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Abstract—The spectra of neutrons accompanying 28U fission induced by 5.0- and 13.2-MeV primary neu-
trons are measured by the time-of-flight method. Thisinvestigation of fission-neutron spectra supplements pre-
vious measurements performed at the different primary energies of 2.9, 14.7, 16.0, and 17.7 MeV. The shape
of the neutron spectrum at 13.2 MeV is similar to the shape of the neutron spectra for the primary energy of
14.7 MeV and higher. A calculation of the spectra within a conventional approach reproduces the shape of the
observed distributions only at primary energiesin excess of 2 MeV. In relation to a theoretical description, the
experimental distributions for low primary energies show an anomalously high yield of soft neutrons. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The present article reports on a further step in a
series of studies initiated at the Khlopin Radium Insti-
tute (St. Petersburg) and then continued in cooperation
with the Institute of Physics and Power Engineering
(Obninsk) that are devoted to measurement of the spec-
tra N(E, E,) of neutrons accompanying the fission of
heavy actinide nuclei. Initially, the spectra of neutrons
were measured for two characteristic primary-neutron
energies of E, = 2.9 (an energy value below the emis-
sion-fission threshold) and 14.7 MeV (an energy value
above this threshold) [1]. It was found that the shape of
the fission-neutron spectra changes as soon as the pri-
mary-neutron energy becomes higher than the (n, n'f)
threshold, in which case the fission process appears to
be of an emission character. At the primary energy of
14.7 MeV, these changes manifest themselves in a
characteristic increase in the yield of neutrons in two
regions of secondary-neutron energies: as a maximum
in the high-energy section of the spectrum and as an
ascending branch in its low-energy section. At second-
ary-neutron energies below 2 MeV, the latter leadsto a
sizable excess of neutrons in relation to what emerges
from the calculations on the basis of the statistical
model. The latest investigations at the Institute of Phys-
ics and Power Engineering were focused on the region
of emission nuclear fission at primary-neutron energies
above 14 MeV [2, 3]. Both in the hard and in the soft
section of neutron spectra, the investigations reported
in [2, 3] confirmed the above features, which were
observed previously in [1] and which distinguish these
spectra from those at the primary-neutron energy of
E, = 2.9 MeV, where only (n, f) reactions can occur. It
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was clear from the outset that the above distinction in
the hard section of the spectrum is associated with non-
equilibrium neutron emission in the decay of an excited
fissile nucleus. In order to explain the excess of soft
neutrons accompanying the emission fission of nuclei,
it was assumed in [4] that neutrons may originate not
only from a fissile nucleus and from fully accelerated
fragments but also from nonaccelerated fragments.
Since this assumption was based on data that were far
from extensive, additional experimental and theoretical
investigations aimed at establishing the emission from
nonaccel erated fragments were necessary for obtaining
deeper insights into the mechanism of neutron emis-
sion.

In this article, we present new experimental results
obtained by measuring the spectra of neutrons from
238U fission induced by primary neutrons with energies
of 5.0 £0.01 and 13.2 £ 0.2 MeV. These neutron ener-
gies extend the energy range over which we previously
studied the differential yield of neutrons from the reac-
tion 233U(n, xn'f).

Measurement of the spectra of neutrons from 233U
fission induced by 5.0-MeV primary neutrons is an
important supplement to the only neutron spectrum that
was measured by the same method at the primary
energy of 2.9 MeV and which was used as a reference
in a comparison with all neutron spectra measured by
the present authors in emission fission at the primary
energies of 14.7, 16.0, and 17.7 MeV.

Thereisyet another reason why the energy distribu-
tions of neutrons originating from the reaction 2*3U(n,
xn'f) at a primary neutron energy of 13.2 MeV are of
interest. Since these distributions are determined
almost exclusively by the relevant reactions (n, f) and
(n, n'f) and since emission spectra measured at higher
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primary energies receive a contribution from the reac-
tion (n, 2n'f) aswell, there arises the possibility of clar-
ifying the effect of neutrons from the reaction (n, 2n'f)
on the character of the emission spectra; on this basis,
we can a so verify the assumption madein theoretically
calculating the spectra of fission neutrons that takes
into account the nonequilibrium mechanism only at the
first step of the emission cascade, treating all other
stepsin terms of purely evaporation processes.

At the chosen energy value, the spectra of fission
neutrons can be calculated with smaller uncertainties,
so that a comparison with experimental data can be
more reliable and informative here.

2. DESCRIPTION OF THE EXPERIMENT

A detailed account of methodological questions
concerning measurements of fission-neutron spectra
was given elsawhere [1-3]; for this reason, we only
describe briefly the basic units of the experimental
facility used in the present study.

Our experiment was conducted in a neutron beam
from the KG-2.5 cascade generator installed at the
Institute of Physics and Power Engineering (Obninsk)
by harnessing the reactions T(d, n)*He at E; = 600 keV
and D(d, n)*He at E;= 1.9 MeV to obtain neutronswith
initial energiesof 5.0 +£0.1 and 13.2 £ 0.2, respectively.
Exposed to these neutrons were tritium—titanium tar-
gets on a copper substrate and deuterium-titanium tar-
gets, the thicknesses of the active layer being 1.1 and
1.6 mg/cm? for the former and the latter, respectively.
The average current of deuteronswas5 or 25 pA for tri-
tium or deuteron targets, respectively. The energy dis-
tributions of secondary neutrons were measured by a
time-of-flight spectrometer in the energy range 0.25—
13.0 MeV. A fission-fragment detector; a neutron
detector featuring complex, combined shielding; and
electronics that made it possible to run the experiment
and control the acquisition, accumulation, and sam-
pling of experimental datain the memory of a PC were
the basic units of the spectrometer used.

A multilayer flow-through ionization chamber that
contained layers of fissile U and which was devel-
oped and manufactured at the Khlopin Radium Institute
[1] served as the fission-fragment detector. The cham-
ber consisted of four sections, each being connected to
an individual wideband preamplifier. One of the sec-
tions—amonitoring one—contai ned two one-sided tar-
gets from the substance featuring the spontaneoudly fis-
sile isotope 2>2Cf uniformly distributed over its thick-
ness (2 mg/cm?). Thismadeit possible to determine the
efficiency of the neutron detector and to perform rela-
tive measurements by using the spectrum of neutrons
from the spontaneous fission of 2>>Cf as areference. In
the remaining three sections, 233U layers 2 mg/cn? in
thickness and 100 mm in diameter were deposited onto
both sides of an auminum substrate (el ectrode) 0.05 mm
thick. There were 20 electrodes in the fission chamber,

and the total weight of thefissile samplewas’5.5 g. Pure
(99.99%) methane was used as a flow-through gas in
the fission chamber. The efficiency of fission-fragment
detection was about 70% (for more details on the fea
tures of thefission chamber, thereader isreferred to [2]).

A stilbene single crystal 63 mm in diameter and
39 mm in height connected to a FEU-30 phototube
served as the detector of neutrons. This detector was
equipped with dedicated combined shielding that was
manufactured from monolithic paraffin containing an
admixture of °LiH, lead, and iron and which was sup-
plemented with copper attachments on the side of the
source of neutrons. This ensured a considerable reduc-
tion of the background from photons and scattered neu-
trons. In order to reduce the background of photons, we
also employed the scheme of n—y separation according
to the pulse shape, the suppression factor being about
70 at the neutron-detection threshold approximately
equal to 0.2 MeV.

The spectrum of fission neutrons was measured over
aflight base of 1.7 m at an angle of 90° with respect to
the beam of primary neutrons. The absolute efficiency
of the neutron detector was determined in the range
0.25-13 MeV with respect to the spectrum of neutrons
from the spontaneous fission of 232Cf (the shape of this
spectrum was taken to be identical to that in [5]).

In measuring the spectra of fission neutrons, an all-
wave detector, which was virtually insensitive to pho-
tons and which was arranged at an angle of 45° with
respect to the deuteron-beam direction at a distance of
4 m from the target, was used to monitor the neutron
beam. The electronics of the spectrometer was imple-
mented in the CAMAC standard. In order to record
simultaneoudly the neutron time-of -flight spectrafrom all
four sections of the chamber, one time analog-to-digital
converter was used in the spectrometer, whereby system-
atic uncertainties associated with the nonlinearity and
with the temperature drift of the converter were consider-
ably reduced. The stability of the electronics and detector
performance was monitored by the shape and the position
(onthetime scale) of they peak from the spontaneousfis-
sion of 252Cf occurring in the ionization chamber.

3. SPECTRA OF PROMPT FISSION NEUTRONS
(E, = 5.0 MeV)
3.1. Shape of the Spectra of Fission Neutrons
in (n, f) Reactions

Frequently, the experimental spectra of neutrons
originating from both spontaneous and induced fission
are analyzed in terms of the Maxwell distribution

Ny (E, T) = 2(E/(TT?) P exp(=E/T), (1)

in which case the mean energy of emitted neutrons is
given by

E = (32)T. )
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INVESTIGATION OF THE SPECTRA OF NEUTRONS 3

The spectrum described by expression (1) has the
required energy dependence, but it is difficult to vali-
date it theoretically. In any case, it should be recalled
that the parameter T is not the temperature in the same
sense as in the Weisskopf and Le Couteur formulas.
Expression (1), which depends on only one parameter
T, can be considered as a convenient parametrization of
experimental data, for example, in constructing a sys-

tematics of E values.

From the estimate that is presented in [5] and which
relies on extensive experimental data and on the results
of theoretical calculations, it follows that the spectrum
N(E) of neutrons from the spontaneous fission of 22Cf
may deviate from (1) quite sizably. These deviations
can be taken into account in terms of the shape function

H(E) = N(E)/Nw(E, T), ©)

where

00

_2g_2
T = 5E = §[EN(E)dE.
0

For 232Cf, the estimate from [5] yields T = 1.420 +
0.001 MeV. Figure 1 displays the function p(E) accord-

ing to [5] and the form
1+ B:E
E) = Aexp(B, + B;x + B,X") ———,
“‘( ) p( 0 1 2 )1+ B3E2 (4)

x = In(E/E,),

which we proposed as an approximation of this func-
tion. In (4), wehaveset A=1.0265, E, = 2.65 MeV, and
E, = 8.5 MeV and determined the parameters B; by fit-
ting experimental data for three intervals of neutron
energies. Theresultsare asfollows: (i) B, =6.711 x 1074,
B,=3.5x%x102B,=45x103,andB;=0forE<E, =
2.46 MeV; (ii) B,=0, B, = 1.7 x 102, B, = -1.162 x
107!, and B, = O for E, < E< E,; and (iii) B, = 0, B, =
1.7 x 1072, B, = —-1.162 x 102, and B; = -1.2 x
1072 MeV-! for E > E, [x = In(E,/E))].

The same figure also shows the spectrum of neu-
trons originating from the fission-chamber section that
contains #2Cf and which is used in implementing the
relative method in our measurements. With the aid of
this method, the induced fission of the nuclide being
investigated and the well-understood spontaneous fis-
sion of 2Cf can be studied under very similar condi-
tions.

An dternative expression for the spectrum of neu-
trons can be obtained by using the relation of the evap-
oration model inthe fragment c.m. frame, that is, theLe
Couteur formula

n(e)de =

& exp(—€/0)de, (5)

r(n+1)e""*
wheren =1 and 6 = 1, for single emission and n =
5/11 =1/2and 6 = (11/12) T, for multiparticle emission,
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T, being the temperature of the residual nucleus (frag-
ment) upon the emission of the first neutron. In rescal-
ing the neutron distribution (5) from the c.m. frame to
the laboratory frame with allowance for the contribu-
tion of the complementary fragment and under the
assumption that the complementary fragments are
identical, we arrive at an expression that leads, upon
integration with respect to the neutron emission angle
relative to the line along which the fragments fly apart,
to the well-known Watt formula

Nw(E, w, 8)
= (TwB) exp(~(w + E)/6) sinh(2./wE/8).

In Eq. (6), the parameter w represents the mean kinetic
energy of fission fragments per nucleon, while 8—to be
distinguished from T in (1)—is sometimes referred to
as the effective temperature. This effective temperature
is related to the mean energy of the spectrum by the
equation

(6)

E = w+36/2. 7

The traditional description assuming that fully acceler-
ated fragments appear as a source of neutrons and that
the emission process follows the pattern predicted by
the evaporation model complies well with experimental
data both in the shape of the spectra and in the spatial
correlation between neutrons and fission fragments. This
is so not only in the case of nuclear fission induced by
therma neutrons but also in the case of induced fission,
at least in the region of thefirst plateau (E, < 6 MeV).

For 232Cf, afit to the estimate from [5] in terms of
expression (6) leadsto the values of 6 = 1.185MeV and
w=0.343 MeV.

For this case, the expression

Nw(E, 9, (L))

1 (8)
= E[Nw(Ea 0, CLw) + Ny (E, 6, CLw)],

the arithmetic mean of two Watt spectra for alight (L)
fragment and the complementary heavy fragment (H),
which was obtained by Froner [6] in the approximation
specified by the equalities 8, = 64 = 6, Vv, = V,,
w, =C.w, and wy,=Cyw where the constants C, =

2Af| /(Af + Af. )and C, =2 —C, aredetermined by the
momentum-conservation law, with the ratio A /A, =
108/144 = 3/4 being the most probable mass splitting,
yields8=1.170MeV and w=0.364 MeV. Thesevalues
are in excellent agreement with estimates presented in
[6] (B=1.174 £ 0.08 MeV, w= 0.361 = 0.014 MeV).
The above results for w are at odds with the estimate
w=0.75 MeV quoted in [7]. This discrepancy is due to
many simplifying assumptions made in deriving
expression (6). Figure 1 a so shows the results obtained
by fitting the Watt distribution in (8) to experimental
data on 2Cf. This distribution reproduces basic trends
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Fig. 1. Ratio of the spectrum of prompt neutrons from the
spontaneous fission of 222Cf, N(E), to the Maxwell spec-
trum Ny(E, T) at T = 1.42 MeV: (open s%uares) estimate
from [5], (closed circles) spectrum of the >>2Cf section of
the fisson chamber, (solid curve) fit to data from [5] in
terms of relation (4), and (dashed curve) fit to data from [5]
in terms of the Watt relation.

of the deviation of the spectrum measured for 232Cf
from the Maxwell spectrum—that is, it contains infor-
mation about the shape function p(E). For w — 0, the
Watt formula reduces to the Maxwell formula.

For 238U fission induced by 5-MeV neutrons, exper-
imental results and afit to them are displayed in Fig. 2
in the form of theratio of the spectrum being studied to
the Maxwell distribution at T = 1.353 MeV. The param-
eter value was obtained by fitting theratio

N(E) = Nw(E T)u(E) ©)
to experimental data in the neutron-energy range E =
0.5-12.28 MeV, where U(E) is determined by expres-
sion (4) with the parameters B, set to the values deduced
from the spectrum for 232Cf. In just the same way as at
E, = 2.9 MeV [8], the behavior of the deviation of the
measured spectrum from the relevant Maxwell distri-
bution is similar to that for neutrons from spontaneous
fission. Thisresult is not independent, however, sinceit
is determined by the assumption that ismadein relative
measurements and which concerns the shape of theref-
erence spectrum. In studying the spontaneous fission of
actinides, the authors of [9, 10] determined the effi-
ciency of the neutron detector and calibrated the energy
scale of the time-of-flight spectrometer by using vari-

N(E)/NW(E, T)
1.2+

0'6 1 1 1 | I | 1 1 1 1 | I |
10° 10!
E, MeV

Fig. 2. Ratio of the spectrum of prompt neutron from 238U

fissioninduced by 5-MeV neutronsto the Maxwell distribu-
tion Ny(E, T) at T = 1.353 MeV. Points represent experi-
mental data obtained in this study. The notation for the
curvesisidentical tothatin Fig. 1.

ous reactions like H(n, n') scattering, T(p, n)*He, and
Be(d, n)!°B; that is, they did not assume any a priori
information about the function W(E). The measured
spectra aso show a deviation from the Maxwell distri-
bution; therefore, there is every reason to believe that
the deviations being discussed are of a universal char-
acter and that they can be taken into account by intro-
ducing a correction to the distribution in (1). The Watt
distribution in Fig. 2 corresponds to the parameter val-
uesof 6 =1.169 MeV and w = 0.265 MeV.

For the relevant distributions in (1), (6), and (9),
Table 1 quotes the parameter values, which confirm the
conclusion that, if the spectra of fission neutrons have
been measured over a sufficiently broad energy inter-
val, it makes no difference which form of approxima
tion—that in (1) or that in (6)—is used to determine the
mean energy of neutrons from afit to the experimental
distributions: the distinction between the E values in
the two cases under consideration does not exceed 0.01
versus the mean value of 2.02 MeV as obtained for all
E values quoted in Table 1—thisisless than the exper-
imental uncertainty equal to 0.03 MeV. Apart from sta-
tistical errors, the experimental uncertainty includes (i)
the error associated with a finite width of the second-
ary-neutron-energy range studied here, (ii) the error

Table 1. Fitted parameters of the spectrum of neutrons originating from 238U fission induced by 5-MeV neutrons

E F Nm(E, T) (2) Nm(E, T) 1(E) (9) Nw(E, 6, w) (6)

min max?

MV 1T, MeV| By MeV | X2 [T, MeV |Eyp,MeV| X2 | MeV |8 MeV |Eyy, MeV| X2
0.28-12.27 | 1.341 2.012 040 | 1.349 | 2024 032 | 0228 | 1191 | 2015 0.34
0.50-12.27 | 1.342 2.013 037 | 1353 | 2030 050 | 0265 | 1169 | 2019 0.27
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INVESTIGATION OF THE SPECTRA OF NEUTRONS 5

that stems from extrapolating the measured spectrum
N.,,(E) by using the Maxwell distribution at energies E
below the boundary energy E.;, equa to the energy
threshold of the neutron detector, and (iii) the errorsin
the corrections introduced.

The genera trend in the behavior of E isasfollows:
the smallest value corresponds to expression (1), while
thelargest oneresultsfrom afitintermsof expression (9).
The same is true for the spectrum of neutrons from

22Cf fission: E = 2.096, 2.121, and 2.13 MeV for (1),
(6) or (8), and (9), respectively.

Table 2 displays a sample of mean-energy valuesfor
the spectrum under study and the experimental errorsin
them. The first value was found on the basis of afit in
terms of expressions (1), (6), and (9) as amean over all

E values from Table 1. The second value was deter-

mined directly from the observed spectrum N(E) by
evaluating the integral

00

E = IEN(E)dE, (10)
0

the contribution from neutrons with energies below the
detection threshold 0 < E < E;, = 0.2 MeV being taken
into account via an extrapolation from E,;,. to zero with
the aid of the Maxwell distribution.

In Table 2, we present the mean energies E.,
obtained from the measured spectra of fission neutrons.

Also given are E valuesthat take into account a correc-
tion for the angular correlation between secondary and
primary neutrons (see [1]), which arises owing to a
strong angular anisotropy of fragment emission and to
a strong angular correlation between the direction of
motion of postfission neutrons and the direction of
motion of fission fragments. For the eventual value of

the mean neutron energy E, wetook 2.03 + 0.03 MeV.

Table 2 aso quotes the E values corresponding to the
compilations from [7, 11].

The fission-neutron spectrum obtained in the
present study is shown in Fig. 3, along with the esti-
mated spectrum from the ENDF/B-VI library, which
was composed on the basis of the Madland-Nix model
[12], and with the spectrum calculated by Merten with
the aid of the FINESSE code [13]. As can be seen from
the figure, the results of the FINESSE calculations are
in better agreement with experimental data than with
the ENDF/B-VI estimate. The calculated spectrum
from ENDF/B-VI underestimates the contribution of
neutrons both in the low-energy region E< 1 MeV and
in the region of high energies.

3.2. Experimental Ratio R(E, E,)

In just the same way as in our preceding studies
devoted to measurements of fission-neutron spectra,
PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.1 2001

Table2. Mean energies of neutrons originating from 238U
fission induced by 5-MeV neutrons

Sampleof E Eexpt, MeV E,MeV
E according to Table 1 2.02+0.03 2.03+0.03
E according to Eq. (10) 2.01+0.03 2.02+0.03
Accepted value 2.02+0.03 2.03+0.03
Systematics from [7] 2.054 Vi =3.024
Systematics from [11] 2.063 v; =3.024

the experimental resultsfor the primary neutron energy
of E,=5.0 MeV aredisplayedin Fig. 4b astheratio of
the spectrum of prompt neutrons originating from 23U
fission to the spectrum of neutrons from the spontane-
ous fission of 22Cf,

Ny(E, En)
N (E) -

The spectrain question are normalized as

R(E, E,) = (11)

00 00

[Nu(E, E)AE = [Ng(E)IE = 1, (12)
0 0

where the contribution of neutrons with energies E
beow E;, = 0.2 MeV is taken into account. As was
indicated above, this representation of our experimen-
tal results makesit possible to avoid many uncertainties
like those that are associated with the precision
achieved in calibrating the energy scale of the spec-
trometer or with the energy dependence of the neutron-
detector efficiency. For this purpose, measurements for
the induced fission of the isotope being studied and the

N(E)/NW(E, T)

1.4~
1.2+
1.0
0.8
0.6 = [ B [ B
10° 10!
E, MeV

Fig. 3. Measured spectrum of neutrons from 238U fission
induced by 5-MeV neutrons (points) along with the results
of the calculations based on the FINESSE code (solid curve)
and with the estimate from the ENDF/B-VI library (dashed
curve). All neutron spectra are presented in the form of the
ratio to the Maxwell distribution at T = 1.353 MeV.
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Fig. 4. Ratio R(E, E,)) of thefission-neutron spectrum for the
reaction 238U(n, xn'f) to the spectrum of neutrons from the
spontaneous fission of 232Cf. Points represent experimental
data of this study. The solid curves in Fig. 4c depict the
results of the calculations (1) without and (2) with allow-
ance for neutron emission from nonaccel erated fragments.
The dashed curvesin Figs. 4a and 4b correspond to theratio
of the Maxwell distributions at Ty; = (a) 1.232 and (b)
1.353 MeV for Tp = 1.42 MeV in either case.

well-understood spontaneous fission of 232Cf were per-
formed simultaneously under conditions as similar as
possible. Figure 4a shows experimental results
obtained at the primary neutron energy of E,,=2.9 MeV
[1]. The dashed curvesin Figs. 4a and 4b represent the
ratios of the Maxwell distributions for 233U and 2°Cf at
the values of the temperature T that are indicated in the
caption under the corresponding figure,

Ny (E, E,)
~ui= ),
M

It can be seenthat, at E,, = 2.9 and 5.0 MeV, both the
observed and the approximating ratio [R(E, E,) and
Ru(E, E,), respectively] behave as nearly linear func-
tions of the secondary-neutron energy. Thisimpliesthat
the observed neutron spectrum issimilar in shapeto the
Maxwell distribution and that the slope is determined
by the difference of the temperatures obtained from the
neutron spectra for the 22Cf nucleus and the 23%U
nucleus being studied.

Ru(E E,) = (13)

4. SPECTRA OF EMISSION-FISSION NEUTRONS
(E, = 13.2 MeV)

For the incident-neutron energy of E, = 13.2 MeV,
the experimental energy dependence of the ratio R(E,

E,) = Ny(E, E))/N(E) is shown in Fig. 4c. It differs
markedly from the simple, nearly linear dependences
R(E, E,) observed at the primary-neutron energies of
E,= 2.9 and 5.0 MeV, featuring a maximum at high
energies of emitted neutrons, which isdue to the contri-
bution from a nonequilibrium mechanism of excited-
nucleus decay—this mechanism leads to amuch harder
spectrum of emitted neutrons. If we compare experi-
mental data that are presented in the form of the ratio
R(E, E,) and which were obtained in [2, 3] a higher
incident-neutron energies (in excess of 14 MeV) with
similar results of the present study, it becomes clear that
the peak on top of the high-energy tail of the spectrum
dueto the nonequilibrium component of prefission neu-
trons is much less pronounced in the present case. The
observed shift of the high-energy peak in R(E, E,)) along
the scale of the emitted-neutron energy E in responseto
a reduction of incident-neutron energy from E, >
14 MeV to 13.2 MeV, together with a decrease in the
peak height, indicates once again that the physical
interpretation of the effect has been chosen correctly,
since the contribution of the nonequilibrium compo-
nent of prefission neutrons becomes less pronounced
with decreasing primary neutron energy.

At low energies of emitted neutrons (E < 2 MeV),
theratio R(E, E,)) shows another feature of emission fis-
sion, the presence of an anomalously soft neutron com-
ponent, which manifests itself as an excess of the
observed distribution over the distribution computed on
the basis of the statistical model.

Smooth curves in Fig. 4c represent the results of a
theoretical calculation based on the statistical model. All
inputs that were used in describing the experimental
spectra of neutrons accompanying the emission fission
of 28U nuclei irradiated with 14.7-, 16.0-, and 17.7-MeV
neutrons and which include basic relations of statistical
theory and of the preequilibrium-decay model, level
densities, and the mechanism of postfission-neutron
emission were described in detail elsewhere [4]. Pre-
liminary theoretical estimates obtained on the basis of
the relations from that study reveal that the low-energy
anomaly can also be observed at primary neutron ener-
gies E, in excess of E,, =9 MeV. With the aim of test-
ing the potential of the model in predicting measurable
results, we have applied the previous approach to mea
sure the neutron spectrum at the primary neutron
energy of E, = 13.2 MeV, whichis closer to the thresh-
old energy E;, than any energy value studied thus far.

The calcul ated spectrum was represented as the sum
of the contributions from prefission neutrons, neutrons
from fully accelerated fragments (postfission-neutron
spectrum), and neutrons from nonaccelerated frag-
ments; that is,

d\_}c(E1 En) — d\_)pre(Ei En) + d\_}faf(E1 Eni BTX)
dE dE dE
+ V(B B, C)
dE '

(14)
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The prefission-neutron spectrum dv . (E, E,)/dE
was calculated as the sum of the spectrum of coinci-
dence between first-chance neutrons and events of 238U
fission (dV ., ; /dE) and the spectrum of coincidence of
second- and third-chance neutrons and events of 23U
fission (dV e »/dE, dV 5/dE) [4]. The contribution of
the last two to dv . /dE is much less than the contribu-
tion of the first since the fraction of the third-chance
cross section—that is, 5 ,3,—in the total fission cross
section o; at the primary neutron energy of 13.2 MeV is
extremely small. Because of the contribution from the
nonequilibrium mechanism of neutron emission at the
first step of the emission chain, the component
dV e 1/dE has a harder shape of the distribution than
the evaporation component.

The postfission-neutron spectrum dv; /dE (in other

words, the differential multiplicity of neutrons from
fully accelerated fragments), as given by the second
term in the expression on the right-hand side of (14), is
represented in the form

d\_)faf _ i — O-f, A—X
dE - axzovf,A—xNM(E! BTX) oy . (15)
The values of x = 0, 1, and 2, which stand for the
numbers of neutrons emitted prior to the fission event,
correspond to the chain of fissile nuclei 2°U, 23¥U, and
270. The quantity V; _, determines the mean multi-
plicity of neutrons emitted from the fully accelerated
fragments originating from the fission of A — x nuclei
(A= 239). The partial fission cross sections O _y,
which represent the contributions of individual chances
to thetotal fission cross section o;, are determined from
an analysisof thistotal cross section asafunction of the
primary neutron energy on the basis of statistical theory
and the exciton model of preequilibrium cascade. The
contribution of the x = 2 component to expression (15)
is very small. The constant a is introduced to ensure a
fit to experimental data and to compensate for the error
in describing V¢ _,. This error can be removed from
our analysis since the description in question is based
on an extrapolation of the systematics of v;(E,) from
[14] to theregion E, > 6 MeV. Since similar uncertain-
ties stem from the use of the systematics of T(E,) from
[7], we introduced the constant 3 to implement varia-
tions of T, within |AT, /T, | < 3%.

A method that can be used to compute the spectrum
of neutrons from nonaccelerated fragments,
dv,.; (E, E,, C)/dE, was described in detail elsewhere
[4]. The parameter C specifies the excitation-energy
fraction that the compound nucleus transfersto internal
degrees of freedom of fully devel oped fragments by the
instant of their separation. By varying the parameter C,
which determines the hardness of the spectrum and the
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yield of soft neutrons from nonaccelerated fragments,
we were able to describe the experimental spectrum in
the low-energy region E <2 MeV. The characteristic fit-
ted values of the parametersinvolved are quoted in [4].

Experimental dataand the results of the calculations
by formula (14) are shown in Fig. 4c in the form of the
ratio

N(E, E,) _ dv.(E, E,)/dE
Ne(E) — V(E)Ng(E)

where v (E,) stands for the experimental mean values
of the integrated neutron yield, while N (E) is the
spectrum of neutrons from the spontaneous fission of
232Cf (anormalization to unity is assumed here for this
spectrum). If, in accordance with the traditional
approach, postfission neutrons are taken to be emitted
only from fully accelerated fragments, we can see an
excess of soft neutrons in relation to the results of the
calculations based on the statistical model (curve 7).
Upon additionally taking into account neutron emis-
sion from nonaccelerated fragments, good agreement
between experimenta data and the results of the calcu-
lations is achieved over almost the entire energy range
(curve 2), including the low-energy section. At one
value of the coefficient C, C = 0.53, a unified descrip-
tion of the soft component was obtained both for the
neutron spectra studied previously at E, = 14.7, 16.0,
and 17.7 MeV [2] and for the spectrum measured in the
present study at E, = 13.2 MeV.

Thus, the emergence of a low-energy anomaly
(excess of soft neutrons) in the spectra measured at the
high primary-neutron energies of E, = 13.2, 14.7, 16.0,
and 17.7 MeV and its absence at the low energies of
E,=29and 5.0 MeV (see[1]) could be explained on
the basis of the proposed model.

Immediately from the measured spectrum N,,,(E,
E,), we have determined the mean energy of fission
neutrons by using the relation

R(E En) = (16)

00

Eep(En) = J’ENexp(E, E,)dE. (17)
0

At energies E below the boundary energy E,;,, equal to
the energy threshold of the neutron detector, the mea-
sured spectrum N,,,(E, E;) was supplemented with an
extrapolation according to the dependencein (1).

The resulting mean energy Ee (E,) was then cor-
rected for the effect of the angular correlation between
the secondary and primary neutrons, which is due to a
highly anisotropic angular distribution of the direction
along which the fragments fly apart and to a strong
angular correlation between this direction and the
direction of postfission-neutron emission. The relevant
correction was estimated in just the ssmeway asin [2].
For 23U, our eventua result for the mean neutron
energy at E,=13.2 MeV is1.97 £ 0.04 MeV.
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5. CONCLUSION

For 23U fission induced by primary neutrons of
energies 5.0 and 13.2 MeV, which are of importancefor
obtaining deeper insight into the mechanism of fission-
neutron emission, the spectra of prompt neutrons have
been measured for thefirst time. For thisfissile nuclear
species, the experimental energy dependences of the
ratios R(E, E,)) of the neutron spectra being studied to
the corresponding spectrum of neutrons from the spon-
taneous fission of 2>2Cf show the same special features
as those that were found in analogous measurements at
primary energies of 2.9 and 14.7 MeV [1]. The ratios
R(E, E,) measured at E,, = 5.0 MeV haveaform similar
to that determined previously at E, = 2.9 MeV. The
shape of the spectrum at E, = 13.2 MeV issimilar to the
shape of the spectrafor E,, > 14 MeV. Asto the calcula-
tion of the spectrum within the traditional approach, it
reproduces the shape of the observed distribution only
in the energy region above 2 MeV. In the low-energy
region, the experimental distribution exhibits an anom-
alously high yield of soft neutronsin relation to thethe-
oretical description. Upon the inclusion of the third
neutron source (emission from nonaccelerated frag-
ments), the calculated curves proveto bein good agree-
ment with experimental data over the entire neutron-
energy range studied here.
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Abstract—Within the minimal SU(3). O SU(3); O U(1)y model, the lepton-flavor-violating decay " —
KV e"e" iscalculated without directly invoking lepton mixing. The branching ratio for this rare pion-decay mode

isfound to be much smaller than the current experimental upper limit. If the anomal ousinteractions are discarded,
this result coincides with the result of the previous calculation. © 2001 MAIK “ Nauka/l nterperiodica” .

At present, neutrinos are presumably massive and
mixed asisindicated by various experiments. SuperKa-
miokande [1] and others[2]. This significant deviation
from the Standard Model (SM) calls for its extension.
Models based on the SU(3). 0 SU(3), 0 U(1), (33 1)
gauge group [3, 4] are among the most popular in such
extensions of the SM. The SM assumes |epton-flavor-
number conservation, and its observed violation would
be aclear indication of new physics. Inthe (3 3 1) mod-
els, the lepton-flavor number is not conserved, and
these models have mativated avariety of dedicated sen-
sitive searchesfor rare modes of muon and kaon decays
and for neutrino oscillations [5]. It is known that the
muon system is one of the best places to seek lepton-
flavor violation, compared with the others. The

“wrong” muon decay U~ — €V,V, iswidely used to
set alower bound on the singly charged bilepton mass
(My = 230 GeV) [6].

In this study, we pay attention to the lepton-flavor-
violating pion decay " —= pv,e'e’. The upper limit
on its branching ratio is given by R< 1.6 x 10 at a
90% C.L. [7, 8]. By assuming lepton mixing or hori-
zontal interactions, the above decay was studied theo-
retically in [9]. However, this decay may be described
by the minimal (3 3 1) model in asimple manner with-
out directly invoking lepton mixing.

To start, we first give some basic elements of the
model (for more details, see[10]). Threelepton compo-
nents of each family are in one triplet,

a a ja ,ca\T
fr= (v, lIL ),

wherea=1, 2, 3isthefamily index. Under SU(3),, two
of the three quark families transform as an antitriplet

* This article was submitted by the author in English.
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429, Bo Ho, Hanoi, 10000 Vietnam.

** e-mail: HoangNgocL ong@cern.ch

and one family transforms as a triplet,

04 O Oy, O
O iL O - 3LD
QiL = D—U“_ D! I = 11 2! Q3L = Dd3L D
U U U g
0D, 0O OoT. 0O

The right-handed quarks are singlets under SU(3),. The
exotic quarks T and D, have el ectric charges of +5/3 and
—4/3, respectively.

There are five new gauge bosons: the Z' boson and
the charged bileptons with lepton numbers L = +2,

which are identified as follows: J/2Y, = W, — iW;

and ./2X;,” = W —iW, ; their couplingsto leptons are
given by [11]

$|CC = ——g—z[vy“(l —ys)CI_TY;

2./2

- U T
-1yysCl X, +h.c.].

ey

The interactions among the charged vector fields with
guarks are

ifsc - _%[(U&V“dn + UiLy“diL)W;

+(Toy"dy + Oy YD) X:r
+ (U Y T — 5i|_\/“di._)Y; +h.c.].

2

It should be noted that the vector currents coupled to X~
and X** vanish owing to Fermi statistics, and the exotic
guarks interact with ordinary ones only via the bilep-
tons and non-SM Higgs bosons.

The current experimental lower bound on the
exotic-quark mass is 200 GeV [12], while the lower
bound on the bilepton massisin the range of 300 GeV.

1063-7788/01/6401-0103%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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H™ ()
vy ()
™ (K)
e*(ky)
et (k)
Fig. 1. Feynman diagram for the decay m"(K) —=

K (PV(@e"(k;)e™(ky) inthe (33 1) model.

ee plane ‘,’;

Fig. 2. lllustration of the angles 6,, 6, and ¢.

To dea with the above process, we also need the
couplings of the bileptons X and Y to the SM weak vec-
tor boson W. In the notation adopted in [13], it is

-9
CWXY = <
J2

We start now with the decay

T (K) — W (p)vu(a)e (ke (ky), 3)

where the letters in parentheses stand for particle
momenta. We assume that the Higgs bosons responsi-
ble for lepton-flavor-violating interactions, as well as
the exotic quarks, are much heavier than the SM
W boson. Hence, the contributions from the exotic
guarks and non-SM Higgs bosons are suppressed. With
new gauge bosons carrying lepton number L = 2, the
processin (3) can be described simply by the Feynman
diagramin Fig. 1.

For low momentum transfers (g7 < mﬁ, Mf(, M\z(),

as is the case here, the matrix element for this process
isfound to be

Ganmw
MMy

+ (=L +P)Kgg, 10, ()" (1-s)
x Cly(P) Ve (k) CY'YsVe(ky),

=2

A [ (P+ K)gK, + (K + L),K,

“)

HOANG NGOC LONG

where the following combinations of four vectors are
introduced:

P=k+k, Q=k-k, L=p+aq, 5)
N=p-q, K=P+L.
The squared matrix element is given by
Gefimi
M® = 128222,
X Y
BB BB BF . BE'mN 6)
x[p'g+p g —g (plo)+ie Prmln]

x [kyky +ky'ks —g" (ky Tkp = )],
where the notation Cg, =[—(P + K)gK, + (K + L), K +
(L + P)Kgg, ] isused.

In order to describe the kinematics of the decay, we
introduce the following vectors: v, a unit vector along
the direction of flight of the dipositron in the Tt" rest
frame (Z,); &, a unit vector along the projection of the
e" 3-momentum in the e*e* c.m. frame (Z,.) perpendic-
ular tov; and b, aunit vector along the projection of the
K- 3-momentum in the p~v,, c.m. frame (Z,,) perpen-
dicular to-v. Theki nematlcs of this decay |sthen sim-
ilar to that in [14], which is described in terms of five
variables. These are s, = P?, 5, = L?, and three angles:
(i) 6., the angle of e in X,, with respect to the
dipositron line of flight in Z; (ii) 6,, the angle of u-in
Z,,v With respect to the pv,, line of fhght in X and (iii)
®, the angle between the pI ane formed by the positrons
in %, and the corresponding plane formed by Hu-and v,
The angles 6., 6,,, and @ are shown in Fig. 2

The width Wlth respect to the pion decay (3) isthen
written as

(7
x Z |Jl/Lfi|2(1 —2,)0.Xds.ds, d(cosb,)d(cosb,, ) de.
spins
In Eq. (7), (1/2) is a statistical factor indicating that
there aretwo (identical) positronsin the final state[15].
With the above definitions, we have the scalar products

Q2 = 4m§—se N? = Zmﬁ—su, K? = mf[,
LN = m;, PL= S—S.),
PN = z,PL+(1-2)XcosB,, QL = o.Xcosb,,

QN = z,QL + 0,(1-7,)PLcosb,.cos0,, )

1, 2
é(mn_

—(ses“)ﬂzsineesinﬁucoscp,
— oHvap
d=¢e""""L,N,P,Qg
= —(s:8,) " 04(1-2,)XsinB,SiNB, SN,
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where
2 2 12
m 4m, vz
Zuzgu, o-eEE'lll_ Seg ! XE((PL)Z_SGSH) ’

and m,, m,, and m, stand for the masses of the electron,
the muon, and the pion, respectively. The ranges of the
variables are

4m§ <s. < (M,— mu)z,

mﬁ <s,< (mn—Jge)z,
0<8B,, 6,<m O0=<@<2m

It should be noted that the imaginary part of |l
associated with the pseudotensor d is linear in sing—
that is, there are no terms like Q - Nd; hence, it will be
removed after integration with respect to the angle @.
As aresult, we find that the decay width is redl, as it
must.

I ntegrations with respect to the angles can be carried
out analytically by using the Mathematica system for
analytic computations. Numerical integrations with
respect to the effective masses squared s, and s, are per-
formed by employing the Monte Carlo routineVEGAS
[16]. Upon going over to dimensionless parameters x, =

Se B : :
— andy, = iz , We obtain the decay width

Tt

&)

Grf2mym-'N
2561 MMy -

where N isnumerically evaluated at N = 6.17 x 10°°.

We recall that the main (99.987%) mode of 1t decay
iswell known:

r(m'— pvee) = (10)

M — p'v,)
(11)

_ éfimﬁ 2 2,2 —17
= —S(mn—mu) =2.63x10

8rm,,
From (10) and (11), we obtain the branching ratio

GeV.

_ (M — pvee)

RTF + +
M — pvy)
_ 617x10°GZmym;’
MMM (ME —mp)’
1
M [GeV]MS [GeV]

Setting My = M, = 120 GeV as alower limit obtained
from the LEP dataanalysis[17], we arrive at R~ 2.3 x
1034, This value is much smaller than the current
experimental upper limit, but it coincides with the pre-
vious theoretical evaluation without anomalous inter-

_ (12)

~497x107"°
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actions included [8]. This raises the question about the
mechanism of the large lepton-flavor-violating pion-
decay mode. However, it is worth mentioning that
experimental dataon R, decrease with time—for exam-
ple, the 1988 data were R, < 8 x 1076, while the 1998
dataare R, < 1.6 x 1075, We assume that, by adding con-
tributions from diagrams featuring the exotic quarks
and Higgs bosons, the situation will be modified but not
improved too much.

Our calculation can be analogously applied to the
lepton-flavor-violating kaon decay K* — v, e€e’,
which has an experimental branching ratio of Ry <2.0 x
1078, However, the main decay mode K* — v, only
has a branching ratio of 69.51%, instead of 99.987% in
the 1t* case considered here.

In summary, we have considered the lepton-flavor-
violating pion decay without directly invoking lepton
mixing. Our result is twenty-eight orders of magnitude
smaller than the current experimental upper limit. This
conclusion is not expected to be modified too much
upon the inclusion of the contributions from the exotic
guarks and Higgs bosons. Hence, the mechanism of the
large lepton-flavor-violating pion-decay mode remains
amystery.
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Abstract—The distributions of fields generated by static QQ and QQQ sources are calculated analytically
within the bilocal approximation of the method of vacuum correlation functions. At large distances between the
quarks, the fields assume a clear-cut stringlike shape. The main contribution to the string comes from the lon-
gitudinal component of the chromoelectric field. The contribution of the transverse chromoelectric field is
below 3% of the contribution from the longitudinal component. A baryonic string has a Y-like shape with adeep
well in the region of the string-junction position. Field distributions are considered for a quark—diquark config-
uration and in the case of three quarks occurring on a straight line. The interaction potential is calculated for
three quarks residing at the vertices of an equilateral triangle. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Thedistributions of fieldswithin astring connecting

static QQ sources were repeatedly investigated in lat-
tice calculations by using either connected [1-3] or dis-
connected [4, 5] probing plaquettes. Later on, such
investigations were performed for configurationsin the
Abelian projection [6]. The anaytic calculations per-
formed by Rueter and Dosch and Dosch et al. [7] for
disconnected probes treated within the model of a
Gaussian stochastic vacuum (by the method of vacuum
correlation functions [8, 9]) revealed that, in the distri-
bution of the field strength tensor, thereisastring struc-
ture of the same type as that which was found in lattice
caculations. It was shown, however, that, in contrast to
adisconnected probe, a connected one makesit possible
to obtain the distribution of each field component indi-
vidually.

A comparison of lattice data [1] both in magnitude
and in direction with analytic predictions obtained
within the method of vacuum correlation functions was
drawn in [2]. This comparison compellingly demon-
strated a satisfactory agreement for all distributions. In
particular, the lattice result according to which the lon-
gitudinal electric field decreases with increasing dis-
tance from the string axis (string profile) is described
very well by the contribution of the lowest (bilocal)
correlation function [2]. It should be emphasized that
the form of thefield correlation function, whichis spec-
ified by the scalar form factors D and D, [8], appears as
an input in the method of vacuum correl ation functions.
For each of these two, lattice data [10] yield an expo-
nential with a slope of T, = 0.2 fm. Dominance of a
bilocal correlation function (sometimes, this situation
issaid to be described by the Gaussian stochastic model

* e-mail: kuzmenko@heron.itep.ru
** eemail: simonov@heron.itep.ru

of the QCD vacuum) was demonstrated in [11] by pre-

cisely calculating the static potential for a QQ Wilson
loop on alatticein various representations of the SU(3)
group. The analysis of data reported in [11] that was
performed in [12] confirmed that the contribution from
the Gaussian stochastic model saturates about 99% of

the static QQ potential. These results furnish sufficient
motivation for studying field distributions in terms of
the lowest bilocal correlation function.

For static QQ and QQQ systems, we calculate here
field distributions in the bilocal approximation of the
method of vacuum correlation functions by using con-
nected probing plaquettes. It will be shown that the
main contribution to string formation comes from the
longitudinal component of the chromoelectric field. In
the case of three quarks occurring at the vertices of an
equilateral triangle, the string has a Y-like shape with a
deep well in the region of the string-junction position.
We consider field distributions in a quark—diquark con-
figuration and in the case of three quarks situated on a
straight line. In addition, we calculate the interaction
potential for three quarks occurring at the vertices of an
equilateral triangle. A minimum in thefield distribution
near the string junction hinders the growth of the inter-
action potential at small quark separations.

Some of the results set forth below were quoted
in[13].
The present article is organized as follows. In Sec-

tion 2, we derive analytically the distributions of the
longitudinal and the transverse field component in the

QQ system and determine the contribution of the func-
tion D, to the longitudinal field component at various
guark—antiquark distances. In the same section, we also
present distributions of the total field, taking into
account perturbative one-gluon exchange. In Section 3,
we obtain analytically the distribution of the field of

1063-7788/01/6401-0107$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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0

Fig. 1. Connected probe for the QQ system.

three quarks for various configurations of these quarks.
For the case of three quarks residing at the vertices of
an equilateral triangle, we also construct thefield distri-
bution with alowance for one-gluon exchange. In Sec-
tion 4, we calculate the potential of quark interactionin
a baryon. In Section 5, we summarize our results and
discuss their possible physical implications.

2. DISTRIBUTIONS IN A MESON

We will calculate field distributions with the aid of
gauge-invariant construction p,,(x) formed by a prob-
ing plaguette P, (x) and the Wil Ilson loop W, which are
related by paraIIeI transporters ®. In the following, this
construction, which does not possess Lorentz invari-
ance, isreferred to asaconnected probe (see Fig. 1). By
definition, we have

Puv(X)
L CRNGRENCHHCES =
twad '
where
W= Ltp i A’t%d 3 2
= N;tr exp%gf ut zu% ()
C
(Pu(X)g = (Pexpiga’Fp, (X)), 3)
[0 D . ) a,a d]
Dg(x,y) = BPexpng'Aut dz,Od, 4
y

and Wg (X,) standsfor an exponential ordered along the

contour C of the Wilson loop with a discontinuity at the
point x, = (0, 0, 0, 0). The contour C lies in the (1 4)
plane and represents a rectangle of dimensions R x T
(the quarks are static). The surface S bounded by the

contour has the coordinates X' = (X;, X», X3, Xz),
where0< x; <R, X, = X3 =0,and -T/2 < x;, < T/2.
The probing plaguette P, (x) of dimensionsa x aisori-
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ented inthe (1 v) plane. It occurs at the point X = (X, X,,
X3, X4), Where x, isthe coordinate of the probe along the
string direction, X, is the distance from the probe to the
string axis, and x; = X, = 0. In the limit of small
plaguette dimensions a, it follows from the expansion
of expression (3) interms of a that the connected probe
is proportional to the field strength at the point x:

o WS D (FL, ()Pl
y “DND +O(a),(5)

With the aid of the connected probe, we can therefore
change the components of the color field that is gener-
ated by a quark—antiquark pair and which is not dis-
torted by a probing plaquette in the limit of small a. We
will evaluate the connected probe (1) in the bilocal
approximation of the method of vacuum correlation
functions, where only the contribution of bilocal corre-
lation functionsis retained in the expansion of the Wil-
sonloopinthefield F,,. Let us expressthe Wilson loop
in terms of F,,, with tFue aid of the non-Abelian Stokes
theorem as

Puw(X) = iga

1 H O
W = —expdg[F,,(x z)do,,(X)d (6)
\ .E . A

where

Fu(X Z9) = ®(Zg, X)F L, (X)P(X, Z5). (7)

Averaging the Wilson loop over vacuum fields in the
bilocal approximation, we arrive at

1.0
WO = <WctrEIL+ |gJ’Fuv(x, z5)do,, (X)
S

2

—% [80,0(9 d0,(X) Fyu () P(x, X)
S

2
X Foo(X)P(X, X) + @ = 1—% [[d0.0
SS (8)

Xdopo(x) tr [(F () P(X, X)F (X)) P(X, X)TH ...

~expE|— I do,,,(X)do (X

0
X 2t OF () DX, X)F (X)X, X1
N, 0

In the bilocal approximation, we have obtained a dou-
ble surface integral. The surface of the connected
probe, S, isformed by the surface of the Wilson loop,
S and the plaguette surface S, §, = S+ S. Let us
PHYSICS OF ATOMIC NUCLEI
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apply Eq. (8) to S,. The double integral in (8) can then
be represented as the sum of three terms,

e

In the bilocal-approximation expression for the con-
nected probe, the first term in (9) is canceled by the
doubleintegral inthe denominator, whilethe third term
vanishesin the limit of small a; that is, we have

(10)

:eXpE—LJ: llm 1-—££+0(a“),

where

([ =" (x) =—a [do,(x)
‘[l ' ‘[ ” (11)

2

x Lt

N, Ech(x') d(X, x)Fw(x)db(x, x)O

(in performing integration over the plaguette surface,
no summation over the orientations of the surface is
implied).

In thefollowing, the mean (color-singlet) field at the
point x will be defined in the bilocal approximation as

PR =3P Lote(x)
(12)
= ‘[dopc(x‘)lgl—tr [F o (X) D(X, X)F 1 (X) D(X, )T

Within the method of vacuum correlation functions, it
is proposed to parametrize bilocal correlation functions
in terms of the scalar form factors D and D, as (see the
second referencein [8])

g—ztr [F 6(X) P(X, X)F (X) P(X, X))

N.
= (8puBou — BpyBy) (D(N%) + Dy (h?)) )
+ (hyhy8y6 — g8y, —hohy 8
0D, (h
+hvh06pp)% o),

where h = x — X. In lattice calculations, it was shown
[10] that, at large distances, either form factor has the
form of an exponential with aslope of T, = 0.2 fm:
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D(h®) = D(0)exp(—ulhl),
D,(h?) = Dy(0)exp(ulhl),
D;(0) = D(0)/3, p=1GeV;, T =1/u.

Following [2], wewill usethe functions D and D, inthe
form (14) at all distances.

Thevalues of (p 0) = (1 4) on the right-hand side of
Eq. (12) are determined by the orientation of the Wilson
loop; therefore, the parametrization in (13) reducesto

Dy ia(h) = 8(D(h?) + D4(h?))
aD,(h?)
2,

(14)

5 (15)
+(hih; + hydy;)

D,(h")

Dl4,ik(h) = (h¢hydig - hh46kl) ah ) (16)

wherei, k=1, 2, 3; it can be shown that relations (15)
and (16) determine, respectively, the chromoelectric

and the chromomagnetic field components, [E(x) Lo
and B(X) B
Let us now show that [E,(X) DY and [E,(X) [ are
the only nonzero field components. Indeed, we have
D4 14(h)=0in Eq. (15) sinceh; =x; — x5 =0; therefore,
[Es(X) Lo = Faa(X) [hg =0inEq. (12) aswell. Expres-
sion (16) for D4 ;(h) is antisymmetric in h, = —x,;
- ' v T/2 1
therefore, we obtaan’Sdopcy x)= J’? dxlj'_T ,dXs Upon
the integration in (12) over the measure [B(X) o =0.
The expressions for [E,(X) Lo and [E,(X) oo ae
given by
R T/2
1(X)%Q Idxl I dX4[D(h )
-T2 (17)
2,0D (h )
D

+D,(h%) + (h; + h3)

R

T/2
[Eo(X)0yg = J’dx'1 I dx,h;h,

0 -T2

aD,(h°
JGRJ

Upon performing integration in (17) and (18), we
arrive at

B+

w3
| (TKy(Hya® +x3)
0

D(0)

[E, (X)L = 5

.
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x Ja® + %, — K (uya” + xp)a”) da

R
2

xl—E

v (7K (pfa” +x5) Ja” + x5

0

—pKo(pya® + xp)a”)da

x,D(0)O R,
3 EKl%*JEE
‘EF

(19)

[ |

EEZ(X)%Q =

S
-KlEWER
_E‘ﬁ

+ XZD

‘ﬁ

-2

(20)

R 2
ng

510 +X§Sgn§(1__

where K, and K, are Macdonald functions.
Presented immediately below are the expressions for
the individua contributions of D and D, to [E,(X) Lo -

We have
R T/2

B4, %) = [ [ dD(R’)

0 -T2

+

R
X-3

[ Kiwa®+x)./a" + xoa
0

= 2D(0)[

o [ [

21)

R
2

R
X12

I Kl(U«/a +X2)«/a +Xz da’

[ |

(E; (X, Xz)Eg%
R TR

Idxl I dX4D 1(h )+ (h1 + h4)

0 -T/2
R‘
2

[ (Ky(ufa’ +33) Ja’ + x5

0

— UK (ya’ + xp)a’)da'

aDl(h )
D

+

x
fis
|
|

- D(0)

-3 (22)

OoOo0od
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R
2

R
Xl—z

v (Ky(pa® +33) Ja’ + x5

0

0

uKg(ufa? + x0)a’)da Ex
0

where D(0) is fitted to the QQ-string tension ¢ =
0.9GeV/fm. In the bilocal approximation of the
method of vacuum correlation functions, these two
guantities are related by the equation

o= nD(O)/u2
[see the comment after Eq. (49) below].

In the leading order in a., the perturbative interac-
tion is determined by one-gluon exchange between the
guarks. In just the same way as in the Abelian case
(QED), this leads to the emergence of the Coulomb
field

(23)

I r
Ecou _ CF sdl 2|:|

Dr 3
wherer, isthe end-to-end vector from the quark to the
probe, while r, is the analogous vector from the anti-

quark to the probe. Since the QQ system is in the
V(3)-singlet state, there arises the Casimir operator
Cr = trt®? = 4/3. The value of e = 40/3 = 0.295 was
determined from a fit to the results of lattice calcula-

tions for the QQ potential in terms of the Cornell
potential V., = —€/R + OR (see the review article of
Bali [14] and references therein).

Figures 2a—5a display the distributions [E,(x;,

(24)

Xy) [jzé for the quark—antiquark distances R = T, 5T,

10T, and 30T,. It can be seen that, from 5T, astring of
characteristic shapeis stretched between the quark and
the antiquark. For the same distances, Figs. 2b-5b show
the distributions of the total field with allowance for
perturbative one-gluon exchange,

tot coul coul

(Ego(x1 %)) = (B2 + (EQ ) + (). 25)

We can see that perturbative one-gluon exchange is
dominant at distances of T, = 0.2 fm.

Figure 6 depicts the distribution [E,(X;, X,) [ié a

R= T, and 30T,. From thisfigure, it is obvious that E,
makes no contribution to the string. In the region of dis-
tances from the quark and the antiquark about ~T, E,
is less than 3% of the field strength in the string,
decreasing fast with increasing distances.
Figure 7 presents X, = R/2 (transverse) sections of
the distributions plotted in Figs. 2a—5a. The profiles of
PHYSICS OF ATOMIC NUCLEI
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Fig. 2. Distributions (a) [E(X;, Xp) [éé and (b) (Eg% Xy,

%))? (in GeV2/fm?). Here and in Figs. 3-9, x; and x, are
measured in Ty units. The quark-antiquark distance was
taken to be R = Ty. The quark and antiquark positions are
shown by points.

the R= 10T, and 30T, strings nearly coincide—for R=
10T, the string has an invariabl e saturated shape. At the
midpoint of the saturated string, the field strength is
Es* = 1.8 GeV/fm. The saturated-string thickness is
ox* = 2.2T, [according to the definition of ox™,

Ef (R/Z, 6)(Sat/2) = ]/2(E sat)2].

Figure 8 displaysthe x, = 0 (longitudinal) section of
the R= 30T, string. The field strength grows fast in the
region from 3T, to 3T, reaching along plateau at E, =
E s, The samefigure also showsthe total field that was
calculated with alowance for perturbative one-gluon
exchange and which decreases monotonically for x, >
0, reaching aplateau at x, = 5T,; thisfield growsin the
region 25T, < x; < 30T, and has no inflection points
over theentireregion0< x; <R.

For R= T, and 30T,, Fig. 9 shows the distribution

(E, (X, Xp) ié of the contribution from the function D,

(22). In just the same way as E,, ElD " does not contrib-
ute to the string. In the region of distances from the

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.1 2001
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Fig. 3. AsinFig. 2, but for R= 5T, with the quark and anti-

quark positions being shown by points with vertical bars.
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Fig. 4. Asin Fig. 3, but for R=10Tj.
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(b)

30 v,

Fig. 5. Asin Fig. 3, but for R=30Tj.

quark and the antiquark about T, ElD " isless than 3%
of the field strength in the string, decreasing fast with
distance. Two symmetric distributions that correspond
to two integrals in (22) are formed near the quark and
the antiquark. At R = T, they are superimposed, with
the result that the total distribution has a maximum at
zero. At R = 30T, there arises a zero-field region in
between these distributions, which are antisymmetric
under the reflection x, — —x; with respect to the

points x(l) =0and xf = R for the quark and the anti-
quark, respectively.

3. FIELD DISTRIBUTIONS IN BARYONS

Let us first consider three quarks occurring at the
vertices of an equilatera triangle. The contour of the
baryonic Wilson loop W®Q consists of the string-junc-
tion trgjectory and three contours C, I' = A, B, C, that
are formed by the quark trajectories (see Fig. 10). The
position of the string junction is determined by the con-
dition requiring that the contour surface be minimal. In
Fig. 10, three petals of the contour converge at angle of
2172, forming the Mercedes star. A color-singlet object
is constructed from the loop by using fully antisymmet-
ric tensors as follows:

1

(3Q) _
w - éea By

D (Ca) PR (Co)PL(Ce)e™Y. (26)
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0.05¢
0
-0.05

30

74 0 )

Fig. 6. Distribution [Ey(X;, Xp) %Q (in GeV/fm) for R=(a)

Ty and (b) 30Ty The quark and antiquark positions are
shown by points with vertical bars.

[, (R/2, x7)[g5. GeV?/fm?

4 Xy
Fig.7. Profile of the transverse section of the QQ string,

(E(R2, Xp) [é() , for R = (dotted curve) T, (short dashes)

5Ty, (long dashes) 10Ty, and (solid curve) 30Tg. At dis-
tances R about 10T, the string reaches saturation: the string
profilefor R= 10Ty isvirtually coincident with that for R =
30T,

g

GeV?2/fm?
[} 10_ [}
11 11
11 B 11
11 6_ 11
1 11
(A - _7
I S E— I
1/ 2r \ 1
II 1 1 1 1 \

0 10 20 30ux

Fig. 8. Profile of the longitudinal section of the QQ string,
[E, (%, 0) [é@ , and distribution (E:ngg (%, 0))% obtained
with allowance for perturbative one-gluon exchange (solid
and dashed curve, respectively; R=30Tj).
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With the aid of pardlel transporters, the probing
plaquette is connected to the contour C, at the point x°

(X} = x§ =0, X3 =R); X, =0 for the entire construction
of the connected probe.

In expression (12) for the mean field in the bilocal
approximation of the method of vacuum correlation
functions, we must perform summation over al three
surfaces A, B, and C; that is,

Fu()de = > IdGEG(X') 0.05

r=ABC 3 27) 003
2

X lgl—ctr [F 6(X) D(X, X)F, (X) P(X, X)[]

where Z- stands for the area of the corresponding sur-
face, Zr = Rx T. Uponintroducing, in the (x;, x;) plane,
the direction vectorsn” = (0, 1), n® = (./3/2,-1/2), and

n€= (—Jé/2, —1/2), we performintegration in (27) over Fig. 9. Contribution of theform factor D, to [E;(X;, Xy) %Q
the surfaces: in (GeV/fm) for R=(a) T and (b) 30T,. The quark and anti-
ro,, , ro, , quark positions are shown by points with vertical bars.
dopo(x ) ch(x ) = do-i4(X ) Fi4(x )

(28)
= n E(I'n", x;)dl'dx;.
Asaresult, we obtain
Eva(X)@Q
T/2 (29)
= Z J'dl J'dx4 ia, (I n" =X, X, —X,).
0 -T/2
In the ensuing calculations, we will take into
account only the contribution of D; aswas shown in the

preceding section, this contribution determines the
string shape. From (29), (15), and (14), we then obtain

R T2
[(E4(Xy, XS)BJQ = D(0) Idl. J- dX"‘ Fig. 10. Connected probe for the QQQ system.
0 -T/2
2 2] DZ 2 2]
x eXpD—pA/X1+(X3 ") tXan EXpD % +51'g + (% +172) +X4Di|-
30 .
1 Jé 2 ) ) (30) As can be seen from the above expressions, the
— éexp E—u %( 'D + (X +1'2)" + x4 E baryonic string can be represented as a superposition of
amesonic string [E, (X5, X;) Egé (21) and the same string
2 . .
B %exp E—“ J%(l . _é_é,l E b (g + 1122+ xf%} rotated through 21y3 and 41y3; that s,
[E3(X1, Xg) g = [E1(X, Xl)Eg(j
R T2 (32)
B, (%, X)3q = D(O)fdI" [ dx —-EEl(xs, Xl)féQ 5 (B (s, X)) 0g:
0 e (B, (X, Xs)@Q
J3 NN on2 L 7] 3 o (33)
><[—expD il % 7I ot (X3 +1'2) + X4 1) «/_ EEl(xg, Xl)iQ EEl( X l)iQ’
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Fig. 11. Distributions (a) TE(X;, X3) @Q and (b) (Egztg (X1,
%3))? (in GeV2/fm?) for three quarks occurring at the verti-
ces of an equilateral triangle. The distance from each quark
to the string junction is R=Ty. The positions of the quarks
aredenoted by points. Hereand in thefiguresthat follow, X;
and x3 are measured in Ty units.

where
| 1 3 ' 3 1
IE I o
" 3 n 3 1

For R=T,, 5Ty, 10T, and 30T, Figs. 11a-13a and
14 display the squared-field distributions

[E(Xy, Xs)[iq = [Ei(Xy, Xs)[iq + [E3(Xy, Xs)[iq-
(35)

A feature peculiar to all distributions is that there is a
deep well in the region of the string junction. At the
very junction point, the field vanishes since, by virtue
of the symmetry of the three-quark system, thereis no
specific direction at this point. Off the well, the bary-
onic string is formed by three mesonic strings going
from the three quarksto the string junction. It should be
noted that, if the mesonic strings are saturated off the
well region, the distribution in the string-junction
region retains symmetry even at different distances
from the quarks to the junction.

KUZMENKO, SIMONOV

Fig. 12. Asin Fig. 11, but for R= 5T, with the quark posi-
tions being shown by points with vertical bars.

The distributions in Figs. 11b-13b and 15 were

obtained by supplementing TE(X;, X;) [jQ with the per-
turbative-one-gluon-exchange Coulomb field

CFGSH_]‘ + M + I'_3|:|

2 43 i P

wherer; isthe distance from the ith quark to the probe.
Thefactor Cr/2 arises upon the contraction of antisym-
metric tensorsin the Wilson loop (26); that is,

Ce
2 b
where C. = 4/3 is the Casimir operator; C-a = 0.295

[see the explanation after Eqg. (24)]. The total field is
given by

coul _

E3Q -

(36)

1 a,a _ 1, ,aa, _
geaByeacrtBotw - —étr(t t ) - = (37)

Esp = [EQo+Esy. (38)
In Fig. 11b, the total field is at least two orders of
magnitude greater than the nonperturbative field com-
ponent (Fig. 11a) over the entire region considered
here. Figure 12 shows half of the string, that which
issues from the Coulomb peak. In Figs. 13b and 15, the
Coulomb field changes only the shape of the string end,
not affecting the remaining part of the string.
For the strings depicted in Figs. 11a-13a and 14,
Fig. 16 displaysthe x, = 0 (longitudinal) sections along
PHYSICS OF ATOMIC NUCLEI
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Fig. 13. Asin Fig. 12, but for R=10Tj.

the x; axis. For R> 5T, the shape of the well is inde-
pendent of the interquark distance. At R> 10T, the
string is saturated; itslongitudinal section growsfor 0 <
X; < 6T, from zero to (E=*)> and then reaches a plateau.
In the region of negative x; values, this section grows
over the segment 0 < [x;| < 1.25T, from zero to
0.25 GeV?/fm? and then decreases fast as |x;| increases
from 1.25T; to 5T,. We determine the well radius R,
as that which satisfies the equation E?(0, R,g) =
(E*2%?/2. From the data in Fig. 16, we then obtain
Rwell = 175Tg

Let us now consider a quark—diquark configuration
in which two quarks are situated quite closely to each
other, but they are both far off the third quark. We
assume that these quarks occur at the vertices of an
isosceles triangle whose base is much smaller than the
lateral sides. The shortest path along which a string is
formed consists of three straight segments connecting
the quarks with the string junction, where they meet at
an angle of 2173, forming a Mercedes star. We denote
by Roq the length of the two short segments and by R,
the length of the long segment. In expression (29) for
the field distribution, we will now perform integration
with respect todl' from 0to R, for ' = Aand from O to
Roo for ' =B, C. In Egs. (32) and (33), we additionally
introduce indices corresponding to the integration lim-
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Fig. 14. Asin Fig. 12a, but for R=30Tj,.

Fig. 15. Asin Fig. 12b, but for R=30Tj.

[E(0, x3)5p, GeV¥/fm?

3 N
B \
A A \

-5 5 10 15 20 25 30 x3

Fig. 16. Profile of the QQQ string, (0, X3) I_JgQ , for quarks

occurring at the vertices of an equilateral triangle at a dis-
tance R for the string junction. The dotted curve, short
dashes, long dashes, and the solid curve represent data cor-
responding to R= Ty, 5Ty, 10Ty, and 30Ty, respectively.

its; that is,
, R
(Ea(X1 Xo) o = [Ex(Xe 1) 5 °

1 vy PR 1 vy Rao (39)
_éEEl(X& Xl)ié _ZEEl(X&Xl)iQ )
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Fig. 17. Distribution [E(x;, X3) Eé_QQ (in Gev2/fm?) for a
quark—diquark configuration at two values of the distance
from each quark of the diquark to the string junction: Rog =
(a) 0.5Tg and (b) 3T In either case, the distance from the
third quark to string junction is Ry = 30Tg. The quark posi-
tions are shown by points with vertical bars.

E2, GeVZ%/fm?

Fig. 18. Squared mesonic-string field at the origin, Eg [see

Eqg. (21)], as a function of the quark—antiquark distance R
measured in Tg units.

EEl(Xl’ X3)Q?—QQ = %3 EEZI.(X:’:‘! X:ll)li’(jRQQ

(40)

3 w iy DR
- %—‘ [E (X3, X; )i@ .
Figure 17 shows the distributions

(E (%, %) -oq
= [E; (X4, Xa) 0 + [Ea(X1, Xa) b0

(41)

for Ry = 30T, and for Ryg = (@) 0.5T, and (b) 3T,. We
can see amesonic string at Ryg = 0.5, (compare with
Fig. 5a) and a baryonic string with awell in the string-
junction region at Ry = 3T, It is of interest to investi-
gate the transition from one regime to another. Accord-
ing to (39) and (40), the field strength at zero is deter-
mined by the difference of the strengths of the fields at
zero that are generated by the mesonic strings of
lengths R, and Ry. The strength of the field (21) asso-
ciated with amesonic string of length R at the originis
given by

RITq

Ey(R) = 2—]‘3 [ Kaoxax (42)
0

This function grows linearly from zero at small R and
approachesthe asymptotic valueE,,,,,,,= 0 intheregion

asymp

R> 4T,. The dependence Eg (R) isdepicted in Fig. 18.

We define the radius corresponding to the transition
of a baryonic string into a mesonic one, R, _ mes» 8S
that which satisfies the condition E;(R., _ .. =
E;/mp /2. From the data in Fig. 18, we find that
Roar - mes = 1.5Tg. At Rog > Ry . mesr the string of the
guark—diquark configuration has a typical baryonic
shape featuring a well in the string-junction region
(Fig. 17b), while, in the region Rog < Ry mes it
undergoes atransition into a mesonic string (Fig. 17a).

L et usnow consider the case where the quarkslie on
astraight line, the distances between them being R, and
R,. Asin the preceding cases, the position of the string
junction is determined from the condition requiring that
the string length be minimal. For the quark arrange-
ment being considered, the string length is minimal
when the string junction occurs at the same point asthe
guark situated between the other two; obviously, this
minimal lengthisegual to the sum of the distancesfrom
the extreme quarks to the central one. The contour of
the Wilson loop liesin the (1 4) plane. Further proceed-
ing in just the same way as at the beginning of this sec-
tion, weintroduce two direction vectorsn, = (-1, 0) and
n, = (1, 0) in the (1 3) plane and obtain

[Eg(Xy, X3)q =0, (43)
[E; (X, X3) g
R T2
= —Idl' I dX;tD14, 1a(=1" =X, =Xz, Xg)
0 TR
R,  TR2 (44)
+ Idl' I dxy Dy 14(1" = Xq, =X, Xg)
0 -T2

’ R1 ’ RZ
= — B (=X, Xs)EgQ + [E;(Xq, Xa)i(j .

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.1 2001



QCD STRING IN MESONS AND BARYONS

The distributions [E,(x;, X3) @@ are shown in Fig. 19a
for R =R, =15Tyand inFig. 19b for R, = 10Tgand R,
= 20T,. Since the two mesonic stringsthat form the dis-

tribution both have saturated profiles, thefield is zero at
the string-junction point x; = 0.

4. POTENTIAL OF QUARK INTERACTION
IN A BARYON

In this section, we consider static quarks occurring
at the vertices of an equilateral triangle at a distance R
from the string-junction point.

Since the Wilson loop is a Green's function for the
three-quark system, it determinesthe potential of quark
interaction in a baryon:

VEI(R) = —lim %In WeOR YD (45)

In order to obtain the potential in the bilocal approx-
imation, the surface integrals of bilocal correlation
functions are summed over the surfaces of the contour
of the Wilson loop. Performing integration over the sur-
faces in just the same way as in calculating the mean
field for baryons, we then arrive at

IntWC(R YO = % Z JJdGSV(X)dC’Ec(X')
ab B,C

X El—ztr EF“V(X)QJ(X, x')Fp(,(x‘)Cu(x', x)ad

T2 T2

= 5 naan'J'dIdI f J’dx4dx;1

a= A -T/2-T/2
b=ABC

(46)

X Dig ka(In®=1'n° x4 = x}).

Inthelast equality, we have made use of the fact that
the contour of the Wilson loop possesses the symmetry
a=A

property
e
ab=ADB,C
b=AB,C

As in the preceding section, we take into account
only the contribution of the form factor D to the poten-
tial. The result then has the form

47)

(3Q) 3D(0)
VEUR) = tim 2L J’dldl
(48)
T2 TI2 |:|
. , 2
[ oot (=17 + (=) S
-T2 -T/I2 D
—explp [317 4 (1 +172) + (%= %) 2R
PrH a 4= Xy DE
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Fig. 19. Distribution [E; (x;, X3) @Ql (in GeV%/fm?) for three
quarks occurring on astraight line at (a) R; = R, = 15Ty and
(b) R, = 10Tgand R, =20Ty. The quark positions are shown
by points with vertical bars.

We will refer to the first exponential in Eg. (48) asa
diagonal one [since it is obtained at a=b = Ain (46)]
and to the second exponential as an off-diagona one
[sinceitisobtained at a=Aand b=B, Cin (46)]. Upon
integration, we arrive at

VEo(R) = 801D DRJ’dIIKl(pI)

R R

1 2 1 .
—H—Q,(Z—(IJR) K2(HR)) - Z!dl.c[dl

3, , 3., o200
x /ZI L (1 +112)°K 7! 24 (1 +1 /2)%%

For D(0), we have used here the normalization condi-
tion (23).

Thefirst two termson theright-hand side of EQ. (49)
are obtained from the diagonal exponential in (48),
while the third term stems from the off-diagonal expo-
nential. At distances satisfying the condition R > T,
the first term leads to a linear potential with a slope
equal to 3o, whilethe second term appearsto be asmall
correction to it (at large values of R, we have 120T/mt
for the second term). The third term shows an ascend-
ing behavior, substantialy affecting the growth of the
potential up to valuescloseto R= 3T; at greater values
of R, it flattens out, however. This term arises as the
result of thewell at the center of the baryonic string. We
note that the third term is absent in the case of a
mesonic string and that the potential of the quark—anti-

(49)
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VG GeV ()
3

_1'.
-2

Fig. 20. (a) Three-quark-interaction potential VGQ(R) and
(b) total potential V32 (R) calculated with allowance for

perturbative one-gluon exchange. The dashed lineistangen-
tial to the curve. The quantity Ris measured in T units.

guark interaction at large distances, Ve - oR, where
o isexpressed intermsof D(0) viarelation (23), isone-
third of the first term in (49).

The behavior of the potential V3Q(R) is illustrated
in Fig. 20a. In the region 0 < R< 6T, the slope of the

tangent ¢'(R) = (cji_l\g (R) grows from zero to 3. Off this

region, the baryonic string can be represented every-
where, apart from the radius value corresponding to the
well, as the sum of three mesonic strings (compare
Figs. 8 and 16). Figure 20b displays the total potential

VfOStQ)(R) including perturbative one-gluon exchange

and having the form

CFas 1

Vie (R) = ==5=% = +VEO(R)
A ! (50)
3Ce0s | ,(30)
= Mo 4
> V(R

wherer;; = R./3 isthe distance between the guarks, the
sum is taken over three distances, and Cra, = 0.295
[see commentsto Egs. (24) and (36)]. In the figure, we
can see that the potential has adip, which is associated
with the occurrence of the well at the center of the bary-
onic string.

Let us now compare our results with the results of
lattice calculations for the baryon potential (seethe sur-
vey of Bali [14] and reference therein) where the poten-
tial of theinteraction of three quarks situated at the ver-
tices of an equilateral triangle was approximated by the
sum of the Coulomb and a linear potential (that is, by
the Cornell potential) in theregion 0.055 < R<0.71 fm.

KUZMENKO, SIMONOV

This resulted in determining the slope of the linear
potential to be 2.60, avalue that is equa to that which
we obtained for the slope of the tangent o' to VEQ(R) at
R = 3.5T,. Thus, a decrease in the potential of quark
interaction because of the well at the center of a bary-
onic string, an effect that was found in our calculations,
iscloseto asimilar effect in lattice calculations.

5. CONCLUSION
With the aid of a connected probe, we have calcu-

lated the distributions of the fields for QQ and QQQ
systems by using the lowest (Gaussian) field correla-
tion functions. Since the contribution of the Gaussian

correlation function saturates 99% of the static QQ
potential (see[11, 12]), thereis every reason to believe
that higher correlation functions will not change the
pattern of the distributions significantly.

By investigating fields with a connected probe, we
have been able to determine the distribution specified
by the orientation of the probe and to distinguish
between the chromoelectric and chromomagnetic field
components associated with this orientation. We can
see that the main contribution to string formation
comes from the longitudinal component of the chromo-
electric field. The contribution of the transverse compo-
nent is less than 3% of the contribution of the longitu-
dinal component. The transverse and the longitudinal
component are determined by the form factor D and the
form factor D, respectively. The contribution of the
form factor D, to the longitudinal component does not
reach 3% of its value. At distances greater than 10T,
the string profile is saturated, ceasing to vary. The

thickness of the saturated string is 2.2T,. For the QQ,
our results agree with the results presented in [1-3].
The distribution of the total field also agrees with data

obtained by studying the QQ field with a disconnected
probe [4, 5].

The pattern of a baryonic string has been obtained
here for the first time. Around the string junction, there
arisesadeep well inthedistribution of the electricfield.
At the very string-junction point, the field vanishes by
virtue of the symmetry of the distribution. The well,
which severely suppresses quark fields near the center
of a heavy baryon, has a radius of 1.75T,. For the
guark—diquark configuration, we have found that the
radius corresponding to the transition from a baryonic
to amesonic string is 1.5T,. For three quarks lying on
astraight line, it has been shown that, at the point where
the central quark resides, thefield vanishes at large dis-
tances between the quarks.

Since the same Wilson loop for the QQQ configura-
tion is used for light quarks as well [15], the physical
implications of the well can be observed both in heavy
and in light hadrons. One of the implications is illus-
trated in Fig. 20, where the nonperturbative part of the
potential growsvery slowly at small values of R, so that

PHYSICS OF ATOMIC NUCLEI
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the asymptotic slope is reached only at very large dis-
tances. Therefore, the effective slope for the ground
baryon states may be 10-20% less than that which
complies with the relativistic quark model of the bary-
ons [16] and with recent lattice calculations for the
static QQQ potential [14].

It should be noted that the vanishing of the field at
the QQQ string junction was obtained by analyzing
each component of the field individually with a con-
nected probe. Fluctuations of the field measured by a
disconnected probe can be present at this point.
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Charm Hadroproduction within kq-Factorization Approach

M. G. Ryskin*, A. G. Shuvaev**, and Yu. M. Shabelskil): ***

Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, 188350 Russia
Received September 30, 1999; in final form, March 2, 2000

Abstract—In the problem of describing heavy-quark production in high-energy hadron collisions, a compari-
son is made between the theoretical status and numerical predictions of two approaches, the traditional parton
model in the leading order (LO) and the kq-factorization approach. Basic assumptions underlying relevant cal-
culations are discussed. A very simple gluon structure function and afixed coupling constant are chosen for the
calculations in order to highlight distinctions associated with the use of nonidentical matrix elementsin these
two approaches. It is shown that, in the kq-factorization approach, formal LO calculations performed with
allowance for the Sudakov form factor include many terms usually treated as next-to-leading-order (NLO) con-
tributions of the traditional parton model (or even contributions next to NLO ones, NNLO). © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of heavy-quark production in high-
energy hadron collision provides a clue to the interna
structure of hadrons.

Quantum chromodynamics (QCD) is the univer-
sally adopted theory of quark and gluon interactions. A
description of hard hadronic processesin terms of QCD
is possible only with the aid of phenomenology that
reduces hadron interactions to interactions between
partons—for example, within the formalism of hadron
structure functions. Within this framework, cross sec-
tions for hard processes in hadron—hadron interactions
are represented as the convolution of parton distribu-
tions in colliding hadrons with the cross section that
describes the elementary partonic subprocess and
which is determined by the square of the matrix ele-
ment computed within perturbative QCD.

A few phenomenological approaches to calculating
cross sections for hard processes have been described
in the literature.

The collinear approximation of QCD, also known as
the parton model, is the most popular and technically
advanced approach. The underlying assumptions of the
model arethefollowing: (i) All interacting particles are
taken to be on their mass shells. (ii) The transverse
momenta of initial partons are equal to zero. Asto the
Cross sections in question, they are averaged over two
transverse polarizations of initial gluons. The virtuali-
ties of the initial partons are taken into account only
through the parton densities (structure functions) cal cu-

D Abdus Salam International Centre for Theoretical Physics,
Strada Costiera 11, PO Box 586, 1-34014 Trieste, Italy, and
Petersburg Nuclear Physics Institute, Russian Academy of Sci-
ences, Gatchina, 188350 Russia.

* e-mail: ryskin@thd.pnpi.spb.ru
** e-mail: shuvaev@thd.pnpi.spb.ru
*** shabel sk@thd.pnpi.spb.ru

lated in the leading-logarithm approximation (LLA) by
using the Dokshitzer—Gribov—Lipatov—Altarelli—Parisi
(DGLAP) evolution equation and experimental data.
The cross sections for QCD subprocesses are usually
calculated in the leading or in the next-to-leading order
(LO and NLO) [1-5]. In such calculations, the trans-
verse momenta of initial partons are disregarded in the
matrix elements for the relevant subprocesses. This
approach represents a direct analogy of the
Weizsacker—Williams approximation in QED. It pro-
vides asatisfactory description of dataon thetotal cross
sections for the production of heavy quarks and on sin-
gle-particle distributions of product heavy quarks
(more precisely, of hadrons containing these quarks).
However, neither data on the azimuthal correlations of
a heavy-quark pair [6] nor the measured distributions
with respect to the total transverse momentum of the
product pair [ 7]—these are quantities that are controlled
by the transverse momenta of initial partons—are repro-
duced within the approach being discussed [8, 9].

The simplest way to take into account the transverse
momenta of initial partons in order to describe cor-
rectly the correlations of heavy quarkswas proposed in
[7]; it consistsin shifting at random the final transverse
momenta, but this procedure was not validated theoret-
icaly. The shift of the scale Agcp (Br~ 300 MeV)
seems quite natural because of the possible effect of
confining forces at large distances, but values of K[~
1 GeV, or still higher values, should have had an expla-
nation within perturbative QCD. Mean values of such a
shift seem to depend on the primary energy, on the
kinematical domain, and on some other similar factors.
Upon introducing the above shift, it would be rather
difficult to describe simultaneously longitudinal- and
transverse-momentum distributions [10].

Calculations including the transverse momenta of
initial partons can also be implemented within the so-

1063-7788/01/6401-0120$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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called k-factorization approach [11-15] or within the
theory of semihard processes [16—-19]. Relevant Feyn-
man diagrams are then evaluated with allowancefor the
virtualitiesand polarizations of initial partons. It iswell
known that, at high primary energies, the main contribu-
tion to heavy-quark production comesfrom gluon—gluon
interaction. In the region of small x, there are no grounds
to disregard the transverse momentaof initial gluons, g,
and g,7, against the masses and transverse momenta of
heavy quarks. Since the matrix elements that are calcu-
lated for the relevant subprocesses within the approach
being discussed are very complicated in relation to those
within the standard parton moddl, we treat them only in
the LO approximation. At the same time, a significant
part—maybe, even a mgjor part—of NLO corrections
(and a part of corrections of order next to NLO, which
are further referred to as NNL O corrections) are associ-
ated with the contribution of nonzero transverse
momenta of initial partons, so that such corrections have
already been included in the LO contributions within the
k-factorization approach. Thus, we can hope that, in the
k-factorization approach, NLO, NNLO, etc., corrections
will be modest, which will render it more efficient.

Nonintegrated parton distributions are not deter-
mined by the derivatives of the relevant structure func-
tions exclusively [16]—they dso involve doubly loga
rithmic (Sudakov) form factors, aswas discussed in detail
elsawhere [20] (see also Section 3 of the present article).
In the Feynman gauge, adoubly logarithmic contribution
emerges from diagrams where a soft gluon (in contrast to
the parton-model diagram in Fig. 1a) embraces the hard-
interaction block, asis exemplified in Fig. 1b.

As the primary energy is increased, the momentum
fraction x carried by partonsinvolved in ahard interac-
tion decreases on average. When a greater number of
gluons is emitted, a parton acquires a sufficiently high
transverse momentum k;, whence it becomes clear why
large shifts in k; are required in the parton model in
order to describe high-energy data.

Presently, it isobviousthat the k-factorization gpproach
is self-congstent and that its predictions are in reasonably
good agreement both with experimenta data and with the
predictions of the collinear approximation in the cases
where this gpproximation is applicable. At the sametime, a
detailed numerical analysis of hard processes within the k-
factorization agpproach has not yet been performed.

The predictions of al phenomenological
approaches greatly depend on the form of quark and
gluon structure functions. Information about these
functions comes primarily from HERA data, but next to
nothing is known about them in the region of very small
X (x < 10%). At the same time, this region makes adom-
inant contribution to heavy-quark production at high
energi%,z) and the applicability of the existing sets of

2By way of example, we indicate that, in the case of charm pro-
duction (m. = 1.4 GeV), the product x;x, for two gluons (the

quantities x; and x, are both variables of integration) is equal to
4 %1078 at the LHC energy (/s = 14 TeV).
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(@) (b)

Fig. 1. Heavy-quark productionin (a) the leading-order par-
ton model and in (b) the ky-factorization approach that takes
into account the Sudakov form factor T (seea so therelevant
discussion in Section 3).

structure functions at small x is questionable (see the
relevant discussion in [21]).

The main objective of the present study is to com-
pare the results obtained within the standard parton
model and within the k-factorization approach and to
clarify the reasons behind the distinctions between their
predictions. We begin by recalling the formalism for
either approach and then present numerical results. For
the sake of clarity, we consider very high energies,

including the unrealistic case of J/s = 1000 TeV, and
represent the structure function for agluon in anucleon
inaform assimple asis possible.

2. PARTON-MODEL APPROXIMATION

In the standard parton model, the cross section for the
production of two heavy quarksin acollision of two had-
ronsa and b is represented in the factorized form [22]

do(ab — QQ) = dx; dx; G (X, M)
%I ’ (1)

x Gy (X, He)d6(ij — QQ),
where G,; (X, Ug) and G (X, Ug) are the structure func-
tions for partonsi and j in the colliding hadrons, pr is
the factorization point of normalization, and dé (ij —=

QQ) is the subprocess cross section computed within
perturbative QCD. This cross section can written asthe
sum of the LO and the NLO contribution; that is,

2
6 (ij — QQ) = X"
Mo 2)

(1)
+ 4 (uR)[ Y + iy In(umd)]),
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where iy is the renormalization point of normalization
and whereit is assumed that i = ug = WM. Thefunctions

£, £19 and f, i(,-l) depend only on the variable

4

p_§1

B

S = XiX;Sap- 3)
Expression (1) corresponds to the processes depicted
schematically in Fig. 1a. At small x, the main contribu-
tion to the cross section comes from thefusion of initial
gluons, i =j =g.

The uncertainties of a conceptual character that
emerge in numerical results are associated with
unknown values of the normalization points y- and
uR,S) as well with unknown values of the heavy-quark
masses. The values of these normalization points must
be both on the order of the maximal hardnessin the pro-
cess, but it remains unclear which values must be used,

My, My = A/mé + p$ , or §. These uncertainties are not
expected to be great, since the dependences on the
parameters are of alogarithmic character. Nonethel ess,
the uncertainties at currently available energies are
numerically large because of insufficiently large values
of the ¢- and the b-quark mass (see, for example, [7]).

The collinear approximation presents yet another
problem in the parton model. The transverse momenta
of initial partons, g+ and 7, are assumed to be equal to
zero (Fig. 1a), while their virtualities are taken into
account only through the structure functions—the cross

section d6 (ij — QQ) is taken to be independent of
the virtualities. Naturaly, these assumptions grestly
simplify the calculations.

The commonly accepted NLO parton model in the
collinear approximation provides an accurate descrip-
tion of single-particle distributions and total cross sec-
tions for heavy-quark production. At the same time, its
predictions are in a glaring contradiction with data on
azimuthal correlations and on the distributions with
respect to thetotal transverse momentum of the product
heavy-quark pair. The reason for this is quite obvious.
Let us consider the fusion of two partons with trans-

verse momenta g, and ¢,y into a QQ pair whose con-
stituents have transverse momenta p,+ and p,r. In the
LO parton model, we have ¢t + Gt =Pt + Por =0, SO
that the distribution with respect to the transverse
momentum of the quark pair, p,,;, = Pt + P.t, coincides
with the distribution with respect to the total transverse

3)The dependence of the results on the normalization points must
vanish upon summation of al orders of perturbation theory.
Sometimes, it is argued that a strong (weak) dependence of the
LO or the NLO results on the normalization pointsimpliesalarge
(small) contribution of higher order diagrams, but thisis generally
incorrect. A strong or a weak dependence of the LO or the NLO
results on the normalization points only implies a similar depen-
dence of higher order contributions, which can be either numeri-
caly large or numerically small.
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momentum of initia partons, appearing to be &(p,,;,) in
the LO parton model. Here, the NLO correction is
numerically modest, since the p; single-particle distri-
butions in the LO and in the NLO approximation are
very similar in shape [3, 23]; therefore, the eventual
(NLO + LO) distribution with respect to the total trans-
verse momentum of a heavy-quark pair differs only
dlightly from a delta function, but thisis at odds with
available data [7-9].

It was shown in [7] that the commonly adopted
NL O parton model is capable of describing dataon azi-
muthal correlations and on the distributions with
respect to the transverse momentum of the product
heavy-quark pair if one assumes from the outset that
the colliding partons initially possess a comparatively

high transverse momentum kX of about 1 GeV. Sup-
pose that, in the collinear approximation, the total
transverse momentum of the pair in the NLO is
pr(QQ). For each event, the pair is shifted in the trans-
verse direction with the result that its transverse
momentum becomes p+(QQ) + k(1) + k(2). Thevec-
torsk,(1) and k(2), which are the transverse momenta

of theinitial partons, are chosen at random, their abso-
lute values being distributed as

1dN 1 2,42
=— = —-exp(—k7/ kD). 4
Nak2 20 v

There is, however, no theoretical substantiation of this
method.

A genera phenomenological expression describing
the production of aheavy-quark pair can be represented
as¥ the convolution of the initial transverse-momen-
tum distributions 1(g,7) and I(q,;) with the squared
modulus of the matrix element; that is,

Ooep(QQ) O IdZQ1TdZQZT| (Gar) ! (Gar)

X [M(Qy7, Gory Pi7s p2T)|2'

There are two possibilities here:

(i) The important values of the transverse momenta
of initial partons are much less than the transverse
momenta of the product heavy quarks, g < pi7.

(ii) All the transverse momenta are on the same
order of magnitude, gt ~ pit-

In the first case, both initia distributions I(g;;) can
be replaced by &(qg;+) with the result that expression (5)
reduces to that in the collinear approximation; that is,

0o (QQ) O |M(0, 0, pyr, Par)|’, (6)

which isin perfect analogy with the Weizsacker—Will-
iams approximation in QED.

YAl factors immaterial for the present discussion are omitted here
for the sake of simplicity.
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In the second case, there are no grounds to expect a
priori that the Weizsacker—Williams approximation
would yield accurate results; nevertheless, these results
are quite reasonable in some cases.

The k¥'* method [7], which was discussed above,

takes effectively into account the transverse momenta
of theinitial partons. It relies on an expression that can
be symbolically written in the form

0 (QQ) O 1(ay7) 1 (azr) O [M(O, O, py, p2T)|2 (7
and which differs from the general expression (5) in

that the values Elki [0n (4) must be different in different

processes (for example, when the product heavy quarks
have comparatively low p; and when they have very
high py), since the matrix element does not involve the
transverse momenta . The reason is that, in the gen-

eral expression (5), 1(gir) decreases at high qizT as a
power-law function with a comparatively small expo-
nent (see the next section)—that is, at a comparatively

low rate—whenceit followsthat the inT dependence of
the matrix element proves to be more important.

3. HEAVY-QUARK PRODUCTION
IN THE k-FACTORIZATION APPROACH

Let us now consider an alternative approach, that in
which the transverse momenta of initial gluons in the
low-x region arise owing to the diffusion of transverse
parton momenta in the evolution process. This diffu-
sion is described by the function ¢(x, g?), which gov-
erns the distribution of gluons characterized by a given
value of the hadron-longitudinal-momentum fraction x
and a given value of the virtuality ¢?. In the low-x
region, the function ¢(x, g?) is approximately given by
the derivative of the conventional gluon structure func-
tion. Generally, it isafunction of three variables, X, g,

and ¢?, but the dependence on g; at afixed value of ¢
is rather weak. Thisis because, for x < 1, q? =—¢?in

the LLA, in accordance with the ¢ dependence of the
structure functions. Because scaling is violated in
QCD, ¢(x, g for realistic structure functions increases
with decreasing X, so that ever larger values of g
become operative in numerical calculations.

A preciseresult for the gy distribution of gluons can
in principle be found from the evolution equation,
which is now nonlinear, in contrast to what occurs in
the parton model, owing to parton interactions at low x.
The result of the LO calculation of gy distributions of
gluons that was performed in [24] on the basis of Bal-
itsky—Fadin—Kuraev—Lipatov (BFKL) theory differs
from our ¢(x, g*) by 10 to 15%.

Let us now consider expression (5) with a matrix
element that takes into account the polarizations of glu-
ons and their virtualities. Since the form of this matrix
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Fig. 2. (a—c) Leading-order QCD diagrams for heavy-quark
production in proton—proton (proton—antiproton) collisions
viagluon—gluon interactions and (d) diagram formally vio-
lating factorization, which isrestored to alogarithmic accu-

racy.

element is much more complicated than that in the par-
ton model, we will consider only the LO contribution to

the subprocess gg — QQ (see Fig. 2); at low X, this

contribution saturates a dominant part of the cross sec-
tion. The upper and the lower ladder block represent the

two-dimensional gluon distributions ¢(x,, qf ) and

d(%, 05). Within the standard DGLAP scheme, these
distributions at low x are defined as [16]

o(x, o) = 4@#%&912%.@1_

aq

This definition of ¢(x, ?) makesit possible to consider
correctly effects induced by gluon virtualities.

Strictly speaking, the doubly logarithmic Sudakov
form factor must be included in the quantity differenti-
ated in (8) [20]. It was shown in [20] that the LLA
expression for the probability of finding aparton with a
given longitudinal-momentum fraction x and a given
transverse momentum k; has the form

®)

F(% K?) = %{xa(x, KA To(K2 1],

t

®)

where a = g, g; T is the doubly logarithmic Sudakov
form factor; and

0.(x q°) = 42T F,(x, ).

The first factor in (9) is obvious. It corresponds to
the real contribution of radiation to the DGLAP evolu-
tion. When the normalization point is changed from p?
to W2 + 3|2, a new parton is produced with a k> value

between p? and p? + Sp2. In the limit In(1/Xx) — oo
(when T, — 1), we then have

(10)

FER(x, k3) = -9 [xa(x, KI)]. (11)
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The factor
O uz 20
cosc[ Yt
U e O
[C=Cr=(NZ - 1)/2N, for quarksand C=C=C, =N,

for gluong] takes into account the contributions of vir-
tual loops in the DGLAP scheme, which are necessary
both for a normalization of the parton wave functions
and for fulfillment of sum rules (that is, for conserva-
tion of the momentum, flavors, and so on). Here, the
guantity T determines the probability that extra partons

(gluons) with transverse momenta ¢, O [k;, 1] are not
emitted.

We note that the doubly logarithmic contributions
from real and virtual soft gluons are canceled in the
DGLAP equation written for the integrated parton dis-
tributions (that is, al k, < y areincluded). The emission
of soft gluons with a momentum faction (1 -2 — 0
does not change the x distributions of parent partons.
Owing to this, the contributions of virtual and real radi-
ations generated by a 1/(1 — 2) singularity of the func-
tion P(z) indeed cancel each other.

A totally different pattern is observed if the parton
distribution is not integrated. In this case, the emission

of soft gluons (those for which g; > k) changes the

transverse momentum of the parent (t-channel) parton,
and thisis taken into account by including the factor T
in expression (9). As aresult, the nonintegrated distri-

bution f, (X, kt2 ) remains positive even at comparatively
large values of x in the region where the integrated par-

ton density a(x, y?) decreases with p? owing to the vir-
tual contribution to the DGLAP evolution eguation.

Unfortunately, the factor T is known only to a dou-
bly logarithmic accuracy. When k. > |, there are no
doubly logarithmic contributions; therefore, we set T =
linthisregion.

In terms of Feynman diagrams in the axial (physi-
cal) gauge, the factor T arises from self-energy contri-
butions. In the Feynman gauge, these contributions do
not feature a doubly logarithmic enhancement. In this
case, doubly logarithmic contributions arise owing to
diagrams in which a gluon embraces the hard block (as
this occurs, for example, in Fig. 1b). Any diagram
where a soft gluon is emitted from one of the external
lines of the hard block (for example, the gluon g, in
Fig. 2) and where this gluon is absorbed by the other
external line of this block involves the same diloga-
rithm, but it differs from other ones by a color factor.
The sum of the color factors for al three diagrams (a
soft gluon can be absorbed by a heavy quark, an anti-
quark, or agluon q,) is equal to the color factor of the
self-energy diagram. It follows that the distribution in
(9) is obtained in the Feynman gauge as well.

RYSKIN et al.

Thus, the true probability of finding a parton carry-
ing the longitudinal-momentum fraction x and the
transverse momentum kf = —k? is given by (9) (see
[20]). With the aim of performing a more consistent
analysis, we postpone the use of the more precise
expression (9) to the end of Section 4 and begin by con-
sidering expression (8) without taking into account the
doubly logarithmic contribution T.

In the following, we will make use of Sudakov’'s
expansions for the quark momentap, and p, in terms of
colliding-hadron momenta p, and pB(pf\ = pé =0)
and the transverse momenta p; ,t:

P12 = X12Pet Y1,2Pat Py o7 (13)

The differential cross section for heav}/ quark pro-
duction in hadron collisions has the form

do 1 1
o pr > = 8—‘2J‘d2CI1TdZQ2T6(Q1T
dy;dy>d prd pr (210 (S)
(14)
+ Gor = Par — Par) S;ql) iq2)¢(ql,y)¢(qz, IMogl?
1 2

where s = 2p,pg; ;o7 ae the gluon transverse

momenta; y; , are the quark rapidities in the hadron—
hadron c.m. frame;

Myt i Myt s
X, = —=e ', X, = —2e, X = X+ Xy,
Js Js
_ M y1 _ Mo v3 _ (15)
y. = —¢€ Yo = —€", Y=Y tYy,
Js s

2 2 2
My o1 = Mg + Py o7,
and Mol is the square of the matrix element for the

productlon of aheavy-quark pair in agluon—gluon col-
lision.

In LLA kinematics, we have

0y =YPat0ir: 0= XPg+ oy, (16)
whence it follows that
Qs = —Oor, O = —Cor. (17)

(More precisely, q; =07 /(1 -y) and g =07 /(1 -
X), but we consider the casewherex,y < 1.)
The matrix element M, is calculated in the Born

approximation of QCD without resort to the conven-
tiona simplifications of the parton model. In the axial

A different method for taking into account the gy distribution of
gluons was proposed in [26] on the basis of the Fourier transform
of structure functions.

OThe argument ag is taken to be equal to the gluon virtuality, and
thisisvery close to what occursin the Brodsky—L epage-Macken-
Zie scheme [27] (see also [19)]).
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gauge (pg A, = 0), the gluon propagator has the form
Dpv(q) = dpv(q)/qz, where

d(a) = 8, —(a"ps + 9’ ps)/(Pea)- (18)

For t-channel gluons, the main contribution to the
cross section for heavy-quark production comes from
the so-called nonsense polarizations. It is convenient to
single out these polarizations by decomposing the unit
tensor in the numerator of the gluon propagator into the
longitudinal and the transverse component as

By = 2(PEPA + PAPs)/S+ 8-
Since the sum of the diagramsin Figs. 2a—2c is gauge-

invariant, we havequf’ B =0, where Mf’ ® standsfor
the amplitude that describes the interaction between the
gluon g, and the hadron with the momentum p, or pg
and which is represented by the upper (A) or the lower
(B) parts of the diagrams in Figs. 2a—2c. By virtue of
this, there remains only the unit tensor in the numerator

of the t-channel propagator; considering that ply Mﬁ ,
Ph Mf , and the transverse structures are suppressed by
powers s, we obtain

. = 2Pp Pals. (19)

By using expression (16) for the momentum q,, we
arrive at

B Ohr,,B
pou =——M,
y
which leads to the expression
[TY]
~ _oPsdr
duv(q)"‘ 2 ys (20)
or, alternatively, to
[TRRY
_ 00y
duv(q) =2 Xys ’ (21)

if the same operation is implemented for the vector
pB.7 It is possible to use either expression for d,,, but,
in the case of expression (20), all possibilitieso#gluon
emission are taken into account only upon redefining
the gluon vertex as (see [28])
e
2 (22)

= XyS[(Xys_ qu)q\l}T - qu ot + 2X(0y7027) Pal-

7In connection with this transformation, we can say that the matrix
elements in the ky-factorization approach are gauge-invariant. As

to the polarization vectors of theinitial gluons q; and q,, they are

fixed as —q}y /y and —qyy /x, respectively, instead of being arbi-
trary—for details, the reader is referred to [16].
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Asaresult, colliding gluons can be considered as those
that are aligned in such a way that their polarization
vectors are directed along the transverse momenta. It
followsthat there must arise nontrivial azimuthal corre-
lations between the transverse momenta of the product
heavy quarks.

Formally, gauge invariance can be lost in dealing
with off-mass-shell gluons. By way of example, we
indicate that, in the covariant Feynman gauge, there are
diagrams that are analogous to those that feature
bremsstrahlung from the initial or from the final quark
line (as is shown in Fig. 2d) and which can contribute
to the rapidity region of the central plateau. But in fact,
this does not occur. Within the accuracy of the theory of
semihard processes, the three-gluon vertex in (22)
effectively includes all leading logarithmic contribu-
tions of the type in Fig. 2d if al contributions of the

form 0('; (Ing®)"(In(1/x))™, with n + m = k, are retained

inthe function ¢(x, g?) [18, 25]. For example, the upper
part of the diagram in Fig. 2d corresponds, in terms of
the BFKL eguation, to the Reggeization of the t-chan-
nel gluon. Thus, we conclude that, apart from the small
nonlogarithmic correction of order a, the eventua
EXpression is gauge-invari ant.%)

Although the situation described above seems abso-
lutely dissimilar to that in the parton model, thereis a
limit [28] where the formulas obtained in the k-factor-
ization approach coincide with the corresponding for-
mulas of the parton model. This occurs if the quark
transverse momenta p, ,r are much higher than the ini-
tial-gluon transverse momentad; .

4. RESULTS OF NUMERICAL CALCULATIONS

Expression (14) makes it possible to calculate both
single-particle and pair distributions of product heavy
quarks. In order to illustrate the distinctions between
the present approach and the approach that relies on the
standard parton model, we will consider above al the
results obtained by calculating the production of charm
quarks (m, = 1.4 GeV [29, 30]) with high p; at /s =1,
10, and 10° TeV and the same value

(23)

At the above three energy values, this corresponds to
pr = 10, 100, and 10* GeV.

We will use the normalization points g = my =

A/mf + p? and ps = m—that is, afixed coupling con-
stant at N; = 3 and A\ = 248 MeV.

8)Taki ng the gluon polarization vector in theform —q fT 1y, we com-

pletely eliminate leading logarithmic contributions arising from
the diagramin Fig. 2d.
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do/dxy, mb
10! £
- P [5=10°GeV
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Fig. 3. Differentia cross section do/dxy for charm produc-
tion in hadron collisions at x; = 0.02 versus the upper limit
of the integral in Eq. (14): (points) results obtained within
the ky-factorization approach, (dashed lines) results pro-
duced by the standard parton model, (solid curves) values of
the expression on the right-hand side of Eq. (26).

In the case of k; factorization, there arises the prob-
lem of taking into account the infrared region, since the

functions ¢(x, q§ ) and ¢(y, qf ) are unknown at small

values of qiz. Moreover, it can be shown for all realis-

tic gluon structure functions that ¢(x, g?) is positive at
small x and negative at large x. The boundary between
these regions, where ¢(x, g*) = 0, depends on ¢f*; there-
fore, their relative contributions are determined by the
characteristic hardness of the process—for example, by
the quark transverse momentum py.

In order to avoid, at the first stage, additional prob-
lems associated with the infrared region, we present the
results of our numerical calculations within the k-fac-
torization approach and within the leading-order parton
model, using the strongly simplified gluon distribution

XG(x q) = (1-x)°In(q’/Q5) (24)
for o > Q¢ and setting XxG(x, g?) = 0 for @ < Q; at
Qi =1GeV>.

The calculation of the charm-production cross sec-
tion on the basis of expressions (1) and (8), on one
hand, and expression (14), on the other hand, shows
that, at x; = 0.02, the do/dx; value as obtained in the
kr-factorization approach is four to five times as large

asthat within the leading-order parton model. Thisdis-
tinction should not be taken to be overly great: as was

RYSKIN et al.

discussed above, a significant part of the NLO and
NNLO correctionsto the leading-order parton model is
contained in the leading order of the k;-factorization
approach, and the sum of leading-order and next-to-
leading order contributions in the parton model is two
to three times as great as the leading-order contribution
alone[31].

In order to single out the most important region of
the variables ¢, , in expression (14) and the kinemati-
cal region that is predominantly responsible for devia-
tions from the parton model, the results of the calcula-
tion performed on the basis of the k{-factorization
approach with the constraint | |0, ,7| < Q. are dis-
played in Fig. 3 versus gr,..«- IN this calculation, the

fixed coupling constant o mf) was used in (14)

instead of O(S(qi2 ). The dashes in Fig. 3 represent the
predictions of the standard leading-order parton model

with the normalization points pg = A/mf + p? and Pg =
m;. It can be seen that, for q,,,, = py, the predictions of
the kr-factorization approach arein excess of theresults
produced by the leading-order parton model.

Let us test the statement that, in the case where
transverse momenta of the product quarks, p, ,r, con-
siderably exceed the momenta of initial gluons, q; ,t,
the predictions of the k-factorization approach coin-
cide with the correspondi n;g predictions of the leading-
order parton model [28].9 If the q, ,r dependence is
disregarded in the matrix element everywhere, with the
exception of the vertices, this matrix element will
indeed coincide with that in the leading order of the
parton model. On the other hand, we can find from (8)
that [33]

2

q
G(x, 2y = %G , 2y, 1 , 2d2,
XG(x, q7) = XG(x Qo)+4ﬁn3[¢(x d:)dd; 25)
Qo

if expression (14) is taken under the conditions |0y 7| <
Omax» @nd the eventual result will be proportiona to

XG(X, q,iax ) - YG(Y, q,iax ). At the same time, the result
in the parton model is proportional to xG(x, pﬁ ) - YG(Y,
uﬁ Ywith g = A/mcz + p? .A comparison must be drawn
at identical values of the structure functions; therefore,

it can be expected that, upon multiplication by an
appropriate factor, the result in the parton model will be

9We note that, in contrast to the statement in [32], the Jacobian of
the transition from the variables x; and X, to the rapidities y; and
Y, isincluded in the matrix element; accordingly, our expression
inthe limit ; ,t <€ p;_,7 exactly reproduces the result obtained
in the leading-order parton model.
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do/dx; dIn gy, mb
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Fig. 4. Differential cross section do/dxtdln gy, for charm
production in hadron collisions at x; = 0.02 versusthe upper
limit of the integral in Eq. (14) according to the calculation
in the ky-factorization approach.

coincident with the results of our calculations with the
gluondistributionsin (24) for pr > m,and |0 1| < Qs

On(g2,/Q)0
do = g_" m—ﬁﬁ*f—“gx—%"—)m. (26)
dXT Git < Pir Xt PMDIn(pT/QO) s

Evenif g, isonly slightly less (at the highest ener-
gies) than p;, the expression on the right-hand side of
Eq. (26) take values, shown by solid curvesin Fig. 3,
that are in good agreement with the results obtained
within the k-factorization approach and represented by
open symbols. The same cross sections do/dx; as in
Fig. 3 that were deduced within the k-factorization
approach and which were differentiated with respect to
Ingy,,,, are displayed in Fig. 4. At higher energies, we
can clearly see alogarithmic growth with q,,,, as long
8S Qpax ~ Pr- Inthisregion, thereis a narrow maximum
saturating 70 to 80% of the cross section do/dx; inte-
grated over the entire g, ,7 region.

The physical origin of this maximum is quite obvi-
ous. Inthet- and u-channel diagramsin Figs. 2a and 2b,
there are two kinematical regionsthat contribute signif-
icantly to do/dx; at high energies and transverse
momenta of a product heavy quark. One of these, cor-
responds to the kinematics of the standard parton
model, where the transverse momenta of both initia
gluons, q; ., are sufficiently small in relation to p; ,r
(see Fig. 5a). The other large contribution comes from
the region where, for example, g,7 ~ p,7, while g, and
p,r are comparatively small (see Fig. 5b). In this case,
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Fig. 5. Diagrams making significant contributionsto single-
particledistributions of heavy quarkshaving high transverse
momenta (parametrically high transverse momenta flow
along lines 2, the directions of these momenta being indi-
cated by arrows; relatively low transverse momenta flow
aonglines1): (a) situation typical of the leading-order par-
ton model; (b) case characteristic of the NLO contribution
in the parton model (the high transverse momentum pr of
the quark is compensated by the hard-gluon momentum,
and the fermion propagator is close to the mass shell); and
(c) numerically modest contribution that arises when the
high transverse momenta of the two heavy quarks are com-
pensated by the momenta of two hard gluons, in which case
the fermion propagator is close to the mass shell.

the quark propagator 1/(p; — Q1) — Mg) = 1/((G, -
P,) —Mg) iscloseto the mass shell, whereby there arise

narrow peaks seen in Fig. 4. That the cross sections for
such processes are generally small is explained by a
large virtuality in the gluon propagator in Fig. 5b, and
this is the reason why they prove to be on the same
order of magnitude as the cross sections for the pro-
cesses illustrated in Fig. Sa (in fact, the cross sections
for the processes in Fig. 5b are somewhat larger
because, in the case of the diagramsin Fig. 5a, the fer-
mion propagator suppresses the contribution from the
region where the difference of the rapidities of the
product heavy quarksislarge).

Since the diagram in Fig. 5b involves the exchange
of a t-channel vector gluon, it represents one of the
most important contributions in the NLO parton model
at high energies[1]. For this and for combinatorial rea
sons and because of the interference between different
terms, the integrated contribution of the peak to the
Cross section do/dx; is considerably greater than the
contribution of the leading-order parton model. The
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Fig. 6. AsinFig. 3for valuesrepresented by the open circles
and the dashed line. The asterisks correspond to the do/dx
values calculated for the case where only the integration
with respect to g, is bounded from above by 0, -

ratios of the total cross sections calculated for the pro-
duction of heavy-quark pairs within the above two
approaches, R, and the ratios R(x;) of the quantities
do/dx; calculated analogously at x; = 0.02 and inte-
grated with respect to rapidities are quoted in the table.

We can see that the relative contributions of the
peaks being discussed first increase with energy
because of the growth of the phase space, but they reach

saturation at fs ~ 10 TeV. Further, the relative contri-
bution of the leading-order parton model grows loga
rithmicaly with p; and comes to be dominant at
extremely high energies and transverse momenta.

The data presented in Fig. 6 confirm the aforesaid.
Here, we again display the same resultsin the leading-
order parton model as in Fig. 3 and the results of the
calculations performed within the kq-factorization
approach under the condition |q; 7| < 0., - The predic-
tions of the k-factorization approach that were
obtained for all values of g, under the condition |g,| <
Omax &€ Shown by asterisks Versus gr,.«- 1helast result

Ratio of the differential cross sections computed for ct pro-
duction in the ky-factorization approach and in the leading-
order parton model

Js, TeV 0.3 1 10 | 100 | 1000
Rt 40 | 40 | 40 | 39 | 39
R(x;=002) | 34 | 45 | 55 | 54 | 52
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appears to be in excess of the results in the leading-
order parton model even at not overly high values of
0,7, Since the contributions of the above peaks have
already been taken into account, at least partly, in per-
forming integration with respect to ;.

The contributions of the diagrams that involve afew
propagators with alarge virtuality are relatively small.
For example, a calculation of the cross section do/dx;

at /s = 10 TeV and x; = 0.02 under the conditions
o, o] = pr/2 (see Fig. 5¢) yields only 2% of the total
do/dx; value at x; = 0.02.

In our calculations, the important values of q; »t
increase with increasing transverse momentum p; of
the recorded charmed quark and become q; ,r ~ py at
sufficiently high primary energies. In terms of the ki™
method, this means that Ek? Cmust also grow.

The calculated distributions do/dp; are displayed in
Fig. 7. The dashed curves (the lowest ones at each
energy value) were computed within the leading-order
parton model. The solid curves were plotted on the
basis of the results deduced by using the k-factoriza-
tion approach with the gluon distribution ¢(x, ¢?) (8).
The dash-dotted curves represent results that also
emerged from the application of the kq-factorization
approach, but which take into account the doubly loga-
rithmic form factor T (12) at various values of p? and
which were obtained with aid of expressions (9) and (10)
(see the relevant discussion at the end of Section 3). We
emphasize once again that the factor T alows for the
total contribution of the diagrams that, in the Feynman
gauge, involve gluon lines embracing the hard-interac-
tion block, asisshowninFig. 1b. In the axial gauge, the
relevant doubly logarithmic contribution comes from
diagrams associated with the parton (gluon) self-
energy—that is, with the term proportional to &(1 — 2)
in the DGLAP evolution equation. The factor T repro-
duces the mgjority of virtual NLO corrections to the
standard leading-order parton model; as can be seen
from Fig. 7, thisfactor reduces the cal cul ated cross sec-
tionsfor heavy-quark production. It suppressesthe con-

tributions from small parton virtualities(qi2 < m$ =
2 2\ . . .
Mg + pr) inexpression (14), concurrently increasing
[owing to the derivative dT/0 kt2 inexpression (9) for f,]
the contribution from the region where qf o7 1S COM-
mensurate with m? (in fact, a few times smaller than

that).

It should be recalled that, within the k-factorization
approach, there have arisen no problems so far that are
associated with the choice of the normalization points
since the integral in (14) has been calculated over al

values of the parton virtualities qiz and since the
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Fig. 7. Transverse-momentum distributions of ¢ quarks pro-
duced at various primary energies. The different sets of
curves correspond (from top to bottom) to s = 1000, 10,

and 1 TeV (the results for the first and the second energy
value are multiplied by 100 and 10, respectively). The
dashed curves represent the results obtained in the leading
order of the parton model. All other curves were calculated
within the kr-factorization approach: (solid curves) results

of the calculations employing the gluon distributions in the
form (8), (thin dash-dotted curves) results of the calcula-
tions employing expressions (9) and (10) and taking into
account the doubly logarithmic form factor T (12) at u2 Set
to §/4 in (12), and (thick dash-dotted curves) results of the
calculations employing expressions (9) and (10) and taking
into account the doubly logarithmic form factor T (12) at p2

setto m? in (12).

dependence of the matrix element M(Q;t, G, P> Po1)
on g, ,t ensured convergence, automatically fixing the
normalization point .

Upon the inclusion of the factor T, the problem of
choosing the normalization point arises anew. In
Eqg. (12), which was derived in the leading order, the
normalization point p*> was not defined. Reasonable

values of p? are expected somewhere between mf and

5§ = Méé =XyS — (q;1 + q,7)%. As can be seen from

Fig. 7, the distinctions between the relevant numerical
results are very small.

Figure 8 displays the rapidity distributions of prod-
uct ¢ quarks. The dashed curves again represent the
resultsthat arise in the leading-order parton model. The
dotted curves correspond to the results of the calcula-
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Fig. 8. Rapidity distributions of ¢ quarks produced at vari-
ous primary energies. The different sets of curves corre-

spond (from top to bottom) to /s = 1000, 10, and 1 TeV
(theresultsfor thefirst and the second energy value are mul-
tiplied by 100 and 10, respectively). The dashed curves and
points represent the results obtained in, respectively, the
leading and the next-to-leading order of the parton model.
All other curves were calculated within the k-factorization

approach: (solid curves) results of the cal culations employ-
ing the gluon distributions in the form (8) and (dash-dotted
curves) results of the calculations employing expressions
(9) and (10) and taking into account the doubly logarithmic

form factor T (12) at p® set to m-? in (12).

tions performed within the parton model with allow-
ancefor NLO corrections at ué = ué = uZ:SmC2 in(1)

and (2). It should be noted that, at primary energies s so
high that significant values of hard-interaction energy
S = x;x,s are sufficiently high—that is, p < 1 in (3)—
the NLO corrections grow considerably and greatly
depend on the choice of p2. Let us dwell on this point
at some length. As was shown in [1], the leading-order

contribution—that is, the quantity o in Eq. (29—
tends to zero when p — 0, whereas the contributions
féz) and f, é;) take nonzero values: for p —= 0, we have
£ . 0.1 and fog —= —0.04. Thus, the NLO con-
tribution, which is proportiona to 0(3 ( fé;) P +
Fog (P))In(p2/m?), becomes dominant at small values

of p and changessign at P2 ~ 12mf. For 2> 12m:, the
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Cross section o, N Can prove to be negative. In

Fig. 8, we have chosen P2 = 8m: , which correspondsto
reasonable values of the energy of two heavy quarks,

S 24(mé + p$)=8mé,andleadstoKvaIuescIoseto

those used in describing experimental data. In this case,
the NL O correction is positive (K = 2 to 3) and grows
slowly with increasing energy.

The solid curve in Fig. 8 represents the predictions
of the k-factori zation approach employing the distribu-
tion function ¢(x, o) (8), while the dash-dotted curve
corresponds to the calculation that was performed
within the same conceptua framework, but which takes
into account the doubly logarithmic form factor T (12)

with T( m? ) and invokes expressions (9) and (10). It can
be seen that the inclusion of the form factor T reduces
the cross sections obtained in the k-factorization
approach by a factor of about 1.5 and, in the energy-

range /s ~ 10°-10* GeV, yields cross-section values
that are very close to those computed within the parton
model including leading- and next-to-leading order
corrections (dotted curves). With increasing energy, the
distinctions between these results increase somewhat.

5. CONCLUSION

A comparison of the predictions obtained within the
standard leading-order parton model and within the k-
factorization approach has been drawn for heavy-quark
production in hadronic processes. In order to reved, in
this comparison, conceptual distinctions between the
two approaches in a pure form not masked by the
details of parton distributions, we have deliberately
chosen the simplest parametrization (24) for the gluon
structure function.

It has been shown that, within the k-factorization
approach, the contribution from the region where there

isastrong g ordering (q; ,t < My = A/mé + p?) coin-
cides with the predictions of the leading-order parton
model. In addition to this contribution, however, there
are numerically large contributions in the k-factoriza-
tion approach that are associated with theregion q; ,7=
m;. Kinematically, these contributions correspond to
events in which the large transverse momentum of the
heavy quark Q is compensated by the momentum of the
nearest gluon rather than by the momentum of the anti-
quark Q.

In terms of the parton modd with a fixed number of
flavors (that is, under the assumption that no heavy
quarks are involved in the evolution processes), such
configurations arise in the NLO (or even in the NNLO
if g, and g,y are both not less than my). Indeed, it was
indicated in [1] that nearly 80% of the total NLO cross
section is saturated by events in which the transverse
momentum of a heavy quark is compensated by the

RYSKIN et al.

nearest gluon jet. Thus, the large values of the NLO
contributions, especialy those at high py, are dueto the
small virtualities of thet- or u-channel quarksin the g
region around pr, in which case the singularities of the
quark propagators 1/((p — §) — mMg) begin to manifest
themselvesin the hard QCD matrix element M(q;+, Qp7s
P Par)-

The inclusion of the doubly logarithmic Sudakov
form factor T in the definition of the unintegrated par-
ton density (9) amountsto taking into account a consid-
erable part of NLO virtual loops, which appear to be
corrections to the results in the leading-order parton
model. Hence, the leading-order resultsin the ki-factor-
ization approach contain a major part of the contribu-
tions that play the role of NLO or even NNLO correc-
tionsin the standard parton model. This gives sufficient
ground to believe that higher o, corrections in the k-
factorization approach will be modest.

That a nonzero transverse momentum of the QQ
system (pir + Por = Oy + Gyy) arises quite naturally
within k; factorization is another appealing feature of
thisapproach. Typical values of thistransverse momen-
tum depend on the form of the parton structure func-
tion. They become higher with increasing primary
energy (that is, decreasing typical values of x and y for
initial partons), as well as with increasing transverse
momenta of the product heavy quarks. Owing to this,
one can in principle describe nontrivial azimuthal cor-
relations in the product pairs without phenomenologi-
cally introducing high transverse momenta for the par-
tons.

A more detailed treatment of heavy-quark produc-
tion in hadron coallisions, including the description of
correlations between the product heavy quarks, within
the kq-factorization approach employing realistic struc-
ture functions will be given in a separate publication.
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Abstract—The thermodynamic potential (free energy) for quarks and gluonsin (2 + 1)-dimensional spacetime
iscalculated in the one-loop approximation at finite temperatures against the background of a constant uniform
color magnetic field H and a constant uniform A, condensate. The problem of interpreting the tachyon modein
the gluon energy spectrum is discussed. The question of whether the free energy may develop a minimum at
nonzero values of H and A, is analyzed. © 2001 MAIK * Nauka/ I nter periodica

1. INTRODUCTION

Investigation of low-dimensional quantum-field
theories [1-3] is of interest because such models are
tightly related to their (3 + 1)-dimensional analogs [4—
6] and because they provide a clue to some phenomena
of real nature. For example, the dimensional-reduction
method developed in [7] makes it possible to study
quark—gluon plasma in (3 + 1)-dimensional QCD
above the critical temperature of the confinement—
deconfinement phase transition. The single-particle
model of two-dimensional electronsinteracting with an
external electromagnetic field is used to explain the
guantum Hall effect [8, 9].

In recent years, alarge number of studies have been
devoted to an analysis of the effective potential against
the background of a condensate and at high tempera-
tures, either in the one-loop approximation [10-15] or
with allowance for multiloop contributions [16-18]. In
this problem, calculations in higher orders of a loop
expansion may lead to results dependent on the gauge-
fixing method [19]. The assumption that thereis an A,
condensate in QCD (see, for example, [10]) has impor-
tant physical implications, such as a spontaneous
breakdown of global gauge symmetry and elimination
of the imaginary part in the effective potential and of
the infrared divergence.

Thisarticleisorganized asfollows. In Section 2, we
present basic formulasthat are necessary for describing
guantum-field systems at finite temperatures and estab-
lish the relation between the effective potential and the
energy spectrum of single-particle field excitations. In
Section 3, we calculate the free-energy density for the
gluon fieldswithin (2 + 1)-dimensional QCD. The pres-
ence of a tachyon mode in the gluon energy spectrum
results in a nonanalytic dependence of the thermody-
namic potential on the condensate fields. A method is
proposed here for eliminating this nonanalyticity. It is
shown that the free energy has a nontrivial minimum
and that, below the critical temperature, there exist a

confining and a deconfining phase. In Section 4, we cal-
culated the free-energy density for the quark fields and
demonstrate that, in contrast to what is observed for
gluons, it attains a minimum in the absence of conden-
sate fields.

2. ENERGY SPECTRUM OF EXCITATIONS AND
FREE ENERGY

Let us consider the QCD(2 + 1) model involving a
gluon gauge field AS in the adjoint representation of
the SU(2) color group and represent the potential AS as
the sum A% = A, + a_, where A, is the background

potential and aﬁ describes quantum fluctuations of glu-

ons. In Euclidean spacetime, the Lagrangian of the
gauge field in the Lorentz gauge can be written as

2abb

(D)X ey

=ab_b,2

(va) t3 (Dlla) +

where D = 509, — gfax Ay isthe covariant derivative,

X and X are ghost fields, and (D°)® = Di’Dy . In
going over to Euclidean space, we keep the index O for
the time components of vectors; thus, we have X, = i
and 4, v =0, 1, 2. In the three-dimensional representa-
tion, one can choose, by way of example, the following
representation for the Clifford algebra:

y0 — 0_3, yl — io_l, y2 — i02, (2)

where o', 02, and o® are Pauli matrices. The quark
Lagrangian then takes the form

Zl‘ﬂ[v@ —ig= Aﬂ+m}w,, 3)

1063-7788/01/6401-0132$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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where N; is the number of flavors and the matrices A,
are the color-group generators. In order to calcul ate the
generating functional

Z[A j,n,N] = J’daﬁdxdxdtlidw
3 -a_a — (4)
xeXp[—J’d X(£L+j,a,+0n +nw)}

which involves the QCD Lagrangian £ = £, + £, in
the one-loop approximation, it is sufficient to retain
only those terms in §Eg where the order of the gluon

fluctuations aﬁ is not higher than two. These are

= L0+ 47, L = G F
(2) 1 a ,=2ab =c gabcq_b )
gg = _Eau[(D ) 6pv+2gFH\)f ]av’

where Fy, = 0,A) — 9, A, +gf & AJA]. Inthis case,
thefunctional integralsin (4) have a Gaussian form and
can easily be calculated. Theresult is

a 20
Z[A] = exp|j——J’d x(Fw)ZE

x [det(— D°8,, — 20F )] det(-D7) ()

Ny
< [ vb-igg A m |
j=1

Representing Z in the form Z = exp(Wj), we obtain the
effective Euclidean action

W = 2 dq°zln[qo+<eg)]

o %)
9Po 24 g9y
+j;_[2ngln[po+(s,k) 1,

where we have considered that the contribution of the
longitudinal components of the gauge field is canceled
by the ghost contribution. The summation of the energy

spectra of gluons, €/, and quarks, €, , over the quan-
tum numbers r and k must involve only physical
degrees of freedom. Formally, we consider our field
system within a three-dimensional cube of volume L3,
imposing periodic boundary conditions. In this case,
the effective potential is given by

= W/ L®, (8)
In the one-loop approximation, we can represent V as
V=V © 4+ v, whereV®© = (Fy, )¥/4 istheenergy density
for the classical backgroundfieldand v=v 9+ vdisthe
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one-loop contribution of gluon and quark fluctuations.
In order to go over to infinite Euclidean spacetime, it is
necessary to consider the limit L — . Since the
explicit expression (16) for the effective potential (see
below) isindependent of L, we will omit details associ-
ated with this limiting transition.

Further, we introduce the temperature T = 1/j,
requiring that boson (fermion) fields be periodic (anti-
periodic) in x, with aperiod of 3. According to the well-
known procedure, thisis achieved by going from g, and
p, to Matsubara frequencies viathe substitution g, —
21/B — iky, for bosons and the substitution p, —
211l + 1/2)/B — iku, for fermions, where 4, and |, are
the chemical potentials of gluons and quarks, respec-
tively; K = +1 specifies the sign of the charges for parti-
cles and antiparticles; and | O Z (Z is the set of inte-
gers). The one-loop effective potential defined in (8)
then becomes proportional to the free-energy density,
-TlnZ _ Q

RN )
Upon the above substitution, the one-loop contribution
of gluon and quark fluctuations assumes the form

V =

v = vi+ vt

] P22 i+ ()

2BI‘I— —0 K =%1

(10)

Z Z Z | [EQTE(IBUZ)_lKHZEZ+(s]k)}
J1|—°°kK +1

We define an externa field as a superposition of a
field H and a potential A, which are both uniform and
constant and are directed along the third color axis:

Aﬁ = 020,3HX; + 000,370 = SasAu (11)
In order to allow for the A, condensate, it is sufficient to

make the substitutionsipl, —= gA, and ip, — gA,/2.

In three-dimensional spacetime, fermions are
described by two-component spinors [see Eq. (2)];
therefore, they do not exhibit a spin degree of freedom.
Moreover, the gauge fixing specified by ag =0 and

D! aib = 0leadsto alinear relation between the positive-

and the negative-frequency solutions to the Lagrange
equations,

[(D*)3,, +2gF} 1*]a) = 0, (12)
which follow from the Lagrangian density (5). In order
to demonstrate this explicitly, we can represent an arbi-
trary solution to Eq. (12) as an expansion in eigenvec-
tors,

a’ = atia, = ZN,ffn(x), (13)
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where N, are constant coefficients and f,(x) are eigen-
vectors of Eg. (12). It is possible to show (see[20]) that
the gauge-fixing condition D-a- + D*a* = 0 leadsto the

following constraints on the coefficients: N, = 2(n +
2)N,,,,n=0,1,2 ...; N; =0. There are no con-

straints on the coefficient N of the tachyon mode. By

setting the chemical potentials 4, and L, to zero, we
then find that the energy spectra of gluons and quarks
in a chromomagnetic fields are given by

el = 2gH§1—%E—ie, N=0234 . (4

g2 = gHn+m'—ie, N =0,1,23,..;

e€>0.

(15)

An infinitely small negative imaginary term —ie speci-
fies the procedure for circumventing poles and enables
usto define correctly the limiting transition T — 0 for
the tachyon mode [see Eq. (22) below].

3. GLUON CONTRIBUTION
TO THE FREE-ENERGY DENSITY

In order to obtain an explicit expression for the
effective potential, it is necessary to substitute (14) and
(15) into (10) and to take into account the degeneracy
multiplicity of the energy levels in a homogeneous
magnetic field (Landau levels). In the case of three-
dimensional spacetime, this degeneracy multiplicity is
equal to gHL?/(2m). The contribution v 9 of the charged-
gluon loop to the thermodynamic potential v is then
given by

g _ gH 2o RAL T
v® = 2_ﬂB|:Z_wEIn[D_B + gAor —gH Ie}
(16)

- | EF 10 . 1l

+ In[Ez—T[+gA +29H%1—— —IG}D
0 o0 O

nZZ B 2 U

where the contribution of the tachyon mode (for which
the energy squared is negative) is included in the first
term. Since summation over | is performed over an infi-
nite interval, expression (16) has a period of 2173 in
gA,. Thisfact istightly related to gauge invariance. At
T = 0, we can make the gauge transformation

A, = UA0U++éU60U+, A = UAU', (17

where

al a|:|

ZHUKOVSKY, KHUDYAKOV

Wethen have A; = 0; hence, A, isnot aphysical param-
eter. At T # 0, the boundary conditions A,(X, x) =
A, (% + B, x) lead to the additional commutation condi-
tion[U, A% = 0for any A2, By definition, thismeansthat
U must belong to the gauge-group center. In the case of
the SU(2) group, only gauge transformations that
respect Z, symmetry are therefore admissible,

21N

[h
and the region of gauge-nonequvivalent values of the
potential A, reducesto valuesfor which gA, O [0, 21tT].

It can be seen from (16) that v 9 takes real values if
the argument of the first logarithm is positive, which is
equivalent to

JgH < gAg < 21T - .J/gH; (19)

otherwise, the vacuum becomes unstable. Calculations
reveal that, in the (3 + 1)-dimensional case, the one-
loop effective potential hasafinite nontrivial minimum,
which, however, appears to be unstable [10, 11].
According to (16), allowancefor higher loops (ring dia-
grams) in the high-temperature limit also leads to the
appearance of an unstable minimum at fields such that
(gH)'2 ~ g*3T. For small a,, this exceeds the estimates
obtained for the field in the one-loop approximation.
Returning to the general expression (16), we can see

that, under the condition gA, = +/gH , the free energy

v 9 tends to negative infinity. There does not arise such
a singularity in the (3 + 1)-dimensional case, because
integration with respect to the third momentum compo-
nent, which is absent in the (2 + 1)-dimensional case,
has a smoothing effect.

In the case under consideration, the divergence is
removed by taking into account radiative corrections—
namely, owing to the presence of the imaginary part in
the gluon polarization operator. We areinterested in the
radiative energy shift only for the tachyon mode, since
it isthis mode that controlsthe singular behavior of the
effective potential. Without performing detailed calcu-
lations, we will obtain a qualitative estimate by repre-
senting the gluon self-energy in the form (e, T) =
ag£(M, +iMM,), where I, and I, are functions of field
and temperature (as amatter of fact, their explicit form
has virtually no effect on the ensuing analysis of the
model and on the qualitative results of this analysis),
the quantity M, being responsible for gluon decay. The
self-energy contribution becomesimportant only in the
vicinity of the singularity of the effective potential. We

will now consider the dispersion equation €2 = sgz +
M (e, T)LI making use of the assumption (which seems
quite reasonable and which isin fact supported by numer-
ical calculations) that, within the parameter region in
guestion, the behavior of the free energy near the singu-
lar point isnot very sensitiveto thevaluesof I, ~ M, ~ 1.

Ag— Ay = Ag+ ndZ, (18)
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For a, < (gH)!?, we can estimate the energy squared of
the tachyon mode with allowance for the radiative cor-

rection and the equality s; =—gH. Theresultis

sfach =—gH —iCa./gH,
where C is a coefficient of the order of unity. It is seen

from (20) that the presence of the imaginary part stzach

ensures a nhornvanishing argument (having just a non-
zero imaginary part) of the first logarithm in (16) at
gH # 0. Applying the well-known identity [21]

IBE=k

to relation (16) and omitting the immaterial additive
constant, we arrive, by analogy with [11], at

(20)

coshx — cosa
1 - cosa

@2y

tach
"4

Ep) 1In[1+ e P _o
g B

I\JQ
DT

™ cos(BgAy)]
02

Bln[Qcos[BD/_H+ CO(SD} ZCOS(Bng)D

Vg _ Vtach
B (23)
- - O
+9H Z —In[l +e ™ o Bm”cos(BgAO)] 0
" on 4 0
where
W, = —i/gH +%Cas, W = ZgH%—— (24)

In order to analyze the effective potential in the
region of small values of gH, it isadvisableto make use
of the expression for v9 derived by the Fock—
Schwinger proper-time method. We begin by applying
the standard integral representation

00

InA = — gs—sexp(—sA),
0

(25)

which is valid if an infinite additive constant is dis-
carded, to the second term in (16). Thisyields

+oo°°

Vo= 2T[B ZZ lz IS
e (26)
il O
X expm—s[%zl3 +gA0E2+2gHE1 }%
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Further, we single out the temperature-dependent part
vy of theeffective potential, representing this potential

asv9=vi_, + v{, where the zero-temperature part

vi-o is independent of A, [it will be considered
below; see (35)]. For this, we transform summation
over Matsubara frequencies in (26) with the aid of the
identity (see[10] or [21])

+o00

> eol-sfg +ng§}

| = —c0

o 27)
__B 0 B
= — exp =———~cos(BgA.l).
Upon summing the expansion in (26) over n, we arrive at
g _  tach _ gH °°9§|: 1 _ —ngi|
YT e e ey

(28)
z ep 2 L os Ban).

Numerical estimates confirm that expression (28) com-
plies with the temperature-dependent part of (23). At
the same time, expression (28) is advantageous in that
itslimit for gH — 0 isobvious,

[

COS(Bngl)
it IZ N

In the high-temperature limit (T > gA,), we aobtain the
estimate

W S 5 1 %(3)+(BQAO) [| (BgAO)__}DGO)

which demonstrates a nonanaytic background-field
dependence of the effective potential.

Substituting A, = 0 into Eqg. (29), we obtain the dou-
bled effective potential for neutral gluons (since v9
involves the contribution from gluons of two opposite
color charges),

2v® = Z(3)TIm 31)

As might have been expected, we have derived an ana-
log of the Planck law for equilibrium blackbody radia-
tion in the (2 + 1)-dimensional case. In order to obtain

(29)

the total free-energy density, it is necessary to add v

to (23). However, v depends only on temperature,
but it isindependent of the condensate fields; therefore,
this free-energy component is of no interest to us.

In order to perform a numerical analysis of the
above results, it is convenient to go over to the dimen-
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Fig. 1. Zero-temperature part Re US _ ; (x) at T/g? = 0.0L.

sionless variables

x = BJgH, y = BgA,. (32)

At T =0, this change of variablesis obviously impossi-
ble. For the sake of uniformity, we will nevertheless
employ x and y at zero temperature aswell, implying a
finite number for in(32) at T=0. To v, wealso add a
constant defined in such a way as to ensure, in the
absence of condensate fiel ds, the vanishing of the quan-
tity
V(H, A, T),
3 L

u(x,y, T) = (33)

that is, u(0, 0) = 0.
The problem at hand now amounts to minimizing
the real part of the function

U(x,y, T) = U(O)(x, T)+u(xy T),

x'T
2!
29

34
U T) = GY

where the factor T/g* specifies the temperature scale
with respect to the coupling constant g. We denote by
ud and w9, respectively, the gluon and the quark contri-
bution to the dimensionless effective potential u and
introduce the notation U9 = U© + u9. We isolate the
temperature-dependent and the zero-temperature part
of the potentia u, ur and u;_,, respectively, so that u=

UT=0+UTand U'%:O :U(O)"l' U-?:O.

Going over to the limit f — o in (23) and setting
C =1, we easily obtain the zero-temperature contribu-
tion in the form

H
V'Iq—o - 92_.,.[ z wn
n=0,2 (35)
32 32
_ _(gH) [1—f2‘1z@-5}—i(9H) LO9H,
21 4t [P0 21 4T °

which coincides, apart from the contribution to the
effective potential from the tachyon mode of the glu-

ZHUKOVSKY, KHUDYAKOV

Reuf(x)

Fig. 2. Temperature-dependent part Re u{ (x) at T/g> = 0.01.

ons, with the result from [20]. The globa minimum
Uy, is achieved a /gH =0.185¢* (see Fig. 1).

There also exists alocal minimum of U3_, atgH =0

(in contrast to what was obtained in [20])—this mini-
mum is controlled by the tachyon-mode contribution,
which is linear in gH and which is dominant when gH
— 0. If C> 1in Eq. (20), this contribution will shift
the globa minimum to the point gH = 0.

Trottier [20] states that the condensate of the chro-
momagnetic field H evaporates above the critical tem-
perature (at T > T,). At the same time, he assumes that
the tachyon mode of gluonsis unphysical and does not
take it into consideration. At zero temperature, how-
ever, the term v contributes both to the imaginary
and to thereal part of the free-energy density; therefore,
there are no reasonsto ignore thismode. Moreover, itis
just due to allowing for v that the minimum v 9 can
appear at A, # 0 [11].

An analysis of the real part of U9(x, y = const) asa
function of x reveals the existence of a nontrivial mini-
mum at X = X,,;, for temperatures below some critical

value, T < T, ~ 0.15¢?, in which case the temperature-
dependent part uy issmall in relation to the zero-tem-

perature part uy_,. Owing to the choice of scale
according to (33), the temperature-dependent part
depends only dlightly on T, while the zero-temperature
temperature acquires an explicit dependence on T.

Thus, the oscillating contribution u? (Fig. 2) modu-

|lates the zero-temperature potential U3 _, featuring a
nontrivial minimum (Fig. 1). With decreasing tempera-
ture, X, increases, taking values close to nit n O N,
Concurrently, there successively occur second-order
transitions between the phases where the function
U9, Y) attains a minimum either at 1T or at zero.
When T — 0, there are indefinitely many such phases.
PHYSICS OF ATOMIC NUCLEI
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ReUs(x)

6,

Fig. 3. Gluon potential Re U%(x) at T/g> = 0.1.

By way of example, we indicate that, at T/g> = 0.1, the
globa minimum of the thermodynamic potentia is
achieved at x=3.14 and y = Tt (Figs. 3, 4). That U¢ has
a nonzero imaginary part implies, however, that this
condensate configuration is unstable. When tempera-
tureincreasesin theregion T > T, the condensate val-
ues Y,, and x,, decrease from 1T to zero, with the
approximate equality X, = Y., Still remaining valid.

It is well known that, if the trace case of the
Polaykov loop [22, 23] vanishes in the fundamental
representation, trr (%) = 0, the system is in the confin-
ing phase. The Polyakov loop is defined as

B a
ﬁexp{ijthgz\z—}.
0

In the case under consideration, which is specified by
Eqg. (11), the potential A, isdirected along the third axis
in color space. Therefore, tre (%) = 2cos(BgA,/2). The
condition trr (%) = 0 is obviously satisfied at BgA, = Tt
Thus, the aternating minima of the effective potential
for T < T, correspond to the confining and deconfining
phases.

P = (36)

4. QUARK CONTRIBUTION
TO THE FREE-ENERGY DENSITY

Here, we consider the quark contribution to the free-
energy density in away similar to that used in Section 3
for gluons. The degeneracy multiplicity of quark
energy levels in an external chromomagnetic field is
proportional to the quark color charge, which is +1/2;
the corresponding degeneracy multiplicity iscontrolled
by the quantity gHL?/(411), which is half of that for the
gluons. Substituting (15) into (10), we obtain the effec-
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ReUs(y)
6 —

Fig. 4. Gluon potential Re US(y) at T/g* = 0.1.

tive potential for the quarks and antiquarks in the form

+o00

we 1S3 nmee
I:—oo n= O)\ +1

(37)
}\ 2
+ 29| +gHn+ 5
2 0
where A = £1 relates to the quark color charge. This
spectrum differs from the gluon spectrum by the
absence of the tachyon mode, which is peculiar to non-
Abelian gauge fields in achromomagnetic field. There-
fore, v 9 appears to be a well-defined function of the
condensate fields over the entire domain 0 < gH < oo,
0 < gA, < . Specifically, we have

1,9 - _gH s 1 [ 2B
N; v 2nzogp)n+ﬁln l+e

" (38)

B 0

+2e cosEﬁngD} 0

2 Hg

where

co,f = an+m2. (39)

It is well known that, within nonzero-temperature
theory, the quark field satisfies the antiperiodicity con-
dition Y(x,, x) = —Y(X, + B, x). Thisis the reason why,
in (38), the period in gA, is4TtT, which istwice aslarge
asthat in (23). Thisfact suggests the breakdown of the
residual gauge symmetry corresponding to Z, group
[Z, in the case of the SU(N) gauge group]. We restrict
our consideration to the chiral limit for quark fields,
m = 0. In this case, the zero-temperature contribution of
the quarksis given by

312

ZJ_n=(98Hn) (B9 wo

-1 g
Ni Voo =
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Fig. 5. Quark contribution Re u4(x).

Reui(y)
6 —

Fig. 6. Quark contribution Reu4(y).

which coincideswith the result from [20]. In contrast to
the gluon potential vi_,, vi., is dways positive,

which prevents the emergence of a nontrivial mini-
mum. By applying the proper-time method, we rewrite

the temperature-dependent part of (38), v 1, intheform
of the integral representation

gH oods

32| a2
Tt S

Nive =
(41)

BZ|ZDcos(BgAOI/2 + nl)
4s 0 1-— e_SgH

Z

Inthelimit gH — 0, thisyields

z( )

| cos(BgAOI/Z)

-1 q
N¢Vin-o =

(42)
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By virtue of the definition in (33), the dimensionless
effective potential u(x, y) does not depend on tempera-
ture explicitly. Figures 5 and 6 present the families of
the plots for ud at fixed field values y = const and x =
const, respectively. It can be seen that, for al constant
values of x, the function ud(x, y) achievesaminimum at
Ymin = 0. At the same time, there exists anontrivial min-
imum at x_;,, # 0 for y,;, = const < 3.5. The global min-
imum of the quark effective potential is achieved at the
point X =4.30, y = 0. The quark contribution to the free-
energy density exceeds the gluon contribution at y > 4,
in which case the quark zero mode, increasing indefi-
nitely for y — 211, becomes dominant. Therefore, the
conclusions concerning the presence of afield conden-
sate and the occurrence of confinement—deconfinement
phase transitions for 0 <y < rtremain in force for the
total free energy.

5. CONCLUSION

In the one-loop approximation, the quark and gluon
contributions to the thermodynamic potential (free
energy) in (2 + 1)-dimensional spacetime at finite tem-
peratures have been calculated against the background
of a constant uniform chromomagnetic field H and a
constant uniform A, condensate. An analysis of the
tachyon mode in the energy spectrum of gluons has
enabled us to conclude, in contrast to the results from
[20], that this mode cannot be neglected. Theinclusion
of the one-loop radiative correction to the energy spec-
trum of gluons has made it possible to correct the zero-
mode-induced nonanalytic behavior of the effective
potential. The free-energy minimum has been investi-
gated, and the possibility of its formation at nonzero
values of the strength H and the potential A, has been
demonstrated. An analysis of the temperature depen-
dence of the results has revealed that, below some crit-
ical temperature, the region of the model parameters
splitsinto a set of alternating subregions corresponding
to a confining or a deconfining phase. This pattern is
associated with the oscillating contribution of the
tachyon mode to the free-energy density. Unfortu-
nately, theimaginary part of the effective potential does
not vanish at the points x,,,, = ™, n O N, where the
function V(x, y) achieves a minimum. Thus, the non-
trivial minimum induced in the effective potentia by
the condensates of the fields H and A, is unstable. Such
an instability is due to the choice of the model of auni-
form vacuum field. It is reasonable to assume that, in
the redlistic case of a nonuniform vacuum field at large
distances (that is, in the infrared region, which is
responsible for the formation of confinement), this
instability would be suppressed (see aso the relevant
argumentsin [11]). In this connection, the states found
here can be considered to be quasistable. In order to
justify the adopted assumptions more rigoroudly, it is
necessary to analyze the nonuniform-field model and to
take into account higher loop contributions along the
lines adopted in [16]. Unfortunately, we have not been
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able to do this at present because of obvious technical
difficulties.

10. D. Ebert, V. Ch. Zhukovsky, and A. S. Vshivtsey, Int. J.
Mod. Phys. A 13, 1723 (1998).
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Decay of a Large-Amplitude Bubble
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Abstract—Thetime evolution of alarge-amplitude bubble of adisoriented chiral condensate (DCC) is studied.
It is found that the evolution of such objects may have arelatively long predecay stage. A simple explanation
of such adelay is proposed for the case of the DCC bubble decay. This delay is associated with the existence
of approximate multisoliton solutionsto the relevant radial sine-Gordon equationin (3+1) dimensionsat alarge

bubble radius. © 2001 MAIK “ Nauka/Interperiodica” .

In our previous study [1], we discussed thetime evo-
lution of bubbles of a disoriented chiral condensate
(DCC) in a simplified chiral two-component sigma

model (02 + T = f2), where it is convenient to intro-

duce the field variable @ defined by the relations 1t =
f,sinpand o = f,,cos@. The equation of motion in terms
of @—this equation was studied in [1]—has the form

2

2 .
(plt_(prr_F(pr'l'mFS'n(n(p) = 01 (1)

where @ 0 [0, 211], misthe mass of thefield ¢, and nis
aninteger. If m=0, we have the case of unbroken chiral
symmetry. If m # 0, chiral symmetry is broken. In the
case of n =1, the theory has the only vacuum state at
@ =0. Interms of thefield variable @, the field configu-
ration corresponding to a DCC bubble isthe following:
@isanonzero constant (vacuum is disoriented) every-
where within a spherically symmetric domain and is
zero (true vacuum—that is, [6C= 1, @M= 1, and ¢ = 0)
everywhere outside this domain. In the model withn=
1, the decay of such a DCC bubble eventually leads to
the formation of a breather [1, 2], which is located at
the center of the origina bubble. The formation of
long-lived breatherlike states is a feature peculiar to a
wide class of nonlinear systems, including that
described by Eqg. (1). It is worth noting that, owing to
the nonlinearity of the problem, the mean lifetime of a
large-amplitude DCC bubble significantly exceeds the
lifetime of alinearized DCC system in the presence of
external sources (see, for example, [3]).

D Moscow State Engineering Physics Institute (Technical Univer-
sity), Kashirskoe sh. 31, Moscow, 115409 Russia, and Institute of
Theoretical and Experimental Physics, Bol’shaya Cheremushkin-
skayaul. 25, Moscow, 117259 Russia.
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*** email: kudryavtsev@heron.itep.ru

The case of n= 2 correspondsto the theory featuring
n degenerate vacuaat = 0, 21Yn, 417N, ..., 2(n— 1)1UN.
It was shown in [1] that, in this case, the evolution of a
DCC bubble crucialy depends on itsinitial amplitude.
The case of asmall amplitudefor n= 2 also leadsto the
formation of a breatherlike state. However, an initialy
formed large-amplitude bubble evolves in somewhat
different way. Its evolution involves a rather long pre-
decay stage characterized by relatively low radiation.
Thisfirst stage of the evolution consistsin the splitting
of the shell of the initial bubble into a few concentric
subshells of different radii and smaller amplitudes. At
the next step, these subshells interact, with the result
that eventually the bulk of the initial-bubble energy is
converted into radiation of small-amplitude waves that
is accompanied by the formation of a long-lived
breather localized at the center. This, rather compli-
cated, pattern of the evolution of a DCC bubble may be
dubbed a delayed decay of such an object. Here, we
continue our investigation of the decay of DCC bubbles
for the special initial conditions

2T

= m @(r,0) =0, 2
0

o(r, 0)

where K is alarge positive number set to 20 in our cal-
culations. As was discussed in [1], the evolution of a
bubble crucially depends on the dimensionless param-
eter { = mr,,. For the case of small & < &, in the model
with n = 2, we observe a prompt decay of DCC bubbles
that isfollowed by the formation of abreatherlike solu-
tion. But for & > €, we have the splitting of the initial
21t shell into a pair of 1Ttshells. A clear illustration of
the transition from prompt to delayed decay is provided
by the data in Fig. 1, which displays the energy flux
through the sphere of radius R > r, in units of the total
energy at two typical instants of time as a function of
the parameter &. From this figure, we can see the fol-
lowing: at & < €, the bulk of the energy releaseis emit-
ted from the region of the bubble within a relatively

1063-7788/01/6401-0140$21.00 © 2001 MAIK “Nauka/ Interperiodica’



DECAY OF A LARGE-AMPLITUDE BUBBLE

Fig. 1. Energy flux (in units of the total energy) that has
passed through a sphere of radius R =20 by theinstant T as
afunction of the dimensionless parameter €.

short time interval T of less than 50 (in dimensionless
units), while, at & > &, only some part of it escapes
through the sphere of the same radius within the same
period of time. It is this phenomenon that we call the
delayed decay of a DCC bubble. In Fig. 2, we present
the field configurations (n = 2, & = 10) at some instants
t,. We can see that the further evolution of the 1Ttshells
produced upon the splitting of the 21t shell leadsto their
secondary interaction. Thisinteraction is of arepulsive
character and occurs when the radii of the shells coin-
cide. After afew collisions of the 11t shells, alocalized
breatherlike solution is formed at the center of the ini-
tial DCC bubble.

Qualitatively, the observed splitting of the 21t shell
of the initial bubble (2) into a pair of concentric 1T
shells can be explained as follows. Suppose that, at a
sufficiently large bubble radius r,, the term (2/r)@ on
the left-hand side of EQ. (1) becomes immaterial and
can be discarded. Equation (1) then reduces to the one-
dimensional sine-Gordon equation defined on the semi-
axisr 0 [0, ). Therefore, solutions to this equation at
large positiver must have the same form as solutionsto
the integrable sine-Gordon equation. Multisoliton solu-
tions to the latter equation are known in an analytical
form. In particular, the two-soliton solution for n=2is
given by [4]

Oy sinh(mx/+/1—v?)0
G 0
Ocosh(mt/J/1-v?) U

where v isthe soliton vel ocity at infinity. At an arbitrary
instant t, this solution appears to be a superposition of
two solitons, with the quantity

@(+00, 1) — (-0, 1) = 27T,

which is referred to as a topological charge, being an
integral of the motion. At t = 0O, the solution in (3)

@(x,t) = 2arctan 3)
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Fig. 2. Field configurations at a few instants t; during the
evolution of the initial configuration (2) in the model with
n=2

reduces to a step of height 21t and characteristic size

Xerer ~ N/ 1— V2 /mv. In the relativistic limit (1 — v) <
1, the size Xy is small, X4, < Mr'. Owing to the simi-
larity of the profiles of theinitial condition (2) for K >1
and the solution in (3) at t = 0 in the relativistic case, it
can be expected that the two configurations will evolve
similarly, at least at small positivet. By considering the
solution in (3) at t > 0, we find that the 2Tt kink splits
into a pair of 11T kinks moving in opposite directions.
The same occursin solving Eg. (1) with theinitial con-
dition (2). Therefore, we conclude that a three-dimen-
siona 211 shell of large initial radius behaves in the
same way as the double-soliton solution (3), at least at
small positivet.

The split 11t shells further evolve differently. The
inner 1Ttbubble behaves as an ordinary large-amplitude
DCC bubble in the case of n = 1. The evolution of such
initial configurations was considered in the pioneering
study of Bogolyubskii and Makhan'kov [5] (see also
[6]). It shrinks and expands again, emitting part of its
energy. The outer 11t shell expands, then stops, and
begins to shrink. The maximal expansion radius of this
1Ttshell can be estimated on the basis of simple energy
considerations. Some field configurations arising in the
process of interaction of the inner and outer 11T shells
are presented in Fig. 2. The splitting of the shell of the
initial bubble is adso clearly seen in Fig. 3, which dis-
plays the radial energy density £(r) related to the total

energy by the equation E = J’we (rdr.
0

In anumerical simulation, we also observed a simi-
lar splitting of the 21tshell (2) of theinitial DCC bubble
in the model with n = 3. In this case, the initial 2t shell
first splits into two subshells of amplitudes 2173 and
41y3; later on, the 4173 shell splits into a pair of 2173
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Fig. 3. Radia energy densities corresponding to the field
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Fig. 4. Field configurations at a few instants t; during the
evolution of the initial configuration (2) in the model with
n=3.
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Fig. 5. Radia energy densities corresponding to the field
configurationsin Fig. 4.
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shells. During the subsequent evolution, all three 2173
shells interact. The corresponding field configurations
and radial energy densities at afew typical instants are
shownin Figs. 4 and 5.

We note that, in fact, the discarded term (2/r)@, in
Eqg. (1) has a pronounced effect on the time evolution of
the solutions—in particular, it is responsible for insta-
bility of the bubbles to collapse. It is convenient to
study the evolution of such configurations by the
method of effective Lagrangians. The collapse of a
sphericaly symmetric bubble in Ag* theory was first
analyzed by this method in the thin-wall approximation
[7] (see dso [8]). In the future, we are going to study
the form of the effective Lagrangian and the corre-
sponding equations of motion for multishell configura-
tions considered in the present article.

In conclusion, we emphasi ze that the observed split-
ting of the large-size and large-amplitude shell of an
original DCC bubble leads to a significant increase in
itslifetime. For this reason, the emission of wavesfrom
the DCC region appears to be quite along process, and
it is the nonlinearity of DCC bubble decay that is basi-
caly responsible for the prolongation of the bubble
lifetime.
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Abstract—The formation of dense groups (fluctuations) of particles produced in the central CCu and MgMg
collisions at the projectile momenta of, respectively, 4.5 and 4.3 GeV/c per nucleon is analyzed. The distribu-
tions of the maximum densities and of the centers of charged-particle fluctuations in pseudorapidity space are
studied in searches for dynamical multiparticle correlations. The distributions of the centers show two peaks
abovethe statistical background with astructure similar to that which isexpected in the model of coherent gluon
emission and which was observed in hadronic interactions. The charge independence of the distributions in
question and an azimuthal isotropy of eventsinvolving pseudorapidity fluctuations are observed. The distribu-
tions of events with respect to the maximum density of fluctuations are governed primarily by the statistical
contribution, although the behavior of the distributions in CCu collisions is in qualitative agreement with the
prediction of the one-dimensional intermittency model. It is found that the resulting distributions are of a non-
Poisson character both in CCu and in MgMg coallisions. The results of this study indicate that, in describing
local dynamical fluctuations in multiparticle production processes, the coherent and the stochastic approach
supplement each other. The procedure employed in the analysis described here makes it possible to draw a
direct comparison of the present results with the results of similar investigations of different reactions. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent numerous investigations of the formation of
dense groups of particlesin the distributions of hadrons
produced in multiparticle processes [1, 2] led to the
conclusion that irregul arities observed in these distribu-
tions reflect process dynamics rather than the inade-
guacy of event statistics. The formation of such dynam-
ical fluctuations was found to be of aregular character;
that is, dense groups of particles appear at fixed values
of the polar angle (pseudorapidity), thus producing
ring-shaped events.

Ring-shaped structures can be revealed owing to the
presence of maxima on the pseudorapidity scale in
searchesfor dense groups of particlesin an event. Such
events were first observed in cosmic-ray experiments
and later in accelerator experiments[2]. It isworth not-
ing that the azimuthal-angle and transverse-momentum
distributions in such events are usually rather uniform.

Further investigations of irregularities in the distri-
butions of product particles were performed primarily
within the stochastic approach relying on the intermit-
tency model borrowed from fluid dynamics (for an
overview, see[1, 2]). This approach madeit possible to
reveal adynamical character of the fluctuationsin ques-
tion, which suggests the intermittency (fractal) struc-
ture of eventsin al types of interactions [2, 3]. Never-

D Institute of Physics, Georgian Academy of Sciences, ul. Tama-
rashvili 6, GE-380077 Thilisi, Republic of Georgia.

2) school of Physics and Astronomy, Tel Aviv University, Tel Aviv
69978, Isragl.

theless, the observed stochastic nature of the fluctua-
tions has not yet been explained, although numerous
dynamical models have been proposed.

At the same time, the ring-shaped structure is well
known in el ectrodynamics (Cherenkov radiation). Con-
ditions necessary for the emergence of such radiation
may be realized in the strong interactions of hadrons
and nuclei as well [4, 5]. This approach was imple-
mented in the model that assumes coherent gluon emis-
sion from afinitelength [5] and which predictsan inter-
ference peak in the polar-angle distributions for colli-
sions of a quark with an antiquark or a gluon. On the
other hand, collisions between quarks of the same color
are expected to result in the appearance of dipsin the
distribution (destructive interference). Experimental
results from [6-8], which were obtained on the basis of
this model, lend support to this quark-parton descrip-
tion.

Inthisarticle, we present an analysis of ring-shaped
events in intermediate-energy nucleus—nucleus colli-
sions. Our study employs both the stochastic and the
coherent approach. In thefirst case, we rely on the one-
dimensional intermittency model [9], which considers
maximum particle fluctuations. The coherent compo-
nent in the hadron-production process is investigated
within the coherent-gluon-emission model, which con-
siders the properties of the distributions of fluctuation
centers.

It isworth noting that previous searches for dynam-
ical effects in studying maximum fluctuations yielded

1063-7788/01/6401-0143%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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different results [10, 11]. Specifically, no such effects
were revealed in [10], where investigations were con-
ducted for reactions similar to those considered here. At
the same time, Ghosh et al. [11] found indications of
multiparticle dynamical correlations in collisions of
hadronswith emulsion nuclei at 200400 GeV. Thedis-
tinctions between these conclusions may be associated
with the method used to single out maximum fluctua-
tions, which reduces the searches for dense clusters to
exploring the distribution sections with the maximum
probability density (maximum in the distribution). In
order to circumvent these difficulties, we use here, both
for the stochastic and for the coherent contribution, a
cumulative variable that has a uniform distribution [12].

2. EXPERIMENTAL DATA

The experimental data subjected to analysis were
obtained by processing the photographs of events from
the 2-m streamer chamber of the SKM-200 facility [13]
involving internal copper (**Cu) and magnesium (**Mg)
targets. The chamber was placed in a magnetic field of
strength 0.8 T and irradiated at the JINR synchropha
sotron with relativistic beams of '>C nuclei with a
momentum of 4.5 GeV/c per nucleon and >*Mg nuclei
with a momentum of 4.3 GeV/c per nucleon. The
streamer chamber was driven by a central-collision
trigger that actuated the chamber when, in the forward
cone with an apex angle of the 2.4°, there were no
charged particles with momenta above 3 GeV/c. A
more detailed description of the facility can befoundin
[13, 14]. Systematic errors associated with the opera-
tion of the trigger, the detection of low-energy pions
and protons, electron admixtures, secondary interac-
tions in the target, and other sources of systematic
effects are described in detail elsewhere [15]. Each of
these systematic effects is modest, their total contribu-
tion to the uncertainty being within 3%.

Thefilm datawere viewed and processed at the L eb-
edev Ingtitute of Physics (Moscow, Russian Academy
of Sciences) on the UPS 50/80 scanning tables by using
the method developed in [16]. The average relative
error of momentum measurements, [8,/pLamounted to
12%; for the polar emission angle 4, the error €5 was
about 2°, which does not exceed the error in the pseu-
dorapidity measurement (sn = 0.1), the pseudorapidity
being defined as n = -Intan(d /2). Among 663 events
of CCu collisions, we selected charged particles in the
pseudorapidity interval An = 0.2-2.8 (in the laboratory
frame), but we excluded, from our consideration, posi-
tively charged particles with transverse momenta in
excess of 1 GeV/c, because no negatively charged par-
ticleswith such transverse momentawere observed. We
assumed equal numbers of positively and negatively
charged particles, thereby minimizing the effect of the
proton contribution. The mean multiplicity in CCu col-
lisonswas22.8 £+ 0.3.1n 14218 MgMg events, we con-
sidered only negatively charged particles (pions with a
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1%, admixture of kaons), their mean multiplicity in the
interval An =0.4-2.4 being 6.20 £ 0.02.

3. PROCEDURE FOR ISOLATING DENSE
GROUPS OF PARTICLES

In the present study, fluctuations and their centers
were singled out by means of the following procedure.
In each event, ordered pseudorapidities were subjected
to binning over the entire pseudorapidity interval An
under consideration, with the bin size o being fixed.
We isolated dense groups featuring on particles in a
given bin. The centers of fluctuations for al events
were calculated by the formula

on

No = (1/8n) 3 n;.
j=1

Aswas mentioned earlier, the conclusion on the contri-
bution of dynamical fluctuations strongly depends on
the shape of the pseudorapidity spectrum, its nonuni-
formity complicating isolation of the n region where
interaction dynamics reveals itself most clearly. In
order to get rid of the effect of the spectrum shape and
to be able to compare the results of different experi-
ments, the pseudorapidity distributionswere recast into
distributions with respect to a cumulative variable n

according to the method proposed in [12],

n N max
n(n) = Ip(n')dn'lj p(n’)dn',

Nmin

)

Nmin

with the transformed probability density p(n) that is
constant in the interval [0, 1]. This transformation was
used earlier in studying intermittency in high-energy
particlecollisions[1, 2] andin[17-19]. The application
of the cumulative variable [18, 19] made it possible to
separate two essentially different types of fluctuations,
which are leveled out upon averaging over various
pseudorapidity bins, and to trace hints as to the occur-
rence of a possible nonequilibrium phase transition in
the hadronization process. It should be noted that the
pseudorapidity is the most appropriate variable for
studying correlations governed by the intermittency
structure in high-energy interactions[20].

4. RESULTS AND DISCUSSION
4.1. Distributions of the Fluctuation Centers

Figure 1 displays the distributions of the centers of
dense particle groups in CCu interactions for various
bins & and various numbers of particles, dn, in abin.
We chose the bin widths dn to be commensurate with
thosein [10, 21].

A structure with many peaks is seen for dn = 0.04
(dn=0.1) and dn =0.08 (dn =0.2) in Figs. la and 1b,

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.1 2001
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Fig. 1. Experimental (closed circles) and generated (open circles) distributions of fluctuation centersin CCu interactionsat (a) 8n =
0.04 anddn =4, (b) dn =0.08 anddn =5, (c) &7 =0.12 and dn = 7, and (d) n = 0.2 and n = 9. The solid curves represent

Gaussian approximations.

respectively. With increasing width dn , there is a ten-
dency toward the formation of a structure featuring two
peaks whose centers ], do not change with &n. For the
mean positions of the maximafor groupsinvolving dif-
ferent numbers of particles, a Gaussian approximation
of these two peaks yields values in the vicinity of the
points N, = 0.17 and 0.57. Therescaling to the original
variablen resultsinn,=0.60 £ 0.05 £ 0.12 and 1.30 =
0.03 £ 0.10 (hereafter, the first and the second error are
statistical and systematic, respectively) for the peak
positions. The spacing between the peaksis

d, = 0.68+0.06 % 0.16. )

A similar investigation was performed for MgMg
interactions, where tracks were measured only for neg-

atively charged particles. The n, distributions are dis-

played in Fig. 2, where the notation used isidentical to
that in Fig. 1. Asin the case of CCu interactions, we

observe a structure having two peaks at the points n, =
0.19 and 0.63, which correspondston,=0.89 + 0.03 +

0.08 and 1.63 + 0.05 £ 0.10, with the spacing between
the peaks being

d, = 0.75+0.06 £ 0.13. 3)

That the structures of 1, distributions for negatively

charged particles and for al charged particles are simi-
lar suggests the charge independence of the destructive-
interference effect. At the sametime, the close values of
the spacings between the peaks in (2) and (3) are indi-
rect evidencefor acentral character of the selected CCu
events in collisions and, hence, for the correctness of
the selection criteria described in Section 2.
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In order to reveal the possible contribution of had-
ron jets to the observed effect, we performed an addi-
tional analysis for MgMg interactions, taking into
account the isotropy criterion for the azimuthal distri-
bution of particles. For an n-particle event, the azi-
muthal asymmetry was defined as [22]

Z cos2(¢ — ;)

— 1>]
g Jn(n—1)
where @ is the azimuthal angle of the emission of the
ith particle.

Events characterized by the jet structure were
removed by imposing the constraint 3 < 0, which
reduced event statistics nearly by a factor of 2. The
resulting distributions of the fluctuation centers (for the

same dn and &n as in Fig. 2, which show data sub-
jected to no criterion of azimuthal isotropy) are dis-
playedin Fig. 3.

The structure of the distributionsin Fig. 3issimilar
to that in Fig. 2: we again observe two pronounced
peaks. For the positions of the peaks and the spacing
between them, a Gaussian approximation of the spectra
yieldsn, = 0.88 and 1.63; d, = 0.75 + 0.06 £ 0.15.

Thus, the removal of narrow-jet events did not affect
the structure of the distribution of the fluctuation cen-
ters. The agreement between the peak positions and
spacing in the distributions constructed with and with-
out the 3 criterion confirms the azimuthal symmetry of
ring-shaped events.

The two-peaked spectrum that we obtained for cen-
tral nucleus—nucleus collisions is similar to that found
in [6, 7] for proton—proton interactions. This suggests

)
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Fig. 3. Asin Fig. 2, but for events characterized by azimuthal isotropy [see main body of the text and expression (4)].

that nucleus—nucleus collisions represent a superposi-
tion of nucleon—ucleon interactions. The spacing
between the peaks in our analysis exceeds that in had-
ronic callisions(d,=0.57 £0.03£0.12and 0.50 £ 0.15
in proton—proton interactions at 205-360 [6] and
400 GeV/c [7], respectively). This observation com-
plies with theoretical expectations that take into
account the intranuclear interactions of nucleons [23].

In order to reveal the contribution of dynamical cor-
relations in the distribution of the fluctuation centers,
we constructed analogous distributions for the simu-
lated single-particle spectra p(n ). Let us describe our
simulation procedure. We generated a random number

of tracks in accordance with the multiplicity distribu-
tion in experimental events. After that, the particles
involved were distributed according to the actual spec-

trum p(n ). Thetotal number of events simulated in this
way was 66300 for CCu collisions and 1421800 for
MgMg collisions, exceeding experimental statistics by
a factor of 100. The statistical properties of this event
sample fully correspond to the properties of the ensem-
blethat could be constructed by mixing tracks from dif-

ferent events with the same p(n ) and comply with the
hypothesis of independent-particle emission, where
there is no information about two- or multiparticle cor-
relations.

PHYSICS OF ATOMIC NUCLEI
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Fig. 4. Experimental (closed symbols) and generated (open symbols) distributions of maximum-density fluctuations p,,, in CCu
interactions for three n and various values of 31 : (a) 1 = 0.04, x*NDF = 1.3 (@l n, B, 39.4, rms = 11.2), X*/NDF = 0.5
(14 <Nn<20,38.6, 8.1), and x/NDF = 0.7 (24 < n < 30, 49.2, 9.0); (b) 87 =0.12, X*/NDF = 1.2 (all n, 22.0, 6.6), X’/NDF = 1.3
(14 <N <20, 12.8, 3.6), and X2/NDF = 2.0 (24 < n< 30, 25.2, 4.4); (c) 1 = 0.2, X¥NDF = 1.1 (all n, 17.4, 5.2), X*/NDF = 1.0
(14 <n<20, 14.0, 2.6), and X*/NDF = 1.7 (24 <n < 30, 20.2, 2.8); and (d) 3N = 0.4, x*/NDF = 0.9 (al n, 13.2, 4.2), X*/NDF = 0.7
(14 <n<20,10.3, 1.6), and X>/NDF = 0.9 (24 < n< 30, 18.2, 1.8).

Open circles in Figs. 1-3 represent the n, distribu-
tions for simulated events. The figures show that the
experimental distributions differ significantly from the
distributions obtained under the assumption of noncor-
related particle emission: there are no peaksin the latter
case.

Comparing the experimental and the simulated dis-
tributions of the fluctuation centers for various widths

dn and various multiplicity values dn, we arrive at the
conclusion that multiparticle correlations are of a
dynamical origin. In analyzing the dynamics of the
intermittency structure being considered, it would be
natural to invoke the model of coherent gluon emission
[5] as one of the most appropriate mechanisms of the
formation of the observed ring-shaped events featuring
azimuthal symmetry.

In order to assessthe reliability of the above conclu-
sion, we scanned variousintervals An and various polar
angles 9 within the experimenta error [84[] That the

observed properties of the n, distributions did not

exhibit significant changes throughout this scanning
confirms our conclusion.
PHYSICS OF ATOMIC NUCLEI
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The aforementioned charge independence of the
coherent mechanism of dynamical-fluctuation formation
may lend additional support to the conjecture that Bose—
Einstein correlations are of a coherent origin [24].

4.2. Maximum Density Fluctuations

For CCu collisions, Fig. 4 showsthe normalized dis-
tributions (1/N)dN/dp,,.. With respect to maximum den-

sity fluctuations p,,,, at various values of dn in. Here,
N is the number of events, while the maximum fluctua-
tions are defined as p,,,,, = 0N,/ 0N , Where dn,,,,, isthe
maximum number of particlesin afluctuation for aspe-
cific bin 8n inan individual event.

A feature peculiar to the distributions being consid-
ered is that they decrease exponentially for p,.. >
[P .xd The distributions averaged over all multiplicities
n behave similarly to the distributions studied by our
group in [10, 21] and to the distributions obtained in
[11, 25, 26] for different reactions. This behavior dif-
fers from the Poisson behavior, which is expected to be
realized in processes where the correlations between
product hadrons are weak and which is predicted in
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Fig. 5. Experimental (closed symbols) and generated (open symbols) distributions of maximum-fluctuation densities p,,, in
MgMg interactionsfor all nand n=6for two valuesof 31 : (a) 31 =0.1,X*/NDF =2.1(alln, Pmax[F=24.2,rms=19.1) and x*/NDF
=0.4(n=6,23.9,15.4)and (b) 3 =0.25, x/NDF = 2.7 (al n, 13.8, 10.6) and x*/NDF = 0.4 (=6, 13.4, 5.7).

the models of the multiperipheral or the Regge type
that involve a bounded number of Reggeons. The expo-
nential character of the p,,,, Spectrum is evidence to
suggest that primary multiparticle correlations do not
reduce to two-particle correlations [3]. A nonzero dif-
ference of the variance and [@,,,,,[lconfirms a non-Pois-
son character of distribution, revealing a significant
contribution of correlations to the observed local fluc-
tuations.

A comparison with the results presented in [ 10, 21],
where fluctuations were considered in n space, shows

that the transformation to the cumulative variable n

according to (1) does not affect significantly the bell-
like shape of the distributions at small dn (seeFig. 4a);
with increasing & , however, theuse of | instead of
resultsin theemergence of largetailsinthep,,,, spectra
for Prmax > [Pmax AFigs. 4b, 4c).

That the exponential maximum-density distribution
becomesflatter at large values of p,,,, complieswith the
shape expected in the one-dimensional intermittency
model [9], which, in the multiparticle production pro-
cess, admits a turbulent and a laminar regime generat-
ing two maximain the p,,,,, distributions. However, the
model considers distributions with respect to maximum
density fluctuations at a fixed multiplicity n, in which
case the distributions are independent of energy and
reaction type. Asaresult, it is possible to enlarge statis-
tics by comparing results from different experiments.
Previoudly, distributions at fixed values of n were stud-
ied in hadron-hadron interactions, where dn = 0.1 bin-
ning revealed large tailsin the p,,,, distributions [25].

In order to ensure that the multiplicity was fixed, but
that a statistically significant result was obtained, we
considered, in CCu interactions, maximum fluctuations
averaged over fixed narrow multiplicity intervals. Fig-
ure 4 presents the resulting p,,,, distributions for two
such regions. 14 < n < 20 (squares) and 24 < n < 30 (tri-
angles). Here, the deviation of the distributions from
the exponential form at large p,,,, becomes more pro-
nounced than in the case of averaging over al n. Even

a dn = 0.04 (3n =0.1), the distribution develops tails

for P, > [P0 Such tails are clearly seen at dn =
0.12 and 0.2, but only for events characterized by large
multiplicities, 24 < n < 30.

Injust the sameway asthe shape of the spectrum for
al multiplicities, the distributions for fixed intervals of
nindicate that the multiparticle production processis of
anon-Poisson character: that the variances of the distri-
butions differ from the mean values [p,,,,proves the
presence of multiparticle correlations.

In order to reveal correlations associated with the
dynamics of the process, we compared the experimen-
tal distributions with the distributions that were
obtained for the generated sample of 66300 events that
was described in the preceding section and which fea-
tures no dynamical correlations. The resulting distribu-

tions (for four values of 3 ) are shown in Fig. 4 (open

symbols) for all multiplicities and for two intervals
considered above.

The X?*/NDF vaues indicate good agreement
between the experimental and the generated spectra,
irrespective of thewidth 8 and multiplicity values, so
that it is impossible to draw a definitive conclusion as
to whether intermittency dynamicsis present in the for-
mation of fluctuations. Most likely, the dynamical cor-
relations in the maximum-density distributions are sup-
pressed by statistical noises to such an extent that they
cannot be observed. Nevertheless, it is worth noting
that the generated p,,,, distributions at on = 0.12 and
0.2 for 24 <n< 30 (Figs. 4b and 4c) differ significantly
at large p,,.. from the experimental spectra: the latter
become flatter, while the former do not show such
changes.

A similar analysis was performed for negatively
charged particlesin MgMg collisions. For all multiplic-
itiesand for the fixed multiplicity value of n =6, Fig. 5
displaystheresulting p,,,, distributionsat dn = 0.1 and
0.25.

In contrast to what was observed for CCu collisions,
thedistributionsin Fig. 5 have no tailsfor p,,,, > B max
that is, they continue exponentially decreasing as the

PHYSICS OF ATOMIC NUCLEI
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maximum density fluctuations grow. At the same time,
a comparison of the mean values [p,,,.[Jand the stan-
dard deviations proves a hon-Poisson character of the
quoted distributions. However, the X2/NDF values for
the comparison of the experimental data with the
results of our statistical simulation (in the case being
considered, we have also used the generated sample of
1421800 events from the preceding section) suggest
that the dynamical component in the formation of fluc-
tuations is strongly suppressed by statistical fluctua-
tions and cannot be isolated by the method of maxi-
mum densities.

An analysis of the effect of the errors [E50in the
measured polar angle 9 of product particles showed
stability of the distributions that we obtained and,
hence, the reliability of our conclusions for both types
of nuclear collisions considered here.

In summary, we emphasize that the non-Poisson
behavior of the p,,,, spectra (especially at small values

of &n) and the difference between the experimental
and the generated distributions at large values of the
maximum density in CCu interactions seem to be asso-
ciated with anonstatistical character of the fluctuations
in question. It is precisely the result that our group
deduced in [17, 18, 27] by the method of normalized
scale factorial moments. In [28], it was proposed to
seek strong fluctuations associated with this.

5. CONCLUSION

Results have been presented that were obtained by
studying the formation of dense particle groups (fluctu-
ations) in multiparticle processes induced by interme-
diate-energy nucleus—nucleus collisions. These fluctua-
tions have been explored in the pseudorapidity distribu-
tions of all charged particles from the central CCu
collisions and of negatively charged particles from
MgMg collisions at projectile momenta of, respec-
tively, 4.5 and 4.3 GeV/c per nucleon.

In order to reveal dynamical collective effects, we
have considered the distributions of the centers of
dense particle groups and the spectraof maximum den-
sity fluctuations. We have compared them with the pre-
dictions of the coherent-emission model in thefirst case
and with the predictions of the stochastic model in the
second case; a comparison with the simulated results
for completely noncorrelated particle production has
also been drawn. Taking into account the effect of the
shape of the distribution of product particlesin searches
for fluctuations, we have recast original pseudorapidity
distributionsinto flat distributions.

In the distributions of fluctuation centers in CCu
collisions, we have found two peaks occurring near the
same pseudorapidity valuesfor fluctuations of different
sizes. A similar structure has been observed for the dis-
tributions of the centers of fluctuations of negatively
charged particles from MgMg interactions, the spacing
between the peaks in that case being commensurate
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withthe similar spacing for all charged particlesin CCu
interactions.

The search for possible azimuthal asymmetries in
ring-shaped events that has been performed for MgMg
collisions has shown the isotropy of the azimuthal
angular distribution of particles: the positions of the
peaks in the distribution of fluctuation centers and the
spacing between these peaks have been found to take
the same values for the event sample from which the jet
structure has been removed and the event sample
involving this structure.

A comparison with similar distributions based on a
statistical simulation suggests the dynamical origin of
the observed two-peak structure of these distributions.
This structure is in accord with the model of coherent
gluon emission from afinite length and is similar to the
structure recently discovered in proton—proton colli-
sions at afew hundred GeV. That the spacings between
the peaks for all charged particles and for negatively
charged particles have close values can be treated as
evidence of a significant contribution of the coherent
component to the formation of Bose—Einstein correla-
tions.

The distributions of maximum-density fluctuations
have been studied for al values of the multiplicity nand
for fixed intervals of nin CCu collisionsand for fixed n
in MgMg collisions. The observed non-Poisson charac-
ter of the distributions suggests that multiparticle corre-
lations contribute to the formation of dense particle
groups. The observed flattening of the distribution at
large maximum densities in CCu interactions is in
agreement with the predictions of the one-dimensional
intermittency model. We have not observed this effect
for negatively charged particlesin MgMg collisions.

A comparison with the results predicted by the
model of independent particle production has shown
that, within this approach, the stochastic dynamics of
correlation formation is masked by strong statistical
fluctuations; nevertheless, there are noticeable differ-
encesin the behavior of the generated and experimental
distributions. It should be recalled that the stochastic
nature of fluctuations and correlations has been
observed in all types of interactions in studying the
intermittency structure.

It is of interest to compare the results that we have
obtained here with the results of a similar analysis of
fluctuations in reactions characterized by higher mean
multiplicities of product particles, the more so as this
comparison would depend neither on the shape of the
spectrum nor on the reaction type and energy owing to
the use of the cumulative variable and fixed multiplici-
ties.

Our analysis of the formation of local dynamical
fluctuations in nucleus—nucleus interactions has
revealed that the coherent and the stochastic approach
to multiparticle production processes supplement each
other.
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LETTERS TO THE EDITOR

Effect of Taking into Account the Radiative Decay M ode
in M easurements of the Antineutrino—Spin Correlation
in Neutron Decay

Yu. A. Mostovoil), I.A. Kuznetsovz), A.P. Serebrovz), and B. G. Yerozolimsky3)
Received April 26, 2000

Although photons accompanying neutron decay
have not been observed so far, there is no doubt about
the existence of this decay mode. Thus, the problemsto
be addressed here are those of assessing the probability
of the process and of establishing the relevant photon
spectrum. Among theoretical studies devoted to this
decay mode, the calculations reported in [1] stand out
becausethey yielded large radiative corrections (8% for
the total decay probability). For this reason, the accu-
racy of the measurements described in [2] was ques-
tioned in [1].

The procedure for calculating the coefficient B
describing the antineutrino—spin correlation isbased on
the analysis of the kinematics in the system formed by
the decay electron and the recoil proton, because a
direct measurement of the antineutrino momentum is
not possible at present. If, however, an undetected pho-
tonisemitted in the decay process, the above procedure
becomes ambiguous, which adversely affects the accu-
racy achievable in the calculations. In order to estimate
relevant uncertainties, it is necessary to compute the
correction that stemsfrom taking into account the prob-
ability of photon emission under the detection condi-
tions realized experimentally.

Here, we estimate the uncertainties in question for
the corrections presented in[3, 4]. For various values of
the emitted-electron energy E and of the cosine of the
angle between the emitted-antineutrino momentum and
the direction of the guiding magnetic field, cos(sv),
these corrections were computed by comparing the for-
mula used in [2] and the formula corrected for photon
emission without imposing specific experimental con-
ditions. For fiveintervals of the electron energy over the
Fermi distribution and ten values of the cosine, the
resulting corrections were tabulated in [3].

An analysis of the table from [3] reveals afeature at
|cos(sv)] = 0. However, the effect of this feature
decreases with increasing |cos(sv)|: the correction is
lessthan 0.4% at |cos(sv)| = 0.2, falling down to 0.02%

1) Russian Research Centre Kurchatov Ingtitute, pl. Kurchatova 1,
Moscow, 123182 Russia.

2 Petersburg Nuclear Physics Ingtitute, Russian Academy of Sci-
ences, Gatching, 188350 Russia.

3) Harvard University, 42 Oxford St., Cambridge, MA 02138 USA.

at [cos(sv)| = 0.8. On the basis of these values aone, it
might be expected that the total correction is small
because the maximum correction values correspond to
the domain where the efficiency with which the decays
were recorded experimentally is low [2], whereas the
minimum correction values occur in the domain of the
highest efficiency. Nevertheless, the conclusion that the
experimental accuracy [2] is not well justified was
drawn in [3, 4] without regard to experimental condi-
tions.

In order to estimate the effect of the radiative mode
of neutron decay, we have analyzed the overlap of the
corrections obtained in [3] and the array of experimen-
tal datafrom [2]. Recall that the sign of the calculated
corrections is sensitive to the direction of the guiding
magnetic field because the el ectron momentum singles
out aspecific direction. In view of this, we have consid-
ered that this field was periodically changed in the
experiment being discussed.

Our calculations involved the following steps:

(i) The experimental data from [2] were distributed
among five energy intervals E; (i = 1-5) corresponding
to theintervals chosenin [3].

(i) In eachinterval, the datawere distributed among
14 bins corresponding to the mean values [¢os(sv)[]( ] =
1-14), and the correction was evaluated for each bin by
using the values of E; and [¢os(sv)L] presented in the
tablesfrom [3].

(iii) These 14 corrections were summed with allow-
ance for their statistical weights w; defined as w; =

0
% / @Z 1% , Where g; is the uncertainty in the experi-
oj 50

mental asymmetry P - B within the corresponding bin.

(iv)) The corrections obtained in each of the five
energy intervals were averaged with the weights deter-
mined on the basis of the nhumber of events in these
intervals.

These calculations have revealed that, upon the
inclusion of the radiative neutron-decay mode pre-
dicted in [1], the coefficient B = 0.9821 + 0.0040 mea-
sured in [2] for the antineutrino—spin correlation may
be shifted only dlightly, by not more than 0.2 of the

1063-7788/01/6401-0151$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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standard error of the measurements. This estimate is
associated with a specific computation of the probabil-
ity of the radiative decay mode, which, inturn, callsfor
verification. But even if we put aside the question of
whether the computations of the probability in [1] are
valid, thereis every reason to claim that the accuracy of
the experimental data was indicated correctly in [2]
merely because the resulting correction proved to be
negligible at the largest values of the expected effect.
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Abstract—In order to polarize radioactive nuclei implanted in ahighly polarized protonic target, it is proposed
to use methods for the dynamical orientation of nuclei. The angular distribution of photons that originate from
the cascade beta—gamma decay of the 2Na(3") state in astrong magnetic field is calculated. It is shown that, if
the populations of Zeeman magnetic sublevels obey the Boltzmann distribution, the angular distribution of
emitted photonsisindependent of the sign of spin temperature; at the same time, the tensor polarization of qua-
drupole nuclei occurring in the intrinsic field of a crystal causes a strong dependence of the anisotropy on the
sign of spin temperature. A rich potential of adynamical orientation for studying the magnetic structure of rare
nuclei and the dynamics of their spin—spin interactions in dielectric host materials is demonstrated. Physical
and technological advantages and disadvantages of the method in the on-line regime of the implantation of
heavy nuclei are discussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Measurement of the anisotropy of angular distribu-
tions of beta—-gamma radiations is the most sensitive
method for studying the magnetic moments of nuclei
and their hyperfineinteractions[1]. Asarule, thenuclei
being studied are implanted in ferromagnetic sub-
stances, where they are polarized owing to a significant
intrinsic magnetic induction of about 50 T and owing to
cooling down to ultralow temperatures (10-30 mK).
Because of a high rate of spinHattice relaxation, a
Boltzmann (equilibrium) distribution characterized by
the lattice temperature is established in the system of
nuclear spins, but atight spin-attice coupling prevents
the use of the entire toolkit of known methods for
studying spin systems—for example, the spin tempera-
ture cannot be inverted under such conditions.

In amorphous dielectric materials (such as butanol
and propanediol [2, 3]), which have long since been
used as frozen polarized protonic targets, and in single
crystals—for example, in LiF featuring F centers—
methods of dynamical nuclear polarization are applied,
which ensure nearly a 100% polarization of nuclear
spins of either sign [4-6]. In contrast to ferromagnetic
host materials, dielectric materials are transparent to
electromagnetic fields, at least up to frequencies of
10! Hz, and have negligibly small intrinsic local mag-
netic fields (about 10 T); at the same time, a high
degree of proton polarization in them can be obtained
under easily accessible experimental conditions (tem-
perature in the range 0.2-0.5 K and conventiona mag-
netic fields of about 2.5 T). A feature that distinguishes
dielectric host materials from ferromagnetic ones is
that the times of spin- attice relaxation are enormousin
the former—21000 h or even greater—whenceit follows
that the magnetic moments virtually decouple from the
lattice. Owing to this, it becomes possible to achieve a

high degree of the vector and tensor polarizations of
admixed nuclei, to prepare non-Boltzmann populations
of spin states [7, 8], and even to focus spins in a pure
quantum state [9].

In the present study, we analyze the application of
dynamical nuclear polarization to polarizing radioac-
tive nuclei implanted in a polarized target. We show
that, by using dynamical nuclear polarization, it is pos-
sible to achieve a high anisotropy of gamma radiation;
for the case of a tensor polarization of quadrupole
nuclei occurring in a nonuniform magnetic field, we
additionally find the dependence of the angular distri-
bution of photons on spin temperature.

We dedicate this article to the blessed memory of
our friend and teacher M.I. Podgoretskii, who initiated
investigations along this lines [10].

2. POLARIZATION OF QUADRUPOLE NUCLEI

We begin by recalling the idea content of three
methods of dynamical nuclear polarization [4-8],
which show promise for the investigation of quadru-
pole nuclei. These methods were tested by applying
them to substances featuring high spin concentrations,
but, as far as we know, they were not explored in the
case of rare radioactive nuclei.

The most popular method isthat of dynamical cool-
ing [5, 6]. In order to implement this method, a para-
magnetic impurity (Kramers centers [4]), with a con-
centration N of about 10%° cm, isintroduced in atar-
get material by means of dissolution, diffusion, or
irradiation. In a magnetic field H,, the unpaired elec-
trons (S = 1/2) of the molecules of the impurities are
polarized to the degree

_ thysHgy
P, = 100% x tann 3= (M)
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where T, is temperature, h is the Planck constant, y; is
the gyromagnetic ratio for electrons, and k is the Bolt-
zmann constant. At H, = 25 T and T, = 0.3 K, the
degree of polarization is P, = 99.997%. From Eq. (1), it
follows that, under the same conditions, the proton
spins (the corresponding quantities are labeled with the
subscript p) are polarized only to the degree of P,
0.85% since yy/y, [1656.

The method consistsin transferring a high polariza-
tion of electron spins to admixed nuclei. For this, the
host material isirradiated with amicrowavefield whose
frequency v is close to the center of the line of the elec-
tron resonance that corresponds to the Larmor fre-
quency Vg, = YH, equal to about 7 x 10'° Hz in afield
of 2.5 T. It was shown by Provotorov [11] that, in the
presence of a saturating field, the behavior of a spin
system is governed by two spin temperatures rather
than by one. Of these, one—Zeeman temperature—
characterizes the distribution of spins over magnetic
sublevels, while the other—the temperature of the
Spin-spin reservoir—is associated with the energy of
spin-spin interactions. A nonresonance irradiation of
electron spinsleads to a significant reduction of the |at-
ter temperature, since the difference energy quantum
h|jv — vy | falls within the frequency spectrum of the
spin—spin reservoir, which has a comparatively low
heat capacity and a broad frequency spectrum of width
about 300 MHz. It can easily be seen that, in afield of
2.5 T, this spectrum covers the characteristic Larmor
frequencies of nuclear spins; therefore, the temperature
of the electron spin—spin reservoir and the spin temper-
ature of nuclei eventually tend to equalize. From this, it
follows, among other things, that, in the case of polar-
ized radioactive nuclei, the anisotropy of the angular
distribution of beta—-gamma radiation originating from
them furnishes information about the temperature of
the reservoir of spin—spin interactions. A positive fre-
guency separation (v — vg,) favors negative spin temper-
atures of nuclei because the energy quantum h(v — vg,)
is transferred to nuclear spins in this case. If the fre-
guency separation (Vv — V) is negative, nuclear spins
supply the missing energy quantum h(vg — V) to the
electron spin—spin reservoir [6]. An increase in the
degree of nuclear polarization is accompanied by a
decreasein the corresponding nuclear spin temperature
T;inrelation to the lattice temperature T, by afactor of

about Ty/T; = +wy /(2 /M) [6], where M, is the second
moment of the ESR absorption line and wy, = 211vy),. INn
the case of an optimum concentration of paramagnetic
centers, the maximum enhancement of the degree of
polarization is achieved at frequencies corresponding
to the slopes of the relevant ESR line, in which case the
absolute value of the ratio [T,/T;| can be as great as a
few hundred units. As a matter of fact, this method
makesit possibleto achieve anearly complete polariza-
tions of protons (x98%) and a £55% polarization of
deuterons. A feature peculiar to dynamical orientation

KISELEV, LYUBOSHITZ

isthat, over atimeinterva of 1 h, the Boltzmann distri-
bution corresponding to a minima temperature of
about £1 mK is established for all nuclear spinsin a
host material, including the spins of quadrupole nuclei
(it should be recalled that, in this case, the lattice tem-
perature lies in the range 0.1-0.3 K).

A similar effect of athermal contact with admixed
atoms arises if polarized proton spins are used instead
of electron spins [7, 8]. The difference is that it is not
the electron spins, but the polarized protons that are
exposed in this case to adternating-field radiation in a
strong magnetic field at a frequency close the Larmor
frequency v, = y,H, (about 106 MHz at afield strength
of 25 T). The width of the spectrum of local nuclear
fields is about a few tens of kHz (this is about three
orders of magnitude narrower than in the case of elec-
tron spins); therefore, such a spectrum cannot stimulate
Zeeman transitions of admixed nuclei and affect their
vector polarization, but it can change the energy of
spin—spin interactions of other nuclear spins[12]. Inthe
case of rare quadrupole nuclei dissolved in a polarized
target—and we are interested precisaly in this case—
the role of their dipole—dipole interaction can be disre-
garded, in which case the quadrupole interaction of
spins with an electric field in ahost material appears to
be aresonating system [8, 9]. Asaresult, the difference
energy hvg = h(v — vy) will increase or decrease,
depending on the sign of the frequency separation and
on the sign of proton polarization, the mean energy

[Hq Oof the interaction of quadrupole nuclel with a
crystal field. The Hamiltonian describing the interac-
tion of a nucleus with a nonuniform intrinsic crystal
field hasthe form [13]

3 3
1
EZ Z Q"ax ax;’

where e is the proton charge, ¢ is the potentia of the
electric field in the crystal being considered, and

3Q
2J(23-1)

is the tensor operator of the quadrupole moment [14,
15]. In Eg. (3), we have used the following notation:
Q isthe nuclear quadrupole moment measured in cm?,

J is the nuclear spin, and J; and J; are the operators
of the spin projections onto three mutually orthogonal
axes. In the presence of a constant magnetic field
H,, the total Hamiltonian of the interaction between
the nucleus and an externa electromagnetic field is
given by

2

Q, = 5.3+33-230+ 05,8 3

Ij|:|

+Ho, “)

where i isthe magnetlc moment in units of the nuclear
magneton and m, is the proton mass.
Vol. 64 No. 1
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If the quadrupole interaction is much weaker than
the Zeeman magnetic interaction, the eigenstates of the

Hamiltonian H arevirtually coincident with states cor-
responding to specific values of the nuclear-spin pro-
jection monto the magnetic-field direction. The contri-
bution of the quadrupole interaction to the energy E,, of
magnetic sublevels can be calculated on the basis of
perturbation theory. In the first order of perturbation
theory, we have
e A~

En = Mg ZMHo + [iHolmE )
If theintrinsic crystal field isaxisymmetric with respect
tothe principal zaxis of the tensor Qj;, the diagonal ele-

ments of the quadrupolelnteractlon operator can be
represented in the form [13]

m|AoimI= X(¢)(Bm’-J(J+1)J (6)

where @ is the angle between the constant-magnetic-
field direction and the principal z axis of the tensor Qj;
and

X(p) = th(Scosch—l). @

Here, v, is the characteristic frequency of quadrupole
interactions, which is given by

e’aQ
Ve T gni2i-1)’ ®)

where eq = 0%¢/0Z* = —20°¢p/0x*> = —20°¢p/0y>. It is con-
venient to recast the mean energy of the quadrupole
interaction of a nucleus with the intrinsic crystal field
[see Eq. (5)] into the form [8]

Hod= X(@)A, )

where
J

S Pun(3m =3I+ 1),

m=-J

Prn DEING Magneti c-sublevel populations normalized to
unity, has the meaning of nuclear alignment (tensor
polarization). From Eg. (9), it can easily be seen that
the change undergone by the mean energy of the qua-
drupole-interaction reservoir when it comes into con-
tact with the spin—spin reservoir will lead to achangein
the alignment of admixed nuclei. It should be empha-
sized that the above relations are valid both for nuclel
with integral spins and for nuclei with half-integer
spins and that the quadrupole interaction (6) vanishes at
J=0andatJ=1/2.

In the case being considered, we generally need two
spin temperatures T, and Ty—of these, thefirst charac-
terizes the mean energy of the Zeeman interaction of
spins with a magnetic field, while the second is associ-
ated with the energy of quadrupole interactions of spins
that are in thermal equilibrium with the reservoir of

(10)
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proton spin—spin interactions—in order to describe the
populations of stationary nuclear states that are purein
the spin projection onto the magnetic-field direction.
The situation admitting the most straightforward type
of analysisisthat of zero vector polarization of quadru-
pole nuclei, in which case the mean energy of Zeeman
splitting isequal to zero, the temperature T, of admixed
nuclei going to infinity [8]. In practice, the procedure
that resultsin the vanishing of the mean Zeeman energy
amounts to an irradiation with a saturating radio-fre-
guency field corresponding to the absorption line of
admixed nuclei. Under such initial conditions, the pop-
ulations of stationary nuclear states characterized by
fixed values of the spin projection monto the magnetic-
field direction are determined exclusively by the qua-
drupole interaction featuring only one spin tempera-
ture. Specifically, we have

JeXp[—anlﬂQImEJ

S exp[-BmnFicim]

m=-J

Jexp[—rsX(cp)(smz ~J(J+1))]

S exp[-BX(¢)(3m" = I(I +1))]

m=-J

where 3= 1/(KTy) is the inverse spin temperature of the
guadrupole-interaction reservoir. The sign of T,
determined by the sign of the product Py, - (v — V). %’
populations p.y, appear to be elements of the nuclear
spin density matrix, which is diagonal in the case being
considered. Taking into account Eq. (11), we can recast
expression (10) for the alignment of nuclei into the
form

Pmm =

(1D

J

3y mexp[-pX(@)(3m I +1))]
z : (12)
S exp[-BX(9)(3m’ - I3 +1))]

m=-J

A =

-J(J+1).

For the particular case of J = 1, this expression was
derived in [8] and was confirmed there in experiments
with deuterons. For v, > 0, it can be shown that, at inte-
gra valuesof J, A— —J(J + 1) inthelimit of very low
positive temperatures T, at angle values lying in the

range0 < o< arccos(3‘”2) —that is, al nuclel arein
the state where the spin projection is m = 0O; at

arccos(3_”2) << T2, the populationsare equally dis-
tributed among the m= J and the m=—J state, whilethe
alignment behavesas A — J2J - 1). A totaly differ-
ent situation is observed at very low negative tempera-
tures. If the spins have half-integer valuesand if v >0,
all spins populate the m = 1/2 and the m = -1/2 state
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with equal probabilities for angle values in the range

0<sop< arccos(3'”2) , the alignment A then tending to
thelimit 3/4 —JJ + 1).

The method discussed above was proposedin[7, 8];
it can proveto be of use at modest quadrupol e moments
of about 3 x 102" cm?, in which case hvg = h(v — v ).
Experimentally, it takes afew tens of seconds toimple-
ment polarization by this method, the spin temperature
reaching £10 pK.

Because of typically low magnetic moments of qua-
drupole nuclei, the degrees of polarization that are
achievable for admixed nuclel within the conventional
dynamical-orientation method will hardly exceed
+20%; therefore, a considerable enhancement of polar-
ization on the basis of the cross-relaxation method fea-
turing polarized protons [16] appears to be a consider-
able advancement toward a practical utilization of
dynamical methods. Basically, the idea consists in the
following: suppose that, in addition to J = 1 nuclei, a
host material contains some highly abundant nuclei—
for example, polarized protons (J = 1/2)—which, in
view of alarge gyromagnetic ratio, are characterized by
alarge heat capacity of the spin system. Since the pro-
ton spin is 1/2, the interaction specified by Eq. (9) van-
ish for them. On the contrary, the interaction of quadru-
pole nuclel (J > 1/2) with the lattice survives in zero
magnetic field as well; by reducing H,, we can there-
fore render the Larmor frequency of the proton spins
equal to the quadrupole splitting of the spins of
admixed atoms. Just at this point, there occurs a cross-
relaxation transfer of a high proton polarization to the
guadrupole nuclei.

Relevant experiments were performed with ammo-
nia (NH;) [16]. In the field of 0.056 T, the quadrupole
splitting of stable nitrogen nuclei, 6v, = 2.4 MHz, is
equal to the Larmor frequency of protons; under such
conditions, N nuclei are polarized to a nearly 50%
degree astheresult of the cross-relaxation process[16],
which ensures ahigh polarization rate estimated at [17]

= (VnIyw) H2cos % AODD (13)

where yy/yy = 7 x 1072 is the ratio of the relevant
nuclear gyromagnetic constants, T, = 107 sisthetime
of the transverse relaxation of proton spins, 4 is the
frequency separation between the spins, Ay is the pro-
ton linewidth, and & is afree parameter on the order of
unity. Setting A, = Ay, we obtain the rough estimate
W = 2 ms—that is, an extremely short polarization
time; it would be profitable to use this in the on-line
regime of implantation of nuclei in the target. The dis-
tribution of spins among magnetic sublevels that is
obtained by this method is not a Boltzmann distribu-
tion, but it can befrozen for along time. Thisisbecause
the magnetic sublevels of quadrupole nuclei are not
equidistant, so that equilibration with respect to inter-
nal degrees of freedom is associated with long times of
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spin-lattice relaxation. Theoretically, spins can be
focused into a pure quantum state in such systems[9].

The method considered above can also be used in
the case of radioactive nuclei that are implanted in a
polarized target and which enter into the composition
of diamagnetic atoms or Kramers paramagnetic centers
[4]. However, the very idea that underlies the dynami-
cal orientation method as applied to rare nuclei and
which relies on the dynamics of collective spin—spin
interactions must be tested experimentally. It is conve-
nient to implement such tests by using comparatively
long-lived radioactive nuclei like the >Na isotope. For
this nuclear species, the angular distribution of the rel-
evant radiations is analyzed in detail below.

3. CALCULATION OF THE ANGULAR
DISTRIBUTION OF GAMMA RADIATION

Here, we will derive the required formulas for the
anisotropy in the angular distribution of photons origi-
nating from the decay of polarized nuclei. The exist-
ence of this anisotropy is an immediate corollary of the
fact that the diagona density-matrix elements pr,
associated with the action of any mechanism of dynam-
ical polarization differ significantly from the value
(2J+ 1)7!, which corresponds to unpolarized nuclei.
The resulting formulas can be used for any distribution
of spinsamong magnetic sublevels—in particular, they
makeit possibleto calculate, in the case of tensor polar-
ization that arises owing to quadrupole splitting, the
angular distribution of photons versus the sign of spin
temperature [see Egs. (11), (12)].

If the excited nucleus being considered has a spin J
and if the spin of the final nucleusisJ' = 0, the angular
distribution of photons that is taken with respect to the
magnetic-field direction and which is normalized to
unity hasthe form

W(e) = 2‘”12 P L(A(0)"+ (d1(0))"], (14)

m=-J
where dr(n)1 (8) and d 1 (8) are Wigner functions (ele-

ments of the matrix of f| nite rotations) and pmm arethe

populations of spin states (these populations coincide
with diagonal density-matrix elements). Equation (14)
immediately follows from the formalism of helicity
amplitudes, which is convenient for describing two-
body decays[18, 19] (see Appendix). For J' #0, asim-
ilar formula for purely electric or purely magnetic
gamma transitions of specific multipole order L hasthe
form

2J+1

W(e) - (CJ m-u Lu)
m.z_J“_Z_L (15)
2
x o (d(8)) + (d'2,(8))7],
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where C is a Clebsch—Gordan coefficient. InJ — J' +
y decays, the multipole order L of the radiation can gen-
erally takeall integral valuesintheinterval [J-J'|<L <
J+J'; inthe particular case of J'=0, wehave L =J, and
expression (15) reduces to (14). Frequently, gamma
decay is dominated by an electric transition of the low-
est muItlpoIe order L,,;, = [J—J'|, in which case we can
use expression (15) as an approximation. The spinsJ and
J' can then be either both integral or both half-integer.

In the case where adynamical polarizationisimple-
mented with the aid of polarized protons (see Section 2),
the population probabilities are described by Eq. (11).
If Zeeman levels in a magnetic field H, obey a Boltz-
mann distribution, one has [20]

j
_mx mx/J
Pmm = € /Z e

m=-—j

= mx”sth Hsnh%%l ZJED

(16)

where

_ e |'|o
H2m c kT

Here, W is the magnetic moment in units of the nuclear
magneton, m, is the proton mass, c is the speed of light
in avacuum, and T is spin temperature.

Let us now consider the angular anisotropy of pho-
ton emission in cascade beta-gamma transitions of
nuclel having a nonzero magnetic moment (nonzero
spin J) [10]. Suppose that intermediate daughter nuclei
that have anonzero spin J' and which in turn undergo a
fast gamma decay are formed as the result of beta
decay. We will see below that, if atotal orbital angular
momentum L is transferred to the emitted electron and
the emitted antineutrino and if their linear momenta are
not detected (that is, the relevant averaging is per-
formed), the polarization of the daughter nucleus
immediately following the beta-decay processis unam-
biguoudly related to the polarization of theinitial long-
lived nucleus and, through it, to the initial spin temper-
ature. The lifetime of intermediate nuclei must be so
short that their spin state does not have time to change
sizably. More specifically, this means that the lifetime
of an intermediate nucleus must be much smaller than
the inverse frequency of hyperfine splitting of atomic
levels (T < 108-10~ s). Under these conditions, the
angular distribution of photons with respect to the
direction of the magnetic field H, contains information
about the unified spin temperature of initial radioactive
nuclei and nonradioactive nuclei under study that sur-
round them. Let us consider the generic decay process

a9 . pd 4 XL

(17)

under the condition that the set of particles X whose
momenta are not fixed carries away atota orbital angu-
lar momentum L. Since, in the case being considered,
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there are no specific directions other than those that are
associated with the polarizations of particle a, the
polarization parameters of particle b formed as the
result of the above decay process are determined exclu-
sively by the vectorial composition of angular
momenta. In other words, we can replace the set of par-
ticles X by afictitious particle whose spinis L, assum-
ing that the orbital angular momentum of the (b + X)
system is equal to zero. The elements of the spin den-
sity matrix for particle b arethen related to the elements
of the spin density matrix for particle a by the simple
equation

Jm+p J ey J)

L
z CimipComLuPmey i+

W=-L

where C stands for Clebsch—Gordan coefficients. It can
easily be seen that, if the spin density matrix for the pri-
mary particle a is diagonal, the density matrix for the
final particle b is also diagonal and that

) -

Pmin = (18)

+ Uy 2
Prm = Z (Cmii) Prrumey: (19)
n=-L
From Eg. (11) and from the relation
.]m+p 2 _2J+1
Z(CJmLu - 2J|+11 (20)

which is known from the theory of the composition of
angular momenta, it follows that, if the decaying parti-

cleisunpolarized [pr(ﬂjlu mep = (2I+ 1y for m+p| <

J], then the product particle b is aso unpolarized:

prﬁfm) =(2J' + )9, . Equation (18) iswell known in
the theory of the gamma decay of oriented nuclei—for
afinal nucleus produced viatransitions of specific mul-
tipole order L, this equation determines polarization
features averaged over all directions of photon emis-
sion [19, 21]. By X, we mean a photon in this case. In
accordance with the aforesaid, Egs. (18) and (19)
describe the beta decay of nuclei as well (and also K
capture), provided that the orbital angular momentum L
is transferred to the product leptons and that the direc-
tion of their emission is not recorded. In particular, the
angular momentum of the electron-antineutrino
(positron—neutrino) system is equal to unity in the case
of an allowed Gamow—Tdller transition [22]. If |- J'| =
1, the alowed Gamow-Teller transition is dominant
(the remaining transitions are strongly suppressed); in
this case, the polarization of the nucleus produced via
betadecay isaccurately described by Egs. (18) and (19)
alL=1

Let us consider the case where, in the beta decay of
polarized admixed nuclei with a spin J, the spin of the
intermediate short-lived nucleus takes the value of J' =
J—1orJ =J+ 1. Further, we assume that, as the result
of gamma decay, the intermediate nucleus goes over to
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aspinless state. Taking into account Egs. (14) and (19),
we then find that the angular distribution of photons
that is taken with respect to the magnetic-field direction
(quantization axis) and which is normalized to unity
can be reduced to the form [10]

.
2J'+10 ' '

10 (o p0
O

W(8) =
(21)

2

x[(d528))" + (d521(8))°] + 2p% (d52(6))

Oodad

(3 Im+py2 (J)
where pp, = hZ“:QVﬂ(CJ'm 1) Pmepmep AtJ=3

and J' = 2, we have

51, ¢ 2
oy (p£2)+p£2)—2

2 . 2
8r (1+cos0)sin’6

W(8) =

(2 (2

+ %(p11 + p_l_l)(4cos46 —3cos’0 + 1) (22)

.o O
+ 3pé§) cos’0sin’0 [

O
where

2 3 1 3 1 @
o = o+ Lo+ Lo,

2 2 3. 8 3®.1@
pil) = épgz) + Epgl) + Epéo)v

@_203,3.03,2 0

Poo = gpll +§poo +§p-1-11 (23)

2 2 (@ 8 @ 1
P 1 = 5P o 2P * P

2 3 1 @ 1
piz)—z = pfg—3+§p£2)—2+1_5p£1)—1-

If J=2and J' = 1, the angular distribution in question
is given by

W(8)

3L, o,

24
= 5 oh +p (1 + coB) + pPsine

1 22 1 @ 1 ¢
pi = Pz * 5PiE * 5Poo

1 ¢

(1) _ 1 (2) 2 (2)
+_p
2 —-1-1»

Poo = épn +§poo (25)
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1 2 1 ¢ 1 ¢
P 1 = %+ 508 1 + 2

AtJ=1andJ = 2, the angular distribution of photons
has the form (22) with

ps = gpﬁ),
o = Spl+ 2ol
P = %pﬁ’ + %pflf_l + %péé), (26)
p£21)—1 = %p£1£—1 + %p(()é),
p9, = gpflf_l-

From expressions (16) and (21)—26), it follows
that, in the case of the Boltzmann distribution of Zee-
man levels in a magnetic field, reversal of the sign of
spin temperature does not affect the form of the angular
distribution of gamma radiation because these expres-
sions are symmetric under the substitution p,, ==
P_m_m OnN the other hand, reversal of the sign of tem-
perature inevitably changes the angular distribution in
the case where there is aquadrupol e splitting of the lev-
els. Toillustrate the validity of this statement, we note
that, at sufficiently low spin temperatures, the elements
of the spin density matrix are transformed as p;; +
P_;_ 3 == Py Under the above reversal of the sign [see
comments to Eq. (12)].

4. CALCULATION FOR THE CASCADE
TRANSITION 2Na(3*) e 22Ne(2%) - 22Ne(0)

By way of example, Podgoretskii proposed studying
the angular correlations of gamma radiation in the pro-
cess?Na(3*) - 22Ne(2%) - 22Ne(0%) [10]. We have

analyzed the behavior of the angular distribution, con-
sidering the various methods of dynamical nuclear
polarization that were discussed in Section 2 (see
above). Recall that the experiments being discussed
must be conducted at an invariable H,, the only differ-
ence in the implementation of these experiments being
the following: in the case of dynamical orientation, the
electron spins of paramagnetic centers are irradiated
with a nonresonance microwave field, while, in the
aternative case, it is polarized protons that are sub-
jected to the effect of a nonresonance radio-frequency
field. It follows that the diagonal elements must be cal-
culated by formulas (16) and (11), respectively.

The radioactive nucleus **Na (see Fig. 1) has a half-
life of 2.6 yr, its spin—parity and the magnetic moment
(in units of the nuclear magneton) being 3* and p =
+1.75 [23], respectively. Presently, we do not know
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experimental data that would suggest a nonzero qua-
drupole moment of the ?Na nucleus (see [23, 24]). In
order to demonstrate the potentia of the new procedure
for measuring quadrupole moments, we will neverthe-
less assume that this nuclear species has a small qua
drupole moment, whose magnitude isto be determined.
An intermediate nucleus*?Na with spin J' = 2 isformed
astheresult of aGamow—Teller 3* transition character-
ized by an endpoint positron energy of 550 keV (or K
capture). The half-life of this intermediate nucleus is
3.7 x 1072 s, that is, its lifetime is much smaller than
the characteristic period for the hyperfine splitting of
atomic levels. The 2Ne(2+) state emits 1270-keV pho-
tons, going over to the stable spinlessisotope ?>Ne [23].

In the case being considered, the angular distribu-
tion of 1270-keV photons with respect to the magnetic-
field direction can be calculated by formulas (22) and
(23), irrespective of the channel through which the tran-

W(x,0) _ 2

3 3
10(922) + piz)—z

23

g e —

2.6
#Na(3*) <

/N

R ——
~————

B, 90%; EC, 9.5%
2Ne T1=3.7ps

-
2+ =——————%

4

/N

_ 7
~——

y=127MeV

7oNe

B, 0.06%
0 /

Fig. 1. Diagram of beta-gamma transitions for 22Na(3*)
nuclear state.

sition 2Na(3*) — 2Ne(2+*) — 22Ne(0*) occurs, B+
decay into apositron and neutrino or K capture. In gen-
eral, theratio of the intensities of the gammaradiations
emitted at zero and aright angle is given by

) +8(ps +p7_1) + 3peo

W(x12)  35(p% +p8)_3) +5(p% +pI_5) +3(p2 +p3_1) + Poo

With the aid of Egs. (16) and (17), it can be shown that,
in the case of the Boltzmann distribution of Zeeman
levelsin a magnetic field, expression (27) assumes the
form

W(x, 0)
W(x, TU2)

_2 10cosh(2x/3) + 8cosh(x/3) + 3
35cosh(x) + 5cosh(2x/3) + 3cosh(x/3) +1°

In experiments, it is convenient to calibrate detectors of
nuclear radiation by using unpolarized nuclei, in which
case the radiation isisotropic—that is, W(x=0) =W, =
1/(4m). Figure 2 shows the angular distributions of the
gammaradiation from polarized nuclei >*Na. Thesedis-
tributions, normalized to W, were cal culated by formu-
las (22) and (23) with the distribution (16) of spins
among magnetic sublevelsat J= 3 and

(28)

— HO
X = 0.64_|_,

where H, and T are measured in T and mK, respec-
tively. If x < 1 (weak magnetic field, high spin temper-
ature), it can easily be shown that all the quantities prﬁ

are approximately egqual to one another, so that the
angular distribution of photonsisisotropic. At x> 1,in

(29)

which case pg) = pé? =1, thereis asharp anisotropy:
expression (22) yields

_ 5 4
w(e) = 16n(1 cos 0). (30)
If the quadrupole moment of ?>Na is equal to zero
exactly, the Zeeman magnetic sublevel s are equidistant;
PHY SICS OF ATOMIC NUCLEI
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for apolycrystalline or an amorphous host materia, the
angular distribution has the shape shown in Fig. 2. In
the process of dynamical orientation, spin temperature
is reduced, whereby the vector polarization, which is
determined by the Brillouin function

J
1
P, = 3 z MP,m = B(X, J = 3),

m=-J

is increased. The angular distribution at x = £0.25 in
Fig. 2 corresponds to spin temperatures of about
6.6 mK, which are easily accessible in experiments,
thedistributionsat x = +1.5 are associated with the low-
est temperatures of £1.1 mK. Aswas mentioned above,
the shape of the distribution undergoes no changes
upon reversal of the sign of temperature.

Another case of the angular distribution of gamma
radiation, that of zero vector polarization and a high
tensor polarization of radioactive nuclei, is illustrated
in Fig. 3. It is assumed here that the microwave field
that generated a dynamical orientation of nuclei owing
to electron spins is switched off and that spin-3 radio-
active nuclei having anonzero quadrupole moment and
occurring within a crystalline host material are polar-
ized as the result of the radio-frequency saturation of
polarized proton spins surrounding these radioactive
nuclei (see Section 2). A calculation revealsthat, at zero
angle between the principal axis of the single crysta
and the magnetic-field direction, the angular distribu-
tion of gamma radiation from the cascade beta—gamma
decay of >’Na is affected by aweak quadrupoleinterac-
tion of the nucleus with a nonuniform electric field of
the crystal. Solid and dashed curves represent the
results for, respectively, positive and negative spin tem-
peratures. The populations of spin states were deter-

(1)
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4ATIW(O)
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0.8 cosO

Fig. 2. Ratio of the angular distribution of gammaradiation
in the cascade beta—gamma decay of the ?Na(3*) nuclear
state to theisotropic distribution Wy = (4. Theparameter
xisgiven by Eq. (29).

mined by formula (11). It can be seen that, in the pres-
ence of quadrupoleinteraction, the shape of the angular
distribution changes qualitatively upon reversal of the
sign of temperature. In amorphous and polycrystalline

samples, the density-matrix elements p,(n?1 (cos@) in
Eq. (23) must be averaged over the isotropic distribu-
tion of axes, the integration measure being d(cos@). As
a result, the anisotropy is smoothed out to a consider-
able extent (see Fig. 3), but the dependence of the angu-
lar distribution of photons on the sign of spin tempera-
ture still survives.

In order to polarize nuclei having alarge quadrupole
moment, it is convenient to use the cross-relaxation
method featuring polarized protons. For this, the field
H, must be adiabatically reduced to avalue at which the
Zeeman splitting of proton spins in the residual field
coincides with the frequency of the quadrupole transi-
tion [16] in the nuclei being considered. In the reduced
field, the fast cross-relaxation process occurs between
the proton spins and the spins of rare quadrupol e nuclei
[seeEq. (13)]. Thereisevery reason to hopethat the on-
line polarization of quadrupole nuclei implanted in a
polarized protonic target can be accomplished by using
this method. As was mentioned above, this concur-
rently opens the possibility for preparing pure quantum
states characterized by specific values of spin projec-
tions onto the magnetic-field direction [9]. For the same
decay scheme 3* —~ 2* ——~ 0" as for *Na, we have

calculated the angular distribution of gamma radiation
from nuclei occurring in pure quantum states. The
results of this calculation are displayed in Fig. 4.

Dielectric host materials are advantageous in that
thelatticetemperature at whichitistill possibleto polar-
ize quadrupole nuclei ishigher in them (about 0.1 K) than
in ferromagnetic host materials (about 0.01 K). Thisis
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ATIW(O)
1.4

BX = -0.5; @=0°

1.0

0.6

0.2

Fig. 3. Angular distributions of gammaradiation in the cas-

cade beta-gamma decay of the 22Na(3*) nuclear state in a
single crystal (@ = 0) and in an amorphous host material
(aver.) for specific spin temperatures of the same magnitude
but of opposite signs. The label “aver.” on the distributions
for the latter case denotes that they are averaged over the
angle . The graphs were calculated for a high tensor and

zero vector polarization. It is assumed that 22Na(3*) nuclei
in a dielectric host material have a small quadrupole
moment.

because the cooling rate in a cooler employing a disso-
lution of *He in *He decreases quadratically with
decreasing temperature, so that the rate of cooling of
the material used is approximately 100 times higher at
0.1 K than at 0.01 K. By way of example, we indicate
that, if a beam of intensity 10° radioactive nuclei per
second that have an energy of 10 MeV/nucleon and a
mass number of 60 isfully absorbed in a polarized tar-
get, the dissipated power is about 0.1 mW. At atemper-
ature of about 0.1 K, this heat influx can readily be
removed by adissolution cooler of conventional power,
but, at 0.01 K, the required cooling rate is inaccessible
in practice. That it is necessary to reduce thefield H, is
adisadvantage of the method of cross-relaxation polar-
ization because the time of nuclear spin-attice relax-
ation decreasesin this case down to afew tens of hours.
Nonetheless, these times remain sufficiently long for
on-lineinvestigationsin therealms of short-lived nuclei
to be accomplished.

The above analysis implies that the method of
dynamical orientation will be applicable in the case of
rare nuclei as well. The question of whether thisis so
requires an experimental verification. Some other ques-
tions—for example, that of determining the rate at
which rarenuclei are polarized by the dynamical -orien-
tation method if they are implanted in atarget that con-
tains preliminarily polarized protons—also remain
unclear. These and many other questions cannot be
solved within classical NMR methods; here, it is neces-
sary to perform direct experimental tests with radioac-
tive nuclei.
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ATIW(O)
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1.00
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Pn=1(pPr,=1

0 0.4

1
0.8 cosH

Fig. 4. Angular distributions of gamma radiation in the

3* - 2* -~ 0" cascade beta-gamma decay of anucleus

for the case where @l spins are focused in the m; state.

5. CONCLUSION

In applying methods of dynamical nuclear polariza-
tion to studying magnetic and quadrupole moments of
implanted nuclei, an advantage offered by dielectric
host materials in relation to ferromagnetic ones is that
the former make it possible to do this at higher lattice
temperatures (about 0.1 to 0.2 K), to eliminate the
effect of the lattice on the spin system, and to weaken
the effect of local intrinsic magnetic fields. Fundamen-
tally, the dynamical polarization of radioactive nuclei
will open the way to study special features of the stetis-
tics of rare nuclel and their spin—spin interactions and
enable one to employ reversal of spin temperature to
explore the quadrupole moments of such nuclei; we
also hope that this method can be harnessed to imple-
ment on-line polarization of nuclei implanted in a
polarized target. The above analysisreveals the physics
and technological potential of the methods of dynami-
cal nuclear polarization, as well as the possible limita-
tions on the applications of these methods.
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APPENDIX

Let us consider an arbitrary two-body decay C —~
a + b. In the rest frame of the decaying particle C, the
angular distribution of decay products hasthe form (see
[18, p. 314])

w(e, ) = 2=

S S la(ha Ayl din(®)

Aghp mmt

xdin(8)e™ ™o,
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where 6 and ¢ are, respectively, the polar and the azi-
muthal angle; J is the spin of particle C; A, and A, are
the helicities (spin projections onto the momentum
direction) of the final particles a and b, respectively;
N =Mh,— Ay &My, Ay are the helicity amplitudes nor-
malized by the condition

Y la(hs, S RENE
)‘a)\b
m and m' are the projections of the spin of particle C
onto the quantization axis; and p,,,,; are elements of the

spin density matrix for particle C. The angular distribu-
tionin (A.1) satisfies the normalization condition

2nm

W(8, $)sinBd$pds = 1.
!

(A2)

(A.3)

We further apply expression (A.1) to the decay of an
excited spin-J particle into a photon and afinal spinless
nucleus. In this case, thereis 2’-pole radiation [of elec-
tric type if the reative parity of the parent and the
daughter nucleus is n = (1)’ and of magnetic type if
n = (-1)*1]. If particle a is a photon, its helicity can
take only the values of A, = +1 and —1 because of zero
photon mass. For particle b, we take here afinal spin-
lessnucleus (A, = 0). Taking into account parity conser-
vation and Eg. (A.2), we obtain

ja(+1,0) = Ja(-1,0)” = 3. (A4)
Assuming that, in equilibrium, the spin density matrix
isdiagonal in the representation of states characterized
by specific values of the spin projection onto the mag-
netic-field direction and considering that d functions
possess the property

2@ = |d2®)|

we arrive at expression (14), which involves no addi-
tional gamma-decay parameters. If J' is nonzero, the
angular distribution of photons depends on the ratio of
helicity amplitudes. In the case of adiagonal spin den-
sity matrix, the angular distribution of photons that is
constructed with allowance for parity conservation can
be represented as

,
2J+1 2
W(e) = la(L, Ap)|
am Ab; (A.5)
X [(dS) 5, (8))”+ (A5 15y (8))°1,
where
la(+1, Ap)|® = |a(=1, -Ap)|%,
(A.6)

Sl = S =
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Abstract—The effective adiabatic approximation is constructed for the problem of three bodies on a straight
line that are coupled via short-range attractive delta-function potentials. It is shown that, in this system, there
arise a nonlocal momentum-dependent long-range effective potential and a polarization potential. A lower
bound on the binding energy of the system is obtained to arelative precision of about 107°. It is shown that, to
within 0.03%, this approximation yields a correct asymptotic behavior of solutions and a correct behavior of
the phase shift for elastic scattering at relative momenta bel ow the three-body-breakup threshold. A local con-
vergence of the adiabatic expansion in a finite interval of the radial variable is demonstrated. © 2001 MAIK

“ Nauka/Interperiodica” .

Dedicated to the blessed memory of Professor Vladimir Vasil’ evich Babikov

1. INTRODUCTION

Nonloca potentia s and momentum-dependent poten-
tials, referred to in the literature as velocity-dependent
potential's, have been widely used to construct a phenom-
enological description of nucleon—nucleon interaction
[1]. Similar potentialsarisein the adiabatic representation
of the three-body problem [2] as the result of implement-
ing projection onto open channels via a canonical trans-
formation [3]. This construction of the effective adiabatic
approximation is similar to projecting solutions to the
Dirac equations onto large components by means of the
well-known canonical Foldy—Wouthuysen transforma:
tion [4]. It is of topicd interest to investigate the conver-
gence of the adiabatic method and to construct an effec-
tive approximation of solutions that is consistent with
correct boundary conditions [5]. For investigations of the
proposed type, it is convenient to use the problem of three
particles on a straight line that are coupled by pair dta
function potentials [6] since this problem has an analytic
solution [7]. The first steps aong these lines were made
in [8]. It was shown there that the standard adiabatic
approximation yields an upper bound on the exact value
of energy and alower bound on the phase shift for elastic
scattering. However, the exact phase-shift value and the
phase shift in the adiabatic approximation were found to
diverge significantly as the relative momentum increases
up to the three-body-breakup threshold. This is because
thefull set of adiabatic equationsistruncated to one equa
tion of the conventional adiabatic approximation. A direct
analysis of the convergence of the adiabatic expansion for

D Temple University, Barton Hall, 1900 N. 13th St., Philadelphia,
PA 19122-6082, USA.
* e-mail: proskur@thsunl.jinr.ru

an infinite set of coupled equations is a rather cumber-
some problem, so that the application of an aternative
approach within the effective adiabatic approximation
seems preferable.

For a system of three identical particles on a straight
line that interact via attractive pair delta-function poten-
tials, we construct here an effective adiabatic approxima:
tion involving a momentum-dependent potential. Within
the effective adiabatic approximation, asymptotic expres-
sions for solutions to an infinite set of equations in the
adiabatic representation are derived by isolating an
asymptotic energy-dependent centrifugal potential that is
calculated on the basis of sum rules for acomplete set of
asymptotic adiabatic basis functions. The convergence of
the adiabatic expansion is checked numerically by con-
sidering saturation of the sum rules. It is shown that the
inclusion of nonadiabatic channel coupling restores exact
values of eastic-scattering phase shifts in asymptotic
solutions. By means of direct calculationsin the effective
adiabatic approximation, we find a new lower bound on
the exact vaue of energy and reproduce a correct behav-
ior of the phase shift as the relative momentum increases
up to the three-body-breakup threshold.

2. FORMULATION OF THE PROBLEM

For three identical particles on a straight line, we
introduce local Jacobi coordinates {&, n} O R? in the
c.m. frame as

1/2

s
1/2 + X

E = % [g(lz %_XS}!

)]

1063-7788/01/6401-0027$21.00 © 2001 MAIK “Nauka/Interperiodica’
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where {X,, %, X;} [ R! are the Cartesian coordinates of
the particles. Let us now go over to hyperspherical
coordinates p and 8, which, in our case, appear to bethe
conventional polar coordinates

n = pcosB, & = psinB, -mM<O<TL 2)

In terms of the hyperspherical coordinates, the
Schrddinger equation for the wave function takes the
form

10°
p206?
= EW¥(p, 0),

where E is the c.m. energy and m = (mym, + m;m; +
mymy)/(m; + m, + my) is the effective mass [9], which
coincides, for identical particles (m, = m, = m; = m),
with the mass m of each particle. Let us define the
potential V(p, ) asthe sum of pair potentials

V(p, 8) = V(«/2p|cosB|) + V(./2p|cos(6 — 2113)|)
+V(/2p|cos(8 + 21U3))). )

In order to be able to draw a comparison with an
exactly solvable problem [7], we investigate the
reduced two-body Hamiltonian

?m[gaappaap }“(P’ 6) +V(p, 8)¥(p, 6)

3)

> 2
h® = -5+ SV (/2n),

which involves a pair potential proportional to a delta
function, V(+/21) = gd(|n|)/+/2 , with the coupling con-

stant g = cK(%2/m) being taken at K = /2 T76. Inthe case
of attraction (c = —1), the Schrédinger equation in the
local representation of the pair channel (n/p > 1) then
has the form (in the system of unitswherez = m=1)

0 o°

D_a——nz_ZRé(lnl)_ej(O)%pj(n) =0, )

where K = K/./2 = U6 is the effective coupling con-

stant in the pair potential and ej(o) = 2mE;/h* isthe dou-
bled energy of the two-particle system. A complete set
of solutions belonging to the discrete and the continu-
ous spectrum of the two-body Hamiltonian has the
form

e = &% @n) = JRexp(=kInl),

+oo

[ojoo= jcpé(n)cpo(n)dn =1,

e = p’, @) =

%T%Xp(ipn)

VINITSKY et al.

it
+ —Lexp(i u 6
o P(ilplinhg (6)
¢ = Kipl
P lpl ik’

+00

O|p0= _[cp’é(n)cpp(n)dn =0,

+o00

plp'0= Icp’;(n)cpp-(n)dn = 8(p-p).

Having isolated the factor p~'/2 in solutions to Eq. (3)
with the aid of the standard substitution W = p~ 12y, we

obtain
55
ap

where h, is a parametric Hamiltonian at each fixed

)

valueof p O Ri . Specificaly, we have

Fo= 1 _ o, 2m
ho = h,——=, h, = h{’ +=V(p,0),
ap fi ®
ho - 19
P 2692

where the potential energy (4) for the case of attraction
(c = 1) characterized by the effective coupling con-

stant K = 176 is given by

—v 0) = 295 566,
V(0.0 = 25 (606

8, =nm/3+1/6, n=0,1,...,5

A complete orthogonal set of the adiabatic functions
Bi(p, 6) U F, ~ Ly(C) is determined by solutions to the
e|genval ue problem onthecircle C (-t< 0 < ); that is,

hij(p, 8) = Aj(p)B;(p, 0),
mm)=qm—i@
B,(p)IB;(P)1% ©)

= [B(p.O)V(p. 0)B;(p, 0)d6 = 3;.

The set of the eigenfunctions that are fully symmetric
with respect to permutations of identical particles,
PHYSICS OF ATOMIC NUCLEI
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which includes the ground state, has the form [6]

2

2
Yo —

Bo(p, ) =
’ n(yZ —x) + |

cosh[ 6Y,(8 —n1v/3)],
(10)

2 2

S+ X
B(p,6) = |—Fl—r—
(y; +x) I

for the following six sectors of the circle C:
NT/3-1/6<0<n/3+16, n=0,1,...,5

The eigenvalues €,(p) and €(p) can be expr%sed in
terms of the reduced eigenvaluesy, and y, as

CBYorf
Dp 1’

cos[ 6y;(6 —nT1U3)]

eolp) = - &(p) = Eﬁy’D

The eigenvaluesy, and y; are determined from the tran-
scendental equations

Yotanh(Ty,) = —X,
j - 1/2 < yj < j1

itan(my;) = X
Rt (Ty;) an
i =123, ..,
where

X = c6p = 036p
We note that the matrix elements Vg (p) of the poten-
tial energy (4) that are taken between the solutions
Bff) (6) U Fy ~ Ly(C) to the problem of afree rotation
on the circle C with the Hamiltonian h,()o) and which do
not vanish at K — K' =0(mod 6) are given by
(2m/A”) K|V (p)IK'TE
= (c/p)exp(-iKTU2)exp(iK'TU2).

In the vicinity of the triple collision point p = 0, these
matrix elements are negligibly small in relation to the
matrix elements of the rotation operator that have the
form

KIh K = pK(K + 1)8c
Therefore, the set K = j(mod6)—that is, K=6j,j =0, 1,
2, ...—classifies the eigenfunctions of the parametric
Hamiltonian h,

KZ—-1/4
Ai(p) — A(p) = ———,

(12)

B,(p,8) — B(6) = %exp(iKe).
Tt

For large values of p, it can be shown that, in one of the
sectors of the circle C, local asymptotic solutionsto the
parametric problem (9) correspond to the solution in
(6) for the ¢ (n) pair channel. In particular, the eigen-
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functions of the Hamiltonian h, correspond to the solu-
tionsfor the pair channel at j = O that is,

co(p) — €, Bo(p,8) — Jpgo(n).  (13)

If, however, j # 0, then it follows from the rule of alter-
nation of solutions to the transcendental Eq. (11) that
we can determine the countable covering K/p ~ p and
use the correspondence

¢(P) — €2, Bi(p,8) — Jpg,(n),  (14)

which completes a formal classification of the set of
adiabatic basis functions. An additional symmetriza-
tion of asymptotic setsis performed by means of asim-
ple transformation of the exponential functions into
cosines; however, it is more straightforward to calcu-
late matrix elements in the exponential representation.
By using the above correspondence of the bases at
small and large p values, we can introduce aglobal adi-
abatic representation formed by the K-harmonic repre-
sentation and alocal Jacobi representation for theradial
wave function W in terms of the coordinates (p, 8) and
(p, n), respectively; that is,

W = p‘”z B;(p. 8)X;(P)

p” z B (B)X(P)

K = -

5 0%
O
o [}
]
nN)XolP) + PO,(N)Xo(P
()Xele) + [ APy ()X5(p)

DgDDDDD

Averaging Eq. (7) over the basis B(o) (0), wearriveat a

set of coupled equations (A = m= 1) in the K-harmonic
representation [9]:

d2
E—a—p—zw\&”(p)—zE%éK”(p)

(16)
+3 V()X (P) = .
2

Upon averaging Eg. (7) over the basis Bi(p, 8) =

3 «BK’ ®)Usi(p), where Uy (p) = (B [B(p)2 is a
unitary operator (U(p): F, — F) that implements the
transportation of the basis F, from the point p = O to the
point p, U(p): F, — F,, we obtain the set of coupled
adiabatic equations

2
B+ A e) - 2B ()
g am
+ 3 B AR - 58 0) + HieK () = 0.
J
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where

0
Ai(p) = <Bi(p)‘a_Bj(p)> )
P c
3 3 (18)
Hij(p) = <%Bi(p)‘%8j(p)> .
It should be noted that the A=
matrix and that H =

Aj(p) = ZUiK(p)%U

{A} isan anti-Hermitian
{H} |saHerm|t|anmatr|x

ki(P),
(19)
Hy = ~(AY) = -3 A

The set of adiabatic Egs. (17) can be represented in the
gauge-invariant form [2]

E—%L b _ql_ + A(p)§+/\(p)—2E 015k (p) = 0.

In order to caquIaIe the matrix elements A;(p), we
make use of the standard relation

_ 1 02v(p)|jd

A = S

)= -
where the matrix elements of the potential energy (4) are
calculated by using the functions in (10). In order to

determine By(p, 8) and B;(p, 6) explicitly, itis convenient
to represent the transcendental Egs. (11) intheform

Yol -y,

Je-x Nk

Eventualy, we derive analytic expressions for A; in
terms of the solutions y, and y; to the transcendental
equations [10]

cosh(Ty,) = cos(my;) =

A (p)
_cn (=1)'yily
1 ]
8(y2 +y?) fm(yZ + x3) — X Jr(y2 = x0) + I
_< j' = 0, (193)
cn (_1)j_jlyjyj'
1
8(y2 —yA)m(y2+ ) = X (y% + XD) — X
j#0, j'#0.

At large values of p, the asymptotic behavior of the
matrix elements A;(p) in the local representation are
given by

Ai(p) = AP +0(p7),

AP = jdnm (WA g(n), 20)
a0 _ 1 0
A = 2+”ﬁ'

VINITSKY et al.

For the matrix elements between the functions of the
discrete and the continuous spectrum for the pair chan-
nel, we arrive at the standard representation

ALY = Emn h9le0
(21)

1
= (e’ —¢”)iIn oy

The corresponding expressions for the matrix elements
[0|n?|jCcan be written in the form

20- 1 2, - [K __ 8Kp
o= L5, oo @T—(R2+pz)5,2. 2)

By going over from summation over j in (15) to integra-
tion and substituting the expressions for the matrix ele-
ments (21) and (22), we obtain the sum rule

O 7
Aoy Ao _ _
42 ©_ (0) Djn°A

jzi €

“jo0= mjn?on= .

2K"(23)

By substituting the relevant expressions (20)—22) into
the definition of the diagonal matrix element Hy,(p) in

terms of (?) (p), using expression (19), and replacing
summation over j by integration with respect to p, we
find from a direct calculation that Hy,(p) = 1/(4p?) +
O(p~#). This expression ensures a correct asymptotic
behavior of the adiabatic potential A(p) + Hyy(p) =

(0) + O(p~*) and can be used to verify the validity of
the sum rule (19) by performing summation of the
matrix elements A;;: calculated in terms of roots of the
transcendental Egs. (11) over j. Asaresult, Egs. (17) in
the local representation of the pair channel |00can be
written in the form

2
094 @ e - g i(p, 0)

] 2
d
g (24)
2 A© d _
p IJ deJO(p q) O
whereq? = e =2E - eo ) isthe doubled relative energy

reckoned from the two-body threshold € = k°.

3. EFFECTIVE ADIABATIC APPROXIMATION

Let us define the effective adiabatic approximation
as the result of projecting the set of adiabatic Egs. (17)
onto the two-body channel:

o () g5~ Var(p) + (o) = 0. 25)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.1 2001
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The solution X.(p) = X is related to the solution

Xj(p) of the set of Egs. (17) by the canonical transfor-
mation

.S(z) . , -S(l) i
X = TyX; = zﬁﬂe' i'mle” 1i%;,  (26)
i’
where
@ - ' dp
A i'—Ai'—ZAi'_
b " dpl 27)
2 = 2N PAV;

ij Vit
The effective potentlal U.(p) and the effective mass
H(p) are given by

U«r(p) = Un(p) +3U(p),

UalP) = ——5 + o(p) e + Hoolp),
4p

W (p) = 1+W(p), (29)

W(p) = 4% Ay(P)A(P)Bo;(P),  (30)

j#£0

3U(P) = 3 (Bg)Vej +Ag Vo +80)V5), (1)
iz0

where U,,(p) isthe adiabatic potential and dU(p) isthe

effective nonadiabatic correction. Here, we have used

therelations
1 2 1 2 mn
V(()j) = Ho; —(Ag)) - —2A0i Ao,
2 1 1]
Vf(JJ') = _HOJAOj(ZOj _AOj)

1 1 ' 2 " "
+ AOJAOI(ZOJ + 3A0J) + AO](ZOJ + Aoj),

2A0Ho;

(3) — 2 1 Ll 1 ]
Voi = Agj(Zoj +D0j)(Zo; —2Dy;),

Voo = Vao(P) = No(P) + Hoo(P),
Vi = Vji(p) = Aj(p) + Hj;(p),

Hoo(p) = _Z AoiAios

(32)

Hoj = Hoj(p) = _ZAOiAijv

= Doj(P) = Voo—Vjj,
= Z4j(P) = Voo +Vjj

where primes denote differentiation with respect to p.
All gquantities that appear in Egs. (28)—32), with the

iis
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exception of eéo) , are functions of p and are calculated
in terms of the roots of the transcendental Egs. (11) by
using the analytic expressions (19) and (19a) for Ay (p)
and Hy;(p). The correction W(p) to the effective mass
H(p) |sd|splayed in Fig. 1a, while saturation of the rel-
evant sum in (30) calculated at various values of the
harmonic number j isillustrated in Fig. 1b. The graph
of the nonadiabatic correction dU(p) to the effective
potential is shown in Fig. 2a. The adiabatic potential
U, (p) = U(p) — 0U(p) and the effective potential
U.(p) reckoned from the doubled energy of the two-
body threshold, €, = 2E, = —1%/36, are compared in
Fig. 2b. We note that the exponential behavior of the
adiabatic potential U, over the range p U (25, 40) (see
the inset in Fig. 2b) is compensated in the effective
potential U, by the nonadiabatic correction dU shown
in Fig. 2a. In Fig. 3a, we can see how, with increasing
number j of the adiabatic state, the relevant sum (19)
converges to the correct asymptotic expression of the
exponentially decreasing adiabatic potential U, ,(p) =
—(TE/9)exp{—pTe/18}{1 — p1t¥/1944 + T2/36 + 1/2p} [8].
Figure 3b illustrates the analogous convergence of the
sum in (31) multiplied by p* to the effective polariza-
tion potential U, tending to the constant —18/12. By
using expressions (20)—(23) in order to describe the
asymptotic behavior of A;(p), we find that the asymp-
totic expression for the effective massis
(0)
W (p) DL+ 2
P (33)

ws = —mojn for p —= +oo,

1
0= ——
L 2k’
From Fig. 1a, it can be seen that, for p — +o, the
asymptotic behavior of the function W(p) determined
by Eq. (30) isgiven by p’W(p,,.,) —= —18/T¢. Figure 1b
shows that the maximal value of | necessary for ensur-
ing a preset accuracy of the approximation of the sum
rule in Eq. (23) grows with p. Taking into account the
consistency conditions at large values of p,

1 -
~As(P) -3 = O(p™), (34)
we can recast Egs. (17) into the form
4 W(O)D
[— +q DL xeff(p) = 0. (35)
dp p

For q0|n?|0fA2p) < 1, the solutionsto Eq. (25) that are
associated with the continuous spectrum can be repre-
sented in the form

Xe(P) Dsn[qp%l EG)Inp Din_ot, 5} Dsin(gp +3)

, (36)
__[On"jo0]
q—2p cos(gp + d).
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~1.820
~18/1¢

—-1.824

—1.828
2

Fig. 1. (a) Correction W(p) (30) to the effective mass u(p)
and (b) saturation of the sum in (30) calculated at various
values of the harmonic number j.

The solutions x; (p) to the set of Egs. (17) and the solu-
tions X.(p) to the effective EqQ. (25) are related by the
inverse transformation (26). At large values of p, there
exists correspondence between solutions to Egs. (17)
and Eqg. (25),

Xi(P) = TioXo (P)
37)
GIn°10qL=3}0) d 7., new (
Dexp[ | |2p 0 }0 (P),
L o 2,0d
which is specified by the operator pAIJ dp of the

kinematical coupling x;(p) of the open (|il= 0) and
closed (|j 3¢ 0) channelsin the local representation (24)
of each pair channel of the system of three identica
particles. It should be noted that, in the Jacobi parame-
trization (1), there is no kinematical coupling of the
channels since, in the corresponding pair of the Jacobi
coordinates, the variables for the open channel and the
closed channels are asymptotically separated; that is,
Y= q@n)xe€) for n/& < 1. Upon substituting the
asymptotic expression (36) into relation (37), we find
that solutions to the asymptotic set of Egs. (24) can be
represented as

Xo(P) OXo (P),

-1_ new

Xi(P) = TjoXo (P)

G001 - 3)
2p

(38)

0- gcos(gp +9).

VINITSKY et al.

The asymptotic expression for the wave function W
below the three-body-breakup threshold in the pair
channel [0Chas the form

Wo = p Y IBIBIT Bk (P). (39
Taking into account the compl eteness condition
Z|B,-D]Bj| =1, (40)

we then arrive at
2

W, Dp‘”ZBo[sn(qp +3) -qgﬁcosmp ¥ 6)] @1)

For gn?/(2p) < 1, the O(p~") asymptotic expression for
thiswave function is

=12

Wo(p., ) Up*Bo(p, 8)sin qfp -~ zpD J 42)
— @(n)Sin(GE +B).

By eliminating the nonadiabatic correction Wég) /p?
from Eq. (35) and considering the adiabatic behavior

Xaa JSIN(QP + Oy) (43)

of the solutions, we can obtain a relation between the
exact phase shift 6 and the adiabatic phase shift §,4 in
the form

[jn |0
5= B+ '”2!) L]
It is obvious that the role of the nonadiabatic coupling

between the channels becomes more pronounced with
increasing g. In general, the difference between ¢ ~

p(1 — N¥(2p%) and p = J&°+n°, which leads to the
kinematical relation (37), can be neglected only in the
adiabatic limit g — 0 and also for the bound states,

+o00

Xesr(P)Xerr (P)I= J-Xeff(p)Xeff(p)dp =1
0

(44)

(45)

In order to obtain correct results, however, care should
betaken in some special cases[11]—for example, if the
scattering cross section has threshold singularities or if
there are zero-energy states of the three-body system
(¢? =€ =0). In particular, such a state existsin the sys-
tem of threeidentical particleson astraight linethat are
coupled by attractive pair delta-function potentials of
the same strength (thisis precisely the case considered
in the present study). The transformation in (26)
changes the form of the solution since the origina
value of & is conserved only in the general solution W
given by Egs. (39)—(42). For thisreason, it is necessary
to determine the value of the average-position operator
PHYSICS OF ATOMIC NUCLEI
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Fig. 2. (@) Nonadiabatic correction dU(p) (31) to the effec-
tive potential and (b) adiabatic potential U, 4(p) (solid curve)
and effective potential U.¢(p) (dashed curve).

Pm" in the new representation X¢- = TX of the pair
channel:

~ hew

Pm = Ko 1Pm

= KT Bm TIXO= XIPmXO= Pr
Here, the average-position operator pm =p corre-
sponds asymptotically to the Jacobi coordinate € in the

original representation—that is, in the effective repre-
sentation of delocalization, the variable € is contained

in the new radial function X, = TX. In the adiabatic

representation of x, the average-position operator p, is
indeed determined by the relation

T =TT = p+8p,

nE\ND
IXo (46)

—1 A~ New

Pm =T Pm
where 6p isthedelocalization of &; at largep, p > 1, it
appears to be on the order of [0|n?|0/2p < 1, that is,

Pm = T pT OLEO (48)

(47)
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Fig. 3. (a) Convergence of the sumin (19) to the asymptotic
expression for the adiabatic potential U,4(p) and (b) conver-

gence of the sum in (31) multiplied by p* to the asymptotic
expression for the effective polarization potential U.¢(p)

tending to the constant —18/1¢ at various values of the adia-
batic-state number j.

This construction makes it possible to visualize the
delocdizationin p,, near p with the amplitude dp pro-
portional to the root-mean-square size of the target in
the ground state. This construction is similar to the def-
inition of the average-position operator [4]. Thus, we
have constructed the effective approximation (25)—32)
for the set of adiabatic Egs. (17) and found an analytic
representation for the asymptotic behavior of the rele-
vant solutions. It was shown abovethat, in the adiabatic
approximation, it is necessary to take into account the
asymptotic coupling of channelsin the scattering prob-
lem, since the slow variable p exactly goes over to the
corresponding Jacobi coordinate € only upon expand-
ing the three-particle wave functions in a compl ete set
of adiabatic functions. The above transition from the
original Eq. (17) to the effective Eq. (25) can be com-
pared with the elegant method that makes it possible to
eliminate small components of solutions to the Dirac
equation via the Foldy—Wouthuysen transformation
and which reveals delocalization (Zitterbewegung) of
the average-electron-position operator at dimensions



=20

Fig. 4. Radial wave functions for the ground state xgo(p)

and the loosely bound state x‘évgs (p) in the Born—Oppenhe-
imer approximation (solid curves) and radial wavefunctions
in the adiabatic X (p) and the effective adiabatic X (p)
approximation [dashed curve].

on the order of the Compton wavelength for an electron
[4], whereby the correct probahilistic interpretation for
all observables like the coordinate and the momentum
can be obtained.

It should also be noted that, by means of the stan-
dard substitution X..(p) = U"2(P) X« (P), EQ. (25) with

amomentum-dependent potential can be reduced to the
equation

2
%;—pz—veﬁ(qz, P)+qKar(P) =0, (49)

which involves the ¢?-dependent potential

Ver(a', p) = (Uar(p) + 4" W(P))U(P) + AU (p),
BU(p) = SW'()u(p) - 3(W(P)I(P))’".

In some cases, this potential is more convenient for
analyzing the characteristics of solutions. This repre-
sentation makes it possible to compare the effective
adiabatic Eq. (25) and the standard equation involving
an energy-dependent potential [1],

nd d_
g5 W(P) g5~ Uap)
(51)

1d° 2
*5gg7 )+ Xei(P) = 0.

Here, the term —(1/2)W" corresponds to the nonadia-
batic effective correction U, (p). Thismeansthat it is
legitimate to compare the effective potentia in (50)

VINITSKY et al.

with the standard definition of the energy-dependent
potential,

Ve (a®, p)

_ Un(p)+9°W(p) 1rd
- ad1+W(p) —Z[d—pln(1+W(p))}

2

Here, the second term corresponds to AU.(p) from
Eqg. (50). Analytic solutions to similar equations with a
potential in the form of a modified well were consid-
ered in [12]. As will be demonstrated in the sections
that follow, the approach considered above can be used
to devel op adequate methods for solving the three-body
scattering problem.

4. DISCRETE SPECTRUM
OF THE THREE-BODY PROBLEM

Let us consider the eigenval ue problem for an equa-
tion of the type in (25) with the boundary conditions
X(0) = 0 and X(+o0) = 0 and assume the hormalization
condition ¥ |[x[O= 1. In order to solve the problem for
the discrete spectrum, we made use of the fourth-order
finite-difference scheme and of a multiparameter con-
tinuous analog of the Newton method, implementing
preliminarily a reduction of a singular boundary-value
problem to aregular one [13, 14]—that is, a transition
from aninfinite interval to the finite interval ¢ U [0, 1].

For thefirst two versions of solving the problem, we
set W(p) =0; that is, u(p) =1 and dU(p) = 0. Inthefirst
version, we choose the Born—Oppenheimer approxima-
tion Ugo(p) = U,q(p) — 0U(p) for the U 4(p). The solu-

tions for the ground state xgo (p) and for a loosely

whbs

bound state Xgo (p) of the eigenvalue problem (25)

with the Born—Oppenheimer potential are presented in
Fig. 4. The Born—-Oppenheimer approximation gives a

lower bound on the ground-state energy Eéo and
ensures the presence of aloosely bound state occurring

at energy Epe’ and corresponding to the state at zero
energy ¢ = € = 0 reckoned from the pair-threshold
energy E = E,,. In the second version of solving the
problem, we choose the standard adiabatic approxima-
tion U, (p) for the U.(p). In this case, the loosely
bound state obtained in the Born-Oppenheimer
approximation disappears; that is, the standard adia-
batic approximation with the potential U,,(p) provides

an upper bound on the energy E; . The corresponding

radial wave function x:d (p) that was found in the adia-
batic approximation is plotted in Fig. 4.

In the third version, we solved the problem with the
effective potentia U,q(p) for Eg. (25) and the boundary
conditions X.(0) = 0 and X.¢(+%) = 0, imposing the
normalization condition (45). The corrections W(p) and
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oU(p) were calculated by formulas (30) and (31),
respectively, their graphs being displayed in Fig. la
and Fig. 2a. Solving this eigenvalue problem for the
effective approximation leads to the new lower bound

of Eg = —1.096626(%/2m) on the exact energy value
E. .. =—TE/9(*/2m) with adeviation equal to 2.6 x 107°.

The radia wave function )(eLff (p) caculated in the

effective adiabatic approximation is shown in Fig. 4. It
should be noted that, on the chosen scale, the distinc-

tion between the functions xaud (p) and )(eLff (p) isnegli-

gibly small. The results of the numerical calculations
for the above three versions of deducing bounds on the
energy are presented in Fig. 5a—these are the lower

bounds Eggs and EBLO that the numerical calculation

within the Born—Oppenheimer approximation yields
for the exact energies of the loosely bound and the
ground state, respectively, and the upper adiabatic

bound E;’j and the lower effective bound E,ELff on the
exact energy value E,, .. For the sake of completeness,
the doubled energy of the three-particle threshold E,,

and the doubled energy of the two-particle threshold
E,in areaso shownin Fig. Sa.

5. CONTINUOUS SPECTRUM

In the continuous spectrum below the three-body-
breakup threshold, E, < E < 0, we used the equation for
the phase function [1] in the adiabatic-approximation
version with the potential U,y and in the effective-adia-
batic-approximation version with the potentials pu(p)
and U.(p); that is, we reduced the corresponding
boundary-value problems for the continuous spectrum
on the semiaxis p U [0, ) to the Cauchy problems for
the equations describing phase functions. The latter
problemswere solved by the fourth-order Runge—Kutta
method. Let usrecall that the phase shift &(q) as afunc-

tion of the relative momentum q (o =2(E-E;), 0< ¢ <

(176)?) is obtained as the asymptotic expression for the

phase function &(q, p)—that is, &(q) = lim d(q, p). The
p - +oo

phase shift d.(q) corresponding to the effective adia-

batic approximation is then determined by the asymp-

totic behavior of the solution to the Cauchy problem for
the phase function &.(q, p) = &(q, p),

dd(q, p)
dp

1 Uulp) + W) -
T AT
* T o Sn(ap + 8(a, p))cos(ap + 3(a, ),

6(q,0) = 0,
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Fig. 5. (a) Diagram of the energy levels in the system
involving three identical particles interacting via attractive
pair delta-function potentials. Shown in this panel are the
doubled values of the energies corresponding to the three-
body-breakup threshold (E;,) and the two-body-breakup
threshold (E,q); to the results obtained numerically in the

Born—Oppenheimer approximation for the lower bounds

Eévgs and Eéo on the exact values of the energies of,

respectively, the loosely bound and the ground state; and to
the upper adiabatic bound E;Jd and the lower effective

bound E'cfff on the exact value of energy E., . (b) Elastic-

scattering phase shift & as afunction of the relative momen-
tum g of the incident particle and the pair below the three-
body-breakup threshold: (solid curve) exact analytic solu-
tion dg,; (dotted curve with open circles) resultsin the adi-

abatic approximation; and (closed circles) results in the
effective adiabatic approximation, d.g.

where the equation for this function, with a potentia
dependent on the momentum g, follows from Eq. (25)
with the potential given by (28)—(31).

Similarly, the phase shift d,4(q) corresponding to the
adiabatic approximation is determined from Eqg. (52)
by deriving the asymptotic expression for the solution
to the Cauchy problem specified by the relevant equa-
tion for the phase function ,4(q, p) = d(q, p) at W(p) =
0 and dU(p) = 0. The graphs of J,,.(Q), 8,4(q), and
0.¢(q) are displayed in Fig. 5b. We note that the results
of the calculations for the adiabatic phase shift 8,,(q)
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coincide with the results from [8]. In that study, the
phase shift for the exact value d.,.,(q) was determined
under assumption that, at large values of p, the wave
function in the pair channel has the form

W Op By(p, B)X(P), X(P) OSIN(GP + Berey), (53)
where

8./3g/Tt
2 1-36q°/TC

From a comparison with the exact value of the phase
shift, 8,.,.,(Q), it followsthat, intherange4 x 10° < ¢f? <
(TY6)?, the effective adiabatic approximation yields a
correct behavior of the function d.4(q) to an absolute
precision of 2 x 10-3. It can be seen from Fig. 5b and
from the table there that, at small g, the phase shift cal-
culated in the adiabatic approximation tends to Tt, but
that the phase shift calculated in the effective adiabatic
approximation tends to 3172, in accord with the exact
phase-shift value, the latter corresponding to a state in
the three-body system at zero energy (e = ¢ = 0) reck-
oned from the pair-threshold energy E = E ;.. This com-
parison confirms the convergence of the effective adia-
batic approximation and gives a lower bound on the
bound-state energy to within 2 x 1075, As can be seen
from Eq. (52), the phase-shift values calculated in the
adiabatic and the effective adiabatic approximation are
indeed related by Eq. (44).

= 3—n—arctan

6e><ct - (54)

6. CONCLUSION

We have presented an explicit scheme that makes it
possible to calculate, within the effective adiabatic
approximation for the three-body problem, the energy
levels of a discrete spectrum to a relative precision of
10-¢ and the el astic-scattering phase shift as a function
of the relative momentum of the third particle with
respect to the center of mass of the pair below the three-
particle-breakup threshold to arelative precision of 3 x
10, In order to highlight the efficiency of the method,
we have chosen an exactly solvable problem, whereby
it is possible to demonstrate the convergence of our
approximate results to exact ones and, hence, to prove
that the proposed approach does indeed give correct
results and can be used to solve actual problems. Asan
example of such aproblem, weindicate the well-known
calculation of the loosely bound state of a mesomolec-
ular ion of the deuteron and thetritonin[11]. The prob-
lem considered here—that of three identical particles
on a straight line that interact via attractive pair delta-
function potentials—exhibits special features peculiar
to more interesting three-body systems involving
loosely bound states. In the system of particles under
investigation, athree-particle state at zero energy reck-
oned from the pair-threshold energy corresponds to the
aboveloosely bound state because, in this system, there
areno transitionsfrom the pair channel into the channel
featuring breakup into three particles. Below the three-
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body-breakup threshold, the elastic-scattering phase
shift calculated in the effective adiabati c approximation
as afunction of the relative momentum of thethird par-
ticle with respect to the center of mass of the pair
agrees, to a preset accuracy, with the known values cal-
culated by the analytic formula (54). In the vicinity of
the pair threshold, both the above phase shift in the
effective adiabatic approximation and the known ana-
Iytic solution tend to 3172; this corresponds to the pres-
ence of a bound state and a zero-energy state in the
three-particle system.

The present formulation of the problem and the set
of figures illustrating intermediate and fina results
make it possible to understand the basic features of the
realization of the proposed approach and show that, in
order to calculate, to a preset precision, the characteris-
tics of actual three-particle systems over afinite inter-
val of the slow variable, it is necessary to investigate in
detail the asymptotic behavior of effective potentials.

The proposed approach is based on reducing the set
of adiabatic equations to one effective adiabatic equa-
tion for the open pair channel with the aid of the oper-
ator canonical transformation and on constructing the
corresponding effective potential (momentum-depen-
dent potential) and the corresponding effective mass.
For the problem considered here, this reduction has
been implemented, in quite a transparent way, by using
the analytic representation of the parametric spectral
problem on acircle. As aresult, we haveillustrated the
convergence of the adiabatic-expansion method within
the effective adiabatic approximation and shown that
the relevant sum rules are saturated and form the cor-
rect asymptotic behavior of the effective and the
momentum-dependent potential. It has been estab-
lished that, below the threshold for three-body breakup,
the kinematical coupling of closed channelstransforms
into an asymptotic centrifugal energy-dependent poten-
tial proportional to the root-mean-square dimension of
the open-channel pair subsystem. Asto the asymptotic
behavior of the effective potential, it is determined by
polarization interaction. This circumstance ensures a
correct behavior of the phase shift over the entire
energy region below the three-body-breakup threshold,
with the exception of anarrow energy interval (of width
lessthan4 x 10-%) above the two-body threshold (inves-
tigation of this interval is beyond the accuracy of the
effective-adiabatic-approximation method).

Our analysis has demonstrated that the standard adi-
abatic approximation gives no way to obtain a correct
threshold behavior. It has been shown that reducing the
original problem that involves short-range pair poten-
tials to an effective problem for the open pair channel
can be represented as a problem featuring a nonlocal
momentum-dependent potential. As consequence,
there arise long-range potentials, and it is required to
explore and construct relevant asymptotic expressions.
In this sense, the approach based on the effective adia-
batic approximation can be compared with the well-
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known method for constructing the effective nonadia-
batic potential for exotic three-particle systems featur-
ing Coulomb interaction [15, 16]. From our analysis of
the convergence of the adiabatic expansion, it follows
that the expansion of the three-body wave function in
the truncated set of the eigenfunctions of the operator
of rotations on a circle—thisis an important part of the
expansion in the K harmonics—cannot ensure a correct
behavior of the asymptotic expressions or the spectrum
of three-body problem in the pair channel. It can be
expected that afurther development of the effective adi-
abatic approximation proposed herewill lead to the for-
mulation of an adequate method for treating the prob-
lem of three-body scattering.
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Abstract—The properties of the Hartree—Fock potential that coincides with the self-consistent potential and
withthereal part of the optical potential for nucleonsin the case of aglobal regime of averaging areinvestigated
by consistently taking into account the vel ocity-dependent components of nucleon—nucleon forces and nonlo-
cality effects. For thefirst time, the properties of the effective energy-dependent Hartree—Fock potential are ana-
lyzed at negative nucleon energies. It is shown that the form of this potential undergoes a significant change
upon reversal of the sign of nucleon energy. The conditions of applicability of the semiclassical approximation

arefound. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Within generalized Fermi liquid theory [1] and the
theory of open Fermi systems|[2], it can be shown that
the true self-consistent field for nucleons in nuclei and
the real part of the optical potential for nucleonsin the
case of a globa regime of averaging do not include
nuclear-polarizability effects and that they coincide
with generalized Hartree-Fock nonlocal potential
determined by realistic nucleon—nucleon (NN) forces.
The nonlocal Hartree—Fock potential can be expressed
interms of alocal Hartree—Fock potential that is depen-
dent on the nucleon-momentum operator. In turn, the
local Hartree—Fock potential can be reduced to a local
energy-dependent potential that is usually used to ana-
lyze experimental data. The local energy-dependent
potential in nuclear matter was calculated in [3] as a
function of nucleon energy, and it was shown there, for
some sets of the parameters of realistic NN forces, that
the calculated values of this potential are consistent
with the depths of phenomenological optical potentias
for nucleons at the center of comparatively heavy
nuclei. The features of the self-consistent field and of
the rea part of the optical potential for nucleons in
finite nuclei were comprehensively investigated in [4,
5] by using the second-order approximation for the
momentum dependence of the local Hartree—Fock
potential for nucleons. Here, we aim at studying the
radial and the energy characteristics of the self-consis-
tent and the optical potential for nucleons in nuclei at
positive and negative nucleon energies. In doing this,
we take consistently into account both the velocity-
dependent components of NN interactions and the
nucleon-momentum dependence of the local Hartree—
Fock potential.

2. GENERAL PROPERTIES OF THE HARTREE-
FOCK POTENTIAL FOR SPHERICAL NUCLEI

In the HartreeFock approximation, the
Schrédinger equation for the wave function ¢g(r))
describing a nucleon of energy E has the form

2, 2

hky -~
) B =0, ()
g<m 0
where r, is the set of nucleon coordinates, including
spatial, spin, and isospin variables; k, = —i% is the
1

nucleon-momentum operator; and V (r,) is the nonlo-
cal Hartree—Fock potential

V(ry) = Vy(ry) + Ve(ry). (2)
Here, the Hartree potential Vi (r,) isgiven by [1]
Vi(r) = [V rp(ro)er, 3)

where \7H (r,, r,) isthe Hartree part of the potential rep-
resenting the pair nuclear interaction of nucleons and
P(r)) = Py(ry) + py(ry) isthetotal nucleon density in the
nucleus, py(r;) and p,(r,) being, respectively, the neu-
tron and the proton density. The nonlocal Fock poten-

tial Ve (r)) hasthe form [1]

Ve(r)(r:) = 5[V (12 r2)p(rs r2)0(r )dr s, (4

where \A/F (ry, ry) isthe Fock part of the potential repre-
senting the pair nuclear interaction of nucleons and
P(ry, ry) = Pu(ry, 1) + Py(ry, 1y) is the total density
matrix for intranuclear nucleons.
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SELF-CONSISTENT AND OPTICAL POTENTIALS

In the potentia (2), we have omitted the terms that
are generated by the Coulomb interaction of protons
and which were considered in [6] and terms depending
on the projection of the nucleon isospin, which are
associated with the difference of the numbers of pro-
tons and neutrons in the nucleus under investigation. In
general, the NN potential includes a centra (c) and a
tensor (t) interaction, as well as nucleon-velocity-
dependent interactions like the first-order spin—orbit
interaction (ls), the second-order interaction in | (12),
and the second-order spin—orbit interaction (1s2).

Let us consider the properties of the self-consistent
and the optical potential for nucleons without taking
into account the tensor interaction, whose contribution
to the potential (2) is gtrictly equal to zero in spherical
nuclei, and the contribution of the first-order spin—-orbit
interaction, which was considered in detail elsewhere[4].

The Fock potential Ve (r,) (4) isreal-valued because

the pair-potential V' (r,, r,) and the density matrix p(r,,
r,) are rea valued, and it is self-conjugate. The last
property follows from the fact that the matrix element

~F
J’¢ E(r)V (r;, ry)p(r,, r,)de(r,)dr,dr, can be reduced

to the Hermitian conjugate form I¢E(r1)\7F(r1,

ry)p(r,, ry) g (rp)dr,dr, by making the substitution
r, — r, and by using the self-conjugacy and symme-

try properties of the NN potential, V' (rp, ry) = V' (ry,
r,), and of the density matrix,

P(ry,rz) = p(rary). )
That the potentia Ve (r,) isreal-valued and self-conju-
gate leads to invariance of this potential under time
reversal, in which case the modulus of the nucleon
momentum changes sign, and, as a consequence, to ful-
fillment of the detailed-balance principle [7].

Upon taking into account the 12 and the 1s2 NN
interaction, the Hartree potential (3) becomes depen-
dent on the nucleon-wave-vector operator k, and can be
represented in the form

Vi(ry) = Vi(r) + V()

2 ) (6)
+(kJ(ry)) Oky + Vi (rky,

where

J(ry) = IV&”(rl)drl. %

Asto the quantities V5, (r)) and VY (r)) (i =0, 1, 2), the
explicit expressionsfor them are given inthe Appendix.

By using the operator of finite translations along the
nucleon spatial coordinate r, [8], we can go over from
PHYSICS OF ATOMIC NUCLEI
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the nonlocal potential \7F(r1) to the local momentum-
dependent potential

~F ir ik,

Vel ko) = [V 0)p(rar+ne e, ®)
wherer =r, —r,. Itisimportant to note that, in addition
to the explicit dependence on k, through the trangd ation
operator, the Fock potential V(r,, k,) features an addi-
tionad k,; dependence that is associated with the
nucleon-vel ocity-dependent components of the NN
interaction. Analytic formulas for calculating the terms
in the Fock potential that correspond to the 12 and |2
NN interactions are presented in the Appendix. As will
be shown below, the total contribution of these termsto
the optical potential grows monotonically with increas-
ing energy, but its modulus at the center of the nucleus
does not exceed 1.2 MeV in the energy range—-60 < E <
100 MeV. To the above precision, only the centra
nuclear interaction of nucleons can be taken into
account in the Fock potential Vg(ry, k).

For aspherical nucleus, we make use of the transfor-
mations

&' = SOUICRIOVATS NG

p(ry,ry+r) = Zm(h,r)Y.m(r)Yfm(rl), (10)

where

1

pi(ry,r) = ZHJ'p(rl,r1+r)P|(E)dE- (11)
]

The potential Vi(ry, k) (8) can then be represented in
the form

Ve(ry, ky) = Zvl(rll k)P (1), (12)

where &, is the cosine of the angle between the vectors
r, andk, and

Vi(ri, ky)

_ @+1), (13)

S Vep(ry T+ 1) (rky) Py(E)ar

Here, VCF (r) isthe Fock part of the central nuclear NN
interaction.

From (12), it can be seen that the Fock potential for
a spherical nucleus generally depends not only on the
modulus of the vector k, but also on its projection onto
the direction of r, [7]. In contrast to the nonlocal repre-
sentationin (4), therepresentationsin (8) and in (12) do
not exhibit explicitly invariance of the Fock potential
under time reversal. In order to verify this invariance,
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we represent the Fock potential Ve(ry, k;) (8) in the
more symmetric form

Ve(ri, Ky)

- __J,V ( ) ir ky/2 % %,r1+%%iﬂkldr,

where the operator k; coincides with the operator k;,
but the former actsonly on the coordinater, of the sym-
metrized density matrix p(r, — r/2, r, + r/2).

(14)

Upon the removal of the factor V¥ (e " from

theintegral in Eq. (14), it becomes coincident with the
Wigner matrix [9], which is extensively used in the
semiclassical approximation.

By using representation (9) for exponentidsin Eq. (14)
and an expansion of the type (10) for p(r; — r/2, r, +
r/2), we arrive at

Ve(r, Kyq)

:—%'1(41'[)2 z il+lelm(kll)Yllml(rl)Yltmz(kl)

11, 1,mm;m, (15)
XIVf(r)j|(rki/2)5|1(r1, 1)1, (rk) Yim(r) Yiim, (1)
XY m,(r)dr,

where p,_(r,, 1) is given by Eq. (11) with the substitu-
tion of p(r, —r/2, r, +r/2) for p(r,, r, + r). By virtue of
relation (5), the function p(r, — r/2, r; + r/2) does not
change under the inversion of the coordinate r; there-
fore, the quantity |, in Eqg. (15) takes only even values,
and the relevant integral with respect to dr isnonzero if
the parities of the momenta | and |, coincide. Because
of this, expression (15) is invariant under the time

reversal, which resultsink, — —k; and k; — —k; .

It will be shown below that, for a spherical nucleus,
the symmetrized density matrix p(r, —r/2, r, + r/2) is
virtually independent of the angle between the vectors

r, and r and coincides with the quantity [ pO (ry, N].

It follows that the vector operator k; , which actson the
coordinater, in the density matrix p(r, —r/2, r, + r/2),
is directed along the radius vector r, and that this oper-
ro

1a 1
formula (15) is simplified significantly to become

_ __Z( 1)|(2| +1)

x jVE(rnE?%o(rl, )] (rks)dr Py (E,).

ator can be represented as k; = — . In this case,

Ve(ry, ky) =
(16)
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3. EFFECTIVE ENERGY-DEPENDENT
POTENTIAL FOR NUCLEONS

As will be shown below, the seriesin | in Eq. (12)
converges rather fast, so that it is possible to discard all
terms from | = 2 because of their smallness. The Fock
potential (12) then takes the form

r,k
Ve(ro, Kp) = Vo(ry, ky) +Vi(ro, Kq) ; K 4
1Ky

(17)
where

Vo(rs, ko) = 5 [VE@P(r T+ Dio(rko)er, (18)

[k
Vi(ry, kl)r; K :
1™ (19)
ry 0k,
= ——IV (N)p(ry, ry+r)j(rky)Py(§)dr — K
= (kql(rq, ky)) ky,
with
(r2k0) = =i [Vi(ra kl)klldrl. 20)

Iy
Withtheaid of Egs. (6) and (17), the Schrédinger equa
tion (1) can be written in the form
ﬁ2

g et VR + V() + Vo(ra k)

@)
—(1(r3, ky) + 3(ry) + VP (r))KT —EFpe(ry) = 0,

where the effective nucleon mass m*(r,, k;) is defined
as

1 _ 1+2(|(I’1, ky) +J(ry))
m*(ry, k;)) m #? .
For al termsin (21) that are dependent on the mod-

ulus of the nucleon-momentum operator k;, their
expansionsin power seriesin k; involve only even pow-

(22)

ersof k,. Further, the operator kf can bereplaced by Rf
inusing Eq. (28), which is derived below. At the same

time, the operators kf, where n = 4, 6, ..., can be

replaced by the numbers (Rf)n/2 if we employ the

results presented in Section 4 below. At nucleon ener-
gies E = 10 MeV, the semiclassical approximation is

valid, inwhich case k! = (ki)"; at lower energies, k'

differs from (Rf)n/2 only in the surface region of the
nucleus, where the modulus of the nucleon—nucleus
potential decreases noticeably with increasing r, and

where kf becomes much less than kf forn=4,6, ....

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.1 2001
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We will seek a solution to Eqg. (21) in the form [5]

Pe(ry) = f(ry k) e(ry), (23)
where the form factor f(r;, ki) will be chosenin such a
way as to ensure the vanishing of gradient terms of the
form k, ¢ (r)) in this equation. Our calculations—the
results are presented in Section 4 below—reved that,
for dl r, and for k; <2.5 fm! (these values corre-
sponding to the entire energy region E < 100 MeV),
#2ks J2n¥(r,, K1) exceeds the potential [Vi(r,, K1) —

_2
(I, k) + ) + VP )k —Vy(r,, 0)] [see
Eq. (21)] in absolute value by a factor greater than 4.
Taking all the above into account, we find that, to apre-

cision of 25%, the function f(r,, k; ) satisfies the equa-
tion

1 0 =
——f(r, k —k f(ry, ko) = 0.
has— gtk sk ) =
The solution that satisfies this equation and the bound-
ary condition f(r,, ki) o 1 hastheform

" Co\_12
m (ry, kl)} (24)

m

(k) = |
For the function ¢ (r,), we then have the equation
2, 2

Ky
U2m

ki) —Epe(ry) = 0, (25)

where
[VE(rD) + V() + V(ry, k)

, (26)
—(1(ry, ke) + 3(ry) + VO (r))Ke + Vg (1, K1)

+(1—m*(ry, ki)/m)E,
Vgraa(r1, K1) 27)
_ #? %Vzm*(rl, ki) 3¥m*(ry, Rl)DZE
2m*(ry, k)2 me(ry, k) AYme(r, k) U0
By using Eq. (22) and the relation

- m*(r, K
Vir, iy = Tk

ki k(1 E) = J—[E V(ry k(s E))]. (28)

which follows from (25), we now find that the effective
local energy-dependent potential V(r,, E), which
appears in Eq. (25) instead of the potential (26), satis-
fies the nonlinear equation

V(ry, E) = Vi(ry) + V(1) + Vo(ry, ka(ry, E))
(2) —2 (29)
+Vad(r'1, ki(ry, E)) + Vi (r)ka(ry, E).
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The potential V(r,, E) in (29) differs from similar
potentials that are widely used in calculating optical
potentials for nucleons [10] in that the former involves
a gradient term and in that it employs realistic NN
forces instead of effective ones. As was shown in [1],
solving the elastic-scattering problem on the basis of
the wave function §g(r,) determined by the
Schrédinger equation (25) with the effective energy-
dependent potential V(r,, E) is equivalent to analo-
gously solving the Schrédinger equation (1) with a
nonlocal Hartree—Fock potential. The energy depen-
dence of the potential V(r,, E) results in that, for dis-
crete states at rather close negative-energy values, the
orthonormalization condition for the functions ¢ (r,)

obeying Eq. (25) takes the form

m; (ry, E) -
[oee0™ B ar, = 8. G0
wherethe quantity m; (r,, E) isdetermined by therela-

tion

my(ry, E) _ dv(r,, E)
m dE

The calculations presented in the next section show
that, in the entire energy range —60 < E < 100 MeV, the
quantity my (r;, E) (31) is close to the effective mass
m(r,, E) = m*(r,, ki (r,, E)) (22); it follows that, with
allowance for Eq. (24), the condition in (30) reduces to

the standard orthonormalization condition for the func-
tions ¢g(r,):

J-¢E(r1)¢E'(r1)dr1 = Ogg-

Therefore, the energy-dependent potentia V(r,, E)
simulates both the self-consistent and the optical poten-
tial for nucleons.

It is convenient to represent this potential in the
form

(31

(32)

V(ry, E) = V(0, E)f&(ry), (33)
where f,g(rl) isafunction that is equal to unity at r, =

0 and which has aform close to that of the Fermi distri-
bution

f(r) = %H exp AD

Moreover, the potential V(r,, E) can be written in the
form that is usually used to represent phenomenologi-
cal optical potentials for nucleons; that is,

(34)

V(ry, E) = V(0,0)fo(ry) +a(0, E) fe(r)E, (35)
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where

V(0. E) -V(0.0)
E

V(ry, E)-V(ry, 0)
V(0,E)-V(0,0)

It is interesting to compare the above formulas for
the effective potential V(r,, E) with similar formulas
derived in the semiclassical approximation, which is
valid in the case of particles having high momenta and
moving in slowly varying potential fields such that
(see[8])

a(0,E) =

(36)
fe(ry) =

(37

_3
oV(r, E)| _ fiki(ry, E)
or, m

In this approximation, we can retain only the zero- and
first-order termsinr, k; /2 in Eq. (16) and discard deriv-
atives of the function m*(r,, E) with respect tor, (gra-
dient potential). As aresult, we obtain

V(ry, E) = Vi(ry) + V() + Vo(ry, ku(ry, E))
VO(r)Ri(ry, E), (%)

where

Vol ko) = 33 VEBolra Dol (39)

Under the same conditions, the effective mass m*(r,, E)
(22) becomes nearly coincident with the quantity
m; (r;, E) determined by Eq. (31) with the potential
V(r,, E) (38).

It is also interesting to compare the potentia (29)
with that which is obtained by using the second-order
approximation in ky in the momentum dependence of
the Fock potential [3-5]. For this, we expand the spher-
ical Bessdl functions j, and j, in Egs. (18) and (19) in
series in ky and retain terms of order not higher than
two. The effective mass (22) then becomes independent
of energy, m*(r,, E) = m*(r,), and the potentia V(r,, E)
appears to be alinear function of energy,

*(rl)

[VE(ry) +V(ry)

+Vo(ry) + Vgrad(rl)] +B(ry)E,

V(r, E) = (40)

where
Vo(r:) = 3 [VE@)p(riry e,
m* (r ) 1
B(ry) = 1~

KADMENSKY, LESNYKH

and V,q(ry) is determined by Eq. (27) with the effec-
tive mass

T——g—l—) %H—J’V (1)p(ry, ry+r)ridr
1 (42)
+§if‘23v,$’(rl)g .

4. PROPERTIES OF THE SELF-CONSISTENT
AND THE OPTICAL POTENTIAL
FOR NUCLEONS

Let usinvestigate the characteristics of the self-con-
sistent and the optical potential for nucleons by consid-
ering the example of the 2°®Pb nucleus. The proton and
the neutron density are chosen here in the standard
Fermi form [11], that is,

r,—Rari?
pn, p(rl) = pr?,p%l'i' expug ) (43)
where p° + pg =p°=0.17fm3, Ry = 1.1A3 fm, and
a, = 0.54 fm. The single-nucleon density matrix is rep-
resented in the semiclassical form

ke P(R)

pnyp(rl, r,+r)=2 I eikﬂi

(2m)’ (44)

i nzirz(s'”kgp(mf—k?p(R)rcoskE'p(R)r),

np

where R = |r; + =

Pn. p(R) 7 isthe

semiclassica Fermi momentum with

pa(R) = B5Zp(R) and p,(R) = Zp(R).

For the quantity w, ,(r,) defined in the Appendix as
the density of the square of the nucleon momentum, we
use the semiclassical approximation

ke P(r
A LAl (2) B MRS
51t
For the potentias (29), (38), and (40), the effective
diffuseness a, which appears in expressions of the type
in (34), will be calculated according to the scheme
f(R) = f(0)(1+expl)™, a= R Ry (46)
For the parameters of vacuum NN forces, we take
the set from [12], which was successfully used ininves-
tigating the properties of optical potentialsfor nucleons
in nuclear matter. The ensuing analysisis performed for
the nucleon-energy range —60 < E < 100 MeV.
PHYSICS OF ATOMIC NUCLEI
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The sum of the Hartree potentids V| (r;) and

V,(f) (r,) isindependent of the nucleon momentum and

isof an attractive character, its value at the center of the
nucleus, —40.5 MeV, being maximal in magnitude. The

guantities J(r,) and Vﬁ.z) (r,) are close (over the entire
region of r,, their difference does not exceed
0.07 MeV fm?), their maximum absolute values of

2.26 MeV fm? being attained at the center of the
nucleus.

L et us explore the convergence of the expansion (12)
of the Fock potential Vi(r,, k;) in orbital angular
momenta |. From Fig. 1, which displays the functions
iV, (ry, ki) =V, (r, ky) for 1 =0, 1, 2, it can be seen
that, with increasing |, these functions decrease very

fast in absolute value. By way of example, we indicate
that, over the entire significant region of the parameters

r, and k1 , the absolute value of the function V, (r;, k1)
does not exceed 0.87 MeV, thisvalue being achieved in

the surface region of the nucleus at k; 01.8 fm™ (E O
40 MeV). To aprecision higher than 0.9 MeV, only the
I =0and| = 1 terms can therefore be retained in expan-
sion (12), but this correspondsto Eg. (17). In the energy
interval under investigation, the Fock components of the
potential that are associated with the 12 and |2 interac-
tions do not exceed 1.2 MeV in absolute value
(0.74 MeV for E < 40 MeV) over the entire region 0 <
r, < oo; they induce virtually no changes in the shape of
the potential and can be discarded to the above accuracy.

Let us compare the properties of the local energy-
dependent potential (29) with the properties of the
potentials (38) and (40), which were derived in the
semiclassical approximation and in the second-order
approximation in momentum, respectively. From the
data in Table 1, it can be seen that, in all cases, the
depths of the potentials V(0, E) increase with energy.
The depths of the potentials (38) and (29) virtually
coincide over the entire energy range under investiga-
tion. The depth of the potential (40) is close to that of
the potential (29) at E =—-60 MeV and growsfaster with
energy than the depth of the potential (29) (the differ-
ence of the potential depthsis7 MeV at E=0MeV). At
energiescloseto E =100 MeV, the value V(0, E) for the
potential (40) changes sign, becoming repulsive.

The depth of the potential (29) coincides with the
corresponding values of the local energy-dependent
potential in nuclear matter [3]. The effect of the veloc-
ity-dependent forces on the depth of the potential (29)
leads to the emergence of an additional repulsion
(+5.68 MeV at the center of the nucleus at E = 0),
which increases with energy.

As can be seen from Fig. 2, the shape of the poten-
tials (29) and (38) can be described by the Fermi distri-
bution (34) for positive nucleon energies; at negative
energies, sizable deviations from (34) are observed in
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Fig. 1. Potentials V| (r{, ky ) asfunctions of r; and k; for
I=(a) 0, (b) 1, and (c) 2

the large-r, region. This is because, at negative ener-
gies, the nucleon momentum becomes imaginary for r,
values lying to the right of the classical turning point,
so that the Bessdl functions of an imaginary argument
that are involved transform into a combination of Han-
kel functions containing divergent exponentials of the
form er‘kl‘ .Asr, increases, the potentia V(r,, E) there-
fore decreases much more slowly than in the case of
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Table 1. Parameters of the radial and energy dependences of the potentials (29), (38), and (40)

E Mev V(ry, E) (29) V(ry, E) (38) V(ry, E) (40)
, Me
ro, fm a,fm [V(O,E), MeV| rq, fm a,fm [V(O, E), MeV| rq, fm a, fm V(0, E), MeV
-60 123 0.90 —75.86 124 131 -75.91 122 0.72 —75.08
-40 121 0.79 —66.72 121 0.89 —66.77 1.22 0.73 —64.65
0 117 0.79 -50.74 117 0.85 -50.75 1.20 0.74 -43.71
40 114 0.91 -37.92 114 1.03 -37.93 115 0.79 -22.76
70 111 111 -30.31 1.10 1.32 -30.32 0.78 0.65 —-7.08
100 1.06 157 -24.19 1.02 1.92 -24.21 1.38 0.53 8.62
Table 2. Parameters of the function fé and a for the potentials (29), (38), and (40)
V(ry, E) (29) V(ry, E) (38) V(ry, E) (40)
E, MeV fLr i (r .
e(ry) a(0, ) e(ry) a(0, ) e(ry) a(0, E)
ro, fm a, fm ro, fm a, fm ro, fm a, fm
-60 1.36 2.68 0.42 1.56 1.03 0.42
-40 1.30 0.93 0.40 1.32 1.31 0.40
0 1.28 0.69 0.36 1.26 0.64 0.38
1.2 .7 .522
40 124 0.55 0.32 1.23 0.59 0.32 ° 0.70 05
70 1.22 0.54 0.29 1.22 0.58 0.29
100 1.20 0.56 0.27 1.20 0.60 0.27

real-valued nucleon momenta. At the same time, the
potential (40) is of the Fermi form for E <40 MeV and
differsfrom it markedly at higher positive energies.

From the datain Table 1, it can be seen that, even if
the potentials (29), (38), and (40) are of the Fermi form,
the parameters of these distributions are strongly
dependent on the nucleon energy. Here, the values of
the parameter r, (r, = R,A') of the potentials (29) and
(38) decrease with increasing energy, but they remain
close to each other at al energy values and close to the
radius r,, of the potential (40) for E < 40 MeV. At the
same time, the diffuseness values for the potentials
(29), (38), and (40) increase on average with increasing
energy. We note that the quoted parameters of the dis-
tribution in (34) for the potential (40) are consistent
with the corresponding parameters from [2-5] aa E= 0
[V(0, E) =435 MeV, r,=1.20fm, and a= 0.72 fm].
The values of the coefficient a(0, E) in (36), which
characterizes the energy dependence of the depths of
the potentialsV(0, E), are presented in Table 2; it can be
seen that they coincide for the potentials (29) and (38)
and decrease with increasing energy from a = 0. 42 at
E=-60MeV t00.27 at E = 100 MeV. Theseresultsare
consistent with the phenomenological values of
a(0, E) = 0.4 and a(0, E) = 0.3 for, respectively, nega-
tive and positive nucleon energies [11]. The energy-
independent value of a(0, E) = 0.522 for the potentials
(40) is close to the value of 0.525 obtained by authors

of [4] and isoverly largein relation to the phenomeno-
logical values.

Phenomenological optical potentials are usually
represented in the form (35) if we take the functions
f,g(rl) and fé(rl) to be coincident. A comparison of
the datain Tables 1 and 2 and in Figs. 2 and 3 shows

that the functions f,g (rpand fé (ry) generaly have dif-
ferent features. For all the potentials (29), (38), and

(40), the parameter r, of the function fé(r ) is notice-
ably greater than the corresponding parameter of the

function fg (r,), while the diffuseness parameter a is

smaller for f¢(r,) thanfor f2(r)).

As can be seen from Fig. 4, the ratio of the effective
mass (22) to the free-nucleon mass increases with
energy, changing from 0.53 at E =—60 MeV to 0.82 at
E = 100 MeV at the center of the nucleus and tending
to unity for r, — oo at all energy values. Owing to the
presence of thel2 and Is2 termsin the NN potential, the
effective mass tends to 0.9m rather than to m in the
high-energy limit, where the integrals of the quickly
oscillating functions in (22) vanish. A comparison of

the effective mass m* (22) and the effective mass my

(31) showsthat they coincide at r, = 0 and that, over the
entire region of r,, their difference does not exceed, in
2001
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fbg(rl)

1.2

(@)

Fig. 2. Radial dependences of the functions fg(rl) for the

potentials (a) (29), (b) (38), and (c) (40) at —60, —40, 0, 40,
70, and 100 MeV (curvesl, 2, 3, 4, 5, and 6, respectively).
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ry, fm

Fig. 3. Radial dependences of the functions fé (ry) for the

potentials (a) (29) and (b) (38) at —60, —40, 0, 40, 70, and
100 MeV (solid curves 1, 2, 3, 4, 5, and 6, respectively) and
for the potential (40) (dashed curve).

m*(rl, E)/m
12 -

0.8

0 4 8 12 16
s fm

Fig. 4. Radia dependences of theratio of the effective mass
(22) to the free-nucleon mass at —60, —40, 0, 40, 70, and
100 MeV (curves 1, 2, 3, 4, 5, and 6, respectively).
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Table 3. Parameters of the radial dependence of the potentials (29) and (40) with and without allowance for the gradient po-

tential (27)
E Mev V(rq, E) (29) V(ry, E) (29) without Vi 4(r1, E) V(r4, E) (40) V(ry, E) (40) without Vgaq(ry)

, Mée
ro, fm a, fm ro, fm a, fm ro, fm a, fm ro, fm a, fm
—60 123 0.90 124 0.97 1.22 0.72 123 0.79
-40 121 0.79 121 0.89 1.22 0.73 122 0.81
0 117 0.79 1.18 0.91 1.20 0.74 121 0.89
40 114 0.91 114 1.05 1.15 0.79 112 1.30
70 111 111 111 1.30 0.78 0.65 0.76 0.49
100 1.06 157 1.03 1.85 1.38 0.53 1.32 0.45

absolute value, 0.08m at E = 60 MeV and 0.02m for
E > 0, decreasing as the energy grows.

Ascan beseen from Fig. 5, the gradient potentia (27)
has an alternating superficial character and increases
with decreasing energy. At negative energies, it differs
only dlightly from the gradient potential appearing in
(40); this is explained by the applicability of the sec-
ond-order approximation in k; near the turning points,
where the absolute values of the nucleon momentum are
small. Theinclusion of the gradient potential reducesthe
effective diffuseness of the optical potentials (29) and
(40) (see Table 3), but this leads to virtually no changes
in the potential depths or in the parameter r,,.

The analysis of the potentials (29) and (38) reveas
that the semiclassical approximation (37) is valid over
the entire region 0 < r; < o for E = 10 MeV. In the
energy region 0 < E < 10 MeV, the difference of the
potentials (29) and (38) does not exceed, in absolute
value, 1.2 MeV at any value of r,. The potential (40)
noticeably differs from the potential (29), but they tend
to approach each other with decreasing nucleon energy.

5. CONCLUSION

The parameters of the effective energy-dependent
potential that is equivalent to the nonlocal Hartree—
Fock potential both for positive and for negative
nucleon energies have been determined for thefirst time
without resort to the assumption that the Fock potential
is proportiona to the momentum squared. It has
appeared that the shape of the effective energy-depen-
dent potential that describes simultaneoudly the self-con-
sistent field and the real part of the optical potential for
nucleons undergoes significant changes upon reversa of
the sign of nucleon energy. We have demonstrated the
validity of the semiclassical approximation at nucleon
energiesin excess of 10 MeV. It has been shown that, at
nucleon energies below thisvalue, it isimportant to take
into account the gradient term that was not included in
the conventional computational schemes.

APPENDIX

1. Components of the Local Hartree-Fock Potential
in Spherical Nuclei with Allowance
for Velocity-Dependent NN Interactions

Vgrad» MeV The components of the Hartree potential can be rep-
r resented as
2f Va(ry) = [Ve(np(r)dr, (A1)
i v© (dP(ro) aE +r
N D) = 3[Vizie (0 G
o d® ( )1 f
p r
f gV T R a8
oL (A.2)
, . ;dp(rz)%+glz+rﬁg 0,
r, dr, r,
—4- 1. .H 2
_ . _ "‘éIVlz,lsz(r)r w(rp)dr,
Fig. 5. Radial dependences of the gradient term V,,4(r;, E)
for the potential (29) at —60, —40, 0, 40, 70, and g_LOO MeV ) 1 H
curvesl, 2, 3,4, 5, and 6, respectively) and for the potential = =
§40) (dashed cUrve), e y) p Vi (ry) 2‘[V|2,|52(r)p(l’2)r§dr, (A.3)
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V() = 5[Vl e(pr)r (L -8)dr, (A4

Vigie(r) = Vi(r) + Vig(r),

where VCH (n), Vg (r), and V|H32 (r) are the Hartree parts
of, respectively, the central, the |2, and the |S2 interac-
tion of nucleons; € is the cosine of the angle between
= Wy(ry) + Wy(ry) isthe
total density of the square of the nucleon momentum

the vectors r and r;; and w(r,)

with
On,p(r2) = V2 IV,p, (12, r'z)|r.2:r
The components of the Fock potential are given by
I2I52( ry, kl)
_ Lo ?
—1—6J'V|2,|32(l’)p(l’1, ra+r){[r xkq]
+4ir Ekl}e”D(1 dr
* %Ivrz,mz(r) f(ryr,+ r)eir o

ry+r) rap(rl’ ri+r)g
0¢ ory u

#3[Vielr ey

XB/ rXJDE[rx|k1]e Ekl )

Vizisa(r) = Vig(r) + Vig(r), (A.8)
where V|F2 (r)and V|F52 (r) are the Fock parts of, respec-

tively, the 12 and the Is2 interactions of nucleons; i and
j areunit vectorsin the x and y directions, respectively;
and the function f (r,, r, + r) hasthe form

f(ryry+r) = (1- .E)mza—p(rl’r 1*1)

arl
_Zrazp((;rl,g;r)+azp(r1,r21+r)g
Op(rq,ry+r
T +4r£m—p( SLERE
1
op(ry, ry+r) op(ry,ry+r)
2¢ R -2r T .
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(A.5)

(A.6)

(A7)

By recagting the potentia V'F2 12 (r;, k) intotheform (12),
we arrive at
I2 Is2
12,152 ~ 12, 1 Ekl
= 3 [V k) 0 k)T P,

|
where

I2 I1s2

(ruky) = i'(21+1)

U1 _
x E-EJ’VE,lsz(r)pmrl, r)ji(rky)r drk}

I(l
g ViesOp (L =it

1

_(2+1)

(k) +ja(rky) [rirkd A

~ 3V 0P ) H ) s |k,
g6 Vi (D T (k)

1 ' |l . . g
—§[Vie O i 0 el ) = iatrk) e

~12,1s2

Vio (ry k)
(A.12)
(21 +1) IV|2|SZ(r)f|(rl, r)ji(rky)rdrk,.

In Egs. (A.11) and (A.12), we have used the nota-
tion

_ i+t

pi(ry,r) = anp(rl, ry+r)P(&)dg, (A.13)
fi(ry,r) = 2njf(r1,rl+r)P|(E)dE, (A.14)
ap(rl,r +r)
fi(ryr) = 2nf| ———
5 ‘r[ (A.15)
p“g%f”}zmz)dz,
fi(ry, 1) = ZHI[a—p(rl 1+ )
(A.16)

_ra—p(rgrrll+ SIGES



2. Local Energy-Dependent Potential
in Spherical Nuclel with Allowance
for Velocity-Dependent NN Interactions
By taking into account the Fock parts of the 12 and
IS2 interactions and discarding the | = 2 terms in
Egs. (12) and (A.10), we reduce the potentia Ve(r;, k;)
to theform

12,152

Ve(rg, Ky) = Vo(ry, ky) + Vo 7 (rg, ky)

(A.17)
ryky
riky

Instead of the Schrodinger equation (21), we then
obtain

~ 12,152 12152
+[Vy(r, k) +Vo o (r, k) + Vi 7 (rg, kgl

ﬁ2
%12m*(r1, K1)
+ Vo (g, ky) = (1(rg, ky) + 3(ry)

Ky +VE(r) + VP (ry) + Vo(ry, ky)

(A.18)

+V(r))ki —EFpe(ry) = 0,

where the effective mass m*(r,, k;) is determined by
Eqg. (22), inwhich

1(ry, ky) = —i [Vary k) + Vi, ky)
r (A.19)

~12,1s2 1
+Vo  (ry, kl))k_drl
1

is substituted for I(r,, k).

Representing the wave function ¢g(r,) in the
form (23) and defining the form factor f(r,, k,) by
expression (24), we find that the function ¢ (r,) satis-
fies an equation of the type (25) with the potential
M v (1) + Vi(r)

(A.20)

+Vo(ry, Ke) + Vo (g, Ka) = (3(ry) + 1(ry, ka)

V(ry, ki) =

2 - m* (r,, k
V()R + Vil k) + B -T2 )G

KADMENSKY, LESNYKH

whereV,,,q(r,, ki) isgiven by Eq. (27). With allowance
for the velocity-dependent NN interactions, the effec-
tive local energy-dependent potential then assumes the
form

V(ry, E) = Vi(ry) + Vi(ry) + Vo(ry, ka(ry, E))

12,1s2 (A.21)

_ _2
+ Vo (1, ka(ry, E)) + VO(r)ka(ry, E)

+ Vgrad(rli |_(1(I'1, E))
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Abstract—The distribution of the radiative strength in nuclei where the number of nucleons of one type is
nearly magic (Z = 28 + 1) and where there are a few valence nucleons of the other type is investigated. It is
shown that the statistical approach that is based on Fermi liquid theory and which takes into account tempera-
ture and the shell structure of nuclei |eads to good agreement with experimental data on radiative strength func-
tions bel ow the neutron binding energy in such nuclei. Only for the 5°Co and ®°Cu nuclei, which have the largest
number of valence neutrons among the cobalt and copper isotopes being investigated, is the energy dependence
of theradiative strength compatible with aL orentz distribution aswell. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Experimental and theoretical investigations of the
energy dependence of radiative strength functions for
nuclei in which the number of protons is close to the
magic number of Z = 28 revealed that, for the majority
of these nuclei, experimental data on radiative strength
functions comply, neither in magnitude nor in shape,
with alow-energy extrapolation of the L orentz distribu-
tion that successfully describes giant electric-dipole
resonances. The radiative strength functions obtained
in[1, 2] for E1 transitions in the 5%%3Cu nuclei exhibit
amuch sharper energy dependence than that which fol-
lows from an extrapolation of the Lorentz distribution
to low gamma-ray energies. For the ¥Co nucleus, such
an extrapolation yields a radiative-strength-function
value eight times as great as the experimental result of
Nilson et al. [1]. Since the attempts undertakenin [1] to
improve the agreement by varying the parameters used
to determine the pursued radiative strength function, its
behavior was considered to be anomalous. At the same
time, the data on the radiative strength function that
were obtained by the same group for the *Cu nucleus
[3] are closely approximated by a Lorentz distribution
in the region of low photon energies as well. In [4, 5],
it was assumed that a Lorentzian form is also appropri-
ate for describing the experimental radiative strength
function for the ®'Cu and ®Cu nuclei in the same range
of photon energies as in [1-3]. Possible deviations of
the radiative strength functions from the behavior spec-
ified by alow-energy extrapolation of this form would
suggest that the strength function depends on the prop-
erties of the final nucleus. This would contradict the
well-known hypothesis of Axel and Brink, who conjec-
tured that primary E1 transitions observed in radiative
nucleon capture must be induced by the same processes
as the giant dipole resonance (GDR), which is approx-
imated by a Lorentz distribution, and that giant reso-

nances built on the ground state and on an excited state
must be characterized by identical parameter values.

In this study, we aim at determining the absolute
values of radiative strength functions and at compre-
hensively investigating their energy dependence below
the neutron binding energy for E1 transitions in the
37:39Co nuclel, where only one proton is needed to fill
completely the 1f,, shell, and in the 61-63.%5Cu nuclei,
where there is one extra proton above the filled 1f;,
shell and where the number of valence neutrons
increases. It isassumed that the structure of these nuclei
can be described by the shell model and that the paucity
of information about the properties of these nuclei will
not complicate data analysis.

Since much attention is given here to the question of
why the conventional treatment of radiative strength
functionsfailsin the case of ®'Cu and ®*Cu nuclei [1, 2,
4], while providing afairly good description of experi-
mental data for the ©Cu nucleus[3, 5], it is reasonable
to consider energiesin the samerange asin [1-5]. Pre-
liminary results on primary gamma transitions in indi-
vidual nuclei from the region under study were reported
in[6-9].

It should be noted that available experimental data
on the energy dependence of radiative strength func-
tions for A < 100 nuclei—these data predominantly
come from experiments studying (p, y) reaction—are
obvioudy insufficient for systematic investigations in
these realms, in sharp contrast to what we have in the
region of A= 100 nuclei, where considerable advances
have recently been made in studying the low-energy
behavior of radiative strength functions owing to infor-
mation efficiently extracted from data on radiative neu-
tron capture. The situation is aggravated by the absence
of experimental data on the level densities for nuclei
under consideration in the excitation-energy range of
interest and by the fact that the optical-model parame-
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ters used in determining the radiative strength functions
at low proton energies are questionable. It isdifficult to
compare radiative-strength-function values estimated
on the basis of experimental data because different esti-
mates for the same nuclei were often obtained with dif-
ferent values of the same parameters.

2. EXPERIMENTAL RESULTS
AND THEIR ANALY SIS

In just the same way as in [1-5], the radiative
strength functions are determined here by using the
averaged intensities of primary gamma transitions to
individual low-lying states excited in the nuclei under
investigations in the (p, y) reactions. For the target
nuclei >°Fe, 33Fe, ©Ni, °INi, 92Ni, and **Ni, the values of
the energy release in the relevant (p, y) reactions are
Q,=6.02,7.37,4.81,5.87,6.12, and 7.45 MeV, respec-
tively. These Q, values are sufficiently high for the cor-
responding level density in compound nuclei to satisfy
the conditions under which the statistical description is
valid. That the thresholds for the (p, n) reactions on the
above targets exceed 5.4, 3.1, 7.0, 3.1, 4.8, and
2.5MeV, respectively, leaves a comparatively wide
range of incident-proton energies at which the relevant
investigations can be performed without exciting the
neutron channel. The averaged intensities of primary
gamma transitions were obtained from the spectra of
high-energy gamma rays as measured by a pair spec-
trometer for proton energies from 1.5 to 3.0 MeV for
%6, 33Fe targets, from 1.50 to 3.88 MeV for °°Ni targets,
from 2.21 to 2.43 MeV for %!Ni targets, from 1.5 to
3.0 MeV for 5°Ni targets, and from 1.55 to 2.90 MeV
for ®“Ni targets. Averaging over compound-nucleus
states that is necessary for effectively suppressing Por-
ter—Thomas fluctuations [ 10] and for achieving a satis-
factory statistical accuracy was ensured by choosing
target thicknesses in an optimal way and successively
adding gamma-ray spectra measured at different ener-
gies with a shift equivalent to the target thickness.

According to statistical theory, the (p, y) cross sec-
tion averaged over compound-nucleus resonances can
be represented in the form [11]

A2 u
Oy = EY IV VI @)
J

C

where

-1 -1
O

V= T[1+T§ZTCD (W—l)} ,
O

W= 1+2(1+ T

A, isthe proton wavelength; g(J) = (2J+ 1)/(2s+ 1)/(21 +
1), | and s being the target-nucleus spin and the nucleon
spin, respectively; T stands for the corresponding pen-
etrability factors; and c is the channel index. For an
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even—even target nucleus, we have g(J) = (2J + 1)/2.
Summation in Eq. (1) is performed over al the open
reaction channels ¢ and J® compound-nucleus states
allowed by relevant selection rules. The quantity Win
expression (1) takes into account a correction for fluc-
tuations that the cross section can develop because of a
small number of open channels[11]. This correction may
prove to be important at low energies. Expression (1) can
be recast into the more compact form

— Tyf)\
o(p,ys) = zGAT, ()

where o, is the cross section for the formation of the
compound nucleus in the state A, T, is the sum of all
penetrability factors corresponding to open deexcita
tion channelsfor the state A, and T, , isthe penetrabil-

ity factor for photons corresponding to primary transi-
tions from the group of compound-nucleus states A at
energy E, to the final state f at energy E; = E, — E,. For
y rays corresponding to transitions of multipoleorder L,

the penetrability factor T, , can be expressed in terms
of the radiative strength function S, (E) as[12]

T, = 21S, (E)E; . 3)

The penetrability factor T, then assumes the form

T = ZTlp,jp."' len.jn.

lyig i

. “)
+ ZJ'ZT[pJ(EA—Ey)E$L+lSAf(Ey)dEy,
0

where T|p, j, ae the penetrability factors for protonsin

the output channel, T, ; = are the penetrability factors

for the neutron channel, and p,(E, — E,) is the density
of levels occurring at E; and having a spin J.

The penetrability factors for protons were calcu-
lated with allowancefor the results obtained in [13-21].
The use of aglobal systematics of the optical-potential
parameters deduced from an analysis of the scattering
of protons with energies above 8 MeV [13, 17] in cal-
culations for energies below 4 MeV would hardly be
reasonable, especialy as the absorption potential can
change sharply near closed shells [22]. Indeed, the
detailed analysis of the cross sections for (p, y) reac-
tions and for the elastic and the inelastic scattering of
low-energy protons on 54 %Fe nuclei that was per-
formed by Boukharouba et al. [15], who relied on the
optical model, invoking dispersion theory and taking
into account channel coupling and shell effects,
reveal ed that the observed dependence of theimaginary
part of the optical potential on the mass number for
nuclel with A close to 60 can be attributed to changes
that the filling of the shell induces in the density of
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intermediate 2p1h states. In the present study, the opti-
cal-potential parameters were chosen in such away as
to ensure the best fit to datafrom [18-21, 23-25] on the
cross sections for elastic and inelastic proton scattering
and (p, y) and (p, n) reactions on % 3Fe and 0-62 64Njj
nuclel at incident proton energies below 4 MeV. The
resulting parameters of the rea part of the optica
potential werevirtually identical to those from [13-17],
with exception of the diffuseness, which proved to be
reduced. At the same time, the parameters of the imag-
inary part of the potential differ markedly fromthosein
the global systematics. In particular, the imaginary part
of the surface potential was taken in the form WYE) =
3.85 + 0.72E MeV for the **Fe and in the form WE) =
5.6 — 0.25E MeV for the 3®Fe target nucleus. Injust the
sameway asin[19], theimaginary part was used in the
form WYE) = 1.5(A-58) + 0.5 MeV for al nickel iso-
topes, despite the fact that experimental data on the
inelastic scattering of low-energy protons by “Ni and
©2Ni nuclei are better approximated by the calculations
with W, from [13, 17]. The use of the parameters from
[13, 17] in statistical calculations gives considerably
overestimated values of the cross sections for the (p, y)
reaction on al stable nickel isotopes.

Thelevel density in the nuclei under study, whichis
also aningredient of the statistical description, was cal-
culated within the back-shifted Fermi gas model. In
these calculations, the level-density parameter a, the
excitation-energy shift A allowing for nucleon pairing
and shell effects, and the moment of inertia.$ were set
to the values taken from [26] and presented in the table
(versions 1 and 2). For the sake of comparison, the level
density was also calculated by the phenomenological
statistical method described in [27]. The parameter val-
ues used in this case are al so presented in the table (ver-
sion 3). A description of the level density was taken to
be acceptableif it ensured agood fit of statistical calcu-
lations to experimental data over a wide range of exci-
tation energies. The level densities calculated with the
parameter values from the table are displayed in Fig. 1,
along with experimental data. Circlesin thisfigure rep-
resent data on the discrete section of the energy-level
diagram up to an excitation energy of 5.5 MeV that
were taken from [28, 29] for the >7-3°Co nuclei, from
[30, 31] for the 6263.65Cu nuclei, and from the NUDAT
BNL database containing current results on these
nuclei. For the ’Co nucleus, squares show the data
from [32], while the triangle corresponds to the results
from [33]. For the ®'Cu nucleus, the sguare represents
the data from [34]. For other nuclei, datafor excitation
energies above 5.5 MeV were taken from [35].

Specifying the form of the radiative strength func-
tion S, (E,), one can now use expression (1) to calcu-

late the intensities of direct gamma transitions to each
individual low-lying state of the final nucleus. A com-
parison of the intensity calculated in this way with
experimental data providesacriterion of the applicabil-
ity of the form assumed for the radiative strength func-
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Parameters used in calculating the level density in the nuclei
under study

Nucleus | Version | a,MeV! | A MeV P ig
5Co 1 521 -041 0.5
2 6.12 —0.20 1.0
3 4.18 159 0.4
%Co 1 5.50 -0.77 0.5
2 6.31 -0.47 1.0
3 3.06 1.56 04
6lcy 1 5.03 -1.55 0.5
2 5.99 -1.06 1.0
3 441 154 04
62Cu 1 6.48 0.97 0.5
2 7.27 -1.07 1.0
3 3.98 154 04
83Cuy 1 574 —0.96 0.5
2 6.63 —0.67 1.0
3 4.12 151 04
%5¢Cy 1 5.47 —1.00 0.5
2 6.24 -0.77 1.0
3 4.55 1.49 04
4 3.9 1.49 04

tion. In this study, the radiative strength function
appearing in Eq. (4) was specified either inaLorentzian
form or in the form obtained in various theoretical
approaches. The quantity S, [E,] entering into the

coefficient T, , inthenumerator on theright-hand side of

Eq. (2) was chosen in such away asto reproduce the mea
sured absolute values of the partia (p, y;) cross section.

Most frequently, E1 radiative strength functions are
calculated (see, for example, [36-38] and references
therein) within the approach that is based on Fermi lig-
uid theory [39] and which was developed for spherical
nonmagic nuclei. The main distinction between this
method and that which relies on a Lorentz distribution
is that, for E, — 0, the radiative strength function
tendsto afinitelimit determined by the giant-resonance
parameters E,, I, and g, and the nuclear temperature
Tinthefinal state. Here, we calculate radiative strength
functions within the approach that was proposed in [40,
41] and which is also based on Fermi liquid theory, but
which employs approximations somewhat differing
from those in [39]; within this approach, it is consid-
ered that the energy dependence of the radiative
strength function is affected by the shape of the GDR,
whose width depends on excitation energy and on the
nuclear temperature, and by the number of single-par-
ticle states that can be connected by transitions allowed
by the Pauli exclusion principle. The number of such
states depends on the transition energy and on the tem-
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Fig. 1. Level densitiesinthe nuclei under analysis versus excitation energy. In each panel, the dashed, the solid, the dash-dotted, and
the dotted curve represent the results of the cal culations with the parameter val ues presented in the table (versions 1-4, respectively).
Experimental data were taken from [28-35] (for more details, see the main body of the text).

perature and the shell structure of the nucleus. Previ-
ously, we successfully used this approach to analyze
experimental data on radiative strength functions for
the dipole transitions in the 46Ti [42], ¥Ga [43], °Ge
[44], and 7> 5 As [45] nuclei, which are pronouncedly
deformed. However, it appeared to be less appropriate
for describing experimental energy dependences of the
radiative strength functions for the 3>-37-8Y nuclei [46]
and especially for the*°Zr nucleus[47]. For aGDR fea-
turing two maxima, the El strength function treated
within this approach can be represented as

S' = 867x10° 2r{1+ exp(-E,/T)]™
2

i Eier(i)(Ey) )

x H
i:zl(Ei— E?)” + Mgy (E,)

where

Mriy(Ey) = Tip2p2n(Ey T)/P2p_on(Ei, T)

and g;, E;, and I'; are, respectively, the cross sections at
the maxima, the positions of the GDR components, and
their widths. Their valueswere chosen in such away as
to ensure the best fit of a Lorentz distribution to exper-
imental data from [48, 49] on the cross sections for the
(y, n) reactions on *Co and %*Cu nuclei. For want of
experimental data on GDRs in the ¥’Cu and 6!-626Cu
nuclel, the radiative strength functions for these nuclei
were calculated with the GDR parameters identical to
those for the ¥Co and ®Cu nuclei, respectively. The
density of 2p-2h states, p,, »n(E,, T), is governed both
by the density of one-particle states and by the occupa

tion numbersin the state that is populated after photon
emission. In calculating p,, -n(E,, T), we took into
account of the shell structure of the spectrum of single-
particle levels and the effect of the nuclear temperature
T on the occupation numbers in these levels.

Since the single-particle 3s resonance at proton
energies below the Coulomb barrier is excited in these
nuclei, it is necessary to take into account the possible
contribution of nonstatistical processes to the radiative
strength functions that are associated with the effect of
thisresonance. The possible contribution of the valence
capture mechanism involving the excitation of the qua-
sistationary 3s and 2d states was estimated in [4]. The
relevant contribution to the cross section was calcul ated
within the semimicroscopic approach developed in
[50]. In this approach, simple configurations are calcu-
lated on the basis of a single-particle model, while their
coupling to complex configurationsistaken into account
within the optical moddl. It turned out that, near the max-
ima of the 3s and 2d resonances, the contribution of the
valence mechanism to the capture cross section may be
aslarge as50%. At lower energies (610 MeV), the max-
imum contribution for (3s + 2d) — 2p transitions can
saturate 30 and 15% of the observed cross sections for
®1Cu and ®Cu nuclei, respectively. The nonstatistical
contribution isthe most pronounced for the ¢! Cu nucleus
and decreases fast as the neutron shell isfilled.

In order to estimate the contribution of the M1 tran-
sitions, we used the relation

SH/S" = 0.03A(E; + (tT)%)/B; (6)
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Fig. 2. Experimental and theoretical values of the radiative
strength functions for primary gamma transitions in the
nuclei under investigations. Open circles represent the radi-
ative strength functions at Ej, = 2.84, 2.82, 2.89, 2.30, 3.00,
and 2.30 MeV for the 3Co, Co, ¢!Cu, %2Cu, %3Cu, and

%5Cu, respectively. Closed circles correspond to data from
[48, 49]. The theoretical results displayed in this figure are
those that were cal cul ated with a L orentz distribution (dash-
dotted curves) and those that were obtained on the basis of
the statistical approach from [40, 41] with allowance for
nuclear temperature (dashed curve) and nuclear temperature
and the shell structure of nuclei (solid curves).

(recall that B,, is the neutron binding energy, while T is
the nuclear temperature in the fina state), which was
derived on the basis of the results obtained in [40] (for
more details, see [42]). It should be noted that experi-
mental data on M1 excitationsin 1f;,-shell nuclei sug-
gest the suppression and a considerable fragmentation
of the M1-resonance strength not only in relation to the
predictions of the independent-particle model but also
in relation to the predictions obtained within various
versions of the random-phase approximation.

Figure 2 shows the radiative strength functions
obtained from our analysis of experimental data on the
partial cross sections for the (p, y;) reactions on 3¢ 3%Fe
and 60-62.64Njj targets at fixed proton energies. Experi-
mental data near the GDR maxima were taken from
[48, 49]. The dash-dotted, dashed, and solid curvesrep-
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Fig. 3. Partial cross sections for the (p, y) reaction on ®Ni
targets. The closed regions of the histograms correspond to
the cross sections calculated with the radiative strength
functions obtained on the basis of the statistical approach
from [40, 41] with allowance for the shell structure and the
temperature of the nucleus, while the shaded regions repre-
sent the cross sections cal culated with the radiative strength
functions in the Lorentzian form.

o, Ub

150 65Cu

100

50

Fig. 4. Asin Fig. 3, but for the (p, y) reaction on ®Ni tar-
gets.

resent the radiative strength functions derived theoreti-
cally on the basis of, respectively, a Lorentz distribu-
tion, Eqg. (5) allowing only for temperature, and Eq. (5)
allowing both for temperature and for the shell struc-
ture of the nucleus. In these calculations, the M1 contri-
bution (not shown in Fig. 2) did not exceed 10-15% for
various states of the nuclel being studied. For some
cases, the measured partial cross sections for the rele-
vant (p, y) reactions are contrasted in Figs. 3 and 4
against the results of the calculations by Eg. (1) with
various versions of the radiative strength functions. The
closed regions of the histograms correspond to the
cross sections calculated with the strength functions
derived within the statistical approach [40, 41] that
takes into account the shell structure and the nuclear
temperature, while the shaded regions represent the
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Fig. 5. Total cross sectionsfor the (p, y) reactionson 3% 38Fe
targets: (dashed curves) results obtained with the radiative
strength functionsin the L orentzian form and (solid curves)
results obtained with the radiative strength functions cal cu-
lated within the statistical approach developed in [40, 41].
The cross sections for the (p, y) reactions were deduced on
the basis of estimated experimental data from [22, 24] for

5Fe targets and were taken from [25] for 8Fe targets.
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cross sections based on the radiative strength functions
inaLorentzian form. A similar comparison for the total
cross sections as functions of the proton energy isillus-
trated in Figs. 5 and 6. The cross sections for the (p, )
reactions were obtained on the basis of estimated
experimental data from [22, 24] for Fe targets and
were borrowed from [25] for ¥Fetargets. It can be seen
that the partial (p, y;) cross sections calculated with the
radiative strength functions derived within the
approach proposed in [40, 41] agree well with experi-
mental data. The agreement between the cal culated and
measured values of the total (p, y) cross sections is
somewhat poorer in the proton-energy range under con-
sideration. In all probability, this is because the total
radiative widths are of crucia importance for calculat-
ing the total cross section; therefore, the degree of
agreement depends on the accuracy of the radiative
strength functions over the entire energy range. From
Fig. 2, we can see that, over the entire photon energy
range under study, the radiative strength functions cal-

o, mb
10%:

107!

1072k

1073

Fig. 6. Total cross sections for the (p, y) reactions on 8062 64Njj targets. Experimental values were taken from [19-21]. The theoret-
ical resultsdisplayed in thisfigure are those that were cal cul ated with a L orentz distribution (dash-dotted curves) and those that were
obtained on the basis of the statistical approach from [40, 41] with allowance for nuclear temperature (dashed curve) and nuclear

temperature and the shell structure of nuclei (solid curves).
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culated in the approach from [40, 41] without use of
adjustable parameters agree with experimental data
both in shape and in magnitude. For the *Co and %Cu
nuclei, which contain the largest number of valence
neutrons among the cobalt and copper isotopes under
consideration, the energy dependence of the radiative
strength function is compatible with a Lorentz distribu-
tion aswell.

If we pay no attention to the fact that an extrapola-
tion of a Lorentz distribution to the low-energy region
leads to considerably overestimated absolute values of
the radiative strength functions for the >°Co nucleus, it
can be concluded that, by and large, the distribution of
the E1 strength in the nuclei under investigation is in
gualitative agreement with the energy dependence pre-
dicted by Soloviev et al. [51] for the E1 strength in
heavier spherical nuclei. For A = 90-150 spherical
nuclei, these authors calculated, within the quasiparti-
clephonon model of the nucleus, the E1 strength func-
tions over a wide excitation interval, including the
GDR region. They aso examined the GDR effect on
the behavior of the radiative strength functions near the
neutron binding energy. The results of further theoreti-
cal investigations along these lines were discussed in
detail, for example, in [52]. On the basis of the conclu-
sionsdrawn in [51], the observed reduction of the devi-
ation from a Lorentz distribution in the Z = 28 +
1 nuclei with increasing number of valence neutrons
can be attributed to the enhancement of the GDR effect
on the radiative strength functions as the nuclei being
considered recede from those with closed shells (for the
latter, this effect is assumed to be insignificant) and to
an increase in the excitation energy. The examples of
¥Co and %Cu nuclel excited in the (p, y) reactions,
which have the energy release of Q, = 7.4 MeV, the
highest for the nuclei studied here, demonstrate that the
closer the energy of direct gamma transitions to the
GDR maximum, the better the agreement of a Lorentz
distribution with experimental radiative strength func-
tions, at least in shape.

It would be of interest to compare quantitatively our
results with the radiative strength functions calculated
within the semimicroscopic approach that was devel-
oped on [53] on the basis of the random-phase approx-
imation and which allowsfor the single-particle contin-
uum exactly and nucleon pairing approximately in
describing doorway particle-hole configurations. In
this approach, the coupling of doorway states forming
GDRs to the complex configurations is taken into
account directly at the low-energy GDR tail.

3. CONCLUSION

The absolute values and the energy dependences of
the radiative strength functions bel ow the neutron bind-
ing energy in the>”-3°Co and 843 $5Cu nuclei have been
determined within a unified approach. It has been
shown that the distribution of the E1 strength calculated
within the statistical approach developed in [40, 41] on
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the basis on Fermi liquid theory agrees, without adjust-
able parameters, with experimental data over the entire
photon-energy range under investigation both in shape
and in absolute value. Only for the ¥Co and %Cu
nuclei, which contain the largest number of valence
neutrons among the cobalt and copper isotopes studied
here, isthe energy dependence of the radiative strength
compatible with a Lorentz distribution as well. It has
been assumed that this is due to the possible enhance-
ment of the GDR effect on the radiative strength func-
tions as the number of valence neutrons increases and
to the fact that the energy dependence of the radiative
strength functions for these nuclel was determined in
the region closest to the GDR maximum because *Co
and Cu nucle are excited in the (p, y) reaction charac-
terized by the highest energy release Q, for the nuclei
investigated here.

ACKNOWLEDGMENTS

| am grateful to B. A. Nemashkalo and S. S. Rat-
kevich for stimulating discussions and assistance and to
V. V. Varlamov for kindly placing photonuclear data at
my disposal.

REFERENCES

1. K. Nilson, B. Erlandsson, and A. Marcinkowski, Nucl.
Phys. A 391, 61 (1982).

2. B. Erlandsoon, K. Nilson, and A. Marcinkowski, Nucl.
Phys. A 348, 1 (1980).

3. B. Erlandsson, K. Nilson, A. Maricinkowski, and
J. Piotrowski, Z. Phys. A 293, 43 (1979).

4. B. A. Nemashkalo, S. A. Pis menetskii, and V. E. Sto-
rizhko, Yad. Fiz. 36, 280 (1982) [Sov. J. Nucl. Phys. 36,
163 (1982)].

5. B. A. Nemashkalo, Yu. P. Mel’nik, V. E. Storizhko, and
K. V. Shebeko, Yad. Fiz. 37, 3 (1983) [Sov. J. Nucl. Phys.
37,1(1983)].

6. B. A. Nemashkalo, S. S. Ratkevich, and I. D. Fedorets,
in Proceedings of the 47th International Conference on
Nuclear Spectroscopy and Nuclear Sructure, S. Peters-
burg, 1997, pp. 159, 160.

7. S. S. Ratkevich, |. D. Fedorets, and B. A. Nemashkalo,
in Proceedings of the 49th International Conference on
Nuclear Spectroscopy and Nuclear Sructure, . Peters-
burg, 1999, p. 318.

8. I. I. Zalyubovskii, S. S. Ratkevich, I. D. Fedorets, and
B. A. Nemashkalo, in Proceedings of the 48th Interna-
tional Conference on Nuclear Spectroscopy and Nuclear
Sructure, S. Petersburg, 1998, p. 228.

9. I. I. Zalyubovskii, S. S. Ratkevich, I. D. Fedorets, and
B. A. Nemashkalo, in Proceedings of the 49th Interna-
tional Conference on Nuclear Spectroscopy and Nuclear
Sructure, . Petersburg, 1999, p. 319.

C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483
(1956).

J. W. Tepel, H. M. Hofmann, and N. A. Weidenmiiller,
Phys. Lett. B 49B, 1 (1974).

10.

11.



56
12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.

27.

28.
29.

30.

31
32.

33.

FEDORETS

G. A. Bartholomew, E. D. Earle, A. J. Ferguson, et al.,
Adv. Nucl. Phys. 7, 229 (1973).

F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182,
1190 (1969).

S. Kailas and M. K. Mehta, in Proceedings of the 2nd
Indo—US Symposium on Nucl. Phys. Cyclotron and
Intermediate Energy, Bombay, 1982, Vol. 1, p. 505.

N. Boukharouba, C. E. Brient, S. M. Grimes, et al., Phys.
Rev. C 46, 2375 (1992).

E. A. Romanovskii, Doctoral Dissertation in Mathemat-
ics and Physics, Moscow (Maoscow State Univ., 1981);
E. A. Romanovsky, O. V. Bespalova, T. P. Kuchning,
etal., Yad. Fiz. 61, 37 (1998) [Phys. At. Nucl. 61, 32
(2998)].

R. L. Varner, W. J. Thompson, T. L. McAbeg, et al.,
Phys. Rep. 201, 57 (1991).

R. L. Hershberger, F. Gabbard, and C. E. Laird, in Pro-
ceedings of the Fifth International Symposium on Cap-
ture Gamma-Ray Spectroscopy and Related Topics,
Knoxville, 1984, p. 692.

C. I. Tingwell, V. Y. Hansper, S. G. Tims, et al., Nucl.
Phys. A 496, 127 (1989).

C. I. Tingwell, V. Y. Hansper, S. G. Tims, et al., Nucl.
Phys. A 480, 162 (1988).

M. E. Sevior, L. W. Mitchell, M. R. Anderson, et al.,
Aust. J. Phys. 36, 463 (1983).

C. H. Johnson, A. Galonsky, and R. L. Kernell, Phys.
Rev. C 20, 2052 (1979).

G.A. Krivonosov et al., Yad. Fiz. 24, 461 (1976) [Sov. J.
Nucl. Phys. 24, 239 (1976)].

D. B. Nichals, R. G. Arns, H. J. Hausman, et al., Phys.
Rev. 183, 945 (1969).

S. G. Timeset al., Nucl. Phys. A 563, 473 (1993).

Yu. V. Sokolov, Level Density in Nuclei (Energoatomiz-
dat, Moscow, 1990).

A. S. lljinov, M. V. Mebel, N. Bianchi, et al., Nucl. Phys.
A 543,517 (1992).

M. R. Bhat, Nucl. Data Sheets 67, 195 (1992).

M. Coral and L. Baglin, Nucl. Data Sheets 69, 733
(1993).

L. P Ekstrom and J. Lyttkens, Nucl. Data Sheets 38, 496
(1983).

M. M. King, Nucl. Data Sheets 60, 337 (1990).

V. Mishra, N. Boukharouba, C. E. Brient, et al., Phys.
Rev. C 49, 750 (1994); M. I. Svirinand G. N. Smirenkin,
Yad. Fiz. 48, 682 (1988) [Sov. J. Nucl. Phys. 48, 437
(1988)].

T. Ericson and T. Mayer-Kuckuk, Annu. Rev. Nucl. Sci.
16, 183 (1966).

. J. Sziklai, T. Vass, J. A. Cameron, et al., Phys. Rev. C 41,

849 (1990).

35

36

37

38.

39.

40.

41.

42.

43.

45,

46.

47.

48.
49,

50.

51.

52.

53.

PHYSICS OF ATOMIC NUCLEI

. M. Kicinska-Habior, K. A. Snover, C. A. Gossett, et al.,
Phys. Rev. C 36, 612 (1987).

. F. Becvar, P. Cejnar, R. E. Chrien, and J. Kopecky, Phys.
Rev. C 46, 1276 (1992).

. S. T. Boneva, E. V. Vasil’eva, V. D. Kulik, et al., Fiz.
Elem. Chastits At. Yadra 22, 1433 (1991) [Sov. J. Part.
Nucl. 22, 698 (1991)].

O. T. Grudzevich, Yad. Fiz. 62, 227 (1999) [Phys. At.
Nucl. 62, 192 (1999)].

S. G. Kadmenskii, V. P. Markushev, and V. |. Furman,
Yad. Fiz. 37, 277 (1983) [Sov. J. Nucl. Phys. 37, 165
(1983)].

V. K. Sirotkin, Yad. Fiz. 43, 570 (1986) [Sov. J. Nucl.
Phys. 43, 362 (1986)].

V. K. Srotkin and D. F. Zaretskii, 1zv. Akad. Nauk
SSSR, Ser. Fiz. 52, 984 (1988); D. F. Zaretskii and
V. K. Sirotkin, Electromagnetic and Weak Interactions
of Compound-Nucleus Levels (Mosk. Inzh.-Fiz. Inst.,
Moscow, 1986).

[. I. Zalyubovskii, B. A. Nemashkalo, S. S. Ratkevich,
et al.,, Yad. Fiz. 57, 777 (1994) [Phys. At. Nucl. 57, 727
(1994)].

S. S. Ratkevich, B. A. Nemashkalo, and |. D. Fedorets,
Izv. Akad. Nauk, Ser. Fiz. 61, 2039 (1997).

. B.A. Nemashkalo, S. S. Ratkevich, V. K. Sirotkin, et al.,
Yad. Fiz. 59, 1925 (1996) [Phys. At. Nucl. 59, 1857
(1996)].

S. S. Ratkevich, B. A. Nemashkalo, and |. D. Fedorets,
Yad. Fiz. 60, 804 (1997) [Phys. At. Nucl. 60, 713
(2997)].

I. I. Zalyubovskii, S. S. Ratkevich, I. D. Fedorets, and
B. A. Nemashkalo, lzv. Akad. Nauk, Ser. Fiz. 61, 178
(1997).

S. S. Ratkevich, B. A. Nemashkalo, and |. D. Fedorets,
Izv. Akad. Nauk, Ser. Fiz. 61, 2201 (1997).

R.A. Alvarez et al., Phys. Rev. C 20, 128 (1979).

V. V. Varlamov, N. G. Efimkin, B. S. Ishkhanov, et al.,
Yad. Fiz. 58, 387 (1995) [Phys. At. Nucl. 58, 337
(1995)].

M. G. Urin, Fiz. Elem. Chastits At. Yadra 8, 817 (1977)
[Sov. J. Part. Nucl. 8, 331 (1977)].

V. G. Soloviev, Ch. Stoyanov, and V. V. Voronov, Nucl.
Phys. A 304, 503 (1978).

V. G. Solov’ ev, Theory of Atomic Nuclei: Quasiparticles
and Phonons (Energoatomizdat, Moscow, 1989; Insti-
tute of Physics, Bristol, 1992).

V. A. Rodin and M. G. Urin, Izv. Akad. Nauk, Ser. Fiz.
62, 2106 (1998).

Trandlated by R. Tyapaev

Vol. 64 No.1 2001



Physics of Atomic Nuclei, Vol. 64, No. 1, 2001, pp. 57-61. Trandated from Yadernaya Fizika, \ol. 64, No. 1, 2001, pp. 60-64.

Original Russian Text Copyright © 2001 by Filippov, Romanov.

NUCLEI

Theory

Changein the Structure of Colliding Deuterons

G. F. Filippov and V. N. Romanov

Bogolyubov Institute of Theoretical Physics, National Academy of Sciences of Ukraine,
Metrol ogicheskaya ul. 14b, Kiev, 252143 Ukraine
Received September 15, 1999; in final form, February 22, 2000

Abstract—The effect of the fields of two colliding deuterons on the deuteron wave functions is investigated
within the algebraic version of the resonating-group method. The problem of determining the continuum of the
K-matrix elements at a given c.m. energy of the deuterons is formulated and solved on the basis of this

approach. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In investigating collisions of two deuterons within
the standard version of the resonating-group method
[1], the deuteron wave functions are assumed to be pre-
set, so that attention is given primarily to determining
the wave function of the relative motion of the deuter-
ons.

Since deuteron systems are especialy loose, it can
be expected that, at small deuteron—deuteron distances,
those about the range of nuclear forces, the deuteron
wave functions are rearranged and that this rearrange-
ment affects the character of the motion of the deuter-
ons. By way of example, we indicate that, when two
deuterons approach closely, each of them occursin the
attractive field generated by the other deuteron; as a
result, the distance between the deuterons continues to
decrease, which is accompanied by the growth of the
kinetic energy of their relative motion. This growth is
moderated, however, by the increase in the internal
energy of the deuterons. In addition, the Coulomb
repulsion of the deuterons begins to play a noticeable
rolein the energy balance, aso suppressing the growth
of the kinetic energy and even resulting in that, at
extremely small distances, the growth in question gives
way to a decrease.

The two-deuteron system chosen hereis often stud-
ied on the basis of the Faddeev—Yakubovsky equations.
However, we do not aim here at constructing an exact
solution to these equations; considering a relatively
simple system and nucleon—nucleon potentials typi-
cally used in the resonating-group method, we will try
instead to find out whether the assumption that is con-
ventionally made within this method and which con-
sistsin that the cluster wave functions do not change as
the clusters approach one another and undergo a colli-
sionisjustified and to establish simultaneously the con-
ditions under which this assumption ceases to be valid.
This question is quite pressing since the resonating-
group method is usually used to analyze more complex
nuclei, in which case the applicability of this method

has not been proven rigoroudly, so that one needs some
guidelines to judge the validity of the method.

In order to take into account, within the resonating-
group method, the excitation of the deuterons during
their collision, Kanada et al. [2] approximated the
ground-state wave function of the deuteron and the
wave functions of its excited states by orthogonal
superpositions of three Gaussian functions. In this
scheme, excited states simulate the continuous spec-
trum. However, their asymptotic behavior is fast
descending, so that they do not reproduce deuteron
breakup into two nucleons. At the same time, the polar-
ization of the deuterons can be taken into account in
this way if the distance between them is large. The
same objective can be accomplished in multichannel
calculations [3], where the deuteron—deuteron (dd)
channel is supplemented with two binary channels, a
proton—triton (pt) and a neutron—helium (n*He) chan-
nel. Finaly, the closed collective quadrupole channel,
which extends the dynamica description of the deu-
teron—deuteron interaction, was taken into account in
[4, 5], dlong with the binary channels.

Meanwhile, the question of therole of the three-par-
ticle (dnp) and the four-particle (2p2n) channel in the
four-nucleon system remained unanswered in [2-5].
The coupling of these channels to the deuteron—deu-
teron channel leads to the reactions dd — dpn and
dd — 2p2n. A description of these reactions could
furnish a basis for qualitatively understanding muilti-
particle reactions and for quantitatively assessing their
cross sections; so far, theseissues have not been studied
in sufficient detail.

The agebraic version of the resonating-group
method [6, 7] provides a conventional framework for
taking into account dynamical variables that are
responsible for changes in the deuteron structure and
for performing a consistent analysis of the process of a
deuteron—deuteron collision. In order to implement
this, the harmonic-oscillator basis of the single-channel
approximation is extended via the inclusion of those
states that reproduce the excitation of deuteron systems
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when they approach each other and even their breakup
astheresult of a collision event.

Our objective here is to formulate, within the alge-
braic version of the resonating-group method, a new
approach to describing the deuteron—deuteron interac-
tion in order to analyze and, if necessary, to remove
errors that emerge from the choice of an approximate
expression for the wave function of the deuteron
ground state; to take into account the contribution to
deuteron polarization from the direct interaction of the
deuteron nucleons; to demonstrate the character of
changesin the states of the deuterons as they approach
each other; and to describe both elastic deuteron—deu-
teron collisions and the breakup of one or two deuter-
ons as the result of a deuteron—deuteron collision.

2. EXPANSION COEFFICIENTS AND SET
OF EQUATIONS OF THE ALGEBRAIC VERSION
OF THE RESONATING-GROUP METHOD

By using the representation of a harmonic-oscillator
basis and by expanding the resonating-group-method
expression for the wave function W of the two-deuteron
system [6, 7] in the infinite series,

Y = Z Z chlnznA[(pnl(l)(pnz(z)fﬂ]’ (1)

n,=0n,=0n=0

we arrive at the problem of seeking the expansion coef-
ficients C, ,, . Let usrecall the notation used in (1): A
is the antisymmetrization operator; n, and n, are the
numbers of quanta of the basis functions @, (1) and

®,(2) of the first and the second deuteron, respec-

tively; and nis the number of quanta of the wave func-
tion f, describing the relative motion of the deuterons.
In practice, we haveto restrict ourselvesto afinite num-
ber of basis functions @, (1) and @,(2), assuming that

n,, n, < v. To avoid encumbering the presentation with
detailsthat do not affect the fundamental aspects of the
formulation of the problem, we will restrict ourselves
to basis states characterized by zero orbital angular
momentum and neglect the Coulomb interaction of the
protons. The second limitation can be removed. In
addition, we will assume that the total spin Sof thetwo
deuterons is zero and that there are no noncentral
forces.

For the coefficients C,, , ,, the set of equations of

the algebraic version of the resonating-group method
has the form

\ \ ©

222

n,=0n,=0n=0

n,n,=012..,v; n

[, n,n|H — Ejn,n,nCC, ., = O,
' (2

0,12,...,00.
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Within this framework, the matrix elements
[, n,n|H — Ejn,n,n0

between the harmonic-oscillator basis functions are
constructed in the standard way by using generating
functions. However, the problem of closing the set of
Egs. (2)—that is, the problem of going over from an
infinite number of equations in the set to afinite set of
equations requires a dedicated discussion.

Following the general idea of the algebraic version
of the resonating-group method, we must first deter-

mine the asymptotic behavior of the coefficients C,, , .-

For n=n, and n, > 1, they are expressed in terms of an
apriori unknown K matrix. Suppose that

Cnlnzn = Cnlnzn

if n=n,.
Instead of (2), we then obtain the set of equations

v v N1

222

n;=0n,=0n=0

[, n,n|H — E[nyn,nlC,, ,

\Y \ 0o

A _ 3)
+ z Z Z [, n,NH — Ejn;n,n[Ch 0 = O,
n,=0n,=0n=n,

ALf, =012 ..,v; =012 ..,0n,.

Aslong asthe energy E of therelative motion of col-
liding deuterons is higher than the deuteron binding
energy € but lower than 2¢, ny(v + 1)* coefficients C,, , ,
for n < n, and the K-matrix elements are unknown
guantitiesto befound by solving the set of Egs. (3). The
relation between the coefficients Cynn and the K-
matrix elements will be deduced in the next section.

3. ASYMPTOTIC BEHAVIOR
OF THE COEFFICIENTS C,,,, FORn > 1

For mass, length, and energy units, we use the

nucleon mass m, the oscillator length r,, and ﬁz/mrg,
respectively. By way of example, we indicate that, if E
is the energy of the two-neutron system and if € isthe
deuteron binding energy, the possible values of the
momentum k of the ruptured neutron—proton pair obey
the condition

%kzs E-¢

for E < 2e.

At all finite values of v, in which case the numbers
of termsin the sumsover n, and n, are bounded, expres-
sion (1) can be interpreted as a wave packet represent-
ing a superposition of bound states and continuum
states of the first and the second deuteron.
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Let Cr?l be the Fourier coefficients for the wave
function (1) of the deuteron ground state,

Wo(1) = Y Coon (D), 4)

n,=0

and let C,'fl be the Fourier coefficients for the wave

function Y,(1) of a continuum state characterized by
the momentum K,

P(D) = Y Coon (D).

n,=0

)

These coefficients must be defined as solutions to the
wave equation for the deuteron and are normalized to
the delta function of k,

S Cn.Ch = 3(k—K). (©)
n,=0

The wave packet (1) is then projected onto states (4)

and (5) in a conventional way; if n=n, and if, in addi-

tion, ny > 1, thisyields the following relations for the

asymptotic coefficients Cn,nn = Cy '

B,(OK) = 5 3 CunnCo,Co, )
n;=0n,=0
\Y) \Y
B,(00) = 5 Y CnunynCr.Ch- (8)
n,=0n,=0

The value of the positive integer v determines the
number of discrete nodes k; [it is equal to v(v + 2)] at
which, with the aid of the K-matrix representation, we
must specify the coefficients B, (0k;), setting

Ba(0k) = Koy Nyo(42E—2e —kiJ4n+3), (9)

B,(00) = Jya(~/2EA/4n+3)
— KNy (/2EA4n + 3),

where Ky, and Ko, are K-matrix elements. By using
relation (8), together with the expressions for B,(0k;),
wherei =1, 2, ..., v, we can derive (v + 1)* equations
relating the coefficients Cnnn @ n=n, > 1 to the K-
matrix elements K, K , and K, , Which are of inter-

est to us, and to Bessel and Neumann functions and
eventually close up the set of linear algebraic equations
of the agebraic version of the resonating-group
method.

(10)
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An dternative form of the coefficients Cp nn that

involves an integral with respect to the momentum k
and which highlights the fact that we are dealing with
continuum states can be represented as

(_:nlnzn = Ag?nz«/i(E)ﬂ4(Ju2(,\/2_E,\/4n +3)
—KooNyo(/2E/An+3)) + IAanzKoMz(zE

— 26 —K*) YNy, (+/2E — 26 — K*./an + 3)dk,

where

(1D

00
NNy

0 0 0Ok 0 k
Ann, = G Ch,s Arn, = GG, 0Ny, NS,
In this case, the continuum statesfor the rel ative motion

of two deuterons are normalized to a delta function of

the relevant momentum «/2(2E —2¢ — kz) :

4. COEFFICIENTS C,,,,
AT SMALL VALUES OF n

Small values of n correspond to small deuteron—
deuteron distances, where the deuteron wave functions
are affected most strongly by the deuteron—deuteron
field. In order to describe changesin the deuteron states
at this stage, we consider the expansion

A Vv

> D Comn®n, (D@, (2)

n,=0n,=0

at fixed n. By applying an orthogonal transformation,
we can recast this expansion into the alternative form

S 3 Connn(D0,(2)
- n1:0n\2):0 v (12)
- z Aa(N) z Bg(n)(pp(l) z Bg(n)(pq(z),
ot p=0 q=0

where A, are eigenvalues of the symmetric matrix
|ICp,nn Il OF dimensions (v + 1) x (v + 1) with a given
value n (recall that the total spinis S=0) and Bg (p=
0,1,2,...,v) areits eigenvectors.

From Eg. (12), it follows that two deuterons (both
simultaneously) can bein one of thev + 1 states

Wna = 5 Co()@y. (13)
p=0

The wave functions for these states depend on n and,
hence, change with n. The probability W(n, a) that
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the deuterons are in the state specified by Eq. (13) is
given by

Ae(n)

S Aa(n)

W(n,a) = (14)

5. RESULTS OF THE CALCULATIONS

Within the algebraic version of the resonating-group
method, the phase shift &(E) for elastic deuteron—deu-
teron scattering, the eigenvalues A (n), and the eigen-
vectors { Bg} were calculated here in the region of
energies E from zero to the deuteron-breakup thresh-

FILIPPOV, ROMANOV

old. In this calculation, we used the Minnesota
nucleon—nucleon potential [8] and set the oscillator
radius to r, = 1.82 fm. We assumed that v = 6. The
phase shifts calculated at v = 5 and v = 6 differ by less
than one percent.

The behavior of the phase shift &(E) isillustrated in
Fig. 1. The behavior of the phase shift §,(E) atv =0and
r,=15fmisasoshowninFig. 1. Thelatter phase shift
increases fast with increasing above-threshold energy,
achieves a maximum, and then begins to decrease
slowly. This behavior suggests a negative value of the
scattering length and the occurrence of a narrow reso-
nance at the energy value where the phase shift has a
maximal derivative. As to the phase shift d(E), it
decreases monatonically; therefore, the corresponding
scattering length is positive, and a moderately shallow
bound state must occur under the threshold.

A drastic change in the behavior of the phase shift
as v increases from zero to seven can be explained in
the following way. At v = 0O, the harmonic-oscillator
basis states involved in the calculation give only one
bound state in the system of two interacting deuterons.
As amatter of fact, thisis the “He ground state, which
governs the behavior of the phase shift d,(E). Accord-
ing to our calculations, its energy reckoned from the
threshold for alpha-particle breakup into four nucleons
is —25.6 MeV (-25.1 MeV if this energy is reckoned
from the threshold for a pha-particle breakup into two
deuterons). But if v = 6, the energy of the ground bound
state changes insignificantly (this energy is now equal
to—28.7 MeV if it isreckoned from the threshold of the
complete breakup of the alpha particle and 24.6 MeV if
it is reckoned from the threshold for the a pha-particle
breakup into two deuterons); however, there arises a
second bound state occurring much more closely to the
threshold for breakup into two deuterons than the
ground state. This is reason why the behavior of the
phase shift &E) differs significantly from the behavior
of &y(E).

We note from the outset that, in fact, the*He nucleus
has only one bound state, but there is a 0* resonance
above the threshold for “He breakup through the pt
channel and below the threshold for breakup through
the nHe channel. In the approximation being consid-
ered, these channels are both closed, so that the reso-
nance becomes a bound state. The results of our calcu-
lations indicate that the deuteron—deuteron channel
plays an important role in the formation of the 0+ reso-
nance state in “He both in the case of the v = 0 approx-
imation, where this state is above the deuteron—deu-
teron threshold, and in the case of thev = 6 approxima
tion, where it goes below this threshold.

Let us now address the question of changes in the
structure of the deuteron functions as the deuterons
approach each other. Figure 2 displaysthe graphs of the
eigenfunctions |, , a o = 1 and E = 1 MeV, which
have the highest weight W(n, a), and the graph of the
function y, ,. For al nonzero values of n, W(n, 1) is
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dightly less than unity; however, W(0, 1) = 0.466 and
W0, 2) = 0.463. At the first stage of the approach, the
root-mean-square deuteron radius decreases with
decreasing n (by amost 33% at n = 2); further, it begins
to grow and, at n = O, proves to be 32% greater than its
original value of 1.453 fm. Any variation in the deu-
teron radii with respect to the optimal original valueis
accompanied by a decrease in the deuteron binding
energy and, hence, by deuteron excitation. Thisreduces
the contribution of the kinetic energy of the relative
motion of the deuterons to the total energy balance. In
the case where the energy of 9.6 MeV corresponds to
thea = 2, n=0 excited states of weight W(0, 2) = 0.463,
this contribution decreases by 12.84 MeV.

Similar conclusionsarevalid for theE =2 MeV ver-
sion calculated on the basis of the same code.

6. CONCLUSIONS

In analyzing inelastic processes accompanying col-
lisions between deuterons of energiesin excess of their
breakup threshold, we have to deal with wave packets
whose expansion furnishes information about effective
cross sections for elastic and inelastic scattering. We
have proposed a new computational scheme. On the
basis of this scheme, we have been able to find the K-
or the Smatrix elements for transitions into continuum
states at afixed energy of two interacting deuterons. We
have derived a closed finite set of algebraic equations;
by solving this set, we have obtained the relevant K-
matrix elements representing continuous functions of
the energy of deuterons broken up in a collision event.
The results of the calculations for this K matrix will be
presented elsewhere.

The phase shift for elastic deuteron—-deuteron scat-
tering has been cal culated for the case where the energy
of the relative motion of two deuterons does not exceed
the deuteron-breakup threshold. The behavior of the
wave functions of deuterons approaching each other
has been investigated at small distances between the
deuterons. It isthe Fourier coefficientsin the expansion
of the wave function in the harmonic-oscillator basis
that contain information about this behavior. We have
set forth and implemented an approach that makes it
possible to extract such data and to determine the char-
acter of the variations in the deuteron wave function.
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The deformation of the deuteron wave functions
affects significantly the behavior of the deuteron—deu-
teron phase shift; this is directly seen from the datain
Fig. 1. To aconsiderable extent, this effect is due to the
features of the system under investigation. Had we
taken no account of the deformation, we would have
obtained an above-threshold deuteron—deuteron reso-
nance and the phase-shift behavior corresponding to
this resonance. Upon the inclusion of the deformation
of the deuteron wave functions, however, the resonance
sinks below the threshold for deuteron—deuteron
breakup, and the character of the phase-shift behavior
changes. It now corresponds to the presence of arela
tively shallow bound state under the threshold.

This phenomenon can also occur in more compli-
cated systems investigated within the resonating-group
method, where the inclusion of the deformation of the
cluster wave functions, which strengthens the interac-
tion between the clusters, results in the emergence of a
resonance that is not observed if the deformation is not
taken into account or if the resonance transformsinto a
bound state.
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Abstract—Experimental data.on the multifragmentation of residual nuclei produced in the krypton interactions
with photoemulsion nuclei at 0.9 GeV per projectile nucleon are presented and compared with similar data on
fragmentation from experiments where gold nuclei of energy 10.7 GeV per nucleon appear as projectiles. It is
shown for thefirst time that there exist two modes of nuclear multifragmentation, those where less (first mode)
or more (second mode) than half of nucleons are knocked out of theincident nucleus. Residual nuclel that have
close masses and which are produced in various reactions accompanied by the knock-on of more than half of
nucleons of the initial nucleus fragment in nearly the same way. In addition, evidence for aradial flux of spec-
tator fragmentsis obtained for thefirst timein the decay of residual nuclei of krypton projectiles. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Interesting experimental results on the multifrag-
mentation of nuclel at low and intermediate energies
have been obtained in recent years. A radial spherically
symmetrical flux of fragments with kinetic energies
proportional to their masses was observed in central
collisions of gold nuclel [1-5]. Thisisinconsistent with
the assumption that nuclear multifragmentation has a
statistical character. A radial flux of spectator frag-
ments in the rest frame of the fragmenting nucleus was
found in studying the interaction of gold nuclei of
energy 10.7 GeV per projectile nucleon with photo-
emulsion nuclei [6, 7]. According to estimates pre-
sented in [5], the energy of thisradial motion is 30 to
50% of the available energy. At the sametime, evidence
for invariahility of the isotope temperature of fragment-
ing nuclei over a wide excitation-energy range as
obtained from experiments at the ALADIN facility [8]
is considered to suggest the occurrence of a first-order
(liquid—gas) transition and a dtatistical character of
nuclear multifragmentation. Finally, the experimental
result of the INDRA Collaboration [9], who found that
the isotopic composition of fragmentation products is
independent of the masses of fragmenting nuclei at the
same excitation energy, isindicative of aspinodal insta-
bility of residual nuclei. Thus, the current experimental
situationisrather intricate; more precisely, atheoretical
interpretation of the existing data presents a challeng-
ing problem.

D Atomic Energy Authority, Nuclear Research Centre, Cairo,
Egypt.

2 Ingtitute for Physics and Technology, Uzbek Academy of Sci-
ences, ul. Timiryazeva 2b, 700084 Tashkent, Republic of Uzbeki-
stan.

3) Joint Ingtitute for Nuclear Research, Dubna, Moscow oblast,
141980 Russia.

We assume that the problem can be resolved by
studying the fragmentation of comparatively light sys-
tems (the aforementioned studies analyzed the frag-
mentation of heavy nuclel). As a matter of fact, the
well-known statistical model of multifragmentation
(SMM) of nuclei [10, 11] was used to describe the frag-
mentation of both heavy nuclei (see [10]) and the
nuclear residues of oxygen [12]. The no less popular
model of quantum molecular dynamics[13], aswell as
the model of antisymmetrized molecular dynamics
[14], either incorporating mean-field effects, is gener-
aly used to study the interactions of light nuclei.
Hence, thereisarange of nuclei where both approaches
are applicable. Here, we present experimental data on
the multifragmentation of residual nuclel produced in
the interactions between krypton nucle with an energy
of 0.9 GeV per nucleon and photoemulsion nuclei.

First and foremost, we will address the most inter-
esting dependence of the multiplicity of intermediate-
mass fragments (IMF) with charges 3 < Z- < 30 on the
mass of the fragmenting system. This multiplicity is
estimated in terms of the “bound”-charge value

Zbound = Z ZF ’ ZF 2 2!
or

Zb3=ZZF, ZFZ?)

We further consider intrinsic features of fragmenting
systems, such as the mean charge of the heaviest frag-
ment and the asymmetry in the system of fragments.
The basic results are summarized in the Conclusion.

1063-7788/01/6401-0062%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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2. EXPERIMENTAL SAMPLE

Stacks of NIKFI BR-2 nuclear photoemulsion were
irradiated with 8Kr nuclei accelerated to 1 GeV per
projectile nucleon at the SIS/GSI accelerator and with
97TAuU nuclei accelerated to 10.7 GeV per projectile
nucleon at the BNL/AGS accelerator. The sensitivity of
the photoemulsion was not poorer than 30 grains per
100 pm for singly charged particles with minimum ion-
ization. In order to analyze the interactions of krypton
with nuclear photoemulsion, we selected events where
the incident energy of krypton nuclei was within the
interval 0.8-0.95 GeV per projectile nucleon, in which
case the mean energy of krypton nuclei was about
0.9 GeV per projectile nucleon.

All interactions were found by means of fast—slow
scanning along the track (the scanning in the forward
direction was fast, while the scanning in the backward
direction was slow), with the rate of fast scanning pre-
cluding any discrimination in event selection. The slow
scanning was carried out to find events where the pro-
jectile nucleus suffered neither significant modifica-
tions nor deflection. Upon the removal of electromag-
netic-dissociation events and events of purely elastic
scattering from the sample of interactions under study,
there remained 677 events of krypton—photoemulsion
interactions and 1057 events of gold—photoemulsion
interactions.

Under the conditions of our experiment, spectator
fragments with charge Z- = 2 were identified visually.
Theionization along the tracks of these particlesis con-
stant over a large distance and is equal to g/g, = 4,
where g, is the minimum ionization along the track of
a relativistic singly charged particle. Fragments with
charge Z- = 3 were also identified visually; the ioniza-
tion along the track of such fragments exceeds that of
doubly charged fragments. In order to determine the
charges of Z- = 3 fragments, the d-electron density was
measured over a distance not less than 10 mm; the cal-
ibration was performed by using the primary track of a
known charge and Zr = 2 fragments. The accuracy of a
charge determination was not poorer than 3 charge
units for Z > 40 fragments and 1 for Z: < 20 frag-
ments.

Relativistic particles having emission angles in the
region 8 < 6, were taken to be singly charged spectator
fragments. The value 6, was determined from the rela-
tion

where p, is the projectile momentum in GeV/c per
nucleon.

The polar (0) and the azimuthal (¢) angle were mea-
sured for all charged particles in each event found by
means of scanning.

The transverse momenta of the spectator fragments
were determined as

|Pr| = 2Z:p,sine, 1)
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where Z¢ is the fragment charge and p, is the momen-
tum per projectile nucleon. Theratio A-/Z¢ for the frag-
ments was assumed to be equal to 2. The mean relative
error in determining the transverse momenta of the
fragments did not exceed 7%.

It should be noted that, at high energies—in contrast
to what occurs at low and intermediate energies—the
target- and projectile-fragmentation regions are dis-
tinctly separated for multiply charged fragments (see
Fig. 7 and Fig. 1 from [15] and [16], respectively). The
probability of compound-nucleusformation is assumed
to be small. Therefore, the problem of separating tar-
get- and projectile-nucleus fragmentsis simplified. The
velocity of the nuclear fragments of the projectile are
assumed to coincide in absolute values with the projec-
tile velocity, and it is on the basis of this assumption
that we proposed the definition in (1). Obvioudly, it is
violated for deep-inelastic collisions, where fragments
lose a considerable fraction of their longitudinal
momentum. However, we cannot take this circum-
stance into account for want of relevant experimental
information and because of special features of photo-
emulsion experiments.

The greatest uncertainty in estimating the fragment
momenta is associated with the assumption that the
number of protons (P) isidentical to the number of neu-
trons (N) in nuclear fragments. For example, relation (1)
underestimates the transverse momenta for heavy
nuclei, where N > P. When applied to doubly charged
fragments, which involve a certain fraction of °*He
nuclei, relation (1) overestimates the transverse
momenta on average. As was shown in [17], a 10%
admixture of *He nuclei to Z = 2 fragments leads to a
1% increases in the variance of the transverse-momen-
tum distribution of doubly charged fragments (from
162 to 164 MeV/c); naturaly, this cannot distort the
conclusions of our study.

Under the conditions of photoemulsion experi-
ments, a dedicated experimental procedure is required
for identifying the fragments of target nuclei, but it was
not used in our case. Therefore, our datarefer to projec-
tile fragments identified by the photoemulsion proce-
dure. In photoemul sion devoted to high-energy interac-
tions (at E = 1 GeV per projectile nucleon), projectile
fragments are usually dubbed spectator fragments. We
will follow this tradition, sometimes omitting the
“gpectator” modifier.

3. MULTIPLICITIES OF INTERMEDIATE-MASS
FRAGMENTS AS FUNCTIONS OF THE MASS
OF A RESIDUAL NUCLEUS

It is obvious that, at a fixed mass of the residual
nucleus, the mean multiplicity of intermediate-mass
fragments, N,,eL] increases with excitation energy. At
higher excitation energies, however, the production of
light fragments becomes dominant, so that [IN,,-LImust
decrease. It is precisely such a dependence that was
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Fig. 1. Multiplicity of intermediate-mass fragments as a
function of the bound charge (a) Z,,nq OF (D) Zy,3: (closed
circles) data on the interactions between krypton nuclei of
energy 0.9 GeV per projectile nucleon and photoemulsion
nuclei and (open circles) data on the interactions between
gold nuclei of energy 10.7 GeV per projectile nucleon and
photoemulsion nuclei.

established by the ALADIN Collaboration [18-20],
who studied the multifragmentation of residual nuclei
produced in the interactions between gold nuclel with
an energy of 600 MeV per projectile nucleon and vari-
ous targets. In that case, the quantity Z,,,g including
the charges of alphaparticles, was used as a measure of
the residual-nucleus mass. Since apha particles can be
produced at the stage of preequilibrium decay, Botvina
et al. [21] proposed using another quantity, Z;. That
N,,eas a function of Z,,,,4 Or Z,; showed no varia-
tionsin response to changes in the target-nucleus mass
isthe most interesting result. Since the aforementioned
dependence is determined primarily by the relationship
between the excitation energy and the residual-nucleus
mass, it can be concluded that gold-projectile nuclear

ABD-ELHAFIEZ et al.

residues that have the same mass and which were pro-
duced in different reactions have close excitation ener-
gies. Our datain Fig. 1 permit refining this observation.

Our results for ON,e[las afunction of Z,,,q and Z,;
areshownin Fig. 1 (closed circles), along with relevant
data for gold projectiles of energy 10.7 GeV per
nucleon [6, 7] (open circles). It can be seen that the data
on the fragmentation of gold and krypton residual
nuclei are close at Zy,ng < 22 and Z; < 16. Although
errors in our experimental data are quite large, we can
say that, at the same value of Z,,,¢, the number of prod-
uct IMFsisdlightly greater in the fragmentation of resid-
ual nuclei of krypton projectiles than in the fragmenta-
tion of residual nuclei of gold projectiles. At the same
time, the points virtually coincide at Z,; < 16 for the two
types of interaction when the variable Z; is used. This
suggests that, at high energies, residua nuclel that are
produced in the interactions of different systems, but
which have the same mass, have close excitation ener-
giesif morethan half of nucleons are knocked out of the
initial nuclel at the fast stage of the interactions.

It is noteworthy that, as Z,; decreases, the IMF mul-
tiplicity grows sharply around the Z,; value of 30. In all
probability, thisisdueto the threshold nature of nuclear
multifragmentation. The evaporation of nucleons and
light nuclei is obviously dominant at low excitation
energies. The channels of multifragment decay open up
at higher excitation energies. Itisnot clear whether this
occurs smoothly or abruptly at some threshold value.
Because of large errorsin the data on the fragmentation
of residua nuclei of gold projectiles, it is difficult to
pinpoint changes in the behavior of the multiplicity at
large Z,;. A vaster statistical sample is necessary for
this. The data of the ALADIN collaboration have the
required statistical significance for Z,; = 70, but they
seem to be plagued by methodological uncertainties.
We deem that, with the aim of establishing the thresh-
old character of nuclear multifragmentation, it would
be of interest to perform amore careful investigation of
the IMF multiplicity at large Z,; values.

4. INTRINSIC FEATURES OF A DECAYING
SYSTEM AS A FUNCTION OF Z,yng AND Z

Investigation of the heaviest fragments in events
yielded acompletely unexpected result. Figure 2 shows
the mean charge of the heaviest fragment in an event as
afunction of Z,,,,q and Z,;. For theinteractions of kryp-
ton nuclei with photoemulsion nuclei, a change in the
behavior of [(Z,,Cas afunction of Z; is clearly seen at
Zy; ~ 15. A similar change is also observed in the data
on the fragmentation of residual nuclei of gold projec-
tiles, but it is not so pronounced. The effect is smeared
when use is made of the variable Z,,,,q. We approxi-
mated the bound-charge dependence of [Z,,, [ by linear
functionsin various regions of the bound-charge values
(Zpa 3= @ + bX, X = Zyoungs Zs)- The results of this fit,
which are quoted in Table 1, corroborate visual obser-
vations. For the various projectile species, the parame-
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Fig. 2. Mean charge of the heaviest fragment in events as a function of the bound charge. The notation isidentical to that in Fig. 1.

tersof thefit agree within two standard deviationsif Z,
is less than half the charge of the initia nucleus. At
larger values of the bound charge, the parameters are
not close. The quality of the fit in terms of the variable
Zioung 1S Much poorer: the x> value is greater.

The bound-charge dependence of [Z,,,,[Jwas aso
approximated by the piecewise smooth functions

a, —a
a; + 2 1(X_X1), X< X,
X — X
) =
ad; —a
a,+t —=—2(X=X,), X>Xo,
X3 — Xz

where X = Z,,,nq OF Zp;. The fitted values of the param-
eters in this approximation are given in Table 2. In
Fig. 2, the resulting approximations are represented by
solid lines. It can be seen that the position of the kink
(x, value) corresponds to a value below half the charge
of the initial nucleus and that the x? values are smaller
when use is made of the variable Z,;.

In summary, we can conclude that residual nuclei
that are formed upon the removal of less than half of
nucleons from the initial nucleus and those that are
formed upon the removal of more than half of nucleons
fragment differently. In order to investigate thispoint in
greater detail, we define the asymmetry A,, for each
event as

Zl_ZZ
Z,+Z,

where Z,, Z,, etc., are the fragment charges arranged in
decreasingorder (Z, 22,275 ..., Z, = Z)-
Thedatain Fig. 3, which shows the mean asymme-
try in events versus Z,, ¢ and Z,;, are compatible with
the above statement. It can be seen that the mean asym-
metry [A,Cas afunction of Z; isvirtually constant for
Zy; < 15 and that it grows sharply with increasing Z;.
Thus, Z,;; < 15 events are characterized by alow decay
asymmetry, while Z,; > 15 events are highly asymmet-

Ap =
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ric in this respect. A similar behavior can be traced in
the fragmentation of heavier systems.

Intermsof the variable Z,,,q, it isdifficult to decide
conclusively that there exist two modes of fragmenta-
tion of residual nuclei of krypton projectiles. Inthe data
on the fragmentation of heavier systems, the mean
asymmetry [A,Obehaves differently at Z,,,,4 values
above and below the projectile charge. At small Z,,,q
values, the mean asymmetry [A,,[Jtakes very similar
values for the different fragmenting systems.

On the whole, we can conclude that there are at | east
two types of nuclear multifragmentation.

5. FRAGMENT ENERGIES AS FUNCTIONS
OF Zbound

According to the statistical model of nuclear multi-
fragmentation, the kinetic energy of fragments in the
rest frame of the fragmenting nucleus is determined by
the charge of the residual nucleus; therefore, adecrease
in Z,.,nq 1S €xpected to be accompanied by adecreasein

Table 1. Fitted values of the parametersin alinear-function
approximation of [, Oversus the bound charge

nomieeanideeel o [ o femor
Kr Z3=3-15 1.8+0.2/057 +0.04| 5.1/6
Au Zy3 = 3-37 2.2+0.1|0.50 +0.02| 10.5/17
Kr Z,;=16-35 | —4.3+0.6(1.13+0.02| 5.4/10
Au Z3=42-79 |-26.8+23|1.34+0.03| 6.0/19
Kr Zoowd =2-15| 15+01[0.19+002[ 197
Au Zoound =2-37| 04%01]/028+001| 4917
Kr Zoound= 22-37|-23.4 +1.6/1.63+ 0.05| 57/9
Au Zoound= 54-79|-745+ 4.1/ 1,92+ 0.06| 47/13
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Fig. 3. Mean asymmetry in events as afunction of the bound
charge. The notation isidentical to that in Fig. 1.

the fragment energy [22]. In order to go over from the
laboratory frame to the rest frame of the fragmenting
nucleus, we used the Galilean transformation in the
form described in detail by Adamovich et al. [6]. Under
the assumption of isotropic decay, the mean kinetic
energy of afragment and its mean transverse momen-

tum are related by the equation
2
_ 3 [p0
EL= 3 4Z-m’

ABD-ELHAFIEZ et al.

(EL)MeV
200 - @
it
- % 'oo.O.o® %%%q)%%
0 R L
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sol Byt P o © $¢
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0 L
100 - ©)
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i “‘o‘. ¢
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Fig. 4. Estimated mean kinetic energies of fragmentsin the
rest frame of the fragmenting nucleusfor (a) doubly charged
fragments, (b) Zz = 3-5 fragments, and (c) intermediate-
mass fragments. The notation for the points is identical to
thatin Fig. 1.

where p; is the fragment transverse momentum, Zg is
the fragment charge, and my, is the nucleon mass.

Figure 4 shows data on the mean kinetic energies of
Z- = 2 fragments in events where the number of multi-
ply charged fragmentsis greater than or equal to three.
The kinetic energies of the fragments of krypton nuclei
do not show any tendency to decrease with decreasing
residual-nucleus masses at Zy,, g < 25. Moreover, they
are virtualy constant in this region of Z,,,,q. A sSimilar
pattern is observed in fragmentation of gold nuclei.

Table 2. Fitted values of the parametersin a piecewise-linear-function approximation of [Z,,,,[versus the bound charge

Nucleus | Bound charge =N X1 a, Xo a X3 X’/NDF
Kr Z3 3.58 3 8.0+0.6 11.3+0.6 345 345 14/16
Au Z3 3.58 3 18.2+0.7 325+0.9 775 785 18/38
Kr Zpound 2.00 2 50+£0.3 16.6+ 0.4 35.2 36.0 37/18
Au Zound 2.00 2 93+0.3 39.3+05 78.5 80.0 150/38
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This suggests the presence of aradial flux of fragments.
According to our data, the energy of the radia flux
depends on the projectile mass.

6. CONCLUSION

Experimental data on the fragmentation of residual
nucle formed in the interactions between krypton pro-
jectileswith an energy of 0.9 GeV per nucleon and pho-
toemulsion nuclei have been presented.

It has been shown that the residual nuclei fragment
in nearly the same way, irrespective of the projectile
mass, if the bound charge does not exceed half the
charge of theinitial hucleus.

Evidencefor the threshold character of nuclear mul-
tifragmentation and for the existence of the projectile-
mass dependence of the radial flux of fragments has
been obtained.

The observed experimental regularities have been
disclosed most vividly when the variable Z,,; has been
used as a measure of the residual-nucleus mass.

Further theoretical and experimental investigations
into the fragmentation of intermediate-mass nuclei
would be of interest.
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Chiral Anomaly in Ky — Kn Reactions
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Abstract—Implications of the chiral anomaly for the cross sections of the reactions Kty —= K*1, K0y —=
Km0, Ky — KOrtt, and K% — K*1T are investigated. Near the threshold, the contribution of the chiral
anomaly dominates the cross sections for the first and the second reaction. These cross sections are compared
with the cross sectionsfor the third and the fourth reaction, which receive no contribution from the chiral anom-
aly. Prospects for an experimenta study of the KKty vertex in the Coulomb production of 1T mesons by a
K-meson beam are discussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The concept of a chiral anomaly is taken to mean a
violation of classical chiral symmetry at the quantum
level. Such a breakdown of symmetry occurs in theo-
ries featuring chiral fermions—in particular, in the
Standard Model. Phenomenological implications of the
chiral anomaly for strong, electromagnetic, and weak
semileptonic processes involving pseudoscalar mesons
can be deduced from the functional [1]

iN iiklm
< ZJ.dO K [E,LZ:_Z:;Z:_Z,I;D

;;\'T} [ e (WU, €10 ~W(L, €,1)"),

which must be included in the action of chiral perturba-
tion theory (ChPT). Thefirst integral on the right-hand
side of Eq. (1) must be taken over five-dimensional
space whose boundary is four-dimensional Minkowski
space; theindicesi, |, k, |, and m run the values from 1
to 5; 0¥ s arelevant volume element; p, v, a, and 3
aretheindicesin Minkowski space; and N, is the num-
ber of colors (N, = 3). Thefunctional in (1), also known
as the Wess—Zumino-Witten (WZW) action, is
expressed in terms of the meson fields as

SU, €, rlwzw = -

W(U, €, 1)V = <U€“€v€0,uTrB
+ iUKHUTrVU&,UTrB +iUa,0,€,U"rg

+i0,r,Ul,U"r—i556,U"r, U, + 350", r, U,
—ELESUTT Ul + 350,000 + 250,06, P

—iz b, €+ %zﬁevzgeg —i zﬁzbzée%
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F=93MeV; and (L — R) standsfor theinterchanges
U-—-U' {,~—r,and 5, — 2.

1063-7788/01/6401-0068%$21.00 © 2001 MAIK “Nauka/Interperiodica’



CHIRAL ANOMALY

Substituting definitions (3) into expression (2), we
derive al terms stemming from the chiral anomaly that
appear in the effective Lagrangian for the aforemen-
tioned processes. Here, we areinterested in thetermsin
this Lagrangian that describe photon interaction with
three pseudoscalar mesons:*

3Py  _ ie
Wzw — 2 _3

mF

e P AHO, O, T +8,K K™

+ auKOaVK")aan" + ?(auﬁavn‘ +0,K"9,K”
7 4)
—0 + —
~30,K"9,K )a,n"+ TO,mom

+0,K'9,K1)a.n°H

The yrrtmt and ynTrTt vertices were studied theoreti-
caly in[3, 4] and experimentally in the Coulomb produc-
tion of ™ and n mesons at the IHEP accelerator [5, 6].

An experimental study of anomaous vertices
involving K mesons is of particular interest because of
their role in the WZW action (1). To obtain deeper
insight into therole of the K mesons, we assume, for the
time being, that there are no K mesons in the low-
energy effective Lagrangian (this would be the case if
the s quark were heavy).

In a hypothetical world featuring only two light
quarks, any effective meson Lagrangian respects not
only the symmetries of the underlying QCD
Lagrangian but also some additional symmetries—for
example, the parity of the number of Goldstone bosons
isconserved in thishypothetical world. Inthiscase, one
of the rules for constructing an effective theory—any
effective theory must satisfy al symmetries of the
respective underlying theory and only them—is vio-
lated. Note that the simplest reaction that respects all
symmetries of the QCD Lagrangian and only them is
KK~ — e [1].

Moreover, the important conclusion that the coeffi-
cient of Lagrangian (1) can take only integral values (in
units of 1/24012) was deduced under the assumption
that the manifold of Goldstone bosons coincides with
the SU(3) group (this is equivaent to the existence of
three light quarks).

However, manifestations of the chira anomaly in
reactions featuring the K mesons have received little
attention. The only case where it was considered is the
calculation of the anomalous contribution to nonlep-
tonic weak interactions [7].< [7]. Unfortunately, the

1)Strictly speaking, expression (1) was deduced for the case of the
U(3) [instead of U(3)] group. A generadization of the action func-
tional (1) to the case of the U(3) group by naively considering the
n" meson among the pseudo-Goldstone bosons was used in [2].

AThe action functional (1) itself describes only the strong, electro-
magnetic, and semileptonic weak interactions of the pseudoscalar
mesons.
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K(p3)
K(py)
T(p,)
Y
Z(p,) Z(py)

Fig. 1. Kinematics of the Coulomb productions of Ttmesons
on aberyllium nucleus: g = p,— Py, t; = 6% S, = (P, + P3)°s

2
t, = (pp— P3), and s= (pa + Pp)> = My +2ME.

amplitudes of such processes depend on additional
parameters; therefore, the chiral-anomaly contribution
proper is hidden and can be isolated only under some
auxiliary assumptions.

Here, we study the manifestations of the chiral
anomaly in the strong and electromagnetic interactions
of the strange particles. Since such manifestations can-
not be observed in meson decays, we consider the
amplitudes of the Ky — Krt scattering processes,
which can be studied experimentally in the Coulomb
production of Tt mesons by a K-meson beam (Fig. 1).

The behavior of the Ky — Kt amplitude in the
chiral limit is completely determined by the anomalous
WZW Lagrangian (1), whereas, at the physical values

of the meson massesand ./s ~ 0.9 GeV, it isdetermined

by the contribution of the 1-- resonances. A similar
statement is valid for the reactions Ty — ttrmand
TIy— N1, whose amplitudes were calculated in [3]
(seedso[4]) by using the Kawarabayashi—Suzuki—Ria
zuddin-Fayyazuddin (KSRF) relations and anomalous
Ward identities.

We cal cul ate the amplitudes of the reaction Ky —
Kt on the basis of the Bando—Kugo—Yamawaki model
[8, 9], which represents a version of the vector-meson-
dominance model based on aLagrangian that generates
the KSRF relations and the anomal ous Ward identities.

2. BANDO-KUGO-YAMAWAKI| MODEL

The BandoKugo-Yamaweki modd is a natural
extension of ChPT to theinteractions between the pseudo-
Goldstone 0~ mesons (P) and the vector 1-— mesons (V).
Within this model, the vector mesons originate from a
dynamica breakdown of hidden gauge symmetry in the
CHPT Lagrangian. The normal-sector Lagrangian of the
Bando—Kugo—-Yamawaki model hasthe form

iBnorm = _F2 EpuppD

(&)
—ZFZE(VH—ing—ie%“)zD—%Blﬁ\,D
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where where
- - gag® 1 10 fi
B=AQ Q d'aQEB ~3 T30 Pu = Vi, wy 3Vu+ﬁvuv
A, isthe electromagnetic field; here and below, angular 1.0 [2.,8.
brackets denote evaluation of the trace over the SU(3) O = ﬁvu— 3Vus Qe =1,
indices; and
1 _1 2
Py = 5(E'9,& +0,88), Qu=73 Q=-73
_ 1.1 T 0i® O my = 2Fg, ®)
Ve =5(£0,£-0,88), & = exp
B 2 oy = MF./2. ©)

The first term in this Lagrangian coincides with the
ChPT Lagrangian. The Lagrangian in (5) is invariant
under the transformations

E g Eh (& 0., 00),

&~ ge&'h (& 0L OR),

which are defined in such way that v, — hv h™ —
d,hh'. The field V, describing the vector mesons is
introduced as the compensating field for these transfor-
mations [see the second term in the expression (5)], and
its kinetic term is generated dynamically [9].

The mass matrix in Lagrangian (5) is determined by
the quadratic form

(6)

Less = 2F° B VRV} + /269Q°VEA geZA“A“%

where Q2 = (A2, QUand V;; = /22, V,[JA diagonal-
ization of this matrix gives rise to the mixing of the

fields vV and V; with the field A,. The eigenstates of

the mass matrix that are associated with the mixing of
the fields under consideration have the form

J3, 8
L= _EV + 2= vu,

D~/§ 34 2.2 0
- _—%] 3eA“D
_ 2 D/é 1,80
Sdu = —aD— éeD—Z— 2V +gA

R

The masses of the fields RL and %“ are, respectively,

2Fg and 2Fd, where g' = 92 +2€°/3, and the mass-

lessfield 4, describesthe physical photon. Inwhat fol-

lows, we neglect terms of order € since e < g. In this

approximation, the mass term of the field V,, and the
vertex of the y-V transition are given by

2

Tvyave + egy A,

a~a
2 Vp,Q ’

a=p,we

)

Formulas (8) and (9) are, respectively, the first and the
second KSRF relation; they determine the numerical
value of the constant of the VPP interaction, g = 4.9, and
the constant of the y-V transitions, g, ~ (325 MeV)?.

The interaction Lagrangian describing anomalous-
parity processes has the form [8]

ganom

_ (10)
= Lwzw — %5581'*'(3"‘(3)582'* 34—‘36
where

$, = P L LRy~ R,R, R, L]

F, = PR LR

£, = Pag(a,V, -0,V +ig[V,, V,])

X (LGRB_RGLB)D

P = " PO(F, LyRs — Fiy Ry Lp)D

and

L, = £'9,8—igv,—iE"(,E,
R, = —0,88 —igv, —i&r &’
Fro = £10,6, 0,0, +i[€,, €.])E,

Fov = E(0,r, =0y +ilr, r)E".

The coefficient ¢ in expression (10) is afree parameter;
the lowest order terms in the expansion of Lagrangian
(20) in the fields are independent of ¢ and are given by
the expression

Lavom = ::-—A/éz(SiPVV+2PPPy), (11)

67T
where

PPPy = """ 10,00, 00,
PV = P [(V,0,V, +8,V, V)9, @0
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The Lagrangian in (10) possesses the following
properties:

(i) It meets the requirements of the principle of vec-
tor-meson dominance for the Pyy vertices. This means
that decays of the P — yytype are necessarily medi-
ated by the PVV vertex and that, in the total Lagrangian,
there are no Pyyand PVy vertices. It should be empha-
sized that the behavior of the amplitudes in the chiral
limit coincides with that predicted by the WZW
Lagrangian (1), this coincidence being dueto the KSRF
relations (8) and (9).

(i) It adequately describes the decay w — 3Tt
According to thismodel, this decay of the w meson pro-
ceedsin two stages. w — prt— T Therefore, the
PPPV vertex does not appear in the Lagrangian. The
principle of vector-meson dominance for the PPPV
vertices does not agree with experimental data[8, 10].

3. RESULTS OF THE CALCULATIONS

The expressions for the amplitudes of Ky — KTt
reactions can be derived from the interaction
Lagrangians (5) and (10). The relevant diagrams are
shown in Fig. 2. The result has the form

_ ie pvaB p. v _a B

Axy - kn = _161'[2F38 a PpPze

2 (12)

2 2
§ ECO+ CMZ. N CtMpz c,MZ O

O s—Mg +ilws/s t=M, u-Mg.O
where e is the photon polarization vector, while g, p,,
and p, are the momenta of, respectively, the photon, the
initial K meson, and the tmeson (see Fig. 1). The coef-
ficients C,, C,, C,, and C, for specific processes are pre-
sented in Table 1.

Here, the unitarization of the amplitude is achieved
in the simplest way, by adding the imaginary term
iy /s to the denominators of the vector-meson propa-
gators. We neglect the widths of the t-channel and u-
channel resonances because we consider the behavior
of the amplitudes only in the s channel.

Let usdenote by I(s) theintegral of the square of the
absolute value of the parenthetical expression on the
right-hand side of Eq. (12); that is,

t,

1(s) :J'

t

+

CM5.
S—Mz. +il . /s

Cot

(13)
C M2 2 |2
wheret, andt_arethekinematical limits. The cross sec-
tion for the reaction Ky — Krtthen has the form
__1 a_ Is)
10241 F® (s, — my)”

dt,
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K K K K

K* w, p
Y my s
K K K K

p,w

K*

Y my T

Fig. 2. Tree diagrams contributing to the amplitude of the
reaction Ky — K1t

Cross sections of this type can be studied in the
Coulomb production of Ttmesons by a K-meson beam.
The kinematical variables used to describe these reac-
tionsare defined in Fig. 1. We consider the cross section
for the scattering into the following kinematical
domain:

(52— mg)”
—(50 MeV)* <t, < —32-—55-—,
4E, (14)

(my + mn)2 <s,<0.6 GeV>.

Here, E, is the energy of the K-meson beam; the con-
straint t, > <50 MeV)? isintroduced in order to isolate
the Coulomb production of 11 mesons (Fig. 1) from

Table 1. Coefficients Cy, C,, C;, and C,, from Eq. (12)

Reaction Co Cs G Cu
Kty — K*1P 2 1 4 1
K*y — KOrt" 0 J2 J2 2.2
KOy — KO 2 2 2 2
KOy —= K*mt 0 2.2 J2 J2

Table 2. Values characterizing the near-threshold behavior
of the cross section da/ds, in Eq. (17)

Reaction o, nb C,nb/GeV3 | 5™ Gev?2
K*y — K*0 81 1.0 x 10° 0.55
Kty — KOrt" 20 2.9 x 102 0.40
K% — KO 165 1.6 x10° 0.45
KO — K*rr 29 2.6 x 10° 0.45

Note: Here, g isthe cross section for scattering in the kinematical
domain (14); the energy threshold corresponds to s, =

0.396 GeVZ and s, isthesvalue 2 bounding the domain
of validity of Eq. (17).
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600
— /'
’
’
2001 e
a---r" - I ]
045 050 0.55 0.6
§2, C}e\/2

Fig. 3. Cross sectionsfor Coulomb scattering on aberyllium

nucleusasfunctionsof s, = ( pEUt + pn)2 at the beam energy

of 40 GeV in the near-threshold region: (solid curve)
K+*Z —= K*n’Z and (dashed curve) K*Z — KOtz
Here and in Figs. 4 and 5, the square of the momentum
transfer to the nucleus setisfies the kinematical constraint

It;] < (50 MeV)>.

T-meson production governed by the other mechanisms
[6]; the constraint s, < 0.6 GeV? isimposed to exclude
the resonance region; the remaining two boundaries
have akinematical origin.

Using the equivalent-photon approximation, we
expressthe cross section for the Coulomb production of
TtmMesons on a nucleusin terms of the cross section for
the reaction Ky — Krtas

do _ Zalu—t]"]

_Za 1 doy, . kn
ds,dt,dt, s tf '

ot

(15)

Upon integration with respect to t, over the domain
determined by the constraintsin (14), we arrive at

do _ Zo® 10 48Q , (5-m)D
ds;  (2m)°32F°0 (s,—-m?)° 4E*Q? e
«_1(s2)
-
(52— M)

The chiral anomaly reveasitself in the behavior of
the cross sections under study in the vicinity of the
point s=t=u=0, wherethe amplitudein (12) is deter-
mined by Lagrangian (4). The chira anomaly contrib-
utes to the amplitudes of the reactions Kty — K*1t
and K% — KO, but it does not contribute to the
amplitudes of the reactions Kty —= Kot and K% —
K*rt. This is clearly demonstrated in Figs. 3 and 4,
which display the near-threshold behavior of the rele-
vant cross sections.

ROGALYOV

do}ds,, nb/GeV?

2500 +
n k
/
/
1500 /
/
/
| /
/
/
7/
500 7
- I I
045 050 055 0.60
89, (}e\/2

Fig. 4. Cross sectionsfor Coulomb scattering on sberyllium

nucleusasfunctionsof s, = ( pﬁm + pn)2 at the beam energy

of 40 GeV in the near-threshold region: (solid curve)
K 92 — K %10z and (dashed curve) K °Z —= K*rrZ.

Near the threshold, the behavior of the cross section
can be described by the formula

doy, _ kn
ds,

where the coefficients C for the specific reactions are
guoted in Table 2. The energy ranges where expres-
sion (17) provides a good approximation to the cross
sections and the total cross sections for Temeson pro-
duction on a beryllium nucleus at an incident-kaon
energy of about 40 GeV in the kinematical domain

= C(s,— (Mg +mp)*)™, (17)

do}ds,, nb/Ge V>

x10*
14 -
10+
6 L
2 [
0.5 0.7 0.9
§7, GCV2

Fig. 5. Cross sectionsfor Coulomb scattering on aberyllium
nucleus asfunctionsof s, = ( pﬁm +pp’ at the beam energy
of 40 GeV in the resonance region: (solid curve) K*Z —

K *10z, (dashed curve) K*Z — KOm*z, (dotted curve)
K 9Z — K 1Z, and (dash-dotted curve) K °Z —= K+t Z.
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specified by (14) are aso given in Table 2. The energy
dependence of the cross section is described by a com-
plicated function since the first term in the expansion
offers a good approximation only in the immediate
vicinity of the threshold.

Over the resonance region, the theoretical cross sec-
tions behave in a conventional way (Fig. 5).

4. CONCLUSION

The characteristic behavior of the differential cross
section (15) at small |t,| (so-called Coulomb peak)
makes it possible to isolate the Coulomb production of
T mesons against the background of other production
mechanisms[11]; the Coulomb production is dominant
at |t,] < (50 MeV)?2. Owing to this, it is possible to study
experimentally Kty — K1, K% —= KO0, Kty —»
Kmtt, and K% — K*11". The near-threshold behavior
of thefirst and the second processis determined by the
chiral anomaly, but the chiral anomaly does not con-
tribute to the amplitudes of the third and the fourth pro-
cess. As a consequence, the theoretical cross sections
for the first and the second process are 10-100 times
larger than the cross sectionsfor the third and the fourth
process over the entire near-threshold region. The pro-
posed measurements of the cross sections under con-
sideration may provide aunigque source of experimental
information about the coefficients of the KKTtyvertices
in Lagrangian (4) and about manifestations of the chiral
anomaly in strong and electromagnetic processes
involving K mesons. Such measurements would allow
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usto check the validity of the vector-meson-dominance
model [9] in the anomal ous sector.
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Abstract—Within the minimal model based on the four-color symmetry of quarks and leptons of the Pati—
Salam type, the asymptotic behavior of amplitudes for processesinvolving longitudinal leptoquarks (and W or
Z' bosons) is investigated, together with the mechanism according to which the growth of these amplitudes at
high energiesis suppressed by scalar fields. It is shown that, within the Higgs mechanism of mass generation
and of the mass splitting of quarks and leptons, the four-color symmetry of quarks and leptons requires that
scalar-leptoquark doublets, scalar-gluon doublets, and an extra color-singlet scalar doublet exist in addition to
the standard Higgs doublet. © 2001 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Searches for possible versions of new physics
beyond the Standard Model (SM) that are induced by
higher symmetries (supersymmetry, left—right symme-
try, etc.) represent one of the currently popular lines of
investigationsinto elementary-particle physics. Among
symmetries possibly existing in nature, there is the
four-color symmetry of quarks and leptons that treats
leptons as afourth color [1]. From this symmetry, it fol-
lows that there must exist new particles, vector lepto-
guarks, with masses on the order of the mass scale at
which this symmetry is broken. It should be noted that,
in model s featuring four-color symmetry, it isnatural to
assume the existence of scalar leptoquarks—such par-
ticles were phenomenologically introduced and ana-
lyzed in a number of studies (see, for example, [2, 3]).
But if the scalar |eptoquarks are introduced phenome-
nologically, it isnot clear whether the existence of such
particles is an inevitable consegquence of four-color
symmetry. It would be of interest to clarify the role of
the scalar leptoquarksin the theory being discussed and
to find out what particles, other than vector leptoquarks,
are mandatory in the presence of four-color symmetry.

In this study, we give answers to these questions by
investigating the asymptotic behavior of longitudinal-
leptoquark amplitudes and by considering suppression
of their undesirable growth at high energies by the con-
tributions from new scalar particles. It is well known
from [4-6] that the contribution of the longitudinal
components of massive gauge fields to the amplitudes
for processes involving such fields grows with energy.

* e-mail: povarov@univ.uniyar.ac.ru
** eemail: asmirnov@univ.uniyar.ac.ru

In the total amplitude, the leading terms cancel out by
virtue of the gauge-invariant structure of the interac-
tion, while the remaining growing contributions must
be suppressed by the contributions from scalar parti-
cles. Inthe SM, the growth of amplitudes for processes
involving longitudinal W and Z bosonsis suppressed by
the standard Higgs particle. By investigating the
asymptotic behavior of amplitudes for longitudinal-
leptoquark processes, we show here what scalar parti-
cles are required for suppressing the growth of these
amplitudes within the minimal model featuring the
four-color symmetry of quarks and leptons of the Pati—
Salam typeif it is the Higgs mechanism that is respon-
sible for mass generation and for the splitting of the
guark and lepton masses|[7, §].

2. CONTRIBUTION OF THE GAUGE SECTOR
TO THE 1.Q, — VVV AMPLITUDE

Among extensions of the SM that involve four-color
symmetry, the minimal version of four-color quark—
lepton symmetry considered here (see [7, 8]) is the
most economical one in the number of new gauge
fields. It isbased on the SU,,(4) x SU, (2) x Ug(1) group
as the minimal group that combines the symmetry of
the SM and the four-color symmetry of quarks and lep-
tons. Upon a spontaneous breakdown, this group gen-
erates, in addition to the SM gauge fields, two triplets

Vg, (o = 1,2, 3) of massive vector leptoguarks with
charges of £2/3 and an extra massive neutral Z' boson.

The interaction of the vector leptoquarks and of the
Z and Z' bosons with the fermions can be described in

1063-7788/01/6401-0074%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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the model-independent form

Py = LV, +he),

2

Fo = -2,3:-2.3;, )

where
‘J(\x/p = Qpaﬂyu(gav"'gaAVS) qlqaf 3
Z,7 ( )

‘Ju‘ = paYu(Vf +af ys)fpa'

Here, f,={Q =W A=0,4,a=1,2 3being
the SUC(3) colpa? |ndex p, g=1,12, 3, ... stand for the
generation number; anda =1, 2 isthe SlJL(Z) index.

Since the basis quark and lepton fields Q;,La'(,R and

LR
|

pa

cal fields Qpacx and |,

can generally be expressed in terms of the physi-

“R asthe superpositions

'L,R , ,
Qoaa = Y (AG,") pqQuac
’ “)
'L,R
pa = Z(AI )pq (|1_aRv

q

where AfL;R are unitary matrices, the constants g,

and g,y appearing in (3) are matrices in the generation
indices.

In addressing the question of what scalar particles
are required for implementing spontaneously broken
four-color symmetry, we begin by examining the
amplitude for the process

152Qq20 — VpV, Vs, (5)
where |, and Q,,, are, respectively, the down leptons
and quarks of the p and q generationsand a, B, y, d =1,
2, 3 are the U (3) color indices of the quarks and the
Ieptoquarks. The diagrams for this process that are due
to the gauge sector are shown in Fig. 1.

With increasing c.m. energy € of colliding particles,
the amplitudefor the processin (5) involving transverse
gauge bosons decreases in proportion to 1/¢. Each of
the longitudinal leptoquarks generates an additional
power of growth in the energy €, with the result that
nondecreasing terms of the second, the first, and the
zeroth order in € appear in the amplitude featuring three
longitudinal leptoquarks. In the total amplitude, the
leading second-order terms cancel out, so that the
resulting amplitude contains nondecreasing terms of
the first and the zeroth order in €.

According to our calculations, the amplitude for the
process in (5) involving three longitudinal leptoquarks
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VV
2 _
v Vvo'X, g Vs ,, Vs
q20( qZG VB
lpZ Xi V5
vV, Ve
0 2a OQ2a
1
P2
K vy
X, g V5 + Diagrams
— with exchange B, k; - V, k,
QqZC(

Ve

Fig. 1. Diagrams representing the contribution to the ampli-
tude for the process prquz(x — VBVV\75 from the
gauge sector.

is given by

M(gauge)(TpZquq . VBV \76)
— (M(gaUge) (gaUge))6 635 (6)
+(B.ky « v, kp) +0(1/e),

3

M = ﬁ‘nﬁfpz(—pz)mg?xge 20 Qaza(P2),
. Z mx gx w

A = —= m\Z/R3+2"—-—2——(k2—R3) s
p 04

+ 2[_R3(éz+ O —1)

2
My D¢ P 1[| +
tB-gefe-k B 5Hd ®

2 X Xi
. z mx,gx,vv(gx,vvdz+ +Vi. Gor — §2+VQ2+)
K2 —Ks3 5

kaks o

2R s lEF o=k o, —5
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2 2
Z My Ox,vv

1 4pk, + 2-1

2

p(k; —Ks)
2 2

04 my

gauge _
Ay = A,

A~

Ok, ke

Chiky  pake
+ M, Ay, + kokal, 1(85: G20 — 1)

1 .~
0, A, + ——[k3(A,_M
%ﬁz (OPWAV! pzkz[ 3(A Mg,

9
1 Oc rx © © lDD (
# 7| FRe(G 02~ 1) + (ke — ko) 0+ 5

X (B Mo, + M A, ) + ke —ko)kaf¥, + 30

Ao 1
koG ~ 1) e | + 5 - 1(MG, - M7)

x (ke ko), + ka(ka— ko), Fg, — 23

Here, |p2(—p,) and Qupq(P,) are, respectively, the lepton
and the quark bispinors;, m stands for the masses of the
corresponding particles; p, and p, are, respectively, the
antilepton and the quark 4-momenta; p=p, + p, =k, +
k, + k;; and ki, k,, and k; and 3, y, and o are the 4-
momenta and the SU,(3) indices of the vector lepto-
guarks. The coupling-constant matrices appearing in
Egs. (8) and (9) are expressed in terms of the constants
in(3) as

(gat)pq = (gaV x VSQaA)qu

Xi Xi Xi
(Vi2)pq = OpalVie, 2 V521 ),

X X
(Viadpg = Bpg Y GV, £ Vsar, )/ga,

where gy .\ isthe coupling constant for theinteraction
of thefield X, = (A, Z,, Z,,),1 =1, 2, 3, with the vector

leptoquarks and gf is the gauge constant of the fourth
leptoquark vertex.
The nondecreasing parts of the amplitude in (6)

involve two terms, M™% and M %% . Of these, the
first isindependent of the fermion mass, while the sec-
ond depends on the quark and lepton masses through

the equality

u’

Das = GaxMg — M, Gas, (10)

where (Mg, )pq = Mg, Opq @A (M, )pq= My 3y, arethe
diagonal quark and lepton mass matrices. In the partic-

POVAROV, SMIRNOV

ular case wherethe leptoquark current in (3) is of avec-
tor character and is diagonal, expressions (10) are pro-
portional to the difference of the lepton and quark
masses. In the minimal model of four-color quark—ep-
ton symmetry, the constants appearing in (8) and (9)
can be represented as

Gav,n = Ga(Ka £KJ)/2 (11)
Oxw = (23)[e{1, -tw(c—s/0), ty(s+cl/o)}, (12)

L,R

where g, is the SU,(4) gauge constant; K, =
(Ag.)*A-® are unitary matrices in the generation

indices; ty, = tan8,, , By being the weak-mixing (Wein-
berg) angle; ¢ = cosB and s = sinB, B being the Z - Z'

mixing angle; and ¢ = swg/ﬁ/l—sﬁ, —ssz, with sy ¢ =
sinBy & 65 being the strong-mixing angle [7, 8].

By taking into account expressions (11) and (12)
and the constants in (3), which are determined by the
structure of the neutral currents of the minima model
of four-color quark— epton symmetry [7, 8], we obtain

Ol = |, Vip = —1/2, Vg = 16,
% % (13)
Oxw +Vi:—Vg.: = 0.

Simplifying expressions (8) and (9) with the aid of
these equalities, we arrive at

z m>2<ig>2<ivv
A = L anlis + 2T (o ko) |G,
P 04 (14)

zmiigiiw (ko —ko)
O

04 my

Ay

(15)

ko

Ok, ke
P2k,

O lk + 200Dy
1K1

3. SCALAR SECTOR AND YUKAWA
INTERACTION

The nondecreasing gauge-sector contributions
determined by Egs. (6), (7), (14), and (15) must be sup-
pressed by the relevant contributions from scalar fields
responsible for the generation of fermion and gauge-
boson masses. Among these fields, thereisthe SM sca

lar doublet d)éSM), a =1, 2. In the presence of four-
color symmetry, it can either be an invariant with
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respect to the SU,(4) group or have a more complicated
structure.

For the first case, it can be shown that, following a
spontaneous breakdown of symmetry, itsYukawa inter-
action with the SU(4)-invariant fermion current leads
toarelation of theform A,, = 0 for the quark and lepton
masses. With allowance for Eq. (10), this relation
means for the general case that the product of the
masses of the up (down) leptonsis equal to the product
of the masses of the corresponding quarks; in the par-

ticular case of K;‘ = K§ = |, thismeansthat the quarks

and leptons have equal masses in each generation.
However, thisis at odds with experimental databothin
theformer and in thelatter case. At first glance, it seems
that the quark and |epton masses could be split by intro-
ducing, in an ad hoc manner, the SU\(4)-invariant SM
doublet ®SM that involves the 15th component of the
fermion scalar current and which violates the SU,(4)
symmetry of the Yukawa coupling; however, the calcu-
lations show that, in the asymptotic expression, this
gives no way to ensure cancellation of the quark- and

lepton-mass-dependent part of the amplitude M %% .

The commonly adopted approach to the generation of
the quark and lepton masses assumes that, at large
scales, the quarks and leptons have zero or equa
masses, but that, at the SM scale, their running masses
split, taking values close to the experimental ones.
Within this approach, it is necessary, however, to solve
anontrivia problem of ensuring sizable splitting of the
guark and lepton masses (by way of example, this split-
ting isabout m, = 175 GeV for the third generation).

An dternative approach was proposed in [7, 8]. Itis
based on the Higgs mechanism of splitting of the quark
and lepton masses. In this approach, the multiplet of the

fields qu(z) (=12, ..., 15) transforming according to
the (15, 2, 1) representation of the SU\(4) x SJ,(2) x
Ug(1) group is introduced in addition to the SU\(4)-
invariant scalar doublet % (a = 1, 2). The Yukawa

coupling of these multiplets to the fermions generates
arbitrary quark and lepton masses; as will be shown
below, the remaining physical scalar fields ensure sup-
pression of the undesirable growth of the amplitude for
the process in (5). In this case, the SM Higgs doublet

d)éSM) has a more complicated structure, appearing to
be a superposition of the doublets (Déz) and CDS)& .The

multiplets CD“) A=1 2 3,4, and CDJ-(4) transforming
according to the (4,1,1) and (15,1,0) representations of
the U\(4) x U, (2) x Ug(1) group are used to generate
vector-leptoquark and Z'-boson masses.

The scalar multiplets of the minimal version of four-
color quark—lepton symmetry can be represented in
PHYSICS OF ATOMIC NUCLEI
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the form
3 &
(4,1,1): 0 = X + i
O J2 0
(1,2, 1): o? = 5 ﬂz+ (2)
1 & . a - azﬁ (pav
(15 2 1) cD(3) D(Fa)o(ﬁ S-ux %_'_ q):ﬁ_g)at]_&
D Sa 0O
0 (4) <
Fq 142
(15, 1, O) ¢(4):E (4) /\/_ D+ (r]4+x(4))t151
0Ss /ﬁ 0o ¢

where (D15 a =0pN3+ (P15 a5 N> Np, N3, @nd n, are vac-
uum expectation values; t;s is the 15th generator of the
U(4) group; a=1, 2isthe U, (2) index; and a, B =
1, 2, 3arethe SU(3) color indices.

The multiplet ©® contains two doublets of the sca
lar leptoquarks SL with hypercharges Y(S(St“)") =1+4/3;
eight doublets of the scalar gluons Fja, i=14,2,..38
with YSM = 1 and the doublet CD15 » Which is mixed

with the doublet ®{?, forming the SM doublet GSW
and an additional doublet '

7 %" 8 Bef
(sM) _ :
® H!+X(SM)+|Q)D ® '+iw‘%L

0 /2

Here,n = /N> +n3 = (J/2Gp) 2= 250 GeV isthe SM
vacuum expectation value.

In addition to the SM Goldstone modes CD(SM) and
W, there are a so the Goldstone modes w? and

{ Mg, fﬂ $’+ v
D 2

+n48(4)D}/ /%+§(n§+ni),
0

which are associated with the breakdown of four-color
symmetry.

The leptoquark fields entering into §, can be repre-
sented as a superposition of the Goldstone mode S, and

(16)
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the physical fields S;, S,, and S; with an electric charge
of 2/3 that are orthogonal to §, as
> C'Se

(+) Z C(+)
Z C(4)

Z C(l)s(’ S(4)
where Ck & , C(l) and C(4) (k=0, 1, 2, 3) arelements
of the4 x 4 unitary matrix of scalar-leptoquark mixing.
In the unitary gauge, the Goldstone modes are elim-
inated:
cD(SM)

gg—>
(17)

=0, w=0, =0 §=0.

For physical fields, we then have the SM Higgs field
XM, the extra SU(3)-color- singlet doublet @', two

triplets of the up Ieptoquarks and W|th electri-

cal charges of 5/3 and 1/3, three scalar Ieptoquarks Sa
(k=1, 2, 3) with an electrical charge of 2/3, eight dou-
blets of the scalar gluons F; ,, the octet of the scalar
gluons F,-(4) , and the SU,(3) color-singlet fields XV and

X(4)_

The scalar fields that have the SU, (2)-doubl et origin
interact with the fermions. The corresponding Yukawa
Lagrangian generally hasthe form [7, 8]

L = P paal (hy)

(3)b
pq(pa

(2)b
pq(pa 6AB (1 8)

+ (hb) (t )AB] LquB + h.C.,

(2)2 (21 _

where l'I'JpaA - {Qpad ’ pa } (D;Z)’ (pa
E( D)% @ = @ ; and cp(f)l = £, (Di )*, i = 1,
2, ..., 15; stands for the generators of the SU\(4)
group; €, is an antisymmetric symbol; and h, and h
are arbitrary matrices.
Following spontaneous symmetry breaking treated
with allowance for ®?— CD(3) mixing and diagonaliza-

tion of the mass matrices by using relation (4), the
Lagrangian (18) gives the fermion mass term and the

Lagrangian EEiﬂt describing the interaction of the fer-
mion and scalar fieldsin the form

int
Ly = ‘SEX(SM)ff + Loit + Lroo + s,

(S'Vl)

2 —(QuM QQa+I M, 1),
Lot = ~§£x‘ff + Lt + Loy

gx(s“")ff =

XI —i (*)I(T3)aa
n

1
2sin2f3

Lyir+ Ly =

POVAROV,

SMIRNOV
L Laat RiAR
X { Qa[(l_chSZB)MQa+ KaMIaKa]Qa

+Tal(—1-2c0s2B)M, +3KEMo KEJIE} +he,

1 e
ﬁanBﬂD !

o, ff T

[1_\/5
2

_L ys((1 20052B)Mg, Co + KEM, K CQ)}

+ |_1[1 —Ys

+22Y5((1+ 2c0s2B)M, C —éKfMQlK'{C,)}IZ

(= (1+2c0s2B)C,M, +3CK5Mg K5)

[

+ h.c,,

Lroo = Lro0, * Lr00, + Lr00,

ngQlQl (19)
1 D— l y5 D
ngQzQz
1 Oz 1-vys 0
_A/énSinB%QZG 2 MZ(ti)dBQZBsz"'h.C.E
1-ys
gFlQlQZ ﬁnSnBD |: 2 CQMZ
1+y + 0
2 5M1CQ:|(tJ)aBQ2[3F1j+h.C.%
gSQI = gSQala"‘gSY)Qllz‘l'gSY)lle’
— 3 1 o [‘F‘ ys
Lo, = “/;USHBD [ > MoKy
1 + Y + ()+ (a) v
7 MaK DT’f(Ts)aaD — M KR
M K ERE S22 )+ he.
2 af] 2 a .
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_ 3 1 L= 11-vys
‘EBS(f)Ql'z = _/\/;nS'nBD la |: 2 CQM KZ
1+ye + +
- V5M1K1Lc|}| 4 4 he D
2 0
3 1 -1 1+ye g
Lo, = A/;r]smB | [ KM, Co
—Ys

, } 0
C|K2LM2}QZG O 4 h.c.%

whereM, = Mg — KaM, K, (Fa)ap = ~/2F4 (t)eg: Co
is the Cabibbo—K obayashi—-Maskawa matrix, C, is the
matrix analogous to it in the lepton sector, and B isthe

®@—0 mixing angle (tanB = ny/n,).

4. CONTRIBUTION OF THE SCALAR SECTOR

TO THE 1,Q, — VVV AMPLITUDE
AND CANCELLATION OF DIVERGENCES

The contribution of the scalar sector to the ampli-
tude for the processin (5) is described by the diagrams
inFig. 2. The expressionsfor the required three-particle
interactions of scalar and gauge fields are presented in
the Appendix. By using the notation analogous to that
in Egs. (6) and (7), the contribution of these diagrams
can be represented as the sum of the contributions of
the individual fields ™, ', F», and S, of the doublet
origin; that is,

scalar X X Fa S
Aoa = Aoa TAGAT A LT A (20)
For the above contributions, our calculationsyield
(sm)

11 2 & 2 dA<1 Ol
Aé —__[—2 ngvkl"'g Wy P — K2 }92“
o0 % =i T o

ke

A = i Eb2k1A2+MQ2 ” klM|2A2_
—20, 5+ %[22 gouvkyp (22)
mypl 4
Oy O kl?p *+k, pD]AZ— 0
A= -21 SZZgXVVklgz+, 23)
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>WM;HH Vs

Fp FV ™ Vg

)
Qchx Fz/’ F/ Vy
I Ve Ty XSV, X" Vs
. v V.
:|X(SM)» X Vs Vg v
QqZC( F 2j VV quu

Fig. 2. Diagrams representing the contribution to the ampli-
tude for the process fp2Qq2a — VBVy\75 from the sca-

lar sector of the model based on the minimal version of four-
color quark— epton symmetry.

. 0 0 n20
Al = 12[1—ng\,4 g -2,
9,0 NoNs| O n O

[l
——51—94”31\/! o+ 30.0; B

Pk r]
(24)

r] 3 O
+——=A0 Mg, — 15,0, 4, 0
pzkl O r] O

1 1l
+ 2g)f'vv ——KipA, [
my p 0

F, _ 1 1 2 |j<1
Ao = gzngpgl)vvﬂg

4

kel (25)

F 100w 311 4 0 ke
P = 20 Ns [2[ 37" O3p,k,
(26)

3 1
0O Ulk|: OywOxsvkip  (27)
2g;p"ns0 Z z o

0k
- Z ngvgpsKvD ;p +k, pD
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1
- z gxivvgxiqvé(klkz - klks)}Az— (28)

1
+ Iz gXiVVgXi%VE(klk2 —kyks)

+ + U
XYs5(92-Mq,—M,,0,.) E

Wherex: {X(SM) X' X(l) X(4)} andF = { F(l) F(4) F(Z) }
are the octets of real neutral scalar gluons, F, = (FS" +

F2 )2, and Uy =(C;” + C)//2.
By analyzing the contributions given by Egs. (21)—

(SM)
(28), we note that the contribution AY  from the SM

Higgs particle xS™ [see Eq. (22)] does not involve sec-
ond-order terms in A,, of the type of the last term in
Eq. (15). In the case of quarks and leptons with arbi-
trary masses, this contribution isinsufficient for cancel-
lation of the gauge-sector contribution in the asymp-
totic region. Second-order terms of this type are con-

tained in the contributions Aﬁ' and AEZ from the extra

doublet and octet of down scalar gluons [see Egs. (24)
and (26)]. An analysis reveds, however, that these con-
tributions are also insufficient for the aforementioned
cancellation; only together with the scalar-leptoquark
contribution (28) do these fields ensure the required
cancellation of the gauge amplitude.

For the total contribution from the scalar sector to
the amplitude for the processin (5), theinclusion of the
coupling constants appearing in Egs. (21)—28) (see
Appendix) does indeed yield

sl 1 20 f]2 2, 2 2
AT = 5 agik R+ 5nS+nd)|
P (29)
i
94[ (ns + rh)}
scalar 1 4 3
AAaI = —| 4pks >
p
22 A N
g4r|1 p(kz—ka) O kl kz
+ + + NoPWiYS (30)
2 m\z, Ch,k, pzkzgAZ 92-C
2|j]1
O +3 (ﬂs r]4) }AZ—
mv[ O4 "3 O

where the ellipsis stands for the omitted immaterial
terms, whose contribution to the amplitude is of order
1/e.

POVAROV, SMIRNOV

Taking into account the relations

my = gf%nj 3(n3 nag

z mxigxiVV — ginf

- O 4

which are predicted by the model, we can show that the
contributions given by (29) and (30) exactly cancel the
corresponding contributions (14) and (15) from the
gauge sector. For this cancellation to occur, one needs,
in addition to the SM Higgsfield 5™, the scalar lepto-
quarks S, (k= 1, 2, 3) with acharge of 2/3; the octet of

down scalar gluons F; the octet of scalar gluons F,-(“);
and the extrafields x', xV, and x®.

5. AMPLITUDE FOR THE PROCESS
Q:Q, — VVW AND ROLE OF THE UPPER
COMPONENTS OF SCALAR DOUBLETS
In order to clarify the role of other scalar fields, itis
necessary to consider processes involving longitudinal
leptoquarks and W and Z' bosons in the final state. By
way of example, weindicate that, in order to reveal the
role of the up components of the scalar doublets, it is
sufficient to consider the amplitude of the process

Qp1aQquzp — V, VW, (31)

where Q,,, and Qg are the up and down quarks of p
and qgeneratlons whllea B,y,andd=1, 2, 3arethe
U.(3) color indices of the quarks and Ieptoquarks

The calculation of the gauge-sector contribution to
the color-singlet part of the amplitude for the processin
(31) within the minimal version of four-color quark—
lepton symmetry yields

_ 9085 1
4.2m5my,/3

M (gauge)

(32)

X z 10(( pl)(Agauge gauge) quan( p2) + 0(1/8)

a

AT =0,

AP = Cogy Ay (1-Ys) A, Gre Co(L +Ys)

0 ke
+ CA, (1-
[Qplkz ZDzkEﬁl > (1-Ys)

ko
T 2p.k,

k3
2p.ks

>0 A Co(1+Ys)

(33)
CQAZ—A2 (1+ys)
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~

k
+ oK. 1k (Mg, Cq(1-Ys) —CoMq (1 +Ys5))g, A,
P1Ky

~

ki + =«
+ oK 1k A, 9, (CoMg,(1-Ys) — Mg, Co(1 +Y5)),
P2Ky

wherek;, k,, and k; are the 4-momenta of the W boson
and vector leptoquarks.

The scalar-sector contribution to the amplitude for
the process in (31) is described by the diagrams in
Fig. 3. In the case of the color-singlet initial state, the
above contribution can be represented in the form

A =0, (34)

2 = (2Cq0,.4, —CpA,, 62+ -0:.CA, )(1-vs)

+ (A, Cdy, + gl_Al_cQ —29,.A; Co)(1+Ys)

] ke
- _CA _(1-
Etplkz %ﬁl 2 (1-Ys)

2p2

ko
2p k,

ks
2p Ky

N0, AL Co(1+Ys)
(35)
CQAZ—AZ (1+ys)

to— 2p k 57— (=Mq,Co(l-ys) + CoMq, (1 +V5))9, Ay

k

2plk 0181 (= CqMg,(1—Ys) + Mg Co(1 +Y5))

—Co02 8, (1-ys5) + 9.0, 0y, Co(1+ys).
With allowance for the identities

ga—Aa—(l T y5) = a+ éa+(1 * y5)1

91+C| Co%2:,

expression (35) exactly cancels the corresponding
gauge-sector contribution (33). Appropriate calcula-
tions for the color-octet initial state also lead to analo-
gous cancellations in the amplitude for the process in
(32).

We note that the diagramsin Fig. 3 involve, in addi-
tion to the fields xS™ and ' and the down gluons F;,
which appear in the diagramsin Fig. 2, the up compo-

nents of the scalar leptoquarks (;) , of the scalar gluons

Fy;, and of the extra doublet ®; , whose contributions

are necessary for the above cancellations; the contribu-
tions of the scalar gluons do not vanish only in the case
of the octet initial state.
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Fig. 3. Diagrams representing the contribution to the ampli-
tude for the process Qp1qQqpp —> V, VW from the

scalar sector of the model based on the minimal version of
four-color quark— epton symmetry.

Finally, our analysis performed along similar lines
for the amplitude of the process

QpZGQqZB _>Vy\_/52' (36)

reveals that the imaginary part w' of the down compo-
nent of the doublet @' is necessary for suppressing the
growth of the amplitude for this process.

6. CONCLUSION

In summary, our calculations and analysis of the
asymptotic behavior of amplitudes for processes
involving longitudina leptoquarks (and W or Z'
bosons) within the minima four-color-symmetry
model have demonstrated that, in addition to the SM

doublet dJéSM) , the doublets of scalar leptoquarks )
the doublets of scalar gluonsF, (j=1,2, ...,8),and an

extra color-singlet scalar doublet ®,; must inevitably

arise in the case of four-color symmetry if the Higgs
mechanism is responsible for the generation of quark
and gluon masses and for the splittings of these masses.
In the presence of mass-split quarks and leptons, the
particles listed immediately above are necessary for
suppressing the high-energy growth of the longitudi-
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nal-leptoquark amplitudes and appear to be some kind
of aprice that has been paid for the Higgs mechanism
of the aforementioned splitting. We note that the cou-
plings of these particles to the fermions are propor-
tiona to theratio of the fermion massesto the SM vac-
uum expectation value [see Egs. (19)] and are therefore
quite small. At the same time, the scalar |eptoquarks
and scalar gluons can contribute significantly to the
parameters S T, and U of radiative corrections and can
prove to be relatively light [9]. A further investigation
of the properties of these particles is of interest in our
opinion.
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APPENDIX

For the sake of reference, we present here three-par-
ticle Lagrangians and the couplings of the gauge fields
A, Z,, Z,, W, and V,, to the scalar fields within the
minimal version of four-color quark—{epton symmetry
(we have used these Lagrangians and couplingsin cal-
culating of the amplitudes for the processes investi-
gated in the present study). We have

*
v = GwXVauVaw
sM) v, (1) (4)}

X={X XXX (A.l)

_ Mo . 4 > 2N 4
Oxw = %gﬂhﬂn& §g4n3C05[3 04— > 394714[[

LX(SM)ZZ + LX(SM’Z'Z' + LX(SM’ZZ'
e (SM) (A.2)
2

4s,,C

2 (Zlu+022u)
W
e’ 2 (@
Lx“’zz = —(sw/o+0/sy) NiX 225, (A3)
22 Ay
Z,, = Z2,c-2,8, Zy, = Z,;s+Z,c,

where, ¢ = cosB and s=sin8, 6 being the Z-Z' mixing
angle;

LxSﬁm)V = 2/3)V[ (Xa (2/3) uX 3(12/3))V0(u - hC] ,

(2/3) = { (+) A Sél) S((x4)} n=1234
qa ’ ’ 1 1 ’ 1

9,engy = Gyengo, = g4SinB/A/3, (A4)

Iysiov = Gegov =
gx“)sgl)v = —0,/2, 9X<

Lo

g,cosp/ /3,
CRONE «/%94;

), m(Sr(]zs) + h.C.),

x5y = Sy
-2 g g -1 33 a0
gx.osizf)v 3/\/3 g4n3D ’S\NCWD 2 Swp
L g3, oo (A5)
swewl 2 Ug '
_ 1 0 tW 3 0 O
Oyoqmy = 3|e|g4r]1%l, —ty _ZG_ZS\NCW%
2
Yyogay = ~3V 2/3lelgina{ 1, -tw, tw/0},
where X, = {A,, Z,, Z,);
Lorr, = 19,00 Xiu(@uFoFo—he),  (A6)
Lyouy = gX?w,X,x?u(auw'x'—waux'), (A.7)
where 9o . = Gyo,,. = (IB128wew){0, 1, 0};
k
Leww = ngvF'Vap(tj)aBVBp,
F = {FL FOFDY, 1=12..,8 (A8
Orw = {24 394’]31 2«/2/392041 0},
where F); = (F(l) +|F(2) VA2
L (+)
: E(+) (i)Sl : (A9)
= 104[(0,S15 Fyj - 31 uF1j) (t) Ve —hec],
L (-)
e (A.10)

= ig4[(9, (;)Flj - Si;)auFlj)(tj)qBVBp —h.c],

Z Lesy
=

where gesy = {9a( C|(<+)
C2):
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Luvoiy = 1020, (0,@1X' = @10,X) ~hc 5 1)

Lwe,F,

, ), * % (A.13)
= —igy/2[W,”(8,F;;F5 —F1,0,F5) —hcl,

Lwsv = J2l_39294r13[(—W,ﬂ+) (:;)

) (A.14)
+W, 'Sy )Vq, +hel],
Loy = i/2130,C0SBL (930,
(A.15)
~9,0,8 )V, —hel,
Lorsoy = 14/2/394008B[(P0, S
(A.16)

o)
—-0,9,S,, )V, —hc.].
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K oba—Nielsen—Olesen Scaling
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Abstract—A correct version of Koba—Nielsen—Olesen (KNO) scaling isdescribed in detail for multiplicity dis-
tributions. Some statements on the violation of KNO scaling that are based on an erroneous interpretation of
experimental data are discussed. An accurate comparison with data is presented for the distributions of nega-

tively charged particles originating from electron—positron annihilation at /s = 3-161 GeV, from inelastic pro-
ton—proton collisions at /s = 2.4-62 GeV, and from nucleus—nucleus collisions at p;4, = 4.5-520 GeV/c per
projectile nucleon. Dataon proton—antiproton interactionsat /s = 546 GeV are aso considered. © 2001 MAIK

“ Nauka/Interperiodica” .

1. MULTIPLICITY DISTRIBUTIONS

Usually, multiplicity distributions are among the
first experimental data obtained at any new accelerator.
In an inelastic collision of two primary particles, the
multiplicity distribution determines the probability of
an event as a function of the number of secondaries of
a specific type that are produced in this event; that is,
P, = 0,/0;..., Where g, is the cross section for the pro-

duction of n such particles, while o, = ) ; 0, isthe

total cross section for the inglastic interaction of pri-
mary particles.

Among distributions of this type, those with respect
to all charged particles are studied more frequently than
others. However, the procedure where charged mesons
produced, for example, in proton—proton interactions
are added to the number of protons that survived the
interaction does not seem natural. But for nucleus-
nucleus collisions, where there may occur protons that
did not suffer inelastic interaction, such a procedure
appearsto be till stranger.

Moreover, charge conservation leads to a trivial
nonuniformity in such a distribution, say, in electron—
positron annihilation, where there is no odd probabili-
ties. At the same time, such probabilities appear in a
bounded rapidity (for instance) interval and even may
become commensurate with even probabilities, pro-
vided that thisinterval is sufficiently narrow.

In order to circumvent such problems, we will con-
sider the multiplicity distributions of negatively
charged hadrons (in practice, T mesons, with a small
admixture of K~ mesons) in electron—positron annihila-
tion [1-13], as well asin inelastic proton—proton [14—
41] and nucleus—nucleus [42—-45] interactions. Datafor
nucleus—nucleus interactions are often presented pre-

* email: golokhv@lhel?.jinr.dubna.su

cisely for negatively charged particles, because it is
easier to count them than nuclear fragments.

In interactions of the first two types, the number of
all charged particlesin an event, n,, is unambiguously
related to the corresponding number of negatively
charged particles, Nnegs that is,

nch = 2nneg

In the following, the number of negatively charged par-
ticlesis denoted merely by n.

for e'e” and ny=2n,,+2 for pp. (1)

2. ASYMPTOTIC KOBA-NIELSEN-OLESEN
SCALING

On the basis of some physical considerations Koba—
Nielsen—Olesen (KNO) formulated the statement that
the shape of the multiplicity distribution isindependent
of primary energy (KNO scaling) [46]. Earlier, Polya-
kov drew the same conclusion from different consider-
ations [47]. In contrast to the statement itself, its theo-
retical grounds were not confirmed by experimental
data, so that KNO scaling remained an empirical fact.

Figure 1 illustrates the meaning of this statement,
which was formulated for very high energies. Since
such energies correspond to very high multiplicities,
the multiplicity distributions appear as continuous
functions in this case. Figure 1a shows the possible
shapes of these functions for various primary energies.
The areaunder each curveisequal to unity sinceit rep-

resents the sum of al probabilities: IPndn = ZP” =

1. The mean multiplicity MO= znPn = (nP,dn

grows with energy. Each curve can be contracted lin-
early aong the horizontal direction in proportion to
some of its horizontal dimensions—for example, the
mean value [M{asin Fig. 1b), the most probable val ue,
or the FWHM—and extended along the vertical direc-

1063-7788/01/6401-0084%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Definition of the concept of similarity of continuous functions (KNO scaling). Normalized functions (a) are similar if upon
alinear contraction of each of them along the horizontal direction in proportion to some of its horizontal dimensions—for example,
m(b)—and alinear extension along the vertical direction in the same proportion (c) they coincide at each point.

tion in the same proportion for the area under the curve
to remain eventualy unchanged (Fig. 1c). The KNO
scaling then states that the curves will coincide at each
point [48]; that is,

0P, = Vi

where W(2) is afunction that is independent of energy
and which is normalized by the conditions

)

00 00

J’w(z)dz =1 and Iqu(z)dz =1 (3)
0 0

The first equaity in (3) follows from the fact that the
sum of al probabilities is unity, while the second
results from the contraction of the functions P,, to the
extent that the mean value of each of these reduces to
unity. Equation (2) imposes no constraints on the form
of the function W(2), with the exception of those in
(3)—it merely represents the concept of similarity for
continuous normalized functions.

In Eq. (2), the scale parameter hCtan be replaced by
any other quantity that islinear in n and which charac-
terizesthe horizontal dimension of the function P,—for
example, the square root of the variance (standard devi-

ation), D, = [ Y (n — MOPP,]'?; a different centra
moment rai to the corresponding power, Dy =
[Z(n — [MDOYP,]"9; or the absolute moment Y4 =

(S n'P,)"a. All of these vary with energy in propor-

tion to one another, provided that the asymptotic KNO
scaling MOTINY4 0 D, holds [see Egs. (10) and (11)
below].

The scaling relation in (2) is a particular case of a
weaker symmetry for which theidentity of the distribu-
tion shapes is verified only upon bringing both the
mean values and the widths in coincidence (by making
a shift along the horizonta direction and by changing
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the scale in proportion to D,, respectively) [49]:
- 1 -m-0hif
= D2FD D, U 4)

Thescaling relation in (4) can aso berepresented in the
form [50]

Pn

1 (gn-a(/s) o
th-a(y/s) “hi-a(./s)-

(here, a is an energy-dependent quantity) by means of
the substitution a = M- nD,, where n = const.

In contrast to the KNO scaling that is specified by
Eqg. (2) and which involves only one free parameter
dependent on energy (for example, D), the scaling
specified by Eqg. (4) or Eg. (5) has two free parameters
that are independent of each other and which are func-
tions of energy (for example, (MCand D,). In this sense,
the latter resembles the approximation of multiplicity
distributions by abinomial distribution [51, 52], which
also involves two such parameters.

&)

n =

3. INTRINSIC CONTRADICTION

At currently available accelerator energies, the
guantity P,, cannot be considered as a continuous func-
tion: by way of example, we indicate that, in proton—
proton interactions, (M~ 2 at p,, = 100 GeV/c and I~

5and 13 a /s = 60 and 546 GeV, respectively. In this
case, Eq. (2) isintrinsically contradictory, irrespective
of its physical substantiation—mathematically, it is
inconsi stent with the normalization condition 23 P, =
1[53].

This contradiction becomes obvious when we
inspect closely thedatain Fig. 2a. According to Eq. (2),
the operation inverse to that depicted in Fig. 1 must be
implemented in order to obtain some multiplicity distri-
bution for a given mOfrom the continuous universal
function W(2) in Fig. 2qa; that is, it is necessary to
choose the scale z, = 1/mJalong the z axis, in which
case the probability P, will be equal to the area of a
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Fig. 2. Derivation of adiscrete multiplicity distribution from
a continuous normalized universal function W(z) according
to (a) therecipe P,, = 1/ W(n/mm0 (in this case, the sum of
the areas of the rectanglesis not equal to the area under the
curve; that is, >Pn# 1) and (b) the correct recipe [in this
case, the probability Py, isequal to the area under the curve
in the interval between nz, and (n + 1)z]; here, P, =1,
but z, # 1/mC]

rectangle whose upper vertex lies on the curve W(2) at
the point z = nz, = n/H The height of this rectangleis
[P, while its baseis 1/l

For z, — 0 (0h[J— o), the sum of the areas of al
rectangles (total probability), the area under the curve,
is equal to unity. This sum cannot remain unchanged,
however, with increasing z, (that is, with decreasing
energy). A numerical integration becomes overly crude
in this case. The distribution in Fig. 2a approximately
corresponds to 100 GeV/c in proton—proton interac-
tions. The distribution of all charged particles has the
same shape, apart from a change in the notation for par-
tial probabilities according to Eq. (1): Py — P,,
Pl e P4, etC

A change in the normalization of the function W(2)
would involve introducing an energy dependence in
W(2) with the result that the input hypothesis would be
abandoned. Of course, KNO scaling was formulated as
an approximate regularity; however, it is desirable to
establish the extent to which it holds. For this, one has

GOLOKHVASTOV

either to treat it accurately or to quantify the distortions
introduced by incorrectness of the mathematical proce-
dure used.

Thus, it is necessary to define similarity of discrete
functions prior to experimentally testing the hypothesis
of similarity of multiplicity distributions. The concept
of similarity must be intrinsically consistent for i~ 1
and must correspond to the asymptotic form in (2) for
[ oo,

4. CORRECT KNO SCALING

A possible procedure for correctly deducing various
multiplicity distributions from one universal function
W(z) isillustrated in Fig. 2b, where the probability P, is
equal tothe areaunder the curveintheinterval of width
Z,. It can be seen that the sum of the probabilities is
always obtained to be equal to unity and that, for z, —
0, Fig. 2a coincides with Fig. 2b. This statement can be
represented as [53]

(n+1)z,

P, = I Y(z)dz. 6)
nz,

The normalization conditions in (3) for the function
W(2) remain in force, but (MCis not equal to 1/z, here; it
can be obtained in this case only from the multiplicity
distribution, in just the same way as other statistical
moments.

From Fig. 2b, it follows that, knowing the experi-
mental multiplicity distribution at some energy value,
one can deduce the relevant distribution at the energy

value corresponding to z, twice as great as z, the
neighboring areas being summed in this case: P;, =
P, + Py, (- The same procedure can be repeated for

Zy =3z P, =Py, + P5,,; + P30, €tC. InFigs. 3and
4, the points obtained in thisway from | SR data[40] are
compared with data at lower energies. It can be seen
that they agree down to the lowest energies.

For the sake of comparison, we nhote that the equal-
ities P, =2P,,, P, =3P, etc., follow from Eq. (2). In

this case, we generally have ZP'n #1and ZP;{ £1.

We further recast Eg. (6) into an alternative form by
introducing the continuous parameter m = z/z,, which
fills gaps on the discrete axis n in Fig. 1a and which
should have been introduced prior to deriving Eqg. (2) in
order to avoid integration with respect to the discrete
parameter n [53]:

n+1

P, = J’P(m)dm, @)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.1 2001
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Fig. 3. Experimental multiplicity distributions of negatively
charged particles, along with theoretical ones computed on
the basis of distributions obtained experimentally at higher

energies by using the equations P, = Py + Py, 1, Py =

P3n + P3n 41 + P3n 4o, €tc—see Fig. 2b. The curves were
calculated by formula (6) for the functions WPP(z) given by
Egs. (19) and (20) (visualy, they are indistinguishable).
Closed and open inverted triangles represent experimental
data at energies in the range 1.7-147 GeV/c, while closed
and open circles illustrate results computed on the basis of
ISR data.

00

P(m) = ﬁmwguﬂutmr (= [mP(m)dm = 1/2, (8)
0

Thus, the discrete distribution P,, can be represented in
the form of a histogram of the continuous KNO-invari-
ant function P(m).

Within this formulation, the concept of similarity
retains its former meaning; that is, it refersto continu-
ous functions exclusively. Here, only the procedure
changes according to which we obtain discrete multi-
plicity distributions from them. Instead of the intrinsi-
cally contradictory prescription that we actually used in
Eg. (2), we now have at our disposal the correct pre-
scription (7):

= P(M)[p= - )

The continuous KNO-invariant function P(m) pos-
sesses simple properties, which were previously
assigned to the discrete function P,,, but that led to con-
fusing results. The absolute and central statistical
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D,

2.5

Fig. 4. Central moments Dq = (y (n — M0O9P,,) /9 as func-
tions of (M Even and odd moments are offset by unity. The
Wrdblewski straight lines specified by Eq. (14) are pre-
sented in the figure. Dashed curves show lower bounds on
Dq (at agiven [value, the quantity Dy attains aminimum
when only two neighboring probabilities P, do not vanish

[54]). Closed circlesrepresent experimental dataat energies
in the range 1.7-147 GeV/c, while open circles illustrate
results computed on the basis of ISR data.

moments of the function P(m) are proportiona to its
mean value [in[raised to the corresponding power (z =
ny D)

0

q
tmt_ J’m P(m)dm = Iz W(2)dz = const, (10)

o

o (m= UﬂDq

P(m)dm

57

= J’(z—l) WY(z)dz = const.

(11)

In order to obtain multiplicity distributions, Parry
and Rotelli [55, 56] used a formula close to that in
Eqg. (7). A physical model of such histogramming was
considered in [55].
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Fig. 5. Various parameters of the discrete function P,, versus
the corresponding parameters of the continuous function
P(m) for the approximations of W(z) that describe (dotted
curves) eectron—positron annihilation according to
Egs. (18) and (20) and (dashed curve) proton—proton inter-
actions according to Egs. (19) and (20). Solid straight lines
correspond to the approximate formulas (12) and (13). The
valuesof D5 and D, are shifted upward by 0.5 and 1, respec-
tively.

5. APPROXIMATE IMPLICATIONS
At not overly small ] we find from Egs. (7) and
(8) that
n+1

OO J’ mP(m)dm

{mP(m)dm = Z

n+1

=3 (n+05) [ P(m)dm (12)

z (n+0.5)P, = [h(+ 0.5,

aresult that can also be observed by inspecting Fig. 2b
more closely—the center of gravity of each P, bin
occurs approximately at z= (n+ 0.5)z, rather thanat z=
nz, [57].

For the approximations of W(z) that are shown in
Fig. 6 and which describe el ectron—positron annihila-
tion and proton—proton interactions, Fig. 5 (lower
curves) shows the precise inCdependences of [Mthat
were obtained on the basis of Egs. (7) and (8). It can be
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seen that, for proton—proton interactions, the approxi-
mation in (12) holds quite accurately from i~ 0.2,
which corresponds to p, ~ 4 GeV/c.

An approximate relation between the centra
moments of a continuous and a discrete function is till
simpler, since the additional term 0.5 in n and hcan-
cels out, so that we have

n+1
Mg = Z J’ (m— 0mD)*P(m)dm
e (13)

n+1

= Z(n— hD)* I P(m)dm = Dy

(see Fig. 5). Therefore, the strict proportionality rela-

tion u;’ 4 [(Omfor the functions P(m) (11) leads to an
approximate formulafor P, [58, 59]:

D, 0 (Th(+ 0.5). (14)

Upon going over to all charged particles according to
relation (1) for proton—proton interactions, we arrive at
empirical Wréblewski straight lines[60, 61]:

D' 0 ([heT-1). (15)

In Fig. 4, these straight lines are presented according to
Eqg. (14). When the correct formula (6) was not known,
it was believed that these straight lines are indicative of
a violation of KNO scaling, since they do not go
through the origin of coordinates.

From Egs. (7), (8), and (12), we also approximately
have [58]

1 pOn+ 05
Ch(+ 0.5 Lh{+ 0.5

For electron—positron annihilation and proton—proton
interactions, Fig. 6 shows examples of distributions
with respect to these coordinates. Upon going over to
all charged particles according to relation (1) for pro-
ton—proton interactions, it follows from (16) that, in
this case, there arises improved KNO scaling that
assumes the form

P, = —t WMol D
" T [he -1 [hy0-10

and which was proposed in [60, 61].
For all charged particles in electron—positron anni-
hilation, the relations that are obtained from (14), (16),

and (1) differ from (15) and (17) only by the reversal of
all minussigns.

Pn: F)(rn)lm:n+0.5:

(16)

(17)

6. ELECTRON-POSITRON ANNIHILATION
AND PROTON-PROTON INTERACTIONS

Figures 7 and 8 display the ratios ([n[H+ 0.5)/D, and
D,/D, for electron—positron annihilation at Js = 3~
161 GeV and for proton—proton interactions at /s =

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.1 2001
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Fig. 6. Examplesof multiplicity distributions of negatively charged particles from electron—positron annihilation and proton—proton
interactions (on a logarithmic and on alinear scale). The distributions are plotted here in the coordinates z = (n + 0.5)/(MC+ 0.5)
and W = ([BCk 0.5)P,, of theimproved KNO scaling (16). The solid, dashed, and dotted curves represent, respectively, the functions
Y, [asgiven by Eq. (18) for electron—positron annihilation and by Eq. (19) for proton—proton interactions], W, [as given by Eq. (18)
for electron—positron annihilation and by Eqg. (19) for proton—proton interactions], and W5 [as given by Eq. (20) both for electron—

positron annihilation and for proton—proton interactions).

2.4-62 GeV (p4 = 2-2000 GeV/c), aswell asfor pro-

ton—antiproton interactions at Js = 546 GeV. From
Eq. (14), it follows that, in contrast to the moments C,
(see below), these quantities must fast approach a pla-
teau with increasing energy.

In mathematical statistics, the quantity DS is
referred to asavariance, while (D;/D,)* and [(D,/D,)* —
3] are called a skewness and a kurtosis [62], respec-
tively. In the physics of multiparticle production, these
guantities are usually used without relevant powers.

The curves in Figs. 7 and 8 were computed on the
basis of EQ. (6) by using the functions W(z) represented
in Fig. 6. For electron—positron annihilation, the first
two functions are given by (see [6, 11] and [59, 63],
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respectively)
Wi%(z) = &,z exp(-b,2);

(18)
W3(2) = a,(z—c,) exp[-by(z—c,)’]

[for z < c,, we have W,° (2) = 0]. The free parameters
were set to ¢, = 11 and ¢, = 0.2, while the results
obtained for the coefficients from the normalization
conditions (3) are a; = 223367, b, =¢c, +1=12, a, =
15.2,and b, = 2.76.
For proton—proton interactions, the analogous func-
tions are (see [64] and [58, 59, 61, 65], respectively)
WP(2) = a2 exp(-b,2), (19
W3’ (2) = ay(z+c)exp[-by(z+¢,) ],
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Fig. 7. Ratios of the moments of the multiplicity distribu-
tions of negatively charged particlesfrom electron—positron

annihilation (Dg = [ (n - MOWPy)]"9). The quantity
Ds/D, is shifted upward by unity. The displayed curves
were computed on the basis of the improved KNO scaling
specified by Eq. (6). In these calculations, use was made of

the approximations er (18), quee (18), and w;e (20) (the
results are depicted by, respectively, solid, dashed, and dot-
ted curves), and the probability P, was set to zero (since it
was not measured experimentally).

where ¢, = 0.66 and ¢, = 0.14 and where the values that
the normalization conditions (3) yield for the relevant
coefficientsarea,; = 1.19, b, =0.62, a8, = 1.25,and b, =
0.62.

The third function W(z) has the same form both for
electron—positron annihilation and for proton—proton
interactions [66, 67]:

2
1 expD[In(ZJrcg_“]Er (20)

Wy(2) = 7t c g

N
J2mo
Of the four parameters appearing in (20), ¢, 4, N, and
o, two are free, while the remaining two are related by
the conditions in (3). Specifically, wehave N =1, u =
0.43, 0 =0.18, and ¢ = 0.56 for electron—paositron anni-

hilationandN=1.06, u=1.638,0=0.121,andc=4.25
for proton—proton interactions [67].

We emphasize that, in contrast to the energy-depen-
dent parameters from Section 2, all the parameters that
were presented immediately above and which deter-
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Fig. 8. Ratios of the moments of the multiplicity distribu-
tions of negatively charged particles from proton—proton

interactions (Dg = [y (n - m0O9P,)] /). The displayed
curves were computed on the basis of the improved KNO
scaling specified by Eqg. (6). In these calculations, use was

made of the approximations Wfp (29), ng (29), and

WiP (20) (the resuits are depicted by, respectively, solid,
dashed, and dotted curves).

mine the specific form of the function W(2) have no
bearing on the statement of KNO scaling.

Despite the significant distinctions between the ana-
lytic expressions for the functions W, , ;, all three
groups of curvesin Fig. 7 (and in Fig. 8 as well) are
quiteclose. They arealso closein Figs. 9 and 10, which
display the normalized moments C, = M9/ for the
same data. The quantities C, do not reach a plateau
even at the ISR energy. From Eq. (16), it can be seen
that the moments [(n + 0.5)900h + 0.509 could approach
aplateau sufficiently fast.

In computing our curves for electron—paositron anni-
hilation, the quantity P, was set to zero, sinceit has not
yet been measured in experiments (the remaining P,
were normalized to unity), but this is of importance
only at the lowest energies. As aresult, the moments C,
fall sharply in Fig. 9 for O— 1. Apart from this, the
curves for electron—positron annihilation (Figs. 7, 9)
behave in just the same way as those for proton—proton
interactions, no distinctions other than those in magni-
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Fig. 9. Normalized moments of the multiplicity distribu-
tions of negatively charged particlesfrom electron—positron
annihilation (C, = MM, where 0= anPn). The
displayed curves were computed on the basis of the
improved KNO scaling specified by Eq. (6). In these calcu-
lations, use was made of the approximations LPfe (18),

Wge (18), and Wge (20) (theresults are depicted by, respec-

tively, solid, dashed, and dotted curves), and the probability
Py was set to zero (sinceit was not measured experimentally).

The latter leads to adip on the curves when O— 1.

tude being observed. This behavior is determined by
histogramming in Egs. (6) and (7), but it isindependent
of the specific form of the function W(2).

Usualy, various approximations of the function
W(2) have no physical validation (see, however, [68,
69])—at least, their interpretation has nothing to do
with histogramming in Egs. (6) and (7). However, the
use of these approximations makes it possible to see
how the experimental points must behave if the correct
KNO scaling holds.

7. SppS DATA

The SppS [41] points (data from the UAS experi-

ment at /s =546 GeV) in Figs. 8 and 10 were obtained
via the same transition from all charged particles to
negatively charged particles [which is specified in
Egs. (1)] asinthe case of proton—proton interactions—
that is, under the assumption that, at each multiplicity
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Fig. 10. Normalized moments of the multiplicity distribu-
tions of negatively charged particles from proton—proton
interactions (C, = MM, where M= > nO'Pn ). Thedis-
played curves were computed on the basis of the improved
KNO scaling specified by Eq. (6). In these calculations, use

was made of the functions WPP(2) given by (19) and (20)
(visually, the corresponding curves are indistinguishable).

value, the number of |eading protons and antiprotonsin
proton—antiproton interactions is equal, on average, to
the number of protonsin proton—proton interactions.

It can be seen from Egs. (1) that, in electron—
positron annihilation, the normalized moments for all
charged particles, C;' = Mg, (0,3, are equal to the
corresponding moments for negatively charged parti-
cles. In proton—proton interactions, there is no such
equality because of the shift of twoin Eq. (1). Figure 11
displays these momentsfor proton—proton interactions.
The curveswere computed by using the distributions of
al charged particles as obtained according to Eqg. (1).
These distributions in turn were rescaled from the dis-
tributions obtained for negatively charged particles on
the basis of the same functions W(z) given by Egs. (19)
and (20). From a comparison of the curvesin Figs. 10
and 11, it can be seen that they do not reach a plateau

even at the SppS energy (at sufficiently high energies,
the moments C, must coincide with C;h )-

The datain Figs. 8, 10, and 11 exhibit evidence for
aviolation of KNO scaling in the UA5 experiment—
experimental pointsdo not lie on the curve. At the same
time, these figures show points that occur off the curve
beyond a greater number of standard deviations than
the UAS points do—for example, these are data from
[32] at pg, = 147 GeV/c (0= 2.5, h,,O= 7). Fre-
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Fig. 11. Normalized moments of the multiplicity distribu-
tions of all charged particles in proton—proton interactions
(Cq = g, B9, where (i, C= ¥ nd,P, ). The dis-

played curves were computed by relying on the improved
KNO scaling specified by Eq. (6) for the distributions of
negatively charged particles and by implementing a subse-
quent transition to all charged particles according to Eq. (1).

The functions WPP given by (19) and (20) were substituted
into Eq. (6) (visually, theresulting curvesarevirtualy indis-
tinguishable).

guently, graphsillustrating invariability of the moments

Cgh up to the ISR energy and their sharp growth at the

SppS energies (see Fig. 11), which is associated with a
violation of KNO scaling, are plotted precisely from
this energy.

In Fig. 10, however, which is actually equivalent to
Fig. 11, the UA5 points lie even below the points at
147 GeV/c (and below the majority of the remaining
points). As a matter of fact, a violation of the correct
KNO scaling for negatively charged particles is sug-
gested here exclusively by the occurrence of the points
off the curves.

Figure 12 shows the percentage of events whose
multiplicity exceeds the mean multiplicity by a preset
factor (k = 1.5, 2.0, 2.5) [41]. Of course, the relevant
curve representing the above percentage cannot be as
smooth as that in [41]. The discontinuities correspond
to those points at which, as [, [0s increased, the quan-
tity k[h,[(Jobecomes greater than a current even integer

since one more partial probability P, dropsout of the
percentage in question [59].

It should be emphasized that only the partial cross
sections for inglastic proton—proton interactions are
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Fig. 12. Percentage of events where the multiplicity of
charged particles exceeds the mean multiplicity by a preset
factor (k = 1.5, 2.0, 2.5). The curves were computed by rely-
ing on the improved KNO scaling specified by Eq. (6) for
the distributions of negatively charged particles and by sub-
sequently performing a transition to all charged particles
according to Eq. (1). The functions WPP given by Egs. (19)
and (20) were substituted into Eq. (6) (visualy, theresulting
curvesareindistinguishable). Asthe mean multiplicity of all
charged particles, I, becomes grester, the curve in ques-
tion undergoes discontinuities when the current multiplicity
falls below kg,

meant here. Multiplicity distributions in non-single-
diffraction interactions not involving events having
some specific topology—for example, eventswhere al
charged particles are emitted into the same hemisphere
(in the c.m. frame) or events characterized by a low
multiplicity and by the presence of an energetic leading
charged particle—are discussed quite often. It is the
impossibility to introduce similar experimental criteria
at different energies (rather than the arbitrariness of
such criteria at a given energy value) that generates
poorly controllable uncertainties.

8. NUCLEUS-NUCLEUS INTERACTIONS

As arule, multiplicity distributions in elementary-
particle distributions are normalized to an inelastic
cross section—that is, the cross section for the produc-
tion of at least one new particle (P, = 0,/0;,)- In the
case of anormalization to the total cross section, which
includes the elastic-scattering cross section, there

PHYSICS OF ATOMIC NUCLEI
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Fig. 13. Moments Dy = (3 (n - m0O9P,,) '/ as functions of
mOfor the multiplicity distributions of negatively charged
particles in aa interactions at /s = 26 and 31 GeV per
nucleon and in aLi®, aC, aNe, and aCu interactions at
Plab = 4.5 GeV/c per nucleon. The Wréblewski straight
lines, Dq O (+ 0.5), are drawn through the points. The
even and odd moments are offset by two units.

would arise a peak in the zeroth bin (P,). With increas-
ing energy, this peak would grow in relation to the
remaining bins because the fraction of elastic-scatter-
ing cross section isvirtually independent of energy and
because the inelastic-scattering cross section is distrib-
uted over an ever increasing number of channels that
correspond different multiplicity values—that isto say,
it is not necessary, in the case of such a normalization,
to verify the hypothesis of the scaling of distributions.
In comparing a complete theory with experimental
data, it makes no difference what distribution is used,
but the theory of soft processes in strong interactions
has yet to be developed.

In nucleus—nucleus reactions, one could use various
cross sections for a normalization—for example, the
meson-production cross section o,,,; the reaction cross
section g, which includes o, and the cross section for
the quasielastic breakup of nuclei; and the inelastic-
scattering cross section 0,4, which includes g, and the
cross section for nuclear excitation. For the distribu-
tions of negatively charged particles, they differ only by
the presence of the cross section g,. On the basis of the
same considerations on the absences of an enhance-
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Fig. 14. Moment D, = (¥ (n - M0O*P,,) /% asafunction of
mOfor the multiplicity distributions of negatively charged
particlesin ONe, OCu, and OAu interactions at (V) 60 and
(©) 200 GeV per nucleon and in CNe, CSi, CCu, and CZr
interactions at (@) 3.7 GeV/c per nucleon. A part of thefig-
ure closeto theorigin of coordinatesisshownintheinset on
an enlarged scale. The Wrdblewski straight line, D, O (O

0.5) (14), is drawn through the points.

(ChO+ 1/2)P,
100k,
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e
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(n+ 1/2)/(hO+ 1/2)

Fig. 15. Multiplicity distributionsin (@) CCu interactions at
3.7 GeV per nucleon and in OCu interactions at (V) 60 and
(©) 200 GeV per nucleon in the coordinates of the improved
KNO scaling specified by Eq. (16). It can be seen that these
distributions have very similar shapes. The dotted line cor-
responds to W(2) = exp(-2).

93



GOLOKHVASTOV

100 =
1071 L
102t L
| 0 4.0;5.5GeV/c . 0 19;24 GeV/c
103 L _ L .
© X 66,69 - X 32;36
- e 8812 e 5069
0 1 2 3 0 1 2 3
10° - =
102 £ i
L 100400 GeV/c - /s = 30-62 GeV
10—4 | | | | | |
0 1 2 3 0 1 2 3
kG0

Fig. 16. Integrated multiplicity distributions of negatively charged particles, ZE’ P, , in proton—proton interactions at various energy

values versus k/[fn see Eq. (21)]. The approximate formula M= M+ 0.5 (12) is used to determine the mean value il The curves
for ®(2) were computed on the basis of the approximations WPP(2) given by (19) and (20) (visualy, the resulting curves are indis-

tinguishable).

ment in the zeroth channel, it would be natural to nor-
malize multiplicity distributions in nucleus—nucleus
reactionsto o, [42].

For apha-particleinteractions with various nuclei at
an alpha-particle momentum of 4.5 GeV/c per nucleon
(which corresponds to the kinetic energy of 3.7 GeV
per nucleon [42]), Dy asafunction of Mfor the case of
normalization to g, Isdisplayed in Fig. 13, along with
data on aa interactions at c.m. energies of 26.3 and
31.2 GeV per nucleon (the corresponding energies of

one apha particle in the rest frame of the second alpha
particle are 370 and 520 GeV per nucleon [44]). The
points are well consistent with the Wréblewski straight
lines D, O (mO+ 0.5), confirming once again that
expression (14) ismorefundamental than expression (15).
We note that, in contrast to what occursin proton—pro-
ton interactions and in electron—positron annihilation,
thereis no unambiguous relation between these expres-
sions in nucleus—nucleus interactions. At an energy of
3.7 GeV per nucleon, targets are not lighter than °Li,
but it can be seen from the figure that all the points pre-
PHYSICS OF ATOMIC NUCLEI
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sented here lie on straight lines—that is, the shape of
the multiplicity distributions depends only slightly on
the target nucleusin the present case [42].

Data on the interactions of carbon nuclei of energy
3.7 GeV per nucleon with various nuclei [43] are given
in Fig. 14, along with oxygen-nucleus data at energies
60 and 200 GeV per nucleon [45]. It can be seen that all
points lie on the same straight line. The same points at
3.7 GeV per nucleon, along with the same Wréblewski
straight line, which intersects, asin Fig. 13, the abscissa
at the point = —0.5, in perfect agreement with
Eq. (14), are shown in the inset on an enlarged scale.

In the coordinates of theimproved KNO scaling (16),
Fig. 15 illustrates a direct comparison of the multiplic-
ity distributions in CCu collisions at 3.7 GeV per
nucleon and OCu collisions at 60 and 200 GeV per
nucleon. The shapes of the distributions are seen to
agree within the errors. This shape differs markedly
from the shape of the corresponding distributions in
electron—positron annihilation and proton—proton inter-
actions (Fig. 6).

9. INTEGRAL REPRESENTATION
Equation (7) can be represented in the integral form

P, = [P(m)d
,Zk Jk’ m)dm
(21)

_ p omoompo_ 0K O
= [ YA = P
k/ CmO

A similar accumulated (integrated) probability is often
used in statistics instead of its discrete and contentious
derivatives given by the functions P,, and P(m) [62] (see
aso [64]).

The integrated probability ®(k/inl) is related to the
function W(2) by the equation

00

P(2) = I‘P(z)dz or Y(2) = —d%cb(z) (22)

and satisfies the conditions ®(0) = 1 and o P (2dz=1,

which follow from (3) [58]. It should be noted that the
function ®(2) defined by Egs. (21) and (22) coincides
withthat in [53, 57], but it differsin sign from that in [58].

The probahilities P,, are calculated from ®(2) in a
simpler way than from W(z) in (6):

P, = ®(nzo) — D(nzo + 7). (23)

Since the quantity %f P, in (21) is a function of
only one variable k/Im]57], the multiplicity distribu-
tions at different energies can be associated with one
curve representing ®(2). Figure 16 shows data on pro-
ton—proton interactions in terms of these coordinates.
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The approximation specified by Eq. (12) is used for
NI The ®(2) curves correspond to the functions WPP(z)
in Egs. (19) and (20) (visually, they are indistinguish-
able).

At very low energies, where only P, and P, do not
vanish, scaling formulated correctly must hold auto-
matically—in the case being discussed, points lie
exactly on the curve, irrespective of the form of the
function W(2) used. Thisisclear from the fact that (M=
P, in the present case—that is the distribution is speci-
fied entirely by one value [MC These points are not
shown in the figure.

10. CONCLUSION

A comparison of the predictions of correct KNO
scaling (also known as KNO-G scaling) with experi-
mental datawas performedin [11, 66] (e'e), [67] (e*e,
pp), [34, 58] (TP, K*p, pp), [70, 71] (VA, VA, BA), [72]
(e'p), and [73] (AA) as well. It has no theoretical vali-
dation at present, but there are many models that pre-
dict asymptotic KNO scaling.

To conclude, we note that the recipe in Eq. (6) for
deducing discrete multiplicity distributionsfrom acon-
tinuous probability function is far from new. If the
function W(2) = exp(-2) (see Fig. 15) is substituted into
Eq. (6), we arrive at

(n+1)z,
J’ e “dz
nz,

= (1-e )e o [z(—a]—a?%—;ﬁ}

It is the procedure that was used by Planck [74] in
guantizing a continuous Maxwell probability distribu-
tion (z= E/KT, z, = hv/KT) in one of the formulations of
aquantum hypothesisin order to obtain the spectrum of
heat radiation. Here, P, is the multiplicity distribution
of thermal photons of frequency v.

The result in (24) expressed in terms of M=
g n = [exp(z) — 11! (bracketed expression), a
ose-Einstein distribution, is often used to derive a

negative binomial distribution in order to describe mul-
tiplicity distributions [51, 52].

In alternative formulations of the heat-radiation prob-
lem, a Boltzmann spectrum is usudly quantized by means
of the recipe specified by Eq. (9): P, = P(M)|y-n
exp(—E/KT), where E = nhv; after that, the quantltles
P, are normalized to unity: P, =

exp(—nhv/kT)/ Y exp(-nhv /KT. Nonetheless, the

result coincides with that in (24) because, for W(z) =
exp(-2)—and only for thisfunction—theratio P,,/P(m)
isindependent of nat m=n.

(24)
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The mean number of photons (phonons) of fre-
guency v in the Planck spectrum, [k [exp(z) — 1] =
[exp(hv/KT) — 177, at large [MOvalues is related to the
corresponding mean value of the Boltzmann spectrum,
= 1/z, = KT/hv, by the same approximate equality
(= 0h(H 0.5 (12), which is independent of the form
of the function W(z). The dependence at small [mCval-
ues, which isanalogousto that represented by the lower
curvesin Fig. 5, can be found, for example, in [75].

Irrespective of its physical substantiationin[74], the
mathematical procedure specified by Eq. (24) follows
from the Born—Kramers quantization rule [ 76, 77] (see
also [78]), agenera principle that was formulated just
on the eve of the advent of quantum mechanics and
which provides a recipe for obtaining discrete quan-
tum-mechanical quantities from the corresponding
continuous classical quantities. Using the notation
adopted here, taking into account the sign in the present
definition (22) of the function ®(z), and considering
that, in our case, the index n is aready reserved for
other purposes, we can formulate this principle as fol-
lows: a discrete quantity P, associated with the quan-
tum states | and | + T is P, = &(l) — & + 1) [see
Eqg. (23)], where ®(2) is obtained from the equality
-1[0D(2)/0Z] = TW(2) = P(m) [see Egs. (8) and (22)],
with P(m) being a classical analog of the quantum
quantity P, [76, 77].
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Abstract—A method of parametrizing radiative strength functions for electric dipole transitionsis used to cal-
culate the spectra of photons emitted by fragments originating from the spontaneous fission of 252Cf nuclei. The
LDPL-98 library of parameters, which contains data for 2000 nuclei, is composed for performing relevant cal-
culations. It is shown that the use of this method leads to regular agreement with experimental data—that the
structure and the energy dependence of the spectra are reproduced without varying parameters suggests a sta-
tistical character of fission-fragment deexcitation. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It was shown in [1] that radiative strength functions
that characterize eectric dipole transitions and which
are usually used in various cal cul ations can be modified
with allowance for experimental data on transitions
between discrete levels. The proposed modification of
the Kadmensky—Markushev—Furman (KMF) method
[2], which takes into account quasi particle fragmenta-
tion, involved using the temperature of the transition
final state as an adjustable parameter (the approach
relying on this procedure will henceforth be referred to
as the KMF method employing an adjustable tempera-
ture, or merely the KMF-AT method). Strictly speak-
ing, the KMF method is applicable only in the case of
compound-state deexcitation—that is, for primary pho-
tons. Despite the conclusionsdrawn in [ 3], the question
of whether the method in question is applicable to mul-
tistep gamma transitions has yet to be clarified. There-
fore, the KMF-AT version can be considered as an
attempt at adapting the KMF method to the problem of
calculating the spectra of secondary photons. Of many
possible means for taking into account the observed
intensities of transitions between discrete levels, use
was made of the simplest one, that which assumes a
constant temperature at all stages of the multicascade
process. The KMF-AT method was tested by applying
it to isomeric cross sections for neutron-induced and
photonuclear reactions and to gamma spectra for (n,
xny) reactions. Within the analysis on the basis of the
proposed parametrization, it turned out that the com-
puted gammarray spectraregularly comply with exper-
imental dataand that, sometimes, the resulting descrip-
tion of the cross sections for the excitation of high-spin
isomersisradically improved in this way.

In the present study, the experimental database used
in acomparison with the results of relevant cal culations
is extended via the inclusion of the spectra of gamma
rays emitted from the fragments of 2>2Cf spontaneous

fission. The objective pursued here is to test the appli-
cability of the statistical model of the nucleus to
describing the emission properties of fission fragments.

2. COMPUTATIONAL PROCEDURE

Of the ingredients of the statistical model that are
involved in the calculation of the radiative deexcitation
of excited nuclei, two are of prime importance. These
are the density of nuclear levels characterized by the
excitation energy U and the total angular momentum J,
p(U, J), and the radiative strength functions fy (E,) for
X-type gammarays of multipole order L and energy E,.
As arule, the parameters of the models underlying the
calculation of p(U, J) and fy, are determined by fitting
experimental data on the density of neutron resonances
and on photoabsorption cross sections, respectively.
Therefore, it can be believed that the predicted level
densities are reliable up to excitation energies of 8 to
10 MeV and that the predicted strength functionsf;, are
quite accurate for photon energies in the range 10—
20 MeV. However, the deexcitation of excited nuclei is
accompanied by a copious emission of soft photons
(E,= 1-3 MeV), so that it is necessary to extrapolate
relevant strength functions to this energy region. It is
well known that the predictions of different approaches
to calculating fi, at low energies can differ by orders of
magnitude even when these predictions rely on the
same values of the giant-dipole-resonance parameters.
A feature peculiar to the KMF-AT approach is that, by
choosing the parameter T, it is possible to reproduce the
maximum values of fg, that are observed in the proper-
ties of transitions between discrete levels. It isassumed
that the spectra observed in specific reactions are
formed by the most intense transitions. The reasons
behind the existence of adistinct step of maximum val-
ues of the observed strength functionsintheregion E, <
2 MeV for nuclei differing in character (superallowed
transitions) [1] have yet to be clarified.
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Fig. 1. Distribution of strength functions for E, < 2 MeV
electric and magnetic dipole transitions (n stands for the
number of transitions). Points represent experimental data
from [4] for the mass-number ranges (open boxes) 45-84,
(closed circles) 85-105, (open triangles) 106-145, and
(open inverted triangles) 145-165.

The distributions of experimental strength functions
for dipoletransitions [4] are displayed in Fig. 1 for var-
ious intervals of mass numbers. For all mass regions of
nuclear emitters and for transitions of both types, there
exists a distinct upper limit on the quantities fg , that
corresponds to superallowed dipole transitions. One
can aso clearly seetransitions characterized by various
mean logarithms of strength functions—specia-type
splitting of distributions that becomes more pronounced
with increasing mass number. Statistically significant
vaues of fg , lie between 1015 and 10-* MeV-3. In this
case, any procedure for averaging giant distinctions
will result in mean values g, Uthat are commensu-

rate with the maximum values fg y;. In the present
study, we make use of the KMF method, which

describes the observed values fg; .

The number of photons  (multiplicity)
(Z, A, U, E)dE, of energy E, betweenE, and E, + d
tShvat are emEiY[tedEvby a (Z, A)y nucleus |§e¥<cited to tEé
energy U is calculated on the basis of the cascade—
evaporation model (CEM) by using the expressions
from [1]. The number of photons per fission event that

GRUDZEVICH

are emitted by fragments belonging to the mass range
between A, and A, can be calculated with the aid of the
relation

S/(E))dE,

- ZYiIS/(Zi’ A, U, E,) f(U)dUdE,, M

0

whereY; is the independent yield of the (Z, A) fragment
prior to neutron emission, while f(U) is the excitation-
energy distribution of primary populations. Summation
is performed over al fragments in the specified mass
range. The quantity obtained by formula (1) will be
referred to as the spectrum of photons. In order to cal-
culate the spectrum of neutrons, we can make use of a
similar expression.

The total number of photons, |, and the total num-
ber of neutrons, v, that are emitted by fragments of
mass A are determined by integrating the correspond-
ing multiplicitiesand by subsequently performing sum-
mation (with a relevant weight) of the independent
yields over al nucle of given mass:

H, V(A)

U E

m

= ZY(Z, A)I f(U)dUJ’SV’n(z, A U, E)dE.
z 0 0

m

(2)

2.1. Input Data for Relevant Calculations:
LDPL Library

Theoretical calculations of the decays of fission
fragments with allowance for total -angular-momentum
and parity conservation are extremely cumbersome. In
implementing such calculations, it is necessary to
invoke vast arrays of input data—first of all, dataon the
features of excitations, such as level densities and dia-
grams of discrete levels. The situation is further aggra-
vated if neutron-excess nuclel appear as fragments—
the point is that, in the majority of cases, there is no
experimental information about the density of neutron
resonances in such nuclei.

In this connection, it is necessary to mention a for-
midable work performed by the international group of
experts who created, under the aegis of the Interna-
tional Atomic Energy Agency, alibrary of input datafor
theoretical calculations of cross sections for nuclear
reactions [5]. Unfortunately, this library covers only
those nuclei for which there is information on the den-
sity of neutron resonances, moreover, the recom-
mended file of data on discrete levels, which was com-
posed on the basis of the compilation presented in [6],
contains some conceptual and technical errors.

A new version of thelibrary of the parameters of the
level density and of the diagram of discrete levels,
LDPL-98, was created in order to provide inputs for
calculations of cross sections and spectra associated
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with transformations of nuclel far from the stability
band. In composing this library, which covers data on
2000 nuclei, full advantage was taken of the possibili-
ties offered by the generalized modd of superfluid
nuclei, which allows for shell, collective, and super-
fluid effects. The version of this model for computing
level densities [7] requires presetting four quantities:
a, the asymptotic level-density parameter; 8, the effec-
tive correction for even—odd distinctions; dW, the shell
correction; and W, the quadrupole-phonon energy

identified with the energy of the first J* = 2+ level in
even—even nuclei. The last two are determined from
experimental datathat have no bearing onthelevel den-
sity. Shell corrections are computed on the basis of the
liquid-drop model of the nucleus by using experimental
values of nuclear masses. The effective correction for
even—odd distinctionsin the level density is determined
by fitting the calcul ated excitation-energy dependences
of the number of levelsto experimental dataon discrete
levels. Thisisthe point where merits of the generalized
model of superfluid nuclei manifest themselves most
clearly. On one hand, the result is weakly dependent on
the asymptotic level-density parameter, so that one can
make use of available diagrams of discrete levels if
there are no data on the density of neutron resonances.
On the other hand, the resulting values are described
satisfactorily by simple systematics|[7], so that thissys-
tematics can be employed in those cases where the dia-
gram of discrete levelsisnot known or whereit isinsuf-
ficiently reliable. The asymptotic level-density param-
eter is satisfactorily described by the dependence a =
0.073A+ 0.115A?3, and we can hope to predict reliably
this quantity for nuclei whose experimental level densi-
ties are not known. Thereliability of the LDPL-98 data
for fission fragments is discussed bel ow.

For the majority of fission fragments, the experi-
mental photoabsorption cross sections are unavailable,
so that the systematics of the giant-dipole-resonance
parameters must used in the calculations. The existing
data on the energies E,, widths I, and maximum cross
sections o, [8], as deduced from the description of
experimental data of the photoabsorption cross sections
on the basis of the Lorentz formula, are presented in
Fig. 2. A satisfactory description of these parameters
can be obtained by means of the systematics

5/3

o, = 0.085A
1/4

(mb),

E, = 51A"* (MeV),
M, = 6.1—0.012A (MeV).

3)

In deriving expressions (3), we disregarded reso-
nance splitting for strongly deformed nuclei. It can be
seen that the entire body of available data can be
described by simple relations to within 50%. This
means that, by using the representations in (3), the
strength functions in the energy range 10-20 M€V can
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Fig. 2. Parameters of giant dipole resonances for A = 50—
240 nuclel (energies, widths, and maximal cross sections).
Points represent a fit of a Lorentzian dependence to the
experimental photoabsorption cross sections [8] for (closed
circles) monoresonances and (open circles and triangles)
split resonances. Curvesillustrate the results of the calcula
tions by formulas (3).

be computed to approximately the same degree of pre-
cision.

2.2. Excitation Energies of Fragments

The level density and the radiative strength func-
tions do not exhaust factorsthat control the shape of the
spectrum of radiation from a fragment: this spectrum
also depends on the mean excitation energy of a pri-
mary fragment and on the total-angular-momentum
distribution of fragment population. From atheoretical
analysis and from the experience gained in calculating
the spectra, it follows that the last functional affectsthe
results only dlightly even at low excitation energies;
therefore, we will use a distribution where the popula-
tions are proportional to the level density at a given
value of thetotal angular momentum, p(U, J). It should
be emphasized that additional checks upon such a dis-
tribution are required when it is used to describe the
isomeric ratios for fragments.

The mean values of fragment excitation energies,
WL will be determined by comparing the results of the
calculations for mean numbers of neutrons, v(A), by
formula (2) with experimental data presented in [9].
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Fig. 3. Mean excitation energies (W [of fragmentswith mass
number A and mean number of neutrons, v. Points represent
(closed circles) experimental data from [9], (open circles)
results obtained from a fit to the observed values of v(A),
and (crosses) results deduced from the balance of the com-
puted mean radiation energies. The solid curve corresponds
to the result of the relevant fit.

The yields of fragments preceding prompt fission neu-
trons were borrowed from [10], while the spectraof fis-
sion neutrons for excitation energies from 0 to 80 MeV
were computed on the basis of the Hauser—Feshbach
formalism with the parameter values from the LDPL-
98 library. The calculations were performed for nuclei
whoseyieldsvary between the maximum value Y,,,,.(A)
and the value that is one-tenth as great as that. For the
fragment mass numbers in the interval A = 102-150,
the list of nuclel that meet this criterion includes
123 species.

The values of [W[that were determined from afit to
the observed values of v(A) are displayed in Fig. 3,
along with the results obtained in [9], where the mean
values that the excitation energy has prior to neutron
emission were determined from the mean-energy-bal-
ance eguation

UO= v(B,+* [ED + [E,J 4)
where [E,[isthe mean neutron energy, [B,,[0sthe mean
neutron binding energy, and [E Lis the mean energy
carried away by photons. The approximation [E [J=
B./2 wasused in[9]. It should berecalled that, although
the experimental values of v and [E,lare used in
Eq. (4), it can lead to errorsin (W]

Fig. 4. Spectra of photons (in pb/MeV) from the reaction
a + *3Ti = 2Cr at alpha-particle energies of 12, 17, 24, and
28 MeV (from bottom to top). Points represent experimental
datafrom [11], while curves illustrate the results of the cal-
culations.

From Fig. 3, it can be seen that the results obtained
by three methods for the mean excitation energies of
primary fragments are quite consistent over the entire
mass interval with the exception of theregion A= 110—
125. The distinctions in this region, which sometimes
become as large as 12 MeV, may be due to the use of
the approximation [E,[= By/2 in [9]. That the (W[ val-
ues obtained in the present study from afit to v, are
in reasonably good agreement with [W[J as computed
by formula (4) with the aid of the evaluated values of
[E,[and [E,[heverthel ess suggests that the method pro-
posed here for extracting mean excitation energies of
primary fragments is preferable. In view of this, the
ensuing calculations will rely on (W] values.

A considerable number of fragments may prove to
be excited to U = 20-35 MeV (see Fig. 3). Thiscircum-
stance must be taken into account in estimating the
quality of the description of the hard section of the
observed spectra, since the uncertainties in calculating
the level density increase as one moves away on the
excitation energy scale from nuclei for which the level
density was studied experimentally. To illustrate the sit-
uation where the flaws in describing level densities
become obvious, the calculated spectra of gamma rays
fromthereaction a + “8Ti =>?Cr arecontrasted in Fig. 4
against the spectrameasured in [11] at various energies
of incident alpha particles. The soft section of each
spectrum is determined by the level density after parti-
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cle emission, which leads to the formation of aresidual
nucleus at low excitation energies. The stepin theright-
hand section of the spectrum is associated with primary
photons that originate from the decay of a compound
nucleus and which compete with particles of nonzero
mass. Thus, the probability of high-energy-photon
emission is determined not only by the relevant
strength function but also by thelevel density at the cor-
responding high value of the excitation energy. By way
of example, we indicate that, in response to the growth
of E, from 12 to 28 MeV, the excitation energy changes
from 20 to 35 MeV. It is obvious that a systematic bias
can arise in the spectrum computed with the level den-
sity extrapolated from the neutron binding energy (8—
10 MeV) to 35 MeV. In the case being considered, the
level density is overestimated at high excitation ener-
gies. At the same time, it can be shown that, at E, = 12
and 17 MeV, the hard sections of the spectra are repro-
duced quite faithfully, which indicates that, within the
generalized model of superfluid nuclei, the level den-
sity is extrapolated quite reliably by 10-15 MeV
upward on the excitation-energy scale.

Asto the reaction 'F + ?’Al = “Ti (see Fig. 5), the
primary excitations of “°Ti that are generated in it occur
at 40 to 60 MeV. It can be seen that, even at a minimal
value of U, there are sizable discrepancies in the hard
sections of the spectra and that, with increasing excita-
tion energy, these discrepancies grow.

Thus, the step in the soft sections of the spectra,
which is associated with the decay of the nucleus ini-
tially produced in ahighly excited state, can be asource
of information about the density of nuclear levels at
high excitation energies. The uncertaintiesin the radia-
tive strength functions are minimal in this region of
radiated energies, because there are comprehensive
data on the photoabsorption cross sections at these
energies.

At relevant excitation energies of the fragments, the
values of the level-density parameter a from the LDPL -
98 library, which are used in the calculations, become
commensurate with the data from [9] in Fig. 6. How-
ever, adirect comparison of these quantitiesisnot quite
correct because the different approaches to calculating
level densities were used in the two cases. Since the
collective enhancement of thelevel density istakeninto
account in our approach, the a valuesin the two models
must be close for nuclei where collective effects are
small (that is, for magic nuclei). For nuclear species far
off magic ones, the inclusion of collective effects
reduces the parameter a. From Fig. 6, it can be seen
that, inthe massrange A = 125-135 (region of the dou-
bly magic nucleus '3?Sn), the parameter values from the
LDPL-98 agree, both in absolute value and in the shape
of the mass number dependence, with data from [9],
which were obtained by fitting the experimental spectra
of neutrons originating from fission fragments. This
clearly demonstrates that data from the LDPL-98
library are quite reliable and that the generalized model
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60 MeV (from bottom to top). Points represent experimen-
tal data from [11], while curvesillustrate the results of the
calculations.
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Fig. 7. Spectra (in arbitrary units) of photons emitted by
(right panel) heavy fragmentsformed in the spontaneousfis-
sion of 2>2Cf and (Ieft panel) the complementary light frag-

ments. Open symbol s represent experimental datafrom[12]
for thefollowing ranges of heavy-fragment (light-fragment)
masses: (boxes) 126-130 (122-126), (triangles) 134-138
(114-118), and (circles) 142-146 (106-110). Solid and
dashed curves illustrate the results of the calculations that
employ the radiative strength functions fg; found, respec-
tively, on the basis of the KMF-AT method and on the basis
of the Lorentzian dependence.

of superfluid nuclei furnishes accurate predictions for
the level densities in nuclel far off the stability band.
That collective effects are taken into account in this
model explains the discrepancy for A = 110-120 frag-
ments.

3. RESULTS OF THE CALCULATIONS

One feature that is peculiar to the experimental
spectra of photons from fragments produced in the
spontaneous fission of 22Cf and which was compre-
hensively discussed in [12] isthat the shape of the spec-
trum for A = 126-136 fragments differs from that for
fragments having different masses (Figs. 7, 8). Indeed,
the spectra of fragments in the vicinity of the doubly
magic nucleus '*2Sn exhibit a considerable excess of
photons with energies in the interval 3-8 MeV. This
fact was explained in [9], where it was shown on the
basis of an analysis of neutron spectra that the level-

GRUDZEVICH

10% =

10! 7%

1073

1073

10‘70 | | | | 4‘4.| | | | |--\'|
Ey, MeV

Fig.8.AsinFig. 7, but for the fragment-massranges 130-134
(118-122), 138-142 (110-114), and 146-150 (102-106).

density parameters of nuclei in the region of the doubly
magic nucleus '32Sn have a pronounced shell structure
(see Fig. 6). Another feature of the measured spectrais
that the spectrum of photons from a heavy fragment is
guite similar to the spectrum of photons from the com-
plementary light fragment (Fig. 9). This may tenta
tively be associated with inability to identify unambig-
uously the source of radiation in the experiment
reported in[12].

In the context of the present study, the point of
prime interest is that of testing agreement between the
slope of experimental photon spectrafrom [12] and the
slope of the theoretical spectra constructed by using
two methods for evaluating strength functions for elec-
tric dipole transitions, the KMF-AT method and the
method relying on aL orentzian dependence. The calcu-
lated spectrafor variousintervals of the mass of aheavy
fragment and the mass of the complementary light frag-
ment are displayed in Figs. 7 and 8, along with the rel-
evant experimental datafrom[12]. It can easily be seen
that, by using the KMF-AT method for calculating
strength functions, one achieves more acceptable
agreement between the experimental and calculated
slopes of the spectra, especially for heavy fragments.
Among the cases considered here, the most representa-
tive changes are observed in the intervals A = 126-130,
142-146, 138-142, and 146-150. It is noteworthy that,
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intheintervals A= 126-130 and 130-134 near adoubly
magic fragment, an excess of photons with energiesin
therange 3-8 MeV isfaithfully reproduced without any
additional effort.

Taking into account the aforementioned special fea-
ture of the method of measurements, we perform afur-
ther analysis on the basis of a comparison of data for
complementary fragments with the corresponding cal-
culated spectrain the form of mean valueswith weights
proportional to the yields of the heavy and light frag-
ments (see Fig. 9). This comparison reveas an addi-
tional uncertainty caused by the possible distinctions
between the observed and the calculated fragment-
mass dependence of photon multiplicities—in other
words, by uncertainties in the normalization of the cal-
culated spectra. From Fig. 9, it can be seen that the
resulting description of the observed photon spectrais
satisfactory in the energy region E, = 1 MeV for all
fragment masses. The distinctions that still remain can
easily be removed by varying the normalization factors
in the computed spectra for complementary fragments
since the required forms are embedded in the compo-
nents constituting the eventual spectra (see Figs. 7, 8).

It is worth noting that, in all cases considered here
(Figs. 7-9), the calculated spectra always fall short of
experimental vaues for low radiation energies (E, <
1 MeV). If, despite the complicated energy dependence
of the detector efficiency in this interval, the experi-
mental data are reliable for it, an analysis of the dis-
crepancies could furnish interesting information about
the properties of excited states of fission fragments. For
example, it would be possible to estimate the contribu-
tion of rotational degrees of freedom to the formation
of the initial fragment spins, since the enhancement of
gamma-decay probabilities in transitions between the
members of rotational bands, which was disregarded in
the calculations, appears to be the most natural expla-
nation of the observed discrepancies. In this connec-
tion, it would be useful to improve the mass resolution
of the spectra[12].

4. CONCLUSION

A theoretical analysis of the spectra of photonsfrom
the fragments produced in the spontaneous fission of
22Cf has been performed. The LDPL-98 library of
parameters, which contains data on the level densities
and on the diagrams of levels for 2000 nuclei, has been
composed for relevant calculations. The excitation
energies of primary fragments have been extracted, and
thereliability of the resulting values has been tested. It
has been shown that, within the statistical model of the
nucleus, the observed spectra can be satisfactorily
reproduced by using the E1 radiative strength functions
as obtained by the KMF-AT method, which takes into
account experimental data on the properties of transi-
tions between discrete levels. It has been conjectured
that the reasons behind the discrepancies between the
observed and computed spectra are associated with the
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Fig. 9. Data (in arbitrary units) on the spectra of photons
emitted by fragments originating from 232Cf fission. Open
symbols represent experimental data from [12] for various
ranges of heavy-fragment masses (for each kind of symbol,
datafor the first and the second range are displayed on the
left and on the right panel, respectively): (circles) 130-134
and 126-130, (triangles) 138-142 and 134-138, and
(boxes) 146150 and 142-146. Crosses represent data for
the complementary light fragments. Curves illustrate the
results of the calculations that were performed for various
pairs of fragments and which employ datafrom the LDPL-
98 library and the radiative strength functions fg; as deter-

mined on the basis of the KMF-AT method.

uncertainties in the level densities at high excitation
energies and with the enhancement of the intensities of
transitions between the members of rotational bands.
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Abstract—The asymmetry between the spectra of |eading and nonleading charmed mesons that was measured
in Z"Ainteractions at p; = 340 GeV/c in the WA89 experiment is described within the Model of Quark—Gluon
Strings (QGS model also known as QGSM) under the assumption that thereis afraction of charmed sea quark—
antiquark pairs (intrinsic charm) in an interacting hyperon. It is shown that the asymmetries between D~ and
D*-meson spectra and between D, - and D; -meson spectra can be approximated by QGSM curves obtained

with the same string-fragmentation parameter, a; = 10, and the same intrinsic-charm fraction, & . = 0.01, as

those that were used in describing D/ D; -meson asymmetry of TTA experiments in previous studies. The

asymmetry between the spectraof A, and A that was measured in =-A collisions at p, = 600 GeV/cinthe E781

experiment is al so described within this scheme. The QGSM results are compared with the results of the calcu-
lationsin the next-to-leading approximation of perturbative QCD that were performed by other authors. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The asymmetries between the spectra of D~ and D+

mesons and between the spectraof D and D, mesons

were measured in A interactions at p_ = 340 GeV/cin
the WA89 experiment [1]. It is of interest to compare
these asymmetries with those obtained in the TTA
experiments [2, 3] in order to understand the influence
of the quark composition of beam particles on produc-
tions of heavy-flavored particles and to extract some
specific features of the spectra of strange—charmed
mesons due to the presence of a strange valence quark
in the Z~ hyperon. The difference between the spectra
(x=xg = 2py//s) of leading and nonleading particles
was discussed recently, and several theoretical models
explained successfully the asymmetry as an effect that
isdueto the interplay of the quark contents of the pro-
jectile and the quark content of the product hadron.
Charmed mesons containing ordinary quarks of the
same type as beam particles have a higher average
value of x. The asymmetry defined as

dN® /dx —dN® /dx
dN® /dx + dN® /dx

is afunction that grows with Xx. There are two different
theoretical approaches to describing this effect. The
first one is based on perturbative QCD. It takes into

A(X) =

ey

* This article was submitted by the author in English.

account the recombination of intrinsic-charm quarks
with the valence quarks of the projectile asthe origin of
asymmetry [4]. Other phenomenological models
exploit the properties of fragmentation functions in
order to insert asymmetry. We will not discuss here the
details of recombination models, but we are going to
concentrate on a nonperturbative approach known as
the Model of Quark—Gluon Strings (QGS model aso
known as QGSM) [5]. This model describes well the
leading/nonleading charm asymmetry for t-p experi-
ments [6].

2. QUARK DISTRIBUTIONS IN THE QGSM

The cross section for the inclusive production of D
mesons is represented as the sum over n-Pomeron cyl-
inder diagrams:

D
0)

do® d’
f, = x—=—(s,x) = [(E
! dx ,[ d3p

= Y 0u(9)0r(s %)

dzpm
()

Here, the function ¢,E’ (s, X) is the particle distribution
in the configuration of n cut cylinders, and o, is the

probability of this process. The parameter of the super-
critical Pomeron used hereisAp = 0p(0) —1=0.12. The

1063-7788/01/6401-0098%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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detailed formulas for o, and ¢,? in pp interactions can
befoundin[7].

The distribution functions for the case of >p colli-
sions are given by

On (s X) = a{FL (X)Fi(x)

3
+FROFP () +2(n-1)F (x)FE (x0)1, ©

where aOD is the density parameter of quark—antiquark
chain fragmentation into a given type of mesons.

The particle distribution on each side of the chain
can be built on the account of the quark contents of the

beam particle (x, = (x + I+ xé )2, X5 = 2my./s) and
of the target particle (X_= (X — /X° + x> )/2):

FO(x,) = %Fé”>(x+) +2F0(0),

FiR(x) = SFR(x) + EFD(x,),
4)
F(x) = 2FO00 + SR (0),
Faa () = Fﬁ”u)(x)+ S0 0.
Each F;(x.) is constructed as the convolution
F(x+)—jf )7, 5)

where fi(x,) is the structure function of the ith quark
that has an energy fraction x, in the interacting hadron

and QDiD (2) isthe fragmentation function for the transi-
tion of this quark into the considered type of D or Dg
mesons.

The structure functions of quarks in an interacting
proton weredescribedin [7]. In the case of the hyperon,
they depend on the parameter of the Regge trajectory of

the ¢ meson (s5) because of the presence of an s quark
inZ; that is,
ag(0)

0) —2a(0) + 0)+n-1
f (Xl) — C(n) (l_xl)O‘R( ) —20y(0) + &y (0) +n ,
_ (n) . ar(0) —2ay(0) —04(0)+n-1
fz—(xl) = Cyg X4~ Tl-xg) C ,
f0x) ]
(n) ag(0) —20y(0) + ag(0) —ay(0) —0g(0)+n-1 ©
CdS 1 (1_Xl) )
s
£ ()
_ C(n) R(O)(l_x )GR(O)—ZO‘N(O)+UR(0)—G¢(0)+“—1
1 ’
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where 0,4(0) = 0. The constants Ci(”) are determined by
the normalization conditions

1

fi(x)dx, = L
I

3. FRAGMENTATION FUNCTIONS

For the quark and diquark chains, the fragmentation
functions are constructed according to the rules pro-
posed in [8]. The following favored fragmentation
function for transitions into D, mesons is written for
the strange valence quark:

0, (0) + A

2@ = 1-29" @l o)

Here, A = 2ap. (0) po-, and a,(0) is the parameter of
the Regge tragjectory of ) mesons (cc). The additional

factor (1 + af *Z%) provides the parametrization [9] of
the probability of heavy-quark production in the inter-

val fromz=0to z— 1. Thevaluesof the constant alD °
will be discussed bel ow.

The function for the nonleading fragmentation of
the d-quark chain is

R(0) + A +2(1—-ag(0)) +4

958 =30-2" ®

where a(0) = 0.5and A, = 0z(0) —a,,(0). Thefunction
of the nonleading fragmentatlon of the diquark chain
has the form

ay(0) + A +2(1—ag(0)) + A,

De'(2) = 2(1-2) ©)

The following fragmentation function corresponds

to the version of the diquark fragmentation into D¢
mesons:

0) —2ay(0) +A +
ag(0) ~20(0) A¢(1+ alezz)

De(2) = 55(1-2)
(10)

ag(0) =20y (0) + A + Ay + A, +1

1
*5,(1-2)

4. THE ASYMMETRY-SUPPRESSION CAUSES

Some fractions of sea quark pairs in the hyperon,

dd and ss, must be taken into account since they sup-
press the leading/nonleading asymmetry. The structure
functions for ordinary quark pairs in the quark sea of
the hyperon can be written in the same way as the
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valence-quark distributions:

£49x,)
= (11)

—ag(0) ag(0) —2ay(0) + &y +n—1+2(1-0g(0))

Here, sea quarks and antiquarks have an additional
power term 2[1 —a,(0)] corresponding to the quark dis-
tribution of the two-Pomeron diagram including one
seaquark pair.
The structure function for strange sea quarks obeys
the samerules; that is,
s —a4(0)
F25(x) = ColByexs *
(12)

ag(0) —2ay(0) + Ay +n—1+2(1-0ag(0))

X (1-%,) )

where A, = 0x(0) — 0,4(0) and 95 s = 0.25 (see [10]).

The fragmentation function for the transition of a
strange sea quark (or antiquark) into D, mesons has the
following form for mesons of both charges:

(1-2)

1_ 1-0,(0)

7 =0y (0) +A +2(1-0ag(0)) + 4,
V4

Ds
Dss(2) = . (13)

The additional fragmentation parameter afD ° s
egual to the fragmentation parameter for D mesons.

5. INTRINSIC-CHARM DISTRIBUTION

Since we have taken into account the dd and s5
fraction in the quark sea of the hyperon, some fraction
of charmed sea quarks must be considered aswell. This
small heavy-quark admixture plays an important role
owing to its strong impact on the difference between
the leading and nonleading charmed-meson spectra.

The structure function for charmed sea quarks is
similar to the distribution of strange sea quarks; that is,

c,C PN —a,(0)
fz— (Xl) - Cc,Céc,Cxl Y

aR(0) —2ay(0) +0, +Aw+n—1+2(1—aR(O))

X (1-%,) )

(14)

where & .. isthe weight of the charm admixture to the
guark seaof the hyperon. In fact, it should not necessar-
ily be equal to the charmed-quark fraction in the quark
sea of the pion [6]. This is the only parameter that we
can vary for X~ interaction after the best fit to pion
experimental data that was obtained before. The value
of &, . can be estimated in describing the WAS89 data

on D and D-meson asymmetries. It should be

expressed in units of @ for the reasons of correct

normalization [see Eq. (3)]. The same was donein esti-
mating the charmed-quark fraction in the quark sea of
the pion. Thisfactor will be omitted to simplify the rep-

resentation of &, .. The vaue of ag is universa for

PISKOUNOVA

each sort of beam particles and is approximately equal
to 3 x 10~ for D-meson production [9].

The fragmentation functionsfor D mesons are given
by

@Eéo (Z) - %Zl_aw(O)(l—Z)_aR(o)”\. (15)
For D, mesons, we have
%% (2) = %zl‘“"’“”(l—z)‘““"o’”. (16)

6. A\./Ac ASYMMETRY

The asymmetry between the spectra of A, and A.

that was measured in XA collisions can easily be
obtained by means of nearly the same calculations as
those described above. What is of importance here is
that the leading /A, baryon is formed from the singled
quark of the projectile particle. No diquark fromthe >~-
hyperon participates in the production of a leading
charmed baryon. This allows us to take the results of
our calculation for D-meson production at p, = 600 GeV/c

and to compare them with the A./A. asymmetry mea-
sured in 2°A collisions in the E781 experiment [11].
The parameter a; means in this case a parametrization
parameter for the density of A, in the fragmentation of
auc-diquark string; it can differ from the a; value taken
for D-meson production. The energy of the interaction
must also be changed. The parameter of the intrinsic-
charm fraction, 9 ., must have the same value as that
for D-meson calculations because one does not know
which leading particles are produced.

It should be realized that the reasonings about

AN\ asymmetry are given here only to illustrate the
simple quark-counting approach within the QGSM.

Complete calculations of the spectraof A, and A will
be carried out in this model on the basis of data avail-
able from various beam experiments.

7. FINAL PLOTS AND COMPARISON

The main parameter of the QGSM scheme that is
responsible for leading/nonleading charm asymmetry
isa,. It isthe parametrization parameter of the leading
fragmentation-function dependence on z — 1. The
fraction of charmed sea quarks, 9. ., is the second

parameter in these cal cul ations that makesthe asymme-
try lower because of equal numbers of D* and D-
mesons produced by each sea-charmed-quark pair. Two
sets of this couple of parameters were chosen in

describing dataon rtAinteractions: a; = 4, o, . = 0and
PHY SICS OF ATOMIC NUCLEI
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A(x)

0.8}

04

Fig. 1. Asymmetries between D~ and D* spectra according
tothe (closed squares) E791[2] and (open circles) WA 92 [4]
experiments and relevant QGSM curves for (solid curve)
a; =10and d; . = 0.05and (dash-dotted curve) a; = 4 and

8 ¢ =0.

0.8

04

Fig. 3. Dg/D; asymmetry according to the WA89 mea-

surements [1]. The notation for the theoretical curves is
identical to that in Fig. 2.

a; =10, d. . = 0.05. We consider here these two values
of ay, taking O . to be more or less afree parameter.

Two curves displayed in Fig. 1 represent fits to data
from the E791 and WA 92 pion-beam experiments|[2, 3]
with the two parameter sets discussed above. Data of
the WAB89 experiment are described in Figs. 2 and 3
with the same value of the parameter a,. It should be
noted that asmaller fraction of charmed seaquarks was

taken into account (actually, the value of o, . = 0.01
was used to describe both the D/D* and the D /D,
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A(x)
1.2

0.8

04

Fig. 2. D7/D* asymmetry according to (closed circles) the
WAB89 measurements [1] and relevant theoretical calcula

tions: (solid curve) QGSM results at a; = 10 and ESC’C =

0.01, (dashed curve) QGSM results at a; = 4 and 5c, ¢ =0,

(dash-dotted curve) results from [12], and (dotted curve)
results corresponding to A(x) predicted in [13].

A)
1.2¢

0.8

04

0 0.2

Fig. 4. Asymmetry between A and A spectraaccording to

the (open circles) E781 [11] and (closed stars) WAB89 [1]
measurements and relevant theoretical calculations: (solid

curve) QGSM resultsfor a; = 25 and 8, , = 0.01, (dashed

curve) results from [12], and (dotted curve) results corre-
sponding to A(x) predicted in [14].

asymmetry in Z-A interactionsinstead of o, . =0.05in
the case of pion beam in the E791 experiment).

The resulting curves obtained in severa theoretical
models [12, 13] are also shown in these figures.

The asymmetry between the spectra of A, and A.
that was measured in 2-A collisions at p, = 600 GeV/c
[11] is shown in Fig. 4. It is fitted with the D-meson
asymmetry curve calculated in the QGSM with alarger
value of parameter a, (a; = 25) and with the samevalue

of the parameter o, . (0. . = 0.01). This preliminary
calculation provides a good description of the data of
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both the E781 and the WAB89 experiment, as was
expected for the reasons mentioned in Section 6.

8. CONCLUSIONS
There are several conclusions derived from the cal-
culations discussed in this article:

(1) Data of the WA 89 experiment on the charm-pro-
duction asymmetry can be described within the QGSM
with the same asymmetry-parameter value of a, = 10 as
E791 datafor A interactions and with anonzero frac-
tion of charmed sea quarks.

(2) Only apreliminary choice can be made between

the case of d. . = 0 and the case of a nonzero value of

thefraction of cC seaquarks. More statistically reliable
data from baryon-beam experiments are required for
drawing a definitive conclusion.

(3) The D/D* and D, /D_ asymmetries measured
with a >~ beam are more sensitive to the weight of
charmed quark pairsin the quark sea of the interacting
hyperon (9. . = 0.01) than could be seen in TT-beam

interaction (. . = 0.05).

(4) The D, /D, asymmetry is higher than the D/D*
asymmetry, because strange quark pairs suppressing
the asymmetry in D, production have alower weight in
the quark sea of the hyperon than ordinary dd pairs,
which cause the suppression of D/D*-meson asymmetry.

(5) Data of the E781 experiment on charmed-
baryon-production asymmetry can be preliminarily
described within the QGSM with the asymmetry-
parameter value of a, = 25 for A, density in d-quark-
string fragmentation. The asymmetry between the

spectra of A, and A. that was measured in Z-A colli-
sions grows more slowly with x: than in the predictions
within other approaches.

(6) The two charmed-meson asymmetries have non-
zero values at X = 0 in these calculations at the WA89
energy and decrease with increasing energy.

PISKOUNOVA
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