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Abstract—The spectra of neutrons accompanying 238U fission induced by 5.0- and 13.2-MeV primary neu-
trons are measured by the time-of-flight method. This investigation of fission-neutron spectra supplements pre-
vious measurements performed at the different primary energies of 2.9, 14.7, 16.0, and 17.7 MeV. The shape
of the neutron spectrum at 13.2 MeV is similar to the shape of the neutron spectra for the primary energy of
14.7 MeV and higher. A calculation of the spectra within a conventional approach reproduces the shape of the
observed distributions only at primary energies in excess of 2 MeV. In relation to a theoretical description, the
experimental distributions for low primary energies show an anomalously high yield of soft neutrons. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present article reports on a further step in a
series of studies initiated at the Khlopin Radium Insti-
tute (St. Petersburg) and then continued in cooperation
with the Institute of Physics and Power Engineering
(Obninsk) that are devoted to measurement of the spec-
tra N(E, En) of neutrons accompanying the fission of
heavy actinide nuclei. Initially, the spectra of neutrons
were measured for two characteristic primary-neutron
energies of En = 2.9 (an energy value below the emis-
sion-fission threshold) and 14.7 MeV (an energy value
above this threshold) [1]. It was found that the shape of
the fission-neutron spectra changes as soon as the pri-
mary-neutron energy becomes higher than the (n, n'f )
threshold, in which case the fission process appears to
be of an emission character. At the primary energy of
14.7 MeV, these changes manifest themselves in a
characteristic increase in the yield of neutrons in two
regions of secondary-neutron energies: as a maximum
in the high-energy section of the spectrum and as an
ascending branch in its low-energy section. At second-
ary-neutron energies below 2 MeV, the latter leads to a
sizable excess of neutrons in relation to what emerges
from the calculations on the basis of the statistical
model. The latest investigations at the Institute of Phys-
ics and Power Engineering were focused on the region
of emission nuclear fission at primary-neutron energies
above 14 MeV [2, 3]. Both in the hard and in the soft
section of neutron spectra, the investigations reported
in [2, 3] confirmed the above features, which were
observed previously in [1] and which distinguish these
spectra from those at the primary-neutron energy of
En = 2.9 MeV, where only (n, f) reactions can occur. It
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was clear from the outset that the above distinction in
the hard section of the spectrum is associated with non-
equilibrium neutron emission in the decay of an excited
fissile nucleus. In order to explain the excess of soft
neutrons accompanying the emission fission of nuclei,
it was assumed in [4] that neutrons may originate not
only from a fissile nucleus and from fully accelerated
fragments but also from nonaccelerated fragments.
Since this assumption was based on data that were far
from extensive, additional experimental and theoretical
investigations aimed at establishing the emission from
nonaccelerated fragments were necessary for obtaining
deeper insights into the mechanism of neutron emis-
sion.

In this article, we present new experimental results
obtained by measuring the spectra of neutrons from
238U fission induced by primary neutrons with energies
of 5.0 ± 0.01 and 13.2 ± 0.2 MeV. These neutron ener-
gies extend the energy range over which we previously
studied the differential yield of neutrons from the reac-
tion 238U(n, xn'f ).

Measurement of the spectra of neutrons from 238U
fission induced by 5.0-MeV primary neutrons is an
important supplement to the only neutron spectrum that
was measured by the same method at the primary
energy of 2.9 MeV and which was used as a reference
in a comparison with all neutron spectra measured by
the present authors in emission fission at the primary
energies of 14.7, 16.0, and 17.7 MeV.

There is yet another reason why the energy distribu-
tions of neutrons originating from the reaction 238U(n,
xn'f ) at a primary neutron energy of 13.2 MeV are of
interest. Since these distributions are determined
almost exclusively by the relevant reactions (n, f) and
(n, n'f) and since emission spectra measured at higher
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primary energies receive a contribution from the reac-
tion (n, 2n'f) as well, there arises the possibility of clar-
ifying the effect of neutrons from the reaction (n, 2n'f)
on the character of the emission spectra; on this basis,
we can also verify the assumption made in theoretically
calculating the spectra of fission neutrons that takes
into account the nonequilibrium mechanism only at the
first step of the emission cascade, treating all other
steps in terms of purely evaporation processes.

At the chosen energy value, the spectra of fission
neutrons can be calculated with smaller uncertainties,
so that a comparison with experimental data can be
more reliable and informative here.

2. DESCRIPTION OF THE EXPERIMENT

A detailed account of methodological questions
concerning measurements of fission-neutron spectra
was given elsewhere [1–3]; for this reason, we only
describe briefly the basic units of the experimental
facility used in the present study.

Our experiment was conducted in a neutron beam
from the KG-2.5 cascade generator installed at the
Institute of Physics and Power Engineering (Obninsk)
by harnessing the reactions T(d, n)4He at Ed = 600 keV
and D(d, n)3He at Ed = 1.9 MeV to obtain neutrons with
initial energies of 5.0 ± 0.1 and 13.2 ± 0.2, respectively.
Exposed to these neutrons were tritium–titanium tar-
gets on a copper substrate and deuterium–titanium tar-
gets, the thicknesses of the active layer being 1.1 and
1.6 mg/cm2 for the former and the latter, respectively.
The average current of deuterons was 5 or 25 µA for tri-
tium or deuteron targets, respectively. The energy dis-
tributions of secondary neutrons were measured by a
time-of-flight spectrometer in the energy range 0.25–
13.0 MeV. A fission-fragment detector; a neutron
detector featuring complex, combined shielding; and
electronics that made it possible to run the experiment
and control the acquisition, accumulation, and sam-
pling of experimental data in the memory of a PC were
the basic units of the spectrometer used.

A multilayer flow-through ionization chamber that
contained layers of fissile 238U and which was devel-
oped and manufactured at the Khlopin Radium Institute
[1] served as the fission-fragment detector. The cham-
ber consisted of four sections, each being connected to
an individual wideband preamplifier. One of the sec-
tions—a monitoring one—contained two one-sided tar-
gets from the substance featuring the spontaneously fis-
sile isotope 252Cf uniformly distributed over its thick-
ness (2 mg/cm2). This made it possible to determine the
efficiency of the neutron detector and to perform rela-
tive measurements by using the spectrum of neutrons
from the spontaneous fission of 252Cf as a reference. In
the remaining three sections, 238U layers 2 mg/cm2 in
thickness and 100 mm in diameter were deposited onto
both sides of an aluminum substrate (electrode) 0.05 mm
thick. There were 20 electrodes in the fission chamber,
and the total weight of the fissile sample was 5.5 g. Pure
(99.99%) methane was used as a flow-through gas in
the fission chamber. The efficiency of fission-fragment
detection was about 70% (for more details on the fea-
tures of the fission chamber, the reader is referred to [2]).

A stilbene single crystal 63 mm in diameter and
39 mm in height connected to a FEU-30 phototube
served as the detector of neutrons. This detector was
equipped with dedicated combined shielding that was
manufactured from monolithic paraffin containing an
admixture of 6LiH, lead, and iron and which was sup-
plemented with copper attachments on the side of the
source of neutrons. This ensured a considerable reduc-
tion of the background from photons and scattered neu-
trons. In order to reduce the background of photons, we
also employed the scheme of n–γ separation according
to the pulse shape, the suppression factor being about
70 at the neutron-detection threshold approximately
equal to 0.2 MeV.

The spectrum of fission neutrons was measured over
a flight base of 1.7 m at an angle of 90° with respect to
the beam of primary neutrons. The absolute efficiency
of the neutron detector was determined in the range
0.25–13 MeV with respect to the spectrum of neutrons
from the spontaneous fission of 252Cf (the shape of this
spectrum was taken to be identical to that in [5]).

In measuring the spectra of fission neutrons, an all-
wave detector, which was virtually insensitive to pho-
tons and which was arranged at an angle of 45° with
respect to the deuteron-beam direction at a distance of
4 m from the target, was used to monitor the neutron
beam. The electronics of the spectrometer was imple-
mented in the CAMAC standard. In order to record
simultaneously the neutron time-of-flight spectra from all
four sections of the chamber, one time analog-to-digital
converter was used in the spectrometer, whereby system-
atic uncertainties associated with the nonlinearity and
with the temperature drift of the converter were consider-
ably reduced. The stability of the electronics and detector
performance was monitored by the shape and the position
(on the time scale) of the γ peak from the spontaneous fis-
sion of 252Cf occurring in the ionization chamber.

3. SPECTRA OF PROMPT FISSION NEUTRONS 
(En = 5.0 MeV)

3.1. Shape of the Spectra of Fission Neutrons
in (n, f) Reactions

Frequently, the experimental spectra of neutrons
originating from both spontaneous and induced fission
are analyzed in terms of the Maxwell distribution

(1)

in which case the mean energy of emitted neutrons is
given by

(2)

NM E T,( ) 2 E/ πT
3( )( )

1/2
E/T–( ),exp=

E 3/2( )T .=
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001



        

INVESTIGATION OF THE SPECTRA OF NEUTRONS 3

       
The spectrum described by expression (1) has the
required energy dependence, but it is difficult to vali-
date it theoretically. In any case, it should be recalled
that the parameter T is not the temperature in the same
sense as in the Weisskopf and Le Couteur formulas.
Expression (1), which depends on only one parameter
T, can be considered as a convenient parametrization of
experimental data, for example, in constructing a sys-
tematics of  values.

From the estimate that is presented in [5] and which
relies on extensive experimental data and on the results
of theoretical calculations, it follows that the spectrum
N(E) of neutrons from the spontaneous fission of 252Cf
may deviate from (1) quite sizably. These deviations
can be taken into account in terms of the shape function

(3)

where

For 252Cf, the estimate from [5] yields T = 1.420 ±
0.001 MeV. Figure 1 displays the function µ(E) accord-
ing to [5] and the form

(4)

which we proposed as an approximation of this func-
tion. In (4), we have set A = 1.0265, E0 = 2.65 MeV, and
E2 = 8.5 MeV and determined the parameters Bi by fit-
ting experimental data for three intervals of neutron
energies. The results are as follows: (i) B0 = 6.711 × 10–4,
B1 = 3.5 × 10–2, B2 = 4.5 × 10–3, and B3 = 0 for E ≤ E1 =
2.46 MeV; (ii) B0 = 0, B1 = 1.7 × 10–2, B2 = –1.162 ×
10−1, and B3 = 0 for E1 ≤ E ≤ E2; and (iii) B0 = 0, B1 =
1.7 × 10–2, B2 = –1.162 × 10–2, and B3 = –1.2 ×
10−2 MeV–1 for E > E2 [x = ln(E2/E0)].

The same figure also shows the spectrum of neu-
trons originating from the fission-chamber section that
contains 252Cf and which is used in implementing the
relative method in our measurements. With the aid of
this method, the induced fission of the nuclide being
investigated and the well-understood spontaneous fis-
sion of 252Cf can be studied under very similar condi-
tions.

An alternative expression for the spectrum of neu-
trons can be obtained by using the relation of the evap-
oration model in the fragment c.m. frame, that is, the Le
Couteur formula

(5)

where n = 1 and θ = τ1 for single emission and n =
5/11 ≈ 1/2 and θ = (11/12) τ1 for multiparticle emission,

E

µ E( ) N E( )/NM E T,( ),=

T
2
3
---E

2
3
--- EN E( ) E.d

0

∞

∫= =

µ E( ) A B0 B1x B2x
2

+ +( )
1 B3E+
1 B3E2+
---------------------,exp=

x E/E0( ),ln=

n ε( ) εd
1

Γ n 1+( )θn 1+
--------------------------------εn ε/θ–( )dε,exp=
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τ1 being the temperature of the residual nucleus (frag-
ment) upon the emission of the first neutron. In rescal-
ing the neutron distribution (5) from the c.m. frame to
the laboratory frame with allowance for the contribu-
tion of the complementary fragment and under the
assumption that the complementary fragments are
identical, we arrive at an expression that leads, upon
integration with respect to the neutron emission angle
relative to the line along which the fragments fly apart,
to the well-known Watt formula

(6)

In Eq. (6), the parameter ω represents the mean kinetic
energy of fission fragments per nucleon, while θ—to be
distinguished from T in (1)—is sometimes referred to
as the effective temperature. This effective temperature
is related to the mean energy of the spectrum by the
equation

(7)

The traditional description assuming that fully acceler-
ated fragments appear as a source of neutrons and that
the emission process follows the pattern predicted by
the evaporation model complies well with experimental
data both in the shape of the spectra and in the spatial
correlation between neutrons and fission fragments. This
is so not only in the case of nuclear fission induced by
thermal neutrons but also in the case of induced fission,
at least in the region of the first plateau (En ≤ 6 MeV).

For 252Cf, a fit to the estimate from [5] in terms of
expression (6) leads to the values of θ = 1.185 MeV and
ω = 0.343 MeV.

For this case, the expression

(8)

the arithmetic mean of two Watt spectra for a light (L)
fragment and the complementary heavy fragment (H),
which was obtained by Froner [6] in the approximation
specified by the equalities θL = θH = θ,  = ,
ωL = CLω, and ωH = CHω, where the constants CL =

2 /(  + ) and CH = 2 – CL are determined by the
momentum-conservation law, with the ratio AL/AH =
108/144 = 3/4 being the most probable mass splitting,
yields θ = 1.170 MeV and ω = 0.364 MeV. These values
are in excellent agreement with estimates presented in
[6] (θ = 1.174 ± 0.08 MeV, ω = 0.361 ± 0.014 MeV).
The above results for ω are at odds with the estimate
ω ≈ 0.75 MeV quoted in [7]. This discrepancy is due to
many simplifying assumptions made in deriving
expression (6). Figure 1 also shows the results obtained
by fitting the Watt distribution in (8) to experimental
data on 252Cf. This distribution reproduces basic trends

NW E ω θ, ,( )

=  πωθ( ) 1/2– ω E+( )/θ–( ) 2 ωE/θ( ).sinhexp

E ω 3θ/2.+=

NW E θ ω, ,( )

=  
1
2
--- NW E θ CLω, ,( ) NW E θ CHω, ,( )+[ ] ,

νL νH

AH
2
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2
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of the deviation of the spectrum measured for 252Cf
from the Maxwell spectrum—that is, it contains infor-
mation about the shape function µ(E). For ω  0, the
Watt formula reduces to the Maxwell formula.

For 238U fission induced by 5-MeV neutrons, exper-
imental results and a fit to them are displayed in Fig. 2
in the form of the ratio of the spectrum being studied to
the Maxwell distribution at T = 1.353 MeV. The param-
eter value was obtained by fitting the ratio

(9)

to experimental data in the neutron-energy range E =
0.5–12.28 MeV, where µ(E) is determined by expres-
sion (4) with the parameters Bi set to the values deduced
from the spectrum for 252Cf. In just the same way as at
En = 2.9 MeV [8], the behavior of the deviation of the
measured spectrum from the relevant Maxwell distri-
bution is similar to that for neutrons from spontaneous
fission. This result is not independent, however, since it
is determined by the assumption that is made in relative
measurements and which concerns the shape of the ref-
erence spectrum. In studying the spontaneous fission of
actinides, the authors of [9, 10] determined the effi-
ciency of the neutron detector and calibrated the energy
scale of the time-of-flight spectrometer by using vari-

N E( ) NM E T,( )µ E( )=

Fig. 1. Ratio of the spectrum of prompt neutrons from the
spontaneous fission of 252Cf, N(E), to the Maxwell spec-
trum Nå(E, T) at T = 1.42 MeV: (open squares) estimate
from [5], (closed circles) spectrum of the 252Cf section of
the fission chamber, (solid curve) fit to data from [5] in
terms of relation (4), and (dashed curve) fit to data from [5]
in terms of the Watt relation.

0.8

0.6
10–1

N(E)/NM(E, T)

E, MeV
100 10110–2

1.0

1.2
ous reactions like H(n, n') scattering, T(p, n)3He, and
9Be(d, n)10B; that is, they did not assume any a priori
information about the function µ(E). The measured
spectra also show a deviation from the Maxwell distri-
bution; therefore, there is every reason to believe that
the deviations being discussed are of a universal char-
acter and that they can be taken into account by intro-
ducing a correction to the distribution in (1). The Watt
distribution in Fig. 2 corresponds to the parameter val-
ues of θ = 1.169 MeV and ω = 0.265 MeV.

For the relevant distributions in (1), (6), and (9),
Table 1 quotes the parameter values, which confirm the
conclusion that, if the spectra of fission neutrons have
been measured over a sufficiently broad energy inter-
val, it makes no difference which form of approxima-
tion—that in (1) or that in (6)—is used to determine the
mean energy of neutrons from a fit to the experimental
distributions: the distinction between the  values in
the two cases under consideration does not exceed 0.01
versus the mean value of 2.02 MeV as obtained for all

 values quoted in Table 1—this is less than the exper-
imental uncertainty equal to 0.03 MeV. Apart from sta-
tistical errors, the experimental uncertainty includes (i)
the error associated with a finite width of the second-
ary-neutron-energy range studied here, (ii) the error

E

E

Fig. 2. Ratio of the spectrum of prompt neutron from 238U
fission induced by 5-MeV neutrons to the Maxwell distribu-
tion Nå(E, T) at T = 1.353 MeV. Points represent experi-
mental data obtained in this study. The notation for the
curves is identical to that in Fig. 1.

0.8

0.6

N(E)/NM(E, T)

E, MeV
101

1.0

1.2

100
Table 1.  Fitted parameters of the spectrum of neutrons originating from 238U fission induced by 5-MeV neutrons

Emin–Emax, 
MeV

NM(E, T) (1) NM(E, T) µ(E) (9) NW(E, θ, ω) (6)

T, MeV , MeV χ2 T, MeV , MeV χ2 ω, MeV θ, MeV , MeV χ2

0.28–12.27 1.341 2.012 0.40 1.349 2.024 0.32 0.228 1.191 2.015 0.34

0.50–12.27 1.342 2.013 0.37 1.353 2.030 0.50 0.265 1.169 2.019 0.27

Eexpt Eexpt Eexpt
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that stems from extrapolating the measured spectrum
Nexp(E) by using the Maxwell distribution at energies E
below the boundary energy Emin equal to the energy
threshold of the neutron detector, and (iii) the errors in
the corrections introduced.

The general trend in the behavior of  is as follows:
the smallest value corresponds to expression (1), while
the largest one results from a fit in terms of expression (9).
The same is true for the spectrum of neutrons from
252Cf fission:  = 2.096, 2.121, and 2.13 MeV for (1),
(6) or (8), and (9), respectively.

Table 2 displays a sample of mean-energy values for
the spectrum under study and the experimental errors in
them. The first value was found on the basis of a fit in
terms of expressions (1), (6), and (9) as a mean over all

 values from Table 1. The second value was deter-
mined directly from the observed spectrum N(E) by
evaluating the integral

(10)

the contribution from neutrons with energies below the
detection threshold 0 < E ≤ Ethr = 0.2 MeV being taken
into account via an extrapolation from Ethr to zero with
the aid of the Maxwell distribution.

In Table 2, we present the mean energies 
obtained from the measured spectra of fission neutrons.
Also given are  values that take into account a correc-
tion for the angular correlation between secondary and
primary neutrons (see [1]), which arises owing to a
strong angular anisotropy of fragment emission and to
a strong angular correlation between the direction of
motion of postfission neutrons and the direction of
motion of fission fragments. For the eventual value of
the mean neutron energy , we took 2.03 ± 0.03 MeV.

Table 2 also quotes the  values corresponding to the
compilations from [7, 11].

The fission-neutron spectrum obtained in the
present study is shown in Fig. 3, along with the esti-
mated spectrum from the ENDF/B-VI library, which
was composed on the basis of the Madland–Nix model
[12], and with the spectrum calculated by Merten with
the aid of the FINESSE code [13]. As can be seen from
the figure, the results of the FINESSE calculations are
in better agreement with experimental data than with
the ENDF/B-VI estimate. The calculated spectrum
from ENDF/B-VI underestimates the contribution of
neutrons both in the low-energy region E < 1 MeV and
in the region of high energies.

3.2. Experimental Ratio R(E, En)

In just the same way as in our preceding studies
devoted to measurements of fission-neutron spectra,

E

E

E

E EN E( ) E,d

0

∞

∫=

Eexp

E

E

E
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the experimental results for the primary neutron energy
of En = 5.0 MeV are displayed in Fig. 4b as the ratio of
the spectrum of prompt neutrons originating from 238U
fission to the spectrum of neutrons from the spontane-
ous fission of 252Cf,

(11)

The spectra in question are normalized as

(12)

where the contribution of neutrons with energies E
below Ethr = 0.2 MeV is taken into account. As was
indicated above, this representation of our experimen-
tal results makes it possible to avoid many uncertainties
like those that are associated with the precision
achieved in calibrating the energy scale of the spec-
trometer or with the energy dependence of the neutron-
detector efficiency. For this purpose, measurements for
the induced fission of the isotope being studied and the

R E En,( )
NU E En,( )

NCf E( )
-------------------------.=

NU E En,( ) Ed

0

∞

∫ NCf E( ) Ed

0

∞

∫ 1,= =

Table 2.  Mean energies of neutrons originating from 238U
fission induced by 5-MeV neutrons

Sample of , MeV , MeV

 according to Table 1 2.02 ± 0.03 2.03 ± 0.03

 according to Eq. (10) 2.01 ± 0.03 2.02 ± 0.03

Accepted value 2.02 ± 0.03 2.03 ± 0.03

Systematics from [7] 2.054  = 3.024

Systematics from [11] 2.063  = 3.024

E Eexpt E

E

E

ν f

ν f

0.8

N(E)/NM(E, T)

E, MeV
101

1.0

1.4

0.6

1.2

100

Fig. 3. Measured spectrum of neutrons from 238U fission
induced by 5-MeV neutrons (points) along with the results
of the calculations based on the FINESSE code (solid curve)
and with the estimate from the ENDF/B-VI library (dashed
curve). All neutron spectra are presented in the form of the
ratio to the Maxwell distribution at T = 1.353 MeV.
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well-understood spontaneous fission of 252Cf were per-
formed simultaneously under conditions as similar as
possible. Figure 4‡ shows experimental results
obtained at the primary neutron energy of En = 2.9 MeV
[1]. The dashed curves in Figs. 4‡ and 4b represent the
ratios of the Maxwell distributions for 238U and 252Cf at
the values of the temperature T that are indicated in the
caption under the corresponding figure,

(13)

It can be seen that, at En = 2.9 and 5.0 MeV, both the
observed and the approximating ratio [R(E, En) and
RM(E, En), respectively] behave as nearly linear func-
tions of the secondary-neutron energy. This implies that
the observed neutron spectrum is similar in shape to the
Maxwell distribution and that the slope is determined
by the difference of the temperatures obtained from the
neutron spectra for the 252Cf nucleus and the 238U
nucleus being studied.

4. SPECTRA OF EMISSION-FISSION NEUTRONS 
(En = 13.2 MeV)

For the incident-neutron energy of En = 13.2 MeV,
the experimental energy dependence of the ratio R(E,

RM E En,( )
NM

U
E En,( )

NM
Cf

--------------------------.=

1.2

0 5

R(E, En)

E, MeV10

(c)

(b)

(a)

0.8

0.4

1.6

0.4

0.8

1.2

1

2 13.2 MeV

5.0 MeV

En = 2.9 MeV

0.4

0.8

1.2

Fig. 4. Ratio R(E, En) of the fission-neutron spectrum for the
reaction 238U(n, xn'f ) to the spectrum of neutrons from the
spontaneous fission of 252Cf. Points represent experimental
data of this study. The solid curves in Fig. 4c depict the
results of the calculations (1) without and (2) with allow-
ance for neutron emission from nonaccelerated fragments.
The dashed curves in Figs. 4a and 4b correspond to the ratio
of the Maxwell distributions at TU = (‡) 1.232 and (b)
1.353 MeV for TCf = 1.42 MeV in either case.
En) = NU(E, En)/NCf(E) is shown in Fig. 4c. It differs
markedly from the simple, nearly linear dependences
R(E, En) observed at the primary-neutron energies of
En = 2.9 and 5.0 MeV, featuring a maximum at high
energies of emitted neutrons, which is due to the contri-
bution from a nonequilibrium mechanism of excited-
nucleus decay—this mechanism leads to a much harder
spectrum of emitted neutrons. If we compare experi-
mental data that are presented in the form of the ratio
R(E, En) and which were obtained in [2, 3] at higher
incident-neutron energies (in excess of 14 MeV) with
similar results of the present study, it becomes clear that
the peak on top of the high-energy tail of the spectrum
due to the nonequilibrium component of prefission neu-
trons is much less pronounced in the present case. The
observed shift of the high-energy peak in R(E, En) along
the scale of the emitted-neutron energy E in response to
a reduction of incident-neutron energy from En >
14 MeV to 13.2 MeV, together with a decrease in the
peak height, indicates once again that the physical
interpretation of the effect has been chosen correctly,
since the contribution of the nonequilibrium compo-
nent of prefission neutrons becomes less pronounced
with decreasing primary neutron energy.

At low energies of emitted neutrons (E < 2 MeV),
the ratio R(E, En) shows another feature of emission fis-
sion, the presence of an anomalously soft neutron com-
ponent, which manifests itself as an excess of the
observed distribution over the distribution computed on
the basis of the statistical model.

Smooth curves in Fig. 4c represent the results of a
theoretical calculation based on the statistical model. All
inputs that were used in describing the experimental
spectra of neutrons accompanying the emission fission
of 238U nuclei irradiated with 14.7-, 16.0-, and 17.7-MeV
neutrons and which include basic relations of statistical
theory and of the preequilibrium-decay model, level
densities, and the mechanism of postfission-neutron
emission were described in detail elsewhere [4]. Pre-
liminary theoretical estimates obtained on the basis of
the relations from that study reveal that the low-energy
anomaly can also be observed at primary neutron ener-
gies En in excess of Ethr ≈ 9 MeV. With the aim of test-
ing the potential of the model in predicting measurable
results, we have applied the previous approach to mea-
sure the neutron spectrum at the primary neutron
energy of En = 13.2 MeV, which is closer to the thresh-
old energy Ethr than any energy value studied thus far.

The calculated spectrum was represented as the sum
of the contributions from prefission neutrons, neutrons
from fully accelerated fragments (postfission-neutron
spectrum), and neutrons from nonaccelerated frag-
ments; that is,

(14)

dνc E En,( )
dE

--------------------------
dνpre E En,( )

dE
-----------------------------

dνfaf E En βT x, ,( )
dE

-----------------------------------------+=

+
dνnaf E En C, ,( )

dE
------------------------------------.
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The prefission-neutron spectrum d (E, En)/dE
was calculated as the sum of the spectrum of coinci-
dence between first-chance neutrons and events of 238U
fission (d /dE) and the spectrum of coincidence of
second- and third-chance neutrons and events of 237U
fission (d /dE, d /dE) [4]. The contribution of

the last two to d /dE is much less than the contribu-
tion of the first since the fraction of the third-chance
cross section—that is, σf, 237—in the total fission cross
section σf at the primary neutron energy of 13.2 MeV is
extremely small. Because of the contribution from the
nonequilibrium mechanism of neutron emission at the
first step of the emission chain, the component
d /dE has a harder shape of the distribution than
the evaporation component.

The postfission-neutron spectrum d /dE (in other
words, the differential multiplicity of neutrons from
fully accelerated fragments), as given by the second
term in the expression on the right-hand side of (14), is
represented in the form

(15)

The values of x = 0, 1, and 2, which stand for the
numbers of neutrons emitted prior to the fission event,
correspond to the chain of fissile nuclei 239U, 238U, and
237U. The quantity  determines the mean multi-
plicity of neutrons emitted from the fully accelerated
fragments originating from the fission of A – x nuclei
(A = 239). The partial fission cross sections ,
which represent the contributions of individual chances
to the total fission cross section σf , are determined from
an analysis of this total cross section as a function of the
primary neutron energy on the basis of statistical theory
and the exciton model of preequilibrium cascade. The
contribution of the x = 2 component to expression (15)
is very small. The constant α is introduced to ensure a
fit to experimental data and to compensate for the error
in describing . This error can be removed from
our analysis since the description in question is based
on an extrapolation of the systematics of  from
[14] to the region En > 6 MeV. Since similar uncertain-
ties stem from the use of the systematics of T(En) from
[7], we introduced the constant β to implement varia-
tions of Tx within |∆Tx/Tx | < 3%.

A method that can be used to compute the spectrum
of neutrons from nonaccelerated fragments,
d (E, En, C)/dE, was described in detail elsewhere
[4]. The parameter C specifies the excitation-energy
fraction that the compound nucleus transfers to internal
degrees of freedom of fully developed fragments by the
instant of their separation. By varying the parameter C,
which determines the hardness of the spectrum and the

νpre

νpre 1,

νpre 2, νpre 3,

νpre

νpre 1,

νfaf

dνfaf

dE
----------- α ν f A x–, NM E βT x,( )

σ f A x–,

σ f

---------------.
x 0=

2

∑=

ν f A x–,

σ f A x–,

ν f A x–,

ν f En( )

νnaf
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yield of soft neutrons from nonaccelerated fragments,
we were able to describe the experimental spectrum in
the low-energy region E < 2 MeV. The characteristic fit-
ted values of the parameters involved are quoted in [4].

Experimental data and the results of the calculations
by formula (14) are shown in Fig. 4c in the form of the
ratio

(16)

where (En) stands for the experimental mean values
of the integrated neutron yield, while NCf(E) is the
spectrum of neutrons from the spontaneous fission of
252ëf (a normalization to unity is assumed here for this
spectrum). If, in accordance with the traditional
approach, postfission neutrons are taken to be emitted
only from fully accelerated fragments, we can see an
excess of soft neutrons in relation to the results of the
calculations based on the statistical model (curve 1).
Upon additionally taking into account neutron emis-
sion from nonaccelerated fragments, good agreement
between experimental data and the results of the calcu-
lations is achieved over almost the entire energy range
(curve 2), including the low-energy section. At one
value of the coefficient C, C = 0.53, a unified descrip-
tion of the soft component was obtained both for the
neutron spectra studied previously at En = 14.7, 16.0,
and 17.7 MeV [2] and for the spectrum measured in the
present study at En = 13.2 MeV.

Thus, the emergence of a low-energy anomaly
(excess of soft neutrons) in the spectra measured at the
high primary-neutron energies of En = 13.2, 14.7, 16.0,
and 17.7 MeV and its absence at the low energies of
En = 2.9 and 5.0 MeV (see [1]) could be explained on
the basis of the proposed model.

Immediately from the measured spectrum Nexp(E,
En), we have determined the mean energy of fission
neutrons by using the relation

(17)

At energies E below the boundary energy Emin equal to
the energy threshold of the neutron detector, the mea-
sured spectrum Nexp(E, En) was supplemented with an
extrapolation according to the dependence in (1).

The resulting mean energy (En) was then cor-
rected for the effect of the angular correlation between
the secondary and primary neutrons, which is due to a
highly anisotropic angular distribution of the direction
along which the fragments fly apart and to a strong
angular correlation between this direction and the
direction of postfission-neutron emission. The relevant
correction was estimated in just the same way as in [2].
For 238U, our eventual result for the mean neutron
energy at En = 13.2 MeV is 1.97 ± 0.04 MeV.

R E En,( )
N E En,( )
NCf E( )

----------------------
dνc E En,( )/dE
ν En( )NCf E( )

-----------------------------------,= =

ν

Eexp En( ) ENexp E En,( ) E.d

0

∞

∫=

Eexp
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5. CONCLUSION

For 238U fission induced by primary neutrons of
energies 5.0 and 13.2 MeV, which are of importance for
obtaining deeper insight into the mechanism of fission-
neutron emission, the spectra of prompt neutrons have
been measured for the first time. For this fissile nuclear
species, the experimental energy dependences of the
ratios R(E, En) of the neutron spectra being studied to
the corresponding spectrum of neutrons from the spon-
taneous fission of 252Cf show the same special features
as those that were found in analogous measurements at
primary energies of 2.9 and 14.7 MeV [1]. The ratios
R(E, En) measured at En = 5.0 MeV have a form similar
to that determined previously at En = 2.9 MeV. The
shape of the spectrum at En = 13.2 MeV is similar to the
shape of the spectra for En > 14 MeV. As to the calcula-
tion of the spectrum within the traditional approach, it
reproduces the shape of the observed distribution only
in the energy region above 2 MeV. In the low-energy
region, the experimental distribution exhibits an anom-
alously high yield of soft neutrons in relation to the the-
oretical description. Upon the inclusion of the third
neutron source (emission from nonaccelerated frag-
ments), the calculated curves prove to be in good agree-
ment with experimental data over the entire neutron-
energy range studied here.
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Abstract—Within the minimal SU(3)C ⊗  SU(3)L ⊗  U(1)N model, the lepton-flavor-violating decay π+ 
µ−νµe+e+ is calculated without directly invoking lepton mixing. The branching ratio for this rare pion-decay mode
is found to be much smaller than the current experimental upper limit. If the anomalous interactions are discarded,
this result coincides with the result of the previous calculation. © 2001 MAIK “Nauka/Interperiodica”.
At present, neutrinos are presumably massive and
mixed as is indicated by various experiments: SuperKa-
miokande [1] and others [2]. This significant deviation
from the Standard Model (SM) calls for its extension.
Models based on the SU(3)C ⊗  SU(3)L ⊗  U(1)N (3 3 1)
gauge group [3, 4] are among the most popular in such
extensions of the SM. The SM assumes lepton-flavor-
number conservation, and its observed violation would
be a clear indication of new physics. In the (3 3 1) mod-
els, the lepton-flavor number is not conserved, and
these models have motivated a variety of dedicated sen-
sitive searches for rare modes of muon and kaon decays
and for neutrino oscillations [5]. It is known that the
muon system is one of the best places to seek lepton-
flavor violation, compared with the others. The
“wrong” muon decay µ–   is widely used to
set a lower bound on the singly charged bilepton mass
(MY ≥ 230 GeV) [6].

In this study, we pay attention to the lepton-flavor-
violating pion decay π+  µ–νµe+e+. The upper limit
on its branching ratio is given by R ≤ 1.6 × 10–6 at a
90% C.L. [7, 8]. By assuming lepton mixing or hori-
zontal interactions, the above decay was studied theo-
retically in [9]. However, this decay may be described
by the minimal (3 3 1) model in a simple manner with-
out directly invoking lepton mixing.

To start, we first give some basic elements of the
model (for more details, see [10]). Three lepton compo-
nents of each family are in one triplet,

where a = 1, 2, 3 is the family index. Under SU(3)L, two
of the three quark families transform as an antitriplet

e–νeνµ

f L
a νL

a
lL

a
l

c( )L
a

, ,( )
T
,=
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and one family transforms as a triplet,

The right-handed quarks are singlets under SU(3)L. The
exotic quarks T and Di have electric charges of +5/3 and
–4/3, respectively.

There are five new gauge bosons: the Z ' boson and
the charged bileptons with lepton numbers L = ±2,

which are identified as follows:  =  – 

and  =  – ; their couplings to leptons are
given by [11]

(1)

The interactions among the charged vector fields with
quarks are

(2)

It should be noted that the vector currents coupled to X– –

and X++ vanish owing to Fermi statistics, and the exotic
quarks interact with ordinary ones only via the bilep-
tons and non-SM Higgs bosons.

The current experimental lower bound on the
exotic-quark mass is 200 GeV [12], while the lower
bound on the bilepton mass is in the range of 300 GeV.
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To deal with the above process, we also need the
couplings of the bileptons X and Y to the SM weak vec-
tor boson W. In the notation adopted in [13], it is

CWXY = .

We start now with the decay

(3)

where the letters in parentheses stand for particle
momenta. We assume that the Higgs bosons responsi-
ble for lepton-flavor-violating interactions, as well as
the exotic quarks, are much heavier than the SM
W boson. Hence, the contributions from the exotic
quarks and non-SM Higgs bosons are suppressed. With
new gauge bosons carrying lepton number L = 2, the
process in (3) can be described simply by the Feynman
diagram in Fig. 1.

For low momentum transfers (q2 ! , , ),
as is the case here, the matrix element for this process
is found to be

(4)

g

2
-------

π+
K( ) µ–

p( )νµ q( )e
+

k1( )e
+

k2( ),

mW
2

MX
2

MY
2

} fi 2
GF

2
f πmW

2

MX
2

MY
2

--------------------- P K+( )βKγ– K L+( )γKβ+[=

+ L– P+( )Kgβγ ]uνµ
q( )γβ

1 γ5–( )

× Cuµ
T

p( )v e
T

k1( )Cγγγ5v e k2( ),

W+

π+ (K)

X++

µ– (p)

νµ (q)

e+(k1)

e+(k2)

Y–

Fig. 1. Feynman diagram for the decay π+(K ) 
µ−(p)νµ(q)e+(k1)e+(k2) in the (3 3 1) model.

e+

θe

a

e+

v

φ

π+

νµ

θµ

µ–

b

ee plane µν plane

Fig. 2. Illustration of the angles θe , θµ, and φ.
where the following combinations of four vectors are
introduced:

(5)

The squared matrix element is given by

(6)

where the notation  ≡ [–(P + K )βKγ + (K + L)γKβ +

(–L + P)K ] is used.

In order to describe the kinematics of the decay, we
introduce the following vectors: v, a unit vector along
the direction of flight of the dipositron in the π+ rest
frame (Σπ); a, a unit vector along the projection of the
e+ 3-momentum in the e+e+ c.m. frame (Σ2e) perpendic-
ular to v; and b, a unit vector along the projection of the
µ– 3-momentum in the µ–νµ c.m. frame (Σµν) perpen-
dicular to –v. The kinematics of this decay is then sim-
ilar to that in [14], which is described in terms of five
variables. These are se ≡ P2, sµ ≡ L2, and three angles:
(i) θe , the angle of e+ in Σ2e with respect to the
dipositron line of flight in Σπ; (ii) θµ, the angle of µ– in
Σµν with respect to the µνµ line of flight in Σπ; and (iii)
φ, the angle between the plane formed by the positrons
in Σπ and the corresponding plane formed by µ– and νµ.
The angles θe , θµ, and φ are shown in Fig. 2.

The width with respect to the pion decay (3) is then
written as

(7)

In Eq. (7), (1/2) is a statistical factor indicating that
there are two (identical) positrons in the final state [15].
With the above definitions, we have the scalar products

(8)
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where

and me , mµ , and mπ stand for the masses of the electron,
the muon, and the pion, respectively. The ranges of the
variables are

(9)

It should be noted that the imaginary part of |}fi |2
associated with the pseudotensor d is linear in sinφ—
that is, there are no terms like Q · Nd; hence, it will be
removed after integration with respect to the angle φ.
As a result, we find that the decay width is real, as it
must.

Integrations with respect to the angles can be carried
out analytically by using the Mathematica system for
analytic computations. Numerical integrations with
respect to the effective masses squared se and sµ are per-
formed by employing the Monte Carlo routine VEGAS
[16]. Upon going over to dimensionless parameters xe =

 and yµ = , we obtain the decay width

(10)

where N is numerically evaluated at N = 6.17 × 10–6.
We recall that the main (99.987%) mode of π+ decay

is well known:

(11)

From (10) and (11), we obtain the branching ratio

(12)

Setting MX . MY . 120 GeV as a lower limit obtained
from the LEP data analysis [17], we arrive at Rπ ~ 2.3 ×
10–34. This value is much smaller than the current
experimental upper limit, but it coincides with the pre-
vious theoretical evaluation without anomalous inter-
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actions included [8]. This raises the question about the
mechanism of the large lepton-flavor-violating pion-
decay mode. However, it is worth mentioning that
experimental data on Rπ decrease with time—for exam-
ple, the 1988 data were Rπ ≤ 8 × 10–6, while the 1998
data are Rπ ≤ 1.6 × 10−6. We assume that, by adding con-
tributions from diagrams featuring the exotic quarks
and Higgs bosons, the situation will be modified but not
improved too much.

Our calculation can be analogously applied to the
lepton-flavor-violating kaon decay K+  µ–νµe+e+,
which has an experimental branching ratio of RK ≤ 2.0 ×
10–8. However, the main decay mode K+  µ+νµ only
has a branching ratio of 69.51%, instead of 99.987% in
the π+ case considered here.

In summary, we have considered the lepton-flavor-
violating pion decay without directly invoking lepton
mixing. Our result is twenty-eight orders of magnitude
smaller than the current experimental upper limit. This
conclusion is not expected to be modified too much
upon the inclusion of the contributions from the exotic
quarks and Higgs bosons. Hence, the mechanism of the
large lepton-flavor-violating pion-decay mode remains
a mystery.
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Abstract—The distributions of fields generated by static  and QQQ sources are calculated analytically
within the bilocal approximation of the method of vacuum correlation functions. At large distances between the
quarks, the fields assume a clear-cut stringlike shape. The main contribution to the string comes from the lon-
gitudinal component of the chromoelectric field. The contribution of the transverse chromoelectric field is
below 3% of the contribution from the longitudinal component. A baryonic string has a Y-like shape with a deep
well in the region of the string-junction position. Field distributions are considered for a quark–diquark config-
uration and in the case of three quarks occurring on a straight line. The interaction potential is calculated for
three quarks residing at the vertices of an equilateral triangle. © 2001 MAIK “Nauka/Interperiodica”.

QQ
1. INTRODUCTION

The distributions of fields within a string connecting
static  sources were repeatedly investigated in lat-
tice calculations by using either connected [1–3] or dis-
connected [4, 5] probing plaquettes. Later on, such
investigations were performed for configurations in the
Abelian projection [6]. The analytic calculations per-
formed by Rueter and Dosch and Dosch et al. [7] for
disconnected probes treated within the model of a
Gaussian stochastic vacuum (by the method of vacuum
correlation functions [8, 9]) revealed that, in the distri-
bution of the field strength tensor, there is a string struc-
ture of the same type as that which was found in lattice
calculations. It was shown, however, that, in contrast to
a disconnected probe, a connected one makes it possible
to obtain the distribution of each field component indi-
vidually.

A comparison of lattice data [1] both in magnitude
and in direction with analytic predictions obtained
within the method of vacuum correlation functions was
drawn in [2]. This comparison compellingly demon-
strated a satisfactory agreement for all distributions. In
particular, the lattice result according to which the lon-
gitudinal electric field decreases with increasing dis-
tance from the string axis (string profile) is described
very well by the contribution of the lowest (bilocal)
correlation function [2]. It should be emphasized that
the form of the field correlation function, which is spec-
ified by the scalar form factors D and D1 [8], appears as
an input in the method of vacuum correlation functions.
For each of these two, lattice data [10] yield an expo-
nential with a slope of Tg . 0.2 fm. Dominance of a
bilocal correlation function (sometimes, this situation
is said to be described by the Gaussian stochastic model

QQ
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of the QCD vacuum) was demonstrated in [11] by pre-
cisely calculating the static potential for a  Wilson
loop on a lattice in various representations of the SU(3)
group. The analysis of data reported in [11] that was
performed in [12] confirmed that the contribution from
the Gaussian stochastic model saturates about 99% of
the static  potential. These results furnish sufficient
motivation for studying field distributions in terms of
the lowest bilocal correlation function.

For static  and QQQ systems, we calculate here
field distributions in the bilocal approximation of the
method of vacuum correlation functions by using con-
nected probing plaquettes. It will be shown that the
main contribution to string formation comes from the
longitudinal component of the chromoelectric field. In
the case of three quarks occurring at the vertices of an
equilateral triangle, the string has a Y-like shape with a
deep well in the region of the string-junction position.
We consider field distributions in a quark–diquark con-
figuration and in the case of three quarks situated on a
straight line. In addition, we calculate the interaction
potential for three quarks occurring at the vertices of an
equilateral triangle. A minimum in the field distribution
near the string junction hinders the growth of the inter-
action potential at small quark separations.

Some of the results set forth below were quoted
in [13].

The present article is organized as follows. In Sec-
tion 2, we derive analytically the distributions of the
longitudinal and the transverse field component in the

 system and determine the contribution of the func-
tion D1 to the longitudinal field component at various
quark–antiquark distances. In the same section, we also
present distributions of the total field, taking into
account perturbative one-gluon exchange. In Section 3,
we obtain analytically the distribution of the field of

QQ

QQ

QQ

QQ
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three quarks for various configurations of these quarks.
For the case of three quarks residing at the vertices of
an equilateral triangle, we also construct the field distri-
bution with allowance for one-gluon exchange. In Sec-
tion 4, we calculate the potential of quark interaction in
a baryon. In Section 5, we summarize our results and
discuss their possible physical implications.

2. DISTRIBUTIONS IN A MESON

We will calculate field distributions with the aid of
gauge-invariant construction ρµν(x) formed by a prob-
ing plaquette Pµν(x) and the Wilson loop W, which are
related by parallel transporters Φ. In the following, this
construction, which does not possess Lorentz invari-
ance, is referred to as a connected probe (see Fig. 1). By
definition, we have

(1)

where

(2)

(3)

(4)

and (x0) stands for an exponential ordered along the
contour C of the Wilson loop with a discontinuity at the
point x0 = (0, 0, 0, 0). The contour C lies in the (1 4)
plane and represents a rectangle of dimensions R × T
(the quarks are static). The surface S bounded by the
contour has the coordinates x' = ( , , , ),

where 0 ≤  ≤ R,   =  ≡ 0, and –T/2 ≤  ≤ T/2.
The probing plaquette Pµν(x) of dimensions a × a is ori-

ρµν x( )

=  
Wβ

α
x0( )Φγ

β
x0 x,( ) Pµν x( )( )δ

γ Φ+( )α
δ
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Fig. 1. Connected probe for the  system.QQ
ented in the (µ ν) plane. It occurs at the point x = (x1, x2,
x3, x4), where x1 is the coordinate of the probe along the
string direction, x2 is the distance from the probe to the
string axis, and x3 = x4 ≡ 0. In the limit of small
plaquette dimensions a, it follows from the expansion
of expression (3) in terms of a2 that the connected probe
is proportional to the field strength at the point x:

(5)

With the aid of the connected probe, we can therefore
change the components of the color field that is gener-
ated by a quark–antiquark pair and which is not dis-
torted by a probing plaquette in the limit of small a. We
will evaluate the connected probe (1) in the bilocal
approximation of the method of vacuum correlation
functions, where only the contribution of bilocal corre-
lation functions is retained in the expansion of the Wil-
son loop in the field Fµν. Let us express the Wilson loop
in terms of Fµν with the aid of the non-Abelian Stokes
theorem as

(6)

where

(7)

Averaging the Wilson loop over vacuum fields in the
bilocal approximation, we arrive at

(8)

In the bilocal approximation, we have obtained a dou-
ble surface integral. The surface of the connected
probe, Sρ, is formed by the surface of the Wilson loop,
S, and the plaquette surface SP , Sρ = S + SP . Let us
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apply Eq. (8) to Sρ. The double integral in (8) can then
be represented as the sum of three terms,

(9)

In the bilocal-approximation expression for the con-
nected probe, the first term in (9) is canceled by the
double integral in the denominator, while the third term
vanishes in the limit of small a; that is, we have

(10)

where

(11)

(in performing integration over the plaquette surface,
no summation over the orientations of the surface is
implied).

In the following, the mean (color-singlet) field at the
point x will be defined in the bilocal approximation as

(12)

Within the method of vacuum correlation functions, it
is proposed to parametrize bilocal correlation functions
in terms of the scalar form factors D and D1 as (see the
second reference in [8])

(13)

where h ≡ x – x'. In lattice calculations, it was shown
[10] that, at large distances, either form factor has the
form of an exponential with a slope of Tg . 0.2 fm:
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Following [2], we will use the functions D and D1 in the
form (14) at all distances.

The values of (ρ σ) = (1 4) on the right-hand side of
Eq. (12) are determined by the orientation of the Wilson
loop; therefore, the parametrization in (13) reduces to

(15)

(16)

where i, k = 1, 2, 3; it can be shown that relations (15)
and (16) determine, respectively, the chromoelectric
and the chromomagnetic field components, 〈E(x)

and 〈B(x) .

Let us now show that 〈E1(x)  and 〈E2(x)  are
the only nonzero field components. Indeed, we have
D14, 34(h) ≡ 0 in Eq. (15) since h3 ≡ x3 –  ≡ 0; therefore,

〈E3(x)  ≡ 〈F34(x)  ≡ 0 in Eq. (12) as well. Expres-

sion (16) for D14, ik(h) is antisymmetric in h4 ≡ – ;

therefore, we obtain (x') =  upon

the integration in (12) over the measure 〈B(x)  ≡ 0.

The expressions for 〈E1(x)  and 〈E2(x)  are
given by

(17)

(18)

Upon performing integration in (17) and (18), we
arrive at
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(19)

(20)

where K0 and K1 are Macdonald functions.
Presented immediately below are the expressions for

the individual contributions of D and D1 to 〈E1(x) .
We have

(21)
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where D(0) is fitted to the -string tension σ =
0.9 GeV/fm. In the bilocal approximation of the
method of vacuum correlation functions, these two
quantities are related by the equation

(23)

[see the comment after Eq. (49) below].
In the leading order in αs, the perturbative interac-

tion is determined by one-gluon exchange between the
quarks. In just the same way as in the Abelian case
(QED), this leads to the emergence of the Coulomb
field

(24)

where r1 is the end-to-end vector from the quark to the
probe, while r2 is the analogous vector from the anti-

quark to the probe. Since the  system is in the
SU(3)-singlet state, there arises the Casimir operator
CF = trtata = 4/3. The value of e = 4αs/3 = 0.295 was
determined from a fit to the results of lattice calcula-
tions for the  potential in terms of the Cornell
potential VCorn = –e/R + σR (see the review article of
Bali [14] and references therein).

Figures 2a–5a display the distributions 〈E1(x1,

x2)  for the quark–antiquark distances R = Tg , 5Tg ,
10Tg, and 30Tg . It can be seen that, from 5Tg, a string of
characteristic shape is stretched between the quark and
the antiquark. For the same distances, Figs. 2b–5b show
the distributions of the total field with allowance for
perturbative one-gluon exchange,

. (25)

We can see that perturbative one-gluon exchange is
dominant at distances of Tg . 0.2 fm.

Figure 6 depicts the distribution 〈E2(x1, x2)  at
R = Tg and 30Tg . From this figure, it is obvious that E2
makes no contribution to the string. In the region of dis-
tances from the quark and the antiquark about ~Tg, E2
is less than 3% of the field strength in the string,
decreasing fast with increasing distances.

Figure 7 presents x1 = R/2 (transverse) sections of
the distributions plotted in Figs. 2a–5a. The profiles of
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the R = 10Tg and 30Tg strings nearly coincide—for R *
10Tg, the string has an invariable saturated shape. At the
midpoint of the saturated string, the field strength is
E sat = 1.8 GeV/fm. The saturated-string thickness is
δxsat = 2.2Tg [according to the definition of δxsat,

(R/2, δxsat/2) = 1/2(E sat)2].

Figure 8 displays the x2 = 0 (longitudinal) section of
the R = 30Tg string. The field strength grows fast in the
region from –3Tg to 3Tg, reaching a long plateau at E1 =
E sat. The same figure also shows the total field that was
calculated with allowance for perturbative one-gluon
exchange and which decreases monotonically for x1 >
0, reaching a plateau at x1 . 5Tg; this field grows in the
region 25Tg < x1 < 30Tg and has no inflection points
over the entire region 0 < x1 < R.

For R = Tg and 30Tg , Fig. 9 shows the distribution

〈E1(x1, x2)  of the contribution from the function D1

(22). In just the same way as E2,  does not contrib-
ute to the string. In the region of distances from the
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Fig. 2. Distributions (a) 〈E1(x1, x2)  and (b) ( (x1,

x2))2 (in GeV2/fm2). Here and in Figs. 3–9, x1 and x2 are
measured in Tg units. The quark–antiquark distance was
taken to be R = Tg . The quark and antiquark positions are
shown by points.
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quark and the antiquark about Tg,  is less than 3%
of the field strength in the string, decreasing fast with
distance. Two symmetric distributions that correspond
to two integrals in (22) are formed near the quark and
the antiquark. At R = Tg, they are superimposed, with
the result that the total distribution has a maximum at
zero. At R = 30Tg, there arises a zero-field region in
between these distributions, which are antisymmetric
under the reflection x1  –x1 with respect to the

points  = 0 and  = R for the quark and the anti-
quark, respectively.

3. FIELD DISTRIBUTIONS IN BARYONS

Let us first consider three quarks occurring at the
vertices of an equilateral triangle. The contour of the
baryonic Wilson loop W (3Q) consists of the string-junc-
tion trajectory and three contours CΓ, Γ = A, B, C, that
are formed by the quark trajectories (see Fig. 10). The
position of the string junction is determined by the con-
dition requiring that the contour surface be minimal. In
Fig. 10, three petals of the contour converge at angle of
2π/2, forming the Mercedes star. A color-singlet object
is constructed from the loop by using fully antisymmet-
ric tensors as follows:

(26)
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〈E1(R/2, x2) , for R = (dotted curve) Tg, (short dashes)

5Tg, (long dashes) 10Tg, and (solid curve) 30Tg. At dis-
tances R about 10Tg, the string reaches saturation: the string
profile for R = 10Tg is virtually coincident with that for R =
30Tg.
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〈E1(x1, 0) , and distribution ( (x1, 0))2 obtained

with allowance for perturbative one-gluon exchange (solid
and dashed curve, respectively; R = 30Tg).
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With the aid of parallel transporters, the probing
plaquette is connected to the contour CA at the point x0

(  =  = 0,  = R); x2 ≡ 0 for the entire construction
of the connected probe.

In expression (12) for the mean field in the bilocal
approximation of the method of vacuum correlation
functions, we must perform summation over all three
surfaces A, B, and C; that is,

(27)

where ΣΓ stands for the area of the corresponding sur-
face, ΣΓ = R × T. Upon introducing, in the (x1, x3) plane,

the direction vectors nA = (0, 1), nB = ( /2, –1/2), and

nC = (– /2, –1/2), we perform integration in (27) over
the surfaces:

(28)

As a result, we obtain

(29)

In the ensuing calculations, we will take into
account only the contribution of D; as was shown in the
preceding section, this contribution determines the
string shape. From (29), (15), and (14), we then obtain

(30)
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As can be seen from the above expressions, the
baryonic string can be represented as a superposition of

a mesonic string 〈E1(x3, x1)  (21) and the same string
rotated through 2π/3 and 4π/3; that is,

(32)

(33)
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Fig. 9. Contribution of the form factor D1 to 〈E1(x1, x2)

in (GeV/fm) for R = (a) Tg and (b) 30Tg. The quark and anti-
quark positions are shown by points with vertical bars.
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where

(34)

For R = Tg, 5Tg , 10Tg, and 30Tg , Figs. 11a–13a and
14 display the squared-field distributions

(35)

A feature peculiar to all distributions is that there is a
deep well in the region of the string junction. At the
very junction point, the field vanishes since, by virtue
of the symmetry of the three-quark system, there is no
specific direction at this point. Off the well, the bary-
onic string is formed by three mesonic strings going
from the three quarks to the string junction. It should be
noted that, if the mesonic strings are saturated off the
well region, the distribution in the string-junction
region retains symmetry even at different distances
from the quarks to the junction.
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Fig. 11. Distributions (‡) 〈E(x1, x3)  and (b) ( (x1,

x3))2 (in GeV2/fm2) for three quarks occurring at the verti-
ces of an equilateral triangle. The distance from each quark
to the string junction is R = Tg . The positions of the quarks
are denoted by points. Here and in the figures that follow,  x1
and x3 are measured in Tg units.

〉3Q
2

E3Q
tot
The distributions in Figs. 11b–13b and 15 were

obtained by supplementing 〈E(x1, x3)  with the per-
turbative-one-gluon-exchange Coulomb field

(36)

where ri is the distance from the ith quark to the probe.
The factor CF/2 arises upon the contraction of antisym-
metric tensors in the Wilson loop (26); that is,

(37)

where CF = 4/3 is the Casimir operator; CFαs = 0.295
[see the explanation after Eq. (24)]. The total field is
given by

(38)

In Fig. 11b, the total field is at least two orders of
magnitude greater than the nonperturbative field com-
ponent (Fig. 11a) over the entire region considered
here. Figure 12 shows half of the string, that which
issues from the Coulomb peak. In Figs. 13b and 15, the
Coulomb field changes only the shape of the string end,
not affecting the remaining part of the string.

For the strings depicted in Figs. 11a–13a and 14,
Fig. 16 displays the x1 = 0 (longitudinal) sections along
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Fig. 12. As in Fig. 11, but for R = 5Tg, with the quark posi-
tions being shown by points with vertical bars.
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the x3 axis. For R ≥ 5Tg, the shape of the well is inde-
pendent of the interquark distance. At R ≥ 10Tg, the
string is saturated; its longitudinal section grows for 0 ≤
x3 ≤ 6Tg from zero to (E sat)2 and then reaches a plateau.
In the region of negative x3 values, this section grows
over the segment 0 ≤ |x3 | ≤ 1.25Tg from zero to
0.25 GeV2/fm2 and then decreases fast as |x3 | increases
from 1.25Tg to 5Tg. We determine the well radius Rwell
as that which satisfies the equation E 2(0, Rwell) =
(E sat)2/2. From the data in Fig. 16, we then obtain
Rwell = 1.75Tg .

Let us now consider a quark–diquark configuration
in which two quarks are situated quite closely to each
other, but they are both far off the third quark. We
assume that these quarks occur at the vertices of an
isosceles triangle whose base is much smaller than the
lateral sides. The shortest path along which a string is
formed consists of three straight segments connecting
the quarks with the string junction, where they meet at
an angle of 2π/3, forming a Mercedes star. We denote
by RQQ the length of the two short segments and by RQ
the length of the long segment. In expression (29) for
the field distribution, we will now perform integration
with respect to dl ' from 0 to RQ for Γ = A and from 0 to
RQQ for Γ = B, C. In Eqs. (32) and (33), we additionally
introduce indices corresponding to the integration lim-
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Fig. 13. As in Fig. 12, but for R = 10Tg .
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its; that is,

(39)
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2
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Fig. 14. As in Fig. 12a, but for R = 30Tg .

Fig. 15. As in Fig. 12b, but for R = 30Tg .
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Fig. 16. Profile of the QQQ string, 〈E(0, x3) , for quarks

occurring at the vertices of an equilateral triangle at a dis-
tance R for the string junction. The dotted curve, short
dashes, long dashes, and the solid curve represent data cor-
responding to R = Tg , 5Tg , 10Tg, and 30Tg , respectively.
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(40)

Figure 17 shows the distributions 

(41)
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Fig. 17. Distribution 〈E(x1, x3)  (in GeV2/fm2) for a

quark–diquark configuration at two values of the distance
from each quark of the diquark to the string junction: RQQ =
(‡) 0.5Tg and (b) 3Tg. In either case, the distance from the
third quark to string junction is RQ = 30Tg . The quark posi-
tions are shown by points with vertical bars.
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Fig. 18. Squared mesonic-string field at the origin,  [see

Eq. (21)], as a function of the quark–antiquark distance R
measured in Tg units.

E0
2

for RQ = 30Tg and for RQQ = (a) 0.5Tg and (b) 3Tg. We
can see a mesonic string at RQQ = 0.5Tg (compare with
Fig. 5a) and a baryonic string with a well in the string-
junction region at RQQ = 3Tg. It is of interest to investi-
gate the transition from one regime to another. Accord-
ing to (39) and (40), the field strength at zero is deter-
mined by the difference of the strengths of the fields at
zero that are generated by the mesonic strings of
lengths RQ and RQQ. The strength of the field (21) asso-
ciated with a mesonic string of length R at the origin is
given by

(42)

This function grows linearly from zero at small R and
approaches the asymptotic value Easymp = σ in the region

R > 4Tg. The dependence (R) is depicted in Fig. 18.

We define the radius corresponding to the transition
of a baryonic string into a mesonic one, Rbar → mes, as

that which satisfies the condition (Rbar → mes) =

/2. From the data in Fig. 18, we find that
Rbar → mes = 1.5Tg . At RQQ > Rbar → mes, the string of the
quark–diquark configuration has a typical baryonic
shape featuring a well in the string-junction region
(Fig. 17b), while, in the region RQQ < Rbar → mes, it
undergoes a transition into a mesonic string (Fig. 17a).

Let us now consider the case where the quarks lie on
a straight line, the distances between them being R1 and
R2. As in the preceding cases, the position of the string
junction is determined from the condition requiring that
the string length be minimal. For the quark arrange-
ment being considered, the string length is minimal
when the string junction occurs at the same point as the
quark situated between the other two; obviously, this
minimal length is equal to the sum of the distances from
the extreme quarks to the central one. The contour of
the Wilson loop lies in the (1 4) plane. Further proceed-
ing in just the same way as at the beginning of this sec-
tion, we introduce two direction vectors n1 = (–1, 0) and
n2 = (1, 0) in the (1 3) plane and obtain

(43)
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The distributions 〈E1(x1, x3)  are shown in Fig. 19a
for R1 = R2 = 15Tg and in Fig. 19b for R1 = 10Tg and R2
= 20Tg. Since the two mesonic strings that form the dis-
tribution both have saturated profiles, the field is zero at
the string-junction point x1 = 0.

4. POTENTIAL OF QUARK INTERACTION
IN A BARYON

In this section, we consider static quarks occurring
at the vertices of an equilateral triangle at a distance R
from the string-junction point.

Since the Wilson loop is a Green’s function for the
three-quark system, it determines the potential of quark
interaction in a baryon:

(45)

In order to obtain the potential in the bilocal approx-
imation, the surface integrals of bilocal correlation
functions are summed over the surfaces of the contour
of the Wilson loop. Performing integration over the sur-
faces in just the same way as in calculating the mean
field for baryons, we then arrive at

(46)

In the last equality, we have made use of the fact that
the contour of the Wilson loop possesses the symmetry
property

(47)

As in the preceding section, we take into account
only the contribution of the form factor D to the poten-
tial. The result then has the form

(48)
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We will refer to the first exponential in Eq. (48) as a
diagonal one [since it is obtained at a = b = A in (46)]
and to the second exponential as an off-diagonal one
[since it is obtained at a = A and b = B, C in (46)]. Upon
integration, we arrive at

(49)

For D(0), we have used here the normalization condi-
tion (23).

The first two terms on the right-hand side of Eq. (49)
are obtained from the diagonal exponential in (48),
while the third term stems from the off-diagonal expo-
nential. At distances satisfying the condition R @ Tg,
the first term leads to a linear potential with a slope
equal to 3σ, while the second term appears to be a small
correction to it (at large values of 
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12
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/
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for the second term). The third term shows an ascend-
ing behavior, substantially affecting the growth of the
potential up to values close to 
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; at greater values

of 
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, it flattens out, however. This term arises as the
result of the well at the center of the baryonic string. We
note that the third term is absent in the case of a
mesonic string and that the potential of the quark–anti-
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quark interaction at large distances,  = σR, where
σ is expressed in terms of D(0) via relation (23), is one-
third of the first term in (49).

The behavior of the potential V(3Q)(R) is illustrated
in Fig. 20a. In the region 0 ≤ R ≤ 6Tg, the slope of the

tangent σ'(R) ≡ (R) grows from zero to 3σ. Off this

region, the baryonic string can be represented every-
where, apart from the radius value corresponding to the
well, as the sum of three mesonic strings (compare
Figs. 8 and 16). Figure 20b displays the total potential

(R) including perturbative one-gluon exchange
and having the form

(50)

where rij = R  is the distance between the quarks, the
sum is taken over three distances, and CFαs = 0.295
[see comments to Eqs. (24) and (36)]. In the figure, we
can see that the potential has a dip, which is associated
with the occurrence of the well at the center of the bary-
onic string.

Let us now compare our results with the results of
lattice calculations for the baryon potential (see the sur-
vey of Bali [14] and reference therein) where the poten-
tial of the interaction of three quarks situated at the ver-
tices of an equilateral triangle was approximated by the
sum of the Coulomb and a linear potential (that is, by
the Cornell potential) in the region 0.055 ≤ R ≤ 0.71 fm.
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Fig. 20. (‡) Three-quark-interaction potential V (3Q)(R) and

(b) total potential (R) calculated with allowance for

perturbative one-gluon exchange. The dashed line is tangen-
tial to the curve. The quantity R is measured in Tg units.
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This resulted in determining the slope of the linear
potential to be 2.6σ, a value that is equal to that which
we obtained for the slope of the tangent σ' to V(3Q)(R) at
R = 3.5Tg. Thus, a decrease in the potential of quark
interaction because of the well at the center of a bary-
onic string, an effect that was found in our calculations,
is close to a similar effect in lattice calculations.

5. CONCLUSION
With the aid of a connected probe, we have calcu-

lated the distributions of the fields for  and QQQ
systems by using the lowest (Gaussian) field correla-
tion functions. Since the contribution of the Gaussian
correlation function saturates 99% of the static 
potential (see [11, 12]), there is every reason to believe
that higher correlation functions will not change the
pattern of the distributions significantly.

By investigating fields with a connected probe, we
have been able to determine the distribution specified
by the orientation of the probe and to distinguish
between the chromoelectric and chromomagnetic field
components associated with this orientation. We can
see that the main contribution to string formation
comes from the longitudinal component of the chromo-
electric field. The contribution of the transverse compo-
nent is less than 3% of the contribution of the longitu-
dinal component. The transverse and the longitudinal
component are determined by the form factor D and the
form factor D1, respectively. The contribution of the
form factor D1 to the longitudinal component does not
reach 3% of its value. At distances greater than 10Tg ,
the string profile is saturated, ceasing to vary. The
thickness of the saturated string is 2.2Tg . For the ,
our results agree with the results presented in [1–3].
The distribution of the total field also agrees with data
obtained by studying the  field with a disconnected
probe [4, 5].

The pattern of a baryonic string has been obtained
here for the first time. Around the string junction, there
arises a deep well in the distribution of the electric field.
At the very string-junction point, the field vanishes by
virtue of the symmetry of the distribution. The well,
which severely suppresses quark fields near the center
of a heavy baryon, has a radius of 1.75Tg. For the
quark–diquark configuration, we have found that the
radius corresponding to the transition from a baryonic
to a mesonic string is 1.5Tg . For three quarks lying on
a straight line, it has been shown that, at the point where
the central quark resides, the field vanishes at large dis-
tances between the quarks.

Since the same Wilson loop for the QQQ configura-
tion is used for light quarks as well [15], the physical
implications of the well can be observed both in heavy
and in light hadrons. One of the implications is illus-
trated in Fig. 20, where the nonperturbative part of the
potential grows very slowly at small values of R, so that

QQ

QQ

QQ

QQ
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the asymptotic slope is reached only at very large dis-
tances. Therefore, the effective slope for the ground
baryon states may be 10–20% less than that which
complies with the relativistic quark model of the bary-
ons [16] and with recent lattice calculations for the
static QQQ potential [14].

It should be noted that the vanishing of the field at
the QQQ string junction was obtained by analyzing
each component of the field individually with a con-
nected probe. Fluctuations of the field measured by a
disconnected probe can be present at this point.
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Abstract—In the problem of describing heavy-quark production in high-energy hadron collisions, a compari-
son is made between the theoretical status and numerical predictions of two approaches, the traditional parton
model in the leading order (LO) and the kT-factorization approach. Basic assumptions underlying relevant cal-
culations are discussed. A very simple gluon structure function and a fixed coupling constant are chosen for the
calculations in order to highlight distinctions associated with the use of nonidentical matrix elements in these
two approaches. It is shown that, in the kT-factorization approach, formal LO calculations performed with
allowance for the Sudakov form factor include many terms usually treated as next-to-leading-order (NLO) con-
tributions of the traditional parton model (or even contributions next to NLO ones, NNLO). © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of heavy-quark production in high-
energy hadron collision provides a clue to the internal
structure of hadrons.

Quantum chromodynamics (QCD) is the univer-
sally adopted theory of quark and gluon interactions. A
description of hard hadronic processes in terms of QCD
is possible only with the aid of phenomenology that
reduces hadron interactions to interactions between
partons—for example, within the formalism of hadron
structure functions. Within this framework, cross sec-
tions for hard processes in hadron–hadron interactions
are represented as the convolution of parton distribu-
tions in colliding hadrons with the cross section that
describes the elementary partonic subprocess and
which is determined by the square of the matrix ele-
ment computed within perturbative QCD.

A few phenomenological approaches to calculating
cross sections for hard processes have been described
in the literature.

The collinear approximation of QCD, also known as
the parton model, is the most popular and technically
advanced approach. The underlying assumptions of the
model are the following: (i) All interacting particles are
taken to be on their mass shells. (ii) The transverse
momenta of initial partons are equal to zero. As to the
cross sections in question, they are averaged over two
transverse polarizations of initial gluons. The virtuali-
ties of the initial partons are taken into account only
through the parton densities (structure functions) calcu-
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Strada Costiera 11, PO Box 586, I-34014 Trieste, Italy, and
Petersburg Nuclear Physics Institute, Russian Academy of Sci-
ences, Gatchina, 188350 Russia.
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lated in the leading-logarithm approximation (LLA) by
using the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution equation and experimental data.
The cross sections for QCD subprocesses are usually
calculated in the leading or in the next-to-leading order
(LO and NLO) [1–5]. In such calculations, the trans-
verse momenta of initial partons are disregarded in the
matrix elements for the relevant subprocesses. This
approach represents a direct analogy of the
Weizsäcker–Williams approximation in QED. It pro-
vides a satisfactory description of data on the total cross
sections for the production of heavy quarks and on sin-
gle-particle distributions of product heavy quarks
(more precisely, of hadrons containing these quarks).
However, neither data on the azimuthal correlations of
a heavy-quark pair [6] nor the measured distributions
with respect to the total transverse momentum of the
product pair [7]—these are quantities that are controlled
by the transverse momenta of initial partons—are repro-
duced within the approach being discussed [8, 9].

The simplest way to take into account the transverse
momenta of initial partons in order to describe cor-
rectly the correlations of heavy quarks was proposed in
[7]; it consists in shifting at random the final transverse
momenta, but this procedure was not validated theoret-
ically. The shift of the scale ΛQCD (〈kT〉  ~ 300 MeV)
seems quite natural because of the possible effect of
confining forces at large distances, but values of 〈kT〉  ~
1 GeV, or still higher values, should have had an expla-
nation within perturbative QCD. Mean values of such a
shift seem to depend on the primary energy, on the
kinematical domain, and on some other similar factors.
Upon introducing the above shift, it would be rather
difficult to describe simultaneously longitudinal- and
transverse-momentum distributions [10].

Calculations including the transverse momenta of
initial partons can also be implemented within the so-
001 MAIK “Nauka/Interperiodica”
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called kT-factorization approach [11–15] or within the
theory of semihard processes [16–19]. Relevant Feyn-
man diagrams are then evaluated with allowance for the
virtualities and polarizations of initial partons. It is well
known that, at high primary energies, the main contribu-
tion to heavy-quark production comes from gluon–gluon
interaction. In the region of small x, there are no grounds
to disregard the transverse momenta of initial gluons, q1T
and q2T, against the masses and transverse momenta of
heavy quarks. Since the matrix elements that are calcu-
lated for the relevant subprocesses within the approach
being discussed are very complicated in relation to those
within the standard parton model, we treat them only in
the LO approximation. At the same time, a significant
part—maybe, even a major part—of NLO corrections
(and a part of corrections of order next to NLO, which
are further referred to as NNLO corrections) are associ-
ated with the contribution of nonzero transverse
momenta of initial partons, so that such corrections have
already been included in the LO contributions within the
kT-factorization approach. Thus, we can hope that, in the
kT-factorization approach, NLO, NNLO, etc., corrections
will be modest, which will render it more efficient.

Nonintegrated parton distributions are not deter-
mined by the derivatives of the relevant structure func-
tions exclusively [16]—they also involve doubly loga-
rithmic (Sudakov) form factors, as was discussed in detail
elsewhere [20] (see also Section 3 of the present article).
In the Feynman gauge, a doubly logarithmic contribution
emerges from diagrams where a soft gluon (in contrast to
the parton-model diagram in Fig. 1‡) embraces the hard-
interaction block, as is exemplified in Fig. 1b.

As the primary energy is increased, the momentum
fraction x carried by partons involved in a hard interac-
tion decreases on average. When a greater number of
gluons is emitted, a parton acquires a sufficiently high
transverse momentum kT , whence it becomes clear why
large shifts in kT are required in the parton model in
order to describe high-energy data.

Presently, it is obvious that the kT-factorization approach
is self-consistent and that its predictions are in reasonably
good agreement both with experimental data and with the
predictions of the collinear approximation in the cases
where this approximation is applicable. At the same time, a
detailed numerical analysis of hard processes within the kT-
factorization approach has not yet been performed.

The predictions of all phenomenological
approaches greatly depend on the form of quark and
gluon structure functions. Information about these
functions comes primarily from HERA data, but next to
nothing is known about them in the region of very small
x (x < 10–4). At the same time, this region makes a dom-
inant contribution to heavy-quark production at high
energies,2) and the applicability of the existing sets of

2)By way of example, we indicate that, in the case of charm pro-
duction (mc = 1.4 GeV), the product x1x2 for two gluons (the
quantities x1 and x2 are both variables of integration) is equal to

4 × 10–8 at the LHC energy (  = 14 TeV).s
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structure functions at small x is questionable (see the
relevant discussion in [21]).

The main objective of the present study is to com-
pare the results obtained within the standard parton
model and within the kT-factorization approach and to
clarify the reasons behind the distinctions between their
predictions. We begin by recalling the formalism for
either approach and then present numerical results. For
the sake of clarity, we consider very high energies,

including the unrealistic case of  = 1000 TeV, and
represent the structure function for a gluon in a nucleon
in a form as simple as is possible.

2. PARTON-MODEL APPROXIMATION

In the standard parton model, the cross section for the
production of two heavy quarks in a collision of two had-
rons a and b is represented in the factorized form [22]

(1)

where Ga/i(xi, µF) and Gb/j(xj, µF) are the structure func-
tions for partons i and j in the colliding hadrons, µF is
the factorization point of normalization, and (ij 

) is the subprocess cross section computed within
perturbative QCD. This cross section can written as the
sum of the LO and the NLO contribution; that is,

(2)

s

dσ ab QQ( ) xi x jGa/i xi µF,( )dd∫
ij

∑=

× Gb/ j x j µF,( )dσ̂ ij QQ( ),

dσ̂
QQ

dσ̂ ij QQ( )
α s

2 µR( )

mQ
2

----------------- f ij
0( )(=

+ 4πα s µR( ) f ij
1( )

f ij
1( )

µ2
/mQ

2( )ln+[ ] ),

(a) (b)

a a

bb

i qiT = 0 i

Q

QQ

Q

qjT = 0j j

Fig. 1. Heavy-quark production in (a) the leading-order par-
ton model and in (b) the kT-factorization approach that takes
into account the Sudakov form factor T (see also the relevant
discussion in Section 3).
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where µR is the renormalization point of normalization
and where it is assumed that µF = µR = µ. The functions

, , and  depend only on the variable

(3)

Expression (1) corresponds to the processes depicted
schematically in Fig. 1‡. At small x, the main contribu-
tion to the cross section comes from the fusion of initial
gluons, i = j = g.

The uncertainties of a conceptual character that
emerge in numerical results are associated with
unknown values of the normalization points µF and
µR,3) as well with unknown values of the heavy-quark
masses. The values of these normalization points must
be both on the order of the maximal hardness in the pro-
cess, but it remains unclear which values must be used,

mQ , mT = , or . These uncertainties are not
expected to be great, since the dependences on the
parameters are of a logarithmic character. Nonetheless,
the uncertainties at currently available energies are
numerically large because of insufficiently large values
of the c- and the b-quark mass (see, for example, [7]).

The collinear approximation presents yet another
problem in the parton model. The transverse momenta
of initial partons, qiT and qjT , are assumed to be equal to
zero (Fig. 1‡), while their virtualities are taken into
account only through the structure functions—the cross
section (ij  ) is taken to be independent of
the virtualities. Naturally, these assumptions greatly
simplify the calculations.

The commonly accepted NLO parton model in the
collinear approximation provides an accurate descrip-
tion of single-particle distributions and total cross sec-
tions for heavy-quark production. At the same time, its
predictions are in a glaring contradiction with data on
azimuthal correlations and on the distributions with
respect to the total transverse momentum of the product
heavy-quark pair. The reason for this is quite obvious.
Let us consider the fusion of two partons with trans-
verse momenta q1T and q2T into a  pair whose con-
stituents have transverse momenta p1T and p2T . In the
LO parton model, we have q1T + q2T = p1T + p2T = 0, so
that the distribution with respect to the transverse
momentum of the quark pair, ppair = p1T + p2T , coincides
with the distribution with respect to the total transverse

3)The dependence of the results on the normalization points must
vanish upon summation of all orders of perturbation theory.
Sometimes, it is argued that a strong (weak) dependence of the
LO or the NLO results on the normalization points implies a large
(small) contribution of higher order diagrams, but this is generally
incorrect. A strong or a weak dependence of the LO or the NLO
results on the normalization points only implies a similar depen-
dence of higher order contributions, which can be either numeri-
cally large or numerically small.

f ij
0( )

f ij
1( )

f ij
1( )

ρ
4mQ

2

ŝ
----------, ŝ xix jsab.= =

mQ
2

pT
2

+ ŝ

dσ̂ QQ

QQ
momentum of initial partons, appearing to be δ(ppair) in
the LO parton model. Here, the NLO correction is
numerically modest, since the pT single-particle distri-
butions in the LO and in the NLO approximation are
very similar in shape [3, 23]; therefore, the eventual
(NLO + LO) distribution with respect to the total trans-
verse momentum of a heavy-quark pair differs only
slightly from a delta function, but this is at odds with
available data [7–9].

It was shown in [7] that the commonly adopted
NLO parton model is capable of describing data on azi-
muthal correlations and on the distributions with
respect to the transverse momentum of the product
heavy-quark pair if one assumes from the outset that
the colliding partons initially possess a comparatively

high transverse momentum  of about 1 GeV. Sup-
pose that, in the collinear approximation, the total
transverse momentum of the pair in the NLO is
pT( ). For each event, the pair is shifted in the trans-
verse direction with the result that its transverse
momentum becomes pT( ) + kT(1) + kT(2). The vec-
tors kT(1) and kT(2), which are the transverse momenta
of the initial partons, are chosen at random, their abso-
lute values being distributed as

(4)

There is, however, no theoretical substantiation of this
method.

A general phenomenological expression describing
the production of a heavy-quark pair can be represented
as4) the convolution of the initial transverse-momen-
tum distributions I(q1T) and I(q2T) with the squared
modulus of the matrix element; that is,

(5)

There are two possibilities here:
(i) The important values of the transverse momenta

of initial partons are much less than the transverse
momenta of the product heavy quarks, qiT ! piT .

(ii) All the transverse momenta are on the same
order of magnitude, qiT ~ piT .

In the first case, both initial distributions I(qiT) can
be replaced by δ(qiT) with the result that expression (5)
reduces to that in the collinear approximation; that is,

(6)

which is in perfect analogy with the Weizsäcker–Will-
iams approximation in QED.

4)All factors immaterial for the present discussion are omitted here
for the sake of simplicity.

kT
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QQ

QQ

1
N
---- dN

dkT
2

--------- 1

kT
2〈 〉

----------- kT
2
/ kT

2〈 〉–( ).exp=

σQCD QQ( ) d
2
q1Td

2
q2T I q1T( )I q2T( )∫∝

× M q1T q2T p1T p2T, , ,( ) 2
.

σcoll QQ( ) M 0 0 p1T p2T, , ,( ) 2
,∝
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In the second case, there are no grounds to expect a
priori that the Weizsäcker–Williams approximation
would yield accurate results; nevertheless, these results
are quite reasonable in some cases.

The  method [7], which was discussed above,
takes effectively into account the transverse momenta
of the initial partons. It relies on an expression that can
be symbolically written in the form

(7)

and which differs from the general expression (5) in

that the values 〈 〉  in (4) must be different in different
processes (for example, when the product heavy quarks
have comparatively low pT and when they have very
high pT), since the matrix element does not involve the
transverse momenta qiT. The reason is that, in the gen-

eral expression (5), I(qiT) decreases at high  as a
power-law function with a comparatively small expo-
nent (see the next section)—that is, at a comparatively

low rate—whence it follows that the  dependence of
the matrix element proves to be more important.

3. HEAVY-QUARK PRODUCTION
IN THE kT-FACTORIZATION APPROACH

Let us now consider an alternative approach, that in
which the transverse momenta of initial gluons in the
low-x region arise owing to the diffusion of transverse
parton momenta in the evolution process. This diffu-
sion is described by the function ϕ(x, q2), which gov-
erns the distribution of gluons characterized by a given
value of the hadron-longitudinal-momentum fraction x
and a given value of the virtuality q2. In the low-x
region, the function ϕ(x, q2) is approximately given by
the derivative of the conventional gluon structure func-
tion. Generally, it is a function of three variables, x, qT,
and q2, but the dependence on qT at a fixed value of q2

is rather weak. This is because, for x ! 1,  ≈ –q2 in
the LLA, in accordance with the q2 dependence of the
structure functions. Because scaling is violated in
QCD, ϕ(x, q2) for realistic structure functions increases
with decreasing x, so that ever larger values of qT

become operative in numerical calculations.
A precise result for the qT distribution of gluons can

in principle be found from the evolution equation,
which is now nonlinear, in contrast to what occurs in
the parton model, owing to parton interactions at low x.
The result of the LO calculation of qT distributions of
gluons that was performed in [24] on the basis of Bal-
itsky–Fadin–Kuraev–Lipatov (BFKL) theory differs
from our ϕ(x, q2) by 10 to 15%.

Let us now consider expression (5) with a matrix
element that takes into account the polarizations of glu-
ons and their virtualities. Since the form of this matrix

kT
kick

σkick QQ( ) I q1T( )I q2T( ) M 0 0 p1T p2T, , ,( ) 2⊗∝

kT
2

qiT
2

qiT
2

qT
2
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element is much more complicated than that in the par-
ton model, we will consider only the LO contribution to
the subprocess gg   (see Fig. 2); at low x, this
contribution saturates a dominant part of the cross sec-
tion. The upper and the lower ladder block represent the

two-dimensional gluon distributions ϕ(x1, ) and

ϕ(x2, ). Within the standard DGLAP scheme, these
distributions at low x are defined as [16]

(8)

This definition of ϕ(x, q2) makes it possible to consider
correctly effects induced by gluon virtualities.

Strictly speaking, the doubly logarithmic Sudakov
form factor must be included in the quantity differenti-
ated in (8) [20]. It was shown in [20] that the LLA
expression for the probability of finding a parton with a
given longitudinal-momentum fraction x and a given
transverse momentum kt has the form

(9)

where a = g, q; T is the doubly logarithmic Sudakov
form factor; and

(10)

The first factor in (9) is obvious. It corresponds to
the real contribution of radiation to the DGLAP evolu-
tion. When the normalization point is changed from µ2

to µ2 + δµ2, a new parton is produced with a  value
between µ2 and µ2 + δµ2. In the limit ln(1/x)  ∞
(when Ta  1), we then have

(11)
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Fig. 2. (a–c) Leading-order QCD diagrams for heavy-quark
production in proton–proton (proton–antiproton) collisions
via gluon–gluon interactions and (d) diagram formally vio-
lating factorization, which is restored to a logarithmic accu-
racy.
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The factor

(12)

[C = CF = (  – 1)/2Nc for quarks and C = C = CA = Nc

for gluons] takes into account the contributions of vir-
tual loops in the DGLAP scheme, which are necessary
both for a normalization of the parton wave functions
and for fulfillment of sum rules (that is, for conserva-
tion of the momentum, flavors, and so on). Here, the
quantity T determines the probability that extra partons
(gluons) with transverse momenta  ⊂  [kt , µ] are not
emitted.

We note that the doubly logarithmic contributions
from real and virtual soft gluons are canceled in the
DGLAP equation written for the integrated parton dis-
tributions (that is, all kt ≤ µ are included). The emission
of soft gluons with a momentum faction (1 – z)  0
does not change the x distributions of parent partons.
Owing to this, the contributions of virtual and real radi-
ations generated by a 1/(1 – z) singularity of the func-
tion P(z) indeed cancel each other.

A totally different pattern is observed if the parton
distribution is not integrated. In this case, the emission
of soft gluons (those for which  > kt) changes the
transverse momentum of the parent (t-channel) parton,
and this is taken into account by including the factor T
in expression (9). As a result, the nonintegrated distri-

bution fa(x, ) remains positive even at comparatively
large values of x in the region where the integrated par-
ton density a(x, µ2) decreases with µ2 owing to the vir-
tual contribution to the DGLAP evolution equation.

Unfortunately, the factor T is known only to a dou-
bly logarithmic accuracy. When kt > µ, there are no
doubly logarithmic contributions; therefore, we set T =
1 in this region.

In terms of Feynman diagrams in the axial (physi-
cal) gauge, the factor T arises from self-energy contri-
butions. In the Feynman gauge, these contributions do
not feature a doubly logarithmic enhancement. In this
case, doubly logarithmic contributions arise owing to
diagrams in which a gluon embraces the hard block (as
this occurs, for example, in Fig. 1b). Any diagram
where a soft gluon is emitted from one of the external
lines of the hard block (for example, the gluon q2 in
Fig. 2) and where this gluon is absorbed by the other
external line of this block involves the same diloga-
rithm, but it differs from other ones by a color factor.
The sum of the color factors for all three diagrams (a
soft gluon can be absorbed by a heavy quark, an anti-
quark, or a gluon q1) is equal to the color factor of the
self-energy diagram. It follows that the distribution in
(9) is obtained in the Feynman gauge as well.

T C
α s q

2( )
2π

--------------- µ2

q
2

----- 
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2
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q
2
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kt
2
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exp=
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2

qt'

qt'

kt
2

Thus, the true probability of finding a parton carry-
ing the longitudinal-momentum fraction x and the

transverse momentum  = –k2 is given by (9) (see
[20]). With the aim of performing a more consistent
analysis, we postpone the use of the more precise
expression (9) to the end of Section 4 and begin by con-
sidering expression (8) without taking into account the
doubly logarithmic contribution T .5) 

In the following, we will make use of Sudakov’s
expansions for the quark momenta p1 and p2 in terms of

colliding-hadron momenta pA and pB (  =  . 0)
and the transverse momenta p1, 2T:

(13)

The differential cross section for heavy-quark pro-
duction in hadron collisions has the form6) 

(14)

where s = 2pA pB; q1, 2T are the gluon transverse
momenta;  are the quark rapidities in the hadron–
hadron c.m. frame;

(15)

and |MQQ |2 is the square of the matrix element for the
production of a heavy-quark pair in a gluon–gluon col-
lision.

In LLA kinematics, we have

(16)

whence it follows that

(17)

(More precisely,  = – /(1 – y) and  = – /(1 –
x), but we consider the case where x, y ! 1.)

The matrix element MQQ is calculated in the Born
approximation of QCD without resort to the conven-
tional simplifications of the parton model. In the axial

5)A different method for taking into account the qT  distribution of
gluons was proposed in [26] on the basis of the Fourier transform
of structure functions.

6)The argument αs is taken to be equal to the gluon virtuality, and
this is very close to what occurs in the Brodsky–Lepage–Macken-
zie scheme [27] (see also [19]).
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gauge ( Aµ = 0), the gluon propagator has the form
Dµν(q) = dµν(q)/q2, where

(18)

For t-channel gluons, the main contribution to the
cross section for heavy-quark production comes from
the so-called nonsense polarizations. It is convenient to
single out these polarizations by decomposing the unit
tensor in the numerator of the gluon propagator into the
longitudinal and the transverse component as

Since the sum of the diagrams in Figs. 2‡–2c is gauge-

invariant, we have q1µ  = 0, where  stands for
the amplitude that describes the interaction between the
gluon q1 and the hadron with the momentum pA or pB

and which is represented by the upper (A) or the lower
(B) parts of the diagrams in Figs. 2‡–2c. By virtue of
this, there remains only the unit tensor in the numerator

of the t-channel propagator; considering that ,

, and the transverse structures are suppressed by
powers s, we obtain

(19)

By using expression (16) for the momentum q1, we
arrive at

which leads to the expression

(20)

or, alternatively, to

(21)

if the same operation is implemented for the vector
pB.7) It is possible to use either expression for dµν, but,
in the case of expression (20), all possibilities of gluon
emission are taken into account only upon redefining
the gluon vertex as (see [28])

(22)

7)In connection with this transformation, we can say that the matrix
elements in the kT -factorization approach are gauge-invariant. As
to the polarization vectors of the initial gluons q1 and q2, they are

fixed as – /y and – /x, respectively, instead of being arbi-

trary—for details, the reader is referred to [16].
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As a result, colliding gluons can be considered as those
that are aligned in such a way that their polarization
vectors are directed along the transverse momenta. It
follows that there must arise nontrivial azimuthal corre-
lations between the transverse momenta of the product
heavy quarks.

Formally, gauge invariance can be lost in dealing
with off-mass-shell gluons. By way of example, we
indicate that, in the covariant Feynman gauge, there are
diagrams that are analogous to those that feature
bremsstrahlung from the initial or from the final quark
line (as is shown in Fig. 2d) and which can contribute
to the rapidity region of the central plateau. But in fact,
this does not occur. Within the accuracy of the theory of
semihard processes, the three-gluon vertex in (22)
effectively includes all leading logarithmic contribu-
tions of the type in Fig. 2d if all contributions of the

form (lnq2)n(ln(1/x))m, with n + m ≥ k, are retained
in the function ϕ(x, q2) [18, 25]. For example, the upper
part of the diagram in Fig. 2d corresponds, in terms of
the BFKL equation, to the Reggeization of the t-chan-
nel gluon. Thus, we conclude that, apart from the small
nonlogarithmic correction of order α, the eventual
expression is gauge-invariant.8) 

Although the situation described above seems abso-
lutely dissimilar to that in the parton model, there is a
limit [28] where the formulas obtained in the kT-factor-
ization approach coincide with the corresponding for-
mulas of the parton model. This occurs if the quark
transverse momenta p1, 2T are much higher than the ini-
tial-gluon transverse momenta q1, 2T .

4. RESULTS OF NUMERICAL CALCULATIONS

Expression (14) makes it possible to calculate both
single-particle and pair distributions of product heavy
quarks. In order to illustrate the distinctions between
the present approach and the approach that relies on the
standard parton model, we will consider above all the
results obtained by calculating the production of charm

quarks (mc = 1.4 GeV [29, 30]) with high pT at  = 1,
10, and 103 TeV and the same value

(23)

At the above three energy values, this corresponds to
pT = 10, 100, and 104 GeV.

We will use the normalization points µF = mT =

 and µR = mc—that is, a fixed coupling con-
stant at Nf = 3 and Λ = 248 MeV.

8)Taking the gluon polarization vector in the form – /y, we com-

pletely eliminate leading logarithmic contributions arising from
the diagram in Fig. 2d.
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In the case of kT factorization, there arises the prob-
lem of taking into account the infrared region, since the

functions ϕ(x, ) and ϕ(y, ) are unknown at small

values of . Moreover, it can be shown for all realis-
tic gluon structure functions that ϕ(x, q2) is positive at
small x and negative at large x. The boundary between
these regions, where ϕ(x, q2) = 0, depends on q2; there-
fore, their relative contributions are determined by the
characteristic hardness of the process—for example, by
the quark transverse momentum pT .

In order to avoid, at the first stage, additional prob-
lems associated with the infrared region, we present the
results of our numerical calculations within the kT-fac-
torization approach and within the leading-order parton
model, using the strongly simplified gluon distribution

(24)

for q2 >  and setting xG(x, q2) = 0 for q2 <  at

 = 1 GeV2.

The calculation of the charm-production cross sec-
tion on the basis of expressions (1) and (8), on one
hand, and expression (14), on the other hand, shows
that, at xT = 0.02, the dσ/dxT value as obtained in the
kT-factorization approach is four to five times as large
as that within the leading-order parton model. This dis-
tinction should not be taken to be overly great: as was
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Fig. 3. Differential cross section dσ/dxT for charm produc-
tion in hadron collisions at xT = 0.02 versus the upper limit
of the integral in Eq. (14): (points) results obtained within
the kT-factorization approach, (dashed lines) results pro-
duced by the standard parton model, (solid curves) values of
the expression on the right-hand side of Eq. (26).
discussed above, a significant part of the NLO and
NNLO corrections to the leading-order parton model is
contained in the leading order of the kT-factorization
approach, and the sum of leading-order and next-to-
leading order contributions in the parton model is two
to three times as great as the leading-order contribution
alone [31].

In order to single out the most important region of
the variables q1, 2T in expression (14) and the kinemati-
cal region that is predominantly responsible for devia-
tions from the parton model, the results of the calcula-
tion performed on the basis of the kT-factorization
approach with the constraint | |q1, 2T | ≤ qmax are dis-
played in Fig. 3 versus qTmax . In this calculation, the

fixed coupling constant αs( ) was used in (14)

instead of αs( ). The dashes in Fig. 3 represent the
predictions of the standard leading-order parton model

with the normalization points µF =  and µR =
mc . It can be seen that, for qmax ≥ pT , the predictions of
the kT-factorization approach are in excess of the results
produced by the leading-order parton model.

Let us test the statement that, in the case where
transverse momenta of the product quarks, p1, 2T , con-
siderably exceed the momenta of initial gluons, q1, 2T,
the predictions of the kT-factorization approach coin-
cide with the corresponding predictions of the leading-
order parton model [28].9) If the q1, 2T dependence is
disregarded in the matrix element everywhere, with the
exception of the vertices, this matrix element will
indeed coincide with that in the leading order of the
parton model. On the other hand, we can find from (8)
that [33]

(25)

if expression (14) is taken under the conditions |q1, 2T| ≤
qmax, and the eventual result will be proportional to

xG(x, ) · yG(y, ). At the same time, the result

in the parton model is proportional to xG(x, ) · yG(y,

) with µF = . A comparison must be drawn
at identical values of the structure functions; therefore,
it can be expected that, upon multiplication by an
appropriate factor, the result in the parton model will be

9)We note that, in contrast to the statement in [32], the Jacobian of
the transition from the variables x1 and x2 to the rapidities y1 and
y2 is included in the matrix element; accordingly, our expression
in the limit q1, 2T ! p1, 2T exactly reproduces the result obtained
in the leading-order parton model.
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coincident with the results of our calculations with the
gluon distributions in (24) for pT @ mc and |q1, 2T | ≤ qmax:

(26)

Even if qmax is only slightly less (at the highest ener-
gies) than pT , the expression on the right-hand side of
Eq. (26) take values, shown by solid curves in Fig. 3,
that are in good agreement with the results obtained
within the kT-factorization approach and represented by
open symbols. The same cross sections dσ/dxT as in
Fig. 3 that were deduced within the kT-factorization
approach and which were differentiated with respect to
lnqTmax are displayed in Fig. 4. At higher energies, we
can clearly see a logarithmic growth with qmax as long
as qmax ~ pT . In this region, there is a narrow maximum
saturating 70 to 80% of the cross section dσ/dxT inte-
grated over the entire q1, 2T region.

The physical origin of this maximum is quite obvi-
ous. In the t- and u-channel diagrams in Figs. 2‡ and 2b,
there are two kinematical regions that contribute signif-
icantly to dσ/dxT at high energies and transverse
momenta of a product heavy quark. One of these, cor-
responds to the kinematics of the standard parton
model, where the transverse momenta of both initial
gluons, q1, 2T , are sufficiently small in relation to p1, 2T

(see Fig. 5‡). The other large contribution comes from
the region where, for example, q1T ~ p1T, while q2T and
p2T are comparatively small (see Fig. 5b). In this case,
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Fig. 4. Differential cross section dσ/dxT dlnqTmax for charm
production in hadron collisions at xT = 0.02 versus the upper
limit of the integral in Eq. (14) according to the calculation
in the kT-factorization approach.
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the quark propagator 1/((  – ) – mQ) = 1/((  –

) – mQ) is close to the mass shell, whereby there arise
narrow peaks seen in Fig. 4. That the cross sections for
such processes are generally small is explained by a
large virtuality in the gluon propagator in Fig. 5b, and
this is the reason why they prove to be on the same
order of magnitude as the cross sections for the pro-
cesses illustrated in Fig. 5‡ (in fact, the cross sections
for the processes in Fig. 5b are somewhat larger
because, in the case of the diagrams in Fig. 5‡, the fer-
mion propagator suppresses the contribution from the
region where the difference of the rapidities of the
product heavy quarks is large).

Since the diagram in Fig. 5b involves the exchange
of a t-channel vector gluon, it represents one of the
most important contributions in the NLO parton model
at high energies [1]. For this and for combinatorial rea-
sons and because of the interference between different
terms, the integrated contribution of the peak to the
cross section dσ/dxT is considerably greater than the
contribution of the leading-order parton model. The

p̂1 q̂1 q̂2

p̂2

(a) (b)
1

2

1 2
1

1
1

2 2
2

1

(c)
1

2
2

1 2
2

22

1

Fig. 5. Diagrams making significant contributions to single-
particle distributions of heavy quarks having high transverse
momenta (parametrically high transverse momenta flow
along lines 2 , the directions of these momenta being indi-
cated by arrows; relatively low transverse momenta flow
along lines 1): (a) situation typical of the leading-order par-
ton model; (b) case characteristic of the NLO contribution
in the parton model (the high transverse momentum pT of
the quark is compensated by the hard-gluon momentum,
and the fermion propagator is close to the mass shell); and
(c) numerically modest contribution that arises when the
high transverse momenta of the two heavy quarks are com-
pensated by the momenta of two hard gluons, in which case
the fermion propagator is close to the mass shell.
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ratios of the total cross sections calculated for the pro-
duction of heavy-quark pairs within the above two
approaches, Rtot, and the ratios R(xT) of the quantities
dσ/dxT calculated analogously at xT = 0.02 and inte-
grated with respect to rapidities are quoted in the table.

We can see that the relative contributions of the
peaks being discussed first increase with energy
because of the growth of the phase space, but they reach

saturation at  ~ 10 TeV. Further, the relative contri-
bution of the leading-order parton model grows loga-
rithmically with pT and comes to be dominant at
extremely high energies and transverse momenta.

The data presented in Fig. 6 confirm the aforesaid.
Here, we again display the same results in the leading-
order parton model as in Fig. 3 and the results of the
calculations performed within the kT-factorization
approach under the condition |q1, 2T | ≤ qmax . The predic-
tions of the kT-factorization approach that were
obtained for all values of q1T under the condition |q2T | ≤
qmax are shown by asterisks versus qTmax . The last result

s

Ratio of the differential cross sections computed for  pro-
duction in the kT-factorization approach and in the leading-
order parton model

, TeV 0.3 1 10 100 1000

Rtot 4.0 4.0 4.0 3.9 3.9

R (xT = 0.02) 3.4 4.5 5.5 5.4 5.2

cc

s

10–6

s = 106 GeV

|qT|max, GeV

dσ/dxT, mb

10–7

10–8

10–9

100 102 104

Fig. 6. As in Fig. 3 for values represented by the open circles
and the dashed line. The asterisks correspond to the dσ/dxT
values calculated for the case where only the integration
with respect to q2T is bounded from above by qmax .
appears to be in excess of the results in the leading-
order parton model even at not overly high values of
q2T , since the contributions of the above peaks have
already been taken into account, at least partly, in per-
forming integration with respect to q1T .

The contributions of the diagrams that involve a few
propagators with a large virtuality are relatively small.
For example, a calculation of the cross section dσ/dxT

at  = 10 TeV and xT = 0.02 under the conditions
|q1, 2T | ≥ pT/2 (see Fig. 5c) yields only 2% of the total
dσ/dxT value at xT = 0.02.

In our calculations, the important values of q1, 2T

increase with increasing transverse momentum pT of
the recorded charmed quark and become q1, 2T ~ pT at

sufficiently high primary energies. In terms of the 

method, this means that 〈 〉  must also grow.

The calculated distributions dσ/dpT are displayed in
Fig. 7. The dashed curves (the lowest ones at each
energy value) were computed within the leading-order
parton model. The solid curves were plotted on the
basis of the results deduced by using the kT-factoriza-
tion approach with the gluon distribution ϕ(x, q2) (8).
The dash-dotted curves represent results that also
emerged from the application of the kT-factorization
approach, but which take into account the doubly loga-
rithmic form factor T (12) at various values of µ2 and
which were obtained with aid of expressions (9) and (10)
(see the relevant discussion at the end of Section 3). We
emphasize once again that the factor T allows for the
total contribution of the diagrams that, in the Feynman
gauge, involve gluon lines embracing the hard-interac-
tion block, as is shown in Fig. 1b. In the axial gauge, the
relevant doubly logarithmic contribution comes from
diagrams associated with the parton (gluon) self-
energy—that is, with the term proportional to δ(1 – z)
in the DGLAP evolution equation. The factor T repro-
duces the majority of virtual NLO corrections to the
standard leading-order parton model; as can be seen
from Fig. 7, this factor reduces the calculated cross sec-
tions for heavy-quark production. It suppresses the con-

tributions from small parton virtualities (  !  =

 + ) in expression (14), concurrently increasing

[owing to the derivative ∂T/∂  in expression (9) for fa]

the contribution from the region where  is com-

mensurate with  (in fact, a few times smaller than
that).

It should be recalled that, within the kT-factorization
approach, there have arisen no problems so far that are
associated with the choice of the normalization points
since the integral in (14) has been calculated over all

values of the parton virtualities  and since the
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dependence of the matrix element M(q1T, q2T, p1T, p2T)
on q1, 2T ensured convergence, automatically fixing the
normalization point µF.

Upon the inclusion of the factor T, the problem of
choosing the normalization point arises anew. In
Eq. (12), which was derived in the leading order, the
normalization point µ2 was not defined. Reasonable

values of µ2 are expected somewhere between  and

 =  = xys – (q1T + q2T)2. As can be seen from
Fig. 7, the distinctions between the relevant numerical
results are very small.

Figure 8 displays the rapidity distributions of prod-
uct c quarks. The dashed curves again represent the
results that arise in the leading-order parton model. The
dotted curves correspond to the results of the calcula-

mT
2

ŝ MQQ

2

101

10–1

10–3

10–5

dσ/dpT, mb/GeV

100 20 30 40
pT, GeV

Fig. 7. Transverse-momentum distributions of c quarks pro-
duced at various primary energies. The different sets of

curves correspond (from top to bottom) to  = 1000, 10,
and 1 TeV (the results for the first and the second energy
value are multiplied by 100 and 10, respectively). The
dashed curves represent the results obtained in the leading
order of the parton model. All other curves were calculated
within the kT-factorization approach: (solid curves) results
of the calculations employing the gluon distributions in the
form (8), (thin dash-dotted curves) results of the calcula-
tions employing expressions (9) and (10) and taking into
account the doubly logarithmic form factor T (12) at µ2 set
to /4 in (12), and (thick dash-dotted curves) results of the
calculations employing expressions (9) and (10) and taking
into account the doubly logarithmic form factor T (12) at µ2

set to  in (12).

s

ŝ

mT
2
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tions performed within the parton model with allow-

ance for NLO corrections at  =  = µ2 = 8  in (1)
and (2). It should be noted that, at primary energies s so
high that significant values of hard-interaction energy

 = x1x2s are sufficiently high—that is, ρ ! 1 in (3)—
the NLO corrections grow considerably and greatly
depend on the choice of µ2. Let us dwell on this point
at some length. As was shown in [1], the leading-order

contribution—that is, the quantity  in Eq. (2)—
tends to zero when ρ  0, whereas the contributions

 and  take nonzero values: for ρ  0, we have

  0.1 and   –0.04. Thus, the NLO con-

tribution, which is proportional to ( (ρ) +

(ρ))ln(µ2/ ), becomes dominant at small values

of ρ and changes sign at µ2 ~ 12 . For µ2 > 12 , the
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2
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Fig. 8. Rapidity distributions of c quarks produced at vari-
ous primary energies. The different sets of curves corre-

spond (from top to bottom) to  = 1000, 10, and 1 TeV
(the results for the first and the second energy value are mul-
tiplied by 100 and 10, respectively). The dashed curves and
points represent the results obtained in, respectively, the
leading and the next-to-leading order of the parton model.
All other curves were calculated within the kT-factorization
approach: (solid curves) results of the calculations employ-
ing the gluon distributions in the form (8) and (dash-dotted
curves) results of the calculations employing expressions
(9) and (10) and taking into account the doubly logarithmic

form factor T (12) at µ2 set to  in (12).
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cross section σLO + NLO can prove to be negative. In

Fig. 8, we have chosen µ2 = 8 , which corresponds to
reasonable values of the energy of two heavy quarks,

 ≥ 4(  + ) ≈ 8 , and leads to K values close to
those used in describing experimental data. In this case,
the NLO correction is positive (K ≈ 2 to 3) and grows
slowly with increasing energy.

The solid curve in Fig. 8 represents the predictions
of the kT-factorization approach employing the distribu-
tion function ϕ(x, q2) (8), while the dash-dotted curve
corresponds to the calculation that was performed
within the same conceptual framework, but which takes
into account the doubly logarithmic form factor T (12)

with T( ) and invokes expressions (9) and (10). It can
be seen that the inclusion of the form factor T reduces
the cross sections obtained in the kT-factorization
approach by a factor of about 1.5 and, in the energy-

range  ~ 103–104 GeV, yields cross-section values
that are very close to those computed within the parton
model including leading- and next-to-leading order
corrections (dotted curves). With increasing energy, the
distinctions between these results increase somewhat.

5. CONCLUSION

A comparison of the predictions obtained within the
standard leading-order parton model and within the kT-
factorization approach has been drawn for heavy-quark
production in hadronic processes. In order to reveal, in
this comparison, conceptual distinctions between the
two approaches in a pure form not masked by the
details of parton distributions, we have deliberately
chosen the simplest parametrization (24) for the gluon
structure function.

It has been shown that, within the kT-factorization
approach, the contribution from the region where there

is a strong qT ordering (q1, 2T ! mT = ) coin-
cides with the predictions of the leading-order parton
model. In addition to this contribution, however, there
are numerically large contributions in the kT-factoriza-
tion approach that are associated with the region q1, 2T ≥
mT . Kinematically, these contributions correspond to
events in which the large transverse momentum of the
heavy quark Q is compensated by the momentum of the
nearest gluon rather than by the momentum of the anti-
quark .

In terms of the parton model with a fixed number of
flavors (that is, under the assumption that no heavy
quarks are involved in the evolution processes), such
configurations arise in the NLO (or even in the NNLO
if q1T and q2T are both not less than mT). Indeed, it was
indicated in [1] that nearly 80% of the total NLO cross
section is saturated by events in which the transverse
momentum of a heavy quark is compensated by the
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2
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2

mQ
2

mT
2

s

mQ
2

pT
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+
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nearest gluon jet. Thus, the large values of the NLO
contributions, especially those at high pT, are due to the
small virtualities of the t- or u-channel quarks in the qT

region around pT, in which case the singularities of the
quark propagators 1/((  – ) – mQ) begin to manifest
themselves in the hard QCD matrix element M(q1T, q2T,
p1T, p2T).

The inclusion of the doubly logarithmic Sudakov
form factor T in the definition of the unintegrated par-
ton density (9) amounts to taking into account a consid-
erable part of NLO virtual loops, which appear to be
corrections to the results in the leading-order parton
model. Hence, the leading-order results in the kT-factor-
ization approach contain a major part of the contribu-
tions that play the role of NLO or even NNLO correc-
tions in the standard parton model. This gives sufficient
ground to believe that higher αs corrections in the kT-
factorization approach will be modest.

That a nonzero transverse momentum of the 
system (p1T + p2T = q1T + q2T) arises quite naturally
within kT factorization is another appealing feature of
this approach. Typical values of this transverse momen-
tum depend on the form of the parton structure func-
tion. They become higher with increasing primary
energy (that is, decreasing typical values of x and y for
initial partons), as well as with increasing transverse
momenta of the product heavy quarks. Owing to this,
one can in principle describe nontrivial azimuthal cor-
relations in the product pairs without phenomenologi-
cally introducing high transverse momenta for the par-
tons.

A more detailed treatment of heavy-quark produc-
tion in hadron collisions, including the description of
correlations between the product heavy quarks, within
the kT-factorization approach employing realistic struc-
ture functions will be given in a separate publication.
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Abstract—The thermodynamic potential (free energy) for quarks and gluons in (2 + 1)-dimensional spacetime
is calculated in the one-loop approximation at finite temperatures against the background of a constant uniform
color magnetic field H and a constant uniform A0 condensate. The problem of interpreting the tachyon mode in
the gluon energy spectrum is discussed. The question of whether the free energy may develop a minimum at
nonzero values of H and A0 is analyzed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of low-dimensional quantum-field
theories [1–3] is of interest because such models are
tightly related to their (3 + 1)-dimensional analogs [4–
6] and because they provide a clue to some phenomena
of real nature. For example, the dimensional-reduction
method developed in [7] makes it possible to study
quark–gluon plasma in (3 + 1)-dimensional QCD
above the critical temperature of the confinement–
deconfinement phase transition. The single-particle
model of two-dimensional electrons interacting with an
external electromagnetic field is used to explain the
quantum Hall effect [8, 9].

In recent years, a large number of studies have been
devoted to an analysis of the effective potential against
the background of a condensate and at high tempera-
tures, either in the one-loop approximation [10–15] or
with allowance for multiloop contributions [16–18]. In
this problem, calculations in higher orders of a loop
expansion may lead to results dependent on the gauge-
fixing method [19]. The assumption that there is an A0
condensate in QCD (see, for example, [10]) has impor-
tant physical implications, such as a spontaneous
breakdown of global gauge symmetry and elimination
of the imaginary part in the effective potential and of
the infrared divergence.

This article is organized as follows. In Section 2, we
present basic formulas that are necessary for describing
quantum-field systems at finite temperatures and estab-
lish the relation between the effective potential and the
energy spectrum of single-particle field excitations. In
Section 3, we calculate the free-energy density for the
gluon fields within (2 + 1)-dimensional QCD. The pres-
ence of a tachyon mode in the gluon energy spectrum
results in a nonanalytic dependence of the thermody-
namic potential on the condensate fields. A method is
proposed here for eliminating this nonanalyticity. It is
shown that the free energy has a nontrivial minimum
and that, below the critical temperature, there exist a
1063-7788/01/6401- $21.00 © 20132
confining and a deconfining phase. In Section 4, we cal-
culated the free-energy density for the quark fields and
demonstrate that, in contrast to what is observed for
gluons, it attains a minimum in the absence of conden-
sate fields.

2. ENERGY SPECTRUM OF EXCITATIONS AND 
FREE ENERGY

Let us consider the QCD(2 + 1) model involving a

gluon gauge field  in the adjoint representation of

the SU(2) color group and represent the potential  as

the sum  =  + , where  is the background

potential and  describes quantum fluctuations of glu-
ons. In Euclidean spacetime, the Lagrangian of the
gauge field in the Lorentz gauge can be written as

(1)

where  = δab∂µ – gfabc  is the covariant derivative,

χ and  are ghost fields, and ( )ab = . In
going over to Euclidean space, we keep the index 0 for
the time components of vectors; thus, we have x0 = it,
and µ, ν = 0, 1, 2. In the three-dimensional representa-
tion, one can choose, by way of example, the following
representation for the Clifford algebra:

(2)

where σ1, σ2, and σ3 are Pauli matrices. The quark
Lagrangian then takes the form

(3)

Aµ
a

Aµ
a

Aµ
a

Aµ
a

aµ
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b( )
2
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where Nf is the number of flavors and the matrices λa
are the color-group generators. In order to calculate the
generating functional

(4)

which involves the QCD Lagrangian + = +g + +q, in
the one-loop approximation, it is sufficient to retain
only those terms in +g where the order of the gluon

fluctuations  is not higher than two. These are

(5)

where  = ∂µ  – ∂ν  + g f abc . In this case,
the functional integrals in (4) have a Gaussian form and
can easily be calculated. The result is

(6)

Representing Z in the form Z = exp(WE), we obtain the
effective Euclidean action

(7)

where we have considered that the contribution of the
longitudinal components of the gauge field is canceled
by the ghost contribution. The summation of the energy

spectra of gluons, , and quarks, , over the quan-
tum numbers r and k must involve only physical
degrees of freedom. Formally, we consider our field
system within a three-dimensional cube of volume L3,
imposing periodic boundary conditions. In this case,
the effective potential is given by

(8)

In the one-loop approximation, we can represent V as

V = V (0) + v, where V (0) = ( )2/4 is the energy density
for the classical background field and v = v g + v q is the

Z A j η η, , ,[ ] aµ
a χ χ ψ ψddddd∫=
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one-loop contribution of gluon and quark fluctuations.
In order to go over to infinite Euclidean spacetime, it is
necessary to consider the limit L  ∞. Since the
explicit expression (16) for the effective potential (see
below) is independent of L, we will omit details associ-
ated with this limiting transition.

Further, we introduce the temperature T ≡ 1/β,
requiring that boson (fermion) fields be periodic (anti-
periodic) in x0 with a period of β. According to the well-
known procedure, this is achieved by going from q0 and
p0 to Matsubara frequencies via the substitution q0 
2πl/β – iκµ1 for bosons and the substitution p0 
2π(l + 1/2)/β – iκµ2 for fermions, where µ1 and µ2 are
the chemical potentials of gluons and quarks, respec-
tively; κ = ±1 specifies the sign of the charges for parti-
cles and antiparticles; and l ∈  Z (Z is the set of inte-
gers). The one-loop effective potential defined in (8)
then becomes proportional to the free-energy density,

(9)

Upon the above substitution, the one-loop contribution
of gluon and quark fluctuations assumes the form

(10)

We define an external field as a superposition of a
field H and a potential A0, which are both uniform and
constant and are directed along the third color axis:

(11)

In order to allow for the A0 condensate, it is sufficient to
make the substitutions iµ1  gA0 and iµ2  gA0/2.

In three-dimensional spacetime, fermions are
described by two-component spinors [see Eq. (2)];
therefore, they do not exhibit a spin degree of freedom.

Moreover, the gauge fixing specified by  = 0 and

Di  = 0 leads to a linear relation between the positive-
and the negative-frequency solutions to the Lagrange
equations,

(12)

which follow from the Lagrangian density (5). In order
to demonstrate this explicitly, we can represent an arbi-
trary solution to Eq. (12) as an expansion in eigenvec-
tors,

(13)

V
T Zln–

L
2

----------------
Ω
L

2
-----.= =

v v
g

v
q

+=

=  
1

2βL
2

------------ 2πl
β

-------- iκµ1– 
  2

εr
g( )

2
+ln

r κ, 1±=

∑
l ∞–=

+∞

∑

–
1

βL
2

--------- 2π l 1/2+( )
β

--------------------------- iκµ2– 
  2

ε jk
q( )

2
+ .ln

k κ, 1±=

∑
l ∞–=

+∞

∑
j =1

N f

∑

Aµ
a δµ2δa3Hx1 δµ0δa3A0+ δa3Aµ.= =

a0
b

ai
b

D
2( )

ab
δµν 2gFµν

c
f

abc
+[ ]aν

b
0,=

a
±

a1 ia2± Nn
±

f n x( ),
n
∑= =



134 ZHUKOVSKY, KHUDYAKOV
where Nn are constant coefficients and fn(x) are eigen-
vectors of Eq. (12). It is possible to show (see [20]) that
the gauge-fixing condition D–a– + D+a+ = 0 leads to the

following constraints on the coefficients:  = 2(n +

2) , n = 0, 1, 2, …;  = 0. There are no con-

straints on the coefficient  of the tachyon mode. By
setting the chemical potentials µ1 and µ2 to zero, we
then find that the energy spectra of gluons and quarks
in a chromomagnetic fields are given by

(14)

(15)

An infinitely small negative imaginary term –ie speci-
fies the procedure for circumventing poles and enables
us to define correctly the limiting transition T  0 for
the tachyon mode [see Eq. (22) below].

3. GLUON CONTRIBUTION 
TO THE FREE-ENERGY DENSITY

In order to obtain an explicit expression for the
effective potential, it is necessary to substitute (14) and
(15) into (10) and to take into account the degeneracy
multiplicity of the energy levels in a homogeneous
magnetic field (Landau levels). In the case of three-
dimensional spacetime, this degeneracy multiplicity is
equal to gHL2/(2π). The contribution v g of the charged-
gluon loop to the thermodynamic potential v is then
given by

(16)

where the contribution of the tachyon mode (for which
the energy squared is negative) is included in the first
term. Since summation over l is performed over an infi-
nite interval, expression (16) has a period of 2π/β in
gA0. This fact is tightly related to gauge invariance. At
T = 0, we can make the gauge transformation

(17)
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+
, Ai'+ U AiU

+
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U igx0A0
aλ a

2
-----– 

  .exp=
We then have  = 0; hence, A0 is not a physical param-
eter. At T ≠ 0, the boundary conditions Aµ(x0, x) =
Aµ(x0 + β, x) lead to the additional commutation condi-
tion [U, λa] = 0 for any λa. By definition, this means that
U must belong to the gauge-group center. In the case of
the SU(2) group, only gauge transformations that
respect Z2 symmetry are therefore admissible,

(18)

and the region of gauge-nonequvivalent values of the
potential A0 reduces to values for which gA0 ∈  [0, 2πT].

It can be seen from (16) that v g takes real values if
the argument of the first logarithm is positive, which is
equivalent to

(19)

otherwise, the vacuum becomes unstable. Calculations
reveal that, in the (3 + 1)-dimensional case, the one-
loop effective potential has a finite nontrivial minimum,
which, however, appears to be unstable [10, 11].
According to (16), allowance for higher loops (ring dia-
grams) in the high-temperature limit also leads to the
appearance of an unstable minimum at fields such that
(gH)1/2 ~ g4/3T. For small αs, this exceeds the estimates
obtained for the field in the one-loop approximation.
Returning to the general expression (16), we can see

that, under the condition gA0 = , the free energy
v g tends to negative infinity. There does not arise such
a singularity in the (3 + 1)-dimensional case, because
integration with respect to the third momentum compo-
nent, which is absent in the (2 + 1)-dimensional case,
has a smoothing effect.

In the case under consideration, the divergence is
removed by taking into account radiative corrections—
namely, owing to the presence of the imaginary part in
the gluon polarization operator. We are interested in the
radiative energy shift only for the tachyon mode, since
it is this mode that controls the singular behavior of the
effective potential. Without performing detailed calcu-
lations, we will obtain a qualitative estimate by repre-
senting the gluon self-energy in the form Π(ε, T) =
αsε(Π1 + iΠ2), where Π1 and Π2 are functions of field
and temperature (as a matter of fact, their explicit form
has virtually no effect on the ensuing analysis of the
model and on the qualitative results of this analysis),
the quantity Π2 being responsible for gluon decay. The
self-energy contribution becomes important only in the
vicinity of the singularity of the effective potential. We

will now consider the dispersion equation ε2 =  +
〈Π (ε, T )〉, making use of the assumption (which seems
quite reasonable and which is in fact supported by numer-
ical calculations) that, within the parameter region in
question, the behavior of the free energy near the singu-
lar point is not very sensitive to the values of Π1 ~ Π2 ~ 1.

A0'

A0 A0' A0
2πn
βg

---------, n Z,∈+=

gH gA0 2πT gH;–< <

gH

εg
2
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For αs < (gH)1/2, we can estimate the energy squared of
the tachyon mode with allowance for the radiative cor-

rection and the equality  = –gH. The result is

(20)

where C is a coefficient of the order of unity. It is seen

from (20) that the presence of the imaginary part 
ensures a nonvanishing argument (having just a non-
zero imaginary part) of the first logarithm in (16) at
gH ≠ 0. Applying the well-known identity [21]

(21)

to relation (16) and omitting the immaterial additive
constant, we arrive, by analogy with [11], at

(22)

(23)

where

(24)

In order to analyze the effective potential in the
region of small values of gH, it is advisable to make use
of the expression for v g derived by the Fock–
Schwinger proper-time method. We begin by applying
the standard integral representation

(25)

which is valid if an infinite additive constant is dis-
carded, to the second term in (16). This yields
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Further, we single out the temperature-dependent part

 of the effective potential, representing this potential

as v g =  + , where the zero-temperature part

 

 

is independent of 

 

A

 

0

 

 [it will be considered
below; see (35)]. For this, we transform summation
over Matsubara frequencies in (26) with the aid of the
identity (see [10] or [21])
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Upon summing the expansion in (26) over 
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, we arrive at
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Numerical estimates confirm that expression (28) com-
plies with the temperature-dependent part of (23). At
the same time, expression (28) is advantageous in that
its limit for 
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 is obvious,
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In the high-temperature limit (
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), we obtain the
estimate
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which demonstrates a nonanalytic background-field
dependence of the effective potential.

Substituting 

 

A

 

0

 

 = 0 into Eq. (29), we obtain the dou-
bled effective potential for neutral gluons (since 

 

v

 

g

 

involves the contribution from gluons of two opposite
color charges),

 

(31)

 

As might have been expected, we have derived an ana-
log of the Planck law for equilibrium blackbody radia-
tion in the (2 + 1)-dimensional case. In order to obtain

the total free-energy density, it is necessary to add 

to (23). However,  depends only on temperature,
but it is independent of the condensate fields; therefore,
this free-energy component is of no interest to us.

In order to perform a numerical analysis of the
above results, it is convenient to go over to the dimen-
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sionless variables

(32)

At T = 0, this change of variables is obviously impossi-
ble. For the sake of uniformity, we will nevertheless
employ x and y at zero temperature as well, implying a
finite number for β in (32) at T = 0. To v, we also add a
constant defined in such a way as to ensure, in the
absence of condensate fields, the vanishing of the quan-
tity

(33)

that is, u(0, 0) = 0.
The problem at hand now amounts to minimizing

the real part of the function

(34)

where the factor T/g2 specifies the temperature scale
with respect to the coupling constant g. We denote by
ug and uq, respectively, the gluon and the quark contri-
bution to the dimensionless effective potential u and
introduce the notation Ug = U(0) + ug. We isolate the
temperature-dependent and the zero-temperature part
of the potential u, uT and uT = 0, respectively, so that u =

uT = 0 + uT and  = U(0) + .

Going over to the limit β  ∞ in (23) and setting
C = 1, we easily obtain the zero-temperature contribu-
tion in the form

(35)

which coincides, apart from the contribution to the
effective potential from the tachyon mode of the glu-
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ons, with the result from [20]. The global minimum

 is achieved at  ≈ 0.185g2 (see Fig. 1).

There also exists a local minimum of  at gH = 0
(in contrast to what was obtained in [20])—this mini-
mum is controlled by the tachyon-mode contribution,
which is linear in gH and which is dominant when gH

 0. If C @ 1 in Eq. (20), this contribution will shift
the global minimum to the point gH = 0.

Trottier [20] states that the condensate of the chro-
momagnetic field H evaporates above the critical tem-
perature (at T > Tcr). At the same time, he assumes that
the tachyon mode of gluons is unphysical and does not
take it into consideration. At zero temperature, how-
ever, the term v tach contributes both to the imaginary
and to the real part of the free-energy density; therefore,
there are no reasons to ignore this mode. Moreover, it is
just due to allowing for v tach that the minimum v g can
appear at A0 ≠ 0 [11].

An analysis of the real part of Ug(x, y = const) as a
function of x reveals the existence of a nontrivial mini-
mum at x = xmin for temperatures below some critical
value, T < Tcr ~ 0.15g2, in which case the temperature-

dependent part  is small in relation to the zero-tem-

perature part . Owing to the choice of scale
according to (33), the temperature-dependent part
depends only slightly on T, while the zero-temperature
temperature acquires an explicit dependence on T.

Thus, the oscillating contribution  (Fig. 2) modu-

lates the zero-temperature potential  featuring a
nontrivial minimum (Fig. 1). With decreasing tempera-
ture, xmin increases, taking values close to nπ, n ∈ N.
Concurrently, there successively occur second-order
transitions between the phases where the function
Ug(xmin, y) attains a minimum either at π or at zero.
When T  0, there are indefinitely many such phases.
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Fig. 2. Temperature-dependent part Re (x) at T/g2 = 0.01.uT
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By way of example, we indicate that, at T/g2 = 0.1, the
global minimum of the thermodynamic potential is
achieved at x = 3.14 and y = π (Figs. 3, 4). That Ug has
a nonzero imaginary part implies, however, that this
condensate configuration is unstable. When tempera-
ture increases in the region T > Tcr, the condensate val-
ues ymin and xmin decrease from π to zero, with the
approximate equality xmin . ymin still remaining valid.

It is well known that, if the trace case of the
Polaykov loop [22, 23] vanishes in the fundamental
representation, trF(3) = 0, the system is in the confin-
ing phase. The Polyakov loop is defined as

(36)

In the case under consideration, which is specified by
Eq. (11), the potential A0 is directed along the third axis
in color space. Therefore, trF(3) = 2cos(βgA0/2). The
condition trF(3) = 0 is obviously satisfied at βgA0 = π.
Thus, the alternating minima of the effective potential
for T < Tcr correspond to the confining and deconfining
phases.

4. QUARK CONTRIBUTION
TO THE FREE-ENERGY DENSITY

Here, we consider the quark contribution to the free-
energy density in a way similar to that used in Section 3
for gluons. The degeneracy multiplicity of quark
energy levels in an external chromomagnetic field is
proportional to the quark color charge, which is ±1/2;
the corresponding degeneracy multiplicity is controlled
by the quantity gHL2/(4π), which is half of that for the
gluons. Substituting (15) into (10), we obtain the effec-
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Fig. 3. Gluon potential ReUg(x) at T/g2 = 0.1.
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tive potential for the quarks and antiquarks in the form

(37)

where λ = ±1 relates to the quark color charge. This
spectrum differs from the gluon spectrum by the
absence of the tachyon mode, which is peculiar to non-
Abelian gauge fields in a chromomagnetic field. There-
fore, v q appears to be a well-defined function of the
condensate fields over the entire domain 0 < gH < ∞,
0 < gA0 < ∞. Specifically, we have

(38)

where

(39)

It is well known that, within nonzero-temperature
theory, the quark field satisfies the antiperiodicity con-
dition ψ(x0, x) = –ψ(x0 + β, x). This is the reason why,
in (38), the period in gA0 is 4πT, which is twice as large
as that in (23). This fact suggests the breakdown of the
residual gauge symmetry corresponding to Z2 group
[ZN in the case of the SU(N) gauge group]. We restrict
our consideration to the chiral limit for quark fields,
m = 0. In this case, the zero-temperature contribution of
the quarks is given by

(40)
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which coincides with the result from [20]. In contrast to

the gluon potential ,  is always positive,
which prevents the emergence of a nontrivial mini-
mum. By applying the proper-time method, we rewrite

the temperature-dependent part of (38), , in the form
of the integral representation

(41)

In the limit gH  0, this yields

(42)
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Fig. 6. Quark contribution Reuq(y).
By virtue of the definition in (33), the dimensionless
effective potential uq(x, y) does not depend on tempera-
ture explicitly. Figures 5 and 6 present the families of
the plots for uq at fixed field values y = const and x =
const, respectively. It can be seen that, for all constant
values of x, the function uq(x, y) achieves a minimum at
y

 

min

 

 = 0. At the same time, there exists a nontrivial min-
imum at 

 

x

 

min

 

 

 

≠

 

 0

 

 for 

 

y

 

min

 

 = const < 3.5. The global min-
imum of the quark effective potential is achieved at the
point 

 

x

 

 = 4.30, 

 

y

 

 = 0. The quark contribution to the free-
energy density exceeds the gluon contribution at 

 

y

 

 > 4,
in which case the quark zero mode, increasing indefi-
nitely for 

 

y

 

  2

 

π

 

, becomes dominant. Therefore, the
conclusions concerning the presence of a field conden-
sate and the occurrence of confinement–deconfinement
phase transitions for 

 

0 

 

≤

 

 

 

y

 

 

 

≤

 

 

 

π

 

 remain in force for the
total free energy.

5. CONCLUSION

In the one-loop approximation, the quark and gluon
contributions to the thermodynamic potential (free
energy) in (2 + 1)-dimensional spacetime at finite tem-
peratures have been calculated against the background
of a constant uniform chromomagnetic field 

 

H

 

 and a
constant uniform 

 

A

 

0

 

 condensate. An analysis of the
tachyon mode in the energy spectrum of gluons has
enabled us to conclude, in contrast to the results from
[20], that this mode cannot be neglected. The inclusion
of the one-loop radiative correction to the energy spec-
trum of gluons has made it possible to correct the zero-
mode-induced nonanalytic behavior of the effective
potential. The free-energy minimum has been investi-
gated, and the possibility of its formation at nonzero
values of the strength 

 

H

 

 and the potential 

 

A

 

0

 

 has been
demonstrated. An analysis of the temperature depen-
dence of the results has revealed that, below some crit-
ical temperature, the region of the model parameters
splits into a set of alternating subregions corresponding
to a confining or a deconfining phase. This pattern is
associated with the oscillating contribution of the
tachyon mode to the free-energy density. Unfortu-
nately, the imaginary part of the effective potential does
not vanish at the points 

 

x

 

min

 

 

 

.

 

 

 

π

 

n

 

, 

 

n

 

 

 

∈ 

 

N

 

, where the
function 

 

V

 

(

 

x

 

, 

 

y

 

)

 

 achieves a minimum. Thus, the non-
trivial minimum induced in the effective potential by
the condensates of the fields 

 

H

 

 and 

 

A

 

0

 

 is unstable. Such
an instability is due to the choice of the model of a uni-
form vacuum field. It is reasonable to assume that, in
the realistic case of a nonuniform vacuum field at large
distances (that is, in the infrared region, which is
responsible for the formation of confinement), this
instability would be suppressed (see also the relevant
arguments in [11]). In this connection, the states found
here can be considered to be quasistable. In order to
justify the adopted assumptions more rigorously, it is
necessary to analyze the nonuniform-field model and to
take into account higher loop contributions along the
lines adopted in [16]. Unfortunately, we have not been
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able to do this at present because of obvious technical
difficulties.
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Decay of a Large-Amplitude Bubble 
of a Disoriented Chiral Condensate
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Abstract—The time evolution of a large-amplitude bubble of a disoriented chiral condensate (DCC) is studied.
It is found that the evolution of such objects may have a relatively long predecay stage. A simple explanation
of such a delay is proposed for the case of the DCC bubble decay. This delay is associated with the existence
of approximate multisoliton solutions to the relevant radial sine-Gordon equation in (3+1) dimensions at a large
bubble radius. © 2001 MAIK “Nauka/Interperiodica”.
In our previous study [1], we discussed the time evo-
lution of bubbles of a disoriented chiral condensate
(DCC) in a simplified chiral two-component sigma

model (σ2 + π2 = ), where it is convenient to intro-
duce the field variable φ defined by the relations π =
fπsinφ and σ = fπcosφ. The equation of motion in terms
of φ—this equation was studied in [1]—has the form

(1)

where φ ∈ [0, 2π], m is the mass of the field φ, and n is
an integer. If m = 0, we have the case of unbroken chiral
symmetry. If m ≠ 0, chiral symmetry is broken. In the
case of n = 1, the theory has the only vacuum state at
φ = 0. In terms of the field variable φ, the field configu-
ration corresponding to a DCC bubble is the following:
φ is a nonzero constant (vacuum is disoriented) every-
where within a spherically symmetric domain and is
zero (true vacuum—that is, 〈σ〉 = 1, 〈π〉 = 1, and φ = 0)
everywhere outside this domain. In the model with n =
1, the decay of such a DCC bubble eventually leads to
the formation of a breather [1, 2], which is located at
the center of the original bubble. The formation of
long-lived breatherlike states is a feature peculiar to a
wide class of nonlinear systems, including that
described by Eq. (1). It is worth noting that, owing to
the nonlinearity of the problem, the mean lifetime of a
large-amplitude DCC bubble significantly exceeds the
lifetime of a linearized DCC system in the presence of
external sources (see, for example, [3]).
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The case of n ≥ 2 corresponds to the theory featuring
n degenerate vacua at φ = 0, 2π/n, 4π/n, …, 2(n – 1)π/n.
It was shown in [1] that, in this case, the evolution of a
DCC bubble crucially depends on its initial amplitude.
The case of a small amplitude for n ≥ 2 also leads to the
formation of a breatherlike state. However, an initially
formed large-amplitude bubble evolves in somewhat
different way. Its evolution involves a rather long pre-
decay stage characterized by relatively low radiation.
This first stage of the evolution consists in the splitting
of the shell of the initial bubble into a few concentric
subshells of different radii and smaller amplitudes. At
the next step, these subshells interact, with the result
that eventually the bulk of the initial-bubble energy is
converted into radiation of small-amplitude waves that
is accompanied by the formation of a long-lived
breather localized at the center. This, rather compli-
cated, pattern of the evolution of a DCC bubble may be
dubbed a delayed decay of such an object. Here, we
continue our investigation of the decay of DCC bubbles
for the special initial conditions

(2)

where K is a large positive number set to 20 in our cal-
culations. As was discussed in [1], the evolution of a
bubble crucially depends on the dimensionless param-
eter ξ = mr0. For the case of small ξ < ξcr in the model
with n = 2, we observe a prompt decay of DCC bubbles
that is followed by the formation of a breatherlike solu-
tion. But for ξ > ξcr, we have the splitting of the initial
2π shell into a pair of 1π shells. A clear illustration of
the transition from prompt to delayed decay is provided
by the data in Fig. 1, which displays the energy flux
through the sphere of radius R > r0 in units of the total
energy at two typical instants of time as a function of
the parameter ξ. From this figure, we can see the fol-
lowing: at ξ < ξcr, the bulk of the energy release is emit-
ted from the region of the bubble within a relatively

φ r 0,( ) 2π
1 r/r0( )K+
--------------------------, φt r 0,( ) 0,≡=
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short time interval T of less than 50 (in dimensionless
units), while, at ξ > ξcr, only some part of it escapes
through the sphere of the same radius within the same
period of time. It is this phenomenon that we call the
delayed decay of a DCC bubble. In Fig. 2, we present
the field configurations (n = 2, ξ = 10) at some instants
ti . We can see that the further evolution of the 1π shells
produced upon the splitting of the 2π shell leads to their
secondary interaction. This interaction is of a repulsive
character and occurs when the radii of the shells coin-
cide. After a few collisions of the 1π shells, a localized
breatherlike solution is formed at the center of the ini-
tial DCC bubble.

Qualitatively, the observed splitting of the 2π shell
of the initial bubble (2) into a pair of concentric 1π-
shells can be explained as follows. Suppose that, at a
sufficiently large bubble radius r0, the term (2/r)φr on
the left-hand side of Eq. (1) becomes immaterial and
can be discarded. Equation (1) then reduces to the one-
dimensional sine-Gordon equation defined on the semi-
axis r ∈  [0, ∞). Therefore, solutions to this equation at
large positive r must have the same form as solutions to
the integrable sine-Gordon equation. Multisoliton solu-
tions to the latter equation are known in an analytical
form. In particular, the two-soliton solution for n = 2 is
given by [4]

(3)

where v is the soliton velocity at infinity. At an arbitrary
instant t, this solution appears to be a superposition of
two solitons, with the quantity

φ(+∞, t) – φ(–∞, t) ≡ 2π,
which is referred to as a topological charge, being an
integral of the motion. At t = 0, the solution in (3)

φ x t,( ) 2
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Fig. 1. Energy flux (in units of the total energy) that has
passed through a sphere of radius R = 20 by the instant T as
a function of the dimensionless parameter ξ.
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reduces to a step of height 2π and characteristic size

xchar ~ /mv. In the relativistic limit (1 – v) !
1, the size xchar is small, xchar ! m–1. Owing to the simi-
larity of the profiles of the initial condition (2) for K @1
and the solution in (3) at t = 0 in the relativistic case, it
can be expected that the two configurations will evolve
similarly, at least at small positive t. By considering the
solution in (3) at t > 0, we find that the 2π kink splits
into a pair of 1π kinks moving in opposite directions.
The same occurs in solving Eq. (1) with the initial con-
dition (2). Therefore, we conclude that a three-dimen-
sional 2π shell of large initial radius behaves in the
same way as the double-soliton solution (3), at least at
small positive t.

The split 1π shells further evolve differently. The
inner 1π bubble behaves as an ordinary large-amplitude
DCC bubble in the case of n = 1. The evolution of such
initial configurations was considered in the pioneering
study of Bogolyubskiœ and Makhan’kov [5] (see also
[6]). It shrinks and expands again, emitting part of its
energy. The outer 1π shell expands, then stops, and
begins to shrink. The maximal expansion radius of this
1π shell can be estimated on the basis of simple energy
considerations. Some field configurations arising in the
process of interaction of the inner and outer 1π shells
are presented in Fig. 2. The splitting of the shell of the
initial bubble is also clearly seen in Fig. 3, which dis-
plays the radial energy density ε(r) related to the total

energy by the equation E = (r)dr.

In a numerical simulation, we also observed a simi-
lar splitting of the 2π shell (2) of the initial DCC bubble
in the model with n = 3. In this case, the initial 2π shell
first splits into two subshells of amplitudes 2π/3 and
4π/3; later on, the 4π/3 shell splits into a pair of 2π/3
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Fig. 2. Field configurations at a few instants ti during the
evolution of the initial configuration (2) in the model with
n = 2.
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Fig. 4. Field configurations at a few instants ti during the
evolution of the initial configuration (2) in the model with
n = 3.

Fig. 5. Radial energy densities corresponding to the field
configurations in Fig. 4.
shells. During the subsequent evolution, all three 2π/3
shells interact. The corresponding field configurations
and radial energy densities at a few typical instants are
shown in Figs. 4 and 5.

We note that, in fact, the discarded term (2/r)φr in
Eq. (1) has a pronounced effect on the time evolution of
the solutions—in particular, it is responsible for insta-
bility of the bubbles to collapse. It is convenient to
study the evolution of such configurations by the
method of effective Lagrangians. The collapse of a
spherically symmetric bubble in λφ4 theory was first
analyzed by this method in the thin-wall approximation
[7] (see also [8]). In the future, we are going to study
the form of the effective Lagrangian and the corre-
sponding equations of motion for multishell configura-
tions considered in the present article.

In conclusion, we emphasize that the observed split-
ting of the large-size and large-amplitude shell of an
original DCC bubble leads to a significant increase in
its lifetime. For this reason, the emission of waves from
the DCC region appears to be quite a long process, and
it is the nonlinearity of DCC bubble decay that is basi-
cally responsible for the prolongation of the bubble
lifetime.
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Nucleus–Nucleus Collisions
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Abstract—The formation of dense groups (fluctuations) of particles produced in the central CCu and MgMg
collisions at the projectile momenta of, respectively, 4.5 and 4.3 GeV/c per nucleon is analyzed. The distribu-
tions of the maximum densities and of the centers of charged-particle fluctuations in pseudorapidity space are
studied in searches for dynamical multiparticle correlations. The distributions of the centers show two peaks
above the statistical background with a structure similar to that which is expected in the model of coherent gluon
emission and which was observed in hadronic interactions. The charge independence of the distributions in
question and an azimuthal isotropy of events involving pseudorapidity fluctuations are observed. The distribu-
tions of events with respect to the maximum density of fluctuations are governed primarily by the statistical
contribution, although the behavior of the distributions in CCu collisions is in qualitative agreement with the
prediction of the one-dimensional intermittency model. It is found that the resulting distributions are of a non-
Poisson character both in CCu and in MgMg collisions. The results of this study indicate that, in describing
local dynamical fluctuations in multiparticle production processes, the coherent and the stochastic approach
supplement each other. The procedure employed in the analysis described here makes it possible to draw a
direct comparison of the present results with the results of similar investigations of different reactions. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent numerous investigations of the formation of
dense groups of particles in the distributions of hadrons
produced in multiparticle processes [1, 2] led to the
conclusion that irregularities observed in these distribu-
tions reflect process dynamics rather than the inade-
quacy of event statistics. The formation of such dynam-
ical fluctuations was found to be of a regular character;
that is, dense groups of particles appear at fixed values
of the polar angle (pseudorapidity), thus producing
ring-shaped events.

Ring-shaped structures can be revealed owing to the
presence of maxima on the pseudorapidity scale in
searches for dense groups of particles in an event. Such
events were first observed in cosmic-ray experiments
and later in accelerator experiments [2]. It is worth not-
ing that the azimuthal-angle and transverse-momentum
distributions in such events are usually rather uniform.

Further investigations of irregularities in the distri-
butions of product particles were performed primarily
within the stochastic approach relying on the intermit-
tency model borrowed from fluid dynamics (for an
overview, see [1, 2]). This approach made it possible to
reveal a dynamical character of the fluctuations in ques-
tion, which suggests the intermittency (fractal) struc-
ture of events in all types of interactions [2, 3]. Never-

1) Institute of Physics, Georgian Academy of Sciences, ul. Tama-
rashvili 6, GE-380077 Tbilisi, Republic of Georgia.

2) School of Physics and Astronomy, Tel Aviv University, Tel Aviv
69978, Israel.
1063-7788/01/6401- $21.00 © 20143
theless, the observed stochastic nature of the fluctua-
tions has not yet been explained, although numerous
dynamical models have been proposed.

At the same time, the ring-shaped structure is well
known in electrodynamics (Cherenkov radiation). Con-
ditions necessary for the emergence of such radiation
may be realized in the strong interactions of hadrons
and nuclei as well [4, 5]. This approach was imple-
mented in the model that assumes coherent gluon emis-
sion from a finite length [5] and which predicts an inter-
ference peak in the polar-angle distributions for colli-
sions of a quark with an antiquark or a gluon. On the
other hand, collisions between quarks of the same color
are expected to result in the appearance of dips in the
distribution (destructive interference). Experimental
results from [6–8], which were obtained on the basis of
this model, lend support to this quark-parton descrip-
tion.

In this article, we present an analysis of ring-shaped
events in intermediate-energy nucleus–nucleus colli-
sions. Our study employs both the stochastic and the
coherent approach. In the first case, we rely on the one-
dimensional intermittency model [9], which considers
maximum particle fluctuations. The coherent compo-
nent in the hadron-production process is investigated
within the coherent-gluon-emission model, which con-
siders the properties of the distributions of fluctuation
centers.

It is worth noting that previous searches for dynam-
ical effects in studying maximum fluctuations yielded
001 MAIK “Nauka/Interperiodica”
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different results [10, 11]. Specifically, no such effects
were revealed in [10], where investigations were con-
ducted for reactions similar to those considered here. At
the same time, Ghosh et al. [11] found indications of
multiparticle dynamical correlations in collisions of
hadrons with emulsion nuclei at 200–400 GeV. The dis-
tinctions between these conclusions may be associated
with the method used to single out maximum fluctua-
tions, which reduces the searches for dense clusters to
exploring the distribution sections with the maximum
probability density (maximum in the distribution). In
order to circumvent these difficulties, we use here, both
for the stochastic and for the coherent contribution, a
cumulative variable that has a uniform distribution [12].

2. EXPERIMENTAL DATA

The experimental data subjected to analysis were
obtained by processing the photographs of events from
the 2-m streamer chamber of the SKM-200 facility [13]
involving internal copper (64Cu) and magnesium (24Mg)
targets. The chamber was placed in a magnetic field of
strength 0.8 T and irradiated at the JINR synchropha-
sotron with relativistic beams of 12C nuclei with a
momentum of 4.5 GeV/c per nucleon and 24Mg nuclei
with a momentum of 4.3 GeV/c per nucleon. The
streamer chamber was driven by a central-collision
trigger that actuated the chamber when, in the forward
cone with an apex angle of the 2.4°, there were no
charged particles with momenta above 3 GeV/c. A
more detailed description of the facility can be found in
[13, 14]. Systematic errors associated with the opera-
tion of the trigger, the detection of low-energy pions
and protons, electron admixtures, secondary interac-
tions in the target, and other sources of systematic
effects are described in detail elsewhere [15]. Each of
these systematic effects is modest, their total contribu-
tion to the uncertainty being within 3%.

The film data were viewed and processed at the Leb-
edev Institute of Physics (Moscow, Russian Academy
of Sciences) on the UPS 50/80 scanning tables by using
the method developed in [16]. The average relative
error of momentum measurements, 〈εp/p〉, amounted to
12%; for the polar emission angle ϑ, the error εϑ was
about 2°, which does not exceed the error in the pseu-
dorapidity measurement (εη = 0.1), the pseudorapidity
being defined as η = –ln /2). Among 663 events
of CCu collisions, we selected charged particles in the
pseudorapidity interval ∆η = 0.2–2.8 (in the laboratory
frame), but we excluded, from our consideration, posi-
tively charged particles with transverse momenta in
excess of 1 GeV/c, because no negatively charged par-
ticles with such transverse momenta were observed. We
assumed equal numbers of positively and negatively
charged particles, thereby minimizing the effect of the
proton contribution. The mean multiplicity in CCu col-
lisions was 22.8 ± 0.3. In 14218 MgMg events, we con-
sidered only negatively charged particles (pions with a

(ϑtan
1%, admixture of kaons), their mean multiplicity in the
interval ∆η = 0.4–2.4 being 6.20 ± 0.02.

3. PROCEDURE FOR ISOLATING DENSE 
GROUPS OF PARTICLES

In the present study, fluctuations and their centers
were singled out by means of the following procedure.
In each event, ordered pseudorapidities were subjected
to binning over the entire pseudorapidity interval ∆η
under consideration, with the bin size δη being fixed.
We isolated dense groups featuring δn particles in a
given bin. The centers of fluctuations for all events
were calculated by the formula

As was mentioned earlier, the conclusion on the contri-
bution of dynamical fluctuations strongly depends on
the shape of the pseudorapidity spectrum, its nonuni-
formity complicating isolation of the η region where
interaction dynamics reveals itself most clearly. In
order to get rid of the effect of the spectrum shape and
to be able to compare the results of different experi-
ments, the pseudorapidity distributions were recast into
distributions with respect to a cumulative variable 
according to the method proposed in [12],

(1)

with the transformed probability density ρ( ) that is
constant in the interval [0, 1]. This transformation was
used earlier in studying intermittency in high-energy
particle collisions [1, 2] and in [17–19]. The application
of the cumulative variable [18, 19] made it possible to
separate two essentially different types of fluctuations,
which are leveled out upon averaging over various
pseudorapidity bins, and to trace hints as to the occur-
rence of a possible nonequilibrium phase transition in
the hadronization process. It should be noted that the
pseudorapidity is the most appropriate variable for
studying correlations governed by the intermittency
structure in high-energy interactions [20].

4. RESULTS AND DISCUSSION

4.1. Distributions of the Fluctuation Centers

Figure 1 displays the distributions of the centers of
dense particle groups in CCu interactions for various
bins  and various numbers of particles, δn, in a bin.
We chose the bin widths  to be commensurate with
those in [10, 21].

A structure with many peaks is seen for  = 0.04
(δη ≈ 0.1) and  = 0.08 (δη ≈ 0.2) in Figs. 1‡ and 1b,

η0 1/δn( ) η j.
j 1=

δn

∑=

η̃

η̃ η( ) ρ η'( ) η'/ ρ η'( ) η',d

ηmin

ηmax

∫d

ηmin

η

∫=

η̃

δη̃
δη̃

δη̃
δη̃
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0.04 and δn = 4, (b)  = 0.08 and δn = 5, (c)  = 0.12 and δn = 7, and (d)  = 0.2 and δn = 9. The solid curves represent
Gaussian approximations.
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respectively. With increasing width , there is a ten-
dency toward the formation of a structure featuring two
peaks whose centers  do not change with δn. For the
mean positions of the maxima for groups involving dif-
ferent numbers of particles, a Gaussian approximation
of these two peaks yields values in the vicinity of the
points  = 0.17 and 0.57. The rescaling to the original
variable η results in η0 = 0.60 ± 0.05 ± 0.12 and 1.30 ±
0.03 ± 0.10 (hereafter, the first and the second error are
statistical and systematic, respectively) for the peak
positions. The spacing between the peaks is

(2)

A similar investigation was performed for MgMg
interactions, where tracks were measured only for neg-
atively charged particles. The  distributions are dis-
played in Fig. 2, where the notation used is identical to
that in Fig. 1. As in the case of CCu interactions, we
observe a structure having two peaks at the points  ≈
0.19 and 0.63, which corresponds to η0 = 0.89 ± 0.03 ±
0.08 and 1.63 ± 0.05 ± 0.10, with the spacing between
the peaks being

(3)

That the structures of  distributions for negatively
charged particles and for all charged particles are simi-
lar suggests the charge independence of the destructive-
interference effect. At the same time, the close values of
the spacings between the peaks in (2) and (3) are indi-
rect evidence for a central character of the selected CCu
events in collisions and, hence, for the correctness of
the selection criteria described in Section 2.

δη̃

η̃0

η̃0

d0 0.68 0.06 0.16.±±=

η̃0

η̃0

d0 0.75 0.06± 0.13.±=

η̃0
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In order to reveal the possible contribution of had-
ron jets to the observed effect, we performed an addi-
tional analysis for MgMg interactions, taking into
account the isotropy criterion for the azimuthal distri-
bution of particles. For an n-particle event, the azi-
muthal asymmetry was defined as [22]

(4)

where φi is the azimuthal angle of the emission of the
ith particle.

Events characterized by the jet structure were
removed by imposing the constraint β < 0, which
reduced event statistics nearly by a factor of 2. The
resulting distributions of the fluctuation centers (for the
same  and δn as in Fig. 2, which show data sub-
jected to no criterion of azimuthal isotropy) are dis-
played in Fig. 3.

The structure of the distributions in Fig. 3 is similar
to that in Fig. 2: we again observe two pronounced
peaks. For the positions of the peaks and the spacing
between them, a Gaussian approximation of the spectra
yields η0 ≈ 0.88 and 1.63; d0 = 0.75 ± 0.06 ± 0.15.

Thus, the removal of narrow-jet events did not affect
the structure of the distribution of the fluctuation cen-
ters. The agreement between the peak positions and
spacing in the distributions constructed with and with-
out the β criterion confirms the azimuthal symmetry of
ring-shaped events.

The two-peaked spectrum that we obtained for cen-
tral nucleus–nucleus collisions is similar to that found
in [6, 7] for proton–proton interactions. This suggests

β

2 φi φj–( )cos
i j>

n

∑
n n 1–( )
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δη̃
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that nucleus–nucleus collisions represent a superposi-
tion of nucleon–nucleon interactions. The spacing
between the peaks in our analysis exceeds that in had-
ronic collisions (d0 = 0.57 ± 0.03 ± 0.12 and 0.50 ± 0.15
in proton–proton interactions at 205–360 [6] and
400 GeV/c [7], respectively). This observation com-
plies with theoretical expectations that take into
account the intranuclear interactions of nucleons [23].

In order to reveal the contribution of dynamical cor-
relations in the distribution of the fluctuation centers,
we constructed analogous distributions for the simu-
lated single-particle spectra ρ( ). Let us describe our
simulation procedure. We generated a random number

η̃

of tracks in accordance with the multiplicity distribu-
tion in experimental events. After that, the particles
involved were distributed according to the actual spec-
trum ρ( ). The total number of events simulated in this
way was 66300 for CCu collisions and 1421800 for
MgMg collisions, exceeding experimental statistics by
a factor of 100. The statistical properties of this event
sample fully correspond to the properties of the ensem-
ble that could be constructed by mixing tracks from dif-
ferent events with the same ρ( ) and comply with the
hypothesis of independent-particle emission, where
there is no information about two- or multiparticle cor-
relations.

η̃

η̃
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δη̃

δη̃
Open circles in Figs. 1–3 represent the  distribu-
tions for simulated events. The figures show that the
experimental distributions differ significantly from the
distributions obtained under the assumption of noncor-
related particle emission: there are no peaks in the latter
case.

Comparing the experimental and the simulated dis-
tributions of the fluctuation centers for various widths

 and various multiplicity values δn, we arrive at the
conclusion that multiparticle correlations are of a
dynamical origin. In analyzing the dynamics of the
intermittency structure being considered, it would be
natural to invoke the model of coherent gluon emission
[5] as one of the most appropriate mechanisms of the
formation of the observed ring-shaped events featuring
azimuthal symmetry.

In order to assess the reliability of the above conclu-
sion, we scanned various intervals ∆η and various polar
angles ϑ  within the experimental error 〈εϑ〉 . That the
observed properties of the  distributions did not
exhibit significant changes throughout this scanning
confirms our conclusion.

η̃0

δη̃

η̃0
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The aforementioned charge independence of the
coherent mechanism of dynamical-fluctuation formation
may lend additional support to the conjecture that Bose–
Einstein correlations are of a coherent origin [24].

4.2. Maximum Density Fluctuations

For CCu collisions, Fig. 4 shows the normalized dis-
tributions (1/N)dN/dρmax with respect to maximum den-
sity fluctuations ρmax at various values of  in. Here,
N is the number of events, while the maximum fluctua-
tions are defined as ρmax = δnmax/ , where δnmax is the
maximum number of particles in a fluctuation for a spe-
cific bin  in an individual event.

A feature peculiar to the distributions being consid-
ered is that they decrease exponentially for ρmax >
〈ρmax〉 . The distributions averaged over all multiplicities
n behave similarly to the distributions studied by our
group in [10, 21] and to the distributions obtained in
[11, 25, 26] for different reactions. This behavior dif-
fers from the Poisson behavior, which is expected to be
realized in processes where the correlations between
product hadrons are weak and which is predicted in

δη̃

δη̃

δη̃
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the models of the multiperipheral or the Regge type
that involve a bounded number of Reggeons. The expo-
nential character of the ρmax spectrum is evidence to
suggest that primary multiparticle correlations do not
reduce to two-particle correlations [3]. A nonzero dif-
ference of the variance and 〈ρmax〉  confirms a non-Pois-
son character of distribution, revealing a significant
contribution of correlations to the observed local fluc-
tuations.

A comparison with the results presented in [10, 21],
where fluctuations were considered in η space, shows
that the transformation to the cumulative variable 
according to (1) does not affect significantly the bell-
like shape of the distributions at small  (see Fig. 4‡);
with increasing , however, the use of  instead of η
results in the emergence of large tails in the ρmax spectra
for ρmax > 〈ρmax〉  (Figs. 4b, 4c).

That the exponential maximum-density distribution
becomes flatter at large values of ρmax complies with the
shape expected in the one-dimensional intermittency
model [9], which, in the multiparticle production pro-
cess, admits a turbulent and a laminar regime generat-
ing two maxima in the ρmax distributions. However, the
model considers distributions with respect to maximum
density fluctuations at a fixed multiplicity n, in which
case the distributions are independent of energy and
reaction type. As a result, it is possible to enlarge statis-
tics by comparing results from different experiments.
Previously, distributions at fixed values of n were stud-
ied in hadron–hadron interactions, where δη = 0.1 bin-
ning revealed large tails in the ρmax distributions [25].

In order to ensure that the multiplicity was fixed, but
that a statistically significant result was obtained, we
considered, in CCu interactions, maximum fluctuations
averaged over fixed narrow multiplicity intervals. Fig-
ure 4 presents the resulting ρmax distributions for two
such regions: 14 < n < 20 (squares) and 24 < n < 30 (tri-
angles). Here, the deviation of the distributions from
the exponential form at large ρmax becomes more pro-
nounced than in the case of averaging over all n. Even
at  = 0.04 (δη ≈ 0.1), the distribution develops tails

η̃

δη̃
δη̃ η̃

δη̃
for ρmax > 〈ρmax〉 . Such tails are clearly seen at  =
0.12 and 0.2, but only for events characterized by large
multiplicities, 24 < n < 30.

In just the same way as the shape of the spectrum for
all multiplicities, the distributions for fixed intervals of
n indicate that the multiparticle production process is of
a non-Poisson character: that the variances of the distri-
butions differ from the mean values 〈ρmax〉  proves the
presence of multiparticle correlations.

In order to reveal correlations associated with the
dynamics of the process, we compared the experimen-
tal distributions with the distributions that were
obtained for the generated sample of 66300 events that
was described in the preceding section and which fea-
tures no dynamical correlations. The resulting distribu-
tions (for four values of ) are shown in Fig. 4 (open
symbols) for all multiplicities and for two intervals
considered above.

The χ2/NDF values indicate good agreement
between the experimental and the generated spectra,
irrespective of the width  and multiplicity values, so
that it is impossible to draw a definitive conclusion as
to whether intermittency dynamics is present in the for-
mation of fluctuations. Most likely, the dynamical cor-
relations in the maximum-density distributions are sup-
pressed by statistical noises to such an extent that they
cannot be observed. Nevertheless, it is worth noting
that the generated ρmax distributions at  = 0.12 and
0.2 for 24 < n < 30 (Figs. 4b and 4c) differ significantly
at large ρmax from the experimental spectra: the latter
become flatter, while the former do not show such
changes.

A similar analysis was performed for negatively
charged particles in MgMg collisions. For all multiplic-
ities and for the fixed multiplicity value of n = 6, Fig. 5
displays the resulting ρmax distributions at  = 0.1 and
0.25.

In contrast to what was observed for CCu collisions,
the distributions in Fig. 5 have no tails for ρmax > 〈ρmax〉;
that is, they continue exponentially decreasing as the

δη̃

δη̃

δη̃

δη̃

δη̃
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maximum density fluctuations grow. At the same time,
a comparison of the mean values 〈ρmax〉  and the stan-
dard deviations proves a non-Poisson character of the
quoted distributions. However, the χ2/NDF values for
the comparison of the experimental data with the
results of our statistical simulation (in the case being
considered, we have also used the generated sample of
1421800 events from the preceding section) suggest
that the dynamical component in the formation of fluc-
tuations is strongly suppressed by statistical fluctua-
tions and cannot be isolated by the method of maxi-
mum densities.

An analysis of the effect of the errors 〈εϑ〉  in the
measured polar angle ϑ  of product particles showed
stability of the distributions that we obtained and,
hence, the reliability of our conclusions for both types
of nuclear collisions considered here.

In summary, we emphasize that the non-Poisson
behavior of the ρmax spectra (especially at small values
of ) and the difference between the experimental
and the generated distributions at large values of the
maximum density in CCu interactions seem to be asso-
ciated with a nonstatistical character of the fluctuations
in question. It is precisely the result that our group
deduced in [17, 18, 27] by the method of normalized
scale factorial moments. In [28], it was proposed to
seek strong fluctuations associated with this.

5. CONCLUSION

Results have been presented that were obtained by
studying the formation of dense particle groups (fluctu-
ations) in multiparticle processes induced by interme-
diate-energy nucleus–nucleus collisions. These fluctua-
tions have been explored in the pseudorapidity distribu-
tions of all charged particles from the central CCu
collisions and of negatively charged particles from
MgMg collisions at projectile momenta of, respec-
tively, 4.5 and 4.3 GeV/c per nucleon.

In order to reveal dynamical collective effects, we
have considered the distributions of the centers of
dense particle groups and the spectra of maximum den-
sity fluctuations. We have compared them with the pre-
dictions of the coherent-emission model in the first case
and with the predictions of the stochastic model in the
second case; a comparison with the simulated results
for completely noncorrelated particle production has
also been drawn. Taking into account the effect of the
shape of the distribution of product particles in searches
for fluctuations, we have recast original pseudorapidity
distributions into flat distributions.

In the distributions of fluctuation centers in CCu
collisions, we have found two peaks occurring near the
same pseudorapidity values for fluctuations of different
sizes. A similar structure has been observed for the dis-
tributions of the centers of fluctuations of negatively
charged particles from MgMg interactions, the spacing
between the peaks in that case being commensurate

δη̃
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with the similar spacing for all charged particles in CCu
interactions.

The search for possible azimuthal asymmetries in
ring-shaped events that has been performed for MgMg
collisions has shown the isotropy of the azimuthal
angular distribution of particles: the positions of the
peaks in the distribution of fluctuation centers and the
spacing between these peaks have been found to take
the same values for the event sample from which the jet
structure has been removed and the event sample
involving this structure.

A comparison with similar distributions based on a
statistical simulation suggests the dynamical origin of
the observed two-peak structure of these distributions.
This structure is in accord with the model of coherent
gluon emission from a finite length and is similar to the
structure recently discovered in proton–proton colli-
sions at a few hundred GeV. That the spacings between
the peaks for all charged particles and for negatively
charged particles have close values can be treated as
evidence of a significant contribution of the coherent
component to the formation of Bose–Einstein correla-
tions.

The distributions of maximum-density fluctuations
have been studied for all values of the multiplicity n and
for fixed intervals of n in CCu collisions and for fixed n
in MgMg collisions. The observed non-Poisson charac-
ter of the distributions suggests that multiparticle corre-
lations contribute to the formation of dense particle
groups. The observed flattening of the distribution at
large maximum densities in CCu interactions is in
agreement with the predictions of the one-dimensional
intermittency model. We have not observed this effect
for negatively charged particles in MgMg collisions.

A comparison with the results predicted by the
model of independent particle production has shown
that, within this approach, the stochastic dynamics of
correlation formation is masked by strong statistical
fluctuations; nevertheless, there are noticeable differ-
ences in the behavior of the generated and experimental
distributions. It should be recalled that the stochastic
nature of fluctuations and correlations has been
observed in all types of interactions in studying the
intermittency structure.

It is of interest to compare the results that we have
obtained here with the results of a similar analysis of
fluctuations in reactions characterized by higher mean
multiplicities of product particles, the more so as this
comparison would depend neither on the shape of the
spectrum nor on the reaction type and energy owing to
the use of the cumulative variable and fixed multiplici-
ties.

Our analysis of the formation of local dynamical
fluctuations in nucleus–nucleus interactions has
revealed that the coherent and the stochastic approach
to multiparticle production processes supplement each
other.
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LETTERS TO THE EDITOR

                 
Effect of Taking into Account the Radiative Decay Mode
in Measurements of the Antineutrino–Spin Correlation

in Neutron Decay
Yu. A. Mostovoœ1), I. A. Kuznetsov2), A. P. Serebrov2), and B. G. Yerozolimsky3)

Received April 26, 2000
Although photons accompanying neutron decay
have not been observed so far, there is no doubt about
the existence of this decay mode. Thus, the problems to
be addressed here are those of assessing the probability
of the process and of establishing the relevant photon
spectrum. Among theoretical studies devoted to this
decay mode, the calculations reported in [1] stand out
because they yielded large radiative corrections (8% for
the total decay probability). For this reason, the accu-
racy of the measurements described in [2] was ques-
tioned in [1].

The procedure for calculating the coefficient B
describing the antineutrino–spin correlation is based on
the analysis of the kinematics in the system formed by
the decay electron and the recoil proton, because a
direct measurement of the antineutrino momentum is
not possible at present. If, however, an undetected pho-
ton is emitted in the decay process, the above procedure
becomes ambiguous, which adversely affects the accu-
racy achievable in the calculations. In order to estimate
relevant uncertainties, it is necessary to compute the
correction that stems from taking into account the prob-
ability of photon emission under the detection condi-
tions realized experimentally.

Here, we estimate the uncertainties in question for
the corrections presented in [3, 4]. For various values of
the emitted-electron energy E and of the cosine of the
angle between the emitted-antineutrino momentum and
the direction of the guiding magnetic field, cos(sν),
these corrections were computed by comparing the for-
mula used in [2] and the formula corrected for photon
emission without imposing specific experimental con-
ditions. For five intervals of the electron energy over the
Fermi distribution and ten values of the cosine, the
resulting corrections were tabulated in [3].

An analysis of the table from [3] reveals a feature at
|cos(sν)| = 0. However, the effect of this feature
decreases with increasing |cos(sν)|: the correction is
less than 0.4% at |cos(sν)| ≈ 0.2, falling down to 0.02%

1) Russian Research Centre Kurchatov Institute, pl. Kurchatova 1,
Moscow, 123182 Russia.

2) Petersburg Nuclear Physics Institute, Russian Academy of Sci-
ences, Gatchina,188350 Russia.

3) Harvard University, 42 Oxford St., Cambridge, MA 02138 USA.
1063-7788/01/6401- $21.00 © 20151
at |cos(sν)| ≈ 0.8. On the basis of these values alone, it
might be expected that the total correction is small
because the maximum correction values correspond to
the domain where the efficiency with which the decays
were recorded experimentally is low [2], whereas the
minimum correction values occur in the domain of the
highest efficiency. Nevertheless, the conclusion that the
experimental accuracy [2] is not well justified was
drawn in [3, 4] without regard to experimental condi-
tions.

In order to estimate the effect of the radiative mode
of neutron decay, we have analyzed the overlap of the
corrections obtained in [3] and the array of experimen-
tal data from [2]. Recall that the sign of the calculated
corrections is sensitive to the direction of the guiding
magnetic field because the electron momentum singles
out a specific direction. In view of this, we have consid-
ered that this field was periodically changed in the
experiment being discussed.

Our calculations involved the following steps:
(i) The experimental data from [2] were distributed

among five energy intervals Ei (i = 1–5) corresponding
to the intervals chosen in [3].

(ii) In each interval, the data were distributed among
14 bins corresponding to the mean values 〈cos(sν)〉 j ( j =
1–14), and the correction was evaluated for each bin by
using the values of Ei and 〈cos(sν)〉 j presented in the
tables from [3].

(iii) These 14 corrections were summed with allow-
ance for their statistical weights wj defined as wj =

/ , where σj is the uncertainty in the experi-

mental asymmetry P · B within the corresponding bin.
(iv)) The corrections obtained in each of the five

energy intervals were averaged with the weights deter-
mined on the basis of the number of events in these
intervals.

These calculations have revealed that, upon the
inclusion of the radiative neutron-decay mode pre-
dicted in [1], the coefficient B = 0.9821 ± 0.0040 mea-
sured in [2] for the antineutrino–spin correlation may
be shifted only slightly, by not more than 0.2 of the
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σ j
2

----- 1

σ j
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standard error of the measurements. This estimate is
associated with a specific computation of the probabil-
ity of the radiative decay mode, which, in turn, calls for
verification. But even if we put aside the question of
whether the computations of the probability in [1] are
valid, there is every reason to claim that the accuracy of
the experimental data was indicated correctly in [2]
merely because the resulting correction proved to be
negligible at the largest values of the expected effect.
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Abstract—In order to polarize radioactive nuclei implanted in a highly polarized protonic target, it is proposed
to use methods for the dynamical orientation of nuclei. The angular distribution of photons that originate from
the cascade beta–gamma decay of the 22Na(3+) state in a strong magnetic field is calculated. It is shown that, if
the populations of Zeeman magnetic sublevels obey the Boltzmann distribution, the angular distribution of
emitted photons is independent of the sign of spin temperature; at the same time, the tensor polarization of qua-
drupole nuclei occurring in the intrinsic field of a crystal causes a strong dependence of the anisotropy on the
sign of spin temperature. A rich potential of a dynamical orientation for studying the magnetic structure of rare
nuclei and the dynamics of their spin–spin interactions in dielectric host materials is demonstrated. Physical
and technological advantages and disadvantages of the method in the on-line regime of the implantation of
heavy nuclei are discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Measurement of the anisotropy of angular distribu-
tions of beta–gamma radiations is the most sensitive
method for studying the magnetic moments of nuclei
and their hyperfine interactions [1]. As a rule, the nuclei
being studied are implanted in ferromagnetic sub-
stances, where they are polarized owing to a significant
intrinsic magnetic induction of about 50 T and owing to
cooling down to ultralow temperatures (10–30 mK).
Because of a high rate of spin–lattice relaxation, a
Boltzmann (equilibrium) distribution characterized by
the lattice temperature is established in the system of
nuclear spins, but a tight spin–lattice coupling prevents
the use of the entire toolkit of known methods for
studying spin systems—for example, the spin tempera-
ture cannot be inverted under such conditions.

In amorphous dielectric materials (such as butanol
and propanediol [2, 3]), which have long since been
used as frozen polarized protonic targets, and in single
crystals—for example, in LiF featuring F centers—
methods of dynamical nuclear polarization are applied,
which ensure nearly a 100% polarization of nuclear
spins of either sign [4–6]. In contrast to ferromagnetic
host materials, dielectric materials are transparent to
electromagnetic fields, at least up to frequencies of
1011 Hz, and have negligibly small intrinsic local mag-
netic fields (about 10–3 T); at the same time, a high
degree of proton polarization in them can be obtained
under easily accessible experimental conditions (tem-
perature in the range 0.2–0.5 K and conventional mag-
netic fields of about 2.5 T). A feature that distinguishes
dielectric host materials from ferromagnetic ones is
that the times of spin–lattice relaxation are enormous in
the former—1000 h or even greater—whence it follows
that the magnetic moments virtually decouple from the
lattice. Owing to this, it becomes possible to achieve a
1063-7788/01/6401- $21.00 © 20017
high degree of the vector and tensor polarizations of
admixed nuclei, to prepare non-Boltzmann populations
of spin states [7, 8], and even to focus spins in a pure
quantum state [9].

In the present study, we analyze the application of
dynamical nuclear polarization to polarizing radioac-
tive nuclei implanted in a polarized target. We show
that, by using dynamical nuclear polarization, it is pos-
sible to achieve a high anisotropy of gamma radiation;
for the case of a tensor polarization of quadrupole
nuclei occurring in a nonuniform magnetic field, we
additionally find the dependence of the angular distri-
bution of photons on spin temperature.

We dedicate this article to the blessed memory of
our friend and teacher M.I. Podgoretskiœ, who initiated
investigations along this lines [10].

2. POLARIZATION OF QUADRUPOLE NUCLEI

We begin by recalling the idea content of three
methods of dynamical nuclear polarization [4–8],
which show promise for the investigation of quadru-
pole nuclei. These methods were tested by applying
them to substances featuring high spin concentrations,
but, as far as we know, they were not explored in the
case of rare radioactive nuclei.

The most popular method is that of dynamical cool-
ing [5, 6]. In order to implement this method, a para-
magnetic impurity (Kramers centers [4]), with a con-
centration Ns of about 1020 cm–3, is introduced in a tar-
get material by means of dissolution, diffusion, or
irradiation. In a magnetic field H0, the unpaired elec-
trons (S = 1/2) of the molecules of the impurities are
polarized to the degree

(1)Ps 100%
hγsH0

2kT0
--------------- 

  ,tanh×=
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where T0 is temperature, h is the Planck constant, γs is
the gyromagnetic ratio for electrons, and k is the Bolt-
zmann constant. At H0 = 2.5 T and T0 = 0.3 K, the
degree of polarization is Ps = 99.997%. From Eq. (1), it
follows that, under the same conditions, the proton
spins (the corresponding quantities are labeled with the
subscript p) are polarized only to the degree of Pp =
0.85% since γs/γp ≅  656.

The method consists in transferring a high polariza-
tion of electron spins to admixed nuclei. For this, the
host material is irradiated with a microwave field whose
frequency ν is close to the center of the line of the elec-
tron resonance that corresponds to the Larmor fre-
quency νs0 = γsH0 equal to about 7 × 1010 Hz in a field
of 2.5 T. It was shown by Provotorov [11] that, in the
presence of a saturating field, the behavior of a spin
system is governed by two spin temperatures rather
than by one. Of these, one—Zeeman temperature—
characterizes the distribution of spins over magnetic
sublevels, while the other—the temperature of the
spin–spin reservoir—is associated with the energy of
spin–spin interactions. A nonresonance irradiation of
electron spins leads to a significant reduction of the lat-
ter temperature, since the difference energy quantum
h|ν – νs0| falls within the frequency spectrum of the
spin–spin reservoir, which has a comparatively low
heat capacity and a broad frequency spectrum of width
about 300 MHz. It can easily be seen that, in a field of
2.5 T, this spectrum covers the characteristic Larmor
frequencies of nuclear spins; therefore, the temperature
of the electron spin–spin reservoir and the spin temper-
ature of nuclei eventually tend to equalize. From this, it
follows, among other things, that, in the case of polar-
ized radioactive nuclei, the anisotropy of the angular
distribution of beta–gamma radiation originating from
them furnishes information about the temperature of
the reservoir of spin–spin interactions. A positive fre-
quency separation (ν – νs0) favors negative spin temper-
atures of nuclei because the energy quantum h(ν – νs0)
is transferred to nuclear spins in this case. If the fre-
quency separation (ν – νs0) is negative, nuclear spins
supply the missing energy quantum h(νs0 – ν) to the
electron spin–spin reservoir [6]. An increase in the
degree of nuclear polarization is accompanied by a
decrease in the corresponding nuclear spin temperature
TJ in relation to the lattice temperature T0 by a factor of

about T0/TJ ≈ ±ωs0/(2 ) [6], where M2 is the second
moment of the ESR absorption line and ωs0 = 2πνs0. In
the case of an optimum concentration of paramagnetic
centers, the maximum enhancement of the degree of
polarization is achieved at frequencies corresponding
to the slopes of the relevant ESR line, in which case the
absolute value of the ratio |T0/TJ | can be as great as a
few hundred units. As a matter of fact, this method
makes it possible to achieve a nearly complete polariza-
tions of protons (±98%) and a ±55% polarization of
deuterons. A feature peculiar to dynamical orientation

M2
is that, over a time interval of 1 h, the Boltzmann distri-
bution corresponding to a minimal temperature of
about ±1 mK is established for all nuclear spins in a
host material, including the spins of quadrupole nuclei
(it should be recalled that, in this case, the lattice tem-
perature lies in the range 0.1–0.3 K).

A similar effect of a thermal contact with admixed
atoms arises if polarized proton spins are used instead
of electron spins [7, 8]. The difference is that it is not
the electron spins, but the polarized protons that are
exposed in this case to alternating-field radiation in a
strong magnetic field at a frequency close the Larmor
frequency νJ0 = γpH0 (about 106 MHz at a field strength
of 2.5 T). The width of the spectrum of local nuclear
fields is about a few tens of kHz (this is about three
orders of magnitude narrower than in the case of elec-
tron spins); therefore, such a spectrum cannot stimulate
Zeeman transitions of admixed nuclei and affect their
vector polarization, but it can change the energy of
spin–spin interactions of other nuclear spins [12]. In the
case of rare quadrupole nuclei dissolved in a polarized
target—and we are interested precisely in this case—
the role of their dipole–dipole interaction can be disre-
garded, in which case the quadrupole interaction of
spins with an electric field in a host material appears to
be a resonating system [8, 9]. As a result, the difference
energy hνQ ≈ h(ν – νJ0) will increase or decrease,
depending on the sign of the frequency separation and
on the sign of proton polarization, the mean energy

〈 〉 of the interaction of quadrupole nuclei with a
crystal field. The Hamiltonian describing the interac-
tion of a nucleus with a nonuniform intrinsic crystal
field has the form [13]

(2)

where e is the proton charge, ϕ is the potential of the
electric field in the crystal being considered, and

(3)

is the tensor operator of the quadrupole moment [14,
15]. In Eq. (3), we have used the following notation:
Q is the nuclear quadrupole moment measured in cm2,

J is the nuclear spin, and  and  are the operators
of  the spin projections onto three mutually orthogonal
axes. In the presence of a constant magnetic field
H0, the total Hamiltonian of the interaction between
the nucleus and an external electromagnetic field is
given by

(4)

where µ is the magnetic moment in units of the nuclear
magneton and mp is the proton mass.

ĤQ
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If the quadrupole interaction is much weaker than
the Zeeman magnetic interaction, the eigenstates of the

Hamiltonian  are virtually coincident with states cor-
responding to specific values of the nuclear-spin pro-
jection m onto the magnetic-field direction. The contri-
bution of the quadrupole interaction to the energy Em of
magnetic sublevels can be calculated on the basis of
perturbation theory. In the first order of perturbation
theory, we have

(5)

If the intrinsic crystal field is axisymmetric with respect
to the principal z axis of the tensor Qij, the diagonal ele-
ments of the quadrupole-interaction operator can be
represented in the form [13]

(6)

where φ is the angle between the constant-magnetic-
field direction and the principal z axis of the tensor Qij
and

(7)

Here, νQ is the characteristic frequency of quadrupole
interactions, which is given by

(8)

where eq = ∂2ϕ/∂z2 = –2∂2ϕ/∂x2 = –2∂2ϕ/∂y2. It is con-
venient to recast the mean energy of the quadrupole
interaction of a nucleus with the intrinsic crystal field
[see Eq. (5)] into the form [8]

(9)

where

(10)

ρmm being magnetic-sublevel populations normalized to
unity, has the meaning of nuclear alignment (tensor
polarization). From Eq. (9), it can easily be seen that
the change undergone by the mean energy of the qua-
drupole-interaction reservoir when it comes into con-
tact with the spin–spin reservoir will lead to a change in
the alignment of admixed nuclei. It should be empha-
sized that the above relations are valid both for nuclei
with integral spins and for nuclei with half-integer
spins and that the quadrupole interaction (6) vanishes at
J = 0 and at J = 1/2.

In the case being considered, we generally need two
spin temperatures TZ and TQ—of these, the first charac-
terizes the mean energy of the Zeeman interaction of
spins with a magnetic field, while the second is associ-
ated with the energy of quadrupole interactions of spins
that are in thermal equilibrium with the reservoir of

Ĥ
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2mpc
-------------mH0– m〈 |ĤQ m| 〉 .+=

m〈 |ĤQ m| 〉 X φ( ) 3m
2

J J 1+( )–〈 〉 ,=

X φ( ) hνQ 3 φcos
2

1–( ).=
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e

2
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------------------------------,=
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proton spin–spin interactions—in order to describe the
populations of stationary nuclear states that are pure in
the spin projection onto the magnetic-field direction.
The situation admitting the most straightforward type
of analysis is that of zero vector polarization of quadru-
pole nuclei, in which case the mean energy of Zeeman
splitting is equal to zero, the temperature TZ of admixed
nuclei going to infinity [8]. In practice, the procedure
that results in the vanishing of the mean Zeeman energy
amounts to an irradiation with a saturating radio-fre-
quency field corresponding to the absorption line of
admixed nuclei. Under such initial conditions, the pop-
ulations of stationary nuclear states characterized by
fixed values of the spin projection m onto the magnetic-
field direction are determined exclusively by the qua-
drupole interaction featuring only one spin tempera-
ture. Specifically, we have

(11)

where β = 1/(kTQ) is the inverse spin temperature of the
quadrupole-interaction reservoir. The sign of TQ is
determined by the sign of the product Pp · (ν – νJ0). The
populations ρmm appear to be elements of the nuclear
spin density matrix, which is diagonal in the case being
considered. Taking into account Eq. (11), we can recast
expression (10) for the alignment of nuclei into the
form

(12)

For the particular case of J = 1, this expression was
derived in [8] and was confirmed there in experiments
with deuterons. For νQ > 0, it can be shown that, at inte-
gral values of J, A  –J(J + 1) in the limit of very low
positive temperatures TQ at angle values lying in the

range 0 ≤ φ < —that is, all nuclei are in
the state where the spin projection is m = 0; at

 < φ ≤ π/2, the populations are equally dis-
tributed among the m = J and the m = –J state, while the
alignment behaves as A  J(2J – 1). A totally differ-
ent situation is observed at very low negative tempera-
tures. If the spins have half-integer values and if νQ > 0,
all spins populate the m = 1/2 and the m = –1/2 state
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with equal probabilities for angle values in the range

0 ≤ φ < , the alignment A then tending to
the limit 3/4 – J(J + 1).

The method discussed above was proposed in [7, 8];
it can prove to be of use at modest quadrupole moments
of about 3 × 10–27 cm2, in which case hνQ ≈ h(ν – νJ0).
Experimentally, it takes a few tens of seconds to imple-
ment polarization by this method, the spin temperature
reaching ±10 µK.

Because of typically low magnetic moments of qua-
drupole nuclei, the degrees of polarization that are
achievable for admixed nuclei within the conventional
dynamical-orientation method will hardly exceed
±20%; therefore, a considerable enhancement of polar-
ization on the basis of the cross-relaxation method fea-
turing polarized protons [16] appears to be a consider-
able advancement toward a practical utilization of
dynamical methods. Basically, the idea consists in the
following: suppose that, in addition to J ≥ 1 nuclei, a
host material contains some highly abundant nuclei—
for example, polarized protons (J = 1/2)—which, in
view of a large gyromagnetic ratio, are characterized by
a large heat capacity of the spin system. Since the pro-
ton spin is 1/2, the interaction specified by Eq. (9) van-
ish for them. On the contrary, the interaction of quadru-
pole nuclei (J > 1/2) with the lattice survives in zero
magnetic field as well; by reducing H0, we can there-
fore render the Larmor frequency of the proton spins
equal to the quadrupole splitting of the spins of
admixed atoms. Just at this point, there occurs a cross-
relaxation transfer of a high proton polarization to the
quadrupole nuclei.

Relevant experiments were performed with ammo-
nia (NH3) [16]. In the field of 0.056 T, the quadrupole
splitting of stable nitrogen nuclei, 6νQ = 2.4 MHz, is
equal to the Larmor frequency of protons; under such
conditions, 14N nuclei are polarized to a nearly 50%
degree as the result of the cross-relaxation process [16],
which ensures a high polarization rate estimated at [17]

(13)

where γN/γH ≈ 7 × 10–2 is the ratio of the relevant
nuclear gyromagnetic constants, T2 ≈ 10–5 s is the time
of the transverse relaxation of proton spins, ∆0 is the
frequency separation between the spins, ∆ç is the pro-
ton line width, and ξ is a free parameter on the order of
unity. Setting ∆0 ≈ ∆ç, we obtain the rough estimate
W−1 ≈ 2 ms—that is, an extremely short polarization
time; it would be profitable to use this in the on-line
regime of implantation of nuclei in the target. The dis-
tribution of spins among magnetic sublevels that is
obtained by this method is not a Boltzmann distribu-
tion, but it can be frozen for a long time. This is because
the magnetic sublevels of quadrupole nuclei are not
equidistant, so that equilibration with respect to inter-
nal degrees of freedom is associated with long times of

3
1/2–( )arccos

W γN/γH( )2
T2 ξ

∆0

∆H
------ 

 cosh 
 

1–

,=
spin-lattice relaxation. Theoretically, spins can be
focused into a pure quantum state in such systems [9].

The method considered above can also be used in
the case of radioactive nuclei that are implanted in a
polarized target and which enter into the composition
of diamagnetic atoms or Kramers paramagnetic centers
[4]. However, the very idea that underlies the dynami-
cal orientation method as applied to rare nuclei and
which relies on the dynamics of collective spin–spin
interactions must be tested experimentally. It is conve-
nient to implement such tests by using comparatively
long-lived radioactive nuclei like the 22Na isotope. For
this nuclear species, the angular distribution of the rel-
evant radiations is analyzed in detail below.

3. CALCULATION OF THE ANGULAR 
DISTRIBUTION OF GAMMA RADIATION

Here, we will derive the required formulas for the
anisotropy in the angular distribution of photons origi-
nating from the decay of polarized nuclei. The exist-
ence of this anisotropy is an immediate corollary of the
fact that the diagonal density-matrix elements ρmm
associated with the action of any mechanism of dynam-
ical polarization differ significantly from the value
(2J + 1)–1, which corresponds to unpolarized nuclei.
The resulting formulas can be used for any distribution
of spins among magnetic sublevels—in particular, they
make it possible to calculate, in the case of tensor polar-
ization that arises owing to quadrupole splitting, the
angular distribution of photons versus the sign of spin
temperature [see Eqs. (11), (12)].

If the excited nucleus being considered has a spin J
and if the spin of the final nucleus is J ' = 0, the angular
distribution of photons that is taken with respect to the
magnetic-field direction and which is normalized to
unity has the form

(14)

where (θ) and (θ) are Wigner functions (ele-

ments of the matrix of finite rotations) and  are the
populations of spin states (these populations coincide
with diagonal density-matrix elements). Equation (14)
immediately follows from the formalism of helicity
amplitudes, which is convenient for describing two-
body decays [18, 19] (see Appendix). For J ' ≠ 0, a sim-
ilar formula for purely electric or purely magnetic
gamma transitions of specific multipole order L has the
form

(15)

W θ( ) = 
2J 1+

8π
--------------- ρmm

J( )
dm 1,

J( ) θ( )( )
2

dm 1–,
J( ) θ( )( )

2
+[ ] ,

m J–=

J

∑

dm 1,
J( )

dm 1–,
J( )

ρmm
J( )

W θ( ) 2J 1+
8π

--------------- CJ 'm µ–  Lµ
Jm( )

2

µ L–=

L

∑
m J–=

J

∑=

× ρmm
J( )

dµ1
L( ) θ( )( )

2
dµ 1–

L( ) θ( )( )
2

+[ ] ,
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where C is a Clebsch–Gordan coefficient. In J  J ' +
γ decays, the multipole order L of the radiation can gen-
erally take all integral values in the interval |J – J '| ≤ L ≤
J + J '; in the particular case of J ' = 0, we have L = J, and
expression (15) reduces to (14). Frequently, gamma
decay is dominated by an electric transition of the low-
est multipole order Lmin = |J – J '|, in which case we can
use expression (15) as an approximation. The spins J and
J ' can then be either both integral or both half-integer.

In the case where a dynamical polarization is imple-
mented with the aid of polarized protons (see Section 2),
the population probabilities are described by Eq. (11).
If Zeeman levels in a magnetic field H0 obey a Boltz-
mann distribution, one has [20]

(16)

where

(17)

Here, µ is the magnetic moment in units of the nuclear
magneton, mp is the proton mass, c is the speed of light
in a vacuum, and T is spin temperature.

Let us now consider the angular anisotropy of pho-
ton emission in cascade beta–gamma transitions of
nuclei having a nonzero magnetic moment (nonzero
spin J) [10]. Suppose that intermediate daughter nuclei
that have a nonzero spin J ' and which in turn undergo a
fast gamma decay are formed as the result of beta
decay. We will see below that, if a total orbital angular
momentum L is transferred to the emitted electron and
the emitted antineutrino and if their linear momenta are
not detected (that is, the relevant averaging is per-
formed), the polarization of the daughter nucleus
immediately following the beta-decay process is unam-
biguously related to the polarization of the initial long-
lived nucleus and, through it, to the initial spin temper-
ature. The lifetime of intermediate nuclei must be so
short that their spin state does not have time to change
sizably. More specifically, this means that the lifetime
of an intermediate nucleus must be much smaller than
the inverse frequency of hyperfine splitting of atomic
levels (τ ! 10–8–10–9 s). Under these conditions, the
angular distribution of photons with respect to the
direction of the magnetic field H0 contains information
about the unified spin temperature of initial radioactive
nuclei and nonradioactive nuclei under study that sur-
round them. Let us consider the generic decay process

a(J )  b(J ') + X(L)

under the condition that the set of particles X whose
momenta are not fixed carries away a total orbital angu-
lar momentum L. Since, in the case being considered,

ρmm e
mx

/ e
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there are no specific directions other than those that are
associated with the polarizations of particle a, the
polarization parameters of particle b formed as the
result of the above decay process are determined exclu-
sively by the vectorial composition of angular
momenta. In other words, we can replace the set of par-
ticles X by a fictitious particle whose spin is L, assum-
ing that the orbital angular momentum of the (b + X)
system is equal to zero. The elements of the spin den-
sity matrix for particle b are then related to the elements
of the spin density matrix for particle a by the simple
equation

(18)

where C stands for Clebsch–Gordan coefficients. It can
easily be seen that, if the spin density matrix for the pri-
mary particle a is diagonal, the density matrix for the
final particle b is also diagonal and that

(19)

From Eq. (11) and from the relation

(20)

which is known from the theory of the composition of
angular momenta, it follows that, if the decaying parti-

cle is unpolarized [  = (2J + 1)–1 for |m + µ| ≤
J], then the product particle b is also unpolarized:

 = (2J ' + 1)–1 . Equation (18) is well known in
the theory of the gamma decay of oriented nuclei—for
a final nucleus produced via transitions of specific mul-
tipole order L, this equation determines polarization
features averaged over all directions of photon emis-
sion [19, 21]. By X, we mean a photon in this case. In
accordance with the aforesaid, Eqs. (18) and (19)
describe the beta decay of nuclei as well (and also K
capture), provided that the orbital angular momentum L
is transferred to the product leptons and that the direc-
tion of their emission is not recorded. In particular, the
angular momentum of the electron–antineutrino
(positron–neutrino) system is equal to unity in the case
of an allowed Gamow–Teller transition [22]. If |J – J '| =
1, the allowed Gamow–Teller transition is dominant
(the remaining transitions are strongly suppressed); in
this case, the polarization of the nucleus produced via
beta decay is accurately described by Eqs. (18) and (19)
at L = 1.

Let us consider the case where, in the beta decay of
polarized admixed nuclei with a spin J, the spin of the
intermediate short-lived nucleus takes the value of J ' =
J – 1 or J ' = J + 1. Further, we assume that, as the result
of gamma decay, the intermediate nucleus goes over to
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a spinless state. Taking into account Eqs. (14) and (19),
we then find that the angular distribution of photons
that is taken with respect to the magnetic-field direction
(quantization axis) and which is normalized to unity
can be reduced to the form [10]

(21)

where  = . At J = 3
and J ' = 2, we have

(22)

where

(23)

If J = 2 and J ' = 1, the angular distribution in question
is given by
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At J = 1 and J ' = 2, the angular distribution of photons
has the form (22) with

(26)

From expressions (16) and (21)–(26), it follows
that, in the case of the Boltzmann distribution of Zee-
man levels in a magnetic field, reversal of the sign of
spin temperature does not affect the form of the angular
distribution of gamma radiation because these expres-
sions are symmetric under the substitution ρmm 
ρ−m – m. On the other hand, reversal of the sign of tem-
perature inevitably changes the angular distribution in
the case where there is a quadrupole splitting of the lev-
els. To illustrate the validity of this statement, we note
that, at sufficiently low spin temperatures, the elements
of the spin density matrix are transformed as ρJJ +
ρ−J − J  ρ00 under the above reversal of the sign [see
comments to Eq. (12)].

4. CALCULATION FOR THE CASCADE 
TRANSITION 22Na(3+)  22Ne(2+)  22Ne(0+)

By way of example, Podgoretskiœ proposed studying
the angular correlations of gamma radiation in the pro-
cess 22Na(3+)  22NÂ(2+)  22NÂ(0+) [10]. We have

analyzed the behavior of the angular distribution, con-
sidering the various methods of dynamical nuclear
polarization that were discussed in Section 2 (see
above). Recall that the experiments being discussed
must be conducted at an invariable H0, the only differ-
ence in the implementation of these experiments being
the following: in the case of dynamical orientation, the
electron spins of paramagnetic centers are irradiated
with a nonresonance microwave field, while, in the
alternative case, it is polarized protons that are sub-
jected to the effect of a nonresonance radio-frequency
field. It follows that the diagonal elements must be cal-
culated by formulas (16) and (11), respectively.

The radioactive nucleus 22Na (see Fig. 1) has a half-
life of 2.6 yr, its spin–parity and the magnetic moment
(in units of the nuclear magneton) being 3+ and µ =
+1.75 [23], respectively. Presently, we do not know
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experimental data that would suggest a nonzero qua-
drupole moment of the 22Na nucleus (see [23, 24]). In
order to demonstrate the potential of the new procedure
for measuring quadrupole moments, we will neverthe-
less assume that this nuclear species has a small qua-
drupole moment, whose magnitude is to be determined.
An intermediate nucleus 22Na with spin J ' = 2 is formed
as the result of a Gamow–Teller β+ transition character-
ized by an endpoint positron energy of 550 keV (or K
capture). The half-life of this intermediate nucleus is
3.7 × 10–12 s; that is, its lifetime is much smaller than
the characteristic period for the hyperfine splitting of
atomic levels. The 22Ne(2+) state emits 1270-keV pho-
tons, going over to the stable spinless isotope 22Ne [23].

In the case being considered, the angular distribu-
tion of 1270-keV photons with respect to the magnetic-
field direction can be calculated by formulas (22) and
(23), irrespective of the channel through which the tran-
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
sition 22Na(3+)  22NÂ(2+)  22NÂ(0+) occurs, β+

decay into a positron and neutrino or K capture. In gen-
eral, the ratio of the intensities of the gamma radiations
emitted at zero and a right angle is given by

β+, 90%; EC, 9.5%

β+, 0.06%

22Ne

γ = 1.27 MeV

τ = 3.7 ps

22
10Ne

22
11Na(3+)

2.6 g

2+

0+

Fig. 1. Diagram of beta–gamma transitions for 22Na(3+)
nuclear state.
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With the aid of Eqs. (16) and (17), it can be shown that,
in the case of the Boltzmann distribution of Zeeman
levels in a magnetic field, expression (27) assumes the
form

(28)

In experiments, it is convenient to calibrate detectors of
nuclear radiation by using unpolarized nuclei, in which
case the radiation is isotropic—that is, W(x = 0) = W0 =
1/(4π). Figure 2 shows the angular distributions of the
gamma radiation from polarized nuclei 22Na. These dis-
tributions, normalized to W0, were calculated by formu-
las (22) and (23) with the distribution (16) of spins
among magnetic sublevels at J = 3 and

(29)

where H0 and T are measured in T and mK, respec-
tively. If x ! 1 (weak magnetic field, high spin temper-

ature), it can easily be shown that all the quantities 
are approximately equal to one another, so that the
angular distribution of photons is isotropic. At x @ 1, in

which case  =  = 1, there is a sharp anisotropy:
expression (22) yields

(30)

If the quadrupole moment of 22Na is equal to zero
exactly, the Zeeman magnetic sublevels are equidistant;
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for a polycrystalline or an amorphous host material, the
angular distribution has the shape shown in Fig. 2. In
the process of dynamical orientation, spin temperature
is reduced, whereby the vector polarization, which is
determined by the Brillouin function

(31)

is increased. The angular distribution at x = ±0.25 in
Fig. 2 corresponds to spin temperatures of about
±6.6 mK, which are easily accessible in experiments;
the distributions at x = ±1.5 are associated with the low-
est temperatures of ±1.1 mK. As was mentioned above,
the shape of the distribution undergoes no changes
upon reversal of the sign of temperature.

Another case of the angular distribution of gamma
radiation, that of zero vector polarization and a high
tensor polarization of radioactive nuclei, is illustrated
in Fig. 3. It is assumed here that the microwave field
that generated a dynamical orientation of nuclei owing
to electron spins is switched off and that spin-3 radio-
active nuclei having a nonzero quadrupole moment and
occurring within a crystalline host material are polar-
ized as the result of the radio-frequency saturation of
polarized proton spins surrounding these radioactive
nuclei (see Section 2). A calculation reveals that, at zero
angle between the principal axis of the single crystal
and the magnetic-field direction, the angular distribu-
tion of gamma radiation from the cascade beta–gamma
decay of 22Na is affected by a weak quadrupole interac-
tion of the nucleus with a nonuniform electric field of
the crystal. Solid and dashed curves represent the
results for, respectively, positive and negative spin tem-
peratures. The populations of spin states were deter-

PJ
1
J
--- mρmm

m J–=

J

∑ B x J 3=,( ),= =
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mined by formula (11). It can be seen that, in the pres-
ence of quadrupole interaction, the shape of the angular
distribution changes qualitatively upon reversal of the
sign of temperature. In amorphous and polycrystalline

samples, the density-matrix elements (cosφ) in
Eq. (23) must be averaged over the isotropic distribu-
tion of axes, the integration measure being d(cosφ). As
a result, the anisotropy is smoothed out to a consider-
able extent (see Fig. 3), but the dependence of the angu-
lar distribution of photons on the sign of spin tempera-
ture still survives.

In order to polarize nuclei having a large quadrupole
moment, it is convenient to use the cross-relaxation
method featuring polarized protons. For this, the field
H0 must be adiabatically reduced to a value at which the
Zeeman splitting of proton spins in the residual field
coincides with the frequency of the quadrupole transi-
tion [16] in the nuclei being considered. In the reduced
field, the fast cross-relaxation process occurs between
the proton spins and the spins of rare quadrupole nuclei
[see Eq. (13)]. There is every reason to hope that the on-
line polarization of quadrupole nuclei implanted in a
polarized protonic target can be accomplished by using
this method. As was mentioned above, this concur-
rently opens the possibility for preparing pure quantum
states characterized by specific values of spin projec-
tions onto the magnetic-field direction [9]. For the same
decay scheme 3+  2+  0+ as for 22Na, we have

calculated the angular distribution of gamma radiation
from nuclei occurring in pure quantum states. The
results of this calculation are displayed in Fig. 4.

Dielectric host materials are advantageous in that
the lattice temperature at which it is still possible to polar-
ize quadrupole nuclei is higher in them (about 0.1 K) than
in ferromagnetic host materials (about 0.01 K). This is

ρmm
3( )

β γ

0 0.4 0.8 cosθ

1.10

1.05

1.00

0.95

0.90

0.85

4π W(θ)

x = ±0.25

 ±0.5

 ±1.0

 ±1.5

Fig. 2. Ratio of the angular distribution of gamma radiation
in the cascade beta–gamma decay of the 22Na(3+) nuclear
state to the isotropic distribution W0 = (4π)–1. The parameter
x is given by Eq. (29).
because the cooling rate in a cooler employing a disso-
lution of 3He in 4He decreases quadratically with
decreasing temperature, so that the rate of cooling of
the material used is approximately 100 times higher at
0.1 K than at 0.01 K. By way of example, we indicate
that, if a beam of intensity 105 radioactive nuclei per
second that have an energy of 10 MeV/nucleon and a
mass number of 60 is fully absorbed in a polarized tar-
get, the dissipated power is about 0.1 mW. At a temper-
ature of about 0.1 K, this heat influx can readily be
removed by a dissolution cooler of conventional power,
but, at 0.01 K, the required cooling rate is inaccessible
in practice. That it is necessary to reduce the field H0 is
a disadvantage of the method of cross-relaxation polar-
ization because the time of nuclear spin–lattice relax-
ation decreases in this case down to a few tens of hours.
Nonetheless, these times remain sufficiently long for
on-line investigations in the realms of short-lived nuclei
to be accomplished.

The above analysis implies that the method of
dynamical orientation will be applicable in the case of
rare nuclei as well. The question of whether this is so
requires an experimental verification. Some other ques-
tions—for example, that of determining the rate at
which rare nuclei are polarized by the dynamical-orien-
tation method if they are implanted in a target that con-
tains preliminarily polarized protons—also remain
unclear. These and many other questions cannot be
solved within classical NMR methods; here, it is neces-
sary to perform direct experimental tests with radioac-
tive nuclei.

0 0.4 0.8 cosθ

1.4

1.0

0.6

0.2

4π W(θ)

βX = –0.5; φ = 0°

βX = 0.5; aver.

βX = 0.5; φ = 0°

βX = –0.5; aver.

Fig. 3. Angular distributions of gamma radiation in the cas-
cade beta–gamma decay of the 22Na(3+) nuclear state in a
single crystal (φ = 0) and in an amorphous host material
(aver.) for specific spin temperatures of the same magnitude
but of opposite signs. The label “aver.” on the distributions
for the latter case denotes that they are averaged over the
angle φ. The graphs were calculated for a high tensor and
zero vector polarization. It is assumed that 22Na(3+) nuclei
in a dielectric host material have a small quadrupole
moment.
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5. CONCLUSION

In applying methods of dynamical nuclear polariza-
tion to studying magnetic and quadrupole moments of
implanted nuclei, an advantage offered by dielectric
host materials in relation to ferromagnetic ones is that
the former make it possible to do this at higher lattice
temperatures (about 0.1 to 0.2 K), to eliminate the
effect of the lattice on the spin system, and to weaken
the effect of local intrinsic magnetic fields. Fundamen-
tally, the dynamical polarization of radioactive nuclei
will open the way to study special features of the statis-
tics of rare nuclei and their spin–spin interactions and
enable one to employ reversal of spin temperature to
explore the quadrupole moments of such nuclei; we
also hope that this method can be harnessed to imple-
ment on-line polarization of nuclei implanted in a
polarized target. The above analysis reveals the physics
and technological potential of the methods of dynami-
cal nuclear polarization, as well as the possible limita-
tions on the applications of these methods.
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APPENDIX

Let us consider an arbitrary two-body decay C 
a + b. In the rest frame of the decaying particle ë, the
angular distribution of decay products has the form (see
[18, p. 314])

(A.1)
W θ ϕ,( ) 2J 1+

4π
--------------- a λa λb,( ) 2

dΛm
J( ) θ( )

mm'

∑
λaλb

∑=

× dΛm'
J( ) θ( )e

i m m'–( )ϕρmm' ,

cosθ

4π W(θ)

0 0.4 0.8

1.50

1.25
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0.25

ρ33 = 1 (ρ–3–3 = 1)

ρ22 = 1 (ρ–2–2 = 1)
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Fig. 4. Angular distributions of gamma radiation in the
3+  2+  0+ cascade beta–gamma decay of a nucleus

for the case where all spins are focused in the mJ state.
β γ
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
where θ and ϕ are, respectively, the polar and the azi-
muthal angle; J is the spin of particle C; λa and λb are
the helicities (spin projections onto the momentum
direction) of the final particles a and b, respectively;
Λ = λa – λb; a(λa , λb) are the helicity amplitudes nor-
malized by the condition

(A.2)

m and m' are the projections of the spin of particle C
onto the quantization axis; and ρmm' are elements of the
spin density matrix for particle C. The angular distribu-
tion in (A.1) satisfies the normalization condition

(A.3)

We further apply expression (A.1) to the decay of an
excited spin-J particle into a photon and a final spinless
nucleus. In this case, there is 2J-pole radiation [of elec-
tric type if the relative parity of the parent and the
daughter nucleus is η = (–1)J and of magnetic type if
η = (–1)J + 1]. If particle a is a photon, its helicity can
take only the values of λa = +1 and –1 because of zero
photon mass. For particle b, we take here a final spin-
less nucleus (λb = 0). Taking into account parity conser-
vation and Eq. (A.2), we obtain

(A.4)

Assuming that, in equilibrium, the spin density matrix
is diagonal in the representation of states characterized
by specific values of the spin projection onto the mag-
netic-field direction and considering that d functions
possess the property

we arrive at expression (14), which involves no addi-
tional gamma-decay parameters. If J ' is nonzero, the
angular distribution of photons depends on the ratio of
helicity amplitudes. In the case of a diagonal spin den-
sity matrix, the angular distribution of photons that is
constructed with allowance for parity conservation can
be represented as

(A.5)

where

(A.6)
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Abstract—The effective adiabatic approximation is constructed for the problem of three bodies on a straight
line that are coupled via short-range attractive delta-function potentials. It is shown that, in this system, there
arise a nonlocal momentum-dependent long-range effective potential and a polarization potential. A lower
bound on the binding energy of the system is obtained to a relative precision of about 10–6. It is shown that, to
within 0.03%, this approximation yields a correct asymptotic behavior of solutions and a correct behavior of
the phase shift for elastic scattering at relative momenta below the three-body-breakup threshold. A local con-
vergence of the adiabatic expansion in a finite interval of the radial variable is demonstrated. © 2001 MAIK
“Nauka/Interperiodica”.
1063-7788/01/640
Dedicated to the blessed memory of Professor Vladimir Vasil’evich Babikov
1. INTRODUCTION

Nonlocal potentials and momentum-dependent poten-
tials, referred to in the literature as velocity-dependent
potentials, have been widely used to construct a phenom-
enological description of nucleon–nucleon interaction
[1]. Similar potentials arise in the adiabatic representation
of the three-body problem [2] as the result of implement-
ing projection onto open channels via a canonical trans-
formation [3]. This construction of the effective adiabatic
approximation is similar to projecting solutions to the
Dirac equations onto large components by means of the
well-known canonical Foldy–Wouthuysen transforma-
tion [4]. It is of topical interest to investigate the conver-
gence of the adiabatic method and to construct an effec-
tive approximation of solutions that is consistent with
correct boundary conditions [5]. For investigations of the
proposed type, it is convenient to use the problem of three
particles on a straight line that are coupled by pair delta-
function potentials [6] since this problem has an analytic
solution [7]. The first steps along these lines were made
in [8]. It was shown there that the standard adiabatic
approximation yields an upper bound on the exact value
of energy and a lower bound on the phase shift for elastic
scattering. However, the exact phase-shift value and the
phase shift in the adiabatic approximation were found to
diverge significantly as the relative momentum increases
up to the three-body-breakup threshold. This is because
the full set of adiabatic equations is truncated to one equa-
tion of the conventional adiabatic approximation. A direct
analysis of the convergence of the adiabatic expansion for

1) Temple University, Barton Hall, 1900 N. 13th St., Philadelphia,
PA 19122-6082, USA.

* e-mail: proskur@thsun1.jinr.ru
1- $21.00 © 20027
an infinite set of coupled equations is a rather cumber-
some problem, so that the application of an alternative
approach within the effective adiabatic approximation
seems preferable.

For a system of three identical particles on a straight
line that interact via attractive pair delta-function poten-
tials, we construct here an effective adiabatic approxima-
tion involving a momentum-dependent potential. Within
the effective adiabatic approximation, asymptotic expres-
sions for solutions to an infinite set of equations in the
adiabatic representation are derived by isolating an
asymptotic energy-dependent centrifugal potential that is
calculated on the basis of sum rules for a complete set of
asymptotic adiabatic basis functions. The convergence of
the adiabatic expansion is checked numerically by con-
sidering saturation of the sum rules. It is shown that the
inclusion of nonadiabatic channel coupling restores exact
values of elastic-scattering phase shifts in asymptotic
solutions. By means of direct calculations in the effective
adiabatic approximation, we find a new lower bound on
the exact value of energy and reproduce a correct behav-
ior of the phase shift as the relative momentum increases
up to the three-body-breakup threshold.

2. FORMULATION OF THE PROBLEM
For three identical particles on a straight line, we

introduce local Jacobi coordinates {ξ, η} ∈ R2 in the
c.m. frame as

(1)

η 1
2
--- 

 
1/2

x1 x2–( ),=

ξ 2
3
--- 

 
1/2 x1 x2+

2
---------------- 

  x3– ,=
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where {x1, x2, x3} ∈ R1 are the Cartesian coordinates of
the particles. Let us now go over to hyperspherical
coordinates ρ and θ, which, in our case, appear to be the
conventional polar coordinates

(2)

In terms of the hyperspherical coordinates, the
Schrödinger equation for the wave function takes the
form

(3)

where E is the c.m. energy and m = (m1m2 + m1m3 +
m2m3)/(m1 + m2 + m3) is the effective mass [9], which
coincides, for identical particles (m1 = m2 = m3 = m),
with the mass m of each particle. Let us define the
potential V(ρ, θ) as the sum of pair potentials

(4)

In order to be able to draw a comparison with an
exactly solvable problem [7], we investigate the
reduced two-body Hamiltonian

which involves a pair potential proportional to a delta

function, V( η) = gδ(|η|)/ , with the coupling con-

stant g = cκ("2/m) being taken at κ = π/6. In the case
of attraction (c = –1), the Schrödinger equation in the
local representation of the pair channel (η/ρ @ 1) then
has the form (in the system of units where " = m = 1)

(5)

where  = κ/  = π/6 is the effective coupling con-

stant in the pair potential and  = 2mEj/"2 is the dou-
bled energy of the two-particle system. A complete set
of solutions belonging to the discrete and the continu-
ous spectrum of the two-body Hamiltonian has the
form
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(6)

Having isolated the factor ρ–1/2 in solutions to Eq. (3)

with the aid of the standard substitution Ψ = ρ–1/2 , we
obtain

(7)

where  is a parametric Hamiltonian at each fixed

value of ρ ∈  . Specifically, we have

(8)

where the potential energy (4) for the case of attraction
(c = –1) characterized by the effective coupling con-
stant  = π/6 is given by

A complete orthogonal set of the adiabatic functions
Bj(ρ, θ) ∈  Fρ ~ L2(C) is determined by solutions to the
eigenvalue problem on the circle C (–π ≤ θ ≤ π); that is,

(9)

The set of the eigenfunctions that are fully symmetric
with respect to permutations of identical particles,

+
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which includes the ground state, has the form [6]

(10)

for the following six sectors of the circle C:

The eigenvalues e0(ρ) and ej(ρ) can be expressed in
terms of the reduced eigenvalues y0 and yj as

The eigenvalues y0 and yj are determined from the tran-
scendental equations

(11)

where

We note that the matrix elements VKK ' (ρ) of the poten-
tial energy (4) that are taken between the solutions

(θ) ∈ F0 ~ L2(C) to the problem of a free rotation

on the circle C with the Hamiltonian  and which do
not vanish at K – K ' ≡ 0(mod 6) are given by

In the vicinity of the triple collision point ρ = 0, these
matrix elements are negligibly small in relation to the
matrix elements of the rotation operator that have the
form

Therefore, the set K ≡ j(mod6)—that is, K = 6j, j = 0, 1,
2, …—classifies the eigenfunctions of the parametric
Hamiltonian 

(12)

For large values of ρ, it can be shown that, in one of the
sectors of the circle C, local asymptotic solutions to the
parametric problem (9) correspond to the solution in
(6) for the φj(η) pair channel. In particular, the eigen-
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functions of the Hamiltonian hρ correspond to the solu-
tions for the pair channel at j = 0, that is,

(13)

If, however, j ≠ 0, then it follows from the rule of alter-
nation of solutions to the transcendental Eq. (11) that
we can determine the countable covering K/ρ ~ p and
use the correspondence

(14)

which completes a formal classification of the set of
adiabatic basis functions. An additional symmetriza-
tion of asymptotic sets is performed by means of a sim-
ple transformation of the exponential functions into
cosines; however, it is more straightforward to calcu-
late matrix elements in the exponential representation.
By using the above correspondence of the bases at
small and large ρ values, we can introduce a global adi-
abatic representation formed by the ä-harmonic repre-
sentation and a local Jacobi representation for the radial
wave function Ψ in terms of the coordinates (ρ, θ) and
(ρ, η), respectively; that is,

(15)

Averaging Eq. (7) over the basis (θ), we arrive at a
set of coupled equations (" = m = 1) in the K-harmonic
representation [9]:

(16)

Upon averaging Eq. (7) over the basis Bi(ρ, θ) =

(θ)UKi(ρ), where UKi(ρ) = 〈 |Bi(ρ)〉C is a

unitary operator (U(ρ): F0 ° Fρ) that implements the
transportation of the basis Fρ from the point ρ = 0 to the
point ρ, U(ρ): F0 ° Fρ, we obtain the set of coupled
adiabatic equations

(17)
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where

(18)

It should be noted that the A = {A}ij is an anti-Hermitian
matrix and that H = {H}ij is a Hermitian matrix:

(19)

The set of adiabatic Eqs. (17) can be represented in the
gauge-invariant form [2]

In order to calculate the matrix elements Aij(ρ), we
make use of the standard relation

where the matrix elements of the potential energy (4) are
calculated by using the functions in (10). In order to
determine B0(ρ, θ) and Bj(ρ, θ) explicitly, it is convenient
to represent the transcendental Eqs. (11) in the form

Eventually, we derive analytic expressions for Ajj ' in
terms of the solutions y0 and yj to the transcendental
equations [10]

(19‡)

At large values of ρ, the asymptotic behavior of the
matrix elements Aij(ρ) in the local representation are
given by

(20)
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For the matrix elements between the functions of the
discrete and the continuous spectrum for the pair chan-
nel, we arrive at the standard representation

(21)

The corresponding expressions for the matrix elements
〈0 |η2 |j〉  can be written in the form

(22)

By going over from summation over j in (15) to integra-
tion and substituting the expressions for the matrix ele-
ments (21) and (22), we obtain the sum rule

(23)

By substituting the relevant expressions (20)–(22) into
the definition of the diagonal matrix element H00(ρ) in

terms of (ρ), using expression (19), and replacing
summation over j by integration with respect to p, we
find from a direct calculation that H00(ρ) = 1/(4ρ2) +
O(ρ–4). This expression ensures a correct asymptotic
behavior of the adiabatic potential Λ(ρ) + H00(ρ) =

 + O(ρ–4) and can be used to verify the validity of
the sum rule (19) by performing summation of the
matrix elements Ajj ' calculated in terms of roots of the
transcendental Eqs. (11) over j. As a result, Eqs. (17) in
the local representation of the pair channel |0〉  can be
written in the form

(24)

where q2 = e = 2E –  is the doubled relative energy

reckoned from the two-body threshold  = .

3. EFFECTIVE ADIABATIC APPROXIMATION

Let us define the effective adiabatic approximation
as the result of projecting the set of adiabatic Eqs. (17)
onto the two-body channel:

(25)
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The solution χeff(ρ) ≡  is related to the solution
χj(ρ) of the set of Eqs. (17) by the canonical transfor-
mation

(26)

where

(27)

The effective potential Ueff(ρ) and the effective mass
µ(ρ) are given by

(28)

(29)

(30)

(31)

where Uad(ρ) is the adiabatic potential and δU(ρ) is the
effective nonadiabatic correction. Here, we have used
the relations

(32)

where primes denote differentiation with respect to ρ.
All quantities that appear in Eqs. (28)–(32), with the
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exception of , are functions of ρ and are calculated
in terms of the roots of the transcendental Eqs. (11) by
using the analytic expressions (19) and (19a) for A0j(ρ)
and H0j(ρ). The correction W(ρ) to the effective mass
µ(ρ) is displayed in Fig. 1‡, while saturation of the rel-
evant sum in (30) calculated at various values of the
harmonic number j is illustrated in Fig. 1b. The graph
of the nonadiabatic correction δU(ρ) to the effective
potential is shown in Fig. 2‡. The adiabatic potential
Uad(ρ) = Ueff(ρ) – δU(ρ) and the effective potential
Ueff(ρ) reckoned from the doubled energy of the two-
body threshold, e0 = 2E0 = –π2/36, are compared in
Fig. 2b. We note that the exponential behavior of the
adiabatic potential Uad over the range ρ ∈  (25, 40) (see
the inset in Fig. 2b) is compensated in the effective
potential Ueff by the nonadiabatic correction δU shown
in Fig. 2a. In Fig. 3‡, we can see how, with increasing
number j of the adiabatic state, the relevant sum (19)
converges to the correct asymptotic expression of the
exponentially decreasing adiabatic potential Uad(ρ) =
−(π2/9)exp{–ρπ2/18}{1 – ρπ4/1944 + π2/36 + 1/2ρ} [8].
Figure 3b illustrates the analogous convergence of the
sum in (31) multiplied by ρ4 to the effective polariza-
tion potential Ueff tending to the constant −18/π2. By
using expressions (20)–(23) in order to describe the
asymptotic behavior of Aij(ρ), we find that the asymp-
totic expression for the effective mass is

(33)

From Fig. 1‡, it can be seen that, for ρ  +∞, the
asymptotic behavior of the function W(ρ) determined
by Eq. (30) is given by ρ2W(ρmax)  –18/π2. Figure 1b
shows that the maximal value of j necessary for ensur-
ing a preset accuracy of the approximation of the sum
rule in Eq. (23) grows with ρ. Taking into account the
consistency conditions at large values of ρ,

(34)

we can recast Eqs. (17) into the form

(35)

For q〈0 |η2 |0〉/(2ρ) ! 1, the solutions to Eq. (25) that are
associated with the continuous spectrum can be repre-
sented in the form

(36)
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The solutions χj(ρ) to the set of Eqs. (17) and the solu-
tions χeff(ρ) to the effective Eq. (25) are related by the
inverse transformation (26). At large values of ρ, there
exists correspondence between solutions to Eqs. (17)
and Eq. (25),

(37)

which is specified by the operator –  of the

kinematical coupling χj(ρ) of the open (|i〉  = 0) and
closed (|j 〉  ≠ 0) channels in the local representation (24)
of each pair channel of the system of three identical
particles. It should be noted that, in the Jacobi parame-
trization (1), there is no kinematical coupling of the
channels since, in the corresponding pair of the Jacobi
coordinates, the variables for the open channel and the
closed channels are asymptotically separated; that is,
Ψ = φ0(η)χ0(ξ) for η/ξ ! 1. Upon substituting the
asymptotic expression (36) into relation (37), we find
that solutions to the asymptotic set of Eqs. (24) can be
represented as

(38)

χ j ρ( ) T j0
1– χ0

new ρ( )=

∼
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--------------------------------------- d
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j = 10 20 30
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Fig. 1. (‡) Correction W(ρ) (30) to the effective mass µ(ρ)
and (b) saturation of the sum in (30) calculated at various
values of the harmonic number j.
P

The asymptotic expression for the wave function Ψ
below the three-body-breakup threshold in the pair
channel |0〉  has the form

(39)

Taking into account the completeness condition

(40)

we then arrive at

(41)

For qη2/(2ρ) ! 1, the O(ρ–1) asymptotic expression for
this wave function is

(42)

By eliminating the nonadiabatic correction /ρ2

from Eq. (35) and considering the adiabatic behavior 

(43)

of the solutions, we can obtain a relation between the
exact phase shift δ and the adiabatic phase shift δad in
the form

(44)

It is obvious that the role of the nonadiabatic coupling
between the channels becomes more pronounced with
increasing q. In general, the difference between ξ ~

ρ(1 – η2/(2ρ2)) and ρ = , which leads to the
kinematical relation (37), can be neglected only in the
adiabatic limit q  0 and also for the bound states,

(45)

In order to obtain correct results, however, care should
be taken in some special cases [11]—for example, if the
scattering cross section has threshold singularities or if
there are zero-energy states of the three-body system
(q2 = e = 0). In particular, such a state exists in the sys-
tem of three identical particles on a straight line that are
coupled by attractive pair delta-function potentials of
the same strength (this is precisely the case considered
in the present study). The transformation in (26)
changes the form of the solution since the original
value of ξ is conserved only in the general solution Ψ
given by Eqs. (39)–(42). For this reason, it is necessary
to determine the value of the average-position operator

Ψ0 ρ 1/2–
B j| 〉 B j〈 |T 1–

B0| 〉 χ0
new ρ( ).
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 in the new representation  = Tχ of the pair
channel:

(46)

Here, the average-position operator  = ρ corre-
sponds asymptotically to the Jacobi coordinate ξ in the
original representation—that is, in the effective repre-
sentation of delocalization, the variable ξ is contained
in the new radial function  = Tχ. In the adiabatic

representation of χ, the average-position operator  is
indeed determined by the relation

(47)

where δ  is the delocalization of ξ; at large ρ, ρ @ 1, it
appears to be on the order of 〈0 |η2 |0〉/2ρ ! 1, that is,

(48)

ρ̂m
new χ0

new

ρm
new χ0

new〈 |ρ̂m
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new| 〉=

=  χ〈 |T 1– ρ̂m
new

T χ| 〉 χ〈 |ρ̂m χ| 〉 ρm.= =

ρ̂m
new

χ0
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ρ̂m

ρ̂m T
1– ρ̂m
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T T

1– ρT ρ δρ̂,+= = =

ρ̂

ρ̂m T
1– ρT ξ〈 〉 .∼=

0
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–2

4
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24 28 32 36 40

Fig. 2. (‡) Nonadiabatic correction δU(ρ) (31) to the effec-
tive potential and (b) adiabatic potential Uad(ρ) (solid curve)
and effective potential Ueff(ρ) (dashed curve).
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This construction makes it possible to visualize the
delocalization in  near ρ with the amplitude δ  pro-
portional to the root-mean-square size of the target in
the ground state. This construction is similar to the def-
inition of the average-position operator [4]. Thus, we
have constructed the effective approximation (25)–(32)
for the set of adiabatic Eqs. (17) and found an analytic
representation for the asymptotic behavior of the rele-
vant solutions. It was shown above that, in the adiabatic
approximation, it is necessary to take into account the
asymptotic coupling of channels in the scattering prob-
lem, since the slow variable ρ exactly goes over to the
corresponding Jacobi coordinate ξ only upon expand-
ing the three-particle wave functions in a complete set
of adiabatic functions. The above transition from the
original Eq. (17) to the effective Eq. (25) can be com-
pared with the elegant method that makes it possible to
eliminate small components of solutions to the Dirac
equation via the Foldy–Wouthuysen transformation
and which reveals delocalization (Zitterbewegung) of
the average-electron-position operator at dimensions

ρ̂m ρ̂

3

2

1

0

–1

–2
25 30 35 40 ρ

j = 500
400
300
200
150

100

Uad, 10–8

(a)
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Ueff × ρ4

0
–18/π2
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–10

–20
10 30 50 70 90 110

ρ

10 20 30 40 50

j = 500

150
100

Fig. 3. (‡) Convergence of the sum in (19) to the asymptotic
expression for the adiabatic potential Uad(ρ) and (b) conver-

gence of the sum in (31) multiplied by ρ4 to the asymptotic
expression for the effective polarization potential Ueff(ρ)

tending to the constant –18/π2 at various values of the adia-
batic-state number j.

–15
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on the order of the Compton wavelength for an electron
[4], whereby the correct probabilistic interpretation for
all observables like the coordinate and the momentum
can be obtained.

It should also be noted that, by means of the stan-
dard substitution χeff(ρ) = µ1/2(ρ) (ρ), Eq. (25) with
a momentum-dependent potential can be reduced to the
equation

(49)

which involves the q2-dependent potential

(50)

In some cases, this potential is more convenient for
analyzing the characteristics of solutions. This repre-
sentation makes it possible to compare the effective
adiabatic Eq. (25) and the standard equation involving
an energy-dependent potential [1],

(51)

Here, the term –(1/2)W '' corresponds to the nonadia-
batic effective correction δUeff(ρ). This means that it is
legitimate to compare the effective potential in (50)
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Fig. 4. Radial wave functions for the ground state (ρ)

and the loosely bound state (ρ) in the Born–Oppenhe-

imer approximation (solid curves) and radial wave functions

in the adiabatic (ρ) and the effective adiabatic (ρ)

approximation [dashed curve].
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with the standard definition of the energy-dependent
potential,

Here, the second term corresponds to ∆Ueff(ρ) from
Eq. (50). Analytic solutions to similar equations with a
potential in the form of a modified well were consid-
ered in [12]. As will be demonstrated in the sections
that follow, the approach considered above can be used
to develop adequate methods for solving the three-body
scattering problem.

4. DISCRETE SPECTRUM
OF THE THREE-BODY PROBLEM

Let us consider the eigenvalue problem for an equa-
tion of the type in (25) with the boundary conditions
χ(0) = 0 and χ(+∞) = 0 and assume the normalization
condition 〈χ |χ〉  = 1. In order to solve the problem for
the discrete spectrum, we made use of the fourth-order
finite-difference scheme and of a multiparameter con-
tinuous analog of the Newton method, implementing
preliminarily a reduction of a singular boundary-value
problem to a regular one [13, 14]—that is, a transition
from an infinite interval to the finite interval ζ ∈  [0, 1].

For the first two versions of solving the problem, we
set W(ρ) = 0; that is, µ(ρ) = 1 and δU(ρ) = 0. In the first
version, we choose the Born–Oppenheimer approxima-
tion UBO(ρ) = Uad(ρ) – δU(ρ) for the Ueff(ρ). The solu-

tions for the ground state (ρ) and for a loosely

bound state (ρ) of the eigenvalue problem (25)
with the Born–Oppenheimer potential are presented in
Fig. 4. The Born–Oppenheimer approximation gives a

lower bound on the ground-state energy  and
ensures the presence of a loosely bound state occurring

at energy  and corresponding to the state at zero
energy q2 = e = 0 reckoned from the pair-threshold
energy E = Epth. In the second version of solving the
problem, we choose the standard adiabatic approxima-
tion Uad(ρ) for the Ueff(ρ). In this case, the loosely
bound state obtained in the Born–Oppenheimer
approximation disappears; that is, the standard adia-
batic approximation with the potential Uad(ρ) provides

an upper bound on the energy . The corresponding

radial wave function (ρ) that was found in the adia-
batic approximation is plotted in Fig. 4.

In the third version, we solved the problem with the
effective potential Ueff(ρ) for Eq. (25) and the boundary
conditions χeff(0) = 0 and χeff(+∞) = 0, imposing the
normalization condition (45). The corrections W(ρ) and

Veff
st

q
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PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001



EFFECTIVE ADIABATIC APPROXIMATION 35
δU(ρ) were calculated by formulas (30) and (31),
respectively, their graphs being displayed in Fig. 1a
and Fig. 2a. Solving this eigenvalue problem for the
effective approximation leads to the new lower bound

of  = –1.096626("2/2m) on the exact energy value
Eexct = –π2/9("2/2m) with a deviation equal to 2.6 × 10–6.

The radial wave function (ρ) calculated in the
effective adiabatic approximation is shown in Fig. 4. It
should be noted that, on the chosen scale, the distinc-

tion between the functions (ρ) and (ρ) is negli-
gibly small. The results of the numerical calculations
for the above three versions of deducing bounds on the
energy are presented in Fig. 5‡—these are the lower

bounds  and  that the numerical calculation
within the Born–Oppenheimer approximation yields
for the exact energies of the loosely bound and the
ground state, respectively, and the upper adiabatic

bound  and the lower effective bound  on the
exact energy value Eexct . For the sake of completeness,
the doubled energy of the three-particle threshold Etth
and the doubled energy of the two-particle threshold
Epth are also shown in Fig. 5‡.

5. CONTINUOUS SPECTRUM

In the continuous spectrum below the three-body-
breakup threshold, E0 < E < 0, we used the equation for
the phase function [1] in the adiabatic-approximation
version with the potential Uad and in the effective-adia-
batic-approximation version with the potentials µ(ρ)
and Ueff(ρ); that is, we reduced the corresponding
boundary-value problems for the continuous spectrum
on the semiaxis ρ ∈ [0, ∞) to the Cauchy problems for
the equations describing phase functions. The latter
problems were solved by the fourth-order Runge–Kutta
method. Let us recall that the phase shift δ(q) as a func-
tion of the relative momentum q (q2 = 2(E – E0),  0 < q2 <
(π/6)2) is obtained as the asymptotic expression for the
phase function δ(q, ρ)—that is, δ(q) = (q, ρ). The

phase shift δeff(q) corresponding to the effective adia-
batic approximation is then determined by the asymp-
totic behavior of the solution to the Cauchy problem for
the phase function δeff(q, ρ) = δ(q, ρ),

(52)
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where the equation for this function, with a potential
dependent on the momentum q, follows from Eq. (25)
with the potential given by (28)–(31).

Similarly, the phase shift δad(q) corresponding to the
adiabatic approximation is determined from Eq. (52)
by deriving the asymptotic expression for the solution
to the Cauchy problem specified by the relevant equa-
tion for the phase function δad(q, ρ) = δ(q, ρ) at W(ρ) =
0 and δU(ρ) = 0. The graphs of δexct(q), δad(q), and
δeff(q) are displayed in Fig. 5b. We note that the results
of the calculations for the adiabatic phase shift δad(q)
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Fig. 5. (‡) Diagram of the energy levels in the system
involving three identical particles interacting via attractive
pair delta-function potentials. Shown in this panel are the
doubled values of the energies corresponding to the three-
body-breakup threshold (Etth) and the two-body-breakup
threshold (Epth); to the results obtained numerically in the
Born–Oppenheimer approximation for the lower bounds

 and  on the exact values of the energies of,

respectively, the loosely bound and the ground state; and to

the upper adiabatic bound  and the lower effective

bound  on the exact value of energy Eexct . (b) Elastic-

scattering phase shift δ as a function of the relative momen-
tum q of the incident particle and the pair below the three-
body-breakup threshold: (solid curve) exact analytic solu-
tion δexct; (dotted curve with open circles) results in the adi-
abatic approximation; and (closed circles) results in the
effective adiabatic approximation, δeff.
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coincide with the results from [8]. In that study, the
phase shift for the exact value δexct(q) was determined
under assumption that, at large values of ρ, the wave
function in the pair channel has the form

(53)

where

(54)

From a comparison with the exact value of the phase
shift, δexct(q), it follows that, in the range 4 × 10–6 < q2 <
(π/6)2, the effective adiabatic approximation yields a
correct behavior of the function δeff(q) to an absolute
precision of 2 × 10–3. It can be seen from Fig. 5b and
from the table there that, at small q, the phase shift cal-
culated in the adiabatic approximation tends to π, but
that the phase shift calculated in the effective adiabatic
approximation tends to 3π/2, in accord with the exact
phase-shift value, the latter corresponding to a state in
the three-body system at zero energy (e = q2 = 0) reck-
oned from the pair-threshold energy E = Epth. This com-
parison confirms the convergence of the effective adia-
batic approximation and gives a lower bound on the
bound-state energy to within 2 × 10–6. As can be seen
from Eq. (52), the phase-shift values calculated in the
adiabatic and the effective adiabatic approximation are
indeed related by Eq. (44).

6. CONCLUSION

We have presented an explicit scheme that makes it
possible to calculate, within the effective adiabatic
approximation for the three-body problem, the energy
levels of a discrete spectrum to a relative precision of
10–6 and the elastic-scattering phase shift as a function
of the relative momentum of the third particle with
respect to the center of mass of the pair below the three-
particle-breakup threshold to a relative precision of 3 ×
10–4. In order to highlight the efficiency of the method,
we have chosen an exactly solvable problem, whereby
it is possible to demonstrate the convergence of our
approximate results to exact ones and, hence, to prove
that the proposed approach does indeed give correct
results and can be used to solve actual problems. As an
example of such a problem, we indicate the well-known
calculation of the loosely bound state of a mesomolec-
ular ion of the deuteron and the triton in [11]. The prob-
lem considered here—that of three identical particles
on a straight line that interact via attractive pair delta-
function potentials—exhibits special features peculiar
to more interesting three-body systems involving
loosely bound states. In the system of particles under
investigation, a three-particle state at zero energy reck-
oned from the pair-threshold energy corresponds to the
above loosely bound state because, in this system, there
are no transitions from the pair channel into the channel
featuring breakup into three particles. Below the three-

Ψ ρ 1/2–
B0 ρ θ,( )χ ρ( ), χ ρ( ) qρ δexct+( ),sin∼∼

δexct
3π
2

------
8 3q/π

1 36q
2
/π2

–
----------------------------.arctan–=
body-breakup threshold, the elastic-scattering phase
shift calculated in the effective adiabatic approximation
as a function of the relative momentum of the third par-
ticle with respect to the center of mass of the pair
agrees, to a preset accuracy, with the known values cal-
culated by the analytic formula (54). In the vicinity of
the pair threshold, both the above phase shift in the
effective adiabatic approximation and the known ana-
lytic solution tend to 3π/2; this corresponds to the pres-
ence of a bound state and a zero-energy state in the
three-particle system.

The present formulation of the problem and the set
of figures illustrating intermediate and final results
make it possible to understand the basic features of the
realization of the proposed approach and show that, in
order to calculate, to a preset precision, the characteris-
tics of actual three-particle systems over a finite inter-
val of the slow variable, it is necessary to investigate in
detail the asymptotic behavior of effective potentials.

The proposed approach is based on reducing the set
of adiabatic equations to one effective adiabatic equa-
tion for the open pair channel with the aid of the oper-
ator canonical transformation and on constructing the
corresponding effective potential (momentum-depen-
dent potential) and the corresponding effective mass.
For the problem considered here, this reduction has
been implemented, in quite a transparent way, by using
the analytic representation of the parametric spectral
problem on a circle. As a result, we have illustrated the
convergence of the adiabatic-expansion method within
the effective adiabatic approximation and shown that
the relevant sum rules are saturated and form the cor-
rect asymptotic behavior of the effective and the
momentum-dependent potential. It has been estab-
lished that, below the threshold for three-body breakup,
the kinematical coupling of closed channels transforms
into an asymptotic centrifugal energy-dependent poten-
tial proportional to the root-mean-square dimension of
the open-channel pair subsystem. As to the asymptotic
behavior of the effective potential, it is determined by
polarization interaction. This circumstance ensures a
correct behavior of the phase shift over the entire
energy region below the three-body-breakup threshold,
with the exception of a narrow energy interval (of width
less than 4 × 10–6) above the two-body threshold (inves-
tigation of this interval is beyond the accuracy of the
effective-adiabatic-approximation method).

Our analysis has demonstrated that the standard adi-
abatic approximation gives no way to obtain a correct
threshold behavior. It has been shown that reducing the
original problem that involves short-range pair poten-
tials to an effective problem for the open pair channel
can be represented as a problem featuring a nonlocal
momentum-dependent potential. As consequence,
there arise long-range potentials, and it is required to
explore and construct relevant asymptotic expressions.
In this sense, the approach based on the effective adia-
batic approximation can be compared with the well-
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
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known method for constructing the effective nonadia-
batic potential for exotic three-particle systems featur-
ing Coulomb interaction [15, 16]. From our analysis of
the convergence of the adiabatic expansion, it follows
that the expansion of the three-body wave function in
the truncated set of the eigenfunctions of the operator
of rotations on a circle—this is an important part of the
expansion in the K harmonics—cannot ensure a correct
behavior of the asymptotic expressions or the spectrum
of three-body problem in the pair channel. It can be
expected that a further development of the effective adi-
abatic approximation proposed here will lead to the for-
mulation of an adequate method for treating the prob-
lem of three-body scattering.
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Abstract—The properties of the Hartree–Fock potential that coincides with the self-consistent potential and
with the real part of the optical potential for nucleons in the case of a global regime of averaging are investigated
by consistently taking into account the velocity-dependent components of nucleon–nucleon forces and nonlo-
cality effects. For the first time, the properties of the effective energy-dependent Hartree–Fock potential are ana-
lyzed at negative nucleon energies. It is shown that the form of this potential undergoes a significant change
upon reversal of the sign of nucleon energy. The conditions of applicability of the semiclassical approximation
are found. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Within generalized Fermi liquid theory [1] and the
theory of open Fermi systems [2], it can be shown that
the true self-consistent field for nucleons in nuclei and
the real part of the optical potential for nucleons in the
case of a global regime of averaging do not include
nuclear-polarizability effects and that they coincide
with generalized Hartree–Fock nonlocal potential
determined by realistic nucleon–nucleon (NN) forces.
The nonlocal Hartree–Fock potential can be expressed
in terms of a local Hartree–Fock potential that is depen-
dent on the nucleon-momentum operator. In turn, the
local Hartree–Fock potential can be reduced to a local
energy-dependent potential that is usually used to ana-
lyze experimental data. The local energy-dependent
potential in nuclear matter was calculated in [3] as a
function of nucleon energy, and it was shown there, for
some sets of the parameters of realistic NN forces, that
the calculated values of this potential are consistent
with the depths of phenomenological optical potentials
for nucleons at the center of comparatively heavy
nuclei. The features of the self-consistent field and of
the real part of the optical potential for nucleons in
finite nuclei were comprehensively investigated in [4,
5] by using the second-order approximation for the
momentum dependence of the local Hartree–Fock
potential for nucleons. Here, we aim at studying the
radial and the energy characteristics of the self-consis-
tent and the optical potential for nucleons in nuclei at
positive and negative nucleon energies. In doing this,
we take consistently into account both the velocity-
dependent components of NN interactions and the
nucleon-momentum dependence of the local Hartree–
Fock potential.
1063-7788/01/6401- $21.00 © 20038
2. GENERAL PROPERTIES OF THE HARTREE–
FOCK POTENTIAL FOR SPHERICAL NUCLEI

In the Hartree–Fock approximation, the
Schrödinger equation for the wave function ϕE(r1)
describing a nucleon of energy E has the form

(1)

where r1 is the set of nucleon coordinates, including

spatial, spin, and isospin variables; k1 = –i  is the

nucleon-momentum operator; and (r1) is the nonlo-
cal Hartree–Fock potential

(2)

Here, the Hartree potential VH(r1) is given by [1]

(3)

where (r1, r2) is the Hartree part of the potential rep-
resenting the pair nuclear interaction of nucleons and
ρ(r1) = ρn(r1) + ρp(r1) is the total nucleon density in the
nucleus, ρn(r1) and ρp(r1) being, respectively, the neu-
tron and the proton density. The nonlocal Fock poten-

tial (r1) has the form [1]

(4)

where (r1, r2) is the Fock part of the potential repre-
senting the pair nuclear interaction of nucleons and
ρ(r1, r2) = ρn(r1, r2) + ρp(r1, r2) is the total density
matrix for intranuclear nucleons.

"
2k1

2

2m
----------- V̂ r1( ) E–+

 
 
 

ϕE r1( ) 0,=

r1∂
∂

V̂

V̂ r1( ) VH r1( ) V̂F r1( ).+=

VH r1( ) V̂
H

r1 r2,( )ρ r2( ) r2,d∫=

V̂
H

V̂F

V̂F r1( )ϕ r1( ) 1
4
--- V̂

F
r1 r2,( )ρ r1 r2,( )ϕ r2( ) r2,d∫–=

V̂
F

001 MAIK “Nauka/Interperiodica”



SELF-CONSISTENT AND OPTICAL POTENTIALS 39
In the potential (2), we have omitted the terms that
are generated by the Coulomb interaction of protons
and which were considered in [6] and terms depending
on the projection of the nucleon isospin, which are
associated with the difference of the numbers of pro-
tons and neutrons in the nucleus under investigation. In
general, the NN potential includes a central (c) and a
tensor (t) interaction, as well as nucleon-velocity-
dependent interactions like the first-order spin–orbit
interaction (ls), the second-order interaction in l (l2),
and the second-order spin–orbit interaction (ls2).

Let us consider the properties of the self-consistent
and the optical potential for nucleons without taking
into account the tensor interaction, whose contribution
to the potential (2) is strictly equal to zero in spherical
nuclei, and the contribution of the first-order spin–orbit
interaction, which was considered in detail elsewhere [4].

The Fock potential (r1) (4) is real-valued because

the pair-potential (r1, r2) and the density matrix ρ(r1,
r2) are real valued, and it is self-conjugate. The last
property follows from the fact that the matrix element

(r1) (r1, r2)ρ(r1, r2)ϕE(r2)dr1dr2 can be reduced

to the Hermitian conjugate form (r1) (r1,

r2)ρ(r1, r2) (r2)dr1dr2 by making the substitution
r1  r2 and by using the self-conjugacy and symme-

try properties of the NN potential, (r1, r2) = (r2,
r1), and of the density matrix,

(5)

That the potential (r1) is real-valued and self-conju-
gate leads to invariance of this potential under time
reversal, in which case the modulus of the nucleon
momentum changes sign, and, as a consequence, to ful-
fillment of the detailed-balance principle [7].

Upon taking into account the l2 and the ls2 NN
interaction, the Hartree potential (3) becomes depen-
dent on the nucleon-wave-vector operator k1 and can be
represented in the form

(6)

where

(7)

As to the quantities (r1) and (r1) (i = 0, 1, 2), the
explicit expressions for them are given in the Appendix.

By using the operator of finite translations along the
nucleon spatial coordinate r1 [8], we can go over from
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the nonlocal potential (r1) to the local momentum-
dependent potential

(8)

where r = r2 – r
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we represent the Fock potential VF(r1, k1) (8) in the
more symmetric form

(14)

where the operator  coincides with the operator k1,
but the former acts only on the coordinate r1 of the sym-
metrized density matrix ρ(r1 – r/2, r1 + r/2).

Upon the removal of the factor (r)  from
the integral in Eq. (14), it becomes coincident with the
Wigner matrix [9], which is extensively used in the
semiclassical approximation.

By using representation (9) for exponentials in Eq. (14)
and an expansion of the type (10) for ρ(r1 – r/2, r1 +
r/2), we arrive at

(15)

where (r1, r) is given by Eq. (11) with the substitu-
tion of ρ(r1 – r/2, r1 + r/2) for ρ(r1, r1 + r). By virtue of
relation (5), the function ρ(r1 – r/2, r1 + r/2) does not
change under the inversion of the coordinate r; there-
fore, the quantity l1 in Eq. (15) takes only even values,
and the relevant integral with respect to dr is nonzero if
the parities of the momenta l and l2 coincide. Because
of this, expression (15) is invariant under the time

reversal, which results in k1  –k1 and   – .

It will be shown below that, for a spherical nucleus,
the symmetrized density matrix ρ(r1 – r/2, r1 + r/2) is
virtually independent of the angle between the vectors

r1 and r and coincides with the quantity [ (r1, r)].

It follows that the vector operator , which acts on the
coordinate r1 in the density matrix ρ(r1 – r/2, r1 + r/2),
is directed along the radius vector r1 and that this oper-

ator can be represented as  = – i . In this case,

formula (15) is simplified significantly to become
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3. EFFECTIVE ENERGY-DEPENDENT 
POTENTIAL FOR NUCLEONS

As will be shown below, the series in l in Eq. (12)
converges rather fast, so that it is possible to discard all
terms from l = 2 because of their smallness. The Fock
potential (12) then takes the form

(17)

where

(18)

(19)

with

(20)

With the aid of Eqs. (6) and (17), the Schrödinger equa-
tion (1) can be written in the form

(21)

where the effective nucleon mass m*(r1, k1) is defined
as

(22)

For all terms in (21) that are dependent on the mod-
ulus of the nucleon-momentum operator k1, their
expansions in power series in k1 involve only even pow-

ers of k1. Further, the operator  can be replaced by 
in using Eq. (28), which is derived below. At the same

time, the operators , where n = 4, 6, …, can be

replaced by the numbers  if we employ the
results presented in Section 4 below. At nucleon ener-
gies E ≥ 10 MeV, the semiclassical approximation is

valid, in which case  = ; at lower energies, 

differs from  only in the surface region of the
nucleus, where the modulus of the nucleon–nucleus
potential decreases noticeably with increasing r1 and

where  becomes much less than  for n = 4, 6, … .
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We will seek a solution to Eq. (21) in the form [5]

(23)

where the form factor f(r1, ) will be chosen in such a
way as to ensure the vanishing of gradient terms of the
form k1 (r1) in this equation. Our calculations—the
results are presented in Section 4 below—reveal that,
for all r1 and for  ≤ 2.5 fm–1 (these values corre-
sponding to the entire energy region E ≤ 100 MeV),

"2 /(2m*(r1, )) exceeds the potential [V0(r1, ) –

(I(r1, ) + J(r1) + (r1))  – V0(r1, 0)] [see
Eq. (21)] in absolute value by a factor greater than 4.
Taking all the above into account, we find that, to a pre-
cision of 25%, the function f(r1, ) satisfies the equa-
tion

The solution that satisfies this equation and the bound-
ary condition f (r1, )  1 has the form

(24)

For the function (r1), we then have the equation

(25)

where

(26)

(27)

By using Eq. (22) and the relation

(28)

which follows from (25), we now find that the effective
local energy-dependent potential V(r1, E), which
appears in Eq. (25) instead of the potential (26), satis-
fies the nonlinear equation
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The potential V(r1, E) in (29) differs from similar
potentials that are widely used in calculating optical
potentials for nucleons [10] in that the former involves
a gradient term and in that it employs realistic NN
forces instead of effective ones. As was shown in [1],
solving the elastic-scattering problem on the basis of
the wave function (r1) determined by the
Schrödinger equation (25) with the effective energy-
dependent potential V(r1, E) is equivalent to analo-
gously solving the Schrödinger equation (1) with a
nonlocal Hartree–Fock potential. The energy depen-
dence of the potential V(r1, E) results in that, for dis-
crete states at rather close negative-energy values, the
orthonormalization condition for the functions (r1)
obeying Eq. (25) takes the form

(30)

where the quantity (r1, E) is determined by the rela-
tion

(31)

The calculations presented in the next section show
that, in the entire energy range –60 ≤ E ≤ 100 MeV, the
quantity (r1, E) (31) is close to the effective mass

m*(r1, E) ≡ m*(r1, (r1, E)) (22); it follows that, with
allowance for Eq. (24), the condition in (30) reduces to
the standard orthonormalization condition for the func-
tions ϕE(r1):

(32)

Therefore, the energy-dependent potential V(r1, E)
simulates both the self-consistent and the optical poten-
tial for nucleons.

It is convenient to represent this potential in the
form

(33)

where (r1) is a function that is equal to unity at r1 =
0 and which has a form close to that of the Fermi distri-
bution

(34)

Moreover, the potential V(r1, E) can be written in the
form that is usually used to represent phenomenologi-
cal optical potentials for nucleons; that is,

(35)
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where

(36)

It is interesting to compare the above formulas for
the effective potential V(r1, E) with similar formulas
derived in the semiclassical approximation, which is
valid in the case of particles having high momenta and
moving in slowly varying potential fields such that
(see [8])

(37)

In this approximation, we can retain only the zero- and
first-order terms in r1 /2 in Eq. (16) and discard deriv-
atives of the function m*(r1, E) with respect to r1 (gra-
dient potential). As a result, we obtain

(38)

where

(39)

Under the same conditions, the effective mass m*(r1, E)
(22) becomes nearly coincident with the quantity

(r1, E) determined by Eq. (31) with the potential
V(r1, E) (38).

It is also interesting to compare the potential (29)
with that which is obtained by using the second-order
approximation in  in the momentum dependence of
the Fock potential [3–5]. For this, we expand the spher-
ical Bessel functions j0 and j1 in Eqs. (18) and (19) in

series in  and retain terms of order not higher than
two. The effective mass (22) then becomes independent
of energy, m*(r1, E) = m*(r1), and the potential V(r1, E)
appears to be a linear function of energy,

(40)

where

(41)
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and Vgrad(r1) is determined by Eq. (27) with the effec-
tive mass

(42)

4. PROPERTIES OF THE SELF-CONSISTENT 
AND THE OPTICAL POTENTIAL 

FOR NUCLEONS

Let us investigate the characteristics of the self-con-
sistent and the optical potential for nucleons by consid-
ering the example of the 208Pb nucleus. The proton and
the neutron density are chosen here in the standard
Fermi form [11], that is,

(43)

where  +  = ρ0 = 0.17 fm–3, RA = 1.1A1/3 fm, and
a0 = 0.54 fm. The single-nucleon density matrix is rep-
resented in the semiclassical form

(44)

where  and (R) = (3π2ρn, p(R))1/3 is the

semiclassical Fermi momentum with

 and .

For the quantity ωn, p(r1) defined in the Appendix as
the density of the square of the nucleon momentum, we
use the semiclassical approximation

(45)

For the potentials (29), (38), and (40), the effective
diffuseness a, which appears in expressions of the type
in (34), will be calculated according to the scheme

(46)

For the parameters of vacuum NN forces, we take
the set from [12], which was successfully used in inves-
tigating the properties of optical potentials for nucleons
in nuclear matter. The ensuing analysis is performed for
the nucleon-energy range –60 ≤ E ≤ 100 MeV.
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The sum of the Hartree potentials (r1) and

(r1) is independent of the nucleon momentum and
is of an attractive character, its value at the center of the
nucleus, –40.5 MeV, being maximal in magnitude. The

quantities J(r1) and (r1) are close (over the entire
region of r1, their difference does not exceed
0.07  MeV fm2), their maximum absolute values of
2.26 MeV fm2 being attained at the center of the
nucleus.

Let us explore the convergence of the expansion (12)
of the Fock potential VF(r1, k1) in orbital angular
momenta l. From Fig. 1, which displays the functions
i−lVl(r1, ) ≡ (r1, ) for l = 0, 1, 2, it can be seen
that, with increasing l, these functions decrease very
fast in absolute value. By way of example, we indicate
that, over the entire significant region of the parameters
r1 and , the absolute value of the function (r1, )
does not exceed 0.87 MeV, this value being achieved in
the surface region of the nucleus at  ≅  1.8 fm–1 (E ≅
40 MeV). To a precision higher than 0.9 MeV, only the
l = 0 and l = 1 terms can therefore be retained in expan-
sion (12), but this corresponds to Eq. (17). In the energy
interval under investigation, the Fock components of the
potential that are associated with the l2 and ls2 interac-
tions do not exceed 1.2 MeV in absolute value
(0.74 MeV for E ≤ 40 MeV) over the entire region 0 ≤
r1 < ∞; they induce virtually no changes in the shape of
the potential and can be discarded to the above accuracy.

Let us compare the properties of the local energy-
dependent potential (29) with the properties of the
potentials (38) and (40), which were derived in the
semiclassical approximation and in the second-order
approximation in momentum, respectively. From the
data in Table 1, it can be seen that, in all cases, the
depths of the potentials V(0, E) increase with energy.
The depths of the potentials (38) and (29) virtually
coincide over the entire energy range under investiga-
tion. The depth of the potential (40) is close to that of
the potential (29) at E = –60 MeV and grows faster with
energy than the depth of the potential (29) (the differ-
ence of the potential depths is 7 MeV at E = 0 MeV). At
energies close to E = 100 MeV, the value V(0, E) for the
potential (40) changes sign, becoming repulsive.

The depth of the potential (29) coincides with the
corresponding values of the local energy-dependent
potential in nuclear matter [3]. The effect of the veloc-
ity-dependent forces on the depth of the potential (29)
leads to the emergence of an additional repulsion
(+5.68 MeV at the center of the nucleus at E = 0),
which increases with energy.

As can be seen from Fig. 2, the shape of the poten-
tials (29) and (38) can be described by the Fermi distri-
bution (34) for positive nucleon energies; at negative
energies, sizable deviations from (34) are observed in

VH
c

VH
0( )

VH
2( )

k1 Vl k1

k1 V2 k1

k1
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the large-r1 region. This is because, at negative ener-
gies, the nucleon momentum becomes imaginary for r1
values lying to the right of the classical turning point,
so that the Bessel functions of an imaginary argument
that are involved transform into a combination of Han-
kel functions containing divergent exponentials of the

form . As r1 increases, the potential V(r1, E) there-
fore decreases much more slowly than in the case of

e
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Table 1.  Parameters of the radial and energy dependences of the potentials (29), (38), and (40)

E, MeV
V(r1, E) (29) V(r1, E) (38) V(r1, E) (40)

r0, fm a, fm V(0, E), MeV r0, fm a, fm V(0, E), MeV r0, fm a, fm V(0, E), MeV

–60 1.23 0.90 –75.86 1.24 1.31 –75.91 1.22 0.72 –75.08

–40 1.21 0.79 –66.72 1.21 0.89 –66.77 1.22 0.73 –64.65

0 1.17 0.79 –50.74 1.17 0.85 –50.75 1.20 0.74 –43.71

40 1.14 0.91 –37.92 1.14 1.03 –37.93 1.15 0.79 –22.76

70 1.11 1.11 –30.31 1.10 1.32 –30.32 0.78 0.65 –7.08

100 1.06 1.57 –24.19 1.02 1.92 –24.21 1.38 0.53 8.62

Table 2.  Parameters of the function  and α for the potentials (29), (38), and (40)

E, MeV

V(r1, E) (29) V(r1, E) (38) V(r1, E) (40)

(r1)
α(0, E)

(r1)
α(0, E)

(r1)
α(0, E)

r0, fm a, fm r0, fm a, fm r0, fm a, fm

–60 1.36 2.68 0.42 1.56 1.03 0.42

1.25 0.70 0.522

–40 1.30 0.93 0.40 1.32 1.31 0.40

0 1.28 0.69 0.36 1.26 0.64 0.38

40 1.24 0.55 0.32 1.23 0.59 0.32

70 1.22 0.54 0.29 1.22 0.58 0.29

100 1.20 0.56 0.27 1.20 0.60 0.27

f E
1

f E
1 f E

1 f E
1

real-valued nucleon momenta. At the same time, the
potential (40) is of the Fermi form for E ≤ 40 MeV and
differs from it markedly at higher positive energies.

From the data in Table 1, it can be seen that, even if
the potentials (29), (38), and (40) are of the Fermi form,
the parameters of these distributions are strongly
dependent on the nucleon energy. Here, the values of
the parameter r0 (r0 = RAA–1/3) of the potentials (29) and
(38) decrease with increasing energy, but they remain
close to each other at all energy values and close to the
radius r0 of the potential (40) for E ≤ 40 MeV. At the
same time, the diffuseness values for the potentials
(29), (38), and (40) increase on average with increasing
energy. We note that the quoted parameters of the dis-
tribution in (34) for the potential (40) are consistent
with the corresponding parameters from [2–5] at E = 0
[V(0, E) = –43.5 MeV, r0 = 1.20 fm, and a = 0.72 fm].
The values of the coefficient α(0, E) in (36), which
characterizes the energy dependence of the depths of
the potentials V(0, E), are presented in Table 2; it can be
seen that they coincide for the potentials (29) and (38)
and decrease with increasing energy from α = 0. 42 at
E = –60 MeV to 0.27 at E = 100 MeV. These results are
consistent with the phenomenological values of
α(0, E) = 0.4 and α(0, E) = 0.3 for, respectively, nega-
tive and positive nucleon energies [11]. The energy-
independent value of α(0, E) = 0.522 for the potentials
(40) is close to the value of 0.525 obtained by authors
of [4] and is overly large in relation to the phenomeno-
logical values.

Phenomenological optical potentials are usually
represented in the form (35) if we take the functions

(r1) and (r1) to be coincident. A comparison of
the data in Tables 1 and 2 and in Figs. 2 and 3 shows

that the functions (r1) and (r1) generally have dif-
ferent features. For all the potentials (29), (38), and

(40), the parameter r0 of the function (r1) is notice-
ably greater than the corresponding parameter of the

function (r1), while the diffuseness parameter a is

smaller for (r1) than for (r1). 

As can be seen from Fig. 4, the ratio of the effective
mass (22) to the free-nucleon mass increases with
energy, changing from 0.53 at E = –60 MeV to 0.82 at
E = 100 MeV at the center of the nucleus and tending
to unity for r1  ∞ at all energy values. Owing to the
presence of the l2 and ls2 terms in the NN potential, the
effective mass tends to 0.9m rather than to m in the
high-energy limit, where the integrals of the quickly
oscillating functions in (22) vanish. A comparison of
the effective mass m* (22) and the effective mass 
(31) shows that they coincide at r1 = 0 and that, over the
entire region of r1, their difference does not exceed, in
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f E
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f E
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1
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Table 3.  Parameters of the radial dependence of the potentials (29) and (40) with and without allowance for the gradient po-
tential (27)

E, MeV
V(r1, E) (29) V(r1, E) (29) without Vgrad(r1, E) V(r1, E) (40) V(r1, E) (40) without Vgrad(r1)

r0, fm a, fm r0, fm a, fm r0, fm a, fm r0, fm a, fm

–60 1.23 0.90 1.24 0.97 1.22 0.72 1.23 0.79

–40 1.21 0.79 1.21 0.89 1.22 0.73 1.22 0.81

0 1.17 0.79 1.18 0.91 1.20 0.74 1.21 0.89

40 1.14 0.91 1.14 1.05 1.15 0.79 1.12 1.30

70 1.11 1.11 1.11 1.30 0.78 0.65 0.76 0.49

100 1.06 1.57 1.03 1.85 1.38 0.53 1.32 0.45
absolute value, 0.08m at E = –60 MeV and 0.02m for
E > 0, decreasing as the energy grows.

As can be seen from Fig. 5, the gradient potential (27)
has an alternating superficial character and increases
with decreasing energy. At negative energies, it differs
only slightly from the gradient potential appearing in
(40); this is explained by the applicability of the sec-
ond-order approximation in  near the turning points,
where the absolute values of the nucleon momentum are
small. The inclusion of the gradient potential reduces the
effective diffuseness of the optical potentials (29) and
(40) (see Table 3), but this leads to virtually no changes
in the potential depths or in the parameter r0.

The analysis of the potentials (29) and (38) reveals
that the semiclassical approximation (37) is valid over
the entire region 0 ≤ r1 ≤ ∞ for E ≥ 10 MeV. In the
energy region 0 ≤ E ≤ 10 MeV, the difference of the
potentials (29) and (38) does not exceed, in absolute
value, 1.2 MeV at any value of r1. The potential (40)
noticeably differs from the potential (29), but they tend
to approach each other with decreasing nucleon energy.
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2

8 12 164
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1
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Fig. 5. Radial dependences of the gradient term Vgrad(r1, E)
for the potential (29) at –60, –40, 0, 40, 70, and 100 MeV
(curves 1, 2, 3, 4, 5, and 6, respectively) and for the potential
(40) (dashed curve).
5. CONCLUSION

The parameters of the effective energy-dependent
potential that is equivalent to the nonlocal Hartree–
Fock potential both for positive and for negative
nucleon energies have been determined for the first time
without resort to the assumption that the Fock potential
is proportional to the momentum squared. It has
appeared that the shape of the effective energy-depen-
dent potential that describes simultaneously the self-con-
sistent field and the real part of the optical potential for
nucleons undergoes significant changes upon reversal of
the sign of nucleon energy. We have demonstrated the
validity of the semiclassical approximation at nucleon
energies in excess of 10 MeV. It has been shown that, at
nucleon energies below this value, it is important to take
into account the gradient term that was not included in
the conventional computational schemes.

APPENDIX

1. Components of the Local Hartree–Fock Potential 
in Spherical Nuclei with Allowance

for Velocity-Dependent NN Interactions

The components of the Hartree potential can be rep-
resented as

(A.1)
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(A.3)
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(A.4)

(A.5)

where (r), (r), and (r) are the Hartree parts
of, respectively, the central, the l2, and the ls2 interac-
tion of nucleons; ξ is the cosine of the angle between
the vectors r and r1; and ω(r2) = ωn(r2) + ωp(r2) is the
total density of the square of the nucleon momentum
with

(A.6)

The components of the Fock potential are given by

(A.7)

(A.8)

where (r) and (r) are the Fock parts of, respec-
tively, the l2 and the ls2 interactions of nucleons; i and
j are unit vectors in the x and y directions, respectively;
and the function f (r1, r1 + r) has the form
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By recasting the potential (r1, k1) into the form (12),
we arrive at

(A.10)

where

(A.11)

(A.12)

In Eqs. (A.11) and (A.12), we have used the nota-
tion
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2. Local Energy-Dependent Potential 
in Spherical Nuclei with Allowance 

for Velocity-Dependent NN Interactions

By taking into account the Fock parts of the l2 and
ls2 interactions and discarding the l ≥ 2 terms in
Eqs. (12) and (A.10), we reduce the potential VF(r1, k1)
to the form

(A.17)

Instead of the Schrödinger equation (21), we then
obtain

(A.18)

where the effective mass m*(r1, k1) is determined by
Eq. (22), in which

(A.19)

is substituted for I(r1, k1).
Representing the wave function ϕE(r1) in the

form (23) and defining the form factor f(r1, k1) by
expression (24), we find that the function (r1) satis-
fies an equation of the type (25) with the potential

(A.20)
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where Vgrad(r1, ) is given by Eq. (27). With allowance
for the velocity-dependent NN interactions, the effec-
tive local energy-dependent potential then assumes the
form

(A.21)
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Abstract—The distribution of the radiative strength in nuclei where the number of nucleons of one type is
nearly magic (Z = 28 ± 1) and where there are a few valence nucleons of the other type is investigated. It is
shown that the statistical approach that is based on Fermi liquid theory and which takes into account tempera-
ture and the shell structure of nuclei leads to good agreement with experimental data on radiative strength func-
tions below the neutron binding energy in such nuclei. Only for the 59Co and 65Cu nuclei, which have the largest
number of valence neutrons among the cobalt and copper isotopes being investigated, is the energy dependence
of the radiative strength compatible with a Lorentz distribution as well. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental and theoretical investigations of the
energy dependence of radiative strength functions for
nuclei in which the number of protons is close to the
magic number of Z = 28 revealed that, for the majority
of these nuclei, experimental data on radiative strength
functions comply, neither in magnitude nor in shape,
with a low-energy extrapolation of the Lorentz distribu-
tion that successfully describes giant electric-dipole
resonances. The radiative strength functions obtained
in [1, 2] for E1 transitions in the 61–63Cu nuclei exhibit
a much sharper energy dependence than that which fol-
lows from an extrapolation of the Lorentz distribution
to low gamma-ray energies. For the 59Co nucleus, such
an extrapolation yields a radiative-strength-function
value eight times as great as the experimental result of
Nilson et al. [1]. Since the attempts undertaken in [1] to
improve the agreement by varying the parameters used
to determine the pursued radiative strength function, its
behavior was considered to be anomalous. At the same
time, the data on the radiative strength function that
were obtained by the same group for the 65ëu nucleus
[3] are closely approximated by a Lorentz distribution
in the region of low photon energies as well. In [4, 5],
it was assumed that a Lorentzian form is also appropri-
ate for describing the experimental radiative strength
function for the 61ëu and 63Cu nuclei in the same range
of photon energies as in [1–3]. Possible deviations of
the radiative strength functions from the behavior spec-
ified by a low-energy extrapolation of this form would
suggest that the strength function depends on the prop-
erties of the final nucleus. This would contradict the
well-known hypothesis of Axel and Brink, who conjec-
tured that primary E1 transitions observed in radiative
nucleon capture must be induced by the same processes
as the giant dipole resonance (GDR), which is approx-
imated by a Lorentz distribution, and that giant reso-
1063-7788/01/6401- $21.00 © 20049
nances built on the ground state and on an excited state
must be characterized by identical parameter values.

In this study, we aim at determining the absolute
values of radiative strength functions and at compre-
hensively investigating their energy dependence below
the neutron binding energy for E1 transitions in the
57, 59ëÓ nuclei, where only one proton is needed to fill
completely the 1f7/2 shell, and in the 61–63, 65Cu nuclei,
where there is one extra proton above the filled 1f7/2
shell and where the number of valence neutrons
increases. It is assumed that the structure of these nuclei
can be described by the shell model and that the paucity
of information about the properties of these nuclei will
not complicate data analysis.

Since much attention is given here to the question of
why the conventional treatment of radiative strength
functions fails in the case of 61Cu and 63ëu nuclei [1, 2,
4], while providing a fairly good description of experi-
mental data for the 65Cu nucleus [3, 5], it is reasonable
to consider energies in the same range as in [1–5]. Pre-
liminary results on primary gamma transitions in indi-
vidual nuclei from the region under study were reported
in [6–9].

It should be noted that available experimental data
on the energy dependence of radiative strength func-
tions for A ≤ 100 nuclei—these data predominantly
come from experiments studying (p, γ) reaction—are
obviously insufficient for systematic investigations in
these realms, in sharp contrast to what we have in the
region of A ≥ 100 nuclei, where considerable advances
have recently been made in studying the low-energy
behavior of radiative strength functions owing to infor-
mation efficiently extracted from data on radiative neu-
tron capture. The situation is aggravated by the absence
of experimental data on the level densities for nuclei
under consideration in the excitation-energy range of
interest and by the fact that the optical-model parame-
001 MAIK “Nauka/Interperiodica”
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ters used in determining the radiative strength functions
at low proton energies are questionable. It is difficult to
compare radiative-strength-function values estimated
on the basis of experimental data because different esti-
mates for the same nuclei were often obtained with dif-
ferent values of the same parameters.

2. EXPERIMENTAL RESULTS 
AND THEIR ANALYSIS

In just the same way as in [1–5], the radiative
strength functions are determined here by using the
averaged intensities of primary gamma transitions to
individual low-lying states excited in the nuclei under
investigations in the (p, γ) reactions. For the target
nuclei 56Fe, 58Fe, 60Ni, 61Ni, 62Ni, and 64Ni, the values of
the energy release in the relevant (p, γ) reactions are
Q0 = 6.02, 7.37, 4.81, 5.87, 6.12, and 7.45 MeV, respec-
tively. These Q0 values are sufficiently high for the cor-
responding level density in compound nuclei to satisfy
the conditions under which the statistical description is
valid. That the thresholds for the (p, n) reactions on the
above targets exceed 5.4, 3.1, 7.0, 3.1, 4.8, and
2.5 MeV, respectively, leaves a comparatively wide
range of incident-proton energies at which the relevant
investigations can be performed without exciting the
neutron channel. The averaged intensities of primary
gamma transitions were obtained from the spectra of
high-energy gamma rays as measured by a pair spec-
trometer for proton energies from 1.5 to 3.0 MeV for
56, 58Fe targets, from 1.50 to 3.88 MeV for 60Ni targets,
from 2.21 to 2.43 MeV for 61Ni targets, from 1.5 to
3.0 MeV for 62Ni targets, and from 1.55 to 2.90 MeV
for 64Ni targets. Averaging over compound-nucleus
states that is necessary for effectively suppressing Por-
ter–Thomas fluctuations [10] and for achieving a satis-
factory statistical accuracy was ensured by choosing
target thicknesses in an optimal way and successively
adding gamma-ray spectra measured at different ener-
gies with a shift equivalent to the target thickness.

According to statistical theory, the (p, γ) cross sec-
tion averaged over compound-nucleus resonances can
be represented in the form [11]

(1)

where

λp is the proton wavelength; g(J) = (2J + 1)/(2s + 1)/(2I +
1), I and s being the target-nucleus spin and the nucleon
spin, respectively; T stands for the corresponding pen-
etrability factors; and c is the channel index. For an

σp γ,
λ p

2
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even–even target nucleus, we have g(J) = (2J + 1)/2.
Summation in Eq. (1) is performed over all the open
reaction channels Ò and Jπ compound-nucleus states
allowed by relevant selection rules. The quantity W in
expression (1) takes into account a correction for fluc-
tuations that the cross section can develop because of a
small number of open channels [11]. This correction may
prove to be important at low energies. Expression (1) can
be recast into the more compact form

(2)

where σλ is the cross section for the formation of the
compound nucleus in the state λ, Tλ is the sum of all
penetrability factors corresponding to open deexcita-
tion channels for the state λ, and  is the penetrabil-
ity factor for photons corresponding to primary transi-
tions from the group of compound-nucleus states λ at
energy Eγ to the final state f at energy Ef = Eλ – Eγ. For
γ rays corresponding to transitions of multipole order L,
the penetrability factor  can be expressed in terms

of the radiative strength function (Eγ) as [12]

(3)

The penetrability factor Tλ then assumes the form

(4)

where  are the penetrability factors for protons in

the output channel,  are the penetrability factors
for the neutron channel, and ρJ(Eλ – Eγ) is the density
of levels occurring at Ef  and having a spin J.

The penetrability factors for protons were calcu-
lated with allowance for the results obtained in [13–21].
The use of a global systematics of the optical-potential
parameters deduced from an analysis of the scattering
of protons with energies above 8 MeV [13, 17] in cal-
culations for energies below 4 MeV would hardly be
reasonable, especially as the absorption potential can
change sharply near closed shells [22]. Indeed, the
detailed analysis of the cross sections for (p, γ) reac-
tions and for the elastic and the inelastic scattering of
low-energy protons on 54, 56Fe nuclei that was per-
formed by Boukharouba et al. [15], who relied on the
optical model, invoking dispersion theory and taking
into account channel coupling and shell effects,
revealed that the observed dependence of the imaginary
part of the optical potential on the mass number for
nuclei with A close to 60 can be attributed to changes
that the filling of the shell induces in the density of
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intermediate 2p1h states. In the present study, the opti-
cal-potential parameters were chosen in such a way as
to ensure the best fit to data from [18–21, 23–25] on the
cross sections for elastic and inelastic proton scattering
and (p, γ) and (p, n) reactions on 56, 58Fe and 60–62, 64Ni
nuclei at incident proton energies below 4 MeV. The
resulting parameters of the real part of the optical
potential were virtually identical to those from [13–17],
with exception of the diffuseness, which proved to be
reduced. At the same time, the parameters of the imag-
inary part of the potential differ markedly from those in
the global systematics. In particular, the imaginary part
of the surface potential was taken in the form Ws(E) =
3.85 + 0.72E MeV for the 56Fe and in the form Ws(E) =
5.6 – 0.25E MeV for the 58Fe target nucleus. In just the
same way as in [19], the imaginary part was used in the
form Ws(E) = 1.5(A – 58) + 0.5 MeV for all nickel iso-
topes, despite the fact that experimental data on the
inelastic scattering of low-energy protons by 60Ni and
62Ni nuclei are better approximated by the calculations
with Ws from [13, 17]. The use of the parameters from
[13, 17] in statistical calculations gives considerably
overestimated values of the cross sections for the (p, γ)
reaction on all stable nickel isotopes.

The level density in the nuclei under study, which is
also an ingredient of the statistical description, was cal-
culated within the back-shifted Fermi gas model. In
these calculations, the level-density parameter a, the
excitation-energy shift ∆ allowing for nucleon pairing
and shell effects, and the moment of inertia ( were set
to the values taken from [26] and presented in the table
(versions 1 and 2). For the sake of comparison, the level
density was also calculated by the phenomenological
statistical method described in [27]. The parameter val-
ues used in this case are also presented in the table (ver-
sion 3). A description of the level density was taken to
be acceptable if it ensured a good fit of statistical calcu-
lations to experimental data over a wide range of exci-
tation energies. The level densities calculated with the
parameter values from the table are displayed in Fig. 1,
along with experimental data. Circles in this figure rep-
resent data on the discrete section of the energy-level
diagram up to an excitation energy of 5.5 MeV that
were taken from [28, 29] for the 57, 59Co nuclei, from
[30, 31] for the 61–63, 65Cu nuclei, and from the NUDAT
BNL database containing current results on these
nuclei. For the 57Co nucleus, squares show the data
from [32], while the triangle corresponds to the results
from [33]. For the 61Cu nucleus, the square represents
the data from [34]. For other nuclei, data for excitation
energies above 5.5 MeV were taken from [35]. 

Specifying the form of the radiative strength func-
tion (Eγ), one can now use expression (1) to calcu-
late the intensities of direct gamma transitions to each
individual low-lying state of the final nucleus. A com-
parison of the intensity calculated in this way with
experimental data provides a criterion of the applicabil-
ity of the form assumed for the radiative strength func-

Sλ f
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tion. In this study, the radiative strength function
appearing in Eq. (4) was specified either in a Lorentzian
form or in the form obtained in various theoretical
approaches. The quantity [Eγ] entering into the

coefficient  in the numerator on the right-hand side of
Eq. (2) was chosen in such a way as to reproduce the mea-
sured absolute values of the partial (p, γf) cross section.

Most frequently, E1 radiative strength functions are
calculated (see, for example, [36–38] and references
therein) within the approach that is based on Fermi liq-
uid theory [39] and which was developed for spherical
nonmagic nuclei. The main distinction between this
method and that which relies on a Lorentz distribution
is that, for Eγ  0, the radiative strength function
tends to a finite limit determined by the giant-resonance
parameters E0, Γ0, and σ0 and the nuclear temperature
T in the final state. Here, we calculate radiative strength
functions within the approach that was proposed in [40,
41] and which is also based on Fermi liquid theory, but
which employs approximations somewhat differing
from those in [39]; within this approach, it is consid-
ered that the energy dependence of the radiative
strength function is affected by the shape of the GDR,
whose width depends on excitation energy and on the
nuclear temperature, and by the number of single-par-
ticle states that can be connected by transitions allowed
by the Pauli exclusion principle. The number of such
states depends on the transition energy and on the tem-

Sλ f

Tγ f λ

Parameters used in calculating the level density in the nuclei
under study

Nucleus Version a, MeV–1 ∆, MeV (rig

57Co 1 5.21 –0.41 0.5

2 6.12 –0.20 1.0

3 4.18 1.59 0.4
59Co 1 5.50 –0.77 0.5

2 6.31 –0.47 1.0

3 3.06 1.56 0.4
61Cu 1 5.03 –1.55 0.5

2 5.99 –1.06 1.0

3 4.41 1.54 0.4
62Cu 1 6.48 0.97 0.5

2 7.27 –1.07 1.0

3 3.98 1.54 0.4
63Cu 1 5.74 –0.96 0.5

2 6.63 –0.67 1.0

3 4.12 1.51 0.4
65Cu 1 5.47 –1.00 0.5

2 6.24 –0.77 1.0

3 4.55 1.49 0.4

4 3.94 1.49 0.4
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Fig. 1. Level densities in the nuclei under analysis versus excitation energy. In each panel, the dashed, the solid, the dash-dotted, and
the dotted curve represent the results of the calculations with the parameter values presented in the table (versions 1–4, respectively).
Experimental data were taken from [28–35] (for more details, see the main body of the text).

ρ, MeV–1

104

102

100

57Co 59Co 61Cu

106

104

102

62Cu

100

0 5 10 15

104

102

63Cu

100

0 5 10 15

104

102

65Cu

100

0 5 10 15
U, MeV

ρ, MeV–1 ρ, MeV–1
perature and the shell structure of the nucleus. Previ-
ously, we successfully used this approach to analyze
experimental data on radiative strength functions for
the dipole transitions in the 46Ti [42], 69Ga [43], 70Ge
[44], and 73, 75As [45] nuclei, which are pronouncedly
deformed. However, it appeared to be less appropriate
for describing experimental energy dependences of the
radiative strength functions for the 85, 87, 89Y nuclei [46]
and especially for the 90Zr nucleus [47]. For a GDR fea-
turing two maxima, the E1 strength function treated
within this approach can be represented as

(5)

where

and σi, Ei, and Γi are, respectively, the cross sections at
the maxima, the positions of the GDR components, and
their widths. Their values were chosen in such a way as
to ensure the best fit of a Lorentz distribution to exper-
imental data from [48, 49] on the cross sections for the
(γ, n) reactions on 59Co and 63Cu nuclei. For want of
experimental data on GDRs in the 57Cu and 61, 62, 65Cu
nuclei, the radiative strength functions for these nuclei
were calculated with the GDR parameters identical to
those for the 59Co and 63Cu nuclei, respectively. The
density of 2p–2h states, ρ2p–2h(Eγ, T), is governed both
by the density of one-particle states and by the occupa-

Sγ
E1 8.67 10 8– 2⋅× π 1 Eγ/T–( )exp+[ ] 1–

=

×
σiEi

2Γ R i( ) Eγ( )

Eγ
2 Ei

2–( )2
EiΓ R i( ) Eγ( )+

----------------------------------------------------------,
i 1=

2

∑

Γ R i( ) Eγ( ) Γ iρ2 p–2h Eγ T,( )/ρ2 p–2h Ei T,( )=
tion numbers in the state that is populated after photon
emission. In calculating ρ2p–2h(Eγ, T), we took into
account of the shell structure of the spectrum of single-
particle levels and the effect of the nuclear temperature
T on the occupation numbers in these levels.

Since the single-particle 3s resonance at proton
energies below the Coulomb barrier is excited in these
nuclei, it is necessary to take into account the possible
contribution of nonstatistical processes to the radiative
strength functions that are associated with the effect of
this resonance. The possible contribution of the valence
capture mechanism involving the excitation of the qua-
sistationary 3s and 2d states was estimated in [4]. The
relevant contribution to the cross section was calculated
within the semimicroscopic approach developed in
[50]. In this approach, simple configurations are calcu-
lated on the basis of a single-particle model, while their
coupling to complex configurations is taken into account
within the optical model. It turned out that, near the max-
ima of the 3s and 2d resonances, the contribution of the
valence mechanism to the capture cross section may be
as large as 50%. At lower energies (6–10 MeV), the max-
imum contribution for (3s + 2d)  2p transitions can
saturate 30 and 15% of the observed cross sections for
61Cu and 63Cu nuclei, respectively. The nonstatistical
contribution is the most pronounced for the 61Cu nucleus
and decreases fast as the neutron shell is filled.

In order to estimate the contribution of the M1 tran-
sitions, we used the relation

(6)Sγ
E1/Sγ

M1 0.03A Eγ
2 πT( )2+( )/Bn

2=
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(recall that Bn is the neutron binding energy, while T is
the nuclear temperature in the final state), which was
derived on the basis of the results obtained in [40] (for
more details, see [42]). It should be noted that experi-
mental data on M1 excitations in 1f7/2-shell nuclei sug-
gest the suppression and a considerable fragmentation
of the M1-resonance strength not only in relation to the
predictions of the independent-particle model but also
in relation to the predictions obtained within various
versions of the random-phase approximation.

Figure 2 shows the radiative strength functions
obtained from our analysis of experimental data on the
partial cross sections for the (p, γf) reactions on 56, 58Fe
and 60–62, 64Ni targets at fixed proton energies. Experi-
mental data near the GDR maxima were taken from
[48, 49]. The dash-dotted, dashed, and solid curves rep-

Fig. 2. Experimental and theoretical values of the radiative
strength functions for primary gamma transitions in the
nuclei under investigations. Open circles represent the radi-
ative strength functions at Ep = 2.84, 2.82, 2.89, 2.30, 3.00,

and 2.30 MeV for the 57Co, 59Co, 61Cu, 62Cu, 63Cu, and
65Cu, respectively. Closed circles correspond to data from
[48, 49]. The theoretical results displayed in this figure are
those that were calculated with a Lorentz distribution (dash-
dotted curves) and those that were obtained on the basis of
the statistical approach from [40, 41] with allowance for
nuclear temperature (dashed curve) and nuclear temperature
and the shell structure of nuclei (solid curves).
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resent the radiative strength functions derived theoreti-
cally on the basis of, respectively, a Lorentz distribu-
tion, Eq. (5) allowing only for temperature, and Eq. (5)
allowing both for temperature and for the shell struc-
ture of the nucleus. In these calculations, the M1 contri-
bution (not shown in Fig. 2) did not exceed 10–15% for
various states of the nuclei being studied. For some
cases, the measured partial cross sections for the rele-
vant (p, γf) reactions are contrasted in Figs. 3 and 4
against the results of the calculations by Eq. (1) with
various versions of the radiative strength functions. The
closed regions of the histograms correspond to the
cross sections calculated with the strength functions
derived within the statistical approach [40, 41] that
takes into account the shell structure and the nuclear
temperature, while the shaded regions represent the

0

50

1 2 3

100

150

0

σ, µb
63Cu

Ef, MeV

Fig. 3. Partial cross sections for the (p, γf) reaction on 62Ni
targets. The closed regions of the histograms correspond to
the cross sections calculated with the radiative strength
functions obtained on the basis of the statistical approach
from [40, 41] with allowance for the shell structure and the
temperature of the nucleus, while the shaded regions repre-
sent the cross sections calculated with the radiative strength
functions in the Lorentzian form.

σ, µb
150

100

50

0
0 1 2 3

Ef, MeV

65Cu

Fig. 4. As in Fig. 3, but for the (p, γf) reaction on 64Ni tar-
gets.
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Fig. 5. Total cross sections for the (p, γ) reactions on 56, 58Fe
targets: (dashed curves) results obtained with the radiative
strength functions in the Lorentzian form and (solid curves)
results obtained with the radiative strength functions calcu-
lated within the statistical approach developed in [40, 41].
The cross sections for the (p, γ) reactions were deduced on
the basis of estimated experimental data from [22, 24] for
56Fe targets and were taken from [25] for 58Fe targets.
cross sections based on the radiative strength functions
in a Lorentzian form. A similar comparison for the total
cross sections as functions of the proton energy is illus-
trated in Figs. 5 and 6. The cross sections for the (p, γ)
reactions were obtained on the basis of estimated
experimental data from [22, 24] for 56Fe targets and
were borrowed from [25] for 58Fe targets. It can be seen
that the partial (p, γf) cross sections calculated with the
radiative strength functions derived within the
approach proposed in [40, 41] agree well with experi-
mental data. The agreement between the calculated and
measured values of the total (p, γ) cross sections is
somewhat poorer in the proton-energy range under con-
sideration. In all probability, this is because the total
radiative widths are of crucial importance for calculat-
ing the total cross section; therefore, the degree of
agreement depends on the accuracy of the radiative
strength functions over the entire energy range. From
Fig. 2, we can see that, over the entire photon energy
range under study, the radiative strength functions cal-
Fig. 6. Total cross sections for the (p, γ) reactions on 60–62, 64Ni targets. Experimental values were taken from [19–21]. The theoret-
ical results displayed in this figure are those that were calculated with a Lorentz distribution (dash-dotted curves) and those that were
obtained on the basis of the statistical approach from [40, 41] with allowance for nuclear temperature (dashed curve) and nuclear
temperature and the shell structure of nuclei (solid curves).
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culated in the approach from [40, 41] without use of
adjustable parameters agree with experimental data
both in shape and in magnitude. For the 59Co and 65Cu
nuclei, which contain the largest number of valence
neutrons among the cobalt and copper isotopes under
consideration, the energy dependence of the radiative
strength function is compatible with a Lorentz distribu-
tion as well.

If we pay no attention to the fact that an extrapola-
tion of a Lorentz distribution to the low-energy region
leads to considerably overestimated absolute values of
the radiative strength functions for the 59Co nucleus, it
can be concluded that, by and large, the distribution of
the E1 strength in the nuclei under investigation is in
qualitative agreement with the energy dependence pre-
dicted by Soloviev et al. [51] for the E1 strength in
heavier spherical nuclei. For A = 90–150 spherical
nuclei, these authors calculated, within the quasiparti-
cle–phonon model of the nucleus, the E1 strength func-
tions over a wide excitation interval, including the
GDR region. They also examined the GDR effect on
the behavior of the radiative strength functions near the
neutron binding energy. The results of further theoreti-
cal investigations along these lines were discussed in
detail, for example, in [52]. On the basis of the conclu-
sions drawn in [51], the observed reduction of the devi-
ation from a Lorentz distribution in the Z = 28 ±
1 nuclei with increasing number of valence neutrons
can be attributed to the enhancement of the GDR effect
on the radiative strength functions as the nuclei being
considered recede from those with closed shells (for the
latter, this effect is assumed to be insignificant) and to
an increase in the excitation energy. The examples of
59Co and 65Cu nuclei excited in the (p, γ) reactions,
which have the energy release of Q0 = 7.4 MeV, the
highest for the nuclei studied here, demonstrate that the
closer the energy of direct gamma transitions to the
GDR maximum, the better the agreement of a Lorentz
distribution with experimental radiative strength func-
tions, at least in shape.

It would be of interest to compare quantitatively our
results with the radiative strength functions calculated
within the semimicroscopic approach that was devel-
oped on [53] on the basis of the random-phase approx-
imation and which allows for the single-particle contin-
uum exactly and nucleon pairing approximately in
describing doorway particle–hole configurations. In
this approach, the coupling of doorway states forming
GDRs to the complex configurations is taken into
account directly at the low-energy GDR tail.

3. CONCLUSION

The absolute values and the energy dependences of
the radiative strength functions below the neutron bind-
ing energy in the 57, 59Co and 61–63, 65Cu nuclei have been
determined within a unified approach. It has been
shown that the distribution of the E1 strength calculated
within the statistical approach developed in [40, 41] on
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
the basis on Fermi liquid theory agrees, without adjust-
able parameters, with experimental data over the entire
photon-energy range under investigation both in shape
and in absolute value. Only for the 59Co and 65Cu
nuclei, which contain the largest number of valence
neutrons among the cobalt and copper isotopes studied
here, is the energy dependence of the radiative strength
compatible with a Lorentz distribution as well. It has
been assumed that this is due to the possible enhance-
ment of the GDR effect on the radiative strength func-
tions as the number of valence neutrons increases and
to the fact that the energy dependence of the radiative
strength functions for these nuclei was determined in
the region closest to the GDR maximum because 59Co
and 65Cu nuclei are excited in the (p, γ) reaction charac-
terized by the highest energy release Q0 for the nuclei
investigated here.
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Abstract—The effect of the fields of two colliding deuterons on the deuteron wave functions is investigated
within the algebraic version of the resonating-group method. The problem of determining the continuum of the
K-matrix elements at a given c.m. energy of the deuterons is formulated and solved on the basis of this
approach. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In investigating collisions of two deuterons within
the standard version of the resonating-group method
[1], the deuteron wave functions are assumed to be pre-
set, so that attention is given primarily to determining
the wave function of the relative motion of the deuter-
ons.

Since deuteron systems are especially loose, it can
be expected that, at small deuteron–deuteron distances,
those about the range of nuclear forces, the deuteron
wave functions are rearranged and that this rearrange-
ment affects the character of the motion of the deuter-
ons. By way of example, we indicate that, when two
deuterons approach closely, each of them occurs in the
attractive field generated by the other deuteron; as a
result, the distance between the deuterons continues to
decrease, which is accompanied by the growth of the
kinetic energy of their relative motion. This growth is
moderated, however, by the increase in the internal
energy of the deuterons. In addition, the Coulomb
repulsion of the deuterons begins to play a noticeable
role in the energy balance, also suppressing the growth
of the kinetic energy and even resulting in that, at
extremely small distances, the growth in question gives
way to a decrease.

The two-deuteron system chosen here is often stud-
ied on the basis of the Faddeev–Yakubovsky equations.
However, we do not aim here at constructing an exact
solution to these equations; considering a relatively
simple system and nucleon–nucleon potentials typi-
cally used in the resonating-group method, we will try
instead to find out whether the assumption that is con-
ventionally made within this method and which con-
sists in that the cluster wave functions do not change as
the clusters approach one another and undergo a colli-
sion is justified and to establish simultaneously the con-
ditions under which this assumption ceases to be valid.
This question is quite pressing since the resonating-
group method is usually used to analyze more complex
nuclei, in which case the applicability of this method
1063-7788/01/6401- $21.00 © 20057
has not been proven rigorously, so that one needs some
guidelines to judge the validity of the method.

In order to take into account, within the resonating-
group method, the excitation of the deuterons during
their collision, Kanada et al. [2] approximated the
ground-state wave function of the deuteron and the
wave functions of its excited states by orthogonal
superpositions of three Gaussian functions. In this
scheme, excited states simulate the continuous spec-
trum. However, their asymptotic behavior is fast
descending, so that they do not reproduce deuteron
breakup into two nucleons. At the same time, the polar-
ization of the deuterons can be taken into account in
this way if the distance between them is large. The
same objective can be accomplished in multichannel
calculations [3], where the deuteron–deuteron (dd)
channel is supplemented with two binary channels, a
proton–triton (pt) and a neutron–helium (n3He) chan-
nel. Finally, the closed collective quadrupole channel,
which extends the dynamical description of the deu-
teron–deuteron interaction, was taken into account in
[4, 5], along with the binary channels.

Meanwhile, the question of the role of the three-par-
ticle (dnp) and the four-particle (2p2n) channel in the
four-nucleon system remained unanswered in [2–5].
The coupling of these channels to the deuteron–deu-
teron channel leads to the reactions dd  dpn and
dd  2p2n. A description of these reactions could
furnish a basis for qualitatively understanding multi-
particle reactions and for quantitatively assessing their
cross sections; so far, these issues have not been studied
in sufficient detail.

The algebraic version of the resonating-group
method [6, 7] provides a conventional framework for
taking into account dynamical variables that are
responsible for changes in the deuteron structure and
for performing a consistent analysis of the process of a
deuteron–deuteron collision. In order to implement
this, the harmonic-oscillator basis of the single-channel
approximation is extended via the inclusion of those
states that reproduce the excitation of deuteron systems
001 MAIK “Nauka/Interperiodica”
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when they approach each other and even their breakup
as the result of a collision event.

Our objective here is to formulate, within the alge-
braic version of the resonating-group method, a new
approach to describing the deuteron–deuteron interac-
tion in order to analyze and, if necessary, to remove
errors that emerge from the choice of an approximate
expression for the wave function of the deuteron
ground state; to take into account the contribution to
deuteron polarization from the direct interaction of the
deuteron nucleons; to demonstrate the character of
changes in the states of the deuterons as they approach
each other; and to describe both elastic deuteron–deu-
teron collisions and the breakup of one or two deuter-
ons as the result of a deuteron–deuteron collision.

2. EXPANSION COEFFICIENTS AND SET 
OF EQUATIONS OF THE ALGEBRAIC VERSION 

OF THE RESONATING-GROUP METHOD

By using the representation of a harmonic-oscillator
basis and by expanding the resonating-group-method
expression for the wave function Ψ of the two-deuteron
system [6, 7] in the infinite series,

(1)

we arrive at the problem of seeking the expansion coef-

ficients . Let us recall the notation used in (1): 
is the antisymmetrization operator; n1 and n2 are the
numbers of quanta of the basis functions  and

 of the first and the second deuteron, respec-
tively; and n is the number of quanta of the wave func-
tion fn describing the relative motion of the deuterons.
In practice, we have to restrict ourselves to a finite num-
ber of basis functions  and , assuming that
n1, n2 ≤ ν. To avoid encumbering the presentation with
details that do not affect the fundamental aspects of the
formulation of the problem, we will restrict ourselves
to basis states characterized by zero orbital angular
momentum and neglect the Coulomb interaction of the
protons. The second limitation can be removed. In
addition, we will assume that the total spin S of the two
deuterons is zero and that there are no noncentral
forces.

For the coefficients , the set of equations of
the algebraic version of the resonating-group method
has the form

(2)

Ψ Cn1n2n Â φn1
1( )φn2

2( ) f n[ ] ,
n 0=

∞

∑
n2 0=

ν

∑
n1 0=

ν
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Cn1n2n Â

φn1
1( )

φn2
2( )

φn1
1( ) φn2

2( )

Cn1n2n

ñ1ñ2ñ〈 |Ĥ E n1n2n| 〉 Cn1n2n–
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∑
n2 0=
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∑
n1 0=

ν

∑ 0,=

ñ1 ñ2, 0 1 2 … ν; ñ, , , , 0 1 2 … ∞., , , ,= =
Within this framework, the matrix elements

between the harmonic-oscillator basis functions are
constructed in the standard way by using generating
functions. However, the problem of closing the set of
Eqs. (2)—that is, the problem of going over from an
infinite number of equations in the set to a finite set of
equations requires a dedicated discussion.

Following the general idea of the algebraic version
of the resonating-group method, we must first deter-
mine the asymptotic behavior of the coefficients .
For n ≥ n0 and n0 @ 1, they are expressed in terms of an
a priori unknown K matrix. Suppose that

if n ≥ n0.
Instead of (2), we then obtain the set of equations

(3)

As long as the energy E of the relative motion of col-
liding deuterons is higher than the deuteron binding
energy ε but lower than 2ε, n0(ν + 1)2 coefficients 
for n ≤ n0 and the K-matrix elements are unknown
quantities to be found by solving the set of Eqs. (3). The
relation between the coefficients  and the K-
matrix elements will be deduced in the next section.

3. ASYMPTOTIC BEHAVIOR
OF THE COEFFICIENTS  FOR n @ 1

For mass, length, and energy units, we use the

nucleon mass m, the oscillator length r0, and \2/m ,
respectively. By way of example, we indicate that, if E
is the energy of the two-neutron system and if ε is the
deuteron binding energy, the possible values of the
momentum k of the ruptured neutron–proton pair obey
the condition

for E ≤ 2ε.
At all finite values of ν, in which case the numbers

of terms in the sums over n1 and n2 are bounded, expres-
sion (1) can be interpreted as a wave packet represent-
ing a superposition of bound states and continuum
states of the first and the second deuteron.

ñ1ñ2ñ〈 |Ĥ E n1n2n| 〉–

Cn1n2n

Cn1n2n Cn1n2n=
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1
2
---k

2
E ε–≤
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Let  be the Fourier coefficients for the wave
function ψ0(1) of the deuteron ground state,

(4)

and let  be the Fourier coefficients for the wave
function ψk(1) of a continuum state characterized by
the momentum k,

(5)

These coefficients must be defined as solutions to the
wave equation for the deuteron and are normalized to
the delta function of k,

(6)

The wave packet (1) is then projected onto states (4)
and (5) in a conventional way; if n ≥ n0 and if, in addi-
tion, n0 @ 1, this yields the following relations for the

asymptotic coefficients  = :

(7)

(8)

The value of the positive integer ν determines the
number of discrete nodes ki [it is equal to ν(ν + 2)] at
which, with the aid of the K-matrix representation, we
must specify the coefficients Bn(0ki), setting

(9)

(10)

where K00 and  are K-matrix elements. By using
relation (8), together with the expressions for Bn(0ki),
where i = 1, 2, …, ν, we can derive (ν + 1)2 equations
relating the coefficients  at n ≥ n0 @ 1 to the K-

matrix elements K00, , and , which are of inter-
est to us, and to Bessel and Neumann functions and
eventually close up the set of linear algebraic equations
of the algebraic version of the resonating-group
method.
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An alternative form of the coefficients  that
involves an integral with respect to the momentum k
and which highlights the fact that we are dealing with
continuum states can be represented as

(11)

where

In this case, the continuum states for the relative motion
of two deuterons are normalized to a delta function of

the relevant momentum .

4. COEFFICIENTS  
AT SMALL VALUES OF n

Small values of n correspond to small deuteron–
deuteron distances, where the deuteron wave functions
are affected most strongly by the deuteron–deuteron
field. In order to describe changes in the deuteron states
at this stage, we consider the expansion

at fixed n. By applying an orthogonal transformation,
we can recast this expansion into the alternative form

(12)

where λα are eigenvalues of the symmetric matrix
|| || of dimensions (ν + 1) × (ν + 1) with a given

value n (recall that the total spin is S = 0) and  (p =
0, 1, 2, …, ν) are its eigenvectors.

From Eq. (12), it follows that two deuterons (both
simultaneously) can be in one of the ν + 1 states

(13)

The wave functions for these states depend on n and,
hence, change with n. The probability W(n, α) that
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the deuterons are in the state specified by Eq. (13) is
given by

(14)

5. RESULTS OF THE CALCULATIONS

Within the algebraic version of the resonating-group
method, the phase shift δ(E) for elastic deuteron–deu-
teron scattering, the eigenvalues λα(n), and the eigen-

vectors { } were calculated here in the region of
energies E from zero to the deuteron-breakup thresh-

W n α,( )
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2
n( )
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2

n( )
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∑
----------------------.=

Bp
α

1

2
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ground state

Fig. 1. Phase shift δ for elastic deuteron–deuteron scattering
as a function of the c.m. energy of the relative motion of the
deuterons in the (curve 1) ν = 0 and the (curve 2) ν = 6
approximation.

Fig. 2. Radial dependences of the wave functions ψ0, 1,
ψ1, 1, ψ2, 1, ψ3, 1, ψ∞, 1, and ψ0, 2 as obtained by diagonal-
izing the matrices of the coefficients for colliding deuterons.
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old. In this calculation, we used the Minnesota
nucleon–nucleon potential [8] and set the oscillator
radius to r0 = 1.82 fm. We assumed that ν = 6. The
phase shifts calculated at ν = 5 and ν = 6 differ by less
than one percent.

The behavior of the phase shift δ(E) is illustrated in
Fig. 1. The behavior of the phase shift δ0(E) at ν = 0 and
r0 = 1.5 fm is also shown in Fig. 1. The latter phase shift
increases fast with increasing above-threshold energy,
achieves a maximum, and then begins to decrease
slowly. This behavior suggests a negative value of the
scattering length and the occurrence of a narrow reso-
nance at the energy value where the phase shift has a
maximal derivative. As to the phase shift δ(E), it
decreases monotonically; therefore, the corresponding
scattering length is positive, and a moderately shallow
bound state must occur under the threshold.

A drastic change in the behavior of the phase shift
as ν increases from zero to seven can be explained in
the following way. At ν = 0, the harmonic-oscillator
basis states involved in the calculation give only one
bound state in the system of two interacting deuterons.
As a matter of fact, this is the 4He ground state, which
governs the behavior of the phase shift δ0(E). Accord-
ing to our calculations, its energy reckoned from the
threshold for alpha-particle breakup into four nucleons
is –25.6 MeV (–25.1 MeV if this energy is reckoned
from the threshold for alpha-particle breakup into two
deuterons). But if ν = 6, the energy of the ground bound
state changes insignificantly (this energy is now equal
to –28.7 MeV if it is reckoned from the threshold of the
complete breakup of the alpha particle and 24.6 MeV if
it is reckoned from the threshold for the alpha-particle
breakup into two deuterons); however, there arises a
second bound state occurring much more closely to the
threshold for breakup into two deuterons than the
ground state. This is reason why the behavior of the
phase shift δ(E) differs significantly from the behavior
of δ0(E).

We note from the outset that, in fact, the 4He nucleus
has only one bound state, but there is a 0+ resonance
above the threshold for 4He breakup through the pt
channel and below the threshold for breakup through
the n3He channel. In the approximation being consid-
ered, these channels are both closed, so that the reso-
nance becomes a bound state. The results of our calcu-
lations indicate that the deuteron–deuteron channel
plays an important role in the formation of the 0+ reso-
nance state in 4He both in the case of the ν = 0 approx-
imation, where this state is above the deuteron–deu-
teron threshold, and in the case of the ν = 6 approxima-
tion, where it goes below this threshold.

Let us now address the question of changes in the
structure of the deuteron functions as the deuterons
approach each other. Figure 2 displays the graphs of the
eigenfunctions ψn, α at α = 1 and E = 1 MeV, which
have the highest weight W(n, α), and the graph of the
function ψ0, 2. For all nonzero values of n, W(n, 1) is
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slightly less than unity; however, W(0, 1) = 0.466 and
W(0, 2) = 0.463. At the first stage of the approach, the
root-mean-square deuteron radius decreases with
decreasing n (by almost 33% at n = 2); further, it begins
to grow and, at n = 0, proves to be 32% greater than its
original value of 1.453 fm. Any variation in the deu-
teron radii with respect to the optimal original value is
accompanied by a decrease in the deuteron binding
energy and, hence, by deuteron excitation. This reduces
the contribution of the kinetic energy of the relative
motion of the deuterons to the total energy balance. In
the case where the energy of 9.6 MeV corresponds to
the α = 2, n = 0 excited states of weight W(0, 2) = 0.463,
this contribution decreases by 12.84 MeV.

Similar conclusions are valid for the E = 2 MeV ver-
sion calculated on the basis of the same code.

6. CONCLUSIONS
In analyzing inelastic processes accompanying col-

lisions between deuterons of energies in excess of their
breakup threshold, we have to deal with wave packets
whose expansion furnishes information about effective
cross sections for elastic and inelastic scattering. We
have proposed a new computational scheme. On the
basis of this scheme, we have been able to find the K-
or the S-matrix elements for transitions into continuum
states at a fixed energy of two interacting deuterons. We
have derived a closed finite set of algebraic equations;
by solving this set, we have obtained the relevant K-
matrix elements representing continuous functions of
the energy of deuterons broken up in a collision event.
The results of the calculations for this K matrix will be
presented elsewhere.

The phase shift for elastic deuteron–deuteron scat-
tering has been calculated for the case where the energy
of the relative motion of two deuterons does not exceed
the deuteron-breakup threshold. The behavior of the
wave functions of deuterons approaching each other
has been investigated at small distances between the
deuterons. It is the Fourier coefficients in the expansion
of the wave function in the harmonic-oscillator basis
that contain information about this behavior. We have
set forth and implemented an approach that makes it
possible to extract such data and to determine the char-
acter of the variations in the deuteron wave function.
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The deformation of the deuteron wave functions
affects significantly the behavior of the deuteron–deu-
teron phase shift; this is directly seen from the data in
Fig. 1. To a considerable extent, this effect is due to the
features of the system under investigation. Had we
taken no account of the deformation, we would have
obtained an above-threshold deuteron–deuteron reso-
nance and the phase-shift behavior corresponding to
this resonance. Upon the inclusion of the deformation
of the deuteron wave functions, however, the resonance
sinks below the threshold for deuteron–deuteron
breakup, and the character of the phase-shift behavior
changes. It now corresponds to the presence of a rela-
tively shallow bound state under the threshold.

This phenomenon can also occur in more compli-
cated systems investigated within the resonating-group
method, where the inclusion of the deformation of the
cluster wave functions, which strengthens the interac-
tion between the clusters, results in the emergence of a
resonance that is not observed if the deformation is not
taken into account or if the resonance transforms into a
bound state.
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Abstract—Experimental data on the multifragmentation of residual nuclei produced in the krypton interactions
with photoemulsion nuclei at 0.9 GeV per projectile nucleon are presented and compared with similar data on
fragmentation from experiments where gold nuclei of energy 10.7 GeV per nucleon appear as projectiles. It is
shown for the first time that there exist two modes of nuclear multifragmentation, those where less (first mode)
or more (second mode) than half of nucleons are knocked out of the incident nucleus. Residual nuclei that have
close masses and which are produced in various reactions accompanied by the knock-on of more than half of
nucleons of the initial nucleus fragment in nearly the same way. In addition, evidence for a radial flux of spec-
tator fragments is obtained for the first time in the decay of residual nuclei of krypton projectiles. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Interesting experimental results on the multifrag-
mentation of nuclei at low and intermediate energies
have been obtained in recent years. A radial spherically
symmetrical flux of fragments with kinetic energies
proportional to their masses was observed in central
collisions of gold nuclei [1–5]. This is inconsistent with
the assumption that nuclear multifragmentation has a
statistical character. A radial flux of spectator frag-
ments in the rest frame of the fragmenting nucleus was
found in studying the interaction of gold nuclei of
energy 10.7 GeV per projectile nucleon with photo-
emulsion nuclei [6, 7]. According to estimates pre-
sented in [5], the energy of this radial motion is 30 to
50% of the available energy. At the same time, evidence
for invariability of the isotope temperature of fragment-
ing nuclei over a wide excitation-energy range as
obtained from experiments at the ALADIN facility [8]
is considered to suggest the occurrence of a first-order
(liquid–gas) transition and a statistical character of
nuclear multifragmentation. Finally, the experimental
result of the INDRA Collaboration [9], who found that
the isotopic composition of fragmentation products is
independent of the masses of fragmenting nuclei at the
same excitation energy, is indicative of a spinodal insta-
bility of residual nuclei. Thus, the current experimental
situation is rather intricate; more precisely, a theoretical
interpretation of the existing data presents a challeng-
ing problem.
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ences, ul. Timiryazeva 2b, 700084 Tashkent, Republic of Uzbeki-
stan.
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We assume that the problem can be resolved by
studying the fragmentation of comparatively light sys-
tems (the aforementioned studies analyzed the frag-
mentation of heavy nuclei). As a matter of fact, the
well-known statistical model of multifragmentation
(SMM) of nuclei [10, 11] was used to describe the frag-
mentation of both heavy nuclei (see [10]) and the
nuclear residues of oxygen [12]. The no less popular
model of quantum molecular dynamics [13], as well as
the model of antisymmetrized molecular dynamics
[14], either incorporating mean-field effects, is gener-
ally used to study the interactions of light nuclei.
Hence, there is a range of nuclei where both approaches
are applicable. Here, we present experimental data on
the multifragmentation of residual nuclei produced in
the interactions between krypton nuclei with an energy
of 0.9 GeV per nucleon and photoemulsion nuclei.

First and foremost, we will address the most inter-
esting dependence of the multiplicity of intermediate-
mass fragments (IMF) with charges 3 ≤ ZF ≤ 30 on the
mass of the fragmenting system. This multiplicity is
estimated in terms of the “bound”-charge value 

Zbound = , ZF ≥ 2,

or

Zb3 = , ZF ≥ 3.

We further consider intrinsic features of fragmenting
systems, such as the mean charge of the heaviest frag-
ment and the asymmetry in the system of fragments.
The basic results are summarized in the Conclusion.

ZF
F
∑

ZF
F
∑
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2. EXPERIMENTAL SAMPLE

Stacks of NIKFI BR-2 nuclear photoemulsion were
irradiated with 84Kr nuclei accelerated to 1 GeV per
projectile nucleon at the SIS/GSI accelerator and with
197Au nuclei accelerated to 10.7 GeV per projectile
nucleon at the BNL/AGS accelerator. The sensitivity of
the photoemulsion was not poorer than 30 grains per
100 µm for singly charged particles with minimum ion-
ization. In order to analyze the interactions of krypton
with nuclear photoemulsion, we selected events where
the incident energy of krypton nuclei was within the
interval 0.8–0.95 GeV per projectile nucleon, in which
case the mean energy of krypton nuclei was about
0.9 GeV per projectile nucleon.

All interactions were found by means of fast–slow
scanning along the track (the scanning in the forward
direction was fast, while the scanning in the backward
direction was slow), with the rate of fast scanning pre-
cluding any discrimination in event selection. The slow
scanning was carried out to find events where the pro-
jectile nucleus suffered neither significant modifica-
tions nor deflection. Upon the removal of electromag-
netic-dissociation events and events of purely elastic
scattering from the sample of interactions under study,
there remained 677 events of krypton–photoemulsion
interactions and 1057 events of gold–photoemulsion
interactions.

Under the conditions of our experiment, spectator
fragments with charge ZF = 2 were identified visually.
The ionization along the tracks of these particles is con-
stant over a large distance and is equal to g/g0 ≈ 4,
where g0 is the minimum ionization along the track of
a relativistic singly charged particle. Fragments with
charge ZF ≥ 3 were also identified visually; the ioniza-
tion along the track of such fragments exceeds that of
doubly charged fragments. In order to determine the
charges of ZF ≥ 3 fragments, the δ-electron density was
measured over a distance not less than 10 mm; the cal-
ibration was performed by using the primary track of a
known charge and ZF = 2 fragments. The accuracy of a
charge determination was not poorer than 3 charge
units for ZF > 40 fragments and ±1 for ZF < 20 frag-
ments.

Relativistic particles having emission angles in the
region θ < θ0 were taken to be singly charged spectator
fragments. The value θ0 was determined from the rela-
tion

sinθ0 = (0.2 GeV/c)/p0,

where p0 is the projectile momentum in GeV/c per
nucleon.

The polar (θ) and the azimuthal (ϕ) angle were mea-
sured for all charged particles in each event found by
means of scanning.

The transverse momenta of the spectator fragments
were determined as

|pT | = 2ZFp0sinθ, (1)
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where ZF is the fragment charge and p0 is the momen-
tum per projectile nucleon. The ratio AF/ZF for the frag-
ments was assumed to be equal to 2. The mean relative
error in determining the transverse momenta of the
fragments did not exceed 7%.

It should be noted that, at high energies—in contrast
to what occurs at low and intermediate energies—the
target- and projectile-fragmentation regions are dis-
tinctly separated for multiply charged fragments (see
Fig. 7 and Fig. 1 from [15] and [16], respectively). The
probability of compound-nucleus formation is assumed
to be small. Therefore, the problem of separating tar-
get- and projectile-nucleus fragments is simplified. The
velocity of the nuclear fragments of the projectile are
assumed to coincide in absolute values with the projec-
tile velocity, and it is on the basis of this assumption
that we proposed the definition in (1). Obviously, it is
violated for deep-inelastic collisions, where fragments
lose a considerable fraction of their longitudinal
momentum. However, we cannot take this circum-
stance into account for want of relevant experimental
information and because of special features of photo-
emulsion experiments.

The greatest uncertainty in estimating the fragment
momenta is associated with the assumption that the
number of protons (P) is identical to the number of neu-
trons (N) in nuclear fragments. For example, relation (1)
underestimates the transverse momenta for heavy
nuclei, where N > P. When applied to doubly charged
fragments, which involve a certain fraction of 3He
nuclei, relation (1) overestimates the transverse
momenta on average. As was shown in [17], a 10%
admixture of 3He nuclei to Z = 2 fragments leads to a
1% increases in the variance of the transverse-momen-
tum distribution of doubly charged fragments (from
162 to 164 MeV/c); naturally, this cannot distort the
conclusions of our study.

Under the conditions of photoemulsion experi-
ments, a dedicated experimental procedure is required
for identifying the fragments of target nuclei, but it was
not used in our case. Therefore, our data refer to projec-
tile fragments identified by the photoemulsion proce-
dure. In photoemulsion devoted to high-energy interac-
tions (at E ≥ 1 GeV per projectile nucleon), projectile
fragments are usually dubbed spectator fragments. We
will follow this tradition, sometimes omitting the
“spectator” modifier.

3. MULTIPLICITIES OF INTERMEDIATE-MASS 
FRAGMENTS AS FUNCTIONS OF THE MASS

OF A RESIDUAL NUCLEUS

It is obvious that, at a fixed mass of the residual
nucleus, the mean multiplicity of intermediate-mass
fragments, 〈NIMF〉 , increases with excitation energy. At
higher excitation energies, however, the production of
light fragments becomes dominant, so that 〈NIMF〉  must
decrease. It is precisely such a dependence that was
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established by the ALADIN Collaboration [18–20],
who studied the multifragmentation of residual nuclei
produced in the interactions between gold nuclei with
an energy of 600 MeV per projectile nucleon and vari-
ous targets. In that case, the quantity Zbound, including
the charges of alpha particles, was used as a measure of
the residual-nucleus mass. Since alpha particles can be
produced at the stage of preequilibrium decay, Botvina
et al. [21] proposed using another quantity, Zb3. That
〈NIMF〉  as a function of Zbound or Zb3 showed no varia-
tions in response to changes in the target-nucleus mass
is the most interesting result. Since the aforementioned
dependence is determined primarily by the relationship
between the excitation energy and the residual-nucleus
mass, it can be concluded that gold-projectile nuclear

1

0 20

〈NIMF〉

Zb3

40 60 80

2

3

4
(b)

1

0 20
Zbound

40 60 80

2

3

4 (a)

Fig. 1. Multiplicity of intermediate-mass fragments as a
function of the bound charge (‡) Zbound or (b) Zb3: (closed
circles) data on the interactions between krypton nuclei of
energy 0.9 GeV per projectile nucleon and photoemulsion
nuclei and (open circles) data on the interactions between
gold nuclei of energy 10.7 GeV per projectile nucleon and
photoemulsion nuclei.

〈NIMF〉
residues that have the same mass and which were pro-
duced in different reactions have close excitation ener-
gies. Our data in Fig. 1 permit refining this observation.

Our results for 〈NIMF〉  as a function of Zbound and Zb3
are shown in Fig. 1 (closed circles), along with relevant
data for gold projectiles of energy 10.7 GeV per
nucleon [6, 7] (open circles). It can be seen that the data
on the fragmentation of gold and krypton residual
nuclei are close at Zbound ≤ 22 and Zb3 ≤ 16. Although
errors in our experimental data are quite large, we can
say that, at the same value of Zbound, the number of prod-
uct IMFs is slightly greater in the fragmentation of resid-
ual nuclei of krypton projectiles than in the fragmenta-
tion of residual nuclei of gold projectiles. At the same
time, the points virtually coincide at Zb3 ≤ 16 for the two
types of interaction when the variable Zb3 is used. This
suggests that, at high energies, residual nuclei that are
produced in the interactions of different systems, but
which have the same mass, have close excitation ener-
gies if more than half of nucleons are knocked out of the
initial nuclei at the fast stage of the interactions.

It is noteworthy that, as Zb3 decreases, the IMF mul-
tiplicity grows sharply around the Zb3 value of 30. In all
probability, this is due to the threshold nature of nuclear
multifragmentation. The evaporation of nucleons and
light nuclei is obviously dominant at low excitation
energies. The channels of multifragment decay open up
at higher excitation energies. It is not clear whether this
occurs smoothly or abruptly at some threshold value.
Because of large errors in the data on the fragmentation
of residual nuclei of gold projectiles, it is difficult to
pinpoint changes in the behavior of the multiplicity at
large Zb3. A vaster statistical sample is necessary for
this. The data of the ALADIN collaboration have the
required statistical significance for Zb3 ≥ 70, but they
seem to be plagued by methodological uncertainties.
We deem that, with the aim of establishing the thresh-
old character of nuclear multifragmentation, it would
be of interest to perform a more careful investigation of
the IMF multiplicity at large Zb3 values.

4. INTRINSIC FEATURES OF A DECAYING 
SYSTEM AS A FUNCTION OF Zbound AND Zb3

Investigation of the heaviest fragments in events
yielded a completely unexpected result. Figure 2 shows
the mean charge of the heaviest fragment in an event as
a function of Zbound and Zb3. For the interactions of kryp-
ton nuclei with photoemulsion nuclei, a change in the
behavior of 〈Zmax〉  as a function of Zb3 is clearly seen at
Zb3 ~ 15. A similar change is also observed in the data
on the fragmentation of residual nuclei of gold projec-
tiles, but it is not so pronounced. The effect is smeared
when use is made of the variable Zbound. We approxi-
mated the bound-charge dependence of 〈Zmax〉  by linear
functions in various regions of the bound-charge values
(〈Zmax〉  = a + bx, x = Zbound, Zb3). The results of this fit,
which are quoted in Table 1, corroborate visual obser-
vations. For the various projectile species, the parame-
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Fig. 2. Mean charge of the heaviest fragment in events as a function of the bound charge. The notation is identical to that in Fig. 1.

〈Zmax〉
ters of the fit agree within two standard deviations if Zb3
is less than half the charge of the initial nucleus. At
larger values of the bound charge, the parameters are
not close. The quality of the fit in terms of the variable
Zbound is much poorer: the χ2 value is greater.

The bound-charge dependence of 〈Zmax〉  was also
approximated by the piecewise smooth functions

where x = Zbound or Zb3. The fitted values of the param-
eters in this approximation are given in Table 2. In
Fig. 2, the resulting approximations are represented by
solid lines. It can be seen that the position of the kink
(x2 value) corresponds to a value below half the charge
of the initial nucleus and that the χ2 values are smaller
when use is made of the variable Zb3.

In summary, we can conclude that residual nuclei
that are formed upon the removal of less than half of
nucleons from the initial nucleus and those that are
formed upon the removal of more than half of nucleons
fragment differently. In order to investigate this point in
greater detail, we define the asymmetry A12 for each
event as

where Z1, Z2, etc., are the fragment charges arranged in
decreasing order (Z1 ≥ Z2 ≥ Z3 …, Z1 ≡ Zmax).

The data in Fig. 3, which shows the mean asymme-
try in events versus Zbound and Zb3, are compatible with
the above statement. It can be seen that the mean asym-
metry 〈A12〉 as a function of Zb3 is virtually constant for
Zb3 ≤ 15 and that it grows sharply with increasing Zb3.
Thus, Zb3 ≤ 15 events are characterized by a low decay
asymmetry, while Zb3 > 15 events are highly asymmet-

Zmax〈 〉
a1

a2 a1–
x2 x1–
---------------- x x1–( ), x x2,≤+

a2

a3 a2–
x3 x2–
---------------- x x2–( ), x x2,>+

=

A12

Z1 Z2–
Z1 Z2+
-----------------,=
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ric in this respect. A similar behavior can be traced in
the fragmentation of heavier systems.

In terms of the variable Zbound, it is difficult to decide
conclusively that there exist two modes of fragmenta-
tion of residual nuclei of krypton projectiles. In the data
on the fragmentation of heavier systems, the mean
asymmetry 〈A12〉  behaves differently at Zbound values
above and below the projectile charge. At small Zbound
values, the mean asymmetry 〈A12〉  takes very similar
values for the different fragmenting systems.

On the whole, we can conclude that there are at least
two types of nuclear multifragmentation.

5. FRAGMENT ENERGIES AS FUNCTIONS
OF Zbound

According to the statistical model of nuclear multi-
fragmentation, the kinetic energy of fragments in the
rest frame of the fragmenting nucleus is determined by
the charge of the residual nucleus; therefore, a decrease
in Zbound is expected to be accompanied by a decrease in

Table 1.  Fitted values of the parameters in a linear-function
approximation of 〈Zmax〉  versus the bound charge

Projectile 
nucleus

Bound-charge 
interval a b χ2/NDF

Kr Zb3 = 3–15 1.8 ± 0.2 0.57 ± 0.04 5.1/6

Au Zb3 = 3–37 2.2 ± 0.1 0.50 ± 0.02 10.5/17

Kr Zb3 = 16–35 –4.3 ± 0.6 1.13 ± 0.02 5.4/10

Au Zb3 = 42–79 –26.8 ± 2.3 1.34 ± 0.03 6.0/19

Kr Zbound = 2–15 1.5 ± 0.1 0.19 ± 0.02 19/7

Au Zbound = 2–37 0.4 ± 0.1 0.28 ± 0.01 49/17

Kr Zbound= 22–37 –23.4 ± 1.6 1.63 ± 0.05 57/9

Au Zbound= 54–79 –74.5 ± 4.1 1.92 ± 0.06 47/13
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the fragment energy [22]. In order to go over from the
laboratory frame to the rest frame of the fragmenting
nucleus, we used the Galilean transformation in the
form described in detail by Adamovich et al. [6]. Under
the assumption of isotropic decay, the mean kinetic
energy of a fragment and its mean transverse momen-
tum are related by the equation

E〈 〉 3
2
---

pT
2〈 〉

4ZFmN

-----------------,=

0.2

0 20
Zb3

40 60 80

(b)

0.4

0.6

0.8

1.0

0.2

0 20
Zbound

40 60 80

(a)

0.4

0.6

0.8

1.0
〈A12〉

Fig. 3. Mean asymmetry in events as a function of the bound
charge. The notation is identical to that in Fig. 1.

〈A12〉
where pT is the fragment transverse momentum, ZF is
the fragment charge, and mN is the nucleon mass.

Figure 4 shows data on the mean kinetic energies of
ZF ≥ 2 fragments in events where the number of multi-
ply charged fragments is greater than or equal to three.
The kinetic energies of the fragments of krypton nuclei
do not show any tendency to decrease with decreasing
residual-nucleus masses at Zbound ≤ 25. Moreover, they
are virtually constant in this region of Zbound. A similar
pattern is observed in fragmentation of gold nuclei.

50

0 20
Zbound

40 60 80

100 (c)

50

100 (b)

0

100

200 (a)

0

〈E〉 , MeV

Fig. 4. Estimated mean kinetic energies of fragments in the
rest frame of the fragmenting nucleus for (‡) doubly charged
fragments, (b) ZF = 3–5 fragments, and (c) intermediate-
mass fragments. The notation for the points is identical to
that in Fig. 1.
Table 2.  Fitted values of the parameters in a piecewise-linear-function approximation of 〈Zmax〉  versus the bound charge

Nucleus Bound charge a1 x1 a2 x2 a3 x3 χ2/NDF

Kr Zb3 3.58 3 8.0 ± 0.6 11.3 ± 0.6 34.5 34.5 14/16

Au Zb3 3.58 3 18.2 ± 0.7 32.5 ± 0.9 77.5 78.5 18/38

Kr Zbound 2.00 2 5.0 ± 0.3 16.6 ± 0.4 35.2 36.0 37/18

Au Zbound 2.00 2 9.3 ± 0.3 39.3 ± 0.5 78.5 80.0 150/38
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This suggests the presence of a radial flux of fragments.
According to our data, the energy of the radial flux
depends on the projectile mass.

6. CONCLUSION

Experimental data on the fragmentation of residual
nuclei formed in the interactions between krypton pro-
jectiles with an energy of 0.9 GeV per nucleon and pho-
toemulsion nuclei have been presented.

It has been shown that the residual nuclei fragment
in nearly the same way, irrespective of the projectile
mass, if the bound charge does not exceed half the
charge of the initial nucleus.

Evidence for the threshold character of nuclear mul-
tifragmentation and for the existence of the projectile-
mass dependence of the radial flux of fragments has
been obtained.

The observed experimental regularities have been
disclosed most vividly when the variable Zb3 has been
used as a measure of the residual-nucleus mass.

Further theoretical and experimental investigations
into the fragmentation of intermediate-mass nuclei
would be of interest.
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Abstract—Implications of the chiral anomaly for the cross sections of the reactions K+γ  K+π0, K0γ 
K0π0, K+γ  K0π+, and K0γ  K+π– are investigated. Near the threshold, the contribution of the chiral
anomaly dominates the cross sections for the first and the second reaction. These cross sections are compared
with the cross sections for the third and the fourth reaction, which receive no contribution from the chiral anom-
aly. Prospects for an experimental study of the KKπγ vertex in the Coulomb production of π mesons by a
K-meson beam are discussed. © 2001 MAIK “Nauka/Interperiodica”.
                  
1. INTRODUCTION

The concept of a chiral anomaly is taken to mean a
violation of classical chiral symmetry at the quantum
level. Such a breakdown of symmetry occurs in theo-
ries featuring chiral fermions—in particular, in the
Standard Model. Phenomenological implications of the
chiral anomaly for strong, electromagnetic, and weak
semileptonic processes involving pseudoscalar mesons
can be deduced from the functional [1]

(1)

which must be included in the action of chiral perturba-
tion theory (ChPT). The first integral on the right-hand
side of Eq. (1) must be taken over five-dimensional
space whose boundary is four-dimensional Minkowski
space; the indices i, j, k, l, and m run the values from 1
to 5; σijklm is a relevant volume element; µ, ν, α, and β
are the indices in Minkowski space; and Nc is the num-
ber of colors (Nc = 3). The functional in (1), also known
as the Wess–Zumino–Witten (WZW) action, is
expressed in terms of the meson fields as

(2)
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Substituting definitions (3) into expression (2), we
derive all terms stemming from the chiral anomaly that
appear in the effective Lagrangian for the aforemen-
tioned processes. Here, we are interested in the terms in
this Lagrangian that describe photon interaction with
three pseudoscalar mesons:1) 

(4)

The γπ0π+π– and γηπ+π– vertices were studied theoreti-
cally in [3, 4] and experimentally in the Coulomb produc-
tion of π0 and η mesons at the IHEP accelerator [5, 6].

An experimental study of anomalous vertices
involving K mesons is of particular interest because of
their role in the WZW action (1). To obtain deeper
insight into the role of the K mesons, we assume, for the
time being, that there are no K mesons in the low-
energy effective Lagrangian (this would be the case if
the s quark were heavy).

In a hypothetical world featuring only two light
quarks, any effective meson Lagrangian respects not
only the symmetries of the underlying QCD
Lagrangian but also some additional symmetries—for
example, the parity of the number of Goldstone bosons
is conserved in this hypothetical world. In this case, one
of the rules for constructing an effective theory—any
effective theory must satisfy all symmetries of the
respective underlying theory and only them—is vio-
lated. Note that the simplest reaction that respects all
symmetries of the QCD Lagrangian and only them is
K+K–  π+π0π– [1].

Moreover, the important conclusion that the coeffi-
cient of Lagrangian (1) can take only integral values (in
units of 1/240π2) was deduced under the assumption
that the manifold of Goldstone bosons coincides with
the SU(3) group (this is equivalent to the existence of
three light quarks).

However, manifestations of the chiral anomaly in
reactions featuring the K mesons have received little
attention. The only case where it was considered is the
calculation of the anomalous contribution to nonlep-
tonic weak interactions [7].2) [7]. Unfortunately, the

1)Strictly speaking, expression (1) was deduced for the case of the
SU(3) [instead of U(3)] group. A generalization of the action func-
tional (1) to the case of the U(3) group by naively considering the
η0 meson among the pseudo-Goldstone bosons was used in [2].

2)The action functional (1) itself describes only the strong, electro-
magnetic, and semileptonic weak interactions of the pseudoscalar
mesons.
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amplitudes of such processes depend on additional
parameters; therefore, the chiral-anomaly contribution
proper is hidden and can be isolated only under some
auxiliary assumptions.

Here, we study the manifestations of the chiral
anomaly in the strong and electromagnetic interactions
of the strange particles. Since such manifestations can-
not be observed in meson decays, we consider the
amplitudes of the Kγ  Kπ scattering processes,
which can be studied experimentally in the Coulomb
production of π mesons by a K-meson beam (Fig. 1).

The behavior of the Kγ  Kπ amplitude in the
chiral limit is completely determined by the anomalous
WZW Lagrangian (1), whereas, at the physical values

of the meson masses and  ~ 0.9 GeV, it is determined
by the contribution of the 1– – resonances. A similar
statement is valid for the reactions πγ  ππ and
πγ  ηπ, whose amplitudes were calculated in [3]
(see also [4]) by using the Kawarabayashi–Suzuki–Ria-
zuddin–Fayyazuddin (KSRF) relations and anomalous
Ward identities.

We calculate the amplitudes of the reaction Kγ 
Kπ on the basis of the Bando–Kugo–Yamawaki model
[8, 9], which represents a version of the vector-meson-
dominance model based on a Lagrangian that generates
the KSRF relations and the anomalous Ward identities.

2. BANDO–KUGO–YAMAWAKI MODEL

The Bando–Kugo–Yamawaki model is a natural
extension of ChPT to the interactions between the pseudo-
Goldstone 0–+ mesons (P) and the vector 1–– mesons (V).
Within this model, the vector mesons originate from a
dynamical breakdown of hidden gauge symmetry in the
CHPT Lagrangian. The normal-sector Lagrangian of the
Bando–Kugo–Yamawaki model has the form

(5)

s

+norm F
2

pµ pµ〈 〉–=

– 2F
2

v µ igVµ– ie@µ–( )2〈 〉 1
2
--- Vµν

2〈 〉 ,–

K(pb)

K(p3)

Z(pa) Z(p1)

π(p2)

γ

Fig. 1. Kinematics of the Coulomb productions of π mesons
on a beryllium nucleus: q = pa – p1, t1 = q2, s2 = (p2 + p3)2,

t2 = (pb – p3)2, and s = (pa + pb)2 ≈  + 2MZE.MZ
2
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where

Aµ is the electromagnetic field; here and below, angular
brackets denote evaluation of the trace over the SU(3)
indices; and

The first term in this Lagrangian coincides with the
ChPT Lagrangian. The Lagrangian in (5) is invariant
under the transformations

(6)

which are defined in such way that vµ  hvµh–1 –
∂µhh–1. The field Vµ describing the vector mesons is
introduced as the compensating field for these transfor-
mations [see the second term in the expression (5)], and
its kinetic term is generated dynamically [9].

The mass matrix in Lagrangian (5) is determined by
the quadratic form

where Qa = 〈λ a, Q〉  and  = 〈λ a, Vµ〉 . A diagonal-
ization of this matrix gives rise to the mixing of the

fields  and  with the field Aµ. The eigenstates of
the mass matrix that are associated with the mixing of
the fields under consideration have the form

The masses of the fields  and 5µ are, respectively,

2Fg and 2Fg', where g' = , and the mass-
less field !µ describes the physical photon. In what fol-
lows, we neglect terms of order e2 since e ! g. In this
approximation, the mass term of the field Vµ and the
vertex of the γ–V transition are given by

(7)
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where

(8)

(9)

Formulas (8) and (9) are, respectively, the first and the
second KSRF relation; they determine the numerical
value of the constant of the VPP interaction, g = 4.9, and
the constant of the γ–V transitions, gV ~ (325 MeV)2.

The interaction Lagrangian describing anomalous-
parity processes has the form [8]

(10)

where

          

          

          

          

and

          

          

          

          

The coefficient c in expression (10) is a free parameter;
the lowest order terms in the expansion of Lagrangian
(10) in the fields are independent of c and are given by
the expression

(11)

where
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The Lagrangian in (10) possesses the following
properties:

(i) It meets the requirements of the principle of vec-
tor-meson dominance for the Pγγ vertices. This means
that decays of the P  γγ type are necessarily medi-
ated by the PVV vertex and that, in the total Lagrangian,
there are no Pγγ and PVγ vertices. It should be empha-
sized that the behavior of the amplitudes in the chiral
limit coincides with that predicted by the WZW
Lagrangian (1), this coincidence being due to the KSRF
relations (8) and (9).

(ii) It adequately describes the decay ω  3π.
According to this model, this decay of the ω meson pro-
ceeds in two stages: ω  ρπ  πππ; Therefore, the
PPPV vertex does not appear in the Lagrangian. The
principle of vector-meson dominance for the PPPV
vertices does not agree with experimental data [8, 10].

3. RESULTS OF THE CALCULATIONS

The expressions for the amplitudes of Kγ  Kπ
reactions can be derived from the interaction
Lagrangians (5) and (10). The relevant diagrams are
shown in Fig. 2. The result has the form

(12)

where e is the photon polarization vector, while q, pb,
and p2 are the momenta of, respectively, the photon, the
initial K meson, and the π meson (see Fig. 1). The coef-
ficients C0, Cs, Ct, and Cu for specific processes are pre-
sented in Table 1.

Here, the unitarization of the amplitude is achieved
in the simplest way, by adding the imaginary term

iΓV  to the denominators of the vector-meson propa-
gators. We neglect the widths of the t-channel and u-
channel resonances because we consider the behavior
of the amplitudes only in the s channel.

Let us denote by I(s) the integral of the square of the
absolute value of the parenthetical expression on the
right-hand side of Eq. (12); that is,

(13)

where t+ and t– are the kinematical limits. The cross sec-
tion for the reaction Kγ  Kπ then has the form
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Cross sections of this type can be studied in the
Coulomb production of π mesons by a K-meson beam.
The kinematical variables used to describe these reac-
tions are defined in Fig. 1. We consider the cross section
for the scattering into the following kinematical
domain:

(14)

Here, EK is the energy of the K-meson beam; the con-
straint t1 > –(50 MeV)2 is introduced in order to isolate
the Coulomb production of π mesons (Fig. 1) from

50 MeV( )2
– t1

s2 mK
2

–( )
2

4EK
2

------------------------,–< <

mK mπ+( )2
s2 0.6 GeV

2
.< <

K K K K

K K K K

γ π γ π

γ π γ π

K*

K*

ω, ρ
ρ, ω

Fig. 2. Tree diagrams contributing to the amplitude of the
reaction Kγ  Kπ.

ρ, ω, φ

ρ, ω, φ

Table 1.  Coefficients C0, Cs, Ct, and Cu from Eq. (12)

Reaction C0 Cs Ct Cu

K+γ  K+π0 2 1 4 1

K+γ  K0π+ 0

K0γ  K0π0 2 2 2 2

K0γ  K+π− 0

2 2 2 2–

–2 2 2 2

Table 2.  Values characterizing the near-threshold behavior
of the cross section dσ/ds2 in Eq. (17)

Reaction σ, nb C, nb/GeV3 , GeV2

K+γ  K+π0 81 1.0 × 105 0.55

K+γ  K0π+ 20 2.9 × 102 0.40

K0γ  K0π0 165 1.6 × 105 0.45

K0γ  K+π− 99 2.6 × 103 0.45

Note: Here, σ is the cross section for scattering in the kinematical
domain (14); the energy threshold corresponds to s2 =

0.396 GeV2; and  is the s value 2 bounding the domain

of validity of Eq. (17).

s2
 max

s2
max
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π-meson production governed by the other mechanisms
[6]; the constraint s2 < 0.6 GeV2 is imposed to exclude
the resonance region; the remaining two boundaries
have a kinematical origin.

Using the equivalent-photon approximation, we
express the cross section for the Coulomb production of
π mesons on a nucleus in terms of the cross section for
the reaction Kγ  Kπ as

(15)

Upon integration with respect to t1 over the domain
determined by the constraints in (14), we arrive at

(16)

The chiral anomaly reveals itself in the behavior of
the cross sections under study in the vicinity of the
point s = t = u = 0, where the amplitude in (12) is deter-
mined by Lagrangian (4). The chiral anomaly contrib-
utes to the amplitudes of the reactions K+γ  K+π0

and K 0γ  K 0π0, but it does not contribute to the
amplitudes of the reactions K+γ  K 0π+ and K 0γ 
K+π–. This is clearly demonstrated in Figs. 3 and 4,
which display the near-threshold behavior of the rele-
vant cross sections.
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0.60

200

0.550.500.45

600

1000

dσ/ds2, nb/GeV2

s2, GeV2

Fig. 3. Cross sections for Coulomb scattering on a beryllium

nucleus as functions of s2 = (  + pπ)2 at the beam energy

of 40 GeV in the near-threshold region: (solid curve)
K+Z  K+π0Z and (dashed curve) K+Z  K 0π+Z.
Here and in Figs. 4 and 5, the square of the momentum
transfer to the nucleus satisfies the kinematical constraint
|t1| < (50 MeV)2.

pK
out
Near the threshold, the behavior of the cross section
can be described by the formula

(17)

where the coefficients C for the specific reactions are
quoted in Table 2. The energy ranges where expres-
sion (17) provides a good approximation to the cross
sections and the total cross sections for π-meson pro-
duction on a beryllium nucleus at an incident-kaon
energy of about 40 GeV in the kinematical domain

dσKγ Kπ→

ds2
---------------------- C s2 mK mπ+( )2

–( )
3/2

,=

0.60

500

0.550.500.45

1500

2500

dσ/ds2, nb/GeV2

s2, GeV2

Fig. 4. Cross sections for Coulomb scattering on s beryllium

nucleus as functions of s2 = (  + pπ)2 at the beam energy

of 40 GeV in the near-threshold region: (solid curve)
K 0Z  K 0π0Z and (dashed curve) K 0Z  K+π–Z.

pK
out

0.5 0.7 0.9
s2, GeV2

14

10

6

2

dσ/ds2, nb/GeV2

×104

Fig. 5. Cross sections for Coulomb scattering on a beryllium

nucleus as functions of s2 = (  + pπ)2 at the beam energy

of 40 GeV in the resonance region: (solid curve) K +Z 
K +π0Z, (dashed curve) K+Z  K 0π+Z, (dotted curve)
K 0Z  K 0π0Z, and (dash-dotted curve) K 0Z  K +π–Z.

pK
out
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001



CHIRAL ANOMALY 73
specified by (14) are also given in Table 2. The energy
dependence of the cross section is described by a com-
plicated function since the first term in the expansion
offers a good approximation only in the immediate
vicinity of the threshold.

Over the resonance region, the theoretical cross sec-
tions behave in a conventional way (Fig. 5).

4. CONCLUSION

The characteristic behavior of the differential cross
section (15) at small |t1| (so-called Coulomb peak)
makes it possible to isolate the Coulomb production of
π mesons against the background of other production
mechanisms [11]; the Coulomb production is dominant
at |t1| < (50 MeV)2. Owing to this, it is possible to study
experimentally K+γ  K+π0, K 0γ  K 0π0, K+γ 
K 0π+, and K 0γ  K+π–. The near-threshold behavior
of the first and the second process is determined by the
chiral anomaly, but the chiral anomaly does not con-
tribute to the amplitudes of the third and the fourth pro-
cess. As a consequence, the theoretical cross sections
for the first and the second process are 10–100 times
larger than the cross sections for the third and the fourth
process over the entire near-threshold region. The pro-
posed measurements of the cross sections under con-
sideration may provide a unique source of experimental
information about the coefficients of the KKπγ vertices
in Lagrangian (4) and about manifestations of the chiral
anomaly in strong and electromagnetic processes
involving K mesons. Such measurements would allow
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
us to check the validity of the vector-meson-dominance
model [9] in the anomalous sector.
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Abstract—Within the minimal model based on the four-color symmetry of quarks and leptons of the Pati–
Salam type, the asymptotic behavior of amplitudes for processes involving longitudinal leptoquarks (and W or
Z' bosons) is investigated, together with the mechanism according to which the growth of these amplitudes at
high energies is suppressed by scalar fields. It is shown that, within the Higgs mechanism of mass generation
and of the mass splitting of quarks and leptons, the four-color symmetry of quarks and leptons requires that
scalar-leptoquark doublets, scalar-gluon doublets, and an extra color-singlet scalar doublet exist in addition to
the standard Higgs doublet. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Searches for possible versions of new physics
beyond the Standard Model (SM) that are induced by
higher symmetries (supersymmetry, left–right symme-
try, etc.) represent one of the currently popular lines of
investigations into elementary-particle physics. Among
symmetries possibly existing in nature, there is the
four-color symmetry of quarks and leptons that treats
leptons as a fourth color [1]. From this symmetry, it fol-
lows that there must exist new particles, vector lepto-
quarks, with masses on the order of the mass scale at
which this symmetry is broken. It should be noted that,
in models featuring four-color symmetry, it is natural to
assume the existence of scalar leptoquarks—such par-
ticles were phenomenologically introduced and ana-
lyzed in a number of studies (see, for example, [2, 3]).
But if the scalar leptoquarks are introduced phenome-
nologically, it is not clear whether the existence of such
particles is an inevitable consequence of four-color
symmetry. It would be of interest to clarify the role of
the scalar leptoquarks in the theory being discussed and
to find out what particles, other than vector leptoquarks,
are mandatory in the presence of four-color symmetry.

In this study, we give answers to these questions by
investigating the asymptotic behavior of longitudinal-
leptoquark amplitudes and by considering suppression
of their undesirable growth at high energies by the con-
tributions from new scalar particles. It is well known
from [4–6] that the contribution of the longitudinal
components of massive gauge fields to the amplitudes
for processes involving such fields grows with energy.

  * e-mail: povarov@univ.uniyar.ac.ru
** e-mail: asmirnov@univ.uniyar.ac.ru
1063-7788/01/6401- $21.00 © 20074
In the total amplitude, the leading terms cancel out by
virtue of the gauge-invariant structure of the interac-
tion, while the remaining growing contributions must
be suppressed by the contributions from scalar parti-
cles. In the SM, the growth of amplitudes for processes
involving longitudinal W and Z bosons is suppressed by
the standard Higgs particle. By investigating the
asymptotic behavior of amplitudes for longitudinal-
leptoquark processes, we show here what scalar parti-
cles are required for suppressing the growth of these
amplitudes within the minimal model featuring the
four-color symmetry of quarks and leptons of the Pati–
Salam type if it is the Higgs mechanism that is respon-
sible for mass generation and for the splitting of the
quark and lepton masses [7, 8].

2. CONTRIBUTION OF THE GAUGE SECTOR

TO THE    AMPLITUDE 

Among extensions of the SM that involve four-color
symmetry, the minimal version of four-color quark–
lepton symmetry considered here (see [7, 8]) is the
most economical one in the number of new gauge
fields. It is based on the SUV(4) × SUL(2) × UR(1) group
as the minimal group that combines the symmetry of
the SM and the four-color symmetry of quarks and lep-
tons. Upon a spontaneous breakdown, this group gen-
erates, in addition to the SM gauge fields, two triplets

 (α = 1, 2, 3) of massive vector leptoquarks with
charges of ±2/3 and an extra massive neutral Z ' boson.

The interaction of the vector leptoquarks and of the
Z and Z ' bosons with the fermions can be described in

l2Q2 VVV

Vαµ
±
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the model-independent form

(1)

(2)

where

(3)

Here, fpa = {Qpaα, lpa} ≡ ΨpaA; A = α, 4, α = 1, 2, 3 being
the SUc(3) color index; p, q = 1, 2, 3, … stand for the
generation number; and a = 1, 2 is the SUL(2) index.

Since the basis quark and lepton fields  and

 can generally be expressed in terms of the physi-

cal fields  and  as the superpositions

(4)

where  are unitary matrices, the constants gaA

and gaV appearing in (3) are matrices in the generation
indices.

In addressing the question of what scalar particles
are required for implementing spontaneously broken
four-color symmetry, we begin by examining the
amplitude for the process

(5)

where lp2 and Qq2α are, respectively, the down leptons
and quarks of the p and q generations and α, β, γ, δ = 1,
2, 3 are the SUc(3) color indices of the quarks and the
leptoquarks. The diagrams for this process that are due
to the gauge sector are shown in Fig. 1.

With increasing c.m. energy ε of colliding particles,
the amplitude for the process in (5) involving transverse
gauge bosons decreases in proportion to 1/ε. Each of
the longitudinal leptoquarks generates an additional
power of growth in the energy ε, with the result that
nondecreasing terms of the second, the first, and the
zeroth order in ε appear in the amplitude featuring three
longitudinal leptoquarks. In the total amplitude, the
leading second-order terms cancel out, so that the
resulting amplitude contains nondecreasing terms of
the first and the zeroth order in ε.

According to our calculations, the amplitude for the
process in (5) involving three longitudinal leptoquarks
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is given by

(6)

(7)

(8)
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(9)

Here, (–p2) and Qq2α(p1) are, respectively, the lepton
and the quark bispinors; m stands for the masses of the
corresponding particles; p1 and p2 are, respectively, the
antilepton and the quark 4-momenta; p = p1 + p2 = k1 +
k2 + k3; and k1, k2, and k3 and β, γ, and δ are the 4-
momenta and the SUc(3) indices of the vector lepto-
quarks. The coupling-constant matrices appearing in
Eqs. (8) and (9) are expressed in terms of the constants
in (3) as

where  is the coupling constant for the interaction

of the field Xi = (Aµ, Zµ, ), i = 1, 2, 3, with the vector

leptoquarks and  is the gauge constant of the fourth
leptoquark vertex.

The nondecreasing parts of the amplitude in (6)

involve two terms,  and . Of these, the
first is independent of the fermion mass, while the sec-
ond depends on the quark and lepton masses through
the equality

(10)

where ( )pq = δpq  and ( )pq = δpq are the
diagonal quark and lepton mass matrices. In the partic-
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ular case where the leptoquark current in (3) is of a vec-
tor character and is diagonal, expressions (10) are pro-
portional to the difference of the lepton and quark
masses. In the minimal model of four-color quark–lep-
ton symmetry, the constants appearing in (8) and (9)
can be represented as

(11)

(12)

where g4 is the SUV(4) gauge constant;  =

( )+  are unitary matrices in the generation

indices; tW = , θW being the weak-mixing (Wein-
berg) angle; c = cosθ and s = sinθ, θ being the Z – Z '

mixing angle; and σ = sWss/ , with sW, s =
sinθW, s, θs being the strong-mixing angle [7, 8].

By taking into account expressions (11) and (12)
and the constants in (3), which are determined by the
structure of the neutral currents of the minimal model
of four-color quark–lepton symmetry [7, 8], we obtain

(13)

Simplifying expressions (8) and (9) with the aid of
these equalities, we arrive at
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3. SCALAR SECTOR AND YUKAWA 
INTERACTION

The nondecreasing gauge-sector contributions
determined by Eqs. (6), (7), (14), and (15) must be sup-
pressed by the relevant contributions from scalar fields
responsible for the generation of fermion and gauge-
boson masses. Among these fields, there is the SM sca-

lar doublet , a = 1, 2. In the presence of four-
color symmetry, it can either be an invariant with
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respect to the SUV(4) group or have a more complicated
structure.

For the first case, it can be shown that, following a
spontaneous breakdown of symmetry, its Yukawa inter-
action with the SUV(4)-invariant fermion current leads
to a relation of the form ∆a± = 0 for the quark and lepton
masses. With allowance for Eq. (10), this relation
means for the general case that the product of the
masses of the up (down) leptons is equal to the product
of the masses of the corresponding quarks; in the par-

ticular case of  =  = I, this means that the quarks
and leptons have equal masses in each generation.
However, this is at odds with experimental data both in
the former and in the latter case. At first glance, it seems
that the quark and lepton masses could be split by intro-
ducing, in an ad hoc manner, the SUV(4)-invariant SM
doublet Φ(SM) that involves the 15th component of the
fermion scalar current and which violates the SUV(4)
symmetry of the Yukawa coupling; however, the calcu-
lations show that, in the asymptotic expression, this
gives no way to ensure cancellation of the quark- and

lepton-mass-dependent part of the amplitude .
The commonly adopted approach to the generation of
the quark and lepton masses assumes that, at large
scales, the quarks and leptons have zero or equal
masses, but that, at the SM scale, their running masses
split, taking values close to the experimental ones.
Within this approach, it is necessary, however, to solve
a nontrivial problem of ensuring sizable splitting of the
quark and lepton masses (by way of example, this split-
ting is about mt = 175 GeV for the third generation).

An alternative approach was proposed in [7, 8]. It is
based on the Higgs mechanism of splitting of the quark
and lepton masses. In this approach, the multiplet of the

fields  (j = 1, 2, …, 15) transforming according to
the (15, 2, 1) representation of the SUV(4) × SUL(2) ×
UR(1) group is introduced in addition to the SUV(4)-

invariant scalar doublet  (a = 1, 2). The Yukawa
coupling of these multiplets to the fermions generates
arbitrary quark and lepton masses; as will be shown
below, the remaining physical scalar fields ensure sup-
pression of the undesirable growth of the amplitude for
the process in (5). In this case, the SM Higgs doublet

 has a more complicated structure, appearing to

be a superposition of the doublets  and . The

multiplets , A = 1, 2, 3, 4, and  transforming
according to the (4,1,1) and (15,1,0) representations of
the SUV(4) × SUL(2) × UR(1) group are used to generate
vector-leptoquark and Z '-boson masses.

The scalar multiplets of the minimal version of four-
color quark–lepton symmetry can be represented in

Ka
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Φ ja
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the form

where  = δa2η3 + ; η1, η2, η3, and η4 are vac-
uum expectation values; t15 is the 15th generator of the
SUV(4) group; a = 1, 2 is the SUL(2) index; and α, β =
1, 2, 3 are the SUc(3) color indices.

The multiplet Φ(3) contains two doublets of the sca-

lar leptoquarks  with hypercharges  = 1 ± 4/3;

eight doublets of the scalar gluons Fja , j = 1, 2, …, 8

with Y (SM) = 1; and the doublet , which is mixed

with the doublet , forming the SM doublet Φ(SM)

and an additional doublet Φ':

Here, η =  = ( GF)–1/2 ≈ 250 GeV is the SM
vacuum expectation value.

In addition to the SM Goldstone modes  and
ω, there are also the Goldstone modes ω(1) and

(16)

which are associated with the breakdown of four-color
symmetry.

The leptoquark fields entering into S0 can be repre-
sented as a superposition of the Goldstone mode S0 and
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the physical fields S1, S2, and S3 with an electric charge
of 2/3 that are orthogonal to S0 as

(17)

where , , and  (k = 0, 1, 2, 3) are elements
of the 4 × 4 unitary matrix of scalar-leptoquark mixing.

In the unitary gauge, the Goldstone modes are elim-
inated:

For physical fields, we then have the SM Higgs field
χ(SM), the extra SUc(3)-color-singlet doublet Φ', two

triplets of the up leptoquarks  and  with electri-
cal charges of 5/3 and 1/3, three scalar leptoquarks Skα
(k = 1, 2, 3) with an electrical charge of 2/3, eight dou-
blets of the scalar gluons Fj, a , the octet of the scalar

gluons , and the SUc(3) color-singlet fields χ(1) and
χ(4).

The scalar fields that have the SUL(2)-doublet origin
interact with the fermions. The corresponding Yukawa
Lagrangian generally has the form [7, 8]

(18)

where  = { , };  = ;  =

εac( )*;  = ; and  = εac( )*, i = 1,
2, …, 15; ti stands for the generators of the SUV(4)

group; εac is an antisymmetric symbol; and hb and 
are arbitrary matrices.

Following spontaneous symmetry breaking treated

with allowance for Φ(2)–  mixing and diagonaliza-
tion of the mass matrices by using relation (4), the
Lagrangian (18) gives the fermion mass term and the

Lagrangian  describing the interaction of the fer-
mion and scalar fields in the form
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where Ma =  – , (Fa)αβ = Faj(tj)αβ, CQ

is the Cabibbo–Kobayashi–Maskawa matrix, Cl is the
matrix analogous to it in the lepton sector, and β is the

Φ(2)–  mixing angle (  = η3/η2).

4. CONTRIBUTION OF THE SCALAR SECTOR 
TO THE    AMPLITUDE 

AND CANCELLATION OF DIVERGENCES

The contribution of the scalar sector to the ampli-
tude for the process in (5) is described by the diagrams
in Fig. 2. The expressions for the required three-particle
interactions of scalar and gauge fields are presented in
the Appendix. By using the notation analogous to that
in Eqs. (6) and (7), the contribution of these diagrams
can be represented as the sum of the contributions of
the individual fields χ(SM), χ', F2j, and Sk of the doublet
origin; that is,

(20)

For the above contributions, our calculations yield
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Fig. 2. Diagrams representing the contribution to the ampli-

tude for the process    from the sca-

lar sector of the model based on the minimal version of four-
color quark–lepton symmetry.
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(28)

where χ = {χ(SM), χ', χ(1), χ(4)} and F = { , F (4), }

are the octets of real neutral scalar gluons, F2 = (  +

i )/ , and U1k = (  + )/ .

By analyzing the contributions given by Eqs. (21)–

(28), we note that the contribution  from the SM
Higgs particle χ(SM) [see Eq. (22)] does not involve sec-
ond-order terms in ∆2± of the type of the last term in
Eq. (15). In the case of quarks and leptons with arbi-
trary masses, this contribution is insufficient for cancel-
lation of the gauge-sector contribution in the asymp-
totic region. Second-order terms of this type are con-

tained in the contributions  and  from the extra
doublet and octet of down scalar gluons [see Eqs. (24)
and (26)]. An analysis reveals, however, that these con-
tributions are also insufficient for the aforementioned
cancellation; only together with the scalar-leptoquark
contribution (28) do these fields ensure the required
cancellation of the gauge amplitude.

For the total contribution from the scalar sector to
the amplitude for the process in (5), the inclusion of the
coupling constants appearing in Eqs. (21)–(28) (see
Appendix) does indeed yield

(29)
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where the ellipsis stands for the omitted immaterial
terms, whose contribution to the amplitude is of order
1/ε.
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Taking into account the relations

which are predicted by the model, we can show that the
contributions given by (29) and (30) exactly cancel the
corresponding contributions (14) and (15) from the
gauge sector. For this cancellation to occur, one needs,
in addition to the SM Higgs field χ(SM), the scalar lepto-
quarks Skα (k = 1, 2, 3) with a charge of 2/3; the octet of

down scalar gluons F2j; the octet of scalar gluons ;
and the extra fields χ', χ(1), and χ(4).

5. AMPLITUDE FOR THE PROCESS
   AND ROLE OF THE UPPER 

COMPONENTS OF SCALAR DOUBLETS

In order to clarify the role of other scalar fields, it is
necessary to consider processes involving longitudinal
leptoquarks and W and Z ' bosons in the final state. By
way of example, we indicate that, in order to reveal the
role of the up components of the scalar doublets, it is
sufficient to consider the amplitude of the process

(31)

where Qp1α and Qq2β are the up and down quarks of p
and q generations, while α, β, γ, and δ = 1, 2, 3 are the
SUc(3) color indices of the quarks and leptoquarks.

The calculation of the gauge-sector contribution to
the color-singlet part of the amplitude for the process in
(31) within the minimal version of four-color quark–
lepton symmetry yields

(32)

(33)
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where k1, k2, and k3 are the 4-momenta of the W boson
and vector leptoquarks.

The scalar-sector contribution to the amplitude for
the process in (31) is described by the diagrams in
Fig. 3. In the case of the color-singlet initial state, the
above contribution can be represented in the form

(34)

(35)

With allowance for the identities

expression (35) exactly cancels the corresponding
gauge-sector contribution (33). Appropriate calcula-
tions for the color-octet initial state also lead to analo-
gous cancellations in the amplitude for the process in
(31).

We note that the diagrams in Fig. 3 involve, in addi-
tion to the fields χ(SM) and χ' and the down gluons F2j,
which appear in the diagrams in Fig. 2, the up compo-

nents of the scalar leptoquarks , of the scalar gluons

F1j, and of the extra doublet , whose contributions
are necessary for the above cancellations; the contribu-
tions of the scalar gluons do not vanish only in the case
of the octet initial state.
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Finally, our analysis performed along similar lines
for the amplitude of the process

(36)

reveals that the imaginary part ω' of the down compo-
nent of the doublet Φ' is necessary for suppressing the
growth of the amplitude for this process.

6. CONCLUSION

In summary, our calculations and analysis of the
asymptotic behavior of amplitudes for processes
involving longitudinal leptoquarks (and W or Z '
bosons) within the minimal four-color-symmetry
model have demonstrated that, in addition to the SM

doublet , the doublets of scalar leptoquarks ,
the doublets of scalar gluons Faj  (j = 1, 2, …, 8), and an

extra color-singlet scalar doublet  must inevitably
arise in the case of four-color symmetry if the Higgs
mechanism is responsible for the generation of quark
and gluon masses and for the splittings of these masses.
In the presence of mass-split quarks and leptons, the
particles listed immediately above are necessary for
suppressing the high-energy growth of the longitudi-
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Fig. 3. Diagrams representing the contribution to the ampli-
tude for the process    from the

scalar sector of the model based on the minimal version of
four-color quark–lepton symmetry.
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nal-leptoquark amplitudes and appear to be some kind
of a price that has been paid for the Higgs mechanism
of the aforementioned splitting. We note that the cou-
plings of these particles to the fermions are propor-
tional to the ratio of the fermion masses to the SM vac-
uum expectation value [see Eqs. (19)] and are therefore
quite small. At the same time, the scalar leptoquarks
and scalar gluons can contribute significantly to the
parameters S, T, and U of radiative corrections and can
prove to be relatively light [9]. A further investigation
of the properties of these particles is of interest in our
opinion.
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APPENDIX

For the sake of reference, we present here three-par-
ticle Lagrangians and the couplings of the gauge fields
Aµ, Zµ, , Wµ, and Vαµ to the scalar fields within the
minimal version of four-color quark–lepton symmetry
(we have used these Lagrangians and couplings in cal-
culating of the amplitudes for the processes investi-
gated in the present study). We have

(A.1)

(A.2)

(A.3)

where, c = cosθ and s = sinθ, θ being the Z–Z ' mixing
angle;
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where  = {Aµ, Z1µ, Z2µ};
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Abstract—A correct version of Koba–Nielsen–Olesen (KNO) scaling is described in detail for multiplicity dis-
tributions. Some statements on the violation of KNO scaling that are based on an erroneous interpretation of
experimental data are discussed. An accurate comparison with data is presented for the distributions of nega-

tively charged particles originating from electron–positron annihilation at  = 3–161 GeV, from inelastic pro-

ton–proton collisions at  = 2.4–62 GeV, and from nucleus–nucleus collisions at plab = 4.5–520 GeV/c per

projectile nucleon. Data on proton–antiproton interactions at  = 546 GeV are also considered. © 2001 MAIK
“Nauka/Interperiodica”.
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1. MULTIPLICITY DISTRIBUTIONS

Usually, multiplicity distributions are among the
first experimental data obtained at any new accelerator.
In an inelastic collision of two primary particles, the
multiplicity distribution determines the probability of
an event as a function of the number of secondaries of
a specific type that are produced in this event; that is,
Pn = σn/σinel, where σn is the cross section for the pro-

duction of n such particles, while σinel =  is the
total cross section for the inelastic interaction of pri-
mary particles.

Among distributions of this type, those with respect
to all charged particles are studied more frequently than
others. However, the procedure where charged mesons
produced, for example, in proton–proton interactions
are added to the number of protons that survived the
interaction does not seem natural. But for nucleus–
nucleus collisions, where there may occur protons that
did not suffer inelastic interaction, such a procedure
appears to be still stranger.

Moreover, charge conservation leads to a trivial
nonuniformity in such a distribution, say, in electron–
positron annihilation, where there is no odd probabili-
ties. At the same time, such probabilities appear in a
bounded rapidity (for instance) interval and even may
become commensurate with even probabilities, pro-
vided that this interval is sufficiently narrow.

In order to circumvent such problems, we will con-
sider the multiplicity distributions of negatively
charged hadrons (in practice, π– mesons, with a small
admixture of K– mesons) in electron–positron annihila-
tion [1–13], as well as in inelastic proton–proton [14–
41] and nucleus–nucleus [42–45] interactions. Data for
nucleus–nucleus interactions are often presented pre-

σn0
∞∑

* e-mail: golokhv@lhe17.jinr.dubna.su
1063-7788/01/6401- $21.00 © 20084
cisely for negatively charged particles, because it is
easier to count them than nuclear fragments.

In interactions of the first two types, the number of
all charged particles in an event, nch, is unambiguously
related to the corresponding number of negatively
charged particles, nneg; that is,

nch = 2nneg   for   e+e–   and   nch = 2nneg + 2   for   pp.  (1)

In the following, the number of negatively charged par-
ticles is denoted merely by n.

2. ASYMPTOTIC KOBA–NIELSEN–OLESEN 
SCALING

On the basis of some physical considerations Koba–
Nielsen–Olesen (KNO) formulated the statement that
the shape of the multiplicity distribution is independent
of primary energy (KNO scaling) [46]. Earlier, Polya-
kov drew the same conclusion from different consider-
ations [47]. In contrast to the statement itself, its theo-
retical grounds were not confirmed by experimental
data, so that KNO scaling remained an empirical fact.

Figure 1 illustrates the meaning of this statement,
which was formulated for very high energies. Since
such energies correspond to very high multiplicities,
the multiplicity distributions appear as continuous
functions in this case. Figure 1‡ shows the possible
shapes of these functions for various primary energies.
The area under each curve is equal to unity since it rep-

resents the sum of all probabilities:  =  =

1. The mean multiplicity 〈n〉 =  = 

grows with energy. Each curve can be contracted lin-
early along the horizontal direction in proportion to
some of its horizontal dimensions—for example, the
mean value 〈n〉 (as in Fig. 1b), the most probable value,
or the FWHM—and extended along the vertical direc-

Pn nd∫ Pn∑
nPn∑ nPn nd∫
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Definition of the concept of similarity of continuous functions (KNO scaling). Normalized functions (‡) are similar if upon
a linear contraction of each of them along the horizontal direction in proportion to some of its horizontal dimensions—for example,
〈n〉  (b)—and a linear extension along the vertical direction in the same proportion (c) they coincide at each point.
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tion in the same proportion for the area under the curve
to remain eventually unchanged (Fig. 1c). The KNO
scaling then states that the curves will coincide at each
point [48]; that is,

(2)

where Ψ(z) is a function that is independent of energy
and which is normalized by the conditions

(3)

The first equality in (3) follows from the fact that the
sum of all probabilities is unity, while the second
results from the contraction of the functions Pn to the
extent that the mean value of each of these reduces to
unity. Equation (2) imposes no constraints on the form
of the function Ψ(z), with the exception of those in
(3)—it merely represents the concept of similarity for
continuous normalized functions.

In Eq. (2), the scale parameter 〈n〉  can be replaced by
any other quantity that is linear in n and which charac-
terizes the horizontal dimension of the function Pn—for
example, the square root of the variance (standard devi-
ation), D2 ≡ [  – 〈n〉)2Pn]1/2; a different central
moment raised to the corresponding power, Dq ≡
[  – 〈n〉)qPn]1/q; or the absolute moment 〈nq〉1/q ≡

( )1/q. All of these vary with energy in propor-
tion to one another, provided that the asymptotic KNO
scaling 〈n〉 ∝ 〈 nq〉1/q ∝ Dq holds [see Eqs. (10) and (11)
below].

The scaling relation in (2) is a particular case of a
weaker symmetry for which the identity of the distribu-
tion shapes is verified only upon bringing both the
mean values and the widths in coincidence (by making
a shift along the horizontal direction and by changing

n〈 〉 Pn Ψ n
n〈 〉

-------- 
  ,=

Ψ z( ) zd

0

∞

∫ 1 and zΨ z( ) zd

0

∞

∫ 1.= =

(n∑
(n∑
n

q
Pn∑
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the scale in proportion to D2, respectively) [49]:

(4)

The scaling relation in (4) can also be represented in the
form [50]

(5)

(here, α is an energy-dependent quantity) by means of
the substitution α ≡ 〈n〉  – ηD2, where η = const.

In contrast to the KNO scaling that is specified by
Eq. (2) and which involves only one free parameter
dependent on energy (for example, 〈n〉), the scaling
specified by Eq. (4) or Eq. (5) has two free parameters
that are independent of each other and which are func-
tions of energy (for example, 〈n〉  and D2). In this sense,
the latter resembles the approximation of multiplicity
distributions by a binomial distribution [51, 52], which
also involves two such parameters.

3. INTRINSIC CONTRADICTION

At currently available accelerator energies, the
quantity Pn cannot be considered as a continuous func-
tion: by way of example, we indicate that, in proton–
proton interactions, 〈n〉  ~ 2 at plab = 100 GeV/c and 〈n〉  ~
5 and 13 at  = 60 and 546 GeV, respectively. In this
case, Eq. (2) is intrinsically contradictory, irrespective
of its physical substantiation—mathematically, it is

inconsistent with the normalization condition  =
1 [53].

This contradiction becomes obvious when we
inspect closely the data in Fig. 2‡. According to Eq. (2),
the operation inverse to that depicted in Fig. 1 must be
implemented in order to obtain some multiplicity distri-
bution for a given 〈n〉  from the continuous universal
function Ψ(z) in Fig. 2‡; that is, it is necessary to
choose the scale z0 = 1/〈n〉  along the z axis, in which
case the probability Pn will be equal to the area of a

Pn
1

D2
------F

n n〈 〉–
D2

----------------- 
  .=

Pn
1

n〈 〉 α s( )–
----------------------------- f

n α s( )–

n〈 〉 α s( )–
----------------------------- 
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s
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rectangle whose upper vertex lies on the curve Ψ(z) at
the point z = nz0 = n/〈n〉 . The height of this rectangle is
〈n〉Pn , while its base is 1/〈n〉 .

For z0  0 (〈n〉   ∞), the sum of the areas of all
rectangles (total probability), the area under the curve,
is equal to unity. This sum cannot remain unchanged,
however, with increasing z0 (that is, with decreasing
energy). A numerical integration becomes overly crude
in this case. The distribution in Fig. 2‡ approximately
corresponds to 100 GeV/c in proton–proton interac-
tions. The distribution of all charged particles has the
same shape, apart from a change in the notation for par-
tial probabilities according to Eq. (1): P0  P2,
P1  P4, etc.

A change in the normalization of the function Ψ(z)
would involve introducing an energy dependence in
Ψ(z) with the result that the input hypothesis would be
abandoned. Of course, KNO scaling was formulated as
an approximate regularity; however, it is desirable to
establish the extent to which it holds. For this, one has
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Fig. 2. Derivation of a discrete multiplicity distribution from
a continuous normalized universal function Ψ(z) according
to (‡) the recipe Pn = 1/〈n〉 · Ψ(n/〈n〉) (in this case, the sum of
the areas of the rectangles is not equal to the area under the
curve; that is,  ≠ 1) and (b) the correct recipe [in this

case, the probability Pn is equal to the area under the curve

in the interval between nz0 and (n + 1)z0]; here,  = 1,

but z0 ≠ 1/〈n〉 .

Pn∑

Pn∑
either to treat it accurately or to quantify the distortions
introduced by incorrectness of the mathematical proce-
dure used.

Thus, it is necessary to define similarity of discrete
functions prior to experimentally testing the hypothesis
of similarity of multiplicity distributions. The concept
of similarity must be intrinsically consistent for 〈n〉 ~ 1
and must correspond to the asymptotic form in (2) for
〈n〉   ∞.

4. CORRECT KNO SCALING

A possible procedure for correctly deducing various
multiplicity distributions from one universal function
Ψ(z) is illustrated in Fig. 2b, where the probability Pn is
equal to the area under the curve in the interval of width
z0. It can be seen that the sum of the probabilities is
always obtained to be equal to unity and that, for z0 
0, Fig. 2a coincides with Fig. 2b. This statement can be
represented as [53]

(6)

The normalization conditions in (3) for the function
Ψ(z) remain in force, but 〈n〉  is not equal to 1/z0 here; it
can be obtained in this case only from the multiplicity
distribution, in just the same way as other statistical
moments.

From Fig. 2b, it follows that, knowing the experi-
mental multiplicity distribution at some energy value,
one can deduce the relevant distribution at the energy
value corresponding to  twice as great as z0, the

neighboring areas being summed in this case:  =
P2n + P2n + 1. The same procedure can be repeated for

 = 3z0:  = P3n + P3n + 1 + P3n + 2 , etc. In Figs. 3 and
4, the points obtained in this way from ISR data [40] are
compared with data at lower energies. It can be seen
that they agree down to the lowest energies.

For the sake of comparison, we note that the equal-
ities  = 2P2n ,  = 3P3n, etc., follow from Eq. (2). In

this case, we generally have  ≠ 1 and  ≠ 1.

We further recast Eq. (6) into an alternative form by
introducing the continuous parameter m ≡ z/z0, which
fills gaps on the discrete axis n in Fig. 1‡ and which
should have been introduced prior to deriving Eq. (2) in
order to avoid integration with respect to the discrete
parameter n [53]:

(7)

Pn Ψ z( ) z.d

nz0

n 1+( )z0

∫=

z0'

Pn'

z0'' Pn''

Pn' Pn''

Pn'∑ Pn''∑

Pn P m( ) m,d

n

n 1+

∫=
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(8)

Thus, the discrete distribution Pn can be represented in
the form of a histogram of the continuous KNO-invari-
ant function P(m).

Within this formulation, the concept of similarity
retains its former meaning; that is, it refers to continu-
ous functions exclusively. Here, only the procedure
changes according to which we obtain discrete multi-
plicity distributions from them. Instead of the intrinsi-
cally contradictory prescription that we actually used in
Eq. (2), we now have at our disposal the correct pre-
scription (7):

(9)

The continuous KNO-invariant function P(m) pos-
sesses simple properties, which were previously
assigned to the discrete function Pn , but that led to con-
fusing results. The absolute and central statistical

P m( ) 1
m〈 〉

---------Ψ m
m〈 〉

--------- 
  , m〈 〉 mP m( ) md

0

∞

∫≡ ≡ 1/z0.=

Pn P m( ) m n= .=

Fig. 3. Experimental multiplicity distributions of negatively
charged particles, along with theoretical ones computed on
the basis of distributions obtained experimentally at higher

energies by using the equations  = P2n + P2n + 1,  =

P3n + P3n + 1 + P3n + 2, etc.—see Fig. 2b. The curves were

calculated by formula (6) for the functions Ψpp(z) given by
Eqs. (19) and (20) (visually, they are indistinguishable).
Closed and open inverted triangles represent experimental
data at energies in the range 1.7–147 GeV/c, while closed
and open circles illustrate results computed on the basis of
ISR data.
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moments of the function P(m) are proportional to its
mean value 〈m〉  raised to the corresponding power (z ≡
m/〈m〉):

(10)

(11)

In order to obtain multiplicity distributions, Parry
and Rotelli [55, 56] used a formula close to that in
Eq. (7). A physical model of such histogramming was
considered in [55].

m
q〈 〉

m〈 〉 q
------------ 1

m〈 〉 q
------------ m

q
P m( ) md

∞–

∞

∫≡  = z
qΨ z( ) zd

∞–

∞

∫  = const,

µq

m〈 〉 q
------------ m m〈 〉–( )q
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---------------------------P m( ) md

∞–

∞

∫≡

=  z 1–( )qΨ z( ) zd
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Fig. 4. Central moments Dq ≡ (  – 〈n〉)qPn)1/q as func-
tions of 〈n〉 . Even and odd moments are offset by unity. The
Wróblewski straight lines specified by Eq. (14) are pre-
sented in the figure. Dashed curves show lower bounds on
Dq (at a given 〈n〉  value, the quantity Dq attains a minimum
when only two neighboring probabilities Pn do not vanish
[54]). Closed circles represent experimental data at energies
in the range 1.7–147 GeV/c, while open circles illustrate
results computed on the basis of ISR data.
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5. APPROXIMATE IMPLICATIONS
At not overly small 〈n〉 , we find from Eqs. (7) and

(8) that

(12)

a result that can also be observed by inspecting Fig. 2b
more closely—the center of gravity of each Pn bin
occurs approximately at z = (n + 0.5)z0 rather than at z =
nz0 [57].

For the approximations of Ψ(z) that are shown in
Fig. 6 and which describe electron–positron annihila-
tion and proton–proton interactions, Fig. 5 (lower
curves) shows the precise 〈m〉  dependences of 〈n〉  that
were obtained on the basis of Eqs. (7) and (8). It can be

m〈 〉 mP m( ) md

0

∞

∫ mP m( ) md

n

n 1+

∫
n
∑= =

≈ n 0.5+( ) P m( ) md

n

n 1+

∫
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∑
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. µ 21/2
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 vs

. 〈m
〉

Fig. 5. Various parameters of the discrete function Pn versus
the corresponding parameters of the continuous function
P(m) for the approximations of Ψ(z) that describe (dotted
curves) electron–positron annihilation according to
Eqs. (18) and (20) and (dashed curve) proton–proton inter-
actions according to Eqs. (19) and (20). Solid straight lines
correspond to the approximate formulas (12) and (13). The
values of D3 and D4 are shifted upward by 0.5 and 1, respec-
tively.
seen that, for proton–proton interactions, the approxi-
mation in (12) holds quite accurately from 〈n〉  ~ 0.2,
which corresponds to plab ~ 4 GeV/c.

An approximate relation between the central
moments of a continuous and a discrete function is still
simpler, since the additional term 0.5 in n and 〈n〉  can-
cels out, so that we have

(13)

(see Fig. 5). Therefore, the strict proportionality rela-

tion  ∝ 〈 m〉  for the functions P(m) (11) leads to an
approximate formula for Pn [58, 59]:

(14)

Upon going over to all charged particles according to
relation (1) for proton–proton interactions, we arrive at
empirical Wróblewski straight lines [60, 61]:

(15)

In Fig. 4, these straight lines are presented according to
Eq. (14). When the correct formula (6) was not known,
it was believed that these straight lines are indicative of
a violation of KNO scaling, since they do not go
through the origin of coordinates.

From Eqs. (7), (8), and (12), we also approximately
have [58]

(16)

For electron–positron annihilation and proton–proton
interactions, Fig. 6 shows examples of distributions
with respect to these coordinates. Upon going over to
all charged particles according to relation (1) for pro-
ton–proton interactions, it follows from (16) that, in
this case, there arises improved KNO scaling that
assumes the form

(17)

and which was proposed in [60, 61].
For all charged particles in electron–positron anni-

hilation, the relations that are obtained from (14), (16),
and (1) differ from (15) and (17) only by the reversal of
all minus signs.

6. ELECTRON–POSITRON ANNIHILATION 
AND PROTON–PROTON INTERACTIONS

Figures 7 and 8 display the ratios (〈n〉 + 0.5)/D2 and

Dq/D2 for electron–positron annihilation at  = 3–

161 GeV and for proton–proton interactions at  =

µq m m〈 〉–( )q
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Fig. 6. Examples of multiplicity distributions of negatively charged particles from electron–positron annihilation and proton–proton
interactions (on a logarithmic and on a linear scale). The distributions are plotted here in the coordinates  z = (n + 0.5)/(〈n〉 + 0.5)
and Ψ = (〈n〉 + 0.5)Pn of the improved KNO scaling (16). The solid, dashed, and dotted curves represent, respectively, the functions
Ψ1 [as given by Eq. (18) for electron–positron annihilation and by Eq. (19) for proton–proton interactions], Ψ2 [as given by Eq. (18)
for electron–positron annihilation and by Eq. (19) for proton–proton interactions], and Ψ3 [as given by Eq. (20) both for electron–
positron annihilation and for proton–proton interactions].
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2.4–62 GeV (plab = 2–2000 GeV/c), as well as for pro-

ton–antiproton interactions at  = 546 GeV. From
Eq. (14), it follows that, in contrast to the moments Cq

(see below), these quantities must fast approach a pla-
teau with increasing energy.

In mathematical statistics, the quantity  is
referred to as a variance, while (D3/D2)3 and [(D4/D2)4 –
3] are called a skewness and a kurtosis [62], respec-
tively. In the physics of multiparticle production, these
quantities are usually used without relevant powers.

The curves in Figs. 7 and 8 were computed on the
basis of Eq. (6) by using the functions Ψ(z) represented
in Fig. 6. For electron–positron annihilation, the first
two functions are given by (see [6, 11] and [59, 63],

s

D2
2
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respectively)

(18)

[for z < c2, we have (z) ≡ 0]. The free parameters
were set to c1 = 11 and c2 = 0.2, while the results
obtained for the coefficients from the normalization
conditions (3) are a1 = 223367, b1 = c1 + 1 = 12, a2 =
15.2, and b2 = 2.76.

For proton–proton interactions, the analogous func-
tions are (see [64] and [58, 59, 61, 65], respectively)

(19)

Ψ1
ee

z( ) a1z
c1 b1z–( );exp=

Ψ2
ee

z( ) a2 z c2–( )3
b2 z c2–( )2

–[ ]exp=

Ψ2
ee

Ψ1
pp

z( ) a1z
c1 b1z

2
–( ),exp=

Ψ2
pp

z( ) a2 z c2+( ) b2 z c2+( )2
–[ ] ,exp=
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where c1 = 0.66 and c2 = 0.14 and where the values that
the normalization conditions (3) yield for the relevant
coefficients are a1 = 1.19, b1 = 0.62, a2 = 1.25, and b2 =
0.62.

The third function Ψ(z) has the same form both for
electron–positron annihilation and for proton–proton
interactions [66, 67]:

(20)

Of the four parameters appearing in (20), c, µ, N, and
σ, two are free, while the remaining two are related by
the conditions in (3). Specifically, we have N = 1, µ =
0.43, σ = 0.18, and c = 0.56 for electron–positron anni-
hilation and N = 1.06, µ = 1.638, σ = 0.121, and c = 4.25
for proton–proton interactions [67].

We emphasize that, in contrast to the energy-depen-
dent parameters from Section 2, all the parameters that
were presented immediately above and which deter-

Ψ3 z( ) N

2πσ
-------------- 1

z c+
----------- z c+( )ln µ–[ ]2

2σ2
--------------------------------------– 

  .exp=

Fig. 7. Ratios of the moments of the multiplicity distribu-
tions of negatively charged particles from electron–positron
annihilation (Dq ≡ [  – 〈n〉)qPn)]1/q). The quantity
D5/D2 is shifted upward by unity. The displayed curves
were computed on the basis of the improved KNO scaling
specified by Eq. (6). In these calculations, use was made of

the approximations  (18),  (18), and  (20) (the

results are depicted by, respectively, solid, dashed, and dot-
ted curves), and the probability P0 was set to zero (since it
was not measured experimentally).
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mine the specific form of the function Ψ(z) have no
bearing on the statement of KNO scaling.

Despite the significant distinctions between the ana-
lytic expressions for the functions Ψ1, 2, 3, all three
groups of curves in Fig. 7 (and in Fig. 8 as well) are
quite close. They are also close in Figs. 9 and 10, which
display the normalized moments Cq ≡ 〈nq〉/〈n〉q for the
same data. The quantities Cq do not reach a plateau
even at the ISR energy. From Eq. (16), it can be seen
that the moments 〈(n + 0.5)q〉/〈n + 0.5〉q could approach
a plateau sufficiently fast.

In computing our curves for electron–positron anni-
hilation, the quantity P0 was set to zero, since it has not
yet been measured in experiments (the remaining Pn

were normalized to unity), but this is of importance
only at the lowest energies. As a result, the moments Cq

fall sharply in Fig. 9 for 〈n〉  1. Apart from this, the
curves for electron–positron annihilation (Figs. 7, 9)
behave in just the same way as those for proton–proton
interactions, no distinctions other than those in magni-

Fig. 8. Ratios of the moments of the multiplicity distribu-
tions of negatively charged particles from proton–proton
interactions (Dq ≡ [  – 〈n〉)qPn)]1/q). The displayed
curves were computed on the basis of the improved KNO
scaling specified by Eq. (6). In these calculations, use was

made of the approximations  (19),  (19), and

 (20) (the results are depicted by, respectively, solid,

dashed, and dotted curves).
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tude being observed. This behavior is determined by
histogramming in Eqs. (6) and (7), but it is independent
of the specific form of the function Ψ(z).

Usually, various approximations of the function
Ψ(z) have no physical validation (see, however, [68,
69])—at least, their interpretation has nothing to do
with histogramming in Eqs. (6) and (7). However, the
use of these approximations makes it possible to see
how the experimental points must behave if the correct
KNO scaling holds.

7.  DATA

The  [41] points (data from the UA5 experi-

ment at  = 546 GeV) in Figs. 8 and 10 were obtained
via the same transition from all charged particles to
negatively charged particles [which is specified in
Eqs. (1)] as in the case of proton–proton interactions—
that is, under the assumption that, at each multiplicity

SppS

SppS

s

Fig. 9. Normalized moments of the multiplicity distribu-
tions of negatively charged particles from electron–positron

annihilation (Cq ≡ 〈nq〉 /〈n〉q, where 〈nq〉 ≡ ). The

displayed curves were computed on the basis of the
improved KNO scaling specified by Eq. (6). In these calcu-
lations, use was made of the approximations  (18),

 (18), and  (20) (the results are depicted by, respec-
tively, solid, dashed, and dotted curves), and the probability
P0 was set to zero (since it was not measured experimentally).
The latter leads to a dip on the curves when 〈n〉  1.
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value, the number of leading protons and antiprotons in
proton–antiproton interactions is equal, on average, to
the number of protons in proton–proton interactions.

It can be seen from Eqs. (1) that, in electron–
positron annihilation, the normalized moments for all

charged particles,  ≡ 〈 〉/〈nch〉q, are equal to the
corresponding moments for negatively charged parti-
cles. In proton–proton interactions, there is no such
equality because of the shift of two in Eq. (1). Figure 11
displays these moments for proton–proton interactions.
The curves were computed by using the distributions of
all charged particles as obtained according to Eq. (1).
These distributions in turn were rescaled from the dis-
tributions obtained for negatively charged particles on
the basis of the same functions Ψ(z) given by Eqs. (19)
and (20). From a comparison of the curves in Figs. 10
and 11, it can be seen that they do not reach a plateau
even at the  energy (at sufficiently high energies,

the moments Cq must coincide with ).

The data in Figs. 8, 10, and 11 exhibit evidence for
a violation of KNO scaling in the UA5 experiment—
experimental points do not lie on the curve. At the same
time, these figures show points that occur off the curve
beyond a greater number of standard deviations than
the UA5 points do—for example, these are data from
[32] at plab = 147 GeV/c (〈n〉 . 2.5, 〈nch〉 . 7). Fre-

Cq
ch
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q
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Cq
ch

Fig. 10. Normalized moments of the multiplicity distribu-
tions of negatively charged particles from proton–proton

interactions (Cq ≡ 〈nq〉/〈n〉q, where 〈nq〉 ≡ ). The dis-

played curves were computed on the basis of the improved
KNO scaling specified by Eq. (6). In these calculations, use
was made of the functions Ψpp(z) given by (19) and (20)
(visually, the corresponding curves are indistinguishable). 
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quently, graphs illustrating invariability of the moments

 up to the ISR energy and their sharp growth at the

 energies (see Fig. 11), which is associated with a
violation of KNO scaling, are plotted precisely from
this energy.

In Fig. 10, however, which is actually equivalent to
Fig. 11, the UA5 points lie even below the points at
147 GeV/c (and below the majority of the remaining
points). As a matter of fact, a violation of the correct
KNO scaling for negatively charged particles is sug-
gested here exclusively by the occurrence of the points
off the curves.

Figure 12 shows the percentage of events whose
multiplicity exceeds the mean multiplicity by a preset
factor (κ = 1.5, 2.0, 2.5) [41]. Of course, the relevant
curve representing the above percentage cannot be as
smooth as that in [41]. The discontinuities correspond
to those points at which, as 〈nch〉  is increased, the quan-
tity κ〈nch〉  becomes greater than a current even integer
since one more partial probability  drops out of the
percentage in question [59].

It should be emphasized that only the partial cross
sections for inelastic proton–proton interactions are

Cq
ch

SppS

Pnch

Fig. 11. Normalized moments of the multiplicity distribu-
tions of all charged particles in proton–proton interactions

(  ≡ 〈 〉/〈nch〉q, where 〈 〉 ≡ ). The dis-

played curves were computed by relying on the improved
KNO scaling specified by Eq. (6) for the distributions of
negatively charged particles and by implementing a subse-
quent transition to all charged particles according to Eq. (1).
The functions Ψpp given by (19) and (20) were substituted
into Eq. (6) (visually, the resulting curves are virtually indis-
tinguishable).
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meant here. Multiplicity distributions in non-single-
diffraction interactions not involving events having
some specific topology—for example, events where all
charged particles are emitted into the same hemisphere
(in the c.m. frame) or events characterized by a low
multiplicity and by the presence of an energetic leading
charged particle—are discussed quite often. It is the
impossibility to introduce similar experimental criteria
at different energies (rather than the arbitrariness of
such criteria at a given energy value) that generates
poorly controllable uncertainties.

8. NUCLEUS–NUCLEUS INTERACTIONS

As a rule, multiplicity distributions in elementary-
particle distributions are normalized to an inelastic
cross section—that is, the cross section for the produc-
tion of at least one new particle (Pn = σn/σinel). In the
case of a normalization to the total cross section, which
includes the elastic-scattering cross section, there

0

〈nch〉
4 8 29

Relative number of events, %

1
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12 27

2 κ = 2.5

κ = 2.0
0
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Fig. 12. Percentage of events where the multiplicity of
charged particles exceeds the mean multiplicity by a preset
factor (κ = 1.5, 2.0, 2.5). The curves were computed by rely-
ing on the improved KNO scaling specified by Eq. (6) for
the distributions of negatively charged particles and by sub-
sequently performing a transition to all charged particles
according to Eq. (1). The functions Ψpp given by Eqs. (19)
and (20) were substituted into Eq. (6) (visually, the resulting
curves are indistinguishable). As the mean multiplicity of all
charged particles, 〈nch〉, becomes greater, the curve in ques-
tion undergoes discontinuities when the current multiplicity
falls below κ〈nch〉.
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would arise a peak in the zeroth bin (P0). With increas-
ing energy, this peak would grow in relation to the
remaining bins because the fraction of elastic-scatter-
ing cross section is virtually independent of energy and
because the inelastic-scattering cross section is distrib-
uted over an ever increasing number of channels that
correspond different multiplicity values—that is to say,
it is not necessary, in the case of such a normalization,
to verify the hypothesis of the scaling of distributions.
In comparing a complete theory with experimental
data, it makes no difference what distribution is used,
but the theory of soft processes in strong interactions
has yet to be developed.

In nucleus–nucleus reactions, one could use various
cross sections for a normalization—for example, the
meson-production cross section σpr; the reaction cross
section σre, which includes σpr and the cross section for
the quasielastic breakup of nuclei; and the inelastic-
scattering cross section σinel, which includes σre and the
cross section for nuclear excitation. For the distribu-
tions of negatively charged particles, they differ only by
the presence of the cross section σ0. On the basis of the
same considerations on the absences of an enhance-

Fig. 13. Moments Dq ≡ (  – 〈n〉)qPn)1/q as functions of
〈n〉  for the multiplicity distributions of negatively charged

particles in αα  interactions at  = 26 and 31 GeV per

nucleon and in αLi6, αC, αNe, and αCu interactions at
plab = 4.5 GeV/c per nucleon. The Wróblewski straight
lines, Dq ∝ (〈n〉 + 0.5), are drawn through the points. The
even and odd moments are offset by two units.
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Fig. 14. Moment D2 ≡ (  – 〈n〉)2Pn)1/2 as a function of
〈n〉  for the multiplicity distributions of negatively charged
particles in ONe, OCu, and OAu interactions at (,) 60 and
(s) 200 GeV per nucleon and in CNe, CSi, CCu, and CZr
interactions at (d) 3.7 GeV/c per nucleon. A part of the fig-
ure close to the origin of coordinates is shown in the inset on
an enlarged scale. The Wróblewski straight line, D2 ∝ (〈n〉 +
0.5) (14), is drawn through the points.

(n∑

Fig. 15. Multiplicity distributions in (d) CCu interactions at
3.7 GeV per nucleon and in OCu interactions at (,) 60 and
(s) 200 GeV per nucleon in the coordinates of the improved
KNO scaling specified by Eq. (16). It can be seen that these
distributions have very similar shapes. The dotted line cor-
responds to Ψ(z) = exp(–z).
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 given by (19) and (20) (visually, the resulting curves are indis-
tinguishable).

Pnk
∞∑
ment in the zeroth channel, it would be natural to nor-
malize multiplicity distributions in nucleus–nucleus
reactions to σpr [42].

For alpha-particle interactions with various nuclei at
an alpha-particle momentum of 4.5 GeV/c per nucleon
(which corresponds to the kinetic energy of 3.7 GeV
per nucleon [42]), Dq as a function of 〈n〉 for the case of
normalization to σpr is displayed in Fig. 13, along with
data on αα  interactions at c.m. energies of 26.3 and
31.2 GeV per nucleon (the corresponding energies of
one alpha particle in the rest frame of the second alpha
particle are 370 and 520 GeV per nucleon [44]). The
points are well consistent with the Wróblewski straight
lines Dq ∝ (〈n〉  + 0.5), confirming once again that
expression (14) is more fundamental than expression (15).
We note that, in contrast to what occurs in proton–pro-
ton interactions and in electron–positron annihilation,
there is no unambiguous relation between these expres-
sions in nucleus–nucleus interactions. At an energy of
3.7 GeV per nucleon, targets are not lighter than 6Li,
but it can be seen from the figure that all the points pre-
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
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sented here lie on straight lines—that is, the shape of
the multiplicity distributions depends only slightly on
the target nucleus in the present case [42].

Data on the interactions of carbon nuclei of energy
3.7 GeV per nucleon with various nuclei [43] are given
in Fig. 14, along with oxygen-nucleus data at energies
60 and 200 GeV per nucleon [45]. It can be seen that all
points lie on the same straight line. The same points at
3.7 GeV per nucleon, along with the same Wróblewski
straight line, which intersects, as in Fig. 13, the abscissa
at the point 〈n〉  = –0.5, in perfect agreement with
Eq. (14), are shown in the inset on an enlarged scale.

In the coordinates of the improved KNO scaling (16),
Fig. 15 illustrates a direct comparison of the multiplic-
ity distributions in CCu collisions at 3.7 GeV per
nucleon and OCu collisions at 60 and 200 GeV per
nucleon. The shapes of the distributions are seen to
agree within the errors. This shape differs markedly
from the shape of the corresponding distributions in
electron–positron annihilation and proton–proton inter-
actions (Fig. 6).

9. INTEGRAL REPRESENTATION

Equation (7) can be represented in the integral form

(21)

A similar accumulated (integrated) probability is often
used in statistics instead of its discrete and contentious
derivatives given by the functions Pn and P(m) [62] (see
also [64]).

The integrated probability Φ(k/〈m〉) is related to the
function Ψ(z) by the equation

(22)

and satisfies the conditions Φ(0) = 1 and (z)dz = 1,

which follow from (3) [58]. It should be noted that the
function Φ(z) defined by Eqs. (21) and (22) coincides
with that in [53, 57], but it differs in sign from that in [58].

The probabilities Pn are calculated from Φ(z) in a
simpler way than from Ψ(z) in (6):

(23)

Since the quantity  in (21) is a function of
only one variable k/〈m〉 [57], the multiplicity distribu-
tions at different energies can be associated with one
curve representing Φ(z). Figure 16 shows data on pro-
ton–proton interactions in terms of these coordinates.
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The approximation specified by Eq. (12) is used for
〈m〉 . The Φ(z) curves correspond to the functions Ψpp(z)
in Eqs. (19) and (20) (visually, they are indistinguish-
able).

At very low energies, where only P0 and P1 do not
vanish, scaling formulated correctly must hold auto-
matically—in the case being discussed, points lie
exactly on the curve, irrespective of the form of the
function Ψ(z) used. This is clear from the fact that 〈n〉 ≡
P1 in the present case—that is the distribution is speci-
fied entirely by one value 〈n〉 . These points are not
shown in the figure.

10. CONCLUSION

A comparison of the predictions of correct KNO
scaling (also known as KNO-G scaling) with experi-
mental data was performed in [11, 66] (e+e–), [67] (e+e–,
pp), [34, 58] (π+p, K+p, pp), [70, 71] (νA, , µA), [72]
(e+p), and [73] (AA) as well. It has no theoretical vali-
dation at present, but there are many models that pre-
dict asymptotic KNO scaling.

To conclude, we note that the recipe in Eq. (6) for
deducing discrete multiplicity distributions from a con-
tinuous probability function is far from new. If the
function Ψ(z) = exp(–z) (see Fig. 15) is substituted into
Eq. (6), we arrive at

(24)

It is the procedure that was used by Planck [74] in
quantizing a continuous Maxwell probability distribu-
tion (z = E/kT, z0 = hν/kT) in one of the formulations of
a quantum hypothesis in order to obtain the spectrum of
heat radiation. Here, Pn is the multiplicity distribution
of thermal photons of frequency ν.

The result in (24) expressed in terms of 〈n〉 =
 = [exp(z0) – 1]–1 (bracketed expression), a

Bose–Einstein distribution, is often used to derive a
negative binomial distribution in order to describe mul-
tiplicity distributions [51, 52].

In alternative formulations of the heat-radiation prob-
lem, a Boltzmann spectrum is usually quantized by means
of the recipe specified by Eq. (9):  = P(m)|m = n ∝
exp(−E/kT), where E = nhν; after that, the quantities

 are normalized to unity: Pn =

exp(−nhν/kT)/ /kT. Nonetheless, the
result coincides with that in (24) because, for Ψ(z) =
exp(–z)—and only for this function—the ratio Pn/P(m)
is independent of n at m = n.
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The mean number of photons (phonons) of fre-
quency ν in the Planck spectrum, 〈n〉 = [exp(z0) – 1]–1 =
[exp(hν/kT) – 1]–1, at large 〈n〉  values is related to the
corresponding mean value of the Boltzmann spectrum,
〈m〉 = 1/z0 = kT/hν, by the same approximate equality
〈m〉 ≈ 〈n〉  + 0.5 (12), which is independent of the form
of the function Ψ(z). The dependence at small 〈n〉  val-
ues, which is analogous to that represented by the lower
curves in Fig. 5, can be found, for example, in [75].

Irrespective of its physical substantiation in [74], the
mathematical procedure specified by Eq. (24) follows
from the Born–Kramers quantization rule [76, 77] (see
also [78]), a general principle that was formulated just
on the eve of the advent of quantum mechanics and
which provides a recipe for obtaining discrete quan-
tum-mechanical quantities from the corresponding
continuous classical quantities. Using the notation
adopted here, taking into account the sign in the present
definition (22) of the function Φ(z), and considering
that, in our case, the index n is already reserved for
other purposes, we can formulate this principle as fol-
lows: a discrete quantity Pl associated with the quan-
tum states l and l + τ is Pl = Φ(l) – Φ(l + τ) [see
Eq. (23)], where Φ(z) is obtained from the equality
−τ[∂Φ(z)/∂z] = τΨ(z) = P(m) [see Eqs. (8) and (22)],
with P(m) being a classical analog of the quantum
quantity Pl [76, 77].
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Abstract—A method of parametrizing radiative strength functions for electric dipole transitions is used to cal-
culate the spectra of photons emitted by fragments originating from the spontaneous fission of 252Cf nuclei. The
LDPL-98 library of parameters, which contains data for 2000 nuclei, is composed for performing relevant cal-
culations. It is shown that the use of this method leads to regular agreement with experimental data—that the
structure and the energy dependence of the spectra are reproduced without varying parameters suggests a sta-
tistical character of fission-fragment deexcitation. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It was shown in [1] that radiative strength functions
that characterize electric dipole transitions and which
are usually used in various calculations can be modified
with allowance for experimental data on transitions
between discrete levels. The proposed modification of
the Kadmensky–Markushev–Furman (KMF) method
[2], which takes into account quasiparticle fragmenta-
tion, involved using the temperature of the transition
final state as an adjustable parameter (the approach
relying on this procedure will henceforth be referred to
as the KMF method employing an adjustable tempera-
ture, or merely the KMF–AT method). Strictly speak-
ing, the KMF method is applicable only in the case of
compound-state deexcitation—that is, for primary pho-
tons. Despite the conclusions drawn in [3], the question
of whether the method in question is applicable to mul-
tistep gamma transitions has yet to be clarified. There-
fore, the KMF–AT version can be considered as an
attempt at adapting the KMF method to the problem of
calculating the spectra of secondary photons. Of many
possible means for taking into account the observed
intensities of transitions between discrete levels, use
was made of the simplest one, that which assumes a
constant temperature at all stages of the multicascade
process. The KMF–AT method was tested by applying
it to isomeric cross sections for neutron-induced and
photonuclear reactions and to gamma spectra for (n,
xnγ) reactions. Within the analysis on the basis of the
proposed parametrization, it turned out that the com-
puted gamma-ray spectra regularly comply with exper-
imental data and that, sometimes, the resulting descrip-
tion of the cross sections for the excitation of high-spin
isomers is radically improved in this way.

In the present study, the experimental database used
in a comparison with the results of relevant calculations
is extended via the inclusion of the spectra of gamma
rays emitted from the fragments of 252Cf spontaneous
1063-7788/01/6401- $21.00 © 20009
fission. The objective pursued here is to test the appli-
cability of the statistical model of the nucleus to
describing the emission properties of fission fragments.

2. COMPUTATIONAL PROCEDURE

Of the ingredients of the statistical model that are
involved in the calculation of the radiative deexcitation
of excited nuclei, two are of prime importance. These
are the density of nuclear levels characterized by the
excitation energy U and the total angular momentum J,
ρ(U, J), and the radiative strength functions fXL(Eγ) for
X-type gamma rays of multipole order L and energy Eγ.
As a rule, the parameters of the models underlying the
calculation of ρ(U, J) and fXL are determined by fitting
experimental data on the density of neutron resonances
and on photoabsorption cross sections, respectively.
Therefore, it can be believed that the predicted level
densities are reliable up to excitation energies of 8 to
10 MeV and that the predicted strength functions fE1 are
quite accurate for photon energies in the range 10–
20 MeV. However, the deexcitation of excited nuclei is
accompanied by a copious emission of soft photons
(Eγ = 1–3 MeV), so that it is necessary to extrapolate
relevant strength functions to this energy region. It is
well known that the predictions of different approaches
to calculating fE1 at low energies can differ by orders of
magnitude even when these predictions rely on the
same values of the giant-dipole-resonance parameters.
A feature peculiar to the KMF-AT approach is that, by
choosing the parameter T, it is possible to reproduce the
maximum values of fE1 that are observed in the proper-
ties of transitions between discrete levels. It is assumed
that the spectra observed in specific reactions are
formed by the most intense transitions. The reasons
behind the existence of a distinct step of maximum val-
ues of the observed strength functions in the region Eγ <
2 MeV for nuclei differing in character (superallowed
transitions) [1] have yet to be clarified.
001 MAIK “Nauka/Interperiodica”



 

10

        

GRUDZEVICH

                                                                                             
The distributions of experimental strength functions
for dipole transitions [4] are displayed in Fig. 1 for var-
ious intervals of mass numbers. For all mass regions of
nuclear emitters and for transitions of both types, there
exists a distinct upper limit on the quantities fE, M1 that
corresponds to superallowed dipole transitions. One
can also clearly see transitions characterized by various
mean logarithms of strength functions—special-type
splitting of distributions that becomes more pronounced
with increasing mass number. Statistically significant
values of fE, M1 lie between 10–15 and 10–8 MeV–3. In this
case, any procedure for averaging giant distinctions
will result in mean values 〈 fE, M1〉  that are commensu-

rate with the maximum values . In the present
study, we make use of the KMF method, which

describes the observed values .

The number of photons (multiplicity)
Sγ(Z, A, U, Eγ)dEγ of energy Eγ between Eγ and Eγ + dEγ
that are emitted by a (Z, A) nucleus excited to the
energy U is calculated on the basis of the cascade–
evaporation model (CEM) by using the expressions
from [1]. The number of photons per fission event that

f E M1,
max

f E1
max

Fig. 1. Distribution of strength functions for Eγ < 2 MeV
electric and magnetic dipole transitions (n stands for the
number of transitions). Points represent experimental data
from [4] for the mass-number ranges (open boxes) 45–84,
(closed circles) 85–105, (open triangles) 106–145, and
(open inverted triangles) 145–165.
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are emitted by fragments belonging to the mass range
between A1 and A2 can be calculated with the aid of the
relation

(1)

where Yi is the independent yield of the (Z, A) fragment
prior to neutron emission, while f (U) is the excitation-
energy distribution of primary populations. Summation
is performed over all fragments in the specified mass
range. The quantity obtained by formula (1) will be
referred to as the spectrum of photons. In order to cal-
culate the spectrum of neutrons, we can make use of a
similar expression.

The total number of photons, µ, and the total num-
ber of neutrons, ν, that are emitted by fragments of
mass A are determined by integrating the correspond-
ing multiplicities and by subsequently performing sum-
mation (with a relevant weight) of the independent
yields over all nuclei of given mass:

(2)

2.1. Input Data for Relevant Calculations: 
LDPL Library

Theoretical calculations of the decays of fission
fragments with allowance for total-angular-momentum
and parity conservation are extremely cumbersome. In
implementing such calculations, it is necessary to
invoke vast arrays of input data—first of all, data on the
features of excitations, such as level densities and dia-
grams of discrete levels. The situation is further aggra-
vated if neutron-excess nuclei appear as fragments—
the point is that, in the majority of cases, there is no
experimental information about the density of neutron
resonances in such nuclei.

In this connection, it is necessary to mention a for-
midable work performed by the international group of
experts who created, under the aegis of the Interna-
tional Atomic Energy Agency, a library of input data for
theoretical calculations of cross sections for nuclear
reactions [5]. Unfortunately, this library covers only
those nuclei for which there is information on the den-
sity of neutron resonances; moreover, the recom-
mended file of data on discrete levels, which was com-
posed on the basis of the compilation presented in [6],
contains some conceptual and technical errors.

A new version of the library of the parameters of the
level density and of the diagram of discrete levels,
LDPL-98, was created in order to provide inputs for
calculations of cross sections and spectra associated

Sγ Eγ( )dEγ

=  Yi Sγ Zi Ai U Eγ, , ,( ) f U( ) Ud Eγ,d

0

Um

∫
i

∑

µ ν A( ),

=  Y Z A,( ) f U( ) U Sγ n, Z A U E, , ,( ) E.d

0

Em

∫d

0

Um

∫
Z

∑
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STATISTICAL PROPERTIES OF DEEXCITATION 11
with transformations of nuclei far from the stability
band. In composing this library, which covers data on
2000 nuclei, full advantage was taken of the possibili-
ties offered by the generalized model of superfluid
nuclei, which allows for shell, collective, and super-
fluid effects. The version of this model for computing
level densities [7] requires presetting four quantities:

, the asymptotic level-density parameter; δ, the effec-
tive correction for even–odd distinctions; δW, the shell
correction; and , the quadrupole-phonon energy

identified with the energy of the first Jπ = 2+ level in
even–even nuclei. The last two are determined from
experimental data that have no bearing on the level den-
sity. Shell corrections are computed on the basis of the
liquid-drop model of the nucleus by using experimental
values of nuclear masses. The effective correction for
even–odd distinctions in the level density is determined
by fitting the calculated excitation-energy dependences
of the number of levels to experimental data on discrete
levels. This is the point where merits of the generalized
model of superfluid nuclei manifest themselves most
clearly. On one hand, the result is weakly dependent on
the asymptotic level-density parameter, so that one can
make use of available diagrams of discrete levels if
there are no data on the density of neutron resonances.
On the other hand, the resulting values are described
satisfactorily by simple systematics [7], so that this sys-
tematics can be employed in those cases where the dia-
gram of discrete levels is not known or where it is insuf-
ficiently reliable. The asymptotic level-density param-
eter is satisfactorily described by the dependence  =
0.073A + 0.115A2/3, and we can hope to predict reliably
this quantity for nuclei whose experimental level densi-
ties are not known. The reliability of the LDPL-98 data
for fission fragments is discussed below.

For the majority of fission fragments, the experi-
mental photoabsorption cross sections are unavailable,
so that the systematics of the giant-dipole-resonance
parameters must used in the calculations. The existing
data on the energies Er, widths Γr, and maximum cross
sections σr [8], as deduced from the description of
experimental data of the photoabsorption cross sections
on the basis of the Lorentz formula, are presented in
Fig. 2. A satisfactory description of these parameters
can be obtained by means of the systematics

(3)

In deriving expressions (3), we disregarded reso-
nance splitting for strongly deformed nuclei. It can be
seen that the entire body of available data can be
described by simple relations to within 50%. This
means that, by using the representations in (3), the
strength functions in the energy range 10–20 MeV can

ã

ω
2

+

ã

σr 0.085A
5 3/   mb ( ) ,=  
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r
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A

 

1 4/   MeV ( ) ,=  

Γ

 

r

 

6.1 0.012

 

A

 

–   MeV ( ) .=                                   
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
be computed to approximately the same degree of pre-
cision.

2.2. Excitation Energies of Fragments

The level density and the radiative strength func-
tions do not exhaust factors that control the shape of the
spectrum of radiation from a fragment: this spectrum
also depends on the mean excitation energy of a pri-
mary fragment and on the total-angular-momentum
distribution of fragment population. From a theoretical
analysis and from the experience gained in calculating
the spectra, it follows that the last functional affects the
results only slightly even at low excitation energies;
therefore, we will use a distribution where the popula-
tions are proportional to the level density at a given
value of the total angular momentum, ρ(U, J). It should
be emphasized that additional checks upon such a dis-
tribution are required when it is used to describe the
isomeric ratios for fragments.

The mean values of fragment excitation energies,
〈U〉 , will be determined by comparing the results of the
calculations for mean numbers of neutrons, ν(A), by
formula (2) with experimental data presented in [9].

15
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A120 160 200

4Γ,
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103

Fig. 2. Parameters of giant dipole resonances for A = 50–
240 nuclei (energies, widths, and maximal cross sections).
Points represent a fit of a Lorentzian dependence to the
experimental photoabsorption cross sections [8] for (closed
circles) monoresonances and (open circles and triangles)
split resonances. Curves illustrate the results of the calcula-
tions by formulas (3).



12 GRUDZEVICH

                  
      

The yields of fragments preceding prompt fission neu-
trons were borrowed from [10], while the spectra of fis-
sion neutrons for excitation energies from 0 to 80 MeV
were computed on the basis of the Hauser–Feshbach
formalism with the parameter values from the LDPL-
98 library. The calculations were performed for nuclei
whose yields vary between the maximum value Ymax(A)
and the value that is one-tenth as great as that. For the
fragment mass numbers in the interval A = 102–150,
the list of nuclei that meet this criterion includes
123 species.

The values of 〈U〉  that were determined from a fit to
the observed values of ν(A) are displayed in Fig. 3,
along with the results obtained in [9], where the mean
values that the excitation energy has prior to neutron
emission were determined from the mean-energy-bal-
ance equation

(4)

where 〈En〉  is the mean neutron energy, 〈Bn〉  is the mean
neutron binding energy, and 〈Eγ〉  is the mean energy
carried away by photons. The approximation 〈Eγ〉 ≈
Bn/2 was used in [9]. It should be recalled that, although
the experimental values of ν and 〈En〉  are used in
Eq. (4), it can lead to errors in 〈U〉 .

U〈 〉 ν Bn〈 〉 En〈 〉+( ) Eγ〈 〉 ,+=

10

100
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〉, 

M
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0

4

Fig. 3. Mean excitation energies 〈U〉  of fragments with mass
number A and mean number of neutrons, ν. Points represent
(closed circles) experimental data from [9], (open circles)
results obtained from a fit to the observed values of ν(A),
and (crosses) results deduced from the balance of the com-
puted mean radiation energies. The solid curve corresponds
to the result of the relevant fit.
                                                           

From Fig. 3, it can be seen that the results obtained
by three methods for the mean excitation energies of
primary fragments are quite consistent over the entire
mass interval with the exception of the region 

 

A

 

 = 110–
125. The distinctions in this region, which sometimes
become as large as 12 MeV, may be due to the use of
the approximation 
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〉 ≈
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 in [9]. That the 
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 val-
ues obtained in the present study from a fit to 
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expt

 

 are
in reasonably good agreement with 

 

〈

 

U

 

〉

 

2

 

 as computed
by formula (4) with the aid of the evaluated values of

 

〈

 

En〉  and 〈Eγ〉  nevertheless suggests that the method pro-
posed here for extracting mean excitation energies of
primary fragments is preferable. In view of this, the
ensuing calculations will rely on 〈U〉1 values.

A considerable number of fragments may prove to
be excited to U = 20–35 MeV (see Fig. 3). This circum-
stance must be taken into account in estimating the
quality of the description of the hard section of the
observed spectra, since the uncertainties in calculating
the level density increase as one moves away on the
excitation energy scale from nuclei for which the level
density was studied experimentally. To illustrate the sit-
uation where the flaws in describing level densities
become obvious, the calculated spectra of gamma rays
from the reaction α + 48Ti = 52Cr are contrasted in Fig. 4
against the spectra measured in [11] at various energies
of incident alpha particles. The soft section of each
spectrum is determined by the level density after parti-
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0 10

× 10–4

Eγ, MeV

10–2

100

102

104

106

108

10–6

× 10–2

× 102

20

Fig. 4. Spectra of photons (in µb/MeV) from the reaction
α + 48Ti = 52Cr at alpha-particle energies of 12, 17, 24, and
28 MeV (from bottom to top). Points represent experimental
data from [11], while curves illustrate the results of the cal-
culations.
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cle emission, which leads to the formation of a residual
nucleus at low excitation energies. The step in the right-
hand section of the spectrum is associated with primary
photons that originate from the decay of a compound
nucleus and which compete with particles of nonzero
mass. Thus, the probability of high-energy-photon
emission is determined not only by the relevant
strength function but also by the level density at the cor-
responding high value of the excitation energy. By way
of example, we indicate that, in response to the growth
of Eα from 12 to 28 MeV, the excitation energy changes
from 20 to 35 MeV. It is obvious that a systematic bias
can arise in the spectrum computed with the level den-
sity extrapolated from the neutron binding energy (8–
10 MeV) to 35 MeV. In the case being considered, the
level density is overestimated at high excitation ener-
gies. At the same time, it can be shown that, at Eα = 12
and 17 MeV, the hard sections of the spectra are repro-
duced quite faithfully, which indicates that, within the
generalized model of superfluid nuclei, the level den-
sity is extrapolated quite reliably by 10–15 MeV
upward on the excitation-energy scale.

As to the reaction 19F + 27Al = 46Ti (see Fig. 5), the
primary excitations of 46Ti that are generated in it occur
at 40 to 60 MeV. It can be seen that, even at a minimal
value of U, there are sizable discrepancies in the hard
sections of the spectra and that, with increasing excita-
tion energy, these discrepancies grow.

Thus, the step in the soft sections of the spectra,
which is associated with the decay of the nucleus ini-
tially produced in a highly excited state, can be a source
of information about the density of nuclear levels at
high excitation energies. The uncertainties in the radia-
tive strength functions are minimal in this region of
radiated energies, because there are comprehensive
data on the photoabsorption cross sections at these
energies.

At relevant excitation energies of the fragments, the
values of the level-density parameter a from the LDPL-
98 library, which are used in the calculations, become
commensurate with the data from [9] in Fig. 6. How-
ever, a direct comparison of these quantities is not quite
correct because the different approaches to calculating
level densities were used in the two cases. Since the
collective enhancement of the level density is taken into
account in our approach, the a values in the two models
must be close for nuclei where collective effects are
small (that is, for magic nuclei). For nuclear species far
off magic ones, the inclusion of collective effects
reduces the parameter a. From Fig. 6, it can be seen
that, in the mass range Ä = 125–135 (region of the dou-
bly magic nucleus 132Sn), the parameter values from the
LDPL-98 agree, both in absolute value and in the shape
of the mass number dependence, with data from [9],
which were obtained by fitting the experimental spectra
of neutrons originating from fission fragments. This
clearly demonstrates that data from the LDPL-98
library are quite reliable and that the generalized model
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
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Fig. 5. Spectra of photons (in µb/MeV) from the reaction
19F  + 27Al = 46Ti at projectile energies of 30, 40, 50, and
60 MeV (from bottom to top). Points represent experimen-
tal data from [11], while curves illustrate the results of the
calculations.
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Fig. 6. Level-density parameters for fragments originating
from the spontaneous fission of 252Cf versus the mass num-
ber: (closed circles) data from [9] and (open circles) level-
density parameters according to the systematics from [7] for
relevant excitation energies.
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of superfluid nuclei furnishes accurate predictions for
the level densities in nuclei far off the stability band.
That collective effects are taken into account in this
model explains the discrepancy for A = 110–120 frag-
ments.

3. RESULTS OF THE CALCULATIONS

One feature that is peculiar to the experimental
spectra of photons from fragments produced in the
spontaneous fission of 252Cf and which was compre-
hensively discussed in [12] is that the shape of the spec-
trum for A = 126–136 fragments differs from that for
fragments having different masses (Figs. 7, 8). Indeed,
the spectra of fragments in the vicinity of the doubly
magic nucleus 132Sn exhibit a considerable excess of
photons with energies in the interval 3–8 MeV. This
fact was explained in [9], where it was shown on the
basis of an analysis of neutron spectra that the level-

10–4

0
Eγ, MeV

4 8

10–2

100

102

104

10–6

0 4 8

Fig. 7. Spectra (in arbitrary units) of photons emitted by
(right panel) heavy fragments formed in the spontaneous fis-
sion of 252Cf and (left panel) the complementary light frag-
ments. Open symbols represent experimental data from [12]
for the following ranges of heavy-fragment (light-fragment)
masses: (boxes) 126–130 (122–126), (triangles) 134–138
(114–118), and (circles) 142–146 (106–110). Solid and
dashed curves illustrate the results of the calculations that
employ the radiative strength functions fE1 found, respec-
tively, on the basis of the KMF–AT method and on the basis
of the Lorentzian dependence.
density parameters of nuclei in the region of the doubly
magic nucleus 132Sn have a pronounced shell structure
(see Fig. 6). Another feature of the measured spectra is
that the spectrum of photons from a heavy fragment is
quite similar to the spectrum of photons from the com-
plementary light fragment (Fig. 9). This may tenta-
tively be associated with inability to identify unambig-
uously the source of radiation in the experiment
reported in [12].

In the context of the present study, the point of
prime interest is that of testing agreement between the
slope of experimental photon spectra from [12] and the
slope of the theoretical spectra constructed by using
two methods for evaluating strength functions for elec-
tric dipole transitions, the KMF–AT method and the
method relying on a Lorentzian dependence. The calcu-
lated spectra for various intervals of the mass of a heavy
fragment and the mass of the complementary light frag-
ment are displayed in Figs. 7 and 8, along with the rel-
evant experimental data from [12]. It can easily be seen
that, by using the KMF–AT method for calculating
strength functions, one achieves more acceptable
agreement between the experimental and calculated
slopes of the spectra, especially for heavy fragments.
Among the cases considered here, the most representa-
tive changes are observed in the intervals A = 126–130,
142–146, 138–142, and 146–150. It is noteworthy that,
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Fig. 8. As in Fig. 7, but for the fragment-mass ranges 130–134
(118–122), 138–142 (110–114), and 146–150 (102–106).
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in the intervals A = 126–130 and 130–134 near a doubly
magic fragment, an excess of photons with energies in
the range 3–8 MeV is faithfully reproduced without any
additional effort.

Taking into account the aforementioned special fea-
ture of the method of measurements, we perform a fur-
ther analysis on the basis of a comparison of data for
complementary fragments with the corresponding cal-
culated spectra in the form of mean values with weights
proportional to the yields of the heavy and light frag-
ments (see Fig. 9). This comparison reveals an addi-
tional uncertainty caused by the possible distinctions
between the observed and the calculated fragment-
mass dependence of photon multiplicities—in other
words, by uncertainties in the normalization of the cal-
culated spectra. From Fig. 9, it can be seen that the
resulting description of the observed photon spectra is
satisfactory in the energy region Eγ ≥ 1 MeV for all
fragment masses. The distinctions that still remain can
easily be removed by varying the normalization factors
in the computed spectra for complementary fragments
since the required forms are embedded in the compo-
nents constituting the eventual spectra (see Figs. 7, 8).

It is worth noting that, in all cases considered here
(Figs. 7–9), the calculated spectra always fall short of
experimental values for low radiation energies (Eγ <
1 MeV). If, despite the complicated energy dependence
of the detector efficiency in this interval, the experi-
mental data are reliable for it, an analysis of the dis-
crepancies could furnish interesting information about
the properties of excited states of fission fragments. For
example, it would be possible to estimate the contribu-
tion of rotational degrees of freedom to the formation
of the initial fragment spins, since the enhancement of
gamma-decay probabilities in transitions between the
members of rotational bands, which was disregarded in
the calculations, appears to be the most natural expla-
nation of the observed discrepancies. In this connec-
tion, it would be useful to improve the mass resolution
of the spectra [12].

4. CONCLUSION

A theoretical analysis of the spectra of photons from
the fragments produced in the spontaneous fission of
252Cf has been performed. The LDPL-98 library of
parameters, which contains data on the level densities
and on the diagrams of levels for 2000 nuclei, has been
composed for relevant calculations. The excitation
energies of primary fragments have been extracted, and
the reliability of the resulting values has been tested. It
has been shown that, within the statistical model of the
nucleus, the observed spectra can be satisfactorily
reproduced by using the E1 radiative strength functions
as obtained by the KMF–AT method, which takes into
account experimental data on the properties of transi-
tions between discrete levels. It has been conjectured
that the reasons behind the discrepancies between the
observed and computed spectra are associated with the
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 1      2001
uncertainties in the level densities at high excitation
energies and with the enhancement of the intensities of
transitions between the members of rotational bands.
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Abstract—The asymmetry between the spectra of leading and nonleading charmed mesons that was measured
in Σ–A interactions at pL = 340 GeV/c in the WA89 experiment is described within the Model of Quark–Gluon
Strings (QGS model also known as QGSM) under the assumption that there is a fraction of charmed sea quark–
antiquark pairs (intrinsic charm) in an interacting hyperon. It is shown that the asymmetries between D–- and

D+-meson spectra and between - and -meson spectra can be approximated by QGSM curves obtained

with the same string-fragmentation parameter, a1 = 10, and the same intrinsic-charm fraction,  = 0.01, as

those that were used in describing / -meson asymmetry of π–A experiments in previous studies. The

asymmetry between the spectra of Λc and  that was measured in Σ–A collisions at pL = 600 GeV/c in the E781
experiment is also described within this scheme. The QGSM results are compared with the results of the calcu-
lations in the next-to-leading approximation of perturbative QCD that were performed by other authors. © 2001
MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The asymmetries between the spectra of D– and D+

mesons and between the spectra of  and  mesons
were measured in Σ–A interactions at pL = 340 GeV/c in
the WA89 experiment [1]. It is of interest to compare
these asymmetries with those obtained in the π–A
experiments [2, 3] in order to understand the influence
of the quark composition of beam particles on produc-
tions of heavy-flavored particles and to extract some
specific features of the spectra of strange–charmed
mesons due to the presence of a strange valence quark
in the Σ– hyperon. The difference between the spectra

(  = 2p||/ ) of leading and nonleading particles
was discussed recently, and several theoretical models
explained successfully the asymmetry as an effect that
is due to the interplay of the quark contents of the pro-
jectile and the quark content of the product hadron.
Charmed mesons containing ordinary quarks of the
same type as beam particles have a higher average
value of x. The asymmetry defined as

(1)

is a function that grows with x. There are two different
theoretical approaches to describing this effect. The
first one is based on perturbative QCD. It takes into
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account the recombination of intrinsic-charm quarks
with the valence quarks of the projectile as the origin of
asymmetry [4]. Other phenomenological models
exploit the properties of fragmentation functions in
order to insert asymmetry. We will not discuss here the
details of recombination models, but we are going to
concentrate on a nonperturbative approach known as
the Model of Quark–Gluon Strings (QGS model also
known as QGSM) [5]. This model describes well the
leading/nonleading charm asymmetry for π–p experi-
ments [6].

2. QUARK DISTRIBUTIONS IN THE QGSM

The cross section for the inclusive production of D
mesons is represented as the sum over n-Pomeron cyl-
inder diagrams:

(2)

Here, the function (s, x) is the particle distribution
in the configuration of n cut cylinders, and σn is the
probability of this process. The parameter of the super-
critical Pomeron used here is ∆P = αP(0) – 1 = 0.12. The
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detailed formulas for σn and  in pp interactions can
be found in [7].

The distribution functions for the case of Σ–p colli-
sions are given by

(3)

where  is the density parameter of quark–antiquark
chain fragmentation into a given type of mesons.

The particle distribution on each side of the chain
can be built on the account of the quark contents of the

beam particle (x+ = (x + )/2, x⊥  = 2m⊥ ) and

of the target particle (x– = (x – )/2):

(4)

Each Fi(x±) is constructed as the convolution

(5)

where f i(x1) is the structure function of the ith quark
that has an energy fraction x1 in the interacting hadron

and (z) is the fragmentation function for the transi-
tion of this quark into the considered type of D or Ds

mesons.
The structure functions of quarks in an interacting

proton were described in [7]. In the case of the hyperon,
they depend on the parameter of the Regge trajectory of
the ϕ meson ( ) because of the presence of an s quark
in Σ–; that is,
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where αϕ(0) = 0. The constants  are determined by
the normalization conditions

3. FRAGMENTATION FUNCTIONS

For the quark and diquark chains, the fragmentation
functions are constructed according to the rules pro-
posed in [8]. The following favored fragmentation

function for transitions into  mesons is written for
the strange valence quark:

(7)

Here, λ = 2 (0) , and αψ(0) is the parameter of

the Regge trajectory of ψ mesons ( ). The additional

factor (1 + z2) provides the parametrization [9] of
the probability of heavy-quark production in the inter-

val from z = 0 to z  1. The values of the constant 
will be discussed below.

The function for the nonleading fragmentation of
the d-quark chain is

(8)

where αR(0) = 0.5 and ∆ψ = αR(0) – αψ(0). The function
of the nonleading fragmentation of the diquark chain
has the form

(9)

The following fragmentation function corresponds

to the version of the diquark fragmentation into 
mesons:

(10)

4. THE ASYMMETRY-SUPPRESSION CAUSES

Some fractions of sea quark pairs in the hyperon,
 and , must be taken into account since they sup-

press the leading/nonleading asymmetry. The structure
functions for ordinary quark pairs in the quark sea of
the hyperon can be written in the same way as the

Ci
n( )

f i x1( ) x1d

0

1

∫ 1.=

Ds
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valence-quark distributions:

(11)

Here, sea quarks and antiquarks have an additional
power term 2[1 – αR(0)] corresponding to the quark dis-
tribution of the two-Pomeron diagram including one
sea quark pair.

The structure function for strange sea quarks obeys
the same rules; that is,

(12)

where ∆ϕ = αR(0) – αϕ(0) and  = 0.25 (see [10]).

The fragmentation function for the transition of a
strange sea quark (or antiquark) into Ds mesons has the
following form for mesons of both charges:

(13)

The additional fragmentation parameter  is
equal to the fragmentation parameter for D mesons.

5. INTRINSIC-CHARM DISTRIBUTION

Since we have taken into account the  and 
fraction in the quark sea of the hyperon, some fraction
of charmed sea quarks must be considered as well. This
small heavy-quark admixture plays an important role
owing to its strong impact on the difference between
the leading and nonleading charmed-meson spectra.

The structure function for charmed sea quarks is
similar to the distribution of strange sea quarks; that is,

(14)

where  is the weight of the charm admixture to the
quark sea of the hyperon. In fact, it should not necessar-
ily be equal to the charmed-quark fraction in the quark
sea of the pion [6]. This is the only parameter that we
can vary for Σ– interaction after the best fit to pion
experimental data that was obtained before. The value
of  can be estimated in describing the WA89 data
on Ds- and D-meson asymmetries. It should be

expressed in units of  for the reasons of correct
normalization [see Eq. (3)]. The same was done in esti-
mating the charmed-quark fraction in the quark sea of
the pion. This factor will be omitted to simplify the rep-

resentation of . The value of  is universal for

f
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,

δc c,

δc c,

a0
D

δc c, a0
D

each sort of beam particles and is approximately equal
to 3 × 10– 4 for D-meson production [9].

The fragmentation functions for D mesons are given
by

(15)

For Ds mesons, we have

(16)

6. Λc/  ASYMMETRY

The asymmetry between the spectra of Λc and 
that was measured in Σ–A collisions can easily be
obtained by means of nearly the same calculations as
those described above. What is of importance here is
that the leading Λc baryon is formed from the single d
quark of the projectile particle. No diquark from the Σ−-
hyperon participates in the production of a leading
charmed baryon. This allows us to take the results of
our calculation for D-meson production at pL = 600 GeV/c

and to compare them with the Λc/  asymmetry mea-
sured in Σ−A collisions in the E781 experiment [11].
The parameter a1 means in this case a parametrization
parameter for the density of Λc in the fragmentation of
a uc-diquark string; it can differ from the a1 value taken
for D-meson production. The energy of the interaction
must also be changed. The parameter of the intrinsic-
charm fraction, , must have the same value as that
for D-meson calculations because one does not know
which leading particles are produced.

It should be realized that the reasonings about
Λc/  asymmetry are given here only to illustrate the
simple quark-counting approach within the QGSM.
Complete calculations of the spectra of Λc and  will
be carried out in this model on the basis of data avail-
able from various beam experiments.

7. FINAL PLOTS AND COMPARISON

The main parameter of the QGSM scheme that is
responsible for leading/nonleading charm asymmetry
is a1. It is the parametrization parameter of the leading
fragmentation-function dependence on z  1. The
fraction of charmed sea quarks, , is the second
parameter in these calculations that makes the asymme-
try lower because of equal numbers of D+ and D–

mesons produced by each sea-charmed-quark pair. Two
sets of this couple of parameters were chosen in
describing data on π–A interactions: a1 = 4,  = 0 and

$c c,
D

–
D

+,
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z
---z

1 αψ 0( )–
1 z–( )

αR 0( )– λ+
.=
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Ds

–
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z
---z
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αϕ 0( )– λ+
.=

Λc

Λc

Λc

δc c,

Λc

Λc

δc c,

δc c,
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a1 = 10,  = 0.05. We consider here these two values

of a1, taking  to be more or less a free parameter.

Two curves displayed in Fig. 1 represent fits to data
from the E791 and WA92 pion-beam experiments [2, 3]
with the two parameter sets discussed above. Data of
the WA89 experiment are described in Figs. 2 and 3
with the same value of the parameter a1. It should be
noted that a smaller fraction of charmed sea quarks was
taken into account (actually, the value of  = 0.01

was used to describe both the D–/D+ and the /

δc c,

δc c,

δc c,

Ds
–

Ds
+

0.8

0.4

0

–0.2 0.2 0.6 x

A(x)

Fig. 1. Asymmetries between D– and D+ spectra according
to the (closed squares) E791 [2] and (open circles) WA92 [4]
experiments and relevant QGSM curves for (solid curve)
a1 = 10 and  = 0.05 and (dash-dotted curve) a1 = 4 and

 = 0.

δc c,

δc c,

1.2

0.8

0.4

0 0.2 0.4 0.6 0.8 1.0
x

A(x)

Fig. 3. /  asymmetry according to the WA89 mea-

surements [1]. The notation for the theoretical curves is
identical to that in Fig. 2.

Ds
–

Ds
+
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asymmetry in Σ–A interactions instead of  = 0.05 in
the case of pion beam in the E791 experiment).

The resulting curves obtained in several theoretical
models [12, 13] are also shown in these figures.

The asymmetry between the spectra of Λc and 
that was measured in Σ–A collisions at pL = 600 GeV/c
[11] is shown in Fig. 4. It is fitted with the D-meson
asymmetry curve calculated in the QGSM with a larger
value of parameter a1 (a1 = 25) and with the same value
of the parameter  (  = 0.01). This preliminary
calculation provides a good description of the data of

δc c,

Λc

δc c, δc c,

1.2

0.8

0.4

0

A(x)

0.2 0.4 0.6 0.8 1.0
x

Fig. 2. D–/D+ asymmetry according to (closed circles) the
WA89 measurements [1] and relevant theoretical calcula-
tions: (solid curve) QGSM results at a1 = 10 and  =

0.01, (dashed curve) QGSM results at a1 = 4 and  = 0,

(dash-dotted curve) results from [12], and (dotted curve)
results corresponding to A(x) predicted in [13].

δc c,

δc c,

Fig. 4. Asymmetry between Λc and  spectra according to
the (open circles) E781 [11] and (closed stars) WA89 [1]
measurements and relevant theoretical calculations: (solid
curve) QGSM results for a1 = 25 and  = 0.01, (dashed

curve) results from [12], and (dotted curve) results corre-
sponding to A(x) predicted in [14].

Λc

δc c,

1.2

0.8

0.4

0

A(x)

0.2 0.4 0.6 0.8 x
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both the E781 and the WA89 experiment, as was
expected for the reasons mentioned in Section 6.

8. CONCLUSIONS
There are several conclusions derived from the cal-

culations discussed in this article:
(1) Data of the WA89 experiment on the charm-pro-

duction asymmetry can be described within the QGSM
with the same asymmetry-parameter value of a1 = 10 as
E791 data for π–A interactions and with a nonzero frac-
tion of charmed sea quarks.

(2) Only a preliminary choice can be made between
the case of  = 0 and the case of a nonzero value of

the fraction of  sea quarks. More statistically reliable
data from baryon-beam experiments are required for
drawing a definitive conclusion.

(3) The D–/D+ and /  asymmetries measured
with a Σ– beam are more sensitive to the weight of
charmed quark pairs in the quark sea of the interacting
hyperon (  = 0.01) than could be seen in π–-beam

interaction (  = 0.05).

(4) The /  asymmetry is higher than the D–/D+

asymmetry, because strange quark pairs suppressing
the asymmetry in Ds production have a lower weight in

the quark sea of the hyperon than ordinary  pairs,
which cause the suppression of D–/D+-meson asymmetry.

(5) Data of the E781 experiment on charmed-
baryon-production asymmetry can be preliminarily
described within the QGSM with the asymmetry-
parameter value of a1 = 25 for Λc density in d-quark-
string fragmentation. The asymmetry between the
spectra of Λc and  that was measured in Σ–A colli-
sions grows more slowly with xF than in the predictions
within other approaches.

(6) The two charmed-meson asymmetries have non-
zero values at xF = 0 in these calculations at the WA89
energy and decrease with increasing energy.

δc c,

cc

Ds
–

Ds
+

δc c,

δc c,

Ds
–

Ds
+

dd

Λc
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