and coefficient C0 equals ≈0.9 ×
105 and ≈0.7 × 105 K for the STO and BSTO films,
respectively (ε0 is the permittivity of vacuum).

The values of C0 obtained from the slopes (dashed
lines) of the experimental curves (ε0/ε)(T) for the STO
and BSTO films are in good agreement with the Curie
constants for corresponding bulk crystals [15]. In
Fig. 3, the values of ε0/ε1 for both types of the insulat-
ing films are shown by double-headed arrows. The
value of ε1 for the LSMO/STO/LSMO and
LSMO/BSTO/LSMO heterostructures is temperature-
independent and equals 2200ε0 and 2300ε0, respec-
tively.
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Fig. 2. Temperature dependences of resistivity ρ for the
120-nm-thick LSMO films grown on the
(1) (001)BSTO/(001)LSMO/(001)LSATO,
(2) (001)STO/(001)LSMO/(001)LSATO, and
(3) (001)LSATO. The inset shows the AFM image of the
free surface of the 120-nm-thick LSMO film grown on
(001)STO/(001)LSMO/(001)LSATO.



894 BOIKOV, DANILOV
The first term on the right of (1) can be naturally
assigned to the contribution of the intermediate insula-
tor to the effective capacitance of the heterostructure;
the second, to the contribution from the interfaces. The
second contribution is due to electric field penetration
into the manganite electrode [16]. The interface capac-
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Fig. 3. Temperature dependences of permittivity (1, 2) ε/ε0
and (3, 4) ε0/ε for the 1000-nm-thick (1, 3) STO and (2, 4)
BSTO films in the parallel-plate capacitor structures with
LSMO electrodes. The values of ε0/ε for the films are indi-
cated by the double-headed arrows. The dashed lines are
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LSMO/BSTO/LSMO heterostructures vs. the bias voltage
applied to the LSMO electrodes at (1) 10 and (2) 135 K. The
inset shows the temperature dependences of tanδ for the
1000-nm-thick (1) BSTO and (2, 3) STO films in the above
capacitor structures. The curves are taken at a frequency of
(1, 2) 100 and (3) 10 kHz.
itance per unit area, Cint= 2ε1/d, calculated for the
STO/LSMO and BSTO/LSMO interfaces were found
to be 3.9 and 4.1 µF/cm2, respectively. These values are
30–50% lower than the corresponding capacitance
induced by electric field penetration into a noble metal
(Ag and Au) [16]. The reasons for the relatively low
capacitance of the ferroelectric–manganite interface
were considered in [4].

At T = 250–350 K, the values of tanδ ( f = 100 kHz)
for the 1000-nm-thick STO and BSTO films almost
coincide, being equal to 5 × 10–3–1 × 10–2 (see inset in
Fig. 4). Note that, in this temperature range, both the
STO and BSTO films are in the paraelectric phase. The
growth of tanδ with temperature for both types of films
is explained by an increase in their conductivity due to
Frenkel–Pool emission [17]. As the frequency dimin-
ishes, the conductivity-related contribution to the loss
tangent of the STO and BSTO films becomes prevailing
(see inset in Fig. 4).

At T < 200 K, the loss tangent of the BSTO films far
exceeds that of the STO films (see inset in Fig. 4). The
reason for the different values of tanδ in these films is
that, at T < 145 K, most of the thin BSTO film consists
of ferroelectric domains and spontaneous polarization
in the strontium titanate layers is absent at low temper-
atures. Domain wall relaxation significantly contributes
to the dielectric losses of the ferroelectric phase. In a
biaxially stressed epitaxial BSTO film, ferroelectric
domains may form at temperatures several tens of
degrees higher than the temperature of the ferroelectric
phase transition in corresponding bulk single crystals.
For this reason, the increase in tanδ of the BSTO films
with decreasing temperature becomes appreciable even
at T ≈ 200 K.

The curves ε(Vb) for the ferroelectric films in the
LSMO/STO/LSMO and LSMO/BSTO/LSMO hetero-
structures exhibit a distinct maximum (Fig. 4). It is
observed at negative bias voltages, which indicates the
presence of an internal electric field in the STO and
BSTO films, which is directed from the upper to lower
electrode. This field is most fully compensated at Vb =
–0.5…–0.8 V. An internal electric field in these films
emerges because the upper and lower interfaces in the
three-layer film systems grown differ in microstructure
and electrophysical parameters. At temperatures close
to Tm, the relative change in the permittivity of the
BSTO film, [ε(Vb = 0) – ε(Vb = 2.5)]/ε(Vb = 0), is about
45%; for the STO film, this change is about 25%. At
T < 150 K, the dielectric loss tangent decreases with
rising positive bias voltage.

Note in conclusion that LSMO manganite elec-
trodes favor the formation of a three-layer capacitor
structure with a good epitaxial STO or BSTO layer
between them. In LSMO/STO/LSMO and
LSMO/BSTO/LSMO heterostructures, the capacitance
induced by electric field penetration into the manganite
electrode is roughly 4 µF/cm2. This capacitance may
have a considerable effect on experimental curves
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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ε(T, Vb) taken of the intermediate ferroelectric in these
structures. As the intermediate ferroelectric gets thin-
ner, the effect of Cint on its effective permittivity
becomes more pronounced.
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Abstract—A theoretical analysis of physical processes in an MOS-controlled high-power integrated thyristor
is presented. The design of this device and the effect of diffusion layer parameters on the I–V characteristic in
the on state are considered. A rigorous calculation and estimates of the maximal anode current that can be
turned off, which depends on the holding current of the thyristor structure shunted by an external MOS transis-
tor, are made. This current is calculated as a function of the effective resistance, which includes the resistance
of the MOS transistor channel and that of gate metallization. Simulation of the current decay shows that, as the
MOS transistor is switched on, the current, after a delay, sharply (within several fractions of a microsecond)
drops by about 90% and then goes on decreasing more smoothly. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The insulated-gate bipolar transistor (IGBT) is
today the basic device of high-voltage semiconductor
electronics, which is able of handling powers in the
range from several hundreds of watts to several hun-
dreds of kilowatts. An IGBT chip is, in essence, a high-
power circuit integrating 105–106 elements (cells) about
20 µm in size operating in parallel. Each cell is a high-
voltage bipolar transistor the control circuit of which
incorporates a low-voltage high-speed metal–oxide–
semiconductor (MOS) field-effect transistor (MOS-
FET). The basic advantages of the IGBT over other
devices in the power range mentioned above are
extremely low switching energy losses in the control
circuit and a high speed. However, the voltage of the
IGBT in the on state is roughly twice that of a normal
thyristor, all other things being equal. Therefore, efforts
to design high-power field-controlled thyristor-based
integrated devices (MOS-controlled thyristors
(MCTs)) [4, 5] were begun almost immediately after
the IGBT pioneering developments [1–3].

The equivalent circuit of an elementary cell in the
MCT’s simplest version is demonstrated in Fig. 1a. The
thyristor (normally represented as consisting of n+pn
and pnp+ transistors) is switched off by means of a
p-channel MOSFET (p-MOSFET) connected in paral-
lel to the n+p emitter and integrated into the thyristor
chip. Its p-channel, being formed by applying a nega-
tive bias to the transistor gate, short-circuits the n+-
emitter and p-base of the n+pn transistor, thereby dras-
tically decreasing the gain of the thyristor. The total
gain of the n+pn and pnp+ transistors becomes less than
1063-7842/05/5007- $26.00 0896
unity, and the thyristor structure turns off. Figure 1b
shows an MCT elementary cell with a p-channel MOS-
FET incorporated into the p-base. When the structure
turns off, hole current Jh toward the p-base flows to the
right under the n+-region, then to the left through the
p-channel under the gate, and finally through the auxil-
iary p+-layer to the cathode. The total voltage drop on
these regions is applied to the n+p junction in the for-
ward direction. Therefore, the current that can be
switched off in the cell must generate a voltage lower
than that at which the electron injection becomes appre-
ciable (≈0.8 V for silicon). Thus, the smaller the total
resistance of the circuit shunting the n+p emitter, the
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Fig. 1. Design of the MCT elementary cell: (1) anode,
(2) gate, and (3) cathode.
© 2005 Pleiades Publishing, Inc.
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higher the maximal anode current that can be turned off
(hereafter, turned-off current) in the cell. This means, in
particular, that the characteristic size of the cell should
be small (no larger than 30 µm as a rule).

In spite of extensive investigations conducted by
many companies, none of the MCT versions has been
launched into mass production. This is primarily
related to the complicated design of the elementary
cell: for example, as many as 12 lithographic steps are
necessary to fabricate the cell shown in Fig. 1b (versus
eight such steps for the standard IGBT).

A new approach to tackling this problem has been
recently reported [6–8]. Instead of an MOS transistor
integrated into a microthyristor cell, it was suggested
that a commercial low-voltage high-power MOS tran-
sistor with a very small channel resistance be used for
simultaneously shunting all the emitter junctions of an
integrated thyristor, which combines more than 105

≈20-µm microthyristors on a chip. Such a separation of
the bipolar and MOS technologies allows designers to
drastically simplify the elementary cell of the high-
voltage chip.

The cross-sectional view of the p+npn+ structure of
such a device differs appreciably from the structure of
a conventional high-power thyristor. The width and
doping level of the wide n-base are certainly nearly the
same as in a conventional device and correspond to
voltages withstood by the collector junction of 3–5 kV;
however, the base and emitter of the controlled n+pn
transistor are narrower by one order of magnitude and
the doping level of the p-base is much higher. The gain
of this transistor is very high (α ≈ 0.95), which makes
it possible to reduce the gain of the pnp+ transistor, i.e.,
to decrease the lifetime of holes in the n-base. A high
speed of the n+pn transistor provides a fast fall of the
current early in switching off. The subsequent fall of
the current down to zero takes a longer time but is still
relatively short because of the small lifetime of holes in
the n-base. Therefore, the switching-off time and
switching losses in such a device are much smaller
than, e.g., in a conventional gate turn-off thyristor
(GTO). The device described above was called the
super GTO (SGTO). Its basic advantages over the
IGBT are (i) a lower on-state voltage, (ii) a simpler fab-
rication process, and (iii) a higher (roughly by a factor
of two) operating current density; over the GTO, (i) a
much lower switching-off power, (ii) a higher rate of
switching on and off, and (iii) lower switching losses.

In this work, we analyze physical processes taking
place in the SGTO in the on state and upon switching
off. The whys and wherefores of the design of the
device are presented, the effect of the base layer param-
eters on the I–V characteristic in the on state is studied,
the limiting value of the turned-off current is calcu-
lated, and the dynamics of current fall upon switching
off is considered. Based on the calculation results, basic
requirements for the electrophysical properties of the
semiconductor structure of the integrated thyristor and
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
a high-power MOSFET used to switch the thyristor off
are formulated.

PHYSICAL PROCESSES IN THE INTEGRATED 
THYRISTOR

(i) Design of the device. A silicon chip of the thyris-
tor under study integrates a large number of ~30-µm
microthyristors operating in parallel and is fabricated
basically by planar technology. All the microthyristors
share a pn collector junction, which must withstand
(block) a high voltage (3–5 kV). Therefore, either guard
rings or a lightly doped ring-shaped region of the
p-base should be provided along the circumference of
the pn junction to avoid surface breakdown. The layout
of the rings and ring-shaped region, which extend the
space charge width at the site the pn junction emerges
on the surface, are well known. We assume that surface
breakdown is prevented by the latter technique and the
lightly doped ring-shaped region is created by deep
(≈100 µm) prediffusion of aluminum with a surface
concentration of 7 × 1016 cm–3 followed by grinding and
polishing of the diffusion layer to a residual depth of
≈20 µm. Then, the rapid diffusions of boron and phos-
phorus to produce a thin-base n+p+pn transistor are car-
ried out. Figures 2a and 2b show two possible dopant
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profiles in the n+p+pnn'p+ microthyristor structures,
which differ in the depth of the n+p+ emitter junction
and width of the heavily doped p+-part of the p-base.
The width of the lightly doped part (aluminum tail) of
the p-base was taken such it was completely depleted at
a voltage of ≈300 V. As the voltage rises further, the
wide ring-shaped depleted region arising along the cir-
cumference of the common p+-base of the chip prevents
surface breakdown. In both structures, the width and
resistivity of the n-base are 310 µm and ρ ≈ 100 Ω cm,
respectively; the n'-layer is 32 µm wide, and the p+-
emitter is 8 µm wide. These values correspond to the
standard unidirectional thyristor with a blocking volt-
age of ≈3 kV.

(ii) Effect of the doping level in the p+ base on the
I–V characteristic in the on state. MOS control of the
thyristor will be effective if the shunt resistance is as
low as possible. Most of this resistance is the spread
resistance of the p+-base under the n+-emitter.

To decrease this resistance, it is necessary to raise
the doping level of the p+-layer and make it thicker. In
this case, however, the transfer coefficient of the n+p+pn
transistor decreases (i.e., the on-state voltage grows),
especially at high forward current densities, since, as
the doping level rises, both the injection coefficient of
the n+p+-emitter and Schockley–Read electron lifetime
τn, [9]

(1)τn

τn0

1 P/Ppr( )+
---------------------------,=

1017 1018

Cp+, cm–3

1

2

3

4
U, V

Fig. 3. On-state voltage drop U across the thyristor (the ver-
sion shown in Fig. 2b) vs. the doping level in the p+-layer at
current density j = 500 A/cm2.
decrease. In formula (1), P is the dopant concentration
in the p+ layer and Ppr is a constant depending on the
process parameters and varying between 7 × 1015 and
1 × 1017 cm–3 [8].

The I–V characteristics were calculated for different
doping levels in the p+-base by numerically solving a
fundamental set of equations, including the Poisson
equation and continuity equations for electrons and
holes.

The Issledovanie [10] quasi-one-dimensional appli-
cation program used in the calculation takes into con-
sideration the complete set of physical processes gov-
erning carrier transfer: recombination through deep
centers, high-field effects, high-injection effects (elec-
tron–hole scattering, Auger recombination), and high-
doping effects (band gap narrowing; a reduction of the
mobility, diffusion coefficients, and Schockley–Read
lifetime; and Auger recombination).

Figure 3 plots on-state voltage U in the thyristor
structure shown in Fig. 2b against the doping level in
the p+-layer for current density j = 500 A/cm2. It was
assumed in the calculation that the carriers recombine
through a level located at the midgap and the relation-
ship τp0 = 3τn0 typical of the silicon structures is valid
(τp0 is the hole lifetime in the wide lightly doped base
of the thyristor). The value of Ppr was set equal to 1 ×
1017 cm–3, and τp0 was taken to be ultimately high (τp0 =
45 µs). It is clear from Fig. 3 that, when the surface con-
centration of boron, NsB, exceeds 2 × 1018 cm–3, the
sharp growth of U is observed. This is because the
structure becomes unsaturated when the transfer coeffi-
cient of the n+p+pn transistor declines. In light of this,
decreasing the spread resistance of the p+-base by rais-
ing the doping level seems to be a great challenge.

Figure 4 plots U versus hole lifetime τp0 in the n-
base at lower current densities (100 and 200 A/cm2).
The curves are calculated for two values of Ppr for the
two versions of the n+p+pnn'p+ structure. From these
curves, it becomes clear, in particular, how important
application of advanced technologies (providing a high
value of Ppr) is in fabricating the devices. For example,
at a reasonable value of U, say, U = 2 V, an increase in
Ppr from 7 × 1015 to 1 × 1017 cm–3 decreases τp0 almost
threefold, which substantially improves the dynamic
characteristics, as will be shown below.

In general, the calculation demonstrates that the
parameters of the diffusion layers of the n+p+pn transis-
tor that are presented in Figs. 2a and 2b are readily
reproducible by the standard bipolar technology and
provide a good I–V characteristic of the integrated thy-
ristor.

(iii) Peak turn-off capability. As was already
noted, when the thyristor is switched off via shunting
the n+p+-emitter with a MOSFET, the net resistance of
the shunting circuit (comprising the spread resistance
of the p+-layer under the emitter, the MOSFET channel
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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resistance, and the resistance of gate and emitter metal-
lizations) plays a decisive part.

The design of the elementary cell (microthyristor) is
shown in Fig. 5. Let us estimate the maximal density of
turned-off current Jm for two cell layouts: strip (the
rectangular cell is shunted on its opposite sides) and cir-
cular. The value of Jm for the square layout lies between
these two estimates.

Let Sa be the active surface area of the device (Sa =
S1N, where S1 is the surface area of the microthyristor
emitter and N is the number of microthyristors) and
Rm be the MOSFET channel resistance plus the resis-
tance of gate and emitter metallizations.

The thyristor is blocked by switching on the external
MOSFET, which shunts the n+p+ emitter junction. It
seems obvious that blocking will take place only if the
holding current in the on state of the thyristor shunted
is higher than the anode current passing through the
device at the time of blocking. This criterion is taken to
calculate Jm.

Let us find the holding current for the structure
shown in Fig. 5. Clearly, just this value will be the max-
imal turned-off current. The calculations which follow
are based on the approach worked out in [11, 12], which
relies on the balance of mobile charge carriers in the p-
base.

It is assumed that the injection into the n-base is
high and into the p-base low, injection from the emitter
p+n' junction cross section is uniform, and the hole cur-
rent in the n-base is close to one-dimensional. These
assumptions are valid, since the thyristor cell size is
much smaller than the thickness of the n-base.

The voltage distribution over the cathodic emitter
junction is given by

(2)

where ϑ  = /ϕT is the normalized voltage across the

emitter junction,

ρp/Wp is the sheet resistance of the p+-base, βn is the
coefficient of electron transfer through the p+-base, and
J0 is the density of the uniformly distributed hole cur-
rent through the collector (central) junction.

The calculation is carried out in terms of the maxi-
mal turned-off current density, which is defined as Jm =
Im/Sa, and hole current density J0, which is related to Jm
through the obvious relationship J0 = Jmαp, where αp is
the transfer coefficient of a wide-base transistor. Since
recombination in the Narrow p+-base is weak, we may
put βn ≈ 1 and neglect the first term on the right of (2).
Thus, the hole current is the major contributor to the
distribution of ϑ(x). It enters the p-base with a constant
density and then drains down into the gate. The voltage

d2ϑ
dx2
--------- a Jsn ϑexp 1–( ) 1 βn–( ) J0–[ ] ,=

U
n

+
p

a
ρp

W p

------- 1
ϕT

------,=
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drop due to the passage of this current through the p+-
base under the emitter provides forward bias ϑ(x) of the
emitter junction.

The boundary condition at the left boundary follows
from the symmetry of the structure,

(3)

At the right end of the structure, the gate potential
relative to the cathode is specified,

(4)

dϑ
dx
-------

0

0.=

ϑ xg( ) Ug/ϕT .=
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Fig. 4. On-state voltage drop U across the thyristor vs. the
hole lifetime in the n-base at j = 100 (dotted lines) and
200 A/cm2 (continuous lines) for the two versions of the
thyristor design. (1, 1', 2, 2') Version (a) in Fig. 2 and (3, 3',
4, 4') version (b) in Fig. 2. Ppr = (1, 1', 3, 3') 7 × 1015 and

(2, 2', 4, 4') 1 × 1017 cm–3. The surface concentration of the
dopant (boron) in the p+-base is NsB = 1 × 1018 cm–3.
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Voltage Ug is related to the voltage drop across resis-
tance Rm including the resistance of cathode metalliza-
tion and the MOSFET channel resistance,

(5)

(here, a small voltage drop across the portion xg – xe is
neglected).

With the above assumptions, Eq. (2) with boundary
conditions (3) and (4) takes the form

(6)

and the maximal potential at the cathodic junction is
given by

(7)

Hence,

(8)

As was mentioned earlier, quantities J0 and Jm are
related as

(9)

At the holding point,

(10)

Ug J0SaRm=
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1
2
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Fig. 5. Structure fragment clarifying the calculation of the
microthyristor’s basic characteristics.
Here,

(11)

is the current of the electrons injected by the cathodic
emitter junction, L is the cell length, and N is the num-
ber of cells. Eventually, we have

(12)

From (12), one can find the maximal potential
across the emitter n+p junction in the holding state by
expressing it through holding current density Jm =
Im/(x0LN) = Im/Sa,

(13)

The holding current density is convenient to find
from expression (7), which can be represented as fol-
lows:

(14)

Then in view of (9), we get

(15)

where U0 = ϑ0/ϕT.
From expressions (13) and (15), one can determine

unknowns ϑ0 and Jm.
Note that, for a silicon pn junction, we can put ϑ0 =

0.8 V with a reasonable accuracy.
Similar calculations for a circular n+-emitter of

radius R yield

(16)

Hole current Jmαp picked up by the collector junc-
tion enters the p+-base and almost wholly (since recom-
bination is weak) passes through the base toward the
gate and then through the shunting circuit. The voltage
drop due to the passage of this current through the
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spread resistance of the p+-base and external resistance
Rm provides a forward bias of the cathodic emitter junc-
tion. Knowing the sheet resistance of the p+-base, emit-
ter size, and the resistances of the MOSFET channel
and base metallization, one can find the maximal value
of the direct turned-off current. Since we are interested
in the current and not in its density, relationships (15)
and (16) are convenient to represent in the form

where Rsp is the spread resistance of the p+-base.
For the strip layout, Rsp can be represented as (see

expression (15))

for the circular layout,

The calculation of sheet resistance ρp  of the p+-
base under the n+-emitter carried out using a dedicated

subroutine showed that ρp  = 2.12 × 104 Ω for the
structure shown in Fig. 2a and 1.59 × 104 Ω for the
structure in Fig. 2b.

Based on the relationships obtained, we estimated
the maximal value of turned-off current, Im, for a device
consisting of 8000 microthyristors with 30 × 30-µm
emitters with the dopant distributions shown in Figs. 2a
and 2b. If the carrier lifetime in the n-base at a high
injection level is τhl = 15 µs (which corresponds to αp ≈
0.35) and the net resistance of the MOSFET channel
and metallization is Rm = 0.028 Ω , Im for the strip layout
equals 12.2 (distribution shown in Fig. 2a) and 15.8 A
(distribution in Fig. 2b); for the circular layout, Im =
21.3 and 25.7 A for the distributions shown in Figs. 2a
and 2b, respectively.

The value of Rm, Rm = 0.028 Ω , is to an extent ten-
tative: it is generally desirable that this value be much
lower than the spread resistance of the p+-base in order
not to adversely affect the blocking property of the
device. Since the emitter–base voltage in the integrated
thyristor does not exceed 20 V even in the case of
forced switching, the MOSFET switching off the struc-
ture may be low-voltage. Today, high-power MOS tran-
sistors with the operating voltage range 30–60 V and an
extremely low channel resistance are in commercial-
scale production. For example, the Infinion
SPP80N06S2L-05 transistor is designed for a mean
current of 300 A and a voltage of 55 V and has a chan-
nel resistance of 0.0038 Ω . If it is assumed that, e.g.,
25% of the critical voltage (0.8 V) in the shunting cir-
cuit drops across the channel resistance and the rest
75%, across the spread resistance and metallization

Im

U0

α p Rsp Rm+[ ]
--------------------------------,=

Rsp( )str

ρp

W p

------- 
  xe

2

2
----- 1

Sa
----;=

Rsp( )c

ρp

W p

------- 
  Re

2

4
----- 1

Sa
----.=

W p
1–

W p
1–
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
resistance of the chip (consisting of 8000 microthyris-
tors with an emitter size of 30 × 30 µm), such a transis-
tor may switch off a current of ~50 A.

Estimates show that, for the given layout, the metal-
lization resistance turns out to be Rmet = 0.008 Ω. Figure 6
plots maximal turned-off current Im against resistance
Rm, which includes the MOSFET channel and metalli-
zation resistances, Rm = RMOS + Rmet, for both design
versions of the microthyristor (Figs. 2a and 2b). It is
seen that the design shown in Fig. 2b combined with the
circular layout far exceeds the version corresponding to
Fig. 2a combined with the strip layout and that a
decrease in Rm makes it possible to considerably
raise Im.

(iv) Dynamics of current decay upon switching
off. The switching-off process was simulated with the
Issledovanie application program [9]. Figure 7 shows
the simulation results for the current switching-off tran-
sient at the initial current density of 200 A/cm2 for the
chip consisting of 8000 microthyristors (see the previ-
ous subsection) with τhl = 7 µs. For the contributions
from different components of the shunting circuit to be
more illustrative, spread resistance Rsp and Rm were
taken to be equal to 0 and 0.028 Ω, respectively (curve 1);
0.075 and 0.028 Ω (curve 2); and 0.1 and 0.028 Ω
(curve 3). Figure 8 shows the current switch-off tran-
sient for τhl varying from 7 to 20 µs at Rsp = 0.075 Ω and
RMOS = 0.028 Ω .

The results demonstrated in Figs. 7 and 8 indicate
the presence of a delay early in the transient. Qualita-
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Fig. 6. Maximal turned-off current vs. resistance Rm =
RMOS + Rmet, where RMOS is the MOSFET channel resis-
tance and Rmet is the metallization resistance. The continu-
ous curves, the version shown in Fig. 2a; the dotted curves,
the version shown in Fig. 2b. (1) Circular and (2) strip
layout.
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tively, they may be explained as follows. In the on state,
the p- and n-bases of the thyristor structure are filled
with an electron–hole plasma and the collector pn junc-
tion is forward-biased. Once the MOSFET is switched
on, the electron injection from the n+p+ emitter
decreases, since most of the hole current passes through
the shunting circuit, the voltage drop across which is
lower than the threshold of high electron injection
(≈0.8 V). This causes the plasma to diffuse first in the
p-base and then in the near-collector region of the
n-base. The collector voltage changes sign, and the cur-
rent sharply drops. The more slowly the plasma dif-
fuses, i.e., the higher the shunt resistance and the higher
the plasma concentration near the collector (the longer
τhl), the longer the current decay delay is bound to be.
These tendencies are distinctly seen in Figs. 7 and 8. At
the same time, it should be noted that such a qualitative
explanation does not take into account all features of
the process as the turned-off current approaches a lim-
iting value. This issue will be considered in a forthcom-
ing study.

At low currents, the decay is heavily extended. This
effect is akin to that observed in conventional GTOs
and is associated with a large amount of the plasma near
the anodic p+n'n injector, the amount of the plasma
decreasing with decreasing τhl. Since the current drops
slowly when the voltage across the device is already
high, switching losses at this stage may be appreciable.

As was mentioned above, the basic factor that differ-
entiates the device under consideration from the GTO
is that the switching-off energy in the control circuit of
the former (i.e., the energy necessary to charge the gate
capacitance and form the control MOSFET channel) is
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Fig. 7. Current switching-off transient in the thyristor chip.
The spread resistance of the p+-base Rsp is (1) 0, (2) 0.075,
and (3) 0.1 Ω .
very low. Therefore, the MOSFET may be on for most
of the operating time and switched off immediately
before applying an on pulse for the time of forward cur-
rent passage. This allows designers to substantially
raise the stability of the integrated thyristor against
voltage spikes (the so-called dU/dt stability) in the off
state and improve the temperature stability of the
switching voltage.

CONCLUSIONS

The resistance of the circuit shunting the emitter
n+p+ junction of the integrated thyristor in order to
switch off the device is a basic parameter governing the
switching-off dynamics and specifying the maximal
value of the turned-off current. This resistance is the
sum of the spread resistance of the p+-bases of the
microthyristors, metallization resistance of the thyristor
chip, and resistance of the external MOSFET channel.
The voltage drop across the shunting circuit must not
exceed ≈0.8 V when the turned-off current passes
through it. The numerical calculation of the forward-
bias I–V characteristic with regard to nonlinear effects
shows that an increase in the dopant concentration in
the p+-base of the microthyristor above 2 × 1018 cm–3

leads to a sharp increase in the forward voltage drop.
Therefore, the width of the microthyristor’s cathodic
emitter should be shrunk to several tens of micrometers
in order that the spread resistance be reduced to a rea-
sonable level.

Analytical expressions relating the maximal turned-
off current of the thyristor and the shunting circuit
parameters are derived. The limiting turned-off current
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Fig. 8. Current switching-off transient in the thyristor chip.
The minority carrier lifetime in the n-base under high injec-
tion τhl is (1) 7, (2) 10, (3) 15, and (4) 20 µs.
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is estimated as a function of the spread resistance, chip
metallization resistance, and MOSFET channel resis-
tance. The numerical simulation of the current decay
dynamics shows that, after the MOSFET has been
switched on, the current, after a delay, sharply (within
several fractions of a microsecond) drops by about 90%
and then decreases more smoothly. In general, the cal-
culation results demonstrate that the integrated thyris-
tor switched off by a high-power low-voltage MOSFET
offers good characteristics and may find wide applica-
tion in medium- and high-power transducers. The fab-
rication process of the microthyristor chip appears to be
rather simple; however, optimization of the microthy-
ristor cell size needs special analysis.
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Abstract—The recovery of diodes with diffusion p–n junctions in the case of high reverse current density j is
analyzed. A condition for quasi-neutrality breaking in the diffusion layers with allowance for the dependence
of charge carrier mobility µ on electric field strength E is obtained that is valid for a wide range of j. The prob-
lem of formation of the space charge region in a circuit with inductance L and resistance R is reduced to a sys-
tem of two ordinary differential equations. Approximation of a numerical solution to this system makes it pos-

sible to derive crude analytical relationships between interrupted current density , circuit parameters, diode
parameters, and parameters of a forming voltage pulse (with amplitude Vm and pulse rise time tp). The limiting
parameters of a pulser with an inductive energy storage and current interrupter based on diffusion diodes are

studied. The critical density of interrupted current  is determined at which the field in the space charge region
near the anode reaches breakdown value Eb and intense impact ionization by holes begins. The impact ioniza-

tion decreases the rates of current decay and voltage increase in the space charge region. As a result, at  > ,

tp starts increasing and the overvoltage factor of the pulser decreases. The value of Vm corresponding to  = 

is roughly given by Vb ≈ m(ε lp/ )1/2 , where m is the number of diodes in the interrupter, ε is the per-

mittivity of the semiconductor,  is the saturated drift velocity of holes, and lp is the depth of the p–n junction
(diffusion depth). Theoretical predictions are confirmed by exact numerical simulation of the recovery process
and qualitatively agree with the available experimental data.© 2005 Pleiades Publishing, Inc.
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v h
INTRODUCTION

Recovery of the blocking capacity of p+–p–n–n+

diodes with a deep diffusion p–n junction upon for-
ward-to-reverse bias switching was first considered in
[1, 2]. The analytical model of the process used in
[1, 2], being qualitatively adequate, is inapplicable for
quantitative description for two reasons. First, the case
of constant reverse current is of minor practical interest.
Second, the approximation of constant (independent of
electric field E) carrier mobility µ restricts the domain
of applicability of the theory to low reverse current den-
sities and low voltages. Thus, for the most important
(from the practical standpoint) case of high voltages
and current densities in a circuit with inductance, an
adequate theory of diode recovery upon direct-to-
reverse bias switching is still lacking. The need for such
a theory has greatly increased since the discovery of the
effect of high-density (2–10 kA/cm2) current fast inter-
ruption in diffusion silicon diodes [3], which was later
called the SOS effect [4]. This effect has being success-
fully used for generation of ultra-high-voltage pulses
with a rise time of 5–50 ns for a decade [5]. Numerical
1063-7842/05/5007- $26.00 0904
simulation [6–10] has demonstrated that the mecha-
nism of this phenomenon is in complete qualitative
agreement with the model put forward in [1, 2]. How-
ever, to gain deeper insight into the physics of the pro-
cess and especially to find relationships between pro-
cess characteristics, semiconductor device structure,
and circuit parameters, an analytical or semi-analytical
theory should be developed. In this work, we try to
tackle this problem. To this end, the model used in
[1, 2] is modified so as to take into account the real
dependence µ(E) more rigorously. Specifically, at high
current densities, the electroneutrality breaking condi-
tion, as well as the time and site of space charge forma-
tion in diffusion layers, is changed. Then, to describe
the space charge region configuration, the constant drift
velocity approximation is used, which is much simpler
and more appropriate at high reverse voltages than the
constant mobility approximation. Using this model to
analyze interruption of the current passing through an
inductive energy storage, we relate the circuit and diode
parameters to the limiting amplitude and rise time of a
voltage pulse across a resistive load.
© 2005 Pleiades Publishing, Inc.
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1. STAGE OF HIGH REVERSE 
CONDUCTIVITY

Once a forward current pulse is off, the weakly
doped central part of the diode is filled with a quasi-
neutral electron–hole plasma, the distribution of which,
p(x) + Nd(x) = n(x) + Na(x), along the x coordinate is a
complicated function of the doping profile, N(x) =
Nd(x) – Na(x); recombination characteristics of the
diode; and current pulse waveform J(t) (here, n, p, Nd,
and Na are the concentrations of electrons, holes,
donors, and acceptors, respectively). An example of
such a plasma distribution in a diode with a structure
typical of a high-current-density interrupter [7] is illus-
trated in Fig. 1. Recovery of the blocking capacity of an
interrupter consisting of m identical series-connected
diodes takes place in the circuit shown in the inset to
Fig. 1 [5–7]. Initially, current J in the circuit is zero, the
capacitor is charged to voltage –Uc0, and the diode
resistance is usually much lower than both load resis-

tance R and internal circuit impedance . There-
fore, at the first stage,

(1)

This current pulls electrons and holes accumulated
in the base mainly from the boundary regions, where
abrupt concentration fronts that separate the plasma
region from the regions free of nonequilibrium carriers
move toward each other [1]. The velocity of the front

moving from the cathode side, , and that of the front

moving from the anode side, , are written, respec-
tively, as [11]

(2)

provided that the widths of the fronts, which are on the

order of De, h/  [12] are much smaller than all other
characteristic dimensions of the problem (here, xn, p are
the positions of the fronts, De, h are the diffusion coeffi-
cients, ∆jn, p are the steps in the current densities, and
∆n and ∆p are the electron and hole concentrations at
the fronts). At the initial stage of recovery, the dopant
concentrations at the fronts, |N(xn, p)|, are large enough
for the quasi-neutrality condition

(3)

to be also fulfilled beyond the plasma region (here, q is
the elementary charge and ε is the permittivity of the
semiconductor).

Since the condition n + N = p is everywhere fulfilled
and the concentrations and flows of minority carriers
are negligible at x < xn and x > xp, the velocities of the

L/C

J t( ) Uc0 C/L t/ LC( ).sin–≈

v n
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v n
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fronts obtained from (2) take the form

(4)

where j = J/S, S is the surface area of the diode, µe, h are
the mobilities of electrons and holes, and nn, p and pn, p
are the maximal concentrations of electrons and holes
in the plasma region near boundaries xn, p.

It is seen that  are merely the drift velocities of
electrons and holes in the plasma concentration max-
ima at left and right fronts, respectively. As long as ine-
quality (3) is fulfilled, the electric field strength outside
the plasma is given by

(5)

In the simplest approximation of the dependences
v e, h(E), v e, h(E) = µe, hE(1 + E/ )–1 [11, 13], it fol-
lows from the Poisson equation and Eq. (5) that

(6)

where  = /µe, h,  are the saturation veloci-

ties of electrons and holes, and  = ∂lnN(xn, p)/∂x.

This formula determines positions  of the fronts

v n p,
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Fig. 1. Distributions of impurities (solid lines) and minority
carriers in a diode of surface area 0.25 cm2 at instant t = 0
of termination of the half-sinusoidal direct current pulse
with a duration of 400 ns and amplitude of 450 A (dashed
line), at instant t = Tp of onset of anodic space charge for-
mation (dotted line), and at the end of the pulse front t =
Tp + tp (dash-and-dot line). The inset shows the circuit
where current interruption takes place.
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and concentrations  = N( ) such that the extent
of electroneutrality breaking γ ! 1 (i.e., |ε∂E/∂x| .
γq|N(xn, p)|).

Hereafter, to simplify the mathematics, the real dif-
fusion profiles will be approximated by simple expo-
nentials,

(7)

It is easy to check that, e.g., for Gaussian profiles

with surface concentrations  and diffusion depths
ln, p,

(8)

where N0 is the donor concentration in the base.

At low current densities, the first term on the right of
(6) is negligible and this formula coincides with the
neutrality breaking condition obtained in [1]. However,
at current densities typical of the SOS effect and at

large diffusion depths, j @ ε /µe, hλ ≈ 500 A/cm2;
therefore, from (6), it follows that

(9)

Equation (9) (or (6)) uniquely specifies  only if
the reverse current is constant. Otherwise (the most
interesting case), the interruption current is unknown in
advance. Yet, the problem basically can be solved if the
dependences j(t) and p(x) are preset. Indeed, at high j,
the displacement current, as well as the diffusion and
recombination currents, is negligible within the plasma
region [1]; therefore, the electron current density is

(10)

and ∂n/∂t = –∂je/∂x . 0 if the injection level is high
(nµe @ Nµh). This means that concentration profile p(x)
remains “frozen” in the interval xn < x < xp when the
current changes sign [12]. Then, from (2) and (4), one
can derive the “information-bearing” equations

(11)

which, along with (7) and (9), determine time instant
Tn, p that the space charge starts to form, as well as the
corresponding positions of the fronts, , and current

densities . At t = 0, boundaries  of the plasma-

filled region are found from the equalities Nd( ) .

p( ) ≡  and Na( ) . n( ) ≡ .
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Before the formation of the space charge regions,
the voltage drop across the diffusion layers exponen-
tially grows, in accordance with an increase in their
ohmic resistance, and, at t = Tn, p, reaches the value

(12)

where subscripts n and p refer to the plasma-free
regions near the cathode and anode, respectively.

The value of /m (usually not exceeding several
volts) is far below voltage Uc0 across the capacitor;
therefore, in a first approximation, the time dependence
of the current is described by formula (1) up to t = Tn.
With this taken into account, simple estimates by for-

mula (11) show that  <  for the typical conditions
under which the SOS effect is observed. That is, near
the cathode, neutrality breaks earlier than near the
anode, Tn < Tp. This conclusion, reflecting the large dif-
fusion depth lp (and, thus, λp; see (8)) of acceptors, is
supported by experiments [5] and numerical simula-
tion.

2. FORMATION OF THE SPACE CHARGE 
REGION NEAR THE CATHODE

The cathodic space charge region, forming at t > Tn,
expands rapidly until impact ionization due to an
increase in the field strength starts in it. Considering
that the drift velocities of carriers are saturated almost
throughout the space charge region and assuming that
pn @ j/q  (the validity of this inequality means, in
particular, that the displacement current in the space
charge region can be neglected), one easily finds from
(2) a relevant formula for the front velocity,

(13)

where ξ = µe/(µe + µh) and Mn is the coefficient of elec-

tron avalanche multiplication.1 
Here, the static multiplication coefficient can be

used, since the time constant of the establishment of the
steady state in the space charge region (which exceeds
transit time wn/  by a factor of Mn) is far shorter than
all other characteristic times of the problem. At Mn =
1/ξ ≈ 4/3, the “cathodic” front might be expected to
stop, because the intense outflow of holes from the
plasma adjacent to the front (the process responsible for
the motion and very existence of the front) is exactly
compensated for by the inflow of holes generated in the
space charge region by impact ionization. Actually,
however, the front cannot stop completely. Indeed, an

abrupt drop of  leads to an increase in front width

1 Similar but not quite exact formulas were used previously in
[8, 11].
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De/  and depresses the diffusion of electrons from the
plasma into the cathodic space charge. Therefore, the
hole current in the space charge and, hence, multiplica-
tion coefficient Mn must be increased to maintain the

ever growing total current.2 However, in this case, the
space charge density, which is proportional to

[( /  + 1)  – 1], decreases, which it is easy to
check. As a result, Mn may increase only because of the
expansion of the space charge region. Eventually, the
front will move with a finite, though very low, velocity.

The value Mn = 4/3 in silicon diodes is attained
when the voltage across the cathodic space charge

region, , is approximately equal to half the
“dynamic breakdown” voltage (see, e.g., [14]), which,

in general, depends on  and λn. For a shallow n+–n

junction, voltage  can be simply estimated under the
assumption that  @ λn (where  is the thickness of
the cathodic space charge region) and that the charge
distribution in this region is heavily asymmetric. One
should only take into account that, in this case, the

space charge density is equal to /  almost through-
out the cathodic space charge region and employ the
well-known formulas [15] for the parameters of the
space charge region in heavily asymmetric p–n junc-
tions. Then, we get

(14)

where Eb is the breakdown field, which will be consid-
ered to be a given parameter of the semiconductor for
simplicity.

At large diffusion depths ln, formulas (14) yield

understated values of  and . More exact estima-
tors are given in [16]. Time tn of rapid expansion of the
space charge layer and the time of voltage drop across
it can be estimated in terms of order of magnitude if a
multiplication-induced decrease in the front velocity is
neglected,

(15)

When deriving these formulas, we also assumed that
the change in the current for a short period of time (tn ~

10 ns) is small (i.e., j(t) ≈ ). For the above reason, the
voltage across the space charge layer continues to grow
at t > Tn + tn, while much more slowly. The exponen-
tially increasing resistance of the plasma-free part of
the p-layer and the resistance of the central part of the
plasma region itself, where the carrier concentration is
minimal, make an additional contribution to the
increase in the diode voltage at this time. By the time

2 As follows from estimates, the displacement current also contrib-
utes, though insignificantly, to the total current.
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Ûn

j̃n

Ûn
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t = Tp, the total voltage drop is given by

(16)

where

Finally, time t = Tp manifests the onset of the SOS
effect: the current through the diode is rapidly inter-
rupted and the diode voltage starts growing because of
the formation of the space charge region in the thick p-
layer.

3. FORMATION OF THE SPACE CHARGE 
REGION IN THE DIFFUSION P-LAYER

Once the space charge starts forming in the plane
x =  of the diffusion p-layer, the velocity of the
“anodic” plasma front is given by a formula similar
to (13),

(17)

Since the coefficient of impact ionization for holes
in Si is much smaller than that for electrons [15, 16,
18], the strong inequality (Mp – 1) ! 1 is fulfilled until

maximal field strength  in the anodic space charge
region becomes nearly equal to breakdown field Eb
[14]. This considerably simplifies analysis of the pro-
cess, although two complicating factors appear.

First, the current through the diodes decreases con-
siderably as the anodic space charge regions form. At
the same time, the voltage drop across them, Up(t),
increases sharply due to the presence of the inductance
and can far exceed the voltage across the capacitance of
the circuit. Therefore, the process can be described with
a differential equation that takes into account the basic
features of the circuit. In our case, this equation takes
the form

(18)

When deriving (18), we assumed that both the volt-
age drop across the high capacitance of the circuit and
the voltage drop across the diode (except for the anodic
space charge region) change weakly for pulse rise time
tp and are equal each other. The latter assumption is val-
idated by the fact that the total current of the circuit
reaches a maximum at t = Tp in an appropriately
designed pulser.

Second, one should take into account the nonuni-
form distribution of charged acceptors in the anodic
space charge region (Fig. 2). In the saturated hole drift
velocity approximation for diffusion profile (7), this
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can be done using relationships between wp, Up, ,

and  ≡ (xj – xp) given, e.g., in [16],

(19)

(20)

(21)

Here, ω = wp/2λp, y = j/ , u(y, ω) = yf(ω), e(y, ω) =
yϕ(ω), f(ω) = ω(ωcothω – 1), and ϕ(ω) = [ω(cothω –
1) – 1 – lnω(cothω – 1)].

The coordinate of the dynamic p–n junction (i.e., of
the plane where the field is maximal and the space
charge density is zero) is calculated from (7) and (9),

(22)

The coordinate of the left-hand boundary of the
space charge region (coincident with the coordinate of
the right-hand front of the plasma region) is obtained by
integration of (17),

(23)

under the assumption that the carrier concentration in
the plasma at t = 0 is weakly dependent on x near x =
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Fig. 2. Idealized distributions of acceptors (solid line), non-
equilibrium carriers at t = Tp (dashed line) and t > Tp (dotted
line), and field strength at t > Tp (dash-and-dot line) that
were used in analysis of the space charge region formation
in the p-layer.
 (i.e., p(x) ≈ p( ) ≡ ), as is observed in Fig. 2.
Upon introduction of dimensionless parameters

and straightforward rearrangements, formulas (18)–
(23) can be reduced to a system of two differential
equations,

(24)

(25)

with obvious boundary conditions

(26)

The only exact result that follows from system (24)–
(26) is that, at any χ and ζ, functions y(θ) decrease
monotonically and functions e(θ), u(θ), and w(θ) reach
maxima em, um, and ωm, respectively, at time instants
θE, θU, and θw such that θE < θU < θw. In other words,
first the field strength; then, the voltage drop across the
space charge; and, finally, the space charge layer thick-
ness reach maximal values. A numerical solution to
system (24)–(26) was analyzed in a wide range of χ and
ζ. It was found that the dependences em(χ, ζ), um(χ, ζ),
and θ0.9(χ, ζ) take the form

(27)

(28)

(29)

where θ0.9, which is determined from the condition
u(θ0.9) = 0.9um, characterizes rise time tp of the voltage
pulse across the load. Very weakly varying functions
FE, U, t(χ, ζ) appearing in (27)–(29) differ from unity by
less than 40% in the interval 0.01 < χ, ζ < 100; there-
fore, we will put FE, U, t(χ, ζ) = 1 for simplicity. Then,
formulas (28) and (29) in the dimensional variables
take the form

(30)

(31)

where Vm is the maximal voltage drop across the anodic
space charge region.
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These results certainly cannot be viewed as an exact
quantitative description of the process.3 However, they
provide straightforward qualitative relationships
between the parameters of the circuit, diode, and pulse
being formed. As was expected, Vm increases and the
rise time of the pulse, tp, decreases as the current inter-
rupted and load resistance grow, which is in full agree-
ment with experimental results [5]. When R is very

small (current generation mode), Vm ~ SR; at high R
(no-load mode), the dependences Vm(R) and tp(R) satu-
rate and the voltage pulse amplitude reaches a maximal

value, Vm ~ ξ SL/2q λp. The dependences of Vm and
tp on the other parameters are also quite clear. For
example, the charge that must be extracted from the
p-layer to extend the space charge region increases with
the concentration of nonequilibrium holes. Therefore,
all other factors being the same, the pulse amplitude is
bound to decrease and the pulse rise time to increase
with increasing . In its turn,  increases with the
amplitude and duration of the direct pump current
pulse. As diffusion depth lp (and, hence, parameter λp)
increases, the average space charge density decreases.
Therefore, the voltage drop across the space charge
region is bound to decrease with increasing λp, all other
things being equal. Accordingly, the charge to be
extracted for space charge formation, and, hence, the

front duration, increase with λp, because  does not
explicitly depend on lp: it depends only on concentra-
tion steps ∆n and ∆p, as well as on current density steps
∆jn, p at the front (see formula (2) and its consequences
(13) and (17)). On the other hand, an increase in lp must
change the values of ∆n, ∆p, and ∆jn, p (even though the
other parameters of the circuit and diodes remain the
same (see Section 5)) and, thereby, may indirectly

influence the value of . However, this issue is
beyond the scope of the present study. It should also be
noted that the dependences of Vm and tp on the diffusion
depth (formulas (30) and (31)) are the exact reverse of
those obtained in [8] in the quasi-neutral approxima-
tion. At first glance, they also contradict the experimen-
tal data obtained in [5]. Actually, however, this contra-
diction is apparent and will be resolved below.

To check the conclusions of this section, we com-
pared them with the results of exact numerical simula-
tion of the recovery process in diffusion diodes using
the Issledovanie program [17]. Both calculation meth-
ods turned out to coincide qualitatively and in many
respects quantitatively. As an example, Fig. 3 demon-
strates the recovery process for an interrupter consist-
ing of m silicon diffusion diodes (the structure of the
diodes and the nonequilibrium carrier initial distribu-
tion in them are shown in Fig. 1). In the calculations,

3 To this end, system (24)–(25) must be solved numerically, which
is today a trivial problem.
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the parameter values were the same as in [7]: S =
0.25 cm2, λp = 18 µm (this value follows from (8) at lp =

200 µm and  = 1017 cm–3),  = 2.5 × 1016 cm–3

(Fig. 1),  = 4.75 kA/cm2, L/m = 6.4 nH, and R/m =
1.25 Ω . In addition, we put mC = 2 µF and Uc0/m =
200 V in order to provide a desired value of the inter-

rupted current, , and a typical value of Tp (Tp ≈
75 ns). The associated values of χ and ζ to be substi-
tuted into Eqs. (24) and (25) are χ = 0.43 and ζ = 0.39.
In processing the results of numerical simulation, the
equality maxρ(x) = 0.1qNa(x) met on the right-hand
side of the dynamic p–n junction (ρ(x) is the space
charge density) was taken to be the condition for neu-
trality breaking and space charge formation (in this
case, γ = 0.1). At t = Tp, the voltage drop per diode,
U(Tp)/m, reaches 235 V. Shifting the results of integra-
tion of system (24)–(25) along the vertical axis by Tp

and along the abscissa axis by U(Tp)/m, one can com-
pare the results obtained in terms of the simplified the-
ory and those of the exact numerical simulation. As is
seen from Fig. 3, agreement between the results is good
up to the final phase of the process, when the applica-
bility conditions for system (24)–(25) (namely, the con-
stancy of the hole drift velocity, voltage drop across the
cathodic space charge region, and hole concentration in
the plasma region near x = xp) are violated. The depen-
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Fig. 3. Volt–second (solid line and filled circles) and
ampere–second (dashed line and open circles) characteris-
tics of the recovery of the current interrupter consisting of
m silicon diffusion diodes (their structure is shown in
Fig. 1). The characteristics are obtained by simulation of the
recovery process with Issledovanie program [18] in the cir-
cuit with mc = 2 µF, L/m = 6.4 nH, R/m = 1.25 Ω , and
Uc0/m = 200 V (lines) and by numerical solution of the sys-
tem of equations (25) and (26) at χ = 0.43 and ζ = 0.39 (cir-
cles).
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dences of Vm and tp on the interrupted current density
(Fig. 4) and load resistance (Fig. 5) that were calculated
by formulas (30) and (31) also agree well with the
results of numerical simulation when impact ionization
in the anodic space charge region is disregarded.

4. MAXIMAL ATTAINABLE PARAMETERS
OF CURRENT INTERRUPTERS

The maximal field strength in the space charge

region, , reaches breakdown value Eb when the
interrupted current density rises up to a certain critical

value , which can be determined from formulas (20)
and (27),

(32)
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Fig. 4. Dependences of the (a) amplitude and (b) rise time
of the voltage pulse in the anodic space charge region on the
interrupted current density at  = 2 × 1016 cm–3 and R/m =

1.8 Ω. Numerical simulation (1) with and (2) without regard
to impact ionization in the anodic space charge and (3) cal-
culation by formulas (30) and (31). The arrows indicate the
interrupted current density at which the maximal field
strength in the space charge region reaches a breakdown
value.

p̃p
where ζb is a solution to the equation

(33)

The value of Vm therewith reaches maximal value
Vb, which is easy to find from the simple and physically
clear formula

(34)

which follows from (27) and (28) and has the same
accuracy. Using the well-known relationships between
the space charge parameters [15], it is easy to check that
(34) relates the breakdown field to the breakdown volt-
age for a linear p–n junction with a space charge density

gradient of 32 /81 λp. Such, indeed, must be the
case in view of the fact that the breakdown voltages for
linear and deep diffusion p–n junctions differ only
slightly [16] and the current density at the instant the
voltage reaches a maximum is approximately 81/32 ≈
2.5 times lower than . Essentially, formula (34)
implies a rise in the “breakdown voltage” of the
dynamic p–n junction with expanding diffusion layer
and decreasing hole density in the space charge region.
This effect is well documented for ordinary p–n junc-
tions [15, 16, 18], where the positive space charge is
due to donors rather than to holes.

At  > , avalanche multiplication of holes starts
in the anodic space charge region; however, the associ-

ated decrease in velocity  cannot be more than

µe(  + )/ (µe + µh) ≈ 1.7 times. Otherwise, the
condition (p – N) > n, which necessarily follows from
the Poisson equation, is violated in the part of the space
charge region that is adjacent to the anode front. Never-
theless, the rate of growth of wp and, hence, of the volt-
age drop across the space charge region decreases con-
siderably. In addition, so does the average space charge
density, since avalanche multiplication causes the
redistribution of the electron and hole concentrations in
the space charge region [18], which also favors a drop
of Vm. Thus, impact ionization appreciably slows down
the increase in the voltage drop across the anodic space
charge region, while to a considerably smaller extent
than across the cathodic space charge. Numerical sim-
ulation shows that, when the current interrupted by the
device described at the end of Sect. 3 rises, for instance,
twofold, the amplitude of the voltage pulse increases by
a factor of 1.5 (Fig. 4). This means that such an impor-
tant quality index of the interrupter as the overvoltage

coefficient [5] must be maximal at  ≈  and Vm ≈ Vb,
as readily follows from Fig. 4a. Certainly, a decrease in
the plasma boundary velocity due to impact ionization
extends the pulse rise time (see Fig. 4b).
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Another important parameter is peak power Pm =

/R applied to the load, which reaches maximal value
P0 at certain load resistance R = R0 [5]. Basically, R0 can
be estimated by formula (30). However, a more accu-
rate estimate is obtained from position ζ0 of an extre-

mum of the ζ dependence of /χ, this position being
found by numerically solving system of equations
(24)–(25) when ζ/χ = const. It turned out that, in the
range 10–2 < ζ/χ < 102, the desired quantity differs from
a solution to the equation

(35)

by no more than 10%. Moreover, the relationships

(36)

are valid throughout extremal curve (35) within the
same error. From (36), one can find resistance R0 and

interrupted current density  at which the peak power

is maximal and  = Eb. It should be taken into account
that usually χ/ζ0 > 1 (see below); therefore, solution
(35) can be represented in the form ζ0 = (25χ)–1/3. Upon
straightforward transformations, we get

(37)

(38)

Using (36), it is easy to check that the voltage ampli-
tude corresponding to these values of the load resis-
tance and interrupted current is equal to

(39)

and the peak power, to

(40)

Rise time t0 of the pulse forming under these condi-
tions can be evaluated by using the approximation
θ0.9 = 2(χ/ζ0)1/4. In the interval ζ/χ = 0.1–10 of interest
on extremal curve (35), this approximation provides a
higher accuracy than (29). Substituting (37) and (38)
into the extremal curve gives

(41)

For the example considered at the end of Sect. 3, the
calculation by these formula yields R0/m ≈ 1.85 Ω, j0 ≈
3.93 kA/cm2, V0/m ≈ 523 V, P0/m ≈ 148 kW, and t0 ≈

Vm
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4.35 ns. Parameter χ is then equal to

(42)

and χ0/ζ0 ≈ 1.6. In practice, this ratio cannot be
decreased considerably, which validates using the
approximate solution to equation (35).

5. DISCUSSION

The theory of space charge formation under high-
density current interruption, which has been developed
in the preceding sections, is qualitatively adequate to
the SOS effect observed experimentally. However,
dependences (34) and (39) of the maximal amplitude of
voltage pulses on depth lp of the p–n junction are too
weak to quantitatively explain the multiple increase in
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 = 2 × 1016 cm–3 with voltage Uc0 fixed. Numerical sim-

ulation (1) with and (2) without regard to impact ionization
in the anodic space charge region, (3) calculation by formu-
las (30) and (31) with regard to a change in the interrupted
current density, and (4) interrupted current density obtained
by numerical simulation.
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Vm [5] when lp increases only by a factor of 1.5–2.0.
Additional considerations which follow may explain
this effect quantitatively.

First, we assumed above that the basic parameters of
the theory are independent of each other and so
obtained the relationships between them in the “pure”
form. For example, formula (30) describes the depen-

dence Vm(lp) at constant  and . However, all other
parameters of the interrupter and circuit being the
same, a change in lp is bound to alter (i) the voltage drop
across the diodes during time T+ of the forward current
pulse and, hence, the charge passing through the
diodes; (ii) the total charge of nonequilibrium holes
accumulated in the base layers of the diodes during
time T+ and hole distribution p(x); (iii) the instant Tp the
anodic space charge starts to form and corresponding

current density ; and (iv) the position of the plane
x = , where the anodic space charge starts to form,

and corresponding concentration  of nonequilibrium
holes.

In other words, parameters λp, , and  are inter-
related in a rather complex manner. As a result, param-

eters  and  are very difficult to keep constant as λp

varies in the course of the experiment (even numerical)
especially if such a goal is not on hand. This is why,
when interrupters of different types are tested under
“identical conditions” (see, e.g., in [5, Fig. 24]), some
of them can operate in the optimal regime, whereas oth-
ers operate under conditions far from optimal. In view
of the aforesaid, such a comparison seems to be not
quite correct.

Second, as lp grows (all other things being the
same), the thickness of the weakly doped base and,
hence, propagation losses of the forward current pulse
decrease [7]. However, it is not necessary to increase lp
in order to reduce these losses: the same effect can be
reached by shrinking the structure as a whole.

Third, as lp grows, usually so does time interval Tp
between the instant the current changes sign and the
instant of current interruption.4 This effect greatly
favors the achievement of a desired value of the inter-
rupted current when interrupters based on deep p–n
junctions are used and is an important advantage of
these interrupters over standard diodes.

Finally, it was assumed by default that all the diodes
of the interrupter are identical and their parameters are
uniformly distributed over the surface area. Actually,
however, there always exists a spread of electrophysical
parameters both within a device and from device to
device. This inevitably causes a spread in the times of
anodic space charge formation in different diodes,

4 At relatively low current densities, such a situation was observed
experimentally [19]; for high currents, it directly follows from
formula (11).

j̃ p p̃ p

j̃ p

x̃ p

p̃p

j̃ p p̃p

j̃ p p̃p
slows down the process of current interruption, and,
consequently, decreases the amplitude of the voltage
pulse across the load. The spread of the parameters can
be expected to diminish with an increase in the diffu-
sion depth, all other things being equal. This may be
one more important process-related (rather than physi-
cal) factor responsible for the performance improve-
ment of interrupters consisting of many series-con-
nected diodes, which is observed with increasing lp [5].
From the above, it follows that verification of the theo-
retical results needs additional experiments with as few
carefully selected series-connected diodes as possible,
as well as consideration and exhaustive control of all
operating parameters of the interrupter.

In summary, we note that the diode structure shown
in Fig. 1 was taken as an example, because it was stud-
ied earlier [7]. Also, it enables us to distinctly discrim-
inate the stages of formation of the cathodic and anodic
space charge regions. However, from the practical
standpoint, such discrimination is rather a serious dis-
advantage, since the anodic space charge region, not
participating in the formation of the basic pulse, pro-
duces a “pedestal” in front of the pulse and so results in
useless energy losses for time period Tn – Tp. Obvi-
ously, this disadvantage can be eliminated by changing
the doping profile so that the equality Tp = Tn is satisfied
most accurately. In essence, the requirement that the
space charge regions begin to form simultaneously is
equivalent to the condition necessary for the efficient
operation of drift step-recovery diodes: the plasma
fronts must simultaneously arrive at the plane of the p–
n junction [20]. From Sect. 2, it follows that basically
this can be achieved by changing the relationship
between the depths of the n+–n and n–p junctions.
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Abstract—The bulk and surface structures and the magnetic properties of Tb layers in (Tb/Ti)n and (Tb/Si)n
multilayer films are studied experimentally. As the magnetic layer thickness decreases, Tb becomes amorphous.
Along with the amorphization, the magnetic ordering temperature declines and the temperature range
of magnetic hysteresis shifts. In terms of the ZFC–FC approach, this shift means crystalline magnetic anisot-
ropy breaking. The material of nonmagnetic spacings between the Tb layers plays a certain role in these
changes. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Low-dimensional objects occupy a prominent place
in contemporary research on magnetism. Such objects
are, in particular, thin magnetic films, among which
those of rare-earth metals stand out. These films pro-
vide information on the fundamental properties of thin-
film 4f magnets, including information on indirect
exchange interaction in them, [1, 2] and are promising
materials for multilayer structures [3, 4]. Gadolinium
films (gadolinium is known to have the highest Curie
temperature among rare earths) have attracted the
greatest attention [5–7]. The magnetic ordering temper-
ature of terbium is slightly lower; however, unlike gad-
olinium, terbium atoms have a nonspherical electron
shell. This feature is a prerequisite for high magnetic
anisotropy, which makes Tb-containing film very
promising for applications. In this work, we study a
relation between the structure and magnetic properties
of Tb layers incorporated into (Tb/Ti)n and (Tb/Si)n
multilayer films.

EXPERIMENTAL

The films were deposited by rf ion sputtering on
glass substrates at a deposition rate of ≈0.1 nm/s. The
working chamber was preevacuated to a pressure of 1 ×
10–6 Torr, and the argon pressure in the discharge was
2 × 10–4 Torr. The test samples were prepared by alter-
natively depositing Tb layers of different thicknesses
(hTb = 2.5–600 nm) and 2-nm-thick nonmagnetic (Ti or
Si) spacers. The total thickness of the magnetic compo-
nent in the multilayer samples was constant (≈200 nm).
Each sample had a buffer sublayer and an insulating
nonmagnetic coating.
1063-7842/05/5007- $26.00 0914
The magnetic properties of the films were measured
with a torquemeter in the temperature range 80–300 K.
The thickness and surface morphology of the films
were examined in an atomic force microscope (AFM).
The crystal structure was examined under an electron
microscope on thin (50 nm) samples deposited onto the
cleavage surface of NaCl crystals.

RESULTS AND DISCUSSION

Figure 1 shows the dependences of torque L on tem-
perature T for the (a) single-layer Tb film with hTb =
600 nm, as well as for (b–d) (Tb/Ti)n and (e, f) (Tb/Si)n
multilayer films with different thicknesses of the mag-
netic layers. The L(T) curves are constructed for two
initial states of the samples. These states set in when the
sample is cooled in the absence (zero-field cooling
(ZFC)) and in the presence (field cooling (FC)) of a
1-kOe magnetic field making an angle of 45° with the
film plane (Fig. 1; curves 2 and 1, respectively). Torque
L was measured in the same magnetic field.

As is seen from Fig. 1, most of the samples exhibit
a strong thermomagnetic hysteresis of torque, which is
observed at T < 200 K and reflects, in fact, the temper-
ature hysteresis of magnetization. This feature (which
is also typical of spin glasses [8]) is likely to be associ-
ated with a high crystalline magnetic anisotropy of ter-
bium at low temperatures [9]. Upon cooling in the mag-
netic field, the disordered magnetic state of the Tb lay-
ers (the FC mode) turns into the magnetic texture,
which specifies a remanent magnetization and a torque.
The ZFC mode causes the demagnetized state. Below
temperature Tf at which the difference between curves 1
and 2 becomes appreciable, the magnetic field used in
the experiment is too low to effectively magnetize the
© 2005 Pleiades Publishing, Inc.
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samples. Therefore, their magnetization and, corre-
spondingly, torque are low.

Remarkably, temperature Tf depends on the mag-
netic layer thickness and the material of the nonmag-
netic spacers. The dependence Tf (hTb) (Fig. 2, curve 1)
demonstrates that the thermomagnetic hysteresis shifts
toward lower temperatures as the magnetic layer thick-
ness decreases with the introduction of nonmagnetic Ti
spacers. For the (Tb(2.5)/Ti)60 sample, this hysteresis is
absent throughout the temperature range under study
(Fig. 1, curve d). At the given Tb layer thickness (hTb =
2.5 nm), Tf is likely to drop below 80 K. The (Tb/Si)n
films behave in a similar way: the only difference is that
the temperature hysteresis weakens even at hTb = 10 nm
(Fig. 1, curve f).

Figure 2 (curves 2, 3) also shows the dependences of
magnetic ordering temperature Tord on the Tb-layer
thickness. Temperature Tord was estimated from the
L(T) curves by linear extrapolation of the high-temper-
ature (T > Tf) portions to the zero value of L. Although
the error inherent in this procedure is high (±5), the data
presented suggest that Tord is constant over a wide hTb
range. However, when the Tb layer thickness is less
than 10 nm in the (Tb/Ti)n samples or less than 20 nm
in the (Tb/Si)n samples, Tord decreases substantially. A
similar dependence found earlier in layered Gd films
when the magnetic layers were thinned [7] was attrib-
uted to a buildup of lattice microstrains, which eventu-
ally cause amorphization of the films. The same corre-
lation between the structure and thickness of the Tb lay-
ers was established in layered Tb films.

Figure 3 shows the electron diffraction patterns and
microstructures of two (Tb/Si)n films with a Tb layer
thickness of (Fig. 3a) 5 and (Figs. 3b, 3c) 20 nm. Their
structural characteristics are seen to be different. The
electron diffraction pattern taken from the sample with
thin Tb layers does not contain distinct lines, exhibiting
a ripple in the dark-field image (Fig. 3a). This is a clear
indication of the amorphous state. The second sample
is in the polycrystalline state, as follows from a set of
clear-cut diffraction lines and bright spots (the latter are
due to coherent domains) in the dark-field image. Anal-
ysis showed that such a diffraction pattern can be
related to the hcp crystal lattice of Tb. The crystallite
size is typically 5–10 nm.

Thus, for both the Tb and Gd systems, the fine-
grained state turns into the amorphous state with
decreasing layer thickness. The radical structural trans-
formations occur for hTb ranging from 20 to 5 nm. As
was shown above, the magnetic properties also change
significantly at these thicknesses (specifically, Tord
decreases). It can thus be concluded that amorphization
effectively suppresses exchange interaction. This find-
ing is not surprising: atomic spacing fluctuations are
superimposed on the exchange interaction energy of
rare-earth metal, which oscillates with distance, and,
thereby, frustrate the system of atomic magnetic
moments. However, such behavior distinguishes Tb
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
films from Gd ones, in which Tord decreases noticeably
even in the crystalline phase at a sufficiently high level
of defects [7].
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Fig. 1. Temperature dependences of the torque for (a) the
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(Tb/Ti)n and (e, f) (Tb/Si)n multilayer films with magnetic
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Temperature Tf, as well as Tord, also seems to be a
structure-sensitive parameter. Its decrease upon amor-
phization points to a correlation between the thermo-
magnetic hysteresis and crystalline magnetic anisot-
ropy, which breaks under the structural transformation.
There is evidence that a number of terbium-based
amorphous alloys (Tb–Cr [10], Tb90Si10 [11], and Tb

0.
28
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0.
31

 n
m

(‡)

(b)

(c)

Fig. 3. (a, b) Dark- and (c) bright-field electron microscopic
images of the (Tb/Si)n film microstructure and electron dif-
fraction patterns for hTb = (a) 5 and (b, c) 20 nm. The circles
show the positions of the diaphragm in dark-field imaging.
The figures are the interplanar spacings corresponding to
the centers of the diffraction reflections selected.
[12]) behave as spin glasses. However, characteristic Tf
temperature for them is low, ≈50 K. In the works cited
above, the thermomagnetic hysteresis is related to the
dispersion of the local magnetic anisotropy of Tb ions,
which arises because of their nonspherical 4f electron
subshell. The temperature dependences of the local
magnetic anisotropy parameters are likely to differ
from the temperature dependence of the macroscopic
magnetic anisotropy, which is responsible for thermo-
magnetic hysteresis in the polycrystalline Tb layers. As
a result, temperature Tf typical of the amorphous state
is substantially different (is much lower).

As was noted above (see also Figs. 1 and 2), the
material of the nonmagnetic spacers is to some extent
responsible for the thickness variation of the magnetic
properties of the Tb layers. Specifically, in the films
with Si spacers, a trend toward magnetism degradation
and crystalline magnetic anisotropy breaking shows up
at hTb that is slightly higher than in the Ti-containing
films. This may be due to interlayer diffusion and the
formation of transition regions with a variable compo-
sition. Silicon, being an effective amorphizer, favors the
degradation of the Tb crystalline state to a greater
extent than Ti. Next, the depths of penetration of differ-
ent nonmagnetic atoms into Tb or the morphologies of
different nonmagnetic spacers may also differ. Relevant

Z: 2.2 nm

Y: 1.0 µm

X: 1.0 µm

Y: 1.0 µm

X: 1.0 µm

(a)

Z: 3.0 nm

(b)

Fig. 4. AFM surface images of the (a) (Ti/Tb(10 nm))20 and
(b) (Si/Tb(10 nm))20 samples and surface roughness disper-
sion Rrms.
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information can be obtained by analyzing the surface
structure of the films on the assumption that it is related
to the state of the interfaces.

Figure 4 shows the AFM images of the surfaces of
the (Tb(10 nm)/Ti)20 and Tb(10 nm)/Si)20 films. These
surfaces are seen to differ considerably: the surface of
the sample with the Si layers contains larger features
compared with the sample with the Ti layers. Disper-
sion Rrms of the surface roughness (Fig. 4) for these
samples is also different: the surface of the
(Tb(10 nm)/Ti)20 sample is seen to be smoother. These
differences may be viewed as an indication of effective
Si–Tb mixing at the interfaces, which results in more
effective amorphization of the rare earth metal.

CONCLUSIONS
Thus, the fine-grained state of Tb entering into

(Tb/Ti)n and (Tb/Si)n multilayer films turns into the
amorphous state as the magnetic layer thickness
decreases below hTb < 20 nm. This transition decreases
the magnetic ordering temperature and also suppresses
thermomagnetic hysteresis; this, in turn, points to crys-
talline magnetic anisotropy breaking. The amount of
the structural and magnetic transformations depends on
the material of nonmagnetic spacers between Tb layers.
Silicon favors amorphization and changes the magnetic
properties of Tb as the magnetic layers get thicker.
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Abstract—To elucidate mechanisms of cavitation action on a surface with microcapillary discontinuity and
refine the model of the sonocapillary effect, the force acting on a cylinder is correlated with the height of a liquid
in the capillary under cavitation, both quantities being measured at the same point of the ultrasonic field. It is
found that the force acting on the cylinder is directed toward a cavitation cluster stabilized at the end face of the
cylinder. This force can be enhanced with another cylinder placed on the side of the cluster coaxially with the
first one. The dynamics of the cavitation cluster depending on the cylinder spacing is investigated in the case
when one of the cylinders is on a pendulum suspension. The conditions for self-sustained oscillations of the
pendulum are found. The dependence of the attracting force between the cylinders on the ultrasonic frequency
and cylinder spacing is derived. The end-face-averaged pressure exerted on a cylinder of diameter 1.2 mm may
reach 0.16 kPa, and the intracapillary pressure attains 0.89 kPa. Thus, the sonocapillary effect may be
explained, at least partially, by a counterpressure arising from cluster–capillary interaction. This effect can be
used in designing cavitation sensors and ultrasonic sources. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

A body placed in an acoustic field experiences the
action of ponderomotive forces, those that are propor-
tional to the sound amplitude and those that depend
quadratically on the radiation pressure, and also Stokes
and Bernoulli hydrodynamic forces. However, when
the ultrasonic intensity is high (more than 1 W/cm2), the
basic action on a solid surface is due to cavitation
effects, such as shock waves generated by spherically
symmetric and cumulative collapse of bubbles or their
clusters, the wedging effect of bubbles, and the sono-
capillary (SC) effect in voids of solids [1]. The SC
effect, a rise of a liquid in a capillary under ultrasonic
action, has long attracted the attention of researchers
[2] and offers a variety of applications, from purifica-
tion to dispersion of a wide class of materials [3].

In a gap between vibrating walls, hydrodynamic
vortices [4] and cavitation bubble clusters [1, 5] may
form. When cumulatively collapsing (spherically or
with the formation of a stream), bubbles and their clus-
ters generate short (compared with the ultrasound
period) pressure pulses, which cause erosion [5, 6].
Similar phenomena (vorticity and cavitation) that give
rise to the SC effect and exert a pressure on a solid wall
were observed at the end face of a solid rod and capil-
lary placed in an ultrasonic field [7]. Measurement of a
1063-7842/05/5007- $26.00 0918
pressure exerted on the end face of a capillary under
cavitation might be a decisive argument for one or
another model of the SC effect. The point of application
of the counteracting force influencing the liquid flow in
the capillary is yet to be found.

In this work, we study the behavior of the cluster-
cavitation-induced force acting on a solid cylinder
placed in an ultrasonic field.

EXPERIMENTAL

The experimental setup is shown in Fig. 1a. A stand-
ing ultrasonic wave is generated by spherical piezoelec-
tric transducer 1 placed in a vessel with a liquid under
study. The transducer, made of silver-plated PZT-19
ceramics of diameter 50 mm, is connected to specially
designed rectangular pulse generator, which generates
pulses of amplitude 90–120 V and repetition rate f =
26–31 kHz, through a variable inductance in order to
tune to resonance and generate a sine-shaped signal.
The signal waveform was monitored with a Tektronix
TDS-210 oscilloscope connected to the source (radia-
tor) through a divider.

The sphere with three observation slits 10 is
mounted on rubber support 9, which is placed into 1-l
glass beaker 2 filled with water. The water is first heated
© 2005 Pleiades Publishing, Inc.
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to reduce the gas concentration in it and then is cooled
to 35–45°C. The water thus prepared can be used in
experiments for several hours. Level 8 of the liquid is
above the top of the source by h = 19–29 mm. Since the
standing wave generated in the beaker has an integer
number of half-waves fitting the liquid column, reso-
nance frequency fr depends on h.

Hinged (5) pendulum 3 with a cylinder made of cop-
per wire at its end is freely suspended above the source.
The wire is insulated by a lacquer. Cylinders I and II of
diameters d = 1.2 and 2.2 mm, respectively, are shown
in Fig. 1b.

A cavitation cluster near the end faces of cylinders
3' and 7' was stabilized by the technique described in
[7]. Due to cavitation, the pendulum was displaced
from the equilibrium position by angle ∆α, which was
determined from the displacement of the cylinder. Irre-
spective of whether both the end and lateral surfaces are
filed or the end surface is filed while the lateral surface
is covered by the lacquer, the cloud can be stabilized
near the end face. This is because the cluster is more
stable at the flat end face rather than at the convex wall
of the cylinder.

If a cavitation cluster was not formed spontaneously
at cylinder 3', its formation was forced using wire 7,
which was alternately brought near the source and cyl-
inder. The wire, which stabilizes (localizes) a bubble
cluster [7], was put into the highest pressure area (the
standing wave antinode) and then moved toward a
desired place (specifically, toward the end face of the
cylinder). When moving, the wire entrained the cluster.

It is known that the SC effect can be enhanced by
pressing a capillary against the source [2]. To model
this situation, we used auxiliary cylinder 7' of diameter
1.05 mm, which was made of copper wire with the lac-
quer insulation stripped off. This cylinder could be
placed symmetrically about the source axis and coaxi-
ally with cylinder 3'.

The cylinder spacing was monitored visually, and
the process was recorded by shadow photography using
a SensiCam Fast Shutter camera (PCO, Kelheim, Ger-
many) with a frame frequency of 30–150 per second
(the exposure time is 1 ms). Illumination was accom-
plished with an incandescent lamp through clouded
glass. To avoid distortions that can be introduced into
the beaker image by the cylindrical wall, a 32 × 37 ×
3-mm glass platelet was hermetically glued on the bea-
ker and the gap between the wall and objective lens was
filled with the same liquid as in the beaker to match the
refractive indices.

From recorded deflection ∆α of the pendulum in the
terrestrial gravitational field, one can find force F acting
on the cylinder. The system was calibrated by loads of
known weights. The load-and-pulley arrangement was
attached to the end of the pendulum suspended in air.
The calibration curve is shown in Fig. 2. The curves are
almost linear with slope K depending on the weight of
the load and balance weight. It was found that K =
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
28 µm/mg for d = 1.2 mm and K = 35 µm/mg for d =
2.2 mm.

To correlate the force acting on the cylinder with the
amount of the SC effect, we made an aluminum capil-
lary with a transparent glass extension making it possi-
ble to observe the rise of the liquid (III and IV in
Fig. 1b).

RESULTS

Visual observation shows that the cylinder is dis-
placed only in the presence of a cavitation cluster near
its end face.

(a)

α

h
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2
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1

10
9

6

7
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Glass

Cu Al

∅ 1.2 ∅ 2.2 ∅ 1.4

∅ 4

∅ 0.4

∅ 4

(b)

10

Fig. 1. (a) Design of the setup: 1, piezoelectric ceramic
sphere; 2, beaker; 3, pendulum; 7, auxiliary wire; 3' and 7',
cylinders; 4, pendulum suspension; 5, hinge; 6, balance
weight; 8, free surface of liquid; 9, rubber ring; 10, observa-
tion slits; and 11, ultrasonic generator. (b) Wires (I, II) and
capillaries (III, IV) used in the experiments.
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Digital filming made it possible to measure the force
deflecting the pendulum from the equilibrium position.
Figure 3 plots force F acting on the cylinder against
ultrasonic frequency f. Each data point is the result of
averaging over three measurements. The curve is of res-
onant character, the larger the diameter of the cylinder,
the wider the resonance Fig. 3 (b, c). For the cylinder
with a diameter of 2.2 mm, the resonance peak (h =
19 mm) is near fr = 29.67 kHz; for h = 29 mm, at fr =
27.58 kHz. For the smallest diameter cylinder, the force
is the highest, about 15 mg (Fig. 3, curve a). Negative
values of the force are due to the cluster stabilized at the
lateral surface of the cylinder.

If second cylinder 7' is placed x0 distant from first
cylinder 3' (Fig. 4a), the cylinders are attracted to each
other (Fig. 4b), thereby increasing the measured force
acting on the right-hand cylinder. Figure 4 distinctly
shows the formation of cavitation clusters near the end
faces of the cylinders being attracted. At closer exami-
nation (Fig. 4b, the sixth frame from top), it was found
that the force decreases when the cylinders come into
contact with each other. The displacement of the pendu-
lum was measured after its oscillations had decayed
completely. The dependence of the attracting force
between the cylinders on the ultrasonic frequency is
shown in Fig. 3 (curve d). The curve is of resonant char-
acter with a peak at fr = 27.47 kHz. At the maximum,
the force reaches a value of 86 mg. The distance
between the cylinders is calculated by the formula x =
x0 – F*K.

At a certain initial value of x0 (with the ultrasonic
source switched off, Fig. 4a), switching the source on
causes self-oscillation of the cylinders lasting several
minutes.

40

2

80 120 160 200

4

6

8

0
m, mg

dx, mm

1

2

Fig. 2. Calibration curves for the pendulum with the cylin-
der of diameter (1) 1.2 and (2) 2.2 mm.
Figure 4b shows the variation of the gap and the
shape of cavitation clusters near the end faces of both
cylinders within an oscillation period. The cavitation-
induced period-averaged force is seen to attract the cyl-
inders to each other (the time-averaged position of the
right-hand cylinder is shifted relative to its equilibrium
position shown in Fig. 4a, 〈x〉  < x0. The left-hand pen-
dulum remains almost unmoved, while the right-hand
pendulum oscillates (Fig. 5a). The smaller the cylinder
spacing, the greater the cavitation-induced attracting
force between the cylinders. By the time the cylinders
come into contact, the cloud is displaced from the gap,
the attracting force decreases, and the right-hand pen-
dulum tends toward the equilibrium position. However,
it goes through the equilibrium position by inertia,
strikes the left-hand pendulum, and bounces back from
it. The gap widens, allowing for formation of a new
bubble cluster, generating the attracting force, and the
process recurs. Since the system possesses the feedback
described above, self-sustained oscillations set in.

Figure 5b plots the rate of variation of cylinder spac-
ing dx/dt against x (phase diagram) for more than two
self-oscillation periods (ultrasonic frequency f =
27.5 kHz). The self-oscillation period is about 0.6 s,
which corresponds to self-oscillation frequency fso =
1.7 Hz (fso ! f ).

The SC effect was studied with the aluminum capil-
lary placed vertically, so that cavitation was generated
at its end face. When the capillary and cylinder were
immersed in the same area over the source, the level of
the liquid in the extension under ultrasonically induced
cavitation rose by dH (Fig. 3 (e, f)) compared with the
no-cavitation case (the rise is due to capillary forces
alone). It follows from Fig. 3 that the frequency depen-
dences of the force acting on the cylinder and of the
height of the liquid correlate: both peak near 29.6 kHz.

27.5 28.5 29.5 30.526.5

16

12

8

4

0

–4

f, kHz

a—F, mg
b—F, mg
c—F, mg
d—F(×10 mg)
e—dH, cm
f—dH, cm

Fig. 3. (a–d) Force vs. ultrasonic frequency for (a–c) one
and (d) two cylinders and (e, f) height of the liquid in the
aluminum capillary vs. frequency. The cylinder diameter is
(a) 1.2 and (b, c) 2.2 mm. The inner diameter of the capil-
lary is (e) 0.4 and (f) 1.4 mm. The distance between the
source and liquid surface h = (a, c, d) 19 and (b, e, f) 29 mm.
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The height of the liquid at resonance is almost indepen-
dent of the capillary diameter and equals 8.4 and 9.1 cm
for the smaller and larger diameters, respectively. The

(‡)

(b)

Fig. 4. Motion-picture frames of the 1.2-mm-diameter cyl-
inder (on the right) attached to the pendulum and the auxil-
iary wire (on the left) when the ultrasonic source is switched
(a) off and (b) on. Panel “b” shows cavitation clusters stabi-
lized near the end faces. The exposure time is 1 ms; the time
interval between frames, 67 ms.
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
hydrostatic pressure of such a liquid column is about
0.89 kPa, which is 5.7 times higher than the pressure
averaged over the cross-sectional area of the continuous
cylinder of diameter d = 1.2 mm.

DISCUSSION

There are a number of models considering the SC
effect. One of them relates the SC effect to the stream-
generating collapse of the bubble near the mouth of the
capillary [2]. If the bubble is on the capillary axis, one
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Fig. 5. (a) Self-oscillations of the (e) gap, as well as of the
coordinates of the (s) left- and (h) right-hand cylinders.
The continuous curves refer to the equilibrium values of the
coordinates of the end face (without ultrasound). (b) Phase
diagram of the pendulum self-oscillations under cavitation.
x1 and x2 are the coordinates of the left- and right-hand cyl-
inders.
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may expect that it will collapse nonspherically (nonuni-
formly), forming a cumulative stream. The stream
entering the capillary imparts a momentum to the liq-
uid, causing it to rise. The force acting on the capillary
is directed oppositely to the flow velocity vector in the
channel. Note that, generally, the formation of the
stream is not obligatory. A shift of the center of mass of
the bubbles due to the so-called Kelvin impulse [8] suf-
fices to generate the SC effect. In this case, an increase
in the spherical accumulation of the energy inside a
bubble is consistent with experimental data for
enhancement of the glow intensity from a cavitation
cluster [9].

At a maximal rise of the liquid in the capillary, a
cluster (and not a single bubble) was observed [7] at its
end face that collapsed spherically symmetrically.
Under cavitation, the net pressure field in the liquid is
the sum of the field of the standing wave generated by
the source inside the sphere and outside it (in the bea-
ker) and the field of bubble-induced waves. In the rar-
efaction phase, the pressure does not drop below a
value corresponding to the cavitation strength of the
liquid. Transformation of the rarefaction wave into a
compression wave (an analogue of the “ebullition”
wave) and the radiation pressure also positively con-
tribute to the pressure averaged over the wave period
[10]. Thus, the pressure in the liquid under cavitation
may oscillate about the mean exceeding the hydrostatic
pressure. In this case, the force acting on the capillary
is codirected with the flow velocity vector in the
channel.

It was found that the force acting on the cylinder is
directed toward a cavitation cluster stabilized at the end
face of the capillary. It can be assumed that, when a
cluster or a bubble collapses with the formation of a
stream, the force acting on the liquid is counterbal-
anced by the force acting on the cylinder due to bubble–
wall attraction. While not being completely adequate to
the phenomenon considered, this model correctly pre-
dicts the force direction.

Since the pressure on the end face of the cylinder
with a diameter of 1.2 mm reached 0.16 kPa at reso-
nance, the SC effect can be explained, at least partially,
by a counterpressure arising as a result of cluster–cap-
illary interaction. The fact that the force increases in the
presence of an opposite solid wall (Fig. 3d) strengthens
this supposition. The maximal force with the second
cylinder exceeds the force without it by a factor of 5.7.
Note that the SC effect can be enhanced by tightly
pressing the capillary against the wall of the source or
cavity [2].

Therefore, we believe that the SC effect generalizes
a number of nonlinear cavitation effects producing a
positive mean pressure in the capillary. One can assume
that the force acting on the end face of the cylinder
placed at the center of the source will be much higher,
since the SC effect is the most pronounced if the end
face of the capillary is at the center of the sphere.

Modulation of the cavitation force acting on a cylin-
der by means of another cylinder generates self-sus-
tained oscillations in the system. Self-oscillations set in
when the initial oscillation amplitude exceeds the gap
between the cylinders, thus providing the contact (col-
lision) between them (Fig. 4). If collision is absent, the
oscillations of the pendulum decay with a damping dec-
rement depending, e.g., on the viscosity of the liquid.

CONCLUSIONS

Thus, it is shown that, when a cavitation cluster is
stabilized near the end face of the cylinder, the latter
experiences the action of an attracting force that
depends on the cavitation intensity, as well as on the
dynamics and shape of the cluster. Eventually, the
dependence of the force on the ultrasound frequency
has a resonant form.

Under definite conditions, ultrasonically induced
cavitation in the gap causes the pendulum to self-oscil-
late. The self-oscillation frequency is several orders of
magnitude lower than the frequency of the forcing
ultrasound and may fall into the audible range, causing
noise and vibration of a device.

These effects may be useful in designing cavitation
sensors and ultrasonic source protection, as well as in
turning a system under cavitation to resonance.
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Abstract—The propagation and spectrum of eigenwaves in a periodic ferromagnet–semiconductor structure
subjected to a plane bias field perpendicular to the propagation direction are studied. Transformation matrices
for the structure period and dispersion relations for the TE and TM waves are obtained and analyzed in the wave-
length region where the spectrum exhibits a band structure. It is demonstrated with the reflection coefficient that
the external field can be used to control the eigenwave properties in different ranges. © 2005 Pleiades Publish-
ing, Inc.
INTRODUCTION

Electromagnetic wave propagation in multilayer
periodic structures consisting of different materials has
attracted considerable attention of researchers for many
years [1–3]. In terms of parameter control efficiency,
semiconductors [4] and magnetics [5, 6] seem to be the
most promising for periodic structures, since their char-
acteristics can easily be varied by applying electric or
magnetic fields. One of the most important characteris-
tics of a periodic structure is its band spectrum, which
relates the frequency and wavevector of eigenwaves
propagating in it. There is direct analogy between elec-
tromagnetic waves in periodic structures and electron
density waves in a periodic crystal field, which follows
from translation symmetry and, as a consequence, from
similar dispersion relations. Therefore, a number of
features, such as forbidden and allowed energy (fre-
quency) bands, are typical of both electron and electro-
magnetic waves [7].

The band spectrum of semiconductor–insulator
periodic structures was comprehensively studied in
[8−10]. For helical and multidomain magnetogyrotro-
pic periodic structures, the spectrum was carefully
studied in the optical range, where the gyrotropic prop-
erties of a magnetic depend on its permittivity [11−13].
For layered ferromagnet–insulator structures, a general
dispersion relation at microwave frequencies was stud-
ied in the thin-layer approximation, which assumes that
the period of the structure is much shorter than the
wavelength in the medium (d ! λ) [14, 15]. Of partic-
ular applied interest may be a magnetic–semiconductor
structure, which exhibits the gyrotropic properties for
TE waves in the microwave range (due to magnetic
gyrotropy) and for TM waves in the IR range (due to
electric gyrotropy). In this paper, we study the eigen-
wave spectrum in a medium consisting of alternating
magnetic insulating and nonmagnetic semiconductor
1063-7842/05/5007- $26.00 0924
layers subjected to an external plane magnetic field
both in the thin-layer approximation and under condi-
tions when the spectrum exhibits a band structure.

GENERAL EQUATIONS

Consider a planar layered periodic structure consist-
ing of magnetic layers with thickness d1 and semicon-
ductor layers with thickness d2. The OZ axis of the Car-
tesian system is perpendicular to the interfaces. An
external bias field is aligned with the OX axis and an
electromagnetic wave propagates along the interfaces
(along the OY axis) normally to the external bias field.
The high-frequency properties of magnetic layers are
described through their permeability, which is gener-
ally a tensor. Magnetics are known to exhibit tensor
properties due to magnetic gyrotropy in the microwave
range [16]. For the coordinate system and bias field
direction chosen, the nonzero components of the per-
meability of an isotropic magnetic have the frequency
dependences

(1)

Here, ωM = 4πγM, ωH = γH, and ωr = ξωH, M is the sat-
uration magnetization, H is the external static bias field,
γ is the gyromagnetic ratio, and ξ is the relaxation
parameter of the magnetic system. For electric proper-
ties, the ferromagnet also represents an isotropic
medium; therefore, its permittivity tensor is a diagonal
matrix with components εf.

µyy µzz 1
ωM ωH

2 iωrω+( )
ωH ωH

2 ω2– 2iωrω+( )
-----------------------------------------------------,+= =

µyz µzy–
iωωM

ωH
2 ω2– 2iωrω+

-----------------------------------------,= =

µxx 1.=
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For semiconductor layers, the nonzero components
of the permittivity have the form [4]

(2)

Here, ωp is the plasma frequency; ωc = eH/m*c is the
cyclotron frequency; m* is the effective mass of carri-
ers; ν is the effective collision frequency; and ε0 is the
lattice part of the permittivity, which, in general,
depends on frequency [17]. The permeability tensor of
a nonmagnetic semiconductor will also be considered
to be a diagonal matrix with components µs close to 1.

Solving the Maxwell equations for each of the lay-
ers with regard to the propagation direction and mate-
rial parameters of the layers yields two eigenmodes: the
TE mode with field components (ex, hy, hz) and the TM
mode with field components (hx, ey, ez). Let us write
expressions for the fields of these differently polarized
waves in each of the media. All the wave field compo-
nents are assumed to vary with time as exp(iωt) and
along the propagation direction as exp(–iky), where k is
longitudinal component of the wavevector (i.e., the
propagation constant). These exponential factors are
further omitted.

The components of the TE wave propagating in the
magnetic layers depend on the transverse coordinate as
follows:

(3)

where k0 = ω/c, ω and c are the frequency and velocity

of the wave in a vacuum, νf = ( εfµ⊥  – k2)1/2 is the
transverse component of the wavevector, and µ⊥  = µyy –
µyzµzy/µzz is the effective permeability of the magnetic
layers.

The expression for µ⊥  in view of (1) implies that the
characteristic frequencies of the magnetic layers are
ferromagnetic resonance frequency ωf =

, at which µ⊥   ∞ if magnetic relax-
ation is neglected, and antiresonance frequency ωa =
ωH + ωM, at which µ⊥  = 0. It then follows that, at micro-
wave frequencies, the characteristics of the propagating
wave considerably depend on the external magnetic
field and, thus, may be effectively controlled by it.

εyy εzz ε0

ωp
2 ω iν+( )

ω ω iν+( )2 ωc
2–[ ]

-------------------------------------------,–= =

εyz ε– zy

iωp
2ωc

ω ω iν+( )2 ωc
2–[ ]

-------------------------------------------,–= =

εxx ε0.=

exf A1 iνfz( )exp A2 iνfz–( ),exp+=

hyf
i

k0µ⊥
-----------

dexf

dz
---------

kµyz

k0µ⊥ µzz

------------------exf,+=

hzf
kµyy

k0µzzµ⊥
------------------– exf

iµzy

k0µzzµ⊥
------------------

dexf

dz
---------,–=

k0
2

ωH ωH ωM+( )
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For the semiconductor layers, the field components
of the TE wave can also be represented by expressions
(3) with the substitutions f  s, µ⊥  = µαα  µs,
µαβ = 0, and εf  ε0. The characteristic frequencies of
lattice part ε0(ω) of the semiconductor permittivity are
several orders of magnitude higher than microwave fre-
quencies. Therefore, in the microwave range, ε0 can be
regarded as a constant and insulating layers, a passive
medium for the TE wave.

The TM wave field in the semiconductor layers can
be written as

(4)

where νs = ( ε⊥ µs – k2)1/2 and ε⊥  = εyy – εyzεzy/εzz.

The expression for ε⊥  in view of (2) shows that the
characteristic frequencies of the semiconductor layers

are ωs = , at which ε⊥   ∞ if collisions
are neglected, and the frequencies at which ε⊥  = 0;
that is,

For parameter values typical of a semiconductor (for
example, InSb), ωp = 4.81 × 1012 s–1, ωc = 3.2 × 1011 s–1,
ν = 1010 s–1, and ε0 = 17.8, we have ωs ≅  1.18 × 1012 s–1,

 ≅  1.29 × 1012 s–1, and  ≅  0.98 × 1012 s–1. These
frequencies are seen to fall into the far-IR range, where
the characteristics of the TM wave in a semiconductor
can be controlled by applying a biasing field.

In the magnetic layers, the components of the TE
wave can be expressed by formulas (4) with the substi-
tutions s  f, ε⊥  = εαα  εf, εαβ = 0, and µs 
µxx = 1. For the TM wave, the magnetic layers with the
bias field direction chosen represent a passive medium
that cannot be controlled by an external magnetic field.

TRANSFORMATION MATRIX AND DISPERSION 
RELATION

To find the amplitude distribution of the wave field
in an infinite periodic layered structure, we introduce
transformation matrix  for two layers constituting the
period. This matrix relates the tangential components
of the field at the beginning and at the end of the period.
In particular, the amplitudes of the TE wave field com-
ponents at the boundaries of nth and (n – 2)th layers are

hxs B1 iνsz( )exp B2 iνsz–( ),exp+=

eys
i

k0ε⊥
----------

dhxs

dz
----------–

kεyz

k0ε⊥ εzz

-----------------hxs,–=

ezs

kεyy

k0εzzε⊥
-----------------hxs

iεzy

k0εzzε⊥
-----------------

dhxs

dz
----------,+=

k0
2

ωc
2 ωp

2/ε0+

ωb
±( ) 1

2
------- ωc

2 2
ωp

2

ε0
------ ωc ωc

2 4
ωp

2

ε0
------+±+

1/2

.=

ωb
+ ωb

–

m̂
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related as follows:

(5)

Taking into account that the tangential field compo-
nents at the interfaces must be continuous and periodic,

(6)

we arrive at expressions for the transformation matrix
elements,

(7)

where C1 = cosνfd1, C2 = cosνsd2, S1 = sinνfd1, and S2 =
sinνsd2.

Proceeding in a similar way, we can derive the com-
ponents of transformation matrix  for the TM wave.

A dispersion relation for electromagnetic waves in a
medium consisting of alternating magnetic and semi-
conductor layers can easily be derived using the period-
icity conditions exs(d) = exf(0)exp(iνeffd) and hys(d) =
hyf(0)exp(iνeffd),

(8)

where νeff is the effective Bloch wavenumber, which is
actually the period-averaged transverse component of
the wavevector of the wave propagating in the structure.

With regard to the expressions for the diagonal ele-
ments of matrix  for the TE and TM waves, this rela-
tionship can be reduced to

(9)

Dispersion relations (9) specify the spectrum of
electromagnetic modes propagating in a periodic struc-

εxn m11exn 2– m12hyn 2– ,+=

hyn m21exn 2– m22hyn 2– .+=

exf d1( ) exs d1( ), hyf d1( ) hys d1( ),= =
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GTE µs

2µ⊥
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2 νs

µs
2νf
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νs
----

k2

νfνs
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εyz
2

εzz
2
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.=
ture with a given biasing field configuration and propa-
gation direction.

ANALYSIS OF THE DISPERSION 
RELATION

Solutions to dispersion relations (9) exist for both
real and imaginary values of parameters νf and νs, i.e.,
for both bulk and surface collective polariton waves.
These relationships have the simplest form in the thin-
layer approximation, when the conditions νfd1, νsd2 ! 1
are satisfied. In this case, the effective Bloch wavenum-
bers for eigenwaves are given by

(10)

where θ = d1/d2 and parameters θ/(1 + θ) and 1/(1 + θ)
determine the contributions of the magnetic and semi-
conductor layers, respectively, to structure period d =
d1 + d2.

At frequencies ω = (1010–1012) s–1, relationships
(10) are valid for structures like that under study at d <
102 µm. As follows from expressions (10), the charac-
teristics of a layered medium may be varied over a wide
range by varying both a bias field and the semiconduc-
tor-to-magnetic layer thickness ratio.

Figure 1 shows the frequency dependences of the
real and imaginary parts of the effective Bloch wave-
numbers for the TE and TM modes near the resonance
frequency of parameters µ⊥ and ε⊥  at bias field H =
2000 Oe. The real part of the effective Bloch wavenum-
ber (thick line) specifies the effective wavelength of the
periodic part of the field distribution along the z coordi-

nate, i.e., λeff = 2π/Re( ). The imaginary part of

the Bloch wavenumber, , which is responsible
for the penetration depth of the wave into the periodic

structure,  = Im( ), is plotted by the thin line.
Hereafter, calculations were made for the following
values of the characteristic frequencies and parameters:
ωM = 3.11 × 1010 s–1, ωH = 3.52 × 1010 s–1, ωr = 1.06 ×
108 s–1, εf = 5.5, and θ = 1. The real and imaginary parts

of  reach maxima at ferromagnetic resonance fre-
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TE 1

1 θ+
------------ νf

2θ2 1
µs

θµ⊥
---------+ 

  -=

+ νs
2 1

θµ⊥

µs
---------+ 

  µyz
2 µs

µzz
2 µ⊥

-------------θk2–

1/2

,

νeff
TM 1

1 θ 1–+
---------------- νs

2θ 2– 1
εf

θ 1– ε⊥

-------------+ 
  -----=

+ νf
2 1

θ 1– ε⊥

εf
-------------+ 

  εyz
2 εf

εzz
2 ε⊥

-----------θ 1– k2–

1/2

,
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TE TM,

νeff
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δeff
1– νeff
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quency ωf = 4.83 × 1010 s–1 of the effective permeabil-
ity. A minimum of the real part of the Bloch wavenum-
ber is observed in the interval ωf < ω < ωa, where ωa =
6.63 × 1010 s–1 is the antiferromagnetic resonance fre-

quency. A minimum of the imaginary part of  is
observed in the interval ωa < ω < ωf. For the TM wave,

the real and imaginary parts of  reach a maximum
at the resonance frequency of effective permittivity ε⊥
(and not of the effective permeability). A minimum of

Im( ) is observed in the intervals  < ω < ωs and

ω > .

At layer thicknesses d1 ≥ 102 µm, the thin-layer
approximation fails and relationships (9) need a more
rigorous analysis. At frequencies ω @ ωf, at which
magnetic layers lose gyrotropic properties, a ferromag-
net–semiconductor structure is similar to a semicon-
ductor–insulator structure in electromagnetic charac-
teristics. The analysis of general dispersion relation (9)
for the TM wave in a semiconductor–dielectric struc-
ture is given in [8–10]. We will concentrate on general
dispersion relation (9) for the TE wave as applied to a
symmetric structure in the microwave range, neglecting
magnetic relaxation (ωr = 0).

In analyzing dispersion relation (9), dependences
ω(k) given by

(11)

are of great importance, because, at k > k1, 2, transverse
wavenumbers νs and νf are imaginary and the associ-
ated polariton waves are surface waves. These depen-
dences (the frequency against the normalized wave-
number) are plotted in Fig. 2 (curves 1 and 2). In the
hatched and unhatched areas, νs and νf are real (and so
bulk waves) and imaginary (surface waves localized at
the interfaces), respectively. In the doubly hatched
areas, bulk waves exist in both media; in the singly
hatched areas, bulk waves exist in one medium and sur-
face ones in the other. The propagation constant is nor-
malized by kf = ωf/c. The characteristic frequencies
shown in Fig. 2 considerably depend on the bias field,
which makes control of the type and parameters of
waves propagating in a magnetogyrotropic structure
feasible.

Figure 3 plots the frequency dependence of parame-
ter νeff calculated by (9) for three values of normalized
propagation constant k/kf = (a) 1.86, (b) 4.97, and
(c) 8.69, which correspond to different regions on the
(ω, k) diagram. Allowed and forbidden frequency
regions are seen, indicating that the spectrum of the col-
lective waves has a band structure. The spectrum is
periodic in Bloch wavenumber with a period of 2π/d;
therefore, it is shown for each k in that interval of νeff
corresponding to one of the Brillouin zones. The
allowed bands, which support propagation of the col-

νeff
TE

νeff
TM

νeff
TM ωb

–

ωb
+

k1
ω
c
---- ε0µs, k2

ω
c
---- εfµ⊥ ω( ),= =
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lective bulk and surface waves, occupy the frequency
interval between Bloch wavenumbers νeff =2πn/d and
π(2n + 1)/d, where n = 0, 1, 2, … . In the range ω < ωf,
the allowed bands come closer together, both the
allowed and forbidden bands becoming narrower. This
is because, as the frequency approaches the ferromag-
netic resonance frequency, µ⊥  tends to infinity and so
does the optical thickness of the ferromagnet layers,
which causes rapid oscillations of the trigonometric
functions in dispersion relationship (9) and generates
many pass and stop bands. With an increase in the prop-
agation constant, bands with the same number shift

10

3 4
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ω, 1010 s–1
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100
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200

300

0
8 12 16

1
2

Fig. 1. Effective Bloch wave number νeff for the (1) TE and
(2) TM waves vs. frequency.
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toward higher frequencies. At ω > ωf, a single narrow
band appears, corresponding to a surface polariton
mode. At small k, this mode is akin to a surface wave on
the side of the magnetic layers and to a bulk wave on the
side of the semiconductor layers. At k > k1(ω), this
mode becomes a surface wave on the side of the semi-
conductor layers as well. At ω > ωa, bulk-wave bands
appear again. Their numbers are n' = 1, 2, 3, … .

REFLECTION COEFFICIENT SPECTRUM

A deeper insight into the eigenwave spectrum in the
periodic structure under study can be gained with
experiments on reflection of electromagnetic waves
incident on the structure from a homogeneous medium.
Prior to experiments, however, it would be reasonable
to define the coefficient of reflection of the TE wave
from our periodic structure and analyze its behavior
versus the parameters of the structure and incident
wave. Let a plane wave with frequency ω and wave-

number ki = k0  be incident from the domain z < 0
occupied by a homogeneous nonmagnetic medium of
permittivity ε and permeability µ on a layered periodic
structure occupying the domain z > 0 normally to the
interfaces. In this case, the total wave field in the
domain z < 0 is a superposition of the incident and
reflected fields,

(12)

εµ

hy hy
i( ) ikiz( )exp r ikiz–( )exp+[ ] ,=

ex µ/εhy
i( )– ikiz( )exp r ikiz–( )exp–[ ] ,=

0 5 10

ωa

ωf

ω

k/kf

1

2

2

Fig. 2. Frequency vs. propagation constant diagram defin-
ing the ranges of existence of the bulk and surface waves.
Curves 1 and 2 are described by Eqs. (11).
where r = /  is the complex amplitude reflection

coefficient and  and  are the amplitudes of the
reflected and incident waves.

The reflection coefficient will be sought using the
expressions for the field in either of the media, bound-
ary conditions stated above, periodicity conditions (6),
and boundary conditions

(13)

at the interface between the homogeneous half-space
and ferromagnet.

Solving the resulting set of equations yields an
expression for energy reflection coefficient R = |r|2,

(14)

where the longitudinal component of the wavenumber
in elements m12 and m22 of the transmission matrix
should be set equal to zero (k = 0), because the wave is
incident normally to the structure.

Figure 4 plots the reflection coefficient calculated by
formulas (14) versus frequency. In the forbidden bands,
R = 1. In the bands allowed for the bulk waves in the
ferromagnet, there are frequencies at which R  0
and the incident wave energy is almost totally trans-
ferred to the layered medium. With relaxation
neglected, the transferred portion of the energy is spec-
ified by transmission coefficient T = 1 – R. Throughout
the frequency range ωf < ω < ωa, except for a narrow
interval corresponding to the surface polariton mode

hy
r( ) hy

i( )

hy
r( ) hy

i( )

ex 0( ) exf 0( ), hy 0( ) hyf 0( )= =

R iνeffd( )exp m22– m12 ε/µ–

iνeffd( )exp m22– m12 ε/µ+
---------------------------------------------------------------------

2

,=

νeff/d
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Fig. 3. Frequency vs. normalized Bloch wavenumber of the
periodic structure at k/kf = (a) 1.86, (b) 4.97, and (c) 8.69.
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(arrow in Fig. 4), total internal reflection is observed
(R = 1). The small difference of the reflection coeffi-
cient from unity in the range where the collective sur-
face mode is excited indicates that this mode is difficult
to detect at normal incidence of the wave on the struc-
ture.

CONCLUSIONS

We studied the dispersion properties of a ferromag-
net–semiconductor structure and conditions under
which bulk and surface polariton waves exist. A spe-
cific feature of the structure is the feasibility of effec-
tively controlling the parameters of two types of waves
of different polarizations in nonoverlapping frequency
bands. Varying the thickness ratio of the layers that con-

1

0 2

R

4

1

0
4.8

ωf

4.94.7

1

0
6

ω, 1010 s–1
9

Fig. 4. Reflection coefficient vs. frequency at normal inci-
dence of the wave on the periodic structure (k = 0).
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stitute the period of the structure, one can change the
width and number of the pass and stop bands, as well as
the depth of field penetration into the structure.
A change in an external bias field shifts the characteris-
tic frequencies and also allowed and forbidden fre-
quency bands in the spectrum of collective bulk and
surface waves.
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Abstract—Bunching, acceleration, and transverse focusing of intense ion beams in an undulator linac are con-
sidered. Such an accelerator features the absence of an rf field harmonic synchronous with the beam. A 3D
equation of motion in the Hamiltonian form is derived in the smooth approximation, and the general conditions
for ion beam acceleration and transverse focusing in the undulator linac are formulated. Basic analytical results
are compared with the results of numerical simulation of the beam dynamics in the polyharmonic field of an
accelerating cavity. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

A challenging task of contemporary acceleration
physics is designing low-energy linacs of high-intensity
ion beams. These devices have found increasing favor
in scientific research and can be applied to advantage,
e.g., in power engineering. A bunching accelerator
intended for formation and acceleration of light ions
with energies varying in the ranges from 50–150 keV to
1−3 MeV, beam currents from several tens of milliam-
peres to several hundreds of milliamperes, and a current
transmission coefficient close to unity is the most diffi-
cult to develop. In acceleration of intense ion beams,
the self-field of the beam’s space charge has a consider-
able effect, especially at low energies, and provision of
efficient transverse focusing is a bottleneck. For slow
ions, this problem can hardly be solved with external
focusing elements, and so both longitudinal and trans-
verse focusings must be accomplished by tailoring the
field configuration in the system. Today, bunching
accelerators using an rf quadrupole (RFQ) [1] and other
rf focusing (RFF) techniques [2, 3] are the most popu-
lar. In the RFQ accelerators designed in Russia and
abroad, beam currents of 100–150 mA (the maximal
values for rf accelerators) have been achieved.

Further elevation in the beam current in conven-
tional rf accelerators is a great challenge. To do this
requires increasing either the ultimate beam current
density (which is virtually infeasible) or the beam
diameter (which, in turn, requires widening of the chan-
nel aperture). Ribbon beam accelerators are viewed as
an alternative to the conventional systems. A high ratio
between the transverse sizes in ribbon beams allows for
a decrease in the current density by increasing the
cross-sectional area without changing the beam inten-
sity, which facilitates transport of a high-current beam
in the accelerator channel.
1063-7842/05/5007- $26.00 0930
A number of ribbon-beam RFF accelerators were
suggested earlier (see, e.g., [4, 5]). However, they suffer
from considerable drawbacks, such as a low ultimate
current density and the need for a very strong rf field
(300 kV/cm). Another version of ribbon beam acceler-
ator is the undulator linac [6–8]. Here, acceleration and
focusing of the beam are provided in the field of two
electromagnetic waves nonsynchronized with the beam
(i.e., in the field of two undulators). Linacs with an
electrostatic undulator (UNDULAC-E) and with an rf
undulator (UNDULAC-RF, Fig. 1) have tuned out to be
the most appropriate for accelerating ribbon beams. In
the former case, the beam is accelerated and focused
with a spatial harmonic of the rf field and one spatial
harmonic of the electrostatic field of the undulator. In

y

2b

2l
2a

x

Dr

z

Fig. 1. Design of the linac with an rf undulator.
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the latter, the beam is accelerated and focused with two
or more spatial harmonics of the rf field of the periodic
cavity that are nonsynchronized with the beam.

In this work, we carry out detailed analysis of the 3D
dynamics of a ribbon beam in an rf undulator accelera-
tor to see whether high-current beam acceleration with
this new-type accelerator is feasible.

EQUATION OF MOTION IN THE SMOOTH 
APPROXIMATION

Comprehensive analysis of the beam dynamics in a
polyharmonic field is a challenge. Fast oscillations and
the strong dependence of the rf field components on the
transverse coordinates that are observed in a ribbon
beam accelerators give no way to apply the standard
linear approximation to the field expansion in the axial
region. For this reason, elaboration of analytical
approaches to studying the dynamics seems topical. In
[6, 7], it was suggested that the particle dynamics in
rapidly oscillating fields be studied with the averaging
method (the so-called smooth approximation) and the
conditions of applicability of the smooth approxima-
tion to the given electrodynamic problem were formu-
lated. As in [7], the rf field in a periodic resonant struc-
ture is represented as an expansion in spatial harmonics
under the assumption that the period of the structure is
a slowly varying function of the longitudinal coordi-
nate. In the quasi-static approximation, the potential of
the rf field in the slot channel can be expressed as

(1)

where hn = (µ + 2πn)/D is the longitudinal wavenumber
for an nth rf field harmonic, µ is the oscillation mode
and D is the period of the structure.

Function Un(x, y) satisfied the equation

(2)

(∆⊥  is the transverse component of the Laplacian) and
determines the dependence of the potential of the trans-
verse coordinates. Here, two types of solutions are pos-
sible. If Un(x, y) ~ cosh(hn, xx)cosh(hn, yy), only the lon-
gitudinal component of the electric field strength is
present at the axis of the accelerator channel (longitudi-
nal undulator, α = 0). If Un(x, y) ~
cosh(hn, xx)sinh(hn, yy), only the transverse components
of the electric field are nonzero at the channel axis
(transverse undulator, α = π/2). Here, hn, x and hn, y are

the transverse wavenumbers,  +  = . The
ratio hn, x/hn, y specifies the cross-sectional shape of the
accelerator channel. The rf field component versus
transverse coordinate dependences are easy to find
using the relationship En = –∇ Un.

U Un x y,( ) hn zd∫ α+( ) ωt( ),coscos
n 0=

∞

∑=

∆⊥ Un hn
2Un=

hn x,
2 hn y,

2 hn
2
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We will assume that beam velocity β differs mark-
edly from the phase velocity of all field harmonics, βn =
ω/coshn (n = 0. 1, …) but is close to the velocity of the
combined wave that is a superposition of an nth and pth
harmonic, β ≈ βv = 2ω/c(hp ± hn). Then, a solution to the
equation of motion is convenient to seek as a superpo-
sition of slowly varying and rapidly oscillating func-
tions. Supposing that amplitude  of fast velocity
oscillations is much lower than amplitude v  of the
slowly varying component, we can write the equation
of motion in the smooth approximation in the same way
as in [6, 7],

(3)

where Ueff has the meaning of the effective potential
function describing the interaction of the particles with
the polyharmonic field of the cavity. This function
depends only on slowly varying transverse coordinates
R⊥  = (ρ, η) (where ρ = 2πx/λ and η = 2πy/λ) and slowly
varying phase of the particle in the field of the com-

bined wave ϕx = dz – ωt, where hv = (hp ± hn)/2 is

the longitudinal wavenumber of the combined wave
arising as a result of superposition of the fields of the
nth and pth harmonics. Now let us introduce the dimen-
sionless amplitudes ei = eλEi/2πW0 of the rf field har-
monics, dimensionless time τ = ωt, and dimensionless
longitudinal coordinate ξ = 2πz/λ (λ and ω are, respec-
tively, the wavelength and frequency of the rf field; W0
is the energy of the ion being accelerated; and e is the
charge of the particle). Then, the effective potential
function has the form [7]

(4)

The term

in Eq. (4) is responsible for transverse focusing, and the
terms

and

ṽ

d2R

dτ2
--------- ∇ Ueff,–=

hv∫

Ueff U1 U2 U3.+ +=

U1 ρ η,( ) 1
16
------ en

2 ∆n v,
–( ) 2– ∆n v,

+( ) 2– )+(
n

∑=

U2
1
16
------ enep ∆p v,

–( ) 2–

hp hn– 2hv=

∑



=

+ enep ∆n v,
–( ) 2–

hn hp– 2hv=

∑ 



2ϕv( )cos

U3
1
16
------ ez n, ez p, e⊥ n, e⊥ p,–( ) ∆n v,

–( )2

hp hn+ 2hv=

∑=

× 2ϕv 2αn+( )cos
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are responsible for acceleration of the particles in the
longitudinal direction and transverse defocusing of the

beam. Here,  = (hn ± hv)/hv.

From the above expressions for the effective poten-
tial function, one can find the Hamiltonians of the
beam–combined wave system in the smooth approxi-
mation,

(5)

The equation of motion written in form (3) allows a
simple analysis of both the longitudinal and transverse
motions of particles. Specifically, one can find trans-
verse focusing conditions, the frequencies of transverse
and phase oscillations of beam particles, and a relation-
ship between the longitudinal and transverse motions.
An intriguing feature of the linac based on an rf undu-
lator is worth noting: the modulation period of the beam
is twice as short as the rf field period.

ION BEAM DYNAMICS IN A LONGITUDINAL-
FIELD UNDULATOR LINAC

As was mentioned above, the smooth approximation
applies if the fast oscillation amplitude is much smaller
than a slowly varying velocity of the particles. For low-
energy ion beams, this condition is always fulfilled. The
beam can be effectively accelerated if the slowly vary-
ing velocity of the particles is close to the phase veloc-
ity of the combined wave but differs considerably from
the phase velocity of the nearest rf field harmonic.

Consider the simplest case when only two spatial rf
field harmonics are present in the system (n = 0 and n =
1). It is reasonable to introduce the notion of the equi-
librium particle whose averaged velocity βx equals βv.
For oscillations with µ = π mode, the longitudinal
wavenumbers are h0 = π/D, h1 = 3π/D, and hs = 2π/D;
the velocity is βs = D/λ; and, in the coordinate system
moving with velocity βv, Ueff can be written as

(6)

Here, ϕs is the phase of the equilibrium particle and ψ =
ϕ – ϕs. For oscillations with µ = 0 in a cavity with a lon-
gitudinal rf field, the wavenumbers of the fundamental
and first harmonics and the wavenumber of the com-
bined wave are, respectively, h0 = 0, h1 = 2π/D, and hv

= π/D. Then, βv = 2D/λ. Accordingly, the effective
potential function can be written in the form

(7)

For transverse-field undulators, Ueff can be found in
a similar way.

∆n v,
±

1
2
--- dR

dτ
------- 

 
2

Ueff+ H .=

Ueff 1/4 10/9e0
2 26/25e1

2 2 e0ze1z e0⊥ e1⊥–( )+ +{=

× 2ϕ s 2ψ 2α+ +( )sin 2ψ 2ϕ s( )cos+[ ] } .

Ueff 1/8 e0
2 5/9e1

2 e0e1 2ϕ s 2ψ+( )cos[+ +{=

+ 2ψ 2ϕ s( )sin ] e0ze1z e0⊥ e1⊥–( )+

× 2ϕ s 2ψ 2α+ +( )cos 2ψ 2ϕ s( )sin+[ ] } .
Using expressions (6) and (7) for the potential func-
tion, we arrive at an equation for the velocity increment
for near-axis particles in the field of the combined
wave,

(8)

where eeff = νe0e1/βs is the effective amplitude in the
field of the combined wave and ν = 1 (if µ = π) or 1/2
(if µ = 0).

Consider first the dynamics in a longitudinal-field
undulator linac for oscillations with µ = π. We assume
that amplitudes e0 and e1 of the rf field harmonics, as
well as phase ϕs of the equilibrium particle, depend on
the longitudinal coordinate. To provide effective bunch-
ing and acceleration of the beam, the undulator linac
must consist of two, bunching and accelerating, sec-
tions. For simplicity, phase ϕs of the equilibrium parti-
cle in the field of the combined wave in the bunching
section is taken to be linearly decreasing from π/2 to
3π/8 and the amplitudes of the rf field harmonics,

increasing by a sine law from initial value  =
E0, 1(z = 0). In the accelerating section, ϕs, E0, and E1
are constant. In the field of the combined wave, the
velocity of the equilibrium particle varies along the
accelerator axis according to the equation

(8a)

Solving this equation, one easily finds the laws of
variation of period D = βsλ of the structure, as well as
of the phase velocities of the fundamental, β0, s = 2βs,
and first, β1, s = 2βs/3, rf field harmonics.

Figure 2 plots phase ϕs of the equilibrium particle,
amplitudes E0 and E1 of the rf field harmonics, and
amplitude Eeff of the combined wave versus the longi-
tudinal coordinate. The calculation was carried out for
a deuterium ion beam with E0 = 150 kV/cm. The other
parameters were the following: χ = E1/E0 = 0.3, initial
ion energy Win = 150 keV (βs, in = 0.013), accelerator
length L = 2.5 m, and bunching section length Lbn = 1 m.

If the beam velocity were close to the phase velocity
of the fundamental (zeroth) harmonic, the synchronous
phase in the field of this harmonic would be equal to
ϕ0, s. In the other limiting case (if the beam velocity
were close to β1, s), the synchronous phase of the parti-
cle would be equal to ϕ1, s. As follows from Fig. 2,
quantities ϕ0, s and ϕ1, s vary with z only slightly.

From Eq. (8), one can find the separatrix for near-
axis particles and, thus, determine the limiting velocity
of the particles that can be accelerated,

(9)

dβ
dτ
------ eeff 2ϕ ,sin=

E0 1,
ε

dβs
2

dτ
-------- 2e0 ξ( )e1 ξ( ) 2ϕ s ξ( ).sin=

β βs–( )2 e0e1ν 2ϕcos 2ϕ scos+( )–(=

+ mπ 2ϕ s– 2ϕ–( ) 2ϕ ssin ).
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As applied to the combined wave, two phase ranges
should be considered: –π < ϕ < 0 and 0 < ϕ < π. In the
range 0 < ϕ < π, m = 1; in the range –π < ϕ < 0, m = 3.

As the amplitude of the combined wave grows and
ϕs decreases, the vertical (in β) and horizontal (in ϕ)
sizes of the separatrix change. Figure 3 shows the vari-
ation of the maximal vertical size of the separatrix of
the combined wave with longitudinal coordinate z
(curve 3) for χ = (a) 0.3 and (b) 0.6 in the smooth
approximation. Shown also are the same curves
obtained for the case when the beam interacts with the
zeroth harmonic alone, i.e., under the assumption that
velocity β is close to β0, s (curve 1) or β1, s (curve 2).
Curve 4 in Fig. 3 shows the z dependence of the longi-
tudinal particle velocity in the smooth approximation.
Remarkably, in this approximation, the trajectories of
all particles being accelerated are always within the
separatrix of the combined wave. The particles can be

0 1 2 3
1.0

1.2

1.4

1.6 (a) ϕ1

ϕ0

ϕs

0 1 2 3

1 × 107

(b)

Ee

z

E1

E0

2 × 107

Fig. 2. Variation of the (a) equilibrium particle phase and
synchronous phases of the rf field harmonics and (b) ampli-
tudes of the rf field harmonics and combined wave along the
z direction.

z
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lost (escape from the acceleration process) only if the
adiabatic conditions are disturbed because of a rapid
change in the phase velocity and amplitude of the com-
bined wave during bunching. Actually, however, parti-
cle losses may be due to other reasons. From Fig. 3, it
follows that, when the first harmonic is high (at E0 =
150 kV/cm, χ must exceed 1/3), the separatrices of the
combined wave and rf field first harmonic may partially
or completely overlap in the middle of the bunching
section. For a small fundamental-to-first harmonic
amplitude ratio (χ < 0.3), fast oscillations of the particle
longitudinal velocity may far exceed the vertical size of
the separatrix (Fig. 4, curves 1–3). Figure 4 shows the
longitudinal velocity of the particles with regard to fast
oscillations (curve 4) and the result of its averaging
(curve 5). Even if the separatrices do not overlap, the
phase trajectory of the particle may fall within the sep-
aratrix of the first harmonic at a certain time. Because
of the two effects described above, the particle velocity
at some z may approach the phase velocity of the first
field harmonic. Strictly speaking, the averaging method
fails in this case. Interestingly, when this happens, the
particle may be “captured” by the first harmonic in the
sense that it is accelerated in its field or even escape the
acceleration process. Since these effects are observed at
different χ, one may expect that there is an optimal har-
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Fig. 3. Variation of the vertical sizes of the separatrices
along the z direction.
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monic amplitude ratio at which accelerated ion losses
are minimal.

A more careful comparison of the dynamics results
obtained by calculation in the smooth approximation
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0 0.5
z
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1.0 1.5 2.0 2.5

1

2

3

4
5

Fig. 4. Effect of the rf field first harmonic on the beam
dynamics.
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Fig. 5. Sections of the effective potential function.
and by rigorous numerical simulation in the actual field
with subsequent averaging showed that, although the
amplitudes of slow phase oscillations in these two cases
are close to each other, their period obtained rigorously
slightly exceeds that calculated in the smooth approxi-
mation. Accordingly, the total phase advance of the lon-
gitudinal oscillations in the smooth approximation dif-
fers from the actual value. The longer the accelerator,
the greater the difference between the phase advances.
As this difference approaches some critical value, the
particle rapidly escapes the acceleration process.

In a similar way, one can analyze the beam dynam-
ics and phase motion of the particles in the rf field for
oscillations with µ = 0. In this case, the phase velocities
of the combined wave and rf field harmonics are βs =
2D/λ, β0, s = ∞, and β1, 2 = βs/2. As in the case of oscil-
lations with µ = π, the amplitude of fast oscillations of
the particle velocity far exceeds the size of the separa-
trix calculated in the smooth approximation when χ is
small. Here, the velocity does not reach the separatrix
of the first harmonic, since the difference between the
phase velocities of the combined wave and first har-
monic is larger than in the case µ = π. At large χ, the
separatrices overlap, although the oscillation amplitude
of the particle longitudinal velocity is relatively low.
Therefore, one can assume that the effect of the first rf
harmonic on the longitudinal motion is less pronounced
than in the field oscillating with µ = π for the same χ.

The above expression for the 3D effective potential
function allows us to find, in the smooth approxima-
tion, the condition for transverse stability of the parti-
cles in the undulator linac. Indeed, in the absolute min-
imum of Ueff, the conditions for longitudinal and trans-
verse stability of the beam are established
simultaneously. In the simple axial approximation
(hxx ! 1 and hyy ! 1), the transverse focusing condi-
tion can be derived analytically. For an undulator linac
with field oscillations µ = π, it is easy to show that the
absolute minimum exists at any harmonic amplitude
ratio χ. At the same time, for an undulator linac with
field oscillations µ = 0, axial focusing takes place only
at χ ≥ 2. This is because the rf field first harmonic alone
is responsible for transverse focusing of the particles in
the latter case. If the dynamics of the beam with large
transverse sizes is considered in the nonlinear approxima-
tion, transverse focusing is also attainable at smaller χ.

For an undulator linac with field oscillations µ = π,
Fig. 5 shows sections Ueff(0, 0, ψ) for x = 0 and y = 0
(curve 1), Ueff(0, y, 0) for x = 0 and ψ = 0 (curve 2), and
Ueff(x, 0, 0) for y = 0 and ψ = 0 (curve 3). The lots are
constructed for E0 = 150 kV/cm; χ = 0.6; hx/hy = 1/23;
and (a) ϕs = π/2, βs = 0.013 (the bunching section input)
and (b) ϕs = 3π/8, βs = 0.018 (the end of the buncher).
In the buncher input, Ueff has two minima and one max-
imum along the x axis. As the particle velocity grows,
these extrema smooth out and Ueff takes an absolute
minimum. The presence of the intermediate maximum
does not lead to a considerable redistribution of the par-
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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ticle density in the beam, since the transverse oscilla-
tions of the particles (across the width of the ribbon
beam) have a low frequency: less than one oscillation
for a 2.5-m-long accelerator.

More detailed examinations showed that transverse
focusing in a longitudinal-undulator linac with µ = 0 is
less effective than in the case of µ = π and, therefore, is
of no practical interest.

ION BEAM DYNAMICS IN THE TRANSVERSE-
FIELD UNDULATOR LINAC

A distinctive feature of the linac with a transverse rf
undulator is that here longitudinal acceleration takes
place in the presence of only transverse rf fields at the
axis of the accelerator. In this case, one cannot consider
the beam dynamics only in the axial region. Effective
potential Ueff is similar in shape to that obtained previ-
ously. In the four-dimensional phase space (the motion
of the particles normally to the plane of the ribbon is
neglected), the Hamiltonian relates the longitudinal and
transverse coordinates and velocities,

(10)

Here, k0 = 1 and k1 = 5/9 for the oscillations with µ = 0
and k0 = 10/9 and k1 = 26/25 for the oscillations with
µ = π. Assuming that βy ! |β – βs|, one can easily find
the projection of the four-dimensional phase volume
onto the phase plane (β, ϕ) and, thereby, determine the
condition under which the particles are involved in the
acceleration process. Estimates show that the ampli-
tudes of fast oscillations of the longitudinal velocity
and phase are small compared with the same parame-
ters in the longitudinal undulator. In the rf undulator
linac, the smooth approximation suffices to consider
the longitudinal motion. As follows from calculations,
the current transmission coefficient for both types of
oscillations is 85–90% in the smooth approximation.
Here, particle losses are associated only with a distur-
bance of the adiabatic condition.

For both types of oscillations, the transverse focus-
ing condition in the smooth approximation and the
behavior of Ueff in the transverse-field undulator linac
are similar to those in its longitudinal-field counterpart
(see above). In the latter, fast oscillations of the veloci-
ties and particle coordinates have a significant effect on
the transverse motion of the beam because of transverse
particle–field interaction. The oscillations increase
(three- or fourfold) the effective reduced transverse
emittance of the beam in the acceleration mode, which
decrease the current transmission coefficient when the
channel aperture is limited.

β βs–( )2 βy
2+ ν/4 k0e0

2 k1e1
2+( )=

+ e0e1v 2 2hyy( )cosh 2ϕ s 2ψ+( )cos 2ψ 2ϕ s( )sin+( ).
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NUMERICAL SIMULATION OF THE BEAM 
DYNAMICS IN THE UNDULATOR LINAC

To verify the analytical results for the beam dynam-
ics in the rf undulator linac, as well as to find the limit-
ing beam current, we performed a numerical simulation
of the dynamics with allowance for the Coulomb field
of the beam. The basic parameters of the accelerator
and the simulation results are summarized in the table.

Consider first the results for the undulator linac with
a longitudinal rf field (µ = π). The numerical simulation
of the deuterium ion dynamics in the smooth approxi-
mation shows that, at accelerator length L = 2.5 m and
the effective amplitude of the combined wave Eeff =
eλE0E1/(2πW0βin) = 30 kV/cm, the beam output is 1.3–
1.5 MeV and the current transmission coefficient Kt =
90%. Particle losses are due to the disturbed adiabatic
condition and can be depressed by tailoring the func-
tion of variation of the combined wave amplitude and
phase ψs(ξ) during bunching. Two bunches form during
a period of the rf field (as also follows from Eq. (4) or
(8)). When simulating the beam dynamics in the actual
field, we found that fast velocity and coordinate oscil-
lations substantially reduce current transmission coeffi-
cient Kt. It turned out that the maximal value of Kt is
60%. Furthermore, Kt considerably depends on ampli-
tude ratio χ between the fundamental and first rf field
harmonics. This fact confirms the analytical prediction
of the presence of an optimal value of χ. In our simula-
tion, optimal χ lies in the range 0.3–0.4. Such an ampli-
tude ratio is quite feasible. The optimal length of the
buncher is roughly equal to half the accelerator length.

In this undulator linac, the limiting cross-sectional
size of the beam is 5 × 0.3 cm2; the maximal current,
Imax = 200–250 mA (the maximal current density is
Jmax = 0.12 A/cm2). In the course of acceleration, the
reduced effective emittance increases roughly twofold;
however, the growth in this section is slower than in the
bunching section. The cross-sectional size of the beam
increases only slightly. A halo does not form. The max-
imal emittance of the beam calculated by numerical
simulation agrees well with the channel acceptance
found analytically.

The results of numerical simulation of the beam
dynamics in the undulator linac with a transverse rf
field for oscillations with µ = π differ insignificantly
from the case considered above (longitudinal-field
linac). The maximal cross-sectional size of the beam is
somewhat larger, 7 × 0.3 cm2; Kt = 65%; optimal value
of χ is 0.3–0.4; and the maximal beam current is also
somewhat higher, 300–350 mA. It is worth noting that
here particle losses due to longitudinal motion are
absent during bunching.

For oscillations with µ = 0, the current transmission
coefficient at χ < 1 is small in both types of the undula-
tor linacs: for the longitudinal field, maximal Kt = 30–
35%; for the transverse field, no higher than 10%.
These data corroborate the statement that transverse
focusing in the undulator linac with µ= 0 is insufficient.
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Basic parameters of the linac with an rf undulator

Parameters Longitudinal undulator Transverse undulator

Accelerator length L, m 2.5

Injection energy of deuterium ions Win, keV (βin) 100 (0.01)

Amplitude E0 of rf field fundamental harmonic, kV/cm 200 210

Amplitude E1 of rf field first harmonic, kV/cm 80 70

Buncher-to-accelerator length ratio 0.5 0.5

Cross section of the undulator linac channel, cm 10 × 0.7 10 × 0.8

Initial beam size, cm2 5 × 0.3 7 × 0.3

Transverse wavenumber ratio hx/hy 1/25

Maximal transverse and longitudinal initial emittance

εx, mm mrad 30π 30π
εy, mm mrad 0.7π 0.06π
εϕ, keV mrad 25 40

Maximal transverse and longitudinal acceptance

Ax, mm mrad 60π 60π
Ay, mm mrad 2π 2.5π
Aϕ, keV mrad 40 40

Maximal beam current density Jmax, A/cm2 0.12

Maximal beam current Imax, A 0.2–0.25 0.3–0.35

Current transmission coefficient Kt, % 60 65

Maximal beam energy Wmax, MeV (βmax) 1.2–1.5 (0.034–0.04)
The efficiency of such a linac can be raised by using tai-
lored geometry and period of the accelerator channel so
as to provide χ > 1. For an accelerator length of 2.5 m,
the maximal beam energy here is 0.9–1.1 MeV.
Because of a low current transmission coefficient, the
maximal current for the undulator linac with µ = 0 was
not estimated.

CONCLUSIONS

Thus, the analysis of the beam dynamics in an rf
undulator linac shows that the new type of accelerator
can be used to advantage in generating, bunching, and
accelerating high-current ion beams. The undulator
linac with field oscillations µ = π makes it possible to
accelerate ribbon beams to energies of about 1.5 MeV
with a high rate of acceleration. The maximal beam
current may reach 350 mA. In this device, the rate of
acceleration and the maximal current are higher than in
the conventional RFQ accelerator. While the current
transmission coefficient estimated in this study is no
higher than 65%, it can be considerably increased by
optimizing the function of variation of the equilibrium
particle phase and field amplitude in the buncher with
special methods.
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Abstract—Equations of transfer of mass, momentum, and energy for a transverse segment of a paraxial relativistic
electron beam propagating in dense and rarefied gas-plasma media along an external magnetic field are derived from
the kinetic equation. A virial equation is obtained, and the dynamic equilibrium condition that generalizes the well-
known Bennet equation for the cases under study is found. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Transport of relativistic electron beams (REBs) in
dense and rarefied gas-plasma media has recently
become a subject of extensive investigation [1–20].
Prominent among the problems concerned with REB
propagation in the above media is the transverse
dynamics of the beams. Earlier [12], the authors formu-
lated a kinetic equation that describes the evolution of
the distribution function for particles of a transverse
segment of a paraxial monoenergetic axisymmetric
REB propagating in dense and rarefied media along an
external uniform magnetic field. In this work, we, based
on this kinetic equation, derive equations of transfer of
mass, momentum, and energy; a virial equation; and a
dynamic equilibrium condition. The equations derived
are a generalization of similar equations for an REB
propagating in a dense gas plasma in the absence of a
magnetic field [5] for the case when the beam is trans-
ported under ion focusing (IF) conditions in both a
dense and rarefied gas plasma subjected to an axial uni-
form magnetic field.

PROBLEM DEFINITION

Consider an axisymmetric quasi-stationary REB
with the symmetry axis directed along the z axis that is
injected into a homogeneous gas plasma subjected to a
permanent magnetic field aligned with the z axis (the
magnetic induction is B = B0iz, where iz is the unit vec-
tor along the z direction). We represent the beam as a set
of thin transverse segments Sτ, each being injected at
time instant t = τ (at z = 0) and containing a fixed num-
ber of particles.
1063-7842/05/5007- $26.00 0937
We showed previously [12] that the beam particle
longitudinal motion in any segment Sτ can be consid-
ered as determinate in the paraxial approximation.
Unlike the longitudinal (axial) motion, the transverse
dynamics of the particles is of stochastic character: in
the phase state of transverse coordinates r⊥  and trans-
verse momenta p⊥ , the state of the beam can be charac-
terized by distribution function f τ(r⊥ , p⊥ , t). According
to [5, 12], if collisions of beam particles with neutrals
of a gas plasma result in multiple small-angle scattering
and if the scattering is assumed to be elastic and isotro-
pic, the evolution of distribution function f τ(r⊥ , p⊥ , t) of
particles entering into segment Sτ is described by the
equation

(1)

here ∆⊥  is the transverse component of the Laplacian.

In formula (1), coefficient µ is given by

(2)

where β = v z/c (v z is the velocity axial component,
which is assumed to be constant for all particles, since
the beam is paraxial and monoenergetic, and c is the
speed of light); αc and αm are, respectively, the
degrees (coefficients) of charge and magnetic (cur-
rent) neutralization of the beam; and ϕ0 is a given
potential of the ion background electric field (in the IF
regime).

∂ f τ

∂t
--------

p⊥

γm
------- ∇ ⊥ f τ⋅ e∇ ⊥ ϕ0 βµAz–( )–[+ +

+ Ωbp⊥ iz ]× ∇ p⊥
f τ⋅ mγS

2
----------∆p⊥

f τ ,=

µ 1
1 α c–

β2 1 αm–( )
--------------------------,–=
© 2005 Pleiades Publishing, Inc.
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According to [12], when the beam is transported in
a dense plasma, coefficients αc and αm may be assigned
constant values and potential ϕ0 may be set equal to
zero, ϕ0 = 0. In the IF regime, constants αc and αm, as
well as ϕ0, are zero. The other quantities in (1) have the
following physical meaning: γ = (1 – β2)–1/2 is the
Lorentz factor of beam particles; m and e are, respec-
tively, the electron mass at rest and charge; Ωb =
|e|B0/(γmc) is the gyrofrequency of the beam in the
external magnetic field; S is the mean rate of change of
the kinetic energy of the particle transverse motion
under multiple Coulomb scattering of the particles by
atoms and molecules of the background gas (it is con-
sidered as a given characteristic of the scattering
medium and beam [5, 12, 21–23]); and Az is the z com-
ponent of the potential of the collective electromagnetic
field in the beam–plasma system. For the quasi-station-
ary paraxial beam being studied, Ax satisfies the equa-
tion

(3)

where Jbz is the z component of the beam current den-
sity.

Let us introduce screening radius Rs for the self-con-
sistent electromagnetic field of the background plasma,
that is, assume that

(4)

A solution to Eq. (3) satisfies boundary condition
(4); that is,

(5)

In view of (5), Eq. (1) can be viewed as an integro-
differential equation for segment particle distribution
function f τ(r⊥ , p⊥ , t) that should be solved subject to

(6)

where f0(r⊥ , p⊥ , τ) is a given beam particle distribution
over transverse coordinates.

MOMENT EQUATIONS

From Eq. (1), one can derive equations for the first
moments of distribution function f τ(r⊥ , p⊥ , t), which are
the basic macroscopic characteristics of the beam:
mass, momentum, and energy (the so-called transfer
equations).

To derive moment equations, we suppose that non-
zero values of distribution function f τ occupy bounded
domain Ω with boundary ∂Ω in the transverse momen-

∆⊥ Az
4π
c

------ 1 αm–( )Jbz,–=

ϕ0 r Rs∈ Az r RRs
≥ 0.≡=

Az
2
c
--- Ib 1 αm–( )–=

× r⊥'
r⊥ r⊥'–

Rs
------------------- p⊥ f τ r⊥' p⊥ t, ,( ).d∫lnd∫

f τ r⊥ p⊥ t, ,( ) t τ= f 0 r⊥ p⊥ τ, ,( ),=
tum space; that is,

(7)

Next, we take advantage of the Green’s theorem

(8)

where ∂Γ is the boundary of domain Γ ⊂ Rn and dS' is
an elementary area of surface ∂Γ that is assigned the
direction of positive normal n, and integral relation-
ships

(9)

(10)

which are the corollaries of the gradient theorem and
divergence theorem, respectively.

CONTINUITY EQUATION

Integrating kinetic equation (1) over the transverse
momentum space yields

(11)

where p⊥  = pxix + pyiy (ix × iy = iz).
First of all, note that

(12)

In view of (7) and (9), we have

(13)

and, by virtue of (7) and (10),

(14)

where w1 = pyix – pxiy with  · w1 ≡ 0.

Finally, with regard to (7) and (8), we arrive at the
relationship

(15)

f τ
p⊥ Ω∈ 0.≡

v ∆u u∆v–( ) xd

Γ
∫ v

∂u
∂n
------ u

∂v
∂n
-------– 

 

∂Γ
∫ dS*,⋅=

v ∇ u u∇ v+( ) xd

Γ
∫ uv n S*,d

∂Γ
∫≡

v ∇ w⋅ w ∇ v⋅+( ) xd

Γ
∫ v w

∂Γ
∫ ndS*,⋅=

∂
∂t
----- f τ p⊥d ∇ ⊥

p⊥

mγ
------- f τ p⊥d∫⋅+∫

– e∇ ⊥ ϕ0 βµAz–( ) ∇ p⊥
f τ p⊥d∫⋅

+ Ωb py
∂ f τ

∂ px

-------- px
∂ f τ

∂ py

--------– 
  p⊥d∫ mγS

2
---------- ∆p⊥

f τ p⊥ ,d∫=

f τ p⊥d∫ χ r⊥ t,( ),
p⊥

mγ
------- f τ p⊥d∫ χ

p⊥

mγ
-------.= =

,

∇ p⊥∫ f τdp⊥ n f τ Sp⊥
d∫ 0,≡=

py
∂ f τ

∂ px

-------- px
∂ f τ

∂ py

--------– 
  p⊥d∫

=  f τ ∇ p⊥∫– w1 p⊥( )dp⊥⋅ 0,≡

∇ p⊥

∆p⊥
f τ p⊥d∫ ∂ f τ

∂n
--------

∂Ω
∫ dS* 0.≡⋅=
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Substituting (12)–(15) into (11), we obtain the con-
tinuity equation

(16)

where χ(r⊥ , t) is the beam particle density in segment
Sτ, which is given by the integral in (12), and

(17)

is the mean transverse momentum of the particles in
segment Sτ.

Note that, since /(mγ) =  in (16), where  is
the mean transverse velocity of REB particles, Eq. (16)
is, in essence, an ordinary continuity equation that
describes the particle conservation law in the segment
considered.

EQUATION OF MOMENTUM TRANSFER

Multiplying Eq. (1) by px and integrating the result
over transverse momenta p⊥  yields

(18)

Consider the integrals on the left and right of
Eq. (18),

(19)

In view of (7) and (9), we have

(20)

and, in view of (7) and (10),

(21)

where w2(p⊥ ) = pxpyix – ty with  · w2 = py.

Finally, with regard to (7) and (8), we get

(22)

∂χ
∂t
------ ∇ ⊥

χp⊥

mγ
--------- 

 ⋅+ 0,=

,

p⊥ r⊥ t,( ) 1
χ
--- p⊥ f τ p⊥d∫=

,

p̃⊥ ṽ⊥ ṽ⊥

∂
∂t
----- px f τ p⊥d∫ ∇ ⊥

pxp⊥

mγ
----------- f τ p⊥d∫⋅+

– e∇ ⊥ ϕ0 βµAz–( ) px∇ p⊥
f τ p⊥d∫⋅

+ Ωb px py
∂ f τ

∂ px

-------- px
∂ f τ

∂ py

--------– 
  p⊥d∫ γmS

2
---------- px∆p⊥

f τ p⊥ .d∫=

px f τdp⊥ χ px;
pxp⊥

mγ
-----------∫ f τdp⊥ χ

pxp⊥

mγ
-----------.= =

,

px∇ p⊥
f τ p⊥d∫ f τ ∇ p⊥

px p⊥d∫–=

=  f τ ix p⊥d

Ω
∫– ixχ ,–=

px py
∂ f τ

∂ px

-------- px
∂ f τ

∂py

--------– 
  p⊥d∫ w2 p⊥( )∫ ∇ p⊥

f τdp⊥⋅=

=  f τ ∇ p⊥∫– w2dp⊥⋅ py f τ p⊥d∫– χ py,–= =

,

px
2 ∇ p⊥

px∆p⊥∫ f τdp⊥ px
∂ f τ

∂n
-------- f τ∂ px

∂n
--------– 

 

∂Ω
∫ dSp⊥

⋅ 0.≡=
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Substituting (19)–(22) into Eq. (18) yields

(23)

Then, multiplying Eq. (1) by py , integrating the
result over transverse momenta p⊥ , and performing
similar rearrangements, we obtain

(24)

Equations (23) and (24) can be written in the vector
form,

(25)

Let us transform Eq. (25) into the form allowing a
simple physical interpretation. Transverse momentum
p⊥  is represented as

(26)

Then,

(27)

From (26), it follows that  = 0. In addition, we
can write

(28)

where

(29)

is the stress tensor.

Finally, the first term on the right of (27) is written
in the form

(30)

Them, with regard to (27)–(30); continuity equation

(16); and the relationship  = mγ , which follows

∂χ px

∂t
------------ ∇ ⊥ χ

pxp⊥

mγ
----------- 

 ⋅+

+ eχ ∂
∂x
------ ϕ0 βµAz–( ) χΩb py– 0.=

,

,

∂χ py

∂t
------------ ∇ ⊥ χ

pyp⊥

mγ
----------- 

 ⋅+

+ eχ ∂
∂y
----- ϕ0 βµAz–( ) χΩb px– 0.=

,

,

∂χp⊥

∂t
------------- ∇ ⊥ χ

p⊥ p⊥

mγ
------------ 

 ⋅+

+ eχ∇ ⊥ ϕ0 βµAz–( ) χΩb iz p̃⊥×( )+ 0.=

,

p⊥ p⊥ δp⊥ .+=

,

∇ ⊥ χp⊥ p⊥( )⋅ ∇ ⊥ χp⊥ p⊥( )⋅=

+ ∇ ⊥ χδp⊥ δp⊥( )⋅ 2∇ ⊥ χp⊥ δp⊥( ).⋅+

δp⊥

,

χδp⊥ δp⊥ mγ δp⊥ δv⊥ f τ p⊥d∫ mγP̃⊥
˜

,= =

P̃⊥
˜

p⊥ p⊥–( ) v⊥ v⊥–( ) f τ p⊥d∫=

, ,

∇ ⊥ χp⊥ p⊥( )⋅ p⊥ ∇ ⊥ χp⊥( )⋅ χ p⊥ ∇ ⊥⋅( )p⊥ .+=

, , , ,

p⊥

,

v⊥

,
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from (25), we arrive at the equation

(31)

where  = –∇ ⊥ (ϕ0 – βµAz) is the transverse compo-
nent of the effective electric field.

The terms of (31) can be interpreted as follows. The
left of (31), (∂/∂t + v⊥  · ∇ ⊥ )  = d /dt, is the total

derivative of momentum  along the path of a particle

moving with velocity . The first term on the right of
(31) is the hydrodynamic force due to a spread in the
transverse momenta of beam particles; the second one,
the electromagnetic force due to effective electric field

 and external magnetic field.

EQUATION OF ENERGY TRANSFER

Multiplying kinetic equation (1) by /(2mγ) and
integrating the result over the transverse momentum
space yields (with regard to the explicit time depen-
dence of Lorentz factor γ)

(32)

For the integrals entering into Eq. (32), we have

(33)

(34)

In view of (7), (9), and relationship  = 2p⊥ , we
come to

(35)

Taking into account (7) and (10) gives

(36)

∂
∂t
----- v⊥ ∇ ⊥⋅+ 

  p⊥

=  
∇ ⊥ P̃⊥

˜⋅
χ

-----------------– e E⊥
eff 1

c
--- v⊥ B0×( )+ ,+

, ,

,

E⊥
eff

p̃⊥ p̃⊥

p̃⊥

ṽ⊥

E⊥
eff

p⊥
2

∂
∂t
-----

p⊥
2

2mγ
---------- f τ p⊥d∫ 1

γ
--- γd

td
-----

p⊥
2

2mγ
---------- f τp⊥ ∇ ⊥

p⊥ p⊥
2

2m2γ2
--------------- f τ p⊥d∫⋅+∫+

– e∇ ⊥ ϕ0 βµAz–( )
p⊥

2

2mγ
----------∇ p⊥

f τ p⊥d∫⋅

+
Ωb

2mγ
---------- p⊥

2 py
∂ f τ

∂ px

-------- px
∂ f τ

∂ py

--------– 
  p⊥d∫ S

4
--- p⊥

2 ∆p⊥
f τ p⊥ .d∫=

p⊥
2

2mγ
----------∫ f τdp⊥ χ

p⊥
2

2mγ
----------,=

,

p⊥ p⊥
2

2m2γ2
---------------∫ f τd p⊥ χ

p⊥ p⊥
2

2m2γ2
--------------- χ

v⊥ p⊥
2

2mγ
------------.= =

∇ p⊥

p⊥
2

2mγ
----------∇ p⊥

f τ p⊥d∫ 1
mγ
------- p⊥ f τ p⊥d∫– χ

p⊥

mγ
-------.–= =

,

p⊥
2 py

∂ f τ

∂ px

-------- px
∂ f τ

∂ py

--------– 
  p⊥d∫ w3 p⊥( )∫ ∇ p⊥

f τdp⊥⋅=

=  f τ ∇ p⊥
w3 p⊥( )⋅ p⊥d∫– 0,=
where w3(p⊥ ) = pyix – pxiy with  · w3(p⊥ ) ≡ 0.

Finally, with (7), (8), and relationship  = 4,
we get

(37)

Substituting (33)–(37) into (32) yields the equation
of energy transfer

(38)

The first term on the right of Eq. (38) is the rate of
variation of the mean energy of the particles from ele-
mentary segment Sτ that move in the transverse direc-
tion. The variation is associated with the energy flux
with density

(39)

The second term on the right of (38) can be written
in the form

(40)

where j⊥  = eχ /(mγ) = eχ .

As follows from (40), this term characterizes the
rate of variation of the transverse motion energy that is
associated with the work of self-consistent electromag-
netic field forces acting on the particles.

Finally, the two last terms on the right of (38) char-
acterize the rate of variation of the transverse motion
energy due to, respectively, inelastic and elastic colli-
sions between particles of the beam and environment.

To conclude, we note that the above procedure can
be easily extended to the case when the domain of non-
zero distribution function f τ in the transverse momen-
tum space is unbounded but f τ fairly rapidly tends to
zero as p⊥   0. Here, integration in (11), (18), and
(34) is first over bounded domain Ω (using integral rela-
tionships (8)–(10)) and then over the transverse
momentum space with boundary ∂Ω of domain Ω tend-
ing to infinity. It is easy to check that such a procedure
yields moment equations (16), (25), and (38) iff distri-
bution function f τ decays with increasing p⊥  faster than

1/ . In this case, all the integrals over ∂Ω at ∂Ω  ∞
vanish and all the integrals over the transverse momen-
tum space converge.

p⊥
2 p⊥

2 ∇ p⊥

∆p⊥
p⊥

2

p⊥
2 ∆p⊥∫ f τdp⊥ 4 f τ p⊥d∫ 4χ .= =

∂
∂t
-----

χ p⊥
2

2mγ
---------- 

  ∇ ⊥ χ
p⊥ p⊥

2

2m2γ2
---------------

 
 
 

⋅–=

–
eχp⊥

mγ
------------ ∇ ⊥ ϕ0 βµAz–( ) 1

γ
---dγ

dt
------

χ p⊥
2

2mγ
---------- χS.+–⋅

,

,

,

q
χp⊥ p⊥

2

2m2γ2
----------------

χv⊥ p⊥
2

2mγ
---------------.= =

eχp⊥

mγ
------------– ∇ ⊥ ϕ0 βµAz–( )⋅ j⊥ E⊥

eff,⋅=
,

p⊥

,

v⊥

,

p⊥
4
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VIRIAL EQUATION, INTEGRAL OF MEAN 
GENERALIZED ANGULAR MOMENTUM,

AND DYNAMIC EQUILIBRIUM CONDITION

Scalarly multiplying the equation of momentum
transfer (Eq. (25)) by –r⊥ /2 and integrating the resulting
expression over transverse coordinates yields

(41)

where

(42)

is the mean virial.
When finding the integrals in (41) and (42), we

assume that the particles from the beam segment con-
sidered remain within bounded domain Γ with bound-
ary ∂Γ in the space of transverse coordinates r⊥  at any
time; hence, function χ satisfies the condition

(43)

Consider first the integral

(44)

By virtue of the divergence theorem and condition
(43), the first integral on the right of (44) can be written
as

(45)

and the second integral (in view of continuity equation
(16)) as

(46)

where

(47)

The second integral on the left of (41) can be trans-
formed as follows:

(48)

1
2
--- d

dt
----- χp⊥ r⊥⋅ r⊥d∫–

–
1
2
--- ∇ ⊥

χp⊥ p⊥

mγ
---------------- 

 ∫ r⊥ dr⊥⋅ V ,=

V
1
2
---χr⊥– e∇ ⊥ ϕ0 βµAz–( )– Ωb p⊥ iz×( )+[ ] dr⊥⋅≡

,

χ r⊥ t,( ) r⊥ Γ∈ 0.≡

χp⊥∫ r⊥ dr⊥⋅ 1
2
--- ∇ ⊥ χp⊥ r2( )⋅ r⊥d∫=

–
1
2
--- r2∇ ⊥∫ χp⊥( )dr⊥ .⋅

, ,

,

∇ ⊥∫ χp⊥ r2( )dr⊥⋅ χr2p⊥

∂Γ
∫ ndSr⊥

⋅ 0,≡=

, ,

1
2
--- r2∇ ⊥∫– χp̃⊥( )dr⊥⋅ mγ

4
-------d ℜ 2

dt
----------,=

ℜ 2 2 χr2 r⊥ .d∫≡

∇ ⊥
χp⊥ p⊥

mγ
---------------- 

 ∫ r⊥ dr⊥⋅

=  
xχ pxp⊥

mγ
------------------

∂Γ
∫ ndSr⊥

⋅
yχ pyp⊥

mγ
------------------

∂Γ
∫+ ndSr⊥

⋅
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Substituting (48) and (44) into (41) with regard to
(45) and (46), we get

(49)

where E⊥  ≡ /(2mγ)dr⊥  is the mean kinetic energy

of the transverse motion of the particles from segment
Sτ and mean virial V is defined by (42).

Consider now the integrals appearing in virial
expression (42). Note first of all that

(50)

(51)

by virtue of the axial symmetry of the problem.
To determine derivatives dAz/dr and dϕ0/dr in (50)

and (51), we consider the Poisson equations for poten-
tials Az and ϕ0,

(52)

(53)

where  and  are the total linear densities of par-
ticles in the beam and ions in the ion channel, respec-

tively, and χΦ = nΦ(r)/  is a given function character-

izing the ion radial distribution ( (r)dr⊥  = 1).

Integrating (52) and (53) subject to rdAz/dr|r = 0 =
rdϕ0z/dr|r = 0 = 0 yields

(54)

(55)

where

(56)

(57)

–
χ px

2 py
2

+( )
mγ

--------------------------∫ dr⊥
χ p⊥

2

mγ
--------- r⊥ .d∫–=

,,,

E⊥
d
dt
----- mγ

8
-------d ℜ 2

dt
---------- 

 – V ,=

χ p⊥
2∫

1
2
---eβµ– χr⊥∫ ∇ ⊥ Azdr⊥⋅ eβµπ χr2 Azd

rd
-------- r,d

0

∞

∫–=

1
2
---e χr⊥∫ ∇ ⊥ ϕ0⋅ eπ χr2 ϕ0d

rd
--------

0

∞

∫=

1
r
--- d

dr
----- r

dAz

dr
--------- 

  4πeβ 1 αm–( )N̂bχ r( ),–=

1
r
--- d

dr
----- r

dϕ0

dr
--------- 

  4πeN̂ΦχΦ r( ),=

N̂b N̂Φ

N̂Φ

χΦ∫

dAz

dr
--------- 2eβ 1 αm–( )

Nb r( )
r

--------------,–=

dϕ0

dr
--------- 2e

NΦ r( )
r

---------------,=

Nb r( ) 2πN̂b r'χ r'( ) r',d

0

r

∫=

NΦ r( ) 2πN̂Φ r'χΦ r'( ) r'.d

0

r

∫=
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As follows from (56) and (57), Nb(r) and NΦ(r) repre-
sent the linear densities of particles in the beam and
ions in the ionic background in a tube of radius r.

Substituting (54) and (56) into the right of (50) gives

(58)

where constant κ = (1 – αm)µ = (1 – αm) – (1 – αc)/β2

(parameter µ is defined by (2)).
Finally, we note that the equality

(59)

is valid with regard to (56).
Using (59), we eventually obtain

(60)

Similarly, substituting (55) and (57) into the right of
(51) yields

(61)

A number of practically interesting specific cases
where 〈NΦ(r)〉  takes a very simple form deserve consid-
eration here. If, in the domain occupied by the beam,
the volume density of ions is constant along the radius

and equals , one can write

(62)

where ℜ 2 is given by integral (47).
If the ions have a δ-shaped distribution with linear

density  along the beam axis, we have

(63)

Finally, if the radial profiles of the beam and ionic
background are the same, χ(r) = χΦ(r), we get

(64)

The second integral in expression (42) for the mean

1
2
---eβµ χr⊥∫– ∇ ⊥ Azdr⊥⋅

=  e2β2κ N̂b4π2 rrχ r( ) r'r'χ r'( ),d

0

r

∫d

0

∞

∫

4π2 rrχ r( ) r'r'χ r'( )d

0

r

∫d

0

∞

∫ 2π2 rrχ r( ) r'r'χ r'( )d

0

∞

∫d

0

∞

∫=

=  
1
2
--- r⊥ χ r( ) r⊥' χ r'( )∫d∫ 1

2
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virial can be written in the form

(65)

where

(66)

is the mean angular momentum of a particle from the
segment considered.

Substituting (60), (61), and (65) into (42) yields an
expression for mean virial V,

(67)

where  is the total linear density of beam particles,
κ = (1 – αm) – (1 – αc)/β2, and 〈NΦ(r)〉  is defined by (61).

Now consider the derivative

(68)

Taking into account the equation of momentum
transfer (see (25)) and the axial symmetry of the beam,
we have

(69)

Using continuity condition (16) and boundary con-
dition (43), we get

(70)

In view of (70), Eq. (68) takes the form

(71)

whence, it follows that

(72)

It is easy to check that the integral of (72) is nothing
else than the law of conservation of generalized angular
momentum of a particle from segment Sτ. Indeed, in the
paraxial approximation used in this work, generalized
angular momentum is  = rpθ + erAθ/c = rpθ +
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Ωbmγr2/2 and its mean is

(73)

which completely coincides with the parenthesized
expression in (72).

The integral of (72) relates a current value of the
mean of angular momentum L and quantity ℜ 2,

(74)

where L0 and ℜ 0 are the initial values of the correspond-
ing quantities.

Substituting expression (67) into virial equation
(51) yields

(75)

Assuming that dℜ 2/dt ≡ 0 in (75), we find the neces-
sary condition for dynamic equilibrium of the beam
segment studied,

(76)

where TB = e2β2Nb/2 = eβJbz/2c is the so-called Bennet
temperature.

Condition (76) is an extension of the well-known
Bennet equilibrium condition [5] for the case when an
external magnetic field and neutralizing ionic back-
ground are present.
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Abstract—The effect of screening on the emissivity of a field cathode built around a carbon nanotube array is
analyzed. A numerical method of solving the Laplace equation for intricate-shape cathodes is developed that
makes it possible to relate the amplification factor to the nanotube spacing in arrays containing as many as
225 emitters. Mutual screening of the tubes, which shows up in the dependence of the field amplification factor
on the average emitter spacing, is studied numerically. The optimal spacing between the tubes that provides an
emission current maximum density at a given applied voltage is determined. The role of edge effects in carbon
nanotube screening is established. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Owing to their unique physicochemical properties,
carbon nanotubes (CNTs) are today an object of exten-
sive fundamental and applied research [1–4]. Specifi-
cally, CNTs are very promising for emitters in field-
emission electron devices [5–7], since they offer both a
high electrical conductivity and a high aspect ratio (up
to 1000). Accordingly, the electric field strength at the
tip of a nanotube may by several hundreds of times
exceed the volume-averaged field strength produced by
an external source. Because of these features, the emis-
sion current may be extremely high at a comparatively
low applied voltage.

Usually, the I–V characteristic of an individual nan-
otube is described well by the Fowler–Nordheim clas-
sical expression [8], which implies electron tunneling
through a barrier formed by the crystal structure of the
conductor and an external electric field. However, when
considering the performance of CNT-based cathodes,
one should take into account that the total emission cur-
rent produced by a large CNT array is not equal to the
arithmetic sum of the currents from individual emitters.
First, a statistical parameter spread from tube to tube
and the nonlinear emission current versus applied volt-
age dependence result in an essentially non-Fowler–
Nordheim run of the I–V characteristic at low field
strengths [9, 10].

Another reason for the difference between the I–V
characteristics of a single nanotube and a large array is
associated with the screening effect [11]. It shows up in
the dependence of the field amplification factor of an
emitter in the array on the emitter spacing. An increase
1063-7842/05/5007- $26.00 0944
in the field strength near the CNT tip can be character-
ized by the field amplification factor

(1)

where Emax is the maximum field strength near the tip
and Eav is the average field strength, which is deter-
mined as the applied voltage divided by the electrode
spacing (it is assumed that electrode spacing H far
exceeds nanotube height h).

Screening is absent for a single nanotube or for
sparse nanotubes in the array. In this case, the field
amplification factor depends on the nanotube geometry
and reaches a maximal value. As the spacing shrinks,
the field amplification factor decreases, approaching
unity when the nanotubes merge to form a continuous
flat surface (zero spacing).

Because of the screening effect, the optimal perfor-
mance of CNT-based cathodes is essentially a tradeoff
between a high field amplification factor, which grows
with emitter spacing, and a high density of the emission
current, which requires that the array be close-packed.
This situation brings forth the problem of evaluating the
screening effect under the operating conditions of a
field array cathode and determining the optimal average
emitter spacing that provides a maximal density of the
emission current. The aim of the present study is to
numerically tackle this problem. With this in mind, we
developed a numerical approach to calculating the field
strength distribution near the tip of a nanotube in arrays
with different tube spacings. A method developed for
solving the Laplace equation in the case of intricate-

β
Emax

Eav
----------,=
© 2005 Pleiades Publishing, Inc.
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shape emitters allows for estimating the effect of
screening on the emissivity and an optimal distance
between nanotubes.

DESCRIPTION OF THE METHOD

The effect of screening on the emission properties of
CNT emitters was mathematically simulated with the
SAFANT (Simulation of Amplification Factor of Nano-
Tubes) program, which makes it possible to calculate
the spatial distribution of the field strength and poten-
tial near the top of a nanotube in a CNT array placed on
a flat substrate. From the results of simulation, one can
determine field amplification factor β at various aver-
age distances between the emitters.

The program solves the Laplace equation

(2)

(∆ is the Laplacian) for electric potential ϕ(x, y, z) near
a nanotube. The first boundary conditions for Eq. (2)
correspond to the case when conducting nanotubes are
placed on an infinite conducting grounded substrate
normally to its surface, so that their potential is zero.
The other boundary condition is potential U0 on the
counterelectrode, which also represents an infinite plate
H distant from the substrate. It is assumed that elec-
trode gap H far exceeds characteristic nanotube height
h, so that the nanotubes do not affect the spatial distri-
bution of the potential in a major part of the electrode
gap. A nanotube has the form of an extended cylinder
bounded by a flat top. The program allows for variation
of the nanotube geometry in order to take into consid-
eration a natural spread of the emission properties. In
addition, provision is made in the model suggested to
vary the arrangement of the nanotubes on the substrate
so as to include the effect of mutual screening on the
emission properties of neighboring CNTs. Such an
approach yields a reasonable description both of a sin-
gle CNT and of a large CNT array and still requires
moderate computational resources. Because of the
complex geometry of the problem, Laplace equation
(2) is impossible to solve analytically; therefore,
numerical computing techniques are needed [9].

Equation (2) with the boundary conditions specified
above was solved numerically by iterations. The crite-
rion for iteration termination has the form

(3)

where ϕ(n) and ϕ(n + 1) are the field potentials at nth and
(n + 1)th iterations, respectively, and ε is a desired solu-
tion (calculation) accuracy.

The choice of ε to a great extent depends on the
number of iterations executed by the program. Figure 1,
where calculation error ε is plotted versus the number
of iterations, shows that the accuracy rises with the
number of iterations, as was expected. An acceptable
accuracy of 1–2% is attained after approximately
50 iterations, and just this number was used in the cal-

∆ϕ 0=

max ϕ n 1+( ) ϕ n( )–( ) ε,≤
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culations. Thus, using the SAFANT program, we first
find the electric field distribution near a CNT within an
array. The next step is to determine the spatial distribu-
tion of the field potential as a function of a spread in the
parameters of individual CNTs and of the nanotube
spacing. With these distributions known, we can pro-
ceed to calculation of the emissivity of the cathode
array and find an optimal (in terms of the maximal
emission current density) nanotube spacing with regard
to mutual screening.

RESULTS AND DISCUSSION

In order to demonstrate the potential of the program,
we first performed a test computation of field amplifi-
cation factor β near the tip of a single nanotube as a
function of its aspect ratio α = h/R (R is the nanotube
radius). In Fig. 2, the result obtained is compared with
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Fig. 1. Maximal error ε in calculating the field potential by
the Laplace equation vs. the number of iterations N.
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Fig. 2. Field amplification factor near the tip of a nanotube
vs. the aspect ratio. Filled circles, computation with the
SAFANT program; the continuous line, interpolation. The
dashed line is taken from [12].
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the same dependence found in [12], where a nanotube
was modeled by stacked identical conducting spheres.
At high aspect ratios, the curves are seen to diverge,
which can be explained by different approaches to
modeling the nanotube structure.

The effect of mutual screening between neighboring
nanotubes on the emission properties of a CNT cathode
array was computed for a square array of 225 regularly
arranged nanotubes, each having the form of a flat-top
cylinder with diameter d = 1 nm and height h = 1 µm.
The nanotubes occupy the vertices of elementary
squares whose size S was varied. Figure 3 shows the
computed dependence of the field amplification factor
on both the emitter spacing and emitter density in the
array. As the spacing diminishes, factor β decreases,
tending to a minimal value, which equals unity in the
limiting case of zero spacing (i.e., when the tops of the
CNTs produce a continuous surface). At wide spacings

300

0
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γ, µm–2

S, µm

200

100

1 100.01

400
107

β
106 105 104 103 102 101

Fig. 3. Field amplification factor near the tip of a nanotube
in the array vs. average nanotube spacing S and nanotube
surface density γ.
(S > h/2), the amplification factor approaches a value
typical of a single nanotube.

Emission current i from a single nanotube is
described by the well-known Fowler–Nordheim law
[7, 8]

(4)

where E = βEav is the field strength near the tip and
parameters C1 and C2 are defined by the geometry and
emissivity of the emitter.

The amplification factor versus average spacing
dependence found above for an array of identical nano-
tubes suggests that the dependence of emission current
density j ~ i/S2 on the average spacing is nonmonotonic,
peaking at S ~ h/2. This dependence calculated is
shown in Fig. 4. The emission current density is maxi-
mal at S ≈ 0.3h. This value is approximately one order

i C1E2 C2

E
------– 

  ,exp=
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Fig. 4. Field emission current density J in the CNT cathode
array vs. average spacing S, as follows from Fowler–Nord-
heim relationship (4) in view of screening.
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Fig. 5. Field amplification factor for CNTs entering into a 5 × 5 array vs. their position and average spacing S. n is the number of a
nanotube in the row.
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of magnitude lower than that obtained in [11] possibly
because of different approaches to modeling the CNT
structure. The peak in the current density versus the
average spacing curve indicates that the emission prop-
erties of a CNT-based field cathode should be opti-
mized by appropriately choosing the distance between
the emitters.

It should be noted that the calculations were per-
formed for a limited number of nanotubes in an array
because of the need to cut the machine time. In the cal-
culations, we considered screening for inner nanotubes
alone, thereby disregarding edge effects arising at the
boundaries of the array. At the boundary, screening is
obviously weaker, so that outer nanotubes are bound to
have a higher field amplification factor than the inner
ones. To estimate edge effects, we calculated the ampli-
fication factor as a function of the position of a nano-
tube in an array. The results presented in Fig. 5 count in
favor of this supposition: the amplification factor near
the nanotubes placed at the boundaries is higher. How-
ever, the edge effects are seen to be essential for only
one (extreme) row of elements and can therefore be
neglected in arrays of n @ 1 elements. Certainly, the
edge effects become still less significant as the nano-
tube spacing grows, which also follows from the curves
in Fig. 5.

CONCLUSIONS
Our results indicate that screening appreciably low-

ers the field amplification factor near carbon nanotubes
constituting a field-emission cathode array if the spac-
ing between the nanotubes in the array and their height
are comparable to each other. Accordingly, the emis-
sion current density reaches a maximum at a certain
spacing, which should be taken into account in cathode
performance optimization.
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Abstract—The fractal dimension of reflected ultrasonic signals in steel slabs with wittingly introduced defects
is analyzed. The dependence of the fractal dimension on the defect size is demonstrated. The resolving power
of a method used to estimate the fractal dimension of acoustic location responses and its applicability in prac-
tical flaw detection are considered. © 2005 Pleiades Publishing, Inc.
Ultrasonic flaw detection is a mature method of non-
destructive materials testing. It is stated in [1] that ultra-
sonic inspection has advanced to the point where new
approaches are nothing else than a mere refinement of
the existing ones. Categorization of irregular surfaces
according to fractal dimension [2] suggests that the
fractality of the reflecting boundaries of surface irregu-
larities and defects are embodied in location signals,
which can be used to advantage in practical flaw detec-
tion. The investigation of acoustic responses from the
rough surfaces of corroding cylindrical tubes [3] indi-
cates that the fractal dimension of acoustic responses
varies with the roughness. For smooth surfaces, the
lower limit of the Hausdorff dimension for an acoustic
response is estimated as D2 ≈ 2, and when the peak-to-
peak roughness varies from 0.2 to 6 mm, the estimate
of D2 ranges from 1.85 to 0.6. Significantly, the thick-
ness of corrosion areas in samples with D2 ≈ 0.6 sub-
stantially exceeded the tube wall thickness.

Here, we report the results of fractal analysis of
ultrasonic location responses from standard SO-2 sam-
ples with and without artificial defects (through holes).
The samples were tested by means of ultrasonic flaw
detection with sensors of two types.

In the general case, a defect has a reflecting surface
in the form of a superposition of relatively large smooth
asperities (from 5 to 10 wavelengths in size) and
slightly rough fine irregularities (with a size much
smaller than the wavelength). A location response con-
tains a probe signal, signals reflected from defects and
the walls of the object, Gaussian noise, etc. The array of
location responses was used to estimate the lower
boundary of the Hausdorff–Bezikovich dimension.

Figure 1 estimates the fractal dimension for the first
series of location responses from the defect-free sample
and from those with artificial defects of 1.5 and 5 mm
in diameter. The propagation velocity of ultrasonic
waves in the sample was 3200 m/s. The lower limit of
the fractal dimension calculated by the correlation inte-
gral method [4] was estimated to be D2 = 1.37 for the
defect-free sample, D2 = 0.44 for the sample with the
1063-7842/05/5007- $26.00 0948
defect of diameter 1.5 mm, and D2 = 0.3 for the sample
with the defect of diameter 5 mm.

To determine the applicability limits of the approach
proposed more accurately and estimate its resolving
power, we made additional measurements on the same
samples using a Moldaviya sensor. The size of defects
was varied from 0.5 to 5 mm. The propagation velocity
of acoustic waves was 6000 m/s.

Figure 2 compares the fractal dimensions of loca-
tion responses from defects of sizes varying from 0 to
5 mm in 1-mm step. The Hausdorff dimension is seen
to decrease with increasing defect size in accordance
with the general tendency. Table 1 gives the estimates
of the Hausdorff dimension.

The emergence of additional reflecting boundaries
in the cavity due to the presence of the defect changes
the number of possible resonances in it, as observed in
the location response under wide-band excitation of the
cavity. The power spectra of the responses from the
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Fig. 1. Estimation of the fractal dimension for the samples
from the first series of acoustic measurements. –s– D2d = 0,
–*– D2d = 1.5, –e– D2d = 5.0.
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imperfect samples contain extra spectral components,
while not allowing direct estimation of the defect size
(Fig. 3).

The application of fractal dimension D2 (which is
also referred to as the correlation dimension) in practice
is appropriate because of the power-type dependence of
the power spectrum on the fractal dimension, S( f ) ≈
k/f β [2, 4]. Exponent β in the law of variation of the
power spectrum and the surface irregularity are in one-
to-one correspondence, in contrast to the Fourier esti-
mate of the power spectrum, which gives a general vari-
ation of the location response’s spectral composition.

The total number of excited modes in homogeneous
cavities with smooth boundaries is proportional to the
ratio of the characteristic size of the cavity (volume or
surface area) to the cube and square, respectively, of the
wavelength corresponding to the maximal frequency
excited in the cavity [5]. In the presence of fractal
boundaries, corrections used to estimate the number of
modes excited contain frequency-dependent factors in
lower powers. An increase in the number of resonances
in the presence of fractal boundaries can be estimated
using the Barry formula

(1)

where ∆N is the increase in the number of resonances,
L is the characteristic length, f is the frequency, c is the
velocity of sound, and D is the fractal dimension.

Since the ratio f /c is the reciprocal of the wave-
length corresponding to the maximal frequency excited
in the cavity, the resolving power, in essence, depends
on the ratio between the characteristic size of the defect

∆N f( ) L
f
c
--- 

 
D

,=

–5

–5 –4

lnN

lnδ
–3 –2 –1 0

–4

–3

–2

–1

0

–6

Fig. 2. Estimation of the fractal dimension for the samples
from the second series of acoustic measurements. –s–
D2d = 0, –*– D2d = 1, –,– D2d = 2, –e– D2d = 3, –q– D2d =
4, –h– D2d = 5.
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and the wavelength of the cavity mode. This ratio can
be written in the form

(2)

where L is the characteristic size (length) of the defect
and λ is the wavelength corresponding to the maximal
frequency excited in the cavity.

This relationship closely resembles the definition of
the Hausdorff–Bezikovich dimension, which is for-
mally written as the limit of the ratio between the loga-
rithm of number N of hyperspheres covering the curve
and the logarithm of the reciprocal of diameter δ of the
hypersphere,

(3)

Following such a formalism, one can physically
treat the fractal dimension for acoustic location
responses as the ratio between the logarithm of the
number of oscillation modes excited in the cavity and
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Fig. 3. Power spectrum of location responses from the sam-
ples with defects of sizes from 0 to 5 mm.

Table 1

Defect size D2

0 1.47

1 1.36

2 0.84

3 0.52

4 0.32

5 0.19
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the logarithm of the reciprocal wavelength correspond-
ing to the maximal frequency,

(4)

In the second series of measurements, the minimal
wavelength (corresponding to a maximal probe pulse
repetition frequency of ≈3 MHz)) was 0.5 mm and so
was the increase in the perimeter of the defect. The
lower boundary (D2) of the fractal dimension was esti-
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Fig. 4. Fractal dimension vs. the reciprocal logarithm of the
defect relative size.

Table 2

Defect size D2

0.5 1.45–1.5

1.0 1.34–1.47

1.5 0.96–1.2

2.0 0.7–1.13

2.5 0.6–0.96

3.0 0.5–0.54

3.5 0.29–0.52

4.0 0.24–0.31

4.5 0.21–0.33

5.0 0.2–0.22
mated using the correlation integral. Table 2 summa-
rizes the estimates of the Hausdorff dimension upon
subsequently changing the inclination of the sensor
axis by 5°.

As follows from the experimental results, the actual
resolving power is half as large as expected.

Figure 4 shows the dependence of the estimate of D2
on the reciprocal logarithm of the relative size of the
defect, which is nearly linear. The range of measure-
ments that is necessary for practical flaw detection is
attained by varying the probe pulse repetition fre-
quency.

It should be noted in conclusion that the method
proposed is intended for cheap (hardware-noninten-
sive) nondestructive testers for inspecting structural
elements whose properties may vary during service
(due to fatigue cracks, corrosion, etc.). In hardware, the
computation of the correlation integral reduces to the
computation of sums in the form [5]

where H is the Heaviside function, which equals unity
when a pair of counts of the response that map the
phase space falls into a cell of size r; otherwise, it
equals zero.

For a realistic number of counts, N = 400–500, the
hardware necessary for computing such sums includes
devices based on readily available PIC controllers and
custom programmable logic arrays.
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Abstract—Based on photographs of rf discharge glows, it is concluded that the shape of the glowing object
depends on the moisture content in it. © 2005 Pleiades Publishing, Inc.
A rebirth of interest in plasmoids arising in humid
air has been observed in recent years [1, 2]. Metho-
dologically, today’s experiments are virtually replicates
of those performed by Plante and Weber as early as
120 years ago [3]. For example, Weber noticed that “the
ball is brilliantly colored and moves near the water sur-
face…, its color and luminosity may vary depending on
the electrode material and applied voltage.” This
description fully coincides with the conclusions drawn
in [1, 2].

In this paper, the author calls the reader’s attention
to the fact that the shape of the rf discharge glow
depends on the moisture content in the ambient air. The
experimental scheme is detailed elsewhere [4–7]. Note
only that the discharge was initiated in 35-cm-long
quartz tubes 7.2 cm in diameter at pressures of 133–
4000 Pa. An air + H2O mixture was ionized in an rf field
at frequencies of 36–37 MHz. The generator operated
in the pulsed mode (pulse width t = 10–60 ms, pulse
repetition rate F = 1–5 Hz). The rf power ranged from
5 to 60 kW.

To gain insight into the physical nature of the form-
ing plasma object, it is essential to trace the evolution
of the rf discharge shape with the moisture concentra-
tion in the air + H2O mixture. Figure 1 shows a typical
discharge glow in the humid air at pressures of 133–
4000 Pa. As is seen from Fig. 1, even without prelimi-
nary drying of the air, the glow occupies the entire dis-
charge volume. The uniformity of the electron concen-
tration in the plasma along the discharge tube depends
on its length. Using two or more pairs of external ring
electrodes, one can easily generate a plasma in dis-
charge tubes of length 1 m or larger.

However, as the moisture content grows, the region
of plasma glow shrinks, occupying the area near the
external ring electrodes (see Fig. 2). There is an opti-
mum concentration of H2O molecules that provides the
most effective cooling of the plasma [4]. In this case,
the glow takes the form of a disk with a clear-cut
boundary between the discharge and environment. In
both cases, we are dealing with a quasi-stationary dis-
charge, when the rf field ionizes the humid air for a long
1063-7842/05/5007- $26.00 0951
time (from a fraction of a second to several minutes or
even hours).

When water is introduced into the discharge rapidly,
the H2O molecules, being involved in a number of com-
plex plasma-chemical reactions, decompose [4, 8]. As
a result, the plasma is partially cooled [9, 10] and a
“warmer” plasma bunch separates out of the top of the
discharge and floats up under the action of the buoy-
ancy force. To record this process, a special vertical
section was provided in the discharge tube. One such

Fig. 1. RF discharge plasma glow in dry air at a pressure of
about 1 kPa.

Fig. 2. Plasma disk in the rf discharge that is observed at
0.5 × 1020 < N/p < 3.5 × 1020 m–3 Pa–1, where N is the con-
centration of water molecules and p is the total pressure of
the unionized air + H2O mixture. The maximal plasma cool-
ing conditions.
© 2005 Pleiades Publishing, Inc.
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bunch is depicted in Fig. 3. Its shape and size strongly
depend on the concentration of water molecules in the
discharge and on the form in which they enter the dis-
charge volume. When water is introduced as an aerosol,
water droplets evaporate to produce vapor. In this case,
the bunch has a quasi-spherical shape similar to that

Fig. 3. Hot plasma bunch separated out from the main dis-
charge. The moisture content in the discharge is low, N/p <
0.1 × 1020 m–3 Pa–1.

Fig. 4. RF discharge glow when N/p > 5 × 1020 m–3 Pa–1.
The maximum cooling of the plasma is not achieved.

Fig. 5. Quasi-spherical bunch of the cold nonequilibrium rf
discharge plasma.
shown in Fig. 3 and is easy to record with the help of
filming and photography.

When the initial concentration of electrons in the
plasma is n < 1014 cm–3, the discharge glow also differs
from those three considered above. Because of the pres-
ence of H2O molecules in the discharge volume, the
degree of ionization of the air decreases sharply and the
glow acquires the form shown in Fig. 4. Comparing all
the photographs presented allows us to argue that,
strictly speaking, the discharge in Fig. 4 remains a vol-
ume discharge and the average concentration of parti-
cles in it does not exceed 1012 cm–3 (as estimated using
microwave interferometry in the 3-cm-wavelength
range).

The fifth case seems to be the most interesting for
simulating the discharge glow in humid air. It occurs
when water vapor with an H2O molecule concentration
close to that meeting the plasma optimal cooling condi-
tion is introduced into the initial plasma with electron
concentration n > 1014 cm–3. The associated glow is
shown in Fig. 5. It is seen that, when the vapor content
is close to optimal, there appears a quasi-spherical
bunch of a cold nonequilibrium plasma with a clear-cut
boundary between the cold plasma and environment. In
Fig. 5, this bunch shows up as a quasi-spherical plasma
object in the rf discharge [7]. The physical nature of
such a bunch was investigated earlier in a number of
works [4–10]. Unfortunately, modern equipment still
gives no way of comprehensively analyzing this situa-
tion. We can state only that the density of the plasmoid
is close to that of unionized air and its lifetime is 103–
106 times as long as the decay time of the rf discharge
plasma in the above cases (in particular, in dry air).
While the decay time of the plasma in the above four
cases was 10–20 µs, in the fifth case, when the quasi-
spherical bunch of the cold nonequilibrium plasma
formed, it was equal to approximately 1 s [7, 9].

A more detailed categorization of rf discharges at
low pressures according to parameter N/p (see the cap-
tion to Fig. 2) was suggested in [10]. However, from the
photos of the rf discharge presented here, it follows that
the shape and properties of the glowing plasma objects
strongly depend on the humidity of the atmosphere.
That is why elaboration of a theory of such natural phe-
nomena as ball lightning, bead lightning, etc., as well as
efforts to reproduce them in the laboratory conditions,
have failed. The key to understanding these phenomena
is a better insight into the properties of rf discharges in
humid air and the physicochemical processes accompa-
nying humid air ionization.
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Abstract—The combined effect of a surface (edge) barrier and volume pinning on the dependence of critical
current Ic on the magnetic field (I ⊥  H0) in bulk type II superconductors is investigated. In low magnetic fields,
there is a portion of the curve Ic(H0) where Ic grows with H0, causing a nontrivial peak effect in this field range.
Such behavior is explained by the combined effect of a surface (edge) barrier and volume pinning, the latter
being rather sensitive to the transport current density distribution in a superconductor. © 2005 Pleiades Pub-
lishing, Inc.
The presence of a magnetic flux in the form of Abri-
kosov vortices in a superconductor leads to dissipative
losses when the transport current passes through the
superconductor. However, various mechanisms imped-
ing the free motion of vortices are known to cause a
critical current below which dissipation in the super-
conductor is absent. Among such mechanisms, volume
pinning and the effect of a surface (edge) barrier pre-
venting the penetration and/or escape of vortices are of
greatest concern. In the majority of experiments
devoted to the dependence Ic(H0), volume pinning is
viewed as the only mechanism of irreversibility [1–3].
At the same time, it has been shown [4, 5] that a surface
(edge) barrier has a strong effect on Ic. However, the
combined effect of the most important mechanisms of
irreversibility (volume pinning and surface barrier) on
the dissipative properties of bulk superconductors is
poorly understood. In this paper, we theoretically study
the combined effect of a surface barrier and volume
pinning on the field dependence of the critical current
in bulk type II superconductors. A nontrivial peak effect
in superconductors is predicted, which arises only in
low fields as a result of competition between volume
pinning and the action of a surface barrier.

Consider a plate made of a type II superconductor
with bulk inhomogeneities that is placed in external
magnetic field H0 = (0, 0, H0). Transport current I =
(0, I, 0) passes through the plate. The magnetic field
(and, hence, current density) distribution in bulk super-
conductors (with allowance for effects due to the finite-
ness of London penetration depth λ) is described by the
London equation

(1)H λ2d2H

dx2
----------– n x( )Φ0,=
1063-7842/05/5007- $26.00 0954
where n(x) is the vortex density, H(x) is the local mag-
netic field, and Φ0 is the fluxon.

To take into account the edge barrier, we assume
that vortices start penetrating into the superconductor
when the absolute value of the current density at the
edge of the plate reaches barrier-suppression (thresh-
old) value js. For a real surface, js equals the Ginzburg–
Landau depairing current density [6, 7]. Note that the
current density cannot exceed the value js.

Let us consider a model in which depinning current
density jdp does not depend on H0. It was shown [8] that,
in low magnetic fields, the transition of a superconduc-
tor to the resistive state occurs in the so-called annihila-
tion regime: vortices and antivortices penetrate into the
sample from opposite sides and are annihilated inside.
In this case, the current density on both sides of the
superconductor equals js. The transition to the resistive
state takes place when the regions occupied by vortices
and antivortices merge together inside the specimen
[9]. Such a situation persists up to some field H1. In
fields higher than H1, the transition to the resistive state
will take place in the so-called “ballistic” regime of
magnetic flux creep [8]: vortices enter into the super-
conductor from the left and leave it from the right, gen-
erating a voltage across the plate. In the field range
H1 < H0 < H2, a superconductor with a current lower
than, or equal to, the critical value has two regions free
of vortices (antivortices are absent in the specimen in
this regime). When the external field equals H2, the
boundary of the vortex region reaches the right-hand
edge of the superconductor; hence, at fields higher
than H2 and I = Ic, only one vortex-free region remains
in the specimen. The final expression for the critical
© 2005 Pleiades Publishing, Inc.
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current is

(2)

where

It follows from Eq. (2) that, in high fields (H0 @ H2),
Ic tends to a constant value equal to cHdpw/(2πλ). This
is characteristic of the Bean model (adopted in this
work), in which djdp/dH0 = 0. Considering the real field
dependence jdp(H0) leads to a monotonic decrease in the
critical current (dIc/dH0 < 0) in high fields [10]. The
dependences Ic(H0) for a NbTi low-temperature super-
conductor (Tc = 10 K) are shown in the figure. The cal-
culations were carried out in the frame of the Bean
model for different ratios js/jdp and samples w = 43λ
wide. It is seen that, qualitatively, the curves behave in
a similar fashion: the current first exhibits a low-field
plateau; then peaks; and finally decreases slowly

(δIc(H0) ≡ Ic – Ic∝  ∝  ), tending to a constant value
(Ic ≈ Ic∝ ) in high fields. Note that the run of power-law
tail δIc(H0) at H0 @ H2 reflects a specific character of
the surface barrier [11]. As jdp increases in the low-field
limit, the relative change in Ic remains approximately
constant (about 15%), while in high fields (H0 @ H2),
Ic approaches the asymptote (Ic = cHdpw/2πλ) faster. If
depinning current density jdp is much higher than bar-
rier-suppressing current js, the effect of the surface bar-
rier is negligible. For js ≥ jdp (volume pinning is ineffec-
tive), a surface (edge) barrier should be taken into
account to adequately interpret measurements of the
critical current.

The increase in Ic with increasing external magnetic
field H0 in the low-field range is a result of the com-
bined effect of the surface barrier and volume pinning
(in this situation, the transition to the resistive state
takes place in the annihilation regime, when vortices
and antivortices coexist; in other regimes, antivortices
are absent in the superconductor). It should be noted
that neither of the two mechanisms of irreversibility can
singly cause an effective rise in Ic (dIc/dH0 > 0) in the
low-field range (H0 < H1). In our opinion, the increase
in Ic with H0 can be explained by competition between
external field H0 and the self-magnetic field of the cur-
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cHdpw
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Hdp 4πλjdp/c, Hs 4πλjs/c,= =

H1 –Hs/2 H2, H2+ Hs
2/4 Hdpw/λ( )2+ .= =

H0
1–
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rent in the central part of the specimen. The maximum
value of derivative dIc/dH0 near the peak is about
0.035c, and the maximal possible increase in the criti-
cal current (near H1) is about 15% of its initial value.

At first glance, the effect being discussed could be a
direct consequence of the corkscrew rule when the self-
magnetic field of the transport current and the external
field superpose. Numerical calculations of the critical
current versus field dependence showed that the posi-
tion of a maximum in this dependence differs notice-
ably (two to three times) from the self-field. This means
that the simplified description based on the concept that
the self-field of the current is the field of a maximum in
the curve Ic(H0) fails. A more comprehensive theory
considering the critical state of a superconductor in
greater detail could allow researchers to make quantita-
tively correct estimates of magnetic fields H1 and H2.

It would be useful to compare our findings with the
available experimental data for the critical current in
real specimens, for example, in NbTi strips. The param-
eters of a surface barrier are known to be dependent
largely on the sample’s surface condition (for example,
on the surface roughness), which is hardly controllable
under real conditions. Therefore, comparison of the
model parameters with the actual parameters of a
superconductor will not be a trivial task.
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Abstract—A technique with which the gravimetry problem is embedded in the problem of disposition of a
three-component (three-dimensional) inertial navigation system on a stationary base is substantiated. Results
of numerical simulation are presented. © 2005 Pleiades Publishing, Inc.
(1) Measurement of inertial forces on a trajectory
combined with fairly accurate model notions of the
gravitational field where the motion takes place consti-
tutes the essence of the method of trajectory determina-
tion, the so-called inertial navigation method (INM)
[1, 2].

In the situation where the gravitational field is
unknown but a trajectory is specified (determined by
another method, e.g., by means of a satellite navigation
system), the INM is well suited for determining the
field. The problem thus posed is very complicated,
since here we are dealing with gravimetry on a trajec-
tory, i.e., on a mobile object.

In this work, the author considers a trajectory degen-
erated into a point, which greatly simplifies the prob-
lem and still retains the possibility of treating it in terms
of the INM. Physically, this means turning to terrestrial
navigation on a stationary base; technically, the dispo-
sition of a three-dimensional inertial navigation system
(3D INS) when information about the gravitational
field is incomplete. Such conditions radically distin-
guish both problems (gravimetry and disposition) from
the conventional approaches [3, 4].

(2) The INM assumes simulation (in a given frame
of reference) of equations of motion of a material point
with which the moving object is identified. These equa-
tions are the Newton dynamic equations,

(1)

and the evolutionary equations for the frame of refer-
ence (the Euler–Poisson kinematic equations),

(2)

In these equations, which are written in Hamiltonian
transforms, q is the radius vector of the point on the tra-
jectory; p is the momentum vector, which is identified
with the absolute velocity vector of the point is our

Dq p, q 0( ) q0,= =

Dp G q( ) f , p 0( )+ p0,= =

DA 0, A 0( ) A0.= =
1063-7842/05/5007- $26.00 0957
case; D = d/dt +  is the operator of absolute differen-
tiation; ω is the absolute angular rate of rotation of the
frame of reference (hereafter, we will mean only rect-
angular coordinate systems);  is the skew-symmetric
matrix that is composed of the components of vector ω
so that, for example, q = ω × q; G(q) is the gravita-
tional field vector; f is the nongravitational specific
force vector; and A is the matrix of vector transforma-
tion from the inertial frame of reference (oξ =
oξ1oξ2oξ3) to a given rotating frame of reference (ox =
ox1x2x3) such that x = Aξ. The origin o is placed at the
center of mass of the Earth. It is also assumed that coor-
dinate trihedron ox (with axes parallel to the axes of the
attending trihedron) is oriented geographically; that is,
its axis ox3 is aligned with vector q and the axis ox2 lies
in the plane of the geographic observer meridian and is
directed northward.

Along with these assumptions, we should also take
into account that the base is stationary, ω = (ω1, ω2,
ω3)T, where ω1 = 0, ω2 = ucosϕ, ω3 = usinϕ, ϕ is the
geographic observer latitude (latitude of a gravimetric
station), and u is the angular rate of rotation of the
Earth.

When integrating Eqs. (1) and (2), we specify the
initial conditions (q0, p0, A0) and current values of ω and
f, which are measured with gyros and newtonmeters
(accelerometers)—inertial instruments giving the name
of the method. Errors in data specified and measured
cause integration errors δq, δp, and δA. In a linear
approximation, the evolutionary equations for these
errors can be written, in view of (1) and (2), as

(3)

ω̂

ω̂

ω̂

Dδq δp ν̂q, δq 0( )– δq0,= =

Dδp δG q( ) ν̂ p– ∆f , δp 0( )– δp0,= =

Dβ ν, β 0( ) β0,= =
© 2005 Pleiades Publishing, Inc.
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where ν and ∆f are the vectors of instrumental errors
from gyroscopic meters and newtonmeters, respec-
tively; β = (β1, β2, β3)T is the small-angle vector that
characterizes the error of integration of the mathemati-

cal equations (δA = ; and δG(q) is the error of gravi-
tational field strength simulation, which will be dis-
cussed below.

Note that inertial measurements and integration of
Eqs. (1) and (2) are carried out relative to the axes of
instrumental trihedron oy = oy1y2y3, which is uniquely
related to a measuring platform and is a physical model
of trihedron ox; so, δq = (δy1, δy2, δy3)T.

If information about the position (platform) of the
object is available from an SNS, comparing it with
information from an INS generates a residual vector for
the two solutions,

(4)

where ε = (ε1, ε2, ε3)T is the location error vector for the
INS.

Let us now discuss error δG(r) of gravitational field
strength simulation. If external information on the
object’s position like that considered above is absent,
i.e., if the INS operates independently, δG(q) =
(∂G(q)∂q)δq + ∆ or, with regard to the dominating role
of the central component in the field model,

(5)

Here, µ is the terrestrial gravitational parameter, r = |q|,
E is the unit matrix, and ∆ is a gravimetric anomaly (a
deviation of the field strength at the observation point
from the value predicted by the model).

Note that, with δG(q) represented in form (5), the
dynamic equations of errors (the first two equations in
(3)) are unstable. This fact not only limits the applica-
bility of 3D INSs operating independently but also
highlights the problem of adequacy of discrete and con-
tinuous models in light of using advanced digital
computing facilities, which handle a very short time
interval.

If external information on vector q from an SNS is
available (the case at hand), it can be used to generate a
model of field strength G(r); then, instead of (5), we get

(6)

Owing to such a preliminary use of external informa-
tion, the dynamic equations (and, hence, the 3D INS
itself) become (nonasymptotically) stable, which facil-
itates subsequent numerical simulation and practical
implementation of the method [4].

Completing the model considerations, we note that
the set of differential and algebraic equations (3), (4),

and (6) complemented by the equation  = 0 (which

β̂

J δq β̂q ε,+ +=

δG q( ) µ
r3
---- E

3qqT

r2
------------– 

  δq– ∆.+=

δG q( ) µδq

r3
----------–

3µqε3

r4
--------------- ∆.+ +=

∆̇

reflects the hypothesis that field local anomalies remain
constant within the time of observation) is a formal
statement of the inverse problem. The solution of this
problem is aimed at finding the set of vectors {δq, δp,
β, ∆}. Thus, the gravimetry problem is embedded in a
more general problem, disposition of a 3D INS on a sta-
tionary base.

(3) To complete the formal statement of the inverse
problem means to check whether it is well posed or
solvable. The contemporary system theory [6] identi-
fies the problem of solvability with the problem of
observability. The essence of the latter is to establish a
correspondence between the dimension of the space of
images of problem’s operator and that of the declared
vector of a desired solution. If a solution technique is
strictly (in the Hadamard strict sense of correctness [7])
oriented to modern computing facilities and a finite
accuracy of number representation in them, one should
keep in mind the need for procedural support of the
above correspondence (i.e., provision of the numerical
stability of the solution) if it is basically established.

Analysis of the problem considered (it involves the
standard procedure of constructing a basis for the space
of the problem’s operator) shows that the correspon-
dence required does exist and is violated only when
vector ω of the angular rate of rotation of the Earth is
aligned with the ox3 axis, i.e., when the observation
point is at one of the geographic poles of the Earth.
Remarkably, the only unobservable in this case is β3;
that is, disposition of an INS cannot be accomplished in
full extent (the set of vectors δq, δp, and β cannot be
completely estimated) but the gravimetry problem
embedded (estimation of vector ∆) can be completely
solved.

(4) The consistency of the formal representations of
the problem posed as applied to a specific method of its
solution was verified numerically, namely, by simulat-
ing the Riccati matrix differential equation (a total of
78 equations) that describes the evolution of the solu-
tion error dispersion matrix in realizing solution proce-
dures of the Kalman theory of optimal stochastic esti-
mation [6].

The typical evolution of the rms estimation errors
for the components of gravitational field strength vector
anomaly ∆ (σ(∆1), σ(∆2), and σ(∆3)) is shown in the fig-
ure. The observation latitude is ϕ = 45°; the instrumen-
tal rms errors of inertial meters are σf = 10–5 m/s2 (for
newtonmeters) and σν = 0.0001°/h (for gyros), respec-
tively; and the rms location error of the SNS is σr =
3.2 m for each of the coordinates. It is noteworthy that
the vertical component of the anomaly, ∆3, is estimated
much more accurately than the horizontal ones (∆1 and
∆2). Indeed, for the steady-state values, we have
σ(∆2)/σ(∆1) ≈ 1 and σ(∆3)/σ(∆1) ≈ 0.1.

From the steady-state rms estimation errors for the
position variables (σ(q1) ≈ σ(q2) ≈ 4 m and σ(q3) ≈
0.4 m), we notice that σ(q3)/σ(q1) ≈ 0.1. The obvious
coincidence of the error ratios for the two variables
TECHNICAL PHYSICS      Vol. 50      No. 7      2005
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(q and ∆) is explained by the dominating role of the
central component in the gravitational field strength
vector.

To complete things, the results of numerical simula-
tion for the steady-state rms errors of estimating the
kinematic (angular) variables are as follows: σ(β1) ≈
σ(β2) = 0.6 × 10–6 and σ(β3) = 15 × 10–6.

0.2

2000 t, s

0.4

0.6

1.0

0.8

4000 6000 8000

1

2

3

0

σ 
×1

0–
5 , m

/s
2

Root-mean-square errors: (1) σ(∆1), (2) σ(∆2), and
(3) σ(∆3).
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(5) Thus, the gravimetry method suggested in this
work seems to be promising and practically feasible,
especially in light of further advances in measuring and
computing technologies.
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