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Abstract—A critical analysis of the entire body of available experimental data on the excited states of the
deformed even–even nucleus 170Er is performed. By contrasting the spectrum of gamma rays from the relevant
(n, n'γ) reaction against data from other processes, it is possible to reveal new Kπ = 0– and 2– bands and to estab-
lish new levels, including rotational levels of known bands, with allowance for the moments of inertia. The
structure of the excited states of 170Er is investigated on the basis of the Nilsson scheme and of the quasiparti-
cle–phonon model. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

By and large, modern theoretical models describe
well the properties of deformed even–even nuclei,
although some excited states show as-yet-unexplained
features that engage the attention of researchers. Obvi-
ously, reliable experimental data are required to con-
sider these features in greater detail. A vast body of
information has been obtained for the erbium isotopes
168Er [1–3] and 166Er [4, 5]. In particular, more than two
tens of rotational bands are known for the former. There
is much less information about 170Er, the heaviest stable
isotope of erbium [it is precisely because of this prop-
erty of 170Er that the access to its excited states is com-
plicated in heavy-ion reactions; nor was it studied in the
informative reaction (n, γ), since the initial nucleus for
this reaction, 167Er, is unstable].

2. EXPERIMENTAL DATA AND SCHEME
OF EXCITED LEVELS OF 170Er

Experimental data obtained before 1995 were
included in the compilation of Baglin [6], who pre-
sented, among other things, information about the beta
decay of two isomers of 170Ho; about electron capture
in 170Tm; about Coulomb excitation; and about the rel-
evant (d, d'), (n, n'γ), and (γ, γ') reactions. New (γ, γ')
data were presented in [7].

A global consideration of the entire body of experi-
mental data makes it possible to extend considerably
the scheme of excited levels of 170Er. Here, a special
role is played by the relevant (n, n'γ) reaction. That lev-
els are populated statistically in this reaction, irrespec-
tive of their nature, enables us to decide whether a spe-
cific level is present (or absent) and provides informa-
tion about its spin.
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2.1. Reaction (n, n'γ)

The first results on the relevant (n, n'γ) reaction were
reported between 1981 and 1983 [8, 9]. These data
made it possible to extend considerably the level
scheme for 170Er [10]. Two subsequent studies per-
formed in 1992 [11] provided a more detailed and more
precise spectrum of gamma rays and contributed to
refining the level scheme from [10]. Having the entire
body of available information about 170Er at our dis-
posal and using the intensities of gamma rays from
[11], we plotted the occupation probabilities P for 170Eu
levels versus their energies E (Fig. 1). For a given level,
the quantity P was defined as the difference of the total
intensity of gamma transitions occurring from this level
and the total intensity of gamma transitions terminating
at it. On the basis of the data in Fig. 1, we can estimate
the energy of the level and its spin J; these data give vir-
tually no way, however, to deduce information about
the parity of the relevant wave function. It turned out
that the J = 1, 2, and 3 levels are characterized by the
highest values of P. The dependence P(E) in Fig. 1
enabled us to draw some new conclusions about the
excited levels of 170Er; to find some new bands; to sup-
plement known bands with new rotational levels; to
introduce some new levels; to verify the existence of
many states; and to eliminate, from the scheme of 170Er
levels, about a dozen states that were not confirmed in
studying the reaction (n, n'γ).

2.2. Beta Decay of the Ground State of 170Ho
(Jπ = 6+, T = 2.76 min)

In the article of Tuurnava et al. [12], who studied
beta radiation from 170Ho isomers, it was found that the
high-spin state with lifetime T = 2.76 min appears to be
the ground state. We tested here the level scheme from
[13] by using the spectrum for the (n, n'γ) reaction and
revealed overall agreement.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Occupation probabilities P for the 170Er nuclei in the (n, n'γ) reaction versus the energy and spin of the levels: (s) 0+, (h) 1,
(d) 2, (j) 3, (+) 4, (∗ ) 5, (n) 6, (×) 7, (m) 8, and (•) 1 or 2. The values of P are presented in units normalized to the corresponding

values for 56Fe [8].
A 1226-keV transition participates in the deexcita-
tion of the 4+31 level at 1304.55 keV. The spectrum for
the (n, n'γ) reaction features a 1226-keV doublet, whose
weak component, with an intensity of Iγ = 4.1 arb. units
versus the total intensity of 29 arb. units, is involved in
the deexcitation of the 1304.55-keV level.

The occupation probability for the 2158.97-keV
level in beta decay corresponds to an allowed unhin-
dered (au) transition. There is only one possibility for

an au transition from 170Ho: n523   p523 ; this
leads to unambiguous quantum-number assignments

for the ground state of 170Ho (6+, p523  + n512 ) and

for the 2158.97-keV level of 170Er (5+, n523  + n512 ).
Beta decay to the 1590.74-keV level (logft = 6.4) has
the character of a first-forbidden unhindered beta tran-
sition. Here, there is also the only possibility of inter-

preting it: n633   p523 . The level at 1590.74 keV

has the 6–, n633  + n512  structure.

2.3. Beta Decay of the 170mHo isomer (Jπ = 1+, T = 43 s)

The richest set of information about the gamma-ray
spectrum of 170mHo can be found in [14]. Its decay
energy was refined in [12] (3970 keV), and the value of
Iγ = 40(10) arb. units was presented there for the inten-
sity of the 79-keV transition instead of 170 arb. units in
[14]. Half of the observed gamma transitions were
arranged in the scheme of the 170Er levels [6, 14]. By
using data on the spectrum for the (n, n'γ) reaction and
the analysis of these data from [10], we were able to
place all these transitions in the level scheme and cor-
rect the errors made in [6, 14]. For the sake of compar-
ison, Table 1 presents the energies and intensities of the
gamma transitions in question.

For the first time, we arranged transitions from
1267-, 1305-, 1324-, 2070-, 2133-, 2701-, and 2790-
keV levels in the level scheme. Levels that were
observed in resonance gamma-ray scattering on a 170Er
target [6, 7] are included in Table 1. Taking into account
the dependence P(E) (see Fig. 1), we introduced levels
at 1741.86 and 2019.1 keV. We were unable to confirm
the J ≤ 4 level at 1500.9 keV, which was introduced in
[14] on the basis of the deexciting 540.9-keV transition
alone, because this transition is not observed in the (n,
n'γ) reaction.

For the beta decay of the isomer, we estimated the
branching fraction for the decay to each level and 
values. The estimate  ~ 0.2 was obtained by tak-
ing into account the incompleteness of the spectrum.
Only one very fast au beta transition to the 3606.5-keV
level (  = 4.8) is observed. It corresponds to the

n523   p523  transformation and determines the

structure of the 170mHo isomer (p523  – n512 ). The
position of the 1+ and 6+ doublet levels corresponds to
the Gallagher–Moszkovski rule at a normal spacing
between the components (about 100 keV).

ftlog
∆ ftlog

ftlog
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Table 1.  Deexcitation of 170Er levels in the beta decay of 170Ho (Jπ = 1+, 43 s)

JπKi
Elevel , keV

[1]

170Ho (n, n'γ)

Eγ, keV Iγ, arb. units logft Eγ, keV Iγ, arb. units

0+01 0 – – 6.0 – –

2+01 78.59(2) 78.7(2) 40(10) 6.3 78.63(3) 131(15)

4+01 260.13(2) 181.6(2) 9.6(10) – 181.57(2) 276(31)

0+02 890.88(4) 812.3(2) 100.0(31) 7.1 812.29(3) 27(4)

2+02 959.98(3) 959.4(5) 12.4(12) 7.4 959.96(6) 19(4)

881.2(2) 19.7(8) 881.38(2) 28(4)

699.8(3) 12.9(6) 699.87(2) 20(3)

1–11 1266.64(3) 1187.5(3) 25.5(10) 7.3 1188.04(2) 28(4)

2–11 1305.23(7) 1226.3(7) 13.4(13) 7.6 1226.64(6) 25(4) m ?

0+03 1324.28(5) 1245.2(4) 2.6(5) 8.3 1245.69(4) 7.8(11)

– – 390.11(10) 1.3(2)

2+22 1416.25(4) 1415.6(3) 5.0(5) 7.5 1416.23(7) 6.7(10) m

1337.4(3) 5.8(6) 1337.64(3) 5.9(8)

1, 2 1741.86(8) 1663.8(8) 1.4(5) 8.0 1663.27(6) 3.7(5)

1(+)γγ' 1973.03(8) 1972.6(3) 36.5(13) 6.4 1973.1(3) 1.39(20)

1894.0(3) 45.2(15) 1894.43(8) 1.65(24)

2+(1–) 2019.1 1940.1(3) 10.5(5) 7.2 1940.41(20) 2.8(5)

1059.2(3) 0.23(5)

1γγ' 2039.3(2) 2039.3(4) 2.9(3) 7.5 2039.3(3) 0.91(14) c

1960.7(4) 2.7(3) 1960.7(6) 0.85(13) m

1–, 2+ 2071.3(3) – – 7.5 2071.0(5) 0.81(13)

1992.5(5) 4.8(4) 1992.8(3) 3.9(6)

1 γγ' 2132.9(2) 2132.8(6) 1.2(3) 7.8 2132.9(4) 1.24(18) m

– – 2054.37(15) 0.5(1) c

1, 2γγ' 2684.8(3) 2684.8(4) 4.5(3) 6.6 2683.6(5) 0.15(2) c

2606.1(4) 4.3(4) 2606.0(8) 0.14(6)

1 γγ' 2700.8(2) – – 7.3 2700.7(3) 0.75(12)

2621.4(6) 0.8(3) 2622.4(4) 0.4(1) c

1+ γγ' 2790.3(4) 2789.2(15) 1.2(3) 7.2 2790.3(4) 0.30(5)

– – 2711.2(12) 0.13(6)

(2+) 3606.5(4) 2715.1(8) 2.5(3) 4.8 (2716.1(4)) (0.39(7))

2646.5(4) 3.8(3) – –

Note: Here and in Tables 3, 5, and 6, the letter “c” labels the calculated values; the letter “m” means that a given level belongs to a multiplet.
2.4. Coulomb Excitation

Levels that belong to the rotational band built on the
ground state and which are characterized by spin–par-
ity values up to 12+ manifest themselves in Coulomb
excitation processes [6]. In addition, 2+ 934-keV and
4+ 1101-keV levels of the gamma band and 2+ 960-keV
and 4+ 1124-keV levels of the Kπ = 0+ band were
observed. Each of these was confirmed by gamma tran-
sitions in the (n, n'γ) reaction. In Coulomb excitation
processes, however, the 2+ state at 1332 keV manifested
itself through the 398- and 1332-keV gamma transi-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
tions. Although it is expected that the occupation prob-
ability will be high for the 2+ level (P = 30 arb. units)
and that the 398- and 1332-keV transitions will mani-
fest themselves as strong peaks (with Iγ ~ 15 arb. units),
neither of these two transitions has been seen in the
spectrum for the (n, n'γ) reaction. From the experimen-
tal spectrum, it follows that Iγ(398) ≤ 1 arb. units and
Iγ(1332) < 0.2 arb. units. Accordingly, we can unambig-
uously conclude that there is no level at 1332 keV.

In Coulomb excitation processes, the 3– level at
1371 was observed in the 1292-keV transition. There is
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Fig. 2. Positive-parity rotational bands in 170Er (the energies of the levels are given in keV).
no this transition in the (n, n'γ) reaction. The estimate
Iγ(1292) < 0.2 arb. units is much less than the expected
occupation probability for the level in question, P =
20 arb. units, whence it follows that this level was erro-
neously included in the scheme of the 170Er levels. It
should be noted that the 5–41 level at 1372.07 keV,
which cannot be populated via Coulomb excitation pro-
cesses and which is not deexcited through the
1292-keV transition, has a close energy.

3. ROTATIONAL BANDS IN 170Er

3.1. Ground-State Band

In Coulomb excitation processes, the band built on
the ground state of 170Er (see Fig. 2) was observed up to
the Jπ = 12+ level. In accord with [6, 8, 10], the
374.27(4)-keV gamma transition was taken to occur
between the 8+ and 6+ levels. In [11], however, the
8+  6+ rotational transition was associated with the
370.99(17)-keV gamma transition. In Coulomb excita-
tion, the transition energy is 374.0(5) keV. It was estab-
lished that the energies of the lowest levels of the cor-
responding bands in the neighboring nuclei 170Er and
172Yb are astonishingly close.

3.2. Close Collective Bands of  =  and  
Vibrational States

The lowest collective nonrotational states at 890.88
(0+) and 934.04 (2+) keV were observed experimentally

Ki
π

02
+

21
+

in [6]; they were predicted by Soloviev in [15] to occur
at 0.9 and 1.0 MeV. Either band was supplemented with
new levels, refined, and analyzed. The positions of the

rotational levels in the  band are in accord with data
presented in [6, 10, 11]. Considerable modifications
were introduced in the gamma-vibrational band. The
level at 1413 keV proved to be singlet; this level is not
associated with the gamma band, but it has the quan-
tum-number values of 5+31. By using the inertial
parameters, we estimated the position of the 6+21 level;
from data on three gamma transitions, we determined
its energy to be 1350.43(7) keV.

The 7+21 level at 1556.69(9) keV, which was pro-
posed previously on the basis of data on the 1016.04-keV
transition (Iγ = 1.3 arb. units) [10], was also associated
with the 641.71-keV transition (Iγ = 0.91 arb. units)
proceeding to the 8+01 level at 914.92 keV. Table 2 con-
tains data on the energies of rotational levels, the differ-
ences of these levels, and their inertial parameters.
Here, we can reveal two special features.

(i) In the sequence of the rotational levels of the K =
0 band, the inertial parameter A increases with increas-
ing angular momentum J, a dependence that is rarely
observed experimentally in such cases.

(ii) In the K = 2 band, there is a considerable signa-
ture splitting.

In view of this, the parameters A calculated sepa-
rately for even-spin and odd-spin levels are also pre-

02
+
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Table 2.  Rotational parameters (in keV) of the  =  and  bands

J
 =  = 

Elevel ∆E A Elevel ∆E A ∆Eeven Aeven ∆Eodd Aodd

0 890.88 – – – – – – – – –

2 959.98 69.10 11.52 934.04 – – – – – –

3 – – – 1010.53 76.49 12.75 – – – –

4 1127.30 167.32 11.95 1103.33 92.80 11.60 169.29 12.09 – –

5 – – – 1236.59 133.26 13.33 – – 226.06 12.56

6 1401.90 274.60 12.48 1350.63 114.04 9.50 247.30 11.24 – –

7 – – – 1556.69 206.05 14.72 – – 320.09 12.31

Ki
π 02

+ 21
+

Ki
π 02

+ Ki
π 21

+

sented in Table 2. They decrease with increasing J, as is
observed in the neighboring nuclei.

A 6+  4+ intraband transition was observed in
either of the two bands. In each case, it proved to be
enhanced in relation to transitions proceeding to the
6+01 levels: B(E2; 6+02  4+02)/B(E2; 6+02  6+01) =
26 and B(E2; 6+21  4+21)/B(E2; 6+21  6+01) = 38.
The presence of the M1 component in the 6+21  6+01
transition only increases the above ratios, which are
consistent with the systematics of intra- and interband
transitions.

3.3.  =  Band Built on the 0+03 Level at 
1324.28 keV Involving a Two-Phonon Component

Three levels of this band are known. Table 3 lists the
energies of the levels and the inertial parameters. A fea-
ture peculiar to the deexcitation of the levels of the band
is that the reduced probability of deexcitation to the
gamma band is much greater than that for the deexcita-
tion to the ground-state band.

3.4.  =  Band Built on the 2+22 Level at 1416.23 
keV Involving a Two-Phonon Component

A band built on the  level at 1416.23 keV is indi-
cated in [6, 10] for 170Er. We modified the energy of the
5+ level, added the 6+ level, and associated other rota-
tional levels with new transitions. Table 3 quotes the
energies of the levels and the inertial parameters, while
Table 4 illustrates the deexcitation of the levels of the
band and presents the reduced probabilities for E2 tran-
sitions. It can be seen that the reduced probabilities

B(E2) for transitions to the  and  bands exceed
considerably the reduced probabilities B(E2) for transi-
tions to the ground-state band. In just the same way as

in the case of the  band, this may suggest the pres-

ence of a significant  ⊗   two-phonon component

Ki
π

03
+

Ki
π

22
+

22
+

21
+

02
+

03
+

02
+

21
+
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in the  band. The lifetimes of the levels belonging to
the band in question have yet to be established.

An intraband 250.8-keV transition proceeds from
the 6+22 level at 1832 keV. Its reduced probability is
greater than B(E2; 6+22  4+21) by a factor of 172.
This value characterizes the role of the two-phonon
component in the band.

3.5.  =  Band Built on the 3+31 Level at 
1217.51 keV

According to Soloviev’s calculations based on the

quasiparticle–phonon model [15], a 3+, n521  + n512
two-particle neutron level is expected to occur at
1.3 MeV. This level and the 4+ and 5+ levels of the rota-
tional band are populated in the beta decay of 170Ho and
in the (n, n'γ) reaction. In the present study, the above
levels were supplemented with the 6+31 level at
1543.5(2) keV, whose existence was suggested by the
following two transitions from the spectrum in the (n,
n'γ) reaction: the 1002.63(17)-keV 6+31  6+01 tran-
sition (0.94 arb. units) and the 1283.61(20)-keV
6+31  4+01 transition (0.43 arb. units). From the data
listed in Table 5, we can see that the values of the inertial

22
+

Ki
π

31
+

Table 3.  Rotational parameters (in keV) of the  =  and

 bands

J
  =   = 

Elevel ∆E A Elevel ∆E A

0 1324.28 – – – – –

2 1385.40 61.12 10.19 1416.23 – –

3 – – – 1483.35 67.12 11.19

4 1526.39 140.99 10.07 1572.59 89.24 11.16

5 – – – 1683.55 110.96 11.10

6 1746 c 220 c 10 c 1823.2 139.7 11.64

Ki
π 03

+

22
+

Ki
π 03

+ Ki
π 22

+



710 GRIGORIEV, GLADKOVA
Table 4.  Deexcitation of levels belonging to the  =  band

( )f Ef , keV Eγ, keV Iγ, arb. units Elevel , keV B(E2), arb. units

2+ level at 1416.23 keV

0+01 0 1416.23(7) ≤6.7 d 1416.23 –

2+01 78.59 1337.64(3) 5.9 1416.23 1.0

2+21 934.04 482.20(2) 13.3 1416.24 370

2+02 959.98 456.53(12) 1.13 1416.51 41

3+21 1010.53 405.71(9) 3.4 1416.24 255

3+ level at 1483.35 keV

2+01 78.59 1404.73(4) 5.7 1483.32 1.0

4+01 260.13 1223.55(9) <4 d ? 1483.68 –

2+21 934.04 549.31(8) ≤3.3 d ? 1483.35 <63

3+21 1010.53 472.84(4) 5.4 1483.37 219

4+21 1103.33 379.99(7) ≤1.67 1483.32 <190

4+02 1127.30 356.27(14) <0.5 d 1483.57 <80

4+ level at 1572.59 keV

4+01 260.13 1312.51(11) 2.6 1572.64 1.0

2+21 934.04 638.0(3) 0.25 1572.0 3.5

3+21 1010.53 562.30(12) 1.0 1572.83 27

4+21 1103.33 469.29(16) 0.52 1572.62 34

4+02 1127.30 445.29(15) 0.63 1572.59 54

5+21 1236.59 336.05(10) <1.2 d 1572.64 <400

5+ level at 1683.55 keV

4+01 260.13 1423.4(3) <1.21 d 1683.5 <1.0

6+01 540.65 1142.78(9) 1.16 1683.43 2.7

4+21 1103.33 580.33(9) 1.23 1683.66 86

5+21 1236.59 447.2(3) 0.26 1683.8 67

6+ level at 1823.2 keV

6+01 540.65 1282.3(4) 0.23 1823.0 5.2

4+21 1103.33 720.6(10) 0.25 d 1823.9 100

4+02 1127.30 695.92(5) <2.3 d 1823.21 –

5+21 1236.59 586.67(14) <2.0 d 1823.26 –

4+22 1572.59 250.8(3) 0.22 1823.4 17200

Note: The letter “d” means that a given level appear to be a doublet, whose intensity is actually presented.

Ki
π 22

+

Jk
π

parameter A are close for three pairs of neighboring lev-
els. The next level having the quantum-number values
of 7+31 is expected to occur at 1705 keV, but it is popu-
lated less intensively in the (n, n'γ) reaction, so that it
did not manifest itself.

Bands of the same structure are known in the neigh-
boring isotope 168Er and in the 172Yb and 174Hf isotopes.
The inertial parameters A are also close in absolute
value and in changes they suffer with increasing spin.

Two intraband transitions, 5+31  3+, E2 and
5+  4+, E2 + M1, were found to proceed from the
5+31 level at 1413.10 keV. Assuming that the intrinsic
quadrupole moment of the band, Q0 = 6.8(8) e b, is
equal to the quadrupole moment of the ground state and
using the intensity-ratio value of Iγ(195.58,
E2)/Iγ(108.32, E2 + M1) = 0.59(13), we have deter-
mined the gyromagnetic ratio to be (gK – gR)2 = 0.15(8)
and the bandhead magnetic moment to be µ1 = 0.0(4) or
µ2 = 1.8(4) nuclear magnetons. The first of these is in
good agreement with one of the two values calculated
for the configuration being considered by using the

Nilsson functions,  = 0.015 or  = –0.96 nuclear
magnetons.

µ1
T µ2

T
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3.6. 5+51 Level at 2158.97(7) keV

The ground state of 170Ho decays predominantly to
the 2158.97-keV level with  = 5.2. The structure

of the ground state of 170Ho is 6+, p523  + n512 , while

the structure of the 5+ level at 2158.97 keV is n523  +

n512  (see Subsection 2.2). In accordance with the
Gallagher–Moszkovski rule, the 6+ level is the lowest

one in the doublet, while the 1+, p523  – n 512  level
occurs higher. Experimental data confirm this arrange-
ment of the levels in 170Ho and lead to the splitting
energy of 100 ± 60 keV [14].

3.7.  =  Band Built on the 1– Octupole Level at 
1266.64 keV

According to Soloviev’s model from [15], the low-
est collective level of negative parity (1–) must occur at
1.2 MeV. The known levels include the 1– level at
1266.64 keV and rotational levels characterized by the
J values of up to 5 [6, 10]. In the present study, the band
in question was supplemented with J = 6 and 7 levels

ftlog

Ki
π

11
–

Table 5.  Rotational parameters (in keV) of the  = 
bands in 170Er, 168Er, 172Yb, and 174Hf

J  [1]  [16]  [17]

Elevel ∆E A A

3 1117.51 – – – – –
4 1304.55 87.04 10.88 10.39 11.33 11.40
5 1413.10 108.57 10.86 10.27 11.28 11.36
6 1543.5 130.43 10.87 10.17 11.20 11.15
7 1705 c 151 c 10.8 c 9.93 11.14 11.15
8 – – – – 10.98 –

Ki
π 31

+

Er
170
68 102

Er
168
68 100 Yb

172
70 102 Hf

174
72 102
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(see Fig. 3). The 6–11 state at 1631.2(4) keV is deter-
mined by two transitions:

6+01, 1090.6(4) + 540.65 = 1631.2, Iγ = 1.6 arb. units;

6+21, 280.52(2) + 1350.6 = 1631.1, Iγ < 45 arb. units.

The 7–11 level at 1704.8 keV is determined by the
1164.16(18)-keV 7–11  6+01 transition, its intensity
being 0.27 arb. units.

For 170Er and for its isotone 172Yb, Table 6 presents

the energies of the levels belonging to the  = 
band, the differences of these energies, and the inertial
parameters calculated separately for even-spin and for
odd-spin levels. The following features are peculiar to
both nuclei:

(i) The parameters Aeven and Aodd differ significantly.
(ii) With increasing J, Aodd grows. This rare effect

can be qualitatively explained by the “repulsion” of
odd-spin levels in the K = 0 and 1 bands. However, two
Kπ = 1– bands are known in the 168Er nucleus. The Kπ =
0 band occurs in between these two. In contrast to
expectations, however, the parameter Aodd behaves sim-
ilarly in the two bands, this behavior being identical to
that in 170Er and 172Yb. This may be due to the effect of
higher Kπ = 0– bands.

(iii) The greater signature splitting in 172Yb is
caused by a smaller spacing between the K = 0 and 1
bands in this nucleus than in 170Er.

(iv) If the above repulsion is due to the interaction of
two bands, this interaction is strong.

3.8. New  =  Band Built
on the 1824.60-keV Level

The octupole 1–01 level is expected at 1.6 MeV [15].
It is observed in the relevant (γ, γ') and (n, n'γ) reactions,
occurring at 1824.60 keV. The rotational 3–01 level at
1935.44 keV manifested itself in the (d, d') and (n, n'γ)
reactions. Here, a new level in the 5–01 band at E =
2150.9(3) keV has been proposed on the basis of data

Ki
π

11
–

Ki
π

01
–

Table 6.  Energies of the levels and inertial parameters (in keV) of the Kπ = 1– bands in  and 

J
170Er, E (1–01) = 1824 keV 172Yb, E (1–01) = 1600 keV

Elevel ∆E Aeven Aodd Elevel ∆E Aeven Aodd

1 1266.64 – – – 1154.94 – – –

2 1305.23 38.59 – – 1198.47 43.53 – –

3 1340.20 34.97 – 7.36 1221.72 23.25 – 6.68

4 1432.95 92.75 9.12 – 1330.69 108.97 9.44 –

5 1483.72 50.77 – 7.97 1352.95 22.26 – 7.29

6 1631.2 147.5 9.01 – 1540.61 187.66 9.54 –

7 1704.8 73.2 – 8.52 1557.58 16.97 – 7.87

8 1899 c 194 c 8.90 c – 1828.71 271.13 9.61 –

Er
170
68 102 Yb

172
70 102
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6– 1631.2

4– 1432.95

2– 1305.23

1–
1

5– 1483.72

3– 1340.20

1– 1266.64

n633↑  – n512↑
E = 1.2, 93%

7– 1704.80–
1

5– 2150.9

3– 1935.44

1– 1824.60

n514↓  – n633↑
E = 1.6, 67%

4– 1676.5

3– 1579.17
2– 1506.24

2–
1

n624↑  – n512↑
E = 1.3, 70%

7– 1640.4

6– 1496.06

5– 1372.07

4– 1268.67

4–
1

n633↑  + n521↓
E = 1.7

p523↑  + p411↓
E = 1.6

(4– 42) 1745.88
6–5 1819.1

5– 1708.16

5–
1

n624↑  + n521↓
E = 1.8

6– 1590.74

6–
1

n633↑  + n512↑
E = 1.4

Fig. 3. Negative-parity rotational bands in 170Er (the energies of the levels are given in keV).
on two transitions:

4+01, 1890.8(3) + 260.1 = 2150.9, 0.74 arb. units,

6+01, 1610.2(7) + 540.6 = 2150.8, 0.40 arb. units.

The inertial parameters A(3–1) = 11.08 keV and
A(5–3) = 11.97 keV comply with the relevant system-
atics. For example, we have A(3–1) = 11.06 keV in
172Yb. The occupation probabilities for all three levels
in the (n, n'γ) reaction are consistent with the predic-
tions of the statistical model.

3.9. New  =  Band Built
on the 1506.24-keV Level

The 2– 1.3-MeV collective octupole level predicted
by Soloviev in [15] actually has the energy of
1506.24 keV. Previously, it was assigned the spin–par-
ity of 4+ [6, 10, 11], but the occupation probability in
the (n, n'γ) reaction proves to be overly high, P = 20 arb.
units, for a J = 4 level. The 2– level is deexcited by the
transitions to the 2+ and 3+ levels of the 3+31 gamma
band (see [6]) and by the 1427.40-keV transition
(0.84 arb. units) to the 2+01 level.

The rotational 3–21 level at 1579.17(11) keV is
deexcited by the following transitions:

4+01, 1319.1(3) + 260.13 = 1579.2, 1.38 arb. units;

2+21, 645.23(3) + 934.04 = 1579.27, 4.1 arb. units;

3+21, 568.65(9) + 1010.53 = 1579.18, 4.5 arb. units;

4+21, 475.47(7) + 1103.33 = 1578.80, 1.0 arb. units;

4+02, 451.72(6) + 1127.29 = 1579.01, 2.2 arb. units;

4+31, 274.43(21) + 1304.55 = 1579.98, <0.27 arb. units.

Ki
π

21
–

It should be noted that, because of selection rules in
K, the gamma transition to the 4+01 level is severely
hindered. At the same time, selection rules in K do not
manifest themselves in the transition to the 4+02 level.
This is due to the mixing of the wave functions of the
4+21 and 4+02 states.

The next rotational level (4–21) at 1676.5(1) keV is
introduced on the basis of the inertial parameters A(3–
2) = 12.14 keV and A(4–3) = 12.17 keV:

4+01, 1416.23(7) + 260.13 = 1676.33, <6.7 arb. units;

3+21, 665.84(5) + 1010.53 = 1676.37, 2.9 arb. units;

4+21, 572.22(5) + 1103.33 = 1676.55, <14 arb. units;

4+02, 549.31(8) + 1127.30 = 1676.61, 3.3 arb. units;

3+31, 459.5(2) + 1217.51 = 1677.0, 0.5 arb. units;

5+21, 439.50(5) + 1236.59 = 1676.22, 3.4 arb. units;

2–11, 370.99(17) + 1305.23 = 1676.22, <0.8 arb. units.

Selection rules in K in the transition to the 4+01 level
and the mixing of the 4+21 and 4+02 states also manifest
themselves here.

The rotational 5–21 level is expected at 1798 keV. No
definitive conclusions can be drawn on this level since
it is populated only slightly in the (n, n'γ) reaction and
since it can be deexcited via several transitions, in just
the same way as the 3–21 level at 1579.07 keV.

3.10. Kπ = 4– Band Built on the 1268.67-keV Level

The 4–, 5–, and 6– levels of the Kπ = 4– band are
excited in the beta decay of 170Ho and in the (n, n'γ)
reaction (see Fig. 3). The band was supplemented with
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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the 7–41 level at 1640.4(1) keV:

6+01, 1099.99(11) + 540.65 = 1640.64, 2.2 arb. units;

8+01, 725.29(8) + 914.99 = 1640.28, 1.7 arb. units.

The parameter values in the expression describing
the order of the rotational levels are A(5–4) = 10.34 keV,
A(6–5) = 10.33 keV, and A(7–6) = 10.31 keV.

The 6– level at 1496.06 keV is deexcited by two
intraband gamma transitions. These are the M1 + E2
123.90-keV 6–  5– and E2 227.41-keV 6–  4–

transitions. According to beta-decay data, these transi-
tions have identical intensities. By using the adiabatic
model and the quadrupole-moment value of Q0 =
6.8(8) e b for the ground-state band, we have found the
gyromagnetic ratio of (gK – gR) = ±0.22(7) nuclear
magnetons. Assuming that the gyromagnetic ratio takes
the same value for all levels of the band, we have found
the bandhead magnetic moment of µ1(4–) = 1.9 nuclear
magnetons or µ2(4–) = 0.5 nuclear magnetons. By com-
paring them with the values calculated on the basis of
the Nilsson functions, µ(pp) = 4.13 or 3.51 nuclear
magnetons and µ(nn) = 1.45 or 0.40 nuclear magne-
tons, we arrived at the conclusion that the band has a
two-quasiparticle neutron structure or a mixed struc-
ture.

3.11. 4–42 Level at 1745.88 keV

The 413-keV gamma transition proceeding from the
5+ 2158.97-keV level to the 1745.88-keV level, which
is deexcited by the 477.4-keV transition, was observed
in the beta decay of 170Ho. The 477.21-keV transition
was observed in the (n, n'γ) reaction. Conceivably, a
part of the intensity of the 374.27-keV doublet is asso-
ciated with the transition between the 1746- and the
1372-keV level. In accordance with the occupation
probability of P = 4 arb. units, the level at 1745.88 keV
must be assigned a spin value of J = 4. We believe that
the quantum numbers of the level are 4–42. This conjec-
ture was based on the following observations:

(i) Only one reliable transition of energy
477.21 keV was found to proceed to the 4–41 level at
1268.67 keV. There is no deexcitation to the Kπ = 2+ and
3+ bands. This suggests that the wave functions of the
two K = 4 levels are close.

(ii) The 2158.97-keV level is deexcited to the
1268.67- and 1745.88-keV levels with close values of
B(E1). Their ratio is equal to 1.5, which is indicative of
the similarity of the two levels.

(iii) According to the calculations from [15], the 4–,

p523  + p411  and 4–, n633  + n521  levels occur at
energies of 1.6 and 1.7 MeV, respectively, but, in fact,
one of these has the energy of 1268.67 keV (see Sub-
section 3.10). The magnetic-moment value calculated
here for it gives grounds to interpret the structure of this
level as a mixture of configurations with close weights
of the two-proton and two-neutron components. If we
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
assume that the 4– state at 1745.88 keV has a similar
structure, the existing experimental data can be
explained. However, we cannot rule out other interpre-
tations of the 1745.88-keV level.

Searches for the 5–42 rotational level in the range
1830–1860 keV did not lead to any positive result.

3.12. 5–51 Level at 1708.16(2) keV and 6–51 Level at 
1819.1(2) keV

A level at 1709 keV was observed in the relevant
(d, d') reaction, and it was tentatively assigned a spin–
parity of Jπ = 5–. This level manifested itself in the (n,
n'γ) reaction through the 439.50- and 336.05-keV tran-
sitions to, respectively, the 4–41 and the 5–41 level (see
[6]), but it did not show up in the beta decay of 170Ho.
This gives ground to treat its structure, according to the

model predictions from [15], as n624  + n521 , the
expected energy of the level being 1.8 MeV.

In accordance with the predictions of the rotational
model, we propose a possible 6–51 level at
1819.1(2) keV:

6+01, 1278.32(23) + 540.65 = 1818.97,
Iγ = 0.20 arb. units;

5–41, 447.2(3) + 1372.07 = 1819.3, Iγ = 0.26 arb. units.

The occupation probability for either level in the (n,
n'γ) reaction is in accord with the known systematics.

3.13. 6–61 Level at 1590.74(8) keV

The 6–61 level at 1590.74(8) keV revealed itself
through a very fast (  = 6.4) beta transition from
the ground (6+) state of the 170Ho nucleus. This beta
transition satisfies the selection rules in the asymptotic
quantum numbers for a first-forbidden unhindered (1u)
transition. In accordance with the scheme of single-par-

ticle levels, this is the n633   p523  transition, and

the 1590.74-keV level has the 6–61, n633  + n512
structure. The deexcitation of the level via 94.67- and
218.69-keV gamma transitions to the 6–41 and 5–41 lev-
els was established in studying the beta decay of the
170Ho nucleus. These transitions are naturally explained

within the scheme of single-particle levels as n633  +

n512   n633  + n521 .
The spectrum for the (n, n'γ) reaction shows a

218.66-keV transition. Possibly, this is a doublet, and a
part of its intensity is associated with the deexcitation
of the 6–61 level.

4. DISCUSSION OF THE RESULTS

The above analysis of the properties of the excited
states of the 170Er nucleus has resulted in establishing

ftlog
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their structure. The most comprehensive theoretical
predictions were made by Soloviev in [15]. They were
confirmed for collective levels. The energies of seven
states comply with the model predictions. Yet three
other predicted levels can manifest themselves in an
analysis of data for the (n, n'γ) reaction. The bands that
were established here are displayed in Fig. 2 and 3.

An important conclusion was drawn here for the
second excited levels with spin–parities Kπ = 0+ and 2+.
From the enhanced deexcitation to the lowest excited
bands with Kπ = 0+ and 2+, it follows that these initial
states involve a two-phonon component each.

For five levels, we have established a two-quasipar-
ticle neutron structure. This identification was based on

fast beta decay to the 5+, n512  + n523  level at

2158.97 keV and the 6–, n633  + n512  level at
1590.9 keV (see Subsection 2.2).

The gamma decay of the 2158.97-keV level occurs

to the Kπ = 3+, n512  + n521  band; this corresponds to

the allowed E2 n512   n521  gamma transition. It
is rather difficult to explain E1 transitions to the Kπ = 4–

(n633  + n521 ) + (p523  + p411 ) band, because
these transitions change states of two particles. The
transitions in question can be understood if we assume
that, in the 5+ state at 2158.97 keV, there is an admix-

ture of the wave function of the 5+4, n514  + n521
state and that the E1 transition corresponds to the

n514   n633  transformation. Another admixed

configuration corresponds to the 5+3, n523  + n521

state, and there occurs the n523   n633  gamma
transition. Both E1 transitions are forbidden by the
selection rules in the asymptotic quantum numbers, and
the deexcitation of the level calls for a theoretical
explanation.

The deexcitation of the 6–61, n633  + n512  level at

1590.77 keV to the 4–, n633  + n521  band via the

n512   n521  transition is understandable. Here,
the M1 transitions are singly hindered in the quantum
number Λ, but a spin flip occurs. The M1 deexcitation

of the 5–, n624  + n521  level at 1708.17 keV to the

same Kπ = 4– band via the n624   n633  transition
is of a similar character.

An analysis of gamma transitions associated with
collective levels requires knowing transition probabili-
ties, on one hand, and performing quantitative calcula-
tions within one model of deformed nuclei or another,
on the other hand.

5. CONCLUSION
The scheme of excited levels of the deformed

nucleus 170Er has been extended and refined on the
basis of a comparison of data obtained in various
nuclear processes. New Kπ = 0– and 2– bands have been
found, and some bands have been supplemented with
new rotational levels. The inertial parameters of the
bands have been presented and discussed. Some levels
have been introduced, while about a dozen levels
whose existence was conjectured previously have been
disproved. The structure of more than a dozen band-
heads, including vibrational states featuring two-
phonon components, has been identified. The applica-
bility of the quasiparticle–phonon model of the nucleus
has been confirmed.
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Abstract—The differential cross section and polarization observables are calculated for the elastic scattering
of 800-MeV protons by 20Ne nuclei. The assumption that the 20Ne nucleus has an alpha-cluster structure is
shown to lead to results that agree with the measured values of observables of the above scattering process.
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At present, the structure of light nuclei has yet to be
understood completely. Nonetheless, many properties
of light nuclei can be explained on the basis of cluster
models, including the alpha-cluster model, which
stands out among this class of models. The effects of
clustering clearly manifest themselves in scattering of
intermediate-energy particles (by intermediate-energy
particles, we mean those with energies of E ≥ 100 MeV
per projectile nucleon) by light nuclei.

A dispersive alpha-cluster model for the 12C and 16O
nuclei was developed in [1–3]. In this model, it is
assumed that the carbon and the oxygen nucleus consist
of, respectively, three and four alpha-particle clusters
occurring at the vertices of an equilateral triangle in the
former case and at the vertices of a tetrahedron in the
latter case. These alpha-particle clusters can execute
vibrations about the most probable positions of their
centers of mass at the vertices of the aforementioned
geometric bodies.

For the elastic and inelastic scattering of protons,
antiprotons, deuterons, and other particles by 12C and
16O nuclei at intermediate energies, various observables
were computed in [3–5] on the basis of the dispersive
alpha-cluster model and the theory of multiple diffrac-
tive scattering. The results of these calculations proved
to be in accord with experimental data. In [3], it was
shown that the inclusion of four-nucleon correlations of
the alpha-cluster type and correlations between the
alpha-particle clusters in the computational scheme
makes it possible to obtain a better description of mea-
sured observables than that in the model of independent
nucleons; as to the specific example of the spin-rotation
function, it behaves differently within these two differ-
ent frameworks.

The results obtained previously give sufficient
ground to hope that the approach in question can be
successfully applied to heavier nuclei that show an
alpha-cluster structure. In the following, the dispersive

* e-mail: berezhnoy@pem.kharkov.ua
1) National Center Institute for Nuclear Research, National Acad-

emy of Sciences of Ukraine, pr. Nauki 47, Kiev, 252028 Ukraine.
1063-7788/00/6305- $20.00 © 20715
alpha-cluster model is generalized to the case of the
20Ne nucleus.

In contrast to what we have for the 12C and 16O
nuclei, various equilibrium configurations of “crystal”
type, including a quadrangular pyramid, a double trian-
gular pyramid, and a tetrahedron featuring an alpha-
particle cluster at the center, are possible for the 20Ne
nucleus [6]. None of these configurations, however,
makes it possible to obtain an analytic expression for
the amplitude of the elastic scattering of intermediate-
energy particles by 20Ne nuclei on the basis of the dis-
persive alpha-cluster model. In this study, the 20Ne
nucleus is treated as that which consists of a core (16O
nucleus) and an extra alpha-particle cluster. We note
that a similar approach was applied in a number of stud-
ies (see, for example, [7–9] and references therein), but
no account was taken there of the internal structure of
the core.

The multiparticle density of the 20Ne nucleus will be
represented here in the form

(1)

where (x, h, z) is the density of the core (16O
nucleus); ρα(c) is the density of the extra alpha-particle
cluster; x, h, and z are the Jacobi coordinates of the
alpha-particle clusters forming the core; and c is the
coordinate of the extra alpha-particle cluster. Expres-
sion (1) for the density of the neon nucleus is not sym-
metrized; that is, it is not invariant under the inter-
change of the extra alpha-particle cluster with any
alpha-particle cluster from the core. This circumstance,
however, has virtually no effect on the behavior of
observables in the scattering of particles with energies
E ≥ 100 MeV per projectile nucleon by nuclei.

The density of the 16O nucleus, (x, h, z), is
given by (see [3])

(2)

ρ Ne( ) x h z c, , ,( ) ρ∆
O( ) x h z, ,( )ρα c( ),=

ρ∆
O( )

ρ∆
O( )

ρ∆
O( ) x h z, ,( ) d3ξ'd3η'd3ζ'ρ0

O( ) x' h' z', ,( )∫=

× Φ∆
O( ) x x'– h h'– z z'–, ,( ),
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where

(3)

(4)

If the wave function of the extra alpha-particle clus-
ter is chosen in the form

(5)

its density ρα(χ) appears to be

(6)

In the proposed approach, it is assumed that the
most probable position of the extra alpha-particle clus-
ter coincides with the core center of mass, the cluster
itself executing vibrations about this point within the
core. The parameter λ characterizes the root-mean-
square deviation of the extra alpha-particle cluster from
the core center of mass.

The form factor for the elastic scattering of a 20Ne
nucleus can be represented in the form

(7)

ρ0
O( ) x h z, ,( ) 1

4π( )2
-------------δ ξ d–( )δ η 3

2
-------d– 

 =

× δ ζ 2
3
---d– 

  δ x h⋅( )δ x z⋅( )δ h z⋅( ),

Φ∆
O( ) ξ η ζ, ,( ) 1

8 π∆2( )9
-------------------=

× ξ2 4/3 η2 3/2 ζ2×+×+

2∆2
---------------------------------------------------------– 

  .exp

Ψ χ( ) 1

λ π( )3/2
--------------------- χ2

2λ2
--------– 

  ,exp=

ρα χ( ) 1

λ π( )3
------------------ χ2

λ 2
-----– 

  .exp=

F q( ) 1
6
---– q2 r2〈 〉 α 

 exp=

× 1
5
--- d3rie

iq ri⋅
ρ Ne( ) x h z c, , ,( )∫

i 1=

5

∑ ,

100

10–2

10–4

10–6

0 1 2
q, fm–1

|F |2

Fig. 1. Charge form factor for the 20Ne nucleus as a function
of momentum transfer. Experimental data were borrowed
from [10].
where the coordinates ri of the alpha-particle clusters
entering into the composition of the core of the 20Ne
nucleus are reckoned from the core center of mass,
while q is the momentum transfer. Performing integra-
tion on the right-hand side of (7), we arrive at

(8)

where (x) is a spherical Bessel function; d and ∆ are
parameters that characterize, respectively, the mean
spacing between the alpha-particle clusters of the core
and their deviations from the corresponding equilib-
rium positions at the vertices of a regular tetrahedron

[3]; and  is the root-mean-square radius of the
alpha-particle cluster.

Figure 1 shows the calculated form factor for the
20Ne nucleus. For momentum-transfer values of q ≤
2 fm–1, these results comply with available experimen-
tal data on elastic electron scattering [10].

We note that the core of the 20Ne nucleus differs
from the 16O nucleus because of core interaction with
the extra alpha-particle cluster. The parameters of the
density of the 20Ne nucleus that were found from a
comparison of the calculated and the measured form
factor for this nucleus proved to be d = 3.595 fm, ∆ =
0.998 fm, and λ = 0.345 fm.

In the case being considered, the root-mean-square
radius of the 20Ne nucleus is given by

(9)

The values presented above for the parameters d, ∆,

and λ of the 20Ne nucleus lead to  = 2.72 fm,

which is less than the experimental value of  =
3 fm [11]. We note that the 20Ne nucleus is heavier than
the 16O nucleus; therefore, its root-mean-square radius
is somewhat greater than that of the oxygen nucleus

(  = 2.73 fm [12]).

The amplitude of proton scattering by 20Ne nucleus
has the form

(10)

where k is the wave vector of the incident particle, b is
the impact-parameter vector, rj stands for the coordi-

F q( ) 1
6
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nates of the alpha-particle clusters in the 20Ne nucleus,
and 

(11)

Here, fpα(q) is the amplitude of pα scattering.
The elementary amplitude fpα(q) can be chosen in

the form

(12)

where s is the operator of the incident-proton spin,
while n is a unit vector defined as n = [k × k']/ |[k × k']|,
k and k' being the wave vectors of, respectively, the
incident and the scattered proton.

The central component of the amplitude, fc(q), has
the form

(13)

The parameters of the central component of the
amplitude in (13) were found in [3] by fitting the mea-
sured observables for elastic pα scattering. This yielded
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Fig. 2. Differential cross section dσ/dΩ (mb/sr), polariza-
tion P(θ), and spin-rotation function Q(θ) for the elastic scat-
tering of 800-MeV protons by 20Ne nuclei versus the scatter-
ing angle θ. Experimental data were borrowed from [13].
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Gc1 = –0.330 + i1.258 and βc1 = 0.424 – i0.025. Accord-
ing to [3], we have

(14)

The spin–orbit component of the amplitude, fs(q),
can be represented in a form similar to (13); that is,

(15)

where Gs1 = 0.177 + i0.295 and βs1 = 0.490 + i0.052.
According to [3], we have

(16)

On the basis of the proposed approach, we have calcu-
lated the differential cross section dσ/dΩ (in mb/sr), the
polarization P(θ), and the spin-rotation function Q(θ) for
the elastic scattering of 800-MeV protons by 20Ne nuclei.
The results of these calculations, along with experimental
data from [13], are displayed in Fig. 2, which shows that
the calculated observables for elastic p20Ne scattering at
800 MeV comply well with existing experimental data. It
should be emphasized that the above observables for elas-
tic p20Ne scattering were computed without invoking any
adjustable parameters. These calculations indicate that
data on the elastic scattering of 800-MeV protons by 20Ne
nuclei can be successfully described under the assumption
that this nuclear species has an alpha-cluster structure.
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Abstract—The yield of 24Na and 28Mg radionuclides was determined by their gamma activity with the aid of
radiochemistry. The corresponding measurements were performed upon the activation of purified Th targets
with bremsstrahlung photons having endpoint energies of 12, 16.5, and 24 MeV. Possible background sources
are carefully analyzed, and it is concluded that the yield of the above light nuclei is about 10–6 per event of 232Th
fission. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Fission accompanied by the emission of a third frag-
ment heavier than the alpha particle has been widely
discussed in the literature (see, for example, [1]). How-
ever, the emission of medium-mass products (A > 20)
has received less study because of a low probability of
the process. The yield (Y) of 24Na and 28Mg nuclei from
238U fission induced by alpha particles was measured in
[2] by Geiger counters after a radiochemical separation
of the reaction products. A strong energy dependence
Y(E*) was revealed there—in particular, the yield fell
below the experimental sensitivity threshold (less than
10–8 per fission event) at excitation energies of E* <
20 MeV. This result was confirmed indirectly by
Gönenwein [3], whose experiments employed a kine-
matical separator for products originating from the
thermal-neutron-induced fission of target nuclei from
229Th to 249Cf. An upper limit of 10–9 on the yield Y of
masses between 20 and 30 was obtained in those exper-
iments for 229Th and 233U targets; for 241Am and 249Cf,
the result was Y > 10–8, which may be associated with a
sharp increase in the nuclear excitation energy at the
scission point with increasing charge number.

Generally, a strong excitation-energy dependence of
the cross section for a nuclear reaction corresponds to a
subbarrier process. For example, it is natural for the
cascade fission of highly excited nuclei into three frag-
ments of comparable masses, which was observed in
[4] in 238U fission induced by heavy ions. The second-
ary fission of the heavy fragment is suppressed by a
high fission barrier (Bf) typical of nuclei from the range
between rare-earth elements and Au. The subbarrier
emission of a light cluster from a heavy nucleus repre-
sents another case where we can expect a strong energy
dependence of the cross section. However, ternary fis-
sion involving particle emission from the prescission
configuration is not a subbarrier process, because the
fissile system is severely deformed, which leads to a
considerable reduction of the Coulomb barrier for par-
1063-7788/00/6305- $20.00 © 20718
ticle emission. This was established in experiments that
studied ternary fission accompanied by alpha-particle
emission. In this case, it was found that the yield was
surprisingly stable to variations in E* [5] and that it
changed slightly with increasing charge number of the
nucleus undergoing fission [3]. The latter resulted in
the growth of E* at the scission point.

If the Coulomb barrier does not confine particles,
their emission is determined exclusively by the parti-
cle-formation and particle-separation probabilities,
which are not expected to depend strongly on E*. It is
therefore reasonable to assume that the 24Na and 28Mg
yields determined in [2] are associated with subbarrier
cluster emission from the compound nucleus. The same
process must then be observed for nonfissile nuclei as
well, but the measurements that were reported in [6]
and which were performed for 181Ta excited by
bremsstrahlung photons with an endpoint energy of
24 MeV yielded a negative result.

Quite a small upper limit on the yield (≤10−10−10–11)
was obtained there not only for 24Na and 28Mg but also
for the decay process 181Ta*  48Ca + 133I resulting in
the emission of the doubly magic nucleus 48Ca and the
nearly magic nucleus 133I. It worth noting that the
favored emission of magic products is typical of spon-
taneous cluster decays [7].

We can conclude that the yield of 24Na and 28Mg
nuclei and its energy dependence should be measured
anew—especially for 232Th, whose fission possesses a
number of special features.

2. DESCRIPTION OF THE EXPERIMENT

2.1. Experimental Procedure

Thorium chloride ThCl4, specially prepared and
purified of light elements like Na, Mg, and Al, which
could be a source of 24Na background in reactions
induced by bremsstrahlung photons and neutrons, was
000 MAIK “Nauka/Interperiodica”
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used as a target material. In the form of a 1-g pellet
coated with a copper foil, ThCl4 to be irradiated with
bremsstrahlung photons was brought into close prox-
imity to a W-converter installed in an electron beam
from the MT-25 microtron of the Laboratory for
Nuclear Reactions at the Joint Institute for Nuclear
Research (JINR, Dubna). The exposures were per-
formed at three electron-energy values of 12, 16.5, and
24 MeV for a time of about 7 h, the beam current being
about 15 µA. Immediately following the exposure, the
activity of short-lived nuclear fission fragments was
rather high, so that chemical operations could be begun
only after a lapse of 3 h. It took about 2 h to extract
chemically the fractions of alkaline and alkaline-earth
elements. In order to measure gamma spectra, the
source obtained in this way was then placed in a posi-
tion immediately adjacent to a germanium HP detector
equipped with thick Pb (+Cd+Cu) filters. Since the
source activity was still high, we did not aim at isolat-
ing pure Na or Mg. The extracted fraction contained Sr,
Ba, and Ra radionuclides, as well as other elements.
The 91Sr and 140Ba yields were used as a reference for
calibration of the yield of 24Na and 28Mg radionuclides
per fission event. Special radiochemical procedures
were carried out to purify the source of radioactive Pd
and Te fragments, in order to eliminate undesirable
background from these fragments in searches for 24Na
and 28Mg (see below).

The germanium HP detector used (Canberra)
ensures a high degree of differentiation between radio-
nuclides and possesses a resolution of about 1.8 keV for
60Co lines. Owing to this, the majority of the lines in the
gamma spectrum could be resolved and identified indi-
vidually despite complexity of the spectrum and the
high absolute activity of the source. An excessive
counting rate in the detector was suppressed with the
aid of the aforementioned Pb absorbers of thickness
10–20 mm. While absorbing soft gamma radiation com-
pletely, the absorber had a moderately high transmission
factor (60–30%) for the 2753.9- and 1778.8-keV lines of
24Na and 28Mg, respectively. The counting rate in the
spectrometer reached 2 × 104 pulses per second, the
dead time being below 20% of the real time of the mea-
surements; neither a resolution degradation nor a shift
of the gamma lines was observed. We relied on the
method of internal energy calibration using the gamma
lines of 140Ba, 228Ra, and their daughter products. The
energy dependence of the detector efficiency was mea-
sured with the calibration sources under the same geo-
metric conditions, and the results proved to be coinci-
dent with those of the relative measurements for the
case of internal calibration. Information storage and
spectra processing were performed with the aid of a
modern ADC and a PC (Pentium). In order to decom-
pose the spectra and to calculate the areas under the
individual lines, the Maestro and Deimos codes were
used in the automatic mode for seeking the lines in
question and for processing them or in the dialog mode
for fitting specific sections of the spectrum.
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2.2. Analysis of Background Sources

The production of 24Na in reactions on light target
nuclei Na, Mg, and Al can be induced by bremsstrahl-
ung photons, as well as by fast neutrons generated in
the converter and by slow scattered neutrons. A low
upper limit on the Na admixture in the target was estab-
lished on the basis of the fact that the 22Na line (T1/2 =
2.6 y) does not appear in the spectra measured after a
lapse of 2 months from the exposure. That typical pho-
tonuclear-reaction products like 51Cr, 54Mn, 58Co, and
65Zn were not found either confirmed a high general
purity of the target material. Among reactions induced
by photons or neutrons, the only one that produces
28Mg is 30Si(γ, 2p), but the threshold for this reaction is
higher than the endpoint energy of the spectrum of
bremsstrahlung used in the present study. Thus, 28Mg
can originate here only from 232Th fission, and its
observation is evidence for the 24Na yield from this pro-
cess, although it was difficult to disprove or prove
directly the presence of Mg and Al admixtures in the
target.

As was discussed in [6], the contribution to the
background may also come from weak gamma lines
appearing in the decays 132Te  132I  132Xe
(γ1778.6) and 112Pd  112Ag  112Cd (γ2752.8) and
mimicking 28Mg (γ1778.8) and 24Na (γ2753.9) lines,
respectively. In either chain, the decay of the parent
nucleus determines a sufficiently large half-life (78 and
21 h in the former and the latter chain, respectively), the
radiation of the corresponding gamma line being emit-
ted by the daughter nucleus. Taking into account the
production of A = 112 and A = 132 isobars and the
quantum yield Iγ of the background gamma lines in
question, we can straightforwardly conclude that the
above radionuclides, appearing as fission fragments,
generate a background at a hazardous level of Y ≈ 10–5

per fission event to the observation of the 24Na and 28Mg
yield. Therefore, it is necessary that, in searches for
24Na and 28Mg, the fraction of alkaline and alkaline-
earth elements be chemically purified of Pd and Te, and
this was indeed done in the present study. On the basis
of the most intense lines of 112Pd and 132Te, the degree
of chemical purification of these elements was found to
be as high as 50–100. Nevertheless, their contribution
to the 24Na and 28Mg lines was quantified and sub-
tracted from the peak areas at energies of 2754 and
1779 keV, respectively.

The background from 112Pd and 132Te was not dis-
cussed in [2, 8], possibly for want of detailed informa-
tion about the schemes of nuclear decays. A kinemati-
cal selection is not always efficient for light nuclei. For
example, the mean range of nuclei identified as 24Na in
the measurements reported in [8] coincides with the
range of the fragment 112Pd. All the above leads to the
conclusion that 24Na and 28Mg radionuclides could be
identified reliably neither by combining chemical
extraction with Geiger counter measurements [2] nor
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Fig. 1. Gamma-spectrum sections of the fraction of the alkaline and alkaline-earth elements according to the measurements per-
formed (a) 7.5 and (b) 41.5 h after the completion of the exposure at the endpoint bremsstrahlung energy of 16.5 MeV. The corre-
sponding fits, including the revealed gamma lines and the Compton background, are represented by the solid curves. The peak posi-
tions are indicated by the arrows, and the corresponding energies are indicated.
by using a Ge(Li) detector with the mean parameters in
[8] alone.

Table 1 lists the gamma lines that we determined for
some radionuclides studied in the present experiment.
We also sought 7Be, 38S, and 59Fe nuclei. The sensitivity
as high as that for 24Na and 28Mg could not be achieved
for 7Be and 38S, because their decay properties were
less convenient for this; as to the yield of 59Fe, it did not
exceed 10–7 per fission event. The other nuclides from
Table 1 were of auxiliary importance, as is obvious
from the text.

2.3. Results of Measurements

Figure 1 shows the sections of the gamma spectra
around the sought lines according to the measurements
performed (a) 7.5 h and (b) 41.5 h after the completion
of the exposure at the endpoint energy of 16.5 MeV. As
might have been expected on the basis of the tabular
values of T1/2 for 24Na and 28Mg, the gamma lines cor-
responding to these radionuclides are seen in the spec-
trum in Fig 1a, but they are absent from the spectrum in
Fig. 1b. Figure 1 also shows the neighboring lines: the
1782-keV gamma line is associated with a natural
radioactive background, corresponding to the one-step-
emission peak for the 222Rn line (238U family), while the
2761-keV gamma line has yet to be identified. In all
probability, the latter represents the peak that is due to
a summation of cascade transitions in one of the radio-
nuclides. The source was placed close to the detector;
therefore, the cascade energies could sum up despite
the thick Pb absorber. The statistics were poor for the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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spectrum in Fig. 1, but the number of events was suffi-
cient for revealing the 2753.9- and 1778.8-keV lines of
24Na and 28Mg, respectively. The peak areas were deter-
mined by means of computer-based, computer-aided,
and computer-free data processing. The last method is
more reliable in the case of limited statistics. The final
result takes into account all kinds of data processing. In
order to smooth out the scatter, the count numbers from
the neighboring channels were summed in pairs. The
resolution was retrograded about 2.5 keV, and the
1778.8- and 1782-keV lines manifested themselves as
an incompletely resolved doublet. The area of each line
can be determined easily. Usually, the accuracy was at
a level of ±30% of significant peak-area values. On this
basis, we have found the number of 24Na and 28Mg
nuclei in the source and their yield per fission event by
a comparison with the number of 91Sr and 140Ba nuclei
whose yields from Th photofission are known from [9,
10] and whose chemical-extraction efficiency was
identical to that for 24Na and 28Mg. We took into
account the quantum yields of gamma lines, the effi-
ciency factors, and the kinetics of decay-event accumu-
lation.

The statistical accuracy of 24Na and 28Mg determi-
nation is higher at the endpoint bremsstrahlung energy
of 24 MeV than at 16.5 MeV. In Fig. 2, the correspond-
ing spectrum in the form that it was transferred to the
printer is shown along with the approximation obtained
for the observed lines on the basis of the Deimos com-
puter code. The 24Na and 28Mg lines are quite distinct,
and their fit resulted in reasonable χ2 values. At the end-
point bremsstrahlung energy of 12 MeV, we were able
to set only an upper limit on the relevant yield, because
the total number of fission events decreased with
decreasing the electron-beam energy due largely to the
attenuation of the bremsstrahlung intensity and also to
a reduction of the endpoint energy of the spectrum.
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3. DISCUSSION OF THE RESULTS

Table 2 summarizes the yields of light nuclei per
event of 232Th photofission at the three values of the
endpoint energy of the bremsstrahlung spectrum. The
24Na and 28Mg yield is about 10–6. Other values are rep-
resented by upper limits on the yield; this was dictated
by experimental conditions.

Since the majority of the previous studies [1–3, 8]
relied on a kinematical selection of fission products,
thin targets from fissile matter were used there. In view
of this, the resulting yield values at a level of 10–7 and
below had a rather low statistical confidence. Yet
another distinction between the methods used previ-

Table 1.  List of gamma lines used to determine radionuclide
yields

Nuclide T1/2 Eγ, keV Iγ , %

7Be 53.3 day 477.6 10.4
24Na 15.0 h 1368.5 100

2753.9 100
28Mg  28Al 20.9 h  2.2 min 1342.2 54.0

1778.8 100
38S  38Cl 2.84 h  37 min 1941.9 84.0

2167.6 42.4
59Fe 44.5 day 1099.3 56.5

1291.6 43.2
91Sr  91Ym 9.5 h  49 min 555.6 61.3
112Pd  112Ag 21.1 h  3.1 h 617.4 50

2752.8 0.11
132Te  132I 76.3 h  2.3 h 667.7 100

1778.6 0.08
140Ba  140La 12.75 day  40.3 h 537.3 24.4

1596.5 95.4
N
um

be
r 

of
 c

ou
nt

s

1300

1100

1778.8 1782 keV
2754 keV

5070 5090 7840 7860
Channel

40

20

Fig. 2. As in Fig. 1, but at the endpoint bremsstrahlung energy of 24 MeV. The cooling time was 27 h.
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ously and in the present study is worthy of note: the
yield of individual nuclides was measured with the aid
of kinematical separators in [1, 3], and the cumulative
yield of A = 24 and 28 isobars was determined by our
method. Figure 3 displays our results along with data
from [2, 8]. We cannot say that they are in good agree-
ment, but the results of our measurements are prefera-
ble for the following reasons: (i) A high absolute sensi-

Table 2.  Light-nucleus yield per event of 232Th photofission
at three values of the endpoint energy of the bremsstrahlung
spectrum

R
ea

ct
io

n
pr

od
uc

t Yield

24 MeV 16.5 MeV 12 MeV

7Be ≤1.1 × 10–4 – ≤1.0 × 10–4

24Na (1.0 ± 0.2) × 10–6 (0.65 ± 0.20) × 10–6 ≤0.5 × 10–6

28Mg (0.85 ± 0.15) × 10–6 (0.93 ± 0.30) × 10–6 ≤1.2 × 10–6

38S ≤2.5 × 10–5 – ≤1.0 × 10–5

59Fe ≤1.0 × 10–7 – ≤2.6 × 10–6
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0 20 40
Ö*, MeV

Fig. 3. Yield from ternary fission (with respect to that for
binary fission) accompanied (a) by alpha-particle emission
(according to data from [5]) or (b) by the emission of 24Na
and 28Mg nuclei: (open circles and closed boxes) data on
24Na from [2] and [8], respectively; (open boxes) our results
for 24Na; and (open triangles) our results for 28Mg.
tivity is ensured in our experiment. (ii) Alien activities
are removed. (iii) Gamma-spectroscopic equipment of
the latest generation is used. In the experiments
reported in [2, 8], the backgrounds due to gamma radi-
ation from fission fragments were not eliminated, as
was discussed above.

An unusual mechanism of ternary fission was pro-
posed by Solyakin and Kravtsov [11], who assumed
that the third fragment does not receive appreciable
kinetic energy because the forces of its Coulomb repul-
sion from the other two fragments are balanced. In our
experiment, all the radioactive products are included in
the measured yield, irrespective of their kinetic energy.
This can explain why the light-nucleus yields measured
by our procedure are higher than those measured by the
methods from [1, 3]. In order to clarify the role of the
mechanism proposed in [11], comparative experiments
are necessary in which the two methods are applied to
the same reaction.

The results presented in Table 2 and in Fig. 3 make
it possible to express the yield as a function of E*. The
mean excitation energy of the fissile nucleus 232Th was
determined by using the data taken from the literature
and shown in Fig. 4. The calculated bremsstrahlung
spectrum and the giant dipole resonance in the photo-
absorption cross sections for 232Th [12] are displayed in
Fig. 4a, while the fission probability Pf is shown in
Fig. 4b. The probability of the relevant (γ, xnf) process
in a wide range of E* was obtained by rescaling data on
(n, ynf) from [13]. The probability Pf of the chance x in
the former reaction was assumed to be equal to that of
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Fig. 4. Giant resonance in the photoabsorption cross section
for 232Th from [12] (curve 1), bremsstrahlung spectrum
(curve 2), and fission probability Pf from [13–16] (3).
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the next chance y = x + 1 in the latter reaction. The data
on photofission [14] and those on the (t, pf) and (p, p'f)
reactions [15, 16] were taken into account in the near-
barrier region. The product of the functions labeled
with the figures 1, 2, and 3 in Fig. 4 yields the E* dis-
tribution of fissile nuclei. On this basis, we have calcu-
lated the mean excitation energy  of the fissile com-
pound nucleus. By way of example, we indicate that, at
the endpoint bremsstrahlung energy of 12 MeV,  is
about 8 MeV, which is slightly above the fission barrier
in 232Th, Bf = 6.0 MeV.

The relative yields from ternary fission accompa-
nied either (a) by alpha-particle emission or (b) by the
emission of A > 20 nuclei are displayed in Fig. 3 versus
the mean excitation energy E* of the fissile nucleus
being studied. The results from [8] are also rescaled to
the mean values of . The continuous spectrum of
incident photons gives no way to fix E* more precisely.
The half-width of the energy distribution is represented
by horizontal bars in Fig. 3b. The data in Fig. 3b have
considerable standard deviations both along the x and
along the y axis; nevertheless, there is no agreement for
the whole host of the data within the errors.

4. CONCLUSION
Using a highly sensitive method, we have deter-

mined the yield of light nuclei 24Na and 28Mg from
232Th photofission and validated the mechanism that
may be responsible for ternary fission accompanied by
the emission of light nuclei with A > 20 and which was
studied thoroughly for long-range alpha particles.
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Abstract—The ground state of the 229Pa nucleus is a 5/2± doublet with a splitting energy of 220 ± 50 eV. Such
levels are peculiar to nuclei in the mass region around A = 225 that are characterized by octupole deformations. A
direct observation of P-odd effects in this system is of great interest because this can furnish information about the
parity-nonconserving nucleon–nucleon potential. The transition between the two doublet states of opposite pari-
ties proceeds predominantly through internal conversion; therefore, P-odd mixing can be explored by studying the
helicities of the conversion electron. It is shown that the helicities of the 6s1/2, 6p1/2, and 6p3/2 conversion electrons
are about 1%, which makes it possible to perform experiments aimed at determining the parameters of the effec-
tive parity-nonconserving nuclear potential. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This article reports on a continuation of investiga-
tions devoted to parity-nonconservation effect in the
(5/2)–  (5/2)+ conversion transition in the 229Pa
nucleus. It was predicted in [1]—and this prediction
was confirmed experimentally in [2]—that the ground
state of this nucleus actually appears to be a system of
two closely lying I = 5/2 states of opposite parities
(±)—that is, it represents a doublet of the states, which
are separated by 220 ± 50 eV. The parity-mixed (E1 +
M1) nuclear transition proceeds almost entirely
through conversion (the internal-conversion ratio is
about 104). Therefore, the parity-nonconservation
effect in the doublet can be explored in the conversion
(E1 + M1) channel of the nuclear transition. The helic-
ities of the 6s1/2, 6p1/2, and 6p3/2 conversion electrons
are one of the effects accessible to observation in
nuclear (E1 + M1) transitions. In [3], we estimated the
deviation of the ratios of the intensities of the 6s1/2,
6p1/2, and 6p3/2 conversion lines from values that corre-
spond to the pure E1 multipole and the half-life of the
upper doublet state. The internal-conversion ratios for
the 229Pa atom were computed in [4, 5].

On the basis of the generalized model of the
nucleus, the matrix element of the effective single-
nucleon weak-interaction potential, which determines
the weight of the opposite-parity admixture in the dou-
blet components, was estimated in [6] within the sin-
gle-particle approximation. In addition, the reduced
probabilities of the E1 and M1 nuclear transitions

† Deceased.
* e-mail: lomon@cerber.mbslab.kiae.ru
1063-7788/00/6305- $20.00 © 20724
between the doublet states were calculated there on the
basis of various models of a deformed nuclear potential.

2. HELICITIES OF THE CONVERSION 
ELECTRONS IN THE PARITY-MIXED
(E1 + M1) TRANSITION BETWEEN

THE COMPONENTS OF THE (5/2)± DOUBLET IN 
THE 229Pa NUCLEUS

We treat the doublet states in the 229Pa91 nucleus as

the [523] , –,  and [642] , +,  single-particle pro-

ton orbitals (in accordance with Nilsson’s classification
[7], the orbitals are denoted as [NnZΛ]Ω, Π, I) spaced
by ∆E = 220 ± 50 eV. The parity-nonconserving weak-

interaction potential  mixes these states, leading to
the formation of the new states

(1)

where b is the coefficient that specifies the opposite-
parity admixture and which is given by

(2)

The phases of the wave functions are chosen in such a
way that the matrix elements are pure imaginary; that is,
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(3)

The Hermitian operator of the parity-nonconserving
effective potential acting on an intranuclear nucleon
(proton) has the form [8]

(4)

where G = 10–5"3/ c is the weak-interaction coupling
constant, mp is the proton mass, p is the nucleon-
momentum operator, s is the nucleon-spin operator,
ρ(r) is the volume nucleon-density distribution in the
deformed nucleus, and α(N, Z) is a coefficient depend-
ing on the form of single-particle potentials used in
averaging relevant quantities over intranuclear nucle-
ons [α(N, Z) ~ 1]. Data on parity-nonconservation
effects in resonance-neutron interactions with heavy
nuclei can be treated so that this coefficient is enhanced
by one to two orders of magnitude, in which case
observable effects are enhanced accordingly (see, for
example, [9]). Nevertheless, we set α(N, Z) = 1 in the
ensuing calculations.

Nuclear conversion proceeds through a (E1 + M1)
transition, where "ω = E1 – E2; this is accompanied by
the transition of an electron from the |ε1n1l1j1〉  state,
where ε1 is the energy, n1 is the principal quantum num-
ber, l1 is the orbital angular momentum, and j1 is the
total angular momentum, to a continuum state with
energy ε2. We assume that the nucleus is unpolarized in
the initial state, because the half-life is sufficiently large
for initial polarizations generated in the populating cas-
cade to disappear.

The relativistic wave function of the initial electron
state |ε1n1l1j1〉—a solution to the Dirac equation in the
spherically symmetric field—can be represented in the
bispinor form [10]

(5)

where 

(6)

is a spherical spinor, while (r) and (r) are radial

functions satisfying the normalization condition

(7)
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At infinity, the asymptotic expression for the relativ-
istic wave function of the final electron state |ε2, ν2〉  (ν2
is the electron polarization) has the form of a sum fea-
turing a plane wave and a diverging spherical wave,
whereas the function itself can be represented as [10]

(8)

where

The wave functions of continuum electron states are
normalized in such a way that they satisfy the following
asymptotic conditions for r  ∞:

(9)

(10)

For the above case of the unpolarized initial nucleus
and the unpolarized atomic shell, we take the coordi-
nate frame comoving with the conversion electron and
having the z axis aligned with its observed momentum
p2 = (0, 0, p2). In this frame, the electron-spin projec-
tion ν2 onto the quantization axis is the projection of the
spin s2 onto the momentum p2. Experimentally, the
detector used must record the momentum p2 within the
solid angle d  (in the laboratory frame) and the pro-
jection of the spin s2 onto the momentum p2. In this
way, the events  and  in which the
electron is emitted with polarizations ν2 = +1/2 and ν2 =
–1/2, respectively, are detected independently. In this
case, the electron helicity is determined as the ratio

(11)

where s2 = s and where averaging is performed over

the conversion-electron states.
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It follows from (11) that

(12)

where dW(I1  I2; [ε1n1l1j1m1]1  p2ν2) is the
quantity obtained by summing the differential probabil-
ity of electron ejection from the atomic state
|ε1n1l1j1m1〉  into the continuum state |p2ν2〉  per electron
in the filled shell over the unobservable projection M2
of the nuclear spin I2.

In calculating the differential probability of the con-
version process, we used a decomposition into the E1
and M1 multipoles as in [10, 11] (for details, see [12]).
For 6s1/2, 6p1/2, and 6s3/2 conversion in the protactinium
atom, the M1-to-E1 ratio of the transition probabilities
does not exceed a few percent (see, [3]). In the denom-
inator of expression (12) for the helicity, we can there-
fore neglect the contribution from the M1 conversion
nuclear transition. For the conversion-electron helicity
(12), we then eventually obtain

(13)

The system of the radial integrals of the relativistic
wave functions of the initial- and final-state electrons is
given by
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where x = r/a0, a0 being the Bohr radius.
In (13), we have used the notation

(16)

where u(abcd; ef) = w(abcd; ef) is a
normalized Racah coefficient.

The reduced nuclear matrix elements 〈I2||E(M)Λ||I1〉
used in our calculations are related to the conventional
reduced probabilities B(E(M)Λ; I1  I2) of the I1 
I2 multipole nuclear transition [13] by the equations

(17)

(18)

where RN is the nuclear radius.
In the present calculation, we employed the results

obtained in [6], where the severely deformed nucleus
229Pa was described on the basis of the collective model
[13]. The nucleon wave functions were obtained in the
Woods–Saxon potential for a deformed nucleus; in order
to test our results, we also used the deformed nuclear
oscillator potential [7]. In [6], we calculated the reduced
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[642]5/2, +, 5/2 states (with allowance for their mixing)
of the severely deformed nucleus 229Pa. Expression (13)
for calculating the conversion-electron helicity
involves the ratio of the reduced nuclear matrix ele-
ments for the E1 and M1 transitions. Taking into
account relations (17) and (18), we can express this
ratio in terms of the reduced probabilities as

(19)

The values of this ratio, which are presented in Table 1,
were borrowed from [6]. In what follows, we will cal-
culate only the absolute value of the effect.

3. NUMERICAL CALCULATIONS

The electron-shell states of the protactinium atom
were described by the relativistic Hartree–Fock–Slater
(HFS) method [14]. In order to estimate the stability of
the expected effect to uncertainties in the input parame-
ters, the calculations were performed for 13 possible con-
figurations (5f5/2)x(6d3/2)y(7s1/2)z (x + y + z = 5) of the
valence band of the atom in the interval "ω = 170–270 eV.
For the standard configuration (5f5/2)2(6d3/2)1(7s1/2)2 of
the valence band, the potential acting on the conversion
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Table 1.  Ratio of the reduced matrix element 

for the magnetic dipole transition to the reduced matrix ele-

ment  for the electric dipole transition
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Note: The values in the first three rows were calculated by using
the Woods–Saxon potential with quoted values of the qua-
drupole deformation β20 at β40 = 0.08, while the value in the
fourth row was obtained from the measured isomer lifetime
τexpt for β20 = 0.23 (∆E is measured in eV).
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electron in the continuous spectrum was taken in the
form of (i) the HFS potential with the Latter correction,
(ii) the potential of the neutral protactinium atom, and
(iii) the potential of the atom involving a hole in the nlj
subshell where conversion occurs.

Table 2.  Helicities of the 6s1/2, 6p1/2, and 6p3/2 conversion
electrons of the protactinium atom (the Hatree–Fock–Slater
potential with the Latter correction is used for a conversion
electron)

∆E, eV

|ν2 |, %

I II

6s1/2 6p1/2 6p3/2 6s1/2 6p1/2 6p3/2

170 3.41 1.67 0.74 1.33 0.57 0.25

180 3.31 1.60 0.71 1.28 0.55 0.24

190 3.23 1.54 0.68 1.24 0.53 0.23

200 3.14 1.49 0.66 1.20 0.51 0.22

210 3.06 1.44 0.64 1.16 0.49 0.22

220 2.98 1.39 0.63 1.12 0.47 0.21

230 2.90 1.35 0.61 1.08 0.46 0.21

240 2.82 1.31 0.60 1.05 0.44 0.20

250 2.74 1.27 0.58 1.02 0.43 0.20

260 2.67 1.23 0.57 0.98 0.42 0.19

270 2.59 1.20 0.56 0.95 0.41 0.19

Note: In this table and in Tables 3 and 4, columns I and II quote the
B(E1; 5/2–  5/2+) values as calculated by using the
deformed Woods–Saxon potential and as obtained from the
measured isomer lifetime τexpt.

Table 3.  Helicities of the 6s1/2, 6p1/2, and 6p3/2 conversion
electrons of the protactinium atom (the potential of the neu-
tral atom is used for the conversion electron)

∆E, eV

|ν2 |, %

I II

6s1/2 6p1/2 6p3/2 6s1/2 6p1/2 6p3/2

170 8.78 2.93 0.76 3.29 1.00 0.26

180 8.34 2.75 0.73 3.10 0.94 0.25

190 7.95 2.59 0.70 2.93 0.88 0.24

200 7.59 2.45 0.67 2.78 0.83 0.23

210 7.26 2.32 0.65 2.65 0.79 0.22

220 6.95 2.21 0.63 2.53 0.75 0.21

230 6.67 2.11 0.61 2.41 0.71 0.20

240 6.41 2.01 0.59 2.31 0.68 0.20

250 6.17 1.93 0.57 2.22 0.65 0.19

260 5.95 1.85 0.56 2.13 0.63 0.19

270 5.74 1.78 0.54 2.05 0.60 0.18
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The results of the calculations are presented in
Tables 2–4. It is interesting to note that the helicity val-
ues calculated by using the HFS potential with the Lat-
ter correction are close to those calculated by using the
potential of the atom involving a hole in the nlj sub-
shell.

4. CONCLUSION
We have calculated the helicity ν2 for the 6s1/2, 6p1/2,

and 6p3/2 conversion electrons of the protactinium
atom, a quantity that is linear in the coupling constant
of weak neutral interaction, and estimated the stability
of expected ν2 values to uncertainties in the parameters
entering into the calculations such as the scatter of ∆E,
variations in the form of the mean atomic field, and
variations in the matrix elements for the nuclear transi-
tion from one model used to another. The parity-non-
conservation effect is enhanced because the dominant
nuclear E1 transition is suppressed in relation to the
admixed M1 transition. Moreover, the smallness of the
doublet-mixing amplitude is compensated, to a consid-
erable extent, by the fact that, in the conversion chan-
nel, the M1 transition for the 6s1/2, 6p1/2, and 6p3/2 elec-
tron orbits is enhanced by the factor of about 102–103.
For this reason, the helicity of a conversion electron
having a kinetic energy in the range 100–200 eV is

Table 4.  Helicities of 6s1/2, 6p1/2, and 6p3/2 conversion elec-
trons of the protactinium atom (the potential of the atom in-
volving a hole in the nlj subshell where conversion occurs is
used for the conversion electron)

∆E, eV

|ν2 |, %

I II

6s1/2 6p1/2 6p3/2 6s1/2 6p1/2 6p3/2

170 3.78 1.66 0.66 1.43 0.57 0.22

180 3.67 1.58 0.63 1.38 0.54 0.21

190 3.57 1.51 0.60 1.33 0.51 0.20

200 3.46 1.44 0.58 1.28 0.49 0.19

210 3.36 1.38 0.56 1.24 0.47 0.19

220 3.26 1.33 0.54 1.19 0.45 0.18

230 3.17 1.28 0.52 1.15 0.43 0.18

240 3.08 1.23 0.51 1.12 0.42 0.17

250 3.00 1.18 0.50 1.08 0.40 0.17

260 2.92 1.14 0.48 1.05 0.39 0.16

270 2.84 1.11 0.47 1.02 0.37 0.16
about 1%, which is a value measurable in experiments
aimed at determining the parameters of the parity-non-
conserving effective nuclear potential.
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Abstract—It is shown that a consistent treatment of momentum translation by a muon in the problem of the
distribution of muons among prompt-fission fragments modifies the nonadiabatic transition operator in the
Born–Oppenheimer expansion and removes difficulties indicated in earlier calculations. The muon distribution
for very asymmetric prompt fission proves to be highly sensitive to the velocity of the primary fragments at the
scission point. The mean collective energy dissipated during saddle-to-scission descent due to the one-body
mechanism is calculated within the same approach. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since 1927, when the Born–Oppenheimer expan-
sion was proposed for atomic collisions, it has found a
vast application in this and also in other fields (for
example, in solid-state physics) to describing atomic
clusters. In nuclear physics, the Born–Oppenheimer
expansion was frequently used to calculate the proba-
bility Wl of muon attachment to light fragments of the
prompt fission of the muonic atoms of actinide ele-
ments. One of our present purposes is to show how it
can be used to solve one of the most topical problems
in the modern theory of fission—namely, the problem
of microscopically calculating the dissipation of collec-
tive energy and its application to a comparison with
experimental data.

Wheeler’s proposition in 1948 [1] that the muonic
atom of uranium can undergo prompt fission as the
result of the 2s  1s radiationless transition opened
the way for using an exotic particle as a probe for fis-
sion dynamics. Although it was shown in subsequent
publications that transitions of various multipolarities
(E1, E2, E3) make approximately equal contributions
to the radiationless excitation of actinide atoms [2–4],
the problem remains very topical now in connection
with studies on fission dynamics—specifically, on the
time scale for fission.

In prompt fission, the muon is usually attached to
the heavy fragment, forming a muonic atom. This gives
rise to various processes and effects, which are being
investigated. These include the muonic conversion of
gamma rays from the fragment, muon capture by the
fragment, muonic x radiation from the fragment, an
increase in the fission barrier due to the presence of the

* This article was submitted by the author in English.
1) Università degli Studi di Milano, Dipartamento di Fisica,

I-20133 Milano, Italy.
2) Institute of Physics (Petrodvorets Branch), St. Petersburg State

University, Ul’yanovskaya ul. 1, Petrodvorets, 198904 Russia.
1063-7788/00/6305- $20.00 © 20729
muon, and many others (see, for example, [5–7] and
references therein). Of these topics, the problem of
muon attachment to the light fragment—the corre-
sponding probability is denoted by Wl—was consid-
ered in a number of studies (see, for example, [5–16]
and references therein). Lattice calculations show that
Wl is expected to be sensitive to the amount of dissi-
pated energy and, moreover, that the probability of a
transition to muonic excited states is also significant
and sensitive to energy dissipation [9, 16]. In contrast,
more traditional calculations in an adiabatic basis usu-
ally do not reproduce this result [5–8, 12, 14, 15]. It
should be noted in this respect that the behavior of the
muon during the separation of the fragments is very
complicated, especially in the vicinity of the
pseudocrossing point. It is not clear whether lattice cal-
culations are sufficiently subtle for adequately repro-
ducing the resulting probability of muon attachment to
the light fragment. Answering this question remains a
challenging task. In addition, a calculation of the tran-
sition probability in the four-state basis [13] encoun-
tered the problem that nonadiabatic matrix elements
between the 1s and 2p states of the same fragment do
not vanish at large internuclear distances. As a result,
the population amplitudes for these states continue
oscillating in the asymptotic region of large internu-
clear distances R, where no interaction between the
states survives. Moreover, these spurious transitions
violate the Galilean invariance of the theory. It is worth
noting the analogy between this problem and that
encountered in describing one-body dissipation, where
a modification to the original theory of one-body dissi-
pation is introduced to rule out a spurious internal exci-
tation of a uniformly moving fragment [17]. The
present investigation was undertaken in order to obtain
deeper insight into all these peculiarities, to refine the
theory, and to apply it to the problem of energy dissipa-
tion in fission.
000 MAIK “Nauka/Interperiodica”
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2. EQUATIONS OF MOTION

The separation of the fragments occurs with the
large Massey adiabaticity parameter with respect to the
motion of the bound muon. In the majority of cases, the
muon therefore remains in the 1s state of the heavy
fragment. The probabilities of transitions to higher
states and to states of the lighter fragment are expected
to be small. In order to determine these probabilities
quantitatively, we modify the Born–Oppenheimer
expansion, representing the wave function as the series

(1)

where the functions Φn form a complete set of quasi-
molecular wave functions. When the internuclear dis-
tance R tends to infinity, each of the functions Φn cor-
relates with a certain µ-atomic state n of the corre-
sponding fragment.

The momentum-translation exponents (MTE) are
introduced in (1), where pn = µvn, with µ being the
muon mass and vn being a constant equal to the velocity
of the fragment in the asymptotic region. The orthogo-
nality of the basis functions is thus lost in this descrip-
tion. The great advantage is, however, that, in the
asymptotic region, our basic product functions Φn(r;

R)  satisfy the Schrödinger equation

(2)

where  = En + /2µ and where H is the two-center
Hamiltonian of the form

(3)

Substituting expansion (1) into the time-dependent
Schrödinger equation, we arrive at the set of coupled
equations

(4)

(5)

(6)

where the differential operators act only on the wave
functions Φi or Φk.

The introduction of the MTE is reflected in the ini-
tial condition for the set of coupled equations (4)–(6).
The natural initial condition is that the muon is in the

Ψ r; R t( )( )

=  CnΦn r; R t( )( )e
i pn r⋅( )

e

i En' t'( ) t'd∫–

,
n

∑
t

∫

e
i pn r⋅( )

H En'–( )Φn r; R( )e
i pn r⋅( )

0,=

En' pn
2

H
∆

2µ
------ V1 r R1–( ) V2 r R2–( ).+ +–=

dCi

dR
-------- FikCk,

k

∑–=

Fik }ike
i Ek' Ei' R'( ) )/V R'( )–([ ] R'd∫–

,=

R

∫

}ik Φi
∂

∂R
------

vi vk+
2V R( )
----------------∇– Φke

i pk pi–( ) r⋅
,=
lowest 1sσ state at the saddle, in which case it is
described by the wave function Φ1. In going over to
another basis, we therefore have to reexpand this wave
function in terms of the new basis set. The expansion

coefficients  = 〈Φ1|Φiexp(ipz)〉, i = 1, 2, 3, 4 in our
case, are to be used as the new initial condition.
Because of the smallness of the parameter that can be
estimated as piz & 0.03, the resulting amplitudes for i >
1 prove to be of about 0.003 or less, which is an order
of magnitude less than final transition amplitudes. In
the long-wave approximation, we can therefore use the
usual initial condition

(7)

where Rs is the saddle point. The condition in (7) means
that the muon is in the lowest 1sσ state at the saddle.
The probability of a transition to a state n is

(8)

At large R, where the interaction between the atoms
can be neglected and where the centers move uni-
formly, the operator ∂/∂R is proportional to ∂/∂z. If the
states i and k belong to the same center and if they are
connected by an electric dipole transition, the matrix
element of ∂/∂R therefore does not vanish. This poses
the problem formulated above. In this case, however,
the second term in (6), which arises from the MTE
incorporated in (1), exactly cancels the contribution
from ∂/∂R, thereby resolving the problem and restoring
the Galilean invariance of the theory. Furthermore, tak-
ing this term into account modifies the nonadiabatic
matrix element in the range where the formation of the
final attachment probabilities occurs.

From equation (6), it follows that, for the 1sσ 
2pσ transition, the transition operator ∂/∂R becomes

∂/∂R +  upon taking the momentum transfer

into account. The second term in the last expression can
be treated as that which is due to the motion of the geo-
metric center of the line segment between the frag-
ments. Its contribution will be small, along with the dif-
ference v1 – v2, always, with the exception of the case
of very asymmetric fission. The exponential factors in
the matrix element in (6) can also be neglected in the
long-wave approximation, and we arrive at essentially
the old expression for this nonadiabatic matrix element.
The latter vanishes, along with the overlap integral
〈2|1〉 , for R  ∞. Thus, the inclusion of the momen-
tum transfer does not have dramatic consequences if
the quasimolecular states refer to the different frag-
ments.

Let us examine the effect of introducing the MTE in
the probability of a transition to an excited muon state
2sσ, which goes over to the 2p state of the heavy frag-
ment. For the two lowest states, 1sσ and 2pσ, the ener-
gies, the wave functions, and the nonadiabatic matrix

Ci
0( )

Ci R Rs=( ) δi 1, ,=

Wl Cn R( ) 2.
R ∞→
lim=

v 1 v 2–
2V R( )
------------------ ∂

∂z
-----
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Fig. 1. Population probabilities calculated for the 2sσ level (correlating with the 2p state of the heavy fragment) as a function of the
internuclear distance R for a representative pair of fragments with charge numbers Z1 = 52 and Z2 = 40 (a) without and (b) with
allowing for the momentum-translation exponent.
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elements were calculated in [14] with allowance for a
finite nuclear size by solving numerically the two-
dimensional Schrödinger equation by the method of
finite elements. On the other hand, the LCAO method
is appropriate for obtaining the energies and wave func-
tions of the next relevant states, 2sσ and 3pσ, which
correlate with the 2p states of the heavy and the light
fragment, respectively. For these states, the
Schrödinger Coulomb wave functions can be used,
since the effect of the finite nuclear size on these states
is insignificant.

For the four aforementioned states, the population
probabilities have been obtained by solving numeri-
cally the set of simultaneous equations (4)–(6) with the
initial condition (7). In Fig. 1, we present the popula-
tion probability for the 2sσ level as a function of the
internuclear distance R for a representative pair of frag-
ments with atomic numbers Z1 = 52 and Z2 = 40. These
results were obtained for two cases, without (Fig. 1a)
and with (Fig. 1b) allowance for the MTE. It can clearly
be seen that taking account of the MTE diminishes the
final attachment probability for this state by a factor of
about 4, allowing one, in addition, to eliminate the
oscillations in the attachment probability, which ulti-
mately vanish for R  ∞. As might have been
expected, the population of higher levels proves to have
a relatively small effect on the final muon fate.

3. SENSITIVITY TO FISSION DYNAMICS

In order to study this aspect, we have calculated the
final muon-attachment probabilities for various posi-
tions of the scission point Rsc using the results obtained
in the preceding section. The relative velocity of the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
fragments was assumed to be determined by the Cou-
lomb repulsion of the fragments for R ≥ Rsc and to be a
constant for R < Rsc, with V(R < Rsc) = V(Rsc). Therefore,
different values of Rsc correspond to different velocities
of descent from the saddle to the scission point and,
consequently, to different velocities of the primary
fragments at the scission point. The calculations have
been performed for various values of the total kinetic
energy (TKE) of the fragments. The results of the cal-
culation are listed in Tables 1 and 2 for representative
fission fragments with a typical charge splitting, Z = 52 +
40, and with a relatively large asymmetry, Z = 57 + 35.

We can see that a more asymmetric fission mode is
more sensitive to dynamics, as might have been
expected. In this case, the pseudocrossing point of the
muonic terms approaches the scission point [7, 14].
This is in contrast to the case of more symmetric fis-

Table 1.  Calculated probabilities of attachment to light
fragments, Wl (%), for fragments with charge numbers Z1 =
57 and Z2 = 35

TKE, MeV
Rsc, fm

20 22 24 26

140 0.21 0.23 0.026 0.033

150 0.37 0.14 0.12 0.038

160 0.33 0.29 0.10 0.020

170 0.56 0.24 0.064 0.053

180 0.49 0.17 0.10 0.18

190 0.38 0.20 0.23 0.40

200 0.39 0.34 0.47 0.71
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sion, where the avoided crossing of the levels occurs
after the rupture at a rather large distance between the
fragments. It is worth noting that, although the theoret-
ical results for the average value of Wl agree well with
experimental data, the theoretical attachment probabil-
ities are significantly lower than the experimental val-
ues in this region of charge sharing. Possible reasons
for the discrepancy were considered in the literature
(see, for example, [7, 18] and references therein); it is
conceivable that this is a manifestation of dynamical
effects. A very significant variation in the resulting val-
ues of Wl for the fragments with Z1 = 57 and Z2 = 35 at
TKE = 170 MeV should be noted.

4. MODEL FOR STRONGLY INTERACTING 
PARTICLES AND DISSIPATION

In this section, we extend the results obtained previ-
ously to the case of strongly interacting particles—Λ
hyperons and nucleons—in a fissile nucleus.

Let us consider the two-center harmonic-oscillator
model for a Λ hyperon in a fissile hypernucleus [19].
Let the potential produced by a fragment J be

(9)

An analysis of the matrix elements of the commutator
[H, ∂/∂R] leads to the useful relation

(10)

where Q stands for R or r, and ∆Eij is the energy differ-
ence between the states. For a finite potential of constant
depth, the presence of ∂V/∂Q in (10) gives rise to an
interaction at the nuclear surface; qualitatively, this inter-
action corresponds to a semiclassical description [17].

Taking into account the dependence of the oscillator
parameter \ω on R [19] and using equations (5) and (9),
we obtain the nonadiabatic matrix element in the form

(11)

V J r RJ–( ) 1
2
---ωJ

2 r RJ– 2.=

Φi
∂

∂Q
------- Φ j

1
∆Eij

---------- Φi
∂V
∂Q
------- 

  Φ j ,≈

}ik
1

∆Eik

----------- Φi ωJ

dωJ

dR
--------- 

  r RJ– 2

J

∑ Φk .=

Table 2.  Calculated probabilities of attachment to light
fragments, Wl (%), for fragments with charge numbers Z1 =
52 and Z2 = 40

TKE, MeV
Rsc, fm

20 22 24 26

140 2.38 2.38 1.65 1.51

150 2.77 2.73 2.43 2.13

160 3.82 3.56 3.00 2.69

170 4.84 4.07 3.52 3.37

180 5.35 4.52 4.18 4.20

190 5.35 4.52 4.18 4.20
The nonadiabatic matrix element in (11) can be treated
as that which consists of two parts for each fragment.
The corresponding interaction potential for each frag-
ment appears to be of a monopole character. Neglecting
boundary effects in the region where the two potential
wells intersect, we can see that interaction (11) then
nearly cancels the electric dipole transitions for each
fragment like 1s  2p or electric quadrupole transi-
tions like 1s  3d if the fragment is not strongly
deformed, whilst giving rise to monopole transitions
like 1s  2s. Detailed calculations of the resulting Λ-
attachment probabilities will be given elsewhere. How-
ever, the experimental cross section for Λ–nucleon col-
lisions indicates [19, 20] that such collisions seem more
important in determining the final Λ-attachment proba-
bilities than the nonadiabatic quasimolecular effects
considered previously.

Equation (11) can also be used to calculate the prob-
ability of nucleon promotion in a fissile nucleus. In this
case, nucleons undergo transitions to excited orbitals,
receiving energy from the collective motion of nascent
fragments, whereby the intrinsic excitation of the frag-
ments arises at the expense of the energy of their rela-
tive motion. The last effect corresponds to the conven-
tional one-body dissipation of collective motion.
Therefore, equation (11) can be used to define the
microscopic Hamiltonian responsible for one-body dis-
sipation in fission by invoking the adiabatic basis of the
quasimolecular nuclear states.

In order to estimate the numerical magnitude of the
effect, we consider the near-barrier 238U fission, which
can be induced, for example, by muonic radiationless
transitions. The shape of a fissile nucleus can be param-
etrized in terms of two intersecting spheres of corre-
sponding radii, with R being the distance between the
centers of the spheres. We make use of the fact that \ω ≈
41A–1/3 and, accordingly, ∂ω/∂R are functions that
change slowly in the fission process and approximate
∆Eik by the energy of the giant monopole resonance,
∆E ≈ 65A–1/3 MeV. In the leading order of perturbation
theory, we then find from (4) and (11) that the ampli-
tude of a nuclear transition from the ground state i to an
excited state k satisfies the differential equation

(12)

with V being the velocity of fragments between the sad-
dle point Rsp and the scission point Rsc . With allowance
for the sum rule for the giant monopole resonance, the
solution to equation (12) can be represented as

(13)

Ċk R( ) }ki i
∆E
V

------- rd

R0

R

∫–
 
 
 

,exp=

W Ck Rsc( ) 2

k

∑=

=  
2Vω
∆E2
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 
2 A R0
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.
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Using the values of dω/dR ~ 0.075 and 0.12 MeV/fm
for the heavy and light fragments, respectively, together
with ∆E ~ 10 MeV, Rsp ≈ 10 fm, Rsc ≈ 20 fm, and V ≈

0.03, and replacing sin2 (Rsc – Rsp)  in (13) by its

mean value of about 1/2, we obtain W ≈ 1/6. This means
that the mean dissipated energy is about 2 MeV, which
corresponds to a motion characterized by a relatively
low damping. It is expected that this energy will be
greater for the light fragment than for the heavy frag-
ment by a factor of about 2.5 owing to the higher values
of dω/dR and V in the former case.

In the case of a deformed fragment, the main conse-
quence of the deformation is expected to be the split-
ting of the giant monopole resonance and its interaction
with the giant quadrupole resonance, with the sum rule
in (13) being essentially unaffected.

5. CONCLUSIONS

The basic results of the present study can be summa-
rized as follows:

(i) The probability of muon attachment to light frag-
ments is a highly sensitive probe of the velocity of the
saddle-to-scission descent, especially in the case of
strongly asymmetric fission.

(ii) From the theoretical viewpoint, the present cal-
culation is of great interest in view of applications to
constructing the microscopic Hamiltonian and devel-
oping the quantitative theory of one-body dissipation.
I would like to note that, historically, the study of the Λ-
attachment probability was an important intermediate
step toward introducing the MTE, as was done above.

(iii) The above consideration allows one to draw an
important qualitative conclusion about one-body dissi-
pation—namely, the conclusion that this dissipation is
due to the excitation of the giant monopole reso-
nance—and, in the case of deformed fragments, the
quadrupole resonance. Numerical estimates of the
amount of dissipated energy on the basis of this mech-
anism of dissipation leads to a saddle-to-scission
descent characterized by a relatively weak damping.
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Abstract—The deuteron form factors and tensor polarizations in elastic ed scattering are considered for four
versions of the Nijmegen nucleon–nucleon potentials. The numerical deuteron wave functions in these poten-
tials are approximated by a series of Gaussian functions with the result that it can be used in any computations
of integrated characteristics. The quality of this approximation of the wave function is exemplified by compar-
ing the results that it produces for the momentum distributions, the quadrupole moment, the D-state probability,
and the deuteron radius with the results of the corresponding precise calculations. © 2000 MAIK “Nauka/Inter-
periodica”.
Not very long ago, a few new versions of phenome-
nological nucleon–nucleon potentials featuring a repul-
sive core were proposed in [1]. The parameters of these
potentials were determined on the basis of the partial-
wave analysis performed by the Nijmegen group [2]. At
present, the Nijm-1, Nijm-2, and Reid-93 versions
seem to be the best of those proposed thus far, because
they yield the χ2 value per point as low as 1.03 in the
energy region extending up to 350 MeV. For example,
the classical Reid potential [3] (1968) or the Paris
potential [4] (1980) lead to χ2 values of about 2 to 3 in
the energy range 0–300 MeV. The fourth version of the
Nijmegen potential, Nijm-93, yields the close value of
χ2 = 1.9 for energies up to 350 MeV [1, 5]. It was shown
[5] that only the Argonne potential [6] leads to a com-
paratively small value of χ2 = 3.3 at energies up to
350 MeV. Other potentials, such as Hamada–Johnston-
62, Reid-68, Urbana-81, and Bonn-89, result in much
greater values of χ2, because the parameters of these
potentials were derived from analyses performed over
a narrower energy range.

The partial-wave analysis in [2] covered the energy
range 0–350 MeV, but, by and large, its results comply
quite well with the results from [7] and [8], where the
partial-wave analyses were performed over the much
broader energy ranges 0–1600 MeV and 0–2500 MeV,
respectively. On the basis of the partial-wave analysis
reported in [2], the Nijmegen group refined some fea-
tures of the deuteron (binding energy, charge radius,
quadrupole moment) and some characteristics of np
scattering (scattering length, effective range) [9].

It should be noted that the value of 0.074 used for
the πNN coupling constant f 2 in parametrizing all ver-
sions of the above potentials is considerably smaller
than the values reported in [10] and [11] [0.0776(9) and
0.0803(14), respectively]; it is closer to the values of

* e-mail: serg@mail.kz
1063-7788/00/6305- $20.00 © 20734
0.0760(8) and 0.0760(2) reported in [12] and [13],
respectively.

With the interactions obtained in [1], a thorough
analysis of the properties of the deuteron and of many
features of nucleon–nucleon systems was performed in
[2], and a comparison was drawn in [5] between the
results of this analysis and the corresponding results for
other known potentials. A three-body calculation of the
3H binding energy yielded values falling within the
range 7.6–7.7 MeV and depending on the specific ver-
sion of the interaction [14], the experimental value
being 8.48 MeV.

At the same time, the deuteron form factors and the
tensor polarizations in elastic ed scattering have not yet
been calculated with the Nijmegen potentials. This can
be done by using the wave functions obtained in [1];
their numerical values can be found in [15], but they are
given there with a variable step in the range 0–25 MeV.
Since this complicates the calculations, it is desirable to
approximate analytically the wave function specified
numerically, in which case we would have at our dis-
posal its value at any required point.

To approximate the numerical wave functions from
[15], it is convenient to use the following series in terms
of Gaussian functions [16]:

(1)

Here, Ck are coefficients, while αk are parameters in the
expansion of the radial wave function, which is taken to
be R0(r) = u(r)/r and R2 = w(r)/r, u(r) and w(r) being,
respectively, the S- and D-wave solutions to the stan-
dard radial equation. Summation in (1) was performed
up to N = 13. For the wave function in question, this
made it possible to achieve a comparatively accurate
approximation in the range 0–10 fm. In constructing
this approximation, the coefficients in (1) were chosen

RL r( ) rL Ck α kr
2–( ).exp

k

∑=
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Deuteron features calculated with the precise and approximate wave functions for various versions of the Nijmegen potentials
[∆E(S) and ∆E(D) are the average errors in the approximation of the S- and D-wave functions, respectively]

Deuteron
features

Nijm-1 
[1]

Nijm-1
with the

approximate 
wave function

Nijm-2 
[1]

Nijm-2
with the

approximate 
wave function

Nijm-93 
[1]

Nijm-93
with the

approximate 
wave function

Reid-93 
[1]

Reid-93
with the

approximate 
wave function

Experimen-
tal data 
from [9]

Pd , % 5.664 5.648 5.635 5.637 5.754 5.740 5.699 5.698 5.67

Qd , fm2 0.2719 0.2707 0.2707 0.2708 0.2706 0.2700 0.2703 0.2706 0.271(1)

Rd , fm 1.967 1.966 1.968 1.967 1.966 1.965 1.969 1.967 1.9676(10)

∆E(S), % 2 × 10–3 4 × 10–3 2.5 × 10–3 2.6 × 10–3

∆E(D), % 7 × 10–3 1 × 10–2 8.0 × 10–3 1.2 × 10–2
in such a way as to ensure the normalization of the
overall wave function to unity. In calculating the fea-
tures of the deuteron, our approximate wave function
was matched, at large distances, with the corresponding
asymptotic expressions [1, 9]

u(r)  AS exp(–r/R),

w(r)  AD{1 + 3R/r + 3(R/r)2}exp(–r/R),

where R = 4.319 fm and AD = ηAS, the asymptotic con-
stants being AS = 0.8845(8) and η = 0.0253(2) [9]. The
calculated features of the deuteron are quoted in the
table, along with corresponding values obtained with
the precise wave functions from [1]. Also displayed in
the table are averaged relative errors characterizing the
deviation of the approximate wave function from the
precise numerical results [15]. The values obtained
with the approximate wave function are seen to comply
well with the results presented in [1].

The solid curve in Fig. 1 represents the precise wave
function for the Nijm-1 version of the potential [1, 15],
the approximate wave function being graphically indis-
cernible from it. The asymptotic behavior of the wave
function is shown by the dashed curve. It can be seen
that, from 9 (or 10) fm, the asymptotic curve virtually
coincides with the precise solution and its approxima-
tion both for the S and for the D wave (upper and lower
pairs of the curves, respectively).

Apart from integrated characteristics of the deu-
teron like the radius or the quadrupole moment, we can
compare the results for the momentum distributions.
The momentum distributions presented in [15] were
obtained with the precise wave functions for the various
versions of the potential. For the momentum distribu-
tions of nucleons in the deuteron, the results obtained
with the approximate wave functions are shown in Fig. 2,
the dash-dotted and the dashed curve corresponding to
the Nijm-1 and the Nijm-93 version, respectively. For
the sake of comparison, the analogous distributions
according to the precise results from [15] are also
shown in Fig 2 by the dotted and the solid curve,
respectively. It can be seen that some difference is
observed only in the case of Nijm-93. The results for
the soft-core Reid potential [3] are represented by the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
dash-and-double-dot curve. Each distribution dis-
played in this figure was normalized to unity at zero
momentum transfer.

These results demonstrate that, for all potential ver-
sions under consideration, the features of the deuteron
that were calculated with the approximate wave func-
tions agree well with those calculated with the precise
wave functions from [15]. It therefore seems reason-
able to use our approximate wave functions in calculat-
ing the deuteron form factors.

To calculate the form factors, we made use of the
expressions [17]

dσ
dΩ
-------

dσM

dΩ
---------- 

  A B
θ
2
--- 

 tan
2

+ ,=

A G0
2 G2

2 2
3
---η 1 η+( )GM

2 ,+ +=

B
4
3
---η 1 η+( )2GM

2 ,=

Fig. 1. Wave function for the Nijm-1 potential.

0.6

0.4

0.2

0 2 4 6 8 10

u(r), w(r)

r, fm
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where u(r) and w(r) are the radial wave functions of the
bound state, while jL are spherical Bessel functions. For
the nucleon masses, we used the values of Mp =
938.28 MeV and Mn = 939.57 MeV [10]; the deuteron
mass was set to 1875.63 MeV. The charge form factor
for the neutron was assumed to be zero, while the charge
form factor for the proton was parametrized as [18]

G0 2GECE,=

G2 2GECQ,=

GM

Md

Mp

------- 2GM0
CS GECL+( ),=

2GE GEp
GEn

, 2GM0
+ GM p

GMn
,+= =

η "cq( )2

4Md
2

---------------- 0.002767q2,= =

x
qr
2
-----,=

CE u2 w2+( ) j0 x( ) r,d∫=

CQ 2 w u
w

8
-------– 

  j2 x( ) r,d∫=

CL
3
2
--- w2 j0 x( ) j2 x( )+( ) r,d∫=

CS u2 w2

2
------– 

  j0 x( ) r
1

2
------- w u

w

2
-------+ 

  j2 x( ) r,d∫+d∫=

GEp

1

1 0.054844q2+( )2
--------------------------------------------,=

100

10–4

10–2

10–6

10–8

P2(q)/P2(0)

0 2 4 6
q, fm–1

Fig. 2. Momentum distributions for the Nijm-1 and Nijm-93
potentials.
where q is the momentum transfer in fm–1 units and
where the magnetic form factors for the nucleon were
determined on the basis of the scaling law:  =

µp  and  = µn  [18].

The nonrelativistic formulas for the form factors
were used previously in [17, 19]; in [20], the relativistic
and the nonrelativistic impulse approximation were
compared for the case of the Argonne potential. (The
form factors for the Argonne potential virtually coin-
cide with those for the Paris potential.) It was shown
that relativistic effects become sizable only at compar-
atively high momentum transfers (5 or 6 fm–1), slightly
increasing the form factors. However, the contribution
of meson-exchange currents is opposite in sign to that
of relativistic effects, nearly canceling them (see Figs. 7
and 12 in [20]). Similar results were obtained for the
tensor polarization t20 in elastic ed scattering [20]. The
relativistic corrections and effects of meson-exchange
currents were also considered in [21], where it was
shown that they do not make a significant contribution
at momentum-transfer values below 5 or 6 fm–1: their
magnitude in this range is within the experimental
errors. It follows that, in the momentum-transfer range
being considered, the use of the nonrelativistic impulse
approximation is quite legitimate, so that the choice of
potential model is a key point in describing the form
factors and polarizations in ed scattering.

The form factors calculated in the present study are
displayed in Fig. 3, along with experimental data from
[17]. The dotted and the dashed curve in Fig. 3‡ repre-
sent the results obtained with the Reid-68 (RSCA) [3]
and the Nijm-1 potential, respectively. The Nijm-2 and
Nijm-93 potentials produce nearly coincident results,
which are depicted by the solid curve. The results for
Reid-93 (dash-dotted curve) show virtually no devia-
tions from the solid curve. In Fig. 3b, the dotted curve
represents the results for Reid-93, which are graphi-
cally indiscernible from the results for Reid-68. The
dashed and the solid curve illustrate the results for
Nijm-2 and Nijm-93, respectively, while the dash-dot-
ted curve, which is almost coincident with the solid
curve, corresponds to Nijm-1. It can be seen that the
best description of the form factor B(q) is achieved with
Nijm-93 and Nijm-1: the corresponding curves do not
go beyond the error bars.

The tensor polarizations t20, t21, and t22 in elastic ed
scattering [20, 21] that were calculated for all versions
of the Nijmegen potentials are presented in Fig. 4. The
dash-and-double-dot, solid, dashed, dash-dotted, and
dotted curves show the results for Nijm-1, Nijm-2,
Nijm-93, Reid-93, and Reid-68 (RSCA), respectively.
The experimental data were borrowed from [20]. We
can see the following: (i) The potentials Nijm-1 and
Nijm-93 yield very close results, and so do the poten-
tials Nijm-2 and Reid-93. (ii) By and large, the descrip-
tion of the polarizations t22 and t21 is quite satisfactory.
(iii) The results of the calculation for t20 fall somewhat

GM p

GEp
GMn

GEp
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short of the experimental values. (iv) The best descrip-
tion of this quantity is provided by Reid-68.

Thus, we can conclude from the above that the
approximate wave functions constructed here faithfully
reproduce the behavior of the numerical wave functions
for all versions of the Nijmegen potentials. The features
of the deuteron that have been calculated with the
approximate wave functions comply well with those
found with the precise wave functions. For the deuteron
form factors and the tensor polarizations in elastic ed
scattering, the approximate wave function yields
results that agree by and large with available experi-
mental data and, in the momentum-transfer region

10–2

10–4

100

0 10 20 30

A(q2)

q2, fm–2

2H

(a)

B(q)

q, fm–1

10–4

10–2

10–6

0 2 4 6

2H

(b)

Fig. 3. Deuteron form factors for the various versions of the
Nijmegen potential. The experimental data were borrowed
from [17].
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t20 (70°)
0.5

–0.1

–0.7

–1.3

(a)

0 10 20 30

t21 (70°)
0.8

0.4

–0.4

0

(b)

0.02

–0.02

–0.06

–0.10

q2, fm–2

(c)t22 (70°)

Fig. 4. Tensor polarizations in elastic ed scattering for the
various versions of the Nijmegen potential. The experimen-
tal data were taken from [20].
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being considered, show only modest variations in going
over from one version of the Nijmegen potential to
another.
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Abstract—The mirror odd nuclei 7Li and 7Be and the neutron-rich nucleus 6He are considered within a micro-
scopic approach relying on the variational principle. The binding energies of the nuclei, their root-mean-square
radii, and the electron charge C0 and C2 form factors are calculated. The resulting form factors are compared
with the predictions of the independent-particle model that assumes intermediate coupling. The sensitivity of
the nuclear properties obtained here to the choice of nucleon–nucleon potential, to deviations of the nuclear
deformation from that which follows from a variation of the total-energy functionals, and to taking projections
onto states characterized by definite values of the total angular momentum and its projection is analyzed. A
comparison with experimental data is performed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The use of the variational principle in studying the
structure of nuclei [1] makes it possible to describe
their properties in a wide range of mass numbers. This
approach provides effective tools for inquiries [2, 3]
into heavy and superheavy helium isotopes and other
nuclei, primarily even–even ones. Neutron-poor and
neutron-rich exotic nuclei, as well as unusual phenom-
ena that can occur in the neighborhood of nuclear drip
lines [4], are of interest in connection with constructing
facilities for the production of beams of radioactive
nuclei [5, 6] and with investigating the anomalous
structure of unstable nuclei. Obviously, this requires
evolving new theoretical frameworks and refining tra-
ditional models [1, 7]. From a comparison of theoreti-
cal results with experimental data, it is possible to
deduce an answer to the question of whether a micro-
scopic variational approach employing deformed sin-
gle-particle orbitals and projections onto states charac-
terized by specific values of the angular momentum and
its projections can form a basis for a self-consistent cal-
culation of static and dynamical nuclear properties in
general and for a calculation of the properties of odd
and exotic nuclei in particular.

2. BASIC EQUATIONS AND CONVENTIONS

The wave function of the ground state of a nucleus,

(1)

is constructed from the single-particle deformed oscil-

Ψ in( )K
1

A!
----------det ϕν j( ) , j ν, 1 …,  A , ,  = =                
1063-7788/00/6305- $20.00 © 20739
lator orbitals [8, 9]

(2)

where { , , } ≡ {aν, bν, cν} are variational param-

eters, {
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and the subscript 

 

 ( )

 

 denotes the spin (isospin) pro-
jection for the 

 

j

 

th nucleon. The function in (1) is deter-
mined by minimizing the total energy of the nucleus as
represented by the functional [10]
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is the Hamiltonian of an 
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nucleon nucleus in the notation adopted in [1] (we note
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tum and the spin moment.

For the odd mirror nuclei  
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 Li  and  
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and the even–odd neutron-rich nucleus
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), we took the configurations presented in Table 1 and
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the orbital given by (2). The wave function (1) appears

to be an eigenfunction of the operator  of the total-
angular-momentum projection onto the Z' axis of the
intrinsic reference frame, the corresponding eigenvalue
being K = 1/2 for the 7Li and 7Be nuclei and K = 0 for
the 6He nucleus. In order to simplify the calculations,
we retain the conventional constraints Φ1 = Φ2, Φ3 = Φ4,
and Φ5 = Φ6 (see [1–3]), which are usually used for
even–even nuclei. Since the orbitals presented in Table 1
are orthogonal to one another, we can recast the expres-
sion on the right-hand side of (3) into the form

(4)

where

 = (Ω) (Ω)dΩ

with NJ = (Ω) 〈ν| 〉dΩ and (Ω) =

ξνν'(〈ν ; ν'| | ; 〉 – 〈ν ; ν'| | ; 〉), the as-

yet-undefined quantities on the right-hand side of the

last equality being given by  ≡ (V33 ×  ± V31t+ ×

 ± V13s+ ×  + V11s+t+)/4. The components of the
effective central exchange nucleon–nucleon potential

 are parametrized as [1]

(5)

The remaining quantities are parametrized in a similar
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Û
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Table 1.  Configurations for the 7Li and 7Be nuclei

ν

1 0 0 0 +1/2 +1/2 (–1/2)

2 0 0 0 –1/2 +1/2 (–1/2)

3 0 0 0 +1/2 –1/2 (+1/2)

4 0 0 0 –1/2 –1/2 (+1/2)

5 0 0 1 +1/2 –1/2 (+1/2)

6 0 0 1 –1/2 –1/2 (+1/2)

7 0 0 1 +1/2 +1/2 (–1/2)

nν
x nν

y nν
z sν

z tν
z

way; that is,

where m is the nucleon mass, | 〉  = (Ω)|ν〉 ≡

(Ω)|Φν〉 , s± ≡ , t± ≡ , ξνν' = 〈ν ''| 〉

(ν'' ≠ ν, ν'' ≠ ν'), and ξν = 〈ν '| 〉 (ν' ≠ ν).

For the nuclear states (1) minimizing the functional
in (3), we find the static properties and the electron

charge form factors (q2) for the nuclei being stud-
ied [11, 12]. Here, Λ is the rank of the tensor operator
under consideration (multipole order), while q is the
momentum transfer.

We have also calculated the form factors (q2) on
the basis of the independent-particle model that
assumes intermediate coupling. Within this model, the
result obtained by antisymmetrizing the normalized
wave function for the nuclear configuration

(n1 )(n2 ) in all A = k1 + k2 nucleons can be repre-

sented as [13]

(6)

where E = –Eb, ηj = {[fj], αj, Lj, Sj}, ξj = {ηj, Tj} are the

quantum numbers of the pure  configuration, Ji =

Li + Si, and [j] ≡ (2j + 1)1/2. The quantities (η2)

are coefficients of the basis states | ξ2J2〉  in the super-
position that represents the wave function of the 1p
shell within the intermediate-coupling scheme [14].

hνν'
Coul( ) Ω( ) t–ξνν' ν;  ν ' e 

2
 / r ν ˜   ν ̃';  〈 〉(  =

–

 

s

 

–

 

ν   ν ' e 
2 / r ν ˜ ' ν ˜;;  〈 〉 )δ 
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hν
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z
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z
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δ
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z
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In calculating the reduced matrix elements of the
irreducible tensor operator F(κ1κ2κ3, q1q2q3) =

fi(κ1κ2κ3, q1q2q3), where κ1, κ2, and κ3 are the
ranks in, respectively, orbital, spin, and isospin spaces,
between the states specified in (6), we obtained, instead
of expressions (I.22) from [15] for F1 and F2, the more
compact expressions

(7)

(8)

where  = . Expressions (7)
and (8) were then used to calculate the electron charge

form factors (q2) within the independent-particle
model.

i 1=
A∑

F1 k1δξ2

ξ'2 1–( )
L S T L2 S2 T2 l1 1+ + + + + + +

L[ ] S[ ] T[ ] L'[ ]=

× S'[ ] T'[ ] L1[ ] S1[ ] T1[ ] L1'[ ] S1'[ ] T1'[ ]

× l1
1
2
---1

2
--- f κ1κ2κ3( ) l1

1
2
---1

2
---

× L1' L1 κ1

L L' L2 
 
  S1' S1 κ2

S S' S2 
 
  T1' T1 κ3

T T' T2 
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 
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3. RESULTS OF THE CALCULATIONS

We have performed numerical calculations with fif-

teen nucleon–nucleon potentials  of the form (5). Of
these, the first 11 were described in detail in [16], their
numbering here being coincident with that from [16].
The nucleon–nucleon potentials nos. 12–15 were pro-
posed in [17] and were used (see [2]) in calculations for
a large number of even–even isotopes from He to Ca
inclusive. In [1], the structure of the bound states of He
and Be isotopes was considered by assuming the
nucleon–nucleon potential no. 15. For the parameters
of the nucleon–nucleon potentials nos. 12–15, the val-
ues extracted from data reported in [17] are displayed
in Table 2. Table 3 presents the values obtained here for
the parameters aν, bν, and cν by minimizing the func-
tional in (3). Also shown in this table are the binding
energies Eb calculated for the 7Li and 7Be nuclei with
the nucleon–nucleon potential no. 15 either without
going over to relevant projections (first row for each ν)
or by taking such projections (second row for each ν).
These results are listed for three options of single-par-
ticle orbitals (oscillator basis):

(9)

The corresponding values for the 7Be nucleus are given
parenthetically in Table 3.

For the 7Li and 7Be nuclei, Table 4 quotes the bind-

ing energies Eb ≡ –〈 〉 , the root-mean-square charge

radii RZ ≡ , the neutron radii RN ≡ , and
the mass radii R ≡ 〈R2〉1/2 calculated with the nucleon–
nucleon potentials nos. 1–15. For each nucleon–
nucleon potential, the results obtained by calculating
Eb, RZ, RN, and R without taking relevant projections are
displayed in the second and the first row for the cases
where the calculations employ, respectively, the basis
(A) and the basis (B) from (9). For the same bases, the
corresponding results produced by the procedure
employing the above projections are given in the fourth
[for (A)] and the third [for (B)] row. The analogous
results for the 7Be nucleus are given parenthetically. We
used data from [18] as experimental values of Eb and
data from [19] as experimental values of RZ, RN, and R.

The , , , and  values cal-
culated with the nucleon–nucleon potential no. 15 by
going over to relevant projections are presented in
Table 5 for the case of aν = bν ≠ cν {basis (A) from (9)}.

For ν = 1, we then have  = . Taking into
account symmetry under the interchange of the sub-
scripts ν and ν' and using data from Table 5, we can

Û

Ä( ) aν
o

bν
o

cν
o

for each ν ,≠=

B( ) aν
oeq

bν
oeq

cν
oeq

for each ν ,= =

C( ) aν bν cν a for all ν .= = =

Ĥ

RZ
2〈 〉

1/2
RN

2〈 〉
1/2

Eνν'
NN( )

Eνν'
Coul( )

Eνν'
kin.ex( )

Eν
kin( )

E1
kin( )

E2
kin( )
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Table 2.  Parameters of potentials nos. 12–15 used in the present calculations (the strengths  and the radii r0 are
given in MeV and fm, respectively; the data in the table were calculated on the basis of the results reported in [17])

n no. 12 no. 13 no. 14 no. 15

1 293.13 684.46 –229.11 390.744
2 –13.14 7.31 253.38 –169.171
3 –18.96 –75.83 332.699
4 –0.25 –270.834
5 82.331

1 37.32 414.77 1345.28 894.605
2 –44.68 –243.31 –612.36 22.138
3 60.81 149.01 –553.072
4 –0.42 475.756
5 –145.740

r0 1.0 0.9 0.775 0.7
nmax 2 3 4 5

V2S 1+ 2T 1+,
n( )

V33
n( ) V11

n( )=

V31
n( ) V13

n( )=

Table 3.  Results obtained by minimizing the functional of the total energy E of the 7Li nucleus with potential no. 15 in an
anisotropic basis with aν = bν ≠ cν , in an isotropic basis with aν = bν = cν , and in an isotropic basis where aν = bν = cν = a for
all orbitals

ν
(A) (B) (C) aν = bν = cν = a

a

1(2) 1.384 (1.381) 1.898 (1.890) 1.508 (1.504) 1.639 (1.642)
1.342 (1.339) 2.121 (2.113) 1.506 (1.502) 1.664 (1.667)

3(4) 1.395 (1.400) 1.887 (1.895) 1.515 (1.519) 1.639 (1.642)
1.350 (1.354) 2.107 (2.119) 1.512 (1.516) 1.664 (1.667)

5(6) 1.573 (1.582) 1.933 (1.946) 1.836 (1.854) 1.639 (1.642)
1.497 (1.504) 2.052 (2.065) 1.865 (1.881) 1.664 (1.667)

7 1.579 (1.575) 1.942 (1.935) 1.849 (1.842) 1.639 (1.642)
1.501 (1.497) 2.061 (2.054) 1.877 (1.869) 1.664 (1.667)

Eb , MeV 33.31(31.94) 27.24 (25.92) 24.01 (22.57)
37.73(36.14) 29.56 (28.23) 25.41 (23.97)

Note: For each ν value, the results obtained by going over to relevant projections are given in the second row, while the results computed
without doing this are presented in the first row. The corresponding results for the 7Be nucleus are given parenthetically. The values
of the variational parameters aν, bν, and cν are quoted in fm.

aν
o bν

o cν
o≠= aν

oeq bν
oeq cν

oeq= =

aν
o bν

o= cν
o aν

oeq
obtain the energies of nucleon separation from the state
with number ν (the results are listed in Table 6),

(10)

Also given in Table 6 are the experimental values of

 for the 7Li nucleus [20] and the values of 

Eν
sep( )

Eνν'
NN( )

Eνν'
Coul( )

Eνν'
kin.ex( )

+ +( ) Eν
kin( )

.–
ν' 1=
ν' ν≠

A

∑–=

Eν
sep( )

Eν
sep( )
that were calculated with the nucleon–nucleon poten-
tials nos. 1 and 7.

We have also calculated the effect of the Coulomb

repulsion of protons on the energies ENN ≡ 〈 〉 , T ≡

〈 〉 , and E ≡ 〈 〉  = –Eb (see Table 7). This effect man-
ifests itself as changes in the aν, bν, and cν values as
obtained from a variational procedure versus the pres-

Û

T̂ Ĥ
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Table 4.  Binding energies (Eb) and charge, neutron, and mass root-mean-square radii (RZ ≡ , RN ≡ , and R ≡
〈R2〉1/2, respectively) computed for the 7Li nucleus with the nucleon–nucleon potentials nos. 1–15

no. Eb , MeV RZ , fm RN , fm R, fm

1 – – – –
19.97 (18.41) 1.99 (2.14) 2.12 (2.00) 2.06 (2.08)

– – – –
28.75 (27.10) 2.00 (2.14) 2.12 (2.00) 2.07 (2.08)

2 – – – –
15.26 (13.71) 2.01 (2.16) 2.13 (2.01) 2.08 (2.10)

– – – –
23.95 (22.31) 2.00 (2.14) 2.12 (2.00) 2.07 (2.08)

3 28.25 (26.82) 2.03 (2.18) 2.16 (2.02) 2.10 (2.11)
32.24 (30.81) 2.11 (2.26) 2.23 (2.10) 2.18 (2.19)
29.67 (28.23) 2.05 (2.20) 2.17 (2.04) 2.12 (2.13)
36.56 (35.14) 2.18 (2.33) 2.30 (2.16) 2.25 (2.26)

4 26.79 (25.44) 2.12 (2.28) 2.26 (2.12) 2.20 (2.21)
31.32 (29.94) 2.18 (2.33) 2.31 (2.17) 2.26 (2.26)
28.28 (26.91) 2.13 (2.29) 2.27 (2.12) 2.21 (2.22)
35.85 (34.48) 2.25 (2.40) 2.37 (2.23) 2.32 (2.33)

5 27.10 (25.70) 2.06 (2.21) 2.19 (2.05) 2.14 (2.14)
31.32 (29.91) 2.14 (2.29) 2.26 (2.12) 2.21 (2.22)
28.55 (27.13) 2.07 (2.23) 2.20 (2.07) 2.15 (2.16)
35.75 (34.35) 2.20 (2.36) 2.33 (2.19) 2.28 (2.29)

6 26.43 (25.12) 2.19 (2.35) 2.33 (2.18) 2.27 (2.28)
31.21 (29.87) 2.25 (2.40) 2.38 (2.23) 2.32 (2.33)
27.95 (26.63) 2.19 (2.35) 2.34 (2.18) 2.28 (2.28)
35.66 (34.32) 2.31 (2.47) 2.44 (2.30) 2.39 (2.40)

7 35.76 (34.62) 2.49 (2.66) 2.63 (2.47) 2.57 (2.58)
40.61 (39.45) 2.59 (2.75) 2.72 (2.56) 2.66 (2.67)
36.90 (35.76) 2.50 (2.68) 2.65 (2.48) 2.59 (2.60)
44.36 (43.21) 2.64 (2.82) 2.79 (2.63) 2.73 (2.74)

8 44.96 (43.76) 2.38 (2.53) 2.50 (2.35) 2.45 (2.46)
49.13 (47.93) 2.48 (2.64) 2.61 (2.46) 2.56 (2.57)
45.91 (44.71) 2.40 (2.56) 2.53 (2.38) 2.48 (2.48)
52.49 (51.31) 2.56 (2.73) 2.69 (2.53) 2.64 (2.65)

9 45.00 (43.77) 2.33 (2.49) 2.46 (2.31) 2.40 (2.41)
49.57 (48.34) 2.44 (2.60) 2.56 (2.41) 2.51 (2.52)
46.05 (44.81) 2.35 (2.51) 2.48 (2.33) 2.43 (2.43)
53.31 (52.09) 2.51 (2.68) 2.64 (2.48) 2.59 (2.60)

10 37.59 (36.35) 2.32 (2.49) 2.46 (2.32) 2.40 (2.42)
43.74 (42.48) 2.43 (2.59) 2.57 (2.42) 2.51 (2.52)
38.91 (37.66) 2.33 (2.50) 2.47 (2.33) 2.41 (2.43)
48.72 (47.45) 2.48 (2.64) 2.62 (2.47) 2.56 (2.57)

11 – – – –
1.62 (0.42) 2.41 (2.61) 2.55 (2.40) 2.49 (2.52)

– – – –
5.73 (4.51) 2.47 (2.66) 2.61 (2.46) 2.55 (2.58)

12 25.97 (24.77) 2.36 (2.54) 2.53 (2.36) 2.46 (2.47)
30.88 (29.63) 2.40 (2.57) 2.55 (2.40) 2.49 (2.50)
27.34 (26.12) 2.36 (2.53) 2.52 (2.36) 2.45 (2.46)
35.38 (34.10) 2.45 (2.61) 2.60 (2.44) 2.54 (2.54)

RZ
2〈 〉

1 2/
RN

2〈 〉
1 2/
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Table 4.  (Contd.)

no. Eb , MeV RZ , fm RN , fm R, fm

13 26.07 (24.78) 2.21 (2.38) 2.37 (2.21) 2.30 (2.31)
32.56 (31.22) 2.26 (2.42) 2.41 (2.26) 2.35 (2.35)
27.98 (26.69) 2.23 (2.40) 2.39 (2.23) 2.32 (2.33)
37.27 (35.93) 2.31 (2.47) 2.46 (2.31) 2.40 (2.40)

14 26.74 (25.41) 2.14 (2.31) 2.30 (2.14) 2.23 (2.24)
33.90 (32.54) 2.20 (2.36) 2.35 (2.20) 2.29 (2.29)
29.07 (27.73) 2.16 (2.33) 2.32 (2.16) 2.25 (2.26)
38.65 (37.28) 2.25 (2.41) 2.41 (2.25) 2.34 (2.34)

15 27.24 (25.92) 2.16 (2.33) 2.32 (2.15) 2.25 (2.25)
33.31 (31.94) 2.20 (2.36) 2.35 (2.20) 2.29 (2.29)
29.56 (28.23) 2.17 (2.35) 2.34 (2.17) 2.27 (2.27)
37.73 (36.14) 2.25 (2.41) 2.41 (2.25) 2.34 (2.34)

Experimental data 39.2459 ± 0.0009 2.39 ± 0.03 2.405 ± 0.020
(37.6016 ± 0.0009) 2.35 ± 0.10 2.38 (2.25) 2.33 (2.31)

2.27 (2.36)

Note: For each nucleon–nucleon potential, the results presented in the first and second (third and fourth) rows were obtained from the cal-
culations performed in, respectively, an isotropic (aν = bν = cν) and an anisotropic (aν = bν ≠ cν) basis without going to over to relevant
projections (by using these projections). The corresponding results for the 7Be nucleus are given parenthetically. The experimental
data were borrowed from [18, 19].

Table 5.  Energies (in MeV)  (first row) for each ν',  (second row),  (third row), and  as calculated

for the 7Li nucleus with potential no. 15 by going over to relevant projections

ν
ν'

2 3 4 5 6 7

1 –10.34 (–10.39) –10.34 (–10.32) –10.34 (–10.32) –5.27 (–5.21) –5.27 (–5.21) –0.61 (–0.60)
0.73 (0.00) 0.43 (0.00)

0.55 (0.56)
2 –10.34 (–10.32) –10.34 (–10.32) –5.27 (–5.21) –5.27 (–5.21) –5.23 (–5.26)

0.57 (0.00)

3 –10.33 (–10.26) –0.60 (–0.62) –5.24 (–5.20) –5.21 (–5.25)
0.00 (0.73) 0.00 (0.43) 0.00 (0.57)

0.57 (0.56)
4 –5.24 (–5.20) –0.60 (–0.62) –5.21 (–5.25)

0.00 (0.57) 0.00 (0.43)
0.57 (0.56)

5 –5.75 (–5.74) –5.75 (–5.75)
0.00 (0.56)

6 –5.75 (–5.75)

11.49 (11.55) 11.42 (11.34) 11.42 (11.34) 13.81 (13.66) 13.81 (13.66) 13.71 (13.80)

Note: For ν = 1, we have  = ; the quantities , , and  are symmetric under the interchange of the sub-

scripts ν and ν' (ν ≠ ν'). The corresponding values for the 7Be nucleus are given parenthetically.

Eνν'
NN( ) Eνν'

Coul( ) Eνν'
kin. ex( ) Eν

kin( )

Eν
kin( )

E1
kin( )

E2
kin( )

Eνν'
NN( )

Eνν'
Coul( )

Eνν'
kin. ex( )
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Table 6.  Nucleon separation energies  (in MeV)

ν 1 2 3 (4) 5 (6) 7

no. 1 32.66 (33.67) 39.11 (40.34) 32.47 (30.54) 14.12 (12.23) 15.96 (16.86)
no. 7 26.66 (27.40) 32.48 (33.37) 27.20 (25.72) 14.13 (12.81) 13.26 (14.02)
no. 15 28.97 (29.94) 34.00 (35.16) 30.07 (28.34) 13.50 (11.95) 12.50 (13.50)

Experimental data 7Li nlj = 1s1/2, protons 1p3/2, protons
from [20] 23.5 ± 0.7 10.0 ± 1.4

24.1 ± 1.5 10.1 ± 1.4
25.8 ± 0.6 11.3 ± 0.5
23.0 ± 1.5 10.2 ± 1.6
25.5 ± 0.4 11.8 ± 0.3
26.0 ± 0.2 10.1 ± 0.1

Eν
sep( )

Table 7.  Effect of taking into account Coulomb interaction in the Hamiltonian of the nucleus

Energies, 
MeV

7Li 7Be Without Coulomb 
repulsion

Energies, 
MeV

7Li 7Be Without Coulomb 
repulsion

ENN –128.30 –128.01 –128.62 T 88.84 88.58 89.16
ECoul 1.73 3.29 0.00 E = –Eb –37.73 –36.14 –39.46
ence or the absence of the term  in the Hamilto-

nian . The values of the energies ECoul = 〈 〉  for
the 7Li and 7Be nuclei are also included in Table 7.

The energies E, ENN, ECoul, and T calculated here by
using the nucleon–nucleon potential no. 15 and by tak-
ing relevant projections are displayed in Fig. 1a versus
the parameter ξ characterizing the deviation of the
nuclear deformation from the equilibrium deformation
corresponding to the minimal energy as determined in
varying the functional in (3). The parameter ξ is intro-
duced through the relations

(11)

with the values of a, , and  being taken from Table 3
[in Table 3, the values of ξ = 1 and ξ = 0 correspond,
respectively, to the version (A) and to the version (B) in
(9)]. Curves 1, 2, 3, and 4 represent, respectively, the
dependences ∆W1 ≡ E(ξ) – E, ∆W2 ≡ ENN(ξ) – ENN, ∆W3 ≡
T(ξ) – T, and ∆W4 ≡ [ECoul(ξ) – ECoul] × 102 for the 7Li
nucleus; for these dependences, we have used the val-
ues E ≡ E(ξ = 1), ENN ≡ ENN(ξ = 1), T ≡ T(ξ = 1), and
ECoul ≡ ECoul(ξ = 1) from Table 7. Figure 1b shows the

dependences (ξ) – (ξ), k = 1, 2, 3, and

[ (ξ) – ] – [ (ξ) – ], the last depen-
dence corresponding to curve 4. Figures 1c and 1d dis-
play the same dependences, but for a different parame-
trization of the deformation, namely,

(12)

ÛCoul

Ĥ ÛCoul

aν ξ( ) bν ξ( ) a ξ aν
o

a–( ),+= =

cν ξ( ) a ξ cν
o

a–( ), ν 1 …,  ,  7,=+=

aν
o

cν
o

∆Wk
Be( ) ∆Wk

Li( )

ECoul
Be( )

ECoul
Be( )

ECoul
Li( )

ECoul
Li( )

aν η( ) bν η( ) aν
oeq η aν

o
aν

oeq
–( ),+= =

cν η( ) aν
oeq η cν

o
aν

oeq
–( ), ν+ 1,   … ,  7.= =                  
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The root-mean-square radius R calculated here for
the 7Li nucleus by using the nucleon–nucleon potential
no. 15 and by taking relevant projections (left scale) is
shown in Fig. 2 versus the deformation parameters ξ
from (11) (curve 1) and η from (12) (curve 2). Curve 3
represents the dependence δ
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E = −Eb), which are associated with these states and
which appear in (6), are very close to unity. In Figs. 3‡
and 3b, curves 1, 2, and 3 represent the form factors

(q2) and (q2) calculated for the 7Li nucleus with
the nucleon–nucleon potential no. 15. Curves 1 and 2,

computed with deformed orbitals (  =  ≠ ), dif-
fer in that the former (latter) was obtained by taking rel-
evant projections (without doing this). Curve 3 corre-
sponds to the calculations with isotropic orbitals

(  =  = ), in which case the results obtained
by going over to the above projections virtually coin-
cide with those for which projections were not used.

The calculation of (q2) with isotropic orbitals was
performed without employing projected states. In
Figs. 3‡ and 3b, the results of the calculations for the
7Li nucleus that were based on the independent-particle
model are depicted by curve 4 for the oscillator-param-
eter value of ao = 2 fm from [12] and by curve 5 for the
oscillator-parameter value of ao = 1.755 fm obtained in
[21]. (Experimental data were borrowed from [21].)
Curve 6 (obtained from a variational calculation
employing deformed orbitals and projected states) in
Fig. 3‡ represents the total (C0 + C2) electron charge
form factor for the 7Li nucleus as a function of q2.
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Fig. 1. Energies E, ENN, ECoul, and T for the 7Li and 7Be
nuclei as functions of the parameter (a, b) ξ or (c, d) η [see
equations (11) or (12) in the main body of the text] specify-
ing deviations of the nuclear deformation from the equilib-
rium deformation found in varying the total-energy func-
tional (3).
In Fig. 3‡, curves 7 and 8 show the form factor

(q2) calculated for the 6He nucleus with, respec-

tively, the deformed (  =  ≠ ) and the isotropic

(  =  = ) orbitals by using a variational pro-
cedure with the nucleon–nucleon potential no. 15. In
either case, the results corresponding to the projected
and unprojected states agree. Curve 9 represents the

form factor (q2) calculated for the 6He nucleus on
the basis of the independent-particle model with the
oscillator-parameter value of ao = 1.6 fm.

The corresponding calculation for the 7Be nucleus
leads to analogous results. We do not display here the
entire body of these results, showing only the q2 depen-

dences of the ratios (7Be)/ (7Li) in Fig. 4, where
the notation for the curves corresponds to that in Fig. 3.

4. DISCUSSION AND CONCLUSIONS

Investigation of nuclear structures within micro-
scopic approaches is based on choosing an effective
nuclear nucleon–nucleon potential that must lead to
correct values for the simplest nuclear features like
binding energies and nuclear dimensions. A variational
calculation of these nuclear features is quite straightfor-
ward for the case where the trial wave function for the
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Fig. 2. Dependences of (left scale; curves 1, 2, 3) the radii
R ≡ 〈R2〉1/2 of the 7Li and 7Be nuclei on the parameters ξ and
η [see equations (11) or (12) in the main body of the text]
and (right scale; curves 4–7) the energy E = –Eb of the 7Li
nucleus on the parameter ζ [see equation (13) in the main
body of the text] specifying deviations of the deformation of
individual groups of orbitals from the equilibrium deforma-
tion found in varying the total-energy functional (3). The
results for the 7Be nucleus are similar. In calculating curves
4, 5, 6, and 7, the deformation was changed only for the
orbitals 1 and 2, 3 and 4, 5 and 6, and 7 from Table 1, respec-
tively. The parameters ξ, η, and ζ were changed in the same
range and are plotted along the same axis (abscissa).
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Fig. 3. Form factors (a)  for the 7Li and 6He nuclei and (b)  for the 7Li nucleus. In Figs. 3a and 3b, curves 1 (2) represent

the result of the calculation for  =  ≠  within the variational procedure that involves (does not involve) going over to relevant

projections; curve 3 corresponds to the calculations for  =  =  (here, the results obtained by going over to relevant

projections are virtually coincident with those computed without doing this); and curves  4 and 5 show the results obtained on the
basis of the independent-particle model with ao = 2 and 1.755 fm, respectively. Curve 6 in Fig. 3a was plotted for the sum of the

form factors in question (C0 + C2 curve) and is contrasted against experimental data from [21] for the 7Li nucleus. On the same

panel (3a), curves 7, 8, and 9 represent our results for the 6He nucleus, corresponding to, respectively, the calculation with  =

 ≠ , the calculation with  =  =  (in the cases illustrated by curves 7 and 8, the results are virtually independent

of whether the procedure used involves taking relevant projections or not), and the calculation based on the independent-particle
model with ao = 1.6 fm.
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ground nuclear state is constructed in terms of single-
particle orbitals. Within this framework, the energy of a
specific nucleus is varied with respect to the parameters
of the potential of a preset form. This implementation
of the variational principle replaces the Hartree–Fock
method, which could probably ensure a higher preci-
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sion, but which involves considerable computational dif-
ficulties. It should be borne in mind that the 6He, 7Li, and
7Be nuclei belong to the beginning of the filling of the 1p
shell; therefore, these nuclei are inevitably deformed. In
order to avoid possible problems associated with degen-
eracy, it is therefore natural to choose, for single-particle
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orbitals, one-nucleon wave functions in the field of an
anisotropic oscillator (not a spherically symmetric one)
generally featuring three different frequencies.

In view of the attractive character of nuclear forces,
the configuration that corresponds to the ground
nuclear state must obey the rule (see [22]) of maximally
compact filling (allowed by the Pauli exclusion princi-
ple) with the orbitals (2) of the Slater determinant in
expression (1). The quantum numbers of inner (ν = 1–
4) orbitals correspond to an alpha-particle cluster. In
our case of the one-quantum orbitals (2) of valence
nucleons, the maximal overlap of single-particle wave
functions (that is, minimal energy) is achieved when
the only quantum corresponding to the orbitals in (2) is
associated, for all three (or two in the case of the 6He
nucleus) orbitals in (2), with the same coordinate axis
chosen here for the z axis. The orientation of the
unpaired-nucleon spin (for 7Li and 7Be nuclei) does not
affect the energy of the nucleus. For the configuration
constructed in this way (see Table 1), the x and y axes
are equivalent, which implies the axial symmetry of the
nucleus.

A great number of studies devoted to the problem
being discussed were performed by different authors in
different periods of time. In [16], this range of investi-
gations was characterized by a list including 11 well-
known potentials, but by no means is this list exhaus-
tive. As the problems that the researchers of these
realms addressed became more intricate, it was neces-
sary to invoke more complicated effective nucleon–
nucleon potentials. The calculations performed in [17]
resulted (see Table 2) in multicomponent nucleon–
nucleon potentials (nos. 12–15) that describe a wide
range of nuclear properties. Of these, the nucleon–
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Fig. 4. Ratio of the squared form factors  for the 7Be

and 7Li nuclei. The notation for curves 1, 2, and 3 is identi-
cal to that in Fig. 3.

FC0
2

nucleon potential no. 15, which is used predominantly
in the present calculations, is the best one. It was shown
in [17] that, within the SU(3) microscopic model, this
multicomponent [nmax = 5] potential makes it possible
to reproduce the binding energies and the root-mean-
square radii of the 4He, 16O, and 40Ca nuclei; in addi-
tion, it meets the saturation condition and respects
many important features of nuclear matter, such as the
energy per nucleon E(kF)/A, the compressibility modu-

lus ( /A)d2E/d , and the condition of minimum of
the function E(k)/A at k = kF (kF is the Fermi momen-
tum). This nucleon–nucleon potential is characterized
by a moderate repulsion at small distances (soft core)
and by a comparatively slow decrease at large dis-
tances.

For the oscillator lengths and the root-mean-square
radii, a variational calculation of 6He static properties
that was performed by using the nucleon–nucleon
potential no. 15 and by taking relevant projections

yielded the values of (in fm)  =  = 1.331,  =

1.972,  =  = 1.345,  = 1.985,  =  = 1.599,

 = 1.992, RZ = 1.746, RN = 2.340, and R = 2.160. The
corresponding binding energy was found to be Eb =
29.682 MeV (the experimental value from [19] is

 = 29.267 MeV). Here, the success achieved in
calculating the binding energy was due, in our opinion,
to two factors: first, the nucleon–nucleon potential
no. 15 was fitted to the properties of precisely even–
even nuclei; second, clustering in the 6He nucleus is
characterized by the dominance of the α + (nn) and α +
n + n structures, which have close binding energies.
This suggests that clustering has only a slight effect
(the binding energy of the dineutron cluster is very
small) on the binding energy of the 6He nucleus;
assuming the α + n + n structure, we can then use effi-
ciently the ν = 1–6 orbitals from Table 1. If we similarly
assume α + 3H clustering for the 7Li nucleus and α +
3He clustering for the 7Be nucleus, the binding energies
of the nuclei will depend greatly on the type of cluster-
ing. Owing to the sizable binding energies of the 3H and
3He clusters, the above structures are nonequivalent in
binding energy to structures of the α + p + n + n and α +
p + p + n types. Thus, the assumption that the three
valence nucleons are not clustered in the field of the
alpha-particle cluster leads to an underestimated bind-
ing energy of the 7Li and 7Be nuclei.

In order to study the possibility of self-consistently
describing various static and dynamical nuclear fea-
tures, we have used the nucleon–nucleon potentials that
were presented in [16, 17] and which differ by the num-
ber of components and by their strengths. Mirror nuclei
provide a convenient testing ground for theoretical
models. These nuclei may play the role of a core in
studying [23, 24] nuclides characterized by anomalous
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values of the ratio N/Z. Beams of 7Li and 7Be nuclei can
be used in experiments devoted to nucleus–nucleus
scattering [25–28]. All this motivated our interest in the
possibility of describing the 7Li and 7Be nuclei in the
variational-approach version discussed here. Our cal-
culations have revealed that the results depend sizably
on the presence of short-range repulsion and of long-
range attraction at larger distances in various compo-
nents of the nucleon–nucleon potentials used. By way
of example, we indicate that, for the nucleon–nucleon
potentials nos. 1, 2, and 11, the 7Li and 7Be nuclear sys-
tems treated with the aid of the isotropic basis feature
no bound states both in the case where a transition to
relevant projections is performed and in the case where
this is not done (Table 4). For the case of an anisotropic
basis, the calculation that relies on the nucleon–
nucleon potential no. 7 and which does not use pro-
jected states leads to reasonable, albeit somewhat over-
estimated, binding energies and to excessively large
values for the radii RZ, RN, and R. As to the nucleon–
nucleon potential no. 10, the calculation in the isotropic
basis with this potential yields reasonable values for Eb
and RZ, but overestimated values for RN and R, irrespec-
tive of whether we go over to projections onto relevant
states or not. Similar listing could be continued, but we
can already state that, whilst some nucleon–nucleon
potentials from Table 4 are capable of reproducing indi-
vidual nuclear parameters, the nucleon–nucleon poten-
tial no. 15 makes it possible to describe fairly well the
entire body static nuclear features.

In calculating the data in Table 6, which is based on
Table 5 and which makes it possible to compare various

contributions to the separation energy , we have
also used the nucleon–nucleon potential no. 15 within
the procedure employing projections onto relevant
states. We note that, because of constraints (see Table 2)

on the components  from (5) and on the
orbitals Φν, some of the results in Table 5 coincide. In
addition to the experimental values from [20], Table 6

also presents the results obtained by calculating 
for the nucleon–nucleon potentials nos. 1 and 7. This
makes it possible to assess the sensitivity of the method

to the choice of form for the potential . That we com-
pare precisely these potentials is motivated by the cir-
cumstance that they lead to the minimal (no. 1) and the
maximal (no. 7) nuclear sizes. Although the calculation
with the nucleon–nucleon potential no. 15 leads to a
somewhat overestimated value of E(sep) for proton sepa-
ration from the core, the result is qualitatively consis-
tent with experimental data.

In Fig. 1, the deviations from the optimal values of
the energies E, ENN, ECoul, and T for two (of many pos-
sible ones) different parametrizations of the nuclear
density are characterized by moderately high stability.
This is quite surprising because the dimensionality of
the space spanned by the parameters of the problem is

Eν
sep( )

V2S 1 2T, 1+ +
n( )

Eν
sep( )

Û
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rather high. Figure 2 shows deviations of the radii R
(left scale) in response to changes in the nuclear defor-
mation. We can see that these deviations are character-
ized by a similar stability. An analysis of deviations of
the 7Li binding energy Eb (right scale) that are caused
by the deformation of the individual groups of orbitals
shows, as might have been expected in advance, a ten-
dency common to the 6He, 7Li, and 7Be nuclei: the
dominant contribution to the change in the binding

energy Eb comes from the deformation of the  = 0
(ν = 1, ..., 4) orbitals from Table 1—that is, from the
deformation of inner orbitals corresponding to the
alpha-particle cluster.

In contrast to the independent-particle model, which
fails to reproduce (see Fig. 3) experimental data from
[21] in the region q2 ≥ 1.5 fm–2, our variational calcula-
tions of the electron charge form factor for the 7Li
nucleus lead to satisfactory agreement with experimen-
tal data for q2 ≤ 5 fm–2. At higher momentum transfers,
the calculated form-factor values are still overly great.
To improve the agreement with experimental data, we
can choose the nucleon–nucleon potential more thor-
oughly and take into account the properties of odd
nuclei in fitting the potential parameters. The effect of
the choice of potential on nuclear form factors—some-
times, the effect of this choice is quite sizable—was
revealed in our calculations. In principle, we can also
abandon the idea of imposing constraints on the single-
particle orbitals and on the components of the nucleon–
nucleon potential. In all probability, the most effective
way to improve the agreement with experimental data
is to take into account more consistently the cluster
degrees of freedom of nuclei.

Figure 4 shows that, within each version of the cal-
culation from those listed for Fig. 3, the squares of the
monopole form factors for the mirror nuclei 7Li and 7Be
may have a scatter at q ~ 2 fm–1 within a factor of five.
The maximal distinction between the results of the cal-
culation performed without taking projections to rele-
vant states (curves 2, 3) and the results represented by
curve 1 is about 20% both for the deformed and for the
isotropic basis. Since the contribution of the C2 form

factor is small, the behavior of the ratio [ (Be) +

(Be)]/[ (Li) + (Li)] as a function of q2 is
similar to the behavior of curves 1, 2, and 3.

In summary, the basic results of the present study
are as follows:

(i) It has been shown that main static and dynamical
features of extremely light 1p-shell nuclei can be
described, at least qualitatively, within a multiparticle
variational approach taking into account the Pauli
exclusion principle, using independent deformations of
single-particle orbitals, and implementing a transition
to projections onto states characterized by definite val-
ues of the total nuclear angular momentum and its pro-
jection (in contrast to what was done in [1], projections

nν
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2

FC2
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are constructed here without any simplifying assump-
tions).

(ii) The use of the same multicomponent effective
exchange nucleon–nucleon potential no. 15 (which was
proposed in [17]) for the 7Li and 7Be nuclei in a varia-
tional calculation employing a one-determinant intrin-
sic wave function has enabled us to attain fairly good
agreement with experimental data on the binding
energy, the proton separation energy, and the root-
mean-square radii for either nuclear species, as well as
with the experimental values of the electron charge
form factor for the 7Li nucleus. Only some individual
properties of the nuclei being considered can be repro-
duced with the other nucleon–nucleon potentials.

(iii) It has been established that many nuclear fea-
tures, such as the energies E, ENN, ECoul, and T and the
root-mean-square radii R, as determined in the varia-
tional calculations, are weakly sensitive to the shift that
the point corresponding, in the eight-dimensional space
of the variational parameters, to the minimum of the
total-energy functional for the nuclei being considered
undergoes in response to variations in the form of
parametrization of the nuclear deformation.

(iv) The effect that changes in the deformation of
individual groups of single-particle oscillator orbitals
that was obtained in the variational calculation—these
changes correspond to shifts in the relevant planes of
the parameter space—may exert on the nuclear binding
energies has been investigated, and it has been found
that the binding energy of each nuclear species consid-
ered here is highly sensitive, as might have been
expected, to changes in the deformation of inner orbit-
als associated with an alpha-particle cluster.

(v) It has been shown that the wave functions of
nucleons in the field of an anisotropic harmonic oscil-
lator (rather than of a spherical one) represent an opti-
mal choice of single-particle orbitals for variational
calculations of the static and dynamical features of
nonmagic nuclei.

(vi) It has been found that the calculated electron
charge form factors for the 6He, 7Li, and 7Be nuclei
depend sizably on the choice of nucleon–nucleon
potential. The results corresponding to the use of the
nucleon–nucleon potentials nos. 1 and 7, which lead,
respectively, to the minimal and to the maximal root-
mean-square radii of the nuclei, show the greatest devi-
ations from the optimal results obtained with the
nucleon–nucleon potential no. 15.

(vii) A comparison has been drawn between the
results of the variational calculations of the static and
dynamical features of the mirror nuclei 7Li and 7Be. It has
been found that, in the region around q ~ 2 fm–1, the calcu-
lated values of the squared form factors for these nuclear
species may exhibit more than fivefold distinctions (for
example, this is so for the monopole form factor).

(viii) To the best of our knowledge, the above con-
sistent variational calculation of static and dynamical
nuclear features has been applied to odd nuclei for the
first time ever. That the entire body of the properties of
the 7Li and 7Be nuclei has been described qualitatively
on a unified basis gives sufficient ground to believe that
the method used here can be applied more widely to
odd and exotic nuclei.

(ix) By means of intermediate summations over the
projections of the angular momenta, we have been able
to obtain compact expressions used in calculating the
reduced matrix elements of irreducible single-particle
tensor operators between the states of the two-shell
mixed configuration. These results have a wide range of
application and make it possible to simplify consider-
ably computations within the independent-particle
model assuming intermediate coupling.

(x) The charge form factors calculated for the 6He,
7Li, and 7Be nuclei by the variational method that
employs the nucleon–nucleon potential no. 15 and
which involves going over to projection onto relevant
states have been compared with the corresponding
results obtained on the basis of the independent-particle
model assuming intermediate coupling. It has been
shown that the results begin to deviate substantially
from q2 ~ 1.5–2.0 fm–2; with increasing q, this differ-
ence grows, reaching one order of magnitude for the
6He nucleus and two orders of magnitudes for the 7Li
and 7Be nuclei at q2 ~ 6–8 fm–2.

(xi) The reasons that the experimental values of the
electron charge form factor for the 7Li nucleus cannot
be described adequately within our variational method
have been discussed. We hope that the agreement with
experimental data can be improved considerably
through the abandonment of the constraints that are
usually imposed on the single-particle orbitals and on
the components of the nucleon–nucleon potentials for
even–even nuclei and through the inclusion of data on
odd nuclei and of cluster degrees of freedom in the vari-
ational calculation.
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Abstract—The parameters a and δeff appearing in the back-shifted Fermi gas model are determined for about
3000 nuclei on the basis of modern estimated experimental data and the proposed systematics. For 272 of these
nuclei, the parameters are deduced from experimental data on the cumulative numbers of low-lying levels and
on mean spacings between S-wave neutron resonances at the neutron binding energy in the nuclei. For
952 nuclei, the parameter δeff is calculated by using the cumulative numbers of low-lying levels and values of
the parameter a that were obtained via an interpolation from the points corresponding to the aforementioned
272 nuclei. For the remaining nuclei, the parameters a and δeff are obtained on the basis of the proposed sys-
tematics. An expression is constructed for taking into account the damping of shell effects with increasing exci-
tation energy of nuclei. The results are compared with those from other studies. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Various modifications of the Fermi gas model are
extensively used to calculate nuclear level densities [1–
4]. Despite substantial limitations of the model [5], it
provides a convenient basis for constructing simple
systematics by fitting the energy dependences of
nuclear level densities to data on the cumulative num-
bers of low-lying levels and on mean spacings ( )
between S-wave neutron resonances at the neutron
binding energies (Bn) in nuclei.

The systematics relying on the studies of Vonach
and Huizenga [2] and Dilg et al. [4] is used most fre-
quently. It is assumed in this systematics that the two
sets of experimental data are described by relations
based on the Fermi gas model, but the level-density
parameter a and the excitation-energy shift δeff caused
by even–odd distinctions between nuclei are treated
there as free parameters. Since δeff values appear to be
negative for odd–odd nuclei, this framework is referred
to as the back-shifted Fermi gas model.

All systematics constructed within the back-shifted
Fermi gas model (see [4, 6]), which contain informa-
tion about the parameters a and δeff for approximately
300 nuclei (there are no data on mean spacings between
S-wave neutron resonances for a wider range of nuclei),
have the following disadvantages:

(i) There are no straightforward recipes for correctly
parametrizing the dependence δeff = f(A), because it is
difficult to disentangle shell, collective, and pairing
effects within the conceptual framework in question.

(ii) The damping of shell effects at high nuclear
excitations is not taken into account in the level-density
parameter a.

The investigation reported in the present article
resulted in constructing a database including level-den-

D0
1063-7788/00/6305- $20.00 © 20752
sity parameters in the back-shifted Fermi gas model for
about 3000 nuclei. An expression has been proposed
for phenomenologically describing the damping of
shell effects in the parameter a with increasing excita-
tion energy. Errors that arise in a and δeff because of
uncertainties in data on the mean spacings between
neutron resonances have been determined. The sensi-
tivity of the level-density parameters being discussed to
variations in the number of low-lying levels included in
the input data set has been analyzed. The parameters a
and δeff have been obtained for two values of the
nuclear moment of inertia: F = Frig and F = 0.5Frig,
where Frig is the rigid-body value of the nuclear
moment of inertia.

2. DESCRIPTION OF THE PROCEDURE
USED TO DETERMINE LEVEL-DENSITY 

PARAMETERS

The procedure for deducing the parameters a and
δeff from experimental data on the cumulative numbers

N0 of low-lying levels and on the mean spacing 
between S-wave neutron resonances is similar to that
proposed in [4].

For the spin-dependent and the total level density,
we use the expressions

(1)

(2)

D0

ρ U J,( ) 1

24 2
-------------2J 1+

σ3a1/4
---------------=

×
2 a U δeff–( ) J J 1+( )/2σ2–[ ]exp

U δeff t+–( )5/4
--------------------------------------------------------------------------------------,

ρ U( ) 1

12 2
------------- 1

σa1/4
------------

2 a U δeff–( )[ ]exp

U δeff t+–( )5/4
-----------------------------------------------,=
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where U is the nuclear excitation energy, J is the total
angular momentum, a is the level-density parameter
related to the density of single-particle states near the
Fermi energy, δeff is an adjustable parameter appearing
in the back-shifted Fermi gas model, t is the thermody-
namic temperature determined from the equation

(3)

and σ is the spin-cutoff parameter in the level density.
In our calculations, the quantity σrig was taken to be

(4)

where Frig is the rigid-body value of the nuclear
moment of inertia.

In order to determine the parameters a and δeff, we
used the equations

(5)

(6)

where Bn is the neutron binding energy, ∆E is the
energy interval where resonances were studied, I0 is the

target-nucleus spin, and  is the mean spacing
between nuclear levels for S-wave neutrons. The coef-
ficient 1/2 reflects the fact that the S-wave neutrons
form resonances with definite parity, while N0 is the
number of low-lying levels in the nucleus being ana-
lyzed that occur in the energy range between zero and
U0.

The recommended experimental values of the
parameters  ± δ , N0, and U0 were taken from [7].
The parameters a and δeff were determined for two val-
ues of the nuclear moment of inertia, F = Frig and F =
0.5Frig. The errors that arise in the parameters a and δeff

because of uncertainties in  were calculated as fol-
lows: for each nucleus, the parameters a and δeff were

determined from equations (5) and (6) for three  val-

ues: ,  + δ , and  – δ . The averaged val-
ues of the parameter a for F = Frig are displayed in
Fig. 1 below.

U δeff– at2 t,–=
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3. EFFECT OF UNCERTAINTIES
IN  AND N0 ON THE DETERMINATION
OF THE LEVEL-DENSITY PARAMETERS

A straightforward analysis of expressions (1) and
(2), which yields

reveals that the uncertainties in  values affect only
slightly the level-density parameter a. The uncertainties
in  have a minor effect on the absolute values of δeff

as well.

The choice of N0 and U0 has a more pronounced
effect on the extracted level-density parameters. Data
that make it possible to estimate this effect are quoted
in the table, which illustrates the dependence of a and
δeff on the errors in the N0 value and on the choice of U0
for the 63Ni, 102Ru, and 184W nuclei, which belong to
different mass intervals. For each element, the first row
corresponds to the N0 and U0 values used in the present
calculations, while the next two rows contain the results
contained for the case of ±20% errors in N0. The
remaining rows correspond to various N0 and U0

D0

δa
a

------ 
  1

0.7 A
---------------δρ U( )

ρ U( )
----------------,=

D0

D0

Level-density parameters a and δeff versus N0 and U0

N0 U0, MeV a, MeV–1 δeff , MeV

63Ni

61 4.106 8.87 0.92

80(+20%) 4.106 8.52 0.57

41(–20%) 4.106 9.37 1.38

40 3.52 8.43 0.47

28 3.01 8.1 0.09

20 2.519 7.82 –0.26

15 2.15 7.64 –0.5
102Ru

53 3.086 13.65 1.0

63(+20%) 3.086 13.51 0.88

43(–20%) 3.086 13.82 1.12

27 2.56 13.31 0.73

15 2.19 13.16 0.6

10 1.84 12.9 0.4
184W

48 1.894 19.61 0.37

58(+20%) 1.894 19.43 0.29

38(–20%) 1.894 19.82 0.46

30 1.61 19.27 0.21

20 1.42 19.12 0.14

12 1.25 19.09 0.13



754 PLYASKIN, KOSILOV
options based on an analysis of the schemes of levels in
the nuclides being considered.

This example demonstrates that distinctions
between the level-density parameters obtained by dif-
ferent authors are associated primarily with the choice
of the number N0 of low-lying levels for the nuclide
under analysis.

4. EXCITATION-ENERGY DEPENDENCE
OF THE LEVEL-DENSITY PARAMETER a

The level density determined for a Fermi gas of
independent particles characterized by an equidistant
spectrum of single-particle levels cannot naturally
describe shell effects. The shell structure of nuclei leads
to a nonlinear mass-number dependence of the level-
density parameter (recall that the Fermi gas model pre-
dicts a linear dependence). Shell effects in the level
density are washed out with increasing excitation
energy; therefore, the mass-number dependence of the
parameter a tends to that obtained in the Fermi gas
model as the energy becomes sufficiently high (about
100 MeV). These features of the level-density parame-
ter can be explained in general terms by using the shell-
correction method. To do this, experimental informa-
tion about a well-pronounced correlation between shell
corrections and the ratio a/A, where A is the mass num-
ber, is used to construct a phenomenological systemat-
ics of variations in the level-density parameter obtained
in the Fermi gas model [8]. This systematics is based on
the relation

(7)a U Z A, ,( ) ã A( ) 1 δε0 Z A,( ) f U( )
U

-------------+
 
 
 

,=

50 100 150 200 250
A

a, MeV–1

24

20

16

12

8

4

Fig. 1. Level-density parameter a as a function of the mass
number: (solid curve) averaged values deduced from data on
the cumulative numbers of low-lying levels and the density
of S-wave neutron resonances and (dashed curve) values at
an excitation energy of 100 MeV. The damping of shell
effects was calculated by formula (10).
where δε0 is the shell correction defined as the differ-
ence of the experimental value of the mass defect
(Mexpt) and its liquid-drop value (Mld) calculated at the
equilibrium deformation β, δε0 = Mexpt(Z, A) – Mld(Z, A,
β);  is the asymptotic value of the level-density
parameter at high excitation energies; and f(U) is a
dimensionless function that determines the energy
dependence of the level-density parameter at low exci-
tation energies. The form of this function,

(8)

was found by fitting the thermodynamic functions cal-
culated for nuclei with the spectrum of levels in the
shell potential [8].

The analysis of experimental data that was per-
formed in [8] yielded the optimum values of /A =
0.154 MeV–1 and γ = 0.054 MeV–1 for the parameters in
the above forms. In constructing a systematics on the
basis of experimental data on the neutron-resonance
density in A ≥ 150 nuclei, Ignatyuk et al. [9], who took
into account an increase in the nuclear level density
owing to collective effects, found that the values of

/A = 0.0931 MeV–1 and γ = 0.064 MeV–1 provided the
best fit to the correlation between the energy depen-
dence of the level-density parameters and the shell cor-
rection.

Ramamurthy et al. [10] and Schmidt et al. [11]
showed that, in the parameter γ, it is necessary to intro-
duce a slight mass-number dependence of the form

(9)

where the recommended value of γ0 is about 0.35 MeV–1.
Figure 1 shows the a values obtained in the present

study. Shell effects are seen there to be pronounced, but
they cannot be taken adequately into account by rela-
tion (7). In view of this, we propose here taking into
account the damping of shell effects with increasing
excitation energy via the formula

(10)

where a(Bn, Z, A) is the level-density parameter
obtained in a given systematics, Bn is the neutron bind-
ing energy, and θ(U – Bn) is the step function

The parameter γ1 was chosen by requiring optimal
agreement between the rates of shell-effect damping
according to (7) and (10) and was estimated at γ1 =
0.12A–1/3. By fitting data on nuclei far from those with

ã

f U( ) 1 γU–( ),exp–=

ã

ã

γ γ0A 1/3– ,=

a U Z A, ,( ) ã A( ) 1
a Bn Z A, ,( ) ã A( )–

ã A( )
---------------------------------------------+





=

---× γ1 U Bn–( )θ U Bn–( )–[ ]exp




,
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1 for U Bn–( ) 0≥
0 for U Bn–( ) 0.<
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closed shells, the asymptotic value of the level-density
parameter, , was found to be A/9.5, which is consis-
tent with the values of  = (0.105 ± 0.005)A and  =
(0.090 ± 0.005)A calculated in [12] for the spectrum of
single-particle states in the Nilsson and the Woods–
Saxon potential, respectively.

Figure 1 shows the values of a(U, Z, A) for the exci-
tation energy of U = 100 MeV. They agree well with the
results calculated in [5] with allowance for the discrete
shell structure of single-particle levels.

5. LEVEL-DENSITY PARAMETERS
IN THE CASE WHERE THERE IS NO 

EXPERIMENTAL INFORMATION ABOUT THE 
NUCLEI BEING CONSIDERED OTHER

THAN DATA ON LOW-LYING LEVELS IN THEM

It should be noted that the mass-number dependence
of the parameter δeff is governed by an intricate inter-
play of shell, collective, and pairing effects. In the
model under consideration, the systematics constructed
for the parameter δeff on the basis of data on 272 nuclei
for which the parameters a and δeff were obtained with
the aid of relations (5) and (6) does not seem reliable.
For this reason, the parameter δeff was additionally
determined here for 952 more nuclei by using the
method that was proposed in [13] and which can be
applied to the case where there are no data on the neu-
tron-resonance density, but where there is information
about low-lying levels (that is, the parameters N0 and U0
are known). In this case, covering many nuclei, the
parameter δeff was deduced as follows: (a) The parame-
ter a was determined by means of interpolation (for
details, see below) between the values obtained from
relations (5) and (6). (b) The parameter δeff was calcu-
lated from relation (6).

Figure 1 displays the averaged dependence a(Bn, Z,
A) = f(A) obtained for all mass numbers in the interval
24 ≤ A ≤ 250 by using the a values as determined from
experimental data on the cumulative numbers of low-
lying levels and densities of S-wave neutron reso-
nances. In the case of nuclei for which the neutron-res-
onance densities have not yet been determined experi-
mentally, the parameter a was evaluated on the basis of
relation (7). In particular, the unknown parameter
a1(Bn1, Z1, A) for the (Z1, A) nucleus was calculated by
the formula

(11)

where a(Bn, Z, A) is the level-density parameter taken
from the dependence a(Bn, Z, A) = f(A) displayed in
Fig. 1; δε01(Z1, A) and δε0(Z, A) are shell corrections for
the (Z1, A) and the (Z, A) nucleus, respectively; and
K1 = {1 – exp(–γBn1)}/Bn1 and K = {1 – exp(–γBn)}/Bn

ã
ã ã

a1 Bn1 Z1 A, ,( )

=  a Bn Z A, ,( )
1 K1δε01 Z1 A,( )+

1 Kδε0 Z A,( )+
-------------------------------------------

 
 
 

,
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are the coefficients reflecting energy dependence of the
parameter a for low excitation energies. In the expressions
for these coefficients, we have set γ = 0.35A–1/3 MeV–1 and
denoted by Bn1 and Bn the neutron binding energies in
the (Z1, A) and the (Z, A) nucleus, respectively.

6. LEVEL-DENSITY PARAMETERS
IN THE CASE WHERE THERE ARE NO DATA

ON THE NUCLEI BEING CONSIDERED

In some problems—for example, in astrophysics—
it is necessary to know level-density parameters for a
large number of nuclei for which we have at our dis-
posal neither experimental information on low-lying
levels nor data on the neutron-resonance density. In
order to deduce information about the level-density
parameters for such nuclei, we constructed a systemat-
ics for averaged parameters δeff (see Fig. 2).

That we determined the parameter δeff for more than
1200 nuclei whose low-lying levels are known from
experiments made it possible to obtain the dependences
δeff = f(A) averaged over a great number of nuclei for
even–even, even–odd, odd–even, and odd–odd nuclides
separately.

For these nuclei, the level-density parameter was
calculated according to following algorithm: (a) The
parameter a1(Bn1, Z1, A) for the (Z1, A) nucleus was
determined on the basis of expression (11) by using a
method similar to that described in the preceding sec-
tion. (b) The parameter δeff was found from one of the
dependences δeff = f(A) for a given value of the mass
number A, the parities of the numbers of the intranu-
clear protons and neutrons being taken into account.

50 100 150 200 250
A

δeff, MeV
1

0

–1

–2

–3

1

2
3

4

Fig. 2. Averaged mass-number dependences of the parame-
ter δeff obtained with allowance for the parities of the num-
bers of intranuclear protons and neutrons. Curves 1, 2, 3,
and 4 represent the results obtained for even–even, even–
odd, odd–even, and odd–odd nuclei, respectively.
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7. CONSTRUCTING A DATABASE
OF THE LEVEL-DENSITY PARAMETERS

FOR NUCLEI IN THE MASS-NUMBER RANGE
24 ≤ A ≤ 250 ON THE BASIS OF THE BACK-

SHIFTED FERMI GAS MODEL

Relying on the level-density parameters a and δeff as
obtained by the methods described above, we compiled
a database for 3000 nuclei. The level-density parame-
ters included in this database can be broken down into
three groups.

These are (i) the parameters a and δeff obtained from
experimental data on low-lying levels and neutron-res-
onances densities (for 272 nuclei); (ii) the parameters a
determined on the basis of formula (11) from the aver-
aged dependence a(Bn, Z, A) and the parameters δeff
obtained from experimental data on low-lying levels
(for 952 nuclei); and (iii) the parameters a and δeff

50 150 200 250100
0.75

0.85

0.95

1.05

a/aD

A

Fig. 3. Ratio a/aD = f(A) of the level-density parameter a as
determined (solid curve) in the present study or (dashed
curve) in [6] to that (aD) taken from [4] as a function of the
mass number.

ρ(U), MeV–1

106

104

102

100

0 4 8 12 16
U, MeV

1

23

Fig. 5. As in Fig. 4, but for the 60Co nucleus. The notation
for the curves is identical to that in Fig. 4. Experimental data
were taken from (u, n) [7] and (e) [15].
determined by formula (11) from the averaged depen-
dences a(Bn, Z, A) = f(A) and δeff = f(A) with allowance
for the parity of the numbers of intranuclear protons
and neutrons (for all the remaining nuclei).

It should be noted that the accuracy in the first and
the second group is obviously higher than the accuracy
in the third group. For this reason, it is more reasonable
to compile a database of parameters than to use a uni-
fied systematics that provides an averaged description
even for nuclei whose parameters were obtained from
experimental data.

8. COMPARISON WITH THE RESULTS 
OBTAINED ELSEWHERE

The parameters determined in the present study can
be compared with corresponding results from [4, 6].

ρ(U), MeV–1

106

104

102

100

0 4 8 12 16 20 24
U, MeV

1

2
3

Fig. 4. Calculated and experimental values of the level den-
sity in the 55Mn nucleus. Curves 1, 2, and 3 represent the
results of the calculations with the parameters values from
the present study, [4], and [6], respectively. Experimental
data were taken from (u) [14] and (e) [7].

ρ(U), MeV–1

106

104

102

100

0 4 8 12 16 20 24
U, MeV

Fig. 6. As in Fig. 4, but for the 56Fe nucleus. Only those cal-
culated values that were obtained with the parameters deter-
mined in the present study are displayed in the figure.
Experimental data were taken from (u) [7] and (e) [16].
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Figure 3 shows the mass-number dependence of the
ratio a/aD = f(A), where a stands for the averaged values
of the parameter a calculated in this study and in [6],
while aD is the analogous parameter from [4].

The scatter of the data determined in the different
studies seems to reflect the current level of knowledge
in this field. The greatest distinctions (of about 25%)
are observed in the region around A = 60. For this rea-
son, the level densities ρ(U) for the 55Mn and 60Co
nuclei were calculated here for excitation energies
higher than the neutron binding energies in the respec-
tive nuclides. The results of the calculations are dis-
played in Figs. 4 and 5. It can be seen that the results
obtained with the parameters taken from [6] are smaller
than the experimental values and than the level densi-
ties calculated with the parameters found in this study
and in [4].

The level densities for the 55Mn and 56Fe nuclei
(Figs. 4 and 6) were calculated with the averaged
parameters a and δeff determined with the aid of (6)
from the cumulative numbers of low-lying levels. In
either case, the results of the calculations agree well
with experimental data.

9. CONCLUSION

On the basis of the constructed systematics and of
currently available experimental data [7] on the cumu-
lative numbers of low-lying levels and mean spacings
between S-wave neutron resonances, we have deter-
mined the level-density parameters a and δeff for about
3000 nuclei within the back-shifted Fermi gas model.
The parameters for 272 of these nuclei have been
obtained from experimental data on the cumulative
numbers of low-lying levels and mean spacings
between S-wave neutron resonances at the neutron
binding energies in relevant nuclei. For 952 nuclei, the
parameter δeff has been deduced from data on the cumu-
lative numbers of low-lying levels by using a values
found by means of interpolation of the a values
obtained for the 272 nuclei mentioned immediately
above. For the remaining nuclei, the parameters a and
δeff have been evaluated on the basis of our systematics.
Thus, we have created a database that comprises the
level-density parameters for a wide range of nuclei and
which can be used in various problems that require
describing the formation and decay of compound
nuclei.

A formula has been proposed for taking into
account the damping of shell effects in the parameter a.
Errors arising in a and δeff because of the uncertainties
in data on the mean spacings between neutron reso-
nances have been determined. The sensitivity of the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
level-density parameters to variations in the number of
low-lying levels included in the analysis has been
explored.
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Abstract—A simple formula for the resonance-level density for s-wave resonances is found by fitting the
assumed function of the number of neutrons to numerous experimental data. To describe shell effects, demon-
strated as strong decreases in experimental data at the magic numbers of neutrons, the dependence of the
assumed function on the “complexity” of a compound nucleus is introduced. The resulting function describes
quite well the character of changes in the resonance-level density with the number of neutrons, including the
regions of the magic numbers. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Available experimental data on resonance-level
densities reveal strong shell effects that can be clearly
observed in the dependence of the resonance-level den-
sity on the number of neutrons, N, especially in regions
around the magic numbers of Nm = 82 and 126. The
commonly used formula for the resonance-level den-
sity (Gilbert and Cameron [1]) cannot describe these
effects if the level-density parameter a is assumed to be
proportional to the mass number A (according to theo-
retical prediction based on the Fermi gas model). Rohr
[2] considered the relation between the resonance-level
density and “the hierarchy of the compound state.” The
hierarchy can be characterized by the number of parti-
cles or holes (or both) that may be excited in a compos-
ite nucleus in a resonance reaction. In [3], it was pro-
posed to classify various states of an excited composite
nucleus by the number of nucleons raised above the
Fermi level. The maximum number k of particles that
may be raised at a given excitation energy is referred to
as “complexity.” According to [2], we can expect that
there is a relation between the resonance-level density
and k. The structure of the N dependence of k seems to
confirm this expectation since shell effects are quite
obvious there (Fig. 1).

In this study, we presents a simple semiempirical
formula, obtained from the above idea, that can
describe shell effects in the resonance-level density.

2. SEMIEMPIRICAL FORMULA

After a preliminary analysis of available data on the
resonance-level density for s-wave resonances, we
decided to perform fitting in terms of the function

(1)ρ 10bkc.=

  * This article was submitted by the authors in English.
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According to [3], the complexity k is

(2)

Here, g = (A/13) MeV–1 is the single-particle level den-
sity at the Fermi level; ∆ is the shell energy gap given
in Table 1; U = Sn – P(N) – P(Z), where Sn is the neutron
separation energy for a composite nucleus; and P(N)
and P(Z) are the neutron and the proton pairing energy,
respectively. If Nt is the number of neutrons in the target
nucleus and if Nm is the nearest magic number of neu-
trons, then we have

Experimental data subjected to our analysis were taken
from [4]. They are energy-normalized to Sn = 8 MeV and

k E 1 g∆( )/2–{=

+
1
2
--- g∆ 2–( )2 4 z g∆ 1–( ) gU+[ ]+ } .

z
Nt Nm– for Nt Nm<
Nt Nm– 1 for Nt Nm.≥+




=

k

12

8

4

0 40 80 120 160 N

Fig. 1. Complexity k of excited composite nuclei for Sn =
8 MeV as a function of the number N of neutrons.
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spin-reduced to J = 1/2 for even–even target nuclei (to
J = 0 and 1 for other nuclei). The normalization and
spin reduction performed to alleviate fitting was based
on the formula [1]

(3)

where

The pairing energies were taken from [1], while the val-
ues of a were calculated on the basis of experimental data.

The analysis that employed data on 284 nuclides
showed that the optimal and simple form of neutron-
number dependence for both exponents in formula (1) is

(4)

(5)

The fitting of the function in (1) to the set of normalized
and reduced experimental values of the resonance-level
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Fig. 2. Calculated (black circles) and reduced experimental
values (open circles) of the neutron-resonance-level densi-
ties.

Table 1. Shell energy gaps

Nm 20 28 50 82 126

∆, MeV 5.12 4.26 4.18 3.66 3.09
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density yielded the adjusted-parameter values quoted in
Table 2.

Finally, we have

Then, ρ is expressed in MeV–1.
A comparison of calculated and reduced values of

the neutron-resonance-level densities is presented in
Fig. 2.

3. REMARKS

The semiempirical formula obtained here can rea-
sonably describe the general form of the N dependence
of the resonance-level density, including shell effects.
The idea to relate the resonance-level density to the
highest hierarchy of excited composite nucleus (com-
pound nucleus), given by complexity k, proved to be
justified. But we should not expect that this formula can
describe detailed values of the resonance-level density
for individual nuclides since it was fitted to dispersed
experimental values in the form of a smooth function.
The purpose of our study was to show how the com-
plexity of a compound nucleus affects the resonance-
level density.
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Abstract—The  hypernucleus is treated as a (1/2)+ bound state of the Λααα  system. The s-wave model is
used on the basis of differential equations for the corresponding Yakubovsky components. No account is taken
of 2 + 2 clustering in the system. Phenomenological potentials are used to simulate the αα  and αΛ interactions.
The system as a whole is bound owing to the additional potential of three-body interaction between the alpha-
particle clusters. The differential equations for the Yakubovsky components are solved numerically by the clus-

ter-reduction method. The binding energies are calculated for the ground and the first excited state of the 
hypernucleus. It is shown that the dominant type of clustering in the system is (Λαα )α. © 2000 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

A three-body potential of interaction between
alpha-particles makes it possible to describe the prop-
erties of the light nuclei 12C and 16O within, respec-
tively, the three- and the four-body cluster models [1–
3]. These models are based on the concept that there are
alpha-cluster correlations in these nuclei, which is con-
firmed experimentally. The parameters of the three-
body potential that binds the system of three alpha par-
ticles were evaluated in [3]. This was done by fitting the
experimental values of the binding energy and the root-
mean-square radius of the 12C nucleus. The analysis in
[3] relied on the differential forms of the Faddeev and
Yakubovsky equations for, respectively, the 3α and the
4α system [4]. In the case of identical particles, the set
of Faddeev–Yakubovsky equations takes the simplest
form. The situation is more involved when we are deal-
ing with systems featuring nonidentical particles. Such
cases are exemplified by the Λαα  and Λααα  systems

(  and  hypernuclei, respectively). In the rele-
vant equations, it is then necessary to take into account
various versions of clustering in the subsystems,
whereby the number of coupled equations is increased.
As a result, the requirements upon computational facil-
ities for numerically solving such equations prove to be
more stringent. The cluster-reduction method for the
Yakubovsky equations that was proposed in [5]
removes some of the difficulties encountered in directly
solving these equations. In the present study, the clus-
ter-reduction method is used to analyze the Λααα  sys-
tem. Previously, this method was applied only to sys-
tems of identical particles [5, 6]. The Λααα  system is
also interesting in that it provides the possibility of test-
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ing the potential that was proposed in [3] to simulate
the three-body interaction of alpha-particle clusters.

Earlier, cluster models of the  hypernucleus
were considered by Hiyama et al. [7] and by Bodmer
et al. [8]. The former group of authors invoked a micro-
scopic approach that relies on realistic ΛN potentials,
but which reduces to the Λααα  cluster model where
Λα interaction is simulated by a nonlocal potential and
where, in the 3α subsystem, there is an additional
repulsive three-body potential. The latter [8] studied
the 12C + Λ cluster system. In order to determine the
intercluster interaction, they proposed averaging the
ΛN and ΛNN potentials by using the distribution of
nucleon density that was obtained for the 12C nucleus
from experimental data.

2. DESCRIPTION OF THE FORMALISM

For the system of four particles, the differential equa-
tions for the Yakubovsky components are given by [4]

(1)

In all, there are 18 Yakubovsky components .
Each component corresponds to a specific partition of
the four-particle system into two or three clusters (a2,
a3). There are two types of partitions into two clusters
(3 + 1 and 2 + 2 ones). For systems involving identical
particles, some Yakubovsky components can be
expressed in terms of the others by using the operators
of particle permutations. In particular, the Λααα  sys-
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tem consists of three identical bosons and a fermion.
The corresponding set of equations can be reduced to
five equations determining the wave-function compo-
nents U1, U2, W1, Y1, and Y2, where the subscripts 1 and
2 label the component types 3 + 1 and 2 + 2, respec-
tively. Specifically, we have

(2)

where the numbers 1, 2, and 3 label identical particles;
the number 4 labels the fourth, nonidentical, particle;
V12 is the pair potential of interaction between the iden-
tical particles of the system; V34 is the pair potential of
interaction between the nonidentical particle and the
remaining particles of the system; VCoul is the Coulomb
interaction potential; V3 is the three-body potential; H0
is the kinetic-energy operator; Pik is the operator per-
muting the ith and the kth particle for i, k = 1, 2, 3; and

 stands for the operators of cyclic permutations of
three particles, the subscript labeling the particle not
involved in a given permutation.

The wave function of the system can be represen-
ted as

(3)

where

In configuration space, the system is described with the
aid of the Jacobi coordinates XA = {xA, yA, zA}, where
the superscript A labels the Jacobi coordinates corre-
sponding to the various types of partitions of the system
in question (A = U1, U2, W1, and Y1). The Jacobi coor-

H0 V12 VCoul V3 E–+ + +( )U1 V12 P4
+ P4

–+( )U1+

=  V12 P23 P13+( )W1 P23 P13+( )U2+[ ] ,–

H0 V12 VCoul V3 E–+ + +( )U2 V12Y2+

=  V12 Y1 P12Y1+( ),–

H0 V12 VCoul V3 E–+ + +( )W1 V12 P4
– P23+( )Y1+

=  V12 P4
+ P13+( )Y1 P23 P13+( )Y2+[ ] ,–

H0 V34 VCoul V3 E–+ + +( )Y1 V34 P13Y1 P23W1+( )+

=  V34 P23U1 P4
+Y1 P23U2 P13Y2+ + +( ),–

H0 V34 VCoul V3 E–+ + +( )Y2 V34U2+

=  V34 U1 W1+( ),–

Pi
±

Ψ Ψ1 Ψ2,+=

Ψ1 I P4
+ P4

–+ +( )U1 I P23 P13+ +( )W1+=

+ I P4
+ P4

– P12 P23 P13+ + + ++( )Y1,

Ψ2 I P23 P13++( )U2 I P23 P13+ +( )Y2.+=
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dinates are expressed in terms of the particle radius vec-
tors rk, k = 1, 2, 3, 4, as

where we have considered that m1 = m2 = m3 = m. For
the four-particle system being considered, the Jacobi
coordinates are illustrated in Fig. 1.

3. DESCRIPTION OF THE MODEL

We consider a bound system that consists of three
alpha-particle clusters and a Λ hyperon. The angular
momentum of the entire system and the angular
momentum of each of its subsystems are taken to be
zero; that is, our consideration is restricted to the s-
wave approximation. The interaction between the Λ
hyperon and each alpha particle is simulated here by
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Fig. 1. Jacobi coordinates in the Λααα  system (shown in the
figure are the Yakubovsky components corresponding to
each set of the Jacobi coordinates).
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the potential that was proposed in [9] and which is
given by

(4)

where V0 = –47.97 MeV and β0 = 1.566 fm. For the
potential of the pair interaction between the alpha par-
ticles, we use the s-wave component of the potential
from [10],

(5)

where V1 = 120.0 MeV, β1 = 1.53 fm, V2 = –30.18 MeV,
and β2 = 2.85 fm. Since the pair potential (5) does not
bind the system of three alpha particles because of
strong Coulomb repulsion, it is reasonable to introduce,
in just the same wave as in [1, 2], a three-body poten-
tial, V3. It is taken here in the form

(6)

where ρ2 = , ri being the radius vector of the
ith particle in the c.m. frame; V = –24.32 MeV; and β =
3.795 fm. The values of the parameters V and β were
chosen in such a way as to reproduce the experimental
results for the binding energy and the root-mean-square
radius of the 12C nucleus [3].

The model is supplemented with the assumption
specifying the character of clustering within the sys-
tem. As was shown in [7], the probability of 2 + 2 clus-
tering is small in the system being considered: only an
insignificant correction arises there in the computed

binding energy of the  hypernucleus upon taking
into account this type of clustering. For this reason, the
components U2 and Y2, which correspond to 2 + 2 clus-
tering, are discarded here in the eventual equations. The
s-wave differential equations for the coordinate parts
81, 01, and =1 of the Yakubovsky components are
presented in the Appendix.

4. METHOD FOR SOLVING EQUATIONS (3)
Equations (3) for the relevant Yakubovsky compo-

nents were solved numerically by the cluster-reduction
method. Within this method, a solution to the original
equations is represented as an expansion in bases
formed by eigenfunctions of the Hamiltonians of the
three-particle subsystems:

(7)

Here, the unknown amplitudes  depend only

on the vector  of the relative coordinate of the clus-
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za2
ters in the partition a2; by , we denote the internal
coordinates of the clusters in this partition. The basis

, k = 1, 2, …, is complete, but it is not orthog-
onal. A biorthogonal basis is formed by the eigenfunc-
tions of conjugate Hamiltonians for the three-particle
subsystems [11]. By taking relative projections onto the
basis functions, we arrive at a set of equations for func-
tions that describe the relative motion of the clusters.
The dimensionality of each equation in this set is
smaller by unity than the dimensionality of the original
equations. A detailed account of the reduction outlined
immediately above is given in [6]. In numerically solv-
ing the equations in question, a finite number N of
terms is retained in expansion (7). The number N is a
parameter that determines the efficiency of the method,
since this parameter specifies the dimension of the
algebraic problem to which we go over from the prob-
lem of numerically solving the reduced equations. The
cluster-reduction method was used in [5, 6] to compute
bound states and low-energy scattering in systems com-
prising three and four particles.

5. RESULTS OF THE CALCULATIONS

The cluster-reduction method specifies a general
scheme for numerically solving the s-wave differential
equations (A.1) for the Yakubovsky components. In
configuration space, the parameters Rx, Ry, and Rz deter-
mine a rectangular parallelepiped Ω (in the present
study, each of these parameters is taken to be 25 fm). In
solving equations (A.1), zero boundary conditions are
imposed at the boundary of the region Ω . Within this
region, the basis functions are determined as the eigen-
functions of the boundary-value problems for the Fad-
deev equations describing the 3α and Λαα  subsystems.
These eigenfunctions are numbered in the order of
increasing eigenvalues that correspond to them. In par-

ticular, the functions  that are assigned the
number k = 1 describe the bound states in the 3α and
Λαα  systems. The bound states of these systems can be
associated with the ground states of the 12C nucleus and

the  hypernucleus in the three-body cluster models
being considered [3, 12]. The results of our calculations
for the binding energy and the root-mean-square radii
of the 3α and Λαα  systems governed by the potentials
(4)–(6) are listed in Table 1. By applying the procedure
of cluster reduction to the problem specified by equa-
tion (A.1), we go over to the problem of solving effec-
tive equations for the functions describing the relative
motion of the clusters forming the system being consid-
ered. A numerical solution to the resulting equations is
constructed by means of a finite-difference approxima-
tion on an equidistant mesh.

For the binding energy of the Λααα  system, the
results of our calculations are presented in Table 2. The
s-wave potential model used in the present study has

xa2

ψa2 k,
a3 xa2
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a3 xa2
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Table 1.  Binding energy EB and root-mean-square radii R of the 3α and Λαα  systems (12C nucleus and  hypernucleus,
respectively)

EB(12C), MeV R(12C), fm EB( ), MeV RΛ( ), fm

This study –7.26 2.47 –5.6 3.0

Experiment –7.27 2.47 –6.62 –

Note: The energy is reckoned from the threshold for the breakup of the system into constituent particles. Here and in Table 2,  RΛ( ) is

the root-mean-square radius of the Λ-hyperon distribution in the Λαα  system.

Be
9
Λ

Be
9
Λ Be

9
Λ
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9
Λ

Table 2. Binding energies and root-mean-square radii of the Λ-hyperon distribution in the  hypernucleus for its ground

state (EB and RΛ , respectively) and the first excited state (  and )

EB, MeV RΛ, fm , MeV , fm

[7] –21.34 2.09 –7.73 2.73
[8] –20.37 – – –
[13] –16.75 – – –
This study –18.7 2.56 –7.8 4.7
Experiment –18.96 – – –

Note: Presented in the first row are the values of RΛ, , and  as obtained in [7] upon correcting the Λα potential in order to reproduce

the binding energy of the  hypernucleus.
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two bound (1/2)+ states, the ground and the first excited
state. As can be seen from Table 2, the results of our cal-
culations approximate closely the experimental value

of the energy of the ground state of the  hypernu-
cleus. The results of the calculations performed in [7, 8,
13] are also presented in Table 2 for the sake of com-
parison. As was mentioned above, the calculations
from [7, 8] were based on cluster models; in contrast to
this, a microscopic approach featuring a realistic
(Jülich) ΛN interaction was employed in [13].

Proceeding to study clustering in the Λααα  system,
we will first dwell on the problem of convergence of a
calculation within the cluster-reduction method. It
should be emphasized that the rate of convergence
within the cluster-reduction method gives a hint as to
whether there is (or there is no) clustering in the sub-
systems of the system being considered [3]. Table 3 dis-
plays the calculated binding energy of the Λααα  sys-
tem versus the number N of terms retained in expan-
sions (7) in basis functions. We can see that a
convergent result is obtained by retaining the first six of
nine basis functions, the contribution of the last five
being no more than 4% of the total result. At the same
time, the disregard of the component U1, which corre-
sponds to the 3α + Λ clustering, in the equations being
considered increases the calculated binding energy
only by 0.2 MeV. Thus, we can state that the ground
state of the system is determined primarily by the

C13
Λ
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(Λαα )α cluster state. Considering that the calculation

of the binding energy of the  hypernucleus within
the Λαα  model employing the pair potentials (4) and
(5) underestimates the absolute value of the binding
energy of this hypernucleus in the ground state by
1 MeV [12], we arrive at the conclusion that the above
clustering of the Λααα  system is not identical to the

cluster representation  + α. In this connection, it

Be9
Λ

Be9
Λ

Table 3.  Calculated binding energies in the ground and the
first excited state of the Λααα  system versus the number N
of basis functions taken into account in the calculation (illus-
tration of the convergence of the cluster-reduction method)

N EB, MeV , MeV

1 –18.0 –7.0

2 –17.9 –7.0

3 –18.2 –7.1

4 –18.6 –7.4

5 –18.6 –7.6

6 –18.7 –7.8

7 –18.7 –7.8

8 –18.7 –7.8

9 –18.7 –7.8

EB
*
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should be noted that attempts at simultaneously

describing the  and  hypernuclei on the basis of
the Λαα  and Λααα  cluster models employing the Λα
potential that makes it possible to reproduce faithfully

the binding energy of  hypernucleus lead to an
overestimation of the binding energy of the Λααα  sys-

tem (  hypernucleus) [7, 8].

The (3α + Λ) clustering of the Λααα  system plays
a crucial role in the formation of the excited (1/2)+ state.
Without taking into account this type of clustering (that
is, without the component U1), there is no excited
bound state in the Λααα  system.

In connection with investigations into clustering
phenomena, it is worth noting that the result obtained
here for the ground state—namely, the dominance of
(Λαα )α clustering in the system being considered—is
at odds with the corresponding result from [7], where
clustering of the (ααα )Λ type was found to be domi-
nant. For the excited state of the system, the results of

the two studies are closer. The excited state of  con-
sidered in [7] is formed via a core excitation in the
12C( ) + Λ model. An analysis of the convergence of
our calculation for the binding energy of the excited
state (see Table 3) reveals that no less than five basis
functions must be retained in order to obtain this state.
Thus, we can see that, for an excited state to be realized
in the Λααα  system, an excitation in the 3α subsystem
must be taken into account in the present model as well.

The spatial distribution of the Λ hyperon in the
Λααα  system can be investigated by calculating the
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Fig. 2. Calculated distributions of the Λ hyperon in (solid

curve) the ground state of the  hypernucleus, (dashed

curve) the first excited state of the  hypernucleus, and

(dash-dotted curve) the ground state of the  hypernu-

cleus (according to the results of the calculations from [14]).
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17
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wave function (3) of our system. Denoting by ρΛ(r) the
density of the hyperon probability distribution in the

system, we introduce the function ΨΛ(r) =  sat-
isfying the normalization condition

The distribution function ΨΛ(r) is displayed in Fig. 2

for the ground state of the  hypernucleus (solid
curve) and for its excited state (dashed curve). For the
sake of comparison, this figure also shows the distribu-

tion of the Λ hyperon in the  hypernucleus (dash-
dotted curve) from [14]. The root-mean-square radius
of this distribution is 2.47 fm, the corresponding
hyperon-separation energy being close to its experi-
mental value.

6. CONCLUSION

The  nucleus has been considered here within
the Λααα  cluster model. The Λααα  system is a four-
particle system involving one nonidentical particle. The
differential equations for the relevant Yakubovsky com-
ponents have been presented. On the basis of these
equations, an s-wave potential model has been pro-
posed that takes into account, in addition to the pair Λα
and αα  potentials, the potential of three-body interac-
tion between the alpha-particle clusters (the potential
parameters were determined in [3]). For the binding

energy of the  hypernucleus, this model yields
results that agree with the results of calculations per-
formed by other authors and with experimental data.
An analysis of the present calculations has revealed that
the ground state of the system is dominated by the
(Λαα )α type of clustering. In addition, the potential
model considered here admits an excited bound state,
which receives a significant contribution from (ααα )Λ
clustering. The results of the present study for the
excited state in question are consistent with the results
presented in [7]. The use of the cluster-reduction
method for numerically solving the Yakubovsky equa-
tions has made it possible, first, to relax requirements
on computational facilities and, second, to reveal the
types of clustering in the Λααα  system.
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APPENDIX

The s-wave differential equations for the coordinate
parts 81, 01, and =1 of the Yakubovsky components
are given by

(A.1)

where

m is the alpha-particle mass, and m4 is the Λ-hyperon
mass. The coordinates in equations (A.1) are trans-
formed as

h0
U1 v αα x( ) vCoul

U1 x y z, ,( ) v 3
U1 ρ( ) ε–+ + +( )81 x y z, ,( )

+ v αα x( ) dv
xy
x'y'
--------81 x' y' z, ,( )

1–

1

∫

=  
1
2
---v αα x( ) du dv

xyz
x3y3z3
---------------01 x3 y3 z3, ,( ),

1–

1

∫
1–

1

∫–

h0
W1 v αα x( ) vCoul

W1 x y z, ,( ) v 3
W1 ρ( ) ε–+ + +( )01 x y z, ,( )

+ v αα x( ) dv
xy

x'y1'
---------=1 x' y1' z, ,( )

1–

1

∫

=  
1
2
---v αα x( ) du dv

xyz
x4y4z4
---------------=1 x4 y4 z4, ,( ),

1–

1

∫
1–

1

∫–

h0
Y1 vΛα x( ) vCoul

Y1 x y z, ,( ) v 3
Y1 ρ( ) ε–+ + +( )=1 x y z, ,( )

+
1
2
---vΛα x( ) dv

xy
x1y1
----------01 x1 y1 z, ,( )



1–

1

∫

+
xy

x2y2
----------=1 x2 y2 z, ,( )

 1
4
---vΛα x( ) du dv

xyz
x5y5z5
---------------



1–

1

∫
1–

1

∫–=

× 81 x5 y5 z5, ,( ) xyz
x6y6z6
---------------=1 x6 y6 z6, ,( )+ 

 ,

h0
U1 ∂x

2 3
4
---∂y

2 1
2
---ad

b
------∂z

2+ + 
  ,–=

h0
W1 ∂x

2 1
2
---a

b
---∂y

2 3
4
---d∂z

2+ + 
  ,–=

h0
Y1 1

2b
------∂x

2 3
4
---a∂y

2 3
4
---d∂z

2+ + 
  ,–=

a
1
2
---

m4 2m+
m4 m+

--------------------, b
m

m4 m+
-----------------,= =

d
2
3
---

m4 3m+
m4 2m+
--------------------, c

m
m m4+
-----------------,==

x'
1
4
---x2 y2 xyv+ + 

 
1/2

,=

y'
3
4
---x 

 
2 1

4
---y2 3

4
---xyv–+

1/2

,=
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The s-wave projections of the Coulomb interaction in
equations (A.1) are given by

where

y1' ax( )2 by( )2 2abxyv–+[ ]1/2
,=

x1 bx( )2 y2 2bxyv+ +[ ]1/2
,=

y1 ax( )2 1
4
---y2 axyv–+

1/2

,=

x2 cx( )2 y2 2cxyu+ +[ ]1/2
,=

y2 4 abx( )2 cy( )2 4abcxyu–+[ ]1/2
,=

x3 x', y3 y'/3( )2 z2 2
3
---zy'u+ +

1/2

,= =

z3 dy'( )2 b
2a
------z 

 
2 bd

a
------y'zu–+

1/2

,=

x4 x', y4
c
a
---y1' 

 
2

z2 b
c
---zy1' u–+

1/2

,= =

z4
3
4
---d

a
---y1' 

 
2 c

2a
------z 

 
2 3

4
---bd

ac
------y1' zu+ +

1/2

,=

x5 x1, y5
b

2a
------y1 

 
2

z2 b
a
---zy1u–+

1/2

,= =

z5 dy1( )2 1
3
---z 

 
2 2

3
---by1zu+ +

1/2

,=

x6 x2, y6
c
a
---y2 

 
2

z2 b
c
---zy2u+ +

1/2

,= =

z6
3
4
---d

a
---y2 

 
2 c

2a
------z 

 
2 3

4
---bd

ac
------y2zu–+

1/2

.=

vCoul
U1 n

x
--- 2

n
r>
----, r>+ max

x
2
--- y,

 
 
 

,= =

vCoul
W1 n

x
---

n
2
--- du dv

1
x̃2
-----,

1–

1

∫
1–

1

∫+=

vCoul
Y1 n

x
---

n
4
--- du dv

1
x̃3
----- n

2
--- du dv

1
x̃1
----- 1

x1
-----+ 

  ,

1–

1

∫
1–

1

∫+

1–

1

∫
1–

1

∫+=

n
4me2

"
2

------------,=
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The short-range potential of interaction between two
alpha particles, vαα(x), is calculated by formula (5)
with allowance for the fact that vαα(x) = Vαα(x)m/"2.
The Λα-interaction potential vΛα(x) is given by (4)
[vΛα(x) = VΛα(x)m/"2]. The potential of three-body

interaction, (ρ), has the form

where the superscript A stands for U1, W1, and Y1, while

 is expressed in terms of the Jacobi coordinates as

where

x̃1
1

2a
------y 

 
2

z2 1
a
---yzu–+

1/2

,=

x̃2
1

2a
------y1' 

 
2

z2 1
a
---y1' zu+ +

1/2

,=

x̃3
1

2a
------y2 

 
2

z2 1
a
---y2zu+ +

1/2

.=

v 3
A

v 3
A ρ( ) 1

8
--- dv ud wv 3 ρA( ),d

1–

1

∫
1–

1

∫
1–

1

∫=

ρA
2

ρA
2 2

3
---ξ A

2 1
2
---η A

2 ,+=

ξU1

2 y2, ηU1

2 x2,= =

ξW1

2 b
2a
------y 

 
2

z2 b
a
---yzu, ηW1

2+ + x2,= =

ηY1

2 1
2a
------y 

 
2

z2 1
a
---yzv ,–+=

ξY1

2 ỹ̃( )
2 1

2
---ηY1 

 
2

ηY1
ỹ̃w+ +=
with
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ỹ̃
2

bx( )2 cy( )2 2bcxyu.–+=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000



  

Physics of Atomic Nuclei, Vol. 63, No. 5, 2000, pp. 767–773. Translated from Yadernaya Fizika, Vol. 63, No. 5, 2000, pp. 837–843.
Original Russian Text Copyright © 2000 by V. V. Lyuboshitz, V. L. Lyuboshitz.

                                                                        

NUCLEI
Theory
T Invariance and Polarization Effects in the Reactions
p + 3He  p+ + 4He and p+ + 4He  p + 3He
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Abstract—On the basis of T invariance, it is established that the dependence of the effective cross section for
a binary reaction of the a + b  c + d type on the polarization vectors of primary particles a and b determines
completely the polarization vectors and spin correlations for the same particles in the inverse reaction c + d 
a + b induced by collisions between unpolarized primary particles c and d. By using the formalism of helicity
amplitudes, polarization effects are studied in the process p + 3He  π+ + 4He and in the inverse process π+

+ 4He  p + 3He. It is shown that, in the reaction π+ + 4He  p + 3He, the spins of the final-state particles
(proton and 3He nucleus) are strongly correlated. An expression for the correlation tensor is obtained for arbi-
trary values of the (p, 3He) emission angle. © 2000 MAIK “Nauka/Interperiodica”.
Polarization effects in the scattering of spin-1/2 par-
ticles on an unpolarized target were discussed in [1] on
the basis of the T invariance of the differential cross
section for elastic scattering. In the present study, a
similar approach is used to analyze implications of T
invariance for the effective cross sections for direct and
inverse binary reactions involving two spin-1/2 parti-
cles in the initial or the final state. Specifically, polar-
ization effects are investigated in detail for the reactions
p + 3He  π+ + 4He and π+ + 4He  p + 3He.

1. Let us consider a binary reaction of the a + b 
c + d type. Let the initial particles a and b both have a
spin of 1/2, and let the final particles have arbitrary
spins. We denote by ka = –kb the primary momentum in
the reaction c.m. frame, by kc = –kd the final momen-
tum in the c.m. frame, by θ the angle between the
momenta ka and kc, and by E the total energy in the c.m.
frame. We further introduce three mutually orthogonal
unit vectors (of these, two lie in the reaction plane,
while the third is aligned with the normal to the reaction
plane)

(1)

where

If parity is conserved and if invariance under rota-
tions in three-dimensional space and the fact that quan-
tum theory is linear are taken into account, the quantity
obtained by summing the effective cross section for the
a + b  c + d process over the projections of the final-
particle spins must be a scalar linear in the initial-parti-

l
ka

ka

-----, m
l' l l' l⋅( )–

θsin
------------------------, n

l   l ×  '  
θ

 
sin
------------,= = =

l' = 
kc

kc

-----, ka = ka , kc = kc , θ = l l◊ '( ).arccos
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. In accordance with
this, the structural formula for the differential cross sec-
tion in the c.m. frame takes the form (see also [2])
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It is obvious that, at 
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 = 0, the functions 
 

A
 
, 
 
B
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F
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G
 

,
and 

 

H

 

 vanish by virtue of axial symmetry; the expres-
sion for the differential reaction cross section is then
simplified to become

 

(3)

 

At 

 

θ

 

 = 

 

π

 

, the effective cross section for the reaction
in question has the same structure. Taking into account
expressions (1), we find that, at very small values of the

σa b c d+→+ ka P a( ) P b( )
; kc, ,( )

=  σ0 E θ,( ) 1 A E θ,( ) P a( ) n⋅( )+{ B E θ,( ) P b( ) n⋅( )+

+ C E θ,( ) P a( ) P b( )⋅( ) D E θ,( ) P a( ) l⋅( ) P b( ) l⋅( )+

+ F E θ,( ) P a( ) m⋅( ) P b( ) m⋅( )

+ G E θ,( ) P a( ) l⋅( ) P b( ) m⋅( )

+ H E θ,( ) P a( ) m⋅( ) P b( ) l⋅( ) } ,

σa b c d+→+ kal P a( ) P b( )
; kcl, ,( )

=  σ0 E 0,( ) 1 C E 0,( ) P a( ) P b( )⋅( )+{

+ D E 0,( ) P a( ) l⋅( ) P b( ) l⋅( ) } .
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emission angle, the above dimensionless functions are
given by

(4)

where the functions a(E), b(E), f(E), g(E), and h(E) do
not vanish in general. For small deviations of the emis-
sion angle from π, we have limiting relations of the
form (4) that feature different functions of E and the
angle ∆θ = π – θ in place of θ.

Let us now integrate the effective cross section for
the a + b  c + d reaction with respect to the azi-
muthal angle. It can easily be seen that the following
relations hold:

(5)

Taking them into account, we then arrive at

(6)

2. Assuming T invariance and using expression (2),
we can obtain a general expression for the effective
cross section for the inverse reaction c + d  a + b
involving unpolarized particles Ò and d and resulting in
the formation of final-state particles with fixed polar-
izations z(a) and z(b). By z(a) and z(b), we mean the ana-
lyzing powers of corresponding detectors, in which case
we have |z(a)| ≤ 1 and |z(b)| ≤ 1. Considering that the inver-
sion of time leads to the reversal of the polarization-vec-
tor and momentum directions and using the principle of
detailed balance [3], we obtain

(7)

A E θ,( ) a E( )θ, B E θ,( ) b E( )θ,= =
G E θ,( ) g E( )θ, H E θ,( ) h E( )θ,= =

F E θ,( ) f E( )θ2
,=

P a( ) n⋅( ) ϕd

0

2π

∫ P b( ) n⋅( ) ϕd

0

2π

∫ 0,= =

P a( ) m⋅( ) ϕd

0

2π

∫ P b( ) m⋅( ) ϕd

0

2π

∫ 0,= =

P a( ) m⋅( ) P b( ) m⋅( ) ϕd

0

2π

∫

=  π P a( ) P b( )⋅( ) P a( ) l⋅( ) P b( ) l⋅( )–[ ] .

σa b c d+→+ E θ P a( ) P b( ), , ,( ) 2πσ0 E θ,( )=

× 1 C E θ,( ) 1
2
---F E θ,( )+ 



 P a( ) P b( )⋅( ) ---+





+ D E θ,( ) 1
2
---F E θ,( )– 

  P a( ) l⋅( ) P b( ) l⋅( )




.

σc d a b+→+ kc; ka z a( ) z b( ), ,( )

=  
ka

2

kc
2

2 jc 1+( ) 2 jd 1+( )
-------------------------------------------------

× σa b c d+→+ ka z a( ) z b( )
; kc––,–,–( ).
Thus, the effective cross section for the c + d 
a + b reaction in the c.m. frame of particles c and d has
the form

(8)

where

(9)

is the quantity obtained by summing the effective reac-
tion cross section for the unpolarized initial particles c
and d over the projections of the spins of the final-state
particles a and b.

It should be emphasized that, in expressions (8) and
(9), the quantities A(E, θ), B(E, θ), C(E, θ), D(E, θ),
F(E, θ), G(E, θ), H(E, θ), and σ0(E, θ) are the same
functions of energy E and the angle of final-particle
emission as in expression (2) and that the unit vectors
appearing in (8) are expressed in terms of the momenta
ka and kc according to (1).

From the fact that relation (8) holds for any fixed
values of the final-state polarizations z(a) and z(b) mea-
sured by two analyzers, it follows that the spin density
matrix for the system of two final-state spin-1/2 parti-
cles formed in the c + d  a + b reaction induced by
a collision between the unpolarized initial particles c
and d can be obtained by replacing the vectors z(a) and

z(b) by the Pauli operators  and , respectively.

As a result, the two-body spin density matrix  sat-
isfying the normalization condition

assumes the form

(10)

where  and  are the two-row identity matrices;
the symbol ⊗  denotes the tensor product of matrices;

σc d a b+→+ kc; ka zzzz a( ) z b( ), ,( ) 1
4
---σ̃0 E θ,( )=

× 1 A E θ,( ) z a( ) n⋅( )– B E θ,( ) z b( ) n⋅( )–{

+ C E θ,( ) z a( ) z b( )⋅( ) D E θ,( ) z a( ) l⋅( ) z b( ) l⋅( )+

+ F E θ,( ) z a( ) m⋅( ) z b( ) m⋅( )

+ G E θ,( ) z a( ) l⋅( ) z b( ) m⋅( )

+ H E θ,( ) z a( ) m⋅( ) z b( ) l⋅( ) } ,

σ̃0 E θ,( )
4ka

2

kc
2

2 jc 1+( ) 2 jd 1+( )
-------------------------------------------------σ0 E θ,( )=

ŝ
a( )

ŝ
b( )

ρ̂ 1 2,( )

tr 1 2,( )ρ̂
1 2,( )

1=

ρ̂ a b,( ) 1
4
--- Î

a( )
Î

b( )
⊗ P a( )

E θ,( ) ŝ
a( )

⋅( ) Î
b( )⊗+[=

+ Î
a( )

P b( )
E θ,( ) ŝ

b( )
⋅( )⊗

+ Tik E θ,( )σ̂i
a( ) σ̂k

b( )⊗ ] ,
k 1=

3

∑
i 1=

3

∑

Î
a( )

Î
b( )
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and the quantities P(a, b)(E, θ) entering into expression
(10) and having the form

(11)

are the polarization vectors of particles a and b pro-
duced in the c + d  a + b reaction. The double sum
in (10) involves the coefficients Tik appearing to be

(12)

where li and lk (mi and mk) are components of the unit
vector l (m), and forming a correlation tensor that
describes spin correlations in the two-particle (a, b)
system.

In accordance with (10)–(12), we can state that, if,
in the measurement process, a detector selects a spin
state of particle a with a polarization vector z(a) (for
example, as the result of secondary scattering), the
polarization vector of particle b produced in association
with particle a in the same event of collisions between
particles c and d has the components (see also [2, 4])

(13)

where P(a) and P(b) are the polarization vectors of the
final particles a and b under the condition that spin
states are not fixed by detectors [see (11)]. Obviously,
we have

It can easily be seen that, in the absence of correla-

tions—that is, under the conditions Tik = —the

quantity (z(a)) = P(b) is independent of the vec-
tor z(a).

It should be noted that, at the values of the angle θ
that are equal to 0 and π, the polarization vectors vanish
by virtue of relations (4) and (11), and spin effects are
determined completely by the correlation tensor Tik;
that is,

(14)

where

(15)

P a( )
E θ,( ) A E θ,( )n,–=

P b( )
E θ,( ) B E θ,( )n–=

Tik E θ,( ) C E θ,( )δik D E θ,( )lilk+=

+ F E θ,( )mimk G E θ,( )limk H E θ,( )milk,+ +

P̃k
b( )

z a( )( )

Pk
b( )

Tik E θ,( )ζ i
a( )

i 1=

3

∑+

1 P a( )
E θ,( )z a( )

+
------------------------------------------------------,=

P b( ) 1
2
--- 1 P a( ) z a( )⋅+( )P̃

b( )
z a( )( )=

1
2
--- 1 P a( ) z a( )⋅–( )P̃

b( )
z–

a( )( ).

Pi
a( )

Pk
b( )

P̃
b( )

P̃k
b( )

Tikζ i
a( )

,
i 1=

3

∑=

Tik Cδik Dlilk.+=
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That the spin state of one of the particles depends on
the character of measurements performed for the other
particle in the way specified by equations (13) and (14)
is a manifestation of the general correlation effect in
recording multiparticle quantum states by single-parti-
cle detectors that was predicted in the well-known
study of Einstein, Podolsky, and Rosen [5].

Thus, we can see that, by virtue of T invariance, the
dependence of the effective cross section for the direct
reaction a + b  c + d on the polarizations of initial
particles completely determines spin correlations
between the same particles in the inverse reaction c +
d  a + b induced by a collision of unpolarized initial
particles.1) From T invariance, we have also inferred
that the left–right azimuthal asymmetries A(E, θ) and
B(E, θ) in the direct reaction a + b  c + d induced
by a collision between the polarized particles a and b
are related by the simple equations (11) to the polariza-
tion vectors of the same particles formed in the inverse
reaction c + d  a + b induced by a collision between
the unpolarized particles c and d.

3. Let us now consider polarization effects in the
specific reaction p + 3He  π+ + 4He and in the
inverse reaction π+ + 4He  p + 3He. Previously, it
was shown that the effective cross section for the reac-
tion p + 3He  π+ + 4He depends sizably on the polar-
izations of the proton and the 3He nucleus. The reaction
p(3He, 4He)π+ occurring on a polarized hydrogen target
can in principle be used to measure the polarization of
a 3He beam [6].2) Thus, T invariance leads to a tight cor-
relation between the polarizations of the proton and the
3He nucleus in the inverse reaction π+ + 4He  p + 3He.

Let us proceed somewhat further along these lines.
From angular-momentum and parity conservation, it
follows that, in reactions of the 1/2 + 1/2  0 + 0 type
(where two spin-1/2 fermions are converted into two
spinless bosons), transitions from the singlet state of

1)Listed below are errors made in analyzing the implications of T
invariance for direct and inverse reactions in [2]. Relations (46)
must have the form

ka  –ka, kc  –kc ,

P(a)  –z(a), P(b)  – z(b).
The clause following these relations should read “and n  n.”
In accordance with this, the following changes should be made in

equations (47), (49), and (50): the tensor  should be replaced
by the tensor Mik appearing in (44), and the functions A and B
should be taken with the reversed sign. In addition, the expression
on the right-hand side of (47) should be multiplied by a factor of

1/4. The definition of the tensor  should be omitted.
2)The reaction p + 3He  π+ + 4He and the inverse reaction π+ +

4He  p + 3He were investigated experimentally by many
authors (see, for example, [7–10]), but they did not consider
polarization effects. From these experimental data, it follows that,
when neither a beam nor a target is polarized, the differential
cross section for the process 3He + p  4He + π+ at proton
kinetic energies of 300–600 MeV in the laboratory frame is 10–
15 µb/sr in the reaction c.m. frame at small angles of (π+, 4He)
emission.

M̃ik

M̃ik
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the fermions (that is, from the state with zero total spin)
are forbidden if the product of the intrinsic parities of
the initial particles is opposite in sign to the product of
the intrinsic parities of the final particles [11–13]. Since
the reaction p + 3He  π+ + 4He belongs to the above
type (π+ is a pseudoscalar meson, 4He is a spinless
nucleus, and the proton and 3He nucleus are spin-1/2
objects), it can occur only if the total spin of the (p, 3He)
system is equal to unity.

Let us choose the z axis, the axis of total-spin quan-
tization, along the direction of the vector l = kp/kp,
where kp is proton momentum in the reaction c.m.
frame. We take the remaining two axes, x and y, to be
aligned with the directions of, respectively, the unit
vectors m and n given by expressions (1) with l' = kπ/kπ,
where kπ is the π+-meson momentum in the c.m. frame.
The triplet states of the (p, 3He) system that are charac-
terized by the spin projections onto the quantization
axis of +1, –1, and 0 are given by

(16)

Let P(p) and P(He) be independent polarization vec-
tors of the proton and the 3He nucleus, respectively. The
two-particle spin density matrix for the initial state can
then be represented in the form of the tensor product of
the single-particle spin density matrices for the proton
and the 3He nucleus; that is,

(17)

We denote by Rλ(E, θ) the expression in the c.m.
frame for the amplitude of the direct reaction p + 3He 
π+ + 4He proceeding from the |λ, l〉  state. Here, E is the
total energy of the proton and the 3He nucleus in the
c.m. frame; θ is the angle between the vectors kp and
kπ; and the parameter λ can take values of +1, –1, and
0. In this case, the differential cross section for the reac-
tion p + 3He  π+ + 4He has the form

(18)

+1 l,| 〉 +1/2 l,| 〉 p( )
+1/2 l,| 〉 He( )

,=

1– l,| 〉 1– /2 l,| 〉 p( )
1– /2 l,| 〉 He( )

,=

0 l,| 〉 1

2
------- +1/2 l,| 〉 p( )( 1– /2 l,| 〉 He( )

=

+ 1/2 l,–| 〉 p( )
+1/2 l,| 〉 He( ) ).

ρ̂ p He,( )

=  
1
4
--- Î

p( )
P p( ) ŝ

p( )
⋅+( ) Î

He( )
P He( ) ŝ

He( )
⋅+( ).⊗

σ
p He

3 π+
He

4
+→+

kp P p( ) P He( )
; kπ, ,( )

=  Rλ E θ,( ) λ l,〈 |ρ̂ p He,( ) λ' l,| 〉 Rλ'* E θ,( )
λ'

∑
λ
∑

=  Ψ〈 |ρ̂ p He,( ) Ψ| 〉 ,
where

(19)

has the meaning of the unnormalized initial two-parti-
cle spin state that is selected by the reaction being stud-
ied.

If we consider that, for the particles participating in
the process p + 3He  π+ + 4He, the product of the
intrinsic parities is η = –1 and that the total spins of
these particles in the initial and the final state are,
respectively, 1 and 0, parity conservation leads to the
equality

(20)

which can be derived easily by using the formalism of
helicity amplitudes [14, 15]. Thus, we have

(21)

From relations (19) and (21), it follows that the reac-
tion p + 3He  π+ + 4He can proceed only from the
|+1, n〉  and |−1, n〉  triplet states of the initial system that
are characterized by the total-spin projections onto the
normal to the reaction plane that are equal to +1 and −1.
We then have

(22)

The states |λ, n〉  with the total-spin projections onto
the normal to the reaction plane that take the values of
λ = ±1, 0 represent orthogonal superpositions of the
triplet states in (16); that is,

(23)

It should be emphasized that the result presented
in  (22) is consistent with the well-known rule of
A. Bohr [15],

Here, η is the product of the intrinsic parities of four
particles participating in the binary reaction, while M
and M' are the projections of the total spin in the initial
and final states onto the normal to the reaction plane.

Ψ| 〉 Rλ* E θ,( ) λ l,| 〉
λ 1 0,±=

∑=

Rλ E θ,( ) 1–( ) λ
R–λ E θ,( ),=

R+1 E θ,( ) R–1– E θ,( ) R1 E θ,( ).≡=

Ψ| 〉 R1* E θ,( ) i

2
-------R0* E θ,( )– 

  +1 n,| 〉=

+ R1* E θ,( ) i

2
-------R0* E θ,( )+ 

  –1 n,| 〉 .

+1 n,| 〉 1
2
--- +1 l,| 〉 i

2
------- 0 l,| 〉 1

2
--- –1 l,| 〉 ,–+=

–1 n,| 〉 1
2
--- +1 l,| 〉   

i

2
-------– 0 l,| 〉 1

2
--- –1 l,| 〉 ,–=

0 n,| 〉 i

2
------- +1 l,| 〉 –1 l,| 〉+( ).=

η –1( )M M'–
.=
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The expansion of the amplitude Rλ(E, θ) in the total
angular momenta has the form

where (θ) are Wigner functions (see, for example,

[15]). We have | (θ)| ~ θ|λ| for very small angles and

| (θ)| ~ ∆θ|λ| for ∆θ = (π − θ) ! 1. Thus, we see that,
both for θ  0 and for θ  π, the amplitude R1(E,
θ) vanishes, which corresponds to the conservation of
the angular-momentum projection onto the reaction
axis.

In order to calculate the differential cross section for
the reaction p + 3He  π+ + 4He by formula (18), we
will first find the expectation values of the Pauli matri-
ces and of their tensor products in the two-particle spin
state |Ψ〉. Taking into account equations (16) and (21),
we can recast expression (19) for |Ψ〉 into the form

(24)

where the z axis coincides with the reaction axis l (see
above). By using the explicit form of the Pauli matrices,
it can be shown easily that the following relations hold:

(25)

(26)

(27)

Rλ E θ,( ) 2J 1+( )γ J( )
E( )d0λ

J( ) θ( ),
J

∑=

d0λ
J( )

d0λ
J( )

d0λ
J( )

Ψ| 〉 R1* E θ,( ) +1/2 z,| 〉( p( )
+1/2 z,| 〉 He( )

=

– –1/2 z,| 〉 p( )
–1/2 z,| 〉 He( ) )

+
1

2
-------R0* E θ,( ) +1/2 z,| 〉 p( )

–1/2 z,| 〉 He( )(

+ –1/2 z,| 〉 p( )
+1/2 z,| 〉 He( ) ),

Ψ〈 |σ̂z
p( ) Î

He( ) Ψ| 〉⊗ Ψ〈 |Î p( ) σ̂z
He( ) Ψ| 〉⊗=

=  Ψ〈 |σ̂x
p( ) Î

He( ) Ψ| 〉⊗ Ψ〈 |Î p( ) σ̂x
He( ) Ψ| 〉⊗ 0,= =

Ψ〈 |σ̂y
p( ) Î

He( ) Ψ| 〉⊗ Ψ〈 |Î p( ) σ̂y
He( ) Ψ| 〉⊗=

=  2 2Im R1 E θ,( )R0* E θ,( )( );

Ψ〈 |σ̂z
p( ) σ̂z

He( ) Ψ| 〉⊗ 2 R1 E θ,( ) 2
R0 E θ,( ) 2

,–=

Ψ〈 |σ̂x
p( ) σ̂x

He( ) Ψ| 〉⊗ 2– R1 E θ,( ) 2
R0 E θ,( ) 2

,+=

Ψ〈 |σ̂y
p( ) σ̂y

He( ) Ψ| 〉⊗ 2 R1 E θ,( ) 2
R0 E θ,( ) 2

;+=

Ψ〈 |σ̂x
p( ) σ̂y

He( ) Ψ| 〉⊗ Ψ〈 |σ̂y
p( ) σ̂x

He( ) Ψ| 〉⊗=

=  Ψ〈 |σ̂z
p( ) σ̂y

He( ) Ψ| 〉⊗ Ψ〈 |σ̂y
p( ) σ̂z

He( ) Ψ| 〉⊗ 0,= =

Ψ〈 |σ̂z
p( ) σ̂x

He( ) Ψ| 〉⊗ Ψ〈 |σ̂x
p( ) σ̂z

He( ) Ψ| 〉⊗=

=  2 2Re R1 E θ,( )R0* E θ,( )( ).
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Substituting (17) and (24)–(27) into expression (18)
for the effective cross section for the reaction p +
3He  π+ + 4He and considering that the relations

 =  · l, =  · m, and  =  · n hold by defini-
tion, we arrive at the structural formula (2), where the
proton, the 3He nucleus, the π+ meson, and the 4He
nucleus play the roles of particles a, b, c, and d, respec-
tively, and where the functions σ0, A, B, C, etc., appear
to be bilinear combinations of the amplitudes R1(E, θ)
and R0(E, θ):

(28)

At θ = 0 and θ = π, the amplitude R1(E, θ) vanishes,
and the dependence of the effective cross section for the
reaction p + 3He  π+ + 4He on the polarization vec-
tors of the proton and the 3He nucleus takes the much
simpler form [2, 6]

(29)

Let us integrate the effective cross section for the
reaction p + 3He  π+ + 4He with respect to the azi-
muthal angle. Taking into account relations (6) and
(28), we obtain (see also [6])

(30)

We can see that, in the effective cross section for the
reaction in question, the terms that are proportional to
A(E, θ), B(E, θ), G(E, θ), and H(E, θ) and which corre-
spond to the interference of states characterized by dif-
ferent total-spin projections onto the momentum direc-
tion vanish upon integration with respect to azimuthal
angle. It is obvious that the total reaction cross section
has the same structure (30).

σ̂z ŝ σ̂x ŝ σ̂y ŝ

σ0 E θ,( ) 1
4
--- Ψ Ψ〈 | 〉 1

4
--- R0 E θ,( ) 2

2 R1 E θ,( ) 2
+( ),= =

A E θ,( ) B E θ,( )=

=  
1

2σ0 E θ,( )
----------------------------Im R1 E θ,( )R0* E θ,( )( ),

C E θ,( ) 1; D E θ,( )
R0 E θ,( ) 2

2σ0 E θ,( )
--------------------------,–= =

F E θ,( )
R1 E θ,( ) 2

σ0 E θ,( )
--------------------------,–=

G E θ,( ) H E θ,( )=

=  
1

2σ0 E θ,( )
----------------------------Re R1 E θ,( )R0* E θ,( )( ).

σ
p He

3 π+
He

4
+→+

1
4
--- R0

2
1 P p( ) P He( )⋅( )+(=

– 2 P p( ) l⋅( ) P He( ) l⋅( ) ).

σ
p He

3 π+
He

4
+→+

E θ P p( ) P He( ), , ,( ) π
2
--- R0 E θ,( ) 2

=

× 1 P p( ) P He( )⋅( ) 2 P p( ) l⋅( ) P He( ) l⋅( ) )–+(

+ π R1 E θ,( ) 2
1 P p( ) l⋅( ) P He( ) l⋅( )+( ).



772 V. V. LYUBOSHITZ, V. L. LYUBOSHITZ
4. Let us now address the inverse reaction π+ +
4He  p + 3He. In this reaction, a transition to the sin-
glet ground state is forbidden, and the total spin of the
(p, 3He) system is equal to unity. We retain the notation
kp and kπ for the proton and π+-meson momenta in the
reaction c.m. frame and choose the z axis, the quantiza-
tion axis for the total spin of the (p, 3He) system, to be
aligned with the direction of the final-proton momen-
tum kp. We further introduce the same set of mutually
orthogonal unit vectors as in the case of the direct reac-
tion p + 3He  π+ + 4He—that is, the same vectors l =
kp/kp, m, and n given by equations (1) with l' = kπ/kπ.

Taking into account the general relations (8)–(12),
which follow from T invariance, and expressions (28)
for the functions that determine the spin dependence of
the effective cross section for the process p + 3He 
π+ + 4He, we find that the quantity obtained by sum-
ming the effective cross section for the reaction π+ +
4He  p + 3He in the c.m. frame over the spin projec-
tions in the final state can be represented as

(31)

For the polarization parameters of the (p, 3He) system,
calculations along similar lines yield

(32)

(33)

where li and lk (mi and mk) are, as before, the compo-
nents of the vector l (m).

In the above expressions, R0(E, θ) and R1(E, θ) are
the same amplitudes as those for the process p +
3He  π++ 4He, E and θ being, respectively, as before,
the total energy and the angle between the π+-meson
and proton 3-momenta in the reaction c.m. frame.
According to (32) and (33), the polarization of the 3He
nucleus along the normal to the reaction plane is iden-
tical to that of the proton, and the tensor Tik(E, θ), which
describes spin correlations in the (p, 3He) system, is
symmetric. This is because the (p, 3He) system is pro-
duced in a specific triplet state symmetric under the
interchange of the spin quantum numbers of the proton
and the 3He nucleus. As functions of the energy E and
the proton emission angle θ in the c.m. frame, this spin

σ
π+

He
4

p He
3

+→+
kp

2
/kπ

2( ) R0 E θ,( )( 2
=

+ 2 R1 E θ,( ) 2 ).

P p( )
E θ,( ) P He( )

E θ,( )=

=  –2 2
Im R1 E θ,( )R0* E θ,( )( )

R0 E θ,( ) 2
2 R1 E θ,( ) 2

+
-------------------------------------------------------------n,

Tik E θ,( ) δik
2

R0 E θ,( ) 2
2 R1 E θ,( ) 2

+
-------------------------------------------------------------–=

× R0 E θ,( )[ 2
lilk 2 R1 E θ,( ) 2

mimk+

– 2Re R1 E θ,( )R0* E θ,( )( ) limk milk+( ) ] ,
state, normalized to unity and obtained by taking into
account relations (21), has the form

(34)

This expression corresponds to a superposition of those
states in (23) that are characterized by the total-spin
projections onto the normal to the reaction plane that
are equal to +1 and –1:

(35)

In contrast to expressions (22) and (24), which fea-
ture complex-conjugate amplitudes (E, θ) and (E,
θ) and which describe the initial spin state |Ψ〉 that is
selected by the reaction p + 3He  π+ + 4He, expres-
sions (34) and (35) refer to the final state in the time-
inverted process π+ + 4He  p + 3He.

By virtue of relations (34) and (35), the spins of the
proton and the 3He nucleus in the reaction π+ + 4He 
p + 3He must be tightly correlated. In principle, this
offers the possibility for preparing a beam of 3He nuclei
with a controllable spin polarization without applying
brute force to this nuclei [2]. In order to demonstrate
this explicitly, we will consider a proton that is pro-
duced in the reaction π+ + 4He  p + 3He and which
is then scattered on a spinless or an unpolarized target
(say, on a 12C nucleus), the corresponding analyzing
power being characterized by the vector

(36)

where αp(kp, θp) is the left–right asymmetry dependent
on the secondary-scattering angle θp, while t(p) is the
unit vector aligned with the normal to the scattering
plane [16]. The spin state of the unscattered 3He
nucleus formed in association with the scattered proton
in the same event of a collision between a π+ meson and
a 4He nucleus will then depend on the proton analyzing
power.

The components of the polarization vector of the
3He nucleus are determined by expression (13), where
z(a), P(b), P(a), and Tik(E, θ) are now taken to mean,

Ψ̃| 〉 1

R0 E θ,( ) 2
2 R1 E θ,( ) 2

+( )
1/2

------------------------------------------------------------------------=

× R1 E θ,( )[ +1/2 l,| 〉( p( )
+1/2 l,| 〉 He( )

– –1/2 l,| 〉 p( )
–1/2 l,| 〉 He( ) )

+ 
1

2
-------R0 E θ,( )( +1/2 l,| 〉 p( )

–1/2 l,| 〉 He( )

+ –1/2 l,| 〉 p( )
+1/2 l,| 〉 He( )

) ] .

Ψ̃| 〉 1

R0 E θ,( ) 2
2 R1 E θ,( ) 2

+( )
1/2

------------------------------------------------------------------------=

× R1 E θ,( ) i

2
-------R0 E θ,( )– 

  +1 n,| 〉

+ R1 E θ,( ) i

2
-------R0 E θ,( )+ 

  –1 n,| 〉 .

R0* R1*

z p( ) α p kp θp,( )t p( )
,=
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respectively, the proton analyzing power (36), the
polarization vector of the 3He nucleus, the proton polar-
ization vector in the absence of secondary scattering
[see expression (32)], and the correlation tensor (33).

The case where either the proton or the 3He nucleus
is emitted at zero angle with respect to the reaction axis
was analyzed previously in [2, 4]. At θ = 0, the proton
and the 3He nucleus are both produced in an unpolar-
ized state, while the correlation tensor assumes the
form

(37)

If the proton is scattered on a target formed by 12C
nuclei, the 3He nucleus produced in association with it
appears to be polarized owing to spin correlation:

(38)

In this case, we have  = |αp(Ep, θp)|, which
corresponds to the maximal spin correlation.
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Abstract—The deuteron elastic form factors are calculated within the Bethe–Salpeter approach with separable
interaction. The charge, quadrupole, and magnetic form factors [FC(q2), FQ(q2), and FM(q2), respectively]; the
structure functions A(q2) and B(q2); and the tensor polarization components T20(q2), T21(q2), and T22(q2) are
investigated up to –q2 = 50 fm–2. The role of relativistic effects is discussed, and a comparison with nonrelativ-
istic calculations is performed. The effect of the neutron form factors on the deuteron form factors and espe-
cially on tensor polarization components is discussed too. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The deuteron electromagnetic form factors provide
a direct way to study the properties of NN interaction
and the electromagnetic characteristics of nucleons.
These investigations are of great interest nowadays,
especially in the context of relativistic treatment. The
traditional nonrelativistic approach is based on the non-
relativistic impulse approximation with allowance for
relativistic corrections, meson-exchange currents
(MEC), and retardation effects. In [1–4] (for details,
see [2]), it was shown that taking correctly into account
these effects is necessary for describing experimental
data. Generally, the deuteron elastic form factors are
very sensitive to the choice of strong vertex form fac-
tors and to the way in which MECs are introduced. On
the other hand, recent relativistic investigations of deu-
teron electrodisintegration show [5] that some of the
MECs (in particular, the pair current) are automatically
included in the relativistic impulse approximation.
Apparently, this is valid for elastic electron–deuteron
scattering as well. Therefore, a consistent relativistic
approach even in the relativistic impulse approximation
can reproduce the results of a nonrelativistic treatment
with some of the MECs.

Recent experimental data at high-momentum trans-
fers [6, 7] and the planned TJNAF (CEBAF) experi-
ments E91-029 and E94-018 furnish different argu-
ments for a consistent relativistic treatment because of
the importance of relativistic effects in the high-
momentum-transfer range.

Nowadays, several relativistic approaches to elastic
electron–deuteron scattering are known; some of them
are the quasipotential approach [8], light-front dynam-
ics, and the approach based on the Bethe–Salpeter
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    1) Far Eastern State University, Vladivostok, 690000, Russia.
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equation. The third was developed in [9], where the
importance of various relativistic effects was shown.
The first takes into account the effect coming from a
Lorentz transformation of Bethe–Salpeter amplitudes
and their arguments. Another one is the contribution of
negative-energy states in the deuteron Bethe–Salpeter
amplitude.

Another interesting aspect of the investigation of the
deuteron elastic form factors is the effect of the nucleon
form factors on the deuteron form factors. Theoretical
and phenomenological models yield different sets of
the on-shell nucleon form factors GE(q2) and GM(q2).
Some models predict a nonzero neutron electric form
factor. If some of the observables in elastic electron–
deuteron scattering depend sizably on the nucleon form
factors, then this could be a test for nucleon-form-fac-
tor models. If, on the other hand, there is no appreciable
dependence on the nucleon form factor, this could be a
test for NN-interaction dynamics or other effects.

The main goal of this study is to analyze relativistic
effects and the influence of the nucleon form factors in
elastic electron–deuteron scattering, especially for
polarization observables.

The article is organized as follows. After basic for-
mulas are given for kinematics and for cross sections in
Section 2, the decomposition of the Bethe–Salpeter
amplitude and the NN potential is discussed in Section 3.
In Section 4, formulas for the deuteron-current matrix
element in the relativistic impulse approximation are
given, and the technique of analytic calculations is
described. The results of our numerical calculations
and the discussion of these results are presented in Sec-
tion 5.

2. RELATIVISTIC KINEMATICS

The differential cross section for unpolarized elastic
electron–deuteron scattering is expressed in terms of
2000 MAIK “Nauka/Interperiodica”
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the Mott cross section and the deuteron structure func-
tions (the electron mass is neglected) as

(1)

Here, θe is the electron scattering angle;

(2)

where M is the deuteron mass and Ee is the incident-
electron energy; and

(3)

with η = –q2/4M2. The electric [FC(q2)], quadrupole
[FQ(q2)], and magnetic [FM(q2)] form factors are nor-
malized as

, (4)

where m is the nucleon mass, while Qd and µd are,
respectively, the quadrupole and the magnetic moment
of the deuteron. The components of the tensor polariza-
tion of the final deuteron in this reaction are expressed
in terms of the deuteron form factors as

(5)

Equation (1) is due to the one-photon approximation
and can be obtained, by using the standard technique
[10], from the reaction amplitude

(6)

where um(ke) is the free-electron spinor for a 4-momen-

tum ke and a spin projection m; q = ke –  = P' – P is
the 4-momentum transfer, P(P') being the initial (final)
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deuteron momentum; |D}〉  is the deuteron state char-
acterized by the total-angular-momentum projection
}; and jµ is the electromagnetic-current operator.

The deuteron-current matrix element is usually
parametrized as

(7)

where ξ}(P) and (P') are the polarization 4-vectors
of the initial and the final deuteron, respectively. The
form factors F1, 2(q2) and G1(q2) are related to FC(q2),
FQ(q2), and FM(q2) by the equations

The normalization condition for the deuteron-current
matrix element has the form

To calculate the deuteron form factors, we must use
a particular reference frame. In the laboratory frame,
the 4-vectors are given by (the z axis is directed along
the photon momentum)

(8)

(9)

Using expressions (9) and the parametrization in
(7), we can obtain
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To calculate the deuteron form factors, we must
therefore know three matrix elements with different
total-angular-momentum projections and current com-
ponents.

3. BETHE–SALPETER AMPLITUDE

3.1. Partial-Wave Decomposition

The main object of the approach used is the Bethe–
Salpeter amplitude (or wave function), which is usually
decomposed into the sum of direct products of free
Dirac spinors. Since the Bethe–Salpeter equation is
solved in the rest frame, the decomposition of the
Bethe–Salpeter amplitude can be represented as

(11)

where P is the total momentum of the system [in the
rest frame, we have P = (M, 0)] and p = (p0, p) is the rel-
ative momentum. The decomposition is performed in
terms of quantum numbers—namely, the relative
orbital angular momentum L, the total spin S, and the ρ
spin briefly denoted by α [11]. The radial components
of the amplitude are denoted by φα(p0, |p |), and the

spin–angular-momentum components are (p).

In the deuteron channel, the Bethe–Salpeter ampli-

tude involves eight states: , , , , ,

, , and . Below, only the  and  states
will be used. The radial functions for these waves will
be denoted by φL(p0, |p |) with L = S, D.

In practice, however, it is more convenient to use the
covariant form of the Bethe–Salpeter amplitude instead
of the partial-wave decomposition (11). Introducing
eight Lorentz invariant functions hi(Pp, p2), we can
write

(12)

where p1, 2 = P/2 ± p.

χ} P p,( ) φα p0 p,( )Γ}
α p( ),

α
∑=

Γ}
α

S3 ++
1 S3 ––

1 D3 ++
1 D3 ––

1 P3 e
1

P3 o
1 P1 e

1 P1 o
1 S3 ++

1 D3 ++
1

χ} P p,( ) h1ξ̂} h2

pξ}( )
m

---------------+=

+ h3

p̂1 m–
m

--------------- ξ̂} ξ̂}
p̂2 m+

m
----------------+ 

 

+ h4

p̂1 p̂2+
m

----------------- 
  pξ}( )

m
--------------- h5

p̂1 m–
m

--------------- ξ̂} ξ̂}
p̂2 m+

m
----------------– 

 +

+ h6

p̂1 p̂2– 2m–
m

------------------------------ 
  pξ}( )

m
---------------

+
p̂1 m–

m
--------------- h7ξ̂} h8

pξ}( )
m

---------------+ 
  p̂2 m+

m
----------------,
If only the  and  states are taken into
account, the relation between functions hi(Pp, p2) and
φL(p0, |p |) has the form

(13)

where

3.2. Separable Potential

It is well known from the nonrelativistic approach
that, for a separable potential, the relevant integral
equation (for instance, the Lippmann–Schwinger equa-
tion) reduces to a set of linear equations. For a separa-
ble potential of rank N,

(14)
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Table 1. Parameters of the covariant Graz II potential

γ1 28.69550 GeV–2 β12 5.21705 × 10–1 GeV γ11 2.718930 × 10–4 GeV6 λ22 16.52393 GeV2

γ2 64.9803 GeV–2 β21 7.94907 × 10–1 GeV γ12 –7.16735 × 10–2 GeV4 λ23 0.28606 GeV4

β11 2.31384 × 10–1 GeV β22 1.57512 × 10–1 GeV λ13 –1.51744 × 10–3 GeV6 λ33 3.48589 × 10–3 GeV6
the radial functions of the Bethe–Salpeter amplitude
are given by (s = M2)

(15)

where the coefficients cj(s) satisfy the following set of
linear algebraic equations:

In this case, the partial-wave T-matrix series has the
form

(16)

The on-shell T matrix

(17)

where |p*| is the relative momentum in the c.m. frame
and Elab is the energy in the laboratory frame, is related
to the 3S1 and 3D1 phase shifts (δS and δD) and the mix-
ing parameter e as

(18)

The calculations were performed with a covariant
generalization of the separable Graz II potential [12].
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For the relativistic Graz II (rank-3) potential, the func-
tions 

 

g

 

i

 

 are given by [13]

 

(19)

 

The parameters for these functions are given in Table 1.
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Fig. 1. (a) 3S1 and (b) 3D1 phase shifts. Experimental data
were borrowed from [14].
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Table 2. Deuteron properties and parameters of low-energy 3S1 scattering 

pD , % ed , MeV Qd , fm–2 µd, e/2m ρD/S r0, fm a, fm

Covariant Graz II 4 2.225 0.2484 0.8279 0.02408 1.7861 5.4188
Nonrelativistic Graz II 4.82 2.225 0.2812 0.8522 0.0274 1.78 5.42
Experiment 2.2246 0.286 0.8574 0.0263 1.759 5.424
where χ}(P, p) is the Bethe–Salpeter amplitude for the
deuteron, P' = P + q, and p' = p + q/2. The vertex of γNN
interaction,

is chosen to be on the mass shell. The isoscalar form

factors for the nucleon, (q2), appear owing to sum-
mation over the two nucleons.

First, the trace was evaluated in (20) with the aid of
the analytic calculation package MAPLE V. The cova-
riant form was used for the Bethe–Salpeter amplitudes
(12). After tracing, the scalar products of 4-momenta

(P, p, q) and deuteron polarization 4-vectors (ξ}, )
with definite spin projections were inserted. Then,
using equations (13), the functions hi were expressed in
terms of φS and φD. All scalar products were evaluated
in the laboratory frame.

The resulting expressions for the deuteron-current
matrix element can be represented as

(21)

where the function (p0, |p |, cosθ, q2) emerged
as the result of calculating the trace and substituting the
scalar products into (20). It has a very cumbersome
form and is omitted in the article.

In (21), the radial part of the Bethe–Salpeter ampli-
tude for the outgoing deuteron, φL'( , |p'|), depends on
the components of the 4-vector p' calculated in the rest
frame. To go over from the vectors in the rest frame to
those in the laboratory frame, we must make a Lorentz
transformation; that is,

(22)
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where the Lorentz transformation matrix + has the
form

(23)

To simplify the notation, the components of the
4-vector  are denoted by p' ≡  = ( , , ,

) and |p'| = | | = . Using relations
(8), (22), and (23), we arrive at

(24)

(25)
where p0, px, py, and pz are the components of the 4-vec-
tor p in the laboratory frame.

5. CALCULATIONS AND RESULTS

The radial part of the Bethe–Salpeter amplitude in
(21) has the form φL(p0, |p |) = S(p0, |p |)gL(p0, |p |) [see
equation (15)], where gL(p0, |p |) is the radial part of the
vertex function. Thus, the Bethe–Salpeter amplitude
involves singularities in the p0 plane, which are infini-
tesimally close to the real axis. Some of the singulari-
ties are from the propagator, while the others are from
the radial part of the vertex function—in other words,

from the functions .

For the initial deuteron, the singularities do not
depend on q2 (or η) and always remain in the same
quadrant:

p0 = ± M/2   ± ie for the propagator,

p0 = ±   ie for the functions .

A different situation occurs for the final deuteron.
Due to the boost of the arguments of the amplitude in
(25), the singularities depend on q2 (or η) and can go
across the imaginary axis and appear in another quad-
rant (mobile singularities). The positions of the singu-
larities are the following:
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for the propagator and 

for the functions .

p0 1 4η+( )M– p2 m2 4 η 1 η+( )M p θ 4η2 1 η+( )2
M2+cos+ + ie+−±=

p0 ηM– p2 βi
2 2 η 1 η+( )M p θ η2 1 η+( )2M2+cos+ + ie+−±=

gi
L( )
The mobility of the singularities does not affect the
calculations if the Cauchy residue theorem is applied.
But for the Wick rotation procedure, this means that the
additional contributions (the residues at these mobile
singularities) must be taken into account. The minimal
value of q2 for which the imaginary axis is traversed is

Fig. 2. (a) Structure function A(q2). Long dashes represent
the calculation without the contribution of moving poles.
The solid curve shows the results of the full calculation.
Short dashes correspond to the nonrelativistic calculation
(nonrelativistic Graz II potential). Experimental data were
borrowed from (e) [15], (n) [16], and (,) [6]. (b) Structure
function B(q2). The notation for the curves is identical to
that in Fig. 2a. Experimental data were borrowed from (e)
[15], (h) [17], and (,) [18].
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–q2 = M(2m – M) ≈ 0.107 fm–2 for propagator and –q2 =

4Mβi ≈ 30 fm–2 for the functions . The contributions

of the residues from the functions  are negligible

(about 1%) in the region –q2 < 50 fm–2, but the contri-

gi
L( )

gi
L( )

Fig. 3. (a) Charge form factor FC(q2). Long and short
dashes represent the calculations with, respectively, the
VMDM and the RHOM nucleon form factors. The solid
curve corresponds to the dipole fit. The experimental data
were borrowed from [15]. (b) Quadrupole form factor
FQ(q2). The notation is identical to that in Fig. 3a, and
experimental data originate from the same source.
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bution of the residue from the propagator is too large
and can even modify the curves significantly.

The contribution of the residue from the propagator
is shown in Fig. 2 for the functions A(q2) and B(q2). We
can see that this contribution is sufficiently large both
for the function A(q2) and for the function B(q2) [for the
function B(q2), this contribution fills the minimum,
which does not exist in the experimental data]. This
result can be considered as a specific relativistic effect
caused by the Lorentz transformation for arguments of
the Bethe–Salpeter amplitude (vertex functions and
propagator).

Yet another interesting result of the investigations is
the dependence of the deuteron form factors on the
nucleon form factors—in particular, on the neutron
electric form factor. The electric and magnetic form

Fig. 4. (a) Structure function A(q2). The notation is identical
to that in Fig. 3a. Experimental data originate from the same
source as in Fig. 2a. (b) Structure function B(q2). The nota-
tion is identical to that in Fig. 3b. Experimental data origi-
nate from the same source as in Fig. 2b.
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Fig. 5. (a) Tensor polarization component T20(q2) (θe =
70°). The notation is identical to that in Fig. 3a. Experimen-
tal data were borrowed from [22]. (b) Tensor polarization
component T21(q2) (θe = 78.7°). The notation is identical to
that in Fig. 3a. Experimental data were borrowed from [21].
(c) Tensor polarization component T22(q2) (θe = 78.7°). The
notation is identical to that in Fig. 3a. Experimental data
originate from the same source as in Fig. 5b.
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factors for nucleons [GE(q2) and GM(q2), respectively]
are related to the Dirac and Pauli form factors [F1(q2)
and F2(q2), respectively] by the equations

(26)

Three sets of the nucleon form factors were used in
the calculations. The first set is the so-called dipole fit

(27)

where κp = 1.7928 and κn = –1.9130 are the anomalous
magnetic moments of the nucleons. The second set is
that from the vector-meson-dominance model
(VMDM) [19], whereas the third set is that from the
relativistic harmonic-oscillator model (RHOM) [20].
The first model assumes that the neutron electric form
factor is equal to zero, but the second and third ones
lead to a nonzero value for it.

Figure 3 shows the charge and the quadrupole form
factors [FC(q2) and FQ(q2), respectively]. The zero of
the form factor FC(q2) is in the range of Q2 between 32
and 33 fm–2, but experimental data yield Q2 = 17.81–
21.34 fm–2 [21]. This is because of the specific type of
the separable Graz II potential [in the calculations with
the nonrelativistic Graz II potential, the zero of FC(q2)
is shifted too]. The nucleon form factors do not shift the
zero of the form factor FC(q2). The nucleon form factors
with the nonzero electric form factor for the neutron
(VMDM and RHOM) are more suitable for fitting the
experimental data on the quadrupole form factor
FQ(q2). The structure functions A(q2) and B(q2) are
shown in Fig. 4.

Figure 5 shows the tensor polarization components
T20(q2), T21(q2), and T22(q2) for the final deuteron. It can
be seen that the tensor polarization components depend
on the nucleon form factors. For T20(q2) and T22(q2),
this dependence is very weak, but, for T21(q2), it is more
pronounced [this is because the nucleon form factors
affect sizably the quadrupole form factor (Fig. 3b)].
This result can be used to choose between the models
for the nucleon form factors. Unfortunately, large
uncertainties in experimental data give no way to
choose one of the sets, and future experiments to mea-
sure the component T21(q2) can be very useful for this.

Note that the calculated function T20(q2) differs from
the experimental indications in the region Q > 4 fm–1.
This fact, apparently, could be explained by several rea-
sons. It is necessary to improve the description of the
zero of the charge form factor FC(q2) by changing the
separable kernel of NN interaction and by taking into
account the negative-energy states of the Bethe–Sal-
peter amplitude for the deuteron. It is also important to
investigate the contribution of the two-body electro-
magnetic current. Information about the effect of these

GE q2( ) F1 q2( ) q2

4m2
---------F2 q2( ),+=

GM q2( ) F1 q2( ) F2 q2( ).+=

GM
p q2( ) 1 κ p+( )GE

p q2( ), GM
n κnGE

p q2( ),= =

GE
n q2( ) 0, GE

p q2( ) 1 q2 0.71 GeV( )2⁄–( ) 2–
,= =
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factors will provide a powerful tool for studying the on-
and off-shell behavior of the nucleon form factors in
elastic ed scattering.
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Abstract—On the basis of the Glauber–Sitenko approach, the cross sections and spin observables for proton–
nucleus scattering at intermediate energies are calculated with allowance for intermediate excitations of target
nuclei. The calculations are performed by using the Hartree–Fock and model-independent nuclear densities and
nucleon–nucleon amplitudes determined from partial-wave analyses. It is shown that the inclusion of interme-
diate excitations of nuclei strongly affects the behavior of observables in the region of moderately small scat-
tering angles. © 2000 MAIK “Nauka/Interperiodica”.
1. The Glauber–Sitenko theory of multiple diffrac-
tive scattering [1, 2], where the amplitude for proton–
nucleus scattering is expressed in terms of nucleon–
nucleon amplitudes and the wave function of the target
nucleus, underlies one of the most popular approaches
to theoretically describing collisions between protons
with energies of a few hundred MeV and nuclei. This
theory was successfully used by many authors to study
such processes. As a rule, calculations within this
framework for medium-mass and heavy nuclei disre-
gard correlations of intranuclear nucleons, treating the
nuclei under investigation in terms of single-particle
nucleon densities. (For the studies that are free from
this limitation and which attempt to take into account
various correlations, we can indicate, by way of exam-
ple, those in [3–8].) Such calculations usually employ
the following simplifications of the model: the distinc-
tions between the proton–proton and the proton–neu-
tron amplitudes and between the neutron and the proton
densities are ignored—the averaged proton–nucleon
amplitude and the averaged nuclear density are used
instead of them, respectively; the optical limit is used;
no account is taken of the Z ordering of noncommuting
operators in the expression for the pA amplitude;
explicit approximations of the proton–nucleon ampli-
tude are sometimes used, which imposes some restric-
tions on its form; and the zero-range approximation for
nuclear forces is invoked in some cases.

Along with an analysis of differential cross sections
for scattering processes, an investigation of spin
observables (such as polarizations and spin-rotation
functions), which form, together with cross sections, a
complete set of quantities for describing elastic proton

* e-mail: berezhnoy@pem.kharkov.ua
1) Research and Technological Center for Electrophysical Process-

ing, National Academy of Sciences of Ukraine, ul. Cherny-
shevskogo 28, Kharkov, 310002 Ukraine.
1063-7788/00/6305- $20.00 © 0782
scattering on spinless nuclei, is also of considerable
interest, since spin observables exhibit quite a high sen-
sitivity to the choice of model and model parameters. In
some studies, a good description of cross sections and
spin variables was achieved via an explicit use of free
parameters in proton–nucleon amplitudes and model
nuclear densities. Fitting procedures for determining
the densities and the parameters of the proton–nucleon
amplitudes were also invoked (see, for example, [9]).
However, a theoretical description of data that is
obtained in this way can be questioned because of
ambiguities in the fits and because of the above simpli-
fications of the model.

At present, we have a vast body of information at
our disposal that comes from partial-wave analyses of
nucleon–nucleon scattering and which refines substan-
tially our knowledge of nucleon–nucleon amplitudes,
including their dependence on nucleon spins. The
results of theoretical investigations of the structure of
nuclei—in particular, the results of Hartree–Fock cal-
culations with effective Skyrme forces—and data on
proton densities from a model-independent analysis of
electron scattering create preconditions for the use of
realistic nuclear densities. In view of this, it is of great
interest to describe proton–nucleus scattering on the
basis of the Glauber–Sitenko theory of multiple diffrac-
tive scattering by employing realistic nucleon–nucleon
amplitudes and nuclear densities without oversimplify-
ing the model.

In the present study, we calculate the cross sections
and spin observables for elastic proton scattering on
spinless nuclei, relying on the above theory of multiple
diffractive scattering. In this calculation, we take into
account two-body nucleon correlations that are due to
intermediate excitations of nuclei in successive rescat-
terings on target nucleons and use Hatree–Fock or
model-independent nuclear densities and proton–
2000 MAIK “Nauka/Interperiodica”
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nucleon amplitudes determined from a partial-wave
analysis. As a result, we obtain new expressions for the
amplitudes of pA scattering without invoking the above
simplifying assumptions.

2. According to the theory of multiple diffractive
scattering, the expression for the amplitude of elastic
pA scattering has the form

(1)

where k is the wave vector; Ωe(b) is the nucleon–
nucleus profile function describing elastic scattering; q
and b are, respectively, the 3-momentum transfer and
the impact-parameter vector, which lie in the plane
orthogonal to the beam direction; sj is the projection of
the radius vector of jth nucleon onto this plane; |0〉  is the
ground-state vector of the target nucleus; and A is the
mass number of the target nucleus. For scattering on

intranuclear nucleons, the operator  ensures the Z
ordering [10] of the scattering matrices Sj(b), which are
expressed in terms of the proton–nucleon amplitude
fj(q) as

(2)

In the expression for the amplitude fj(q), we will
take into account only the central and the spin–orbit

term [ (q) and (q), respectively], disregarding
the remaining components, which involve the target-
nucleon-spin operators and which therefore contribute
insignificantly to the amplitude of scattering on spinless

nuclei [11]; that is, we set fj(q) = (q) + (q)s · n,
where s stands for the Pauli matrices and n = ki ×
kf /|ki × kf| (here, ki and kf are, respectively, the initial
and final wave vectors).

The amplitude in the form (1) takes fully into
account nucleon correlations in the nucleus. A descrip-
tion of a nucleus in terms of single-particle densities

(r) in the ground state corresponds to replacing the
identity operators between the operators Sj by the pro-
jection operator |0〉〈 0|. In this case, it is assumed that
successive events of proton scattering on the nucleons
of a nucleus leave this nucleus in the ground state, inter-
mediate excitations being ignored. Here, we take into
account the possibility of the single intermediate
nuclear excitations of various multipole orders. This
means that, in (1), we retain terms of the form

(3)

Fe
ik
2π
------ d

2
be

iq b⋅ Ωe b( )∫=

=  
ik
2π
------ d

2
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iq b⋅∫ 1 0 Ẑ S j b s j–( )
j 1=

A

∏ 0–
 
 
 

,

Ẑ

S j b( ) 1
1

2πik
----------- d

2
qe

iq b⋅–
f j q( ).∫–=

f c
j( )

f s
j( )

f c
j( )

f s
j( )

ρ0
j( )

0〈 |SA 0| 〉… 0〈 |S j α I M,;| 〉… α I M,;〈 |S j 0| 〉… 0〈 |S1 0| 〉 .
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According to the pattern corresponding to the expres-
sion in (3), the excitation of the state |α; I, M〉  of multi-
polarity I (here, M is the projection of the spin I, while
α stands for the remaining quantum numbers of the
state) in scattering on the jth nucleon is followed by
deexcitation in scattering on the ith nucleon. The struc-
ture of the correction terms (3) suggests that the main
contribution is expected to come from states associated
with inelastic processes whose relative probabilities are
high (since the corresponding cross sections are large).
These are predominantly low-lying collective nuclear
states. In specific calculations of observables, we will
therefore restrict ourselves to taking into account inter-
mediate excitations of natural parity for some low val-
ues of I, retaining the contributions of only the few
most important states for each multipolarity. It should
be noted that this approach corresponds to representing

the two-particle correlation function (ri, rj) in the
form of a special expansion in terms of spherical har-
monics:

(4)

Here, the transition density for the excitation of the

intermediate state |α; I, M〉  has the form (r) =

(r)YIM( ), where (r) is the radial transition den-

sity; YIM( ) ≡ YIM(θ, ϕ) is a spherical harmonic; and
PI( ) is the Legendre polynomial of degree I. In
addition to two-particle correlations that result from
taking into account intermediate states proper, we will
similarly include center-of-mass correlations associ-
ated with the motion of the center of mass of the target
nucleus. The corresponding correlation function has a
form similar to that obtained in [6, 7]; that is,

(5)

where  ≡  represents either the neutron
(for the index n) or the proton (for the index p) root-

mean-square radius for the densities (rn, p), while
N and Z are the numbers of, respectively, neutrons and
protons in the target nucleus. The expression in (5) for-
mally corresponds to the I = 1 intermediate excitation
characterized by a transition density of the form

(6)
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As a result, the nucleon–nucleus profile function
appearing in (1) can be represented in the convenient
form

Ωe(b) = Ωc(b) + is · BΩB(b)
= Ωc0(b) + is · BΩB0(b) + Ω(exc)(b).

For the profile functions Ωc0 and ΩB0 describing the
scattering without excitation, we have

(7)

where

(8)

with

(9)

Here, Jm(x) is a cylindrical Bessel function, while

(q) is the form factor for the ground state of the
nucleus being considered,

(10)

where jm(x) is a spherical Bessel function.
For the profile function Ω(exc)(b) taking into account

intermediate excited states, we have

(11)

where θ(z) is the Heaviside step function associated

with the Z-ordering procedure [10]; the symbol 
denotes that summation over the permutations of the
nucleon numbers i1, …, iA is performed; and the opera-

tors (b, z) and (b, z) as functions of the spin
variables are given by

(12)
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(17)

where the explicit expressions for the coefficients kν are
k0 = Z(Z – 1)/2, k1 = NZ, and k2 = N(N – 1)/2; the sub-
scripts iν and jν take the values i2 = i1 = j2 = n and i0 =
j1 = j0 = p (n and p label quantities associated with neu-
trons and protons, respectively); and the functions
appearing in (14)–(17) are determined by (8) and (9)
and by the expressions

(18)
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(20)

(21)

Here, the transition nuclear form factor (q) is given by

(22)
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small corrections to the elastic-scattering amplitude.
For these functions, we can therefore employ the
approximate expressions that follow from (11) if we
assume that all factors commute with one another:

(23)

(24)

Numerically, the distinctions between the results that
are obtained with expressions (16) and (17) and those
that are obtained with expressions (23) and (24) are
vanishingly small.

It should be emphasized that, by summing the con-
tributions from the most significant intermediate exci-
tations, we can take into account only a part of rather
long-range nucleon correlations in target nuclei. It was
indicated in [7] that, for fully taking into account corre-
lations in a model-independent way, it is necessary to
sum the contributions of all intermediate states, includ-
ing those from the continuous spectrum, but this is
impossible in practice. In addition to the aforemen-
tioned corrections, we will therefore include short-
range correlations associated with the repulsion
between nucleons in a model-dependent way. For this,
we can employ the simple correlation function (see [3,
4, 6–8])

(25)

where the function g(r) is taken in the form g(r) =

exp(−πr2/ ) (lcor is the correlation length). For-
mally, this form of short-range correlations corre-
sponds to taking into account transitions into the con-

tinuous spectrum with the transition density (u, r) =

(r)exp(–iu · r), and summation over the states in
(11) takes the form

  (−1)/(2π)3 (u)…, 

where ζ(u) is the Fourier transform of the function g(r).
Expression (25) is not self-consistent [6, 7], because the

condition (u, r) = 0 is not satisfied for it. For

this reason, we will use the function (u, r) =
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tion. This choice of the density corresponds to the self-
consistent form of the correlation function from [6, 7].
In calculating the relevant corrections, we assumed that
lcor ! rm and aNN ! rm, where aNN is the range of
nucleon–nucleon interaction (see, for example, [7]).
Within this assumption, we performed an expansion up
to second-order terms in aNN/rm. The corrections to the
profile functions (14)–(17) due short-range correlations
are given by

(26)

(27)

(28)

(29)

Since the expressions for the functions , ,

and  are rather cumbersome, we present here sim-
pler formulas for them, those that satisfy the definition
in (25) and which correspond to the zero-order approx-
imation in aNN/rm (in numerical calculations, the result-
ing distinctions are insignificant):
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Here, r =  and the (iν  jν

 

) term in (31) is
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action of nucleons and the distorting Coulomb phase
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this sum has virtually no effect on the calculated
observables for pA scattering.

The central and spin–orbit components of the pA
amplitude [A(q) and B(q), respectively] are expressed
in terms of the proton–nucleus profile functions as

(34)

(35)

Here, χ0(b) = 2ξ ln(kb) and χ0s(b) = 2ξκ /b are the
eikonal expressions for the central and spin–orbit phase
shifts for the scattering of two pointlike charges, the
corresponding central and spin–orbit components of
the scattering amplitude being given by [11]

(36)

where ξ = Ze2/"v is the Coulomb parameter for pA
scattering. The parameter κ, which characterizes the
values of the phase shift χ0s(b) and of the amplitude
BC(b), is evaluated on the basis of the asymptotic behav-
ior of the profile function ΩB(b) for b  ∞. The eikonal
Coulomb phase shift χ1(b) for scattering on the volume
distribution of the nuclear charge has the form [14]

(37)

It should be noted that, in contrast to the popular
approach described in [11], where the interaction of the
proton magnetic moment with the nuclear field is taken
into account by introducing the spin–orbit correction to
the macroscopic proton–nucleus Coulomb phase shift
χ1(b), we include it microscopically through the pro-
ton–nucleon amplitudes.

3. We have calculated the differential cross sections
and various spin observables for the elastic scattering
of 800-MeV protons on 40Ca, 54Fe, and 208Pb nuclei. In
the calculations, the proton–nucleon amplitudes were
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eter values being determined from the solutions of the
partial-wave analyses from [15–17]. Presented below
are the results of the calculations with the proton–
nucleon amplitudes featuring parameters obtained in
[18] from the partial-wave analysis performed in [15].
Specifically, we used the values of gcp = 4.84 +
i0.03 (GeV/Ò)–2, hcp = 8.33 + i12.24 (GeV/Ò)–4, and acp =
5.82 – i0.85 (GeV/Ò)–2; gsp = –2.29 – i6.15 (GeV/Ò)–2,
hsp = 0, and asp = 3.70 + i0.19 (GeV/Ò)–2; gcn = 3.91 +
i1.40 (GeV/Ò)–2, hcn = 5.52 – i5.64 (GeV/Ò)–4, and acn =
4.87 – i3.0 (GeV/Ò)–2; and gsn = –2.55 – i4.51 (GeV/Ò)–2,
hsn = 0, and asp = 3.93 + i0.47 (GeV/Ò)–2. The results of
the calculations with the proton–nucleon amplitudes
from the solutions of the partial-wave analyses per-
formed in [16, 17] differ only slightly from those men-
tioned immediately above.

The Hartree–Fock densities that we used here were
calculated with various Skyrme forces, including Sk1
and Sk2 [19], SkT [20], Ska [21], and SkM [22]. For
the 40Ca nucleus, we also present the results of the cal-
culations with the densities determined from the
model-independent charge density [23] found from an
analysis of electron scattering. In this case, we took into
account the charge form factor for the proton and
assumed that the proton densities are identical to the
neutron densities.

For the specific calculations, we need the |0〉 
|α; I, M〉 transition densities. We use a macroscopic
model and express the transition densities in terms of

the derivatives of ground-state densities (r) as

(r) = −δαI/ (∂ /∂r). It is well known that
this model appears to be the most appropriate one for
low-lying collective states. However, we assume that,
for our purposes, it is legitimate to use it for all interme-
diate states included in our analysis, since inelastic
transitions are well known to be predominantly super-
ficial, irrespective of the nature of the final states. The
deformation length δαI was evaluated either by using

the relation δI = B(EI)1/2/[ r I + 2dr] with

the reduced probabilities B(EI) for corresponding tran-
sitions from [24, 25] or by using the results of the stud-
ies—[26, 27] for 40Ca, [27, 28] for 54Fe, and [29–31] for
208Pb—where these transitions were analyzed within a
similar macroscopic model. Some details are given
immediately below. For 40Ca, we took into account the
Iπ = 2+ states at 3.90 MeV [B(E2) = 96e2 fm4],
6.91 MeV (δ2 = 0.49 fm), 7.87 MeV (0.28 fm), and four
more states corresponding to weaker transitions with
δ2 = 0.15–0.18 fm; the Iπ = 3– states at 3.74 MeV [B(E3) =
20 400e2 fm6), 6.29 MeV (δ3 = 0.46 fm), and 6.58 MeV
(0.41 fm); the Iπ = 4+ states at 5.28 MeV (δ4 = 0.16 fm),
6.51 MeV (0.18 fm), 7.46 MeV (0.2 fm), 7.56 MeV
(0.23 fm), and 7.92 MeV (0.34 fm); and the Iπ = 5–

states at 4.49 MeV (δ5 = 0.91 fm) and 8.54 MeV
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Fig. 1. Differential cross section σ(θ) (in mb/sr), polarization P(θ), and spin-rotation function Q(θ) for the elastic scattering of
800-MeV protons on 40Ca nuclei: (solid curves) results of the calculation employing the Hartree–Fock densities for the Sk1 Skyrme
forces and taking into account c.m. correlations, short-range correlations, and intermediate excitations; (dotted curves) results of the
calculations taking no account of short-range correlations; and (dashed curves) results of the calculations taking into account only
c.m. correlations. Experimental data were borrowed from [9, 32].
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(0.23 fm). For 54Fe, we took into account the Iπ = 2+

states at 1.41 MeV [B(E2) = 620e2 fm4], 2.96 MeV
(δ2 = 0.51 fm), 3.17 MeV (0.3 fm), 4.58 MeV (0.17
fm), and 6. 43 MeV (0.2 fm); the Iπ = 3– states at 4.78
MeV [B(E3) = 4390e2 fm6], 6.34 MeV (δ3 = 0.63 fm),
7.27 MeV (0.31 fm), 8.01 MeV (0.21 fm), 8.47 MeV
(0.19 fm), and 14 additional states with δ3 = 0.10–
0.17 fm; and the Iπ = 4+ states at 2.54 MeV (δ4 =
0.36 fm), 3.30 MeV (0.22 fm), 3.83 MeV (0.43 fm),
4.26 MeV (0.35 fm), and ten additional states with δ4 =
0.10–0.15 fm. For 208Pb, we took into account the Iπ =
2+ states at 4.09 MeV [B(E2) = 2900e2 fm4] and 11
additional states with δ2 = 0.05 ± 0.12 fm; the Iπ = 3–

states at 2.61 MeV [B(E3) = 611000e2 fm6], 5.35 MeV
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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Fig. 2. Differential cross section σ(θ) (in mb/sr), polarization P(θ), and spin-rotation function Q(θ) for the elastic scattering of
800-MeV protons on 40Ca nuclei: (solid curves) results of the calculation employing the Sk1 Skyrme forces and taking into account
all kinds of correlations considered in this study, (dashed curves) results of the calculation employing the SkT Skyrme forces and
taking into account all kinds of correlations considered in this study, and (dotted curves) results of the calculation employing the
model-independent densities.
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(δ3 = 0.25 fm), and 22 additional states with δ3 = 0.05–
0.20 fm; the Iπ =  4+  states at 4.32 MeV (δ4 = 0.55 fm),
5.69 MeV (0.32 fm), and four additional states with
δ4 = 0.10–0.15 fm; and the Iπ = 5– states at 3.20 MeV
(δ5 = 0.40 fm), 3.71 MeV (0.28 fm), 5.48 MeV
(0.32 fm), 6.69 MeV (0.29 fm), and four additional
states with δ5 = 0.10–0.15 fm. For short-range correla-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
tions, we used the value of lcor = 0.55 fm [6, 7]. It should
be noted that the contribution of low-lying collective
excitations to the cross section for elastic proton scat-
tering on nuclei was estimated previously in a number
of studies (see, for example, [4, 7, 14]), but this contri-
bution is usually disregarded for spherical target nuclei,
because it is assumed to be small.
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Fig. 3. As in Fig. 1, but for 54Fe target nuclei. Experimental data were borrowed from [33].
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For the cases of proton–nucleus scattering that were
studied here, Figs. 1–6 display the results obtained
from various versions of the calculation of the differen-
tial cross sections σ(θ), the polarizations P(θ), and the
spin-rotation functions Q(θ). The effect of taking into
account intermediate excitations on the computed
observables is demonstrated by considering the results
of the calculations with the nuclear densities for the
Sk1 Skyrme forces (see Figs. 1, 3, and 5). In the calcu-
lations with other densities, the effects of intermediate
excitations have just the same character. From Figs. 1,
3, and 5, it can be seen that the effect of intermediate
excitations is enhanced as the scattering angle becomes
larger, reaching quite a sizable degree at sufficiently
large values of θ, where it leads to noticeable shifts of
diffraction maxima and minima in the cross sections
and spin observables toward larger scattering angles
and suppresses further the cross section maxima with
increasing θ. In the case of p40Ca scattering, the inclu-
sion of intermediate excitations reduces the height of
the fifth cross-section maximum at θ ~ 30° by a factor
greater than two. It was indicated in number of studies
(see, for example, [35–37]) that, in describing pA scat-
tering on the basis of the Glauber–Sitenko theory of
multiple diffractive scattering with Hartree–Fock den-
sities, there arise characteristic deviations from experi-
mental data: the positions of the diffraction maxima
and minima in the observables computed theoretically
are shifted toward smaller values of the scattering
angle, while the slope of the envelope of the cross-sec-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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Fig. 4. As in Fig. 3, but the results of the calculations performed with the Hartree–Fock densities and with allowance for all types of
correlations considered in the present article are depicted by the solid and dashed curves for the cases of, respectively, the Sk1 and
the SkT Skyrme forces.
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tion maxima is smaller than the value obtained experi-
mentally. Thus, the data presented in Figs. 1, 3, and 5
show that the above discrepancies between the calcu-
lated and measured values are reduced upon taking into
account intermediate excitations. In the cases being
considered, the contribution of short-range correlations
is relatively small. They have the strongest effect on the
spin-rotation function Q(θ) at sufficiently large values
of the angle θ.

The results of the calculations employing the vari-
ous nuclear densities and taking into account all the
correlations considered above are compared in Figs. 2,
4, and 6. Of all Hartree–Fock densities, we present the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
results only for the Sk1 and SkT versions. The calcula-
tions performed with the remaining Hartree–Fock den-
sities lead to results similar to those obtained by using
the SkT version. From Figs. 2, 4, and 6, it can be seen
that, in the case of the Sk1 forces, the inclusion of inter-
mediate excitations removes completely the above shift
of the computed positions of the diffractive maxima
and minima in the observables in question with respect
to their experimental positions, but that, for the SkT
version (as well as for all other versions), there remains
some shift toward small angles. At the same time, the
calculations for the Sk1 version yield overestimated
values for cross-section maxima at large scattering



792 KUPRIKOV, PILIPENKO
σ(θ)

102

10–2

0.5

0

0.5

0

Q(θ)

0 10 20 30 θ, deg

Fig. 5. As in Fig. 1, but for 208Pb target nuclei. Experimental data were borrowed from [32, 34].
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angles. In the calculations with model-independent
densities for p40Ca scattering (see Fig. 2), the inclusion
of intermediate excitations also removes completely
the shift of the diffraction maxima and minima in the
computed observables. In that case, the maxima of the
computed cross section are lower than those for the Sk1
version. We note that, in each quoted version of the cal-
culations, there is some specific discrepancy between
the calculated and measured spin observables that is
peculiar to this version. By way of example, we indi-
cate that, at not overly small values of the scattering
angle, the polarization P(θ) computed theoretically
exceeds systematically the measured polarization. This
may suggest the need for taking into account correc-
tions to the standard Glauber–Sitenko approach.
4. By taking into account spin–orbit interaction,
intermediate excitations of the target nucleus, short-
range nucleon correlations in nuclei, the distinctions
between the proton–proton and the proton–neutron
amplitudes and between the proton and the neutron
densities, electromagnetic effects, and Z ordering, we
have obtained here the expressions for the amplitudes
of elastic pA scattering. On the basis of these expres-
sions, we have computed the cross sections and the spin
observables for the elastic scattering of 800-MeV pro-
tons on 40Ca, 54Fe, and 208Pb nuclei by using the pro-
ton–nucleon amplitudes found from partial-wave anal-
yses, as well as the Hartree–Fock and the model inde-
pendent densities. A satisfactory description of
experimental data has been obtained. It has been shown
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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Fig. 6. As in Fig. 5, but the results of the calculations performed with the Hartree–Fock densities and with allowance for all types of
correlations considered in the present article are depicted by the solid and dashed curves for the cases of, respectively, the Sk1 and
the SkT Skyrme forces.
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that the inclusion of intermediate excitations affects
considerably the behavior of observables, shifting the
positions of diffractive maxima and minima toward
larger scattering angles and enhancing the reduction of
cross-section maxima. The effect of intermediate exci-
tations appears to be commensurate with the distinc-
tions between the results of the calculations with the
different versions of the nuclear densities or even to
exceed them. Therefore, a comparison of different ver-
sions of data descriptions is meaningless without taking
such effects into account.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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Abstract—For a polarized target, π3He interaction is studied in the fixed-center approximation with all rescat-
terings included. Only the P33 wave is taken for the πN interaction. The nuclear wave function is taken either
as a sum of Gaussian functions or as a Faddeev wave function in the s-wave approximation. The differential cross
sections and asymmetries for elastic π+3He scattering at the laboratory energies of Tπ = 142, 180, and 256 MeV
are calculated. The results are compared with experimental data. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of pion scattering off light nuclei
requires its reliable theoretical description. An exact
relativistic treatment of systems with four or more par-
ticles is beyond the present computational possibilities,
so that simplifications are unavoidable. Current studies
of π–trinucleon reactions are mostly performed on the
basis of the optical potential model [1], which treats the
nucleus as a single particle interacting with the pion via
some effective potential. This may be a good approach
at low energies when the pion wavelength λπ is larger
than the internucleon distance R. However, at energies
above 100 MeV, when λπ ≤ R, the optical potential
model does not seem natural, and alternative
approaches deserve attention. A viable alternative
seems to be the fixed-scattering-center model, which
emerges in the limit mπ/mN  0. In this model, all
intermediate nuclear states are taken into account,
although the variation of their energies is neglected. If
one retains only the ground state in the sum over inter-
mediate nuclear states in the fixed-center model, then
the optical-model results are recovered (without the
contribution of the nucleus to the energy denomina-
tors). Thus, the fixed-center model represents an
improvement of the optical potential model in that it
takes into account intermediate nuclear states.

From the study of πd scattering, where more sophis-
ticated techniques can also be applied, it is known that
the fixed-center model gives an accuracy of about 10–
20%, which naturally becomes poorer with increasing
momentum transfer [2]. For that, the fixed-center
model is well-behaved in the ultraviolet region, involv-
ing no cutoff parameter, in contrast to all models that
take the nucleon recoil into account.

For practical application of the fixed-center model,
the energy region of the ∆ resonance seems particularly

* This article was submitted by the author in English.
1063-7788/00/6305- $20.00 © 20795
favorable. At these energies, the πN interaction can be
well approximated by a P33 wave (i.e., it is simple and
essentially reduces to a separable form, which simpli-
fies the calculations substantially). On the other hand,
the pion energy still remains considerably smaller than
the nucleon energy. Therefore, one can hope that
neglecting the nucleon recoil might be a reasonable
approximation.

In [3], we introduced a model that is based on the
fixed-center approximation for elastic π3H and π3He
interactions and which takes completely into account
multiple pion rescattering. A simple Gaussian wave
function for the nuclear ground-state was used. The
present paper reports on the calculations with the Fad-
deev ground-state wave functions and also on the appli-
cation of the model to polarized targets.

2. GENERAL FORMALISM

In the fixed-center approximation, the determina-
tion of the amplitude of the interaction with a nucleus
reduces to evaluating the sum of the diagrams shown in
Fig. 1.

The exact treatment of these graphs requires the
introduction of 216 amplitudes. In the present calcula-
tions, the spin-tensor interaction in the elementary
block of Fig. 2 was replaced by an averaged one. As a
result, the number of independent amplitudes was
reduced to 27.

The basic Faddeev-like amplitudes are Mik, where i
and k refer to the number of initial and final nucleons (i,
k = 1, 2, 3). Each Mik is a 3 × 3 matrix in both spin and
isospin. The final system of linear equations for the
amplitudes Mik has the form

(1)Mik R1P i( )δik R1 P i( )WilMlk,
l i≠
∑+=
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where R1(E) = (m∆ – mN + εb – k0 – i0)–1, k0 is the pion
energy, and P(i) stands for the operators of projection
onto the I = J = 3/2 states for the pion plus the ith
nucleon system.

The “potentials” Wik describe intermediate-pion
propagation, and they are complex:

(2)

Here, εb is the binding energy of the A = 3 nucleus. The
solution of equation (1) provides us with scattering
amplitudes with given total spin and isospin and spin–
isospin variables of pairs of nucleons. For the πA
amplitudes of total isospin T, we obtain the expression

(3)

Here, ΨA is the wave function of the 3H (3He) nucleus,
and the relative coordinates are defined as rik = ri – rk
(r3 = –r1 – r2). To make partial integrations with respect
to angles possible, we represent the πA amplitude as the

sum !(T) =  + , where
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Fig. 1. Successive rescatterings of a π meson with the pro-
duction of a ∆33 resonance: (dotted lines) π meson, (thick
lines) ∆33 resonance, and (thin lines) nucleons.

Fig. 2. Potential Wik. The notation is identical to that in Fig. 1.
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which emerges as the result of integration with respect
to the angles in the second equation (4), has the form

(10)

where J0 stands for Bessel functions.
The differential cross section for the unpolarized

target is given by

(11)

The asymmetry for the polarized target is

(12)

3. 3He GROUND-STATE WAVE FUNCTION

As a first step, it is natural to choose the initial and
final nuclear states ΨA in (3) without taking into
account tensor forces—i.e., in the form of the product
of a coordinate wave function symmetric in all vari-
ables and a spin–isospin wave function χ antisymmet-
ric in all nucleons. We take the square of the coordinate
wave function Ψ of the ground state of 3He as the sum
of two Gaussian functions,

(13)

The parameters αj were chosen to give the best fit to the
elastic cross section at large angles. Obviously, the
spin–isospin wave function χ should have the form

(14)
where ξ(s, sij) [η(t, tij)] are the eigenfunctions of the
total spin s (isospin t) with a given value sij of the spin
(isospin tij) for the pair of the nucleons i and j. In this
case, the quantities F(T, S) and G(T, S) in (5) have the form

(15)

where 〈Mik〉  are the amplitudes averaged over the values
of the spin and isospin of the 3He (3H) nucleus (〈Mik〉  =
χ*Mkiχ; for details, see [3]).

At the next step, the solution of the three-body Fad-
deev equations are used as the wave function Ψ in order
to render the predictions of our model more accurate. It
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is natural to start from the s-wave approximation for
NN interaction. In polar coordinates [4], these equa-
tions then have the form

(16)

where

(17)

In (16), the Coulomb potential (ρ, θ) has the
form

(18)

and we have used the strongly repulsive MT I–III

potentials (ρ, θ) [5] corrected in [6]; that is, 
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where "2/m = 41.47 MeV fm2, n = me2/"2, and e2 =

1.44 MeV fm. The potentials  act only in the sin-
glet 1S0 and triplet 3S0 s waves, respectively, and are
given by a superposition of attractive and repulsive
Yukawa terms.

To solve the eigenvalue problem in the region ρ ∈
[0, ∞], θ ∈  [0, π/2], equation (16) must be supple-
mented with the boundary conditions

(20)

V s t,

Ψ t s,( ) 0 θ,( ) Ψ t s,( ) ∞ θ,( ) 0,= =

Ψ t s,( ) ρ 0,( ) Ψ t s,( ) ρ π 2⁄,( ) 0.= =

Fig. 3. Differential cross section for π+3He elastic scattering
at Tπ = 142 MeV in the laboratory frame, with |Ψ|2 taken as
(solid line) the Faddeev wave function or (dashed line) as
the sum of two Gaussian forms. In either case, all pion res-
catterings are taken into account. The experimental data
taken from [7] and [8] are shown by closed circles and tri-
angles, respectively.

dσ/dΩ, mb/sr

101

100

10–1

10–2

–1.0 –0.2 0.6
cosθc.m.

Fig. 4. Differential cross section for π+3He elastic scattering
at Tπ = 180 MeV in the laboratory frame. The notation is
identical to that in Fig. 3.
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dσ/dΩ, mb/sr

102
Moreover, we must substitute, instead of the quanti-
ties F(T, S) and G(T, S) in (5), the new ones

(21)

Here, Ψap(rik) are the components of the total Faddeev
wave function of 3He that correspond to different spin–
isospin states:

(22)

In (22), the coordinate functions  are related to
solutions of equation (16) by the formula

(23)

Here, it is necessary to note the relations ρ2 =  + 

and tanθi =  for any i = 1, 2, 3, which allow us to

express the coordinates ρ and θi in terms of the coordi-
nates r1 and r2 by using the definition of the Jacobi vec-
tors xi and yi from [4]. The total Faddeev wave function

 has the form

(24)

where, ξ (η) are the eigenfunctions of the total spin s
(isospin t) from (14). It is normalized by the condition

4. NUMERICAL RESULTS AND DISCUSSION

We begin by recalling that our model does not
involve any free parameter, so that our results reflect the
true content of the approximations used.

In Figs. 3–5, the calculated differential cross sec-
tions for π+3He interaction at the pion laboratory ener-
gies of Tπ = 142, 180, and 256 MeV for unpolarized 3He
are shown along with experimental data from [7–9].
The solid curves were obtained with the Faddeev wave
functions, and the dashed curves, with a wave function
as the sum of two Gaussian forms. Inspection of these
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results shows that introducing the sophisticated Fad-
deev wave functions is essential for the backward hemi-
sphere, where this considerably improves the agree-
ment with the experimental data. In the forward hemi-
sphere, the effect is weaker; moreover, it leads to
changes in the wrong direction (as clearly seen at
180 MeV). A noticeable dip at 90° that is obtained in
our calculations, but which is not observed experimen-
tally, is due to our neglect of the πN interaction in the s
wave. Hopefully, it will be filled once this interaction is
taken into account.

In Figs. 6–8, the asymmetries calculated for π+3He
interactions at the pion laboratory energies of Tπ = 142,
180, and 256 MeV are shown along with experimental
data from [10]. To demonstrate the effect of multiple π
rescatterings, the results that take into account only two
rescatterings are also shown (for the wave function as
the sum of two Gaussian forms). First, from the figures,
we observe a large effect of multiple rescatterings. For
lower energies, the inclusion of multiple rescatterings
substantially reduces the asymmetry and, at 256 MeV,
even completely changes its behavior. The introduction
of the Faddeev wave functions does not again seem to
modify the results in any significant manner.

The agreement with the asymmetry data is found to
be considerably poorer than that for the differential
cross sections. This is not surprising since, as was
emphasized in many previous publications on the prob-
lem, the asymmetry is extremely sensitive to the details
of the interaction.

Fig. 5. Differential cross section for π+3He elastic scattering
at Tπ = 256 MeV in the laboratory frame. The notation for
the curves is identical to that in Fig. 3. The experimental
data taken from [7] and [9] are shown by closed circles and
diamonds, respectively.
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For energies of 142 and 180 MeV, the calculated
asymmetry follows the experimental pattern shifted
toward larger angles. This is not surprising too. In our
approximation (pure P33 πN interaction, infinite mass

Fig. 6. Asymmetry for π+3He interaction at the pion labora-
tory energy of Tπ = 142 MeV, with |Ψ|2 taken as (solid lines)
the Faddeev wave function and as (dashed line) the sum of
two Gaussian forms. In either case, all pion rescatterings are
taken into account. The dotted line corresponds to two pion
rescatterings taken into account in the case of the sum of two
Gaussian forms. The experimental data were taken from [10].
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Fig. 7. Asymmetry for π+3He interaction at pion laboratory
energy Tπ = 180 MeV. The notation is identical to that in
Fig. 6.
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mN), the amplitude f vanishes at θ = 90°. The addition
of the s-wave interaction and kinematical corrections
for the finite mN would both shift this zero toward
smaller angles, thereby rendering the agreement with
the experimental data quite satisfactory.

For the energy of 256 MeV, there seems to be no
agreement with the experimental data at all. However,
as was found in [1], the fact that the angular depen-
dence of the asymmetry is modified drastically at this
energy is actually due to quite a small shift in the posi-

–1.0

–0.5

0

0.5

1.0

0 180
θc.m., deg

12060

Ay

Fig. 8. Asymmetry for π+3He interaction at pion laboratory
energy Tπ = 256 MeV. The notation is identical to that in
Fig. 6.
tion of the zeros of the complex amplitude f. It was also
found there that this shift could be achieved effectively
by introducing a small angle-independent term in f.
Thus, we believe that the inclusion of the s-wave πN
interaction will make the situation at 256 MeV much
better.

In conclusion, we have found that the use of the Fad-
deev wave functions for the nuclear ground state con-
siderably improves predictions for the differential cross
sections in the backward hemisphere, but that this pro-
duces a small effect for the forward hemisphere and
asymmetries. The overall agreement of the model with
experimental data is satisfactory for the cross sections.
It is much poorer for the asymmetries. A further
improvement of the model and especially of its applica-
tion to the asymmetry requires the introduction of the s-
wave πN interaction and finite mN kinematics. The
work in this direction is now in progress.
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Abstract—The one-loop expression for the absorptive correction to the πd scattering length is discussed. Rel-
evant Feynman diagrams are calculated both in the relativistic and in the nonrelativistic formalism. A simple
expression is obtained for the one-loop correction that arises in the πd scattering length owing to the Fermi
motion of the nucleons in the deuteron. This correction includes absorption effects. Fulfillment of the unitarity
relation is verified explicitly. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there are a great number of theoretical
studies devoted to calculating the πd scattering length.
In recent years, interest in the problem has been rekin-
dled in connection with the emergence of new experi-
mental data on the shifts and widths of the S levels of
the π−p and π−d atoms [1–4]. A global analysis of such
data for the pionic hydrogen and deuterium atoms
makes it possible to extract the πN scattering length.
This is of particular interest in connection with testing
the predictions of chiral perturbation theory [5, 6].

Usually, the πd scattering length is calculated by
summing a series of diagrams for multiple pion scatter-
ing on the nucleons of the deuteron. In this approach,
the amplitudes for on-energy-shell pion–nucleon inter-
action are assumed to be known and are extracted from
experimental data, whereas off-mass-shell effects are
taken into account via the pion–nucleon potential or via
phenomenological form factors. A detailed discussion
of the approach in question, as well as references to ear-
lier studies, can be found, for example, in [7]. In this
method for calculating the πd scattering length, taking
into account the effect of absorption in the system on
the real part of the amplitude (here, we mean the deu-
teron-breakup process π–d  nn and its effect on the
amplitude of elastic πd scattering) involves the greatest
uncertainties. The inclusion of absorption within the
multichannel system by means of solving Faddeev-type
equations was discussed in [8, 9]. The main difficulty in
allowing for absorption is associated with the need for
avoiding the double-counting problem in dealing with
pion rescatterings on the nucleons of the deuteron.
Indeed, let us consider the diagram that describes elas-
tic pion scattering on a deuteron through a two-nucleon
intermediate state (Fig. 1). Even at zero pion energy,
this diagram has both an imaginary and a real part. The
imaginary part of the diagram is calculated unambigu-
ously in terms of the cross section for the reaction
πd  NN, but the real part of the diagram can be
1063-7788/00/6305- $20.00 © 0801
reconstructed, for example, with the aid of the disper-
sion relation. The problem, however, consists in that the
real part of the diagram in Fig. 1 is partly contained in
multiple-scattering diagrams. Therefore, a mere addi-
tion of the real part of the diagram in Fig. 1 to the πd
scattering length computed by the method of multiple
scattering leads to double counting.

In the present study, we will discuss the problem of
taking into account absorption within a diagrammatic
approach. The elementary pion–nucleon amplitudes
will be calculated here on the basis of a semiphenome-
nological model. Many attempts have been undertaken
by now to construct a model of pion–nucleon ampli-
tudes in terms of exchanges of various mesons. In par-
ticular, the amplitudes of pion–nucleon scattering in the
energy region below the delta isobar were successfully
reproduced in [10] by considering t-channel sigma- and
rho-meson exchanges supplemented with Compton
pion–nucleon scattering with allowance for intermedi-
ate nucleons and delta isobars. Since the Compton s-
channel diagram for pion–nucleon scattering represents
the only elementary amplitude making a nonzero con-
tribution to the imaginary part of the pion–deuteron
scattering length, we will try to single out precisely this
diagram and to include it directly in the series of multi-
ple scattering. In the following, it is therefore assumed
that the near-threshold amplitude for pion–nucleon
scattering is determined by the sum of two Feynman
diagrams in Fig. 2 that are supplemented with addi-
tional contributions providing correct values for the
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low-energy parameters of the S and P waves. Here, the
P waves are assumed to be fixed and are determined by
fitting experimental data, the main problem of the
present analysis being a reconstruction of the S-wave
scattering lengths. The on-mass-shell amplitude for
pion–nucleon scattering near the threshold can be
parametrized as

(1)

where the quantities fs and fu are determined by the Fey-
nman diagrams in Fig. 2. Taking into account the con-
tributions to the P waves from the amplitudes fs and fu,

we can determine the constants  and  from a fit
of the P-wave scattering volumes to experimental data.

The constants  and  are to be determined from an
analysis of data on the shifts of the levels in the pionic
hydrogen and deuterium atoms. The pion–nucleon
scattering lengths are reconstructed here on the basis of

the expression  + t · I + fs + fu at zero energy. The
amplitude of pion–deuteron scattering is determined in
terms of the off-mass-shell pion–nucleon amplitudes,
which in turn are related to the amplitude in (1) as fol-
lows: the amplitudes fs and fu are specified by the dia-
grams in Fig. 2 for off-mass-shell nucleons as well, the
off-mass-shell effects in the remaining part of the
amplitude being determined phenomenologically as
before.

The present study is aimed at a precision calculation
of the pion–deuteron scattering length in terms of pion–
nucleon scattering lengths with an eye to subsequently
extracting the latter from experimental data on the
pionic hydrogen and deuterium atoms. This in turn
requires accurately evaluating diagrams for single and
double pion scattering on the nucleons of the deuteron.
Since the nucleon spin is flipped in pion-absorption
processes, it is necessary to take relativistic corrections
into account in these calculations. In the present study,
we will restrict our analysis to computing the contribu-
tions of the amplitudes fs and fu to the one-loop dia-
grams that determine the amplitude of pion–deuteron
scattering. We present two versions of the calculation
that rely on either the nonrelativistic or the relativistic
formalism. As a check upon our results, we also calcu-
late the deuteron-breakup amplitude and verify fulfill-
ment of the unitarity condition. The reason behind the

f πN b̃0 b̃1t I⋅ c̃0 c̃1t I⋅+( )( k' k⋅+ +=

+ i d̃0 d̃1t I⋅+( )s k' k×[ ]⋅ ) f s f u,+ +

c̃0 1, d̃0 1,

b̃0 b̃1

b̃0 b̃1

p2

-----
-----

--- ----------------
---

------

p1

N(q2) N(q1)N(q1) N(q2)

π(k2)π(k1)π(k1) π(k2)

MuMs

Fig. 2.
resulting discrepancy between the nonrelativistic and
relativistic results is discussed. The two-loop contribu-
tions will be taken into account elsewhere.

We note that, even in the nonrelativistic case, we
must take into account spin variables since pion absorp-
tion entails nucleon-spin flip. The nonrelativistic dia-
gram technique as applied to calculations on direct
nuclear reactions was developed in the studies of
I.S. Shapiro and his disciples and is expounded in the
monograph [11] and in the review article [12]. In com-
puting spin features, the diagrammatic approach is usu-
ally supplemented with the formalism of a graphical
summation of Wigner 3j coefficients [13–15]. In the
present study, we make use of an alternative approach
that is more economical, at least in dealing with reac-
tion featuring deuterons, and which makes it possible,
in principle, to calculate spin effects in multiloop dia-
grams as well. The present approach is based on an
invariant representation of spin vertex functions and the
amplitudes of virtual processes. The inclusion of spin
effects reduces here to evaluating traces of the products
of σ matrices, whereby the computational procedure in
question is simplified considerably.

2. PION–NUCLEON SCATTERING AMPLITUDE 
WITH A NUCLEON POLE

Let us consider pion–nucleon scattering amplitudes
corresponding to the tree diagrams in Fig. 2. We will
make use of pseudovector πNN coupling corresponding
to the Lagrangian

(2)

The amplitudes are then given by1) 

(3)

Here, the 4-momenta k1, 2 , q1, 2 , and p1, 2 are specified in
Fig. 2 (p1 = k1 + q1, p2 = q2 – k1); u(q1, 2) are four-com-
ponent spinors normalized by the condition  ≡
u+γ0 = 2m; Ts, u = τb, aτa, bχ1 are isotopic factors,
where χ1, 2 are the isospinors of the initial and the final
nucleon (χ+χ = 1) and a and b are the Cartesian isospin
subscripts of the initial and the final pion (in the charge
representation, the matrices τa and τb are given in

Appendix 1); m is the nucleon mass; and  = kµγµ.
Going over to the two-component spinors w1 and w2, in
which case we have

u(qi) = [(εi + m)1/2wi, (εi + m)–1/2(qi · s)wi],

qi = (εi , qi), w+w = 1,

1)We perform our consideration in terms of the invariant amplitudes

M defined as M = 8π f (  is the total energy in the reaction
c.m. frame), the differential cross section for scattering being
dσ/dΩ = | f |2.

LπN
g

2m
-------ψγµγ5tψ∂µp.=

s s

Ms u,
g

2

4m
2

---------
u q2( )γ5k̂2 1, p̂1 2, m+( )k̂1 2, γ5u q1( )

p1 2,
2

m
2

–
---------------------------------------------------------------------------------Ts u, .=

uu

χ2
+

k̂
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we find that, in the reaction c.m. frame (where ε1 = ε2 ≡ ε), the amplitude Ms is given by

(4)Ms
g

2
–

4m
2

---------
w2

+ ε m+( )2
s m–( )

3
s m+( )

3
q2 s⋅( ) q1 s⋅( )+[ ]w1

ε m+( ) s m
2

–( )
-----------------------------------------------------------------------------------------------------------------------------------Ts u, ,=
where ε, q1, and q2 are, respectively, the total energy,
the initial nucleon momentum, and the final nucleon
momentum, while s = (ε + ω)2, ω being the total pion
energy. For ω ! m, the right-hand side of equation (4)
can be represented as

(5)

In the amplitudes given by (4) and (5), the first and the
second term correspond to the contributions of the S
and the P wave, respectively, and these contributions
are commensurate at q2 ~ ω3/(2m). (In this case, we
have ω . µ, where µ is the pion mass.) In the nonrela-
tivistic limit, the Hamiltonian corresponding to the
Lagrangian in (2) has the form [16]

(6)

where we have taken into account the leading nonstatic
corrections. The Hamiltonian in (6) involves the opera-

tor ( ) acting to the right (left) on a single
nucleon and the total energy ω of the absorbed pion.
This Hamiltonian reconstructs only the P-wave part of
the amplitude in (3), taking no account of the S wave.
Formally, the S-wave components of the diagrams in
Fig. 2 are obtained from a consistent relativistic
approach, and their presence is associated with the
impossibility to apply the free Dirac equation [which is
used in going over from the four-component to two-
component spinors in order to obtain expressions (6) and
(2)] to the intermediate virtual state.2) At the threshold,
the contribution of the S wave is proportional to µ2/m2,
so that it vanishes in the chiral limit µ/m  0.

Let us estimate the S-wave contribution from the
diagrams in Fig. 2 to the amplitude of π–d scattering
near the threshold. In the approximation of the nucle-
ons at rest, we have

(7)

Here,  = Ms, u/8π(m + µ), where Ms, u =

−g2µ2/m(2m ± µ) (g2/4π = 14.6) according to equation

2)The presence of the S-wave contribution of the diagrams in Fig. 2
was also discussed in the monograph [17] for the case of pseudo-
scalar πNN coupling. If we consider that a virtual fermion has no
definite parity [18], the following interpretation is possible: the
interaction in (2) is of a P-wave character in the case of real
nucleons, which do not change parity; as to the S wave, it seems
to take into account the effect of “nucleon-parity reversal” upon
the absorption (emission) of a pseudoscalar pion.

Ms u,
g

2
–

4m
2ω

--------------=

× w2
+ ω3

2m q2 1, s⋅( ) q1 2, s⋅( )±[ ]w1Ts u, .

HπNN g s —π
ω

2m
------- —N —N–( )–⋅ 

  t p⋅( ),–=
→ →

—N

→
—N

→

f
π–

d
0( ) 1 µ m⁄+

1 µ md⁄+
----------------------- f

π–
p

f
π–

n
+( ) 0.0225 µ 1–

.–= =

f
π–

p π–
n,
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(4) (it is considered here that Ts = Tu = 2 because of
charge exchange in the πNN vertices). The value in (7)
is commensurate with the experimental π–d scattering
length [4]

(8)

From the above, it follows that, in the reaction on a deu-
teron, it is of paramount importance to take into
account the S waves in the amplitudes represented by
Fig. 2. At the same time, the P-wave contributions of
these diagrams at zero angle compensate each other to
a considerable extent. Going over to an analysis of π–d
scattering and using the diagrams in Fig. 2 for the rele-
vant subprocess, we arrive at the diagrams M1 and M2
in Fig. 3. At first glance, it seems that a nonrelativistic
calculation of these diagrams is possible by taking into
account expression (5) for pion–nucleon amplitudes,
which already contain S-wave effects. However, this
gives no way to include correctly the contribution of the
real intermediate nucleon–nucleon state. This is due to
the following reasons. First, expressions (5) were writ-
ten for free nucleon legs, and their use will lead to the
absence of an imaginary part in the amplitude M1
(Fig. 3), but this is not correct. Second, the antisymme-
trization of the intermediate nucleon–nucleon state in
the s channel requires supplementing the diagram M1
with the diagram M3 in Fig. 3 (the presence of the dia-
grams M2 and M3 ensures antisymmetry in the u chan-
nel as well). Here, the imaginary part ImM1 (ImM3)
must correspond to the contribution of the sum of the

squares (interference) of the diagrams  and 
to the cross section for the breakup process π–d  nn
(see Fig. 4). In this approach, however, the question of
the emergence of “S-wave” effects from the πNN vertex
(2) in the amplitude M3 and the question of taking these
effects into account within the nonrelativistic formal-
ism remain open.

Thus, we conclude that, in order to take correctly
into account the pion–nucleon interaction (2), π–d scat-
tering must be considered on the basis of the relativistic
formalism.

3. EVALUATION OF ONE-LOOP DIAGRAMS

Let us make use of the deuteron wave function in the
relativistic form (see, for example, [19, 20])

(9)

a
π–

d
0.0259– 0.0011±( )µ 1–

.=

M1
b( )

M2
b( )

Ψd eνu k2( )Oν k1 k2,( )Ucũ k1( )X ,=

Oν k1 k2,( ) f 1

k1 k2–( )ν

2m
2

---------------------- f 2

γν

m
-----, X+ χ2

+ τ2

2
-------χ1*,= =
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where Uc = γ2γ0 is the charge-conjugation matrix, eν is
the deuteron polarization 4-vector, u(k1, 2) are the rele-
vant four-component spinors ( u = 2m), X is the isoto-
pic component of the deuteron wave function, and χ1, 2
are isospinors. Everywhere, with the exception of
expression (1), the tilde sign denotes the transposition
operation. The expression in (9) represents a relativistic
generalization of the deuteron wave function in the
nonrelativistic form (see [21, 22])

(10)

where eeee is the deuteron polarization 3-vector (in this
approximation, the expectation value of the deuteron-
spin vector is 〈S〉  = i[eeee* × eeee]); p is the relative momen-
tum of the nucleons in the deuteron; and u ≡ u(|p |) and
w ≡ w(|p |) are, respectively, the S- and D-wave compo-
nents of the deuteron wave function.3) 

In the nonrelativistic limit, the equality of expres-
sions (9) and (10) in the deuteron rest frame determines

3)Expression (10) is the amplitude of the probability that, in the
deuteron at rest occurring in a state that is determined by the
polarization vector eeee, the nucleons have a relative momentum p
and are in the spin (isospin) states described by the spinors w1 and

w2 (isospinors χ1 and χ2). From the identities sσ2  ≡

sσ2  and τ2  ≡ – τ2 , it follows that the states

in question are symmetric (antisymmetric) in spin (isospin) vari-
ables; that is, the deuteron wave function (10) corresponds to a
nucleon–nucleon state having a spin value of unity and zero isos-
pin. In [22], it is shown that the second term in the deuteron wave
function (10)—that is the term that involves w—corresponds to
the D wave.

u

Ψd
non( ) p( ) w2

+
eeee O n( ) p( )⋅( )σ2w1*X w1 2,

+
w1 2, 1=( ),=

O n( ) p( ) u

2
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the relations between the functions f1 and f2, on one
hand, and the S- and D-wave functions (u and w, respec-
tively), on the other hand. Specifically, we have

(11)

where ε(p) = . The rules of the diagram tech-
nique as formulated with a deuteron wave function of the
form (9) or (10), normalizations, and some other relevant
information are presented in Appendices 1 and 2.

Yet another circumstance is worthy of special note.
We will clarify it by considering the example in which
the scalar form factor for the deuteron, Fd(q), is calcu-
lated at zero momentum q = 0. It is obvious that,
because of the normalization condition, a correct calcu-
lation must yield Fd(0) =1. Let us write the relativistic
expression for the corresponding triangle diagram
(Fig. 5) by using the deuteron wave function in the
form (9). Further, we go over to the nonrelativistic limit
(in the integral, we take into account the pole at a posi-
tive energy and retain second-order terms in the inter-
mediate 3-momentum p) and express the result in terms
of the functions u and w according to (11). Specifically,
we have

where ε = m + p2/2m. We can see that Fd(0) ≠ 1 because
of the presence of the second term in the integrand (this
term is proportional to p2/m2). The reason for this dis-
crepancy is that, in equations (11), which relate the
functions f1 and f2 to u and w, both nucleons in the dpn
vertex are on the energy shell. In fact, however, we can
see that, if one of the nucleons is real, the off-energy-
shellness of the second nucleon is determined by the
quantity –p2/m (we take here no account of the deu-
teron binding energy). In calculating the amplitudes
M1, M2, and M3 (Fig. 4) in the ensuing analysis, we
therefore disregard p2/m2 terms against terms on the
order of unity (by including the former, we would go
beyond the accuracy adopted here), but we retain terms
of order p2/mµ. This approach assumes fulfillment of
the condition µ ! m. Taking the above into account, we
can simplify relations (11) significantly and arrive at

(12)

Let us now evaluate the diagrams for the amplitudes
M1, M2, and M3 in Fig. 3 within both the relativistic and
the nonrelativistic approach. In the relativistic
approach, we first use a consistent relativistic represen-
tation for the relevant matrix elements (see Appendix 1)
and then discard p2/m2 terms by virtue of the above
argument. By the nonrelativistic approach, we mean

f 1
m
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2p2
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2 p2
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that in which the analogous diagrams are calculated
nonrelativistically (see Appendix 2) with the pion–
nucleon interaction specified by expression (6).

In calculating the amplitudes M1, M2, and M3, the
integral with respect to the energy ε (see the notation in
Fig. 3) is determined by the residues at the poles in the
lower half-plane (we take into account only those poles
that correspond to ε > 0). The amplitudes M1 and M2 are
determined by the contribution of one pole at ε = ε0

(ε0 =  – i0), while M3 is determined by the
poles at ε = ε0 and ε = ε0 + µ. For these amplitudes, we
eventually obtain the expressions

(13)

where

Here, {…} stands for the trace of the braced expres-
sion; the 4-momenta k, p, p', p1, and  are specified in
Fig. 3; and the isotopic factors are given by T1, 2 =
{τ2 τ2τ±} = 1 and T3 = {τ2τ–τ2 } = –1, where τ± =

(τ1 ± iτ2)/2 and  = ).4) The expressions for S1 and
S2 differ by the 4-momentum p1 (p1 = p' ± k). The quan-

tities  and  are determined by the expression for
S3 at p = (ε0, p) and p = (ε0 + µ, p), respectively. We note

that S2 and  are obtained from S1 and , respec-
tively, upon the substitution µ  –µ. For the ampli-
tudes M1, M2, and M3 considered for zero initial momen-
tum and for the polarization vectors e1, 2 = (0, eeee1, 2), the

4)The amplitudes M1, 2 involve a µ/m correction [the factor (1 ±
µ/2m)–1] caused by the presence of the propagator for the inter-
mediate nucleon with a 4-momentum p1, since ε1 = md ± µ – ε

and  – p2 – m2 + i0 = –2(1 ± µ/2m)(p2 – mµ – i0) for ε = ε0 ≈

m + p2/2m. Upon the evaluation of the integral with respect to the
energy, the amplitude M3 develops a (µ /m)2 correction [the factor

(1 – µ2/4m2)–1], but we disregard this correction here.

m
2 p2

+

M1 2, 2T1 2, 1
µ
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calculations that assume the initial and the final deu-
teron to be at rest and which take into account relations
(9) and (12) yield

(14)

The factor (  · eeee1) in (14) demonstrates that the deu-
teron polarization remains unchanged, which is obvi-
ous since the external 3-momenta vanish at the thresh-
old. In the following, we will therefore omit the factor
(  · eeee1). We will also present expressions for the imag-
inary parts of the amplitudes in (14). They are given
by5) 

(15)

4. AMPLITUDE OF THE BREAKUP PROCESS
π–d  nn: UNITARITY RELATION

Since formulas (14) for the amplitudes M1, M2, and
M3 were obtained from very cumbersome expressions,

5)Here, we neglect µ/m corrections because, at p = , the dis-

carded p2/m2 terms are of the same order of smallness.
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it is desirable to verify fulfillment of the unitarity con-
dition in the one-loop approximation. It should be
noted that the relativistic procedure for calculating the
breakup amplitude is of interest in and of itself.

In the tree approximation, the breakup amplitude

Mπd → NN =  +  receives contributions from
those diagrams in Fig. 4 that correspond to the expres-
sions

(16)

Going over to two-component spinors and considering
the case of the reaction with the initial pion at rest, we
obtain

(17)

where

Here, E = p2/2m (p = p1 = –p2); from (12), it follows

that f1E = –3mw /8. Evaluating the sum  + ,
we arrive at (we have transformed the expression for

 by using the relations A2σ2  =

,  = –σ2, and σ2  = –σσ2)

(18)

The total amplitude in (18) depends on f2; that is,

Mπd → NN ~ ( u + w). The probability of the deuteron-
breakup reaction is given by

(19)

The quantities W11, W22, and W12 stand for, respectively,

the contribution of the square of the amplitude ,

contribution of the square of the amplitude , and
the contribution of the interference of these amplitudes.

M1
b( )

M2
b( )

M1
b( )

+
g

m
--------u p1( )k̂γ5 p̂1 k̂– m+( )=

× Oµ p2 p1 k–,( )γ2u∗ p2( )eµ,

M2
b( ) g

m
--------u p2( )k̂γ5 p̂2 k̂– m+( )–=

× Oµ p1 p2 k–,( )γ2u∗ p1( )eµ.

M1
b( ) 4gµ

m m
-------------w1

+
A1σ2w2*,=

M2
b( ) 4gµ

m m
-------------w2

+
A2σ2w1*,–=

A1 2, f 1E p1 2, eeee⋅( ) f 2m p1 2, s⋅( ) eeee s⋅( ).+=

M1
b( )

M2
b( )

M2
b( )

w2
+

w1*

w1
+ σ̃2 Ã2 w2* σ̃2 σ̃

Mπd NN→
4gµ

m
---------- f 2w1

+
=

× p1 s⋅( ) eeee s⋅( ) eeee s⋅( ) p1 s⋅( )–[ ]σ2w2*.

2

Wπd NN→ W11 W22 W12+ +=

=  
p

32π2
s

-------------- Mπd NN→
2 Ω.d∫

M1
b( )

M2
b( )
We will calculate the imaginary parts of the elastic-
scattering amplitudes in (14) by using the unitarity con-
ditions

(20)

By evaluating the quantities Wij according to (18) and

(19) (we set here  = 2m + µ ≈ 2m and consider that
p2 = mµ), we arrive at expressions (15). Thus, the cal-
culations of the breakup and scattering processes in the
relativistic approximation prove to be consistent at the
level of the optical theorem.

5. COMPARISON WITH NONRELATIVISTIC 
EXPRESSIONS

By using the Hamiltonian in (6), we will now calcu-
late the amplitudes represented by the diagrams in Fig. 3.

We denote these amplitudes by , , and .
With the aid of the rules presented in Appendix 2, we
obtain

(21)

where Mnon =  +  +  [as in (14), the iso-
topic factors correspond here to the reaction π−d 
π–d]. For the imaginary parts, we have

(22)

ImM1
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s
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---------,= =
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Let us compare the relativistic and the nonrelativistic
expressions [(14) and (21), respectively]. In contrast to

the amplitudes  and , the amplitudes M1 and
M2 in (14) feature the S-wave contribution [the terms
±(u2 + w2) in the integrand] from the pole diagrams of
pion–nucleon scattering. For µ  0 (p2/mµ  ∞),
this contribution vanishes, and only the P-wave contri-
butions survive in the amplitudes M1 and M2 (14).

The imaginary parts ImM (15) and ImMnon (22)
coincide, although the contributions of the individual
diagrams may be different in the relativistic and nonrel-
ativistic approximations, for example,

By no means is the coincidence of the imaginary part
ImM of the sum of the relativistic amplitudes and the
imaginary part ImMnon of the sum of the nonrelativistic
amplitudes accidental. Indeed, it can be shown that the
amplitudes M and Mnon differ only by a real-valued con-
stant having a simple physical meaning. Let us first
recast the S-wave component of expression (14) for M1
into the form

(23)

The second term in the bracketed expression on the
right-hand side of (23) has the same structure as the P-
wave contribution to M1 (14). In the leading approxi-
mation in m/µ, we therefore have

(24)

In a similar way, we transform the expression for M2 .
As a result, the sum M = M1 + M2 + M3 can be reduced
to the form

(25)

The first term in (25), M(S), coincides with the contribu-
tion to the pion–nucleon scattering length from the S-
wave components of the pion–nucleon scattering
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amplitude that are associated with the Compton dia-
grams in Fig. 2; that is, M(S) = 2(Ms + Mu) (the factor of
2 emerges from a normalization of the amplitudes M).
The second term in (25), M(P), represents a correction to
this result due to the Fermi motion of the nucleons in
the deuteron. It can be seen that this term is identical to
expression (21) for Mnon! For this reason, the correction
for the Fermi motion of the nucleons in loop diagrams
can be calculated according to the rules of the nonrela-
tivistic diagram technique by using the P-wave interac-
tion.

At the same time, the S-wave contribution M(S) to the
pion–deuteron scattering length is determined by the
Compton amplitudes of pion scattering on a free
nucleon at zero energy. This contribution does not
involve corrections associated with nucleon off-mass-
shell effects in the deuteron. Thus, the S-wave contribu-
tion to the pion–deuteron scattering length is not
affected either by off-mass-shell effects or by the Fermi
motion. This was not obvious from the outset.

6. CONCLUSION

We have considered the contribution of pion absorp-
tion (emission) by a nucleon to the near-threshold
amplitude for pion–deuteron scattering and have
obtained expressions for one-loop diagrams. The for-
mulas presented above have been derived on the basis
of the relativistic Lagrangian (2), but they are not rela-
tivistic, since we have disregarded terms of order p2/m2

against O(1) terms. The main objective of the present
study was to take correctly into account, in the pion–
deuteron scattering amplitude, the S-wave component
that emerges in the pion–nucleon component from
Lagrangian (2). Expression (25) for the Compton
amplitude of pion–deuteron scattering is the main out-
come of our analysis. The first term in (25), a constant,
is determined by the sum of the Compton amplitudes
for scattering on a free neutron and on a free proton at
zero energy. This contribution is commensurate with
the pion–deuteron scattering length. A renormalization
of this expression due to nucleon off-mass-shell effects
in the deuteron, the Fermi motion, and absorption are
determined by the second term in (25). This term can be
calculated easily according to the rules of the nonrela-
tivistic diagram technique. A numerical calculation of
the π–d scattering length by formula (25) yields

where the value in parentheses corresponds to the
P-wave term M(P) in (25) (we used here the value of
g2/4π = 14.6 and the deuteron wave function for the
Bonn potential with the parameter values from Table 11
of the review article by Machleidt et al. [25]). We see

f
π–

d

M
8π 2m µ+( )
-----------------------------=

=  0.02238– 0.00038 i 0.00015×+( )+[ ]µ 1–
,
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that the contribution of this term is comparatively
small.

The above formulas take correctly into account the
antisymmetric character of the intermediate nucleon–
nucleon state. It should of course be recalled that the
inclusion of only one-loop diagrams is by far insuffi-
cient for describing pion–deuteron scattering. For
example, the imaginary part of the amplitude then
allows only for the contribution of tree diagrams in the
breakup reaction πd  NN, where double interaction
plays an important role [16] (pion rescattering on one
nucleon and pion absorption on the other one).

In a subsequent study, we plan to take phenomeno-
logically into account additional S- and P-wave contri-
butions to the pion–nucleon amplitude that are not
associated with pion absorption [see Introduction and
equation (1)] and to consider two-loop diagrams for
pion–deuteron scattering.
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APPENDIX 1

Here, we give an account of the rules for describing
the relativistic matrix elements in pion–deuteron inter-
actions. In contrast to what occurs in conventional field
theory, the vector field of the deuteron is not converted,
in our case, into a particle–antiparticle pair—it is a
composite object decaying into two nucleons. Because
of this, the rules of the diagram technique are somewhat
different here from standard rules and can formally be
obtained from the interaction Lagrangian

(A.1)

where

(A.2)

Here, we have introduced the following notation: ψc =
Uc  = γ2ψ*, where Uc = γ2γ0; Aµ(x) is the deuteron vec-

tor field; ( ) is an operator acting on (x) [ψc(x)];
τ2 is an isospin Pauli matrix; and LπNN is an arbitrary
Lagrangian of πN interaction. A direct interaction of
the deuteron field Aµ with the pion is not introduced

L LdNN x( ) LπNN x( ),+=

LdNN x( ) 1

2
-------Aµ x( )ψ x( )=

×
ig1

2m
2

---------- ∂ ∂–( )µ
g2

m
-----γµ+

τ2

2
-------ψc

x( ) h.c.+
→→

ψ̃

∂µ

→

∂µ

→
ψ

here. We will employ the commonly accepted normal-
ization [18] of the invariant amplitudes M related to the
differential cross sections (dσ) by the equations

(A.3)

where q and s are, respectively, the colliding-particle
momentum and the square of the total energy in the
reaction c.m. frame, while dτn is an element of the
phase space of the final state of n particles (εi are their
total energies). The rules for constructing the matrix
elements will be illustrated for the example of the
pseudovector interaction LπN (2).

(i) We choose the directions of the nucleon lines in
the diagrams in such a way that the vertex of initial-
deuteron breakup (final-deuteron formation) or final-
antideuteron formation (initial-antideuteron breakup)
involves only outgoing (incoming) nucleon lines, in
which case the final-nucleon (initial-nucleon) or initial-
antinucleon (final-antinucleon) line is treated as an out-
going (incoming) line. The notation for the relevant 4-
momenta is chosen in accordance with this (see, for
example, Fig. 3). The direction of motion is chosen
arbitrarily along a continuous sequence of nucleon
lines. This determines the order of writing expressions
(from left to right) for the diagram elements represent-
ing the factors in the product of these expressions that
appears in the quantity iM. In the diagrams, the motion
along some lines occurs in the directions antiparallel to
the directions of these lines (we refer to these lines as
ordinary ones), while the motion along the other lines
proceeds along the directions of these lines (we refer to
them as charge-conjugate lines). Each dNN vertex is
connected with two nucleon lines of the different types.

(ii) With the vertex dNN, we associate the expres-

sion iΓµ(p2, p1)τ2/  with

where p1 (p2) is the 4-momentum of the ordinary
(charge-conjugate) nucleon line connected to the dNN
vertex in question.

(iii) With an external line of the initial (final) deu-
teron or final (initial) antideuteron, we associate the
polarization 4-vector eµ ( ) satisfying the condition
eµeµ = –1.

(iv) With each nucleon line carrying the 4-momen-
tum p, we associate the propagator iG(p) (for an ordi-
nary line) or iGc(p) (for a charge-conjugate line); by
definition, we have

dσ 1

4q s
------------- M

2
dτn,=

dτn 2π( )4δ 4( )
Pi P f–( )

d
3p1

2π( )3
2ε1

----------------------…
d

3pn

2π( )32εn

----------------------,=

2

Γµ p2 p1,( )
g1

2m
2

--------- p2 p1–( )µ
g2

m
-----γµ,+=

eµ*
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For an arbitrary matrix, we use here the notation Ac =

Uc Uc , where the transposition operator acts on the
spinor and isotopic matrices in the expression for A [the
following useful relations associated with these opera-

tions hold: 1c ≡ Uc × 1Uc = 1,  = –γµ (µ = 0, 1, 2, 3),

 = γ5, and (AB)c = BcAc]. We also have Gc(p) ≡ G(–p).

(v) In the case of an ordinary (charge-conjugate)
nucleon line, there is the factor iA (iAc) at each vertex of
boson coupling to a nucleon. For the πNN vertex from
the interaction Lagrangian (2), we have A =

(g/2m)i γ5τa and Ac = (g/2m)i γ5  (a is an isospin
subscript), where the pion 4-momentum k is directed

from the vertex. For a real π+, –, 0 meson, τa = ( τ–,

τ+, τ3) in the case of pion emission and τa = ( τ+,

τ–, τ3) in the case of pion absorption.
(vi) With an initial (final) nucleon having a 4-

momentum p, we associate the factor u(p)χ ( (p)χ+)

for an ordinary line and the factor (p)  (uc(p)χ*) for
a charge-conjugate line. Here, u(p) is a four-component

spinor, χ is an isospinor, uc(p) = Uc (p) = γ2u*(p), and

(p) = – (p)Uc .
(vii) Prescriptions for the remaining elements of the

diagrams (which do not involve nucleon lines con-
nected to dNN vertices or nucleon lines featuring such
vertices) are identical to conventional rules [18]. A
closed contour formed by nucleon lines yields a prod-
uct of traces (of expressions involving gamma matrices
and isospin tau matrices), implies integration

(2π)−4  with respect to the intermediate 4-momen-

tum p, and contains the factors of (–1) and 2 (the latter
stems from the permutation of internal nucleon lines).

Further, we restrict our consideration to the case of
nonrelativistic nucleons—that is, we assume that p2/m
! m, where p is the relative momentum of the nucleons
in the dNN vertex. The procedure of evaluating the
amplitudes in this approximation on the basis of the
above rules is referred to here as a “relativistic”
approach. It is precisely this approach that is used in the
present article.

The quantities Γµ , g1, and g2 [see item (ii)] are
related to Oµ , f1, and f2 [see (9)] by the equations

(A.4)

where εd is the deuteron binding energy.
By way of example, we indicate that the amplitude

for π−d scattering at the threshold and the amplitudes

G p( ) p̂ m+

p
2

m
2

– i0+
-----------------------------.=

Ã

γµ
c

γ5
c

k̂ k̂ τ̃a

2

2 2

2

u

u
c χ̃

ũ

u
c

ũ

d
4
p∫

Γµ p2 p1,( ) 4 m p2 α 2
+( )Oµ p2 p1,( ),=

g1 2, 4 m p2 α 2
+( ) f 1 2, , α 2

mεd,= =
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for the processes π–d  nn and pp  π+d, which
correspond to some of the diagrams in Figs. 3–5, are
given by

(A.5a)

(A.5b)

(A.5c)

(A.5d)

In order to antisymmetrize a specific amplitude in
external nucleons, this amplitude must be supple-
mented with the analogous expression with the
reversed sign and permuted nucleon variables. For

example, the expression for  must be added to

 (A.5b) [the factor of 1/  has already been taken
into account in expressions (A.5b)]. The expressions

for M3 and  [formulas (13) and (16) of the present
article] are obtained here by substituting (A.4) into
(A.5a) and (A.5b) (upon performing integration with
respect to energy in M3).

APPENDIX 2

The rules for constructing nonrelativistic matrix ele-
ments are the following [the amplitudes are normalized
according to (A.3), the total energies of the nucleons
and the deuterons being replaced by their masses]:

(i) See item (i) in Appendix 1.
(ii) With the dNN vertex, we associate the expres-

sion i (p)τ2/ , where p is the relative momentum
of the nucleons in the dNN vertex, while j is a vectorial
subscript.

(iii) With the external line of the initial (final) deu-
teron, we associate the polarization 3-vector e (e*) sat-
isfying the condition eeee · eeee = 1.

(iv) With the internal nucleon line carrying a
4-momentum p = (m + E, p), we associate the nonrela-
tivistic propagator iG(E, p) (for an ordinary line) and
iGc(E, p) (for a charge-conjugate line), where G(E, p) =
1/(2mE – p2 + i0). Here, we have introduced the opera-

M3 2iT3
g

2m
------- 

 
2

eµ*eν
d

4
p

2π( )4
-------------∫=

× {Γµ p' p1,( )G p1( )k̂γ5G p1'( )

× Γν p p1',( )G p–( )k̂γ5G p'–( )},

M1 2,
b( )

iT1 2,
b( ) g

2m
-------eνu p1 2,( )k̂γ5G p1 2, k–( )±=

× Γν p2 1, p1 2, k–,( )u
c

p2 1,( ),

M1 2,
f( )

iT1 2,
f( ) g

2m
-------eµ*u

c
p2 1,( )Γµ p2 1, p1 2, k–,( )+−=

× G p1 2, k–( )k̂γ5u p1 2,( ),

T3 τ2τ–τ2τ̃+{ } 1, T1 2,
b( )

– χ1 2,
+ τ–τ2χ2 1,* i,–= = = =

T1 2,
f( ) χ̃2 1, τ2τ–χ1 2, i.–= =

M2
b( )

M1
b( )

2

M1 2,
b( )

Γ j
n( )

2
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tion Ac = –σ2 σ2 [the following useful relations asso-
ciated with these operations hold: 1c ≡ –σ2 × 1σ2 = –1,

 = σj (j = 1, 2, 3), and (AB)c = –BcAc]. We also have
Gc(E, p) = –G(E, p).

(v) With each vertex of boson–nucleon coupling, we
associate the factor iA (iAc) in the case of an ordinary
(charge-conjugate) nucleon line. For the P-wave pion–
nucleon interaction [see expression (6)], we have A =
g(s[k – (ω/(2m))(p1 + p2)])τa and Ac = g(s · [k –
(ω/(2m))(p1 + p2)]) . Here, ω and k are, respectively,
the total energy and the 3-momentum of the pion, its 4-
momentum k [k = (ω, k)] being directed from the ver-
tex; p1 and p2 are the nucleon 3-momenta in the vertex;
and a is the isospin subscript. The matrices τa in the
charge representation are presented in item (v) of
Appendix 1.

(vi) With each initial (final) nucleon, we associate
the factor wχ (w+χ+) for an ordinary line and the factor
wc+  (wcχ*) for the charge-conjugate line. Here, w is a
spinor (w+w = 1), χ is an isospinor, wc = σ2w*, and
wc+ = σ2 .

(vii) This item is perfectly analogous to item (vii) in
Appendix 1. The only exception is that traces contain
sigma matrices instead of gamma matrices, while the

integral (2π)–4  with respect to the 4-momentum of

the intermediate nucleon is replaced by (2π)–4 d3p

[p = (m + E, p)].

The equation relating the vertices (p) [see item
(ii)] to the quantities Oj(p) [see equation (10)] and the
normalization used in this article for the deuteron wave
function (10) are given by

(A.6)

Let us present expressions for the amplitudes M3,

, and  (see diagrams 3, 4, and 6). The ampli-
tude M3 will be considered only for zero pion energy—
that is, for k = 0, ω = µ (in this case, only the nonstatic

Ã

σ j
c

τ̃a

χ̃

w̃

d
4
p∫

Ed∫

Γ j
n( )

Γ j
n( ) p( ) 4 m p2 α 2

+( )O j
n( ) p( ),=

d
3p u

2 p( ) w
2 p( )+( )∫ 2π( )3

.=

M1 2,
b( )

M1 2,
f( )

----------

kp1

q1

p2

M 1
(f)

----------

kp2

q2

p1

M 2
(f)

Fig. 6.
term in the πNN vertex is operative), and p1 = –p2 . The

amplitudes  ( ) will be written in the c.m.
frame of the initial (final) deuteron. Specifically, we
have

(A.7‡)

(A.7b)

(A.7c)

Here, we have denoted by Eq1 and Eq2 the nonrelativis-
tic energies of virtual nucleons in Figs. 4 and 6, respec-
tively, with 4-momenta qi = (m + Eqi , qi) (i = 1, 2). The

expressions for the isospin factors T3, , and 
are presented in Appendix 1 [see (A.5d)]. The proce-
dure of antisymmetrization with respect to external
nucleons is also explained there. Expression (21) for

 is obtained in this study upon integration with
respect to energy and substitution of (A.6). In the case

of the primary pion at rest, the amplitudes  in
(A.7b) do not reduce individually to the corresponding
expressions in (17) (this was indicated in Section 5 for
the imaginary parts), but their sum coincides with the
right-hand side of equation (18).
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iT1 2,
f( )

ge j*w2 1,
c+ Γ j

n( ) p2 1,( )±=

× G Eq2 q1, q2 1,,( ) s k
ω

2m
------- p1 2, q1 2,+( )–⋅ 

  w1 2, .

T1 2,
b( )

T1 2,
f( )

M3
non( )

M1 2,
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Abstract—By using the analytic properties of the retarded Green’s function for a stationary quantum system,
the strength function that coincides with the energy distribution of an unperturbed state of the system over its
exact states in a perturbing field is constructed. It is shown that, in general, this strength function has the form
of a Breit–Wigner distribution with energy-dependent parameters and that its moments are determined by the
expectation values of various powers of the exact Hamiltonian for the wave function of the unperturbed state.
The strength function averaged over a certain energy interval is calculated, and its properties are investigated
for a global regime of averaging. The resulting strength functions are used to determine the mean field and the
optical potential for nucleons in nuclei and to investigate conditions under which quantum chaos emerges in
various systems. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The features of a quantum system can be calculated if
its exact Green’s function is known [1–5]. With the aid of
the Green’s function, we can determine strength functions
that describe the character of fragmentation of compara-
tively simple states associated with the unperturbed
Hamiltonian of the system over states of more compli-
cated nature that correspond to the exact Hamiltonian,
which takes fully into account perturbations in the system.
Knowledge of the energy moments and widths of strength
functions makes it possible to deduce important informa-
tion about the dynamical and static properties of the sys-
tem—in particular, about the probabilities of the decay of
quasistationary states, as well as about conditions under
which quantum chaos can emerge in the system [6–8].

In [9–11], the properties of the exact single-particle
Green’s function, of the mass operator, and of strength
functions for fermions were investigated for open
Fermi systems, which are exemplified by many-elec-
tron atoms and atomic nuclei. An analysis of nucleon
strength functions in nuclei revealed that, in the case of
a global regime of averaging, the self-consistent poten-
tial for nucleons and the real part of the optical potential
for nucleons coincide with the Hartree–Fock potential
generated by realistic nucleon–nucleon forces.

The objective of the present study is to apply the
methods developed in [2, 9–11] to investigating the
properties of retarded Green’s functions and strength
functions for arbitrary quantum systems.

2. RETARDED GREEN’S FUNCTION
FOR A STATIONARY SYSTEM

The behavior of an arbitrary stationary quantum
system governed by a Hamiltonian H(x), where x is a
1063-7788/00/6305- $20.00 © 20812
complete set of coordinates of the system, is described
[1] by the wave functions Ψs(x) ≡ |s〉  satisfying the
time-independent Schrödinger equation

(1)

where Es are the corresponding energies. The subscript
s characterizing the state |s〉  of the system includes both
the eigenvalues of the Hamiltonian H(x) of the system
and the eigenvalues of all basic integrals of the motion
of the system in involution [the operators correspond-
ing to such integrals of the motion commute not only
with the Hamiltonian H(x) of the system but also with
one another], since the wave function |s〉 of the system
is an eigenfunction not only of the Hamiltonian H(x)
but also of the operators of the above integrals of the
motions—that is, s ≡ , Es. In general, the set of states
s includes states s0 = ,  characterized by discrete

energies  and wave functions |s0〉  normalized to
unity and states s, Es characterized by continuous ener-
gies Es ≥ E0 (E0 is the lower continuum threshold) and
wave functions | , Es〉  normalized to the delta function
of energy. The functions |s〉  satisfy the completeness
condition

(2)

where the symbol  is spelled out as

(3)

H x( ) Es–( ) s| 〉 0,=

s
s0 Es0

Es0

s

Ψs x( )Ψs
* x'( )

s

∑ s| 〉 s〈 |
s

∑ δ x x'–( ),= =

s∑

 =  + Es,d

E0

∞

∫
s

∑
s0

∑
s

∑
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and the orthonormalization condition

(4)

where the symbol  coincides with the ordinary Kro-

necker delta symbol for s = ,  and s1 = , 

and with the symbol δ(Es – ) for s = , Es.

Let us represent the Hamiltonian H(x) in the form

(5)

where H0(x) is the Hamiltonian of the unperturbed sys-
tem and V(x) is the perturbation operator. We also intro-
duce wave functions |k〉  with energies εk for the unper-
turbed system with the Hamiltonian H0(x):

(6)

Among the states k, there are states k0 with discrete

energies  and states , εk with continuous energies
εk > ε0.

The wave functions |k〉 form a complete orthonor-
malized basis in accordance with the conditions of the
type (2) and (4). We can expand a function |k〉 in a series
in the functions |s〉 as

(7)

where the expansion coefficients  = 〈s|k〉 , which have
the meaning of the wave function |k〉  in the s represen-
tation, satisfy the equation

(8)

and the orthonormalization and completeness condi-
tions

(9)

Let us now determine the retarded Green’s function [3]
G(xt, x't') for the perturbed system. This Green’s func-
tion satisfies the equation

The Green’s function G0(xt, x't') for the unperturbed
system is determined by the similar equation with the
Hamiltonian H(x) replaced by the Hamiltonian H0(x).
By using condition (2), we can represent the solution
for the retarded Green’s function G(xt, x't') as

where the function θ(t) is equal to unity and zero for t >
0 and t < 0, respectively. The Fourier transform of this

s s1〈 〉 δss1
,=

δss1

s0 Es0
s10 Es10

δss1
Es1

s

H x( ) H0 x( ) V x( ),+=

H0 x( ) εk–[ ] k| 〉 0.=

εk0
k

k| 〉 Cs
k s| 〉 ,

s

∑=

Cs
k

εk Es–[ ]Cs
k s V s1〈 〉 Cs1

k

s1

∑+ 0=

Cs
k( )*Cs

k1

s

∑ δkk1
, Cs

k( )*Cs1

k

k

∑ δss1
.= =

i"
∂
∂t
----- H x( )– 

  G xt x't',( ) δ x x'–( )δ t t'–( ).=

G xt x't',( ) i
"
--- Ψs x( )Ψs

* x'( )e
i/"Es t t'–( )–

θ t t'–( ),
s

∑=
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function in the variable τ = t – t' is given by

where the infinitesimal quantity δ  0+ is introduced
to regularize the relevant integral. This function and the
Fourier transform of the analogous unperturbed
Green’s function G0(xt, x't') can be represented in the
symbolic form

(10)

Let us consider the matrix elements of the type
〈k|G(ε, x)|k1〉  ≡ (ε) for the Green’s functions G(ε, x)

and G0(ε, x) (10) in the k representation of these
Green’s functions,

(11)

If we express the above matrix elements in terms of the
complete orthonormalized bases of the eigenfunctions
|s〉  and |k〉  of the Hamiltonians H(x) (1) and H0(x) (6),

respectively, the functions (ε) and (ε) (11) can
be represented as

(12)

(12a)

We further make use of the well-known relation (see,
for example, [1])

(13)

and write explicitly the real and the imaginary part of
the Green’s function (ε):

(14)

G x x' ε, ,( ) e i/"( )ετ δ τ– G xt x't',( ) τ ,d

∞–

+∞

∫=

G ε x,( ) 1
ε H x( )– iδ+
--------------------------------,=

G0 ε x,( ) 1
ε H0 x( )– iδ+
----------------------------------.=

Gkk1

Gkk1
ε( ) k 1

ε H x( )– iδ+
-------------------------------- k1 ,=

Gkk1

0 ε( ) k 1
ε H0 x( )– iδ+
---------------------------------- k1 .=

Gkk1
Gkk1

0

Gkk1
ε( )

Cs
k( )*Cs

k1

ε Es– iδ+
-------------------------

s

∑=

=  
Cs0

k( )*Cs0

k1

ε Es0
– iδ+

-------------------------- Es

Cs
k( )*Cs

k1

ε Es– iδ+
-------------------------,d

E0

∞

∫
s

∑+
s0

∑

Gkk1

0 ε( )
δkk1

ε εk– iδ+
------------------------ Gk

0δkk1
.≡=

1
x iδ+
-------------- P

1
x
--- iπδ x( )–=

Gkk1

Re Gkk1
ε( ) P

Cs
k( )*Cs

k1

ε Es–
----------------------,

s

∑=

Im Gkk1
ε( ) π Cs

k( )*Cs
k1δ ε Es–( ).

s

∑–=
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From here, we obtain the dispersion relation [3]

(15)

which makes it possible to reconstruct the complete
Green’s function from its imaginary part Im (ε).

By analogy with a consideration of the analytic
properties of the exact single-particle Green’s function
for open Fermi systems in [11], we will now investigate
the analytic properties of the Green’s function (ε)
in the complex plane of the variable ε. As can be seen
from (12), (ε) is a two-sheeted function. On the
first (physical) sheet, this function has discrete poles on
the real axis at ε =  < E0 and the branch point at ε =
E0, from which we can draw a cut along the real axis to
infinity (E0 ≤ ε ≤ ∞). Upon going over from the lower
(ε = Reε – iα, where α > δ and α  0+) to the upper
(ε = Reε + iα) bank of the cut, the function (ε)
undergoes the discontinuity

(16)

The properties of the function (ε) on the physical
sheet are illustrated in the figure. On the second
(unphysical) sheet of the variable ε, whose upper and
lower half-planes are joined with, respectively, the
lower and the upper bank of the cut on the physical
sheet, the function (ε) has poles that occur on the
real axis for ε < E0 and correspond to virtual and
antibound states; in addition, it has pairs of poles at

Gkk1
ε( ) 1

π
---

Im Gkk1
ε1( )

ε ε1– iδ+
--------------------------- ε1,d

∞–

+∞

∫–=

Gkk1

Gkk1

Gkk1

Es0

Gkk1

∆Gkk1
ε( ) 2iπ Cs

k( )*Cs
k1δ ε Es–( ).

s

∑–=

Gkk1

Gkk1

ε

C1

E0

C2

Positions of the poles (crosses) and cuts (hatching) for the
Green’s function on the physical sheet of the variable ε.
Closed solid lines with arrows represent contours of integra-
tion that are used in evaluating relevant integrals.
Reε ≥ E0 and Imε = +Γ, –Γ (Γ > 0), which correspond
to the quasistationary states of the system.

The equations for the matrix elements (ε) can
be derived by expanding the Green’s function G(ε, x)
(10) in a series in the potential V(x) and by subsequently
summing some terms of this series. As the result, we
find that the Green’s function G(ε, x) satisfies the equa-
tion [3]

(17)

whence we obtain an equation for the Green’s function
(ε) in the k representation:

(18)

For a discrete state k1 = k0, the diagonal matrix element
(ε) is determined by the equation

(19)

If we use equation (18), the result obtained by iterating
the right-hand side of (19) and by explicitly isolating
the diagonal element (ε) is given by [2]

This formula can be represented in the compact form

(20)

Gkk1

G ε x,( ) G0 ε x,( ) G0 ε x,( )V x( )G0 ε x,( )+=

+ G0 ε x,( )V x( )G0 ε x,( )V x( )G0 ε x,( ) …+

=  G0 ε x,( ) G0 ε x,( )V x( )G ε x,( ),+

Gkk1

Gkk1
ε( ) Gk

0δkk1
Gk

0 k V k2〈 〉 Gk2k1
ε( ).

k2

∑+=

Gk0k0

Gk0k0
ε( ) Gk0

0 Gk0

0 k0 V k2〈 〉 Gk2k0
ε( ).

k2

∑+=

Gk0k0

Gk0k0
ε( ) Gk0

0 Gk0

0 k0 V k0〈 〉




+=

+ k0 V k1〈 〉 Gk1

0 ε( ) k1 V k0〈 〉
k1 k0≠
∑

+ k0 V k1〈 〉 Gk1

0 ε( )
k1 k0≠
∑

× k1 V k2〈 〉 Gk2

0 ε( ) k2 V k0〈 〉 …+
k2 k0≠
∑





Gk0k0
ε( ).

Gk0k0
ε( ) Gk0

0 Gk0

0 k0 V k0〈 〉 ---




+=

+ k0 V
1

ε H̃– iδ+
------------------------V k0





Gk0k0
ε( ),
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where the Hamiltonian  differs from the Hamiltonian
H in that the former is defined in the space of eigen-
functions | 〉 ,

(21)

which are orthogonal to the wave function |k0〉  of the

unperturbed system, 〈k0| 〉  = 0. For  < , the states

| 〉  = | 〉  have discrete energies, while, for  ≥ , the

states | 〉 belong to the continuous spectrum. Following
the ideology of the projection-operator technique [11,

12], we can introduce the projection operator  ≡
|k0〉〈 k0| (  = ( )2) and the complementary operator

 = 1 – . Within this framework, the Hamiltonian

 can be represented in the form  = H . Intro-
ducing a complete orthonormalized basis of eigenfunc-
tions | 〉  of Hamiltonian (21) and using equation (20),
we can reduce the diagonal matrix element (ε) to
the form

(22)

where (ε) is an analog of the retarded (energy-
dependent) part of the mass operator [3]:

(23)

For the continuum states |k〉  and |k1〉 , there is the prob-
lem of a limiting transition from the off-diagonal
matrix element (ε) to the diagonal one. The point
is that, upon a formal substitution of the subscript k1 =
k into (ε), the resulting quantity involves a term

proportional to δkk = δ(εk – ) for   εk and is
therefore divergent. Instead of the divergent matrix ele-
ment Gkk(ε), we will make use of the quantity (ε)
defined as

(24)

where the integral with respect to  receives the main

contribution from a small vicinity δεk of the point  =

εk. For the function (ε), equation (22) then holds upon
the replacement of the subscript k0 by k; the projection

operator  ≡ |k0〉〈 k0| by the projection operator Pk ≡

〈k|dεk (  = Pk); and the quantities 〈k0|V |k0〉  and

H̃

s̃

Es̃ H̃–[ ] s̃| 〉 0,=

s̃ Es̃ Ẽ0

s̃ s̃0 Es̃ Ẽ0

s̃

P̂k0

P̂k0
P̂k0

Q̂ P̂k0

H̃ H̃ Q̂ Q̂

s̃
Gk0k0

Gk0k0
ε( ) ε εk0

– k0 V k0〈 〉– M̃k0
ε( )– iδ+[ ] 1–

,=

M̃k0

M̃k0
ε( )

k0 V s̃〈 〉 2

ε Es̃– iδ+
-------------------------.

s̃

∑≡

Gkk1

Gkk1

εk1
εk1

Gkk

Gkk ε( ) Gkεk kεk1
, ε( ) εk1

,d∫=

Gkk
0 ε( ) Gkεk kεk1

,
0 ε( ) εk1

d∫ Gk
0 ε( ),= =

εk1

εk1

Gkk

P̂k0

k| 〉∫ Pk
2
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 by V|k1〉d  and ,

respectively, where the integrals with respect to  are

determined by a small vicinity δεk of the point  = εk.
For potentials V(x) decreasing with increasing distance
between the interacting parts of the system, we can dis-
regard all terms involving V(x) in formulas for the
Green’s function (ε) that are similar to (22),

whereby (ε) becomes coincident with  (12a).

3. STRENGTH FUNCTION OF THE STATE k

Let us consider the energy distribution (ε) of the

coefficients , which is given by

(25)

In the diagonal case, it reduces to the function

(26)

which is referred to as the strength function for the state
k [9, 13]. The strength function Sk(ε) specifies the
energy distribution of the unperturbed state k over the
states s of the perturbed system. For a discrete state k0,
the strength function  is determined by the imagi-

nary part of the Green’s function (ε) (22). Separat-

ing the real [ (ε)] and the imaginary 

parts of the function (ε) (23) with the aid of (13),

(27)

and determining the imaginary part of the Green’s
function (ε) (22), we can deduce an explicit

expression for the strength function (ε) by using the
definition in (26). The result is

(28)

M̃k0
k〈 |∫ εk1

dεk1

k V s̃〈 〉 s̃ V k1〈 〉
ε Es̃– iδ+

--------------------------------------
s̃∑∫

εk1

εk1

Gkk

Gkk Gk
0

Skk1

Cs
k

Skk1
ε( ) 1

π
---Im Gkk1

ε( )– Cs
k( )*Cs

k1δ ε Es–( ).
s

∑= =

Sk ε( ) Skk ε( )≡ Cs
k 2δ ε Es–( ),

s

∑=

Sk0

Gk0k0

∆k0

1
2
---Γ k0

ε( )– 
 

M̃k0

∆k0
ε( ) P

k0 V s̃〈 〉 2

ε Es̃–
-------------------------,

s̃

∑=

Γ k0
ε( ) 2π k0 V s̃〈 〉 2δ ε Es̃–( ),

s̃

∑=

Gk0k0

Sk0

Sk0
ε( )

=  
Γ k ε( )

2π ε εk0
– k0 V k0〈 〉– ∆k0

ε( )–( )2 Γ k0
ε( )( )2

4
---------------------+

----------------------------------------------------------------------------------------------------------------.
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Formula (28) has a Breit–Wigner form, but it was
obtained without invoking an averaging procedure usu-
ally used in deriving similar expressions [13].

Let us now analyze this formula in some detail. For

ε < , the width (ε) (27) has a delta-function char-

acter at ε values coincident with the energies  of the
discrete states. At these ε values, however, the strength
function (ε) vanishes. At nonzero values of (ε),

the quantity (ε) can therefore be set to zero in (28).
Formula (28) then reduces to that part of formula (26)
which is determined by the sum over the discrete states

s0 under the condition E0 = , the energies  of the
corresponding states being determined by the equation

(29)

For the quantities , we have

(30)

For ε ≥ , the width (ε) becomes nonzero owing

to the contribution of the continuum states :

(31)

In (28), the poles are simultaneously shifted from the
real axis of ε to the unphysical sheet of complex values
of this variable.

If the state k belongs to the continuous spectrum, it
is natural to use the function (ε) (24), which is

equal to (ε), instead of the divergent diagonal matrix
element Gkk(ε) of the Green’s function (see above).
Instead of the strength function Sk, we can make use of

the strength function  = , which coincides

with δ(ε – εk).

4. ENERGY MOMENTS OF THE STRENGTH 
FUNCTION

Let us consider the energy moments  of the dis-

tribution (ε) that are given by

(32)

By using the relation between the strength function
(ε) and the Green’s function (ε), the energy

moments can be expressed [13] in terms of integrals
along the contour C1 that corresponds to transition from

Ẽ0 Γ k0

Es̃0

Sk0
Sk0

Γ k0

Ẽ0 Es0

Es0
εk0

k0 V k0〈 〉 ∆k0
Es0

( ).+ +=

Cs0

k0 2

Cs0

k0 2
1

d∆k0
ε( )

dε
------------------

ε Es0
=

– 
  1–

.=

Ẽ0 Γ k0

s̃

Γ k0
ε( ) 2π k0 V s̃ ε,〈 〉 2.

s̃

∑=
–

–

Gkk

Gk
0

Sk Skk1
εk1

d∫

Jkk1

l( )

Skk1

Jkk1

l( ) εlSkk1
ε( ) εd∫ Cs

k( )*Cs
k1Es

l .
s

∑= =

Skk1
Gkk1
the lower (ε = Reε – iα, where α > δ and α  0+) to
the upper (ε = Reε + iα) bank of the cut for the function

(ε) and which is depicted in the figure:

(33)

Since the integrand in (33) involves analytic functions,
the contour C1 can be deformed into a circle of infi-
nitely large radius (contour C2 in the figure). From (11),
it follows that, for ε  ∞, we have

(34)

As a result, the zeroth moment , which is deter-
mined by calculating the relevant integral along the
contour C2 in (28), appears to be

(35)

which is consistent with the orthonormalization condi-
tion (9).

In order to calculate the first moment  [see (33)],
we consider the integral

(36)

With the aid of equations (18) and (29), the limiting
form of the bracketed expression in (36) for ε  ∞

can be represented as . The integral in (36)

then assumes the form . If we consider that

(ε)dε = εk , the relation

(37)

follows from expression (36) for the first moment ,
which coincides with the energy centroid of the distri-
bution (ε).

In order to calculate the second moment  [see
(32)], we consider the integral

(38)

Gkk1

Jkk1

l( ) 1
2πi
-------- εlGkk1

ε( )dε.

C1

∫°=

Gkk1
ε( ) Gk

0 ε( )δkk1

1
ε
---δkk1

.

Jkk1

0( )

Jkk1

0( ) Cs
k( )*Cs

k1

s

∑ δkk1
,= =

Jkk1

1( )

1
2πi
-------- ε Gkk1

ε( ) Gkk1

0( ) ε( )–[ ]dε.

C2

∫°

k V k1〈 〉
ε2

--------------------

k V k1〈 〉
1

2πi
-------- εGkk1

0

C2∫° δkk1

Jkk1

1( ) Cs
k( )*Cs

k1Es

s

∑ εkδkk1
k V k1〈 〉+= =

Jkk1

1( )

Skk1

Jkk1

2( )

1
2πi
-------- ε2 Gkk1

ε( ) Gkk1

0( ) ε( ) ∑–

C2

∫°

– Gk
0 k V k2〈 〉 Gk2k1

0 ε( )
k2

∑ dε.
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By means of equations (18) and (29), the limiting form
of the bracketed expression in (38) for ε  ∞ can be

reduced to . The integral in (38) then

assumes the form 〈k|V2|k1〉 . From (38), we find, by addi-
tionally taking into account the relations

(ε)dε = ,

(ε)〈k|V |k1〉  = 2εk〈k|V |k1〉 ,

that the second moment  can be represented as

(39)

Pursuing our calculations further along similar lines,
we obtain the following generic expression for the

moment :

(40)

This formula reflects high symmetry: the lth moment of
the distribution (ε) is determined by the matrix ele-
ment of the lth power of the Hamiltonian of the per-
turbed system between the states |k〉  and |k1〉 . It is there-
fore natural to make an attempt at deriving this formula
within a more general formalism. For this, we consider
the Green’s function G(ε, x) (10) as a function of energy
ε and the operator H(x). We define the operator strength

function (ε) as

(41)

Its matrix element between the states k and k1 coincides
with the distribution (ε) (25). We further introduce

the operator moments  of the operator strength

function (ε) as

(42)

The integral in (42) can be calculated straightforwardly
by using expression (10) for G(ε, x). The result is

(43)

The matrix element of the operator  between the

states k and k1 coincides with the moment  calcu-
lated above [see (40)].

k V2 k1〈 〉
ε3

----------------------

1
2πi
-------- ε2Gkk1

0

C2

∫° εk
2δkk1

1
2πi
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0
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∫° Gk1

0 dε

Jkk1

2( )

Jkk1
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k1Es
2

s

∑=

=  εk
2δkk1

2εk k V k1〈 〉 k V2 k1 .+ +

Jkk1
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Jkk1

l( ) k εk V+( )l k1 k Hl x( ) k1 .= =

Skk1

Ŝ

Ŝ ε( ) 1
π
---Im G ε x,( )– δ ε H x( )–( ).= =

Skk1

Ĵ
l( )

Ŝ

Ĵ
l( ) εlŜ ε( ) εd∫ 1

2πi
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C2

∫°= =

Ĵ
l( )

H x( )( )l.=

Ĵ
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Jkk1
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Let us now consider the quantity

where (ε) is the complex conjugate of (ε) not
only for real values of the variable ε but also for its
complex values. Taking into the account the definitions

of the functions (ε) and (ε) [formulas (23) and
(22), respectively], we can evaluate the integral in the
expression for K along the contour C1. This yields

On the other hand, we can see that, owing to the analy-
ticity of the integrand in the definition of K on the phys-
ical sheet beyond the contour C1, the quantity K can be
represented as an integral along the contour C2:

Since this integral is equal to zero, we arrive at the
important conclusion that the function (ε) (23) aver-
aged over the distribution in (28) vanishes; that is,

(44)

This conclusion makes it possible to clarify the reason
why the quantity (ε) does not appear in expression

(37) for the first moment  of the strength function.
Using the methods of the above analysis, we can derive
the inverse strength function (ε), which determines
the energy distribution of the perturbed discrete state s0
over the states k of the unperturbed system:

(45)

For this, we must make the substitution k  s in all
the formulas obtained above and reverse the sign of the
potential V(x).

5. AVERAGED STRENGTH FUNCTION
AND GLOBAL REGIME OF AVERAGING

Let us consider the case where a discrete state k0
corresponds to a sufficiently high excitation energy, so
that the main contribution to the strength function

(ε) (26) comes from the states s characterized by a

K
1

4πi
-------- M̃k0

ε( ) M̃k0
* ε( )+ Gk0k0

ε( )dε,
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K ∆k0
ε( )Sk0
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1

4πi
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ε( ) M̃k0
* ε( )+ Gk0k0

ε( )dε.
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∫°=

∆k0

∆k0
ε( )Sk0

ε( ) εd

∞–

+∞

∫ 0.=

∆k0

Jkk1

1( )

Ss0

Ss0
ε( ) Ck

s0 2
δ ε εk–( ).

k
∑=

Sk0



818 KADMENSKY, LESNYKH
significant energy density ρs. In this case, we can intro-
duce [9, 13] the strength function

(46)

averaged over the energy range ∆ satisfying the condi-
tion ρs∆ @ 1. The quantity f∆(y) in integrand in (46)—
the function with which the averaging is performed—is
a normalized (to unity) even function that has a maxi-
mum at y = 0 and which decreases fast beyond the inter-
val of averaging. It immediately follows from the defi-
nition of this function that the zeroth and first moments

of the averaged strength function  coincide with
the corresponding moments of the exact strength func-
tion (ε) (26):

(47)

The averaged strength function 〈 (ε)〉  (46) can also
be expressed in terms of an integral in the complex

Sk0
ε( )〈 〉 f ∆ ε ε1–( )Sk0

ε1( ) ε1d

∞–

+∞

∫=

=  Ck0

s 2
f ∆ ε Es–( ),

s
∑

Jk0

l( )〈 〉

Sk0

Jk0

0( )〈 〉 1, Jk0

1( )〈 〉 εk0
k0 V k0〈 〉 .+= =

Sk0
plane along the contour C1 [13]:

(48)

We choose the averaging function in the form of the
Breit–Wigner distribution [13]

(49)

which has two poles in the complex plane of y at y =

±i∆/  and which decreases in proportion to 1/y2 for
|y |  ∞. Therefore, this function has only two finite
moments, those corresponding to l = 0 and l = 1. For this
case, relation (48) can be recast into the form [9, 13]

(50)

where the contour C3 is formed by two circles of small
radius that circumvent the poles of the function f∆(y) in
the counterclockwise direction. Upon calculating the
integral in (50), we can reduce the function 〈 (ε)〉  to
a form similar to that of (28). Specifically, we have

Sk0
ε( )〈 〉 1

2πi
-------- f ∆ ε ε1–( )Gk0k0

ε1( ) ε1.d

C1

∫°=
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2π y2 ∆
2
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 
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-----------------------------------,=

2

Sk0
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2πi
-------- f ∆ ε ε1–( )Gk0k0

ε1( ) ε1,d

C3

∫°=

Sk0
(51)Sk0
ε( )〈 〉

Γ k0
ε( )〈 〉 ∆+

2π ε εk0
– k0 V k0〈 〉– ∆k0

ε( )〈 〉–( )2 Γ k0
ε( )〈 〉 ∆+( )2

4
------------------------------------+

-----------------------------------------------------------------------------------------------------------------------------------,=
where

(52)

(53)

In formulas (52) and (53), we went over from summa-
tion over states  to integration by using the density 
of these states. From formulas (47) for the zeroth and
the first moment of the distribution in (51) and from

∆k0
ε( )〈 〉

k0 V s̃〈 〉 2 ε Es̃–( )

ε Es̃–( )2 ∆2

4
-----+

--------------------------------------------
s̃
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=  Es̃ρs̃

k0 V s̃〈 〉 2 ε Es̃–( )

ε Es̃–( )2 ∆2

4
-----+
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Γ k0
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k0 V s̃〈 〉 2∆

ε Es̃–( )2 ∆2

4
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=  Es̃ρs̃

k0 V s̃〈 〉 2∆

ε Es̃–( )2 ∆2

4
-----+

---------------------------------.d∫

s̃ ρs̃
(45), it follows that, in the region where the function
〈 (ε)〉 is nonzero, the changes in the quantities 〈 (ε)〉
and 〈 (ε)〉  are correlated and that their values aver-

aged over this region are equal to zero and , respec-
tively. Further, we choose the averaging interval ∆0 in
such a way as to ensure fulfillment of the following
relations to a high precision:

(54)

(55)

In this case, the expression for the averaged strength
function is simplified significantly to become

(56)

This regime of averaging—it results in the vanishing of
all quantities that oscillate on the interval of averaging

Sk0
∆k0

Γ k0

Γ k0

∆k0
ε( )〈 〉 0,=

Γ k0
ε( )〈 〉 Γ k0

.=

Sk0
ε( )〈 〉

=  
Γ k0

∆0+

2π ε εk0
– k0 V k0〈 〉–( )2 Γ k0

∆0+( )2

4
--------------------------+

-----------------------------------------------------------------------------------------------.
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(∆0)—is referred to as a global regime of averaging
[11]. Experience gained in solving specific problems of
quantum mechanics and nuclear physics (see, for
example, [13, 14]) reveals that the width ∆0 of the inter-
val of averaging depends on the form of the potential
V(x) and on the energy and the structure of the state k0.
At sufficiently high excitation energies of the state k0,
however, ∆0 proves to be much less than the width ,
so that it can be disregarded in (56).

6. STRENGTH FUNCTION
AND QUANTUM CHAOS

The conditions under which quantum chaos arises in
stationary quantum systems were investigated in [6–8].
A stationary system that is described by a Hamiltonian
H0(x) has a regular character [8] if the number of the
coordinates x of the system coincides with the number
of operators of basic integrals of the motion of the sys-
tem in involution. For the emergence of quantum chaos
in the system [8], it is necessary (but not sufficient) that
the Hamiltonian H0(x) be supplemented with a perturb-
ing potential V(x) that violates symmetries associated
with one or several basic integrals of the motion and
which removes the degeneracy of states |k〉  of the
unperturbed Hamiltonian. Quantum chaos arises in the

system if the coefficients  in the expansion of the
ensemble of the wave functions Ψs(x) ≡ |s〉  of the total
Hamiltonian H(x) of the system in the unperturbed
states |k〉  become random numbers described by an
equiprobable Wigner distribution [13].

From the viewpoint of the strength function Sk(ε)
(28) and its averaged representation 〈Sk(ε)〉 (56), quan-
tum chaos is equivalent to equiprobability in the distri-

bution of the coefficients . For an ensemble of
excited states Ψs(x) with a sufficiently high density, this
regime is realized [8] under the condition Γk ≥ Dk,
where Dk is the mean spacing between the neighboring
states k for the unperturbed Hamiltonian H0(x). A simi-
lar criterion as implemented with an approximate rep-
resentation for strength functions was used in [6–8],
where it was shown that the conditions for the emer-
gence of quantum chaos in some mechanical systems
coincide with the conditions under which classical
types of chaotic motion arise in these systems when
they are described within classical mechanics.

7. CONCLUSION

The above investigation has made it possible to
establish some important integral properties of the

Γ k0

Cs
k

Cs
k
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coefficients  that describe a transition from one
orthonormalized basis of the wave functions of a sta-
tionary quantum system to another. These properties
are very useful for testing accuracies in perturbative
calculations and in approaches relying on expansions
of exact wave functions of the system in the functions
of the unperturbed system. Of particular importance are
these properties for the vigorously developing line of
investigations that address the problem of conditions
under which chaos emerges in quantum systems.
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Abstract—A new method is proposed for measuring a T-violating muon polarization in the decays K+ 
π0µ+ν and K+  µ+νγ. The method is based on a complete reconstruction of kinematics in these decays by
using a high-resolution π0 detector, an active muon polarimeter, and a nearly 4π efficient photon veto system.
A high acceptance of the detector allows one to reach a statistical sensitivity to the T-violating muon polariza-
tion of less than 10–4 in an experiment with stopped K+ mesons. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the few observables that have good prospects
for detecting CP violation beyond the Standard Model
(SM) is the transverse muon polarization (PT) in the
decays K+  π0µ+ν (Kµ3) and K+  µ+νγ (Kµ2γ). It
vanishes in the SM, but it is particularly sensitive to
scalar or pseudoscalar interactions in the case of Kµ3

decay [1, 2]. The decay K+  µ+νγ can have even
more sources (effective pseudoscalar, vector, and axial-
vector four-fermion interactions [3]) that might give
rise to PT. The transverse muon polarization can easily
reach a level of 10–3 in the three-Higgs-doublet model
and in the leptoquark model without conflicting with
existing experimental constraints [4]. Measurement of
a nonzero transverse muon polarization in these decays
would be a clear indication of physics beyond the SM
and provide some insights into the origin of CP viola-
tion. The contribution to the transverse muon polariza-
tion from electromagnetic final-state interaction (FSI)
is on the order of 10–6; that is, it is negligible in the case
of Kµ3 decay [5]. The FSI contribution to the polariza-
tion could be as large as 10–3 for K+  µ+νγ [6], but it
can be reliably calculated [7].

The on-going E246 experiment at KEK [8] is
designed for PT measurements at a level of about 10−3

in the Kµ3 decay of stopped K+. In this experiment, the
kinematics of the Kµ3 decay is reconstructed by using
the muon momentum measured in a toroidal magnet
and a π0 measurement provided by a CsI calorimeter. A
suppression of instrumental systematic effects is
attained through the azimuthal symmetry of the appara-
tus and by taking a double ratio between events with
forward- and backward-going π0 mesons relative to the
direction of the kaon beam. An important feature of this
technique is that the detector systematics is, to the first

  * This article was submitted by the authors in English.
** e-mail: kudenko@wocup.inr.troitsk.ru
1063-7788/00/6305- $20.00 © 20820
order, independent of the characteristics of the kaon
beam. The major limitation of the experiment is the low
detector acceptance to Kµ3 events [about (0.7–0.8) ×
10−5 per incident kaon]. The sensitivity of the E246
experiment is basically limited by this factor.

The new experiment E923, which is planned at BNL
[9], uses in-flight K+ decays. A cylindrical active pola-
rimeter around the kaon beam and an electromagnetic
calorimeter will be used to reconstruct Kµ3 decays and
suppress background. The detector acceptance to Kµ3

events is about (2.5–2.7) × 10–5 per 2-GeV/c kaons. The
advantage of the in-flight experiment is thus the rela-
tively high detector acceptance, but systematics associ-
ated with the kaon beam can be a major problem of the
method compared to the stopped-kaon approach. More-
over, the common problem for the two experiments is
that they cannot measure PT in the decay K+  µ+νγ
with a high sensitivity because of an inefficient rejec-
tion of the background from the decays K+  π0µ+ν,
K+  π0π+, and K+  π+π0π0.

2. DESCRIPTION OF THE METHOD

A new method of measurement of a T-odd polariza-
tion in the decays K+  π0µ+ν and K+  µ+νγ is dis-
cussed below. The basic principles can be briefly for-
mulated as follows: (i) a high-resolution measurement
of π0 from the Kµ3 decay of stopped K+; (ii) an active
muon polarimeter, which also provides the muon
momentum measurement, and photon detection; and
(iii) a highly efficient photon veto covering nearly a full
solid angle.

The energy of the neutral pion can be defined as

E
π0
2

2m
π0
2

1 ηcos–( ) 1 X2–( )
----------------------------------------------,=
000 MAIK “Nauka/Interperiodica”
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where η is the opening angle between the momenta of
the two photons from the decay π0  γγ, while E1 and
E2 are the laboratory photon energies, which yield the

ratio X = . If the photon energies are nearly

equal, X 2 is small, and an accurate measurement of η
provides a high energy resolution for π0. The contribu-
tion to the pion energy resolution from the uncertainty
in the reconstruction of η (ση) is given by

where β = p/E and γ = E/ . In the case of E1 ≈ E2

[10], the π0 energy resolution due to the uncertainty in
the photon energies ( ) is

Assuming that the above-mentioned quantities are
independent and that the parameters of a photon detec-

tor are ση ~ 5 mrad and  ~ 0.015/ , we can
find that σp/p is 1 to 2% (|X| ≤ β) for pions from Kπ2

decay. Such a momentum resolution for π0 is expected
to provide a narrow peak for Kπ2 decay, which can be
rejected to give a good selection of the Kµ3 mode.

Figure 1 shows a schematic view of the proposed
setup. The kaon beam is stopped in the scintillating
fiber target. The π0 mesons from Kµ3 decays at rest are
detected by both the preshower detector and the photon

E1 E2–
E1 E2+
------------------

∆E
π0
η r.m.s.( )

m
π0

2
--------γ2βση ,=

m
π0

σEγ

∆E
π0
γ r.m.s.( ) 3

σEγ

2

E
π0

-------.=

σEγ
E GeV( )

Fig. 1. Schematic side view of the detector.
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Fig. 2. Reconstructed π0 momentum spectra for events
which pass the requirements that |X| ≤ β and that µ+ stops in
the polarimeter; only Kµ3 and Kπ2 modes are shown: (a)
total spectrum (intensities of the modes are proportional to
their branching ratios), (b) events with the opening angle
between charged and neutral particles less than 175° are
accepted, and (c) only events with forward- and backward-
going pions and opening angle ≤175° are accepted.
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Fig. 3. Monte Carlo simulation of the energy spectra of photons for 106 K+ decays at rest; events in which only one photon is detected
in the calorimeter and which passed the cuts Eµ ≥ 200 MeV and 20 ≤ Eγ ≤ 200 MeV and have the opening angle of ≤100° between
photon and muon momenta are accepted. Intensities of the modes are proportional to their branching ratios. Shown in the figure are
(a) the total spectrum, (b) Kπ2 events, (c) Kµ3 events, and (d) Kµ2γ events.
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(c)

(b)

(d)

20
calorimeter providing a separate measurement of the
photon-momentum direction and the photon energy.
The momentum of the muon is determined through its
range in the segmented active polarimeter (Al plates +
MWPCs + plastic counters). The polarization of
stopped muons is measured by detecting the positron
from the decay µ+  e+ν , which is emitted prefer-
entially in the muon-spin direction. The polarimeter,
which also serves as a photon veto detector, is sur-
rounded by an additional photon veto system. Charged-
particle tracking is provided by fiber trackers and wire
chambers. The T-violating muon polarization is defined
by  · (  × ), where  and  are the momen-

tum vectors of the π0 and µ+ mesons, respectively, and
 is the muon spin. The transverse muon polarization

PT is directed in a screw sense around the beam axis and

will generate an asymmetry A =  in the

counting rate between clockwise (cw) and counter-
clockwise (ccw) emitted positrons. The sign of PT in
forward-going π0 events is opposite to that in back-

ν

sµ p
π0 pµ p

π0 pµ

sµ

Ncw Nccw–
Ncw Nccw+
---------------------------
ward-going π0 events. This allows us to take a double
ratio between these two types of events, which is of
importance for reducing of systematic errors.

The results of Monte Carlo simulations of Kµ3, Kπ2,
and Kµ2γ modes of 106 K+ decays at rest using the
GEANT3.21 code with the detector parameters ση ~
5 mrad and  ~ 1.5% at 1 GeV are shown in Figs. 2

and 3. Figure 2a shows the momentum spectrum of π0

mesons for Kµ3 and Kπ2 events. The numbers of events
simulated for these modes are proportional to their
branching ratios, and no cuts were applied. The separa-
tion of Kµ3 events from those of Kπ2 is achieved by
requiring that the angle between the momenta of the
charged and neutral particle be less than 175°, as is seen
in Fig. 2b. An additional cut on the π0 direction (selec-
tion of Kµ3 events with forward- and backward-going
pions, θ ≤ 70° and ≥ 100°, respectively) completely
eliminates the Kπ2 mode, as is shown in Fig. 3c. It
should be noted that muons from the in-flight π+ decays
of the Kπ2 mode, accepted as muons from Kµ3 decays in
the case of charged-particle momentum measurement,

σEγ
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will be completely removed from the accepted Kµ3
events after the requirement that the neutral-pion
momentum be less than 190 MeV/c. After applying
these cuts, Kµ3 events are virtually free from the back-
ground due to other K+-decay modes. The Kπ3 back-
ground is removed by using an efficient photon veto.

The apparatus in question is also able to measure the
transverse muon polarization in the decay K+  µ+νγ.
The background events for this decay appear from the
Kµ3 and Kπ2 modes when one photon is missed. To sup-
press these events, an additional photon veto detector
consisting of alternating layers of lead and plastic can
be installed to detect photons traversing the polarime-
ter. In the Monte Carlo simulations, an average photon-
detection inefficiency of the veto detector in the energy
range 10–250 MeV was assumed to be 2%, which is
even larger than that of the E787 experiment at BNL
[11]. The photon spectra detected by the photon detec-
tor after applying the cuts Eµ ≥ 200 MeV and 20 ≤ Eγ ≤
200 MeV and the requirement that the opening angle
between the photon and muon momenta not exceed
100° are shown in Fig. 3. The signal-to-background
ratio of about 8 is obtained; i.e., the physical back-
ground from copious Kµ3 and Kπ2 decays is suppressed
by a factor of about 102–103. The main contribution to
the background comes from the Kπ2 mode, which can-
not produce a spurious PT and only dilutes the detector
sensitivity to polarization in the decay K+  µ+νγ.
The Eγ threshold of 50 MeV eliminates Kπ2 events, and
we have very clear Kµ2γ events in the region 50–200 MeV,
but at the expense of the detector acceptance. The back-
ground from Kµ3 events is found to be at very safe level
of less than 1%, as is seen from Fig. 3c.

3. SENSITIVITY

The detector acceptance to Kµ3 events obtained from
a Monte Carlo simulation is about 1.9%. This includes
the muon stopping efficiency in the polarimeter of
0.85–90, the photon conversion and reconstruction effi-
ciency of about 0.3, and the efficiency of positron
detection of 0.75–0.80. Since the branching ratio for
the Kµ3 decay is 3.18% and since the kaon-stopping
efficiency is obtained to be about 0.3 for a 800-MeV/c
kaon momentum, the total detector acceptance e per
incident K+ is about 2.0 × 10–4; i.e., it is greater than the
acceptance of the KEK E246 and BNL E923 detectors
by a factor of 20 and 6, respectively. The statistical sen-
sitivity to PT that can be obtained in this experiment is
given by

δPT
1

Af eN
K

+

-----------------------,=
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where the detector analyzing power A is 0.2 and the
attenuation factor f is 0.70. For a kaon intensity of
107 K+/s, which can be available in the BNL low-energy
separated beam, for example, and a running time of 107 s,
we obtain δPT ~ 5.5 × 10–5. For the decay K+  µ+νγ,
a similar estimation gives δPT ~ 0.9 × 10–4.

Owing to simple detector geometry, which provides
good azimuthal symmetry, and to the use of an active
muon polarimeter, it also seems possible, within this
method, to suppress systematic errors below a level of
10–4. In addition, such an efficient tool as the double
ratio between forward- and backward-going pions will
be applied to reduce systematics further.

4. CONCLUSION

A new approach to a search for T violation in K+

decays by using a high-resolution π0 measurement has
been discussed. A high detector acceptance and an effi-
cient veto system allow us to reach a statistical sensitiv-
ity to T-violating muon polarization of less than 10–4 for
either of the decays K+  π0µ+ν and K+  µ+νγ.
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Abstract—Polarization measurements in the A(p, 2p)B reactions on 6Li, 7Li, and 28Si nuclei at a proton-beam
energy of 1 GeV were performed in a kinematically complete experiment. By using a two-arm magnetic spec-
trometer, two secondary protons were recorded in coincidence at asymmetric scattering angles of θ1 = 15°–26°
and θ2 = 58.6° for residual-nucleus momenta in the range KB = 0–150 MeV/Ò. Either arm of the spectrometer
was equipped with polarimeters based on proportional chambers. The data coming from this experiment are
analyzed within the distorted-wave impulse approximation. It is shown that the polarization of recoil protons
formed at angle θ2 in the interaction featuring a proton from the P shell of the 7Li nucleus can be described
under the assumption of an effective intranuclear-proton polarization by using the single-particle shell-model
wave function of the nucleus. Our data on the polarizations of the two protons from the reaction (p, 2p) on a
28Si nucleus also suggest the effective polarization of the protons in the D shell of the 28Si nucleus. It is found
that, for high recoil-nucleus momenta of KB ≥ 90 MeV/Ò, the effective polarization of the protons in the P shell
of the 6Li nucleus—this polarization was discovered in studying the polarization of recoil protons in the reac-
tion 6Li(p, 2p)5He—cannot be described within the shell model assuming LS coupling. As might have been
expected, the polarization of recoil protons knocked out from the S shells of the 6Li and 7Li nuclei comply well
with the predictions obtained in the impulse approximation with allowance for the depolarization effect alone.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In studying quasielastic-scattering reactions of the
(p, 2p) type on nuclei at intermediate energies [1], a
nonzero effective polarization (Peff) can be observed for
intranuclear protons occurring in states belonging to
shells with nonzero orbital angular momenta. Accord-
ing to [2], the effective polarization is due to spin–orbit
interaction and to the absorption of knock-on protons in
nuclear matter and is manifested experimentally only
under asymmetric kinematical conditions.

Owing to a strong spin dependence of the matrix
element for proton–proton scattering, the effective
polarization can be measured in experiments with a
polarized proton beam [2–4]. The results of such exper-
iments (see [5, 6]) that measured the asymmetry of
scattering suggest a sizable polarization of intranuclear
nucleons. Data on effective nucleon polarization in 16O
and 40Ca nuclei at a proton-beam energy of 200 MeV
[6] are in reasonable agreement with the results of the
calculations from [2, 4, 6], which relied on the dis-
torted-wave impulse approximation (DWIA) and
which employed the single-particle shell model of the
nucleus.

Since the emergence of effective polarization is due
to a correlation between the spins and orbits of intranu-
clear nucleons, investigation of this polarization may
1063-7788/00/6305- $20.00 © 0824
furnish direct information about the structure of the
ground state of the target nucleus or of the residual
nucleus. In particular, it was shown in [7] that the polar-
ization Peff is highly sensitive to nucleon–nucleon cor-
relations in a nucleus.

Measurement of secondary-proton polarization in
experiments with unpolarized proton beams provides
another possibility for discovering Peff. Within the
DWIA, which is a good approximation at sufficiently
high energies of incident protons, the polarizations of
secondary protons (P1 and P2) from reactions of the
A(p, 2p)B type are related to the relevant effective
polarization by the equations

(1)

(2)

where P, Dnn, and Knn are, respectively, the polarization,
the depolarization parameter, and the factor of polariza-
tion transfer in elastic proton–proton scattering. The
subscript “2” corresponds to the recoil proton. In the
pure impulse approximation without distortions (IA),
we have Peff = 0 and P1 = P2 = P.

P1

P Knn+ Peff

1 PPeff+
---------------------------,=

P2

P Dnn+ Peff

1 PPeff+
---------------------------,=
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The objective of the present study was to measure
the polarizations of secondary protons from A(p, 2p)B
reactions on light nuclei at 1 GeV. We also make an
attempt at describing the results of this experiment in
terms of the effective polarization on the basis of the
single-particle shell model of the nucleus. We have
measured primarily the polarization of the recoil pro-
tons, P2, formed in the (p, 2p) reactions involving the
protons from the P and S shells of the 6Li [8] and 7Li
nuclei. Since the effective polarization of the protons
from the S shell must be zero, data on scattering off pro-
tons belonging to this shell could be used to estimate
depolarization and off-mass-shell effects. In 1998, we
obtained the first data on the polarizations of two sec-
ondary protons (P1 and P2) from the (p, 2p) reactions on
6Li and 28Si nuclei.

2. EXPERIMENTAL PROCEDURE

Polarizations were investigated at asymmetric
angles of secondary-proton emission (θ1 = 15–26°, θ2 =
58.6°) from A(p, 2p)B reactions under the conditions of
the coplanar geometry of scattering and of a full recon-
struction of reaction kinematics. We have measured the
momenta K1 and K2 of secondary protons and their
scattering angles θ1 and θ2. By using the measured val-
ues of these kinematical variables and the known value
of the proton-beam momentum, K0, the energy of intra-
nuclear-proton separation, ∆E, and the residual-nucleus
momentum KB have been calculated for each (p, 2p)
event. In the IA, the latter is equal in magnitude to the
intranuclear-proton momentum K prior to interaction
(KB = –K). In our experiment, the resolution in the
recoil-proton momentum was ±12 MeV/Ò.

The layout of our experimental setup is displayed in
Fig. 1. A proton beam extracted from the synchrocyclo-
tron installed at the Petersburg Nuclear Physics Insti-
tute (PNPI, Gatchina) was focused on the unpolarized
target T1 of a two-arm spectrometer (magnetic spec-
trometers MAP and LES, low-energy spectrometer).
For targets, we used samples made from 6Li, 7Li, 28Si,
and polyethylene (CH2). The beam intensity, which was
varied between 5 × 1010 and 1 × 1011 proton/(s cm2),
was monitored by the M1–M3 scintillation telescope.
The two-arm spectrometer was used to record, in coin-
cidence, protons from the (p, 2p) reactions and to mea-
sure their momenta and emission angles. The recoil-
proton polarization P2 was measured by a polarimeter
positioned in the focal plane of the low-energy spec-
trometer LES. The polarimeter consisted of a carbon
analyzer T3 of thickness 72.5 mm and proportional
chambers PC5–PC8. In order to measure the polariza-
tion P1 of high-energy protons from the A(p, 2p)B reac-
tions, the MAP spectrometer was also equipped, in
1998, with a polarimeter that consisted of proportional
chambers PC1–PC4 and a carbon analyzer T2 170 mm
thick. The basic parameters of the two-arm spectrome-
ter [9] are listed in Table 1.
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The recoil-particle spectrometer (LES) was
arranged at a fixed angle of θ2 = 58.6°. The momentum
tuning of the MAP and LES spectrometers was not
changed in the course of the experiment either. The two
spectrometers were tuned to the kinematics of the
(p, 2p) reactions, which is close to the kinematics of
elastic proton–proton scattering at angles of θ1 = 21.75
and θ2 = 58.6°. Various values of the recoil-nucleus
momentum KB were obtained by changing the angular
position (θ1) of the MAP spectrometer. The experimen-
tal conditions were chosen in such a way that, in the
regions θ1 < 21.75° and θ2 > 21.75°, the signs of the
scalar product (K0 · KB) and, hence, the signs of the
effective polarizations of intranuclear protons in the P
shell were opposite.

In order to identify correlation events in the
A(p, 2p)B reactions and to monitor the level of the
background from random coincidences, we measured,

MAP spectrometer

Proton beam

PC8

PC7
PC6

PC5

T3
S4

LES spectrometer

S3

D2

Q4
Q3

C2

T1C1Q1Q2

S1
S2

M1–M3

D1

PC1
PC2

PC4 T2

PC3

K2

K0

KÇ

K1

θ1

θ2

Fig. 1. Layout of the experimental setup: (T1) target of the
two-arm spectrometer, (Q1–Q4) quadrupole lenses, (D1,
D2) magnetic dipoles, (C1, C2) collimators, (S1–S4 and
M1–M3) scintillation counters, (PC1–PC4, T2) propor-
tional chambers and carbon analyzer of the high-energy
polarimeter, and (PC5–PC4, T3) proportional chambers and
carbon analyzer of the low-energy polarimeter. Presented
separately above is the kinematics of (p, 2p) reactions.

Table 1.  Parameters of the magnetic spectrometers used

Spectrometer LES MAP

Boundary momentum (K/Z)max, 
GeV/c 1.0 1.7

Radius of the axial trajectory, ρ, m 3.03 5.5

Angle of deflection by a magnet, β, 
deg 42.2 24.0

Dispersion in the focal plane, Df , 
mm/% 16 22

Angular acceptance Ω, sr 4.5 × 10–3 4.0 × 10–4

Momentum acceptance ∆K, MeV/c 40 150

Energy resolution (FWHM), MeV ~2.0 ~1.5
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in our experiment, the difference of the proton time of
flight from the target T1 to the counter S1 and the anal-
ogous time of flight from the target T1 to the counter
S4. We recorded events from two neighboring
microbunches of the beam, one corresponding to purely
background events. In processing our data, we used
these events to estimate the polarization of the back-
ground and the contribution of the background from the
main beam microbunch producing correlation (p, 2p)
events.

In order to determine the polarizations (P1, P2) of
two secondary protons from the (p, 2p) reactions, the
azimuthal and polar scattering angles (φs1, 2 and θs1, 2,
respectively) for the interaction of these protons with
the analyzers T2 and T3 were calculated by using the
track coordinates in the proportional chambers PC1–
PC4 and PC5–PC8.

The polarizations were then determined by the for-
mula

(3)

where e1 and e2 are the azimuthal asymmetries for pro-
ton scattering on the analyzers T2 and T3 (these asym-
metries were found by averaging Òosφs1, 2 over sets of
events recorded in the operating angular ranges θs1 =
3°–14° and θs2 = 5.5°–16° of the MAP and LES pola-
rimeters, respectively), while A1 and A2 are the quanti-

P1 2,
e1 2,

A1 2,
---------

2 φs1 2,cos〈 〉
A θs1 2, K1 2,,( )〈 〉

--------------------------------------,= =
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Fig. 2. Spectra of proton-separation energies in the reactions
(a) 6Li(p, 2p)5He, (b) 7Li(p, 2p)6He, and (c) 28Si(p,
2p)27Al. Events labeled with the symbol “H” are those of
elastic proton–proton scattering.

0

ties obtained by averaging the analyzing powers of the
carbon analyzers T2 and T3 over the same sets of
events. In calculating A1 and A2, we invoked data on the
analyzing power A(θs1, 2, K1, 2) from [10, 11]. In our
experiment, the contribution of the random-event back-
ground whose effect on the polarization was taken into
account (see [9]) did not exceed 15%.

By using the data from Fig. 2, which shows the
spectra of proton-separation energies for the (p, 2p)
reactions on 6Li, 7Li, and 28Si nuclei, we were able to
assess the resolution of nuclear shells that was achieved
in the present experiment.

3. EXPERIMENTAL RESULTS
AND THEIR DISCUSSION

For the A(p, 2p)B reactions involving the P- and S-
shell protons of 6Li and 7Li nuclei and for the analogous
reactions involving the D-shell protons of 28Si nuclei,
the results obtained by measuring the polarizations P2
and P1 of, respectively, the recoil proton and the scat-
tered proton from these reactions are displayed in
Figs. 3, 4, and 6 (see also Tables 2–4), along with the
results of the corresponding calculations. Figure 5
shows averaged data on the polarization of the recoil
protons from the above reactions featuring the S-shell
protons of 6Li and 7Li nuclei. In the figures being dis-
cussed, the point at θ1 = 21.75° corresponds to the
polarization P2 of recoil protons in elastic proton–pro-
ton scattering; solid curves represent the results of the IA
calculations performed under the assumption that the
protons of the target nucleus are unpolarized (Peff = 0).

Within the IA, the polarizations P1 and P2 in the
A(p, 2p)B reactions being considered are both equal to
the polarization P for off-energy-shell elastic proton–
proton scattering. In our calculations, we assumed that
P1, 2 = P = P(Wlab, θc.m.), where P(Wlab, θc.m.) is the
polarization in on-mass-shell elastic proton–proton
scattering. Here, Wlab is the total collision energy for the
interaction of the beam and intranuclear protons in the
laboratory frame, while θc.m. is their scattering angle in
the c.m. frame. These two quantities were computed by
the formulas1) 

(4)

(5)

In expressions (4) and (5), m is the proton mass,
while s = (k0 + k)2, t = (k0 – k1)2, and u = (k0 – k2)2 are
the Mandelstam variables, k0, k1, k2, and k being the

1)We note that, in contrast to what we have in the case of free pro-
ton–proton scattering, s2 ≠ (4m2 – t – u)2 for off-energy-shell kine-
matics.

W lab
s 4m
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4-momenta of, respectively, the beam proton, the
scattered proton, the recoil proton, and the intranu-
clear proton prior to interaction. The proton polar-
ization P(Wlab, θc.m.) was determined on the basis of
the partial-wave analysis performed by Arndt et al.

[12], the energy Wlab being calculated by using the
beam-proton and intranuclear-proton momenta prior
to collision event [13]. Our estimates show that, in
the kinematical region being studied, the off-mass-
shellness-induced uncertainty in the IA calculation

Table 2.  Polarizations P1, 2 of secondary protons (quantities referring to the scattered and the recoil proton are labeled with
the subscripts 1 and 2, respectively) from the reaction 6Li(p, 2p)5He (at 1 GeV) involving the P- and the S-shell protons of
the 6Li nucleus versus the scattered-proton emission angle θ1, the recoil-proton emission angle θ2 being fixed at 58.6°

θ1, deg K1, MeV/c K2, MeV/c KB, MeV/c P2 P1

P shell

15.75 1464.39 630.39 146.52 0.2892 ± 0.0635 0.3093 ± 0.1016

17.75 1466.40 629.6 94.78 0.3753 ± 0.0419 0.4107 ± 0.0733

19.75 1466.76 630.58 44.39 0.4200 ± 0.0564

20.75 1471.21 624.18 12.49 0.3664 ± 0.0626

22.75 1469.82 626.06 37.02 0.3616 ± 0.0526

23.75 1467.94 628.47 60.27 0.3456 ± 0.0340

24.25 1468.68 626.97 74.57 0.3511 ± 0.0807

25.75 1465.89 629.94 110.01 0.3638 ± 0.0493

S shell

15.75 1444.82 629.40 146.56 0.4047 ± 0.0781 0.3842 ± 0.1372

17.75 1446.98 628.52 95.58 0.2447 ± 0.0497 0.4260 ± 0.0922

19.75 1447.84 628.56 47.28 0.3016 ± 0.0620

20.75 1452.58 621.74 20.62 0.2087 ± 0.0880

22.75 1452.69 621.25 45.26 0.2935 ± 0.0860

23.87 1452.27 621.27 72.44 0.1948 ± 0.0688

25.75 1446.73 628.21 113.25 0.2432 ± 0.0773

Table 3.  Polarization of the recoil proton formed at angle θ2 = 58.6° in the reaction 7Li(p, 2p)6He (at 1 GeV) involving the
P- and the S-shell protons of the 7Li nucleus versus the scattered-proton emission angle θ1

θ1, deg K1, MeV/c K2, MeV/c KB, MeV/c P2

P shell

15.75 1459.24 629.38 145.56 0.4122 ± 0.0628

17.75 1459.89 630.32 95.52 0.3023 ± 0.0635

19.75 1459.93 631.38 45.90 0.2697 ± 0.0625

20.75 1462.52 627.76 17.40 0.3235 ± 0.0525

22.75 1462.38 627.81 35.92 0.3056 ± 0.0619

23.75 1463.89 625.08 63.80 0.3608 ± 0.0700

25.75 1461.03 628.06 111.96 0.3780 ± 0.0625

S shell

15.75 1441.73 628.93 146.53 0.1838 ± 0.0747

17.75 1443.00 628.95 96.85 0.1987 ± 0.0613

19.75 1443.34 629.53 50.16 0.2779 ± 0.0377

20.75 1444.68 627.77 29.48 0.2844 ± 0.0366

22.75 1443.91 628.79 42.50 0.2776 ± 0.0420

23.75 1448.90 620.71 70.93 0.3160 ± 0.0980

25.75 1442.25 629.55 112.73 0.1500 ± 0.0720
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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Table 4.  Polarizations P1, 2 of secondary protons (quantities referring to the scattered and the recoil proton are labeled with
the subscripts 1 and 2, respectively) from the reaction 28Si(p, 2p)27Al (at 1 GeV) involving the D-shell protons of the 28Si
nucleus for two values of the scattered-proton emission angle θ1, the recoil-proton emission angle θ2 being fixed at 58.6°

θ1, deg K1, MeV/c K2, MeV/c KB, MeV/c P2 P1

19.75 1456.72 629.36 44.78 0.3838 ± 0.0960 0.4541 ± 0.1028

23.75 1455.81 630.68 59.33 0.2012 ± 0.0971 0.2076 ± 0.1079
of the proton polarization P does not exceed
0.02 [14].

Figures 3–6 show that, in the pure IA, it is impossi-
ble to describe data on the polarization P2 of recoil pro-
tons. An unsatisfactory description of data in the case of
scattering on the S-shell protons of the 6Li and 7Li

Fig. 3. (‡) Polarizations (d) P2 and (s) P1 of secondary pro-
tons (quantities referring to the scattered and the recoil pro-
ton are labeled with the subscripts 1 and 2, respectively)
from the reaction 6Li(p, 2p)5He involving the P-shell proton
of the 6Li nucleus versus the scattered-proton emission
angle θ1 (the recoil-proton emission angle θ2 is fixed at
58.6°): (solid curve) results of the calculation in the impulse
approximation (P1 = P2), (dashed curve) recoil-proton
polarization P2 calculated in the distorted-wave impulse
approximation on the basis of the shell model assuming LS
coupling (with allowance for depolarization corrections),
and (closed box) polarization P2 measured in elastic pro-
ton–proton scattering at θ1 = 21.75°. (b) As in Fig. 3a, but
for the polarization P2 of recoil protons from the reaction
7Li(p, 2p)6He. The dashed curve represents the results of the
calculations in the distorted-wave impulse approximation
on the basis of the shell model assuming jj coupling (with
allowance for depolarization corrections).
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nuclei (Figs. 4, 5) cannot be explained in terms of the
effective polarization of the S-shell protons since their
orbital angular momentum is zero. It is more probable
that the discrepancy revealed here is associated with the
depolarization of recoil protons because of their rescat-
tering on intranuclear nucleons. It is interesting to note

Fig. 4. (a) As in Fig. 3a, but for the reaction 6Li(p, 2p)5He
involving the S-shell protons of the 6Li nucleus: (solid
curve) results of the calculation in the impulse approxima-
tion (P1 = P2), (dashed curve) results of fitting the quantities

(  – )/  in terms of the function f(θ1) = ,

where  is a constant, and (closed box) polarization P2

measured in elastic proton–proton scattering at θ1 = 21.75°.
(b) As in Fig. 4a, but for the polarization P2 of recoil protons

from the reaction 7Li(p, 2p)6He.
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that, at recoil-proton energies close to 190 MeV, even
single rescatterings at small angles can reduce signifi-
cantly the polarization of recoil protons. In the approx-
imation of single rescattering, the relative depolariza-
tion ∆P/P can be defined as

(6)

where L, Lfree, and α are, respectively, the proton range
in a nucleus, the range with respect to elastic scattering,
and the probability of elastic proton scattering within
the angular acceptance of the spectrometer, while D is
the depolarization parameter characterizing the depo-
larization properties of elastic proton–nucleon scatter-
ing. In the case of rescattering in the plane of the (p, 2p)
reaction, the depolarization parameter D is virtually
coincident with the depolarization parameter Dnn in
elastic proton–nucleon scattering. All the variables
appearing in (6) depend on the proton energy; only the
quantity L depends additionally on the geometry of the
experiment. The calculations within the DWIA
revealed that, for all shells studied here, L is virtually
constant in the range of θ1 values covered in the present
experiment. This, together with the fact that the ener-
gies of secondary protons were fixed in the present
experiment, gives sufficient ground to assume that the
relative depolarization ∆P/P is constant in the kinemat-
ical region studied here. From a DWIA calculation of
the spin-flip amplitude Asf for a polarized proton mov-
ing in a spin–orbit nuclear optical potential [2], we
obtained a similar result. This amplitude is related to
the relative depolarization by the simple equation
∆P/P = 2|Asf |2.

In Figs. 4 and 5, the dashed curves represent the

results of fitting (  – )/  values calculated
on the basis of data on scattering off the S-shell protons

of the 6Li and 7Li nuclei to the function f = , which
is independent of the scattering angle θ1. The figures
show that the experimental dependence of the recoil-
proton polarization P2 on the angle θ1 complies with the
theoretical predictions obtained under the assumption
that the relative depolarization (∆P/P) is constant in the

angular range studied here. The values of  for the
reactions involving the S-shell protons of the 6Li and
7Li nuclei are –0.360 ± 0.062 and –0.384 ± 0.046,
respectively.

The data on the polarizations in scattering on the P-
shell protons of 6Li and 7Li nuclei and on the D-shell
protons of a 28Si nucleus (Figs. 3 and 6, respectively)
cannot be described in terms of the depolarization
effect alone. We also took into account the influence of
the effective polarization Peff of intranuclear protons
on polarization observables by using equations (1)
and (2). In these equations, the polarization parame-
ters P, Dnn, and Knn for elastic proton–proton scatter-
ing were determined on the basis of the partial-wave

∆P
P

-------
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Lfree
----------α 1 D–( ),–=
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analysis performed by Arndt et al. [12]. For the reac-
tion 6Li(p, 2p)5He involving the P-shell proton, the
behavior of these parameters as functions of the scat-
tering angle θ1 is illustrated in Fig. 7. Under the kine-
matical conditions of the present experiment, the
parameters P, Dnn, and Knn depend only slightly on the
atomic number of the nucleus and on the missing
energy in the A(p, 2p)B reactions. The effective polar-
ization Peff was calculated on the basis of the DWIA
by using the single-particle shell-model wave func-
tions of the nuclei.

In a specific coplanar geometry of A(p, 2p)B reac-
tions, the effective polarization is orthogonal to the
scattering plane and can be calculated by the formu-

 P2
0.6

18

0.4

16

0.2

0
20 22 24 26

θ1, deg

Fig. 5. Recoil-proton polarization P2 averaged over data on
the (p, 2p) reactions involving the S-shell protons of the 6Li
and 7Li nuclei. The notation is identical to that in Fig. 4.

P1, P2

0.4

0.6

θ1, deg

0.2

0
16 18 20 22 24 26

Fig. 6. As in Fig. 3a, but for the reaction 28Si(p, 2p)27Al
involving the D-shell protons of the 28Si nucleus: (solid
curve) results of the calculation in the impulse approxima-
tion (P1 = P2), (dashed and dotted curve) results of the cal-
culations for, respectively, P1 and P2 in the distorted-wave
impulse approximation on the basis of the shell model
assuming jj coupling, and (closed box) polarization P2 mea-
sured in elastic proton–proton scattering at θ1 = 21.75°.
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la [3, 7]

(7)

where  is the distorted amplitude for the tran-
sition from the initial to the final state. This amplitude
can be represented as

(8)

where |jimi; A〉  and |jf mf ; B〉  are the nuclear wave func-
tions of, respectively, the initial and the final state char-
acterized by the total angular momentum ji and its pro-
jection mi for the former and the total angular momen-
tum jf and its projection mf for the latter, while a(±)(r)
are the operators annihilating a nucleon having a radius
vector r and (±) spin projections. For all angular
momenta, the quantization axis is aligned with the
direction of the vector K2 × K1. The distorting factors
Dn(r) (n = 0, 1, 2) that take into account the effect of
multiple rescatterings of the primary (n = 0) and sec-
ondary (n = 1, 2) protons in the nucleus were computed
in the Wentzel–Kramers–Brillouin approximation:
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Fig. 7. Polarization parameters P, Dnn, and Knn for elastic
proton–proton scattering that are calculated for the kinemat-
ical region corresponding to the present investigation of the
(p, 2p) reaction involving the P-shell proton of the 6Li
nucleus.
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 nucleus,
we used an oscillator wave function with an oscillator
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mean-square nuclear radius 
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 = 2.54 fm measured in
an experiment devoted to elastic electron scattering
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(in accordance with data obtained by investigating elec-
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to reproduce the energy of proton separation from the
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 state (13.97 MeV [19]).
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of composing them into the nuclear spin is 
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nucleus 
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, which has one neutron above the
filled 

 

S shell. In the calculation of the effective polariza-
tions Peff for the reactions 7Li(p, 2p)6He and
28Si(p, 2p)27Al, we employed the shell model assuming
jj coupling. The total angular momentum of two neu-
trons in the P shell of the 7Li nucleus was taken to be
zero, so that the total spin of the nucleus (ji = 3/2) was
determined by the angular momentum of the valence
proton, whose knockout led to the formation of a 6He
nucleus in the ground state (jf = 0). It was assumed that
the spin of the 28Si nucleus (ji = 0) results from the com-
position of the angular momenta of the D5/2 proton and
the 27Al core (jf = 5/2) of this nucleus.

The calculations were performed in the inert-core
approximation [7]. It was assumed that the position of
the center of mass of the system coincides with the
position of the center of mass of the residual nucleus
and that it does not change in the process of nucleon
knockout. This approximation simplifies substantially
the calculations, but it leads to the error of about A–1 in
determining the squares of the overlap integrals (8)
(here, A is the atomic number). The error in calculating
the effective polarization Peff decreases significantly
since Peff depends only on the ratio of the momentum
distributions [see equation (7)].

The optical potentials Un(r) = Vn(r) + iWn(r) (n = 0,
1, 2) in (9) and (10) were assumed to be spin-indepen-
dent and were taken in the form of square wells [Vn(r) =

, Wn(r) = ] of dimensions Rd = Rrms = 3.28 fm
for the 6Li and 7Li nuclei and Rd = 3.92 fm for the 28Si
nucleus. The integration in (8) was performed over the
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classical trajectories of the incident proton and over the
classical trajectories of the secondary protons under the
assumption that neither refraction nor reflection occurs.

The potential depths for the recoil protons ( , )
that are formed in the (p, 2p) reactions on 6Li and 7Li
nuclei and which have kinetic energies of  ≈ 190 MeV
were determined from the potential volumes used in [3,
21–23]. For the 28Si nucleus, these parameters were cal-
culated on the basis of data on the 16O and 40Ca nuclei

[2] by using the equations from [24] that relate  to
the real part of the amplitude for forward nucleon–

nucleon scattering and  to the imaginary part of this
amplitude. The optical potentials for the protons that
originated from the (p, 2p) reactions at the angle θ1 with
energy  ≈ 800 MeV and for beam protons were
assumed to be pure imaginary quantities. The depths of

the potentials  and  were determined from the
optical potentials at the energy of 190 MeV by using
the aforementioned relations from [24]. In doing this,
the relativistic effect of a finite range of the nucleon–
nucleon interaction [25] was partly taken into account.

The  and  values used in our calculations are
listed in Table 5.

The calculated effective polarizations are illustrated
in Fig. 8. In the calculations for the 6Li and 7Li nuclei,
we took into account the finite angular and momentum
acceptances of the MAP and LES spectrometers. We
have studied the dependence of the effective polariza-
tion on the depths of the optical potentials. It turned out
that, when the imaginary and real parts of the optical

potentials for the recoil protons (  and , respec-
tively) were varied within reasonable limits, no strong
effect arose. The depolarization ratio ∆Peff/Peff for the

reaction 7Li(p, 2p)6He did not exceed 0.1 when  or

 changed by 20%. The dependence of the effective
polarization Peff on the high-energy potentials is still

weaker. The ratio ∆Peff/Peff is less than 0.1 when 

and  are simultaneously varied within 30%.

The dashed curve in Fig. 3b represents the results of
the DWIA calculations (allowing for the depolarization
effect) of the polarization P2 of the recoil proton from
the reaction 7Li(p, 2p)6He involving the P-shell proton.
We assumed that the deviation of the polarization

 computed by formula (2) from the experimental

values  is due to the depolarization of recoil pro-

tons. The values of the ratio (  – )/

were fitted to the function f(θ1) =  in accordance
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with the aforementioned depolarization law (∆P/P =

const). As a result, we obtained  values varying
between –0.1405 and 0.0602. From the data in Fig. 3b,
it follows that the assumption of the effective polariza-
tion of intranuclear nucleons leads to a satisfactory
description of experimental data. This assumption is
also supported by the results obtained by studying the
(p, 2p) reaction involving the D-shell protons of the 28Si
nucleus (Fig. 6). The calculations within the DWIA
reveal that the effective polarization of D-shell protons
is close to zero at θ1 = 19.75° and reaches a maximum
negative value at θ1 = 23.75° (Fig. 8). In addition, it is
interesting to note that, in the angular range θ1 = 22°–
25°, the sign of Peff for the D-shell protons of the 28Si
nucleus is opposite to the corresponding sign for the P-
shell proton of the 7Li nucleus. We have also measured
the polarizations of both secondary protons from the
reaction 28Si(p, 2p)27Al at the aforementioned values of
the scattering angle (θ1 = 19.75°, 23.75°). The results of

λDWIA
P

Table 5.  Parameters of the optical potentials used in the
present calculations

Energy, MeV 6Li, 1P3/2
7Li, 1P3/2

28Si, 1D5/2

1000 1000 1000

18.9 21.4 48.6

803 798 794

18.2 20.6 46.7

191 191 192

6.3 7.5 17.3

6.7 7.8 13.9

TK0

W0
0

TK1

W1
0

TK2

W2
0

V2
0

Fig. 8. Effective polarizations Peff of the P-shell protons of

(solid curve) the 6Li and (dashed curve) the 7Li nucleus and
of (dotted curve) the D-shell protons of the 28Si nuclei as
calculated in the distorted-wave impulse approximation by
using single-particle shell-model wave functions.

Peff

0

–0.2

16

0.2

θ1, deg
18 20 22 24 26
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these measurements are compatible with the DWIA
predictions (Fig. 6).

The results of the DWIA calculations for the polar-
ization P2 of the recoil protons from the (p, 2p) reaction
involving the P-shell proton of the 6Li nucleus are dis-
played in Fig. 3‡ (dashed curve). Corrections for the
depolarization were introduced by analogy with what
was done for the reaction on the 7Li nucleus. The result-

ing values of the ratio (  – )/  were
then fitted as above in the angular interval θ1 = 19.75°–
23.75°. For the depolarization parameter, this yielded

 = –0.0413 ± 0.0620. It can be seen from the data
in Fig. 3‡ that the single-particle shell model that
assumes LS coupling and which was used in the DWIA
calculations of the 6Li nucleus gives no way to describe
experimental data over the entire kinematical region
studied here. It should be emphasized, however, that
this model makes it possible to reproduce closely the
magnetic moment of the 6Li nucleus and yields a qua-
drupole-moment value (Qtheor = 0) close to the experi-
mental value [20].

By using expression (2) and the measured values of
the recoil-proton polarization P2 that were corrected for
depolarization, the effective polarization Peff of the P-
shell proton of the 6Li nucleus can be calculated as a
function of the recoil-proton momentum KB. It seems
(see Fig. 3‡) that, in the angular range 19.75° ≤ θ1 ≤
23.75°, the effective polarization Peff is close to zero
and that the deviation of the experimental values of the
recoil-proton polarization P2 from the values predicted
within the IA is due exclusively to the depolarization
effect. In this case, the fitting of the experimental data
within the above angular range yields the depolariza-

tion parameter  ranging between –0.0523 and
0.0612. The Peff values calculated with the depolariza-

P2expt
i

P2DWIA
i

P2DWIA
i

λDWIA
P

λ IA
P

Fig. 9. Effective polarization Peff of the P-shell proton of the
6Li nucleus versus the momentum KB of the residual nucleus
[the sign of KB corresponds to the sign of the scalar product
(K0 · KB)]. The solid curve represents the results of the cal-
culation in the distorted-wave impulse approximation on the
basis of the shell model assuming LS coupling. 
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KÇ, MeV/Ò
tion parameter  are displayed in Fig. 9. The solid
curve in this figure represents the results of the afore-
mentioned DWIA calculations. It can be seen from the
figure that, in the region KB ≥ 90 MeV/Ò, the effective
polarization Peff computed on the basis of experimental
data is finite. That a nonzero effective polarization was
observed for the protons in the unfilled shell of the 6Li
nucleus is at odds with the assumption that this shell
corresponds to a pure 2S state [20], since the effective
polarization of the S-shell protons, which have zero
orbital angular momentum, must be equal to zero. It is
conceivable that the emergence of a nonzero effective
polarization of intranuclear protons at high values of KB

is due to the contribution of the D-wave state to the
wave function of the 6Li nucleus.

In conclusion, we would like to discuss the possible
reasons behind the levels of the depolarizations of the
recoil protons knocked out from the P and S shells of
the 6Li and 7Li nuclei—in particular, we recall that, for

the 7Li nucleus, the ratio /  amounts to 2.7. If
we assume that the spin-flip amplitude is finite in
recoil-nucleon rescattering on all nucleons of the resid-
ual nucleus, the depolarization must not depend greatly
on the shell from which the knock-on proton originates.
There is, however, one argument against the last state-
ment: the point is that the recoil protons that are
knocked out from the S shell travel a larger distance in
nuclear matter than the recoil protons that are knocked
out from the P shell. Owing to absorption in nuclei,
however, (p, 2p) reactions occur primarily in the small
region close to the nuclear boundary. For this reason,
the difference between the ranges of the protons
knocked out from the P and S shells cannot be as great
(according to our estimates, this difference is less than
25%) as that which would account for the large value of

the ratio / . This value is explicable if we
assume that the spin of the proton knocked out from the
P shell cannot be flipped in rescatterings on S-wave
nucleons because of the Pauli exclusion principle and
that its depolarization is determined exclusively by col-
lisions with one (two) P-shell neutron(s) of the 6Li (7Li)
nucleus. As to the proton knocked out from the S shell,
its depolarization is determined by the interaction with
one S-shell proton and with all nucleons in the P shell
of the residual nucleus. That the polarization of the
recoil protons knocked out from the S shell is observed
to be much less than the value predicted within the IA
[see Figs. 4, 5] may also be due, at least partly, to in-
medium modifications of the nucleon–nucleon interac-
tion [26–28]. But in this case, we have to assume that,
under the conditions of our experiment, the kinematical
dependences of effects associated with the in-medium
modifications of the nucleon–nucleon interaction are
similar to the kinematical dependences of the depolar-
ization effects.
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Abstract—In collisions of 40-GeV/c antiprotons with D, Li, C, S, Cu, and Pb nuclei, mean multiplicities of
various secondary particles are investigated as functions of the mass number A. The mass-number dependence
of the mean multiplicities of positively charged particles suggests that the effect of intranuclear cascades is
strong for the emission of Λ hyperons, but that it is relatively weak for the emission of either K 0 or . Also
measured are the yields of various neutral strange particles with respect to those of charged secondaries. © 2000
MAIK “Nauka/Interperiodica”.

Λ

1. INTRODUCTION

Investigation of strange-particle production in had-
ron–nucleus collisions is of importance for obtaining
deeper insights into the underlying mechanisms of
strong interactions. The point is that, because of the
presence of a strange quark, strange particles appear to
be a convenient object of experiments aimed at this. In
the hadron–hadron and hadron–nucleus interactions
induced by nonstrange projectiles, the emission of
strange particles signals the formation of an  pair,
which subsequently undergoes hadronization to sec-
ondaries with open strangeness. The mechanisms gov-
erning the formation and hadronization of strange-
quark pairs in hadron–nucleus collisions can be
revealed by studying the formation of strange particles
and, in particular, the characteristics of other particles
in the final state.

Any effect due to the quark content of the projectile
may be estimated by comparing data on π–A, pA, and

 collisions. Antiproton–proton collisions at incident
momenta of 22.4 and 32 GeV/Ò (see [1] and [2], respec-
tively) lead to larger multiplicities of charged secondar-
ies and of neutral strange particles than proton–proton
collisions at comparable energies. Likewise,  colli-
sions at 200 GeV prove to yield more neutral strange
particles and more negatively charged secondaries pro-
duced in associations with them than pA collisions [3].

In this article, we analyze the multiplicities of
charged secondaries originating, along with neutral
strange particles, from collisions of 40-GeV/c antipro-
tons with a broad variety of target nuclei A (D, Li, C, S,
Cu, and Pb). The data subjected to this analysis were

ss
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collected by using a relativistic ionization streamer
chamber (RISC) [4], which is capable of detecting sec-
ondaries from hadron–hadron and hadron–nucleus col-
lisions over a full solid angle.

2. EXPERIMENTAL PROCEDURE AND METHOD 
FOR DATA ANALYSIS

A 5-m streamer chamber placed in a magnetic field
of strength H = 1.5 kG plays the role of one of the main
detectors of the apparatus. The streamer chamber may
house a few nuclear targets, whereby different nuclei
are irradiated under identical conditions, so that sys-
tematic errors are largely eliminated.

A 130-m-long magnetic optical channel (see [5] for
details) formed a beam of 40-GeV/c negatively charged
particles produced by protons on an internal target of
the accelerator used. The momentum spread of the
beam was 1%. Beam particles were identified by a sys-
tem of four gas Cherenkov counters that operated in the
threshold mode. The π–, K–, and antiproton fractions in
the unseparated beam amounted to 0.980, 0.017, and
0.003, respectively. This beam successively traversed a
few nuclear targets spaced by 30 cm, the thickness of
each target being less than 1% of the nuclear-collision
range.

The relatively large “memory time” of the streamer
chamber, 1 to 2 µs, effectively restricted the number of
triggers to 1 to 2 per spill. The sensitive volume of the
chamber was scanned by eight optical cameras that had
an image-reduction factor of 56 and which formed four
stereopairs with opening angles of 17°. The system of
electronic triggering, whereby the cameras were acti-
vated, fixed the type of a primary (π–, K–, or ) and
rejected noninteracted primaries and events character-

p
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ized by low momentum transfers [t ≤ 0.05 (GeV/c)2].
The latter selection eliminated the bulk of elastic colli-
sions and only 3% of inelastic ones. The primary parti-
cle was identified at the triggering stage. In further
detail, the detector is described in [4–6].

The photographic film was viewed on the BPS-75
table with a magnification of 1 : 4.5 with respect to the
live image. Four films were viewed simultaneously.
Frames featuring tracks of poor quality, as well as those
where there was no auxiliary information, were
dropped. The films were viewed two times indepen-
dently. If the results for some frame proved to be incon-
sistent, the frame was viewed for the third time. In all,
nearly 18000 frames were viewed for events with no
less than three charged secondaries, and 7489 inelastic
collisions of antiprotons with deuterium, lithium, car-
bon, sulfur, copper, and lead nuclei were found and
measured. For each target-nucleus species, the total
number of detected collisions and the corresponding
number of events involving detected strange neutral
particles are listed in Table 1.

For each detected event, we analyzed here the fol-
lowing quantities: Nch, the multiplicity of all charged
secondaries; N+ and N–, the multiplicities of, respec-
tively, positive and negative secondaries; Nsl and NF,
the multiplicities of, respectively, slow and fast nega-
tive secondaries with momenta below and above
500 MeV/c; and Np, the multiplicity of slow protons
with momenta below 500 MeV/c and a visible ioniza-
tion of I ≥ 2I0, where I0 denotes the ionization induced
by a primary particle. The number of fast protons QR
with momenta above 500 MeV/c was estimated as the
difference of the numbers of positive and negative par-
ticles,

with the charge of the projectile being taken into
account by adding unity on the right-hand side.

Neutral strange particles were detected and identi-
fied by characteristic two-body decays (vees) in the
fiducial volume of the streamer chamber, and their
momenta and emission angles were then reconstructed.
Further details of the selection and identification of
neutral strange particles can be found in [7], where their
yields were measured as functions of the target mass
number.

In the present article, we analyze experimental data
on the multiplicities of charged secondaries emitted in
the antiproton-induced reactions

(1)

(2)

(3)

(4)

In (2), Y stands for Λ, , Σ0, or Σ±, so that K0 is emitted in
association with either a hyperon or another neutral kaon.

QR〈 〉 N+〈 〉 N–〈 〉– N p〈 〉– 1,+=

pA X ,

pA K0 K0Y KK,( ) X ,+

pA Λ Σ0( ) X ,+

pA Λ Σ0( ) X .+

Λ
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The mean multiplicities were corrected for the con-
version of photons from the decays of π0 mesons and
Dalitz pairs, as well as for the reinteractions of charged
secondaries in the target. Since thin targets were used,
these corrections proved to be relatively small. Depend-
ing on the target-nucleus species, the total correction to
the mean multiplicity ranged between 5% and 12%, the
main contribution (about 90%) to this correction being
due to photon conversions.

The results of Monte Carlo simulations suggest that
nearly 95% of secondary protons with momenta below
180 MeV/c do not leave the target of origin; therefore,
they are undetectable. In other words, the multiplicity
Np (see above) actually refers to secondary protons with
momenta between 180 and 500 MeV/c.

3. MEAN MULTIPLICITIES OF CHARGED 
SECONDARIES AS FUNCTIONS

OF THE TARGET MASS NUMBER

For each of the reactions in (1)–(4), the measured
values of 〈Nch〉, 〈N+〉, and 〈N–〉 are plotted in Fig. 1 as
functions of the target mass number A. For the same
reactions, the observed A dependences of the mean
multiplicities of fast and slow negatively charged parti-
cles (〈Nf〉 and 〈Nsl〉) are illustrated in Fig. 2, while the
analogous dependences for the multiplicities of fast and
slow protons (〈QR〉 and 〈Np〉) are displayed in Fig. 3.
The solid curves in Figs. 1–3 represent fits of the above
multiplicities in terms of the exponential form aAα. For
the best fit, the values of the parameters a and α, as well
as the values of χ2/NDF, are listed in Table 2. We can
see that reactions (1) and (3) [(2) and (4)] are character-
ized by very similar A dependences of each multiplicity
considered here, but these dependences for reactions
(1) and (3) are basically different from those for reac-
tions (2) and (4). All four reactions show very similar A
dependences of the fast negatively charged particles, so
that any distinctions between the A dependences for
negative particles are due to the contribution of slow
negatively charged secondaries.

Table 1.  Total number of events of inelastic collisions for
each target-nucleus species and numbers of events with neu-
tral strange particles detected in the final state

A Nint NΛ

D 1741 35 23 27
Li 1149 36 22 20
C 1053 30 16 16
S 1197 47 36 24
Cu 1346 42 34 14
Pb 1003 29 28 17

N
KS

0 NΛ
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Fig. 1. Mean multiplicities of charged secondaries as func-
tions of the mass number A for the reactions (a)   X,

(b)   K 0X, (c)   ΛX, and (d)   .
Here and in the figures that follow, solid curves represent fits
that are described in the main body of the text.
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Fig. 2. Mean multiplicities of fast and slow negatively
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4. COMPARISON OF THE YIELDS OF NEUTRAL 
STRANGE PARTICLES WITH THE YIELDS

OF NEGATIVELY CHARGED MESONS
AND FAST PROTONS AND THE DEPENDENCES 

OF THESE YIELDS ON THE TARGET
MASS NUMBER

The yields of neutral strange particles in  colli-
sions at 40 GeV/c were measured in [7] for reactions
(2)–(4). The A dependences of these yields were fit-
ted to

In this section, the multiplicities of neutral strange
particles relative to that of negatively charged second-
aries and to that of fast protons, 〈 〉/〈N–〉 and

〈 〉/〈QR〉, are analyzed as functions of the target mass
number A. The resulting A dependences of these ratios
are illustrated in Fig. 4, where the solid curves repre-
sent fits to the data in terms of the exponential form aAα

(the fitted values of a and α are quoted in Table 3, along
with the χ2/NDF values). The ratio 〈 〉/〈N–〉 is seen to
be virtually independent of A, while the ratio 〈NΛ〉/〈N–〉
(〈 〉/〈N–〉) increases (decreases) with increasing A. At
the same time, the yield of each neutral-strange-particle
species relative to that of fast protons decreases with
increasing A. The falloff with A is the strongest for K 0

emission and the weakest for Λ emission, that for 
emission being intermediate between the above two.

5. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

The mean multiplicities of various secondaries from
reactions (1)–(4) induced by antiproton–nucleus colli-
sions at 40 GeV/c have been analyzed here as functions
of the target mass number. For the mechanism of anti-
proton–nucleus interactions, the implications of this
analysis can be summarized as follows.

(i) The resulting A dependences of the mean multi-
plicities of all charged, all positively charged, and slow
negatively charged secondaries suggest that intranu-
clear cascades contribute to the interactions in question,
but reactions (2) and (4) appear to be less affected by
intranuclear cascades than reactions (1) and (3).

(ii) In all four reactions considered here—and espe-
cially in reactions (2) and (4)—the multiplicity of fast
negatively charged secondaries shows but a slow
increase with A. This may imply that fast negatively
charged secondaries are largely formed outside of the
target nucleus.

(iii) By studying the A dependences of the yields of
neutral strange particles relative to that of negatively

pA

NK〈 〉 0.179 0.004±( )A 0.155 0.003±( ),∼

NΛ〈 〉 0.054 0.003±( )A 0.202 0.007±( ),∼

NΛ〈 〉 0.060 0.002±( )A 0.074 0.004±( ).∼

N
V

0

N
V

0

N
K

0

NΛ

Λ
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Table 2.  Values of the coefficients a and α in the fits of the
mean multiplicities of charged secondaries in terms of the
power-law form aAα and corresponding χ2 values

Reaction a α χ2/NDF

〈Nch〉

A  X 4.6 ± 0.3 0.255 ± 0.009 5.1

A  K0X 5.3 ± 0.2 0.212 ± 0.005 0.3

A  ΛX 4.8 ± 0.2 0.237 ± 0.005 0.3

A  X 4.8 ± 0.3 0.197 ± 0.008 0.5

〈N+〉

A  X 2.1 ± 0.2 0.33 ± 0.01 5.8

A  K0X 2.5 ± 0.2 0.28 ± 0.01 0.7

A  ΛX 2.1 ± 0.1 0.32 ± 0.01 0.8

A  X 2.3 ± 0.3 0.27 ± 0.01 1.0

〈N–〉

A  X 2.72 ± 0.05 0.140 ± 0.002 0.4

A  K0X 2.93 ± 0.08 0.129 ± 0.003 0.3

A  ΛX 2.7 ± 0.1 0.138 ± 0.004 0.2

A  X 2.6 ± 0.2 0.09 ± 0.01 0.5

〈Nf〉

A  X 2.4 ± 0.1 0.067 ± 0.005 2.3

A  K0X 2.4 ± 0.1 0.057 ± 0.005 0.5

A  ΛX 2.3 ± 0.1 0.066 ± 0.006 0.4

A  X 2.4 ± 0.1 0.046 ± 0.007 0.8

〈Nsl〉

A  X 0.41 ± 0.04 0.33 ± 0.01 2.6

A  K0X 0.55 ± 0.04 0.264 ± 0.008 0.2

A  ΛX 0.470 ± 0.007 0.31 ± 0.02 0.7

A  X 0.35 ± 0.06 0.25 ± 0.02 0.4

〈QR〉

A  X 0.44 ± 0.06 0.39 ± 0.02 4.6

A  K0X 0.52 ± 0.07 0.34 ± 0.02 1.0

A  ΛX 0.50 ± 0.06 0.39 ± 0.01 0.9

A  X 0.7 ± 0.1 0.23 ± 0.03 0.9

〈Np〉

A  X 0.13 ± 0.01 0.67 ± 0.01 2.3

A  K0X 0.12 ± 0.02 0.65 ± 0.02 1.1

A  ΛX 0.08 ± 0.02 0.79 ± 0.06 3.2

A  X 0.08 ± 0.01 0.73 ± 0.05 1.2

p

p

p

p Λ

p

p

p

p Λ

p

p

p

p Λ

p

p

p

p Λ

p
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charged secondaries and to that of fast protons,
〈 〉/〈N–〉  and 〈 〉/〈QR〉 , respectively, we found the

following:

(a) The ratio 〈 〉/〈N–〉  is virtually independent of

A; the ratio 〈NΛ〉/〈N–〉  increases with A (this suggests
that some slow K 0 mesons are rescattered inside the
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Fig. 4. Ratio of the mean multiplicities of neutral strange
particles to that of negative secondaries (a), 〈 〉/〈N –〉 ,

and to that of fast protons (b), 〈 〉/〈QR〉 , as functions of

the mass number A.
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N
V

0〈 〉 QR〈 〉⁄

Table 3.  Values of the coefficients a and α in the fits of the
ratios of the mean multiplicity of neutral strange particles to
that of negative particles, 〈 〉/〈N–〉, and to that of fast pro-

tons, 〈 〉/〈QR〉, in terms of the power-law form aAα and

corresponding χ2 values

Type of ratio a α χ2/NDF

〈 〉/〈N–〉 0.071 ± 0.003 0.015 ± 0.005 0.3

〈 〉/〈N–〉 0.020 ± 0.003 0.090 ± 0.020 1.1

〈 〉/〈N–〉 0.026 ± 0.002 –0.13 ± 0.01 0.3

〈 〉/〈QR〉 0.42 ± 0.07 –0.22 ± 0.01 0.9

〈 〉/〈QR〉 0.082 ± 0.007 –0.09 ± 0.01 0.3

〈 〉〈 QR〉 0.06 ± 0.02 –0.17 ± 0.03 1.0
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NΛ
nucleus, forming Λ hyperons); and the ratio 〈 〉/〈N–〉
decreases with increasing A (this is consistent with the
conjecture that, because of the relatively high energy
threshold for the production of  particles, they are
formed predominantly in the primary collision rather
than in subsequent reinteractions).

(b) With increasing A, the ratios 〈 〉/〈QR〉  and

〈 〉/〈QR〉  decrease at approximately the same rate
(within the errors), while the ratio 〈NΛ〉/〈QR〉  decreases
more slowly (since the quantity 〈QR〉  is proportional to
the number of collisions suffered by the projectile
inside the target nucleus, and the experimental results
being discussed suggest that, in contrast to Λ hyperons,
which can be produced in any collision event because
of the low production threshold, K 0 mesons and 
hyperons are largely formed in the primary collision).

After many years of investigations into the physics
of  interactions, it was established that, because of
annihilation, such interactions yield more secondary
mesons than pp collisions [8]. In  collisions at
40 GeV/c, the fraction of annihilation events increases
with the target mass number from 15% for hydrogen to
44% for lead [9]. This effect is consistent with the
observed A dependences of the ratios 〈 〉/〈N–〉
(which is virtually independent of A) and 〈 〉/〈N–〉
(which decreases with A).
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Abstract—The mean multiplicities of π– mesons and protons originating from pC, dC, αC, and CC interactions
at a momentum of p = 4.2 GeV/c per projectile nucleon and the distributions of these particles in kinematical
variables are presented. These experimental distributions are compared with the corresponding predictions
obtained on the basis of the FRITIOF model. It is shown that the FRITIOF version used in the present analysis
describes satisfactorily our experimental data. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In order to reveal the mechanism of hadron–nucleus
and nucleus–nucleus interactions, experimental results
are frequently compared with predictions based on
existing theoretical models like the cascade–evapora-
tion model (CEM), the model of quark–gluon strings
(QGS model, also known as QGSM), and the FRITIOF
model.

In the energy range 2–5 GeV per projectile nucleon,
nucleus–nucleus collisions have been traditionally ana-
lyzed on the basis of the CEM. This model qualitatively
describes existing experimental data, but there are
quantitative discrepancies. In particular, the CEM
underestimates the transverse momenta of product
pions and overestimates their multiplicity [1–4].

On the whole, a comparison of experimental data on
Aë interactions with QGSM predictions showed satis-
factory agreement [5–7]. At the same time, serious dis-
crepancies between experimental data and predictions
of this model were revealed in describing the properties
of Aí‡ interactions [8]. There is yet another popular
model referred to as FRITIOF [9]. This model is exten-
sively used at high energies, but it is commonly
believed to fail at intermediate energies since the con-
cept of quantum-string generation and decay becomes
inapplicable in this energy region. By taking accurately
into account kinematical constraints and by including
the Fermi motion of nucleons in a Lorentz invariant
way, it becomes possible [10] to reduce the formal limit
below which the model ceases to be applicable and to
describe satisfactorily, as is shown below, basic fea-
tures of nucleus–nucleus interactions.

1) Institute for Physics and Technology, Academy of Sciences of
Mongolia, Ulan Bator, Mongolia.

2) Institute of Nuclear Physics, Uzbek Academy of Sciences, pos.
Ulughbek, UZ-702132, Tashkent, Republic of Uzbekistan.
1063-7788/00/6305- $20.00 © 0839
In the present study, experimental data on protons
and π– mesons originating from AC interactions are
analyzed within a modified version of the FRITIOF
model.

2. EXPERIMENTAL DATA

Data used in the present analysis come from the 2-m
propane bubble chamber installed at the Laboratory of
High Energies at the Joint Institute for Nuclear
Research (JINR, Dubna) and irradiated with protons,
deuterons, alpha particles, and carbon nuclei acceler-
ated to a momentum of 4.2 GeV/c per projectile
nucleon by the JINR synchrophasotron. At present, the
eventual statistics of events occurring on propane have
been obtained.

In the total ensembles of interactions that light
nuclei suffer in the propane chamber, inelastic interac-
tions with carbon nuclei, pC, dC, αC, and CC, were iso-
lated in [11]. However, the criteria used in [11] separate
about 70% of the total number of nucleus–carbon events
that was estimated by using known cross sections for Ap
and AC interactions and the proton–carbon ratio in the
propane molecule. The remaining interactions were bro-
ken down statistically into Ap and AC events by intro-
ducing relevant weights. The weights were determined
in such a way that the numbers of events occurring on
carbon and hydrogen corresponded to the numbers
expected on the basis of the known cross sections for
inelastic interactions [12]. The number of secondaries
and their distributions were refined by introducing cor-
rections for missed particles that were emitted in the
direction close to the direction of the optical axis of the
camera (strongly inclined tracks) and for particles
whose momenta could not be determined because of a
small length of their tracks. In addition, all positively
charged particles with momenta in excess of 0.5 GeV/Ò
2000 MAIK “Nauka/Interperiodica”
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were assigned weights determining the probability that
a given particle is a proton or a π+ meson (for momenta
below 0.5 GeV/c, protons and π+ mesons are reliably
identified by ionization along the tracks of these parti-
cles).

The details of the procedure for correcting experi-
mental data included in the complete set of nucleus–
propane interactions were described in [11]. As in [1, 6,
7, 13, 14], we compared the multiplicities and distribu-
tions of π– mesons and participant protons with the pre-
dictions of the modified FRITIOF model. From this
comparison, we excluded evaporation protons (p <
0.3  GeV/c) and stripping projectile fragments (p >
3 GeV/c; θ < 4°).

3. FRITIOF MODEL
The FRITIOF model [9] assumes the two-body

kinematics of inelastic hadron–hadron interactions,
which are schematically represented as a + b  a' +
b', where a' and b' are some excited states of hadrons a
and b, respectively. These excited states are character-
ized by a mass. In order to choose it in the case being
considered, we proceed as follows. In the c.m. frame of
colliding hadrons, the law of energy–momentum con-
servation can be represented as

(1)

where Ea and Eb (Ea' and Eb') are the energies of the ini-
tial (final) hadrons a and b (a' and b'), while paz and pbz
are the corresponding longitudinal momentum compo-
nents (momentum projections onto the interaction
axis). The rest of the notation is obvious.

Taking the sum and the difference of the first two
equations in (1), we arrive at

(2)

where P+ = E + pz and P– = E – pz.
The model employs the following distributions in

 and :

(3)

The admissible ranges of  and  are defined as

(4)

In the case of hadron–nucleus interactions, the kine-
matics that is specified by equations (2)–(4) is used for

Ea Eb+ Ea' Eb'+ sab,= =

paz pbz+ pa'z pb'z+ 0,= =

0 pa' ⊥ pb' ⊥ ,+=

Pa
+ Pb

++ Pa'
+ Pb'

+ ,+=

Pa
– Pb

–+ Pa'
– Pb'

– ,+=

0 pa' ⊥ pb' ⊥ ,+=

Pa'
– Pb'

+

dW dPa'
– Pa'

– ,⁄∼

dW dPb'
+ Pb'

+ .⁄∼

Pa'
– Pb'

+

Pa
– Pb

–,[ ] , Pb
+ Pa

+,[ ] .
the first collision of the incident hadron a with some

intranuclear nucleon (a + N1  a' + ). Similar
equations are used for the second collision (a' + N2 

a'' + ), but the condition in (4) is replaced, in this
case, by the condition

(5)

As a result, the mass of the hadron a increases steadily
in successive collisions, provided that transverse-
momentum transfers are low.

The same approach is used in simulating nucleus–
nucleus collisions, where the reactions being consid-
ered are schematically represented as a' + b'  a'' +

b''. The distributions in  and  are taken in the
former form, while the admissible ranges of these vari-
able are defined as

(6)

The distribution in the transverse-momentum exchange
between colliding nucleons was taken in the form

In the model version used here, we introduced the
following modifications to the original FRITIOF model
(see also [15]):

(i) The lower boundary of the mass spectrum of
excited nucleons was set to 1.1 GeV.

(ii) In the case of the two-body decay of strings
whose mass is less than 1.7 GeV, the isotropic diver-
gence of particles is simulated in the string rest frame.

(iii) Charge exchange between colliding nucleons is
admitted in 50% cases of two-vertex diffraction.

(iv) The mean square of transverse-momentum
exchange between colliding nucleons is 0.15 GeV/c2.

All these modifications were introduced in the
model in order to achieve a satisfactory description of
the distributions of π– mesons and protons from np
interactions within the momentum range 1–5 GeV/Ò
[15]. Further, the FRITIOF model subjected to these
modifications was used in a comparison with experi-
mental data on a wide range of nucleon–nucleus and
nucleus–nucleus interactions [16–18]. The set of simu-
lated events that is used in the present study is grouped
according to the collision types, individual groups con-
taining from 6000 (dC) to 20000 (CC) events. This
database was written in the form of a summary data
tape and was processed by using the same procedures
as for live events.

4. RESULTS OF THE ANALYSIS

Let us begin by considering the features of product
π– mesons. The mean multiplicities of these mesons
versus the projectile mass are presented in Table 1,

N1
'

N2
'

Pa'
– PN2

–,[ ] , PN2

+ Pa'
+,[ ] .

Pa''
– Pb''

+

Pa'
– Pb'

–,[ ] , Pb'
+ Pa'

+,[ ] .

dW b2e
B pT

2–
pTd pT , B 6.7 GeV/c 2– .= =
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Table 1.  Mean multiplicities of π– mesons in inelastic pC, dC, αC, and CC interactions at a momentum of p = 4.2 GeV/c per
projectile nucleon

Statistics
Interaction type

p + C d + C α + C C + C

Number of events 8371 5807 13318 20594

Experiment 0.407 ± 0.006 0.686 ± 0.009 0.968 ± 0.007 1.439 ± 0.007

FRITIOF 0.408 ± 0.002 0.703 ± 0.003 1.003 ± 0.001 1.505 ± 0.002
along with the values computed on the basis of the
above FRITIOF version. It can be seen that, for pC, dC,
αC, and CC interactions, the model predictions agree
with experimental data to within 5%.

Table 2 presents the mean values of the kinematical
features of π– mesons originating from pC, dC, αC, and
CC interactions at a momentum of p = 4.2 GeV/c per
projectile nucleon. The greatest distinction between the
experimental and the model results, which is observed
for pC and dC interactions, does not exceed 6%. With
increasing projectile mass, the agreement between the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
experimental and calculated values of the quantities
under comparison is improved substantially. The distri-
butions of π− mesons in the kinematical variables p, pT ,
y, and θ are displayed in Fig. 1, along with the results
of the calculations based on the FRITIOF model, these
distributions being normalized to the total number of π–

mesons. Figure 1‡ shows the momentum distributions
of π– mesons from CC interactions at a momentum of
p = 4.2 GeV/c per projectile nucleon. The model pre-
dictions are seen to overestimate experimental values at
momenta in the range 0.2–0.6 GeV/c. At higher
0.5 1.0 1.50

2

4

1/n dn/dpT

(b)

0

(a)

1 2 3
p, GeV/c pT, GeV/c

1

2

1/n dn/dp

50 100 1500

0.01

0.03

1/n dn/dθ
(d)

0

(c)

0 2 4
y θ, deg

0.2

0.6

1/n dn/dy

–2

0.02
0.4

Fig. 1. Distribution of π– mesons in kinematical variables for CC interactions at a momentum of 4.2 GeV/c per projectile nucleon
(normalization is performed to the number of π– mesons): (points) experimental data and (histograms) results of the calculation on
the basis of the FRITIOF model.
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Table 2.  Mean values of the kinematical variables of π– mesons from pC, dC, αC, and CC interactions at a momentum of
p = 4.2 GeV/c per projectile nucleon

Interaction type
Mean values of kinematical variables

plab, GeV/c θlab, deg pT , GeV/c rapidity, y

pC (experiment) 0.503 ± 0.007 50.8 ± 0.6 0.248 ± 0.003 0.832 ± 0.013

pC (FRITIOF) 0.480 ± 0.003 49.1 ± 0.3 0.236 ± 0.001 0.860 ± 0.002

dC (experiment) 0.557 ± 0.007 46.0 ± 0.5 0.255 ± 0.003 0.941 ± 0.011

dC (FRITIOF) 0.540 ± 0.002 44.6 ± 0.2 0.240 ± 0.001 0.970 ± 0.003

αC (experiment) 0.583 ± 0.004 44.1 ± 0.3 0.250 ± 0.001 1.000 ± 0.006

αC (FRITIOF) 0.570 ± 0.002 43.4 ± 0.3 0.240 ± 0.001 1.010 ± 0.001

CC (experiment) 0.592 ± 0.003 41.0 ± 0.2 0.241 ± 0.001 1.071 ± 0.004

CC (FRITIOF) 0.600 ± 0.001 40.9 ± 0.1 0.240 ± 0.001 1.090 ± 0.003
momenta, the discrepancy between the experimental
and the model results decreases. The transverse-
momentum distributions are displayed in Fig. 1b. Here,
the calculated values exceed experimental ones in the
range pT ≈ 0.2–0.5 GeV/c. Figure 1c illustrates a com-
parison of the rapidity distributions: for nucleon–
nucleon interactions, the experimental and computed
rapidity distributions peak at the same rapidity value of
y0 ~ yc.m. ≈ 1.1. The calculated values exceed the exper-
imental ones in the nuclear-fragmentation regions (y
values between –0.5 and 0.5 and between 1.5 and 2.5).
Figure 1d shows the angular distributions of π– mesons.
It can be seen that the model overestimates the multi-
plicity of mesons at small angles (θ ~ 0°–30°). Con-
ceivably, the inclusion of π–-meson absorption in resid-
ual nuclei, which is disregarded in the present version
of the model, may improve the description of the exper-
imentally observed regularities.

On the whole, the model reproduces faithfully the
single-particle distributions of π– mesons in kinemati-
cal variables. This gives sufficient ground to believe
that this model can be used further in performing a
more detailed analysis and in estimating meson yields
in heavy-ion collisions.

The mean multiplicities of participant protons from
AC interactions at a momentum 4.2 GeV/c per projec-

Table 3.  Mean multiplicities of participant protons in in-
elastic pC, dC, αC, and CC interactions at a momentum of
p = 4.2 GeV/c per projectile nucleon

Statistics
Interaction type

p + C d + C α + C C + C

Number
of events

8371 5807 13318 20593

Experi-
ment

1.82 ± 0.01 2.10 ± 0.02 2.90 ± 0.01 4.43 ± 0.02

FRITIOF 1.99 ± 0.02 2.05 ± 0.03 2.77 ± 0.01 4.13 ± 0.03
tile nucleon are quoted in Table 3, along with the results
of the calculations within the FRITIOF model.

The greatest discrepancy (within 10%) is observed
for pC interactions.

Table 4 displays the mean values of the kinematical
features of participant protons from AC interactions at
a momentum 4.2 GeV/c per projectile nucleon. The
most pronounced discrepancies are observed in the
mean emission angles and the mean momenta for pC
interactions (within 10%).

Figure 2 shows the experimental and calculated dis-
tributions of protons in kinematical variables for CC
interactions, these distributions being normalized to the
number of protons. The momentum distributions of
protons are displayed in Fig. 2‡. An excess of the exper-
imental values over the calculated ones is observed at
momentum values in the range p = 0.4–1.0 GeV/c. The
discrepancy between the experimental and the calcu-
lated values at plab ~ 3 GeV/c can be tentatively associ-
ated with selections for identifying stripping protons.
Figure 2b shows the transverse-momentum distribu-
tions of participant protons. The model underestimates
experimental results at pT ~ 0.3–0.4 GeV/c.

Figure 2c shows the rapidity distributions of pro-
tons. It can be seen that the experimental distribution
has two maxima (at y ~ 0.2 and 1.5) and one minimum
(at y ~ 1.1). The asymmetry of the rapidity distributions
of protons is due to a small admixture (10%) of deuter-
ons, which shift the spectrum toward higher rapidities
when assigned the proton mass. The calculated distri-
bution have no such asymmetry. We can see that the
model underestimates the yield of slow protons in the
regions of nuclear fragmentation. Figure 2d displays
the angular distributions of participant protons. A small
discrepancy between the experimental and the calcu-
lated values is observed over a broad range of angles.

Despite discrepancies between the shapes of the
experimental and the calculated distributions, the above
comparison of the experimental inclusive distributions
of protons in kinematical variables for pC, dC, αC, and
CC interactions with the corresponding distributions
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
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malization is performed to the number of the protons): (points) experimental data and (histograms) results of the calculation on the
basis of the FRITIOF model.
obtained on the basis of the FRITIOF model suggests
that, by and large, the FRITIOF model provides a qualita-
tive description of experimental data on AC interactions.

In summary, we have arrived at the following con-
clusions:
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(i) The FRITIOF model version used here faithfully
reproduces the mean features of π– mesons and protons
originating from inelastic AC interactions.

(ii) The model provides a qualitative description of
the distributions of π– mesons.
Table 4.  Mean values of the kinematical variables of protons from pC, dC, αC, and CC interactions at a momentum of p =
4.2 GeV/c per projectile nucleon

Interaction type
Mean values of kinematical variables

plab, GeV/c θlab, deg pT , GeV/c rapidity, y

pC (experiment) 1.292 ± 0.007 36.1 ± 0.2 0.443 ± 0.002 0.775 ± 0.004
pC (FRITIOF) 1.170 ± 0.003 39.3 ± 0.3 0.420 ± 0.001 0.720 ± 0.004
dC (experiment) 1.289 ± 0.008 36.5 ± 0.2 0.437 ± 0.002 0.765 ± 0.005
dC (FRITIOF) 1.250 ± 0.002 38.4 ± 0.2 0.440 ± 0.001 0.750 ± 0.003
αC (experiment) 1.541 ± 0.005 33.0 ± 0.1 0.464 ± 0.001 0.887 ± 0.003
αC (FRITIOF) 1.450 ± 0.002 33.6 ± 0.3 0.408 ± 0.001 0.817 ± 0.003
CC (experiment) 1.857 ± 0.004 27.5 ± 0.1 0.476 ± 0.001 1.051 ± 0.002
CC (FRITIOF) 1.808 ± 0.001 26.8 ± 0.1 0.440 ± 0.001 1.070 ± 0.004
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(iii) A detailed description of the distribution of pro-
tons in the regions of nuclear fragmentation still pre-
sents a problem.
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Abstract—The corrections that the structure of the proton and its polarizability induce in the Lamb shift in the
muonic and the conventional hydrogen atom are calculated on the basis of up-to-date experimental data on the
structure functions in deep-inelastic scattering. Numerically, the contribution from proton polarizability to the
2P–2S shift in the muonic hydrogen atom is 4.4 GHz. © 2000 MAIK “Nauka/Interperiodica”.
The muonic hydrogen atom (µp atom) is a two-par-
ticle bound state of a proton and a muon. The energy
levels of this system can be determined in the same way
as for the conventional hydrogen atom [1]. However,
some QED effects and corrections associated with the
structure of the proton and its polarizability are more
important for the muonic hydrogen atom [2, 3],
because the electron-to-muon mass ratio is as small as
me /mµ = 4.836332 × 10–3. In particular, the leading con-
tribution to the Lamb shift in the muonic hydrogen
atom comes from the electron polarization of the vac-
uum—in contrast to what is observed for conventional
hydrogen—because the electron Compton wavelength
is on the same order of magnitude as the Bohr radius for
the muonic hydrogen atom: "/mec : "2/mµe2 =
0.737386. Measurement of the 2P–2S Lamb shift in the
muonic hydrogen atom would make it possible to deter-
mine more precisely the charge radius of the proton

Rp =  [4], an extremely important feature of the
proton indeed. Major contributions to the Lamb shift in
the muonic hydrogen atom were studied theoretically
in [2, 3]; information about currently known correc-
tions is compiled in [5]. The sixth-order contribution to
the Lamb shift in the muonic hydrogen atom due to
vacuum polarization was calculated in [6]. In the
present study, we consider the contribution of proton
polarizability to the Lamb shift in the muonic hydrogen
atom. In just the same way as in calculating hyperfine
splitting in the muonic hydrogen atom [7, 8], we rely
here on the local quasipotential equation in describing
the two-particle bound states of the µp system [9].

The contribution of proton polarizability is deter-
mined by the amplitude of muon–proton interaction
that is mediated by two photons (see Fig. 1) and which
involves Compton scattering on a muon. The amplitude
of this Compton scattering can be represented as the

r2〈 〉

1) Scientific Council for Cybernetics, Russian Academy of Sci-
ences, ul. Vavilova 40, Moscow, 117967 Russia.
1063-7788/00/6305- $20.00 © 20845
sum of direct and crossed 2γ diagrams:

(1)

Neglecting the momenta of the relative motion of
the particles in the initial and in the final state (that is,
setting p = q = 0), we can represent the amplitude of
virtual Compton scattering on a proton as [10, 11]

(2)

where ν = k0 is the virtual-photon energy. The tensor in
(2) involves the symmetric part determined by the
structure functions C1, 2(ν, k2) and the antisymmetric

Mµν
µ( ) u q1( ) γµ

p̂1 k̂ m1+ +

p1 k+( )2 m1
2– ie+

--------------------------------------------γν=

+ γν
p̂1 k̂– m1+

p1 k–( )2 m1
2

– ie+
--------------------------------------------γµ u p1( ).

Mµν
p( ) v p2( ) 1

2
---C1 gµν–

kµkν

k2
----------+ 

 




=

+
1

2m2
2

---------C2 p2µ
m2ν
k2

----------kµ– 
  p2ν

m2ν
k2

----------kν– 
 

+
1

2m2
---------H1 γν k̂,[ ] p2µ γµ k̂,[ ] p2ν– γµ γν,[ ] k2+( )

+
1
2
---H2 γν k̂,[ ] kµ γµ k̂,[ ] kν– γµ γν,[ ] k2+( )




v q2( ),

p2 = (m2, 0)

p1 = (m1, 0)

k k

q2 = (m2, 0)

q1 = (m1, 0)

Fig. 1. Correction for proton polarizability.
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part determined by the functions H1, 2(ν, k2). The
former and the latter contribute, respectively, to the
Lamb shift and to the hyperfine splitting of the S-wave
energy levels. In order to isolate that part of the quasi-
potential which is responsible for the hyperfine split-
ting, V hfs, it is convenient to use the projections for the
muon and the proton onto the S = 0 and S = 1 states
[V(1S0) and V(3S1), respectively], the generic expression
for the corresponding projection operators being

(3)

The quasipotential contributing to the Lamb shift of the
S-wave levels can be constructed either by averaging
the amplitudes in (1) and (2) over the muon and proton
spins [12] or by applying the projection operators (3) in
order to construct the particle-interaction operator in
the form

(4)

Taking the product of the amplitudes in (1) and (2)
and isolating the parts of the quasipotential that corre-
spond to hyperfine splitting (hfs) and the Lamb shift
(Ls), we obtain

(5)

(6)

Expression (5) was used in [13–15] to calculate
hyperfine splitting. Here, we employ formula (6) to cal-
culate the Lamb shift. Using the dispersion relations for
the structure functions Ci(k0, k2) and isolating the con-
tribution of the one-nucleon intermediate state shown
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Fig. 2. (Zα)5 correction for the finite proton size.
in Fig. 2, we arrive at

(7)

For the integrand in (7) to have a correct asymptotic
behavior in ν, the function C1(k0, k2) must satisfy a dis-
persion relation with one subtraction.

The proton vertices in the two-photon amplitudes in
Fig. 2 are determined by the form factors F1 and F2 [16]:

(8)

The contribution of the relevant diagrams to the Lamb

shift ∆  can be represented in the form

(9)

where, upon the substitution k0  ik0, the integral is
taken over four-dimensional Euclidean space. It should
be noted that the integral in (9) involves an infrared
divergence. In order to eliminate it, the corrections
associated with the iteration term of the quasipotential
and, in the case of a pointlike proton, the contribution
of the two-photon amplitudes are subtracted from
expression (8). The contribution of the iteration part of
the quasipotential has the form

(10)

The iteration terms of the quasipotential cancel the
infrared divergences in the hyperfine structure, pro-
vided that all effects of binding are disregarded for the
particles involved [11]. It should be noted that the lead-
ing proton-structure-induced correction to the Lamb
shift of the hydrogen-like atoms is determined by the
one-photon term in the quasipotential, V1γ ~ GE(k2)/k2

[17] (GE is the Sachs form factor), and is given by [1]
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where Rp is the charge radius of the proton [4]. For a
pointlike proton, the recoil correction ∆Enl of order
(Zα)5 is determined both by the domain of nonrelativis-
tic momenta in the two-photon quasipotential V2γ and by
the domain of relativistic momenta and is given by [1]

(12)

(13)

Taking into account expressions (10) and (12), we
can represent the infrared-safe contribution of the two-
photon diagrams to the Lamb shift in the hydrogen-like
atom in the form

(14)
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parametrization of the proton form factors:

(16)

Here, the proton-structure parameter Λ was set to Λ =
0.898m2 (this value was also used in calculating the
hyperfine structure in the hydrogen atom [16]), while
κ = 1.792847 is the anomalous magnetic moment of the
proton. Numerically, the contribution in (14) to the

Lamb shift is ∆ (2P–2S) = 4.25 Hz in the case of

conventional hydrogen and is as large as ∆  =
4.35 GHz in the case of muonic hydrogen, in agree-
ment with the results obtained in [5]. Let us now con-
sider the effects of proton polarizability that are deter-
mined by the dispersion integral in (7). The imaginary
parts of the amplitudes Ci(k0, k2) are expressed in terms
of the structure functions Fi(x, Q2) for deep-inelastic
scattering as

(17)

In the limit Q2  0, we have

(18)

These relations play an important role in parametrizing
the structure functions Fi(x, Q2) [18]. Making use of
relations (6) and (7) and performing integrations in
loop amplitudes over four-dimensional Euclidean
space with the aid of the formula

(19)

we can represent the photon-polarizability contribution
to the Lamb shift in the muonic hydrogen atom as

(20)
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where R(y, k2) = σL /σT is the ratio of the cross sections
for the absorption of longitudinally and transversely
polarized photons by hadrons. In order to perform
numerical calculations on the basis of (20), we need
experimental data on the structure function F2(x, Q2)
and on the ratio R(x, Q2). There are several parametri-
zations of experimental data for the function F2(x, Q2)
over a wide range of the parameters Q2 and x [18].
Here, we have used the parametrization proposed in
[19], where the function F2 was represented as the sum

of the Pomeron and the Reggeon term (  and ,
respectively):

(21)

Recent efforts to extract R(x, Q2) from experimental
data on deep-inelastic ep scattering [20] resulted in a six-
parameter formula describing this ratio in the kinemati-
cal domain specified by the inequalities 0.005 ≤ x ≤ 0.86
and 0.5 GeV2 ≤ Q2 ≤ 130 GeV2:

(22)

In the case of muonic hydrogen, the numerical value
obtained on the basis of (20)–(22) for the proton-polar-
izability contribution to the 2P–2S Lamb shift is

(23)

× 1 2 φcos
2

+( )
1 k2

y2
----+ 

  φcos
2

1 R y k2,( )+
---------------------------------- φsin

2
+ F2 y k2,( ),

F2
P F2

R

F2 F2
P F2

R
,+=

F2
r Q2

Q2 m0
2+

-------------------Cr t( )xr
ar t( )

1 x–( )
br t( )

, r P R,,= =

1
xr

----
2m2ν mr

2
+

Q2 mr
2+

--------------------------.=

R
a1

Q2/0.04( )ln
-----------------------------θ x Q2,( )

a2

Q8 a3
4+[ ]1/4

---------------------------+=

× 1 a4x a5x2+ +[ ] x
a6,

θ x Q2,( ) 1 12
Q2

Q2 1+
--------------- 

  0.1252

0.1252 x2+
-------------------------- 

  .+=

∆Epol
Ls 4.4 0.5 GHz.±=

Proton-polarizability contribution to the shifts of the S-wave
levels in the conventional and in the muonic hydrogen atom

(e–p+), Hz (µ–p+), 
µeV [22] [23]

1S – 94 –144 –72 –100 –95 –136

2S –11.8 –18 – 9 –13 –11.9 –17
                                 

The analogous correction for the 1S state of the conven-
tional hydrogen atom is –94 ± 10 Hz, in agreement with
the results presented in [21–23]. The shifts of the 1S
and 2S energy levels in the muonic and in the conven-
tional hydrogen atom are quoted in the table. Our val-
ues are compared there with the results from [22, 23];
for convenience, the shifts in the muonic hydrogen
atom are given in eV. It should be noted that parametri-
zation (21), which is used here, complies with the
asymptotic behavior (18) and makes an infrared-finite
contribution to the energy spectrum. For this reason,
the bulk of the error in our result stems from the uncer-
tainty in the experimental data on the function R(x, Q2)
for Q2 ≤ 0.5 and from errors in the measurements of the
structure function F2(x, Q2) [18] rather than from the
logarithmic approximation of an integral of the type in
(20) as was in [21]. Thus, our correction (23) for the
muonic hydrogen atom is on the same order of magni-
tude as the other contributions (12) and (14); therefore,
it must be taken into account in extracting the charge
radius Rp of the proton from a future experiment to
measure the Lamb shift in the µp system.
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Abstract—The majority of deexcited hadronic atoms (hX) (h = K–, , … and X = p, d, t) are accelerated up to
energies of about 100 eV due to Coulomb transitions. The diffusion model of Stark transitions is developed.
The resulting nuclear capture rate is higher than that in Bethe–Leon theory by a factor not less than five. Thus,
only nonaccelerated atoms can survive. Therefore, the yield Y of Kα x rays is significantly less (by a factor of
about ten) than that calculated in standard cascade models and is approximately equal to 0.2% and 1.0% for
(K−p) atoms at hydrogen densities of N = 2 × 1021 and 5 × 1020 atom/cm3, respectively. The scheme of a more
accurate calculation of Y is also presented. © 2000 MAIK “Nauka/Interperiodica”.

p

1. INTRODUCTION

The mass Mh of a hadron in a hadronic atom (hX) for
h = K–, , Σ–, … is comparable with the nuclear mass
MX (for the sake of definiteness, the (K–p) atoms are
considered below). Therefore, the behavior of such
atoms in matter differs substantially from the cases of
pionic and muonic atoms with the lighter particles in
the orbit. This is the result of Coulomb transitions—
that is, the inelastic (n' < n) reaction

(1)

(for n' = n, it is a Stark mixing process). Hadrons are
captured mainly from high orbits (see the review article
of Batty [1] and below) with the principal quantum
numbers

n = 4–7. (2)

Hence, pure classical mechanics is applicable, and it is
preferable and much more reliable for large n than the
rigorous quantum-mechanical approach. In each colli-
sion of the type (1), a significant fraction of the internal

energy E = −µ/(2n2) (µ–1 =  + ) is converted
into the kinetic energy of the hadronic atom (ε = Mv2/2,
M = Mh + MX); therefore, we have

(3)

where η = Mh/MX and β ~ 1. For the (K–p) atom, ξ ~ 0.2.
The estimate in (3) remains valid after taking into
account Auger and radiative deexcitation in which the
internal energy E is transferred to electrons and x rays.
This estimate is confirmed by Monte Carlo simulations
that will be published later.

p

K– p( )nl p K– p( )n'l' p++

Mh
1– MX

1–

ε ξ E , ξ β 1
η
---– 

  ,exp∼∼

  * This article was submitted by the author in English.
** Pomorskiœ State University, Arkhangel’sk, Russia.
1063-7788/00/6305- $20.00 © 20850
For heavy atoms, it follows from (2) and (3) that  ~
100 eV. In the case of light (π–X) and (µ–X) atoms, there
exist only a small (about 10%) fraction of accelerated
atoms. This follows both from the classical and from
quantum-mechanical estimates [2–4] (approximate
conservation of adiabatic invariants, which is equiva-
lent to small probabilities of quantum transitions in the
adiabatic motion of nuclei). This follows also from
experiments [5, 6]. A fraction of 45% obtained in [5, 6]
for the liquid hydrogen density of ϕ = 1 (ϕ = N/N0,
N0 = 4.25 × 1022 atom/cm3) should be lowered by a fac-
tor of about five because incorrect values of the effec-
tive nuclear capture rate Γ were assumed in [5, 6] for
accelerated (π–p) atoms. The actual value of Γ is larger
than that assumed in [5, 6] (see below). Thus, the same
number of observed neutrons can be ejected by smaller
fraction of (π–p) atoms.

Nuclear capture occurs mainly from the ns state, and
its rate Γns is greater than the rate of (1) and other pro-
cesses for all n from (2) and all kinds of hadronic
atoms. The resulting nuclear capture rate Γ is deter-
mined [7, 8] by the rate λst of the “feeding” of ns states
in Stark processes (bottleneck effect):

(4)

(5)

Here, ρ is the impact parameter of a collision, flm is the
population of the lm states with the same n before the

collision (it is normalized as  = 1—one atom
per n level), and P(nlm  n00) is the probability of
the Stark transition (nlm)  (n00) in a collision with
an impact parameter r. Formulas (4) and (5) are based

ε

Γ Γ n≡ Nv 2πρ ρQ ρ( ),d

0

∞

∫=

Q ρ( ) f lmP nlm n00( ).
lm

∑=

f lmlm∑
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[8] on the following well-grounded assumptions: qua-
sistationary approximation

(6)

and the total depletion of hadrons from the ns state in
the time interval between collisions 1/νcoll,

(7)

Here, λ is the maximal value of the rates of Auger, radi-
ative, and Coulomb transitions. In accordance with (7),
the ns state is empty before the collision (f00 = 0). The
quantity Q(ρ) in (5) is the population of the ns state
immediately after the collision (before nuclear cap-
ture). Thus, before the collision, we have

(8)

Following the pioneering study of Leon and Bethe
[8], all cascade calculations are based on the statistical-
distribution assumption

(9)

Another assumption from [8] is that

(10)

where ρs ~ n2/(µv) is the critical impact parameter
defined in [8] (hereafter, atomic units are used: " = me =
e = 1). The approximation in (10) is invalid for the case
of v > v0 = n/µ (see below), because the large long-
range (ρ > ρs) logarithmic contribution to Γ is omitted
here. It was corrected in [9], but the assumption in (9)
was admitted (note that the general theory of Stark tran-
sitions was independently developed in [10–13]).
Below, it will be shown (this is the main result of our
study) that the statistical distribution (9) is not valid for
heavy hadronic atoms. This results in a significant devi-
ation of Γ from the values ΓBL obtained on the basis of
[8, 9].

2. DIFFUSION REGIME OF STARK MIXING

Let us propose in advance that the main contribution
to Γ comes from collisions with impact parameters that
are larger than the radius of the hadronic orbit r ~ n2/µ:

(11)
In any case [see (3)], we have

(12)

From (11) and (12), one concludes that the typical col-
lision time ρ/v exceeds the period of orbital motion,
T = n3/µ:

(13)

Γns   @  λ

Γns   @  ν coll .

f lm t( ) const, f lm

lm

∑ 1, f 00 0.= = =

f 00 0, f lm
1

n2 1–
-------------- 1

n2
----- at l 0.≠≈= =

Q ρ( )

1

n2
-----, ρ ρs<

0, ρ ρs,>
=

ρ  @  n 2 µ . ⁄

v 1 n.⁄<

ρ
v
----  @  

n
 

3

 µ -----.                                             
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
In other words, the inequalities in (11) and (13) mean
that perturbations of Keplerian orbits of the (K–p) atom
by the electric field E = R/R3 of the other proton in (1)

are small, that their relative velocity  is sufficiently
small in relation to the high velocity  of the internal
motion of a hadronic atom, and that the dipole approx-
imation for the interaction between them is applicable.
After averaging over fast internal motion, we can easily
obtain equations well known in astronomy as “slow”
motion (as the terms of “old” quantum mechanics, they
were used in [14]):

(14)

Here, l = r × µ  is atomic orbital angular momentum;

W = E; and u = nA, where A is the Runge–Lenz

vector, directed from one Keplerian ellipse focus to the

other, |A| = ε =  being the eccentricity of the

Keplerian orbit. A completed set of equations for slow
motion is obtained by adding, to (14), the third equation
for the relative motion [15]. Our problem is much sim-
pler because, at large energies (3), the approximation of
straight-line trajectories for relative motion is applicable:

 

(15)

 

It follows from (14) and (15) that the admissible
regimes are 

 

(16)

 

for “strong” collisions and

 

(17)

 

for “weak” collisions (or “diffusion” regime). Here, we
denoted by
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the main dimensionless parameter of Stark mixing,
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Bethe–Leon theory. For 
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 1

 

, the perturbation of the
orbit in one collision is small. In each collision, the
extreme points of the vectors 
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 and 
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 undergo the small
random jumps

 
(20)

 
i.e., the vector extreme points execute diffusion motion.
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The regions of strong and diffusion collisions are,
respectively, ρ < ρ0 and ρ > ρ0, where ρ0 = n/(µv). One
should also take into account the screening due to elec-
trons; that is,

(21)

This means that only collisions with impact parameters
ρ < 1 (22)

are of importance. If ρ0 > 1, which corresponds to 

(23)

then all important collisions are strong ones, the distri-
bution flm is statistical (9), and the results from [8, 9] for
Γ are true: Γ ≈ ΓBL. Note that, for the most important
states (2), the values of the boundary kinetic energy

ε0 = M /2 are the following:

(24)

The estimate in (24), together with (3), means that a
major fraction of heavy hadronic atoms exist in the dif-
fusion regime of Stark mixing. The distribution f ≡ flm
in this case is far from a statistical one and obeys the
kinetic equation of the Fokker–Planck type (see
Appendix 1):

(25)

Note that the main contribution to D0 comes from large
impact parameters satisfying condition (11)—this fact
confirms the assumption in (11).

E R( )
R

R3
-----e 2R– 1 2R 2R2+ +( ).≈

v v 0, v 0< n µ,⁄=

v 0
2

for K– p( ) p p( ) ε0 2  eV, ∼,  
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∂
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n/µ n2/µ v, a.u.

Γ
1

2

Qualitative dependences of effective nuclear-capture rates
on the hadronic-atom velocity (in a.u.): (curve 1) Γ from the
diffusion formula (31) (valid for v > n/µ) and (curve 2) val-
ues ΓBL from [8, 9] (valid only for v < n/µ—that is, for
“strong” collisions).
 

 

In (25), the symbol 

 

q

 

 is the difference between the
atomic flow incoming to the 

 

n

 

 level (from upper Ryd-
berg levels) and the outcoming (to lower Rydberg lev-
els) one. This difference is equal to the diffusion flow
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of atoms with the same 
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 to a region of low 
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 1

 

; see Appendix 2), where nuclear capture occurs.
Taking into account the normalization to unity (8), one
obtains:

 

(27)

 

The boundary conditions to (25) are
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The former follows from (8). The latter is equivalent to
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 = 0 [see (26)]; i.e., the value 
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 is the natural
boundary of the problem—the region 
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unphysical one and therefore does not exist. As we will
see below, all physical quantities depend on 
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 only
slightly, and we need not know it exactly. For computer
simulations (see Appendix 2), the best value of 
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In accordance with (8), it is sufficient to consider the
steady regime, 
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The solution to (29) is (Appendix 1)
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. From (26), (27), and (30), we
have
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Note that all quantum-mechanical effects are absorbed
in the arguments of large logarithms, which confirms
the applicability of a classical consideration.

A comparison of (31) with the Bethe–Leon values

 

Γ

 

BL

 

 [8, 9] is presented in the figure. According to [8, 9],
at 

 

v

 

 @ n2/µ we have

(32)

The simplest way to obtain the result in (32) is to use
(4) and (5) and to calculate the probabilities P to the
first order of perturbation theory in the dipole interac-
tion  = r · E(R) of (K–p) and p. Taking into account
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the dipole selection rules and neglecting the screening,
one obtains

Here, ρmax ~ 1 (because of screening) and ρmin ~ n2/(µv) ~
ρs. The latter is obtained from the condition P < 1,
which is violated at ρ ~ ρmin. It is worth mentioning that
the result in (32), which is based on the incorrect
assumption (9), is not true. It is presented here only in
order to demonstrate the mistake one obtains using the
results from [8, 9] in the high-energy region ε > ε0 (this
happened in interpretation of experiments [5, 6]):

By using (2) and (3), we get ξ0 ~ 5–10. The reason for
this difference is the distortion of the statistical distri-
bution with respect to the angular momentum in the dif-
fusion regime of Stark mixing [compare (30) and (9)].

3. PROBABILITY P TO ACHIEVE THE 2p STATE

This probability is important for planned experi-
ments because it determines the total yield Y of K x rays
per hadron stopped in the target:

Y ≈ P. (33)

A more rigorous way to calculate Y is presented in
Appendix 2. Here, Y will only be estimated.

In the approximation of continuous n (appropriate
for n @ 1), we have

(34)

Here, τ is the time interval for the cascade from initial

states n ~ n0 =  when the atom was formed,

(35)

where ΓA, Γγ, and ΓC are the rates of Auger, radiative,
and Coulomb deexcitation processes for the level n. A
more rigorous formula for S is

(36)
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Nv
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-------------- 2πρ ρS ρ( )d
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∫
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------------------------.=
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Γ
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9Λ
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---------------.= =
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0

τ

∫ Γ nd
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------– 
  nd .

2
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Mh
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------– ΓA Γγ ΓC,+ +=

S Sn, Sn
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n0

∑ Γ
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-------------------------------.= =
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The quasistationary approximation applied here is not
true only at the first steps of the cascade just after atom
formation, when the distribution flm is statistical.
Shortly after, it becomes distorted and is defined by
(30). It follows from (30) that the fraction of the had-
rons captured during this nonstationary period is negli-
gible (~1/Λ1)—approximately, it is equal to

According to [8], for the Auger rate we get the expres-
sion

(37)

where p =  is the momentum of the ejected elec-
tron, ωfi = En – En' ≈ ωk = ωk, k = n – n', and ω = n3/µ.
In formula (37), the following expression for the aver-
aged square of the matrix element of the dipole transi-
tion was used [2]:

(38)

This formula is valid in the classical limit n @ 1 and can
be derived from the Bohr correspondence rule: for n @
1, the matrix element is approximately equal to the
Fourier component. The main contribution to (38)
comes from the range l ~ n, where the distortion of flm
is negligible, and it can be replaced by the statistical
distribution. In (37), only one-quantum Auger transi-
tions (n  n – 1, k = 1) were taken into account, others
(k ≥ 2) being neglected (an uncertainty is roughly 5%).

In the limiting case of n @ 1, we have

(39)

The main contribution to Γγ comes from transitions to
the deep states k ~ n—i.e., from small l values in (38),
where the distortion of flm is sizable. This effect is taken
into account in (39): it gives an additional factor of
about 0.6 [for values n from (2)].

The rate ΓC of Coulomb transitions in the denomi-
nator of (36) does not affect Sn values significantly.
Below, we present only a rough estimate of ΓC. The inter-
nal energy E is governed by the equation [compare
with (3)] 

(40)

where

(41)

2l l f n( ) f l( )–[ ] .d

0

n

∫

ΓA
16πN

3 p
-------------- r2〈 〉 4n11/2N

µ5/2
------------------,≈=

2ωfi

r2〈 〉 rnl'm' nlm,
2

f lm

lm l'm',
∑= 0.37

n4

µ2k4
----------.≈

Γγ k
4ωfi

3

3c3
---------- r2〈 〉 µ

3c3n4
-------------.≈

k 1=

n 1–

∑=

d E
dt

---------- ξλC E ,≈

λC πρC
2

Nv
2πn2N
Mµv

----------------= =
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Table 1. Values of Sn at ϕ = 0.05 for accelerated protium kaonic atoms in hydrogen [probability of avoiding the capture into
the level n is equal to exp(–Sn)]

n 2 3 4 5 6 7 8 9 10

Sn 0.3 2.5 6.4 6 3.5 1.7 1.0 0.6 0.4 2

n 11=

n0∑
is the rate of inelastic Coulomb collision (1). Here, ρC
is the critical impact parameter for the collision fol-
lowed by the capture of a hadronic atom by a proton
due to dipole–charge interaction:

Substituting the energy |E| = µ/(2n2) into (40), one
obtains

(42)

The values of Sn for (K–p) atoms with the energy
specified by (3) and the hydrogen density ϕ = 0.05
(conditions of the proposal from [16]) are presented in
Table 1. It follows that S = 24.4; i.e., accelerated (K–p)
atoms entirely decay at high Rydberg states n ~ 6. This
conclusion holds for all types of hadronic atoms,
including the (π–p) atom; for all reasonable densities,
the latter is due to a very weak dependence on ϕ:

(43)

A general conclusion from above is that only nonac-
celerated hadronic atoms can achieve the n = 2 state.
More strictly speaking, only those atoms can survive
that remain in the “strong” Stark collision region ε < ε0,
where Γ is less than the diffusion value (ε > ε0). Just
after formation in the process K– + H  (K–p) + e,

atoms are in the region ε < ε0 = M /2µ2. Similarly to

d

ρC
2

------ Mv 2

2
-----------, d∼ er

n2

µ
-----.∼=

dn
dt
------– ΓC, ΓC ξλCn 2.⁄= =

S ϕ3/19.∼

n0
2

Table 2. Values of an at ϕ = 0.05 for protium kaonic atoms
in hydrogen

n 2 3 4 5 6 7

an 0.07 0.5 0.6 0.6 0.5 0.3 0.5

n 8=

n0∑

Table 3. Values of Ps , Ys, and Y for protium kaonic atoms at
ϕ = 0.05 (Frascati proposal [16]) and ϕ = 0.01 (KEK [18]) for
two values of the parameter β in (45)

Ps Ys , % Y, %

ϕ = 0.05 β = 0.5 0.05 2 0.1

β = 0.3 0.14 2 0.3

ϕ = 0.01 β = 0.5 0.15 7 1

β = 0.3 0.3 7 2
(32), the probability to remain nonaccelerated (to
remain “slow”) is 

(44)

Here,  is the rate of acceleration due to Coulomb
transitions (1) (the probability per unit time). A rough
estimation yields

(45)

The subscript “zero” here indicates that the velocity
v = v0 = n/µ should be inserted into each formula.

The values of an for β = 0.5 and ϕ = 0.05 are pre-
sented in Table 2. This results in a = 3.1 and

(46)

For β = 0.5 and ϕ = 0.01, we similarly obtain

(47)

It is seen from the above that the theory from [8, 9]
is applicable to “slow” atoms. From this theory, simi-
larly to (34) and (36), we obtain, for slow atoms, Ys =
0.02 (at ϕ = 0.05). This result is in agreement with the
calculation from [17], which is based on [8, 9].

The resulting (observed) yield is

(48)

Taking into account the values from (46) and (47) and
the dependence in (43), which is also true for slow
atoms, we obtained the values presented in Table 3. Of
course, the parameter β in (45) is determined with large
uncertainty: β = 0.3–0.5. The appropriate results for β =
0.5 and β = 0.3 are presented in Table 3. The actual val-
ues are confined between these “boundary” values.

The effect of acceleration is less important for deu-
terium kaonic atoms than for (K–p). In this case, we
obtain the estimate Ps ~ 0.5. It means that, for (K–d)
atoms, the total yield is

(49)

where Ys is the value calculated within the “standard”
cascade model [17].

Ps a–( ), aexp an,
n 2=

n0

∑= =

an

λa
0( ) n( )

ΓA Γγ ΓC
0( )+ +

---------------------------------.=

λa
0( ) n( )

λa
0( ) βλC

0( ), β 0.5.∼=

Ps 0.05.=

Ps 0.15.=

Y YsPs.=

Y 0.5Ys,∼
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4. CONCLUSION
Nuclear capture in hadronic atoms of hydrogen iso-

topes essentially depends on their kinetic-energy distri-
bution. Roughly speaking, there are two regions: ε < ε0

and ε > ε0. The majority of light atoms (µ–X) and (π–X)
(where X = p, d, t) correspond to energies from the first
region (ε < ε0); hence, such atoms are statistically dis-
tributed among (l, m) states. An accelerated fraction of
them (ε > ε0) is small (~10%), and the (l, m) distribution
of such (π–p) atoms is distorted and considerably devi-
ates from the statistical distribution as the result of a
specific (diffusion) regime of Stark mixing. The result-
ing decay rates for these atoms are at least five times
larger than those calculated within the standard Bethe–
Leon theory [8, 9]. This provides a novel treatment of
the experiments reported in [5, 6], which were devoted
to direct measurements of the distribution of (π–p)
atoms: the accelerated fraction is about 10%, and the
rates of the Coulomb transitions are compatible with
quantum-mechanical estimates [2–4]. In the opposite
case of heavy atoms (K–X), ( X), …, the majority of
them [about 90% for (K–p)] at ϕ = 0.05) are accelerated
to ε > ε0 and are described by the nonstatistical distribu-
tion (30). Virtually all of them decay before reaching the
n = 2 state. About 10% of atoms remain nonaccelerated.
The capture rate for nonaccelerated atoms is moderate
and about 2% of such (K–p) atoms at ϕ = 0.05 achieve the
n = 2 state. Hence, the resulting yield of K x rays emitted
in the 2p  1s transition is about Y = 0.1 × 0.02 = 0.002
(that is, 0.2%). At ϕ = 0.01 for (K–p) atoms, we have 1 <
Y < 2% (see Table 3).

Of course, a more detailed analysis of cascade pro-
cesses is desirable. It is described in Appendix 2, and the
appropriate results will be published later. The main result
of this paper is to expose a new regime of Stark mixing
resulting in the distortion of the angular-momentum distri-
bution and increasing of effective nuclear-capture rates.
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APPENDIX 1

Deriving and Solving
the Diffusion Equations (25) and (26)

To simplify the derivation, we introduce a new vari-

able r (0 < r < 1) instead of l: r = (l/n)2/3, where  =
l/l. The number of quantum states (lm) for the interval
(l, l + dl) is 

(Ä.1)

p

l̂ l̂

dNst 2ldl n24πr2dr
V0

----------------- n2d3r
V0
-------,= = =

V0
4π
3

------.=
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From (A.1), the advantage of r is clear: quantum states
are distributed uniformly over the r space, while the
density of states is nonuniform over l space.

In order, to find the populations f ≡ flm(t), one should
generally write and solve the kinetic equation

(Ä.2)

where λlm =  and λl 'm', lm is the rate of the
(lm)  (l 'm') transition. These rates can be calculated
as in [9]. In this paper, we restrict ourselves to the dif-
fusion regime (17). In this case, equation (A.2)
becomes simpler; it is a Fokker–Planck equation for a
standard Markov diffusion process of particles in r
space:

(Ä.3)

Here and below, summation over dummy subscripts is
performed. In (A.3) (see [19]),

(Ä.4)

are the diffusion coefficients, which, in general, are
components of a tensor. Averaging over the possible
collisions is performed in (A.4), τ is the time period
between them, and j is the diffusion flow of particles.

Let us consider a region Ω in r space (or a corre-
sponding sector in l space). The number of particles in
this region is

(Ä.5)

In the last equality, we considered that flm does not
depend on m. From (A.3) and (A.5), we obtain the bal-
ance equation 

(Ä.6)

where ∂Ω is the boundary of Ω, df is an external ele-
ment of surface on this boundary, and J = jn2/V0 is a real
flow of particles. If we have only one particle with a
quantum number n, then

(Ä.7)
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and the flow J determines the number of particles com-
ing into a capture region l < l0 per unit time; i.e., the
effective nuclear-capture rate is

(Ä.8)

where r  r0 = (l0/n)2/3, l  l0,

(Ä.9)

We have considered that

Similarly to (A.8), (A.3) is transformed back to the
variable l:

(Ä.10)

The steady-state regime is achieved owing to the
resulting flow to our n level from other Rydberg levels.
Hence, in a single collision, |∆l| ! n, this flow is pro-
portional to f, as in (25). Integration of (29) with respect
to 2ldl, as in (A.7), gives the balance condition

q = Γ. (Ä.11)

After averaging over the directions of , we find from
(19), (20), and (A.9) that

(Ä.12)

Here, ρmax ~ 1 (see the end of Section 1). Our consider-
ations are true under the conditions b ! 1 and ρ @ r =
n2/µ; therefore [see (12)]

(Ä.13)

and we obtain (26).

In accordance with (28), f  f0 < ∞ for l  n.
Since q is small, we therefore find a solution to (29) at

Γ 4πr2Jr r( )– 4πr2 n2
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=  2D0l
∂f
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µvρ
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2

d
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+∞
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-------------------Λ ,= =

Λ
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---------- 
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ρmin max
n

µv
------- n2

µ
-----, 

  n
µv
-------,= =
l ~ n in the form f = f0[1 + S(l)], where S(n) = 0, |S| ! 1.
Solving the equation for S,

one obtains

(Ä.14)

Since q is small, we assume that

(Ä.15)

From (A.15), it follows that (A.14) holds also in the
region l ! n (but not in the limit l  l0).

Let us now consider the region
l ! n, (Ä.16)

where the ratio l2/n2 in the factor D0 can be omitted,
which leads to the Bessel equation

From (A.15) and (A.16), it follows that x ! 1; hence, in
the case (A.16), we arrive at 

(Ä.17)

where Λ1 = ln(n/l0), and we take into account (28). The
regions of applicability of (A.14) and (A.17) overlap;
therefore, we can simply compare (A.14) and (A.17).
This gives C3Λ1 = f0 and

(Ä.18)

(Ä.19)

Inequality (A.15) follows from (A.19). After integrat-
ing (A.7), it is easy to find f0 and to obtain (30). Thus,
the result in (31) follows directly from (A.8). There-
fore, the accuracy of (31) is above ~1/Λ1. Within this
accuracy, the result in (31) remains true for q dependent
on l.

APPENDIX 2
Scheme of a Purely Classical Calculation

The above calculations combine a quantum and a
classical treatment. For large n, it seems reasonable to be
restricted to a classical consideration. This makes it pos-
sible to obtain the more accurate results for the yield Y of
K x rays and for other characteristics of the cascade.

All particles in reaction (1) (K– and both protons)
move along the classical trajectories. If the angular

1
l
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d

l 1 l2
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f f 0 1
qn2
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l
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f C3
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momentum becomes small (l < l0) after a collision, this
is equivalent to the capture of a hadron by a nucleus. As
we demonstrated in Appendix 1, the exact value of l0
and all other quantum values are inoperative in the dif-
fusion regime: all of them are contained in the argu-
ments of large logarithms. The value of l0 is important
in the regime of strong collisions. In this sense, such a
regime can be considered as more “quantum” than the
first one. In the case of v < v0, the angular distribution
becomes statistical after each collision (see [8] and
above), and collisions occur with average frequency

νcoll = π Nv. The population of the ns state just after
a collision will be

(Ä.20)

It is the quantum-mechanical picture for strong colli-
sions.

In a classical picture, the distribution after a colli-
sion is microcanonical; i.e.,

(Ä.21)

where A = (π3 )–1 (  = 1), n = (µ/2|E|)1/2,

and r0 = 1/|E| = 2n2/µ. Let us also determine the classi-
cal Keplerian frequency ω = µ/n3.

It follows from (A.21) that, at each point, the motion
is isotropic: the momentum vector p is uniformly distrib-
uted over the solid angles. The r distribution is obtained
from (A.21) after integration with respect to d3p:

(Ä.22)

Using (A.21) and 

and performing integration with respect to p and r, one
obtains the statistical distribution dWl = (2ldl/n2)θ(n – l),
as we hoped above. The probability to find the angular
momenta in the capture region 0 < l < l0 is equal to Wc =

/n2. Comparing this result with (A.20), we obtain

l0 = 1. (Ä.23)

At this value of l0, classical and quantum consider-
ations give the same results for Γ and Y (when ns
nuclear capture dominates).

We saw above that Stark mixing in the classical pic-
ture reduces simply to a variation of l and A in a colli-
sion. In such calculations, it is impossible to separate
inelastic Coulomb transitions and Stark mixing as was
done, for example, in [20], where the effects of Stark
mixing in ( ) atoms were taken into account twice: in
calculations of classical trajectories and next through a
quantum-mechanical treatment enforced from outside

ρs
2

f 00 1 n
2
.⁄=

dW Ad3 pd3rδ p2

2µ
------ 1

r
---– E– 

  ,=

r0
5/2 2µ Wd∫

dWr
16

πr0
5/2

----------- 1
r
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r0
----– r2drθ r0 r–( ).=
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rather artificially. The hypothesis of the statistical dis-
tribution flm was also adopted. As we have seen, it fails
for the majority of ( ) atoms, i.e., for accelerated
atoms, which were not taken into account either.

At last, we introduce radiative and Auger processes
in the classical picture. This can be done by adding fric-
tion forces to the equation of motion. The collision time
is small in relation to the period between collisions.
This allows us to assume that these forces act only on
the particles of the hadronic atom (h and X) and not on
the incident proton. In what follows, it will be impor-
tant that internal motion in the hadronic atom is peri-
odic over intervals between collisions.

The energy radiated per second (radiative power) is [21]

This power can be obtained if one imagines that the
effective electric field of radiative friction is Eγ = Bγ .
Thus, the radiative friction force is

(Ä.24)

Here, eh = –1, eX = +1 (atomic units), and r ≡ r(t) = rh(t) –

rX(t). The averaged power of radiation is Bγ〈 〉  = Bγ;

hence,

Note that it is impossible to use, in computations, the

standard form of radiative friction field, E = . The

origin is the incorrect solutions with self-acceleration
in this case [21].

According to (37), the work of Auger friction forces
per second (friction power) is

(Ä.25)

where, in accordance with Bohr’s correspondence prin-
ciple, we replace ωfi and matrix element rfi by their
classical values: the frequencies of Fourier harmonics,
ωk = ωk, and harmonics of the trajectory rk for unper-
turbed Keplerian orbital motion of hadron r(t):

It is remarkable that (A.25) can be rewritten in the form
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ṙ2 1

n2
-----

Bγ
µ2

3c3nl5
--------------- 3 l2

n2
-----– 

  .=

2

3c3
-------- ḋ̇̇
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where the effective force of radiative friction is

(Ä.26)

Here, averaging is performed over the Keplerian
motion. Note that, in (A.26), F depends not only on the
past but also on the future.

This causal contradiction is a consequence of our
approximations and of the quantum-mechanical char-
acter of the ejected-electron motion. Because of the
energy–time uncertainty principle ∆Eτ ~ ", we are not
able to answer the question of what happens earlier:
electron ejection or hadronic transition. To avoid this
trouble, we neglect, in (A.25), the contributions for k ≥
2. This gives a tolerant error about 7%. Afterward, we
will make corrections in final formulas. The next step is
to introduce the additional electric field in (A.24):
Eγ  Eγ + EA. Here, EA = B  is the real physical (but
approximate) electric field acting on the particles of the
hadronic atom resident inside the electron cloud. The
atom distorts this cloud; hence, the additional electric
field arises. With allowance for this field, the equations
of motion assume the form

Thus, we have

whence it follows that

This gives the friction power

(Ä.27)

A comparison with (A.25) (after neglecting there k ≥ 2
terms) yields

From (38), it is easy to estimate the error in (A.27) and
to correct it.

Finally, one concludes that radiative and Auger tran-
sitions are taken into account by introducing the elec-
tric field
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(Ä.28)

This field acts only on the particles of hadronic atom.
Here, β ≈ 2/3 is a correction factor for either of the
above two approximations.
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Abstract—The combined results from ep  νWX, ep  eWX, and ep  νγX processes at HERA are
used to constrain anomalous three-boson couplings. The effective model for anomalous couplings where there
is no light Higgs boson and where interactions responsible for the breakdown of electroweak symmetry are
strongly coupled is considered. Bounds on the couplings L9L and L9R, which parametrize contributions from the
anomalous WWγ (WWZ) vertices, attainable from an analysis of the distributions for the processes in question
are presented. The results are compared with the bounds resulting from the LEP I and LEP II data. It is shown
that the bounds coming from HERA significantly reduce the parameter region allowed by the analysis of the
LEP I and LEP II data. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the main goals of the operating LEP II and
of future next linear colliders is to measure the WWγ
and WWZ couplings. In the Standard Model (SM),
these couplings are strictly fixed by the structure of
SU(2) × U(1) symmetry, and any deviation of the cou-
plings from the values predicted by the SM will defini-
tively indicate the presence of new physics. It is conve-
nient to describe the phenomenology of models with
anomalous couplings in terms of the low-energy effec-
tive Lagrangians. Within this approach, effects of new
physics manifest themselves as higher dimension oper-
ators modifying the couplings of observed particles,
including anomalous boson couplings. This approach
has a number of practical consequences in limiting the
number of anomalous couplings to be studied.

In this article, we consider a class of models where
interactions responsible for electroweak-symmetry
breaking are strongly coupled and where there are no
new particles light enough to be produced at energies
below 500 GeV–1 TeV and study the effect of the low-
est dimension operators that lead to anomalous contri-
bution of the WWγ(Z) vertex at HERA energies. Devia-
tions from the boson self-couplings predicted by the
minimal SM were studied extensively in the literature;
in particular, they were discussed in the context of the
HERA collider [1–6]. The main processes to probe the
anomalous couplings at the HERA collider are ep 
νγX, ep  eWX, and ep  νWX, where X is a had-
ronic state. The first two processes reveal sizable cross

    * This article was submitted by the authors in English.
  ** e-mail: likhoded@mx.ihep.su
*** e-mail: onsishchenko@heron.itep.ru

1) Institute for Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya ul. 25, Moscow, 117259 Russia.
1063-7788/00/6305- $20.00 © 20859
sections, which allow one to reconstruct final states and
to analyze relevant distributions for the processes. In
turn, the cross section for the process ep  νWX is
too small, so that only isolated events can be observed
at the present HERA luminosity. For this reason, the
chance to probe the anomalous couplings via this pro-
cess was usually neglected. We will show later, how-
ever, that this process is highly sensitive to anomalous
contributions, permitting the inclusion of data on this
process in the analysis as well.

There are two main distinctions between the present
study and those that can be found in the literature. First,
we apply the effective Lagrangian formalism allowing
us to parametrize the anomalous gauge-boson interac-
tions and to correlate them with the symmetry-breaking
sector. Second, we perform a global analysis of all three
processes, ep  νγX (eWX, νWX). Here, we pay spe-
cial attention to the fact that the process ep  νWX,
in spite of the small cross section, reveals a high sensi-
tivity to anomalous terms and leads to bounds compet-
itive with those from the process ep  eWX and more
stringent than those coming from the data on radiative
charged-current scattering.

This article is organized as follows. In Section 2, we
briefly summarize the effective Lagrangian formalism
used to describe anomalous couplings. In Section 3, we
present the results of our calculations for the HERA
processes. In Section 4, we present bounds on the
anomalous couplings parametrizing the triple boson
vertex and compare these bounds with those coming
from LEP I and LEP II data. Finally, we summarize our
results.
000 MAIK “Nauka/Interperiodica”
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2. FORMALISM FOR ANOMALOUS COUPLINGS

Introducing anomalous boson interactions, we want
to describe the case where, for the electroweak-symme-
try-breaking sector, there is no light Higgs boson and
where the low-energy particle content is essentially the
same as that in the minimal SM, provided that Higgs
boson is taken to be very heavy. This model can be writ-
ten as the usual Standard Model, but the scalar sector
must then be replaced by the effective Lagrangian [7]

Here, the matrix Σ ≡ exp(iw · t/v) contains the would-
be Goldstone bosons ωi that give the gauge bosons their
mass via the Higgs mechanism, the SU(2)L × U(1)Y
covariant derivative is given by

and v ≈ 246 GeV. This case was considered at length in
the literature [7, 8], and we used it previously for pro-
cesses incorporating triple [9] and quartic boson interac-
tions [10]. In this model, anomalous gauge-boson cou-
plings correspond to the contributions from higher dimen-
sion operators that are invariant under the SU(2)L × U(1)Y
gauge group. The next-to-leading-order (NLO) effective
Lagrangian that arises in the context of this model and the
contributions of this Lagrangian to the anomalous cou-
plings were discussed in the literature [7, 8].

It became common to write the most general C- and
P-invariant VW+W– vertex (where V = Z, γ) in the form
[11]

(1)

where sW and cW are the sine and the cosine of the
Weinberg angle.

At the tree level and in the unitary gauge, the anom-
alous terms contribute to the processes under consider-
ation only through the three-gauge-boson vertex WWV.
Within the effective Lagrangian approach and under the
assumption that whatever breaks electroweak symme-
try has at least an approximate custodial symmetry,
there are only three operators in the C- and P-preserv-
ing NLO effective Lagrangian that are relevant to the
gauge sector:

(2)

+ 2( ) v
2

4
------tr DµΣ†DµΣ( ).=

DµΣ ∂µΣ i
2
---gWµ

i τ iΣ i
2
---g'BµΣτ3,–+=

+WWV ie
cW

sW
------g1

Z Wµν
† Wµ WµνWµ†–( )Zν–=

– ieg1
γ Wµν

† Wµ WµνWµ†–( )Aν

– ie
cW

sW
------κZWµ

† WνZµν ieκγWµ
† Wν Aµν,–

+ 4( ) v
2

Λ2
------ gL9Ltr WµνDµΣDνΣ

†( )–{=

– ig'L9Rtr BµνDµΣ†DνΣ( )

+ gg'L10tr ΣBµνΣ†Wµν( ) } .
However, it was shown in [12] that the coupling L10,
being proportional to the parameter e3 measured at LEP
I, is tightly constrained, –1.1 ≤ L10(MZ) ≤ 1.5; therefore,
we will not consider the evolution of this coupling.2) 

For the case of a strongly interacting symmetry-
breaking sector, the approach of the effective
Lagrangian allows one to relate the four couplings in
(1) to those in (2):

(3)

In (3), the leading contribution to each anomalous cou-
pling is presented, while the ellipses stand for contribu-
tions that arise in a higher order of 1/Λ4 or in the 1/Λ2

order with custodial SU(2)-symmetry breaking. It should
be noted here that, in contrast to the anomalous couplings
from [11], we do not have terms that correspond to the
usual couplings λZ and λγ, because, within the model dis-
cussed, they only occur in higher orders in 1/Λ2.

In this paper, we will consider the processes ep 
νγX (eWX, νWX) at the tree level and use the unitary
gauge. In Figs. 1–3, one can see that new physics con-
tributes to these processes via anomalous triple boson
vertices, so that (adopting that L10 is severely con-
strained by LEP I data and that boson–fermion vertices
remain unchanged) we are left with the set of anoma-

lous couplings  and κZ(γ) [in terms of (1)], or with
the set of L9L and L9R [in terms of (2)].

3. PROCESSES WITH ANOMALOUS
WWγ(Z) COUPLINGS

In this section, we would like to discuss the possible
manifestations of anomalous WWγ(Z) couplings in the
processes ep  νγX (eWX, νWX) at the HERA ep col-
lider, where Ee = 30 GeV and Ep = 820 GeV, which cor-

responds to  = 314 GeV. We adopt the integrated
luminosity of 1000 pb–1, which corresponds at least to
five years of machine operation. We use a Monte Carlo

2)Within the model discussed, the anomalous couplings also affect
the Wfν and Zf  vertices through renormalization, but they do
this only through the parameter L10 [12], and this contribution is
neglected.
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Fig. 1. Feynman diagrams for the process ep  νγX.
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Fig. 2. Feynman diagrams for the process ep  eWX.

Fig. 3. Feynman diagrams for the process ep  νWX.
generator to simulate signal events and CTEQ4 param-
etrization [13] for the proton structure function. Stan-

dard sets of cuts on , , and , as well as on the
corresponding rapidities, were applied to satisfy the
detector geometry and to reproduce the reconstruction
efficiency. Uncertainties in the photon and jet energy
measurements were taken into account by the Gauss-
ian smearing of the 4-momenta. For our numerical
study, we also use the following input parameter
values:

pT
jet pT

γ pT
e
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the values for CKM matrix elements were taken from
the PDG review [14].

3.1. Process ep  νγX
The following partonic subprocesses contribute to the

process ep  νγX:

eu  νγd,

MW 80.43 GeV, MZ 91.187 GeV,= =

α 1/128.8;=
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eu  νγs,

eu  νγb.

For each of the cases, the corresponding Feynman dia-
grams are shown in Fig. 1. Since the signal topology for
this process includes a jet, a photon, and missing
energy, it is necessary to require the jet–photon separa-
tion (for example, by applying the cut on the relative
pseudorapidity of the photon and jet, ∆η, and their rel-
ative azimuthal angle, ∆ϕ) and to impose the cut on the
photon transverse momentum to get rid of the collinear
and infrared singularities.

This process was studied in detail in the literature
[1]; however, we will recall some of its main features to
motivate our further choice of kinematical cuts that are
aimed at improving the sensitivity of the process to
anomalous couplings. We found that the cuts

(4)

allow one to isolate the singularities and to separate the
final photon and the jet. With these cuts, the cross sec-
tions for the relevant subprocess are 

σ(eu  νγd) = 8.72 pb,

σ(eu  νγs) = 0.44 pb,

σ(eu  νγb) = 1.06 × 10–4 pb,

which corresponds to the ep  νγX total cross section
of .9.16 pb. The contribution from the subprocess with
a b quark in the final state is negligible, and we will not
show it, while presenting differential distributions, but
will keep it performing numerical estimates.

The differential distributions with respect to the
photon transverse momentum, its scattering angle (rel-
ative to the electron-beam direction), and energy are
shown in Figs. 4–6. In all three figures, the lowest curve
represents the contribution from the subprocess with an
s quark in the final state, while intermediate and upper
curves represent, respectively, the contribution of the
final d quark and the total contribution (in the cases of
pT and E distributions, the last two curves are indistin-

pT
γ 0.5 GeV and ∆η( )2 ∆ϕ( )2+ 0.4≥≥

100

10–2

dσ/dpT, pb/GeV

10–4

10–6

0 40 80 120
pT, GeV

Fig. 4. The ep  νγX cross section as a function of the
photon transverse momentum in the SM case.
guishable on this scale). One can see that the bulk of the
cross section is collected at low values of the photon
transverse momentum and energy.

It is seen from the diagrams in Fig. 1 that the anom-
alous terms contribute to the process ep  νγX only
through the WWγ vertex. This means that, in terms of
(3), the total cross section and the differential distribu-
tions that take into account anomalous interactions are
functions of the combination (L9L + L9R) of anomalous
couplings, which parametrize the WWγ vertex. From
Fig. 7, where the total cross section is shown as a func-
tion of (L9L + L9R), one can see that the total cross sec-
tion has the highest sensitivity at negative values of
(L9L + L9R); this is due to the constructive (destructive)
interference between the anomalous and the Standard
Model contributions at negative (positive) values of
(L9L + L9R). Analyzing the process distributions, we
found that stricter bounds on the anomalous couplings
can be attained from the data on pT distributions. There-
fore, it seems interesting to study the behavior of
dσ/dpT for nonvanishing anomalous couplings.

In Fig. 8, we present3) the relative contributions of
the anomalous terms to the pT distribution for (L9L +
L9R) = 500 and –5004) (curves 1 and 2, respectively).
One can see that, for positive values of the anomalous
couplings, the new-physics contribution is positive and
corresponds to the high-pT region, while, for negative
values, it is distributed more or less uniformly over the
region of moderate pT. In either case, however, the
region of small pT is poorly sensitive to new-physics
effects; i.e., it is mostly dominated by the SM contribu-
tion. This allows one to impose an extra cut on pT,
which should suppress the “background” SM contribu-
tion without losses of the effect due to anomalous
terms. The optimal cut on pT can be determined from

3)The appearance of sharp peaks in Figs. 8 and 9 is caused by a
shortcoming in the spline algorithm.

4)These values of (L9L + L9R) were chosen for demonstration pur-
poses only.

101

100

10–1

–1 0 1
cosθ

dσ/dcosθ, pb

Fig. 5. Angular dependence of the ep  νγX cross section
in the SM case.
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the so-called “sensitivity function,” which is defined as

(5)

where σSM and σNEW are the SM cross section and the
cross section with allowance for the anomalous terms,

respectively. The appearance of a peak in S( ) corre-
sponds to the optimal cut value. In Fig. 9, the sensitivity

function is plotted against  for the case of (L9L +
L9R) = 500 and –500 (curves 1 and 2, respectively). It
should be noted that a variation of the couplings will
change the absolute normalization of the curves, but
this will not modify their line shape. One can see that,
for negative coupling values, the sensitivity peaks are at

 . 30 GeV, while for positive coupling values, there
is no such pronounced peak behavior. Maximizing both
S functions, one gets an optimal cut value, pT ≥ 30 GeV.
Later, discussing the resulting bounds, we will use just

S
σNEW σSM–

σSM
------------------------------ +,=

pT
cut

pT
cut

pT
cut

10–2

10–4

0 100 200 300
E, GeV

dσ/dE, pb/GeV

Fig. 6. Energy dependence of the ep  νγX cross section
in the SM case.

pT, GeV

2

1

0

0 40 80 120

(dσNEW/dpT – dσSM/dpT)/(dσSM/dpT)

1

2

Fig. 8. Relative deviation of the pT distribution for the pro-
cess ep  νγX at nonvanishing anomalous couplings.
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this cut value. This cut does lead to a higher sensitivity
of the cross section to anomalous couplings.

In Fig. 10, we again present the total cross section as
a function of (L9L + L9R), but for the case where the cut
pT ≥ 30 GeV is used. Of course, this cut reduces the
cross section substantially; however, while, in the no-
cut case (see Fig. 7), the cross section varies from 1 to
–0.5%, for cut used, the cross section varies from 14 to
–4.6% for the same range of (L9L + L9R) values.

3.2. Process ep  eWX
This process has a smaller cross section in relation

to that for ep  νγX, but it turns out to be very sensi-
tive to the anomalous couplings. The following par-
tonic subprocesses contribute to ep  eWX:

eu  eWd,

eu  eWs,

eu  eWb,

ed  eWu,

ed  eWc.

9.28

9.22

9.16

9.10
–500 –100 300

(L9L + L9R)

σ(e–p         νγX), pb

Fig. 7. ep  νγX total cross section as a function of
anomalous couplings.

–300 100

0.08

0.04

0 40 80 120
pT

cut, GeV

1

2

S/ +

Fig. 9. Normalized sensitivity as a function of .pT
cut
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The corresponding Feynman diagrams are shown in
Fig. 2. For this process, the signal includes the scattered
lepton, a jet, and final W-decay products. To regulate
the singularities, it is necessary to impose a cut on the

σ(e–p   νγX), pb

0.38

0.34

0.30
–500 –100 300

(L9L + L9R)

Fig. 10. ep  νγX total cross section as a function of
anomalous couplings for pT ≥ 30 GeV.

–300 100

pT, GeV

dσ/dpT, pb/GeV

10–3

10–5

10–7

0 40 80 120

Fig. 11. ep  eWX cross section versus the transverse
momentum pT of W in the SM case.

100

10–1

10–2

10–3

–1.0 –0.9 –0.8 –0.7
cosθ

dσ/dcosθ, pb

Fig. 12. ep  eWX cross section versus the W scattering
angle in the SM case.
electron transverse momentum. This cut also solves, in
part, the problem of the scattered electrons lost in the
beam pipe. However, a cross-check cut on the polar
angle of the scattered electrons is also needed, –0.999 ≤
cosθe ≤ 0.998, where θe is the angle of the scattered
electron with respect to the electron-beam direction. It
is also necessary to require the jet–electron separation,
which could be done, for example, by applying the cut
on the relative pseudorapidity of the electron and the jet
and their azimuthal angle. In this case, we should iden-
tify final W by its decays into lν or jets. The possible
backgrounds to the leptonic W-decay mode are beam-
induced processes, cosmic muons, charged-current
events with a spurious electron, and the neutral-current
background. As was shown in [6], these backgrounds
can be reduced by imposing cuts on the position of the
interaction vertex, by means of algorithms based on
calorimeter and tracking information, by requiring an
isolated electromagnetic cluster and a matched track,
and by requiring an isolated missing pT. It was found
[6] that such cuts reduce the signal-to-background ratio
up to 1/7 and lead to an acceptance of about 40–65%
for W  eν (µν, τν) events. For the hadronic decay
modes of W, the dominant backgrounds are QCD pro-
cesses from neutral-current DIS and photoproduction.
Jet cuts and algorithms [6] being applied lead to a sig-
nificant reduction of the background and give the sig-
nal-to-background ratio of 1/24.

To demonstrate the characteristic behavior of the
ep  eWX process distributions, we use a minimal

set of cuts,  ≥ 2 GeV and the cut on the electron-scat-
tering angle discussed above. In this case, the subpro-
cess cross sections are 

σ(eu  eWd) = 1.39 × 10–1 pb,

σ(eu  eWs) = 0.738 × 10–2 pb,

σ(eu  eWb) = 1.694 × 10–6 pb,

σ(ed  eWu) = 0.617 × 10–1 pb,

σ(ed  eWc) = 0.32 × 10–2 pb,

which corresponds to the total cross section for ep 
eWX of about 0.21 pb. In Figs. 11–14, we present the
process differential distributions in the transverse
momentum and scattering angle of W and the electron,
respectively. In all these figures, the lowest curve repre-
sents the contribution from the d-quark subprocesses,
while the intermediate and upper curves represent the
u-quark and total contributions. Both the W-boson and
electron pT distributions are strongly peaked at small
pT. While produced W  bosons are boosted along the
proton direction, the angular distribution for electrons
is not so sharp and they are scattered preferably along
the electron-beam direction.

Anomalous couplings contribute to the process
ep  eWX through the WWZ and WWγ vertices, and
this implies that it is possible in principle to separate
L9L and L9R dependences in the observables. The pro-

pT
e

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000



CAN HERA DATA IMPROVE THE LEP CONSTRAINTS 865
cess cross section reveals a sensitivity to both couplings
[see Fig. 15, which shows the total cross section as a
function of the couplings L9L (solid curve) and L9R
(dashed curve)], much higher than that for the ep 
νγX case. We analyzed various observables and found
that the most severe bounds on the anomalous parame-
ters can be obtained from the differential distribution
over the electron transverse momentum. In Fig. 16, we
demonstrate the relative deviation of this distribution
for nonvanishing values of the couplings L9L and L9R,
where curve 1 (2) corresponds to the case of L9L =
500 (–500), L9R = 0, and curve 3 (4) corresponds to
L9L = 0, L9R = 500 (–500). One can see that, for negative
couplings, the deviation is less than that for the case of

positive couplings, and it is negative for low , which
is due to the destructive interference with SM contribu-
tion. For both cases, the anomalous-coupling contribu-

tion reaches its maximum in the high  region. We
used the sensitivity function defined in (5) to determine

the  cut that makes the process be sensitive to anom-

pT
e

pT
e

pT
e

10–3

10–5

10–7

0 40 80 pT, GeV

dσ/dpT, pb/GeV

Fig. 13. ep  eWX cross section versus the transverse
momentum pT of the electron in the SM case.

0.4

–500 –100 300
0.1

0.2

0.3

σ(ep     eWX), pb

L9L (L9R)

Fig. 15. ep  eWX total cross section as a function of the
couplings L9L and L9R.

0.5

–300 100
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
alous contributions; however, it turned out that, due to
the small cross section and, as a consequence, low sta-
tistics, such a cut does not lead to noticeable improve-
ment of the resulting bounds.

3.3. Process ep  νWX

The last process to be considered is ep  νWX.
The partonic subprocesses contributing to ep  eWX
are as follows:

eu  νWc,

eu  νWu,

ed  νWd,

ed  νWs,

ed  νWb.

The corresponding Feynman diagrams are shown in
Fig. 3. For this process, the signal includes the missing
pT, a jet, and final W-decay products. The cut pT ≥ 5 GeV
on the transverse momentum of the struck quark jet
allows one to get rid of singularities and to guarantee a

10–1

10–2

–1 0 1
cosθ

dσ/dcosθ, pb

Fig. 14. ep  eWX cross section versus the electron-scat-
tering angle in the SM case.

8

2

3

4

4

0

40 80 pT, GeV

(dσNEW/dpT – dσSM/dpT)/(dσSM/dpT)

Fig. 16. Relative deviation of the electron pT distribution for
the ep  eWX process at nonvanishing anomalous cou-
plings.

1

0
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high detection efficiency. As in the case of the process
ep  eWX, one has to reconstruct the final W boson
by its leptonic or jet final states. In doing this, all the
methods and cuts necessary to reconstruct the final
state and to suppress the background discussed in the
preceding section are also applicable.

For the cut on the jet transverse momentum, pT ≥
5 GeV, the partial cross sections the various partonic
subprocesses are

σ(eu  νWu) = 2.11 × 10–2 pb,

σ(ed  νWd) = 0.41 × 10–2 pb,

and the subprocesses with a s, c, or b quark in the final
state have cross sections that are negligibly small. The
total cross section is about 2.5 × 10–2 pb, which is much
smaller than that for the processes ep  νγX or
ep  eWX. For an integrated luminosity of 1000 pb–1

and a realistic reconstruction efficiency, one could
expect to have only isolated signal events, at max.
However, this reaction is highly sensitive to an anoma-
lous contribution.

In Fig. 17, which shows the total cross section as a
function of anomalous couplings, one can see that the
process cross section is highly sensitive to positive val-
ues of anomalous couplings. In Figs. 18 and 19, we
present the distributions of the cross section with
respect to the transverse momentum and W scattering
angle. One can see that the bulk of the cross section is
collected from the small pT region and that final W
bosons are strongly boosted along the proton-beam
direction. Though both distributions are equally sensi-
tive to an anomalous contribution, the fact that the pro-
cess cross section is extremely small makes it reason-
able to analyze the total cross section only, since the
low statistics will hardly allow observation of the real
distributions for this process.

0.10

0.06

0.02

–500 –100 300
L9L (L9R)

σ(ep   νWX), pb

Fig. 17. ep  νWX total cross section as a function of
anomalous couplings.

100–300
4. BOUNDS ON ANOMALOUS COUPLINGS

In this section, we will discuss the bounds on the
anomalous couplings that can be attained from the data
on the processes ep  νγX (eWX, νWX). First of all,
it is necessary to determine the efficiencies of the final-
state reconstruction for each of the processes.

For the reaction ep  νγX, which has a final-state
topology of a jet and a photon plus missing energy, it
should be noted that existing calorimeters allow one to
detect energetic photons with the efficiency of about
60%. However, about 30% of all photons convert to
electron–positron pairs on the detector material before
entering the calorimeter. The reconstruction efficiency
of such pairs is about 90%. Thus, the expected recon-
struction efficiency for the photon is about 70%. Put-
ting bounds on the anomalous couplings from this pro-
cess, we use the cut set of (4), but with pT ≥ 30 GeV, as
follows from the sensitivity-function analysis.

Studying the process ep  eWX, we adopt the
algorithms and cuts used in [6], thus having the follow-
ing acceptances for each of W-decay modes: 65% for
W  eν(µν), 40% for W  τν, and 20% for W 

jets. In addition, we check the cuts  ≥ 5 GeV and
−0.999 ≤ cosθe ≤ 0.998 to be satisfied, which ensures
the scattered-electron detection.

For the process ep  νWX, we require pT ≥ 5 GeV
for the struck quark and adopt the corresponding algo-
rithms for reconstructing final W decay as discussed
above.

For an integrated luminosity of 1000 pb–1, we
assume the uncertainty in the luminosity to be 2% and
the systematics to be 1% for each of the acceptances.

Discussing the sensitivity of the processes to anom-
alous couplings, we will analyze the differential cross
sections in the case of ep  νγX and ep  eWX and
the total cross section in the case of ep  νWX (here,
under the assumption of the Gaussian nature of the sys-
tematics, one can relate the deviations of σtot to the cor-

pT
e

pT, GeV
1208040

10–9

10–7

10–5

10–3
dσ/dpT, pb/GeV

Fig. 18. ep  νWX cross section versus the W transverse
momentum.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000



CAN HERA DATA IMPROVE THE LEP CONSTRAINTS 867
responding confidence level). We adopt the following
philosophy to confine anomalous contributions: one
uses the SM predictions as “experimental” data and
considers possible effects due to new physics as small
deviations. One then requires agreement between the
predictions including new physics and the “experimen-
tal” values within expected experimental errors. Thus,
the parameters representing new physics are bound by
requiring that their effect on the observables not exceed
the expected experimental errors.

Using differential cross sections (pT or angular dis-
tributions), we apply the simplest χ2 criterion defined
as

(6)

where, for example, for the case of the pT distribution,

In the above expressions, σ ≡ σSM represents the exper-
imental data, σNEW are the new-model predictions, and

 are the appropriate experimental errors in bins
including statistical and systematic errors. For binning,
we subdivide the chosen kinematical range into equal
bins. Here,

In Fig. 20, we present the resulting allowed regions (for
a 95% C.L. and Λ = 2 TeV) for the parameters L9L and
L9R that can be attained from the data on the process
ep  νγX (the area bounded by long-dashed lines),
ep  eWX (the domain bounded by the solid con-
tour), and ep  νWX (the area bounded by the short-
dashed contour). One can see that, in the case of ep 
νγX, the resulting bounds on L9L and L9R have the form
of a straight band oriented along the line L9L = –L9R.
This is due to the fact that these couplings contribute to
the process ep  νγX only through the parameter κγ
of the anomalous WWγ vertex, and κγ is proportional to
the combination (L9L + L9R) [see (3)]. However, due to
the different sensitivity of the data to the regions of neg-
ative and positive coupling values, this band is not sym-
metric with respect the line L9L = –L9R. In two other
processes anomalous parameters contribute through
both the WWγ and the WWZ vertices; thus, the resulting
bounds are less trivial.

χ2 Xi Yi–

∆exp
i

---------------- 
  2

,
i

∑=
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dσSM

d pT

------------ pT , Yid

pT
i

pT
i 1+

∫ dσNEW

d pT

--------------- pT .d

pT
i

pT
i 1+

∫= =

∆exp
i
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i Xi δstat

2 δsyst
2+ .=
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Thus, for + = 1000 pb–1, Λ = 2 TeV, and a 95% C.L.,
one gets the following two-parameter bounds from the
individual processes:

One can see that, with the two-parameter fit, the
bounds coming from the last two processes are nar-
rower than those from ep  νγX. It is important that
the bounds resulting from the ep  νWX data, in spite
of the small cross section for the process, are quite
stringent and turn out to be complementary to those

Process Bounds

ep  νγX –390 ≤ L9L + L9R ≤600

ep  eWX –340 ≤ L9L ≤ 280

–330 ≤ L9R ≤ 320

ep  νWX –280 ≤ L9L ≤ 260

–530 ≤ L9R ≤ 260

100

10–2

10–4

–1.0 –0.9 –0.8

dσ/dcosθ, pb

cosθ
–0.7

Fig. 19. ep  νWX cross section versus the cosine of the
W scattering angle.

L9R

1000

0

–1000 0 1000
L9L

Fig. 20. Allowed region (at a 95% C.L.) for the couplings
L9L and L9R from the data on ep  νγX (the area between
long-dashed lines), ep  eWX (domain within the solid
contour), and ep  νWX (domain within the short-
dashed contour).
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from the process ep  eWX. In the case of a one-
parameter fit, i.e., when only one coupling is varied at
a time, the individual bounds from the last two pro-
cesses become narrower:

Of course, it is interesting to compare these bounds
with those coming from the processes at LEP I and
LEP II. It was shown [12] that accurate measurements
of Z partial widths imply

–28 ≤ L9L ≤ 27,

–100 ≤ L9R ≤ 190.

The expected bounds [15] from LEP II coming from

data on the process e+e–  W+W– at  = 190 GeV
and an integrated luminosity of 500 pb–1 are

–41 ≤ L9L ≤ 26,

–100 ≤ L9R ≤ 330.

In Fig. 21, we present the 95% C.L. bounds on the cou-
plings L9L and L9R that follow from the analysis of Z par-
tial widths (shaded domain), data on the process
e+e−  W+W– at LEP II (dotted contour), and data on
HERA processes (the notation for bounding contours is
identical to that in Fig. 20).

One can see that the bounds from ep  νγX are
more flexible than LEP I or LEP II results. However,
both the process ep  eWX and the process ep 
νWX provide bounds that can be considered as comple-
mentary to the LEP I and LEP II results. It turns out that

Process Bounds

ep  eWX –75 ≤ L9L ≤ 55

–80 ≤ L9R ≤ 60

ep  νWX –250 ≤ L9L ≤ 100

–290 ≤ L9R ≤ 120

s

Fig. 21. Allowed regions (at a 95% C.L.) for couplings L9L
and L9R from LEP I (shaded domain) [12], LEP II (domain
within the dotted contour) [15], and HERA processes (the
notation for curves is identical to that in Fig. 20).

L9R

LEP II

LEP I

400

200

0

–200

–400
–50 0 50

L9L
the data on the HERA processes are unable to improve
the bounds on the coupling L9L, but they reduce signif-
icantly the allowed region for L9R. A combined analysis
of the data from LEP I, LEP II, and HERA could
exclude a large portion of the allowed domain for the
couplings in the region of large positive L9R values and
slightly improve the LEP I + LEP II bounds for nega-
tive L9R values.

5. CONCLUSION

We have presented a comparative analysis of the
ep  νγX (eWX, νWX) process sensitivity to anoma-
lous couplings that parametrize the WWγ(Z) vertices.
For anomalous couplings, we used the approach of the
effective Lagrangian and considered the model where
the electroweak-symmetry sector is strongly coupled
and there is no light Higgs particles. We found that the
processes ep  νγX (eWX, νWX) reveal a high sensi-
tivity to anomalous contributions. In spite of the small
cross section, the processes ep  eWX (νWX) pro-
vide the most severe bounds on the anomalous param-
eters.

At the HERA collider with an integrated luminosity
of 1000 pb–1, one can confine the anomalous couplings
with a 95% C.L. at the level of

from the data on the process ep  νγX;

from the ep  eWX data; and

from the ep  νWX data. The bounds from the last
two processes turn out to be complementary.

We conclude that, from the data on HERA pro-
cesses, one is unable to improve the bounds on the cou-
pling L9L coming from LEP I and LEP II, but these data
could result in significantly narrowing the allowed
region for L9R.
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Abstract—Indirect effects of the Z ' boson in the process e+e–  µ+µ– as implemented at the LEP2 electron–
positron collider are investigated in terms of new integrated observables σ±. It is demonstrated that these observ-
ables furnish more definitive information about Z '-boson effects than the canonical observables σµµ and AFB. It
is established that the deviations ∆σ± induced by Z ' bosons show a specific energy dependence, which is deter-
mined primarily by the parameters of the Standard Model. This permits making unambiguous model-indepen-

dent predictions. In particular, two points,  ≈ 78 GeV and  ≈ 113 GeV, are determined at which, respec-
tively, σ+ and σ– vanish both in the Standard Model and in presence of the extra Z ' boson. These energy values
can be of use in searches for phenomenological manifestations of alternative sources of new physics that are
different from Z '. © 2000 MAIK “Nauka/Interperiodica”.

s+ s–
1. INTRODUCTION

The Standard Model (SM) of strong and elec-
troweak interactions of elementary particles, which is
based on the gauge group SU(3)C × SU(2)L × U(1)Y, has
achieved impressive successes in describing experi-
mental data over the entire range of currently available
energies [1, 2]. The modern phenomenological status
of the SM relies on a comprehensive analysis of pro-
cesses, including leptonic, lepton–hadron, and hadron–
hadron interactions. In particular, the results of the
experiments that were performed at the LEP1 electron–
positron collider and which were aimed at a precision
determination of the constants of intermediate-vector-
boson coupling to fermions are in excellent agreement
with SM predictions to within 0.1%.

Nonetheless, the SM cannot be considered as the
fundamental theory of everything for a number of rea-
sons. First, it involves many free parameters. Second, it
cannot provide answers to some fundamental ques-
tions, including those associated with the problem of
particle-mass hierarchies, with the number of genera-
tions, and with the nature of P and CP violations. It
would therefore be natural to assume that there exists a
more fundamental theory whose low-energy limit coin-
cides with the SM. A rather wide class of models
involving an extended gauge sector (see, for example,
[3]) stands out among candidate theories that cannot
solve at least some of the problems arising within the
SM. These include left–right symmetric models, alter-
native left–right symmetric models, and E6 models. A
feature peculiar to many of such models is that they
predict the existence of new physical objects and the

* e-mail:pankov@gpi.gomel.by
1063-7788/00/6305- $20.00 © 0870
occurrence of new phenomena in the energy region
above 1 TeV—in particular, phenomena associated
with the existence of new neutral (Z ') or charged (W '±)
vector bosons, fermions, and scalar particles.

Searches for new particles and interactions pre-
dicted by nonstandard new physics beyond the SM rep-
resent one of the main tasks for experiments at the
existing and future accelerating facilities. The mass of
extra gauge bosons may be sufficient for inducing
direct or indirect (virtual) effects observable even at the
operating colliders or at high-energy next-generation
colliders. If the threshold for the production of new par-
ticles had been achieved, this would obviously have
been direct evidence for the existence of new physics.
Here, however, the interval of searches for the masses
of new particles is restricted by the maximal collider
energy. In particular, there are no prospects for a direct
production of the new neutral gauge Z ' boson at the

LEP2 collider, whose energy  cannot be pushed
above 200 GeV, since the experiments at the Tevatron
hadronic collider constrained its mass MZ ' to be below
600 GeV [4]. However, a much broader interval of
masses MZ ' can be explored by pursuing indirect effects

of Z ' bosons for  ! MZ ' [5]. In this case, it is possible
to trace deviations in the behavior of some observables
from the corresponding SM predictions. If experimen-
tal data agree with the SM within the current level of
accuracy—that is, if no deviations from SM predictions
are observed—this experimental information can be
used to set constraints on the parameters of the Z '
boson, such as its coupling constants and mass MZ '.
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One of the most natural ways to seek Z '-boson
effects is provided by the annihilation production of a
fermion pair through the process

(1)

(f = l, q), where the Z ' boson contributes to observables
even in the Born approximation. Briefly listed immedi-
ately below are basic conceivable phenomenological
manifestations of the Z ' boson in e+e– annihilation at

energies  ! MZ ' and some possibilities for their
experimental observation. First of all, these are elec-
troweak interference effects due to Z ' bosons. The
energy regions above and below the resonance pole of
the standard Z boson are highly favorable for the above
searches. These are precisely the energy values that
were achieved at the TRISTAN and LEP2 colliders.
The interference contribution to observables is propor-
tional to the Z '-boson-exchange amplitude; therefore,
this contribution depends on the product of the con-
stants of the Z '-boson coupling to fermions and the Z '-
boson propagator. We note that the sensitivity of
observables increases with increasing energy of e+e–

beams, whence it follows that the high-energy LEP2
collider has an obvious advantage over the TRISTAN
collider.

Apart from interference, the Z ' boson can also man-
ifest itself in Z–Z ' mixing [3]. It is advisable to explore
the effects of Z–Z ' mixing in the vicinity of the reso-
nance peak corresponding to the standard Z boson (this
was done at the LEP1 and SLC colliders [6]). The point

is that, at  = MZ, the leading contribution to the
amplitude of process (1) comes from resonance Z-
boson exchange, the electromagnetic and the Z '-boson
contribution being much less. Possible deviations of
resonance observables induced by Z–Z ' mixing are due
both to the corresponding modification of the fermionic
coupling constants and to the change in the mass of the
standard Z boson [7]. As was mentioned above, preci-
sion resonance measurements performed at LEP1 did
not reveal any deviations of observables from SM pre-
dictions. This resulted in establishing a stringent con-
straint on the parameter of Z–Z ' mixing: |φ| ≤ O(10–3) [6].

As to nonresonance measurements, their accuracy is
significantly poorer than that achieved at the Z-boson
peak. At the PEP and PETRA e+e– colliders, a test of
the SM in process (1) was nevertheless performed at

energies below the Z-boson resonance peak (  = 12–
46 GeV) [8, 9]. Similar data, but at higher energies of

 = 50–64 GeV, was obtained at the TRISTAN col-
lider [10]. In addition, the process e+e–  µ+µ–γISR,
where γISR stands for a hard photon emitted by the ini-
tial e+e– state, was investigated at LEP1 [11, 12]). Fol-
lowing hard-photon emission, the invariant mass of the
µ+µ– pair is shifted to the region below the Z-boson res-
onance peak, predominantly occurring between the

e+ e– f f+ +
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s

s

s
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TRISTAN energy and MZ. Once the LEP2 collider had
been commissioned, there appeared new data concern-
ing the measurements on process (1) at energies above
the resonance peak [13]. Although no considerable
deviations from SM predictions have been found in the
experiments performed thus far, a more meticulous
analysis of the experimental data makes it possible to
reveal some trend toward inconsistencies with SM pre-
dictions. In particular, the experimental results that
were obtained at the maximal energy of the PETRA
collider show a systematic deficit (of a few percent) of
the total leptonic cross section for e+e–  µ+µ– in rela-
tion to the SM prediction [14]. At the same time, the
forward–backward asymmetry is in satisfactory agree-
ment with the SM predictions. This tendency in the lep-
tonic channel was also observed at higher energies of

 = 50–64 GeV in early experiments at TRISTAN
[10] and in LEP1 experiments that studied the process
e+e–  µ+µ–γISR [11, 12]. It should be noted, however,
that the accuracy of these measurements was rather
poor because of insufficient statistics of lepton events.

A theoretical explanation for a possible decrease in
the total lepton scattering cross section was given in
[15]. In particular, the heavy vector Z ' boson, which has
a nonzero leptonic vector coupling constant can cause
a deficit of the leptonic cross section in relation to the
SM predictions because of destructive γ–Z ' interfer-
ence. The destructive character of γ–Z ' interference in
the leptonic channel is a model-independent prediction.
On the other hand, it was noted in [15] that the for-
ward–backward asymmetry is not modified by the pres-
ence of the Z ' boson if its leptonic coupling constant is
rather small.

More precise data from measurements of the pro-

cess e+e−  µ+µ– at the TRISTAN collider at  ≈
58 GeV were presented in [16, 17]. These data were
accumulated over a period from 1991 to 1995, the inte-
grated luminosity achieving 290 pb–1 in each of the
three experiments (VENUS, TOPAZ, AMY). A typical
precision in measuring the total leptonic cross section

was 2% there. As in earlier experiments at  < MZ, the
leptonic scattering cross section persisted in showing a
tendency to fall short of the SM predictions. However,
the difference between the theoretical and the experi-
mental values did not exceed two standard deviations;
that is, the statistical significance of this difference is
insufficient for considering it a confirmation of devia-
tions from the SM. Bearing in mind that, at higher ener-
gies, which have already been achieved at LEP2, the
sensitivity of process (1) to effects of nonstandard
physics becomes much higher, we can expect that the
current experimental situation will be clarified in the
near future. Even in the “worst” case, however—that is,
even if experimental data show perfect agreement with
the SM predictions—it would be possible to set more
stringent constraints on the parameters of nonstandard
physics.
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In this connection, it is of paramount importance to
optimize strategies of searches for effects of nonstand-
ard physics at the operating LEP2 collider. In the
present study, this problem is solved by introducing the
integrated observables σ+ and σ– that have a more spe-
cific predictive power than conventional (canonical)
observables like scattering cross sections σff and for-
ward–backward asymmetries AFB. In particular, the
energy dependence of the Z '-boson-exchange-induced
deviations of the new observables from the SM predic-
tions is governed predominantly by the parameters of
the SM. In some cases, this makes it possible to predict
unambiguously the signs of the deviations and the posi-
tions of their extrema and zeros. Owing to this, it will
become possible to identify reliably effects induced by
Z ' bosons and to separate them from possible effects
due to different reasons.

The ensuing exposition is organized as follows. In
Section 2, we discuss the canonical variables σff and
AFB and introduce the integrated variables σ±. Section 3
is devoted to a comparative analysis of phenomenolog-
ical implications of the possible existence of the extra
Z ' boson for the canonical and the new observables in
the process e+e–  µ+µ–. In Section 4, we obtain
model-independent constraints on the parameters of the
Z ' boson both on the basis of the existing experimental
data and under the assumption that future experiments
at LEP2 will show no signals from nonstandard phys-
ics. The effects of radiative corrections on the resulting
constraints are also discussed. The last section summa-
rizes the results obtained in this study and contains con-
cluding comments on them.

2. CANONICAL AND NEW OBSERVABLES

The general form of the Lagrangian LNC for fer-
mion-neutral-current interactions caused by γ, Z-boson,
and Z '-boson exchanges can be represented as

(2)

where e =  and where the Z- and Z '-boson
gauge coupling constants are defined as gZ = e/sWcW

(  = 1 –  ≡ sin2θW) and gZ ', respectively. The
expressions for the currents appearing in Lagrangian
(2) are given by

(3)

where i = γ, Z, Z ' and where the projection operators are

defined as PL, R = (1 )/2. We also have  =  –

 and  =  + . The fermion coupling constants
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in the SM can be written as

(4)

In the Born approximation, the differential cross sec-
tion for the reaction e+e–   with unpolarized pri-
mary beams can be represented in the form

(5)

where NC ≈ 3  for quarks and NC = 1 for lep-

tons, while θ is the scattering angle for the fermion f
with respect to the incident-electron momentum. In
addition, the functions F1 and F2 have the form

(6)

where

(7)

Their deviations caused by the Z ' boson can be repre-
sented as

(8)

where χV = s/(s –  + iMVΓV) is the vector-boson (V =
Z, Z ') propagator. The fermionic coupling constant are
normalized as

(9)

The total decay width of the Z ' boson, ΓZ ', is equal to
the sum of the partial widths with respect to decays into
fermion pairs:
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Owing to e−l universality, the leptonic channel of
reaction (1) has an obvious advantage over the produc-
tion of a  pair, since the leptonic observables depend
on a smaller number of free parameters. Indeed, the
leptonic process e+e–  µ+µ– depends on two leptonic
coupling constant,  and , and on the mass MZ '. In

order to describe the reaction e+e–  , we need
additional information about the quark coupling con-
stants. In this article, we study precisely the leptonic
process (1) with l = µ.

In LEP2 experiments, the leptonic channel is tradi-
tionally investigated in terms of the following pair of
integrated observables: (i) the total scattering cross sec-
tion σµµ and (ii) the forward–backward asymmetry AFB.
These observables can be represented as

(11)

where σpt ≡ σ(e+e–  γ*  µ+µ–) = (4π )/(3s)
is the electromagnetic scattering cross section, and as

(12)

Here, the cross sections for scattering into the forward

and the backward hemisphere are written as  =

dσµµ/dcosθ)dcosθ and as  =

dσµµ/dcosθ)dcosθ, respectively.

In order to reveal effects peculiar precisely to the
Z ' boson, we introduce the more appropriate observ-
ables σ+ and σ– defined as the differences of the inte-
grated cross sections in specific kinematical regions of
the scattering angle θ; that is,

(13)

(14)

where z* > 0 is derived from the condition requiring
that the kinematical coefficients of F1 and F2 in (5) be
equal upon integration with respect to cosθ. This con-
dition has the form

(15)

whence if follows that z* satisfies the equation

(16)

qq
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its solution being z* = 22/3 – 1 = 0.5874, which corre-
sponds to θ* = 54°. If measurements are performed in an
incomplete kinematical region of the scattering angle—
that is for |cosθ| < c—we obtain z* = (1 + 3c)1/3 – 1.

The observables σ+ and σ– can be related to the
function F1 and F2 as

(17)

where

(18)

It is convenient to express these new observables σ±
in terms of the helicity scattering cross sections σαβ
(here, α, β = L, R are the helicities of the initial electron
and the final fermion, respectively). Specifically, we
have

(19)

(20)

where Aαβ = (Qe)α(Qf)β + χZ + χZ ' is a helic-
ity amplitude and σαβ = NCσpt|Aαβ|2. In this way, the role
of these observables in separating the helicity cross sec-
tions σαβ is clarified. An alternative possibility of sepa-
rating the helicity cross sections that is based on an
analysis of the differential cross sections was consid-
ered in [18]. In should be noted that the observables σ±
are integrated characteristics; being mathematically
equivalent to differential variables, they have some
advantages over the latter in the case of limited statis-
tics.

It should be noted that the new independent observ-
ables σ± can be represented as combinations of the
canonical observables σµµ and AFB. Indeed, it follows
from (11), (12), (17), and (18) that

(21)

This means that σ+ and σ– can be either measured
directly as the difference of the integrated cross sec-
tions [see (13) and (14)] or determined indirectly in
terms of σµµ and AFB.

3. STRUCTURE OF Z ' INTERFERENCE

A clearer representation of the above results can be
obtained in an approximation based on some simplify-
ing assumptions:

(i) In estimating Z '-boson-induced contributions to
observables, it is sufficient to take into account only
Z '-boson interference effects, since the characteristic
lower bound on the Z '-boson mass significantly
exceeds the maximal energy of the LEP2 collider.

σ± σpt* F1 F2±( ),=

σpt*
3
4
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(ii) In the expressions for the deviations of the
observables from their values predicted by the SM, we
can neglect the vector leptonic constant vl against the
axial-vector constant al, because |vl| ! |al| < 1 in the SM.
In addition, we can also disregard the contribution of
the imaginary part of the Z '-boson propagator against its
real part.1) 

3.1. Z' Interference in the Cross Section
and Forward–Backward Asymmetry

In the approximation specified by items (i) and (ii),
the deviation of the total scattering cross section from
the SM prediction is given by

(22)

where the first (second) term in the parenthetical
expression on the right-hand side of (22) corresponds to
γ–Z (Z–Z ') interference, while  and  are constants
of, respectively, the vector and the axial-vector
Z '-boson coupling to charged leptons [see (9)].

If the constants  and  are on the same order of
magnitude, then the destructive γ–Z ' interference dom-
inates over the constructive Z–Z ' interference at ener-
gies of the TRISTAN collider. Therefore, the deviation
(22) of the cross section must be negative in this energy
region. At higher energies (but at the same time, those
that are less than MZ), the relative contribution of the Z–
Z ' interference ever increases, and the two types of
interferences cancel each other completely at

(23)

that is, ∆σµµ = 0. It should be noted here that  is
independent of MZ '. Finally, we have ∆σµµ > 0 for

 <  < MZ.

At energies  > MZ, either type of the interfer-
ences, γ–Z ' and Z–Z ', is destructive; hence, they add
up. Indeed, the right-hand side of (22) involves only the
squares of the leptonic coupling constants, whence it
follows that, at LEP2 energies, the sign of the
Z '-boson-induced deviation of the cross section from
the behavior predicted by the SM is determined by the
sign of the propagator χZ ', ∆σµµ < 0. It should be
emphasized that this property is model-independent;
that is, it takes place for any heavy vector states with
arbitrary vector or axial-vector (or both) leptonic cou-

pling constants for MZ <  ! MZ '. Moreover, it fol-
lows from (8) that this property is unaffected by the
simplifying assumption (ii). Only for the leptonic pro-

1)It should be noted here that all quantitative results presented
below were derived on the basis of the exact expressions.

∆σµµ σµµ σµµ
SM 2σpt v l

'2 al
'2al

2ReχZ+( )χZ' ,≈–≡

v l' al'

v l' al'

s0

MZ

1 alal'/v l'( )2
+

-------------------------------------;=

s0

s0 s

s

s

cess (1) is the deviation ∆σµµ of fixed sign if leptonic e–
µ universality holds. As to the cross section for the pro-
cess e+e–  , it does not possess this property in
general.

In order to obtain a quantitative representation of the
interference pattern, we consider three cases that differ
from one another by the choice of the leptonic coupling
constants  and , but which feature the same value

of the mass MZ '. These are the cases of (a) the vector 

boson (  = 1,  = 0), (b) the axial-vector  boson

(  = 0,  = 1), and (c) the  boson (  = 1,  =
1). In all cases, the mass MZ ' was set to 500 GeV. It
should be recalled that, in the SM, the coupling con-
stants are al = –0.6 and vl = 0.08al at sin2θW = 0.23. We
can easily trace the role of electroweak interference in
the cross section for the leptonic process (1) in Fig. 1‡
and its role in the relative deviation of the cross section,

∆σµµ/  in Fig. 1b.

The statistical significance defined as

(24)

where δσµµ is the statistical uncertainty in measuring
the scattering cross section and +integr is the integrated

luminosity (+integr = t+), is yet another important

characteristic in an analysis of the cross section for pro-
cess (1). Thus, the statistical significance determines
the deviation of the observable in standard-deviation
units. Figure 1c shows the energy dependence of S[σ]
as a function of energy at +integr = 300 pb–1 for MZ ' =
500 and 800 GeV. From this figure, we can see that the
scattering cross section appears to be quite sensitive to
Z '-boson effects at the maximal energy of the LEP2
collider.

By analogy with (22), the deviation of the absolute
forward–backward asymmetry σFB in (12) from the SM

prediction, ∆σFB = σFB – , can be represented in the
form

(25)

From (22) and (25), we can see that, apart from the
interchange of the coupling constants  and ,

  , the expressions for the deviations of the
cross section and of the absolute forward–backward
asymmetry are similar in structure. Thus, the two
observables have the same properties upon the above
interchange of the coupling constants. Hence, all the
conclusions drawn above for the scattering cross sec-
tion can be extended to the absolute forward–backward
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asymmetry. By way of example, we indicate that, at
LEP2 energies, the deviation ∆σFB is negative at arbi-
trary constants of Z ' coupling to leptons. In seeking sig-
nals from new physics at LEP2 as deviations of observ-
ables from SM predictions, these general properties of
∆σµµ and ∆σFB for Z ' bosons to be of a constant sign
can be used to separate, in a model-independent way,
the above interference effects from other effects, those
that are induced by nonstandard physics of alternative
nature.

As to the forward–backward asymmetry (12), its

deviation ∆AFB from the SM-predicted value ,

(26)

does not exhibit the aforementioned property, which is
characteristic of σµµ and σFB; that is, the quantity in (12)
can take both negative and positive values at LEP2
energies, depending on actual values of the leptonic
coupling constants.

3.2 Z' Interference in σ±

Let us now consider the observables σ+ and σ–. In
the approximation specified by (i) and (ii), it is conve-
nient to represent them as

(27)
First, we will study the behavior of σ+. The first term

in the expression on the right-hand side of (27) deter-
mines the SM contribution approaching its minimal

(almost vanishingly small) value at  = :

(28)

Figure 2‡ illustrates the energy dependence of σ+ in
the SM.

The Z '-boson-induced deviation of σ+ from this
behavior can be represented in the form

(29)
The first and the second term in parentheses on the
right-hand side of (29) are due to γ–Z ' and Z–Z ' inter-
ferences, respectively. It should be emphasized that, in
contrast to what was found for the canonical variables
σµµ and σFB, there is no cancellation of the γ–Z ' and Z–
Z ' interference contributions in the expression for σ+ in

the entire energy region  ! MZ '. This leads to notice-
able enhancement of the Z '-boson interference effects.
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Fig. 1. (a) Total cross section σµµ as a function of energy
within the SM (SM curve) and in the presence of the Z '

boson with mass MZ ' = 500 GeV for the cases of  (  =

1,  = 0),  (  = 0,  = 1), and (  = 1,  = 1).

(b) As in Fig. 1a, but for the relative cross-section deviation

∆σµµ/ . (c) As in Fig. 1a, but for the statistical signifi-

cance S[σ] at MZ ' = 500 and 800 GeV and an integrated

luminosity of +integr = 300 pb–1.
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Fig. 2. Observable σ+ as a function of energy within the SM (SM curve) and in the presence of the  Z ' boson with mass MZ ' = 600 GeV

for coupling-constant values satisfying the condition  +  = 1. Curves 1, 2, and 3 correspond to the product of the coupling

constants that takes values of  = 0, 1, –1, respectively. (b) As in Fig. 2a, but for the relative deviation ∆σ+/ . Curves 1, 2,

and 3 correspond to  +  = 1, 0.5, and 0.25. In all cases, it is assumed that  = 0. (c) As in Fig. 2a, but for the statistical

significance S[σ+] at an integrated luminosity of +integr = 300 pb–1.
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Apart from this, formula (29) shows that the depen-
dence ∆σ+ on the parameters of the Z ' boson is deter-

mined by the expression (  + )χZ ', which, for  !
MZ ', is negative definite for arbitrary constants of Z '-

v l
'2 al

'2 s
boson coupling to leptons. Herein lies the similarity of
the observable σ+, on one hand, and the variables σµµ
and σFB, on the other hand, in what is concerned with
the possible manifestations of the Z ' boson. However,
σ+ has yet another extremely important property that is
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of use for identifying effects associated with extra neu-
tral vector bosons. Namely, the energy dependence of
the deviation ∆σ+ is governed primarily by the function

(1 + ReχZ), which is dependent only on the well-
known SM parameters. In other words, we can predict
in advance the positions of the extrema and zeros of the
deviation ∆σ+. Indeed, ∆σ+ attains extremal values at

|  – | ≈ ΓZ /2. In addition, it can easily be seen

from (27) and (29) that, at  = , we have not only

the condition  ≈ 0 but also the condition ∆σ+ = 0. It

follows that the energy point  is extremely suitable
for seeking phenomenological manifestations of both
nonstandard physics beyond the SM and models pre-
dicting the existence of Z ' bosons. It should also be
emphasized that the point in (28) is completely deter-
mined by the SM parameters MZ and al. We recall that
the localization of the similar point in the scattering
cross section [see (23)] depends explicitly on the con-
stants of Z '-boson coupling to leptons. All these facts
obviously demonstrate the advantages of the new
observable σ+ over the canonical variables in searches
for Z '-boson effects.

Figure 2b displays the relative deviation ∆σ+/  as
a function of energy. Here, the Z ' boson is taken in the
so-called consistent model [19], where the leptonic
coupling constants are defined in the same way as in the
SM:  = vl and  = al. For the Z '-boson mass, we
took the values of MZ ' = 500 and 700 GeV. In Fig. 2b,
we can easily trace a characteristic correlation between
the signs of the deviation ∆σ+ at different energy val-

ues. In particular, ∆σ+/  is negative for  < 

and positive for  <  < MZ; for  > MZ, it again
becomes negative.

That  is independent of  and  results from
the approximation specified in (ii), where it is assumed
that vl ≈ 0. Upon taking exactly into account a finite
value of the vector coupling constant, there arises only
a moderate energy shift that is determined by the factor

1 + δ, where δ = vlalcosγ/(1 + ) with cosγ = 2(v'/a')/[1 +
(v'/a')2]. The maximal value of this shift is about
1.6 GeV at |cosγ| = 1. In addition, a nonzero value of the
constant vl leads to the splitting of the curves plotted in
Fig. 2‡ for the three different values of  = 0, ±1.

Figure 2c illustrates the energy dependence of the
statistical significance S[σ+] for the observables σ+. In
just the same way as the scattering cross section, the
observable σ+ shows the highest sensitivity to Z '-boson
effects at the maximal energy of the LEP2 collider.
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The observable σ– has many features in common

with σ+. In particular,  vanishes at

(30)

The energy dependence of the deviation of the
observable σ– from the SM prediction,

(31)
is completely determined by the propagator χZ and by
the SM parameters. In contrast to what was found for
∆σ+, the sign and the magnitude of ∆σ– are determined

by the expression (  – )χZ ', which can be positive
or negative, depending on the sign of the difference

 – . From (31), it also follows that, at  = ,
∆σ– = 0 both in the SM and upon taking into account

the Z ' boson. Thus, the energy region around  is
quite favorable for seeking effects of new physics other
than Z '-boson effects with the aid of the observable σ–.
Figure 3‡ displays the energy dependence of σ– in the
SM and in the presence of the Z ' boson characterized
by the mass of MZ ' = 600 GeV and by coupling-constant

values satisfying the condition  –  = −1 (curve 1)
or +1 (curve 2). Figure 3b shows the relative deviation

∆σ– /  for the Z ' boson having the same mass value
and the coupling constants satisfying the conditions

 –  = –1, –0.5, or –0.25. The curves correspond-

ing to positive values of the combination  –  can
be obtained by a mere reflection of the curves in Fig. 3b
with respect to the abscissa. In just the same way as
∆σ+, the quantity ∆σ– is characterized by a specific cor-
relation of the signs of the deviation at different energy
values (see Table 1). Figure 3c illustrates the energy
dependence of S[σ–] for the Z ' boson with mass MZ ' =

600 GeV at  –  = –1 (curve 1) and +1 (curve 2).

Basic properties of the canonical and the new
observables with respect to Z '-boson manifestations are
listed in Table 2. As was emphasized above, these prop-
erties could prove to be convenient for identifying the
Z ' boson as the possible reason for deviations from the
SM predictions, should such deviations be detected
experimentally.

At the LEP1 collider, the DELPHI collaboration
[12] made an attempt at seeking effects of nonstandard
physics (in particular, of Z ' bosons) in the process
e+e−  µ+µ– at an energy of about 80 GeV by using
the observables σ±. Specifically, DELPHI measured the
ratio σ+/σ–. The data obtained in this way are displayed
in Fig. 4, along with the corresponding SM predictions.
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Fig. 3. (a) Observable σ– as a function of energy within the SM (SM curve) and in the presence of the Z ' boson with mass MZ ' =

600 GeV. Curves 1 and 2 correspond to  –  = . (b) As in Fig. 3a, but for the relative deviation ∆σ– / . Curves 1, 2, and

3 correspond to  –  = –1, –0.5, and –0.25. (c) As in Fig. 3a, but for the statistical significance S[σ–] at an integrated luminosity
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The conclusion drawn in [12] was that no deviations
from the SM were observed at the level of the experi-
mental precision achieved there. In my opinion, how-
ever, the energy region chosen for the experiments
reported in [12] was not the best one—from the above
analysis, it follows that not only is it difficult to reveal
Z '-boson effects in this region, but even an accurate
verification of SM predictions is questionable there.
P

4. MODEL-INDEPENDENT CONSTRAINTS
ON THE Z '-BOSON PARAMETERS

If experiments at LEP2 fail to discover deviations
from SM predictions at a level of attained or planned
accuracy, then we will be able to estimate the sensitiv-
ity of the observables to Z '-boson effects and to set con-
straints on the parameters of the Z '-boson. In particular,
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we can perform a model-independent analysis on the
basis of data currently available from LEP2 for various
energy values [13] and take additionally into account
statistics of events to be obtained in the near future [5].
Table 3 quotes the energy values and the corresponding
integrated luminosities at which experimental data
have already been obtained. Data for the last two
energy values occurring in the region of maximal LEP2
energies have not yet been obtained, but they will have
been accumulated by the end of 2000.

To facilitate our analysis, it is convenient to use the
model-independent parametrization of the constants of
Z '-boson coupling to leptons [20, 21]:

(32)

The sensitivity of the observables σ± can be estimated
by using the χ2 functional defined as

(33)

where summation is performed over n(≤6) energy
regions listed in Table 3 and where the experimental
uncertainty δ  includes both statistical and system-

atic errors. The condition χ2 <  was used as the cri-
terion for constraining the model-independent leptonic

coupling constants Vl and Al. The  value was deter-
mined by the required level of statistical significance.
In deriving numerical estimates, we assumed the inte-
grated luminosities that have already been achieved and
used the systematic errors at LEP2 for the leptonic pro-
cess e+e–  µ+µ– [13]. In order to assess the future
potential for improvement of the sensitivity at higher
energies, we have considered a specific example where
we have used the expected eventual luminosity of LEP2
at the systematic error of δsyst = 0.5%.

From (11)–(14), it follows that the observables
under investigation can be expressed in terms of the dif-
ferential cross sections. It is well known that the shape
and the numerical values of the cross sections are mod-
ified sizably by radiative corrections such as those that
are associated with the emission of real photons by ini-
tial electrons and positrons. The inclusion of the radia-
tive corrections was performed on the basis of the
scheme proposed in [22]. In particular, the contribution
of hard-photon emission in the second order in the elec-
tromagnetic coupling constant (α2) was calculated
within this scheme; also, the leading contributions of
soft photons and virtual electromagnetic corrections
were estimated on same basis. In this scheme, the radi-
ative corrections for the differential cross sections are
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calculated as the convolutions of the coefficients F1 and

F2 with the radiator functions (k) and (k),
respectively, k being the energy fraction lost by radia-
tion. The expression for the differential cross section
with allowance for the radiative corrections takes the
form

(34)
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e RFB
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d θcos
---------------

3
8
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Fig. 4. Ratio σ+/σ– as a function of the energy of a µ+µ– pair
according to data obtained at the DELPHI facility [12]. The
solid curve represents the corresponding dependence
obtained within the SM.

Table 1.  Energy correlation of the signs of the deviation
∆σ– induced by the Z' boson

<MZ MZ–133 GeV >113 GeV

Sign of the deviation ∆σ– – + –

The same + – +

s

Table 2.  Model-independent properties of the observables
related to Z'-boson effects

O
bs

er
-

va
bl

e

Energy dependence
has been determined
for ESM < 200 GeV

Sign of the deviation 
has been determined

at LEP2

∆AFB No No

∆σµµ No Yes

∆σFB No Yes

∆σ– Yes, for |∆σ–| No

∆σ+ Yes Yes
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where θ is the angle between the direction of µ– emis-
sion and the electron-beam direction in the c.m. frame
of the µ+µ– pair [23]. The symmetric and the antisym-
metric part of the scattering cross section (σs and σa,
respectively) are determined as the convolutions with
the radiator functions; that is,

(35)

where s' = s(1 – k). Because of the so-called radiative

return to the Z resonance at  > MZ, the energy spec-
trum of emitted photons has a maximum at Eγ/Ebeam ≈
1 – /s [22].

In order to enhance the Z '-boson signal, it is neces-
sary to eliminate hard-photon-emission events by sub-
jecting the photon energy to the cut ∆ = Eγ /Ebeam < 1 –

σs dkRT
e k( )σpt s'( )F1 s'( ),

0

∆

∫=

σa dkRFB
e k( )σpt s'( )F2 s'( ),

0

∆

∫=

s

MZ
2

Table 3.  Energies and corresponding integrated luminosi-
ties for experiments that have been performed at LEP2 or
which are planned at this collider

ESM, GeV 133 161 172 183 190 200

+int , pb–1 10 10 10 50 200 250

0.020.010–0.01–0.02
Al

–0.02

–0.01

0

0.01

0.02

Vl

Fig. 5. 2σ upper bound on the Z '-boson coupling constants
on the (Al, Vl) plane from an analysis of the observables σ±.
The solid curve was obtained on the basis of data on the pro-
cess e+e–  µ+µ– by taking into account the first four
points from Table 3. The dashed curve was plotted with
allowance for all six points.
/s. The observables σ± involving radiative correc-
tions can also be determined by means of formulas (13)
and (14) with the same value of z* since the form (34)
of the cross section modified by radiative corrections
does not differ from the cross-section form (5). How-
ever, the convolution of the coefficients F1 and F2 with

the radiator functions  and , respectively,

leads to some shift in the position of the zeros  and
extrema in the energy dependence of the deviations
∆σ±. These changes can be reliably taken into consider-
ation with the aid of expression (34). The quantitative
analysis reveals that the these energy shifts do not
exceed 100 MeV. This means that radiative corrections
do not lead to significant changes in the interference
pattern shown in Figs. 1–3. The quantitative analysis
illustrated graphically in Fig. 5 was performed on the
basis of the ZEFIT code used in conjunction with the
ZFITTER code [24]. Displayed in Fig. 5 are the admis-
sible regions obtained for the constants of Z '-boson
coupling to leptons from a global analysis of the
observables σ± on the basis of the experimental data

already collected at LEP2 in the energy range  =
133–183 GeV (see Table 3) and data expected from

LEP2 in the future at  = 190 and 200 GeV. The level
of statistical significance corresponds to two standard

deviations (  = 4).

5. CONCLUSION

Let us summarize our results and list the most
important features of the proposed approach to reveal-
ing and studying the indirect effects induced by the
Z ' boson at the LEP2 e+e– collider. This approach is
based on the use of the new integrated observables σ±
in investigating the process e+e–  µ+µ– at energies

 ≤ 200 GeV. It has been shown that the observables
σ+ and σ– can be represented in the form of the sum of
independent pairs of the helicity cross sections. This
opens the possibility to obtain, in the leptonic channel,
more definitive information about Z '-boson effects in
relation to information that can be deduced with the aid
of the canonical observables σµµ and AFB, which depend
on the entire set of the helicity cross sections. The devi-
ations ∆σ± induced by the Z ' boson have a specific
energy dependence determined by the well-known SM
parameters. In particular, we can make unambiguous
model-independent predictions for the deviation ∆σ+.
Specifically, the sign of this deviation over the entire
energy region investigated here and the positions of its
extrema and zeros have been determined to a high pre-
cision. On the other hand, information about ∆σ– is less
precise since the common factor in (31), which deter-
mines the Z '-boson contribution to this observable, is
not of fixed sign. For this reason, we can predict only

MZ
2

RT
e k( ) RFB

e k( )

s±

s

s

χcr
2

s
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the energy dependence of the absolute value of the
deviation |∆σ–| and consider the correlation of the signs
of this deviation at different energy values. It has also
been shown that the sensitivity of the observables σ± to
the extra Z ' boson increases with energy, reaching the
highest level (in the energy region under consideration)
at the maximal energy of the LEP2 collider.

Apart from this, we have revealed two energy

points,  ≈ 78 GeV and  ≈ 113 GeV, at which the
new observables σ+ and σ– vanish in the leptonic chan-
nel both in the SM and in models featuring the extra Z '
boson. For this reason, these points are extremely con-
venient for seeking phenomenological manifestations
of alternative effects of new physics that are associated
neither with the SM nor with theories involving the
extra Z ' boson. For example, these could be effects
caused by scalar-particle exchanges in supersymmetric
theories with broken R parity [25] and by leptoquark
exchanges [26] or effects induced by anomalous gauge
coupling constants [27].

In my opinion, the above arguments indicate unam-
biguously that the observables σ± are highly efficient
for revealing Z '-boson effects in the lepton channel. In
view of this, it seems reasonable to perform a global
analysis of available leptonic data over a broad energy
interval that come from the PEP, PETRA, TRISTAN,
LEP1, SLC, and LEP2 colliders with the aim of deduc-
ing experimental information about σ± and comparing
it with theoretical predictions. I am going to perform
such an analysis in the near future and to present it as a
separate publication.
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Abstract—Some semileptonic weak decays of vector mesons are considered within the most popular quark
models. Unfortunately, the predicted branching ratios are too small to make a study of these decays realistic at
meson factories under construction. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Weak decays of hadrons play an important role in
our understanding of both perturbative and nonpertur-
bative aspects of the Standard Model. On one hand,
they involve Kobayashi–Maskawa matrix elements and
higher order corrections to weak currents. The latter are
calculable perturbatively to a high precision within the
Standard Model; the former, which are crucial parame-
ters of the theory, are not determined by it, but they
must be extracted from experiments. On the contrary,
another ingredient of these weak decays, the hadronic
matrix elements of weak currents, is not calculable at
present from first principles and is the subject of non-
perturbative QCD, the acronym that in reality means a
paradise for various phenomenological models of had-
ron structure.

Semileptonic decays with 0–  0– and 0–  1–

hadron transitions have attracted considerable atten-
tion, since they are promising experimental sources for
extracting the Kobayashi–Maskawa matrix elements.
The reviews of the theoretical models involved in such
a type of exercise, along with relevant references, can
be found in [1–4], and we do not repeat them here.
Instead, we focus our efforts on giving a reliable esti-
mate for semileptonic decays with 1–  0– hadron
transitions. Such weak decays have escaped consider-
ation simply because very tiny rates are expected for
them. Indeed, a rough estimate of the semileptonic-
decays rate is given by the one-third of the free-quark
decay width under the assumption that the spectator
antiquark is irrelevant. It is straightforward to get this
decay width [5]

(1)

where VqQ is the relevant Kobayashi–Maskawa matrix
element and F(x) = 1 – 8x2 + 8x6 – x8 – 24x4lnx is a
phase-space factor, lepton mass being neglected.

Γ Q qeν( )
GF

2mQ
5

192π3
-------------- VqQ

2F
mq

mQ

------- 
  ,=

  * This article was submitted by the authors in English.
** e-mail: silagadze@inp.nsk.su
1063-7788/00/6305- $20.00 © 20882
The branching ratio, which follows from (1), for

example, for the decay J/ψ  e+ν is about 10–9,
and other branching ratios for weak semileptonic
decays of vector mesons appear to be even smaller.

Below, we use two of the most popular models to
give more elaborate estimates for the rates of semilep-
tonic decays of vector mesons. These calculations were
motivated by the fact that several high-luminosity
meson factories are expected to come into operation in
the near future.

2. GENERAL CONSIDERATIONS

Let us consider V(Q )  P(q )e–  semilep-

tonic decays, where V(Q ) and P(q ) stand for vec-

tor 1– and pseudoscalar 0– mesons made up from Q

and q  quark–antiquark pairs, respectively. The corre-
sponding amplitude has the form

after averaging over the vector-meson polarization and
summation over the lepton spins (the lepton mass is
neglected, and the normalization condition u+u = 2E is
used for lepton spinors), the squared amplitude takes
the form

(2)

Let us decompose the sum in (2) (see [6]) as

Ds
–

Q Q ν
Q Q

Q

Q

A
GF

2
-------VqQue k1( )γµ 1 γ5–( )v ν k2( ) P Jµ 0( ) V〈 〉 ;=

A 2 1
3
---GF

2 VqQ
2tr 1 γ5–( )k̂1γµk̂2γν=

× V Jν
+ 0( ) P P Jµ 0( ) V〈 〉 .

sV

∑

V P e,( ) Jν
+ 0( ) P P'( ) P P'( ) Jµ 0( ) V P e,( )〈 〉

sV

∑
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(3)

we note that the terms from (3) that contain (P – P')µ or
(P − P')ν do not contribute to (2), because, for example,

since the electron mass is assumed to be zero.
Thus, only α, β++, and γ-invariant form factors con-

tribute to , and it is straightforward to obtain the
following expression for the differential width [6, 7] (in
P = 0 vector-meson rest frame):

(4)

Here, x+ = , and we have introduced the

dimensionless variables x = Ee/MV and y =  ≡

, Ee being the electron energy.

Thus, the decay width is

(5)

where (x+ was given above) [7]

These integration limits are determined by decay kine-
matics.

Note that, for decays to e+ν, the sign of the term pro-
portional to γ in (4) should be reversed. The simplest
way to see this is the following. If the electron mass is

neglected, then the quantity  can be

obtained from  by means of the

=  αgµν– βσ1σ2
P σ1P'+( )µ P σ2P'+( )ν

σ1 σ2, ±=

∑+

+ iγeµνλσ P P'+( )λ P P'–( )σ;

P P'–( )µtr 1 γ5–( )k̂1γµk̂2γν

=  tr 1 γ5–( )k̂1 k̂1 k̂2+( )k̂2γν 0,=

A 2

d2Γ V Peν( )
dxdy

-----------------------------------------

=  
1
3
---

GF
2 MV

5

32π3
--------------- VqQ

2 α y

MV
2

------- 2β++ 4x x+ x–( )[+




– y 1 2x–( ) ] 2γy x+ 2x–
1
2
---y+ 

 –




.

1
2
--- 1

MP
2

MV
2

-------–
 
 
 

P P'–( )2

MV
2

---------------------

t

MV
2

-------

Γ V Peν( ) d2Γ
dxdy
------------,

y–

y+

∫
x–

x+
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x– 0, y_ 0, y+

4x x+ x–( )
1 2x–

-------------------------.= = =

d2Γ V P–e+ν( )
dxdy

---------------------------------------------

d2Γ V P+e–ν( )
dxdy
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substitution x  x* = . It is easy to see that x* =

x+ – x + y; hence, 4x*(x+ – x*) – y(1 – 2x*) = 4x(x+ – x) –

y(1 – 2x), but x+ – 2x* + y = – x+ – 2x + y .

It is convenient to introduce form factors that char-
acterize the hadronic matrix element itself:

(6)

Comparing (6) and (3) and using the formula

we can easily find that the coefficients in (4) are

(7)

where

Another well-known set of form factors is defined
by [8]

(8)

Here, the ellipsis stands for terms proportional to (P –
P')µ, which do not contribute to the decay width of
massless leptons.

The obvious relations between these two sets of
form factors are

(9)

Some model for the hadron structure is needed to ren-
der the form factors that we introduced more specific.
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3. ISGUR–SCORA–GRINSTEIN–WISE MODEL

The Isgur–Scora–Grinstein–Wise (ISGW) model
[9] uses nonrelativistic quark-model wave functions to
predict weak hadronic form factors. Strictly speaking,
this model becomes rigorous in the weak-coupling
limit, where MV ≈ 2mQ and MP ≈ mQ + mq, and near the
zero recoil point, where t = q2 reaches its maximum
value tm = (MV – MP)2. But it is assumed that the result-
ing form-factor formulas are valid even beyond the
weak-coupling regime. A more serious problem is that
the nonrelativistic-quark-model predictions for the (tm – t)
dependence of form factors are not reliable when tm – t
becomes too large in relation to typical hadronic scales.
Nevertheless, this model proved to be successful and, up
to now, remains one of the most popular ones, maybe
because “it is better to have the right degrees of freedom
moving at the wrong speed than the wrong degrees of free-
dom moving at right speed” [10]. An updated version of
the ISGW model, which incorporates relativistic correc-
tions, heavy-quark-symmetry constraints, and more realis-
tic behavior of form factors at large tm – t, is given in [10].

In the weak-coupling limit, the state vectors of the
nonrelativistic V(Q ) vector or P( ) pseudoscalar
mesons can be represented as a superposition of the
free quark–antiquark states [9, 11]:

(10)

We use the normalization condition 〈P'|P〉 = (2π)32Eδ(P' –
P) for the meson state vectors and the normalization

condition 〈p'|p〉 = (2π)3 δ(p' – p) for the state vectors

of quarks (or antiquarks) with mass m. Here, e(–), e(0),
and e(+) are three independent polarization 4-vectors for

the vector mesons, while  are the usual Clebsch–
Gordan coefficients that couple quark and antiquark
spins s and  into the meson spin and polarization. At

last, |Q[p1, s] [p2, s]〉  = (p1) (p2)|0〉 , a+ and b+

being the quark and antiquark creation operators. Note
that our normalization convention indicates the anti-
commutation relations

(11)

Q qQ
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m
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+

as p( ) as'
+ p'( ),{ } bs p( ) bs'

+ p'( ),{ }=

=  2π( )3 E
m
----δ p' p–( ).
To obtain the quark-model weak-transition matrix
element, one should replace the weak current Jµ(0) in
〈P(P')|Jµ(0)|V(P, e)〉  by the quark weak current jµ(0) =

(0)γµ(1 – γ5)Q(0) (the Kobayashi–Maskawa matrix
element was already separated), decompose the quark-
field operator (note the normalization u+(λ)(k)u(λ')(k) =

v+(λ)(k)v(λ')(k) = δλλ ' for Dirac spinors) as

and use the anticommutation relations (11) along with

the nonrelativistic approximation E =  ≈ m.
As a result, we obtain (in the vector-meson rest frame
P = 0)

(12)

To simplify (12), we note that

where χ(s) is the rest-frame spinor, and

Here, γ+ = – (γ1 + iγ2) and γ– = (γ1 – iγ2), and the

property  = –  was used at the latter step (note that

g ·  = –1)sγ–se(s)).

Thus, expression (12) transforms into

(13)
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where  = mq and p' = P' + p.

It is now straightforward to extract the Lorentz
invariant form factors from (13) once the wave func-
tions ϕP and ϕV have been specified. It is assumed in the
ISGW approach that, for these wave functions, one
should solve a Schrödinger problem for the usual Cou-
lomb plus linear potential, which proved to be useful in
quarkonium spectroscopy. But to facilitate the numeri-
cal calculations, the authors of the model used in fact
the variational method for the Schrödinger problem
based on Gaussian-type harmonic-oscillator wave func-
tions. In our case, the relevant trial function is ϕ(r) =

exp(–β2r2/2), its momentum Fourier transform

being

(14)

with β as a variational parameter.
Let us introduce the notation

and a similar notation for 〈A〉 , 〈V0〉 , and 〈V〉 . In the non-
relativistic limit, we will then have [11]

(15)

Using the last expression in (15), along with the equal-
ities

(16)

where  = (  + ), and

(17)

× tr 1 γ0+( )g eeeeγ5 p'ˆ mq+( )γµ 1 γ5–( ) p̂ mQ+( )⋅{ } ,

p0'

β3/2

π3/4
--------

ϕ p( ) 2 π
β

---------- 
 

3/2

p2/2β2–( )exp=

A0〈 〉 1
4
---tr 1 γ0+( )g eeeeγ5 p'ˆ mq+( )γ0γ5 p̂ mQ+( )⋅{ }=

A0〈 〉 mQ p0+( )p' eeee mq p0'+( )p eeee⋅+⋅=

2 mQ P' p+( ) eeee mqp eeee⋅+⋅{ } ,

A〈 〉 eeee( p' )p eeee( p )p' p' p⋅( )eeee+⋅+⋅=

+ mq p0eeee mQ p0' eeee mqmQeeee++

4mqmQeeee p{ P' p+( ) } eeee p eeee⋅( ) P' p+( )+⋅–

+ P' eeee⋅( )p p eeee⋅( )p,+

V〈 〉 i mQ p0+( )eeee p' mq p0'+( )eeee p×–×{ }=

2i mQeeee P' p+( ) mqeeee p×–×{ } .

dp

2π( )3
-------------ϕP*

mQ

MP

-------P' p+ 
  ϕV p( )∫

=  
βPβV

βPV
2

------------ 
  3/2 mQ

2

4MPMV

-------------------
tm t–

βPV
2

------------–
 
 
 

F t( ),≡exp

βPV
2 1

2
--- βP

2 βV
2

dp

2π( )3
-------------ϕP*

mQ

MP

-------P' p+ 
  pϕV p( )∫

mQ

MP

-------
βV

2

2βPV
2

------------F t( )P',–=
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we get from (13) (it is supposed that the vector weak
current will be not mixed with a symbol V of the vector
meson)

where

(18)

On the other hand, it follows from (16) that, in the
P = 0 frame we have

Comparing these two expressions, we immediately
obtain

(19)

Similarly, the first equation in (15) leads to

(20)

There is some subtlety in using the equation for 〈A〉
from (15). For  ⊥  P' polarization, it gives

(21)

while, for  || P' polarization, it involves p2 terms about
which there is no guarantee in our nonrelativistic
approach. Nevertheless, one can get the true answer by
separating the D-wave partial amplitude, because there
is nothing intrinsically relativistic in recoiling into a D
wave [9]. Thus, we disregard  terms within 〈A〉 ,
which corresponds to the S wave, and also in

(22)

and omit the first term, which leads to the S-wave
amplitude too. Using the relations

P P'( ) V 0( ) V P e,( )〈 〉

=  ieeee P' MPMV
1

mq

------
1

2µ–
--------

mQ

MP

-------
βV

2

2βPV
2

------------–
 
 
 

F t( ),×

µ±
1

mq

------
1

mQ

-------±
1–

.=

P V 0( ) V〈 〉 2iMVgeeee P'.×=

g
1
2
---

MP

MV

-------F t( ) 1
mq

------
1

2µ–
--------

mQ

MP

-------
βV

2

βPV
2

--------–
 
 
 

.=

a+ MP MV+( ) a– MV MP–( )+

=  MPMV
1

mq

------
1

2µ+
---------

mQ

MP

-------
βV

2

βPV
2

--------–
 
 
 

F t( ).–

eeee

f 2 MPMV F t( ),=

eeee

eeee

dp

2π( )3
-------------ϕP* p q+( ) pi p jϕV p( )∫ Aq2δij Bqiq j,+=

dp

2π( )3
-------------ϕP

* p q+( )p2ϕV p( )∫ 3
2
---

βP
2 βV

2

βPV
2

------------ q2

4
-----

βV
4

βPV
4

--------+ F t( )=
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and

we easily obtain

(23)

Now, we have all necessary ingredients to get a rela-
tion that follows from the relevant D-wave terms of 〈A〉:

(24)

With the aid of (20) and (24), we can evaluate the
form factor a+. Noting that, in the weak-binding

approximation,  ≈  = , we get

Let us further transform

This procedure allows us to rewrite the form factor
a+ as

(25)

By means of (19), (21), and (25), the expressions for
the form factors g, f, and a+ and the semileptonic-decay
width can be evaluated by using formulas (4), (5), and (7).

4. BAUER–STECH–WIRBEL MODEL

The Bauer–Stech–Wirbel (BSW) model [8, 12] uses
the quark model to deal only with one point q2 = 0. In
contrast to the zero recoil point, considered previously
in the ISGW model, relativistic effects can be highly
important for the point q2 = 0. Thus, the relativistic

dp

2π( )3
-------------ϕP* p q+( ) p q⋅( )2ϕV p( )∫

=  
1
2
---

βP
2 βV

2

βPV
2

------------ q2

4
-----

βV
4

βPV
4

--------+ q2F t( ),

B
1
4
---
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4
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4

--------F t( ).=
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4
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---------------------
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-----
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 
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2
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------
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-------
βV

2 βP
2–( ) βV

2 βP
2+( )+

βV
2 βP

2+( )
----------------------------------------------------=

=  
1

mq

------
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MP

-------
βV

2 βP
2–

βV
2 βP

2+
------------------ 1

mq

------
mQ mq mq–+

MP

--------------------------------+

≈ 1
mq

------ 1
MP

-------–
1

MP

-------
mQ

mq

-------
βV

2 βP
2–

βV
2 βP

2+
------------------.+

a+
MP

MV

-------=
F t( )
2MP

----------- 1–
mQ

mq

-------
βV

2 βP
2–

βV
2 βP

2+
------------------ 1

4µ–
--------

mQ
2

MP

-------
βV

4

βPV
4

--------–+ .
treatment of quark dynamics becomes unavoidable,
although this dynamics is greatly simplified in the infi-
nite-momentum frame. For convenience, we represent
the meson state vectors in this frame using a form
slightly different from (10):

(26)

In the infinite-momentum frame and for q = PV – PP =
0, we have ( ) = (EV, 0, 0, P), ( ) = (EP, 0, 0, P),

and P  ∞. At the same time, EV – EP ≈  

0; that is, q = 0 just gives the point q2 = 0.

Let us introduce the longitudinal momentum frac-

tion carried by the active quark in the meson, x = ,

when the normalization condition for the wave function
ϕ(p1), which follows from (26), is

(27)

In practice, a form of this wave function is inspired
by the relativistic harmonic-oscillator model and reads
[8] (for the meson of mass M made up from the active
quark q and the spectator antiquark )

(28)

where N is determined from the normalization condi-
tion (27). The dimensional parameter ω provides trans-
verse-momentum suppression, and its square is equal
to the averaged square of the transverse momentum,

ω2 = 〈 〉 . Instead of ω, we can use the parameter β
from (14), since pT is not changed by the boost along
the z direction.

V P eeee,( )| 〉 2
dp1dp2

2π( )3/2
-----------------∫

ssm
∑ δ P p1– p2–( )=

×
mQmQ

p10 p20
---------------Css

1m
e em

*ϕV p1( )⋅

× Q p1 s,[ ]Q p2 s,[ ]| 〉 ,

P P'( )| 〉 2
dp1dp2

2π( )3/2
-----------------∫

ss
∑ δ P ' p1– p2–( )=

×
mqmQ

p10 p20
---------------Css

00ϕP p1( ) q p1 s,[ ]Q p2 s,[ ]| 〉 .

PVµ
PPµ

MV
2 MP

2–
2P

---------------------

p1z

P
-------

dx pT ϕ x pT,( ) 2d∫ 1.=

Q

ϕ x pT,( ) N x 1 x–( )
pT

2

2ω2
---------–

 
 
 

exp=

× M2

2ω2
--------- x

1
2
---–

mq
2

mQ
2

–

2M2
--------------------–

 
 
 

2

–
 
 
 

,exp

pT
2
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Manipulations that led to (12) now give, for q = PV –
PP = 0, the relation

(29)

In the infinite-momentum limit, we have

Thus, equation (29) transforms into

(30)

where p' = p and   xP.

In the limit P  ∞, relations (15) yield

On the other hand, according to (6)

Comparing these expressions for 〈P|V(0)|V〉  and
using the relation

where

(31)

we get

(32)

We have found the form factor for the point q2 = 0
alone. For q2 values different from zero, the BSW

P P( ) Jµ 0( ) V P e,( )〈 〉

=  2 dp
mqmQ

p0 p0'
--------------Cs's

00Css
1m

e e m( )* ϕ p* p( )⋅∫
mss's

∑
× ϕV p( )u q( )

s'( ) p( )γµ 1 γ5–( )u Q( )
s( ) p( ).

p0 mQ
2 p2+ mQ

2
x2P2 pT

2+ + xP,= =

p0' mq
2 p2+ xP,=

us p( ) p̂ m+

2m p0 m+( )
---------------------------------χ s( ) p̂ m+

2mxP
------------------χ s( ).=

P Jµ 0( ) V〈 〉 dxdpT

ϕ p* p( )ϕV p( )
x2P

------------------------------∫=

× tr
1
4
--- 1 γ0+( )g eeeeγ5 p'ˆ mq+( )γµ 1 γ5–( ) p̂ mQ+( )⋅

 
 
 

,

p0'

V〈 〉 i mQ mq–( )eeee p.×

P V 0( ) V〈 〉

=  2ig EV EP–( )eeee PV ig
MV

2 MP
2–

P
---------------------× eeee PV .×

dp∫ 1

x2P
---------ϕP* p( )eeee p× ϕV p( ) 1

P
---Jeeee PV ,×

J dpT
dx
x

------ϕP* x pT,( )ϕV x pT,( ),

0

1

∫∫=

g q2 0=( )
mQ mq–

MV
2 MP

2–
---------------------J .=
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model assumes the nearest pole dominance:

(33)

Thus, the q2 dependence of form factors is deter-
mined once the masses of the appropriate 1– and 1+ vec-
tor mesons are known.

Then, relation (32) indicates that

(34)

Using the relations 〈A〉   x(mQ + mq)P  + 2(  ·
p)p, 〈P|A(0)|V〉  = f  + 2(  · PP)a+PV, and  · PP 

 · PV, we can similarly get f = (MQ + Mq)J;

therefore,

(35)

Again, there is a subtlety in extracting a+. Instead of
giving a rigorous derivation, we prefer the following edu-
cated guess. Noting that, for (PV)µ = (EV, 0, 0, P), the lon-

gitudinal polarization 4-vector e||µ = (P, 0, 0, EV) 

(1, 0, 0, 1), we obtain

On the other hand, Q50 = xA0(x) is an appropriate

weak charge, which, in the exact flavor-symmetry limit,
transforms the initial state |V〉 into the final state |P〉 and so
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hA1

1 q2

M
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2
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------------------, A2 q2( )
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M
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2
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------------------,= =
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M
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--------–

------------------.=
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mQ mq–
MV MP–
---------------------J .=
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----------------------J .=

1
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-------
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-------

dx P A0 x( ) V〈 〉∫
=  2π( )3δ PV PP–( ) P A0 0( ) V〈 〉

2π( )3δ PV PP–( )

× f e0
EP
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 + e3P EV EP+( )a+

 
 
 

2π( )3δ PV PP–( ) f MV
2
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2–( )a+–{ } P
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d∫

dx P A0 x( ) V〈 〉∫ P PP( ) Q50 V PV( )〈 〉=

=  P PP( ) P PV( )〈 〉 2P 2π( )3δ PV PP–( ).
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In the opposite case of broken flavor symmetry, one
should instead expect 〈P(PP)|Q50|V(PV)〉  =
2PI(2π)3δ(PV – PP), where I is the overlap integral of
the wave functions:

(36)

Thus, we obtain

therefore,

(37)

Thus, formulas (34), (35), and (36) and the hypoth-
esis of nearest pole dominance completely determine
the weak form factors in the BSW model.

5. HEAVY-QUARK LIMIT

In the limit where the quarks that are active in a
weak transition are too heavy, all form factors for this
transition can be expressed in terms of a single function
ξ(ζ) called the Isgur–Wise function [13]. In the case of
1–  0– transitions, these relations are given by 

(38)

where

Again, some dynamical model of mesons is needed
to calculate the Isgur-Wise function ξ(ζ) (as an exam-
ple of such calculations, see [14, 15]); instead, one can
use some phenomenologically successful parametriza-
tion. In particular, the following parametrizations were
shown [16] to fit experimental data reasonably well:

(39)

I dpT dxϕP* x pT,( )ϕV x pT,( ).

0

1

∫∫=

a+
1

MV
2 MP

2–
--------------------- f 2MV I–[ ] ;=

hA2

2MV

MV MP–
---------------------I

MV MP+
MV MP–
----------------------hA1

.–=

A1

MPMV

MP MV+
---------------------- 1 ζ+( )ξ ζ( ),=

A2 V
1
2
---

MP

MV

------- 1
MV

MP

-------+ 
  ξ ζ( ),= =

ζ v Pv V=
MP

2 MV
2

q2–+
2MV MP

---------------------------------.=

ξ ζ( ) 1 ρ2 ζ 1–( ), ρ 1.08,≈–=

ξ ζ( ) 2
1 ζ+
------------ 2ρ2 1–( )ζ 1–

ζ 1+
------------–

 
 
 

, ρ 1.52,≈exp=

ξ ζ( ) 2
ζ 1+
------------ 

  2ρ2

, ρ 1.45,≈=

ξ ζ( ) ρ2 ζ 1–( )–{ } , ρ 1.37.≈exp=
In our case, the heavy-quark limit can be applied to

the decay ϒ  e– . Despite different analytic
forms of the Isgur–Wise function, all four parametriza-
tions from (39) lead to very close values for Br(ϒ 

e– ): 4.1 × 10–10, 3.7 × 10–10, 3.8 × 10–10, and 3.8 ×
10–10.

For heavy–light transitions—for example, in the

decay J/ψ  e+νe—the Isgur–Wise scaling (38) is
not applicable. Recently, Stech proposed [17] a phe-
nomenological model with enlarged Isgur–Wise scal-
ing for semileptonic form factors. It is supposed that,
instead of (38), the following relations hold:

(40)

The function ξPV(ζ) is the same for all form factors
for given initial and final states. It approximates the
Isgur–Wise function in the heavy-quark limit. On the
contrary, the functions h are different for each form fac-
tor and are equal to unity in the heavy-quark limit. The
special expressions for the functions ξPV(ζ) and h can
be found in the original paper [17].

6. NUMERICAL RESULTS

To perform numerical calculations within the ISGW
model, we use the following values (in GeV) for the
quark masses [10] and the variational parameters β:

(41)

All but the last values in (41) are from Table A2 of
[10]. The result for ϒ was obtained by minimizing

, with (14) as a trial function and V(r) =

−  + C + br, where αs ≈ 0.3, b = 0.18 GeV2, and C =

–0.84 GeV [10]. This minimization problem leads to
the cubic equation

with β ≈ 1.1 as a solution.

Bc
+ νe

Bc
+ νe
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–
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MP MV+
---------------------- 1 ζ+( )hA1
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1
2
---
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------- 1
MV
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-------+ 
  hA2
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V
1
2
---

MP

MV

------- 1
MV
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-------+ 
  hV ζ( )ξPV ζ( ).=

mu md 0.33 GeV, ms 0.55 GeV,= = =

mc 1.82 GeV, mb 5.12 GeV,= =

βK  = 0.44, βDd
0.45, βDs

0.56, βBu
0.43,= = =

βBc
0.92, βϕ 0.37, βJ /ψ 0.62, βϒ 1.1.= = = =

p2

mb

------ V+

4α s

3r
--------

β3 8α smb

9 π
---------------β2–

2bmb

3 π
-------------– 0=
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Table 1

Decay ϕ  K+e– J/ψ  e+ν J/ψ  e+ν ϒ  e–  ϒ  e–

, GeV 1.273 (K1) 2.422 (D1) 2.535 (Ds1) 5.745 6.717

, GeV 0.892 (K*) 2.010 (D*) 2.112 ( ) 5.325 (B*) 6.317

ν Dd
– Ds

–
Bu

+ ν Bc
+ ν

M
1

+

M
1

– Ds
*

Table 2

Decay ϕ  K+e– J/ψ  e+ν J/ψ  e+ν ϒ  e– ϒ  e–

ISGW [9] 7.9 × 10–15 2.3 × 10–11 4.8 × 10–10 2.9 × 10–13 1.6 × 10–10

BSW [8] 3.1 × 10–14 3.9 × 10–11 8.9 × 10–10 3.5 × 10–13 2.0 × 10–10

Stech [17] – 3.1 × 10–11 5.2 × 10–10 3.0 × 10–12 3.1 × 10–10

ν Dd
– Ds

–
Bu

+ ν Bc
+ ν
Note that this variational procedure leads to the

ϒ-meson mass Mϒ = 2mb +  ≈ 9.44 GeV,

which should be compared with the experimental value
of 9.46 GeV [18].

As was mentioned above, the ISGW model predic-
tions about the high-(tm – t) behavior of the form factors
are not reliable. In numerical calculations, we use more
realistic behavior proposed in [10] (although we do not
use other refinements of the model given in [10]); that is,

(42)

where

(43)

The last term in (43) is nonzero only for b  c
transitions, where it is equal to ∆r2 ≈ 0.39 [10].

For the BSW model, it is necessary, in addition to 1–

and 1+ pole masses, to introduce a q2 dependence for
the form factors. We use the values given in Table 1.

Beauty–charm mesons have not yet been discovered
experimentally. Predictions for their masses were taken
from [19] (in particular,  = 6.25 GeV). The value of

 = 5.745 GeV for the (b ) meson is also a potential

model prediction taken from [20].
As was mentioned earlier, we consider the parame-

ter ω of the BSW model in (28) to be identical to the
corresponding parameter β of the ISGW model from

(14). For the decay ϒ  e– , this choice gives
only 1/5 of the branching ratio in relation to what is
expected from the heavy-quark limit. The branching

ratio Br(ϒ  e– ), which is, in fact, determined

p2

mb

------ V+

F t( )
βPβV

βPV
2

------------ 
  3/2

1
1
12
------r2 tm t–( )+

2–

,

r2 3
4mqmQ

-----------------
3mQ

2

2MPMVβPV
2

----------------------------
∆r2

MPMV

----------------.+ +=

MBc

M
1+ u

Bc
– ν

Bu
– ν
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by the overlap of the wave-function tails, is especially
sensitive to this parameter, and it is hard to expect that
these tails are correctly given by the simple parametri-
zation used in the BSW model. Thus, we conclude that
it is better to take the value of ωϒ such that the heavy-
quark-limit prediction is reproduced for Br(ϒ 

e− ) to the greatest possible extent. This choice pro-
vides ωϒ ≈ 2.2 GeV versus βϒ ≈ 1.1 GeV of the ISGW
model. For other quarkonia, the ω = β prescription was
used.

The numerical results for various semileptonic
branching ratios are summarized in Table 2.

7. CONCLUSION

We have considered some semileptonic weak
decays of vector mesons, using the most popular ISGW
and BSW quark models. The predictions of these mod-
els agree with each other reasonably well (within a fac-
tor of two) for all cases considered here, with the excep-
tion of the decay ϕ  K+e– , where the predicted
branching ratios differ by a factor of four.

The corresponding branching ratios were also cal-
culated on the basis of Stech’s phenomenological
model [17]. The results agree again with the ISGW and
BSW model predictions, for the majority of cases, but not

for the decays ϕ  K+e–  and ϒ  e– . As for

the decay ϕ  K+e– , where the result is Br(ϕ 
K+e– ) = 2.7 × 10–12, we do not expect Stech’s model to
be valid for it. But it is interesting to note that we can
assume that the pole position for ξPV(ζ) depends on the
form factor where it appears, as in the BSW model (that
is, the 1– pole for the V form factor and the 1+ pole for
the A1 and A2 form factors). Stech’s model modified in
this way then predicts Br(ϕ  K+e– ) = 9.0 × 10–15,
again close to the ISGW and BSW results. The residual
decay modes are not affected significantly by this mod-

Bc
– ν

ν

ν Bu
+ ν

ν
ν

ν
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ification. In particular, an order of magnitude difference
between Stech’s model and the ISGW or BSW model

for the decay ϒ  e–  still persists. It seems that
Stech’s model has difficulties in handling this decay
mode.

Unfortunately, the predicted branching ratios are too
small; therefore, an experimental study of the decays
considered is questionable in the near future.
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Abstract—By using realistic models for elastic hadron scattering, we demonstrate that, at current accelerator
energies, the s-channel unitarity bound is safe and is not to be reached until 105 GeV, while the black-disk limit
is saturated around 6 TeV. It will be followed by a larger transparency of the scattered particles near the center.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Our decision to write this article was motivated
partly by recent claims that, in high-energy hadron
scattering, the black-disk limit has been reached and
that the violation of the s-channel unitarity in some
models is just around the corner. While the first state-
ment is true and has interesting physical consequences,
the second one is wrong for any realistic model fitting
the existing data on proton and antiproton scattering up
to highest accelerator energies.

To start with, we recall the general definitions and
notation. Unitarity in the impact-parameter (b) repre-
sentation reads

(1)

where h(s, b) is the elastic-scattering amplitude at the

center-of-mass energy  [with Imh(s, b) usually
called a profile function representing hadron opacity]
and Gin(s, b), called the inelastic overlap function, is the
sum over all inelastic-channel contributions. Integrated
with respect to b, equation (1) reduces to a simple rela-
tion between the total, elastic, and inelastic cross sec-
tions: σtot(s) = σel(s) + σin(s).

Equation (1) imposes the absolute limit

(2)
while the so-called black-disk limit σel(s) = σin(s) +

σtot(s) or

(3)
is a particular realization of the optical model—
namely, it corresponds to the maximum absorption

Imh s b,( ) h s b,( ) 2 Gin s b,( ),+=

s

0 h s b,( ) 2 Imh s b,( ) 1,≤≤ ≤

1
2
---

Imh s b,( ) 1/2=
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within the eikonal unitarization when the scattering
amplitude is approximated as

(4)

with a purely imaginary eikonal ω(s, b) = iΩ(s, b).
Eikonal unitarization corresponds to a particular

solution to the unitarity equation,

(5)

the one with a minus sign.
The alternative solution, that with a plus sign, is

known [1, 2] and is realized within the so-called
U-matrix2) approach [3, 4] with the unitarized amplitude

(6)

where U is now the input “Born term,” the analog of the
eikonal ω in (4).

In the U-matrix approach, the scattering amplitude
h(s, b) may exceed the black-disk limit as the energy
increases. A transition from a (central) black disk to a
(peripheral) black ring, surrounding a gray disk, for the
inelastic overlap function in the impact-parameter
space corresponds to the transition from shadowing to
antishadowing [1]. We will present a particular realiza-
tion of this regime.

The impact-parameter amplitude can be calculated
either directly from data, as this was done, for example,
in [5, 6] (where, however, the real part of the amplitude
was neglected), or by using a particular model that fits
data sufficiently well. There are several models appro-
priate for this purpose. In a classical article [7] on the
subject, from the behavior of Gin(s, b), the proton is
characterized as getting “BEL” (Blacker, Edgier, and
Larger). As is anticipated in the title of our article, the

2)We follow traditional terminology, although the word “matrix” in
this context is misleading, since U, similar to the eikonal, is a sin-
gle function rather than a matrix.

h s b,( ) i
2
--- 1 iω s b,( )[ ]exp–( ),=

h s b,( ) 1
2
--- 1 1 4Gin s b,( )–±[ ] ,=

h s b,( ) U s b,( )
1 iU s b,( )–
----------------------------,=
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proton, after having reached its maximal darkness
around the Tevatron energy region, may get less opaque
beyond.

Actually, the construction of any scattering ampli-
tude rests on two premises: the choice of the input, or
Born term, and the relevant unitarization procedure
(eikonal or U matrix in our case). Within the current
accelerator energy region, there are several models that
fit data reasonably well. Compatible within the region
of the present-day experiments, they differ significantly
when extrapolated to higher energies. We will consider
two representative examples—namely, the Donnachie–
Landshoff (DL) model [8, 9] and the dipole-Pomeron
(DP) model [4, 10].

This article is organized as follows. In Section 2, we
present necessary details on two realistic models (DL
and DP); then, focusing on the DP model, we investi-
gate, in Section 3, the unitarity properties at the Born
level. In Section 4, we study the optical properties
(transparency) after unitarization; a comparison with
the DL model is given in the Appendix.

2. BORN TERM
The DL model [8] is popular for its simplicity.

Essentially, it means the following four-parameter
empirical fit to all total hadronic cross sections:

(7)

Here, two of the parameters—namely, δ = αP(0) – 1 ≈
0.08 and δr(< 0)—are universal. While the violation of
the Froissart–Martin (FM) bound,

(8)

inherent in that model, is rather an aesthetic than a prac-
tical defect (because of the remoteness of the energy
where it eventually will overshoot the FM limit), other
deficiencies of the DL model (or any other model based
on a supercritical Pomeron) are sometimes criticized in
the literature, but, so far, nobody has been able to sug-
gest anything significantly better instead. A particularly
attractive feature of the DL Pomeron, made from a sin-
gle term, is its factorability, although this may be too
crude an approximation to reality.

The t dependence in the DL model is usually chosen
[9] in the form close to the dipole form factor. For the
present purposes, a simple exponential residue in the
Pomeron amplitude will do as well, with the signature
included,

(9)

where α(t) = α(0) + α't is the Pomeron trajectory and N
is a dimensionless normalization factor related to the
total cross section at s = sDL by the optical theorem

(10)

σtot Xsδ Ys
δr.+=

σtot s( ) C sln( )2, C< 60 mb,=

A s t,( ) N i
s

sDL
-------– 

  α t( )
eBt,–=

N
sDL

4π πα 0( )/2sin
-----------------------------------σtot s sDL=( ).=
According to the original fits [8, 9], we have sDL =
1 GeV2, α(0) = 1.08, α' = 0.25 GeV–2, and X = 21.70 mb

[see equation (7)] resulting in N =  = 4.44.

By identifying

(11)

and choosing the CDF or E410 result for the slope Bexp
at the Tevatron energy, we obtain

B = Bexp(s) – α' ln  = 4.75 GeV–2.

In the DP model [4], factorable at asymptotically
high energies, logarithmically rising cross sections are
produced only at the Pomeron intercept equal to unity;
therefore, the DP is not in conflict with the FM bound.
While data on the total cross sections are compatible
with a logarithmic rise (DP with the intercept equal to
unity), the ratio σel/σtot is found (see [11] for details) for
δ = 0 to be a monotonically decreasing function of the
energy for any physical values of the parameters. The
experimentally observed rise of this ratio can be
achieved only for δ > 0 and thus requires the introduc-
tion of a supercritical Pomeron, α(0) > 1. As a result,
the rise of the total cross sections is driven and shared
by the dipole and the supercritical intercept. The
parameter δ = α(0) – 1 in the DP model is nearly one-
half as great as that of the DL model, making it safer
from the point of view of the unitarity bounds. Gener-
ally speaking, the closer the input to the unitarized out-
put, the better the convergence of the unitarization pro-
cedure.

Let us recall that, apart from the “conservative” FM
bound, any model should also satisfy s-channel unitar-
ity. We demonstrate below that both the DL and the DP
model are well below this limit and will remain so
within the foreseeable future. (Let us recall that the DL
and the DP model are close numerically, although they
are different conceptually and, consequently, their
extrapolations to superhigh energies will differ as
well.)

The elastic-scattering amplitude corresponding to
the exchange of a dipole Pomeron reads

(12)

where L ≡ ln , and α ≡ α(t) is the Pomeron trajectory;

in this paper, we use a linear trajectory α(t) = α(0) + α't
for the sake of simplicity.

X
4π πα 0( )/2sin
-----------------------------------

dσ s t,( )
dt

-------------------
dσ s t 0=,( )

dt
-----------------------------e

Bexp s( )t
=

1
2
--- s

sDL
-------

A s t,( ) d
dα
------- e iπα /2– G α( ) s/s0( )α[ ]=

=  e iπα /2– s/s0( )α G' α( ) L iπ/2–( )G α( )+[ ] ,

s
s0
----
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By identifying G'(α) = –a , we can recast
equation (12) into the geometric form

(13)

where

(14)

The model contains the following adjustable parame-
ters: a, bP, α(0), α', e, and s0.

In Table 1, we quote the numerical values of the
parameters of the dipole Pomeron fitted in [10] to data
on proton–proton and proton–antiproton elastic scatter-
ing:

(15)

as well as the differential cross section

(16)

In that fit, apart from the Pomeron, the odderon and
two subleading trajectories ω and f were also included.
For the sake of simplicity and clarity, we consider here
only the dominant term at high energy due to Pomeron
exchange with the parameters fitted in [10]. The extent
to which this Pomeron is a good approximation in the
TeV region is discussed in detail in [12]. The quality of
this fit is illustrated and discussed in [10]. With such a
simple model and small number of parameters, better
fits are hardly to be expected.

We use the above set of parameters to calculate the
impact-parameter amplitude and to scrutinize, in Sec-
tion 3, the unitarity properties of this Born level ampli-
tude. In Section 4, we introduce a unitarization proce-
dure necessary at higher energies and discuss the rele-
vant physical consequences.

To summarize, the DP model with the intercept
equal to unity is self-consistent in the sense that its
functional (logarithmic) form is stable with respect to
unitarization. Moreover, the presence of the second
term (proportional to e) in (13) has the meaning of
absorptions, and it is crucial for the dip mechanism. It
can be viewed also as one more unitarity feature of the
model.

In the limit of very high energies, when L @ bP , the

two (squared) radii  = α'  become equal and real,
and the model obeys exact geometric scaling as well as
factorization (see next section). Alternatively, this cor-
responds to the case of no absorptions (e = 0).

e
bP α 1–( )

A s t,( )

=  i
as

bPs0
---------- r1

2 s( )e
r1

2
s( ) α t( ) 1–[ ]

er2
2 s( )e

r2
2

s( ) α t( ) 1–[ ]
–[ ] ,

r1
2 s( ) bP L i

π
2
---, r2

2
s( )–+ L i

π
2
---.–= =

σtot s( ) 4π
s

------ImA s 0,( ), ρ s( ) ReA s 0,( )
ImA s 0,( )
------------------------;= =

4 s GeV( ) 1800,≤ ≤

dσ s t,( )
dt

-------------------
π
s2
---- A s t,( ) 2, 23.5 s GeV( ) 630,≤≤=

0 t GeV2( ) 6.≤≤

Ri
2 ri

2
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However attractive, the case of the intercept equal to
unity (δ = 0) is only an approximation to the more real-
istic model requiring δ > 0 to meet the observed rise of
the ratio σel/σtot. For such a “supercritical” Pomeron,
unitarization becomes inevitable.

3. IMPACT-PARAMETER REPRESENTATION, 
UNITARITY, AND BLACK-DISK LIMIT

In the impact-parameter representation, the elastic
amplitude in our normalization is

(17)

The impact-parameter representation for linear tra-
jectories 3) is calculable explicitly for the model speci-
fied by (13). The result is 

(18)

where

(19)

Asymptotically (i.e., when L @ bP, which corresponds

to  @ 2.0 TeV, with the parameters of Table 1),

(20)

where

, (21)

and bP is the constant part of the slope parameter.
To illustrate the s-channel unitarity, we display, in

Fig. 1a, a family of curves showing the imaginary part
of the amplitude in the impact-parameter representa-
tion at various energies; also shown is the calculated
[from (1)] inelastic overlap function.

3)Other cases were treated e.g., in [4].

h s b,( ) 1
2s
----- dqqJ0 bq( )A s q– 2,( ), q t–= .

0

∞

∫=

h s b,( ) ig0 e
r1

2δ
e

b
2/4R1

2–
ee

r2
2δ

e
b

2/4R2
2–

–[ ] ,=

Ri
2 α'ri

2 i 1 2,=( ), g0
a

4bPα's0
------------------.= =

s

h s b,( ) ig s( ) 1 e–( )e

b
2

4R
2

---------–

,
s → ∞

R2 α'L, g s( ) g0
s
s0
---- 

  δ
= =

Table 1. Parameters of the dipole Pomeron found in [10]

a bP α(0) α ', GeV–2 e s0, GeV2

355.6 10.76 1.0356 0.377 0.0109 100.0

Table 2. Central opacity of the nucleon, Imh(s, 0), calculated at
ISR, SPS, and Tevatron energies along with experimental data

53 GeV 546 GeV 1800 GeV

Experiment 0.36 [6] 0.420 ± 0.004 [13] 0.492 ± 0.008 [14]

Theory 0.36 0.424 0.461

s
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Fig. 1. Calculated dimensionless Born level Imh(s, b) (left panel) and Gin(s, b) (right panel) plotted versus the modulus of the impact
parameter b for some characteristic energies as indicated (solid curve is for the LHC energy). The top of the scale on the left is the
unitary limit, and the value of 1/2 corresponds to the black-disk limit (both are indicated by horizontal lines). The calculations were
performed for the dipole Pomeron model; similar results were obtained for the DL model (see main body of the text). The sequence
of the calculated curves follows that of the relevant energies indicated.
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Fig. 2. As in Fig. 1, but for the unitarized amplitude H(s, b) and the overlap function calculated without refitting the parameters used
at the Born level.

Imh(s, b)

Unitarity

Black disk

1000 TeV
14 TeV
1.8 TeV
546 GeV
53 GeV

1 2 30

1

0.8

0.6

0.2

0.4

0.3

0.2

0.1

0 1 2 3

Gin(s, b)

b, fm
Our confidence in the extrapolation of Imh(s, b) to
the highest energies rests partly on the good agreement
of our (not fitted) results with the experimental analysis
of the central opacity of the nucleon (see Table 2).

It is important to note that the unitarity bound, 1, for
Imh(s, b) will not be reached at the LHC energy, while
the black-disk limit, 1/2, will be slightly exceeded, the
central opacity of the nucleon being Imh(s, 0) = 0.54.

The black-disk limit is reached at  ~ 6 TeV,
where the overlap function reaches its maximum of 1/4.
This energy corresponds to the appearance of the anti-
shadowing mode in agreement with the general consid-
erations in [1]. Notice that, while Imh(s, b) remains
central all the way, Gin(s, b) gets more peripheral as the
energy increases starting from the Tevatron energy. By

the way of example, we indicate that, at  = 14 TeV,

s

s

the central region of the antishadowing mode below b ~
0.4 fm is discernible from the peripheral region of shad-
owing scattering below b ~ 0.4 fm, where Gin(s, b) =
1/4. In terms of [7], the proton will tend to become
more transparent at the center (“gray,” in the sense of
becoming a gray object surrounded by a black ring);
i.e., it is expected to become “GEL” instead of “BEL.”

The s-channel unitarity limit will not be endangered
until extremely high energies (105 for the DL model
and 106 GeV for the DP), safe for any credible experi-
ment. It is interesting to compare these limits with the
limitations imposed by the FM bound: actually, the
Pomeron amplitude saturates the FM bound at 1027 GeV.
As might have been expected, the FM bound is even
more conservative than that following from s-channel
unitarity.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000



UNITARITY, (ANTI)SHADOWING, AND BLACK-DISK LIMIT 895
The DP and DL models are confronted in the
Appendix.

4. UNITARIZATION AND TRANSITION
FROM A BLACK TO A GRAY DISK

Now, we consider the unitarized amplitude accord-
ing to the “U-matrix” prescription [3, 4]

(22)

with the Born term h(s, b) defined in the previous sec-
tion in (13) and (14).

Figure 2 shows the behavior of the unitarized
impact-parameter amplitude H(s, b) and the corre-
sponding inelastic overlap function at various energies.
By comparing it with similar curves (Fig. 1) obtained at
the Born level, we see that unitarization lowers signifi-
cantly both the elastic and the inelastic impact-parame-
ter amplitudes.

An inevitable consequence of the unitarization is
that, when calculating the observables, one should also
replace the Born amplitude A(s, t) by a unitarized

amplitude (s, t) defined as the inverse Fourier–Bessel
transform of H(s, b),

(23)

Thus, the above picture may change since the parame-
ters of the model should in principle be refitted under
the unitarization procedure (this effect of changing the
parameters was clearly demonstrated, e.g., in [15]).

Actually, searches for a new fit of the parameters by
using a unitarization procedure is time-consuming and
unnecessary for the present discussion because the
behavior of the amplitude and of the overlap function in
the impact-parameter representation obtained at the
Born level will be almost restored after unitarization.
We checked that the parameters of the complete model
(with the secondary Reggeons and odderon added in
the fit) after unitarization may be rearranged so as to
reproduce well the data and give roughly the same
extrapolated properties as at the Born level.

While the unitarity limit is now secured automati-
cally [recall that Imh(s, 0) is well below that limit even
at the Born level in the TeV region], the behavior of the
elastic impact-parameter amplitude after it has reached
the black-disk limit corresponds (see [1]) to the transi-
tion from shadowing to antishadowing. In other words,
the proton (antiproton), upon reaching its maximal
blackness around 6 TeV, will become gradually more
transparent with increasing energies at its center.

H s b,( ) h s b,( )
1 ih s b,( )–
---------------------------,=

Ã

Ã s t,( ) 2s dbbJ0 b t–( )H s b,( ).

0

∞

∫=
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5. CONCLUSION

While the results of our analysis in the impact-
parameter representation are in agreement with the ear-
lier observations that Imh(s, b) remains central and
Gin(s, b) becomes peripheral as the energy exceeds
6 TeV (see Fig. 1), there is a substantial difference from
the known “BEL-picture” [7], according to which the
proton becomes Blacker, Edgier, and Larger with
increasing energy.

We confirm that, getting edgier and larger, the pro-
ton, after reaching its maximal blackness, will tend to
be more transparent or “GEL”—a gray disk surrounded
by a black ring—when the energy exceeds that of the
Tevatron. This transition from shadowing to a new anti-
shadowing scattering mode is expected to occur at the
LHC energy. 

To conclude, we stress once again that the data and
relevant models at present energies are well below the
s-channel unitarity limit. In our opinion, deviations due
to the diversity of realistic models may result in dis-
crepancies concerning Imh(s, 0) of at most 10%, while
its value at 6 TeV is still half that of the unitarity limit,
so that there is no reason to worry about it! Opposite
statements may result from confusion with normaliza-
tion. Therefore, model amplitudes at the Born level
may still be quite interesting and efficient in analyzing
the data at present accelerator energies and giving some
predictions beyond. The question of which model is
closer to reality and meets better the requirements of
the “fundamental theory” remains of course topical.

Extrapolations to and predictions for the energies of
the future accelerators (see, e.g., [12]) are both useful
and exciting since they will be checked in the not-so-far
future at LHC and other machines. The fate of the
“black-disk limit” is one among these.
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APPENDIX

Comparison of the DP and DL Models

The DL amplitude in the impact-parameter repre-
sentation at the Born level, as calculated from (9) and

Table 3.  Maximum values of the amplitude and overlap
function at the Born level and after U-matrix unitarization
calculated at 14 TeV for the DP and DL models without re-
fitting the parameters

Imh(s, 0) Gin(s, 0) ImH(s, 0) Gin(s, 0)

DP 0.535 0.247 0.349 0.227

DL 0.539 0.246 0.351 0.227
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(17), is

As has already been noted, the s-channel unitarity limit
both for the DP and the DL model will not be endan-
gered until extremely high energies (105 GeV for the
DL and 106 GeV for the DP model, the order-of-mag-
nitude differences coming from the smaller intercept in
the DP model), while the FM bound is saturated at 1027

GeV (for more details, see [16]).
Table 3 presents a selection of results concerning the

DP and DL models for the Pomeron in the impact-
parameter representation of the elastic amplitude and
inelastic overlap function calculated at b = 0 at the LHC
energy.

We conclude that the two models give similar
results; all conclusions on unitarity and black-disk lim-
its for the DP model hold for the DL model as well (the
curves in Figs. 1 and 2 would be indistinguishable by
eye).

Note that both models are supercritical, with asymp-
totic sδ-type behavior of the total cross sections. They
are known to give fits that cannot be discriminated by
present data from an asymptotic behavior of the ln2s
type. This is another argument to neglect unitarization
effects.
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Abstract—An expression for the exact (beyond perturbation theory) effective action in N = 1 supersymmetric
gauge theories where all particles, with the exception of gauge bosons, are massive is proposed. By analyzing
the form of this expression, it is shown that, in supersymmetric theories, instanton effects can lead to quark con-
finement. On the basis of first principles, the characteristic scale of confinement is calculated within MSSM
QCD, and the result is found to be consistent with experimental data. The proposed explanation differs drasti-
cally with the dual Higgs mechanism. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quark confinement presents one of the most impor-
tant unresolved problems in modern theoretical physics
[1]. It is commonly believed that there are fundamental
connections between confinement and the nonperturba-
tive dynamics of field theory. Considerable advances in
these realms were made by Seiberg and Witten [2], who
were able to obtain an expression for the sum of all
instanton corrections in the simplest case of N = 2
supersymmetric Yang–Mills theory. It should be
emphasized, however, that the model considered by
those authors is not physical—an investigation of N = 1
supersymmetric theories is of much greater interest
since indirect experimental data [3, 4] indicate that
there is N = 1 supersymmetry in the Standard Model.
This is the reason why we address here precisely this
case.

On the other hand, the presence of supersymmetry
is of paramount importance for the proposed explana-
tion of confinement. This explanation, which differs
drastically from the dual Higgs mechanism [5], usually
used to obtained qualitative insights into the phenome-
non, actually invokes an assumption on the structure of
the effective potential beyond perturbation theory and
relies heavily on the presence of an auxiliary field D in
supersymmetric theories.

That confinement is induced by instanton effects is
indirectly suggested by a formidable difference
between QCD and Grand Unification scales, a circum-
stance referred to in the literature as the gauge-hierar-
chy problem. Recall that the two fundamentally differ-
ent scales arise in instanton calculations [6], their ratio
being proportional to exp(–8π/e2). However, expres-
sions proposed thus far in the literature for the effective
action of N = 1 supersymmetric gauge theories beyond
perturbation theory [7–9] do not lead to confinement.

* e-mail: stepan@theor.phys.msu.su
1063-7788/00/6305- $20.00 © 20897
A new (hypothetical) expression for the effective
action in the case where all particles of the theory, with
the exception of gauge bosons, are massive has been
inferred in the present study from an analysis of instan-
ton effects. This expression leads to the emergence of
confinement—in particular, in the SU(3) sector of the
minimal supersymmetric Standard Model (MSSM
QCD). The characteristic scale of confinement can be
calculated here from first principles.

The ensuing exposition is organized as follows. In
Section 2, we discuss the structure of instanton contri-
butions to the effective action and make an attempt at
constructing an expression for their sum (that is, a low-
energy effective action for N = 1 supersymmetric Yang–
Mills theory with matter in the case where all particles,
with the exception of gauge bosons, have nonzero
masses) on the basis of some general arguments. As a
result, it is established that the superpotential depends
on gauge and auxiliary fields in quite a peculiar way. It
is shown in Section 3 that a dependence of this type
leads to quark confinement in the sense that there are no
asymptotic color states in this case. An investigation
reveals that, in this model, there exist two “phases”: a
confined phase at distances exceeding some critical
size and a conventional phase at small distances. In the
same section, we also obtain an expression for the
potential of quark interaction. The confinement scale is
calculated and contrasted against experimental data in
Section 4. In the Conclusion, we briefly discuss the
results obtained in the present study.

2. LOW-ENERGY EFFECTIVE ACTION
FOR MSSM QCD

MSSM QCD represents an N = 1 supersymmetric
Yang–Mills theory that is based on the SU(3) gauge
group and which involves six matter supermultiplets. In
this theory, all particles, with the exception of gauge
bosons, are massive. In the present study, we will con-
000 MAIK “Nauka/Interperiodica”
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sider a similar theory that is based on the SU(Nc) gauge
group and which features Nf matter supermultiplets.
This theory is described by the action functional

(1)

where the matter superfields φ and  belong to, respec-
tively, the fundamental and the antifundamental repre-
sentation of the SU(Nc) gauge group, while Sm stands
for the sum of the massive terms for all fields.

Here, we have also used the notation

(2)

where Aµ is a gauge (gluon) field, λ is its spinor super-
partner (gluino), and D is an auxiliary field.

The quarks are constructed from the fields ψ and
 as

(3)

The scalars ϕ and  appear to be their superpartners

(squarks). The fields f and  are auxiliary.
In the following, we assume that supersymmetry is

broken softly by introducing a mass term for the gluino.
Since quark confinement is a low-energy phenome-

non, we will try to construct the exact effective action
for this theory below the threshold for the production of

S
1

16π
---------trIm τ d4xd2θW2∫( )=

+
1
4
--- d4xd4θ∫ φA

+ e 2V– φA φ̃+A
e2Vφ̃A+( ) Sm,+

A 1=

N f

∑

φ̃

φ y θ,( ) ϕ y( ) 2θ 1 γ5+( )ψ y( )+=

+
1
2
---θ 1 γ5+( )θf y( ),

φ̃ y θ,( ) ϕ̃ y( ) 2θ 1 γ5+( )ψ̃ y( )+=

+
1
2
---θ 1 γ5+( )θ f̃ y( ),

V x θ,( ) i
2
---θγµγ5θAµ x( )–=

+ i 2 θθ( ) θγ5λ x( )( ) i
4
--- θθ( )2

D x( ),+

W y θ,( ) 1
2
--- 1 γ5+( ) i 2λ y( ) iθD y( )+(=

+
1
2
---ΣµνθFµν y( ) 1

2
-------θ 1 γ5+( )θγµDµλ y( ) ),+

τ θ
2π
------

4πi

e2
--------, yµ+ xµ i

2
---θγµγ5θ,+= =

Σµν
1
2
--- γµγν γνγµ–( ), Dµ ∂µ i Aµ,[ ] ,+= =

ψ̃

Ψ 1

2
------- 1 γ5+( )ψ 1 γ5–( )ψ̃+( ).=

ϕ̃
f̃

all massive particles.1) This effective action must sat-
isfy the following requirements:

(i) It must depend on the original fields of the theory
(not on composite ones).

(ii) It must be in accord with dynamical (both per-
turbative and instanton) calculations (this requirement
is stronger than that which demands conformity with
the law of transformation of the instanton measure and
which was used in [9]).

Of course, the exact expression for the effective
action can be obtained only upon performing dynami-
cal calculations and summing a series of instanton cor-
rections. In this study, we present, however, some argu-
ments leading to a specific assumption about its form.

First of all, we will try to establish the general struc-
ture of the effective action. We assume that it can be rep-
resented as the sum of an expression that is invariant
under supersymmetry transformations and (mass) terms
that may break supersymmetry. We will be interested
only in the holomorphic part of terms that are invariant
under supersymmetry transformations. In order to find it,
we note that there is a close relation between the pertur-
bative contribution and the instanton corrections [6, 10,
11]. In particular, the requirement that the instanton con-
tributions be perturbatively invariant under renormaliza-
tion-group transformations makes it possible to con-
struct exact beta functions of supersymmetric theories.

Let us now try to formulate this relation rigorously.
For this, we introduce some scale M and denote by e the
coupling-constant value at this scale. The one-loop
result will then be proportional to –1/4e2, while the
instanton contributions will be proportional to
exp(−8πn/e2), where n is the modulus of the topological
number. (The one-loop contribution and the instanton
corrections are perturbatively invariant under renor-
malization-group transformations individually.)

Let us represent the holomorphic part of the pertur-
bative effective Lagrangian as

(4)

where eeff and ϑeff are some quantities that appear to be
functions of the fields involved and which are invariant
under renormalization-group transformations; specifi-
cally, these are, respectively, the effective coupling con-
stant and the coefficient of the topological term within
perturbation theory. Introducing the notation

(5)

1)We will see in the following that this condition does not hold for
the u and d quarks, but this is not very important, since the mass
dependence of the effective action does not change upon travers-
ing the threshold.

La
1

16π
---------Imtr d2θW2 4πi

eeff
2

--------
ϑ eff

2π
--------+ 

  ,∫=

z 2πi
4πi

eeff
2

--------
ϑ eff

2π
--------+ 

  ,exp≡
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we can represent the exact effective Lagrangian (the
instanton contributions being included) in the form

(6)

(So far, we have nowhere invoked the constant-field
approximation, which is usually used to obtain exact
results.)

In order to find the function g(z), we will make use
of the statement that the conditions

(7)

determine unambiguously its form, apart from some
constant. [The inequality Img(z) > 0 represents the
requirement that the Euclidean effective action be pos-
itive definite, while the condition cn ∈  Im follows from
the structure of the instanton contributions.] The con-
stant is chosen on the basis of the condition that the
effective charge can take arbitrary real values; hence,
there exists a point z where g(z) = 0. In [12], it was
shown that these conditions lead unambiguously to a z
dependence of the form

(8)

where the function τ(a) is the Seiberg–Witten solution

(9)

the functions a and aD in turn being given by

(10)

Therefore, we eventually obtain

(11)

where the parameter z can be determined in the one-
loop approximation or exactly by studying the instan-
ton measures by using the same method as in [10, 11].

Since the one-loop expression for the beta function
has the form

(12)

La
1

32π2
-----------Imtr d2θW2g z( )∫=

=  
1

32π2
-----------Imtr d2θW2 i z cnzn

n 1=

∞

∑+ln–
 
 
 

.∫

g z( ) i z cnzn, Img z( ) 0, cn Im∈>
k 0=

∞

∑+ln–=

g z( ) 2πτ z 1/4–( ),=

τ a( ) daD u( )
da

-----------------
u u a( )=

,=

a u( ) 2
π

------- dx
x u–

x2 1–
------------------;

1–

1

∫=

aD u( ) 2
π

------- dx
x u–

x2 1–
------------------.

1

u

∫=

La
1

16π
---------Im d2θW2τ z 1/4–( ),∫=

β 1( ) e( ) e3

16π2
----------- 3Nc N f–( ),–=
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the parameter z must be proportional to ,
where M is the ultraviolet-cutoff momentum. The same
result is obtained from the expression for the instanton
measure [13] (this is in perfect conformity with the
above arguments).

Our objective here is to construct the effective
action in the low-energy region—that is, below the
threshold for the production of all massive particles.
For massive particles, the values of the running cou-
pling constants are stabilized at the mass value; there-
fore, their contribution will be proportional to the ratio
M/m raised to the power that is determined by the cor-
responding coefficient in the beta function. The situa-
tion with massless gauge fields is somewhat more intri-
cate. In the presence of massless fields, the coupling
constant is not stabilized at any value. Therefore, the
behavior of the theory in the infrared region must be
analyzed in detail. We note that we are interested pri-
marily not in the renormalization-group functions but
in the effective action, which can be calculated, for
example, in the constant-field approximation. There-
fore, the contributions from massless gauge fields to the
parameter z will involve some functions of these fields
rather than their masses.

Since z is a scalar, we must find, in the constant-field
approximation, a chiral scalar superfield that does not
involve derivatives of Fµν and which does not have anti-
commuting quantities in the lower component (other-
wise, all powers of z from some power that is suffi-
ciently large will be equal to zero or infinity). The only
superfield B that satisfies these requirements is given by

(13)

where the index a numbers the generators of the gauge
group. (In the perturbative approach, a similar expres-
sion was proposed in [14].)

From a dimensional analysis, we therefore find that
the contribution of massless gauge fields to the param-
eter z is proportional to the quantity M/B1/4 raised to the
power that is determined by the corresponding coeffi-
cient in the beta function.

The one-loop beta function can be represented in the
form

(14)

where

(15)

M
3Nc N f–

B
1
8
---D 1 γ5–( )D Wa*( )2

–=

=  Da( )2 1
2
--- Fµν

a( )2
–

i
2
---Fµν

a F̃µν
a

– O θ( ),+

β 1( ) e( ) e3

16π2
----------- cG cλ cq csq+ + +( ),–=

cG
11
3
------Nc, cλ

2
3
---Nc,–= =

cq
2
3
---N f ,–= csq

1
3
---N f–=
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for the contributions of, respectively, Yang–Mills fields
(with ghosts), their spinor superpartners, quarks, and
squarks. Taking into account the above arguments, we
then obtain

(16)

where mλ is the gluino mass, while (mq  and (msq  are

the quark and squark mass matrices.

It should be noted that expression (16) was obtained
in the one-loop approximation. Multiloop effects can
be taken into account [10, 11] by considering that, in
the expression for the instanton measure [13], there

appears the factor (1/e2 , which will of course gener-
ate the corresponding contribution in the expression for
z, while the gluino mass changes in such a way that

. Eventually, the parameter z (apart

from some constant C) will therefore become

(17)

where we have also taken into consideration SU(Nf)
symmetry with respect to rotations in flavor space and
recovered the generation indices.

z e 8π2/e2– M
3Nc N f– mλ

2/3

B11/12
------------

 
 
 

Nc

mq
2/3msq

1/3( )
N f

,=

)i
j )i

j

)
Nc

m̃λ
emλ

β e( )
-----------≡ const=

z C
1

e2
---- 

  Nc

e 8π2/e2– M
3Nc N f– m̃λ

2/3

B11/12
------------

 
 
 

Nc

=

× det mq( )i
j[ ]2/3

det msq( )i
j[ ]1/3

,

Im[bf(b)]
2.5

2.0

1.5

1.0

0.5

0

–0.5

0.5 1.0 1.5 2.0 2.5
b

12

Fig. 1. Graph of the function Im[bf(b)] (curve 1). Presented
for the sake of comparison is also the graph of the corre-
sponding perturbative expression (curve 2).
We denote

(18)

The expression for z can then be recast into the form

(19)

We will see below that the quantity Λc represents the
characteristic confinement scale.

3. CONFINEMENT MECHANISM

We now note that the field D, though being auxil-
iary, appears to be one of the quantum fields of the the-
ory. This field must be eliminated with the aid of the
equations of motion. In the low-energy limit considered
here, all wave functions of the squarks must of course
be set to the corresponding vacuum expectation values,
which are equal to zero since the SU(3) group is not
broken. Therefore, the equation of motion for the field
D can be derived by varying the action functional

(20)

We further note that, owing to the presence of super-
symmetry and by virtue of (13), the field D appears in
Γ only in the combination

(21)

It is straightforward to see that, by calculating the inte-
gral with respect to the anticommuting coordinate, we
can therefore represent the bosonic component of the
Lagrangian in the form

(22)

where f(b) ≡ τ[z–1/4(b)].
In the vacuum state, the field D takes a value such

that the functional LBose is minimized. Since the relation

Fµν = 0 holds in the absence of a magnetic field, the
parameter b can be taken to be real-valued.

The graph of the function Im[bf(b)] is shown in
Fig. 1. (For the sake of simplicity, we set Λc = 1 in all
the graphs.)

By using the expressions for a(u) and aD(u) in terms
of elliptic functions [15], we can easily show that the
function Im[bf(b)] has the only extremum, that which
occurs at the point b0 and which satisfies the condition

(23)

Λc
1

e2
---- 

  3/11

m̃λ
2/11 Ce 8π2/e2– M

3Nc N f–
(=

× det mq( )i
j[ ]2/3

det msq( )i
j[ ]1/3 )

3/ 11Nc( )
.

z
Λc

B1/4
-------- 

  11Nc/3

.=

Γ 1
16π
---------Imtr d4xd2θW2τ z 1/4–( ).∫=

b Da( )2 1
2
--- Fµν

a( )2
–

i
2
---Fµν

a F̃µν
a

.–=

LBose
1

8π
------Im b* f b( )[ ] ,=

F̃µν

a b0( ) z 1/4– b0( ) 4/π.= =
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At the point of minimum, we have τ[z–1/4(b0)] = 0;
owing to this, there is no kinetic term for the gauge field

in the vacuum state. Hence, the field  appears to be
a Lagrange multiplier, the corresponding constraint
being

(24)

The constraint in (24) means the absence of asymptotic
color states—that is, confinement of color charges.

At first glance, the above seems to lead to the erro-
neous conclusion that color states cannot in principle
occur at different points of space. Indeed, the kinetic
term for Yang–Mills theory can be written in the stan-
dard form

(25)

where Fµν = ∂µAν – ∂νAµ + i[Aµ, Aν]. As a matter of fact,
the absence of the corresponding term means that the
effective charge becomes infinitely large, which in turn
leads to infinitely strong interaction.

In studying the interaction between the quarks, it is
necessary to take into account, however, the chromo-
magnetic field created by the quarks. In the simplest
case, we have

(26)

In the absence of a magnetic field, relation (21)
becomes real, taking the form

(27)

It follows that, at sufficiently small values of r, the sec-
ond term comes to be greater than b0, in which case it
is impossible to minimize the function Im[bf(b)] at real
values of the field Da. Since Im(bf(b)) is a monotoni-
cally increasing function (see the graph in Fig. 1), it
attains a minimum when b assumes the minimum pos-
sible value, which obviously corresponds to D = 0. In
this case, b is not of course equal to b0, so that τ(b) is
different from zero; therefore, there arises a kinetic
term for a gauge field, and the theory reduces to con-
ventional QCD.

Thus, there are two basically different regions in the
model being considered. In the first region, which cor-
responds to b0 > (Ea)2, the auxiliary field D is nonzero
[more precisely, (Da)2 + (Ea)2 = b0], the gauge field does
not develop a kinetic term, and color charges are con-
fined. In the second region, we have b0 < (Ea)2 and D =
0, in which case conventional methods can be used to
describe the theory. The “phase-transition” point rc cor-
responds to

(28)

Aµ
a

Jµ
a 0.=

1

4e2
--------trFµν

2 ,–

Aµ
a qa

r
-----δµ0.=

b Da( )2
Ea( )2

.+=

b0 Ea( )2 1

r4
----.≈=
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Since it follows from (19) and (23) that

(29)

Λc does indeed appears to be the characteristic scale of
confinement.

However, the pattern exposed here does not predict
a linear growth of the interquark potential. Instead, we
arrive at an infinitely large potential for r values greater
than the critical dimension rc. By virtue of the equa-
tions of motion, which can be recast into the form

(30)

where f1(b) = f(b) + bf '(b), the expression for the poten-
tial at smaller values of r takes the form

, (31)

which represents the Coulomb potential modified by
quantum corrections.

The graph of the potential (31) is displayed in Fig. 2.
[As before, we set Λc = 1; in addition, we disregard the
quark charges, which are on the order of unity. Owing
to this, we have rc = (b0)–1/4.] The normalization con-
stant is chosen in such a way that U(rc) = 0.

4. CONFINEMENT SCALE

In this section, we will study only MSSM QCD,
which represents a particular case of the above model
at Nc = 3 and Nf = 6.

By virtue of invariance under renormalization-
group transformations, the quantity Λc can in principle
be calculated at an arbitrary scale—for example, at the

b0( )1/4 Λc
4
π
--- 

 
12/ 11Nc( )

,=

— Im f 1 1/r4( )—U( ) constδ r( ),=

U r( ) dr

r2 Im f 1 1/r4( )( )
-------------------------------------∫∼

U(r)

1

0

–1

–2

–3

0.2 0.4 0.6 1.0rc
r

Fig. 2. Graph of the potential U(r) of the interquark interac-
tion within MSSM QCD.
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Grand Unification scale. In this case, the coupling con-
stant in MSSM QCD must be set to e2 ≈ 1/2, and it fol-
lows from (18) that the confinement scale becomes

(32)

Unfortunately, the masses of the superpartners are
unknown. Moreover, a constant factor, which can be
sufficiently larger and which can therefore affect some-
what the result, was discarded in (32). (Since, on the
other hand, a root of eleventh degree is extracted from
this factor, the corresponding contribution is expected
to be on the order of unity.)

Nonetheless, a rough estimate of Λc can be
obtained. Assuming that all masses lie within the range
10–100 GeV (M = 2 × 1016 GeV), we obtain

(33)

which agrees well with experimental data.

5. CONCLUSION

A confinement mechanism has been proposed that
differs drastically from the dual Higgs mechanism [5],
which is usually used to obtain insights into this phenom-
enon. This mechanism, however, is a natural corollary of
the structure of the exact effective action (11) involving
the parameter z that is determined by relation (17).

It should be noted, however, that the form in (11)
only reflects some hypothesis that can be confirmed
(disproved or modified) only on the basis of perturba-
tive and instanton calculations similar to those per-
formed, for example, in [16]. This hypothesis is sup-
ported by some circumstances mentioned in the present
study—for example, agreement with the exact beta
function of Novikov, Shifman, Vainstein, and Zakharov
[10] (this can easily be verified) and a positive definite
value obtained for the effective charge. Nonetheless,
fulfillment of these necessary conditions cannot be con-
sidered as a rigorous proof.

Two basic factors are of paramount importance in
the confinement mechanism proposed in the present
study. These are, first, the presence of an auxiliary field
D in gauge supersymmetric theories and, second, the
fact that, for the bosonic part of the effective action, use
is made of a nontrivial form that is obtained upon sum-
ming a series of instanton corrections.

In the potential of interquark interaction, however,
there proved to be no linear growth at large distances.
Instead, there arise two different regions (“phases”). In
one of these (at distances in excess of some critical
dimension), the gauge field develops no kinetic term,
and the potential becomes infinitely large. In the other
region, the behavior of the theory is described in the
standard way, while the potential is close to the Cou-
lomb potential. (Similar potentials are used in bag mod-
els [17].)

Λc Me 16π2/11– mq
4
mλ

2msq
2

M8
----------------------

 
 
 

1/11

.=

Λc 0.09–0.46 GeV,≈
Of course, the proposed confinement mechanism
does not reduce to the presence of this potential—first
of all, it is predicted that there are no color states at
large distances, in agreement with what is actually
observed in nature. In addition, we automatically arrive
at the confinement of electric (rather than magnetic)
charges, so that there arises no need for invoking the
idea of duality.

The confinement scale is calculated from first prin-
ciples, and the result agrees well with experimental
data, especially if we take into consideration the
absence of experimental information about the masses
of the superpartners.
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Abstract—Phonon-like excitations of an anti-instanton–instanton liquid that are due to adiabatic variations in
the instanton dimension are considered on the basis of an approximate calculation of the relevant path integral,
which is saturated by quasizero modes. The kinetic term and the effective Lagrangian are found for such exci-
tations. The properties of their spectrum, which has a mass gap determined by ΛQCD, are discussed. © 2000
MAIK “Nauka/Interperiodica”.
The model of an (anti)instanton liquid (gas) under-
lies one of the seminal phenomenological approaches
to the QCD vacuum. This model provides a correct
qualitative description of some important quantities,
such as the gluon condensate and the topological sus-
ceptibility, and explains chiral-symmetry breaking [1,
2]. It is assumed that the path integral of the model is
saturated by semiclassical configurations that are gen-
erally close to exact solutions of the Yang–Mills equa-
tions [in particular, to Euclidean solutions represented
by (anti)instantons] and that the wave function of the
vacuum is homogeneous in metric space, its properties
being reproduced by averaging the relevant solution
over its collective coordinates. In the theory of an anti-
instanton–instanton liquid, the form

(1)

representing a superposition of pseudoparticle fields is
taken for one of the simplest admissible approxima-
tions to the true vacuum configuration Aµ. In equation
(1), Aµ(x; γi) stands for the field of an individual
(anti)instanton in the singular gauge; this fields
depends on 4Nc [for the SU(Nc) group] coordinates γ
[γ = (ρ, z, Ω), ρ, z, and Ω being, respectively, the size of
the (anti)instanton, the position of its center, and its
color orientation] that characterize an exact
(anti)instanton Euclidean solution to the Yang–Mills
equations. Specifically, we have

(2)

where η (   η) is the ’t Hooft symbol [3] for an
instanton (anti-instanton). That we have chosen the sin-

Aµ x( ) Aµ x; γi( )
i 1=

N

∑=

Aµ
a x; γ( ) 2

g
---Ωabηbµν

yν

y2
----- ρ2

y2 ρ2+
----------------, y x z,–= =

η
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Vorob’evy gory, Moscow, 119899 Russia.
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gular gauge makes it possible to sum solutions without
distorting their asymptotic behavior. In order to sim-
plify the notation, we will not introduce specific sym-
bols for an instanton or for an anti-instanton; by N in
the superposition given by (1), we then mean the total
number of pseudoparticles in the volume V occupied by
the system under study, their density being naturally
n = N/V. The action functional of an instanton liquid is
given by

(3)

Integration is performed over the volume occupied by
the liquid and is accompanied by averaging the action
functional per instanton, s(ρ), over the size distribution
n(ρ) of instantons. The action functional per instanton
has the well-known form

(4)

where β(ρ) = –  – bln(Λρ), with b = Nc and

Λ =  = 0.92ΛPV and with the constant  depen-
dent on the renormalization scheme (in particular,

 ≈ ), is the Gell-Mann–Low

beta function; β = β( ) is the value of the beta function

at a fixed value of ρ (mean instanton size ); and  =
β + .

Some terms (part of functional dependence) in
expression (4) can be deduced by supplementing an
outcome of classical field theory with loop (quantum)
corrections that lead to variations in the coupling con-
stant g with distance. Indeed, the first term represents
the one-instanton action functional 8π2/g2 corrected by
taking into account the instanton-size dependence of g.
The last term describes the pair interaction in the

S〈 〉 d4z dρn ρ( )s ρ( ).∫∫=

s1 ρ( ) β ρ( ) 5 Λρ( ) β̃
2Nc

ln–ln+=

+ βξ2ρ2 dρ1n ρ1( )ρ1
2,∫

CNc
ln

11
3
------

Λ
MS

CNc

CNc

4.66 1.68Nc–( )exp

π2 Nc 1–( )! Nc 2–( )!
--------------------------------------------------

ρ
ρ β̃

CNc
ln
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pseudoparticle ensemble, ξ being a constant that char-
acterizes the strength of this interaction (ξ2 =

π2). The dependence on the instanton size is

disregarded in the beta function by virtue of the small-
ness of the packing-fraction parameter nρ4 peculiar to
an instanton liquid. The logarithmic terms, which are of
a purely quantum origin, describe the preexponential
factor in the path integral. Taken together with the
reciprocal of the factor ρ5 from the second term, the
integration measure in the path integral with respect to
the instanton size and the instanton position in metric
space (the corresponding contributions to this measure
are dρ and d4z, respectively) yields a dimensionless
quantity. The argument of the logarithm in the third
term is the quantity obtained by raising the square root

of the one-instanton action functional, , to the power
4Nc, which is equal to the number of zero modes of the
one-instanton solution, the ρ dependence being again
disregarded here because of the smallness of the loga-
rithm.

Let us take the size distribution of instantons in the
form of an exponential of the action functional, n(ρ) =

, and specify averaging according to the natural

prescription  = ρ2n(ρ)/n with n = n(ρ). From

(4), we then immediately obtain a closed description of
the equilibrium state of an instanton liquid with the
well-known vacuum distribution3) 

The physical meaning of the distribution µ(ρ) is that
the quantity d4zdρµ(ρ) is proportional to the probabil-
ity of finding an instanton of dimension ρ at some point
occurring in the volume element d4z. At small ρ, the
behavior of the distribution function is governed pre-
dominantly by the quantum-mechanical result that for-
bids the solution to shrink to a point (radiative correc-
tions). At large ρ, there is a constraint associated with
the repulsive interaction of pseudoparticles, which
becomes stronger with increasing (anti)instanton size.

3)These arguments correspond to the principle of maximum from
[2a]. In order to clarify this point in some detail, it is advisable to
note that, if we approximate the functional in (3) by the local
expression 〈S1〉 = s1(ρ)n(ρ)/n, where s1(ρ) = β(ρ) + 5ln(Λρ) –

 + βξ2ρ2n , and take the distribution function in the

form n(ρ) = Ce–s(ρ), where C is a constant (this renders the prob-
lem self-consistent), a variation of the difference 〈S〉  – 〈S1〉  =

{s(ρ) – s1(ρ)}e–s(ρ)/n yields s(ρ) = s1(ρ) + const, where it has
been considered that the normalization can be chosen arbitrarily.

27
4
------

Nc

Nc
2 1–

---------------

β̃

e
s1 ρ( )–

ρ2
dρ∫ dρ∫

dρ∫
β̃

2Nc
ln ρ2

dρ∫

µ ρ( ) ρ 5– β̃
2Nc

e β ρ( ) νρ2/ρ2
–– ,=

ν 1
2
--- b 4–( ), ρ2

 
  2 ν

βξ2n
------------.= =
In deriving expression (3), we must perform averag-
ing over instanton positions in metric space. Obviously,
it is necessary that the characteristic linear dimension L
of the region to be taken into consideration in doing this
be greater than the mean instanton size . At the same
time, it is not required to be indefinitely large, since
there are no causal links between widely spaced frag-
ments of an instanton liquid. At this scale L ≥  (  is
the mean spacing between pseudoparticles), it is
assumed that the vacuum wave function is homoge-
neous (each pseudoparticle appears in the path integral
with a weight proportional to 1/V, where V = L4). A typ-
ical configuration saturating the path integral in ques-
tion is taken in the form of the superposition given by
(1), with N being equal to the number of pseudoparti-
cles in the volume V. This number must be so great that
the pseudoparticles can be sorted according to their
dimensions. We denote by ∆N(ρi) the number of
pseudoparticles with dimensions ρ lying in the interval
between ρi and ρi + ∆ρ. The superposition in (1) can
then be recast into the form of a double sum over the
number (from 1 to K) of intervals covering the range
(ρin, ρfin) and over the number of pseudoparticles of a
given sort; that is,

(5)

where Aµ(x; ρj; zi, Ωi) is an (anti)instanton solution for
a pseudoparticle of a gauged dimension ρ ∈ (ρi, ρi +

∆ρ). By definition, we have ∆N(ρi) = N. We fur-
ther introduce the distribution function n(ρ) =

 such that n(ρi)∆ρV = N (in the conti-

nuum limit ∆ρ  0, this condition reduces to

V n(ρ) = N) and evaluate the classical action func-

tional Sc =  for this configuration by taking

an average over the positions of the instantons in metric
and color spaces. As a result, we find that, for the super-
position ansatz (1), there remain only single-particle
and pair contributions in the averaged action functional

(6)

As was mentioned above, the quantity 〈Sc〉  appears in
the path integral with the one-loop correction.

It can be seen that expression (3) describes correctly
even nonequilibrium states of the instanton liquid, in
which case the distribution function n(ρ) does not coin-

ρ

R R

Aµ x( ) Aµ x; ρ j; zi Ωi,( ),
i 1=

∆N ρ j( )

∑
j 1=

K

∑=

i 1=
K∑

∆N ρ( )
∆ρ

---------------- 1
V
---

i 1=
K∑

dρ∫
1
4
--- d4xGµν

2∫

Sc〈 〉
d4zi

V
--------- ΩiScd

V

∫
i 1=

N

∏=

=  d4z dρn ρ( ) 8π2

g2
--------

8π2

g2
--------ξ2ρ2 dρ1n ρ1( )ρ1

2∫+
 
 
 

.∫
V

∫
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cide with the vacuum distribution function; moreover,
this expression admits a generalization to the case of a
inhomogeneous liquid, provided that the characteristic
size of inhomogeneity satisfies the obvious require-
ment λ ≥ L > .

We will now try to describe the excited states of the
instanton liquid by choosing, for configurations saturat-
ing the path integral, those that are formed by quasizero
modes rather than the instanton solution (in the relevant
functional space, the former represent the deformed
configurations that are the closest ones to the latter). By
way of example, we will consider a configuration
where the size of the instanton changes with time rather
slowly. Here, we proceed from the simple consider-
ations that of physical significance are deformations

measured in the action-functional units  (here, q

and p are the generalized coordinate and momentum).
As to the instanton, it is characterized only by the static
coordinates γ; therefore, it is necessary to define
momenta conjugate to them. For ρ, the most appropri-
ate momentum is that which is associated with the
derivative  = dρ/dx4.

Let us first calculate corrections to the one-instanton
action functional. Within the assumption of the super-
position ansatz (1), we must take into account an addi-
tional contribution to the chromoelectric field:

(7)

Here, the first term describes the strength tensor that is
generated by the instanton profile and which can be
represented as

while  stands for corrections to this tensor. In the
adiabatic approximation, these corrections are given by

where O( ), O( ), … terms have been neglected. For
variations in the instanton size to be smooth (adiabatic),
it is necessary that the corrections be much less than the
field generated by the instanton proper—that is,  !

—whence it follows that the rate of deformation

must satisfy the condition  ! O(1). If this condition
is satisfied, integration that must be performed over the
four-dimensional volume in evaluating corrections to
the action functional can be simplified by factoring 
out of the integral sign. For the one-instanton action

ρ

dqdp
2π"
-------------

ρ̇

Gµν
'a Gµν

a gµν
a ,+=

Gµν
a 8

g
--- ρ2

y2 ρ2+( )2
----------------------- 1

2
---ηaµν ηaνρ

yµyρ

y2
---------- ηaµρ

yνyρ

y2
----------–+ 

  ,–=

gµν
a

g4i
a Ai

a∂
ρ∂

---------ρ̇ 4
g
---ηaiν

yνρ

y2 ρ2+( )2
-----------------------ρ̇,= =

gij
a 0, gi4

a g4i
a , i j,– 1 2 3,, ,= = =

ρ̇̇ ρ̇2

gµν
a

Gµν
a

ρ̇

ρ̇
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functional, we then obtain

(8)

Here,  is the mean rate of a slow deformation of the
solution over the characteristic instanton lifetime [this
quantity, which is proportional to ρ, is taken, for the
sake of definiteness, at the instanton center—

(x, z)|x = z]; the constant C, which is determined by the
interference term, is equal to zero, because the first
variation of the action functional, δS/δA, vanishes on
the manifold specified by the true solution; and, for the
kinetic term, we obtain

(9)

By virtue of scale invariance, κs.t. does not depend
explicitly on ρ; such a dependence arises only owing to
coupling-constant renormalization (in the regular
gauge, we arrive at the same value).

Without going beyond the ansatz specified by equa-
tion (1), we took into account only those corrections
that are associated with variations in the strength tensor
(s.t.) and disregarded possible variations in the poten-
tials (2). Considering that the expressions for the poten-
tial in the regular (r.g.) and in the singular (s.g.) gauge
are given by

(10)

we determine the adiabatic corrections to the potential
in the form

(11)

In order to go over to the singular gauge, we must make
the substitution η  – . For configurations that sat-
urate the path integral, we will now make use of the rep-

resentation in (7), where  stands for additional chro-

momagnetic and chromoelectric fields generated by 

[as before, we take into account only O( ) terms]. For
the kinetic term κ, we then have

(12)

(for the singular gauge, the result is κ = ). Since

variations in the instanton size are assumed to be adia-
batic, we can disregard the ρ dependence in the kinetic
term. Having fixed the kinetic term at the scale of the
mean instanton size, κ = κ( ), we will try to find out
how the path integral calculated over the quasizero
mode is modified in this case. It can be seen easily that,
because of the smallness of the kinetic energy, its effect

sc
1
4
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8π2
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κ s.t.

2
--------ρ̇2.++∫=

ρ̇

ρ̇

κ s.t. 12π2/g2.=

Aµ
a 1

g
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Aµ
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g
---– ηaµν∂ν 1 ρ2
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  s.g.( ),ln=
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a 2

g
---ηaµ4

ρ
y2 ρ2+
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η

gµν
a

aµ
a

ρ̇

κ 32π2/g2 r.g.( )=

3
2
---32π2
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on the preexponential factor can be disregarded, since
the contribution of the preexponential factor is small as
such. Moreover, we can also ignore the effect of the
preexponential factor on the kinetic term itself. By
applying the same operations as those performed in
deriving expression (3), we find that, to the required
degree of precision, the sought expression for an
excited liquid can be reduced to the form4) 

(13)

It should be borne in mind that, for the interaction of
each pair of pseudoparticles, the relevant integral aver-
aged over color orientations [2a],

(14)

where

with i = 1, 2, is somewhat modified because of adiabatic
changes in the instanton dimensions. The effect of the
instanton of dimension ρ1 on the instanton of dimen-
sion ρ2 can be estimated in terms of the integral

Indeed, the condition that these sizes vary adiabatically
makes it possible to change the scale of the integration

variable as follows:  = d  + dρ ≈ d . In

addition, the slowly varying function ρ1(z1) can be fixed
at the point where the integrand attains a maximum. An
analysis reveals that, in this case, the mean spacing
between the instantons proves to be on the order of their
dimensions, |z1 – z2| ~ max{ρ1, ρ2}; for an acceptable
approximation, we can then take a contact interaction,
replacing ρ1(z1) by ρ1(z2). In the particular case of
pseudoparticles having fixed dimensions, we then

arrive at the well-known expression 〈Sint〉 = .

In the adopted approximation, the integral ρ2n(ρ)/n

reduces to , whereby there arises pseudoparticle
self-interaction.

4)In principle, the path integral over quasizero modes can be calcu-
lated exactly.

S〈 〉 d4z dρn ρ( ) 1
2
---κρ̇2 s ρ( )+
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yi x zi, ρi– ρi x zi,( )

x zi=
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d4z1

V
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8π2
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--------ξ2

V
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2 z2( )ρ2
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dz
ρ
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ρ
--- 

  z

ρ2
----- z

ρ
--- 

 

8π2

g2
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V
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2ρ2
2

dρ∫
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In Minkowski space, the braced expression in the
integrand on the right-hand of (13) can be interpreted as
a mechanical system governed by the Lagrangian + =

κ  – Ueff(ρ), provided that, for the characteristic

velocity , we take the field deformation

ρ(x, z)|x = z = ρ(z):  ~ ; the action functional per

instanton then plays the role of the potential energy

Ueff(ρ) = β(ρ) + 5ln(Λρ) –  + ν . In the vicinity

of the minimum of the potential at  = 

, the motion being considered is of an

oscillatory character. By using the configuration corre-
sponding to (12) and evaluating the second derivative

 = , we find that the frequency can be

represented as5) 

(15)

So far, we have analyzed deformations only in the time
direction. Deformations along each spatial axis can be
taken into account quite similarly. By virtue of the sym-
metry of the problem in four-dimensional space, the
expression for the kinetic term remains unchanged. It is
only necessary to supplement the velocities with the
corresponding gradients of the function ρ(x, z); that is,

 must be replaced by   for the

instanton deformed in this way. In this form, the fre-
quency of natural vibrations is interpreted as a mass-
type term, while excitations are of a phonon character
and are governed by the Lagrangian density

(16)

where crossed terms of the ρ' type vanish identically.6) 

The parameters  and β determined self-consis-
tently by minimizing the generating functional for the
instanton–anti-instanton liquid take the following val-

5)In other words, we minimize the effective action at the end of the
calculations, thereby demonstrating how quasizero modes can
manifest themselves in a minimal way.

6)It is interesting to note that, in contrast to what we have for the
dilatation mode, the center of the instanton solution cannot be
shifted because the corresponding deformation leads to singular
κ. As to a variation with respect to the color coordinate Ω , it leads
to the trivial case of κ = 0.

1
2
--- ρ̇2

ρ x z,( )∂
x4∂

-------------------
x z=

ρ∂
x4∂

------- ρ∂
z4∂

-------

β̃
2Nc

ln
ρ2

ρ2
-----

ρc
2 b 5–

2ν
-----------ρ2

dUeff ρ( )
dρ

-------------------- 0= 
 

d2Ueff ρ( )
dρ2

-----------------------
ρc

4ν

ρ2
------

m2 4ν

κρ2
---------

ν

βρ2
---------.= =

ρ̇ ρ∂
x∂

------ ρ x z,( )∂
x∂

-------------------
x z=

ρ∂
z∂

------∼ 
 

+
1
2
---κ ρ̇2 ∇ ρ∇ ρ–[ ] Ueff ρ( ),–=

ρ̇
ρ

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000



PHONON-LIKE EXCITATIONS OF INSTANTON LIQUID 907
ues for the SU(3) group with n(ρ) = µ(ρ): Λ ≈ 0.37,
β ≈ 17.5, and nΛ–4 ≈ 0.44. For the mass gap, this yields
m ≈ 1.21Λ. The wavelength in the x4 direction is λ4Λ ≈
0.83 ~ Λ > Λ (in spatial directions, the radius of
phonon localization can be arbitrary; in particular, it
can exceed considerably λ4, in which case the number
of particles, N, that take part in forming the excitation
may be quite large). The above numerical values are of
a qualitative (rather than quantitative) character, illus-
trating the very possibility of obtaining particle-like
excitations on the basis of quasizero modes. It is obvious
that, in a consistent theory, we must go beyond the super-
position ansatz, taking into account in-medium varia-
tions in the instanton profile; some other refinements,
including a more realistic description of instanton inter-
action (in our treatment, it seems overestimated consid-
erably), will also be necessary in that case.

In summary, we have considered excitations of an
instanton liquid that are associated with adiabatic dila-
tation deformations of instantons. In principle, the
assumption that the variations in question are adiabatic
leads to a consistent pattern and shows that the instan-
ton-liquid model itself dictates the most favorable
regime of such deformations, which prove to be of a
phonon-like character, having a mass gap that is given
by (15) and which is determined by the parameter
ΛQCD. If a quark condensate is included in the consider-
ation,7) it is quite natural to associate the phonon-like
excitations that we obtained with some sort of light

7)Since we analyze the adiabatic regime, standard perturbation the-
ory is applicable here. A preliminary analysis performed within
the Nc  ∞ approximation [5] reveals that, in the adiabatic
regime, the quark-condensate-induced contribution to the kinetic
term is small (about 0.2) for the instanton-liquid parameters used
here. This is in accord with the generally accepted viewpoint that,
although the effect of the quark component of the theory on the
gluon component is insignificant, this effect is crucial for the for-
mation of excitations. At the same time, it is clear that the contri-
bution of the pion cloud to phonon-like excitations and, vice
versa, the effect of these excitations on the pions must also be
taken into account in a full theory.

ρ

R ρ
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hadrons whose nature is different from that of
(pseudo)Goldstone mesons that arise owing to a spon-
taneous breakdown of chiral invariance. An investiga-
tion of these issues is now under way, and their discus-
sion is beyond the scope of the present article. The
problem of quark confinement is explained within the
present framework as a consequence of the fact that
phonons cannot be decomposed.
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Abstract—The impact-parameter dependence of the mean number of interacting nucleons in high-energy
heavy-ion collisions is considered in the case of identical atomic weights of colliding nuclei and in the case
where one nucleus is much heavier than the other. It is shown that the use of a rare event—for example, an event
of J/ψ or ϒ production—as a trigger may change significantly quantities representing the averages of the mul-
tiplicities for accompanying secondaries over impact-parameter values. The multiplicities of accompanying
particles in central collisions can have but a slight dependence on the trigger. The observed multiplicity ratios
for various secondaries in central and minimum-bias events can be used as a test in searches for quark–gluon
plasma. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Analysis of experiments in heavy-ion physics often
requires taking into account the possible dependence of
the mean multiplicity of secondaries on the trigger. For
example, the observed suppression of J/ψ production
can be explained, at least partly, by their interaction
with other nascent hadrons [1, 2]. In order to obtain
numerical estimates, it is necessary, however, to know
the multiplicity of accompanying particles in events
leading to J/ψ production.

In the present study, we discuss the impact-parame-
ter dependences of the mean number of interacting
nucleons and the mean multiplicities of secondaries in
high-energy heavy-ion collisions. Our results are based
almost completely on event geometry—in particular,
they do not depend on the details of the interaction
model. In the case of interactions averaged over
impact-parameter values, the variance of the distribu-
tions with respect to the number of interacting nucleons
(such distributions are similar to those with respect to
transverse energy or multiplicity of secondaries) is very
large. In view of this, some features of the interac-
tions—for example, mean multiplicities—may depend
greatly on the trigger used. In contrast to what occurs in
this case, similar variances in central collisions are very
small, which guarantees a weak dependence on any
trigger.

We will consider a heavy-ion collision as a superpo-
sition of independent nucleon–nucleon (NN) interac-
tions. Therefore, the results obtained in this way can be
considered as yet another test in searches for quark–
gluon plasma (QGP): in the case of processes that fea-

  1) Departamento de Física de Particulas, Universidad de Santiago
  de Compostela, 15706 Santiago de Compostela, Spain.

  * e-mail: pajares@gaes.usc.es
** e-mail: shabelsk@thd.pnpi.spb.ru
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ture collective interactions, including QGP production,
there is no reason to expect fulfillment of relations pre-
sented below. Moreover, we can indicate particle spe-
cies for which QGP production will violate our predic-
tions and specify the character of such violations.

2. DISTRIBUTIONS WITH RESPECT
TO THE NUMBER OF INTERACTING 

NUCLEONS FOR VARIOUS
IMPACT-PARAMETER VALUES

Let us consider the production of secondary parti-
cles in minimum-bias collisions (that is, collisions inte-
grated with respect to the impact-parameter values) of
nuclei A and B. In this case, the mean number 〈NA〉m.b.
of inelastically interacting nucleons of nucleus A is [3]

(1)

If either nucleus, A or B, is sufficiently heavy, the
cross sections in (1) are given by

(2)

(3)

When colliding nuclei are identical (A = B), we obvi-
ously have

(4)

Thus, the mean number of interacting nucleons in col-
lisions integrated with respect to impact-parameter val-
ues must be one-fourth as great as that in the case of
central collisions, where we have 〈NA〉c ≈ A by defini-
tion.

NA〈 〉 m.b.

AσNB
prod

σAB
prod

---------------.=

σNB
prod πRB

2 ,=

σAB
prod π RA RB+( )2.=

NA〈 〉 m.b. A/4.=
000 MAIK “Nauka/Interperiodica”



        

IMPACT-PARAMETER DEPENDENCES 909

                                                              
The distributions with respect to inelastically inter-
acting nucleons of nucleus A will be calculated within
the so-called rigid-target approximation [4–6]. Accord-
ing to this approximation, the probability that NA nucle-
ons participate in the interaction is given by [7, 8]

(5)

where

(6)

(7)

Expression (5) corresponds to events integrated
with respect to the impact parameter. If interactions
occurs in some interval of impact-parameter values,
integration in (5) must be performed between bmin and
bmax. In particular, the condition b ≤ b0, b0 ! RA, corre-
sponds to central collisions.

The calculated mean numbers of inelastically inter-
acting nucleons of the projectile nucleus, 〈Nin〉 , as a
function of the impact parameter b are displayed in
Fig. 1 for Pb–Pb collisions at three different energies

(the value of  =  determines the c.m. energy
per nucleon–nucleon pair) and for S–U collisions at

 = 20 GeV. The energy dependence of these dis-
tributions is rather weak—in the approximation
adopted here, it emerges only owing to the energy

dependence of the cross section .

In a collision of two heavy ions with identical
atomic weights (in our case, Pb–Pb collision), nearly
6% of the nucleons of either nucleus do not participate

in inelastic interactions at  = 18 GeV even at zero
impact parameter. More precisely, 11.8 nucleons, on
average, do not interact, which is in agreement with the
value of 13 ± 2 nucleons [9] obtained in the VENUS
4.12 model [10]. At A = B and b = 0, the peripheral
nucleons of one of the nuclei traverse the low-density
peripheral region of the other nucleus. Therefore, the
probability that they undergo no inelastic interactions is

sufficiently large. At  = 5.5 TeV, the number of
noninteracting nucleons decreases to approximately

3% owing to an increase in . With increasing b,
〈Nin〉  decreases because, even at small b ≠ 0, there are
nonoverlapping regions of identical colliding nuclei.

In collisions of nuclei with different atomic weights
(for example, S and U nuclei) at small impact parame-
ters, all nucleons of the light nucleus traverse regions in
the heavy nucleus that are characterized by a suffi-
ciently high density of nuclear matter. Therefore,

V NA( ) 1

σAB
prod

---------- A!
A NA–( )!NA!

---------------------------------=

× d2b I b( )[ ]
A NA–

1 I b( )–[ ]
NA,∫

I b( ) 1
A
--- d2b1T A b1 b–( ) σNN

inelTB b1( )–[ ] ,exp∫=

T A b( ) A dzρ b z,( ).∫=

s sNN

sNN

σNN
inel

sNN

sNN

σNN
inel
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almost all of these nucleons undergo inelastic interac-

tions. In the specific case of S–U collisions at  =
20 GeV, this is possible for b < 2–3 fm.

It is interesting to consider the distributions with
respect to the number of inelastically interacting nucle-
ons for various values of the impact parameter. By
using expression (5), we have calculated the probabili-
ties of finding a given number of such nucleons in Pb–
Pb interactions. The results integrated with respect to
the impact parameter are displayed in Fig. 2‡. A sharp
peak at small values of 〈Nin〉  corresponds to the contri-
bution of extremely peripheral interactions, where, at a
relatively large cross section, the total interaction prob-
ability is distributed among a few values of Nin = 1,
2, … (see Fig. 1). The resulting mean value of 〈Nin〉  =
50.4 is in reasonable agreement with (4): a 3% discrep-
ancy may be due to the different values of the effective
radii of nuclei in (2) and (3). We emphasize that, in this
case, the variance of the distribution with respect to Nin
is very large.

The results of similar calculations for various regions
of the impact parameter are presented in Fig. 2b, which
illustrates the cases of central (b < 1 fm), peripheral
(12 fm < b < 13 fm), and intermediate (6 fm < b < 7 fm)
Pb–Pb interactions. The variances of all these distribu-
tions are significantly lower than those of the distribu-
tions integrated with respect to the impact parameter
and shown in Fig. 2‡. It is worth noting that the curve
in Fig. 2‡ represents the envelope of all peaks of the
type in Fig. 2b with allowance for their “weights”—
that is, the cross sections in the specified intervals of the
impact-parameter values.

The distributions with respect to Nin in central and
peripheral interactions are substantially narrower than

sNN

102

101

100

0 4 8 12 16
b, fm

S–U

Pb–Pb

〈Nin〉

Fig. 1. Mean numbers of inelastically interacting nucleons

in Pb–Pb collisions at  = (solid curve) 18, (dashed curve)
200, and (dash-dotted curve) 5.5 GeV and in S–U collisions

at  = 20 GeV.

s

s
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those in the intermediate case. The reason is that, in one
of the nuclei, the number of peripheral nucleons that
can either undergo a collision or escape it is relatively
small in a central collision. In extremely peripheral pro-
cesses, the total number of nucleons that can participate
in the interaction is small. In the intermediate cases, a
relatively large number of nucleons of one of the nuclei
traverse the peripheral region of the other nucleus,
where the density of nuclear matter is relatively low
and where each such nucleon can either undergo a col-
lision or escape it.

3. RATIO OF THE MEAN MULTIPLICITIES
OF SECONDARIES IN CENTRAL

AND MINIMUM-BIAS INTERACTIONS

Let us estimate the multiplicity of secondaries in the
central section of the spectrum. This quantity must be
proportional to the number of interacting nucleons of
the projectile nucleus. It must also depend on the mean

0.12

0.08

0.04

0 50 100 150 200
Nin

12 < b < 13 fm

6 < b < 7 fm

b < 1 fm

(b)

0.08

0.06

0.04

0.02

Probability

(a)

Fig. 2. Distributions with respect to the number of inelasti-

cally interacting nucleons in Pb–Pb collisions at  =

18 GeV (a) for interactions averaged over impact-parameter
values and (b) for various intervals of impact-parameter
values.

sNN

0

number 〈νNB〉 of inelastic interactions suffered by a pro-
jectile nucleon in the target nucleus. At asymptotically
high energies, the mean multiplicity of secondaries in
nucleon–nucleus interactions must be proportional to
〈ν〉  [11, 12]. It was shown in [13] that the mean number
of interactions in a central nucleon–nucleus interaction,
〈ν〉 c, is approximately 1.5 times as great as that in the
minimum-bias nucleon–nucleus interaction, 〈ν〉m.b..
Therefore, the mean multiplicity of secondaries in a
central nucleus–nucleus collision at A = B, 〈n〉c, must be
approximately six times as great as that in the case of
integration with respect to the impact parameter: 〈n〉c ≈
6〈n〉m.b..

It is necessary to take into account some corrections
to our result. At available energies, the multiplicity of
secondaries in nucleon–nucleus collisions is propor-
tional to (1 + 〈ν〉 )/2 rather than to 〈ν〉  [12, 14]. For heavy
nuclei, 〈ν〉 m.b. values fall within the interval from 3 to 4.
Therefore, the ratio of 〈νNB〉c /〈νNB〉m.b. ~ 1.5 must lead to
an increase in the multiplicity of secondaries by a factor
of about 1.4. A more significant correction is caused by
the fact that, in central collisions of nuclei with identi-
cal atomic weights, only some of the projectile nucle-
ons interact with the central region of the target
nucleus. This reduces the effective enhancement factor
to a value about 1.2. Finally, a few percent of the nucle-
ons undergo no interactions with the target even in cen-
tral collisions of heavy nuclei, because they move in the
low-density region (see above).

As a result, our prediction assumes the form

(8)

This estimate determines the multiplicity of secondar-
ies in the central section of the spectrum.

In the case where QGP is produced or where some
other collective phenomena occur, there are no reasons
for fulfillment of the relation in (8). By way of example,
we indicate that, when 〈n〉c and 〈n〉m.b. are calculated
within the model from [15] with allowance for the
fusion of quark–gluon strings—this is a possible ver-
sion of taking into account collective multinucleon
interactions—the relation in (8) is violated in Au–Au
collisions at RHIC energies by approximately 40%.

In standard multiple-scattering theory considered
here, relation (8) must be valid for any kinds of second-
aries, including pions, kaons, J/ψ, Drell–Yan l+l– pairs,
and prompt photons. For the sake of simplicity, we
assume that QGP is produced only in central interac-
tions (this implies that the probability of QGP produc-
tion at moderately small impact-parameter values is not
high). In this case, the relation in (8) can be strongly
violated for prompt photons and, possibly, for low-
mass Drell–Yan pairs owing to an additional thermal-
emission-induced contribution to their multiplicity in
central collisions. At the same time, the relation in (8)
can be valid for pions if the main part of these particles
are produced at a later stage of the interaction process
following QGP decay. Thus, the violation of relation

n〈 〉 c 4.5 n〈 〉 m.b..∼
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(8) for particles that can be emitted by the plasma state
would be a signal of QGP production. It is of course
necessary to take here into account the possible contri-
bution from final-state interactions.

In [16], it was shown that, in heavy-ion collisions,
the main contribution to the variance of the multiplicity
distributions comes from the variance of the distribu-
tions with respect to the number of NN interactions, but
the latter were found to depend strongly on the impact
parameter.

According to [16], the normalized variance D/〈n〉 ,
where D2 = 〈n2〉  – 〈n〉2, is

(9)

where 〈νAB〉 = 〈NA〉〈ν NB〉 is the mean number of NN inter-
actions in the AB nucleus–nucleus collision, while 
and d are, respectively, the mean multiplicity and the
variance per NN interaction.

In the case of heavy-ion collisions, the mean num-
ber 〈νAB〉 is about 102–103; therefore, we can neglect the
second term on the right-hand side of (9) [16]—the first
term, which represents the normalized variance of the
distribution with respect to the number of NN interac-
tions, is dominant. From Fig. 2a, it can be seen that, in
the case of AB collisions averaged over impact-param-
eter values, the second term in (9) is relatively large. If
some trigger (for example, J/ψ production) is used
without fixing the impact parameter, the multiplicity of
secondaries may differ significantly in this case from
the mean multiplicity in events without any trigger. It
can be seen from Fig. 2b that the variance of the NA dis-
tribution for a specific narrow interval of impact-
parameter values is much lower, especially in central
collisions. The variance of the distribution with respect
to the number of interactions suffered by an individual
projectile nucleon in the target nucleus, νNB, must be
either identical to or lower than that in minimum-bias
interactions. Thus, the variance of the multiplicity dis-
tribution of secondaries cannot be large. Therefore, any
trigger can lead only to small variations in the multi-
plicity of secondaries in central heavy-ion collisions,
even if this trigger changes significantly the multiplic-
ity in NN interactions.

4. CONCLUSION

We have calculated the distributions with respect to
the number of interacting nucleons in heavy-ion colli-
sions at various values of the impact parameter. The
variances of these distributions are very small for cen-
tral and extremely peripheral collisions, but they are

D2

n〈 〉 2
----------

νAB
2 νAB〈 〉 2–

νAB〈 〉 2
------------------------------

1
νAB〈 〉

--------------d2

n2
-----,+=

n
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much greater at intermediate values of the impact
parameter.

We have also estimated the ratios of the mean mul-
tiplicities of secondaries in events integrated with
respect to the impact parameter and in central colli-
sions. The resulting predictions can be used in searches
for QGP.

It has been shown that, in central collisions, any trig-
ger can change only slightly (at a level of 10–15%) the
multiplicity of secondaries.
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Abstract—Within the minimal supersymmetric extension of the Standard Model, the one-photon decay of the
neutrino is studied on the basis of astrophysical, cosmological, and experimental data. Limits on the neutrino
masses are obtained. © 2000 MAIK “Nauka/Interperiodica”.
There are no theoretical grounds for the vanishing of
the neutrino mass. It is highly plausible that each mass-
less particle corresponds to some exact local gauge
symmetry. Since no such symmetry associated with the
neutrino is known, it is not necessary to assume that the
neutrino is a massless particle.

The pioneering experiment to measure the neutrino
mass was performed in 1980 [1]. All experiments yield
only upper limits on the neutrino masses: m(νe) < 4 eV,
m(νµ) < 170 keV, and m(ντ) < 18.2 MeV [2–5]. At the
same time, astrophysical and cosmological observa-
tions may result in more stringent constraints on the
fundamental characteristics of elementary particles—
in particular, on the neutrino mass and lifetime [6–13].
The point is that massive neutrinos contribute to the
energy density in the Universe. Requiring that their
contribution not exceed the observed upper bound on
this energy density, we can set limits on the mass of sta-
ble neutrinos and on the masses and lifetimes of unsta-
ble neutrinos [6–12]. Stable neutrinos must be lighter
than 40 eV or heavier than 8 GeV. Unstable neutrinos
may have a mass in the forbidden region (40 eV–
8 GeV), provided that their mass and lifetime satisfy
the conditions [6–12]

(1)

where t0 is the age of the Universe (t0 = 1.3 × 1010 yr).
If photons or charged particles appear among the prod-
ucts of neutrino decays, there arise additional con-
straints stemming from the following requirements:
Big Bang nucleosynthesis and background radiation
must not change, the γ-ray flux from  annihilation
must not exceed the observed flux, and deuteron photo-
disintegration must be forbidden. Each of these effects
corresponds to a specific range of neutrino lifetimes. The
overall constraint on the neutrino lifetime is [11–13]

(2)

m
2 ν( )τ ν( ) t0⁄ 4 10

3
 eV

2
, m ν( ) O MeV( ),≤×≤

m
4– ν( )τ ν( ) t0⁄ 4 10

39–
 eV

4–
, m ν( ) O MeV( ),>×>

ee

τ ν( ) 5 10
3
 s.×≤
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In the extended versions of the Standard Model,
massive neutrinos are generally unstable. The one-pho-
ton decay of the neutrino, νa  νbγ, provides a good
example for exploring the neutrino-mass range consis-
tent with cosmological data [13, 14].

In the minimal supersymmetric extension of the
Standard Model (MSSM), the leading contribution to
the one-photon decay of the neutrino comes from one-
loop diagrams. The one-loop MSSM diagrams contrib-
uting to the amplitude of the reaction νa  νbγ (see
Fig. 1) are classified according to particles propagating
in the loop: (i) charged gauge fermions ( ) and

charged scalar leptons ( ) and (ii) charged Higgs parti-
cles and charged leptons.

Owing to electromagnetic-current conservation, the
amplitude of the decay νa  νbγ has the form

(3)

With the aid of (3), we find that the corresponding
decay width is

(4)

The Lagrangian describing neutrino interactions with
the aforementioned supersymmetric particles has the
form [15, 16]

(5)

χ̃∗

l̃

A νa νbγ( )

=  e
µνa q( )σµν q p–( )ν

F
V

F
Aγ5+( )νb p( ).

Γ ν a νbγ( )

=  
F

V 2
F

A 2
+

8π
-----------------------------

m
2 νa( ) m

2 νb( )+
m νa( )

---------------------------------------- 
 

3

.

Lνχ̃∗ l̃

1
2
---igνaOab–=

× U j1 1 γ5+( )
m νa( )V j2

2mW βcos
---------------------------- 1 γ5–( )– χ̃∗ l̃ Lb

+
igm lb( )

2 2mW βcos
-------------------------------U j2νaOab' 1 γ5–( )χ̃∗ l̃ Rb,

LνHl
ig

2 2mW

------------------νa=
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where g = esinθW (θW is the Weinberg angle); the
matrices U and V, O and O', and S describe the mixing
of, respectively, charged gauge fermions, charged sca-
lar leptons, and leptons; and  = v1/v2, v1 and v2
being the vacuum expectation values of the Higgs fields
[15, 16]. We now present some relations between
supersymmetric parameters. For the charged gauge fer-
mions, the masses and mixing matrices are given by

(6)

where σ3 is a Pauli matrix; M and µ are supersym-
metry-breaking parameters; and the angles φ± are
defined as

(7)

For charged gauge fermions, the mass matrix has
the form [15, 16]

(8)

For the form factors FV, straightforward calculations
yield

(9)
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where  and  are the contributions of the left- and
right-handed scalar charged leptons to the vector form

factor for the decay νa  νbγ,  is the contribution

of the Higgs particle,  = Oai ,  = , and

 = Sai ; we have also introduced the following
notation:

(10)
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Fig. 1. One-photon decay of the neutrino in the MSSM (X =

, H, Y = , l).l̃ χ̃∗
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Fig. 2. Lower bound on the neutrino mass.
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The form factors FA are obtained from (9) by means
of the relation

(11)

The tanβ and λ dependences of the lower bound on
the neutrino mass can now be derived by using the
astrophysical and cosmological constraints on the neu-
trino mass and lifetime [formulas (1) and (2)] in expres-
sions (4) and (6)–(11). The results are illustrated in
Fig. 2. In our numerical estimates, we assumed that the
masses of the supersymmetric particles are on the order
of 100 GeV and that the difference between the masses
of the supersymmetric particles (charged scalar lep-
tons) is not less than 10 GeV. The contribution of the
charged Higgs particles to the form factors FV and FA is
less than the contribution of the charged gauge fermi-

ons by a factor of m2(l)/ . The leading contribution

comes from the left-handed charged scalar leptons .
The parameter λ in Fig. 2 corresponds to the left-

handed charged scalar leptons (λ ≡ ). It should be
noted that the lower bound on the neutrino mass
depends only slightly on the mixing angles φ+ and φ–
for the charged gauge fermions (Fig. 2 corresponds to
ideal mixing). A global analysis that involves the astro-
physical and cosmological constraints yields the fol-
lowing results: the electron and muon neutrinos must
be light, m(νe) < 4 eV and m(νµ) < 40 eV; the tau neu-
trino may be relatively heavy—its mass may lie above
a few MeV. At large values of the parameters tanβ and
λ (tanβ . 50, λ . 10–1), the lower bound on the tau-neu-
trino mass may be as low as 3 MeV [Fig. 2].

xij
L m

2
l̃Li( )

m
2 χ̃ j*( )

------------------, xij
R m

2
l̃Ri( )

m
2 χ̃ j*( )

------------------, yi

m
2

li( )

mH
2

--------------.= = =

F
A

m νa( ) m νb( ),( ) F
V

m νa( ) m νb( )–,( ).=

mH
2

l̃ L

λ1
i
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Abstract—A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is
proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent ∆-like differential operators
of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these ∆-like oper-
ators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional
Lie superalgebra. © 2000 MAIK “Nauka/Interperiodica”.
1. Predominantly, nondegenerate odd Poisson
brackets have hitherto been studied and applied in the
Batalin–Vilkovisky formalism [1–6] for the quantiza-
tion of gauge theories and in the description of the
Hamiltonian dynamics by means of an odd bracket [7–
18]. However, as is well known from the example of
usual even Poisson brackets, degenerate brackets also
play a very important role in mathematics and in phys-
ical applications (see, for example, [19] and references
therein).

In this paper, we propose a linear degenerate odd
Poisson bracket realized solely on the Grassmann vari-
ables. We found that this bracket, in contrast to a non-
degenerate odd bracket having only one Grassmann-
odd nilpotent differential ∆ operator of the second
order, has at once three Grassmann-odd nilpotent ∆-
like differential operators of the first, second, and third
orders with respect to the Grassmann derivatives. We
show that these ∆-like operators, together with the
Grassmann-odd nilpotent Casimir function of this
degenerate odd bracket, form a finite-dimensional Lie
superalgebra.

2. There is a well-known linear degenerate even
Poisson bracket given in terms of the commuting
(Grassmann-even) variables Xα,

(1)

where εαβγ is the Levi-Civita tensor. The linear even
Poisson brackets like (1) play a very important role in
the theory of Lie algebras, Lie groups, and their repre-
sentations (see, for example, [19, 20]). In general, the
degenerate Poisson bracket has Casimir functions
Ck(X) whose brackets with any function f (X) vanish:

As a rule, the level surfaces Ck(X) = const of all inde-
pendent Casimir functions define symplectic leaves on
which the bracket becomes nondegenerate, and a

Xα Xβ,{ } 0 εαβγ Xγ α β γ 1 2 3, ,=, ,( ),=

Ck X( ) f X( ),{ } 0 0.=

  * This article was submitted by the author in English.
** e-mail: vsoroka@kipt.kharkov.ua
1063-7788/00/6305- $20.00 © 20915
closed 2-form (symplectic form) can be defined. The
bracket specified by (1) has only one Casimir function,

and symplectic leaves in the form of S 2 spheres of a
definite radius.

Let us now replace in (1) the commuting variables
Xα by Grassmann variables θα. Then, we obtain the
binary composition

(2)

which meets all the properties of the odd Poisson
bracket:

(3)

(4)

(5)

(6)

(7)

Here, A, B, and C are functions of the phase variables
θα; g(A) is the Grassmann parity of the quantity A; and
the sum with the symbol (ABC) in (6) denotes a sum-
mation over cyclic permutations of the quantities A, B,
and C. In order to establish the validity of the Jacobi
identities (6) for the bracket in (2), we need to use the
following relation for the completely antisymmetric
tensor εαβγ:

(8)

It is surprising enough that the odd bracket can be real-
ized solely on the Grassmann variables as well as an
even Martin bracket [21].

C Xα( )2,
α 1=

3

∑=

θα θβ,{ } 1 εαβγθγ α β γ 1 2 3, ,=, ,( ),=

A B C+,{ } 1 A B,{ } 1 A C,{ } 1,+=

g A B,{ } 1( ) g A( ) g B( ) 1 mod 2( ),+ +=

A B,{ } 1 1–( ) g A( ) 1+( ) g B( ) 1+( ) B A,{ } 1,–=

1–( ) g A( ) 1+( ) g C( ) 1+( ) A B C,{ } 1,{ } 1

ABC( )
∑ 0,=

A BC,{ } 1 = A B,{ } 1C 1–( ) g A( ) 1+( )g B( )B A C,{ } 1.+

εαβλεγδλ δαγδβδ δαδδβγ.–=
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Using relation (8), we can verify that the degenerate
odd bracket (2) has the following Grassmann-odd
nilpotent Casimir function:

(9)

This notation for the Casimir function in question will
be clarified below.

By the way, let us note that, with the use of the com-
pletely antisymmetric five-tensor εαβγδλ (α, …, λ =
1, …, 5), we can also build, only in terms of Grassmann
variables, a nonlinear degenerate odd Poisson bracket
of the form

(10)

Indeed, with the use of the relations for the five-tensor
εαβγδλ that are similar to (8) we can establish, for the
bracket (10), the relation

and, therefore, the validity of the Jacobi identities (6).
The rest of the odd-bracket properties (3)–(5) and (7)
are evidently fulfilled for the bracket in (10). The odd
bracket (10) has several nilpotent Casimir functions,

where no summations in the indices is assumed in the
nilpotency conditions.

3. It is well known that, in contrast to the even Pois-
son bracket, in the case of the odd Poisson bracket, a
Grassmann-odd nilpotent differential ∆ operator of the
second order can be built, which has naturally appeared
in the Batalin–Vilkovisky scheme [1–6] for the quanti-
zation of gauge theories in the Lagrangian approach.
This operator also plays a very important role in the for-
mulation of Hamiltonian dynamics by means of the odd
Poisson bracket with the help of the Grassmann-odd

Hamiltonian  (g( ) = 1) [7–11, 15],

(11)

where t is the time and x A = (xi, θi) (i = 1, …, n) are the
canonical phase coordinates. In Hamiltonian dynamics
expressed in terms of the odd Poisson bracket, the ∆
operator can be used to distinguish between nondissi-
pative and dissipative dynamical systems. In fact, for a

∆+3
1

3!
---------εαβγθαθβθγ, ∆+3 …,{ } 1 0,= =

∆+3( )2 0.=

θα θβ,{ } 1 εαβγδλθγθδθλ .=

θα θβ θγ,{ } 1,{ } 1 0=

C εαβγδλθαθβθγθδθλ , C …,{ } 1 0,= =

C2 0;=

Cα εαβγδλθβθγθδθλ , Cα …,{ } 1 0,= =

Cα( )2 0;=

Cαβ εαβγδλθγθδθλ , Cαβ …,{ } 1 0,= =

Cαβ( )2 0,=

H H

dxA

dt
--------- xA H,{ }

1
,=
conventional nondegenerate odd Poisson bracket in the
canonical form,

where  and  are, respectively, the right- and the left-
hand derivative, the notation  ≡ ∂/∂x A is introduced,

and the infinitesimal form of the Liouville theorem is

If ∆  ≠ 0, the Liouville theorem does not hold, and a
dynamical system described by means of Hamilton’s
equation in terms of the odd Poisson bracket (11) with
such a Hamiltonian is dissipative.

Let us now try to build the ∆ operator for the linear
degenerate odd bracket (2). It is amusing that we are
able to build at once three ∆-like Grassmann-odd nilpo-
tent operators, which are the differential operators of
the first, second, and third orders, respectively:

(12)

(13)

(14)

It is also surprising to reveal that these ∆-like operators,
together with the Casimir function ∆+3 (9), are closed
into a finite-dimensional Lie superalgebra in which the
anticommuting relations between the quantities ∆λ (λ =
–3, –1, +1, +3) with a nonzero right-hand side are1) 

(15)

(16)

where

(17)

is the central element of this superalgebra,

(18)

and

(19)

1)In order to avoid confusion, let us note that [A, B] = AB – BA and
{A, B} = AB + BA.

A B,{ } 1 A ∂
x

i∂θi
∂θi

∂
x

i–( )B,
i 1=

n

∑=
← ←→ →

∂
←

∂
→

∂
x

A

∆ 2 ∂
x

i∂θi
,

i 1=

n

∑=

str ∂
x

A xB H,{ } 1( ) 1–( )g x
A( )∂

x
A xA H,{ } 1( )≡ ∆H  = 0.=

H

∆+1
1

2
-------θαθβεαβγ∂θγ

, ∆+1( )2 0,= =

∆ 1–
1

2
-------θαεαβγ∂θβ

∂θγ
, ∆ 1–( )2 0,= =

∆ 3–
1

3!
---------εαβγ∂θα

∂θβ
∂θγ

, ∆ 3–( )2 0.= =

∆ 1– ∆+1,{ } Z ,=

∆ 3– ∆+3,{ } –6 3Z ,–=

Z D2 3D–=

Z ∆λ,[ ] 0 λ 3 1 +1 +3,,–,–=( ),=

D θα∂θα
=
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is the “dilatation” operator for the Grassmann variables
θα, which distinguishes the ∆λ operators with respect to
their uniformity degrees in θ,

(20)

We can supplement this superalgebra with the genera-
tors Sα of rotations in the θ space,

(21)

with the commutation relations 

(22a, b)

(22c, d)

In order to prove the nilpotency of the operators ∆+1 and
∆–1 and to establish the majority of the permutation
relations for the Lie superalgebra (15)–(22), we have to
use relations (8) for the Levi-Civita tensor εαβγ. Note
that the central element Z (17) coincides with the
expression for the quadratic Casimir operator of the Lie
algebra (22a) for the generators Sα given in the repre-
sentation (21):

(23)

4. Thus, both the even and the odd linear degenerate
Poisson brackets [equations (1) and (2), respectively]
are internally inherent in the Lie group with the struc-
ture constants εαβγ. However, only for the linear degen-
erate odd Poisson bracket (2) realized in terms of
Grassmann variables does there exist the Lie superalge-
bra (15)–(22) for the ∆-like operators of this bracket.

The Lie superalgebra (15)–(22) can be used to
develop further the Batalin–Vilkovisky formalism for
the quantization of gauge theories. In particular, very
similar to (2), odd Poisson brackets on the Grassmann
algebra are used in [22]2) on a generalization of the tri-
plectic formalism [23], which is a covariant version of
the Sp(2)-symmetric Lagrangian quantization [3] of
general gauge theories. We should therefore expect that
the Lie superalgebra (15)–(22), closely related to the
linear degenerate odd bracket (2), will also be applied
to a further development of the above-mentioned gen-
eralization of the triplectic formalism.
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Anatoliœ Filippovich Tulinov is 75
Anatoliœ Filippovich Tulinov, a distinguished physi-
cist and teacher, celebrated his 75th birthday on Sep-
tember 24, 1999. He is a professor of physics at Mos-
cow State University and a leading researcher at the
Institute of Nuclear Physics, Moscow State University
(INP MSU).

Like many of his peers, Tulinov had to fight in
World War II and could take up science only in the post-
war years. Joining the Faculty of Physics at Moscow
State University in 1946 proved to be decisive for his
whole career in science: it was at the university that he
gradually advanced from a student to an eminent pro-
fessor and head of the department of nuclear physics
and of the largest department of INP MSU. At Moscow
State University, Professor Tulinov has delivered major
lecture courses on nuclear physics for over 40 years and
may therefore count thousands of nuclear physicists
among his students.

Beginning in his student years, Tulinov took interest
in nuclear reactions. As a student of the accelerator
department headed by V.I. Veksler, he started his inves-
1063-7788/00/6305- $20.00 © 20918
tigations of nuclear reactions at the cyclotron that was
commissioned at INP MSU in 1949. These early stud-
ies even then revealed his unique gift of an experimen-
talist, which fully matured in his subsequent investiga-
tions. His fertile and inventive mind perpetually con-
ceived delicate and elegant experiments, posed
nonstandard problems, and sought original solutions
thereof.

As a postgraduate (in 1955), Tulinov proposed a
novel technique for probing the excited states of light
nuclei on the basis of the emission angle of recoil
nuclei. In 1957 and 1958, he conceived and imple-
mented an original method for measuring the lifetimes
of excited nuclei by their radiative transitions in the
range between 10–12 and 10–14 s. Ever since, Tulinov
has maintained keen interest in evolution of nuclear
reactions in real time. Around 1960, he again invoked
“nuclear times” in order to understand how the struc-
ture of light nuclei affects the mechanisms of nuclear
reactions. He realized that the underlying mechanism
of a reaction might be identified by its duration in time,
but measuring the latter seemed utterly unrealistic: only
times between some 10–10 and 10–14, which are typical
of radiative transitions, could be measured directly. The
lower boundary of this interval had to be pushed down
by several orders of magnitude in order to measure the
duration of a nuclear reaction. An innovative solution,
masterminded by Tulinov in 1964, was to use a single-
crystal target. The idea was to analyze the emission
angles of reaction products with respect to the linear
chain of nuclei in the crystal lattice: Tulinov argued that
the angular distribution of the products should show
local minima (shadows). The displacement of a com-
pound nucleus from the chain, which is determined by
its lifetime, should manifest itself in the shapes of the
shadows.

The predicted effect of shadows had to be proven
experimentally, and they were indeed detected and
investigated by Tulinov and his colleagues in proton
scattering on various single crystals. The observation of
the novel phenomenon of shadows in nuclear reactions
on single crystals was later recognized officially as a
scientific discovery.

Using single crystals as targets, Tulinov was able to
measure time intervals as small as 10–15–10–20 s. This
method won worldwide recognition and, apart from
nuclear physics proper, now finds applications in high-
energy collisions involving the formation of new parti-
cles. It made it possible to probe directly the time evo-
lution of a nuclear reaction and, thereby, initiated a new
and promising direction in nuclear physics. Relying on
000 MAIK “Nauka/Interperiodica”
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the new method, Tulinov and his collaborators were
able to derive the temporal characteristics of some reac-
tions and, in particular, of the fission of heavy nuclei.
For a number of fissile nuclei, the method helped eluci-
date the structure of the fission barrier, the level density
in the second potential well, the symmetries of the spa-
tial shape of fissile nuclei, and the viscosity of nuclear
matter in the fission process. These investigations are
being actively pursued at Tulinov’s laboratory and else-
where.

The idea to irradiate a single-crystal target with a
beam of accelerated particles, which we owe to Tuli-
nov, gave rise to yet another direction of research
dubbed protonography. Combining the methods of
nuclear and solid-state physics, protonography allows
one to investigate the structure of a crystal by the shape
and pattern of the aforementioned shadows. Protonog-
raphy is a proven and incisive tool for probing a thin
layer near the surface of a crystal without rupturing the
sample. Thereby, the structure is scanned layer-by-
layer, imperfections of the lattice are revealed, and
alien atoms are precisely located in the lattice. Unlike
the traditional approaches to studying the structure of a
crystal that are largely based on the phenomenon of dif-
fraction, protonography relies on the purely corpuscu-
lar aspect of the probe.

Tulinov is the founding father and undisputed leader
of a robust scientific school in experimental physics
that deals with interactions between elementary parti-
cles and crystals. That Moscow University has become
a regular venue of the International Conference on Par-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 5      2000
ticle–Crystal Interactions, convened for the twenty-
ninth time last year, may be credited to Tulinov. He may
boast over 40 candidates of physics and six doctors of
physics among his immediate students. Tulinov’s
works on particle interactions with crystals won him a
Lomonosov Prize of First Degree and a State Prize.

Apart from research and teaching, Prof. Tulinov
devotes much of his time to social and science-policy
work. For many years, he was deputy chair of the Com-
mittee for Applied Nuclear Physics, chaired by Acade-
mician G.N. Flerov, and chair of the Commission on
Discoveries in Physics at the State Committee for Dis-
coveries and Inventions. At his home university, Tuli-
nov is a Professor Emeritus and head of the Physical
Society.

At an advanced age of 75, Tulinov is still teaching
and doing research work at the INP MSU. At the uni-
versity, he delivers annual lecture courses on nuclear
and solid-state physics to the students. At INP, he con-
tinues to guide a large physics community of his stu-
dents and collaborators.

On behalf on the many colleagues, friends, and
pupils of Professor Tulinov, we congratulate him on
this anniversary and wish him good health and new
achievements in science.

V. V. Balashov, G. A. Iferov, Yu. V. Melikov,
M. I. Panasyuk, V. I. Trukhin,

N. G. Chechenin, and O. A. Yuminov
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