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Abstract—A critical analysis of the entire body of available experimenta data on the excited states of the
deformed even—even nucleus '7°Er is performed. By contrasting the spectrum of gammarays from the relevant
(n, n'y) reaction against data from other processes, it is possible to reveal new K™= 0~ and 2~ bands and to estab-
lish new levels, including rotational levels of known bands, with alowance for the moments of inertia. The
structure of the excited states of '7°Er is investigated on the basis of the Nilsson scheme and of the quasi parti-
cle-phonon model. © 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

By and large, modern theoretical models describe
well the properties of deformed even—even nucle,
although some excited states show as-yet-unexplained
features that engage the attention of researchers. Obvi-
oudly, reliable experimental data are required to con-
sider these features in greater detail. A vast body of
information has been obtained for the erbium isotopes
168Er [1-3] and '%°Er [4, 5]. In particular, more than two
tens of rotational bands are known for the former. There
ismuch lessinformation about 7°Er, the heaviest stable
isotope of erbium [it is precisely because of this prop-
erty of 17OEr that the access to its excited states is com-
plicated in heavy-ion reactions; nor wasit studied in the
informative reaction (n, y), since the initial nucleus for
thisreaction, '’Er, is unstable].

2. EXPERIMENTAL DATA AND SCHEME
OF EXCITED LEVELS OF '"Er

Experimental data obtained before 1995 were
included in the compilation of Baglin [6], who pre-
sented, among other things, information about the beta
decay of two isomers of 1"°Ho; about electron capture
in 17°Tm; about Coulomb excitation; and about the rel-
evant (d, d), (n, n'y), and (y, y) reactions. New (y, V)
data were presented in [7].

A global consideration of the entire body of experi-
mental data makes it possible to extend considerably
the scheme of excited levels of "°Er. Here, a special
roleis played by the relevant (n, n'y) reaction. That lev-
els are populated statistically in this reaction, irrespec-
tive of their nature, enables us to decide whether a spe-
cific level is present (or absent) and provides informa-
tion about its spin.

* e-mail: epgrig@snoopy.phys.spbu.ru

2.1. Reaction (n, n'y)

Thefirst results on therelevant (n, n'y) reaction were
reported between 1981 and 1983 [8, 9]. These data
made it possible to extend considerably the level
scheme for '°Er [10]. Two subsequent studies per-
formedin 1992 [11] provided amore detailed and more
precise spectrum of gamma rays and contributed to
refining the level scheme from [10]. Having the entire
body of available information about '"°Er at our dis-
posal and using the intensities of gamma rays from
[11], we plotted the occupation probabilities P for 1°Eu
levelsversustheir energiesE (Fig. 1). For agiven level,
the quantity P was defined as the difference of the total
intensity of gammatransitions occurring from thislevel
and the total intensity of gammatransitions terminating
at it. On the basis of the datain Fig. 1, we can estimate
the energy of thelevel and its spin J; these data give vir-
tually no way, however, to deduce information about
the parity of the relevant wave function. It turned out
that the J = 1, 2, and 3 levels are characterized by the
highest values of P. The dependence P(E) in Fig. 1
enabled us to draw some new conclusions about the
excited levels of '"°Er; to find some new bands; to sup-
plement known bands with new rotational levels; to
introduce some new levels; to verify the existence of
many states; and to eliminate, from the scheme of '"°Er
levels, about a dozen states that were not confirmed in
studying the reaction (n, n'y).

2.2. Beta Decay of the Ground Sate of /”’Ho
(J7= 6%, T= 276 min)

In the article of Tuurnava et al. [12], who studied
beta radiation from "“Ho isomers, it was found that the
high-spin state with lifetime T = 2.76 min appearsto be
the ground state. We tested here the level scheme from
[13] by using the spectrum for the (n, n'y) reaction and
revealed overall agreement.
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Fig. 1. Occupation probabilities P for the I7°Er nuclei in the (n, n'y) reaction versus the energy and spin of the levels: (0) 0%, (0) 1,
(@) 2, (m) 3, (+) 4, ()5, (1) 6, (X) 7, (a) 8,and (*) 1 or 2. The values of P are presented in units normalized to the corresponding

values for Fe[8].

A 1226-keV transition participates in the deexcita-
tion of the 4*3, level at 1304.55 keV. The spectrum for
the (n, n'y) reaction features a 1226-keV doublet, whose
weak component, with an intensity of I, = 4.1 arb. units
versus the total intensity of 29 arb. units, isinvolved in
the deexcitation of the 1304.55-keV level.

The occupation probability for the 2158.97-keV
level in beta decay corresponds to an allowed unhin-
dered (au) transition. There is only one possibility for

an au transition from °Ho: n523y —~ p5234; this
leads to unambiguous guantum-number assignments

for the ground state of "°Ho (6*, p5231 +n512}) and

for the 2158.97-keV level of ™Er (5*, n5234 +n5121).
Beta decay to the 1590.74-keV level (logft = 6.4) has
the character of afirst-forbidden unhindered beta tran-
sition. Here, there is also the only possibility of inter-

preting it: n633! — p5231. Thelevel at 1590.74 keV
hasthe 6-, n633T + n512T structure.

2.3. Beta Decay of the /7"Ho isomer (7= 1+, T= 435)

Therichest set of information about the gamma-ray
spectrum of """Ho can be found in [14]. Its decay
energy wasrefined in [12] (3970 keV), and the value of
l, = 40(10) arb. units was presented there for the inten-
sity of the 79-keV transitioninstead of 170 arb. unitsin
[14]. Half of the observed gamma transitions were
arranged in the scheme of the '"°Er levels [6, 14]. By

using data on the spectrum for the (n, n'y) reaction and
the analysis of these data from [10], we were able to
place al these transitions in the level scheme and cor-
rect the errors made in [6, 14]. For the sake of compar-
ison, Table 1 presents the energies and intensities of the
gammatransitions in question.

For the first time, we arranged transitions from
1267-, 1305-, 1324-, 2070-, 2133-, 2701-, and 2790-
keV levels in the level scheme. Levels that were
observed in resonance gammearray scattering on a !’°Er
target [6, 7] areincluded in Table 1. Taking into account
the dependence P(E) (see Fig. 1), we introduced levels
at 1741.86 and 2019.1 keV. We were unable to confirm
the J < 4 level at 1500.9 keV, which was introduced in
[14] onthe basis of the deexciting 540.9-keV transition
alone, because this transition is not observed in the (n,
n'y) reaction.

For the beta decay of the isomer, we estimated the
branching fraction for the decay to each level and log ft

values. Theestimate Alog ft ~ 0.2 was obtained by tak-

ing into account the incompleteness of the spectrum.
Only one very fast au beta transition to the 3606.5-keV

level (logft = 4.8) is observed. It corresponds to the
n523$ — p523T transformation and determines the

structure of the '""Ho isomer (p523T - n512T). The
position of the 1* and 6* doublet levels corresponds to
the Gallagher—-Moszkovski rule at a normal spacing
between the components (about 100 keV).

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 5 2000



ROTATIONAL BANDS

Table 1. Deexcitation of 17°Er levels in the beta decay of 1°Ho (J™= 1+, 43 9)

707

o Eja, keV Ho (n, ny)
! (1 E,, keV l,, arb. units logft E,, keV l,, arb. units
0'0, 0 - - 6.0 - -
240, 78.59(2) 78.7(2) 40(10) 6.3 78.63(3) | 131(15)
40, 260.13(2) 181.6(2) 9.6(10) _ 181.57(2) | 276(31)
0'0, 890.88(4) 812.3(2) 100.0(31) 71 812.29(3) 27(4)
2'0, 959.98(3) 959.4(5) 12.4(12) 7.4 959.96(6) 19(4)
881.2(2) 19.7(8) 881.38(2) 28(4)
699.8(3) 12.9(6) 699.87(2) 20(3)
11, 1266.64(3) 1187.5(3) 25.5(10) 73 1188.04(2) 28(4)
1, 1305.23(7) 1226.3(7) 13.4(13) 76 1226.64(6) 25(4) m ?
0%0, 1324.28(5) 1245.2(4) 2.6(5) 8.3 1245.69(4) 7.8(12)
- - 390.11(10) 1.3(2)
2+2, 1416.25(4) 1415.6(3) 5.0(5) 75 1416.23(7) 6.7(10) m
1337.4(3) 5.8(6) 1337.64(3) 5.9(8)
1,2 1741.86(8) 1663.8(8) 1.4(5) 8.0 1663.27(6) 3.7(5)
16y 1973.03(8) 1972.6(3) 36.5(13) 6.4 1973.1(3) 1.39(20)
1894.0(3) 45.2(15) 1894.43(8) 1.65(24)
2(1) 2019.1 1940.1(3) 10.5(5) 7.2 1940.41(20) 2.8(5)
1059.2(3) 0.23(5)
1yy 2039.3(2) 2039.3(4) 2.9(3) 75 2039.3(3) 0.91(14) ¢
1960.7(4) 27(3) 1960.7(6) 0.85(13) m
1, 2* 2071.3(3) - _ 75 2071.0(5) 0.81(13)
1992.5(5) 4.8(4) 1992.8(3) 3.9(6)
1yy 2132.9(2) 2132.8(6) 1.2(3) 7.8 2132.9(4) 1.24(18) m
- _ 2054.37(15) 0.5(1) ¢
1, 2yy 2684.8(3) 2684.8(4) 45(3) 6.6 2683.6(5) 0.15(2) ¢
2606.1(4) 4.3(4) 2606.0(8) 0.14(6)
1yy 2700.8(2) - _ 73 2700.7(3) 0.75(12)
2621.4(6) 0.8(3) 2622.4(4) 0.4(1) ¢
1t yy 2790.3(4) 2789.2(15) 1.2(3) 7.2 2790.3(4) 0.30(5)
- _ 2711.2(12) 0.13(6)
") 3606.5(4) 2715.1(8) 2.5(3) 48 (2716.1(4)) (0.39(7))
2646.5(4) 3.8(3) - -

Note: HereandinTables3, 5, and 6, theletter “c” labelsthe calculated val ues; the letter “m” meansthat agiven level belongsto amultiplet.

2.4. Coulomb Excitation

Levelsthat belong to the rotational band built on the
ground state and which are characterized by spin—par-
ity values up to 12* manifest themselves in Coulomb
excitation processes [6]. In addition, 2* 934-keV and
4+ 1101-keV levels of the gammaband and 2+ 960-keV
and 4+ 1124-keV levels of the K™ = 0+ band were
observed. Each of these was confirmed by gammatran-
sitions in the (n, n'y) reaction. In Coulomb excitation
processes, however, the2* state at 1332 keV manifested
itself through the 398- and 1332-keV gamma transi-

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000

tions. Although it is expected that the occupation prob-
ability will be high for the 2* level (P = 30 arb. units)
and that the 398- and 1332-keV transitions will mani-
fest themselves as strong peaks (with 1, ~ 15 arb. units),
neither of these two transitions has been seen in the
spectrum for the (n, n'y) reaction. From the experimen-
tal spectrum, it follows that 1,(398) < 1 arb. units and
,(1332) < 0.2 arb. units. Accordingly, we can unambig-
uously conclude that thereisno level at 1332 keV.

In Coulomb excitation processes, the 3~ level at
1371 was observed in the 1292-keV transition. Thereis
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Fig. 2. Positive-parity rotational bandsin 17OFr (the energies of the levels are given in keV).

no this transition in the (n, n'y) reaction. The estimate
1,(1292) < 0.2 arb. units is much less than the expected
occupation probability for the level in question, P =
20 arb. units, whence it follows that this level was erro-
neously included in the scheme of the '"°Er levels. It
should be noted that the 54, level at 1372.07 keV,
which cannot be populated via Coulomb excitation pro-
cesses and which is not deexcited through the
1292-keV transition, has a close energy.

3. ROTATIONAL BANDS IN !"Er
3.1. Ground-Sate Band

In Coulomb excitation processes, the band built on
the ground state of '7°Er (see Fig. 2) was observed up to
the JU = 12* level. In accord with [6, 8, 10], the
374.27(4)-keV gamma transition was taken to occur
between the 8+ and 6* levels. In [11], however, the
8" — 67 rotational transition was associated with the
370.99(17)-keV gamma transition. In Coulomb excita-
tion, the transition energy is 374.0(5) keV. It was estab-
lished that the energies of the lowest levels of the cor-
responding bands in the neighboring nuclel "°Er and
172Yb are astonishingly close.

3.2. Close Collective Bands of K" = 0, and 2;
Vibrational States

The lowest collective nonrotational states at 890.88
(0%) and 934.04 (2*) keV were observed experimentally

in[6]; they were predicted by Soloviev in [15] to occur
at 0.9 and 1.0 MeV. Either band was supplemented with
new levels, refined, and analyzed. The positions of the

rotational levelsin the 0, band are in accord with data
presented in [6, 10, 11]. Considerable modifications
were introduced in the gamma-vibrational band. The
level at 1413 keV proved to be singlet; thislevel is not
associated with the gamma band, but it has the quan-
tum-number values of 5*3,. By using the inertial
parameters, we estimated the position of the 672, level;
from data on three gamma transitions, we determined
its energy to be 1350.43(7) keV.

The 7+2, level at 1556.69(9) keV, which was pro-
posed previously on the basisof dataonthe 1016.04-keV
transition (I, = 1.3 arb. units) [10], was also associated
with the 641.71-keV transition (I, = 0.91 arb. units)
proceeding to the 840, level at 914.92 keV. Table 2 con-
tains data on the energies of rotational levels, the differ-
ences of these levels, and their inertial parameters.
Here, we can reveal two special features.

(i) In the sequence of the rotational levels of theK =
0 band, the inertial parameter A increases with increas-
ing angular momentum J, a dependence that is rarely
observed experimentally in such cases.

(i) Inthe K = 2 band, there is a considerable signa-
ture splitting.

In view of this, the parameters A calculated sepa-
rately for even-spin and odd-spin levels are also pre-
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Table2. Rotational parameters (in keV) of the K| = 0, and 2; bands
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J =0, <=2
= AE A Eevel AE A AEgen Acven AEqyq Aodd

0 80083 | - - _ - - - - - -

2 95998 | 6910 | 1152 | 93404 | - - - - - -
3 - - ~ | 101053 | 7649 | 1275 - - - -
4 1127.30 | 167.32 11.95 1103.33 92.80 11.60 169.29 12.09 - -

5 - - - 1236.59 | 133.26 13.33 - - 226.06 12.56
6 1401.90 | 274.60 12.48 1350.63 | 114.04 9.50 247.30 11.24 — —

7 - - - 1556.69 | 206.05 14.72 — - 320.09 12.31

sented in Table 2. They decrease with increasing J, asis
observed in the neighboring nuclei.

A 6* — 4* intraband transition was observed in

either of the two bands. In each case, it proved to be
enhanced in relation to transitions proceeding to the

6'0, levels: B(E2; 60, — 4%0,)/B(E2; 6*0, — 6'0,) =
26 and B(E2; 6*2, — 4*2,)/B(E2; 6*2, —= 6*0,) = 38,
The presence of theM1 componentinthe 62, — 6*0,
transition only increases the above ratios, which are
consistent with the systematics of intra- and interband
transitions.

3.3. K" = 0; Band Built on the 0*0; Level at
1324.28 keV Involving a Two-Phonon Component

Threelevels of thisband are known. Table 3liststhe
energies of thelevelsand theinertial parameters. A fea-
ture peculiar to the deexcitation of thelevels of the band
is that the reduced probability of deexcitation to the
gamma band is much greater than that for the deexcita-
tion to the ground-state band.

3.4. K" = 2, Band Built onthe 2+2, Level at 1416.23
keV Involving a Two-Phonon Component

A band built onthe 2, level at 1416.23 keV isindi-

cated in [6, 10] for '7°Er. We modified the energy of the
5* level, added the 6+ level, and associated other rota-
tiona levels with new transitions. Table 3 quotes the
energies of the levels and the inertial parameters, while
Table 4 illustrates the deexcitation of the levels of the
band and presents the reduced probabilitiesfor E2 tran-
sitions. It can be seen that the reduced probabilities

B(E2) for transitions to the 2; and 0, bands exceed
considerably the reduced probabilities B(E2) for transi-
tions to the ground-state band. In just the same way as

in the case of the 0; band, this may suggest the pres-

ence of asignificant 0, [ 2; two-phonon component

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000

inthe 2, band. The lifetimes of the levels belonging to
the band in question have yet to be established.

An intraband 250.8-keV transition proceeds from
the 6*2, level at 1832 keV. Its reduced probability is
greater than B(E2; 62, —= 4*2,) by a factor of 172.
This value characterizes the role of the two-phonon
component in the band.

3.5. K" = 3; Band Built onthe 3+3, Level at
1217.51 keV

According to Soloviev's calculations based on the

guasi particle-phonon model [15], a 3%, n521i + n512T
two-particle neutron level is expected to occur at
1.3 MeV. Thislevel and the4* and 5* levels of the rota-
tional band are populated in the beta decay of *"°Ho and
in the (n, n'y) reaction. In the present study, the above
levels were supplemented with the 63, level at
1543.5(2) keV, whose existence was suggested by the
following two transitions from the spectrum in the (n,
n'y) reaction: the 1002.63(17)-keV 6*3, — 60, tran-
sition (0.94 arb. units) and the 1283.61(20)-keV
6%3, — 4*0, trangition (0.43 arb. units). From the data
listed in Table 5, we can see that the values of theinertiad

Table 3. Rotational parameters (in keV) of the Ki’T = o; and
2, bands

e K2,

Eea | AE A | Eaa | AE A
0 [1324.28] - - - - -
2 |1385.40| 61.12 | 10.19 |1416.23| - -
3| - - - |148335| 67.12| 11.19
4 |1526.39| 140.99 | 10.07 |1572.59| 89.24 | 11.16
5| - - —  |168355| 110.96 | 11.10
6 | 1746¢c| 220c | 10c (18232 |139.7 | 11.64
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Table 4. Deexcitation of levels belonging to the K" = 2, band

(JE)f E;, kev E,, keV Iy, arb. units Eieve» kEV B(E2), arb. units
2" level at 1416.23 keV
00, 0 1416.23(7) <6.7d 1416.23 -
270, 78.59 1337.64(3) 59 1416.23 1.0
22, 934.04 482.20(2) 13.3 1416.24 370
20, 959.98 456.53(12) 1.13 1416.51 41
32 1010.53 405.71(9) 34 1416.24 255
3" level at 1483.35 keV
20, 78.59 1404.73(4) 5.7 1483.32 1.0
40, 260.13 1223.55(9) <4d? 1483.68 -
22, 934.04 549.31(8) <3.3d? 1483.35 <63
32, 1010.53 472.84(4) 54 1483.37 219
42, 1103.33 379.99(7) <1.67 1483.32 <190
40, 1127.30 356.27(14) <05d 148357 <80
4* level at 1572.59 keV
40, 260.13 1312.51(11) 2.6 1572.64 1.0
22, 934.04 638.0(3) 0.25 1572.0 35
32 1010.53 562.30(12) 1.0 1572.83 27
42, 1103.33 469.29(16) 0.52 1572.62 34
40, 1127.30 445.29(15) 0.63 1572.59 54
52, 1236.59 336.05(10) <1.2d 1572.64 <400
5" level at 1683.55 keV
4*0, 260.13 1423.4(3) <1.21d 1683.5 <1.0
670, 540.65 1142.78(9) 1.16 1683.43 2.7
42, 1103.33 580.33(9) 1.23 1683.66 86
52, 1236.59 447.2(3) 0.26 1683.8 67
6" level at 1823.2 keV
60, 540.65 1282.3(4) 0.23 1823.0 5.2
42, 1103.33 720.6(10) 0.25d 1823.9 100
40, 1127.30 695.92(5) <2.3d 1823.21 -
52, 1236.59 586.67(14) <2.0d 1823.26 -
4*2, 1572.59 250.8(3) 0.22 1823.4 17200

Note: Theletter “d” meansthat agiven level appear to be a doublet, whose intensity is actually presented.

parameter A are closefor three pairs of neighboring lev-
els. The next level having the quantum-number values
of 7+3, isexpected to occur at 1705 keV, but it is popu-
lated less intensively in the (n, n'y) reaction, so that it
did not manifest itself.

Bands of the same structure are known in the neigh-
boring isotope **Er and in the 172Yb and !7#Hf i sotopes.
The inertial parameters A are aso close in absolute
value and in changes they suffer with increasing spin.

Two intraband transitions, 53, — 3%, E2 and
5t —» 4%, E2 + M1, were found to proceed from the
53, level at 1413.10 keV. Assuming that the intrinsic

guadrupole moment of the band, Q, = 6.8(8) e b, is
equal to the quadrupole moment of the ground state and
using the intensity-ratio value of 1,(195.58,
E2)/1,(108.32, E2 + M1) = 0.59(13), we have deter-
mined the gyromagnetic ratio to be (gx — gr)? = 0.15(8)
and the bandhead magnetic moment to be 1, = 0.0(4) or
K, = 1.8(4) nuclear magnetons. The first of theseisin
good agreement with one of the two values calculated
for the configuration being considered by using the

Nilsson functions, uI = 0.015 or u; = —0.96 nuclear
magnetons.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000
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Table5. Rotational parameters (in keV) of the Ki” =3
bands in 17°Er, 188y, 172y b, and 174Hf

168 172 174
10, 685100 [ 70Y P1oof 72H 10
J oo [1 | [16] | [17]
Eieve AE A A

3 | 111751 - - - - -

4 | 1304.55 | 87.04|10.88 | 10.39 | 11.33 | 11.40
5 | 1413.10 |108.57 | 10.86 | 10.27 | 11.28 | 11.36
6 | 15435 |130.43|10.87| 10.17 | 11.20 | 11.15
7 | 1705¢ |151c |10.8c| 993 | 1114 | 11.15
8 - - - - 10.98 -

3.6.5+5, Level at 2158.97(7) keV

The ground state of '"°Ho decays predominantly to
the 2158.97-keV level with log ft = 5.2. The structure

of the ground state of '"°Ho is6*, p523T + n512T ,while
the structure of the 5* level at 2158.97 keV is n523i +

n512T (see Subsection 2.2). In accordance with the
Gallagher—-Moszkovski rule, the 67 level is the lowest

one in the doublet, while the 17, p523T -n 512T level
occurs higher. Experimental data confirm this arrange-
ment of the levels in '"°Ho and lead to the splitting
energy of 100 £ 60 keV [14].

3.7. K{" = 1] Band Built on the /- Octupole Level at
1266.64 keV

According to Soloviev's model from [15], the low-
est collective level of negative parity (17) must occur at
1.2 MeV. The known levels include the 1- level at
1266.64 keV and rotational levels characterized by the
Jvaluesof upto5[6, 10]. In the present study, the band
in question was supplemented with J = 6 and 7 levels
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(see Fig. 3). The 671, state at 1631.2(4) keV is deter-
mined by two transitions:

6*0;, 1090.6(4) + 540.65 = 1631.2, |, = 1.6 arb. units;
6%2;,280.52(2) + 1350.6 = 1631.1, I, <45 arb. units.

The 7-1, level at 1704.8 keV is determined by the
1164.16(18)-keV 7-1, — 670, transition, its intensity
being 0.27 arb. units.

For '"°Er and for itsisotone '"2Yb, Table 6 presents

the energies of the levels belonging to the K" = 1]

band, the differences of these energies, and the inertial
parameters calculated separately for even-spin and for
odd-spin levels. The following features are peculiar to
both nuclei:

(i) The parameters Ao, and Ayq differ significantly.

(i) With increasing J, A,qq grows. This rare effect
can be qualitatively explained by the “repulsion” of
odd-spin levelsin the K = 0 and 1 bands. However, two
K™= 1~ bands are known in the '®Er nucleus. The K™=
0 band occurs in between these two. In contrast to
expectations, however, the parameter A,y behaves sim-
ilarly in the two bands, this behavior being identical to
that in '7°Er and '"2Yb. This may be due to the effect of
higher K™= 0~ bands.

(iii) The greater signature splitting in '7>Yb is
caused by a smaller spacing between the K =0 and 1
bands in this nucleus than in '7°Er.

(iv) If the above repulsion isdueto the interaction of
two bands, thisinteraction is strong.

3.8. New K" = 0; Band Built
on the 1824.60-keV Level

The octupole 170, level isexpected at 1.6 MeV [15].
Itisobservedintherelevant (y, y) and (n, n'y) reactions,
occurring at 1824.60 keV. The rotational 370, level at
1935.44 keV manifested itself in the (d, d') and (n, n'y)
reactions. Here, a new level in the 50, band a E =
2150.9(3) keV has been proposed on the basis of data

. . . . _ . 0, 2
Table 6. Energiesof thelevelsand inertial parameters (in keV) of the K™= 1~ bandsin 1ésEr102 and lZOY (JPs

] 170, E (170,) = 1824 keV 172y, E (170,) = 1600 keV

Eievel AE Aeven Aodd Eieve AE Acven Aodd
1 1266.64 - - - 1154.94 - - -
2 1305.23 38.59 - - 1198.47 43.53 - -
3 1340.20 34.97 - 7.36 1221.72 23.25 - 6.68
4 1432.95 92.75 9.12 - 1330.69 108.97 9.44 -
5 1483.72 50.77 - 7.97 1352.95 22.26 - 7.29
6 1631.2 147.5 9.01 - 1540.61 187.66 9.54 -
7 1704.8 73.2 - 8.52 1557.58 16.97 - 7.87
8 1899 ¢ 194 ¢ 8.90c - 1828.71 271.13 9.61 -
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5721509
3-1935.44
17 1824.60
675 1819.1
_ (4~ 4,) 1745.88
0; 77 1704.8 5~ 1708.16
n5141 —n6331 4~ 1676.5
E=1.6,67% 6™ 1631.2 7 1640.4 57
n6241 + n5211 6~ 1590.74
3-1579.17 E=18
2~ 1506.24 6
5 1483.72 _ 6~ 1496.06 n6331 +n5121
4-1432.95 2 E=14
n6241 —n5121 5~ 1372.07 .
37 1340.20 E=1.3,70%
27 1305.23
1- 1266.64 4~ 1268.67
17 47
n633t —n5121 n6331 +n5211
E=12,93% E=1.7
p5231 + p4lll
E=16

Fig. 3. Negative-parity rotational bandsin 17OFr (the energies of the levels are given in keV).

on two transitions;
4%0,, 1890.8(3) + 260.1 = 2150.9, 0.74 arb. units,
6%0,, 1610.2(7) + 540.6 = 2150.8, 0.40 arb. units.

The inertia parameters A(3-1) = 11.08 keV and
A(5-3) = 11.97 keV comply with the relevant system-
atics. For example, we have A(3-1) = 11.06 keV in
172Y’b. The occupation probabilities for all three levels
in the (n, n'y) reaction are consistent with the predic-
tions of the statistical model.

3.9. New K" = 2; Band Built
on the 1506.24-keV Level

The 2- 1.3-MeV collective octupole level predicted
by Soloviev in [15] actually has the energy of
1506.24 keV. Previoudly, it was assigned the spin—par-
ity of 4* [6, 10, 11], but the occupation probability in
the (n, n'y) reaction provesto be overly high, P =20 arb.
units, for aJ = 4 level. The 2~ level is deexcited by the
transitions to the 2* and 3* levels of the 3*3, gamma
band (see [6]) and by the 1427.40-keV transition
(0.84 arb. units) to the 20, level.

The rotational 372, level at 1579.17(11) keV is
deexcited by the following transitions:

4+0,, 1319.1(3) + 260.13 = 1579.2, 1.38 arb. units;
2*2,,645.23(3) + 934.04 = 1579.27, 4.1 arb. units,
32, 568.65(9) + 1010.53 = 1579.18, 4.5 arb. units,
4+2,,475.47(7) + 1103.33 = 1578.80, 1.0 arb. units;
4+0,, 451.72(6) + 1127.29 = 1579.01, 2.2 arb. units;
4+3,,274.43(21) + 1304.55 = 1579.98, <0.27 arb. units.

It should be noted that, because of selection rulesin
K, the gamma transition to the 40, level is severely
hindered. At the same time, selection rulesin K do not
manifest themselves in the transition to the 4+0, level.
This is due to the mixing of the wave functions of the
4+2, and 40, states.

The next rotationa level (472,) at 1676.5(1) keV is
introduced on the basis of the inertial parameters A(3—
2) =12.14 keV and A(4-3) = 12.17 keV:

4*0,, 1416.23(7) + 260.13 = 1676.33, <6.7 arb. units;
3*2,, 665.84(5) + 1010.53 = 1676.37, 2.9 arb. units,
4+2,,572.22(5) + 1103.33 = 1676.55, <14 arb. units,
4*0,, 549.31(8) + 1127.30 = 1676.61, 3.3 arb. units;
3*3,,459.5(2) + 1217.51 = 1677.0, 0.5 arb. units;
52, 439.50(5) + 1236.59 = 1676.22, 3.4 arb. units,
2714, 370.99(17) + 1305.23 = 1676.22, <0.8 arb. units.

Selection rulesin K in thetransition to the 4*0, level
and the mixing of the 42, and 40, states also manifest
themselves here.

Therotational 52, level isexpected at 1798 keV. No
definitive conclusions can be drawn on this level since
it is populated only dlightly in the (n, n'y) reaction and
since it can be deexcited via several transitions, in just
the same way asthe 372, level at 1579.07 keV.

3.10. K™= 4~ Band Built on the 1268.67-keV Level

The 4-, 57, and 6~ levels of the K™ = 4~ band are
excited in the beta decay of '7°’Ho and in the (n, n'y)
reaction (see Fig. 3). The band was supplemented with
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the 74, level at 1640.4(1) keV:
6%0;, 1099.99(11) + 540.65 = 1640.64, 2.2 arb. units;
8%0,, 725.29(8) + 914.99 = 1640.28, 1.7 arb. units.

The parameter values in the expression describing
the order of therotational levelsare A(5—4) = 10.34 keV,
A(6-5) = 10.33 keV, and A(7-6) = 10.31 keV.

The 6~ level at 1496.06 keV is deexcited by two
intraband gamma transitions. These are the M1 + E2
123.90-keV 6- — 5~ and E2 227.41-keV 6 — 4~
transitions. According to beta-decay data, these transi-
tions have identical intensities. By using the adiabatic
model and the quadrupole-moment value of Q, =
6.8(8) eb for the ground-state band, we have found the
gyromagnetic ratio of (g« — gr) = £0.22(7) nuclear
magnetons. Assuming that the gyromagnetic ratio takes
the same valuefor all levels of the band, we have found
the bandhead magnetic moment of p1;(4-) = 1.9 nuclear
magnetons or ,(4-) = 0.5 nuclear magnetons. By com-
paring them with the values calculated on the basis of
the Nilsson functions, p(pp) = 4.13 or 3.51 nuclear
magnetons and p(nn) = 1.45 or 0.40 nuclear magne-
tons, we arrived at the conclusion that the band has a
two-quasiparticle neutron structure or a mixed struc-
ture.

3.11. 44, Level at 1745.88 keV

The 413-keV gammatransition proceeding from the
5+ 2158.97-keV level to the 1745.88-keV level, which
is deexcited by the 477.4-keV transition, was observed
in the beta decay of "°Ho. The 477.21-keV transition
was observed in the (n, n'y) reaction. Conceivably, a
part of the intensity of the 374.27-keV doublet is asso-
ciated with the transition between the 1746- and the
1372-keV level. In accordance with the occupation
probability of P =4 arb. units, the level at 1745.88 keV
must be assigned a spin value of J = 4. We believe that
the quantum numbers of the level are 4-4,. This conjec-
ture was based on the following observations:

(i) Only one reliable transition of energy
477.21 keV was found to proceed to the 44, leve at
1268.67 keV. Thereisno deexcitation to the K™= 2+ and
3* bands. This suggests that the wave functions of the
two K = 4 levels are close.

(i) The 2158.97-keV level is deexcited to the
1268.67- and 1745.88-keV levels with close values of
B(E1). Their ratio isequal to 1.5, which isindicative of
the similarity of thetwo levels.

(iii) According to the calculations from [15], the 4-,

p523T + p411l and 4, n633T + n521i levels occur at
energies of 1.6 and 1.7 MeV, respectively, but, in fact,
one of these has the energy of 1268.67 keV (see Sub-
section 3.10). The magnetic-moment value calculated
herefor it givesgroundsto interpret the structure of this
level as amixture of configurations with close weights
of the two-proton and two-neutron components. If we

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 5 2000

713

assume that the 4~ state at 1745.88 keV has a similar
structure, the existing experimental data can be
explained. However, we cannot rule out other interpre-
tations of the 1745.88-keV level.

Searches for the 54, rotational level in the range
1830-1860 keV did not lead to any positive result.

3.12. 575, Level at 1708.16(2) keV and 675, Level at
1819.1(2) keVv

A level at 1709 keV was observed in the relevant
(d, d') reaction, and it was tentatively assigned a spin—
parity of J"= 5-. This level manifested itself in the (n,
n'y) reaction through the 439.50- and 336.05-keV tran-
sitions to, respectively, the 44, and the 54, level (see
[6]), but it did not show up in the beta decay of '"°Ho.
Thisgivesground to treat its structure, according to the
model predictions from [15], as n624t + ns21y, the
expected energy of the level being 1.8 MeV.

In accordance with the predictions of the rotational
model, we propose a possible 675, level at
1819.1(2) keV:

6%0,, 1278.32(23) + 540.65 = 1818.97,
l,=0.20 arb. units;

574,,447.2(3) + 1372.07 = 1819.3, 1, = 0.26 arb. units.

The occupation probability for either level in the (n,
n'y) reaction isin accord with the known systematics.

3.13. 66, Level at 1590.74(8) keV

The 676, level at 1590.74(8) keV reveded itself
through a very fast (log ft = 6.4) beta transition from

the ground (6%) state of the 1°Ho nucleus. This beta
transition satisfies the selection rules in the asymptotic
guantum numbers for afirst-forbidden unhindered (1u)
transition. In accordance with the scheme of single-par-

ticlelevels, thisisthen633T —_— p523T transition, and

the 1590.74-keV level has the 676,, n6331 + n512}
structure. The deexcitation of the level via 94.67- and
218.69-keV gammatransitionsto the 64, and 54, lev-
els was established in studying the beta decay of the
17Ho nucleus. These transitions are naturally explained

within the scheme of single-particle levels as n633! +

n512t —» n633t +ns21y.

The spectrum for the (n, n'y) reaction shows a
218.66-keV transition. Possibly, thisisadoublet, and a
part of its intensity is associated with the deexcitation
of the 676, level.

4. DISCUSSION OF THE RESULTS

The above analysis of the properties of the excited
states of the '"°Er nucleus has resulted in establishing
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their structure. The most comprehensive theoretical
predictions were made by Soloviev in [15]. They were
confirmed for collective levels. The energies of seven
states comply with the model predictions. Yet three
other predicted levels can manifest themselves in an
analysis of datafor the (n, n'y) reaction. The bands that
were established here are displayed in Fig. 2 and 3.

An important conclusion was drawn here for the
second excited levelswith spin—parities K™= 0* and 2*.
From the enhanced deexcitation to the lowest excited
bands with K™ = 0* and 2%, it follows that these initial
states involve a two-phonon component each.

For five levels, we have established a two-quasi par-
ticle neutron structure. Thisidentification was based on

fast beta decay to the 5, n512T + n523l level at

2158.97 keV and the 6-, n633! + ns12! leve at
1590.9 keV (see Subsection 2.2).

The gamma decay of the 2158.97-keV level occurs
tothe K™= 3+, n512T +n521 i band; this correspondsto

the allowed E2 n512T — n521i gamma transition. It
israther difficult to explain E1 transitionsto the K™= 4~
(6331 + nS21y) + (p5231 + p4l1y) band, because
these transitions change states of two particles. The
transitions in question can be understood if we assume
that, in the 5* state at 2158.97 keV, there is an admix-

ture of the wave function of the 54, n514l + n521i
state and that the EI transition corresponds to the

n514l — n633T transformation. Another admixed
configuration corresponds to the 5*3, ns23y + n321y

state, and there occurs the n523i — n633T gamma
transition. Both E1 transitions are forbidden by the
selection rulesin the asymptotic guantum numbers, and
the deexcitation of the level calls for a theoretical
explanation.

The deexcitation of the 676, n633T + n512T level at
1590.77 keV to the 4-, n633T + n521i band via the

n512T — n521i transition is understandable. Here,
the M1 transitions are singly hindered in the quantum
number A, but a spin flip occurs. The M1 deexcitation

of the 5-, n624! + n521y level at 1708.17 keV to the

same K™= 4~ band viathe n624T — n633T transition
is of asimilar character.

An anaysis of gamma transitions associated with
collective levels requires knowing transition probabili-

GRIGORIEV, GLADKOVA

ties, on one hand, and performing quantitative calcula-
tions within one model of deformed nuclei or another,
on the other hand.

5. CONCLUSION

The scheme of excited levels of the deformed
nucleus '°Er has been extended and refined on the
basis of a comparison of data obtained in various
nuclear processes. New K™= 0~ and 2~ bands have been
found, and some bands have been supplemented with
new rotational levels. The inertial parameters of the
bands have been presented and discussed. Some levels
have been introduced, while about a dozen levels
whose existence was conjectured previously have been
disproved. The structure of more than a dozen band-
heads, including vibrational states featuring two-
phonon components, has been identified. The applica-
bility of the quasi particle-phonon model of the nucleus
has been confirmed.
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Abstract—The differential cross section and polarization observables are calculated for the elastic scattering
of 800-MeV protons by °Ne nuclei. The assumption that the 2°Ne nucleus has an alpha-cluster structure is
shown to lead to results that agree with the measured values of observables of the above scattering process.
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At present, the structure of light nuclel hasyet to be
understood completely. Nonetheless, many properties
of light nuclei can be explained on the basis of cluster
models, including the apha-cluster model, which
stands out among this class of models. The effects of
clustering clearly manifest themselves in scattering of
intermediate-energy particles (by intermediate-energy
particles, we mean those with energiesof E = 100 MeV
per projectile nucleon) by light nuclei.

A dispersive alpha-cluster model for the 1>C and 1°O
nuclei was developed in [1-3]. In this moddl, it is
assumed that the carbon and the oxygen nucleus consist
of, respectively, three and four alpha-particle clusters
occurring at the vertices of an equilateral trianglein the
former case and at the vertices of a tetrahedron in the
latter case. These alpha-particle clusters can execute
vibrations about the most probable positions of their
centers of mass at the vertices of the aforementioned
geometric bodies.

For the dastic and inelastic scattering of protons,
antiprotons, deuterons, and other particles by '>C and
160 nuclei at intermediate energies, various observables
were computed in [3-5] on the basis of the dispersive
alpha-cluster model and the theory of multiple diffrac-
tive scattering. The results of these calculations proved
to be in accord with experimental data. In [3], it was
shown that the inclusion of four-nucleon correlations of
the apha-cluster type and correlations between the
alpha-particle clusters in the computational scheme
makes it possible to obtain a better description of mea-
sured observablesthan that in the model of independent
nucleons; asto the specific exampl e of the spin-rotation
function, it behaves differently within these two differ-
ent frameworks.

The results obtained previously give sufficient
ground to hope that the approach in question can be
successfully applied to heavier nuclei that show an
apha-cluster structure. In the following, the dispersive

* e-mail: berezhnoy @pem.kharkov.ua
D National Center Institute for Nuclear Research, National Acad-
emy of Sciences of Ukraine, pr. Nauki 47, Kiev, 252028 Ukraine.

alpha-cluster model is generalized to the case of the
20Ne nucleus.

In contrast to what we have for the '2C and 'O
nuclei, various equilibrium configurations of “crystal”
type, including a quadrangular pyramid, adouble trian-
gular pyramid, and a tetrahedron featuring an alpha-
particle cluster at the center, are possible for the *’Ne
nucleus [6]. None of these configurations, however,
makes it possible to obtain an analytic expression for
the amplitude of the elastic scattering of intermediate-
energy particles by °Ne nuclel on the basis of the dis-
persive apha-cluster model. In this study, the *°Ne
nucleus is treated as that which consists of a core (1°O
nucleus) and an extra apha-particle cluster. We note
that asimilar approach was applied in anumber of stud-
ies (see, for example, [7—9] and referencestherein), but
no account was taken there of the internal structure of
the core.

The multiparticle density of the?’Ne nucleuswill be
represented here in the form

p™E N %) = P E M OPa(x), (D

where p” (&, 1, §) is the density of the core (10

nucleus); py (%) isthe density of the extraalpha-particle
cluster; &, m, and § are the Jacobi coordinates of the
alpha-particle clusters forming the core; and 7y is the
coordinate of the extra alpha-particle cluster. Expres-
sion (1) for the density of the neon nucleusis not sym-
metrized; that is, it is not invariant under the inter-
change of the extra apha-particle cluster with any
alpha-particle cluster from the core. This circumstance,
however, has virtually no effect on the behavior of
observables in the scattering of particles with energies
E > 100 MeV per projectile nucleon by nuclei.

The density of the '°0 nucleus, p{) (&, 1, &), is
given by (see[3])

Py (&M, §) = fd%‘d%’d%‘pé“(&: n.¢)
x 0§ (&-&,n-1,5-0C),

2
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Fig. 1. Chargeform factor for the 20Nenucleusasafunction
of momentum transfer. Experimental data were borrowed
from [10].

where
p6"(& M, 8) = ) ]
3)
x 8 - fédﬁa@ [1)3(& [5)3(n (L),
(0) _ 1
(&n.Q) = s’
& +4/3xn 2432 ZD @
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=P 212

If the wave function of the extra alpha-particle clus-
ter is chosen in the form

__ 1 0 X0
W(x) = ()\/\/ﬁ)a/zexpm 2)\2D (%)
its density p,(X) appearsto be
__1 D X0
Pa(X) = (6)
Oy O

In the proposed approach, it is assumed that the
most probable position of the extra alpha-particle clus-
ter coincides with the core center of mass, the cluster
itself executing vibrations about this point within the
core. The parameter A characterizes the root-mean-
square deviation of the extraal pha-particle cluster from
the core center of mass.

The form factor for the elastic scattering of a *’Ne
nucleus can be represented in the form

F(a) = exp GQZU GE

] | @
x %zId3rie'qD'p(Ne)(§, n, &, x)}

i=1

BEREZHNOY, MIKHAILYUK

where the coordinates r; of the apha-particle clusters
entering into the composition of the core of the *’Ne
nucleus are reckoned from the core center of mass,
while g is the momentum transfer. Performing integra-
tion on the right-hand side of (7), we arrive at

1
F(q) = exp% 6q2Er QD
4 3 ’\? ®
4 o3 2p20 013440 09A0
x[seXpD 160 A'Hory [gud +5eXpD 7 D}

where j, (x) isaspherical Bessel function; d and A are
parameters that characterize, respectively, the mean
spacing between the alpha-particle clusters of the core
and their deviations from the corresponding equilib-
rium positions at the vertices of a regular tetrahedron

[3]; and Dzilz is the root-mean-square radius of the
alpha-particle cluster.

Figure 1 shows the calculated form factor for the
20Ne nucleus. For momentum-transfer values of q <
2 fm!, these results comply with available experimen-
tal data on elastic electron scattering [10].

We note that the core of the ?°Ne nucleus differs
from the '°O nucleus because of core interaction with
the extra alpha-particle cluster. The parameters of the
density of the *’Ne nucleus that were found from a
comparison of the calculated and the measured form
factor for this nucleus proved to be d = 3.595 fm, A =
0.998 fm, and A = 0.345 fm.

In the case being considered, the root-mean-square
radius of the 2°Ne nucleusis given by

2, 2, 32

22 _ 2
Dme-Dr@+1 100 "10

)

The values presented above for the parametersd, A,
and A of the 2Ne nucleus lead to [F°0a = 2.72 fm,

which is less than the experimental value of (12 =
3 fm[11]. We note that the 2°Ne nucleus is heavier than

the 'O nucleus; therefore, its root-mean-square radius
is somewhat greater than that of the oxygen nucleus

(%7 =2.73fm[12)).

The amplitude of proton scattering by 2°Ne nucleus
has the form

ik

F(Ne)( ) = 21

(10)
« [Fod’Ednd’qdxe "o m, L Q..

where k is the wave vector of the incident particle, b is
the impact-parameter vector, r; stands for the coordi-
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do/dQ, mb/s
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Fig. 2. Differentia cross section do/dQ (mb/sr), polariza-
tion P(B), and spin-rotation function Q(B) for the elastic scat-
tering of 800-MeV protons by 2’Ne nuclei versusthe scatter-
ing angle 6. Experimenta data were borrowed from [13].

nates of the alpha-particle clusters in the Ne nucleus,
and

Qb,r)) =1

Here, fpu(q) isthe amplitude of pa scattering.

The elementary amplitude f,,(q) can be chosen in
the form

(1)

foa(@) = fela) + fs(a)o [h, (12)

where o is the operator of the incident-proton spin,
whilen isaunit vector defined asn = [k x k']/|[k x k'],
k and k' being the wave vectors of, respectively, the
incident and the scattered proton.

The central component of the amplitude, f.(q), has
the form

2
fo(a) = kY Goexp(-Bud’). (13)

i=1

The parameters of the central component of the
amplitude in (13) were found in [3] by fitting the mea-
sured observablesfor e astic pa scattering. Thisyielded
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G.; =-0.330 +11.258 and 3, = 0.424 —i0.025. Accord-

ing to [3], we have
3G, 1

2 = 32[3c11 BCZ = éBcl-

The spin—orbit component of the amplitude, f(q),
can be represented in aform similar to (13); that is,

2

fi(a) = kay Gyexp(-Bya’),
i=1
where Gg; = 0.177 +10.295 and 35; = 0.490 +i0.052.
According to [3], we have

— 3' Gchslp’cl Bclle
¥ B(Bet B Bes + B

On the basis of the proposed approach, we have cal cu-
lated the differential cross section do/dQ (in mb/sr), the
polarization P(B), and the spin-rotation function Q(6) for
the elastic scattering of 800-MeV protons by 2’Ne nucle.
The results of these calculations, along with experimental
data from [13], are displayed in Fig. 2, which shows that
the calculated observables for dastic p*’Ne scattering a
800 MeV comply well with existing experimental data. It
should be emphasized that the above observablesfor das-
tic p?°Ne scattering were computed without invoking any
adjustable parameters. These calculations indicate that
data on the e astic scattering of 800-MeV protons by °Ne
nuclel can be successfully described under the assumption
that this nuclear species has an dpha-cluster structure.

G (14)

(15)

Bs2 = (16)
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Abstract—The yield of *Na and 2®Mg radionuclides was determined by their gamma activity with the aid of
radiochemistry. The corresponding measurements were performed upon the activation of purified Th targets
with bremsstrahlung photons having endpoint energies of 12, 16.5, and 24 MeV. Possible background sources
are carefully analyzed, and it is concluded that the yield of the above light nuclei isabout 107° per event of 232Th

fission. © 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Fission accompanied by the emission of athird frag-
ment heavier than the alpha particle has been widely
discussed in the literature (see, for example, [1]). How-
ever, the emission of medium-mass products (A > 20)
has received |ess study because of alow probability of
the process. Theyield (Y) of ?*Na and 2®Mg nuclei from
238U fission induced by alpha particles was measured in
[2] by Geiger counters after aradiochemical separation
of the reaction products. A strong energy dependence
Y(E*) was revealed there—in particular, the yield fell
below the experimental sensitivity threshold (less than
10-® per fission event) at excitation energies of E* <
20 MeV. This result was confirmed indirectly by
Gonenwein [3], whose experiments employed a kine-
matical separator for products originating from the
thermal-neutron-induced fission of target nuclei from
229Th to 24°Cf. An upper limit of 10° on the yield Y of
masses between 20 and 30 was obtained in those exper-
iments for 22°Th and 233U targets; for 2! Am and ?*Cf,
theresult was Y > 10-8, which may be associated with a
sharp increase in the nuclear excitation energy at the
scission point with increasing charge number.

Generally, astrong excitation-energy dependence of
the cross section for anuclear reaction correspondsto a
subbarrier process. For example, it is natural for the
cascade fission of highly excited nuclei into three frag-
ments of comparable masses, which was observed in
[4] in 238U fission induced by heavy ions. The second-
ary fission of the heavy fragment is suppressed by a
high fission barrier (B;) typical of nuclel from the range
between rare-earth elements and Au. The subbarrier
emission of alight cluster from a heavy nucleus repre-
sents another case where we can expect a strong energy
dependence of the cross section. However, ternary fis-
sion involving particle emission from the prescission
configuration is not a subbarrier process, because the
fissile system is severely deformed, which leads to a
considerable reduction of the Coulomb barrier for par-

ticle emission. Thiswas established in experimentsthat
studied ternary fission accompanied by alpha-particle
emission. In this case, it was found that the yield was
surprisingly stable to variations in E* [5] and that it
changed dlightly with increasing charge number of the
nucleus undergoing fission [3]. The latter resulted in
the growth of E* at the scission point.

If the Coulomb barrier does not confine particles,
their emission is determined exclusively by the parti-
cleformation and particle-separation probabilities,
which are not expected to depend strongly on E*. It is
therefore reasonable to assume that the “Na and Mg
yields determined in [2] are associated with subbarrier
cluster emission from the compound nucleus. The same
process must then be observed for nonfissile nuclel as
well, but the measurements that were reported in [6]
and which were performed for ®Ta excited by
bremsstrahlung photons with an endpoint energy of
24 MeV yielded a negative resullt.

Quiteasmall upper limit ontheyield (10719-10-'1)
was obtained there not only for 2*Na and Mg but also
for the decay process '8! Ta* —» *3Ca + 13*I resulting in
the emission of the doubly magic nucleus **Ca and the
nearly magic nucleus '*3I. It worth noting that the
favored emission of magic productsis typical of spon-
taneous cluster decays[7].

We can conclude that the yield of ?*Na and Mg
nuclei and its energy dependence should be measured
anew—especialy for 2*2Th, whose fission possesses a
number of special features.

2. DESCRIPTION OF THE EXPERIMENT
2.1. Experimental Procedure

Thorium chloride ThCl,, specialy prepared and
purified of light elements like Na, Mg, and Al, which
could be a source of **Na background in reactions
induced by bremsstrahlung photons and neutrons, was

1063-7788/00/6305-0718%20.00 © 2000 MAIK “Nauka/Interperiodica’
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used as a target material. In the form of a 1-g pellet
coated with a copper foil, ThCl, to be irradiated with
bremsstrahlung photons was brought into close prox-
imity to a W-converter installed in an electron beam
from the MT-25 microtron of the Laboratory for
Nuclear Reactions at the Joint Institute for Nuclear
Research (JINR, Dubna). The exposures were per-
formed at three electron-energy values of 12, 16.5, and
24 MeV for atime of about 7 h, the beam current being
about 15 pA. Immediately following the exposure, the
activity of short-lived nuclear fission fragments was
rather high, so that chemical operations could be begun
only after a lapse of 3 h. It took about 2 h to extract
chemically the fractions of akaline and alkaline-earth
elements. In order to measure gamma spectra, the
source obtained in this way was then placed in a posi-
tion immediately adjacent to a germanium HP detector
equipped with thick Pb (+Cd+Cu) filters. Since the
source activity was still high, we did not aim at isolat-
ing pure Naor Mg. The extracted fraction contained Sr,
Ba, and Ra radionuclides, as well as other elements.
The °'Sr and '“°Ba yields were used as a reference for
calibration of the yield of >*Na and Mg radionuclides
per fisson event. Special radiochemical procedures
were carried out to purify the source of radioactive Pd
and Te fragments, in order to eliminate undesirable
background from these fragments in searches for 2*Na
and Mg (see below).

The germanium HP detector used (Canberra)
ensures a high degree of differentiation between radio-
nuclides and possesses aresolution of about 1.8 keV for
%Co lines. Owingto this, the majority of thelinesinthe
gamma spectrum could be resolved and identified indi-
vidually despite complexity of the spectrum and the
high absolute activity of the source. An excessive
counting rate in the detector was suppressed with the
aid of the aforementioned Pb absorbers of thickness
10-20 mm. While absorbing soft gamma radiation com-
pletely, the absorber had a moderately high transmission
factor (60—30%) for the 2753.9- and 1778.8-keV lines of
24Na and Mg, respectively. The counting rate in the
spectrometer reached 2 x 10* pulses per second, the
dead time being below 20% of thereal time of the mea-
surements; neither a resolution degradation nor a shift
of the gamma lines was observed. We relied on the
method of internal energy calibration using the gamma
lines of '“°Ba, 2*®Ra, and their daughter products. The
energy dependence of the detector efficiency was mea-
sured with the calibration sources under the same geo-
metric conditions, and the results proved to be coinci-
dent with those of the relative measurements for the
case of internal calibration. Information storage and
spectra processing were performed with the aid of a
modern ADC and a PC (Pentium). In order to decom-
pose the spectra and to calculate the areas under the
individua lines, the Maestro and Deimos codes were
used in the automatic mode for seeking the lines in
guestion and for processing them or in the dialog mode
for fitting specific sections of the spectrum.
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2.2. Analysis of Background Sources

The production of 2*Na in reactions on light target
nuclei Na, Mg, and Al can be induced by bremsstrahl-
ung photons, as well as by fast neutrons generated in
the converter and by dow scattered neutrons. A low
upper limit on the Naadmixturein the target was estab-
lished on the basis of the fact that the **Na line (T, =
2.6 y) does not appear in the spectra measured after a
lapse of 2 months from the exposure. That typical pho-
tonuclear-reaction products like >'Cr, *Mn, **Co, and
65Zn were not found either confirmed a high general
purity of the target material. Among reactions induced
by photons or neutrons, the only one that produces
Mg is3°Si(y, 2p), but the threshold for thisreactionis
higher than the endpoint energy of the spectrum of
bremsstrahlung used in the present study. Thus, Mg
can originate here only from 2¥Th fission, and its
observation isevidencefor the >Na yield from this pro-
cess, adthough it was difficult to disprove or prove
directly the presence of Mg and Al admixtures in the
target.

As was discussed in [6], the contribution to the
background may also come from weak gamma lines
appearing in the decays '’Te — 321 —» 132Xe
(y1778.6) and '?Pd — "2Ag — 112Cd (y2752.8) and
mimicking Mg (y1778.8) and ?*Na (y2753.9) lines,
respectively. In either chain, the decay of the parent
nucleus determines a sufficiently large half-life (78 and
21 hintheformer and the latter chain, respectively), the
radiation of the corresponding gamma line being emit-
ted by the daughter nucleus. Taking into account the
production of A = 112 and A = 132 isobars and the
quantum yield 1, of the background gamma lines in
guestion, we can straightforwardly conclude that the
above radionuclides, appearing as fission fragments,
generate a background at a hazardous level of Y= 107
per fission event to the observation of the 2*Na and Mg
yield. Therefore, it is necessary that, in searches for
24Na and Mg, the fraction of alkaline and alkaline-
earth elements be chemically purified of Pd and Te, and
this was indeed done in the present study. On the basis
of the most intense lines of ''?Pd and '3?Te, the degree
of chemical purification of these el ements wasfound to
be as high as 50-100. Nevertheless, their contribution
to the ?*Na and Mg lines was quantified and sub-
tracted from the peak areas at energies of 2754 and
1779 keV, respectively.

The background from !'?Pd and '3?>Te was not dis-
cussed in [2, 8], possibly for want of detailed informa-
tion about the schemes of nuclear decays. A kinemati-
cal selection is not always efficient for light nuclei. For
example, the mean range of nucle identified as?*Na in
the measurements reported in [8] coincides with the
range of the fragment ''>Pd. All the above leads to the
conclusion that ?*Na and Mg radionuclides could be
identified reliably neither by combining chemical
extraction with Geiger counter measurements [2] nor
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Fig. 1. Gamma-spectrum sections of the fraction of the alkaline and akaline-earth elements according to the measurements per-
formed (a) 7.5 and (b) 41.5 h after the completion of the exposure at the endpoint bremsstrahlung energy of 16.5 MeV. The corre-
sponding fits, including the revealed gammalines and the Compton background, are represented by the solid curves. The peak posi-
tions are indicated by the arrows, and the corresponding energies are indicated.

by using a Ge(Li) detector with the mean parametersin
[8] aone.

Table 1 liststhe gammalinesthat we determined for
some radionuclides studied in the present experiment.
We also sought "Be, *8S, and *°Fe nuclei. The sensitivity
as high as that for 2*Na and Mg could not be achieved
for 'Be and S, because their decay properties were
less convenient for this; asto theyield of *Fe, it did not
exceed 1077 per fission event. The other nuclides from
Table 1 were of auxiliary importance, as is obvious
from the text.

2.3. Results of Measurements

Figure 1 shows the sections of the gamma spectra
around the sought lines according to the measurements

performed (a) 7.5 h and (b) 41.5 h after the completion
of the exposure at the endpoint energy of 16.5 MeV. As
might have been expected on the basis of the tabular
values of T, for *Na and Mg, the gamma lines cor-
responding to these radionuclides are seen in the spec-
trumin Fig 1a, but they are absent from the spectrumin
Fig. 1b. Figure 1 aso shows the neighboring lines: the
1782-keV gamma line is associated with a natural
radi oactive background, corresponding to the one-step-
emission peak for the?*?Rn line (>**U family), while the
2761-keV gamma line has yet to be identified. In all
probability, the latter represents the peak that is due to
asummation of cascade transitionsin one of the radio-
nuclides. The source was placed close to the detector;
therefore, the cascade energies could sum up despite
the thick Pb absorber. The statistics were poor for the
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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spectrum in Fig. 1, but the number of events was suffi-

721

Table 1. List of gammalinesused to determineradionuclide

cient for revedling the 2753.9- and 1778.8-keV linesof ~ Yields

24Na and Mg, respectively. The peak areas were deter- - o
mined by mé;ans of computer-based, computer-aided, Nuclide T2 By keV] ly. %
and computer-free data processing. The last method is  ‘Be 53.3 day 4776 | 104
more reliable in the case of limited statistics. Thefinal  24Na 15.0h 1368.5 {100
result takes into account all kinds of data processing. In 2753.9 100
order to smooth out the scatter, the count numbersfrom 2Mg > 284 | 209h —» 22 min 13422 | 540
the neighboring channels were summed in pairs. The g ' ' ' '
resolution was retrograded about 2.5 keV, and the 17788 |100
1778.8- and 1782-keV lines manifested themselvesas ~ *S —= *Cl 2.84h —= 37 min 1941.9 | 84.0
anincompletely resolved doublet. The area of each line 2167.6 | 424
can be determined easily. Usualy, the accuracy wasat  59re 44.5 day 1099.3 | 56.5
alevel of £30% of significant peak-areavalues. On this 12916 | 432
basis, we have found the number of 2*Na and Mg ag . 9ym | 95h v 49 min 556 | 613
nuclei in the source and their yield per fissionevent by~ 112 ’ ' '
a comparison with the number of °'Sr and '“°Ba nuclei Pd — *“Ag| 21.1h —=3.1h 6174 | 50
whose yields from Th photofission are known from [9, 27528 | 011
10] and whose chemical-extraction efficiency was 1%2Te — 132 | 763h — 23 h 667.7 {100
identical to that for 2*Na and *Mg. We took into 17786 | 008
account the quantum yields of gamma lines, the effi- 0B —» W0 4| 1275day —~ 4030 | 537.3 | 24.4
ciency factors, and the kinetics of decay-event accumu- ' ' ' '
lation. 1596.5 | 954

The statistical accuracy of *Na and Mg determi-
nation is higher at the endpoint bremsstrahlung energy
of 24 MeV than at 16.5 MeV. In Fig. 2, the correspond-
ing spectrum in the form that it was transferred to the
printer is shown along with the approximation obtained
for the observed lines on the basis of the Deimos com-
puter code. The 24Na and Mg lines are quite distinct,
and their fit resulted in reasonable x? values. At the end-
point bremsstrahlung energy of 12 MeV, we were able
to set only an upper limit on the relevant yield, because
the total number of fission events decreased with
decreasing the electron-beam energy due largely to the
attenuation of the bremsstrahlung intensity and also to
areduction of the endpoint energy of the spectrum.

3. DISCUSSION OF THE RESULTS

Table 2 summarizes the yields of light nuclel per
event of 2*?Th photofission at the three values of the
endpoint energy of the bremsstrahlung spectrum. The
24Na and ®Mg yield isabout 1076. Other values are rep-
resented by upper limits on the yield; this was dictated
by experimental conditions.

Since the mgjority of the previous studies [1-3, 8]
relied on a kinematical selection of fission products,
thin targets from fissile matter were used there. In view
of this, the resulting yield values at alevel of 107 and
below had a rather low statistical confidence. Yet
another distinction between the methods used previ-

1778.8 1782 keV 27154 keV
‘g 1300+ Lo
3
s H_
E +.$|$$H + + ++J,,|,é 1a0
51100~ T e 3 +TT'+'¢_¢
5070 5090 7840 7860
Channel

Fig. 2. Asin Fig. 1, but at the endpoint bremsstrahlung energy of 24 MeV. The cooling time was 27 h.
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Fig. 3. Yield from ternary fission (with respect to that for
binary fission) accompanied (a) by apha-particle emission
(according to data from [5]) or (b) by the emission of *Na
and “°Mg nuclei: (open circles and closed boxes) data on
ANafrom [2] and [8], respectively; (open boxes) our results
for 2*Na; and (open triangles) our results for 2Mg.

ously and in the present study is worthy of note: the
yield of individual nuclides was measured with the aid
of kinematical separatorsin [1, 3], and the cumulative
yield of A =24 and 28 isobars was determined by our
method. Figure 3 displays our results along with data
from [2, 8]. We cannot say that they are in good agree-
ment, but the results of our measurements are prefera-
blefor the following reasons: (i) A high absolute sensi-

Table 2. Light-nucleusyield per event of 2°Th photofission
at three values of the endpoint energy of the bremsstrahlung
spectrum

Sg Yidd
=D

3 kS 24 MeV 16.5 MeV 12 MeV
X o

Be <1.1x 10 - <1.0x 10
Na | (1.0+0.2) x 107 |(0.65+ 0.20) x 105<0.5 x 108
Mg |(0.85 + 0.15) x 1075/(0.93 + 0.30) x 1075/<1.2 x 107®
38g <25x 107 - <1.0x 10°°
SFe <1.0x 1077 - <2.6x10°
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Fig. 4. Giant resonance in the photoabsorption cross section
for 232Th from [12] (curve /), bremsstrahlung spectrum
(curve 2), and fission probability Ps from [13-16] (3).

tivity is ensured in our experiment. (ii) Alien activities
are removed. (iii) Gammarspectroscopic equipment of
the latest generation is used. In the experiments
reported in [2, 8], the backgrounds due to gamma radi-
ation from fission fragments were not eliminated, as
was discussed above.

An unusual mechanism of ternary fission was pro-
posed by Solyakin and Kravtsov [11], who assumed
that the third fragment does not receive appreciable
kinetic energy because the forces of its Coulomb repul -
sion from the other two fragments are balanced. In our
experiment, al the radioactive products are included in
the measured yield, irrespective of their kinetic energy.
This can explain why the light-nucleus yields measured
by our procedure are higher than those measured by the
methods from [1, 3]. In order to clarify the role of the
mechanism proposed in [11], comparative experiments
are necessary in which the two methods are applied to
the same reaction.

The results presented in Table 2 and in Fig. 3 make
it possible to expressthe yield as afunction of E*. The
mean excitation energy of the fissile nucleus 23°Th was
determined by using the data taken from the literature
and shown in Fig. 4. The calculated bremsstrahlung
spectrum and the giant dipole resonance in the photo-
absorption cross sectionsfor 22?Th [12] aredisplayedin
Fig. 4a, while the fission probability P; is shown in
Fig. 4b. The probability of the relevant (y, xnf) process
in awide range of E* was obtained by rescaling dataon
(n, ynf) from [13]. The probability P; of the chance x in
the former reaction was assumed to be equal to that of
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the next chancey = x + 1 in the latter reaction. The data
on photofission [14] and those on the (t, pf) and (p, p'f)
reactions [15, 16] were taken into account in the near-
barrier region. The product of the functions labeled
with the figures 1, 2, and 3in Fig. 4 yields the E* dis-
tribution of fissile nuclei. On this basis, we have calcu-

lated the mean excitation energy E* of the fissile com-
pound nucleus. By way of example, weindicate that, at

the endpoint bremsstrahlung energy of 12 MeV, E* is
about 8 MeV, which isdlightly above the fission barrier
in 232Th, B; = 6.0 MeV.

The relative yields from ternary fission accompa-
nied either (a) by apha-particle emission or (b) by the
emission of A > 20 nuclei aredisplayed in Fig. 3 versus
the mean excitation energy E* of the fissile nucleus
being studied. The results from [8] are also rescaled to

the mean values of E*. The continuous spectrum of
incident photons gives no way to fix E* more precisely.
The half-width of the energy distribution is represented
by horizontal barsin Fig. 3b. The data in Fig. 3b have
considerable standard deviations both along the x and
along they axis; nevertheless, thereis no agreement for
the whole host of the data within the errors.

4. CONCLUSION

Using a highly sensitive method, we have deter-
mined the yield of light nuclei ?*Na and Mg from
232Th photofission and validated the mechanism that
may be responsible for ternary fission accompanied by
the emission of light nuclei with A > 20 and which was
studied thoroughly for long-range a pha particles.
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Abstract—The ground state of the >>’Panucleusis a 5/2* doublet with asplitting energy of 220 + 50 eV. Such
levels are peculiar to nuclei in the mass region around A = 225 that are characterized by octupole deformations. A
direct observation of P-odd effectsin this systemis of great interest because this can furnish information about the
parity-nonconserving nucleon—nucleon potential. The transition between the two doublet states of opposite pari-
ties proceeds predominantly through internal conversion; therefore, P-odd mixing can be explored by studying the
helicities of the conversion electron. It isshown that the helicities of the 6s, ,, 6p, », and 6p;, conversion electrons
are about 1%, which makes it possible to perform experiments aimed at determining the parameters of the effec-
tive parity-nonconserving nuclear potential. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

This article reports on a continuation of investiga-
tions devoted to parity-nonconservation effect in the
(5/2)- — (5/2)* conversion transition in the 2*Pa
nucleus. It was predicted in [1]—and this prediction
was confirmed experimentally in [2]—that the ground
state of this nucleus actually appears to be a system of
two closely lying | = 5/2 states of opposite parities
(x)—that is, it represents a doubl et of the states, which
are separated by 220 + 50 eV. The parity-mixed (E1 +
M1) nuclear transition proceeds amost entirely
through conversion (the internal-conversion ratio is
about 10%). Therefore, the parity-nonconservation
effect in the doublet can be explored in the conversion
(E1 + M1) channel of the nuclear transition. The helic-
ities of the 6s,),, 6p,;,, and 6p;, conversion electrons
are one of the effects accessible to observation in
nuclear (E1 + M1) transitions. In [3], we estimated the
deviation of the ratios of the intensities of the 6s,,
6p,», and 6p;,, conversion lines from values that corre-
spond to the pure E1 multipole and the half-life of the
upper doublet state. The internal-conversion ratios for
the 22Pa atom were computed in [4, 5].

On the basis of the generalized model of the
nucleus, the matrix element of the effective single-
nucleon weak-interaction potential, which determines
the weight of the opposite-parity admixture in the dou-
blet components, was estimated in [6] within the sin-
gle-particle approximation. In addition, the reduced
probabilities of the E1 and M1 nuclear transitions

T Deceased.
* e-mail: lomon@cerber.mbd ab.kiae.ru

between the doubl et states were calculated there on the
basis of various models of a deformed nuclear potential.

2. HELICITIES OF THE CONVERSION
ELECTRONS IN THE PARITY-MIXED
(E1 + M1) TRANSITION BETWEEN
THE COMPONENTS OF THE (5/2)* DOUBLET IN
THE *2°Pa NUCLEUS

We treat the doublet states in the 2>°Pay, nucleus as
the [523] g - g and [642] g +, g single-particle pro-
ton orbitals (in accordance with Nilsson’s classification
[7], the orbitals are denoted as [Nn,A]Q, I, |) spaced

by AE =220 + 50 €V. The parity-nonconserving weak-

interaction potential \7§nc mixes these states, leading to
the formation of the new states

5 =[523];,—,g>+ib[642]g,+,g>,
f§> =[642]g,+,g>+ib[523]g,—,g>, v

where b is the coefficient that specifies the opposite-
parity admixture and which is given by

5 | 5|pN 5
(164215, + Smd52213 - )

ib = iE . )

The phases of the wave functions are chosen in such a
way that the matrix elements are pureimaginary; that is,
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5 5|pN 5 *
<[523]§, - Elvpnc|[642] 5+ 523>
5 5|nN 5 ©)
= —< [523] é’ - §|VPNC| [642] é’ +, §>
The Hermitian operator of the parity-nonconserving

effective potential acting on an intranuclear nucleon
(proton) has the form [8]

~N A~ _ G
Vone(r, P, 6) = 2mpC0((N,Z) @
x{ (e P)p(r) +p(r)(c [P)},

where G= 1043/ mf, c isthe weak-interaction coupling
constant, m, is the proton mass, p is the nucleon-
momentum operator, ¢ is the nucleon-spin operator,
p(r) is the volume nucleon-density distribution in the
deformed nucleus, and a(N, Z) is a coefficient depend-
ing on the form of single-particle potentials used in
averaging relevant quantities over intranuclear nucle-
ons [a(N, Z) ~ 1]. Data on parity-nonconservation
effects in resonance-neutron interactions with heavy
nuclei can betreated so that this coefficient is enhanced
by one to two orders of magnitude, in which case
observable effects are enhanced accordingly (see, for
example, [9]). Nevertheless, we set a(N, Z) = 1 in the
ensuing calculations.

Nuclear conversion proceeds through a (E1 + M1)
transition, where 4w = E, — E,; thisis accompanied by
the transition of an electron from the |gn,l,j,Cstate,
where g, isthe energy, n, isthe principal quantum num-
ber, |, is the orbital angular momentum, and j, is the
total angular momentum, to a continuum state with
energy €,. We assume that the nucleusis unpolarized in
theinitial state, becausethe half-lifeis sufficiently large
for initial polarizations generated in the populating cas-
cade to disappear.

The relativistic wave function of the initial electron
state |¢;n,l,j,[3—a solution to the Dirac equation in the
spherically symmetric field—can be represented in the
bispinor form [10]

Eplljl(r)lellml(r/r)

Vi) = Dm0, 0m O

where

1m

lellml(r/r) = zCljlulslellul(r/r)Vv1

H1Vy

(6)

isaspherical spinor, while g, ; (r) and f,; (r) areradial
functions satisfying the normalization condition

J'dx[gﬁjl(x) + ff,ljl(x)} = 1. )
0
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At infinity, the asymptotic expression for the relativ-
istic wave function of the final electron state |g,, v,[1v,
is the electron polarization) has the form of a sum fea-
turing a plane wave and a diverging spherical wave,
whereas the function itself can be represented as [10]

4t g5+ mc’

B; 2¢,

W, (1) =

N 1, .
X Z (Q,,m,(P2/ P2 V)i “exp(=id ;)

Jalamy
8
Gy (1R (111) ®

CHFL (NQ)m (1),

where

,oo=do [, _-do
+1/2 R)D -1/2 [h.lj

The wave functions of continuum electron states are
normalized in such away that they satisfy the following
asymptotic conditions for r — oo:

. Tt
Gy, (r) — S'nEPzr—lzz +5|2jEr )]
2
1,+1-1, [€,—MC
Fpp (1) —i / —
€,+mc (10)

x sin%ozr —I'27—21+ 6|sz%

For the above case of the unpolarized initial nucleus
and the unpolarized atomic shell, we take the coordi-
nate frame comoving with the conversion electron and
having the z axis aligned with its observed momentum
p, = (0, 0, p,). In this frame, the electron-spin projec-
tion v, onto the quantization axisisthe projection of the
spin s, onto the momentum p,. Experimentally, the
detector used must record the momentum p, within the

solid angledO,,, (in the laboratory frame) and the pro-
jection of the spin s, onto the momentum p,. In this
way, the events N, _,,, and N, -_,;, in which the

electronisemitted with polarizationsv, = +1/2 and v, =
—1/2, respectively, are detected independently. In this
case, the electron helicity is determined as the ratio

(o Eb2)>

2

_ sz =+127 sz =-1/2

2@25=< (1D

Ny, =412+ Ny, =1

wheres, = %a and where averaging is performed over

the conversion-electron states.
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It follows from (11) that
W,0

. . 1
VL dW(l — 155 [g4ngl5j,my]
_ V,=E1/2

— PyV,) (12)

dW(l,—=1,; [g1n4]1],my] — PoVy)
v, = £1/2

Where dW(I] —— |2, [81n1|1jlm1]1 —— p2V2) IS the

guantity obtained by summing the differential probabil-

ity of electron egection from the atomic state

|&;nyl,j;m, Cinto the continuum state |p,v,per electron
in the filled shell over the unobservable projection M,
of the nuclear spin I,.

In calculating the differential probability of the con-
version process, we used a decomposition into the E1
and M1 multipolesasin [10, 11] (for details, see [12]).
For 6s,,, 6p,», and 6sy, conversion in the protactinium

atom, the M1-to-EL1 ratio of the transition probabilities

does not exceed afew percent (see, [3]). In the denom-
inator of expression (12) for the helicity, we can there-
fore neglect the contribution from the M1 conversion
nuclear transition. For the conversion-electron helicity
(12), we then eventually obtain

v,
Jos+T 1)< SNIVET §>

(S1ex }zwz[m}n i} il 1 Ja 7

PYP

Z C| 010U(|21215 szl 1, j1 14]
jal2 (P
* [ial2 L, ju 131 (<i{ il ELINgd1j o} *

. (13)
x{T2jo[M1]nyl, 1} [ "exp (i3, )]

x[i"exp(-i8;,, )]*
+i{ il ELInl i {Taio[M 2] gl i} *
x [ exp(-id,,)]*[i"exp(-i5; )]).
The system of the radial integrals of the relativistic

wave functions of theinitial- and fina -state electronsis
given by

{10 [EAIN I j} = jdxh%)(kaom

%[ G, (08,1,00 + Fii, (0 (9
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+ dxhﬁ\l)_l(kaox)
J
X [Glzjz(x) f|'1]1(X) - Fl'ziz(x)glljl(x)} (14)
1. ,.
+/_\[12(12 +1)—1,(l,+1)
= ja(ia+ 1) +1a(l + )] faxhi (kagx)
0
X [G|2j2(x) fliil(x) + Fl'zjz(x)gujl(x)]
{L2J2IMA]INnl1j}
_ Jo(ia+ 1) =1(l,+ 1) = ji(jo + 1) + 15(13 + 1)
) JAN+1) (15)
x Idth\l)(kaox)

X[Gy;, (%) f1;,(X) + Fp,(¥) a5, (¥)],
where x = r/a,, a, being the Bohr radius.
In (13), we have used the notation

. . 2j,+1 10
Liste A Jsh] = [5G not(iasAlsi alo). (16

where u(abed; ef) = ./(2e+ 1)(2f + 1) w(abcd; ef) isa
normalized Racah coefficient.

The reduced nuclear matrix elements L | |E(M)A||l,O
used in our calculations are related to the conventional
reduced probabilitiesB(E(M)A; |, —= |,,) of thel, —
I, multipole nuclear transition [13] by the equations

2|
Rﬁ,AZIZ 1|D2||E/\||I (P = B(EA; I, —=1,), (17)
N 2/\2|2
= B(MA,I1—>|2),

where R isthe nuclear radius.

In the present calculation, we employed the results
obtained in [6], where the severely deformed nucleus
229Pa was described on the basis of the collective model
[13]. The nucleon wave functions were obtained in the
Woods-Saxon potential for adeformed nucleus; in order
to test our results, we also used the deformed nuclear
oscillator potential [7] In [6] we calculated the reduced

+

probabllmesB%l - — é D dB%\/Il 5_

of the electric dipole and magnetic dipole transiti ons,
respectively, between the [523]5/2, —, 52 and
Vol. 63
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~ E‘
Table 1. Ratio of the reduced matrix element E%H M1 ED

for the magnetic dipole transition to the reduced matrix ele-

+ 5
ment D% IE1| ED for the electric dipole transition

~ ~
5
e[V
B2o F
> IE1S
2.95
0.20 ==
252
0.23 o2
231
0.25 =
0.84
Expt. A_E

Note: The values in the first three rows were calculated by using
the Woods-Saxon potential with quoted values of the qua-
drupole deformation 35 at 49 = 0.08, whilethe valuein the
fourth row was obtained from the measured isomer lifetime
Texpt fOr Bop = 0.23 (AE is measured in eV).

[642]5/2, +, 5/2 states (with allowance for their mixing)
of the severely deformed nucleus?*Pa. Expression (13)
for caculating the conversion-electron helicity
involves the ratio of the reduced nuclear matrix ele-
ments for the E1 and M1 transitions. Taking into
account relations (17) and (18), we can express this
ratio in terms of the reduced probabilities as

5 a5 5 5o
(SmuS) el

5* 5 5 5
(J1end)] | sEnS—3H

Thevalues of thisratio, which are presented in Table 1,
were borrowed from [6]. In what follows, we will cal-
culate only the absolute value of the effect.

(19)

3. NUMERICAL CALCULATIONS

The electron-shell states of the protactinium atom
were described by the relativistic Hartree—Fock—Sl ater
(HFS) method [14]. In order to estimate the stability of
the expected effect to uncertainties in the input parame-
ters, the calculations were performed for 13 possible con-
figurations (5f5,)¥(60;,)%(7S,0)* (X + Y + z = 5) of the
valence band of theatom intheinterval 2w =170-270¢eV.
For the standard configuration (5f5,,)*(60;,)'(7s;,)* of
the valence band, the potential acting on the conversion
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Table 2. Helicities of the 6s,;,, 6p/», and 6ps, conversion
electrons of the protactinium atom (the Hatree—Fock—Slater
potential with the Latter correction is used for a conversion
electron)

Vo], %
AE, eV | 1

Bsy2 | 6Pz | BP32 | 6Sy2 | 6Py2 | 6P
170 341 1.67 0.74 1.33 0.57 0.25
180 331 1.60 0.71 1.28 0.55 0.24
190 3.23 154 | 0.68 1.24 | 0.53 0.23
200 3.14 1.49 0.66 1.20 0.51 0.22
210 3.06 1.44 0.64 1.16 0.49 0.22
220 2.98 1.39 0.63 1.12 0.47 0.21
230 2.90 1.35 0.61 1.08 0.46 0.21
240 2.82 1.31 0.60 1.05 0.44 0.20
250 2.74 1.27 0.58 1.02 0.43 0.20
260 2.67 1.23 0.57 0.98 0.42 0.19
270 2.59 1.20 0.56 0.95 0.41 0.19

Note: Inthistableandin Tables 3 and 4, columns| and 11 quote the
B(EL, 52~ — 5/2%) values as calculated by using the
deformed Woods-Saxon potential and as obtained from the
measured isomer lifetime Teyp;.-

electron in the continuous spectrum was taken in the
form of (i) the HFS potential with the Latter correction,
(it) the potential of the neutral protactinium atom, and
(iii) the potential of the atom involving aholein the nlj
subshell where conversion occurs.

Table 3. Helicities of the 6s,;,, 6py/», and 6pg, conversion
electrons of the protactinium atom (the potential of the neu-
tral atom is used for the conversion electron)

Vo], %
AE, eV | 1

Bsy2 | 6Pz | GP32 | 6Sy2 | 6Py2 | 6P
170 8.78 2.93 0.76 | 3.29 1.00 | 0.26
180 8.34 2.75 0.73 3.10 0.94 0.25
190 7.95 2.59 0.70 2.93 0.88 | 0.24
200 7.59 2.45 0.67 2.78 0.83 0.23
210 7.26 2.32 0.65 2.65 0.79 0.22
220 6.95 2.21 0.63 2.53 0.75 0.21
230 6.67 2.11 0.61 241 0.71 0.20
240 6.41 2.01 0.59 231 0.68 0.20
250 6.17 1.93 0.57 2.22 0.65 | 0.19
260 5.95 1.85 0.56 2.13 0.63 0.19
270 574 1.78 0.54 2.05 0.60 | 0.18
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Table4. Helicities of 6s,5, 6Py, and 6p3» conversion elec-
trons of the protactinium atom (the potential of the atom in-
volving a holein the nlj subshell where conversion occursis
used for the conversion €l ectron)

Vo], %
AE, eV | I

6sy2 | 6Py2 | 6P32 | 6Sy2 | 6Py2 | 6P
170 3.78 1.66 0.66 1.43 0.57 0.22
180 3.67 1.58 0.63 1.38 0.54 0.21
190 357 151 0.60 1.33 0.51 0.20
200 3.46 1.44 0.58 1.28 0.49 0.19
210 3.36 1.38 0.56 1.24 0.47 0.19
220 3.26 1.33 0.4 1.19 0.45 0.18
230 3.17 1.28 0.52 1.15 0.43 0.18
240 3.08 1.23 0.51 1.12 0.42 0.17
250 3.00 1.18 0.50 1.08 0.40 | 0.17
260 2.92 1.14 0.48 1.05 0.39 0.16
270 2.84 1.11 0.47 1.02 0.37 0.16

The results of the calculations are presented in
Tables 2—4. It isinteresting to note that the helicity val-
ues calculated by using the HFS potential with the Lat-
ter correction are close to those calculated by using the
potential of the atom involving a hole in the nlj sub-
shell.

4. CONCLUSION

We have calcul ated the helicity v, for the 6s,,, 6p .
and 6p;, conversion electrons of the protactinium
atom, a quantity that is linear in the coupling constant
of weak neutral interaction, and estimated the stability
of expected v, valuesto uncertainties in the parameters
entering into the calculations such as the scatter of AE,
variations in the form of the mean atomic field, and
variationsin the matrix elements for the nuclear transi-
tion from one model used to another. The parity-non-
conservation effect is enhanced because the dominant
nuclear E1 transition is suppressed in relation to the
admixed M1 transition. Moreover, the smallness of the
doublet-mixing amplitude is compensated, to a consid-
erable extent, by the fact that, in the conversion chan-
nel, the M1 transition for the 6s, ,, 6p,,, and 6p;, €lec-
tron orbits is enhanced by the factor of about 10>-10°.
For this reason, the helicity of a conversion electron
having a kinetic energy in the range 100-200 eV is

GRECHUKHIN, LOMONOSOV

about 1%, which is a value measurable in experiments
aimed at determining the parameters of the parity-non-
conserving effective nuclear potential.
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Abstract—It is shown that a consistent treatment of momentum translation by a muon in the problem of the
distribution of muons among prompt-fission fragments modifies the nonadiabatic transition operator in the
Born—Oppenheimer expansion and removes difficultiesindicated in earlier cal culations. The muon distribution
for very asymmetric prompt fission provesto be highly sensitive to the vel ocity of the primary fragments at the
scission point. The mean collective energy dissipated during saddle-to-scission descent due to the one-body
mechanism is calculated within the same approach. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Since 1927, when the Born—Oppenheimer expan-
sion was proposed for atomic collisions, it has found a
vast application in this and also in other fields (for
example, in solid-state physics) to describing atomic
clusters. In nuclear physics, the Born—Oppenheimer
expansion was frequently used to calculate the proba
bility W, of muon attachment to light fragments of the
prompt fission of the muonic atoms of actinide ele-
ments. One of our present purposes is to show how it
can be used to solve one of the most topical problems
in the modern theory of fission—namely, the problem
of microscopically calculating the dissipation of collec-
tive energy and its application to a comparison with
experimental data.

Wheeler's proposition in 1948 [1] that the muonic
atom of uranium can undergo prompt fission as the
result of the 2s — 1s radiationless transition opened
the way for using an exotic particle as a probe for fis-
sion dynamics. Although it was shown in subsequent
publications that transitions of various multipolarities
(E1, E2, E3) make approximately equal contributions
to the radiationless excitation of actinide atoms [2-4],
the problem remains very topical now in connection
with studies on fission dynamics—specifically, on the
time scale for fission.

In prompt fission, the muon is usually attached to
the heavy fragment, forming amuonic atom. Thisgives
rise to various processes and effects, which are being
investigated. These include the muonic conversion of
gamma rays from the fragment, muon capture by the
fragment, muonic x radiation from the fragment, an
increasein the fission barrier due to the presence of the

* This article was submitted by the author in English.

D Universita degli Studi di Milano, Dipartamento di Fisica,
[-20133 Milano, Italy.

2 Institute of Physics (Petrodvorets Branch), St. Petersburg State
University, Ul’yanovskaya ul. 1, Petrodvorets, 198904 Russia.

muon, and many others (see, for example, [5-7] and
references therein). Of these topics, the problem of
muon attachment to the light fragment—the corre-
sponding probability is denoted by W, —was consid-
ered in a number of studies (see, for example, [5-16]
and references therein). Lattice calculations show that
W, is expected to be sensitive to the amount of dissi-
pated energy and, moreover, that the probability of a
transition to muonic excited states is also significant
and sensitive to energy dissipation [9, 16]. In contrast,
more traditional calculationsin an adiabatic basis usu-
aly do not reproduce this result [5-8, 12, 14, 15]. It
should be noted in this respect that the behavior of the
muon during the separation of the fragments is very
complicated, especialy in the vicinity of the
pseudocrossing point. It isnot clear whether lattice cal-
culations are sufficiently subtle for adequately repro-
ducing the resulting probability of muon attachment to
the light fragment. Answering this question remains a
challenging task. In addition, a calculation of the tran-
sition probability in the four-state basis [13] encoun-
tered the problem that nonadiabatic matrix elements
between the 1s and 2p states of the same fragment do
not vanish at large internuclear distances. As a result,
the population amplitudes for these states continue
oscillating in the asymptotic region of large internu-
clear distances R, where no interaction between the
states survives. Moreover, these spurious transitions
violate the Galilean invariance of the theory. It isworth
noting the analogy between this problem and that
encountered in describing one-body dissipation, where
amoadification to the origina theory of one-body dissi-
pation isintroduced to rule out aspuriousinternal exci-
tation of a uniformly moving fragment [17]. The
present investigation was undertaken in order to obtain
deeper insight into all these peculiarities, to refine the
theory, and to apply it to the problem of energy dissipa-
tionin fission.

1063-7788/00/6305-0729%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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2. EQUATIONS OF MOTION

The separation of the fragments occurs with the
large Massey adiabaticity parameter with respect to the
motion of the bound muon. In the majority of cases, the
muon therefore remains in the 1s state of the heavy
fragment. The probabilities of transitions to higher
states and to states of the lighter fragment are expected
to be small. In order to determine these probabilities
guantitatively, we modify the Born—Oppenheimer
expansion, representing the wave function as the series

W(r; R(1))

o) _j"E'n(t')dt'
=\ C,®,(r; R(t e e ,
Z (r; R()) M

where the functions @, form a complete set of quasi-
molecular wave functions. When the internuclear dis-
tance R tends to infinity, each of the functions ®,, cor-
relates with a certain p-atomic state n of the corre-
sponding fragment.

The momentum-trandlation exponents (MTE) are
introduced in (1), where p, = pv,, with g being the
muon mass and v, being aconstant equal to the velocity
of the fragment in the asymptotic region. The orthogo-
nality of the basis functionsis thus lost in this descrip-
tion. The great advantage is, however, that, in the
asymptotic region, our basic product functions @,(r;

R) g P satisfy the Schrédinger equation

i(p 1) _

(H-E)®.(r; Re 0, 2)
where E, =E, + p?/2p and where H is the two-center
Hamiltonian of the form

A

3)

Substituting expansion (1) into the time-dependent
Schrodinger equation, we arrive at the set of coupled
eguations

dC
T = —Z FikCr 4)
R
- [ Ei-BR)V(R)IR
Fie = Mie - : (5)
— 0 Vityvy i(p—p)
‘/M'ik - <CDI‘6R zv(R)D che >| (6)

where the differential operators act only on the wave
functions @, or @,.

The introduction of the MTE is reflected in the ini-
tial condition for the set of coupled equations (4)—(6).
The natural initial condition is that the muon isin the

KARPESHIN

lowest 1so state at the saddle, in which case it is
described by the wave function ®,. In going over to
another basis, we therefore have to reexpand this wave
function in terms of the new basis set. The expansion
coefficients C¥ = [@,|Pexp(ip2)Ji = 1, 2, 3, 4 in our
case, are to be used as the new initia condition.
Because of the smallness of the parameter that can be
estimated as p,z <= 0.03, the resulting amplitudes for i >
1 prove to be of about 0.003 or less, which is an order
of magnitude less than final transition amplitudes. In
the long-wave approximation, we can therefore use the
usual initial condition

C(R=R)) = 9, (7

where R, isthe saddle point. The conditionin (7) means
that the muon is in the lowest 150 state at the saddle.
The probability of atransition to astaten is
W, = lim IC.(R). (8)
At large R, where the interaction between the atoms
can be neglected and where the centers move uni-
formly, the operator 0/0R is proportional to 9/0z. If the
states i and k belong to the same center and if they are
connected by an electric dipole transition, the matrix
element of d/0R therefore does not vanish. This poses
the problem formulated above. In this case, however,
the second term in (6), which arises from the MTE
incorporated in (1), exactly cancels the contribution
from 9/0R, thereby resolving the problem and restoring
the Galilean invariance of the theory. Furthermore, tak-
ing this term into account modifies the nonadiabatic
matrix element in the range where the formation of the
final attachment probabilities occurs.

From equation (6), it follows that, for the 1sc —
2po transition, the transition operator 0/0R becomes

Vi—Vyd
2V(R) 0z
into account. The second term in the last expression can
be treated as that which is due to the motion of the geo-
metric center of the line segment between the frag-
ments. Its contribution will be small, along with the dif-
ference v, — v,, aways, with the exception of the case
of very asymmetric fission. The exponentia factorsin
the matrix element in (6) can also be neglected in the
long-wave approximation, and we arrive at essentially
the old expression for this nonadiabatic matrix element.
The latter vanishes, along with the overlap integral
2|10 for R — oo. Thus, the inclusion of the momen-
tum transfer does not have dramatic consequences if
the quasimolecular states refer to the different frag-
ments.

L et us examine the effect of introducingthe MTE in
the probability of atransition to an excited muon state
250, which goes over to the 2p state of the heavy frag-
ment. For the two lowest states, 150 and 2p0, the ener-
gies, the wave functions, and the nonadiabatic matrix

0/0R +

upon taking the momentum transfer

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000
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250 probability

10—3 _
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R, fm
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x 1073
(b)
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Fig. 1. Population probabilities calculated for the 250 level (correlating with the 2p state of the heavy fragment) as afunction of the
internuclear distance R for a representative pair of fragments with charge numbers Z; = 52 and Z, = 40 (a) without and (b) with

alowing for the momentum-transl ation exponent.

elements were calculated in [14] with alowance for a
finite nuclear size by solving numerically the two-
dimensional Schrodinger eguation by the method of
finite elements. On the other hand, the LCAO method
isappropriate for obtaining the energies and wave func-
tions of the next relevant states, 2s0 and 3po, which
correlate with the 2p states of the heavy and the light
fragment, respectively. For these states, the
Schrédinger Coulomb wave functions can be used,
since the effect of the finite nuclear size on these states
isinsignificant.

For the four aforementioned states, the population
probabilities have been obtained by solving numeri-
cally the set of simultaneous equations (4)—6) with the
initial condition (7). In Fig. 1, we present the popula
tion probability for the 2so level as a function of the
internuclear distance R for arepresentative pair of frag-
ments with atomic numbers Z, = 52 and Z, = 40. These
results were obtained for two cases, without (Fig. 1a)
and with (Fig. 1b) allowancefor the MTE. It can clearly
be seen that taking account of the MTE diminishes the
final attachment probability for this state by a factor of
about 4, allowing one, in addition, to eliminate the
oscillations in the attachment probability, which ulti-
mately vanish for R — . As might have been
expected, the population of higher levels provesto have
arelatively small effect on the final muon fate.

3. SENSITIVITY TO FISSION DYNAMICS

In order to study this aspect, we have calculated the
final muon-attachment probabilities for various posi-
tions of the scission point R, using the results obtained
in the preceding section. The relative velocity of the
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fragments was assumed to be determined by the Cou-
lomb repulsion of the fragmentsfor R = R, and to be a
constant for R <R, withV(R <R, = V(R,.). Therefore,
different values of R correspond to different velocities
of descent from the saddle to the scission point and,
consequently, to different velocities of the primary
fragments at the scission point. The calculations have
been performed for various values of the total kinetic
energy (TKE) of the fragments. The results of the cal-
culation are listed in Tables 1 and 2 for representative
fission fragments with atypical charge splitting, Z =52 +
40, and with arelatively large asymmetry, Z = 57 + 35.

We can see that a more asymmetric fission mode is
more sensitive to dynamics, as might have been
expected. In this case, the pseudocrossing point of the
muonic terms approaches the scission point [7, 14].
This is in contrast to the case of more symmetric fis-

Tablel. Calculated probabilities of attachment to light
fragments, W, (%), for fragments with charge numbers Z; =
57and Z, =35

TKE, MeV R Tm

20 22 24 26
140 0.21 0.23 0.026 0.033
150 0.37 0.14 0.12 0.038
160 0.33 0.29 0.10 0.020
170 0.56 0.24 0.064 0.053
180 0.49 0.17 0.10 0.18
190 0.38 0.20 0.23 0.40
200 0.39 0.34 0.47 0.71
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Table2. Calculated probabilities of attachment to light
fragments, W, (%), for fragments with charge numbers Z; =
52 and Z, = 40

TKE, MeV Reo
20 22 24 26
140 2.38 2.38 1.65 151
150 2.77 2.73 243 2.13
160 3.82 3.56 3.00 2.69
170 4.84 4.07 3.52 3.37
180 5.35 452 4.18 4.20
190 5.35 452 4.18 4.20

sion, where the avoided crossing of the levels occurs
after the rupture at a rather large distance between the
fragments. It is worth noting that, although the theoret-
ical results for the average value of W, agree well with
experimental data, the theoretical attachment probabil-
ities are significantly lower than the experimental val-
ues in this region of charge sharing. Possible reasons
for the discrepancy were considered in the literature
(see, for example, [7, 18] and references therein); it is
conceivable that this is a manifestation of dynamical
effects. A very significant variation in the resulting val-
ues of W, for the fragmentswith Z, = 57 and Z, = 35 at
TKE =170 MeV should be noted.

4. MODEL FOR STRONGLY INTERACTING
PARTICLES AND DISSIPATION

In this section, we extend the results obtained previ-
ously to the case of strongly interacting particles—A
hyperons and nucleons—in afissile nucleus.

Let us consider the two-center harmonic-oscillator
model for a A hyperon in afissile hypernucleus [19].
Let the potential produced by afragment J be

1
Vi(Ir =Ryl) = w3ir =Ry* ©)

An analysis of the matrix elements of the commutator
[H, 0/0R] leads to the useful relation

< ‘6Q‘ > <(D 5’355“"‘>’

where O stands for R or r, and AE;; is the energy differ-
ence between the states. For afinite potential of constant
depth, the presence of dV/0Q in (10) gives rise to an
interaction at the nuclear surface; qualitatively, thisinter-
action corresponds to a semiclassical description [17].
Taking into account the dependence of the oscillator
parameter Zwon R [19] and using equations (5) and (9),
we obtain the nonadiabatic matrix element in the form

Ik = AE|k<

(10)

q>k>. (11)

KARPESHIN

The nonadiabatic matrix element in (11) can be treated
as that which consists of two parts for each fragment.
The corresponding interaction potential for each frag-
ment appearsto be of amonopole character. Neglecting
boundary effects in the region where the two potential
wells intersect, we can see that interaction (11) then
nearly cancels the electric dipole transitions for each
fragment like 1s — 2p or electric quadrupole transi-
tions like 1s — 3d if the fragment is not strongly
deformed, whilst giving rise to monopole transitions
like 1s —= 2s. Detailed calculations of the resulting A-
attachment probabilities will be given elsawhere. How-
ever, the experimental cross section for A—nucleon col-
lisionsindicates[19, 20] that such collisions seem more
important in determining the final A-attachment proba-
bilities than the nonadiabatic quasimolecular effects
considered previously.

Equation (11) can also be used to calcul ate the prob-
ability of nucleon promotionin afissile nucleus. Inthis
case, nucleons undergo transitions to excited orbitals,
receiving energy from the collective motion of nascent
fragments, whereby the intrinsic excitation of the frag-
ments arises at the expense of the energy of their rela
tive motion. The last effect corresponds to the conven-
tional one-body dissipation of collective motion.
Therefore, equation (11) can be used to define the
microscopic Hamiltonian responsible for one-body dis-
sipation in fission by invoking the adiabatic basis of the
quasimolecular nuclear states.

In order to estimate the numerical magnitude of the
effect, we consider the near-barrier 23U fission, which
can be induced, for example, by muonic radiationless
transitions. The shape of afissile nucleus can be param-
etrized in terms of two intersecting spheres of corre-
sponding radii, with R being the distance between the
centers of the spheres. We make use of the fact that Zw =
41A-'3 and, accordingly, dw/0R are functions that
change slowly in the fission process and approximate
AE, by the energy of the giant monopole resonance,
AE = 65A7'3 MeV. In the leading order of perturbation
theory, we then find from (4) and (11) that the ampli-
tude of anuclear transition from the ground state i to an
excited state k satisfies the differential equation

Ck(R) = Jl/tk,expEHJ’——er, (12)

with V being the vel ocity of fragments between the sad-
dle point R, and the scission point R, . With allowance
for the sum rule for the giant monopol e resonance, the
solution to equation (12) can be represented as

w = z|ck(Rsc)|2
(13)
_ 2Vodaor| AEROD
" Opg2dRO " AE [ZV(Rsc RSp)}
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Using the values of dw/dR ~ 0.075 and 0.12 MeV/fm
for the heavy and light fragments, respectively, together
with AE ~ 10 MeV, Ry, = 10 fm, R, = 20 fm, and V =

0.03, and replacing sin? [2—5 (Ry. — Rsp)} in (13) by its
mean value of about 1/2, we obtain W = 1/6. Thismeans
that the mean dissipated energy is about 2 MeV, which
corresponds to a motion characterized by a relatively
low damping. It is expected that this energy will be
greater for the light fragment than for the heavy frag-
ment by afactor of about 2.5 owing to the higher values
of dw/dR and V in the former case.

In the case of adeformed fragment, the main conse-
guence of the deformation is expected to be the split-
ting of the giant monopol e resonance and itsinteraction
with the giant quadrupole resonance, with the sum rule
in (13) being essentially unaffected.

5. CONCLUSIONS

Thebasic results of the present study can be summa-
rized asfollows:

(i) The probability of muon attachment to light frag-
ments is a highly sensitive probe of the velocity of the
saddle-to-scission descent, especialy in the case of
strongly asymmetric fission.

(if) From the theoretical viewpoint, the present cal-
culation is of great interest in view of applications to
constructing the microscopic Hamiltonian and devel-
oping the quantitative theory of one-body dissipation.
| would like to note that, historically, the study of the A-
attachment probability was an important intermediate
step toward introducing the MTE, as was done above.

(iii) The above consideration allows one to draw an
important qualitative conclusion about one-body dissi-
pation—namely, the conclusion that this dissipation is
due to the excitation of the giant monopole reso-
nance—and, in the case of deformed fragments, the
guadrupole resonance. Numerical estimates of the
amount of dissipated energy on the basis of this mech-
anism of dissipation leads to a saddle-to-scission
descent characterized by arelatively weak damping.
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Abstract—The deuteron form factors and tensor polarizations in elastic ed scattering are considered for four
versions of the Nijmegen nucleon—nucleon potentials. The numerical deuteron wave functions in these poten-
tials are approximated by a series of Gaussian functions with the result that it can be used in any computations
of integrated characteristics. The quality of this approximation of the wave function is exemplified by compar-
ing the resultsthat it produces for the momentum distributions, the quadrupole moment, the D-state probability,
and the deuteron radius with the results of the corresponding precise cal culations. © 2000 MAIK “ Nauka/ I nter-

periodica” .

Not very long ago, afew new versions of phenome-
nological nucleon—nucleon potentialsfeaturing arepul -
sive core were proposed in [1]. The parameters of these
potentials were determined on the basis of the partial-
wave analysis performed by the Nijmegen group [2]. At
present, the Nijm-1, Nijm-2, and Reid-93 versions
seem to be the best of those proposed thus far, because
they yield the x? value per point as low as 1.03 in the
energy region extending up to 350 MeV. For example,
the classical Reid potential [3] (1968) or the Paris
potential [4] (1980) lead to x> values of about 2to 3in
the energy range 0-300 MeV. The fourth version of the
Nijmegen potential, Nijm-93, yields the close value of
x?>=1.9for energiesup to 350 MeV [1, 5]. It was shown
[5] that only the Argonne potential [6] leads to a com-
paratively small value of x> = 3.3 at energies up to
350 MeV. Other potentials, such as Hamada—Johnston-
62, Reid-68, Urbana-81, and Bonn-89, result in much
greater values of x2, because the parameters of these
potentials were derived from analyses performed over
anarrower energy range.

The partial-wave analysisin [2] covered the energy
range 0-350 MeV, but, by and large, its results comply
quite well with the results from [7] and [8], where the
partial-wave analyses were performed over the much
broader energy ranges 0-1600 MeV and 0-2500 MeV,
respectively. On the basis of the partial-wave analysis
reported in [2], the Nijmegen group refined some fea
tures of the deuteron (binding energy, charge radius,
guadrupole moment) and some characteristics of np
scattering (scattering length, effective range) [9].

It should be noted that the value of 0.074 used for
the TN coupling constant f 2 in parametrizing all ver-
sions of the above potentials is considerably smaller
than the values reported in [10] and [11] [0.0776(9) and
0.0803(14), respectively]; it is closer to the values of

* email: serg@mail.kz

0.0760(8) and 0.0760(2) reported in [12] and [13],
respectively.

With the interactions obtained in [1], a thorough
analysis of the properties of the deuteron and of many
features of nucleon—nucleon systems was performed in
[2], and a comparison was drawn in [5] between the
results of thisanalysis and the corresponding resultsfor
other known potentials. A three-body calculation of the
*H binding energy yielded values falling within the
range 7.6—7.7 MeV and depending on the specific ver-
sion of the interaction [14], the experimental value
being 8.48 MeV.

At the same time, the deuteron form factors and the
tensor polarizationsin elastic ed scattering have not yet
been calculated with the Nijmegen potentials. This can
be done by using the wave functions obtained in [1];
their numerical valuescan befoundin[15], but they are
given there with avariable step in the range 0-25 MeV.
Sincethiscomplicatesthe calculations, itisdesirableto
approximate analytically the wave function specified
numerically, in which case we would have at our dis-
posal its value at any required point.

To approximate the numerical wave functions from
[15], itisconvenient to use the following seriesinterms
of Gaussian functions [16]:

R.(r) = " Ceexp(-aur?). (1
k

Here, C, are coefficients, while a, are parametersin the
expansion of the radial wave function, whichistakento
be Ry(r) = u(r)/r and R, = w(r)/r, u(r) and w(r) being,
respectively, the S and D-wave solutions to the stan-
dard radial equation. Summation in (1) was performed
up to N = 13. For the wave function in question, this
made it possible to achieve a comparatively accurate
approximation in the range 0-10 fm. In constructing
this approximation, the coefficients in (1) were chosen

1063-7788/00/6305-0734%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Deuteron features cal culated with the precise and approximate wave functionsfor various versions of the Nijmegen potentials
[AE(S) and AE(D) are the average errorsin the approximation of the S- and D-wave functions, respectively]

Nijm-1 Nijm-2 Nijm-93 Reid-93 Experimen-
Deuteron | Nijm-1|  withthe | Nijm-2 with the Nijm-93 | withthe |Reid-93| withthe tgl data
features | [1] approximate | [1] approximate [1] approximate | [1] approximate from [9]
wave function wave function wave function wave function
Py, % 5.664 5.648 5.635 5.637 5.754 5.740 5.699 5.698 5.67
Qg fm? ]0.2719 0.2707 0.2707 0.2708 0.2706 0.2700 0.2703 0.2706 | 0.271(1)
Ry, fm 1.967 1.966 1.968 1.967 1.966 1.965 1.969 1.967 1.9676(10)
AE(S), % 2x10°3 4x10°3 25x10°3 26x10°3
AE(D), % 7x10°3 1x102 8.0x 1073 1.2 x 1072

in such a way as to ensure the normalization of the
overall wave function to unity. In calculating the fea-
tures of the deuteron, our approximate wave function
was matched, at large distances, with the corresponding
asymptotic expressions [1, 9]

ucr) — Asexp(-t/R),
w(r) —= Apf{1 + 3R/r + 3(R/r)?} exp(-r/R),

where R=4.319 fm and Ay = nAg, the asymptatic con-
stants being As = 0.8845(8) and n = 0.0253(2) [9]. The
calculated features of the deuteron are quoted in the
table, along with corresponding values obtained with
the precise wave functions from [1]. Also displayed in
the table are averaged relative errors characterizing the
deviation of the approximate wave function from the
precise numerical results [15]. The vaues obtained
with the approximate wave function are seen to comply
well with the results presented in [1].

The solid curvein Fig. 1 representsthe precise wave
function for the Nijm-1 version of the potential [1, 15],
the approximate wave function being graphically indis-
cernible from it. The asymptotic behavior of the wave
function is shown by the dashed curve. It can be seen
that, from 9 (or 10) fm, the asymptotic curve virtually
coincides with the precise solution and its approxima-
tion both for the Sand for the D wave (upper and lower
pairs of the curves, respectively).

Apart from integrated characteristics of the deu-
teron like the radius or the quadrupole moment, we can
compare the results for the momentum distributions.
The momentum distributions presented in [15] were
obtained with the precise wave functionsfor the various
versions of the potential. For the momentum distribu-
tions of nucleons in the deuteron, the results obtained
with the approximate wave functions are shown in Fig. 2,
the dash-dotted and the dashed curve corresponding to
the Nijm-1 and the Nijm-93 version, respectively. For
the sake of comparison, the analogous distributions
according to the precise results from [15] are also
shown in Fig 2 by the dotted and the solid curve,
respectively. It can be seen that some difference is
observed only in the case of Nijm-93. The results for
the soft-core Reid potential [3] are represented by the
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dash-and-double-dot curve. Each distribution dis-
played in this figure was normalized to unity at zero
momentum transfer.

These results demonstrate that, for all potential ver-
sions under consideration, the features of the deuteron
that were calculated with the approximate wave func-
tions agree well with those calculated with the precise
wave functions from [15]. It therefore seems reason-
ableto use our approximate wave functionsin calculat-
ing the deuteron form factors.

To calculate the form factors, we made use of the
expressions [17]

do _ [flou 208
= = B E[A+ Btan [QD]

A = G§+G§+§n(1+n)G§A,

4 22
B = én(1+n) G
u(r), w(r)
06r .
1\
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— \\
! \
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\ N
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Fig. 1. Wave function for the Nijm-1 potential.



736

P%(q)/P?(0)
100

104
10°°

1078

(e}
S}
A~
(@)

q, fm™!

Fig. 2. Momentum distributionsfor the Nijm-1 and Nijm-93
potentials.
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where u(r) and w(r) are the radial wave functions of the
bound state, while |, are spherical Bessel functions. For
the nucleon masses, we used the values of M, =
938.28 MeV and M,, = 939.57 MeV [10]; the deuteron
mass was set to 1875.63 MeV. The charge form factor
for the neutron was assumed to be zero, while the charge
form factor for the proton was parametrized as [18]

_ 1
GEP - 2,2’
(1+0.054844¢P)

DUBOVICHENKO

where g is the momentum transfer in fm! units and
where the magnetic form factors for the nucleon were

determined on the basis of the scaling law: G,\,Ip =
HpGe, and Gy = pyGe, [18].

The nonrelativistic formulas for the form factors
were used previously in[17, 19]; in[20], therelativistic
and the nonrelativistic impulse approximation were
compared for the case of the Argonne potential. (The
form factors for the Argonne potentia virtualy coin-
cide with those for the Paris potential.) It was shown
that relativistic effects become sizable only at compar-
atively high momentum transfers (5 or 6 fm!), slightly
increasing the form factors. However, the contribution
of meson-exchange currents is opposite in sign to that
of rlativistic effects, nearly canceling them (see Figs. 7
and 12 in [20]). Similar results were obtained for the
tensor polarization t,, in elastic ed scattering [20]. The
relativistic corrections and effects of meson-exchange
currents were also considered in [21], where it was
shown that they do not make a significant contribution
at momentum-transfer values below 5 or 6 fm': their
magnitude in this range is within the experimental
errors. It follows that, in the momentum-transfer range
being considered, the use of the nonrelativistic impul se
approximation is quite legitimate, so that the choice of
potential model is a key point in describing the form
factors and polarizations in ed scattering.

The form factors calculated in the present study are
displayed in Fig. 3, along with experimental data from
[17]. The dotted and the dashed curvein Fig. 3a repre-
sent the results obtained with the Reid-68 (RSCA) [3]
and the Nijm-1 potential, respectively. The Nijm-2 and
Nijm-93 potentials produce nearly coincident results,
which are depicted by the solid curve. The results for
Reid-93 (dash-dotted curve) show virtually no devia
tions from the solid curve. In Fig. 3b, the dotted curve
represents the results for Reid-93, which are graphi-
caly indiscernible from the results for Reid-68. The
dashed and the solid curve illustrate the results for
Nijm-2 and Nijm-93, respectively, while the dash-dot-
ted curve, which is amost coincident with the solid
curve, corresponds to Nijm-1. It can be seen that the
best description of the form factor B(q) isachieved with
Nijm-93 and Nijm-1: the corresponding curves do not
go beyond the error bars.

The tensor polarizations t, t,,, and t,, in elastic ed
scattering [20, 21] that were calculated for all versions
of the Nijmegen potentials are presented in Fig. 4. The
dash-and-double-dot, solid, dashed, dash-dotted, and
dotted curves show the results for Nijm-1, Nijm-2,
Nijm-93, Reid-93, and Reid-68 (RSCA), respectively.
The experimental data were borrowed from [20]. We
can see the following: (i) The potentials Nijm-1 and
Nijm-93 yield very close results, and so do the poten-
tialsNijm-2 and Reid-93. (ii) By and large, the descrip-
tion of the polarizationst,, and t,; is quite satisfactory.
(iii) The results of the calculation for t,, fall somewhat
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Fig. 3. Deuteron form factors for the various versions of the
Nijmegen potential. The experimental data were borrowed
from [17].

short of the experimental values. (iv) The best descrip-
tion of this quantity is provided by Reid-68.

Thus, we can conclude from the above that the
approximate wave functions constructed here faithfully
reproduce the behavior of the numerical wave functions
for al versions of the Nijmegen potentials. The features
of the deuteron that have been calculated with the
approximate wave functions comply well with those
found with the precise wave functions. For the deuteron
form factors and the tensor polarizations in elastic ed
scattering, the approximate wave function yields
results that agree by and large with available experi-
mental data and, in the momentum-transfer region

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000
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Fig. 4. Tensor polarizations in elastic ed scattering for the
various versions of the Nijmegen potential. The experimen-
tal datawere taken from [20].
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being considered, show only modest variationsin going
over from one version of the Nijmegen potential to
another.
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Abstract—Themirror odd nuclei “Li and ’Be and the neutron-rich nucleus ®°He are considered within amicro-
scopic approach relying on the variational principle. The binding energies of the nuclei, their root-mean-square
radii, and the electron charge C0O and C2 form factors are calculated. The resulting form factors are compared
with the predictions of the independent-particle model that assumes intermediate coupling. The sensitivity of
the nuclear properties obtained here to the choice of nucleon—nucleon potential, to deviations of the nuclear
deformation from that which follows from a variation of the total-energy functionals, and to taking projections
onto states characterized by definite values of the total angular momentum and its projection is analyzed. A
comparison with experimental datais performed. © 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

The use of the variational principle in studying the
structure of nuclei [1] makes it possible to describe
their properties in a wide range of mass numbers. This
approach provides effective tools for inquiries [2, 3]
into heavy and superheavy helium isotopes and other
nuclei, primarily even—even ones. Neutron-poor and
neutron-rich exotic nuclei, aswell as unusual phenom-
enathat can occur in the neighborhood of nuclear drip
lines[4], are of interest in connection with constructing
facilities for the production of beams of radioactive
nuclei [5, 6] and with investigating the anomalous
structure of unstable nuclei. Obviously, this requires
evolving new theoretical frameworks and refining tra-
ditional models[1, 7]. From a comparison of theoreti-
cal results with experimental data, it is possible to
deduce an answer to the question of whether a micro-
scopic variational approach employing deformed sin-
gle-particle orbitals and projections onto states charac-
terized by specific values of the angular momentum and
its projections can form abasisfor a self-consistent cal-
culation of static and dynamical nuclear properties in
general and for a calculation of the properties of odd
and exotic nuclei in particular.

2. BASIC EQUATIONS AND CONVENTIONS

The wave function of the ground state of a nucleus,

1

JA

is constructed from the single-particle deformed oscil-

Wik = det|d,(), J,v=21..,A (D

lator orbitals[8, 9]

0 (x)°0
3 k'O exp%l— kyZJ
. . i 2
0. = X O[] 54 &
k=1 LAy A/1_[1/2(a\|}< 9 2nv)n\|f!

=®,())xv()),
where{ avl af, af} ={a,, b,, ¢,} arevariational param-
eters, { le, sz, xj?’} = {X, Y, } arethe coordinates of the
jthparticle, {ny, g, 3} = {0, 0, 51 Xu() = Xgye G,
and the subscript s (t. ) denotesthe spin (isospin) pro-
jection for the jth nucleon. The functionin (1) is deter-

mined by minimizing the total energy of the nucleus as
represented by the functional [10]

o _ JOxe() Byl AIR(Q) Wiy 102

. = (3)
J

J’DKK(Q)BP(m)KI R(Q) Wi [
where H = T + U + Ucou isthe Hamiltonian of an A-
nucleon nucleus in the notation adopted in [1] (we note

that this Hamiltonian satisfiesthe condition[H , R(Q)] =
0), while J = LL + S isthe total angular momentum, L
and S being, respectively, the orbital angular momen-
tum and the spin moment.

For the odd mirror nuclel Li and Be (v =1, ..., 7)
and the even—odd neutron-rich nucleus °He (v =1, ...,
6), we took the configurations presented in Table 1 and
subjected them to the subsidiary condition a, = b, for

1063-7788/00/6305-0739%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Table 1. Configurationsfor the ’Li and "Be nuclei

v | oo S t

1 0 0 0 | +v2 |[+12(12)
2 0 0 0 | <2 |+u2(-12)
3 0 0 0 | +v2 |—w2@12)
4 0 0 0 | —w2 |—w2@12)
5 0 0 1| +12 |12 (+12)
6 0 0 1| a2 |22
7 0 0 1| +12 |[+12(-12)

the orbital given by (2). The wave function (1) appears

to be an eigenfunction of the operator J» of the total-
angular-momentum projection onto the Z' axis of the
intrinsic reference frame, the corresponding eigenvalue
being K = 1/2 for the ’Li and 'Be nuclel and K = 0 for
the SHe nucleus. In order to simplify the calculations,
weretain the conventional constraints @, = ®,, ®;=@,,
and @5 = &, (see [1-3]), which are usually used for
even—even nuclei. Sincethe orbitals presented in Table 1
are orthogonal to one another, we can recast the expres-
sion on the right-hand side of (3) into the form

z (E(NN)

v>v' =1

(CouI) (kln ex)) + Z E(kln)

where

ENNY = IDKK(Q)h(NN)(Q)dQ

A
with N, = J'DKK(Q)HEHVE!Q and hNV@Q) =

Ew(m v|ww |V; V- N; V|W 'IV'; v, the as-

yet undefined quantities on the right-hand side of the
|ast equality being given by w2 = (V4 x 257 £y t, x

2> + V58, X 7 V,,s,t,)/4. The components of the
effective central exchange nucleon—nucleon potential
U are parametrized as[1]

1
z Vg;)+ 1,2T+1
5)

The remaining quantities are parametrized in a similar

SAVCHENKO et al.

way; that is,
hiv(Q) = t.&,,(v; v[e¥/r|V; V'O
—-s [V; v'|e2/r|\7';\7E)62tz v
h"®(Q) = st &, V|V|V V|V [VHImA,
h(Q) = (1-A) | V?V'TE,/2mA,

where m is the nucleon mass, |v = IA?(Q)|VD=

ST P |‘| Y O

v'=1

R@Q)I|®,0s. = S

A
V'V, V' 2V), and §, = |_| NV OV £ V).
vi=1
For the nuclear states (1) minimizing the functional
in (3), we find the static properties and the electron
charge form factors Fé,\(qz) for the nuclei being stud-

ied [11, 12]. Here, A isthe rank of the tensor operator
under consideration (multipole order), while q is the
momentum transfer.

We have a so cal culated the form factors Fé,\(qz) on

the basis of the independent-particle model that
assumes intermediate coupling. Within this model, the
result obtained by antisymmetrizing the normalized
wave function for the nuclear configuration

(nllif)(nQI:z) inall A=k, + k, nucleons can be repre-
sented as [13]

[k k! O

_— ks T
XAy €13, €,30mm, = DT O [Jl][Jz]

1.5 u0 ©
ZSCEJ Tz(nz)[L][S]DLz S, 3.0

Hi s B
~ k, K, LST
X M% MM SMIM;EA[ ;€101 E 0 MMy,

where E=-E,, n; = {[f], o}, Lj, S}, & = {
guantum numbers of the pure Ik’ configuration, J; =

L+ S, and [j

n;. T;} arethe

= (2j + 1)V2. The quantities CEJ 7,(N2)

are coefficients of the basis states | I2 &,J,L0n the super-

position that represents the wave function of the 1p
shell within the intermediate-coupling scheme [14].
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In calculating the reduced matrix elements of the
irreducible tensor operator F(KK,K;, Qb0 =

3 1L fiKikoKs, OChy), where K, K,, and K, are the

ranks in, respectively, orbital, spin, and isospin spaces,
between the states specified in (6), we obtained, instead
of expressions (1.22) from [15] for F, and F,, the more
compact expressions

L+S+T+L,+S,+ T+, +1

[LI[SIITI[L]
x[SITILISIITILIS]T,]

11 11
X < | 155" f(KKK3)|l 1§é>

&,

B L S S RN TRl ()
OL L L,Mss s MTTT,0

Ky k-1

S BEls
&

s

£}, € T(-1)

X

Li+S+T 1+, +S+T,+ L, +S+To+L'+S+T +1,+1

x (-1)
x[LI[SITILSITI LS TALSITS]

11 11
X < |2§§" f(K1K2K3)|||2§§>

X%L'z L, KlE.%Sé S, Kz%rlz T, ng
LrL@sssmrT Lo o
k-1

K
x § 0,80},
2

Ly+S,+T,

&5y E5} |y €5 -1)

11 1
01,1, Ly B35 5 > 5
0 M2 2 2m2 2

3 :
where 3 = 9, . f.]6a:ai6L;Li5SS16T;Ti' Expressions (7)
and (8) were then used to calculate the electron charge

form factors Ff;,\(qz) within the independent-particle
model.
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3. RESULTS OF THE CALCULATIONS

We have performed numerical calculations with fif-

teen nucleon—nucleon potentials U of the form (5). Of
these, the first 11 were described in detail in [16], their
numbering here being coincident with that from [16].
The nucleon—nucleon potentials nos. 12-15 were pro-
posedin [17] and were used (see[2]) in calculationsfor
a large number of even—even isotopes from He to Ca
inclusive. In[1], the structure of the bound states of He
and Be isotopes was considered by assuming the
nucleon—nucleon potential no. 15. For the parameters
of the nucleon—nucleon potentials nos. 12-15, the val-
ues extracted from data reported in [17] are displayed
in Table 2. Table 3 presents the values obtained here for
the parameters a,, b,, and ¢, by minimizing the func-
tiona in (3). Also shown in this table are the binding
energies E, calculated for the 7Li and 'Be nuclel with
the nucleon—nucleon potential no. 15 either without
going over to relevant projections (first row for each v)
or by taking such projections (second row for each v).
These results are listed for three options of single-par-
ticle orbitals (oscillator basis):

(A) aj = by#zc, foreachv,

(B)
(C) a, =b,=c,=a forallv.

oeq

oeq _ .0eq _
a, - bv =G

€))

for each v,

The corresponding values for the ’Be nucleus are given
parenthetically in Table 3.

For the ’Li and "Be nuclei, Table 4 quotes the bind-
ing energies E, = —[H [ the root-mean-square charge

radii R, = ERgﬂJZ, the neutron radii Ry = ER,i ﬂjz, and
the mass radii R = RV calculated with the nucleon—
nucleon potentials nos. 1-15. For each nucleon—
nucleon potential, the results obtained by calculating
E,. R, Ry, and Rwithout taking relevant projectionsare
displayed in the second and the first row for the cases
where the calculations employ, respectively, the basis
(A) and the basis (B) from (9). For the same bases, the
corresponding results produced by the procedure
employing the above projections are given in the fourth
[for (A)] and the third [for (B)] row. The analogous
resultsfor the ’Be nucleus are given parenthetically. We
used data from [18] as experimental values of E, and
datafrom [19] as experimenta values of R;, Ry, and R.

The EYY, ES ) EXN™ and EM™ values cal-
culated with the nucleon—nucleon potential no. 15 by

going over to relevant projections are presented in

Table5for thecase of a, =b, # ¢, {basis(A) from (9)}.
For v = 1, we then have E{'™ = EX'™. Taking into

account symmetry under the interchange of the sub-
scripts v and v' and using data from Table 5, we can
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Table 2. Parameters of potentials nos. 12-15 used in the present calculations (the strengths V(zrg,, 1,27+1 andtheradii ryare
givenin MeV and fm, respectively; the data in the table were calculated on the basis of the results reported in [17])

n no. 12 no. 13 no. 14 no. 15
vg = v
1 293.13 684.46 —229.11 390.744
2 -13.14 7.31 253.38 -169.171
3 -18.96 —75.83 332.699
4 -0.25 —270.834
5 82.331
Vg = Vi3
1 37.32 414.77 1345.28 894.605
2 —44.68 —243.31 —-612.36 22.138
3 60.81 149.01 —-553.072
4 —-0.42 475.756
5 —145.740
ro 1.0 0.9 0.775 0.7
Nimax 2 3 4 5

Table 3. Results obtained by minimizing the functional of the total energy E of the “Li nucleus with potential no. 15 in an
anisotropic basiswith a, = b, # ¢, in an isotropic basiswith a, = b, = ¢, and in an isotropic basiswherea, = b, = ¢, = afor

al orbitals
(A) a, = by#c; B) ay* = by® = ) | (Oa=b=c=a
\Y)
ay = b} S ay” a
1(2) 1.384 (1.381) 1.898 (1.890) 1.508 (1.504) 1.639 (1.642)
1.342 (1.339) 2121 (2.113) 1.506 (1.502) 1.664 (1.667)
3(4) 1.395 (1.400) 1.887 (1.895) 1.515 (1.519) 1.639 (1.642)
1.350 (1.354) 2.107 (2.119) 1.512 (1.516) 1.664 (1.667)
5(6) 1.573 (1.582) 1.933 (1.946) 1.836 (1.854) 1.639 (1.642)
1.497 (1.504) 2.052 (2.065) 1.865 (1.881) 1.664 (1.667)
7 1.579 (1.575) 1.942 (1.935) 1.849 (1.842) 1.639 (1.642)
1.501 (1.497) 2.061 (2.054) 1.877 (1.869) 1.664 (1.667)
E,, MeV 33.31(31.94) 27.24 (25.92) 24.01 (22.57)
37.73(36.14) 29.56 (28.23) 25.41 (23.97)

Note: For each v value, the results obtained by going over to relevant projections are given in the second row, while the results computed
without doing this are presented in the first row. The corresponding results for the ’Benucleusare given parenthetically. The values
of the variational parameters a,,, b, and ¢, are quoted in fm.

obtain the energies of nucleon separation fromthe state  that were calculated with the nucleon—nucleon poten-

with number v (the results are listed in Table 6),

A

E\(}SQD) - _ z (E ;

vi=1
V'Zv

Also given in Table 6 are the experimental values of

+ E\(,S-OUI) + E\(}I\(}i'n.ex)) _ E\(,ki").(lo)

tialsnos. 1 and 7.
We have also calculated the effect of the Coulomb
repulsion of protons on the energies Eyy = WU 0T =

0 [Jand E = (H [= —E, (see Table 7). This effect man-
ifests itself as changes in the a,, b,, and ¢, values as

EC® for the "Li nucleus [20] and the values of ES™™  optained from a variational procedure versus the pres-
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1/2 1/2
Table4. Binding energies (Ep,) and charge, neutron, and mass root-mean-square radii (R; = ER%D JRy= ERED ,andR=

[R2[Y2, respectively) computed for the 7Li nucleus with the nucleon—nucleon potentials nos. 1-15

no. E,, MeV Ry, fm Ry, fm R, fm
1 — — — —
19.97 (18.41) 1.99 (2.14) 2.12 (2.00) 2.06 (2.08)
28.75 (27.10) 2.00 (2.14) 2.12 (2.00) 2.07 (2.08)
2 - - - -
15.26 (13.71) 2.01 (2.16) 2.13(2.01) 2.08 (2.10)
23.95 (22.31) 2.00 (2.14) 2.12 (2.00) 2.07 (2.08)
3 28.25 (26.82) 2.03(2.18) 2.16 (2.02) 210 (2.1
32.24 (30.81) 2.11 (2.26) 2.23(2.10) 2.18(2.19)
29.67 (28.23) 2.05 (2.20) 2.17 (2.04) 212 (2.13)
36.56 (35.14) 2.18 (2.33) 2.30(2.16) 2.25(2.26)
4 26.79 (25.44) 212 (2.28) 2.26 (2.12) 220 (2.21)
31.32(29.94) 2.18(2.33) 2.31(2.17) 2.26 (2.26)
28.28 (26.91) 2.13(2.29) 2.27(2.12) 2.21(2.22)
35.85 (34.48) 2.25(2.40) 2.37 (2.23) 2.32(2.33)
5 27.10 (25.70) 2.06 (2.21) 2.19 (2.05) 214 (2.14)
31.32(29.91) 2.14(2.29) 2.26 (2.12) 2.21(2.22)
28.55 (27.13) 2.07 (2.23) 2.20 (2.07) 2.15(2.16)
35.75 (34.35) 2.20 (2.36) 2.33(2.19) 2.28 (2.29)
6 26.43 (25.12) 2.19(2.35) 2.33(2.18) 2.27 (2.28)
31.21(29.87) 2.25(2.40) 2.38(2.23) 2.32(2.33)
27.95 (26.63) 2.19(2.35) 2.34(2.18) 2.28(2.28)
35.66 (34.32) 2.31(2.47) 2.44 (2.30) 2.39 (2.40)
7 35.76 (34.62) 2.49 (2.66) 2.63 (2.47) 2.57 (2.58)
40.61 (39.45) 2.59 (2.75) 2.72 (2.56) 2.66 (2.67)
36.90 (35.76) 2.50 (2.68) 2.65 (2.48) 2.59 (2.60)
44.36 (43.21) 2.64(2.82) 2.79 (2.63) 2.73 (2.74)
8 44.96 (43.76) 2.38(2.53) 2.50(2.35) 2.45 (2.46)
49.13 (47.93) 2.48 (2.64) 2.61 (2.46) 2.56 (2.57)
45.91 (44.71) 2.40 (2.56) 2.53(2.38) 2.48 (2.48)
52.49 (51.31) 2.56 (2.73) 2.69 (2.53) 2.64 (2.65)
9 45.00 (43.77) 2.33(2.49) 2.46 (2.31) 240 (2.41)
49.57 (48.34) 2.44 (2.60) 2.56 (2.41) 251 (2.52)
46.05 (44.81) 2.35(2.51) 248 (2.33) 243 (2.43)
53.31 (52.09) 2.51(2.68) 2.64 (2.48) 2.59 (2.60)
10 37.59 (36.35) 2.32(2.49) 2.46 (2.32) 2.40 (2.42)
43.74 (42.48) 2.43(2.59) 2.57 (2.42) 2.51(2.52)
38.91 (37.66) 2.33(2.50) 2.47 (2.33) 2.41 (2.43)
48.72 (47.45) 2.48 (2.64) 2.62 (2.47) 2.56 (2.57)
11 - - - -
1.62 (0.42) 241 (2.61) 2.55 (2.40) 249 (2.52)
5.73 (4.51) 2.47 (2.66) 2.61 (2.46) 2.55(2.58)
12 25.97 (24.77) 2.36 (2.54) 2.53(2.36) 2.46 (2.47)
30.88 (29.63) 2.40 (2.57) 2.55(2.40) 2.49 (2.50)
27.34(26.12) 2.36 (2.53) 2.52(2.36) 2.45 (2.46)
35.38 (34.10) 2.45(2.61) 2.60 (2.44) 2.54 (2.54)
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Table4. (Contd.)

no. Ey,. MeV Rz, fm Ry, fm R, fm
13 26.07 (24.78) 2.21(2.38) 2.37(2.21) 2.30(2.31)
32.56 (31.22) 2.26 (2.42) 2.41 (2.26) 2.35(2.35)
27.98 (26.69) 2.23(2.40) 2.39(2.23) 2.32(2.33)
37.27 (35.93) 2.31(2.47) 246 (2.31) 2.40 (2.40)
14 26.74 (25.41) 2.14 (2.31) 2.30(2.14) 2.23(2.24)
33.90 (32.54) 2.20 (2.36) 2.35(2.20) 2.29 (2.29)
29.07 (27.73) 2.16 (2.33) 2.32(2.16) 2.25(2.26)
38.65 (37.28) 2.25(2.41) 241 (2.25) 2.34(2.34)
15 27.24 (25.92) 2.16 (2.33) 2.32(2.15) 2.25(2.25)
33.31(31.94) 2.20 (2.36) 2.35(2.20) 2.29(2.29)
29.56 (28.23) 2.17 (2.35) 234 (2.17) 2.27(2.27)
37.73(36.14) 2.25(2.41) 241 (2.25) 2.34(2.34)

Experimental data 39.2459 + 0.0009 2.39+0.03 2.405 + 0.020
(37.6016 + 0.0009) 2.35+0.10 2.38(2.25) 2.33(2.31
2.27 (2.36)

Note: For each nucleon—nucleon potential, the results presented in the first and second (third and fourth) rows were obtained from the cal-
culations performed in, respectively, anisotropic (a, = b, = c,) and an anisotropic (a, = by, # ¢,)) basiswithout going to over to relevant
projections (by using these projections). The corresponding results for the ‘Be nucleus are given parenthetically. The experimental
data were borrowed from [18, 19].

Table5. Energies(inMeV) ENY (first row) for eachv', ELS™ (second row), EJ™ )

for the “Li nucleus with potential no. 15 by going over to relevant projections

(third row), and EX'™ as calculated

Y 2 3 4 5 6 7
\Y
1 —10.34 (~10.39) |-10.34 (-10.32) [ -10.34 (-10.32) | -5.27 (-5.21) | —5.27 (-5.21) | —0.61 (-0.60)
0.73 (0.00) 0.43 (0.00)
0.55 (0.56)
2 ~10.34 (-10.32) [-10.34 (10.32) | -5.27 (-5.21) | -5.27 (-5.21) | -5.23(-5.26)
0.57 (0.00)
3 ~10.33(~10.26) | —0.60 (-0.62) | —5.24 (-5.20) | -5.21 (-5.25)
0.00 (0.73) 0.00 (0.43) 0.00 (0.57)
0.57 (0.56)
4 —5.24(-5.20) | —0.60(-0.62) | —5.21 (-5.25)
0.00 (0.57) 0.00 (0.43)
0.57 (0.56)
5 —5.75(-5.74) | —5.75(-5.75)
0.00 (0.56)
6 —5.75 (-5.75)
S 11.49 (11.55) | 11.42(11.34) | 11.42(11.34) | 13.81(13.66) | 13.81(13.66) | 13.71(13.80)

Note: Forv =1, we have E(lkin) = E(Zkin) ; the quantities E,

(NN)
V'

scriptsv and v' (v # v'"). The corresponding values for the ‘Be nucleus are given parenthetically.
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Table 6. Nucleon separation energies E (in MeV)
v 1 2 3(4) 5(6) 7
no. 1 32.66 (33.67) | 39.11(40.34) | 32.47(30.54) | 14.12(12.23) | 15.96 (16.86)
no. 7 26.66 (27.40) | 32.48(33.37) | 27.20(25.72) | 14.13(12.81) | 13.26(14.02)
no. 15 28.97(29.94) | 34.00(35.16) | 30.07(28.34) | 13.50(11.95) | 12.50(13.50)
Experimental data "Li nlj = 1sy,, protons 1p4),, protons
from [20] 235+0.7 100+14
241+15 101+14
258+ 0.6 11.3+£05
23015 102+16
255+04 11.8+0.3
26.0+0.2 101+0.1

Table 7. Effect of taking into account Coulomb interaction in the Hamiltonian of the nucleus

Energies, i Be Without Coulomb || Energies, 7L Be Without Coulomb
MeV repulsion MeV repulsion

Enn -128.30 -128.01 -128.62 T 88.84 88.58 89.16

Ecou 1.73 3.29 0.00 E=-E, -37.73 -36.14 -39.46

ence or the absence of the term Ucou in the Hamilto-

nian H . The values of the energies E¢,, = U cou LfOr
the "Li and "Be nuclei are also included in Table 7.

The energies E, Eyy, Ecou, @nd T calculated here by
using the nucleon—nucleon potential no. 15 and by tak-
ing relevant projections are displayed in Fig. 1a versus
the parameter & characterizing the deviation of the
nuclear deformation from the equilibrium deformation
corresponding to the minimal energy as determined in
varying the functional in (3). The parameter & is intro-
duced through the relations

a,(8) = b,() = a+&(a)-a),
c,(§) = a+&(ci-a), v=1,..,7,

with thevaluesof a, a;, and ¢, being taken from Table 3

[in Table 3, the values of & = 1 and & = O correspond,
respectively, to the version (A) and to theversion (B) in
(9)]. Curves 1, 2, 3, and 4 represent, respectively, the
dependences AW, = E(§) — E, AW, = Ex(§) — Exn, AW, =
T(E) - T, and AW4 = [ECOUI(E) - ECoul] x 102 for the Li
nucleus; for these dependences, we have used the val-
UsE=E€=1,Ew=EnwE&=1,T=T(E = 1), and
Ecou = Ecou(§ = 1) from Table 7. Figure 1b shows the
dependences AW (8) — AW (€), k=1, 2, 3, and
[Eou () — Ea 1~ [EGou (§) — Ecou ], the last depen-
dence corresponding to curve 4. Figures 1c and 1d dis-

play the same dependences, but for a different parame-
trization of the deformation, namely,

a,(n) = by(n) = a*+n(ay—a;™?, (12)
c(n) = a%+n(ct=a%), v=1,..7.

(1)
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The root-mean-square radius R calculated here for
the 7Li nucleus by using the nucleon—nucleon potential
no. 15 and by taking relevant projections (left scale) is
shown in Fig. 2 versus the deformation parameters ¢
from (11) (curve 1) and n from (12) (curve 2). Curve 3
represents the dependence 0(§) = [Rs.(€) — R,i(§)]
10%; the curve corresponding to the dependence d(n)
virtually coincides with curve 3. Also illustrated in
Fig. 2 (right scale) is the sensitivity of the energy E =
—E, for the Li nucleus to deviations of the parameters
a,, b,, and ¢, for individual groups of orbitals (one of
the first three pairs or the last orbital in Table 1) from
their values resulting from applying the variational pro-
cedure. The deformation parameter { corresponding to
curve 4 isdetermined by the relations

a@ =b@ =1 &7
S

{(cy-a) 2 )
m+{(c,—a), v =1,
c(@ =10,

[k,, remaining values of v.

Curves 5 and 6 correspond to the replacement of the
subscript pair (1, 2) by, respectively, (3, 4) and (5, 6) in
relations (13), while curve 7 is associated with the sub-
script value of v = 7 in (13). The parameters &, n, and
vary within identical limits. In Fig. 2, they are plotted
along the same axis (abscissa). Similar results were
obtained for the ’Be nucleus.

The states of 1p nucleons within the independent-
particle model are very similar [14] to the [3]**Ps),
statesinthe’Li and ’Be nucleus and to the [2]*'S, states

in the ’He nucleus. The coefficients CEZJZTZ (here,
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AW,, MeV

(@) (c)

20

Fig. 1. Energies E, Eny, Ecoy» ad T for the 7Li and 'Be
nuclei as functions of the parameter (a, b) & or (c, d) n [see
equations (11) or (12) in the main body of the text] specify-
ing deviations of the nuclear deformation from the equilib-
rium deformation found in varying the total-energy func-
tiona (3).

E = -E,), which are associated with these states and
which appear in (6), are very close to unity. In Figs. 3a
and 3b, curves 1, 2, and 3 represent the form factors

F2,(0P) and F2,(qP) calculated for the 'Li nucleuswith
the nucleon—nucleon potential no. 15. Curves / and 2,

computed with deformed orbitals (a; = by # c} ), dif-
fer inthat the former (latter) was obtained by taking rel-
evant projections (without doing this). Curve 3 corre-
sponds to the calculations with isotropic orbitals

(ay® = by™ = "), inwhich case the results obtained

by going over to the above projections virtually coin-
cide with those for which projections were not used.

The calculation of Féz(qz) with isotropic orbitals was
performed without employing projected states. In
Figs. 3a and 3b, the results of the calculations for the
Li nucleus that were based on the independent-particle
model are depicted by curve 4 for the oscillator-param-
eter value of a, = 2 fm from [12] and by curve 5 for the
oscillator-parameter value of a, = 1.755 fm obtained in
[21]. (Experimental data were borrowed from [21].)
Curve 6 (obtained from a variational calculation
employing deformed orbitals and projected states) in
Fig. 3a represents the total (CO + C2) electron charge
form factor for the Li nucleus as a function of g?.
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R, d, fm E, MezV
3.5
-30
2.5
-34
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1.5 ‘ ‘ 7138
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Fig. 2. Dependences of (left scale; curves 1, 2, 3) the radii

R= R0 of the'Li and "Be nuclei on the parameters € and
n [see equations (11) or (12) in the main body of the text]
and (right scale; curves 4-7) the energy E = —E, of the Li
nucleus on the parameter { [see equation (13) in the main
body of thetext] specifying deviations of the deformation of
individual groups of orbitalsfrom the equilibrium deforma-
tion found in varying the total-energy functiona (3). The

results for the Be nucleus are similar. In calculating curves
4,5, 6, and 7, the deformation was changed only for the
orbitals1and 2, 3and 4, 5and 6, and 7 from Table 1, respec-
tively. The parameters €, n, and { were changed in the same
range and are plotted along the same axis (abscissa).

In Fig. 3a, curves 7 and 8 show the form factor
F2,(0?) caculated for the SHe nucleus with, respec-

tively, the deformed (a, = by # c,) and the isotropic

oeq _ oeq

(a, "=b, " =c, ") orbitalsby using avariational pro-
cedure with the nucleon—nucleon potential no. 15. In
either case, the results corresponding to the projected
and unprojected states agree. Curve 9 represents the
form factor F24(cP) calculated for the ®He nucleus on
the basis of the independent-particle model with the
oscillator-parameter value of a, = 1.6 fm.

The corresponding calculation for the ’Be nucleus
leads to analogous results. We do not display here the
entire body of these results, showing only the ¢ depen-
dences of theratios F&, ('Be)/F2, ('Li) in Fig. 4, where
the notation for the curves correspondsto that in Fig. 3.

oeq

4. DISCUSSION AND CONCLUSIONS

Investigation of nuclear structures within micro-
scopic approaches is based on choosing an effective
nuclear nucleon—nucleon potential that must lead to
correct values for the simplest nuclear features like
binding energies and nuclear dimensions. A variational
calculation of these nuclear featuresis quite straightfor-
ward for the case where the trial wave function for the
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Fig. 3. Form factors (a) Féo for the 7Li and °He nuclei and (b) Féz for the "Li nucleus. In Figs. 3a and 3b, curves 1 (2) represent

theresult of the calculation for as = b3 % c\? within thevariational procedure that involves (does not involve) going over to relevant

projections; curve 3 corresponds to the calculations for af; = b\? = c\? e (here, the results obtained by going over to relevant

projections are virtually coincident with those computed without doing this); and curves 4 and 5 show the results obtained on the
basis of the independent-particle model with a, = 2 and 1.755 fm, respectively. Curve 6 in Fig. 3a was plotted for the sum of the

form factors in question (CO + C2 curve) and is contrasted against experimental data from [21] for the 7Li nucleus. On the same
panel (3a), curves 7, 8, and 9 represent our resilts for the ®He nucleus, corresponding to, respectively, the calculation with a\? =

b\? # c\? , the calculation with aseq = b\?eq = cseq (inthe casesillustrated by curves 7 and 8, the results are virtually independent

of whether the procedure used involves taking relevant projections or not), and the calculation based on the independent-particle
model with ay = 1.6 fm.
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ground nuclear state is constructed in terms of single-
particle orbitals. Within thisframework, the energy of a
specific nucleusis varied with respect to the parameters
of the potential of a preset form. This implementation
of the variational principle replaces the Hartree—Fock
method, which could probably ensure a higher preci-

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000

sion, but which involves considerable computational dif-
ficulties. It should be borne in mind that the °He, "Li, and
’Benuclei belong to the beginning of thefilling of the 1p
shell; therefore, these nuclei are inevitably deformed. In
order to avoid possible problems associated with degen-
eracy, it istherefore natural to choose, for single-particle
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FZo(Be)/FZy(Li)

2

q*, fm™2

Fig. 4. Ratio of the squared form factors F(Z:O for the 'Be

and "Li nuclei. The notation for curves 1, 2, and 3 isidenti-
cal tothat in Fig. 3.

orbitals, one-nucleon wave functions in the field of an
anisotropic oscillator (not a spherically symmetric one)
generally featuring three different frequencies.

In view of the attractive character of nuclear forces,
the configuration that corresponds to the ground
nuclear state must obey therule (see[22]) of maximally
compact filling (allowed by the Pauli exclusion princi-
ple) with the orbitals (2) of the Slater determinant in
expression (1). The quantum numbers of inner (v = 1—
4) orbitals correspond to an alpha-particle cluster. In
our case of the one-quantum orbitals (2) of valence
nucleons, the maximal overlap of single-particle wave
functions (that is, minimal energy) is achieved when
the only quantum corresponding to the orbitalsin (2) is
associated, for all three (or two in the case of the *He
nucleus) orbitals in (2), with the same coordinate axis
chosen here for the z axis. The orientation of the
unpaired-nucleon spin (for ’Li and ‘Be nuclei) does not
affect the energy of the nucleus. For the configuration
constructed in this way (see Table 1), the x and y axes
are equivalent, which impliesthe axial symmetry of the
nucleus.

A great number of studies devoted to the problem
being discussed were performed by different authorsin
different periods of time. In [16], this range of investi-
gations was characterized by alist including 11 well-
known potentials, but by no means is this list exhaus-
tive. As the problems that the researchers of these
realms addressed became more intricate, it was neces-
sary to invoke more complicated effective nucleon—
nucleon potentials. The calculations performed in [17]
resulted (see Table 2) in multicomponent nucleon—
nucleon potentials (nos. 12-15) that describe a wide
range of nuclear properties. Of these, the nucleon—
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nucleon potential no. 15, which is used predominantly
inthe present calculations, isthe best one. It was shown
in [17] that, within the SU(3) microscopic model, this
multicomponent [n,,.. = 5] potential makes it possible
to reproduce the binding energies and the root-mean-
sguare radii of the “He, '°0, and “°Ca nuclei; in addi-
tion, it meets the saturation condition and respects
many important features of nuclear matter, such as the
energy per nucleon E(kg)/A, the compressibility modu-

lus (kﬁ /A)dZE/dk,g , and the condition of minimum of
the function E(K)/A at k = ke (kg is the Fermi momen-
tum). This nucleon—nucleon potential is characterized
by a moderate repulsion at small distances (soft core)
and by a comparatively slow decrease at large dis-
tances.

For the oscillator lengths and the root-mean-square
radii, a variationa calculation of °He static properties
that was performed by using the nucleon—nucleon
potential no. 15 and by taking relevant projections

yielded the values of (in fm) a; = b; = 1.331, ¢} =
1.972, a; = b, =1.345, c; =1.985, a; = bs =1.599,

¢ =1.992, R, = 1.746, Ry =2.340, and R = 2.160. The

corresponding binding energy was found to be E, =
29.682 MeV (the experimental value from [19] is

ES®™ = 20,267 MeV). Here, the success achieved in

calculating the binding energy was due, in our opinion,
to two factors: first, the nucleon—nucleon potential
no. 15 was fitted to the properties of precisely even—
even nuclei; second, clustering in the ®He nucleus is
characterized by the dominance of thea + (nn) and a +
n + n structures, which have close binding energies.
This suggests that clustering has only a dlight effect
(the binding energy of the dineutron cluster is very
small) on the binding energy of the °He nucleus;
assuming the a + n + n structure, we can then use effi-
ciently thev = 1-6 orbitalsfrom Table 1. If wesimilarly
assume a + *H clustering for the "Li nucleus and a +
He clustering for the ’Be nucleus, the binding energies
of the nuclei will depend greatly on the type of cluster-
ing. Owing to the sizable binding energies of the*H and
3He clusters, the above structures are nonequivalent in
binding energy to structuresof thea + p+n+nanda +
p + p + n types. Thus, the assumption that the three
valence nucleons are not clustered in the field of the
alpha-particle cluster leads to an underestimated bind-
ing energy of the ’Li and ‘Be nuclei.

In order to study the possibility of self-consistently
describing various static and dynamical nuclear fea-
tures, we have used the nucleon—nucleon potential sthat
were presented in [ 16, 17] and which differ by the num-
ber of components and by their strengths. Mirror nuclei
provide a convenient testing ground for theoretical
models. These nuclei may play the role of a core in
studying [23, 24] nuclides characterized by anomalous
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values of theratio N/Z. Beams of ’Li and ’Be nuclel can
be used in experiments devoted to nucleus—nucleus
scattering [25-28]. All this motivated our interest in the
possibility of describing the 7Li and "Be nuclel in the
variational-approach version discussed here. Our cal-
culations have revealed that the results depend sizably
on the presence of short-range repulsion and of long-
range attraction at larger distances in various compo-
nents of the nucleon—nucleon potentials used. By way
of example, we indicate that, for the nucleon—nucleon
potentialsnos. 1, 2, and 11, the ‘Li and ‘Be nuclear sys-
tems treated with the aid of the isotropic basis feature
no bound states both in the case where a transition to
relevant projectionsis performed and in the case where
thisisnot done (Table 4). For the case of an anisotropic
basis, the cdculation that relies on the nucleon—
nucleon potential no. 7 and which does not use pro-
jected states |eads to reasonabl e, albeit somewhat over-
estimated, binding energies and to excessively large
values for the radii R,, Ry, and R. As to the nucleon—
nucleon potential no. 10, the calculation in theisotropic
basis with this potential yields reasonable values for E,
and R;, but overestimated valuesfor Ry and R, irrespec-
tive of whether we go over to projections onto relevant
states or not. Similar listing could be continued, but we
can dready state that, whilst some nucleon-nucleon
potentialsfrom Table 4 are capable of reproducing indi-
vidual nuclear parameters, the nucleon—nucleon poten-
tial no. 15 makes it possible to describe fairly well the
entire body static nuclear features.

In calculating the datain Table 6, which is based on
Table 5 and which makesit possible to compare various

contributions to the separation energy E*® | we have

also used the nucleon—nucleon potential no. 15 within
the procedure employing projections onto relevant
states. We note that, because of constraints (see Table 2)

on the components Vé';)+ 127+1 from (5) and on the

orbitals ®,, some of the resultsin Table 5 coincide. In
addition to the experimental values from [20], Table 6

also presents the results obtained by calculating E&*

for the nucleon—nucleon potentials nos. 1 and 7. This
makesit possible to assess the sensitivity of the method

to the choice of form for the potential U. That we com-
pare precisely these potentials is motivated by the cir-
cumstance that they lead to the minimal (no. 1) and the
maximal (no. 7) nuclear sizes. Although the calculation
with the nucleon—nucleon potential no. 15 leads to a
somewhat overestimated value of E®P for proton sepa-
ration from the core, the result is qualitatively consis-
tent with experimental data.

In Fig. 1, the deviations from the optimal values of
the energies E, Eyy, Ecou, @d T for two (of many pos-
sible ones) different parametrizations of the nuclear
density are characterized by moderately high stability.
This is quite surprising because the dimensionality of
the space spanned by the parameters of the problem is
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rather high. Figure 2 shows deviations of the radii R
(Ieft scale) in response to changesin the nuclear defor-
mation. We can see that these deviations are character-
ized by asimilar stability. An analysis of deviations of
the “Li binding energy E, (right scale) that are caused
by the deformation of the individual groups of orbitals
shows, as might have been expected in advance, a ten-
dency common to the °He, 7Li, and 'Be nuclei: the
dominant contribution to the change in the binding

energy E, comes from the deformation of the n, =0

(v=1, .., 4) orbitals from Table 1—that is, from the
deformation of inner orbitals corresponding to the
alpha-particle cluster.

In contrast to the independent-particle model, which
fails to reproduce (see Fig. 3) experimental data from
[21] intheregion ¢? = 1.5 fm2, our variational calcula
tions of the electron charge form factor for the 7Li
nucleus lead to satisfactory agreement with experimen-
tal datafor g < 5 fm2. At higher momentum transfers,
the calculated form-factor values are still overly great.
To improve the agreement with experimental data, we
can choose the nucleon—nucleon potential more thor-
oughly and take into account the properties of odd
nuclei in fitting the potential parameters. The effect of
the choice of potential on nuclear form factors—some-
times, the effect of this choice is quite sizable—was
revealed in our calculations. In principle, we can aso
abandon the idea of imposing constraints on the single-
particle orbitals and on the components of the nucleon—
nucleon potential. In all probability, the most effective
way to improve the agreement with experimental data
is to take into account more consistently the cluster
degrees of freedom of nuclei.

Figure 4 shows that, within each version of the cal-
culation from those listed for Fig. 3, the squares of the
monopoleform factorsfor the mirror nuclel ’Li and '‘Be
may have a scatter at g ~ 2 fm! within afactor of five.
The maximal distinction between the results of the cal-
culation performed without taking projections to rele-
vant states (curves 2, 3) and the results represented by
curve / is about 20% both for the deformed and for the
isotropic basis. Since the contribution of the C2 form

factor is small, the behavior of the ratio [FéO (Be) +

FZ, Be)l/[F&, (Li) + F&,(Li)] as a function of ¢ is
similar to the behavior of curves /, 2, and 3.

In summary, the basic results of the present study
are asfollows:

(i) It has been shown that main static and dynamical
features of extremely light 1p-shell nuclei can be
described, at least qualitatively, within a multiparticle
variational approach taking into account the Pauli
exclusion principle, using independent deformations of
single-particle orbitals, and implementing a transition
to projections onto states characterized by definite val-
ues of the total nuclear angular momentum and its pro-
jection (in contrast to what was donein [1], projections
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are constructed here without any simplifying assump-
tions).

(if) The use of the same multicomponent effective
exchange nucleon—nucleon potential no. 15 (which was
proposed in [17]) for the Li and ’Be nuclei in avaria
tional calculation employing a one-determinant intrin-
sic wave function has enabled us to attain fairly good
agreement with experimental data on the binding
energy, the proton separation energy, and the root-
mean-square radii for either nuclear species, aswell as
with the experimental values of the electron charge
form factor for the 7Li nucleus. Only some individual
properties of the nuclei being considered can be repro-
duced with the other nucleon—nucleon potentials.

(iii) 1t has been established that many nuclear fea-
tures, such as the energies E, Eyy, Ecoy, @nd T and the
root-mean-square radii R, as determined in the varia
tional calculations, are weakly sensitive to the shift that
the point corresponding, in the eight-dimensional space
of the variational parameters, to the minimum of the
total-energy functional for the nuclei being considered
undergoes in response to variations in the form of
parametrization of the nuclear deformation.

(iv) The effect that changes in the deformation of
individual groups of single-particle oscillator orbitals
that was obtained in the variational calculation—these
changes correspond to shifts in the relevant planes of
the parameter space—may exert on the nuclear binding
energies has been investigated, and it has been found
that the binding energy of each nuclear species consid-
ered here is highly sensitive, as might have been
expected, to changes in the deformation of inner orbit-
als associated with an alpha-particle cluster.

(v) It has been shown that the wave functions of
nucleons in the field of an anisotropic harmonic oscil-
lator (rather than of a spherical one) represent an opti-
mal choice of single-particle orbitals for variational
calculations of the static and dynamical features of
nonmagic nuclei.

(vi) It has been found that the calculated electron
charge form factors for the ®He, 7Li, and "Be nuclei
depend sizably on the choice of nucleon-nucleon
potential. The results corresponding to the use of the
nucleon—nucleon potentials nos. 1 and 7, which lead,
respectively, to the minimal and to the maximal root-
mean-square radii of the nuclei, show the greatest devi-
ations from the optima results obtained with the
nucleon—nucleon potential no. 15.

(vii) A comparison has been drawn between the
results of the variational calculations of the static and
dynamical features of themirror nuclei “Li and "Be. It has
been found that, in theregion around g ~ 2 fm, the calcu-
lated values of the squared form factors for these nuclear
species may exhibit more than fivefold distinctions (for
example, thisis so for the monopole form factor).

(viii) To the best of our knowledge, the above con-
sistent variational calculation of static and dynamical
nuclear features has been applied to odd nuclei for the

SAVCHENKO et al.

first time ever. That the entire body of the properties of
the 'Li and "Be nuclel has been described qualitatively
on aunified basis gives sufficient ground to believe that
the method used here can be applied more widely to
odd and exotic nuclei.

(ix) By means of intermediate summations over the
projections of the angular momenta, we have been able
to obtain compact expressions used in calculating the
reduced matrix elements of irreducible single-particle
tensor operators between the states of the two-shell
mixed configuration. These results have awide range of
application and make it possible to simplify consider-
ably computations within the independent-particle
model assuming intermediate coupling.

(x) The charge form factors calculated for the SHe,
Li, and 'Be nuclel by the variational method that
employs the nucleon—-nucleon potential no. 15 and
which involves going over to projection onto relevant
states have been compared with the corresponding
results obtained on the basis of theindependent-particle
model assuming intermediate coupling. It has been
shown that the results begin to deviate substantially
from ¢ ~ 1.5-2.0 fm=; with increasing q, this differ-
ence grows, reaching one order of magnitude for the
®He nucleus and two orders of magnitudes for the "Li
and 'Be nuclel at g ~ 6-8 fm2.

(xi) The reasons that the experimental values of the
electron charge form factor for the ’Li nucleus cannot
be described adequately within our variational method
have been discussed. We hope that the agreement with
experimental data can be improved considerably
through the abandonment of the constraints that are
usually imposed on the single-particle orbitals and on
the components of the nucleon—nucleon potentials for
even—even nuclei and through the inclusion of data on
odd nuclei and of cluster degrees of freedomin the vari-
ational calculation.
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Abstract—The parameters a and &4 appearing in the back-shifted Fermi gas model are determined for about
3000 nuclei on the basis of modern estimated experimental data and the proposed systematics. For 272 of these
nuclei, the parameters are deduced from experimental data on the cumulative numbers of low-lying levels and
on mean spacings between Swave neutron resonances at the neutron binding energy in the nuclei. For
952 nuclei, the parameter &y is calculated by using the cumulative numbers of low-lying levels and values of
the parameter a that were obtained via an interpolation from the points corresponding to the aforementioned
272 nuclei. For the remaining nuclei, the parameters a and &4 are obtained on the basis of the proposed sys-
tematics. An expression is constructed for taking into account the damping of shell effectswith increasing exci-
tation energy of nuclei. The results are compared with those from other studies. © 2000 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Various modifications of the Fermi gas model are
extensively used to calculate nuclear level densities[1—
4]. Despite substantial limitations of the model [5], it
provides a convenient basis for constructing simple
systematics by fitting the energy dependences of
nuclear level densities to data on the cumulative num-

bers of low-lying levels and on mean spacings (Do)
between Swave neutron resonances at the neutron
binding energies (B,,) in nuclei.

The systematics relying on the studies of Vonach
and Huizenga [2] and Dilg et al. [4] is used most fre-
guently. It is assumed in this systematics that the two
sets of experimental data are described by relations
based on the Fermi gas model, but the level-density
parameter a and the excitation-energy shift &4 caused
by even—odd distinctions between nuclei are treated
there as free parameters. Since o4 values appear to be
negative for odd—odd nuclei, this framework is referred
to as the back-shifted Fermi gas model.

All systematics constructed within the back-shifted
Fermi gas model (see [4, 6]), which contain informa-
tion about the parameters a and d; for approximately
300 nuclei (there are no data on mean spacings between
Swave neutron resonances for awider range of nuclel),
have the following disadvantages:

(i) There are no straightforward recipesfor correctly
parametrizing the dependence &4 = f(A), because it is
difficult to disentangle shell, collective, and pairing
effects within the conceptual framework in question.

(ii) The damping of shell effects at high nuclear
excitationsis not taken into account in the level -density
parameter a.

The investigation reported in the present article
resulted in constructing a database including level-den-

sity parametersin the back-shifted Fermi gas model for
about 3000 nuclei. An expression has been proposed
for phenomenologically describing the damping of
shell effects in the parameter a with increasing excita-
tion energy. Errors that arise in a and &4 because of
uncertainties in data on the mean spacings between
neutron resonances have been determined. The sensi-
tivity of the level-density parameters being discussed to
variationsin the number of low-lying levelsincluded in
the input data set has been analyzed. The parameters a
and d4 have been obtained for two values of the
nuclear moment of inertiaz F = Fy and F = 0.5F,
where F,, is the rigid-body value of the nuclear
moment of inertia.

2. DESCRIPTION OF THE PROCEDURE
USED TO DETERMINE LEVEL-DENSITY
PARAMETERS

The procedure for deducing the parameters a and
O from experimental data on the cumulative numbers

N, of low-lying levels and on the mean spacing Do
between S-wave neutron resonances is similar to that
proposed in [4].

For the spin-dependent and the total level density,
we use the expressions

1 2J+1
uJ) = —2*1
p(U. ) 24./2 o*a™*

. &Xp[2 fa(U =84) — J(J + 1)/207]
(U—38+ 1) ’

1 1 exp[2/a(U-3,)]

12./20a™  (U=8+1)"

ey

p(U) = )

1063-7788/00/6305-0752%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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where U is the nuclear excitation energy, J is the total
angular momentum, a is the level-density parameter
related to the density of single-particle states near the
Fermi energy, 04 is an adjustable parameter appearing
in the back-shifted Fermi gas model, t is the thermody-
namic temperature determined from the equation

U _6eff = atz_t, (3)
and o is the spin-cutoff parameter in the level density.
In our calculations, the quantity o, was taken to be

o2 = Fuel 0.015A%%,

rig ﬁz

“)

where F, is the rigid-body value of the nuclear
moment of inertia.

In order to determine the parameters a and dy4;, we
used the equations

L+ Jee 1o I

+pa3n+%AE, |0—%% for 1,620 (5)

Sl
JI\I

1 1,10 _
ép%ﬂn‘FEAE, ZD for IO =0,

Uo

No = IP(U)dU, (6)
0

where B, is the neutron binding energy, AE is the
energy interval where resonances were studied, |, isthe

target-nucleus spin, and Do is the mean spacing
between nuclear levels for Swave neutrons. The coef-
ficient 1/2 reflects the fact that the S'wave neutrons
form resonances with definite parity, while N, is the
number of low-lying levels in the nucleus being ana-
lyzed that occur in the energy range between zero and
UO.

The recommended experimental values of the
parameters Dy + 8Dy, N,, and U, were taken from [7].
The parameters a and o4 were determined for two val-
ues of the nuclear moment of inertia, F = Fg and F =
0.5Fig. The errorsthat arisein the parameters a and

because of uncertaintiesin D, were calculated as fol-
lows: for each nucleus, the parameters a and &4 were

determined from equations (5) and (6) for three D, val-
ues. Do, Do + 8Dy, and Dy — dD¢. The averaged val-
ues of the parameter a for F = F, are displayed in
Fig. 1 below.
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Level-density parameters a and 8y versus Ny and Uy
No Ug, MeV a, Mev? Oes» MeV

B3\
61 4.106 8.87 0.92
80(+20%) 4.106 8.52 0.57
41(—20%) 4.106 9.37 1.38
40 3.52 8.43 0.47
28 3.01 8.1 0.09
20 2.519 7.82 —-0.26
15 2.15 7.64 -05

102R,
53 3.086 13.65 1.0
63(+20%) 3.086 1351 0.88
43(—-20%) 3.086 13.82 112
27 2.56 13.31 0.73
15 2.19 13.16 0.6
10 184 12.9 0.4

184W
48 1.894 19.61 0.37
58(+20%) 1.894 19.43 0.29
38(—20%) 1.894 19.82 0.46
30 161 19.27 0.21
20 142 19.12 0.14
12 1.25 19.09 0.13

3. EFFECT OF UNCERTAINTIES

IN Do AND N, ON THE DETERMINATION
OF THE LEVEL-DENSITY PARAMETERS

A draightforward analysis of expressions (1) and
(2), which yields

Mag_ _ 1 dpY)
Hall  g7./apU)’

reveals that the uncertainties in D, values affect only
dlightly thelevel-density parameter a. The uncertainties

in Do have aminor effect on the absolute values of &
aswell.

The choice of N, and U, has a more pronounced
effect on the extracted level-density parameters. Data
that make it possible to estimate this effect are quoted
in the table, which illustrates the dependence of a and
O ONthe errorsin the N, value and on the choice of U,
for the ®Ni, !“2Ru, and W nuclei, which belong to
different mass intervals. For each element, the first row
corresponds to the N, and U, values used in the present
calculations, while the next two rows contain the results
contained for the case of +20% errors in N,. The
remaining rows correspond to various N, and U,
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Fig. 1. Level-density parameter a as a function of the mass
number: (solid curve) averaged values deduced from dataon
the cumulative numbers of low-lying levels and the density
of S'wave neutron resonances and (dashed curve) values at
an excitation energy of 100 MeV. The damping of shell
effects was calculated by formula (10).

options based on an analysis of the schemes of levelsin
the nuclides being considered.

This example demonstrates that distinctions
between the level-density parameters obtained by dif-
ferent authors are associated primarily with the choice
of the number N, of low-lying levels for the nuclide
under analysis.

4. EXCITATION-ENERGY DEPENDENCE
OF THE LEVEL-DENSITY PARAMETER a

The level density determined for a Fermi gas of
independent particles characterized by an equidistant
spectrum of single-particle levels cannot naturally
describe shell effects. The shell structure of nuclei leads
to a nonlinear mass-number dependence of the level-
density parameter (recall that the Fermi gas model pre-
dicts a linear dependence). Shell effects in the level
density are washed out with increasing excitation
energy; therefore, the mass-number dependence of the
parameter a tends to that obtained in the Fermi gas
model as the energy becomes sufficiently high (about
100 MeV). These features of the level-density parame-
ter can be explained in general terms by using the shell-
correction method. To do this, experimental informa-
tion about awell-pronounced correl ation between shell
corrections and the ratio a/A, where A is the mass hum-
ber, is used to construct a phenomenological systemat-
icsof variationsin the level -density parameter obtained
inthe Fermi gasmodel [8]. This systematicsisbased on
the relation

a(u,z,A) = é(A)El +0gy(Z, A)% (7
O

|

PLYASKIN, KOSILOV

where 08¢, is the shell correction defined as the differ-
ence of the experimental value of the mass defect
(Meqm) and its liquid-drop value (M,g) calculated at the
equilibrium deformation 3, &) = M, (Z, A) — Miy(Z, A,
B); & is the asymptotic value of the level-density
parameter at high excitation energies;, and f(U) is a
dimensionless function that determines the energy
dependence of the level-density parameter at low exci-
tation energies. The form of this function,

f(U) = 1-exp(-yU), ®)

was found by fitting the thermodynamic functions cal-
culated for nuclei with the spectrum of levels in the
shell potential [8].

The anaysis of experimental data that was per-
formed in [8] yielded the optimum values of a/A =

0.154 MeV-! and y=0.054 MeV-! for the parametersin
the above forms. In constructing a systematics on the
basis of experimental data on the neutron-resonance
density in A= 150 nuclei, Ignatyuk et al. [9], who took
into account an increase in the nuclear level density
owing to collective effects, found that the values of
a/A=0.0931 MeV-!' and y=0.064 MeV-! provided the
best fit to the correlation between the energy depen-
dence of the level-density parameters and the shell cor-
rection.

Ramamurthy et al. [10] and Schmidt et al. [11]
showed that, in the parameter v, it is necessary to intro-
duce a dlight mass-number dependence of the form

V= VoA, 9)
where the recommended value of y, isabout 0.35 MeV-1.

Figure 1 shows the a values obtained in the present
study. Shell effects are seen there to be pronounced, but
they cannot be taken adequately into account by rela-
tion (7). In view of this, we propose here taking into
account the damping of shell effects with increasing
excitation energy viathe formula

., 0 a(B,Z A)-a(A)
a(U,z A) = a(A)%a+ 2(A)

(10)
[l
x exp[-y(U - B,)6(U - By)] %
where a(B,, Z, A) is the level-density parameter

obtained in a given systematics, B, is the neutron bind-
ing energy, and B(U — B,) is the step function

gl for (U-B,)=0
8(U-B,) = O
(0 for (U-B,)<O0.

The parameter y, was chosen by requiring optimal
agreement between the rates of shell-effect damping
according to (7) and (10) and was estimated at y, =
0.12A°173, By fitting data on nuclei far from those with
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closed shells, the asymptotic value of the level-density
parameter, a, was found to be A/9.5, which is consis-

tent with the values of a = (0.105 + 0.005)A and a =
(0.090 = 0.005)A calculated in [12] for the spectrum of
single-particle states in the Nilsson and the Woods-
Saxon potential, respectively.

Figure 1 showsthe values of a(U, Z, A) for the exci-
tation energy of U =100 MeV. They agreewell with the
results calculated in [5] with allowance for the discrete
shell structure of single-particle levels.

5. LEVEL-DENSITY PARAMETERS
IN THE CASE WHERE THERE IS NO
EXPERIMENTAL INFORMATION ABOUT THE
NUCLEI BEING CONSIDERED OTHER
THAN DATA ON LOW-LYING LEVELS IN THEM

It should be noted that the mass-number dependence
of the parameter O« is governed by an intricate inter-
play of shell, collective, and pairing effects. In the
model under consideration, the systematics constructed
for the parameter d4; on the basis of data on 272 nuclei
for which the parameters a and o were obtained with
the aid of relations (5) and (6) does not seem reliable.
For this reason, the parameter 04 was additionally
determined here for 952 more nuclei by using the
method that was proposed in [13] and which can be
applied to the case where there are no data on the neu-
tron-resonance density, but where there is information
about low-lying levels(that is, the parametersN, and U,
are known). In this case, covering many nuclei, the
parameter d4; was deduced as follows: (a) The parame-
ter a was determined by means of interpolation (for
details, see below) between the values obtained from
relations (5) and (6). (b) The parameter o4 was calcu-
lated from relation (6).

Figure 1 displays the averaged dependence a(B,, Z,
A) = f(A) obtained for all mass numbersin the interval
24 < A <250 by using the a values as determined from
experimental data on the cumulative numbers of low-
lying levels and densities of Swave neutron reso-
nances. In the case of nuclei for which the neutron-res-
onance densities have not yet been determined experi-
mentally, the parameter a was eval uated on the basis of
relation (7). In particular, the unknown parameter
a,(B,;, Z;, A for the (Z;, A) nucleus was calculated by
the formula

a;(Bn1, Z1, A)

Ol + K,8g0,(Z4, A) O (11)

= a(B,Z A )
( n )D 1+ KBSO(Z, A) 0

where a(B,,, Z, A) is the level-density parameter taken
from the dependence a(B,, Z, A) = f(A) displayed in
Fig. 1; 8¢,,(Z,, A) and 8gy(Z, A) are shell correctionsfor
the (Z,, A) and the (Z, A) nucleus, respectively; and
Ky = {1 - exp(-yB,)}/By and K = {1 —exp(-yB,)}/B,
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Fig. 2. Averaged mass-number dependences of the parame-
ter &g Obtained with allowance for the parities of the num-
bers of intranuclear protons and neutrons. Curves 1, 2, 3,
and 4 represent the results obtained for even—even, even—
odd, odd—even, and odd—odd nuclei, respectively.

are the coefficients reflecting energy dependence of the
parameter afor low excitation energies. Inthe expressions
for these coefficients, we have set y= 0.35A°2 MeV-! and
denoted by B,,, and B, the neutron binding energies in
the (Z,, A) and the (Z, A) nucleus, respectively.

6. LEVEL-DENSITY PARAMETERS
IN THE CASE WHERE THERE ARE NO DATA
ON THE NUCLEI BEING CONSIDERED

In some problems—for example, in astrophysics—
it is necessary to know level-density parameters for a
large number of nuclel for which we have at our dis-
posal neither experimental information on low-lying
levels nor data on the neutron-resonance density. In
order to deduce information about the level-density
parameters for such nuclei, we constructed a systemat-
ics for averaged parameters o4 (see Fig. 2).

That we determined the parameter 4 for more than
1200 nuclei whose low-lying levels are known from
experiments made it possible to obtain the dependences
04 = f(A) averaged over a great number of nuclei for
even—even, even—odd, odd—even, and odd—odd nuclides

separately.

For these nuclei, the level-density parameter was
calculated according to following agorithm: (a) The
parameter a,(B,;, Z,, A) for the (Z,, A) nucleus was
determined on the basis of expression (11) by using a
method similar to that described in the preceding sec-
tion. (b) The parameter &4 was found from one of the
dependences o4 = f(A) for a given value of the mass
number A, the parities of the numbers of the intranu-
clear protons and neutrons being taken into account.
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Fig. 3. Ratio a/ap, = f(A) of the level-density parameter a as
determined (solid curve) in the present study or (dashed
curve) in [6] to that (ap) taken from [4] as afunction of the
mass number.
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Fig. 5. Asin Fig. 4, but for the %°Co nucleus. The notation
for the curvesisidentical tothat in Fig. 4. Experimental data
were taken from (g, ») [7] and (<) [15].

7. CONSTRUCTING A DATABASE
OF THE LEVEL-DENSITY PARAMETERS
FOR NUCLEI IN THE MASS-NUMBER RANGE
24 < A <250 ON THE BASIS OF THE BACK-
SHIFTED FERMI GAS MODEL

Relying on the level-density parameters a and &y as
obtained by the methods described above, we compiled
a database for 3000 nuclei. The level-density parame-
tersincluded in this database can be broken down into
three groups.

These are (i) the parameters a and &4 obtained from
experimental data on low-lying levels and neutron-res-
onances densities (for 272 nuclei); (ii) the parametersa
determined on the basis of formula (11) from the aver-
aged dependence a(B,,, Z, A) and the parameters O
obtained from experimental data on low-lying levels
(for 952 nuclei); and (iii) the parameters a and Oy

PLYASKIN, KOSILOV

p(U), MeV~!

1 00 I I I I I I

20 24
U, MeV

Fig. 4. Calculated and experimental values of the level den-
sity in the 55Mn nucleus. Curves 1, 2, and 3 represent the
results of the calculations with the parameters values from
the present study, [4], and [6], respectively. Experimental
data were taken from (o) [14] and (<) [7].

p(U), MeV~!
10°
10*
10?
10° \ \ \ \ \ \
0 4 8 12 16 20 24
U, MeV

Fig. 6. AsinFig. 4, but for the *®Fe nucleus. Only those cal-
culated valuesthat were obtained with the parameters deter-
mined in the present study are displayed in the figure.
Experimental datawere taken from (o) [7] and (¢) [16].

determined by formula (11) from the averaged depen-
dencesa(B,, Z, A) = f(A) and d4 = f(A) with allowance
for the parity of the numbers of intranuclear protons
and neutrons (for al the remaining nuclei).

It should be noted that the accuracy in the first and
the second group is obviously higher than the accuracy
in the third group. For thisreason, it is more reasonable
to compile a database of parameters than to use a uni-
fied systematics that provides an averaged description
even for nuclei whose parameters were obtained from
experimental data.

8. COMPARISON WITH THE RESULTS
OBTAINED ELSEWHERE

The parameters determined in the present study can
be compared with corresponding results from [4, 6].

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000
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Figure 3 shows the mass-number dependence of the
ratio a/ay, = f(A), where a stands for the averaged values
of the parameter a calculated in this study and in [6],
while a;, is the analogous parameter from [4].

The scatter of the data determined in the different
studies seems to reflect the current level of knowledge
in this field. The greatest distinctions (of about 25%)
are observed in the region around A = 60. For this rea-
son, the level densities p(U) for the Mn and %°Co
nuclei were calculated here for excitation energies
higher than the neutron binding energies in the respec-
tive nuclides. The results of the calculations are dis-
played in Figs. 4 and 5. It can be seen that the results
obtai ned with the parameters taken from [6] are smaller
than the experimental values and than the level densi-
ties calculated with the parameters found in this study
andin [4].

The level densities for the >*Mn and °Fe nuclei
(Figs. 4 and 6) were calculated with the averaged
parameters a and Oy determined with the aid of (6)
from the cumulative numbers of low-lying levels. In
either case, the results of the calculations agree well
with experimental data.

9. CONCLUSION

On the basis of the constructed systematics and of
currently available experimental data[7] on the cumu-
lative numbers of low-lying levels and mean spacings
between S-wave neutron resonances, we have deter-
mined the level-density parameters a and &4 for about
3000 nuclel within the back-shifted Fermi gas model.
The parameters for 272 of these nuclei have been
obtained from experimental data on the cumulative
numbers of low-lying levels and mean spacings
between Swave neutron resonances at the neutron
binding energiesin relevant nuclei. For 952 nuclei, the
parameter o4 has been deduced from data on the cumu-
lative numbers of low-lying levels by using a values
found by means of interpolation of the a values
obtained for the 272 nuclel mentioned immediately
above. For the remaining nuclei, the parameters a and
O« have been evaluated on the basis of our systematics.
Thus, we have created a database that comprises the
level-density parameters for awide range of nuclei and
which can be used in various problems that require
describing the formation and decay of compound
nuclei.

A formula has been proposed for taking into
account the damping of shell effectsin the parameter a.
Errorsarising in a and & because of the uncertainties
in data on the mean spacings between neutron reso-
nances have been determined. The sensitivity of the
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level-density parameters to variations in the number of
low-lying levels included in the analysis has been
explored.
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Abstract—A simple formula for the resonance-level density for s-wave resonances is found by fitting the
assumed function of the number of neutrons to numerous experimental data. To describe shell effects, demon-
strated as strong decreases in experimental data at the magic numbers of neutrons, the dependence of the
assumed function on the “complexity” of a compound nucleus is introduced. The resulting function describes
quite well the character of changes in the resonance-level density with the number of neutrons, including the
regions of the magic numbers. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Available experimental data on resonance-level
densities reveal strong shell effects that can be clearly
observed in the dependence of the resonance-level den-
sity on the number of neutrons, N, especialy in regions
around the magic numbers of N,, = 82 and 126. The
commonly used formula for the resonance-level den-
sity (Gilbert and Cameron [1]) cannot describe these
effectsif the level-density parameter a is assumed to be
proportional to the mass number A (according to theo-
retical prediction based on the Fermi gas model). Rohr
[2] considered the relation between the resonance-level
density and “the hierarchy of the compound state.” The
hierarchy can be characterized by the number of parti-
clesor holes (or both) that may be excited in acompos-
ite nucleus in a resonance reaction. In [3], it was pro-
posed to classify various states of an excited composite
nucleus by the number of nucleons raised above the
Fermi level. The maximum number k of particles that
may beraised at a given excitation energy isreferred to
as “complexity.” According to [2], we can expect that
there is arelation between the resonance-level density
and k. The structure of the N dependence of & seemsto
confirm this expectation since shell effects are quite
obviousthere (Fig. 1).

In this study, we presents a simple semiempirical
formula, obtained from the above idea, that can
describe shell effects in the resonance-level density.

2. SEMIEMPIRICAL FORMULA

After apreliminary analysis of available data on the
resonance-level density for s-wave resonances, we
decided to perform fitting in terms of the function

p = 10°K°. (1)

* This article was submitted by the authorsin English.
** eemail: MaryKacz@Krysia.Uni.Lodz.Pl

According to [3], the complexity k is
k = E{1-(gA)/2

+ %A/(gA—Z)Z +4[z(gA—-1) +gU] }.

Here, ¢ = (A/13) MeV-'! isthe single-particle level den-
Sity at the Fermi level; A is the shell energy gap given
inTablel;, U=S,- P(N)-P(Z), where S, isthe neutron
separation energy for a composite nucleus; and P(N)
and P(Z) are the neutron and the proton pairing energy,
respectively. If N, isthe number of neutronsin thetarget
nucleus and if N,, is the nearest magic number of neu-
trons, then we have

_ ON=N,| for N<N,
_HNI—Nm|+l for N,=N,,.

)

z

Experimenta data subjected to our analysisweretaken
from [4]. They are energy-normalized to S, = 8 MeV and

12

0 40 80

1 1
120 160 N

Fig. 1. Complexity k of excited composite nuclei for S, =
8 MeV asafunction of the number N of neutrons.
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Table 1. Shell energy gaps Table 2. Fitted parametersfor (1)
Ni, 20 28 50 82 126 a B y 5 €
A, MeV 5.12 4.26 4.18 3.66 309 —921x10% 0127 -1.27 0.391 [2.14x107?

spin-reduced to J = 1/2 for even—even target nuclel (to
J =0 and 1 for other nuclel). The normalization and
spin reduction performed to aleviate fitting was based
ontheformula[1]

2J+1
u,l) = ———m——m—m—
p( ) 24. /2620 )
x exp[—%] + %?202} exp(2./au),

where

o’ = 0.145A%./aU.

Thepairing energiesweretaken from[1], whiletheval-
ues of a were cdculated on the basis of experimental data.

The analysis that employed data on 284 nuclides
showed that the optima and simple form of neutron-
number dependence for both exponentsin formula (1) is

b= aN’+BN+y, (4)
c = oexp(eN). (5)

Thefitting of thefunctionin (1) to the set of normalized
and reduced experimental values of the resonance-level

p, MeV-!
108 B Ogooo%ﬁ‘
e s
- OO . (’o 0%
el O
6l ° s o oo o o
10 Z%W&
o . 0ot %
- Bl P00 CFRL T om
Oy ©, 00. )
0 (s} Os
104+ 00 o s o
o8 Poo o Oooo6 *
0&) (P fe o]
°® oo
o’ o & o
]02 ~ 0’ 0%02 % %
0’? (o]
| 000002%@?
(e}
100 ‘$ 1 1 1 1 1 1 1 |
0 40 80 120 160
N

Fig. 2. Calculated (black circles) and reduced experimental
values (open circles) of the neutron-resonance-level densi-
ties.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000

density yielded the adjusted-parameter values quoted in
Table 2.

Finally, we have

b = —0.000921N?+ 0.127N — 1.27,
c = 0.391exp(0.0214N).

Then, p isexpressed in MeV-.

A comparison of calculated and reduced values of
the neutron-resonance-level densities is presented in
Fig. 2.

3. REMARKS

The semiempirical formula obtained here can rea-
sonably describe the general form of the N dependence
of the resonance-level density, including shell effects.
The idea to relate the resonance-level density to the
highest hierarchy of excited composite nucleus (com-
pound nucleus), given by complexity k, proved to be
justified. But we should not expect that thisformulacan
describe detailed values of the resonance-level density
for individua nuclides since it was fitted to dispersed
experimental values in the form of a smooth function.
The purpose of our study was to show how the com-
plexity of a compound nucleus affects the resonance-
level density.
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Abstract—The l,fC hypernucleusis treated as a (1/2)* bound state of the Aaaa system. The s-wave modedl is

used on the basis of differential equations for the corresponding Yakubovsky components. No account is taken
of 2+ 2 clustering in the system. Phenomenological potentials are used to simulatethe aa and oA interactions.
The system as awhole is bound owing to the additional potential of three-body interaction between the alpha-
particle clusters. The differential equations for the Yakubovsky components are solved numerically by the clus-

ter-reduction method. The binding energies are calculated for the ground and the first excited state of the 1,?C
hypernucleus. It is shown that the dominant type of clustering in the system is (Aaa)a. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

A three-body potentia of interaction between
alpha-particles makes it possible to describe the prop-
erties of the light nuclei '>C and '°O within, respec-
tively, the three- and the four-body cluster models [1-
3]. These models are based on the concept that there are
alpha-cluster correlationsin these nuclei, which is con-
firmed experimentally. The parameters of the three-
body potential that binds the system of three alpha par-
ticleswere evaluated in [3]. Thiswas done by fitting the
experimental values of the binding energy and the root-
mean-square radius of the '>C nucleus. The analysisin
[3] relied on the differential forms of the Faddeev and
Yakubovsky equations for, respectively, the 3a and the
4a system [4]. In the case of identical particles, the set
of Faddeev—Yakubovsky equations takes the simplest
form. The situation is more involved when we are deal -
ing with systems featuring nonidentical particles. Such
cases are exemplified by the Aaa and Aaoa systems

(/Be and “C hypernuclei, respectively). In the rele-

vant equations, it is then necessary to take into account
various versions of clustering in the subsystems,
whereby the number of coupled equationsis increased.
Asaresult, the requirements upon computational facil-
itiesfor numerically solving such equations prove to be
more stringent. The cluster-reduction method for the
Yakubovsky equations that was proposed in [5]
removes some of the difficulties encountered in directly
solving these equations. In the present study, the clus-
ter-reduction method is used to analyze the Aaaa sys-
tem. Previously, this method was applied only to sys-
tems of identical particles [5, 6]. The Aaaa system is
alsointeresting in that it provides the possibility of test-

* e-mail: filikhin@cph10.phys.spbu.ru

ing the potential that was proposed in [3] to simulate
the three-body interaction of alpha-particle clusters.

Earlier, cluster models of the 1,?0 hypernucleus

were considered by Hiyama et al. [7] and by Bodmer
et al. [8]. Theformer group of authorsinvoked amicro-
scopic approach that relies on realistic AN potentials,
but which reduces to the Aaaa cluster model where
Aa interaction is simulated by anonlocal potential and
where, in the 3a subsystem, there is an additional
repulsive three-body potential. The latter [8] studied
the 2C + A cluster system. In order to determine the
intercluster interaction, they proposed averaging the
AN and ANN potentials by using the distribution of
nucleon density that was obtained for the '>C nucleus
from experimental data.

2. DESCRIPTION OF THE FORMALISM

For the system of four particles, the differential equa-
tions for the Yakubovsky components are given by [4]

(Hot Vo, + VI —E) W0 + VS We,
(c3#az) Uay (1)
==V, Wo.a,-

d,#za, (dz#az)0a,

In all, there are 18 Yakubovsky components W, .

Each component corresponds to a specific partition of
the four-particle system into two or three clusters (a,,
a;). There are two types of partitions into two clusters
(3+ 1and 2 + 2 ones). For systemsinvaolving identical
particles, some Yakubovsky components can be
expressed in terms of the others by using the operators
of particle permutations. In particular, the Aaaa sys-

1063-7788/00/6305-0760$20.00 © 2000 MAIK “Nauka/Interperiodica’
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tem consists of three identical bosons and a fermion.
The corresponding set of equations can be reduced to
five equations determining the wave-function compo-
nentsU,, U,, W,, Y, and Y,, where the subscripts 1 and
2 label the component types 3 + 1 and 2 + 2, respec-
tively. Specifically, we have

(Ho+ Vi + V' + Vo~ E)U, + Viu(P) + P)U,
= —=Vp[(Pyg+ Pig)W; + (Py + Pi3)Uy],

(Ho+Vp+ Vs V3—E)U,+ VY,
= =Vpp(Y1+PyYy),

(Ho+Vp+ Ve 4 V3 —E)W; + V(P + Py)Y;
= —Vp[(P3+P)Y; + (Py+ Pi)Yal,

(Ho+ Vo + VO + V3 E) Y, + V(P Y, + PyWi)
= —Vg(PyU; + PZYl + PyU, + P3Y)),

(Ho+ Vo + VO + V= E)Y, + VU,
= V(U +W)),

where the numbers 1, 2, and 3 label identical particles;
the number 4 labels the fourth, nonidentical, particle;
V,, isthe pair potentia of interaction between the iden-
tical particles of the system; V,, isthe pair potential of
interaction between the nonidentical particle and the
remaining particles of the system; V! isthe Coulomb
interaction potential; V; is the three-body potential; H,,
is the kinetic-energy operator; P, is the operator per-
muting the ith and the kth particlefor i, k=1, 2, 3; and

P¥ stands for the operators of cyclic permutations of

three particles, the subscript labeling the particle not
involved in a given permutation.

The wave function of the system can be represen-
ted as

Y=y +y, 3)

where

W, = (1 + P, + PU + (I + Py + Pig)W,
+(1+P,+ P+ Py, +Py+P)Y,,
W, = (I + P+ Pg)Uy+ (1 + Py + Pi3)Ys.

In configuration space, the system is described with the
aid of the Jacobi coordinates XA = {x*, yA, z}, where
the superscript A labels the Jacobi coordinates corre-
sponding to the varioustypes of partitions of the system
in question (A= U,, U,, W,, and Y,). The Jacobi coor-
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W ¢

4 X 3 4 y

Fig. 1. Jacobi coordinatesinthe Aaoa system (showninthe
figure are the Yakubovsky components corresponding to
each set of the Jacobi coordinates).

dinates are expressed in terms of the particle radius vec-
torsr, k=1,2,3,4,as

U U _

r,+r
X' = r,—ry, Y 1 2

2 ®

U, Itr,+ry,
- 3
UZ
X =0r,=rqy, Y
U, _Fi+r, mrg+mry,
2 m+m,

U,

=TIy—rg

W, Wy

r,+r
X = r,—r,, y = 22—

2 @
mrq+mr,+myry,
2m+m,

W,

r3,

Yy Yy mr3 + m4r4

X =Ta=Ta ¥ =—F 7y v
7

Yo _ MM +Mmrg+mgry
2m+m,

=TIy,

where we have considered that m; = m, = my; = m. For
the four-particle system being considered, the Jacobi
coordinates areillustrated in Fig. 1.

3. DESCRIPTION OF THE MODEL

We consider a bound system that consists of three
alpha-particle clusters and a A hyperon. The angular
momentum of the entire system and the angular
momentum of each of its subsystems are taken to be
zero; that is, our consideration is restricted to the s-
wave approximation. The interaction between the A
hyperon and each alpha particle is simulated here by
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the potential that was proposed in [9] and which is
given by

O 20

Vaa(r) = VoexpG—0

0 Bod

)

where V, = —-47.97 MeV and B, = 1.566 fm. For the
potential of the pair interaction between the apha par-
ticles, we use the s-wave component of the potential
from [10],

0 20 0 (20
Vaa(r) = ViexpE-—=0+ V,expE—0 (5)
0 pd ERCHE

whereV, =120.0MeV, 3, = 1.53fm, V, =-30.18 MeV,
and 3, = 2.85 fm. Since the pair potential (5) does not
bind the system of three alpha particles because of
strong Coulomb repulsion, it isreasonable to introduce,
in just the same wave asin [1, 2], athree-body poten-
tial, V,. It istaken herein the form

Va(p) = Vexp[—(p/B)7, (6)

where p? = z}:}z ir,z r; being the radius vector of the
ith particleinthe c.m. frame; V=-24.32 MeV; and 3 =
3.795 fm. The values of the parameters V and [3 were
chosen in such away asto reproduce the experimental
resultsfor the binding energy and the root-mean-square
radius of the '>C nucleus[3].

The modd is supplemented with the assumption
specifying the character of clustering within the sys-
tem. Aswas shown in [7], the probability of 2 + 2 clus-
tering is small in the system being considered: only an
insignificant correction arises there in the computed

binding energy of the l,:fC hypernucleus upon taking
into account this type of clustering. For this reason, the
components U, and Y,, which correspond to 2 + 2 clus-
tering, are discarded herein the eventual equations. The
swave differential equations for the coordinate parts
a,, w,, and %Y, of the Yakubovsky components are
presented in the Appendix.

4. METHOD FOR SOLVING EQUATIONS (3)

Equations (3) for the relevant Yakubovsky compo-
nents were solved numerically by the cluster-reduction
method. Within this method, a solution to the original
equations is represented as an expansion in bases
formed by eigenfunctions of the Hamiltonians of the
three-particle subsystems:

Waa(X) = 5 ol i(Xa)Fa,(2a)- (7)
k=0

. k
Here, the unknown amplitudes F, (z,) depend only
on the vector z, of the relative coordinate of the clus-

FILIKHIN

ters in the partition a,; by x, , we denote the internal
coordinates of the clusters in this partition. The basis

quz k(Xa,) . k=1,2, ..., iscomplete, butitisnot orthog-

onal. A biorthogonal basisisformed by the eigenfunc-
tions of conjugate Hamiltonians for the three-particle
subsystems[11]. By taking relative projections onto the
basisfunctions, we arrive at a set of equationsfor func-
tions that describe the relative motion of the clusters.
The dimensionality of each equation in this set is
smaller by unity than the dimensionality of the origina
equations. A detailed account of the reduction outlined
immediately aboveisgivenin [6]. In numerically solv-
ing the equations in question, a finite number N of
terms is retained in expansion (7). The number N is a
parameter that determines the efficiency of the method,
since this parameter specifies the dimension of the
algebraic problem to which we go over from the prob-
lem of numerically solving the reduced equations. The
cluster-reduction method was used in [5, 6] to compute
bound states and | ow-energy scattering in systems com-
prising three and four particles.

5. RESULTS OF THE CALCULATIONS

The cluster-reduction method specifies a general
scheme for numerically solving the swave differentia
equations (A.1) for the Yakubovsky components. In
configuration space, the parameters R, R, and R, deter-
mine a rectangular parallelepiped Q (in the present
study, each of these parametersistaken to be 25fm). In
solving equations (A.1), zero boundary conditions are
imposed at the boundary of the region Q. Within this
region, the basis functions are determined as the eigen-
functions of the boundary-value problems for the Fad-
deev equations describing the 3a and Aaa subsystems.
These eigenfunctions are numbered in the order of
increasing eigenval ues that correspond to them. In par-

ticular, the functions LIJzz,k(Xaz) that are assigned the

number k = 1 describe the bound states in the 3a and
Naa systems. The bound states of these systems can be
associated with the ground states of the '?C nucleusand

the ,?Be hypernucleus in the three-body cluster models

being considered [3, 12]. Theresults of our calculations
for the binding energy and the root-mean-square radii
of the 3a and Aaa systems governed by the potentials
(4)—(6) arelisted in Table 1. By applying the procedure
of cluster reduction to the problem specified by equa-
tion (A.1), we go over to the problem of solving effec-
tive equations for the functions describing the relative
motion of the clustersforming the system being consid-
ered. A numerical solution to the resulting equationsis
constructed by means of afinite-difference approxima-
tion on an equidistant mesh.

For the binding energy of the Aaaa system, the
results of our calculations are presented in Table 2. The
s-wave potential model used in the present study has
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Table 1. Binding energy Eg and root-mean-square radii R of the 3a and Aaa systems (*2C nucleus and ,?Be hypernucleus,

respectively)
Eg(*’C), MeV R(*2C), fm Eg(,Be), MeV Ra(Be), fm
This study —7.26 247 -5.6 3.0
Experiment —1.27 247 —6.62 -

Note: Theenergy isreckoned from the threshold for the breakup of the system into constituent particles. Hereand in Table 2, R ( ,S:Be) is

the root-mean-square radius of the A-hyperon distribution in the Aaa system.

Table 2. Binding energies and root-mean-sguare radii of the A-hyperon distribution in the 1,3C hypernucleus for its ground

state (Eg and Ry, respectively) and the first excited state (Eg and R )

Eg, MeV Ry, fm Ep, MeV Ry, fm
[7] —21.34 2.09 —-7.73 2.73
[8] —-20.37 - - -
[13] -16.75 - - -
This study -18.7 2.56 -7.8 4.7
Experiment -18.96 - - -

Note: Presented in thefirst row arethe values of Ry, E;, and Rf\ as obtained in [7] upon correcting the Aa potential in order to reproduce

the binding energy of the 1,?C hypernucleus.

two bound (1/2)* states, the ground and thefirst excited
state. As can be seen from Table 2, theresults of our cal-
culations approximate closely the experimental value

of the energy of the ground state of the 1,fC hypernu-

cleus. Theresults of the calculations performedin[7, 8,
13] are also presented in Table 2 for the sake of com-
parison. As was mentioned above, the calculations
from [7, 8] were based on cluster models; in contrast to
this, a microscopic approach featuring a realistic
(Jufich) AN interaction was employed in [13].

Proceeding to study clustering in the Aaoa system,
we will first dwell on the problem of convergence of a
calculation within the cluster-reduction method. It
should be emphasized that the rate of convergence
within the cluster-reduction method gives a hint as to
whether there is (or there is no) clustering in the sub-
systems of the system being considered [3]. Table 3 dis-
plays the calculated binding energy of the Aaoa sys-
tem versus the number N of terms retained in expan-
sions (7) in basis functions. We can see that a
convergent result is obtained by retaining thefirst six of
nine basis functions, the contribution of the last five
being no more than 4% of the total result. At the same
time, the disregard of the component U,, which corre-
spondsto the 3a + A clustering, in the equations being
considered increases the calculated binding energy
only by 0.2 MeV. Thus, we can state that the ground
state of the system is determined primarily by the
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(Aaa)a cluster state. Considering that the calculation

of the binding energy of the JBe hypernucleus within
the Aaa model employing the pair potentials (4) and
(5) underestimates the absolute value of the binding
energy of this hypernucleus in the ground state by
1 MeV [12], we arrive at the conclusion that the above
clustering of the Aaaa system is not identical to the

cluster representation ,Be + a. In this connection, it

Table 3. Calculated binding energies in the ground and the
first excited state of the Aaoa system versus the number N
of basis functionstaken into account in the calculation (illus-
tration of the convergence of the cluster-reduction method)

N Eg, MeV Eg, MeV
1 —18.0 7.0
2 -17.9 7.0
3 -18.2 71
4 ~18.6 7.4
5 -18.6 76
6 -18.7 7.8
7 -18.7 7.8
8 -18.7 -78
9 -18.7 -7.8




Fig. 2. Cdculated distributions of the A hyperon in (solid
curve) the ground state of the l,?C hypernucleus, (dashed

curve) the first excited state of the 1,%C hypernucleus, and

(dash-dotted curve) the ground state of the 1,(0 hypernu-
cleus (according to the results of the calculationsfrom[14]).

should be noted that attempts at simultaneously

describing the ,fBe and l,?C hypernuclei on the basis of

the Aaa and Aaoa cluster models employing the Aa
potential that makes it possible to reproduce faithfully

the binding energy of Be hypernucleus lead to an
overestimation of the binding energy of the Aaoa sys-

tem (°C hypernucleus) [7, 8].

The (3a + A) clustering of the Aaaa system plays
acrucia roleintheformation of theexcited (1/2)* state.
Without taking into account thistype of clustering (that
is, without the component U,), there is no excited
bound state in the Aaaa system.

In connection with investigations into clustering
phenomeng, it is worth noting that the result obtained
here for the ground state—namely, the dominance of
(Aao)a clustering in the system being considered—is
at odds with the corresponding result from [7], where
clustering of the (aaa)A type was found to be domi-
nant. For the excited state of the system, the results of

the two studies are closer. The excited state of 1,fC con-
sidered in [7] is formed via a core excitation in the

12C(0;) + A model. An analysis of the convergence of

our calculation for the binding energy of the excited
state (see Table 3) reveals that no less than five basis
functions must be retained in order to obtain this state.
Thus, we can seethat, for an excited state to berealized
inthe Aaaa system, an excitation in the 3a subsystem
must be taken into account in the present model aswell.

The spatia distribution of the A hyperon in the
Aaoa system can be investigated by calculating the
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wave function (3) of our system. Denoting by p(r) the
density of the hyperon probability distribution in the

system, we introduce the function W, (r) = ,/p(r) sat-
isfying the normalization condition

00

ILIJf\(r)err = 1.
0

The distribution function W,(r) is displayed in Fig. 2

for the ground state of the 1,?C hypernucleus (solid

curve) and for its excited state (dashed curve). For the
sake of comparison, this figure also shows the distribu-

tion of the A hyperon in the /O hypernucleus (dash-

dotted curve) from [14]. The root-mean-square radius
of this distribution is 2.47 fm, the corresponding
hyperon-separation energy being close to its experi-
mental value.

6. CONCLUSION

The l,fC nucleus has been considered here within

the Aaaa cluster model. The Aaoa system is a four-
particle system involving one nonidentical particle. The
differential equationsfor the relevant Yakubovsky com-
ponents have been presented. On the basis of these
eguations, an s-wave potential model has been pro-
posed that takes into account, in addition to the pair Aa
and oo potentias, the potential of three-body interac-
tion between the apha-particle clusters (the potential
parameters were determined in [3]). For the binding

energy of the 1,?0 hypernucleus, this mode yields

results that agree with the results of calculations per-
formed by other authors and with experimental data.
An analysisof the present cal culations has reveal ed that
the ground state of the system is dominated by the
(Aaa)a type of clustering. In addition, the potentia
model considered here admits an excited bound state,
which receives a significant contribution from (aaa )A
clustering. The results of the present study for the
excited state in question are consistent with the results
presented in [7]. The use of the cluster-reduction
method for numerically solving the Yakubovsky equa-
tions has made it possible, first, to relax requirements
on computational facilities and, second, to reveal the
types of clustering in the Aaoa system.
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APPENDIX

The swave differential equations for the coordinate
parts U,, W, and Y, of the Yakubovsky components
are given by

(No' + Ve + Veau(X ¥, )+ v5'(0) =£)Us(x, ¥, 2

1

 Vgo(¥) jdv%%(xz Y, 2)

l( X3a y31 23) ’

1 1
1 Xyz
= —Zv (X fdufdv w
2 ( )_.[l :l—l X3Y3Z3

(Mo ™+ Vaa(X) + V(X ¥, 2) + V3 (p) —£) Wi(x, , 2)

1
*Voa() [ AV WX, Y0 )
1
- (A1)

1 1
_ 1 Xyz
= — ZVGG(X)J-dUIdVX4y4z46y1(x4, Ya 24)1

-1 -1

(o' + Vag() + Vba(X ¥, 2) + V3 (p) —)M4(X, ¥, 2)

1
1 Xy
+ 2vAa(X) J’ dv Eklylwl(xl, Y1, 2)
-1

Xy O_ nyz
+ Y1(Xz, ¥, Z vuxlduldv
X2y2 l( 2y2 )D 4 /\()

*WUn(Xs Yo 25) + 3 =Y, (X, Ve zf,)Er

X yGZG
where

S0+ 3%

hy' = —507 +

ho' = —{05+ 3 3 2oy + olaZD
1 3 3

hy' = —5p0% + Zad) + 2dozy
_1mg+2m . m

2m,+tm’ T mg+m’
2m, +3m m

d== , = ,

3m, +2m m+m,

m is the alpha-particle mass, and m, is the A-hyperon
mass. The coordinates in equations (A.1) are trans
formed as

2
X = E%x2+y2+xyvgu,
172

= [B+ bS]
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yi = [(ax)? + (by)? - 2abxyv]™,

X, = [(bx)2 + y2 + 2bxyv]ﬂ2,
1/2

Vi = | (207 + %yz—axyV}

%, = [(cx)2+y? + 2cxyu] 2
Y, = [4(abx)’ + (cy)® —4abexyu]

=%, yo= [y 2+ 2oyl
172
= [ay+ B2 -2y au]”,

lfl, > b, i|1/2

Xg = X, Y4 = [%yim +Z -7y

7 = [@d .f . oc f, 3bd,, ]”2,

le pal0 4acylzu
1/2
u} ,

b b
X5 = Xy, Y5 = [E%Y%Z*'Zz—azh
2 1/2
2 = [(ay)"+ B + 2oy
|:7l, 2 b i|112

Xe = X2 Yo = [%yzm RS

8d,, f , gc f _3bd v2
% = [Dﬂfayzﬂ aid ~ 4acyzzu} '

The s-wave projections of the Coulomb interaction in
equations (A.1) are given by

U, _n n _
Coul_)‘('i'2 -

max%rzx, y

Oodada

1 1
W, _n,n 1
Veou = x+2IduIdV§<2’

-1 -1

1 1
v, = §+2:[d :|’1dv~ J’ldu:[d D1+
where
_ 4Amé°
R
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The short-range potentia of interaction between two
alpha particles, v, (X), is calculated by formula (5)
with alowance for the fact that vy, (X) = Vo (ONVA2.
The Aa-interaction potential v,,(X) is given by (4)
[VAaX) = Va(X)MY72]. The potential of three-body

interaction, v4 (p), has the form

111

v(p) = 5[ [ [dvdudwrs(py),

-1-1-1
where the superscript A standsfor U,, W,, and Y,, while
pi is expressed in terms of the Jacobi coordinates as

2,0, 1
Ph = 5Ea+3MA

where

2 _ .2 2 _ .2
&u, =Y, nu, =X,

E\";\,l = %yg+zz+gyzu, r]\z,\,1 = %,

1 1
ny, = EQ—ayEZ +7 =2y,

5\2(1 = (3:/)2 + %HYE + r]Yj,W

with
¥ = (bx)? + (cy)? = 2bexyu.
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Abstract—On the basis of T invariance, it is established that the dependence of the effective cross section for
abinary reaction of thea+ b — ¢ + d type on the polarization vectors of primary particlesa and b determines
completely the polarization vectors and spin correl ations for the same particlesintheinversereactionc + d —
a+ binduced by collisions between unpolarized primary particles ¢ and d. By using the formalism of helicity
amplitudes, polarization effects are studied in the process p + *He — 1t* + “He and in the inverse process 1t
+%He — p + *He. It is shown that, in the reaction 1" + “He — p + >He, the spins of the final-state particles
(proton and 3He nucleus) are strongly correlated. An expression for the correlation tensor is obtained for arbi-
trary values of the (p, *He) emission angle. © 2000 MAIK “ Nauka/Interperiodica” .

Polarization effects in the scattering of spin-1/2 par-
ticles on an unpolarized target were discussed in [1] on
the basis of the T invariance of the differential cross
section for elastic scattering. In the present study, a
similar approach is used to analyze implications of T
invariance for the effective cross sections for direct and
inverse binary reactions involving two spin-1/2 parti-
clesin theinitial or the final state. Specifically, polar-
ization effectsareinvestigated in detail for the reactions
p +3He — 11" + “He and 1T + “He — p + *He.

1. Let usconsider abinary reaction of thea+b —
c + d type. Let theinitial particles a and b both have a
spin of 1/2, and let the final particles have arbitrary
spins. We denote by k, = -k, the primary momentum in
the reaction c.m. frame, by k. = -k, the final momen-
tum in the c.m. frame, by 0 the angle between the
momentak, and k., and by E thetotal energy inthec.m.
frame. We further introduce three mutually orthogonal
unit vectors (of these, two lie in the reaction plane,
whilethethird isaligned with the normal to the reaction
plane)

kg _ =1y _IxT
where
I' = % ko= 1|k, kc.=1]kd, ©=arccos(l-I.

If parity is conserved and if invariance under rota-
tionsin three-dimensional space and the fact that quan-
tum theory islinear are taken into account, the quantity
obtained by summing the effective cross section for the
a+ b — c+dprocessover the projections of thefinal-
particle spins must be ascalar linear in the initial-parti-

* email: lyubosh@sunhe.jinr.ru

cle polarization vectors P®@ and P®. In accordance with
this, the structural formulafor the differential cross sec-
tion in the c.m. frame takes the form (see also [2)])

Tarb - cralka PP PP ko)
= a4(E, 0){ 1+ AE, 8)(P® ) + B(E, 8)(P™® )
+C(E, 0)(P® P™) + D(E, 0)(P® 00)(P™ O) o
+F(E, 0)(P® tm)(P" m)
+G(E, 0)(P® 0)(P™ )

+H(E, 8)(P® m)(P® )3,

where 0,(E, 0) is the effective cross section for the a +
b — ¢ + d reaction induced by a collision of unpolar-
ized primary particles, whileA, B, C,D, F, G, andH are
dimensionless functions of energy and of the emission
angle 6, the vectors A(E, 8)n and B(E, 8)n having the
meaning of analyzing powers for particles a and b,
respectively.

It isobviousthat, at © = 0, the functions A, B, F, G,
and H vanish by virtue of axial symmetry; the expres-
sion for the differential reaction cross section is then
simplified to become

Gavb . cralkal, P, PP k)
= 0,(E, 0){ 1+ C(E, 0)(P® IP™) (3)

+D(E, 0)(P® 0)(P® m)}.

At 8 = 11, the effective cross section for the reaction
in question has the same structure. Taking into account
expressions (1), wefind that, at very small values of the

1063-7788/00/6305-0767%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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emission angle, the above dimensionless functions are
given by

A(E,8) = a(E)0, B(E,8) = b(E)S6,

G(E, 8) = g(E)6, H(E, 6) = h(E)6,

F(E 8) = f(E)6°
where the functions a(E), b(E), f(E), g(E), and h(E) do
not vanish in general. For small deviations of the emis-
sion angle from 11, we have limiting relations of the
form (4) that feature different functions of E and the
angle AB = 11— 0 in place of 6.

Let us now integrate the effective cross section for
thea + b — ¢ + d reaction with respect to the azi-
muthal angle. It can easily be seen that the following
relations hold:

2

4

m 21
(P t)d¢ = [(P” th)d¢ = 0,
0 0
2m 2n

[P tmydp = [(P™ tm)dp = o,

0 0
2n

I(P(a) tm)(P®™ tm)do
0

(&)

= (P P®) - (P I)(P® D).
Taking them into account, we then arrive at

Oa+b - c+d(E: ea P(a)a P(b)) = ZTTO'O(E, 6)

l a
<o "L 0)+SFEOXPOPY)  ©)

+Eb(E, 0) - SF(E, P 0)(P™ ) E;

2. Assuming T invariance and using expression (2),
we can obtain a general expression for the effective
cross section for the inversereactionc+d — a+ b
involving unpolarized particles ¢ and d and resulting in
the formation of final-state particles with fixed polar-
izations {® and {®. By £@ and {®, we mean the ana-
lyzing powers of corresponding detectors, in which case
wehave [(®]< 1 and |¢®)| < 1. Considering that theinver-
sion of time leads to the reversal of the polarization-vec-
tor and momentum directions and using the principle of
detailed balance [3], we obtain

O-c+d - a+ b(kc; ka! g(a), C(b))
k2
K2+ 1)(2jg + 1)

(a) (b).
XOa4p . c+d(_ka’ _C., ’ —C ) —kc)-

(7

V. V. LYUBOSHITZ, V. L. LYUBOSHITZ

Thus, the effective cross section for thec + d —
a+ b reaction in the c.m. frame of particles c and d has
the form

1~
Ocid_ a+ b(kc; ka’ C(a), Q(b)) = ZOO(E’ e)

x{1-A(E, 8)(5" h) - B(E, 8)(¢" ()
+C(EOE” L) +DEEMET D) o
+F(E, 8)(§™ tm) (" t)
+G(E, 0)(¢™ 0)(¢" )

+H(E, 8)(¢"® tm) (5™ 0)},
where

ak;,
ke(2jo+1)(2j4+ 1)

is the quantity obtained by summing the effective reac-
tion cross section for the unpolarized initia particlesc
and d over the projections of the spins of the final-state
particlesa and b.

It should be emphasized that, in expressions (8) and
(9), the quantities A(E, 8), B(E, 6), C(E, 8), D(E, 6),
F(E, 8), G(E, 0), H(E, 8), and o,(E, 0) are the same
functions of energy E and the angle of final-particle
emission as in expression (2) and that the unit vectors
appearing in (8) are expressed in terms of the momenta
k, and k; according to (1).

From the fact that relation (8) holds for any fixed
values of the final-state polarizations {® and {® mea
sured by two analyzers, it follows that the spin density
matrix for the system of two final-state spin-1/2 parti-
clesformed inthec+ d — a+ b reaction induced by
a collision between the unpolarized initial particles c
and d can be obtained by replacing the vectors {® and
¢® by the Pauli operators ¢ and 6"

Asaresult, the two-body spin density matrix [3(1’ ? sat-
isfying the normalization condition

go(E, 8) =

0(E,8) 9

, respectively.

A(1,2)
tr, 2P =
assumes the form
~ ~(b ~ ~
p? = 217017+ (PU(E 0) ) 01"

+190(PV(E 0) 6" (10)

3 3
~(a) ~ (b)
+ z zTik(E, e)Uia 06,1,

i=1lk=1

~(a) A(b) o .
where 1 and T are the two-row identity matrices;
the symbol [0 denotes the tensor product of matrices;
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and the quantities P® P(E, 0) entering into expression
(10) and having the form

P?(E, 8) = —A(E, 0)n,
P®(E, 8) = -B(E, 8)n

are the polarization vectors of particles a and b pro-
duced inthec + d — a + b reaction. The double sum
in (10) involves the coefficients T;, appearing to be

T.(E, 8) = C(E, 8)5, + D(E, 8)l.l,
+F(E, )mm, + G(E, 8),m+ H(E, )m,,

where |; and |, (my and m,) are components of the unit
vector | (m), and forming a correlation tensor that
describes spin correlations in the two-particle (a, b)
system.

In accordance with (10)—(12), we can state that, if,
in the measurement process, a detector selects a spin
state of particle a with a polarization vector {@ (for
example, as the result of secondary scattering), the
polarization vector of particleb producedin association
with particle a in the same event of collisions between
particles ¢ and d has the components (see also [2, 4])

(1)

(12)

3
P+ S Tu(E 0)7°
i=1

1+P?(E 0)g®

where P@ and P® are the polarization vectors of the
final particles a and b under the condition that spin
states are not fixed by detectors [see (11)]. Obviously,
we have

P (L) = . a3

~ (b

2(1-PO ™)),

It can easily be seen that, in the absence of correla-
tions—that is, under the conditions T, = Pi(a) P,Eb) —the

~ (b
quantity P( )(Qa)) = P® js independent of the vec-
tor {@.

It should be noted that, at the values of the angle 6
that are equal to 0 and 1, the polarization vectors vanish
by virtue of relations (4) and (11), and spin effects are
determined completely by the correlation tensor T,
thatis,

3
~ (b)
P = ZTik @ (14)
i=1
where
PHY SICS OF ATOMIC NUCLEI Vol. 63 No.5 2000
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That the spin state of one of the particles dependson
the character of measurements performed for the other
particlein the way specified by equations (13) and (14)
is a manifestation of the general correlation effect in
recording multiparticle quantum states by single-parti-
cle detectors that was predicted in the well-known
study of Einstein, Podolsky, and Rosen [5].

Thus, we can see that, by virtue of T invariance, the
dependence of the effective cross section for the direct
reaction a + b — ¢ + d on the polarizations of initial
particles completely determines spin correlations
between the same particles in the inverse reaction ¢ +
d — a+ binduced by acollision of unpolarizedinitia
particl es.)) From T invariance, we have also inferred
that the left—right azimuthal asymmetries A(E, 6) and
B(E, 0) in the direct reaction a + b — ¢ + d induced
by a collision between the polarized particlesa and b
arerelated by the ssimple equations (11) to the polariza-
tion vectors of the same particles formed in the inverse
reaction c+ d — a+ binduced by acollision between
the unpolarized particles c and d.

3. Let us now consider polarization effects in the
specific reaction p + He — 1" + “He and in the
inverse reaction 1 + “He — p + He. Previoudly, it
was shown that the effective cross section for the reac-
tionp +3He — 11" + “He depends sizably on the polar-
izations of the proton and the *He nucleus. Thereaction
p(*He, “He)Tt* occurring on a polarized hydrogen target
can in principle be used to measure the polarization of
a’*Hebeam[6] 2 Thus, T invariance leadsto atight cor-
relation between the polarizations of the proton and the
3Henucleusintheinversereaction " + “He — p+ 3He.

Let us proceed somewhat further aong these lines.
From angular-momentum and parity conservation, it
followsthat, inreactionsof the 1/2+1/2 — 0 + O type
(where two spin-1/2 fermions are converted into two
spinless bosons), transitions from the singlet state of

DL isted below are errors made in analyzing the implications of T
invariance for direct and inverse reactions in [2]. Relations (46)
must have the form

k, — kg,
p@ @ pb . b

The clause following these relations should read “and n — n.”
In accordance with this, the following changes should be made in
equations (47), (49), and (50): the tensor l\7|ik should be replaced
by the tensor M;, appearing in (44), and the functions A and B
should be taken with the reversed sign. In addition, the expression
on the right-hand side of (47) should be multiplied by afactor of
1/4. The definition of the tensor I\7Iik should be omitted.

AThe reaction p + *He —» Tt" + “He and the inverse reaction Tt* +
“He —> p + 3He were investigated experimentally by many
authors (see, for example, [7-10]), but they did not consider
polarization effects. From these experimental data, it followsthat,
when neither a beam nor a target is polarized, the differential
cross section for the process *He + p — “He + Tt at proton
kinetic energies of 300-600 MeV in the laboratory frame is 10—

15 pb/sr in the reaction c.m. frame at small angles of (1", “He)
emission.

kC _kC’
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thefermions (that is, from the state with zero total spin)
are forbidden if the product of the intrinsic parities of
theinitial particlesis opposite in sign to the product of
theintrinsic parities of thefinal particles[11-13]. Since
thereaction p + *He — 11" + “He belongs to the above
type (1T is a pseudoscalar meson, “He is a spinless
nucleus, and the proton and *He nucleus are spin-1/2
objects), it can occur only if the total spin of the (p, *He)
systemis equal to unity.

Let us choose the z axis, the axis of total-spin quan-
tization, along the direction of the vector 1 = ky/k,,
where k, is proton momentum in the reaction c.m.
frame. We take the remaining two axes, x and y, to be
aligned with the directions of, respectively, the unit
vectorsm and n given by expressions (1) withI' =k /k,,
wherek,; isthe 1t™-meson momentum in the c.m. frame.
Thetriplet states of the (p, *He) system that are charac-
terized by the spin projections onto the quantization
axisof +1, -1, and O are given by

1, 10= 12, 157 pr1/2, 15579,

1, 10= 12, 187172, 1079,

. 16
0,10= (/2,187 |-1/2, 108 (16)
J2

+ 12, 107 172, 1579,

Let P® and PH® be independent polarization vec-
tors of the proton and the *He nucleus, respectively. The
two-particle spin density matrix for theinitial state can
then be represented in the form of the tensor product of
the single-particle spin density matrices for the proton
and the *He nucleus; that is,

~(p, He)
p

_ J_(T(P) +p |:k’;_(p)) 0 (i(HE) 4+ ptHe a7
4

" (He)

).

We denote by R\(E, 8) the expression in the c.m.
framefor theamplitude of thedirect reactionp + *He —>
T + “He proceeding from the |\, 1state. Here, E isthe
total energy of the proton and the 3He nucleus in the
c.m. frame; 8 is the angle between the vectors k, and
k,; and the parameter A can take values of +1, -1, and
0. Inthiscase, the differentia cross section for thereac-
tion p + *He — 1" + “He hasthe form

. (kp1 P(p), P(He), kr[)

p+%He - m +He
:ZZRA(E,O)[A,I|ﬁ(p’He)|)\',IUQ§‘.(E,6) (18)
AN

— m‘plﬁ(p’ He)lLIJD
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where

WO= $ RI(E O IO

A=%1,0

has the meaning of the unnormalized initial two-parti-
cle spin state that is selected by the reaction being stud-
ied.

If we consider that, for the particles participating in
the process p + *He — 11" + “He, the product of the
intrinsic parities isn = —1 and that the total spins of
these particles in the initial and the fina state are,
respectively, 1 and O, parity conservation leads to the
equality

Ry(E 0) = (-1)

(19)

"R.,(E, 8),

(20)
which can be derived easily by using the formalism of
helicity amplitudes [14, 15]. Thus, we have

R..(E, 8) = -R,4(E, 8) =Ry(E 8). 2D

Fromrelations (19) and (21), it followsthat the reac-
tion p + *He — 1" + “He can proceed only from the
[+1, nCand |-1, nCriplet states of theinitial system that
are characterized by the total-spin projections onto the
normal to thereaction planethat areequal to +1 and -1.
We then have

wO= (RI(E, 6)—:/i—éR§(E, 0)H+1, nO

+ERI(E.0) + -j_éRé(E, 8)F-1, nl

The states |A, nCwith the total-spin projections onto
the normal to the reaction plane that take the values of
A = %1, 0 represent orthogonal superpositions of the
triplet statesin (16); that is,

(22)

1 i 1
[1,n0= Z+1, 10k [0, 15-51-1, 15

7

1, n0= %|+1, I0- }—2|o, ID—%|—1, D @3

i
0, nO= —([+1, IC# -1, 10).
J2

It should be emphasized that the result presented
in (22) is consistent with the well-known rule of
A. Bohr [15],

n= ("™

Here, n isthe product of theintrinsic parities of four
particles participating in the binary reaction, while M
and M' are the projections of the total spinintheinitial
and final states onto the normal to the reaction plane.
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The expansion of the amplitude R,(E, 6) in the total
angular momenta has the form

RV(E.8) = 3 (23+ 1)y (E)dg(9),

where d“) (6) are Wigner functions (see, for example,
[15]). We have |d$)) (8)| ~ B for very small angles and

1d$) (8) ~ ABM for AG = (1t - B)< 1. Thus, we see that,
both for 8 — 0 and for 8 — 11, the amplitude R,(E,
8) vanishes, which corresponds to the conservation of
the angular-momentum projection onto the reaction
axis.

In order to calculate the differential cross section for
the reaction p + 3He — 1" + “He by formula (18), we
will first find the expectation values of the Pauli matri-
cesand of their tensor products in the two-particle spin
state |W[ITaking into account equations (16) and (21),
we can recast expression (19) for |WCinto the form

|WO= R(E, 0)(+1/2, zP |+ 1/2, 1"

— 172, ZP 172, 1)
24
+ %2 RX (E, 0)([+1/2, 2% |-1/2, zL1 @4

+1/2, P 172, 219,

where the z axis coincides with the reaction axis1 (see
above). By using the explicit form of the Pauli matrices,
it can be shown easily that the following relations hold:
(He)

wist? 0 1™ wo= i 0 6 wo

= mwa“” 01" wo= w)i® o6 wo= o, 05)
+(He)

= 2./2Im(R,(E, 8)R? (E, 0));

wo= i 06" wo

W|6.” 061" |WO= 2|R,(E, 6)|° = |Ry(E, 8)[,
Wi6'” 06" wo= —2|R,(E, 8)]* +|Ry(E. 0)|%,
(26)
WwI6” 060 |WO= 2|R(E, 8)]>+ |Ry(E, 0)|*;
m}lo(p) 0 A(He)lLPD EP|O(p) 0 “(He)|LIJD
= wie;” 06,7 |wo= W16, 0 6, |WO= 0, @7)
EIJ|0(p) 0 A(He)IqJD BLIJ|0(”) 0 A(He)le
= 2./2Re(Ry(E, 8)R} (E, 8)).
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Substituting (17) and (24)—(27) into expression (18)
for the effective cross section for the reaction p +
SHe — 1 + “He and considering that the relations
6,=6 -1,6,=6 -m,and 6, = ¢ - n hold by defini-
tion, we arrive at the structural formula (2), where the
proton, the *He nucleus, the T meson, and the “He
nucleus play theroles of particlesa, b, ¢, and d, respec-
tively, and where the functions g,, A, B, C, etc., appear
to be bilinear combinations of the amplitudes R,(E, 6)
and Ry(E, 6):

0(E, 8) = 3WWO= Z(|R,(E, 0)]° + 2Ry(E. 6)),
A(E, 8) = B(E, 0)

- 1 *
= ooy e)lm(Rl(E’ )Ry (E, 8)),

~204(E, 0)’

IRy(E, 8)|?
0o(E, 6)

G(E, 8) = H(E, )
-1
J204(E, 8)

At 8 =0and 6 = 11, the amplitude R,(E, 6) vanishes,
and the dependence of the effective cross section for the
reaction p + *He — 11" + “He on the polarization vec-
tors of the proton and the *He nucleus takes the much
simpler form [2, 6]

D(E, 0) = (28)

F(E 0) = -

Re(R,(E, 0)R; (E, 9)).

_152 (P) p(He)

e Z|R°| A+(P7 P
—2P™ 0y(P" 0y).

Let us integrate the effective cross section for the

reaction p + *He — 1" + “He with respect to the azi-

muthal angle. Taking into account relations (6) and
(28), we obtain (see also [6])

o
p+3Heﬂ

(29)

. .. (E 06,PP p*dy =

- T + He

JIR(E, O

x (1 + (P(p) D:)(He)) —Z(P(p) D)(P(He) D))
+ TRy (E, 8)°(1+ (P ) (P" )).

We can seethat, in the effective cross section for the
reaction in question, the terms that are proportional to
A(E, 6), B(E, 0), G(E, 0), and H(E, 6) and which corre-
spond to the interference of states characterized by dif-
ferent total-spin projections onto the momentum direc-
tion vanish upon integration with respect to azimuthal
angle. It is obvious that the total reaction cross section
has the same structure (30).

(30)
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4. Let us now address the inverse reaction T +
“He — p+*He. Inthisreaction, atransition to the sin-
glet ground state is forbidden, and the total spin of the
(p, *He) system is equal to unity. We retain the notation
k, and k for the proton and Tt-meson momentain the
reaction c.m. frame and choose the z axis, the quantiza-
tion axis for the total spin of the (p, *He) system, to be
aligned with the direction of the final-proton momen-
tum k. We further introduce the same set of mutually
orthogonal unit vectors asin the case of the direct reac-
tion p + *He — 1" + “He—that is, the same vectorsl =
ky/K;, m, and n given by equations (1) with I' = k/k.

Taking into account the general relations (8)—(12),
which follow from T invariance, and expressions (28)
for the functions that determine the spin dependence of
the effective cross section for the process p + *He —~
" + “He, we find that the quantity obtained by sum-
ming the effective cross section for the reaction 1T +
“He — p + 3He inthe c.m. frame over the spin projec-
tionsin the final state can be represented as

e patie = (KoK (IRo(E, 0)]°

+2|Ry(E, 8)[%).

For the polarization parameters of the (p, *He) system,
calculations along similar linesyield

PP(E, 8) = P"(E, 0)

31

Im(R,(E, )R (E, 8)) (32)
= 2.2 > 5N,
2
Ti(E. 0) = &y — 5 S
{50 = [Ro(E, 8)]° + 2|Ry(E, 6))|
x [|Ro(E, 8)] i1, + 2| Ry (E, 8)|’mm, (33)

—/2Re(Ry(E, B)R; (E, 8))(lim, + ml)],

where |, and I, (m and m\) are, as before, the compo-
nents of the vector | (m).

In the above expressions, Ry(E, 8) and R,(E, 6) are
the same amplitudes as those for the process p +
SHe — 1+ “He, E and 6 being, respectively, as before,
the total energy and the angle between the 1T™-meson
and proton 3-momenta in the reaction c.m. frame.
According to (32) and (33), the polarization of the *He
nucleus along the normal to the reaction planeis iden-
tical to that of the proton, and thetensor T, (E, ), which
describes spin correlations in the (p, *He) system, is
symmetric. This is because the (p, *He) system is pro-
duced in a specific triplet state symmetric under the
interchange of the spin quantum numbers of the proton
and the *He nucleus. As functions of the energy E and
the proton emission angle 6 in the c.m. frame, this spin

V. V. LYUBOSHITZ, V. L. LYUBOSHITZ

state, normalized to unity and obtained by taking into
account relations (21), has the form

1

(IR(E, ) + 2[R,(E, 8)))

x [R,(E, 8) ([+1/2, I8P |+ 1/2, 114
— 12, 107 12, 16

|WOo=

(34)

" _}é Ro(E, 8)([+1/2, 1P -1/2, 10
+ 172, 107 272, 1079 ).

This expression corresponds to a superposition of those
states in (23) that are characterized by the total-spin
projections onto the normal to the reaction plane that
are equal to +1 and —1:

1
(IRo(E, 8)2+ 2|Ry(E, 0)%)

|wOo=

x [a?l(E, e)—lzRO(E, 0)5+1, (35)

7

+Ry(E,0) + i72RO(E, 8)4-1 nD}.

In contrast to expressions (22) and (24), which fea-
ture complex-conjugate amplitudes R} (E, ) and R} (E,
0) and which describe the initial spin state |\W[that is
selected by the reaction p + 3He — T + “He, expres-
sions (34) and (35) refer to the final state in the time-
inverted process Tt + “He — p + *He.

By virtue of relations (34) and (35), the spins of the
proton and the *3He nucleusin thereaction Tt + “He —
p + *He must be tightly correlated. In principle, this
offersthe possibility for preparing abeam of *He nuclei
with a controllable spin polarization without applying
brute force to this nuclei [2]. In order to demonstrate
this explicitly, we will consider a proton that is pro-
duced in the reaction Tt + “He — p + *He and which
is then scattered on a spinless or an unpolarized target
(say, on a '?C nucleus), the corresponding analyzing
power being characterized by the vector

g™ = a,(k, 8t (36)

where a(k, 8,) isthe left—right asymmetry dependent
on the secondary-scattering angle 6,, while t® is the
unit vector aligned with the normalp to the scattering
plane [16]. The spin state of the unscattered 3He
nucleus formed in association with the scattered proton
in the same event of acollision between a Tt meson and
a“*He nucleus will then depend on the proton analyzing
power.

The components of the polarization vector of the
3He nucleus are determined by expression (13), where
@, P®, P@ and T,(E, B) are now taken to mean,
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respectively, the proton analyzing power (36), the
polarization vector of the 3He nucleus, the proton polar-
ization vector in the absence of secondary scattering
[see expression (32)], and the correlation tensor (33).

The case where either the proton or the *He nucleus
isemitted at zero angle with respect to the reaction axis
was analyzed previously in [2, 4]. At 6 = 0, the proton
and the *He nucleus are both produced in an unpolar-
ized state, while the correlation tensor assumes the
form

Tik(E’ e) = 6ik_2|i|k' (37)

If the proton is scattered on a target formed by '>C
nuclei, the *He nucleus produced in association with it
appears to be polarized owing to spin correlation:

~ (He)
P = ay(E, 8,)(t"”-2101 ™).

(38)
: ~ (He) :
In this case, we have ‘P ‘ = |ay(E,. 6p)], which
corresponds to the maximal spin correlation.
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Abstract—The deuteron elastic form factors are cal culated within the Bethe—Sal peter approach with separable
interaction. The charge, quadrupole, and magnetic form factors [F(q?), Fo(c?), and Fy,(c?), respectivelyj; the

structure functions A(g?) and B(q?); and the tensor polarization components T,o(cf), T,;(0%), and T,,(q

) are

investigated up to —g* = 50 fm2. Therole of relativistic effectsis discussed, and a comparison with nonrel ativ-
istic calculations is performed. The effect of the neutron form factors on the deuteron form factors and espe-
cialy on tensor polarization components is discussed too. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The deuteron electromagnetic form factors provide
a direct way to study the properties of NN interaction
and the electromagnetic characteristics of nucleons.
These investigations are of great interest nowadays,
especially in the context of relativistic treatment. The
traditional nonrelativistic approach is based on the non-
relativistic impulse approximation with allowance for
relativistic corrections, meson-exchange currents
(MEC), and retardation effects. In [1-4] (for details,
see[2]), it was shown that taking correctly into account
these effects is necessary for describing experimental
data. Generally, the deuteron elastic form factors are
very sensitive to the choice of strong vertex form fac-
tors and to the way in which MECs are introduced. On
the other hand, recent relativistic investigations of deu-
teron electrodisintegration show [5] that some of the
MECs (in particular, the pair current) are automatically
included in the relativistic impulse approximation.
Apparently, this is valid for elastic electron—deuteron
scattering as well. Therefore, a consistent relativistic
approach even in the rel ativistic impul se approximation
can reproduce the results of a nonrelativistic treatment
with some of the MECs.

Recent experimental data at high-momentum trans-
fers [6, 7] and the planned TINAF (CEBAF) experi-
ments E91-029 and E94-018 furnish different argu-
ments for a consistent relativistic treatment because of
the importance of relativistic effects in the high-
momentum-transfer range.

Nowadays, several relativistic approaches to elastic
electron—deuteron scattering are known; some of them
are the quasipotential approach [8], light-front dynam-
ics, and the approach based on the Bethe-Salpeter

* This article was submitted by the authorsin English.
** e-mail: bondaren@thsunl.jinr.ru
*** e-mail: burov@thsunl.jinr.ru
D Far Eastern State University, Vladivostok, 690000, Russia.

equation. The third was developed in [9], where the
importance of various relativistic effects was shown.
The first takes into account the effect coming from a
Lorentz transformation of Bethe-Salpeter amplitudes
and their arguments. Another one is the contribution of
negative-energy states in the deuteron Bethe-Salpeter
amplitude.

Another interesting aspect of theinvestigation of the
deuteron elastic form factorsisthe effect of the nucleon
form factors on the deuteron form factors. Theoretical
and phenomenological models yield different sets of
the on-shell nucleon form factors Gg(g?) and Gy(g?).
Some models predict a nonzero neutron electric form
factor. If some of the observables in elastic electron—
deuteron scattering depend sizably on the nucleon form
factors, then this could be atest for nucleon-form-fac-
tor models. If, on the other hand, thereisno appreciable
dependence on the nucleon form factor, this could be a
test for NN-interaction dynamics or other effects.

The main goal of this study isto analyze relativistic
effects and the influence of the nucleon form factorsin
elastic electron—deuteron scattering, especially for
polarization observables.

The article is organized as follows. After basic for-
mulas are given for kinematics and for cross sectionsin
Section 2, the decomposition of the Bethe-Salpeter
amplitude and the NN potential is discussed in Section 3.
In Section 4, formulas for the deuteron-current matrix
element in the relativistic impulse approximation are
given, and the technique of analytic calculations is
described. The results of our numerical calculations
and the discussion of these results are presented in Sec-
tion 5.

2. RELATIVISTIC KINEMATICS

The differential cross section for unpolarized elastic
electron—deuteron scattering is expressed in terms of

1063-7788/00/6305-0774%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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the Mott cross section and the deuteron structure func-
tions (the electron massis neglected) as

do Udo U

o ™ o] [A+ee ezl
Here, 6, is the electron scattering angle;

Ddo D a’cos’0,/ 2

EdQeqﬂ o )  4EX(1+2E/Msin’6,/2)’ @

where M is the deuteron mass and E, is the incident-
electron energy; and

A() = FUa) + 2n°FY(a) + EnFin(ed),
3)
B(") = Sn(L+n)Fa(@),

Wlth n = —q*/4M?2. The €electric [F-(¢?)], quadrupole

(o], and magnetic [F,,(c¢?)] form factors are nor-
§I26d as

M

Fe(0) = 1, Fo(0) = M°Qy, Fu(0) = -, (4)

where m is the nucleon mass, while Q, and , are,

respectively, the quadrupole and the magnetic moment

of the deuteron. The components of the tensor polariza-

tion of the final deuteron in this reaction are expressed
in terms of the deuteron form factors as

108 8 >

0
Tuf A+ Btan'$] = — SENFcFo g =

204

+3 n%l+2(1+n)tan MD

TZl[A + Btanzez} (5)

2eD B
ﬁnﬁ]+n sin FFQsecz,

2/\/5” M-

Equation (1) isdueto the one-photon approximation
and can be obtained, by using the standard technique
[10], from the reaction amplitude

0
TZZ[A+Btan2ﬂ— 1 R

Mfi = Ie um(ke)y um(ke) EDJM’ |Jp|DJ‘/LD (6)

where u,,(k,) is the free-electron spinor for a4-momen-
tum &, and a spin projection m; g =k,— k, =P' =P is
the 4-momentum transfer, P(P") being theinitial (final)
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deuteron momentum; |D.LCis the deuteron state char-
acterized by the total-angular-momentum projection
J; and j,, is the electromagnetic-current operator.

The deuteron-current matrix element is usually
parametrized as

D'[j | DMO= =& 4. (P (P)

g, ape 2 P, 2
P +P F.(P)-1LF 7
<P+ )u[g (@) -1 )} )

0
~(9"gi— ")) G1(q) T
0

where € (P) and &7}, (P") are the polarization 4-vectors

of the initial and the final deuteron, respectively. The
form factors F; (%) and G,(q?) are related to F(cP),
Fo(P), and Fy(?) by the equations

2
Fc = F1+§r][F1+ (1+n)F,-Gy],

Fo = Fi+(1+n)F,—-G;, Fy = G,

The normalization condition for the deuteron-current
matrix e ement has the form

lim D'M']j,|DMO= 2P, 8 (.-
q-.O

To calculate the deuteron form factors, we must use
a particular reference frame. In the laboratory frame,
the 4-vectors are given by (the z axis is directed along
the photon momentum)

P=(M,0), P =[M(1+2n),0,0,2./nJ1+n],
q = [2Mn,0,0,2M./n.J/1+n], ®

Een(P) = Eyon(P) = —%2(0, 1,i,0),
_ N I
CuealP) = EalP) = £0.150.0,

EJl/L:O(F)) = (010’ 01 1)1
Eu-o(P) = (24nJ/1+1n,0,0,1+2n).

Using expressions (9) and the parametrization in
(7), we can obtain

O] jo| MO = 2M(1 +n)
X{F10yu*+2n[F1+(1+N)F,—G1]d 00,0}, (10)

. 2M
ol'|j Mo = E«/ﬁvl +NG1(Oy 41— Ourat—1)-
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To calculate the deuteron form factors, we must
therefore know three matrix elements with different
total-angular-momentum projections and current com-
ponents.

3. BETHE-SALPETER AMPLITUDE
3.1. Partial-Wave Decomposition

The main object of the approach used is the Bethe—
Salpeter amplitude (or wave function), which isusually
decomposed into the sum of direct products of free
Dirac spinors. Since the Bethe-Salpeter equation is
solved in the rest frame, the decomposition of the
Bethe—Sal peter amplitude can be represented as

X (P P) = 5 @u(po IPDT((P), (11)

where P is the total momentum of the system [in the
rest frame, we have P = (M, 0)] and p = (p,, p) istherel-
ative momentum. The decomposition is performed in
terms of quantum numbers—namely, the relative
orbital angular momentum L, thetotal spin S, and the p
spin briefly denoted by a [11]. The radial components
of the amplitude are denoted by @,(p,, |P]), and the

spin—angular-momentum components are I §, (p).
In the deuteron channel, the Bethe—Salpeter ampli-

tude involves eight states: °S;", °s,", °D}", °D7, °F,

*PS, 'P%, and 'PS. Below, only the °S;" and °D" states
will be used. The radial functions for these waves will
be denoted by @ (p, [p[) withL =S D.

In practice, however, it is more convenient to use the
covariant form of the Bethe-Sal peter amplitude instead
of the partial-wave decomposition (11). Introducing
eight Lorentz invariant functions h,(Pp, p?), we can
write

(PE )

m

X (P, p) = hi&u+h,

D;—Mms2 2 P+m
+ g P o+ £ P2

D?Jl"'sz(pEM) fi—-m: o Ptmp
thgm Om o m SM-&u— D1y

+h P1— P —2m{ P&,
6] m O m

Ppi—mp (PE y)gh, + m
+ m H.bg./l/t"'hs_m D_m )

wherep, , =P/2£p.

BONDARENKO et al.

If only the °S" and °D;" states are taken into

account, the relation between functions h(Pp, p?) and
@ (Po, Ip]) has the form

1 _
h, = IéalDl[«/i(Ps—(PD],
1 - 1 ¥
Iéal[«/éastfps"' aa§D4(pDi|1
1
= Za,pol J225m0s ~ a3(E, + 2m) o],

= —%almz[ﬁ(ps— @pl,
(13)

1 - +
he = éal[«/éaste(Ps"'agDﬂPD],

1

h =3

almz[«/é(Ps—(PDL

1
hg = _Zalm[ﬁa3m(ps—a§(2Ep +m)@p],

where
a, = I/ME,, a, = m/|p|, a3 = m/(E,+m),
+ _ 2 2 2
DI = (M £ 2E,)°—4(4m’ + p;),
D3 = (M £ 2E, + 4m)*-4pj,
2 = [(M £ 2E,)*—4p;] (2E, + m) — 16(m = M)p?,
D = 4m+2E,+ M,

D7 = £ M(E, +2m) + 2(2m’ + 2mE, - E3),

2
(Pp) -p’, E, = Jp°+nt.

M2

(Pp)

p
M k)

Po = lpl =

3.2. Separable Potential

It is well known from the nonrelativistic approach
that, for a separable potential, the relevant integral
equation (for instance, the Lippmann-Schwinger equa-
tion) reduces to a set of linear equations. For a separa-
ble potential of rank N,

Vic(Pos [P Pos [PI)
. L L (14)
= 3 NP6 DG (Po P Ay = A,
i
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Table 1. Parameters of the covariant Graz |1 potential
Vi 28.69550 GeV~™2|| By, | 5.21705x 1071 GeV || yy; [2.718930 x 1074 GeV® || Ay, 16.52393 GeV?
Yo 64.9803 GeV2|| By | 7.94907 x 1071 GeV || yyp |-7.16735x 1072 GeV* || Ayg 0.28606 Gev4
Bi1 231384 x 10 GeV || By, | 1.57512x 10 GeV || A5 |-1.51744 x 103 GeV® || Ag5 | 3.48589 x 103 GeVo

the radial functions of the Bethe-Salpeter amplitude
are given by (s= M?)

¢.(Po. IP)) = S(po. Ipl. 5) z A1 (Po. [PD)ey(9),

ij=1
S(Po [PI, 8)

= [(J/2+ py—E, +i€)(//3/2—po—E, +i€)] ",

where the coefficients c(s) satisfy the following set of
linear algebraic equatl ons

15)

ci(s)— Z Hik(s)Agci(s) = 0,
K, j

i 2
Hi - — d d
k 5 ZLZZ DI pOlpl |p|

x S(po, [Pl )8 (Po, )9 (P, IP).
In this case, the partial-wave T-matrix series has the
form

TL‘L(pz)v |p'|1 pO! |p|! S)
N

= 3 (1948 (P6 1P g} (Po. P,

ij

(16)

(TS = AT —Hy(s).
The on-shell T matrix

TS =TL0(0, Ip*[; O, Ip*[; 9),

(17)

where |p*| is the relative momentum in the c.m. frame
and E,,,, isthe energy in the laboratory frame, isrelated

to the3S, and D, phase shifts (&, and J,,) and the mix-
ing parameter € as

—2i
Ip*|./s

(08) _

O i i(85+3p) O (18)
<« d cos2ee”*—1 isin2ee > ™

N O
(3s+3p) -10

The calculations were performed with a covariant
generalization of the separable Graz Il potential [12].

.. i 2id,
disin2ee cos2ee °
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For the relativistic Graz Il (rank-3) potential, the func-
tions g; are given by [13]

1-yy(ps—p?)
(Po-p*—Bi)”

(P —p°)
(Po-p*—BL)”
(Po—P)(L-Y(Po—P°))
(Pe—P = B2 (Po—p°—B2)"

g1 (Pos IP) = 627 (Po Ipl) = 957 (po, IpI) = 0.
The parametersfor thesefunctionsare given in Table 1.

Theresults of the calculationsfor basic properties of
the deuteron (D-wave weights pp, binding energy e,
guadrupole moment Qg, magnetic moment |y, and pp,s
ratio) and the parameters of low-energy 3S; scattering
(effective range r, and scattering length a) are dis-
played in Table 2. For the sake of comparison, the
results obtained with the nonrelativistic Graz |1 poten-
tial are also presented.

The %S, and 3D, phase shifts are shown in Fig. 1.

9 (po: Ipl) =

957 (po, P) =
(19)

05" (Por Ipl) =

4. RELATIVISTIC IMPULSE APPROXIMATION

In the relativistic impulse approximation, the deu-
teron-current matrix element D"/L'] Ju|DJl/LEban be rep-
resented as

D[, | DMD 0)
. d4p N (9 [P ~ DD
=j trix (P, p)I P, p)= — p+m=
j(2n)4 KaeP PN @X (P P — P+ M3
0, deg 0, deg
180 0 )
130 ol
80
_20,
30
ez
—20 06200 200
Eipy MeV

Fig. 1. (a) *S, and (b) °D, phase shifts. Experimental data
were borrowed from [14].
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Table 2. Deuteron properties and parameters of low-energy 3S; scattering

P, % | €4, MeV Qq, fm™ g, €/2m Pbis ro, fm a, fm
Covariant Graz I 4 2.225 0.2484 0.8279 0.02408 1.7861 5.4188
Nonrelativistic Graz |1 4.82 2.225 0.2812 0.8522 0.0274 1.78 5.42
Experiment 2.2246 0.286 0.8574 0.0263 1.759 5.424

where X (P, p) is the Bethe-Sal peter amplitude for the
deuteron, P'=P + ¢, and p' = p + ¢/2. The vertex of yNN
interaction,

YpCI4_mqpr(25)(q2),
is chosen to be on the mass shell. The isoscalar form

factors for the nucleon, F{°, (c?), appear owing to sum-

mation over the two nucleons.

First, the trace was evaluated in (20) with the aid of
the analytic calculation package MAPLE V. The cova
riant form was used for the Bethe—Sal peter amplitudes
(12). After tracing, the scalar products of 4-momenta

(P, p, ) and deuteron polarization 4-vectors (€, &)
with definite spin projections were inserted. Then,
using eguations (13), the functions h, were expressed in
terms of @gand @,. All scalar products were evaluated
in the laboratory frame.

ra) = y,FO(q) -

The resulting expressions for the deuteron-current
matrix element can be represented as

DAL}, DMO
= 9N PAFO(P) + I (A FD (D),

I = i [dpdlpl°dlpld(coso) @1)

x> eu(Po IPDe(pPo IPI)

L"L=SD

X Ilijyzl}tmmu(po, Ipl, cos8, qz),

where the function 17", (P, Ip|, cOSB, 0) emerged

astheresult of calculating the trace and substituting the
scalar products into (20). It has a very cumbersome
form and is omitted in the article.

In (21), theradia part of the Bethe-Sal peter ampli-
tude for the outgoing deuteron, @ (py, |P']), depends on

the components of the 4-vector p' calculated in the rest
frame. To go over from the vectors in the rest frame to
those in the laboratory frame, we must make a Lorentz
transformation; that is,

Pio = LPiey = L(M,0),

P = LPrear  (22)

PHYSICS OF ATOMIC NUCLEI

where the Lorentz transformation matrix & has the
form

5 1+2n 002/mJ/i+nH

0 0
¢=g 0 10 0 7 (g

0 o 01 o0 O

02/MJ/1+n 00 1+2n O

To simplify the notation, the components of the
4-vector pry are denoted by p' = prey = (Po, Px» Py,

p;) and [p' = [Pres | = 4/ P + Py + P2 Using relations

(8), (22), and (23), we arrive at
Po = (1+2n)py—2/n/1+np,—Mn,

(24)
Px = Px Py = Py
p, = (1+2n)p,—2/nJ1+npy+ MJ/nJ1+ 05)

where py, p,, p,, and p, are the components of the 4-vec-
tor p in the laboratory frame.

5. CALCULATIONS AND RESULTS

The radial part of the Bethe-Salpeter amplitude in
(21) has the form @.(py, [p) = SRy, [P)g.(Ro. Ip[) [see
equation (15)], where g,(py, |p|) istheradial part of the
vertex function. Thus, the Bethe-Salpeter amplitude
involves singularities in the p, plane, which are infini-
tesimally close to the real axis. Some of the singulari-
ties are from the propagator, while the others are from
the radial part of the vertex function—in other words,

from the functions g,

For the initial deuteron, the singularities do not
depend on ¢? (or n) and always remain in the same
guadrant:

Po=+ M/2 F /p®+m’ +ie for the propagator,

Po=+./p°+ B 7 ie for the functions g" .

A different situation occurs for the final deuteron.
Due to the boost of the arguments of the amplitude in
(25), the singularities depend on ¢ (or n) and can go
across the imaginary axis and appear in another quad-
rant (mobile singularities). The positions of the singu-
larities are the following:

Vol. 63
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Do = —(L1+4N)M £ /p* + m + 4./n(1+N)MIp| cos8 + 4n°(1+1)°M’ Fie

for the propagator and

Po = —NM+ Jp?+ B2 +2./n(L+N)M|p|cos8 + n*(1+n)*M* Fie

for the functions g ..

The mobility of the singularities does not affect the
calculations if the Cauchy residue theorem is applied.
But for the Wick rotation procedure, this meansthat the
additional contributions (the residues at these mobile
singularities) must be taken into account. The minimal
value of g* for which the imaginary axisistraversed is

—_
<
8]
)

(b)

1074

108

L L B L L L R )2

o
[\)
o

40 02, fm™2

Fig. 2. () Structure function A(q?). Long dashes represent
the calculation without the contribution of moving poles.
The solid curve shows the results of the full calculation.
Short dashes correspond to the nonrelativistic calculation
(nonrelativistic Graz 11 potential). Experimental data were
borrowed from (©) [15], (») [16], and (V) [6]. (b) Structure
function B(q?). The notation for the curves is identical to
that in Fig. 2a. Experimental data were borrowed from (<)
[15], (B [17], and (V) [18].
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— = M(2m—M) = 0.107 fm2 for propagator and - =

4MB; = 30 fm=2for the functions gi(L) . The contributions

of the residues from the functions g are negligible
(about 1%) in the region —g? < 50 fm2, but the contri-

F C(Q%)

(a)

100

Fig. 3. (@) Charge form factor F(q%). Long and short
dashes represent the calculations with, respectively, the
VMDM and the RHOM nucleon form factors. The solid
curve corresponds to the dipole fit. The experimental data
were borrowed from [15]. (b) Quadrupole form factor
F (q) The notation is identical to that in Fig. 3a, and
experl mental data originate from the same source.
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10°7E

B(q*)

10735
10-E

1077

,97 1 1 1 1 )
10 0 20 40

Q?, fm=2

Fig. 4. (a) Structurefunction A(q?). Thenotationisidentical
tothat inFig. 3a. Experimental dataorigi natefrom the same
source asin Fig. 2a. (b) Structure function B(g%). The nota-
tionisidentical to that in Fig. 3b. Experimental data origi-
nate from the same source asin Fig. 2b.

bution of the residue from the propagator is too large
and can even modify the curves significantly.

The contribution of the residue from the propagator
isshown in Fig. 2 for the functions A(g?) and B(¢?). We
can see that this contribution is sufficiently large both
for the function A(g?) and for the function B(g?) [for the
function B(g?), this contribution fills the minimum,
which does not exist in the experimental data]. This
result can be considered as a specific relativistic effect
caused by the Lorentz transformation for arguments of
the Bethe-Salpeter amplitude (vertex functions and
propagator).

Yet another interesting result of the investigationsis
the dependence of the deuteron form factors on the
nucleon form factors—in particular, on the neutron
electric form factor. The electric and magnetic form

PHYSICS OF ATOMIC NUCLEI

T20(q%)

—0.4}

—-1.2F

|
—_
N
T

(b)

-0.1

(©)

0.3F

o] T

Fig. 5. (a) Tensor polarization component T,o(q?) (6, =
70°). Thenotation isidentical to that in Fig. 3a. Experimen-
tal data were borrowed from [22]. (b) Tensor polarization
component T21(q ) (6, =78.7°). The notation isidentical to
thatinFig. 3a. Experlmental datawere borrovvedfrom [21].

(c) Tensor polarization component T22(q ) (6,=78.7°). The
notation is identical to that in Fig. 3a. Experlmental data
originate from the same source asin Fig. 5b.

Vol. 63 No.5 2000



SENSITIVITY OF POLARIZATION OBSERVABLES

factors for nucleons [Gg(g?) and Gy,(0f?), respectively]
are related to the Dirac and Pauli form factors [F,(g?)
and F,(g?), respectively] by the equations

2
Ge(d) = Fu(q)) + S5F (),
am (26)

Gu(a®) = F1(q)) + Fo(d?).

Three sets of the nucleon form factors were used in
the calculations. Thefirst set is the so-called dipole fit

Gn(a’) = (1+k,)GE(T"), Gy = KGE(T), o
GHd®) = 0, GXd) = (1-¢*/0.71(GeV))) ™,

wherek,, = 1.7928 and k,, = —1.9130 are the anomal ous
magnetlc moments of the nucleons. The second set is
that from the vector-meson-dominance model
(VMDM) [19], whereas the third set is that from the
relativistic harmonic-oscillator model (RHOM) [20].
The first model assumes that the neutron electric form
factor is equal to zero, but the second and third ones
|lead to anonzero value for it.

Figure 3 shows the charge and the quadrupole form
factors [F(g?) and Fo(0P), respectively]. The zero of
the form factor Fc(qz) isin the range of Q? between 32
and 33 fm, but experimental data yield Q> = 17.81—
21.34 fm2[21]. Thisis because of the specific type of
the separable Graz |1 potential [in the calcul ations with
the nonrelativistic Graz |1 potential, the zero of F(cf?)
isshifted too]. The nucleon form factors do not shift the
zero of theform factor F(g?). The nucleon form factors
with the nonzero electric form factor for the neutron
(VMDM and RHOM) are more suitable for fitting the
experimental data on the quadrupole form factor
Fo(0?). The structure functions A(g?) and B(cp?) are
shownin Fig. 4.

Figure 5 shows the tensor polarization components
Too(), To1(g?), and To,(g?) for the final deuteron. It can
be seen that the tensor polarization components depend
on the nucleon form factors. For T,y(0?) and T,(P),
this dependenceisvery weak, but, for T,,(g?), itismore
pronounced [this is because the nucleon form factors
affect sizably the quadrupole form factor (Fig. 3b)].
This result can be used to choose between the models
for the nucleon form factors. Unfortunately, large
uncertainties in experimental data give no way to
choose one of the sets, and future experiments to mea-
sure the component T,,(g?) can be very useful for this.

Note that the cal culated function T,(q?) differsfrom
the experimental indications in the region Q > 4 fm=.
Thisfact, apparently, could be explained by several rea-
sons. It is necessary to improve the description of the
zero of the charge form factor F(f) by changing the
separable kernel of NN interaction and by taking into
account the negative-energy states of the Bethe-Sal-
peter amplitude for the deuteron. It is also important to
investigate the contribution of the two-body electro-
magnetic current. Information about the effect of these

PHYSICS OF ATOMIC NUCLEI  Vol. 63
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factorswill provide apowerful tool for studying the on-
and off-shell behavior of the nucleon form factors in
elastic ed scattering.
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Abstract—On the basis of the Glauber—Sitenko approach, the cross sections and spin observables for proton—
nucleus scattering at intermediate energies are cal culated with allowance for intermediate excitations of target
nuclei. The calculations are performed by using the Hartree—Fock and model -independent nuclear densities and
nucleon—nucleon amplitudes determined from partial-wave analyses. It is shown that the inclusion of interme-
diate excitations of nuclei strongly affects the behavior of observables in the region of moderately small scat-

tering angles. © 2000 MAIK “ Nauka/lnterperiodica” .

1. The Glauber—Sitenko theory of multiple diffrac-
tive scattering [1, 2], where the amplitude for proton—
nucleus scattering is expressed in terms of nucleon—
nucleon amplitudes and the wave function of the target
nucleus, underlies one of the most popular approaches
to theoretically describing collisions between protons
with energies of a few hundred MeV and nuclei. This
theory was successfully used by many authors to study
such processes. As a rule, caculations within this
framework for medium-mass and heavy nuclei disre-
gard correlations of intranuclear nucleons, treating the
nuclei under investigation in terms of single-particle
nucleon densities. (For the studies that are free from
this limitation and which attempt to take into account
various correlations, we can indicate, by way of exam-
ple, those in [3-8].) Such calculations usually employ
the following simplifications of the model: the distinc-
tions between the proton—proton and the proton—neu-
tron amplitudes and between the neutron and the proton
densities are ignored—the averaged proton—nucleon
amplitude and the averaged nuclear density are used
instead of them, respectively; the optical limit is used,;
no account istaken of the Z ordering of noncommuting
operators in the expression for the pA amplitude;
explicit approximations of the proton—nucleon ampli-
tude are sometimes used, which imposes some restric-
tions on its form; and the zero-range approximation for
nuclear forcesisinvoked in some cases.

Along with an analysis of differential cross sections
for scattering processes, an investigation of spin
observables (such as polarizations and spin-rotation
functions), which form, together with cross sections, a
complete set of quantities for describing elastic proton

* e-mail: berezhnoy @pem.kharkov.ua

D Research and Technol ogical Center for Electrophysical Process-
ing, Nationa Academy of Sciences of Ukraine, ul. Cherny-
shevskogo 28, Kharkov, 310002 Ukraine.

scattering on spinless nuclel, is also of considerable
interest, since spin observables exhibit quite ahigh sen-
sitivity to the choice of model and model parameters. In
some studies, a good description of cross sections and
spin variables was achieved via an explicit use of free
parameters in proton—nucleon amplitudes and model
nuclear densities. Fitting procedures for determining
the densities and the parameters of the proton—nucleon
amplitudes were aso invoked (see, for example, [9]).
However, a theoretica description of data that is
obtained in this way can be questioned because of
ambiguities in the fits and because of the above simpli-
fications of the model.

At present, we have a vast body of information at
our disposal that comes from partial-wave analyses of
nucleon—nucleon scattering and which refines substan-
tially our knowledge of nucleon—nucleon amplitudes,
including their dependence on nucleon spins. The
results of theoretical investigations of the structure of
nuclei—in particular, the results of Hartree—Fock cal-
culations with effective Skyrme forces—and data on
proton densities from a model-independent analysis of
electron scattering create preconditions for the use of
realistic nuclear densities. In view of this, it is of great
interest to describe proton—nucleus scattering on the
basis of the Glauber—Sitenko theory of multiple diffrac-
tive scattering by employing realistic nucleon—nucleon
amplitudes and nuclear densities without oversimplify-
ing the model.

In the present study, we calculate the cross sections
and spin observables for elastic proton scattering on
spinless nuclel, relying on the above theory of multiple
diffractive scattering. In this calculation, we take into
account two-body nucleon correlations that are due to
intermediate excitations of nuclei in successive rescat-
terings on target nucleons and use Hatree—Fock or
model-independent nuclear densities and proton—

1063-7788/00/6305-0782%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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nucleon amplitudes determined from a partia-wave
analysis. Asaresult, we obtain new expressions for the
amplitudes of pA scattering without invoking the above
simplifying assumptions.

2. According to the theory of multiple diffractive
scattering, the expression for the amplitude of elastic
_ ik 2, iqb
Fo = Z_TJd be” "Q.(b)

PA scattering has the form
(1)
= TJdb'qD’ < >

where k is the wave vector; Q. (b) is the nucleon—
nucleus profile function describing el astic scattering; q
and b are, respectively, the 3-momentum transfer and
the impact-parameter vector, which lie in the plane
orthogona to the beam direction; s is the projection of
the radius vector of jth nucleon onto thisplane; |000sthe
ground-state vector of the target nucleus; and A is the
mass number of the target nucleus. For scattering on

intranuclear nucleons, the operator Z ensures the Z
ordering [10] of the scattering matrices §(b), which are
expressed in terms of the proton—nucleon amplitude
fi@) as

z|‘|5(b s,)

S(0) = -z [dae i@, @)

In the expression for the amplitude f;(q), we will
take into account only the central and the spin—orbit
term [ (q) and £ (q), respectively], disregarding
the remaining components, which involve the target-
nucleon-spin operators and which therefore contribute
insignificantly to the amplitude of scattering on spinless

nuclel [11]; that is, we st fi(q) = féj)(q) + fé”(q)c n,
where ¢ stands for the Pauli matrices and n = k; x
ki/|k; x k¢| (here, k; and k; are, respectively, the initial

and final wave vectors).

The amplitude in the form (1) takes fully into
account nucleon correlations in the nucleus. A descrip-
tion of a nucleus in terms of single-particle densities

p{(ry in the ground state corresponds to replacing the

identity operators between the operators § by the pro-
jection operator |OD|. In this case, it is assumed that
successive events of proton scattering on the nucleons
of anucleusleavethisnucleusin the ground state, inter-
mediate excitations being ignored. Here, we take into
account the possihility of the single intermediate
nuclear excitations of various multipole orders. This
means that, in (1), we retain terms of the form

0IS,J05- DI a; 1, M- (@;1, MIS |05 DIS|OC], o
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According to the pattern corresponding to the expres-
sion in (3), the excitation of the state |a; |, MTof multi-
polarity | (here, M isthe projection of the spin I, while
o stands for the remaining quantum numbers of the
state) in scattering on the jth nucleon is followed by
deexcitation in scattering on the ith nucleon. The struc-
ture of the correction terms (3) suggests that the main
contribution is expected to come from states associated
with inelastic processes whose rel ative probabilitiesare
high (since the corresponding cross sections are large).
These are predominantly low-lying collective nuclear
states. In specific calculations of observables, we will
therefore restrict ourselves to taking into account inter-
mediate excitations of natural parity for some low val-
ues of |, retaining the contributions of only the few
most important states for each multipolarity. It should
be noted that this approach corresponds to representing

the two-particle correlation function C*”(r;, r;) in the

form of a special expansion in terms of spherical har-
monics:

C ) = S S PP Vi) Yiu ()

a I,M

= L5 @+ 0plr)pl ()P ).

“)

Here, the transition density for the excitation of the

intermediate state |a; |, MOhas the form pf,’,)M(r) =

pu, (r)Y,M(r ), where p(”(r) istheradial transition den-

sity; Yu(F) = Y,u(0, ¢) is a spherical harmonic; and
P,(f; [F;) is the Legendre polynomial of degree I. In
addition to two-particle correlations that result from
taking into account intermediate states proper, we will
similarly include center-of-mass correlations associ-
ated with the motion of the center of mass of the target

nucleus. The corresponding correlation function has a
form similar to that obtained in [6, 7]; that is,

3r; [r

(U3)) — i () (1)
Ccm (r|v J) - _Nrr(:)z 7y (p)2p0 (r )pO (r) (5)

where 1P = 72 ﬂj represents either the neutron

(for the mdex n) or the proton (for the index p) root-

mean-square radius for the densities py"” (r,, ), while

N and Z are the numbers of, respectively, neutrons and
protonsin the target nucleus. The expression in (5) for-
mally corresponds to the | = 1 intermediate excitation
characterized by atransition density of the form

) _ 4T ()
Pem (r) =i /ero (r).

(6)
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As a result, the nucleon—nucleus profile function
appearing in (1) can be represented in the convenient
form

Q.(b) = Qub) + io - BQg(b)
= Q(b) + 6 - BQgy(b) + Q9 (b).
For the profile functions Q4 and Qg, describing the
scattering without excitation, we have

Quo(b) = 1-C{%(b), Qgo(b) = iCLL(b), (7)
where
Ci(b) =311 -EP +iE "[1-EP +iEP)’
(8)
+[1-E¢" —iE"] [1-E” -iEPT)
with
Ega(b) = k[dquo (ap) F@QP (@), ©)

Here, J(X) is a cylindrical Bessel function, while

9 (q) is the form factor for the ground state of the
nucI eus being considered,

P(q) = 4njdrrzjo(qr>pé”(r), (10)
0

wherej(X) isaspherical Bessel function.

For the profile function Q®9(b) taking into account
intermediate excited states, we have

Q) = -5 D IH dz,

o1, M j=1

1) (n 1)
z Z ZHO (bv |) ( | 1)
n=1m=n+1{i}
( In) (n+1) (Im l)
xH v (b, z JHo (b7 )...Hy " (b, ) (11)
(a, Im) (|m+1) (IA)
xH, v (b,z )Ho" "(b,z_ )...Ho (b, Z7))

m+ I

8(z,-z)...6(z, ,—37,),
where 6(2) is the Heaviside step function associated
with the Z-ordering procedure [10]; the symbol 0
denotes that summation over the permutations of the
nucleon numbersiy, ..., i, is performed; and the opera-
tors H (b, 2) and H(cx (b, 2) as functions of the spin

variables are given by

H (b, 2) = [d ?sps(r)S;(b—s)
(12)

Hi (b, 2) +iHEs (b, 2)6 (B,
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H (b, 2) = [d ?spe(1)S, (b —9)

" THE (b, 2) +IHS (b, 6 B (13)

+Heni (b, 2)o [B].

Here, ¢, isthe azimuthal angle of the vector b and B =

b x k, where b = b/b and k = k/k. The operator
Q©9(b) can be broken down into two components. The
firgt, Q%) = Q%) +ie - BQLS(b), involves

only the first two terms from (13) (no noncommuting
operators appear in this component), which feature

HED and HE) [expression (11) is taken into
account here] The second, Q™9(b) = Q5 (b) +
ic-BQ (b) involves only that term from (13)
whichis proportl onal to HJ) .

For the profile functions Q59®b), Q%)

Q%mb), and Q5 (b), calculations similar to those

described in [12] for the inelastic-scattering amplitude
yield

Q5(b) = -5 Yiu, 052 kv

a,l,M

(+)
N—-v,Z-2+v

[Eu(; IV)EF; v d E(a,iv)md E(a,JV)D}

Qj_b sIM D]j_b siIM ] (14)

(ajy) d

(i) d _(a, N (a,i,)] 0
+Eu dbEsIM }El

+|CN v, Z- 2+v|:EIM dbEsIM

Q(eXC)(b) = z YIM[Q OEZ kaCN V,Z-2+V

o, l,M
(a,iy) —(a, j,) d —(aiymid (i)
x| BB - HpEon g 0 (1)

(a,iy) d

(ai,) d (@) (o, i) 0
+Ejm dbEsIM }%

_Cﬁ\l+zv,2—2+v|:ElM dbEsIM

(a,iy)

J'dzlj.d >Hpiw (0, 24)

—00

(exc)(b) z z K

a,l,Mv=0

(16)
(a,jy) +)
X Hpim (b, 2)[Dy_y z-24v(D, 24, 2,)0(2, - 2,)
(+)
+Dnly zo24v(D, 25,2)0(2, - 21) ],
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(o, iy)
2Hoim (0, 2))

Q) = i > Z J’dzlj’d

a,l,Mv=0

—00

(a, jy) a7

X Hpw' (b, Zz)[D Tv.z-2+v(D0,21,2,)08(2, - 2,)

+ D)y 220y (D, 2, 2))8(2,— )],

wherethe explicit expressionsfor the coefficientsk, are
ko= Z(Z-1)/2, k; = NZ, and k, = N(N - 1)/2; the sub-
scriptsi, and j, take the valuesi, =i, =j,=nandi, =
J1 =]Jo=p (nand p label quantities associated with neu-
trons and protons, respectively); and the functions
appearing in (14)—«17) are determined by (8) and (9)
and by the expressions

[

En(b) = jdquM(qb)f“)(q)Q“)(q)
(18)

[

ESV(b) = — jquM(qb)f‘”(q)Q“)(q)

+ n . n N
Dy (b, 21, 2,) = {[1 Eq’(b) +iel”(b, z,, )]

Z
x[1-E5”(b) +ie” (b, 23, 2,)] (19)
£[1-E(b) —iel (b, 23, 2)]"
x[1-E" (b)-iel” (b, z,, 2,)]°} .
. . 2'oo .
e’(b,2,2)) = E/'(b) + 2 [daad;(ab) £ (a)
° (20)
j—(sntzl—sntzz>Q“’(Jq2+t2),
a, M
Hi'(b,2) = i ™7 bjquM(qb)f“)(q)
w @1)
—itz q (i)
XIdte Y,M%\rctan?OBb (A/q +1t )
Here, thetrangition nuclear form factor Q(”(q) isgiven by
S(b) = 4njdrr ji(an)pel(r). (22)

Expressions (16) and (17) for the functions Q5 (b)

and Q5% (b), respectively, are overly cumbersome for
numerical calculations. In addition, they yield only
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small corrections to the elastic-scattering amplitude.
For these functions, we can therefore employ the
approximate expressions that follow from (11) if we
assume that all factors commute with one another:

2 (o,iy) —(a, jy) (23)
a, Iv a, ]v +
X Z KyEsim Esm C(N)V,Z—2+vv
0
(exc) 2
Qp, "(b) =i ZMYIMEQ
(24)

(o,iy) —(a, )
X Zk Eqm Esim CN v, Z-2+v-

Numerically, the distinctions between the results that
are obtained with expressions (16) and (17) and those
that are obtained with expressions (23) and (24) are
vanishingly small.

It should be emphasized that, by summing the con-
tributions from the most significant intermediate exci-
tations, we can take into account only a part of rather
long-range nucleon correlations in target nuclei. It was
indicated in[7] that, for fully taking into account corre-
lations in a model-independent way, it is necessary to
sum the contributions of al intermediate states, includ-
ing those from the continuous spectrum, but this is
impossible in practice. In addition to the aforemen-
tioned corrections, we will therefore include short-
range correlations associated with the repulsion
between nucleons in a model-dependent way. For this,
we can employ the smple correlation function (see [3,
4, 6-8])

Ce(riry) = —g(lri—riDpo’(r)p(r)),  (25)
where the function g(r) is taken in the form g(r) =

eXp(—Tﬂ’2/4|C20r) (I is the correlation length). For-

mally, this form of short-range correlations corre-
sponds to taking into account transitions into the con-

tinuous spectrum with the transition density piﬂ)(u ry=

pé”(r)exp(—m r), and summation over the states in

(11) takes the form

o, l,M

where {(u) isthe Fourier transform of the function g(r).
Expression (25) isnot self-consistent [6, 7], because the

condition J’d rp“)(u, r) = 0is not satisfied for it. For

this reason, we will use the function pg)(u ry =

o exp=iu - r) — QY (u)], which meets this condi-

s (D2} Id3UZ(U)...,
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tion. This choice of the density corresponds to the self-
consistent form of the correlation function from [6, 7].
In calculating the relevant corrections, we assumed that
leor <€ Iy and ayy < I, Where ayy is the range of
nucleon—nucleon interaction (see, for example, [7]).
Within this assumption, we performed an expansion up
to second-order terms in ay/r» The corrections to the
profile functions (14)—(17) due short-range correlations
are given by

Q:(b) = z k[Go (0)C 2 2

(26)

+|G(“’(b>c Lvaanl,

Qg7 (b) = ‘Zk [iGs (D) .72+

(27)

”’(b)c“%z 2],

(sr) v) (+)
Q:3(b) -—zke (B)CKLvzzews  (28)
Qg;'(b) = i zk G (0)C vz 20y (29)

Since the expressions for the functions G\, GY”,

and G(V) are rather cumbersome, we present here sim-
pler formulas for them, those that satisfy the definition
in (25) and which correspond to the zero-order approx-
imation in ayy/rm (in nUmMerical calculations, the result-
ing distinctions are insignificant):

oo

kzm dgaz ()21 (a) f”(q)

0

(V)(b) —

(Iv) (iv)

£ 0

(Q)]J'dzpo (ps (1)

(30)

0

—Zquq 2@ (@) F(q)

(iv) (v)

fdz[apr (r)}[abpo “ﬂ@

GY(b) = [ IdCIZ(CI)fc (@) ()

(1)

szpo (35 pé‘“)(r)+(| ﬁjv)}
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G (b) = - quq&(q)f (@) FL(q)

(32)
(iv)

><J.deo (r)po (r).

Here, r = J/b°+Z° and the (i, — j,) term in (31) is
obtained from the preceding term by the interchange of
the indices indicated in the parentheses.

In calculating the pA amplitude, we aso took into
account electromagnetic interaction, along with its
spin-orbit part. We note that, in the partial-wave analy-
sis, the expressions for the proton—nucleon amplitudes
contain the terms describing the electromagnetic inter-
action of nucleons and the distorting Coulomb phase
shift inthe sum over the sought partial waves. However,
these terms cannot be directly substituted into equa-
tions (9) and (18)—(21). Following [7, 13, 14], wethere-
fore takeinto account Coulomb interaction viathe mac-
roscopic proton—nucleus Coulomb phase shift and

choose the proton—nucleon amplitudes as féj)(q) =

fR@, @ = fg), and 1P = 18 @) +

£ (q), where £ (q) and ) (q) are the nuclear

components of the amplitudes. These nuclear compo-
nents are calculated on the basis of the nuclear phase
shifts found from a partial-wave analysis, neither elec-
tromagnetic terms nor the distorting Coulomb phase
shift being taken into account in this calculations. In
accordance with asimilar term in the partial-wave anal -
ysis from [15], the electromagnetic correction to the
spin—orbit part of the proton—proton amplitude can be
represented as{in contrast to [15], we use here the non-

symmetrized expression for f\". ()}

2
0@ = L (5 a2 £
Zmpc 4K
(33)
21+1 2
{ ZI(I+1)P'(l q'/2k )}’
where m, and |, = 1.79 are, respectively, the proton

mass and the anomal ous magnetic moment of the pro-
ton; {y, = €’/hv is the Coulomb parameter for proton—
proton scattering; |, IS the maximum value of the
orbital angular momentum for partial-wave amplitudes
in the partial-wave analysis; and P, (x) stands for the
first derivatives of Legendre polynomias. The sum
over | in (33) eliminatesthe | < |, partial waves from

f ;pe)m () because the corresponding effects are

included in the sought phase shifts. The disregard of

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000
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this sum has virtually no effect on the calculated
observables for pA scattering.

The central and spin—orbit components of the pA
amplitude [A(q) and B(q), respectively] are expressed
in terms of the proton—nucleus profile functions as

[

A(Q) = Ac(q) + ikJ'dbbJo(qb) )
0

x{e "+ () -1},

[

B(a) = Bc(b)—ikjdble(qb)

’ (35)
x [ xox(b) + €™ Qg(b)].
Here, X,(b) = 2&In(kb) and X,(b) = 2&k/b are the
eikonal expressionsfor the central and spin—orbit phase
shifts for the scattering of two pointlike charges, the
corresponding central and spin—orbit components of
the scattering amplitude being given by [11]

_28KT(1+i§)
o F(1-1%)

Bc(a) = —ikgAc(q),

where & = Ze*/Av is the Coulomb parameter for pA
scattering. The parameter Kk, which characterizes the
values of the phase shift x.(b) and of the amplitude
Bc(b), is evaluated on the basis of the asymptotic behav-
ior of the profile function Qg(b) for b —» . Theeikonal
Coulomb phase shift x,(b) for scattering on the volume
distribution of the nuclear charge has the form [14]

expg—zizlnﬂD

AC(q) = ZkD

(36)

X1(b) = Xo(b) + 8TE jdrrzpép’(r)

b
2, 2
NNy
x[lnD1+ é/rb” )E—A/l—bzlrz .

It should be noted that, in contrast to the popular
approach described in [11], where the interaction of the
proton magnetic moment with the nuclear field istaken
into account by introducing the spin—orbit correction to
the macrascopic proton—nucleus Coulomb phase shift
X;(b), we include it microscopically through the pro-
ton—nucleon amplitudes.

3. We have calculated the differential cross sections
and various spin observables for the elastic scattering
of 800-MeV protons on “°Ca, 3*Fe, and 2*®Pb nuclei. In
the calculations, the proton—nucleon amplitudes were

approximated as fU) (q) = 2i k(gg + hgahexp(-a4a?)

(37)

and 3 (@) = 2ik(g4 + hyaP)exp(-a4qP), with the param-
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eter values being determined from the solutions of the
partial-wave analyses from [15-17]. Presented below
are the results of the calculations with the proton—
nucleon amplitudes featuring parameters obtained in
[18] from the partial-wave analysis performed in [15].
Specifically, we used the values of g, = 4.84 +
10.03 (GeV/c)?, hy, =833 +112.24 (GeV/c)*, and ag, =
5.82 —i0.85 (GeVic)?; ggp=—2.29 — i6.15 (GeV/c)?,
hg, =0, and ag, = 3.70 + i0.19 (GeV/c)2; gg, = 3.91 +
i1.40 (GeV/c)?, hy, =5.52 —i5.64 (GeV/c)*, and a., =
4.87—13.0 (GeV/c)?2; and gg, = —2.55—14.51 (GeV/c) 2,
hg, =0, and ag, = 3.93 +10.47 (GeV/c). The results of
the calculations with the proton—nucleon amplitudes
from the solutions of the partial-wave analyses per-
formed in [16, 17] differ only dightly from those men-
tioned immediately above.

The Hartree—Fock densities that we used here were
calculated with various Skyrme forces, including Sk1
and Sk2 [19], SKT [20], Ska [21], and SkM [22]. For
the “°Ca nucleus, we also present the results of the cal-
culations with the densities determined from the
model-independent charge density [23] found from an
analysisof electron scattering. In this case, wetook into
account the charge form factor for the proton and
assumed that the proton densities are identical to the
neutron densities.

For the specific calculations, we need the 00—
|o; I, MOtransition densities. We use a macroscopic
model and express the transition densities in terms of

the derivatives of ground-state densities péj)(r) as

p) (1) = =8, /21 + L (@p{’/ar). It is well known that
this model appears to be the most appropriate one for
low-lying collective states. However, we assume that,
for our purposes, itislegitimateto useit for all interme-
diate states included in our analysis, since inelastic
transitions are well known to be predominantly super-
ficial, irrespective of the nature of the final states. The
deformation length &, was evaluated either by using

the relation & = B(EN"*/[Ze([ (9ps™/ar) r'+dr] with
the reduced probabilities B(EIl) for corresponding tran-
sitionsfrom [24, 25] or by using the results of the stud-
ies—[26, 27] for “°Ca, [27, 28] for **Fe, and [29-31] for
208ph—where these transitions were analyzed within a
similar macroscopic model. Some details are given
immediately below. For “°Ca, we took into account the
™ = 2+ states at 3.90 MeV [B(E2) = 96€ fm4,
6.91 MeV (8, =0.49fm), 7.87 MeV (0.28 fm), and four
more states corresponding to weaker transitions with
0, =0.15-0.18fm; the =3~ datesat 3.74 MeV [B(E3) =
20400€* fm®), 6.29 MeV (d, = 0.46 fm), and 6.58 MeV
(0.41fm); the ™= 4+ states at 5.28 MeV (o, =0.16 fm),
6.51 MeV (0.18 fm), 7.46 MeV (0.2 fm), 7.56 MeV

(0.23 fm), and 7.92 MeV (0.34 fm); and the I = 5-
states at 4.49 MeV (&; = 0.91fm) and 854 MeV



788

a(6)

104

10°

1074

KUPRIKOV, PILIPENKO

0 10

L
40 6, deg

Fig. 1. Differential cross section a(0) (in mb/sr), polarization P(8), and spin-rotation function Q(0) for the elastic scattering of
800-MeV protons on *’Canuclei: (solid curves) results of the cal cul ation employing the Hartree—Fock densities for the Sk1 Skyrme
forces and taking into account c.m. correlations, short-range correlations, and intermediate excitations; (dotted curves) results of the
calculations taking no account of short-range correlations; and (dashed curves) results of the cal culations taking into account only

c.m. correlations. Experimental data were borrowed from [9, 32].

(0.23 fm). For **Fe, we took into account the I™ = 2+
states at 1.41 MeV [B(E2) = 620€* fm?], 2.96 MeV
(3, = 051 fm), 3.17 MeV (0.3fm), 4.58 MeV (0.17
fm), and 6. 43 MeV (0.2 fm); the I = 3~ states at 4.78
MeV [B(E3) = 4390€* fmf], 6.34 MeV (3, = 0.63 fm),
7.27 MeV (0.31 fm), 8.01 MeV (0.21 fm), 8.47 MeV
(0.19 fm), and 14 additional states with d; = 0.10—

0.17fm; and the I™ = 4* states at 2.54 MeV (, =
0.36 fm), 3.30 MeV (0.22 fm), 3.83 MeV (0.43 fm),
4.26 MeV (0.35 fm), and ten additional stateswith &, =
0.10-0.15 fm. For 2%8Ph, we took into account the I™ =
2* states at 4.09 MeV [B(E2) = 2900€* fm*] and 11
additional states with &, = 0.05 + 0.12 fm; the I = 3~
states at 2.61 MeV [B(E3) = 611000€” fm®], 5.35 MeV

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000
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Fig. 2. Differential crass section o(B) (in mb/sr), polarization P(8), and spin-rotation function Q(8) for the elastic scattering of
800-MeV protons on “°Canuclei: (solid curves) results of the calculation employing the Sk1 Skyrme forces and taking into account
al kinds of correlations considered in this study, (dashed curves) results of the calculation employing the SKT Skyrme forces and
taking into account all kinds of correlations considered in this study, and (dotted curves) results of the calculation employing the

model-independent densities.

(6; =0.25fm), and 22 additional states with &; = 0.05—
0.20 fm; the "= 4* states at 4.32 MeV (, = 0.55fm),
5.69 MeV (0.32 fm), and four additional states with
0, = 0.10-0.15 fm; and the I"= 5~ states at 3.20 MeV
(s = 040 fm), 3.71 MeV (0.28 fm), 548 MeV
(0.32fm), 6.69 MeV (0.29 fm), and four additional
states with &5 = 0.10-0.15 fm. For short-range correla

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000

tions, we used thevalueof |, =0.55 fm[6, 7]. It should
be noted that the contribution of low-lying collective
excitations to the cross section for elastic proton scat-
tering on nuclei was estimated previously in a number
of studies (see, for example, [4, 7, 14]), but this contri-
butionisusually disregarded for spherical target nuclei,
because it is assumed to be small.
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Fig. 3. Asin Fig. 1, but for >*Fe target nuclei. Experimental data were borrowed from [33].

For the cases of proton—nucleus scattering that were
studied here, Figs. 16 display the results obtained
from various versions of the calculation of the differen-
tial cross sections a(0), the polarizations P(8), and the
spin-rotation functions Q(8). The effect of taking into
account intermediate excitations on the computed
observables is demonstrated by considering the results
of the calculations with the nuclear densities for the
Sk1 Skyrme forces (see Figs. 1, 3, and 5). In the calcu-
lations with other densities, the effects of intermediate
excitations have just the same character. From Figs. 1,
3, and 5, it can be seen that the effect of intermediate
excitationsis enhanced as the scattering angle becomes
larger, reaching quite a sizable degree at sufficiently
large values of 6, where it leads to noticeable shifts of

diffraction maxima and minima in the cross sections
and spin observables toward larger scattering angles
and suppresses further the cross section maxima with
increasing 6. In the case of p*Ca scattering, the inclu-
sion of intermediate excitations reduces the height of
the fifth cross-section maximum at 8 ~ 30° by a factor
greater than two. It was indicated in number of studies
(see, for example, [35-37]) that, in describing pA scat-
tering on the basis of the Glauber—Sitenko theory of
multiple diffractive scattering with Hartree—Fock den-
sities, there arise characteristic deviations from experi-
mental data: the positions of the diffraction maxima
and minima in the observables computed theoretically
are shifted toward smaller values of the scattering
angle, while the slope of the envel ope of the cross-sec-
PHYSICS OF ATOMIC NUCLEI 2000

Vol. 63 No. 5
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Fig. 4. Asin Fig. 3, but the results of the cal culations performed with the Hartree—Fock densities and with allowancefor al types of
correlations considered in the present article are depicted by the solid and dashed curves for the cases of, respectively, the Sk1 and

the SKT Skyrme forces.

tion maximais smaller than the value obtained experi-
mentally. Thus, the data presented in Figs. 1, 3, and 5
show that the above discrepancies between the calcu-
lated and measured values are reduced upon taking into
account intermediate excitations. In the cases being
considered, the contribution of short-range correlations
isrelatively small. They have the strongest effect on the
spin-rotation function Q(0) at sufficiently large values
of the angle 6.

The results of the calculations employing the vari-
ous nuclear densities and taking into account al the
correlations considered above are compared in Figs. 2,
4, and 6. Of all Hartree—Fock densities, we present the
No.5 2000

PHYSICS OF ATOMIC NUCLEI  Vol. 63

results only for the Sk1 and SKT versions. The calcula-
tions performed with the remaining Hartree—Fock den-
sities lead to results similar to those obtained by using
the SKT version. From Figs. 2, 4, and 6, it can be seen
that, in the case of the Sk1 forces, theinclusion of inter-
mediate excitations removes compl etely the above shift
of the computed positions of the diffractive maxima
and minimain the observables in question with respect
to their experimental positions, but that, for the SKT
version (aswell asfor al other versions), thereremains
some shift toward small angles. At the same time, the
calculations for the Sk1 version yield overestimated
values for cross-section maxima at large scattering
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Fig. 5. Asin Fig. 1, but for 2°8Pb target nuclei. Experimental data were borrowed from [32, 34].

angles. In the calculations with model-independent
densities for p*°Ca scattering (see Fig. 2), theinclusion
of intermediate excitations also removes completely
the shift of the diffraction maxima and minima in the
computed observables. In that case, the maxima of the
computed cross section are lower than those for the Sk1
version. We note that, in each quoted version of the cal-
culations, there is some specific discrepancy between
the calculated and measured spin observables that is
peculiar to this version. By way of example, we indi-
cate that, at not overly small values of the scattering
angle, the polarization P(8) computed theoretically
exceeds systematically the measured polarization. This
may suggest the need for taking into account correc-
tions to the standard Glauber—Sitenko approach.

4. By taking into account spin-orbit interaction,
intermediate excitations of the target nucleus, short-
range nucleon correlations in nuclel, the distinctions
between the proton—proton and the proton-neutron
amplitudes and between the proton and the neutron
densities, electromagnetic effects, and Z ordering, we
have obtained here the expressions for the amplitudes
of elastic pA scattering. On the basis of these expres-
sions, we have computed the cross sections and the spin
observables for the elastic scattering of 800-MeV pro-
tons on “°Ca, **Fe, and 2°Pb nuclei by using the pro-
ton—nucleon amplitudes found from partia -wave anal-
yses, as well as the Hartree—Fock and the model inde-
pendent densities. A satisfactory description of
experimental data has been obtained. It has been shown

PHYSICS OF ATOMIC NUCLEI  Vol. 63
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Fig. 6. Asin Fig. 5, but the results of the cal culations performed with the Hartree—Fock densities and with allowance for al types of
correlations considered in the present article are depicted by the solid and dashed curves for the cases of, respectively, the Sk1 and
the SKT Skyrme forces.
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Abstract—For apolarized target, TPHe interaction is studied in the fixed-center approximation with all rescat-
terings included. Only the P53 wave is taken for the TiN interaction. The nuclear wave function is taken either
as asum of Gaussian functions or as a Faddeev wave function in the s-wave approximation. The differentia cross
sections and asymmetries for eastic 11*3He scattering at the laboratory energies of T, = 142, 180, and 256 MeV
are calculated. The results are compared with experimental data. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of pion scattering off light nuclei
requires its reliable theoretical description. An exact
relativistic treatment of systems with four or more par-
ticlesis beyond the present computational possibilities,
so that simplifications are unavoidable. Current studies
of Tetrinucleon reactions are mostly performed on the
basis of the optical potential model [1], which treatsthe
nucleus as asingle particle interacting with the pion via
some effective potential. This may be a good approach
at low energies when the pion wavelength A, is larger
than the internucleon distance R. However, at energies
above 100 MeV, when A, £ R, the optical potential
model does not seem natural, and alternative
approaches deserve attention. A viable aternative
seems to be the fixed-scattering-center model, which
emerges in the limit m/my — 0. In this modédl, al
intermediate nuclear states are taken into account,
athough the variation of their energies is neglected. If
one retains only the ground state in the sum over inter-
mediate nuclear states in the fixed-center model, then
the optical-model results are recovered (without the
contribution of the nucleus to the energy denomina
tors). Thus, the fixed-center model represents an
improvement of the optical potential model in that it
takes into account intermediate nuclear states.

From the study of T scattering, where more sophis-
ticated techniques can also be applied, it is known that
the fixed-center model gives an accuracy of about 10—
20%, which naturally becomes poorer with increasing
momentum transfer [2]. For that, the fixed-center
model is well-behaved in the ultraviolet region, involv-
ing no cutoff parameter, in contrast to al models that
take the nucleon recoil into account.

For practical application of the fixed-center model,
the energy region of the A resonance seems particularly

* This article was submitted by the author in English.

favorable. At these energies, the TN interaction can be
well approximated by a Py; wave (i.e., it is simple and
essentially reduces to a separable form, which simpli-
fies the calculations substantially). On the other hand,
the pion energy still remains considerably smaller than
the nucleon energy. Therefore, one can hope that
neglecting the nucleon recoil might be a reasonable
approximation.

In [3], we introduced a model that is based on the
fixed-center approximation for elastic ™H and m®He
interactions and which takes completely into account
multiple pion rescattering. A simple Gaussian wave
function for the nuclear ground-state was used. The
present paper reports on the calculations with the Fad-
deev ground-state wave functions and al so on the appli-
cation of the model to polarized targets.

2. GENERAL FORMALISM

In the fixed-center approximation, the determina-
tion of the amplitude of the interaction with a nucleus
reduces to eval uating the sum of the diagrams shown in
Fig. 1.

The exact treatment of these graphs requires the
introduction of 216 amplitudes. In the present calcula
tions, the spin-tensor interaction in the elementary
block of Fig. 2 was replaced by an averaged one. As a
result, the number of independent amplitudes was
reduced to 27.

The basic Faddeev-like amplitudes are M;,, where i
and k refer to the number of initial and final nucleons (i,
k=1, 2, 3). Each M; isa3 x 3 matrix in both spin and
isospin. The final system of linear equations for the
amplitudes M, has the form

M = Rlp(i)éik"' Rlz P(i)Wank: (1)

1£i

1063-7788/00/6305-0795%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Successive rescatterings of a 1t meson with the pro-
duction of a Az resonance: (dotted lines) Tt meson, (thick
lines) Az3 resonance, and (thin lines) nucleons.

Fig. 2. Potential W;;. The notation isidentical to that in Fig. 1.

where R,(E) = (my —my + €, —k, —i0)™", k, isthe pion
energy, and P® stands for the operators of projection
onto the | = J = 3/2 states for the pion plus the ith
nucleon system.

The “potentials” W, describe intermediate-pion
propagation, and they are complex:

2 .
_ qexp(iq [F)
W(r) - 2_[ 2 2 2 A7
3(2m) g +m,—(ky—¢g,) —i0 2
= % ]

Here, g, isthe binding energy of the A= 3 nucleus. The
solution of equation (1) provides us with scattering
amplitudes with given total spin and isospin and spin—
isospin variables of pairs of nucleons. For the TA
amplitudes of total isospin T, we obtain the expression

3\? Z.
\ 2k, 2K, S= 77 32

x (exp(i(k —k') [Fy) Myy(r g 3)

+2exp(i(k [Fy =K' [05) )My 7, ) Walrin) -

A = (k'P‘S’k)Id3r1d3r2W2(fik)

Here, W, isthe wave function of the *H (*He) nucleus,
and the relative coordinates are defined asr;, =r;, —r,
(r; =-r, —r,). To make partia integrationswith respect
to angles possible, we represent the A amplitude asthe

sum AD = 47 + A where

2
SN Z (k' POK)
N 2ky2k, = 7232

M _
Ay’ =
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X fd3r1d3r2(exp<i(k —K') 0 ))Fr 5T,

Al = 3\’ Z (k'Pk) )
A 2k 2k, 5™ 7232
x [drad’rexp(i(k 0y =K' [12)) G, ()
with
Frgrin) = w:(rik)Mll(T,S)(rik)qJA(rik)l 5)

G, S)(rik) = Zw:(rik)MZl(T, S)(rik)qJA(rik)-

Theformulafor the amplitude s4 can be represented
in aform similar to that for the case of TN interaction,

AT = aP(k' k) +ibM (6 k' x k), (6)
D= %(ﬂ(le) 1/2""%(22:1/2
+ 2(~5d(1gs)— at 5@2: 312) )

(7) (7) (7)
b™ = g g
= ‘(3@1 szt A s-1

(7) (J)
—(Ais=ap+ Az 5-31)).

The amplitudes &Q, s, Which results from integration

with respect to the anglesin (4), are determined by tri-
pleintegrals of the form

AL = 241C0° Irldr 1Sin(Kry)

l s —- T —
KAIZkO ®)

00

xIrzerIdZF(T’S)(rl’ rs 2),
0

AL = 1210)° J’rldr1 rzdr2

2 S — A/r———————
2ky2K;0
+1 (9)

X J'dzzG(Tv 5(r1, 12 2)D(Kry, Kry, C0OSY, 2,).
-1

In these expressions, the variables z and z, are
cos(f, T,) and cos(rp,, T, ), respectively, and the nota-

tion cosd = — /}—_Cz——gi% and K = —-2kcosd, where 8,;is

the c.m. angle of the pion, is used. The function D,
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which emerges as the result of integration with respect
to the anglesin the second equation (4), has the form

+1

D(kry, Kr,, c0S9, 2,) = J'duJo(krlA/l u’sind)
(10)

x Jo(Krya/1l—u 21— zz)exp( —iu(kr,cosd + Kr,z,)),

where J, stands for Bessel functions.

The differential cross section for the unpolarized
target is given by

do _ kok4| (T)|2 2q |b(T)|2 in26
E = E(a cos 0, + sin"6,). (11
The asymmetry for the polarized target is
_ 0ot -0l
Y or+ol’

2sin@,.cos6,Im(ab* ") (12)

la™? cos’@,, + |b ™) sin’e,,

y =

3. 3He GROUND-STATE WAVE FUNCTION

As afirst step, it is natural to choose the initial and
final nuclear states W, in (3) without taking into
account tensor forces—i.e., in the form of the product
of a coordinate wave function symmetric in all vari-
ables and a spin—isospin wave function x antisymmet-
ricin al nucleons. We take the square of the coordinate
wave function W of the ground state of *He as the sum
of two Gaussian functions,

|W|? = z N, exp%—a Zr,kD

j=12 i<k

The parameters a; were chosen to give the best fit to the
elastic cross section at large angles. Obvioudly, the
spin-isospin wave function x should have the form

X = J12[n(V2, 0)§(1/2, 1) -n(V2, 1)E(L/2, 0)] 14

(13)

where (s, s)) [n(t, t;)] are the eigenfunctions of the
total spin s (isospin t) with a given value s; of the spin
(isospin t;) for the pair of the nucleonsi and j. In this
case, the quantitiesF ;. 5, and Gz 5 in (5) havethe form

Firgriv) = |LPA(rik)|2DV|11(T,S)D
G g(ri) = 2|qJA(rik)|2D\/|21(T,S)D
where [M, [are the amplitudes averaged over the values
of the spin and isospin of the *He (*H) nucleus ((M,,[=
X*M,X; for details, see[3]).
At the next step, the solution of the three-body Fad-

deev equations are used asthe wave function W in order
to render the predictions of our model more accurate. It

(15)
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is natural to start from the s-wave approximation for
NN interaction. In polar coordinates [4], these equa
tions then have the form

10

00

+V'(p, 0)~EDW(p, 6) = 3V'(p,0)
U

+1
sinBcos6

I Um(‘“(p,e) 3¥%(p, 8)),
(16)
19°

pv + Voo (p, 6)

*V(p.0)~E0¥(p. ) = V(5. 6)

sinBcosb t . . .
I UsnEaose Y (P 8) + ¥ (p.6)),
where
cos’8'(u, 8) = cos ‘0 - “/écosesneu+is|n 08.(17)

In (16), the Coulomb potential V&2 (p, ) has the
form

/\/ézn e’ e>300

sin

Veulp,0) 5 0
5c050" 8<30°, (18)
10 2n

Voou(P,8) = 3050+ VelP )

and we have used the strongly repulsive MT |-l11
potentials V" °(p, 6) [5] corrected in [6]; that s,

_m_1
) = #2pcosh

Vi(p
x [-513.969exp(—1.55p cosh)

+1438.72exp(—3.11pcosb) ],
m 1

9) = #2pCosB

(19)

Vi(p

x [—626.885exp(—1.55p cosb)
+1438.72exp(—3.11pcosh) ],
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do/dQ, mb/sr

10!

10°

T T T

107!

10_2 I I I I 1
-1.0 0.6

cosO .

Fig. 3. Differential crosssection for 1t 3Heelastlcscar[terlng
at T = 142 MeV inthelaboratory frame, with | WP taken as
(solld line) the Faddeev wave function or (dashed line) as
the sum of two Gaussian forms. In either case, al pion res-
catterings are taken into account. The experimental data
taken from [7] and [8] are shown by closed circles and tri-
angles, respectively.

dG/@Q, mb/sr
10?

10!

T F TTTIT0]

10°

0.6
cosB,

-0.2

Fig. 4. Differential cross section for 1t 3Hee|ast|csca1ter|ng
at T = 180 MeV in the laboratory frame. The notation is
identical tothatin Fig. 3.

where £2/m = 41.47 MeV fm?, n = me¥h?, and € =

1.44 MeV fm. The potentials V*' act only in the sin-
glet 'S, and triplet 3S, s waves, respectively, and are
given by a superposition of attractive and repulsive
Yukawaterms.

To solve the eigenvalue problem in the region p [
[0, ], 8 O [0, T¥2], equation (16) must be supple-
mented with the boundary conditions

wt9(0,8) = w"9(, ) = 0,

(20)
wt9(p,0) = w9, /2) = 0.

BRAUN,
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Moreover, we must substitute, instead of the quanti-
tiesFr g and G g in (5), the new ones

Fr o) = Z Wap(rid Wog(rid M1, 9)ab, pg»
ab,pgq=1,2 (21)
G g(rin) = 2 Z Wap(rid Wog(rid M1 (1, 9)ab, p-

ab,pgq=1,2
Here, W, (r;) are the components of the total Faddeev
wave function of *He that correspond to different spin—
isospin states:

Wy, = J3[(W5—W5) + (Wy— W),

W, = —3[(W5—W5) + (Wy—W5)] = —Wy,, )
Wy, = [3(W)- —wz) + (Wi + Wy + W),
W, = [3(qu )+(LP1+qJ2+qJ3)]

In (22), the coordinate functions W;'° are related to
solutions of equation (16) by the formula

2 502 Wt *(p, 6)

ts _
Wi = A/;':,p cos6,sing;’ 23)
Here, it is necessary to note the relations p? = x° + g'yl2
_ 2% o .
andtan®, = —= forany i =1, 2, 3, which allow usto
3%

express the coordinates p and 6, in terms of the coordi-
natesr, and r, by using the definition of the Jacobi vec-
torsx; andy; from[4]. Thetotal Faddeev wave function

¥ hasthe form

¢ = W, 52, 0)n(L2, 0) + W,E(L/2, 1)n(1/2, 0)
24
+ W, E(1/2, 0)n(L/2, 1) + W,E(1/2, )n(L/2, 1) ,( )

where, & (n) are the eigenfunctions of the total spin s
(isospin t) from (14). It is normalized by the condition

J‘dSr1d3r2d‘°’r363(r1 +r,+13)| 7 = 1.

4. NUMERICAL RESULTS AND DISCUSSION

We begin by recalling that our model does not
involve any free parameter, so that our resultsreflect the
true content of the approximations used.

In Figs. 3-5, the calculated differential cross sec-
tions for Tr"3He interaction at the pion laboratory ener-
giesof T,;= 142, 180, and 256 MeV for unpolarized *He
are shown along with experimental data from [7-9].
The solid curves were obtained with the Faddeev wave
functions, and the dashed curves, with a wave function
as the sum of two Gaussian forms. Inspection of these

PHYSICS OF ATOMIC NUCLEI  Vol. 63
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do/dQ, mb/sr

10'E
1071
10—3 ;7 1 1 1 1 1
-1.0 -0.2 0.6
cosB,

Fig. 5. Differential cross section for it>He el astic scattering
at T,;= 256 MeV in the laboratory frame. The notation for
the curves is identical to that in Fig. 3. The experimental
data taken from [7] and [9] are shown by closed circles and
diamonds, respectively.

results shows that introducing the sophisticated Fad-
deev wave functionsisessential for the backward hemi-
sphere, where this considerably improves the agree-
ment with the experimental data. In the forward hemi-
sphere, the effect is weaker; moreover, it leads to
changes in the wrong direction (as clearly seen at
180 MeV). A naticeable dip at 90° that is obtained in
our calculations, but which is not observed experimen-
tally, is due to our neglect of the TN interactionin the s
wave. Hopefully, it will befilled oncethisinteractionis
taken into account.

In Figs. 6-8, the asymmetries calculated for °*He
interactions at the pion laboratory energies of T, = 142,
180, and 256 MeV are shown along with experimental
data from [10]. To demonstrate the effect of multiple 1t
rescatterings, the results that take into account only two
rescatterings are also shown (for the wave function as
the sum of two Gaussian forms). First, from the figures,
we observe a large effect of multiple rescatterings. For
lower energies, the inclusion of multiple rescatterings
substantially reduces the asymmetry and, at 256 MeV,
even completely changesits behavior. The introduction
of the Faddeev wave functions does not again seem to
modify the resultsin any significant manner.

The agreement with the asymmetry datais found to
be considerably poorer than that for the differential
cross sections. This is not surprising since, as was
emphasized in many previous publications on the prob-
lem, the asymmetry is extremely sensitive to the details
of the interaction.

PHYSICS OF ATOMIC NUCLEI

Vol. 63 No. 5

2000

799
Ay T

0.8+

04

Fig. 6. Asymmetry for Tt">He interaction at the pion labora-
tory energy of T;= 142 MeV, with |WJ? taken as (solid lines)
the Faddeev wave function and as (dashed line) the sum of
two Gaussian forms. In either case, all pion rescatteringsare
taken into account. The dotted line corresponds to two pion
rescatterings taken into account in the case of the sum of two
Gaussian forms. The experimental dataweretaken from[10].

For energies of 142 and 180 MeV, the calculated
asymmetry follows the experimental pattern shifted
toward larger angles. Thisis not surprising too. In our
approximation (pure Pg; TN interaction, infinite mass

Ay

1.0 I A

1.0 l l | l l J
0

60 120 180

eC.mA’ deg

Fig. 7. Asymmetry for T3 He interaction at pion |aboratory
energy T = 180 MeV. The notation is identical to that in
Fig. 6.
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120 180
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Fig. 8. Asymmetry for Tt-He interaction at pion laboratory
energy T = 256 MeV. The notation is identical to that in
Fig. 6.

my), the amplitude f vanishes at 8 = 90°. The addition
of the sswave interaction and kinematical corrections
for the finite my would both shift this zero toward
smaller angles, thereby rendering the agreement with
the experimental data quite satisfactory.

For the energy of 256 MeV, there seems to be no
agreement with the experimental data at all. However,
as was found in [1], the fact that the angular depen-
dence of the asymmetry is modified drastically at this
energy is actually due to quite a small shift in the posi-

BRAUN, SUSLOV

tion of the zeros of the complex amplitudef. It was also
found there that this shift could be achieved effectively
by introducing a small angle-independent term in f.
Thus, we believe that the inclusion of the s-wave TiN
interaction will make the situation at 256 MeV much
better.

In conclusion, we have found that the use of the Fad-
deev wave functions for the nuclear ground state con-
siderably improves predictionsfor the differential cross
sections in the backward hemisphere, but that this pro-
duces a small effect for the forward hemisphere and
asymmetries. The overall agreement of the model with
experimental datais satisfactory for the cross sections.
It is much poorer for the asymmetries. A further
improvement of the model and especially of itsapplica
tion to the asymmetry requirestheintroduction of thes-
wave TN interaction and finite my kinematics. The
work in this direction is now in progress.
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Abstract—The one-loop expression for the absorptive correction to the Td scattering length is discussed. Rel-
evant Feynman diagrams are calculated both in the relativistic and in the nonrelativistic formalism. A simple
expression is obtained for the one-loop correction that arises in the 1 scattering length owing to the Fermi
motion of the nucleons in the deuteron. This correction includes absorption effects. Fulfillment of the unitarity
relation is verified explicitly. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, there are a great number of theoretical
studies devoted to calculating the T scattering length.
In recent years, interest in the problem has been rekin-
died in connection with the emergence of new experi-
mental data on the shifts and widths of the Slevels of
the rp and 1rd atoms [1-4]. A global analysis of such
data for the pionic hydrogen and deuterium atoms
makes it possible to extract the TiN scattering length.
Thisis of particular interest in connection with testing
the predictions of chiral perturbation theory [5, 6].

Usually, the Td scattering length is calculated by
summing a series of diagrams for multiple pion scatter-
ing on the nucleons of the deuteron. In this approach,
the amplitudes for on-energy-shell pion—nucleon inter-
action are assumed to be known and are extracted from
experimental data, whereas off-mass-shell effects are
taken into account viathe pion—nucleon potential or via
phenomenological form factors. A detailed discussion
of the approach in question, aswell asreferencesto ear-
lier studies, can be found, for example, in [7]. In this
method for calculating the i scattering length, taking
into account the effect of absorption in the system on
the real part of the amplitude (here, we mean the deu-
teron-breakup process td — nn and its effect on the
amplitude of elastic Td scattering) involvesthe greatest
uncertainties. The inclusion of absorption within the
multichannel system by means of solving Faddeev-type
equationswas discussed in [8, 9]. Themain difficulty in
allowing for absorption is associated with the need for
avoiding the double-counting problem in dealing with
pion rescatterings on the nucleons of the deuteron.
Indeed, let us consider the diagram that describes elas-
tic pion scattering on adeuteron through a two-nucleon
intermediate state (Fig. 1). Even at zero pion energy,
this diagram has both an imaginary and areal part. The
imaginary part of the diagram is calculated unambigu-
ously in terms of the cross section for the reaction
1 — NN, but the rea part of the diagram can be

reconstructed, for example, with the aid of the disper-
sion relation. The problem, however, consistsin that the
real part of the diagram in Fig. 1 is partly contained in
multiple-scattering diagrams. Therefore, a mere addi-
tion of the real part of the diagram in Fig. 1 to the Td
scattering length computed by the method of multiple
scattering leads to double counting.

In the present study, we will discuss the problem of
taking into account absorption within a diagrammatic
approach. The elementary pion—nucleon amplitudes
will be calculated here on the basis of a semiphenome-
nological model. Many attempts have been undertaken
by now to construct a model of piorn—nucleon ampli-
tudes in terms of exchanges of various mesons. In par-
ticular, the amplitudes of pion—nucleon scattering inthe
energy region below the deltaisobar were successfully
reproduced in [10] by considering t-channel sigma- and
rho-meson exchanges supplemented with Compton
pion—nucleon scattering with allowance for intermedi-
ate nucleons and delta isobars. Since the Compton s-
channel diagram for pion—nucleon scattering represents
the only elementary amplitude making a nonzero con-
tribution to the imaginary part of the pion—deuteron
scattering length, wewill try to single out precisaly this
diagram and to include it directly in the series of multi-
ple scattering. In the following, it is therefore assumed
that the near-threshold amplitude for pion—nucleon
scattering is determined by the sum of two Feynman
diagrams in Fig. 2 that are supplemented with addi-
tional contributions providing correct values for the

Fig. 1.
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low-energy parameters of the Sand P waves. Here, the
P waves are assumed to be fixed and are determined by
fitting experimental data, the main problem of the
present analysis being a reconstruction of the Swave
scattering lengths. The on-mass-shell amplitude for
pion—-nucleon scattering near the threshold can be
parametrized as

fo = Do+ byt O +((&+Er0)k K
+i(do+dit O0)o Ok xk]) + fo+ f,,

where the quantitiesf, and f, are determined by the Fey-
nman diagrams in Fig. 2. Taking into account the con-
tributions to the P waves from the amplitudes f, and f,,,

we can determine the constants ¢, ; and do.1 from afit
of the P-wave scattering volumes to experimental data.

The constants by and b: are to be determined from an
analysis of data on the shifts of the levelsin the pionic
hydrogen and deuterium atoms. The pion-nucleon
scattering lengths are reconstructed here on the basis of

the expression by + byt - I +f,+ f, a zero energy. The
amplitude of pion—deuteron scattering is determined in
terms of the off-mass-shell pion—nucleon amplitudes,
which in turn are related to the amplitude in (1) asfol-
lows: the amplitudes f, and f,, are specified by the dia-
gramsin Fig. 2 for off-mass-shell nucleons aswell, the
off-mass-shell effects in the remaining part of the
amplitude being determined phenomenologically as
before.

The present study isaimed at aprecision calculation
of the pion—deuteron scattering length in terms of pion—
nucleon scattering lengths with an eye to subsequently
extracting the latter from experimental data on the
pionic hydrogen and deuterium atoms. This in turn
requires accurately evaluating diagrams for single and
double pion scattering on the nucleons of the deuteron.
Since the nucleon spin is flipped in pion-absorption
processes, it is hecessary to take relativistic corrections
into account in these calculations. In the present study,
we will restrict our analysis to computing the contribu-
tions of the amplitudes f, and f, to the one-loop dia-
grams that determine the amplitude of pion—deuteron
scattering. We present two versions of the calculation
that rely on either the nonrelativistic or the relativistic
formalism. As a check upon our results, we also calcu-
late the deuteron-breakup amplitude and verify fulfill-
ment of the unitarity condition. The reason behind the

ey
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resulting discrepancy between the nonrelativistic and
relativistic results is discussed. The two-loop contribu-
tionswill be taken into account elsewhere.

We note that, even in the nonrelativistic case, we
must take into account spin variables since pion absorp-
tion entails nucleon-spin flip. The nonrelativistic dia-
gram technique as applied to calculations on direct
nuclear reactions was developed in the studies of
|.S. Shapiro and his disciples and is expounded in the
monograph [11] and in the review article [12]. In com-
puting spin features, the diagrammatic approach is usu-
ally supplemented with the formalism of a graphical
summation of Wigner 3j coefficients [13-15]. In the
present study, we make use of an alternative approach
that is more economical, at least in dealing with reac-
tion featuring deuterons, and which makes it possible,
in principle, to calculate spin effects in multiloop dia
grams as well. The present approach is based on an
invariant representation of spin vertex functionsand the
amplitudes of virtual processes. The inclusion of spin
effects reduces here to eval uating traces of the products
of o matrices, whereby the computational procedurein
guestion is simplified considerably.

2. PION-NUCLEON SCATTERING AMPLITUDE
WITH A NUCLEON POLE

Let us consider pion—nucleon scattering amplitudes
corresponding to the tree diagrams in Fig. 2. We will
make use of pseudovector TINN coupling corresponding
to the Lagrangian

L = %myuy5tw6“n. Q)
The amplitudes are then given byl)
M - g_zu(qZ)VSQZ,l(’plyg + m)&]_‘ 2y5u(ql)T
s u 4m2 pf ,— mz s u (3)

Here, the4-momentak; ,, 0, ,, and p; , are specifiedin
Fig. 2 (p, =k, + ;. P> = &, — Ky); u(q,, ,) are four-com-
ponent spinors normalized by the condition Ou =

Uy, = 2m; Toy = X» T alasX: @€ isotopic factors,
where x, , are the isospinors of theinitial and the final
nucleon (x*x = 1) and a and b are the Cartesian isospin
subscripts of theinitial and the final pion (in the charge
representation, the matrices 1, and t, are given in
Appendix 1); m is the nucleon mass; and k = KuYy-
Going over to the two-component spinorsw; and w,, in
which case we have
u(ey) = [(g + M), (g + m)(q; - o)W,

g = (&, qp), ww=1,

Dwe perform our consideration in terms of the invariant amplitudes

M defined as M = 811./sf (/s is the total energy in the reaction
c.m. frame), the differentia cross section for scattering being
do/dQ = |f .

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No.5 2000
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we find that, in the reaction c.m. frame (where €, = €, = €), the amplitude M, is given by
2.+ 2 3 3
_ —g W[(e+m) (J/s=m) +(J/s+m) (g, ) (a, [b')]WlT @)
s, uy

M
° am’

where €, q,, and q, are, respectively, the total energy,
the initial nucleon momentum, and the fina nucleon
momentum, while s = (¢ + w)?, w being the total pion
energy. For w < m, the right-hand side of equation (4)
can be represented as
_gz
Am’w
x W3[0 £ 2m(q,, , ) (01, (0)1W, T .

In the amplitudes given by (4) and (5), the first and the
second term correspond to the contributions of the S
and the P wave, respectively, and these contributions
are commensurate at ¢> ~ w*/(2m). (In this case, we
have w = 1, where [ is the pion mass.) In the nonrela-
tivistic limit, the Hamiltonian corresponding to the
Lagrangianin (2) has the form [16]

How = —QBT E[Vn_%n(ﬁN_§N)i|%T (), (6)

where we have taken into account the leading nonstatic
corrections. The Hamiltonian in (6) involves the opera-

Ms,u =

)

tor V(Vy) acting to the right (left) on a single
nucleon and the total energy w of the absorbed pion.
This Hamiltonian reconstructs only the P-wave part of
the amplitude in (3), taking no account of the Swave.
Formally, the Swave components of the diagrams in
Fig. 2 are obtained from a consistent relativistic
approach, and their presence is associated with the
impossibility to apply the free Dirac equation [whichis
used in going over from the four-component to two-
component spinorsin order to obtain expressions (6) and
(2)] to the intermediate virtua state.?) At the threshold,
the contribution of the Swave is proportiona to p2/n,
so that it vanishesin the chiral limit p/m — 0.

Let us estimate the Swave contribution from the
diagrams in Fig. 2 to the amplitude of 1td scattering
near the threshold. In the approximation of the nucle-
ons at rest, we have

_1+py/m _ a
f ,(0) = —1+u/md(fn,p+ f ) =-00225pu". (7)
Here, fn_p’n_n = Mg, /8mm + p), where Mg, =

—g?2/m2m = W) (g?/41t = 14.6) according to equation

AThe presence of the S'wave contribution of the diagramsin Fig. 2
was a so discussed in the monograph [17] for the case of pseudo-
scalar NN coupling. If we consider that a virtual fermion has no
definite parity [18], the following interpretation is possible: the
interaction in (2) is of a P-wave character in the case of rea
nucleons, which do not change parity; as to the Swave, it seems
to take into account the effect of “nucleon-parity reversal” upon
the absorption (emission) of a pseudoscalar pion.
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(4) (it is considered here that T, = T, = 2 because of
charge exchange in the TNN vertices). The valuein (7)
is commensurate with the experimental 1td scattering
length [4]

a_, = (~0.0259+0.0011)u™". (8)

From the above, it followsthat, in the reaction on adeu-
teron, it is of paramount importance to take into
account the S waves in the amplitudes represented by
Fig. 2. At the same time, the P-wave contributions of
these diagrams at zero angle compensate each other to
a considerable extent. Going over to an analysis of 1td
scattering and using the diagramsin Fig. 2 for the rele-
vant subprocess, we arrive at the diagrams M, and M,
in Fig. 3. At first glance, it seems that a nonrelativistic
calculation of these diagramsis possible by taking into
account expression (5) for pion—ucleon amplitudes,
which aready contain Swave effects. However, this
gives no way to include correctly the contribution of the
real intermediate nucleon—nucleon state. Thisis due to
the following reasons. First, expressions (5) were writ-
ten for free nucleon legs, and their use will lead to the
absence of an imaginary part in the amplitude M,
(Fig. 3), but thisis not correct. Second, the antisymme-
trization of the intermediate nucleon—nucleon state in
the s channel requires supplementing the diagram M,
with the diagram M5 in Fig. 3 (the presence of the dia-
grams M, and M, ensures antisymmetry in the u chan-
nel as well). Here, the imaginary part ImM; (ImM;)
must correspond to the contribution of the sum of the

squares (interference) of the diagrams M ib) and Méb)

to the cross section for the breakup process td — nn
(see Fig. 4). In this approach, however, the question of
the emergence of “ Swave” effectsfrom the TiNN vertex
(2) in the amplitude M, and the question of taking these
effects into account within the nonrelativistic formal-
ism remain open.

Thus, we conclude that, in order to take correctly
into account the pion—nucleon interaction (2), 1rd scat-
tering must be considered on the basis of therelativistic
formalism.

3. EVALUATION OF ONE-LOOP DIAGRAMS
Let us make use of the deuteron wave functionin the
relativistic form (see, for example, [19, 20])
Wy = 6,0(ky)Oy(ky, kp)UO(ky) X,

(k= o Ve

1, L O
2 o
m m

O,(ky, k) = 4 2:/—2X1,

X =X
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where U, = V.Y, is the charge-conjugation matrix, e, is
the deuteron polarization 4-vector, u(k, ,) are the rele-

vant four-component spinors (tu = 2m), X isthe isoto-
pic component of the deuteron wave function, and x; ,
are isospinors. Everywhere, with the exception of
expression (1), the tilde sign denotes the transposition
operation. The expressionin (9) representsarelativistic
generalization of the deuteron wave function in the
nonrelativistic form (see[21, 22])

Wi (p) = ws (e Eo<“)(p))ozw1 X (W oWy, = 1),

My — _wiB(ple) O (10)

where € is the deuteron polarization 3-vector (in this
approximation, the expectation value of the deuteron-
spin vector is [S[E i[e* x €]); p isthe relative momen-
tum of the nucleons in the deuteron; and u = u(|p|) and
w = wW([p|) are, respectively, the S- and D-wave compo-
nents of the deuteron wave function.’

In the nonrelativistic limit, the equality of expres-
sions (9) and (10) in the deuteron rest frame determines

3)Expron (20) is the amplitude of the probability that, in the
deuteron at rest occurring in a state that is determined by the
polarization vector €, the nucleons have a relative momentum p
and arein the spin (isospin) states described by the spinorsw; and

W, (isospinors X; and X,). From the identities w; oo,W] =

w) 60,w5 and X, ToXF =—X1 ToX5 , it follows that the states

in question are symmetric (antisymmetric) in spin (isospin) vari-
ables; that is, the deuteron wave function (10) corresponds to a
nucleon—nucleon state having a spin value of unity and zero isos-
pin. In [22], it is shown that the second term in the deuteron wave
function (10)—that is the term that involves w—corresponds to
the D wave.
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the relations between the functions f, and f,, on one
hand, and the S- and D-wave functions (u and w, respec-
tively), on the other hand. Specifically, we have

_mig_mpou g, m
= ol s(p)% Brap) .
f, = 48( ) (J2u+w),

whereg(p) = m’ + p2 . The rules of the diagram tech-
nique asformulated with adeuteron wave function of the
form (9) or (10), normalizations, and some other relevant
information are presented in Appendices 1 and 2.

Yet another circumstance is worthy of specia note.
We will clarify it by considering the example in which
the scalar form factor for the deuteron, F4(q), is calcu-
lated at zero momentum g = 0. It is obvious that,
because of the normalization condition, acorrect calcu-
lation must yield F4(0) =1. Let us write the relativistic
expression for the corresponding triangle diagram
(Fig. 5) by using the deuteron wave function in the
form (9). Further, we go over to the nonrelativistic limit
(inthe integral, we take into account the pole at a posi-
tive energy and retain second-order terms in the inter-
mediate 3-momentum p) and expresstheresult in terms
of the functions u and w according to (11). Specifically,
we have

_ dp mT 2 p’0 A2 5. 2]
Fq(0) = I(Z e [u + W+ AR uw ew D}
where e = m+ p?/2m. We can seethat F4(0) # 1 because
of the presence of the second term in the integrand (this
term is proportional to p*/n¥). The reason for this dis-
crepancy is that, in equations (11), which relate the
functions f, and f, to u and w, both nucleons in the dpn
vertex are on the energy shell. In fact, however, we can
see that, if one of the nucleonsis real, the off-energy-
shellness of the second nucleon is determined by the
quantity —p?*/m (we take here no account of the deu-
teron binding energy). In calculating the amplitudes
M;, M,, and M3 (Fig. 4) in the ensuing analysis, we
therefore disregard p?/n? terms against terms on the
order of unity (by including the former, we would go
beyond the accuracy adopted here), but we retain terms
of order p*/mu. This approach assumes fulfillment of
the condition 1 < m. Taking the above into account, we
can simplify relations (11) significantly and arrive at
3m’

fl = _—_ZW,

1
2 = Zz(J2u+w).  (12)
Let us now evaluate the diagrams for the amplitudes
M,, M,, and M in Fig. 3 within both the relativistic and
the nonrelativistic approach. In the rdativistic
approach, we first use a consistent rel ativistic represen-
tation for the relevant matrix elements (seeAppendix 1)
and then discard p?/n? terms by virtue of the above
argument. By the nonrelativistic approach, we mean
Vol. 63
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that in which the analogous diagrams are calculated
nonrelativistically (see Appendix 2) with the pion—
nucleon interaction specified by expression (6).

In caculating the amplitudes M;, M,, and M;, the
integral with respect to the energy € (seethe notationin
Fig. 3) is determined by the residues at the polesin the
lower half-plane (we take into account only those poles
that correspondto € > 0). The amplitudes M, and M, are
determined by the contribution of one pole a € = g,

(8= /M’ +p° — i0), while M, is determined by the
polesat € = €, and € = g, + . For these amplitudes, we
eventually obtain the expressions

= 2T
12% 2mb I(Zn) p +mu—|0 (13)
= 2T dp p’[ S s
(2m)° M| p —mp—lo p>+mp—io]
where
2
Sz = 20U, PP+ Myek(py + m)

x kys(p'+m)O,(p, P)(P—m)}efe,

2
S = ;imz{ 0,(P, pL)(Py + M)kys(P; +m)

x O,(p, py)(P—mkysk(p; —m)}ele,.

Here, {...} stands for the trace of the braced expres-
sion; the 4-momentak, p, p, p;, and p; are specifiedin
Fig. 3; and the isotopic factors are given by T, , =
(LT L) =1and Ty = {T,TT,T, } =1, where 1, =
(1, £i1y)/2 and T, = 1;).”) The expressions for S, and
S, differ by the 4-momentum p, (p, = p' £ k). The quan-
tities %(1) and Séz) are determined by the expression for
S,atp=(gy, p) and p= (g, + U, p), respectively. We note
that S, and ng) are obtained from S, and %(1), respec-
tively, upon the substitution p — —1. For the ampli-

tudes M, M,, and M5 considered for zero initial momen-
tum and for the polarization vectors e, , = (0, €, ), the

“The amplitudes M, , involve a p/m correction [the factor (1 +

1/2m)~!] caused by the presence of the propagator for the inter-
mediate nucleon with a 4-momentum p;, since & = My = H— €

and Ef —p?—m? +i0==2(1 £ u/2m)(p> — mu —i0) for e = gy =

m+ p/2m. Upon the evaluation of theintegral with respect to the
energy, the amplitude M5 developsa(/ m)? correction [thefactor
(1 — p%/4m?)~"], but we disregard this correction here.
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calculations that assume the initial and the final deu-
teron to be at rest and which take into account relations
(9) and (12) yield

)s[ir(u2 + wz)

292u3 d3p
M, , = 2mtu(€; &1)‘[ (2

p B’l +,\/§uW——W E:|—O’
mu —1

u
Ms = 5 (€ 1)I( 3mu

(14)

x (8u° + 20./2uw + 7w°)

X > 1 + > 1 .
p"—mu—i0 p " +mu-i0
The factor (e - €,) in (14) demonstrates that the deu-

teron polarization remains unchanged, which is obvi-
ous since the externa 3-momenta vanish at the thresh-
old. In the following, we will therefore omit the factor

(€5 -€,). Wewill also present expressionsfor theimag-
mar)y parts of the amplitudes in (14). They are given

2[]

ImM, = g w p%u +ﬁuw+2 5

ImM, =0 (p=./my),
(15)

2 3
ImM, = ?18‘:1::(8“2 +20./2uw + 7w),

2 3
IMM = Im(M,+ M, + My) = %)(ﬁu+w)2.

4. AMPLITUDE OF THE BREAKUP PROCESS
md — nn: UNITARITY RELATION

Since formulas (14) for the amplitudes M;, M,, and
M were obtained from very cumbersome expressions,

SHere, we neglect p/m corrections because, at p = +/my , the dis-
carded p%/m? terms are of the same order of smallness.
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it is desirable to verify fulfillment of the unitarity con-
dition in the one-loop approximation. It should be
noted that the relativistic procedure for calculating the
breakup amplitude is of interest in and of itself.

In the tree approximation, the breakup amplitude

My . = M(b) + M(b) receives contributions from

those diagramsin Fig. 4 that correspond to the expres-
sions
M| (b) _

%nwl)kv&-,(@l—R+ m)

x O, (P2, p; —K)y.ullp,)e,,

16
M(b) (16)

g _ ~ ~ ~
—=0 k —k+m
m (P2)Kys(P2 )

X Ou(P1, P2 — K)y,u( P1)€,-

Going over to two-component spinors and considering
the case of the reaction with the initial pion at rest, we
obtain

Mgb) Agu — =W A102W2 ,
m.ig/m
4 (17)
b
Mé) = m?/‘iWZAZO-Zle

where
A, = f1E(py,LE) + fom(p,, [6)(e [b).
Here, E = p%/2m (p = p, = —p,); from (12), it follows

that f,E = —3mw/8. Evaluating the sum M(b) + M(b)
we arrive at (we have transformed the expression for

MY by using the relaions wiAGwWE =
W, G, AW, G, =—0,, and 0,0 = —00))
4
Mg . nn = gufzwl

Jm
%[(py 1) (e L) ~ (e L) (P, [0) | oW

The total amplitude in (18) depends on f,; that is,

M.y ~ (~/2 U+ W). The probability of the deuteron-
breakup reaction is given by

Wig o nn = Wy + Wo, + Wi,
__Db 2
= Moy |20
|| [Mra -
The quantities W, ;, W,,, and W,, stand for, respectively,

(18)

(19)

the contribution of the square of the amplitude M(b)

contribution of the square of the amplitude M, (o) , and
the contribution of theinterference of these ampl |tude£.

TARASOV et al.

We will calculate the imaginary parts of the elastic-
scattering amplitudesin (14) by using the unitarity con-
ditions

W12

=

ImM, = %S(Wn"'wzz), ImM, =

(20)

Wnd - NN
Js

By evaluating the quantities W according to (18) and

(19) (we set here ./s = 2m+ P = 2mand consider that
p? = my), we arrive at expressions (15). Thus, the cal-
culations of the breakup and scattering processesin the
relativistic approximation prove to be consistent at the
level of the optical theorem.

ImM =

5. COMPARISON WITH NONRELATIVISTIC
EXPRESSIONS

By using the Hamiltonian in (6), we will now calcu-
late the amplitudes represented by the diagramsin Fig. 3.

non non non

We denote these amplitudesby M; ", M, ", and M5 .

With the aid of the rules presented in Appendix 2, we
obtain

M:TO; _ ZQZHZI d3p p2(u2+W2)
(2n)3p2¢mu—i0
M = 29 H I(d p3p (U’ + 4.2uw —w?)

x[21_+21_}, 1)
p"—mu—i0 p"+mu-—io
non 4 d
M = g“j( SL o2k w)’

x| — 1 +— 1 ,
p"—mpu—i0 p " +mu-i0

where M = M, + M, [asin (14), theiso-

topic factors correspond here to the reaction td —
1ud]. For the imaginary parts, we have

non

non

2 3
- gup 2, 2
2nm(U+W)'

ImM;

ImM;™ =0 (p=./mp),
3 22)
non _ g hp 2, Yy
ImMz™ = (U 4.2uw—-w°),
on _ gp°p ’
ImM™ = 225 2u+w) .
m T (J2u +w)
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Let us compare the relativistic and the nonrelativistic
expressions [(14) and (21), respectively]. In contrast to

the amplitudes M;™" and M, the amplitudes M, and
M, in (14) feature the Swave contribution [the terms
+(U? + W?) in the integrand] from the pole diagrams of
pion—nucleon scattering. For g — 0 (p*/mu —> ),
this contribution vanishes, and only the P-wave contri-
butions survive in the amplitudes M, and M,, (14).

The imaginary parts ImM (15) and ITmM®on (22)
coincide, although the contributions of the individual
diagrams may be different in the rel ativistic and nonrel-
ativistic approximations, for example,

non

ImM; ZImM; .

By no means is the coincidence of the imaginary part
ImM of the sum of the relativistic amplitudes and the
imaginary part Im M of the sum of the nonrelativistic
amplitudes accidental. Indeed, it can be shown that the
amplitudes M and M differ only by areal-valued con-
stant having a simple physical meaning. Let us first
recast the S'wave component of expression (14) for M,
into the form

M = 29°p’ - dp
l 2m+uI( (

1 2
X | —— + P
M my(p® ~mp—-i0) ]

(23)

The second term in the bracketed expression on the
right-hand side of (23) has the same structure as the P-
wave contribution to M, (14). In the leading approxi-
mation in m/y, we therefore have

2

d’ p p
M, =
' I (2m) MK
(24)
L 2u +J§uw+(3/4)w
p —mu—lo

In a similar way, we transform the expression for M,.
Asaresult, the sum M = M, + M, + M, can be reduced
to theform

M=MT+MP MO = _29_2112,
m2
4 d’ 2
M® = g u’ I(z F;Bnl?lu(ﬁu+w) (25)

x|— 1 +— 1 ,
p"—mu—i0 p +mu+io0

Thefirst termin (25), M®, coincides with the contribu-

tion to the pion-nucleon scattering length from the S

wave components of the pion-nucleon scattering
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amplitude that are associated with the Compton dia-
gramsinFig. 2; that is, M® = 2(M+ M,) (the factor of
2 emerges from a normalization of the amplitudes M).
The second termin (25), M®), represents a correction to
this result due to the Fermi motion of the nucleons in
the deuteron. It can be seen that thistermisidentical to
expression (21) for M"°"! For this reason, the correction
for the Fermi motion of the nucleonsin loop diagrams
can be calculated according to the rules of the nonrela-
tivistic diagram technique by using the P-wave interac-
tion.

At the sametime, the S-wave contribution M® to the
pion—deuteron scattering length is determined by the
Compton amplitudes of pion scattering on a free
nucleon at zero energy. This contribution does not
involve corrections associated with nucleon off-mass-
shell effectsin the deuteron. Thus, the S-wave contribu-
tion to the pion—deuteron scattering length is not
affected either by off-mass-shell effects or by the Fermi
motion. This was not obvious from the outset.

6. CONCLUSION

We have considered the contribution of pion absorp-
tion (emission) by a nucleon to the near-threshold
amplitude for pion—deuteron scattering and have
obtained expressions for one-loop diagrams. The for-
mulas presented above have been derived on the basis
of the relativistic Lagrangian (2), but they are not rela-
tivistic, since we have disregarded terms of order p?/nm?
against O(1) terms. The main objective of the present
study was to take correctly into account, in the pion—
deuteron scattering amplitude, the S'wave component
that emerges in the pion—nucleon component from
Lagrangian (2). Expression (25) for the Compton
amplitude of pion—deuteron scattering is the main out-
come of our analysis. Thefirst term in (25), a constant,
is determined by the sum of the Compton amplitudes
for scattering on a free neutron and on a free proton at
zero energy. This contribution is commensurate with
the pion—deuteron scattering length. A renormalization
of this expression due to nucleon off-mass-shell effects
in the deuteron, the Fermi motion, and absorption are
determined by the second termin (25). Thisterm can be
calculated easily according to the rules of the nonrela-
tivistic diagram technique. A numerical calculation of
the 1td scattering length by formula (25) yields

__M
8m(2m+ )

= [-0.02238 + (0.00038 + i x 0.00015)]u ",

md

where the value in parentheses corresponds to the
P-wave term M® in (25) (we used here the vaue of
g%/4m = 14.6 and the deuteron wave function for the
Bonn potential with the parameter valuesfrom Table 11
of the review article by Machleidt et al. [25]). We see
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that the contribution of this term is comparatively
small.

The above formulas take correctly into account the
antisymmetric character of the intermediate nucleon—
nucleon state. It should of course be recalled that the
inclusion of only one-loop diagrams is by far insuffi-
cient for describing pion—deuteron scattering. For
example, the imaginary part of the amplitude then
allows only for the contribution of tree diagramsin the
breakup reaction Td —= NN, where double interaction
plays an important role [16] (pion rescattering on one
nucleon and pion absorption on the other one).

In a subsequent study, we plan to take phenomeno-
logically into account additional S- and P-wave contri-
butions to the pion—nucleon amplitude that are not
associated with pion absorption [see Introduction and
equation (1)] and to consider two-loop diagrams for
pion—deuteron scattering.
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APPENDIX 1

Here, we give an account of the rules for describing
the relativistic matrix elements in pion—deuteron inter-
actions. In contrast to what occursin conventional field
theory, the vector field of the deuteron is not converted,
in our case, into a particle-antiparticle pair—it is a
composite object decaying into two nucleons. Because
of this, therules of the diagram technique are somewhat
different here from standard rules and can formally be
obtained from the interaction Lagrangian

L = Lann(X) + L (X), (A.1)
where
Lann(X) = ,f A (X)P(x)
101 ~ 2 .c (A-2)
{Zm (0- 6)“ —ypl/élp (x) + h.c.

Here, we have introduced the following notation: (¢ =
U.D =vy,P*, where U, = y,Y,; A,(X) isthe deuteron vec-

tor field; 9, (9,) isan operator acting on { (X) [P(X)];
T, is an isospin Pauli matrix; and Ly iS an arbitrary
Lagrangian of TN interaction. A direct interaction of
the deuteron field A, with the pion is not introduced
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here. We will employ the commonly accepted normal-
ization [18] of the invariant amplitudes M related to the
differential cross sections (do) by the equations

do = —IMI dt,,
4q./s
g 4 (A.3)
dt, = (2m)*89(P,— Py ) ——pi— b1
(2m)72¢, (2m)72¢,

where q and s are, respectively, the colliding-particle
momentum and the square of the total energy in the
reaction c.m. frame, while dt, is an element of the
phase space of the final state of n particles (¢; are their
total energies). The rules for constructing the matrix
elements will be illustrated for the example of the
pseudovector interaction Ly (2).

(i) We choose the directions of the nucleon linesin
the diagrams in such a way that the vertex of initial-
deuteron breakup (final-deuteron formation) or final-
antideuteron formation (initial-antideuteron breakup)
involves only outgoing (incoming) nucleon lines, in
which case the final-nucleon (initial-nucleon) or initial-
antinucleon (final-antinucleon) line istreated as an out-
going (incoming) line. The notation for the relevant 4-
momenta is chosen in accordance with this (see, for
example, Fig. 3). The direction of motion is chosen
arbitrarily along a continuous sequence of nucleon
lines. This determines the order of writing expressions
(from left to right) for the diagram elements represent-
ing the factors in the product of these expressions that
appears in the quantity iM. In the diagrams, the motion
along some lines occursin the directions antiparallel to
the directions of these lines (we refer to these lines as
ordinary ones), while the motion along the other lines
proceeds along the directions of these lines (we refer to
them as charge-conjugate lines). Each dNN vertex is
connected with two nucleon lines of the different types.

(it) With the vertex dNN, we associate the expres-
sionir,(p,, P/ /2 with

p(le pl) = ( pl) + va
2m’

where p, (p,) is the 4-momentum of the ordinary
(charge-conjugate) nucleon line connected to the dNN
vertex in question.

(i) With an external line of the initial (final) deu-
teron or final (initial) antideuteron, we associate the

polarization 4-vector g, (eﬁ ) satisfying the condition
Q8 =~

(iv) With each nucleon line carrying the 4-momen-
tum p, we associate the propagator iG(p) (for an ordi-
nary line) or iG%(p) (for a charge-conjugate line); by
definition, we have
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5em
G(p) =
p-—m +i0

For an arbitrary matrix, we use here the notation A° =

UCA U., where the transposition operator acts on the
spinor and isotopic matricesin the expression for A [the
following useful relations associated with these opera-
tionshold: 1°=U, x 1U. =1, yp =Y, (1=0,1,2,3),

Ve =Ys, and (AB) = B°A9. We al so have G(p) = G(-p).

(v) In the case of an ordinary (charge-conjugate)
nucleon line, thereisthefactor iA (iA°) at each vertex of
boson coupling to a nucleon. For the TNN vertex from
the interaction Lagrangian (2), we have A =
(9/2myikyst, and A° = (g/2m)ikysT, (a is an isospin
subscript), where the pion 4-momentum k is directed
from the vertex. For areal 1~° meson, T, = (/2T_,
J21,,13) inthe case of pion emissionand T, = (./21,,
ﬁr,, T,) in the case of pion absorption.

(vi) With an initid (final) nucleon having a 4-
momentum p, we associate the factor u(p)x (0(p)x™)

for an ordinary line and the factor G°(p)X (US(p)x*) for
acharge-conjugate line. Here, u(p) isafour—component

spinor, X isan isospinor, u(p) = U u(p) Y-U*(p), and

u°(p) =-0(pU..

(vii) Prescriptions for the remaining elements of the
diagrams (which do not involve nucleon lines con-
nected to dNN vertices or nucleon lines featuring such
vertices) are identical to conventional rules [18]. A
closed contour formed by nucleon lines yields a prod-
uct of traces (of expressionsinvolving gamma matrices
and isospin tau matrices), implies integration

Qm™ a* p with respect to the intermediate 4-momen-

tum p, and contains the factors of (1) and 2 (the latter
stems from the permutation of internal nucleon lines).

Further, we restrict our consideration to the case of
nonrelativistic nucleons—that is, we assume that p%/m
< m, where p isthe relative momentum of the nucleons
in the dNN vertex. The procedure of evaluating the
amplitudes in this approximation on the basis of the
above rules is referred to here as a “relativistic”
approach. Itisprecisely thisapproach that isused in the
present article.

The quantities T, g;, and g, [see item (ii)] are
related to O,, f;, and f2 [see (9)] by the equations

Mu(p2 p1) = 4ﬁ(p Ta )Op(pZ! P1),

O1,2 = 4A/r_n(p2+o(2)f1’2, o’ = Meg,
where g, is the deuteron binding energy.

By way of example, we indicate that the amplitude
for Trd scattering at the threshold and the amplitudes

(A.4)
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for the processes td — nn and pp — 1t*d, which
correspond to some of the diagrams in Figs. 3-5, are
given by

— o7 19 D * dp
s = AT e
‘ ~ , (A.5a)
X{T, (P, P)G(P1)KYsG(p,)
x (P, P1)G(-p)kysG(-p)},
ML) = £T1)50-e,0(Py kYsG(py .~ k)
(A.5b)

xTy(P2 1, Py, 2—k)Uc(p2 1)

Mgf; = 5iT{) L W (pz DM (P21 P12 —K)

~22m (A.5¢)

X G(py, 2 —K)Kysu(py,2),
T3 = {1,11,1,} = -1, Tibi = X1 o1 T2X2 1 = -,
(A.5d)

M = % -

12 = X2,1ToT Xy, = =i
In order to antisymmetrize a specific amplitude in
external nucleons, this amplitude must be supple-
mented with the analogous expression with the
reversed sign and permuted nucleon variables. For

example, the expression for M(b) must be added to

M:” (A .5b) [the factor of 1/./2 hasalready been taken
|nto account in expressions (A.5b)]. The expressions

for M; and M(b) [formulas (13) and (16) of the present
article] are obtained here by substituting (A.4) into
(A.58) and (A.5b) (upon performing integration with
respect to energy in M,).

APPENDIX 2

Therulesfor constructing nonrelativistic matrix ele-
ments are the following [the amplitudes are normalized
according to (A.3), the total energies of the nucleons
and the deuterons being replaced by their masses]:

(i) Seeitem (i) in Appendix 1.

(if) With the dNN vertex, we associate the expres-

sioni Ff“’(p)rz/ 2, where p is the relative momentum
of the nucleonsin the dNN vertex, while | is avectoria
subscript.

(iii) With the external line of the initial (final) deu-
teron, we associate the polarization 3-vector e (e*) sat-
isfying the condition e - € = 1.

(iv) With the internal nucleon line carrying a
4-momentum p = (M + E, p), we associate the nonrela-
tivistic propagator iG(E, p) (for an ordinary line) and
iGS(E, p) (for acharge-conjugate line), where G(E, p) =
1/2mE — p? +i0). Here, we have introduced the opera-
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Fig. 6.

tion A® = —02,5\02 [the following useful relations asso-
ciated with these operations hold: 1¢=-0, x 10, =1,
o] =0, (j=1,2,3), and (AB)° = —B°A7. We a0 have
GC(E’ p) = _G(E’ p)

(v) With each vertex of boson—nucleon coupling, we
associate the factor iA (iA°) in the case of an ordinary

(charge-conjugate) nucleon line. For the P-wave pion—
nucleon interaction [see expression (6)], we have A =

glolk — (@/(2m)(p; + p)D)T, and A° = g(o - [k —
(W/2m))(p; + p,)])T.. Here, w and k are, respectively,
the total energy and the 3-momentum of the pion, its 4-
momentum k [k = (w, k)] being directed from the ver-
tex; p, and p, are the nucleon 3-momentain the vertex;
and a is the isospin subscript. The matrices 1, in the
charge representation are presented in item (v) of
Appendix 1.

(vi) With each initial (final) nucleon, we associate
the factor wy (w"x*) for an ordinary line and the factor
wery (wex ) for the charge-conjugate line. Here, wisa
spinor (Ww = 1), X is an isospinor, w* = o,w*, and
Wet = WQ,.

(vii) Thisitem is perfectly analogousto item (vii) in
Appendix 1. The only exception is that traces contain
sigma matrices instead of gamma matrices, while the

integral (2T J' d* p with respect to the 4-momentum of

the intermediate nucleon is replaced by (2m)— I dEd’p
[p=(m+E, p)l.

The equation relating the vertices I J-(”) (p) [seeitem
(ii)] to the quantities O,(p) [see equation (10)] and the
normalization used in this article for the deuteron wave
function (10) are given by

r”(p) = 4Jm(p’ +a*)0["(p),
Idsp(uz(p)wz(p)) = (2m)°.

Let us present expressions for the amplitudes M;,

ib)z ; M.") (seediagrams 3, 4, and 6). The ampli-
tude M, WI|| be considered only for zero pion energy—

that is, for k = 0, w = (in this case, only the nonstatic

(A.6)
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term in the TINN vertex is operative), and p, = —p,. The

amplitudes M(b (M(f)) will be written in the c.m.

frame of the initial (final) deuteron. Specificaly, we
have

M (non) _ 3

= 2i ng2 “ ek i
(211)

x{r"(p)(o no)r}”)(p)(o [p)}
x G(E,, p)G(E1, p)G(E, p)G(E', p),

(A.7a)

w
M(b) = +|T1 2ge Wy ZBT E[k —Eﬁ(pl,z + qu)}B

(A.7b)
X G(Eq1, g2 A1, 2) rj(n)(pz, 1)W§, 1)

Mif% = +|T1 29‘5 Wy, 1r(n)(p2 1)
(A.7¢)

X G(Eq q1 Oz, 1)%’ E[k - (pl 2ty 2)}%’% 2:

Here, we have denoted by E, and E,, the nonrelativis-
tic en