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Abstract—A model of parallel noninteracting cascades in the spectral space is suggested in terms of which the
turbulent flow of an incompressible fluid subject to arbitrary large-scale velocity gradients is described. The lin-
ear parts of model equations for two polarization components of the velocity are derived from the Navier–
Stokes equations, and their nonlinear parts correspond to the 1D Burgers model. Using the model suggested,
explicit expressions for subgrid Reynolds stresses without empiric parameters are obtained. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

As is known, even simplified nonlinear equations
for small-scale velocity components subject to arbitrary
large-scale velocity gradients are very difficult, if pos-
sible at all, to solve analytically. With this in mind,
researchers have recently developed synthetic (surro-
gate) models of turbulence, where the dynamics of
small-scale eddies is simulated by some process that,
while not rigorously following from equations for small-
scale velocity, reproduces Reynolds stress spectra similar
to those observed in experiment (see, e.g., [1]).

MODEL EQUATIONS

It is suggested that the exact equations for the mod-
ified polarization components of small-scale velocity
[2] that are obtained by reducing the linear part of the
system to the diagonal form be replaced by the simpli-
fied set of (1 + 1) integro-differential equations

(1)

(2)

where u = Bv are standard polarization components and
matrix B is specified by large-scale velocity gradients.

Note that nonlinearity set in such a form conserves
the invariance of the system under proper Galilean
transformations (the case of pure rotation, Ω ≠ 0 and
S = 0, corresponds to purely imaginary λ1, 2; according
to [3], the energy in this case is confined over large
scales, the energy cascade does not occur, and turbu-
lence can decay only in a viscous manner. This is con-
sistent with our model, where subgrid Reynolds
stresses are absent). In addition, with nonlinearity taken
in such a form, the turbulence energy is also conserved.

∂t νk2+( )v 1 λ1 θ η,( )v 1 ikΣpv
1 p( )v 1 k p–( ),–=

∂t νk2+( )v 2 λ2 θ η,( )v 1 ikΣpv
2 p( )v 2 k p–( ),–=
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The above set consists of two uncoupled (1 + 1) inte-
gro-differential equations. The range of angles θ and η,
which are the parameters of the equations, is such that
λ1 and λ2 take positive values. In essence, these equa-
tions are the original Burgers equations [4] (the term
original is borrowed from [5]), which have a finite
number of analytical stationary solutions [4] at arbi-
trary grid Reynolds numbers (in terms of our
approach). The number of these solutions increases in
proportion to the square root of the grid Reynolds num-
ber, and their form simplifies greatly in the limit of
large grid Re (as was noted by Burgers as early as in
1948 [4]). Here, the grid Re is defined as Reloc = λL2/ν,
where λ = λ1 or λ2 and L is the length of an edge of a
cubic grid that separates small-scale and large-scale
motions. The source (sink) and other terms in the above
equations, except for nonlinear ones, are derived from
the Navier–Stokes equations for an incompressible
fluid, which allows us to speak of a surrogate Navier–
Stokes–Burgers model. In this case, the complicated
process of energy distribution over spectral compo-
nents is replaced by a set of 1D cascade models where
interaction between polarization velocity components
v 1 and v 2, as well as between their spectral components
variously oriented in the spectral space, is ignored.

It seems that all stationary solutions of the original
Burgers equation are stable in both linear and nonlinear
cases. Some reasoning behind their stability can be
found elsewhere [5]. Since the highest amplitude solu-
tions are major contributors to subgrid Reynolds
stresses, it is reasonable to consider just these solutions,
which can be selected from those obtained in the limit
Reloc  ∞,

(3)v B
λL
2

------ 2ξ
L

------ 1– λL L 2ξ–( )/ 8ν( )[ ]tanh+ 
  .=
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Here, ξ ∈  [0, L]. This solution (antisymmetric about the
midpoint of the segment) was constructed so as to sat-
isfy the requirement imposed on velocity pulsations;
namely, the space-averaged value of the velocity equals

zero, L–1 dξ = 0. It varies linearly over the domain

of definition, except for the neighborhood of the mid-
point of the segment, where it varies significantly, pro-
ducing two shock layers. It should be noted that the
result discussed can be derived more rigorously than
was done by Burgers in [4] and in his early works with
the method of joining asymptotic expansions [6]. To
proceed further and use this solution to construct 3D
spectra of Reynolds stresses and energy of turbulence,
we must find its Fourier components. Following Burg-
ers, we expand this stationary solution into the Fourier
series,

(4)

where 

or, in explicit form,

Changing of variables z = 2ξ/L yields

(5)

where Reloc = λL2/ν.

Halving the domain of integration, we obtain

(6)

The integral entering into (6) is other than zero for
even n = 2p (p = 1, 2, 3, …) (this case will be considered
below). To simplify (6), we take this integral by parts,
representing sin as the derivative of cos with appropri-

v B0

L∫

v B ξ( ) v n πnξ /L( ),sin
n 1=

∞

∑=

v n
2
L
--- v B πnξ /L( )sin ξd

0

L

∫=

v n λ ξ 2ξ /L 1– λL L 2ξ–( )/ 8ν( )[ ]tanh+{ }d

0

L

∫=

× πnξ /L( )sin .

v n
λL
2

------ z z 1– Reloc 1 z–( )/16( )tanh+[ ]d

0

2

∫=

× πnz/2( ),sin

v n λL y y 1– Reloc y 1–( )/16( )tanh+[ ]d

0

2

∫=

× πny/2( ).sin
ate coefficients. Taking into account that x)' =

, we arrive at

Putting z = 1 – y and making straightforward simpli-
fications, we eventually come to

(7)

At high Reloc (as was assumed above), the hyper-
bolic cosine squared increases very rapidly; therefore,
the unity in the upper limit of integration can be
replaced by infinity,

(8)

The resulting integral is a tabulated integral (it can
be taken using the theory of residues) [7]; so,

(9)

In our case,

(10)

Note that a similar formula was derived by Burgers
in [4].

SPECTRA OF REYNOLDS STRESSES 
AND ENERGY OF TURBUILENCE

According to [8], Reynolds stresses 〈uiuj〉 are
defined through their proper spectra Φij as follows:

(11)

where 

The energy of turbulence is given by

From the relationships between normal and polar-

(tanh
1

x( )cosh
2

---------------------

v p λLReloc/ 8πp( ) y πpy( )cosd

0

1

∫=

× 1

Reloc y 1–( )/16[ ]cosh
2

-------------------------------------------------------.

v p λLReloc 1–( )p/ 8πp( ) z πpz( )cosd

Relocz/16( )cosh
2

-----------------------------------------.

0

1

∫=

v p λLReloc 1–( )p/ 8πp( ) z πpz( )cosd

Relocz/16( )cosh
2

-----------------------------------------.

0

∞

∫=

mxcos

αxcosh
2

-------------------- xd

0

∞

∫ πm

2α2 πm
2α
-------sinh

----------------------------.=

v p( )
16πλLReloc

1– 1–( )p

8π2 p
Reloc
------------sinh

------------------------------------------.=

uiu j〈 〉 Φ ij k,d∫=

ui k( )u j k–( )〈 〉  = ui k( )u j* k( )〈 〉  = Φij k–( ) Φij* k( ).=

ET
1
2
--- uiui〈 〉 1

2
--- Φii k.d∫= =
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ization spectral components, it follows that

(12)

Specifically,

(13)

whence,

ET = uµu*µ〉dk.

According to Lee [9], passage from discrete Fourier
harmonics to continuous ones and from sums to inte-
grals in the 3D space involves the following substitu-
tions:

(14)

Designate the normalizing factor as N,

(15)

One-dimensional energy spectrum E(k) is given
by [9]

(16)

It will be recalled that, in the spherical coordinate
system used by Lee [9], the elementary solid angle was
dΩ = cosθdθdη. In terms of our approach, the 1D
energy spectrum may be calculated by the same for-
mula (see (16)) by taking into account that

where matrix B is specified by gradients of the large-
scale velocity [2] and modified polarization vector v
should be set equal to zero for those orientations of an
object in the spectral space meeting positive proper val-
ues of λ (an energy source for a 1D cascade is absent).

SPECTRA OF REYNOLDS STRESSES
AND ENERGY OF TURBUILENCE

FOR UNDER UNIFORM SHEAR

Consider again uniform shear, in which case only
component ∂2U1 = S of the large-scale velocity gradient
is other than zero. Then,

(17)

(18)

In terms of our surrogate model, solutions meeting
the given situation have the form v  = (vB, 0).

The second component of the velocity equals zero,
since λ2 = 0 for any orientation in the spectral space.
Here, vB is the expansion coefficient for the selected

Φij εi
µuµε j

γu*γ〈 〉 .=

Φii uµu*µ〈 〉 ;=

1
2
--- 〈∫

2π
L

------ 
 

3

Σ d3k.∫

N
L

2π
------ 

 
3

.=

E k( ) Nk2 θ η µ u1u1* u2u2*+( ).cosd

π/2–

π/2

∫d

0

2π

∫=

u Bv,=

λ1 0.5S 2θ( ) η( ),cos
2

sin=

λ2 0.=
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solution to the original Burgers equation. The coeffi-
cients of matrix B of transition from modified to normal
polarization components have the form

Range D of angular variables for which λ1 > 0 is
given by

Eventually, the energy spectrum is given by the fol-
lowing explicit expressions:

(19)

where the continuous modulus of wavenumber k and
the integer number p in the sine Fourier series are
related as k = 2πp/L.

Consider uniform shear such that ∂1u2 = S and all
other components of the large-scale velocity gradient
are zero. Recall once again that polarization compo-
nents v  and u are related as

For the 1D case at hand,

The 3D energy spectrum is then represented as

The 1D spectra resulting upon integration over the
spherical surface of radius k equal each other by defini-
tion (see, e.g., [8]),

(20)

where dΩ is an elementary solid angle.
Recall the relationships that will be used in subse-

quent considerations:

n = 2p (p = 1, 2, 3, …);

k = πn/L,

where L is the scale separating large- and small-scale
velocity fields; and

where vB is the Fourier harmonic of the solution to the

b11 1, b12 η θ,tansin= =

b21 η θ, b22cossin 1.= =

θ 0 π/2,[ ] ∪ π 3π/2,[ ] , η π/2– π/2,[ ] .∈ ∈

E k( ) Nk2 θ ηdd

D

∫=

× η 1 η( ) θ( )cos
2

sin
2

+[ ] v B
2 k θ η, ,( ),cos

u Bv.=

u1 v B,=

u2 v B η θ.cossin=

E k( ) 1
2
--- Φ11 Φ22 Φ33+ +( )=

=  
N
2
---- 1 η( ) θ( )cos

2
sin

2
+[ ] v B

2 .

φij k2 Φij k t,( ) Ω,d∫∫=

v B v p( ) 16πλL 1–( )p

Reloc 8π2 p/Reloc( )sinh
------------------------------------------------------,= =
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original Burgers equation,

ASYMPTOTICS OF ONE-DIMENSIONAL 
REYNOLDS SPECTRA IN THE LIMIT OF LARGE 

WAVENUMBERS

Let

Then, the hyperbolic cosine may be replaced by an
increasing exponential and the square of the Fourier
component of the solution to the original Burgers equa-
tion can be written as

(21)

where λ1 and Reloc are known functions of the angular
variables.

To find the spectra of 1D Reynolds stresses requires
taking double integrals over the angular variables,

where

and

Applying the Laplace method [8] to calculate the
asymptotics of the integrals, we obtain expressions for
Reynolds stress spectra,

(22)

(23)

(24)

(25)

(26)

(27)

Reloc λ1L2/ν ,=

λ1
1
2
---S 2θ( ) η( ).cos

2
sin=

p @ Reloc  max .

v 2 p( ) 4 16πλ1L/Reloc( )2 16π2 p/Reloc–( ),exp=

φ gij θ η,( ) hp( ) ηcosexp θd η ,d∫∫=

h 16π2/Reloc– 64π2ν
L2S 2θ( ) 1 2ηcos+( )sin
----------------------------------------------------------–= =

gij k2Φij hp–( ).exp=

φ11
2L2kνS

π
------------------ phmax( ),exp=

φ22
2L2kνS

π
------------------ phmax( ),exp=

φ12
2L2kνS

π
------------------ phmax( ),exp–=

φ33
L3S2

8π2
----------- phmax( ),exp=

φ13
L5/2k1/2ν1/2S3/2

4π2
--------------------------------- phmax( ),exp–=

φ23
L5/2k1/2ν1/2S3/2

8π2
--------------------------------- phmax( ),exp–=
(28)

where

It is known that both model and experimental data
for turbulence show a rapid decay of the turbulence
spectra at large wavenumbers, as also demonstrated by
the spectra obtained. It is easy to check that, at interme-
diate wavenumbers, the 1D spectra are inversely pro-
portional to wavenumber p squared, which is also in
good agreement with experimental data and with Kol-
mogorov’s minus five-thirds law [10]. This statement
and the calculation of the spectra throughout the wave-
number range will be discussed at length in subsequent
publications.

CONCLUSIONS

While the model ignores interaction between two
polarization components (which makes turbulence iso-
tropic), the descending character of the spectra and
anisotropy persistence [11] even at very large Re num-
bers let us conclude that the model is of certain value.
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Abstract—The behavior of the total and partial pressure in a vacuum system is studied for the case of volatile
liquid evacuation. A mathematical model of the process is developed that is based on the joint solution of the
balance equations for gas and vapor flows. The influence of the vacuum system parameters and liquid properties
on the pressure variation is found. The equilibrium pressure and evacuation time are numerically calculated for
different system’s parameters. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In a number of technological processes, there arises
the need to evacuate a vacuum chamber containing a
source of a volatile liquid. For example, in leak detec-
tion by means of the bubble method used for testing
vacuum units or devices in the case where a high sensi-
tivity is not a critical point, a test object is filled with air
or a probe gas under an excess pressure and is
immersed in a liquid. Bubbles emerging on the outer
surface of the object indicate leakage. The gas flow is
proportional to the number of bubbles per unit time and
their volume, and the number of bubbles, in turn, is pro-
portional to the difference between the pressures inside
and outside the object. To improve the sensitivity of the
method, the container with the liquid is evacuated to a
pressure of 103–5 × 104 Pa. The probe gas must have a
low molar weight; the liquid (usually ethanol), a low
surface tension coefficient. When designing vacuum
systems using the bubble leak detection method, one
must know the pressure variation in the vacuum system
when vapors are evacuated from above the liquid sur-
face. Since the evaporating liquid flux varies in time,
the conventional approaches to designing vacuum sys-
tems fail [1]. In this work, we suggest a model that
makes it possible to evaluate the residual pressure in a
vacuum system and construct time curves of vapor
evacuation from above the liquid phase surface with
regard to evacuation of the residual atmosphere.

CONSTRUCTION OF THE MODEL 
AND PARAMETER ESTIMATION

Model. The model suggested is based on the bal-
ance equation for gas flows in an idealized vacuum
chamber (Fig. 1) that has volume V and is pumped out
with rate S. For the pressure interval 104–105 Pa and
evacuation time 1–10 min, the time variation of gas
desorption flux from the walls and gas evolution from
1063-7842/05/5010- $26.00 1255
the materials may be ignored and so the sum of these
fluxes may be taken to be constant, Qg = const. Other
fluxes we deal with in this situation are flux Qev of evap-
orating molecules and flux Qcon of condensing mole-
cules. For simplicity, we assume that, in a first approx-
imation, adsorption of liquid molecules on and their
desorption from the inner surfaces of the vacuum sys-
tem can also be ignored.

The flux balance in the chamber can then be
described by a set of two differential equations for liq-
uid vapor flux balance and balance of other gas fluxes,

(1)

(2)

(for notation, see Table 1).

The left-hand side of these equations is the rate of
variation of the amount of gases or vapors in the vac-
uum chamber, and term pS on the right-hand side is the
rate of evacuation (capacity of a pump). The fluxes of

d pc t( )
dt

---------------V Qev Qcon– pc t( )S,–=

d ps t( )
dt

---------------V Qg ps t( )S–=

V

pSQg QevQcon

p(t)

Fig. 1. Scheme of gas flows in the system.
© 2005 Pleiades Publishing, Inc.
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evaporating and condensing liquid molecules are given
by the formulas

(3)

(4)

Qev qdAkT ,=

Qcon qaAkT=

Table 1

Nota-
tion Meaning Unit of 

measure

A Surface area of liquid exposed to vacuum m2

Ed Heat of vaporization J/mol

M Molar weight of liquid kg/mol

nm Number of molecules per unit area in 
a layer

m–2

pc Partial pressure of liquid vapor Pa

pc0 Partial vapor pressure of liquid at t = 0 Pa

ps Partial vapor pressure of other compo-
nents

Pa

ps0 Partial vapor pressure of other compo-
nents at t = 0

Pa

patm Atmospheric pressure Pa

psat Saturated vapor pressure of liquid Pa

qd Specific desorption flux of liquid 1/(cm2 s)

qa Specific adsorption flux of liquid 1/(cm2 s)

Qg Gas liberation from chamber walls (m3 Pa)/s

Qev Evaporating liquid molecule flux (m3 Pa)/s

Qcon Condensing liquid molecule flux (m3 Pa)/s

S Effective rate of evacuation m3/s

t Time s

τ0 Mean oscillation period of condensed 
molecule

s

T Temperature K

V Chamber volume m3

k Boltzmann constant J/K

R Gas constant J/(mol K)

Na Avogadro number mol–1

Table 2.  Parameters of the liquids and calculated consump-
tion

Liquid M, kg/mol 
[2]

Ed, kJ/mol 
[2]

Consump-
tion, mg

Methanol (CH3OH) 0.032 38.74 255

Ethanol (C2H5OH) 0.046 35.27 106

Propanol (C3H7OH) 0.06 40.48 77
(the Langmuir model); the specific desorption and
adsorption fluxes of liquid molecules, by

(5)

(6)

The total molecular flux from the liquid surface,
which is equal to the difference between the evaporat-
ing and condensing components, increases with
decreasing pressure, since the evaporating component
does not depend on the pressure and the condensing
component is proportional to the vapor pressure.

Initial conditions. Since the system is evacuated
starting from the atmospheric pressure, the initial con-
dition for Eq. (2) (i.e., at the instant evacuation begins)
is ps0 = patm – pc0, where quantity pc0 depends on the rate
of evaporation and the duration of stay of the liquid in
the chamber before evacuation. To find pc0, we assume
that, prior to leak detection (i.e., prior to the container
with the liquid being introduced into the chamber), the
liquid vapor pressure equals zero. Then, at any time t
after the chamber has been closed and the pump has
been switched off, the vapor pressure is found from the
balance between the fluxes of molecules being des-
orbed from and condensing on the liquid surface. The
time dependence of the vapor pressure is given by

(7)

Calculation by (7) for ethanol at T = 293 K, V =
4.33 × 10–3 m3, and A = 30 cm2 (the values of other
parameters are listed in Tables 2 and 3) showed that the
saturated vapor pressure sets in (up to 0.1%) within
1.1 s. Therefore, for practical purposes, we may put

(8)

with a reasonable accuracy.
Then, in view of (8), the dependences pc(t) and ps(t)

take the form

(9)

qd nm/τ0 Ed/RT–( ),exp=

qa

Na pc

2πMRT
------------------------.=

pc t( ) 1
Na
------qdAkT 2πMRT=

× 1
NaAkT

V 2πMRT
----------------------------t– 

 exp– .

pc0 psat
qd 2πMRT

Na
-----------------------------= =

pc t( )
qdAkT 2πMRT

NaAkT S 2πMRT+
---------------------------------------------------=

× 1
NaAkT

V 2πMRT
---------------------------- S

V
---+ t– 

 exp–
Table 3.  Parameters and constants used in calculation

Qg A S V T nm τ0 k R Na

1.37 × 10–4 3 × 10–3 4 × 10–4 4.33 × 10–3 293 3 × 1019 2.76 × 10–14 1.38 × 10–23 8.31 6.02 × 1023
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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(10)

The total instantaneous pressure in the vacuum
chamber is the sum of pc and ps,

+ pc0
NaAkT

V 2πMRT
---------------------------- S

V
---+ t– 

  ,exp

ps t( )
Qg

S
------ 1

S
V
---t– 

 exp–=

+ ps0 1 S
V
---– 

  texp– .exp

p t( )
qdAkT 2πMRT

NaAkT S 2πMRT+
---------------------------------------------------=

100 200 300
103

104

105

t, s

p(t), Pa

tevac 1 tevac 2

S = 0.4 1/s

S = 4 1/s

S = 40 1/s

Fig. 2. Time variation of the total pressure in the vacuum
chamber for different effective rates of evacuation S.

p(t), Pa

103

t, s
20 40 60 80 100

104

105

t e
va

c 
3

t e
va

c 
2

t e
va

c 
1

T = 313 K

T = 293 K

T = 273 K

Fig. 4. Time variation of the total pressure in the vacuum
chamber for different temperatures.
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
(11)

Calculation of the parameters and analysis of the
dependences. Calculation by formula (11) was carried
out for methanol, ethanol, and isopropanol using the
values of the parameters and constants listed in Tables 2
and 3 (unless otherwise stated).

Consider how the parameters appearing in Eq. (11)
influence the pressure in the chamber during evacua-

× 1
NaAkT

V 2πMRT
---------------------------- S

V
---+ t– 

 exp–

+ pc0
NaAkT

V 2πMRT
---------------------------- S

V
---+ t– 

 exp

+
Qg

S
------ 1

S
V
---t– 

 exp– 
  ps0

S
V
---t– 

  .exp+

p(t), Pa

t, s
100

tevac103

20 40 60 80

104

105

A = 300 cm2

A = 30 cm2

A = 3 cm2

Fig. 3. Time variation of the total pressure in the vacuum
chamber for different surface areas A of the liquid.
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t e
va

c 
3

t e
va

c 
2

t e
va

c 
1

CH3OH

C2H5OH

C3H7OH

Fig. 5. Time variation of the total pressure in the vacuum
chamber for different alcohols.
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tion. Since the curve p(t) asymptotically tends to equi-
librium value p∞, it is reasonable to take the evacuation
duration in engineering calculations as the interval
between the initial instant of evacuation (from the
atmospheric pressure) and the time the pressure reaches
given fraction α of the equilibrium pressure (say, α =
0.999). The equilibrium pressure is determined from
the formula

(12)

and evacuation time Tevac is found by solving the equa-
tion

(13)

Since Eq. (13) cannot be solved analytically, the
evacuation time was determined numerically or graph-
ically. Figure 2 shows the evacuation curves for differ-
ent rates of evacuation S. It is distinctly seen that
parameter S has a significant effect both on the equilib-
rium pressure value and on the time of evacuation. This
is because this parameter enters into the exponent in
formula (11). Under these conditions, the time of evac-
uation varies with frequency by a near-linear law.

Surface area A of the liquid affects the time of evac-
uation only slightly. Under the conditions correspond-
ing to Tables 2 and 3, the residual pressure in the cham-
ber decreases when A is below 30 cm2, as follows from
Fig. 3.

With an increase in alcohol temperature T, the resid-
ual pressure increases considerably. The time of evacu-
ation also increases, though insignificantly, because of
a rise in the alcohol saturated vapor pressure and rate of
evaporation (Fig. 4). The sort of alcohol also markedly
influences the residual pressure and time of evaporation
(through parameters M and Ed), because the heat of
vaporization grows and the saturated vapor pressure
declines with increasing alcohol molar weight (Fig. 5).

The consumption of various liquids for the mean
time of a test cycle, t = 4 min, is also of great practical
importance. It is proportional to the integral of the par-
tial vapor pressure over time of experiment and to the

p∞
qdAkT 2πMRT

NaAkT S 2πMRT+
---------------------------------------------------

Qg

S
------,+=

p t( ) α p∞.=
rate of evacuation. The corresponding results of calcu-
lation are summarized in Table 2.

CONCLUSIONS

In our work, we developed a mathematical model of
pressure variation in a vacuum chamber containing a
source of a volatile liquid. Unlike the conventional
computational procedures, this model allows for the
variation of gas liberation (including evaporation) with
pressure and time. Analyzing the results obtained in
this work, we found that the rate of evacuation, as well
as the temperature and sort of liquid, are the key factors
influencing the duration of evacuation and equilibrium
pressure. At the same time, the surface area of the liquid
exposed to a vacuum affects the rate of evacuation and
equilibrium pressure insignificantly. The model makes
it possible to control the leak detection process and sub-
stantially raises the accuracy of a quantitative estimate
of the leakage. In addition, it allows engineers to opti-
mize a vacuum system and technological process at the
design stage.
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Abstract—An analytical expression for the time evolution of the profile of a nonlinear periodic capillary–grav-
itational wave traveling over the charged surface of a viscous incompressible finite-thickness liquid is found.
The calculation is carried out in the second order of smallness in wave amplitude. It is shown that the depen-
dence of a nonlinear correction to a linear solution on the liquid viscosity and liquid layer thickness changes
qualitatively in going from thick to thin liquid layers. © 2005 Pleiades Publishing, Inc.
(1) The nonlinear periodic capillary–gravitational
wave flow of liquid is a wide-spread phenomenon in
nature and technology and so is of both scientific and
applied interest. A great variety of publications have
been concerned with theoretical and experimental
investigation of this phenomenon, starting from the lat-
ter half of the 19th century. Taking into consideration
the viscosity of the liquid, presence of the surface
charge, and finiteness (rather than smallness!) of the
liquid layer thickness makes the problem still more
challenging. A number of comprehensive studies
devoted to nonlinear periodic waves on the charged free
surface of an indefinitely deep ideal liquid [1–4] and on
the charged free surface of a viscous liquid [5, 6] have
recently been performed. Most of the studies dealing
with nonlinear waves on a viscous liquid have been car-
ried out in the shallow water approximation, when the
ratio of the wavelength to the liquid film thickness is a
small parameter of the problem (see, e.g., [7–10]). Such
a simplification is sound but not universally true [11]
and in most cases leads to mere derivation of nonlinear
equations with soliton solutions [7–9].

The aim of this work is to (i) gain insight into non-
linear periodic capillary–gravitational waves on the
surface of a viscous conducting liquid of finite thick-
ness, (ii) find an analytical solution that is valid for lay-
ers of arbitrary thickness and allows for extrapolation to
thin layers, and (iii) analyze the combined effect of vis-
cosity and finite thickness on the nonlinear wave flow.

(2) Let a perfectly conducting incompressible liquid
with density ρ, kinematic viscosity ν, and surface ten-
sion coefficient γ occupy an infinite (in the x0y plane)
layer –d ≤ z ≤ 0 in the gravitational field g || –nz. The ori-
gin of the Cartesian coordinate system (x, y, z) is on the
undisturbed free surface of the liquid (nz is the unit nor-
mal vector along the z axis), which is subjected to uni-
form electric field E0 pointing downward. A wave of
amplitude α that is taken to be smaller than the wave-
1063-7842/05/5010- $26.00 1259
length and much smaller than capillary constant a ≡
 of the liquid propagates over the surface in the

positive 0x direction. Ratio α/a defines a small param-
eter of the problem ε. Physical quantities ρ, ν, γ, g, d,
E0, α, and wavenumber k are assumed to be constant.
Also, all the space-dependent variables are assumed to
be y independent.

In view of the aforesaid, the nonlinear periodic cap-
illary–wave flow on the uniformly charged surface of a
viscous conducting liquid is mathematically described
as follows:

(1)

Here, ξ = ξ(x, t) is the deviation of the free surface from
the equilibrium (flat) shape given by z = 0 due to the
wave flow, U = (u, 0, w) is the velocity field of the liq-
uid, p(r, t) is the hydrodynamic pressure inside the liq-
uid, Φ(r, t) is the electric field potential, n and t are the
unit vectors that are normal and tangent to the free sur-
face disturbed by the wave flow, and ∆ is the Laplacian.

γ/ρg

d– z ξ : 
∂U
∂t
------- — U×( ) U×+≤ ≤

=  — 1
ρ
--- p

1
2
---U2 gz+ + 

 – ν∆U; — U⋅+ 0;=

z ξ : ∆Φ≥ 0; z ∞: —Φ E0– nz;⋅= =

z ξ : 
∂ξ
∂t
------ u

∂ξ
∂x
------+ w;= =

t n —⋅( )U⋅ n t —⋅( )U⋅+ 0;=

p 2ρνn– n —⋅( )U
∇Φ( )2

8π
----------------+⋅

=  γ∂2ξ
∂x2
-------- 1

∂ξ
∂x
------ 

 
2

+ 
 

3/2–

; Φ– 0;=

z d: u– 0; w 0.= = =
© 2005 Pleiades Publishing, Inc.
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As is custom in calculations of the nonlinear peri-
odic wave flow [3–6], initial conditions are selected
such that a final solution has a form that is as simple as
possible. For example, we may assume that, in the first
approximation in small wave amplitude α, the distur-
bance of the free surface has the form of a harmonic
wave traveling along the abscissa axis,

(1a)

where S is the complex frequency of the wave and c.c.
is the complex conjugate.

Since the problem to be solved is extremely cumber-
some, we will derive only an analytical expression for
the profile of nonlinear waves on the liquid surface.
Other desired quantities (the velocity field of the flow in
the layer and the distributions of the pressure in and of
the electric potential over the liquid) will be found dur-
ing calculation (however, their final forms are too awk-
ward and so will be omitted).

(3) In the zeroth approximation, the free surface is
undisturbed, ξ0(x, t) = 0. The velocity and pressure
fields in the liquid, as well as the electric potential dis-
tribution over the liquid, are found from (1),

A solution to problem (1) will be sought as the
expansions of the unknown components of free surface
profile ξ, velocity field (u, 0, w), pressure p, and electric
potential Φ in powers of the small parameter,

(2)

Now we substitute expressions (2) into (1) and par-
tition the problem into subproblems of various orders
of smallness.

(4a) In the first order of smallness, we obtain

(3)

where U1 is vector field (u1, 0, w1).

ξ x t,( ) 2α St ikx–( )exp c.c. o α( ),+ +=

u0 w0 0; p0
E0

2

8π
------– ρgz; Φ0– E0z.–= = = =

ξ εξ 1 ε2ξ2 O ε3( ); u+ + εu1 ε2u2 O ε3( );+ += =

w εw1 ε2w2 O ε3( );+ +=

p p0 εp1 ε2 p2 O ε3( );+ + +=

Φ Φ0 εΦ1 ε2Φ2 O ε3( ).+ + +=

d– z 0:
∂U1

∂t
--------- — 1

ρ
--- p1 

  ν∆U1–+≤ ≤ 0;=

— U1⋅ 0;=

z 0: ∆Φ1≥ 0;=

z ∞: —Φ1 0; Φ1 E0ξ1– 0;=

z 0: 
∂ξ1

∂t
-------- w1– 0;

∂u1

∂z
--------

∂w1

∂x
---------+ 0;= = =

–ρgξ1 p1 2ρν
∂w1

∂z
---------–

E0

4π
------

∂Φ1

∂z
----------– γ

∂2ξ1

∂x2
----------+ + 0;=

z d: u1– 0; w1 0,= = =
(4b) It is easy to check that the continuity equations,
Navier–Stokes equations, and pressure field can be
expressed through velocity field potential ϕ1 and stream
function ψ1 as follows:

(3a)

In the complex form, free surface profile ξ1 is repre-
sented as a traveling wave,

(4)

where amplitude factor ζ is expressed through ampli-
tude α of the initial wave.

Eventually, the solution of the first-order subprob-
lem is reduced to finding unknowns ϕ1, ψ1, Φ1, and
complex frequency S.

Expressions for velocity potential ϕ1, stream func-
tion ψ1, and electric potential Φ1 will be sought in a
form similar to the form of ξ1,

(5)

where A, B, and C are amplitudes to be found.

Substituting expressions (4) and (5) into (3) and (3a)
yields desired electric potential Φ1, pressure p1, and
velocity field components u1 and w1:

(6)

Frequency S can be determined from the dispersion
relation [12]

∆ϕ1 0;
∂ψ1

∂t
--------- ν∆ψ1– 0; u1

∂ϕ1

∂x
---------

∂ψ1

∂z
---------;–= = =

w1
∂ϕ1

∂z
---------

∂ψ1

∂x
---------; p1+ ρ

∂ϕ1

∂t
---------.–= =

ξ1 x t,( ) ζ St ikx–( ),exp=

ϕ1 x z t, ,( ) B z( ) St ikx–( );exp=

ψ1 x z t, ,( ) C z( ) St ikx–( );exp=

Φ1 x z t, ,( ) A z( ) St ikx–( );exp=

Φ1 E0ζ St ikx– kz–( )exp ;=

p1
iρS
k

--------ζ σ2q k z d+( )( )cosh(–=

+ σ1 k z d+( )( )sinh ) St ikx–( );exp

u1 ζ σ2q k z d+( )( )cosh(=

+ σ1k k z d+( )( )sinh σ2q q z d+( )( )cosh–

– σ1q q z d+( )( ) ) St ikx–( );expsinh

w1 iζ σ1k k z d+( )( )cosh(=

+ σ2q k z d+( )sinh σ1k q z d+( )( )cosh–

– σ2k q z d+( )( ) ) St ikx–( );expsinh

q k2 S/ν+ .=

DetM 0; ω0
2 gk 1

γ
ρg
------k2 E0

2

4πρg
-------------k–+ 

  ;= =

β kd; ζ qd;≡ ≡
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M

k 0 0 q– 0

0 1 1– 0 0

β( )sinh– β( )cosh– ξ( )cosh ξ( )sinh S

k2 q2+( ) β( )cosh k2 q2+( ) β( )sinh 2kq ζ( )sinh– 2kq ζ( )cosh– ν 1– ω0
2

2k2 β( )sinh– 2k2 β( )cosh– k2 q2+( ) ζ( )cosh k2 q2+( ) ζ( )sinh 0 
 
 
 
 
 
 
 
 

,=
and constants σ1 and σ2 have the form

Importantly, we have found the solution to the first-
order subproblem in the complex form with initial con-
dition (4). To reduce the solution to the real form of
type (1a), it is necessary to complement found quanti-
ties (6) by their complex conjugates and put ζ = 2α.

(5) In the second-order of smallness, we obtain the
subproblem stated as

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

σ1
iν 2ζ β( )sinh k2 q2+( ) ζ( )sinh–( )

q ζ( ) β( )sinhcosh k β( ) ζ( )sinhcosh–
------------------------------------------------------------------------------------------,≡

σ2
iν 2k2 β( )cosh k2 q2+( ) ζ( )cosh–( )

q ζ( ) β( )sinhcosh k ξ( ) ζ( )sinhcosh–
------------------------------------------------------------------------------------------.≡

d– z 0: — U2⋅≤ ≤ 0;=

∂U2

∂t
--------- — 1

ρ
--- p2 

  ν∆U2–+

=  
1
2
---— U1

2( )– — U1×( )– U1;×

z 0: ∆Φ2≥ 0;=

z 0: 
∂ξ2

∂t
-------- w2– ξ1

∂w1

∂z
--------- u1

∂ξ1

∂x
--------;–= =

Φ2 E0ξ2– ξ1

∂Φ1

∂z
----------;–=

–ρgξ2 p2 2ρν
∂w2

∂z
---------–

E0

4π
------

∂Φ2

∂z
----------– γ

∂2ξ2

∂x2
----------+ +

=  2ρνξ1

∂2w1

∂z2
----------- ξ1

∂ p1

∂z
--------–

1
8π
------

∂Φ1

∂x
---------- 

 
2 ∂Φ1

∂z
---------- 

 
2

+ 
 –

+
E0

4π
------ξ1

∂2Φ1

∂z2
------------ 2ρν

∂ξ1

∂x
--------

∂u1

∂z
--------– 2ρν

∂ξ1

∂x
--------

∂w1

∂x
---------;–

∂u2

∂z
--------

∂w2

∂x
---------+ 2

∂ξ1

∂x
--------

∂u1

∂x
--------=

– 2
∂ξ1

∂x
--------

∂w1

∂z
--------- ξ1

∂2w1

∂x∂z
-----------– ξ1

∂2u1

∂z2
----------;–

z d: u2– 0; w2 0;= = =
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(15)

where U2 = (u2, 0, w2).

(5a) The second-order subproblem represents a set
of inhomogeneous linear partial differential equations.
According to a rule common in perturbation tech-
niques, when a problem is solved by the small parame-
ter method, first a general solution to the first-order sub-
problem and then a partial solution to the second-order
subproblem are found. It is known that a partial solu-
tion of a set of differential equations is found in the
form similar to that of their right-hand sides (inhomo-
geneities). Therefore, it is necessary first to calculate
the right-hand sides of expressions (7), (8), and (10)–
(13). This is done by substituting expressions (8) into
these expressions. In doing so, one should bear in mind
that quantities Φ1, p1, u1, w1, and ξ1 have complex con-
jugate terms.

The inhomogeneous set of Eqs. (7) and (8) is conve-
nient to write in the matrix form, where the vector func-
tion of an inhomogeneity will have the form

(16)

Here, Aji, Hji, Vji, and Cji are 3 × 5 matrices with coeffi-
cients independent of time and spatial coordinates.

Their associated formulas are awkward and there-
fore omitted. However, their explicit form can easily be
restored by substituting first-order solutions (6) into the
right-hand sides of (7) and (8).

z ∞: —Φ2 0,

F j α2 S S+( )t( ) A ji Qi d z+( )( )cosh(
i 1=

5

∑exp=

+ H ji Qi d z+( )( ) ) α2 2St 2ikx–( )exp+sinh

× V j0 Z ji Qi d z+( )( )cosh(
i 1=

2

∑+

+ C ji Qi d z+( )( ) )sinh c.c.;+

Q1 k q; Q2+ k q, Q3– q q,+= = =

Q4 q q, Q5– 2k.= =
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The vector function of inhomogeneity for set (10)–
(13) has the form

(17)

where Nji, Uji, Mji, and Tji are 4 × 3 matrices.
Their associated formulas are awkward and there-

fore omitted. However, their explicit form can easily be
restored by substituting first-order solutions (6) into the
right-hand sides of Eqs. (10)–(13).

(5b) A solution to the second-order subproblem
involves analytical expressions for unknowns Φ2, p2,
u2, w2, and ξ2. To proceed further, we will represent
quantities u2, w2, and p2 in the form of the sum

(18)

where the first term of this sum, ( , , ), which
will be hereafter called the “inflexible” part of the solu-
tion, is a partial solution to set (7)–(8) and the second
term, ( , , ), together with quantities Φ2 and
ξ2, constitutes the so-called flexible part of the solution.
This part is based on a solution to the homogeneous set
that corresponds to inhomogeneous set (7)–(8) and
contains two arbitrary constants, which are selected so
that sum (18) satisfies boundary conditions (10)–(15).

First, we will determine the flexible part of the solu-
tion. In view of the form of inhomogeneity function Fji,
it should be sought in the form

(19)

where aji, hji, gji, and cji are unknown 3 × 5 matrices
with coefficients independent of time and spatial coor-
dinates.

To find these matrices, it is necessary to substitute
(19) into the set of Eqs. (7) and (8), the right-hand side
of which has the form (16), and equate the coefficients
multiplying identical expressions in the resulting
system, 

G j α2 S S+( )t( ) N j0 N j1 dk( )cosh+(exp=

+ U j1 dk( )sinh N j2 dq( )cosh U j2 dq( ) )sinh+ +

+ α2 2St 2ikx–( ) M j0 M j1 dk( )cosh+(exp(
+ T j1 dk( )sinh M j2 dq( )cosh T j2 dq( )))sinh c.c.,+ + +

u2 v 2 p2, ,( ) u2
+ w2

+ p2
+, ,( ) u2* w2* p2*, ,( ),+=

u2
+ w2

+ p2
+

u2* w2* p2*

u2
+ w2

+ p2
+, ,( ) α2 S S+( )t( )exp=

× a ji Qi d z+( )( )cosh h ji Qi d z+( )( )sinh+( )
i 1=

5

∑

+ α2 2St 2ikx–( ) g j0 g ji Qi d z+( )( )cosh(
i 1=

2

∑+




exp

+ c ji Qi d z+( )( ))sinh




c.c.,+

Ωt iKx–( ) Q d z+( )( );coshexp
to zero.

In this case, Eqs. (7) and (8) split into sets of simple
algebraic equations from which the components of
unknowns aji, hji, gji, and cji can be easily found.

In terms of linear transformations, these unknown
matrices are found from matrices Aji, Hji, Vji, and Cji by
applying a linear operator that is specified by matrices
depending on parameters

This linear transformation is stated as follows:

These expressions should be substituted into (19) to

find , , and  in the final form.

The flexible part of the solution to the second-order
subproblem is a solution to set (7)–(8) with the zero
right-hand side. In such a representation, Eqs. (7) and
(8) are equivalent to the following set of equations for
the potentials and stream functions:

(20)

Since the inhomogeneities of Eqs. (7) and (8), which
are determined by equalities (16), are linear combina-
tions of factors exp((S + )t) and exp(2St – 2ikx), the

Ωt iKx–( ) Q d z+( )( ),sinhexp

L1 K Q Ω, ,( ) 1

K2 Q2–( ) ν K2 Q2–( ) Ω+( )
------------------------------------------------------------------=

×
Q2– 0 iK ν K2 Q2–( ) Ω+( )

0 K2 0

iρK ν K2 Q2–( ) Ω+( ) 0 ρ ν K2 Q2–( ) Ω2+( ) 
 
 
 
 

;

L2 K Q Ω, ,( ) Q

K2 Q2–( ) ν K2 Q2–( ) Ω+( )
------------------------------------------------------------------=

×
0 iK 0

iK 0 ν K2 Q2–( ) Ω+

0 ρ ν K2 Q2–( ) Ω+( ) 0 
 
 
 
 

.

a ji L1 0 Qi S S+, ,( )A ji L2 0 Qi S S+, ,( )H ji,+=

h ji L1 0 Qi S S+, ,( )H ji L2 0 Qi S S+, ,( )A ji,+=

g ji L1 2k Qi 2S, ,( )V ji L2 2k Qi 2S, ,( )C ji,+=

c ji L1 2k Qi 2S, ,( )C ji L2 2k Qi 2S, ,( )V ji.+=

u2
+ w2

+ p2
+

∆ϕ2* 0;
∂ψ2*

∂t
---------- ν∆ψ2*– 0; u2* = 

∂ϕ2*

∂x
----------

∂ψ2*

∂z
----------;–= =

w2*
∂ϕ2*

∂z
----------

∂ψ2*

∂x
----------; p2*+ ρ

∂ϕ2*

∂t
----------.–= =

S
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flexible part of the subproblem should be sought in the
form

(21)

where Zi are unknown constants and Ai(z) are three-ele-
ment columns of unknown constants.

Substitution of expressions (21) into relationships
(7), (9), (15), and (20) makes it possible to refine the
form of functions Ai and express , , and ,

(22)

Here, a0, a1, b00, b01, b10, b11, c00, c01, c10, and c11 are
unknown constants that can be found from boundary
conditions (10)–(15),

(5c) To make the following mathematics more com-
pact and illustrative, we represent boundary conditions

ξ2 α2 S S+( )t( )Z0exp=

+ α2 2St 2ikx–( )Z1 c.c.;+exp

ϕ2* ψ2* Φ2, ,( ) α2 S S+( )t( )A0 z( )exp=

+ α2 2St 2ikx–( )A1 z( )exp c.c.,+

u2* w2* p2*

Φ2 α2a0 S S+( )t( )exp=

+ α2a1 2St 2ikx– 2kz–( )exp c.c.;+

u2* w2* p2*, ,( )T α2 S S+( )t( )exp b00 f 0 b10 j0+(=

+ b10 f 0 d z+( ) c00 p0 w0 d z+( )( )sinh+

+ c10 p0 w0 d z+( )( ) )cosh α2 2St 2ikx–( )exp+

× b01 f 1 2k d z+( )( ) h1 2k d z+( )( ) )sinh+cosh((
+ b11 h1 2k d z+( )( )cosh f 1h 2k d z+( )( )+( )

+ c01 n1 w1 d z+( )( )cosh p1 w1 d z+( )( )sinh+( )
+ c11 p1 w1 d z+( )( )cosh n1 w1 d z+( )( )sinh+( ) c.c.+

w0
S S+

ν
------------, w1 4k2 2S

ν
------+ ,= =

f 0

0

0

ρ S S+( )– 
 
 
 
 

, j0

0

1

0 
 
 
 
 

,= =

p0

w0–

0

0 
 
 
 
 

, f 1

2ik–

0

2ρS– 
 
 
 
 

, h1

0

2k

0 
 
 
 
 

,= = =

n1

0

2ik–

0 
 
 
 
 

, p1

w0–

0

0 
 
 
 
 

.= =
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(10)–(15) of the second second-order subproblem (z =
0) in the matrix form,

Here, B is the linear operator, Ξ is the vector-by-scalar
multiplication operator, and Gj is defined by expression
(17). Operator Ξ acts as follows:

(23)

where superscript T means matrix transposition.
The action of operator B on expressions of type

where Ω , K, and Q are constants and Aj and Hj are
three-element columns, has the form

where

B u2 w2 p2 Φ2, , ,( ) Ξξ2+ G j;=

B u w p Φ, , ,( )

=  

0 1– 0 0

0 2ρν ∂
∂z
-----– 1

E0–
4π
--------- ∂

∂z
-----

∂
∂z
----- ∂

∂x
------ 0 0

0 0 0 1 
 
 
 
 
 
 
 
 

u

w

p

Φ 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

z 0=

;

Ξ

∂
∂t
-----

–ρg γ ∂2

∂x2
--------+

0

E0– 
 
 
 
 
 
 
 
 
 

.=

Ξξ2 α2 S S+( )t( )Z0Y0exp=

+ α2 2St 2ikx–( )Z1Y1 c.c.;+exp

Y0 S S+ ρg– 0 E0–, , ,( )T
;=

Y1 2S ρg– 4γk2– 0 E0–, , ,( )T
,=

u w p, ,( )T Ωt iKx–( )exp=

× A j Q d z+( )( )cosh H j Q d z+( )( )sinh+( );

Φ ϕ Ωt iK x z–( )–( ),exp=

B u w p Φ, , ,( ) = Ωt iKx–( ) B1 K( )A j B2 Q( )H j+( )(exp

× dQcosh B1 K( )H j B2 Q( )A j+( ) dQsinh ϕE K( ) );+ +

E K( )

0

E0K
4π

----------

0

1 
 
 
 
 
 
 
 

,=
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By virtue of equality (18), we have

(24)

Taking into account the known expressions for the
quantities appearing in the flexible part of the solution
(see (21) and (22)) and (23), we can write the left of
(24) as

(25)

Substituting (17) and (19) into the right of (24)
yields

(26)

(5d) Substituting (25) and (26) into (24), collecting
the coefficients multiplying exp((S + )t) and exp(2St –
2ikx), and equating them to zero, we arrive at equations
for unknowns am, bmn, cmn, and Zm. Complementing

B1 K( )

0 1– 0

0 0 1

0 iK– 0

0 0 0 
 
 
 
 
 

; B2 Q( )

0 0 0

0 2νρQ– 0

Q 0 0

0 0 0 
 
 
 
 
 

.= =

B u2* w2* p2* Φ2, , ,( ) Ξξ2+

=  G j B u2
+ w2

+ p2
+ 0, , ,( ).–

B u2* w2* p2* Φ2, , ,( ) Ξξ2+

=  α2 S S+( )t( ) B1 0( ) b00 b10d+( ) f 0 b10 j0+( )(exp

+ b10B2 1( ) f 0 c10B1 0( ) c00B2 w0( )+( )p0 dw0( )cosh+

+ c00B1 0( ) c10B2 w0( )+( )p0 dw0( )sinh a0E 0( )+

+ Z0Y0) α2 2St 2ikx–( ) B1 2k( ) b01 f 1 b11h1+( )((exp+

+ B2 2k( ) b01h1 b11 f1+( )) 2dk( )cosh B1 2k( ) b01h1((+

+ b11 f 1 ) B2 2k( ) b01 f 1 b11h1+( ) ) 2dk( )sinh+

+ B1 2k( ) c01n1 c11 p1+( ) B2 w1( ) c01 p1 c11n1+( )+( )

× dw1( )cosh B1 2k( ) c01 p1 c11n1+( ) B2 w1( )+(+

× c01n1 c11 p1+( )) dw1( )sinh a1E 2k( ) Z1Y1 ) c.c.+ + +

G j B u+ w+ p+ 0, , ,( )–

= α2 S S+( )t( ) N j0 N j1 dk( )cosh U j1 dk( )sinh+ +(exp

+ N j2 dq( )cosh U j2 dq( )sinh B1 0( )a ji((
i 1=

5

∑–+

+ B2 Qi( )h ji ) dQi( )cosh B1 0( )h ji B2 Qi( )a ji+( )+

× dQi( ) ) )sinh α2 2St 2ikx–( ) M j0 M j1+(exp+

× dk( )cosh T j1 dk( )sinh M j2 d q( )cosh+ +

+ Tj2 dq( )sinh B1 2k( )gj0– B1 2k( )gji B2 Qi( )cji+( )(
i 1=

2

∑–

× dQi( )cosh B1 2k( )cji B2 Qi( )gji+( ) dQi( )))sinh c.c.+ +

S

these equations by those resulting from substitution of
(18) into boundary condition (14), we come to a set of
algebraic equations from which constants am, bmn, cmn,
and Zm are uniquely found. Solving the resulting set by
the Gauss method, we obtain expressions for Z0 and Z1,

(27)

Z0 0; Z1 2πkνρw1 8k S 4k2ν+( )R11((= =

+ i S 8k2ν+( )R13 ) 8πk2νρw1SR22 2dk( )cosh+

+ 8πik2νρw1SR21 2dk( )sinh 2πρw1S S 4k2ν+( )–

× R22 dw1( )cosh 4πikρS S 4k2ν+( )R21 dw1( )sinh–

– 2πρw1 S2 8k2νS 32k4ν2+ +( )R11 ikν S(+(

+ 8k2ν )R13 ) 2dk( ) dw1( )coshcosh 4πkρ S2((+

+ 16k2νS 32k4ν2 )R11 ikν 3S 8k2ν+( )R13 )+ +

× 2dk( ) dw1( )sinhsinh 2πk2SR12 2dk( )cosh–

× dw1( )sinh πkw1SR12 2dk( ) dw1( ) )/∆Z1
;coshsinh+

∆Z1
πρS 32k2νw1 S 4k2ν+( ) 4w1(S2 8k

2
S---+–

=

+ 32k4ν2 ) 2dk( )cosh dw1( )cosh

+ 8k S2 16k2νS 32k4ν2+ +( ) 2dk( ) dw1( )sinhsinh

+ 2gk 8
k3γ
ρ

--------
E0

2k2

πρ
-----------–+ 

 

× 2k 2dk( )cosh dw1( )sinh w1 2dk( ) dw1( )coshsinh–( )
 ;

R11
ik2

2
------σ1 dk( )sinh

ikq
2

--------σ1 dq( )sinh–=

+
ikq
2

--------σ2 dk( )cosh
ikq
2

--------σ2 dq( )cosh–

–
kS2σ1σ2 d k q+( )( )cosh

4ν S S 4k2ν–( ) 8k3ν2 k q–( )–( )
-----------------------------------------------------------------------------

+
k k q–( )S kσ1

2 qσ2
2+( ) d k q+( )( )sinh

4 S S 4k2ν–( ) 8k3ν2 k q–( )–( )
----------------------------------------------------------------------------------------

+
kS2σ1σ2 d k d–( )cosh

4ν S S 4k2ν–( ) 8k3ν2 k q+( )–( )
-----------------------------------------------------------------------------

+
k k q+( )S kσ1

2 qσ2
2–( ) d k q–( )sinh

4 S S 4k2ν–( ) 8k3ν2 k q+( )–( )
-----------------------------------------------------------------------------------;

R12
E0

2k2

8π
-----------–

iρ
2
----- S 6k2ν+( ) qσ2 dk( )sinh(+=
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Substituting expressions (27) into relationship (21)
for ξ2, we reduce it to the real form

Eventually, for the profile of the nonlinear wave, we
obtain the expression

(28)

which is accurate up to quantities of the second order of
smallness in wave amplitude.

+ kσ1 dk( ) )cosh iρk 2S 3k2ν+( )–

× σ1 dq( )cosh σ2 dq( )sinh+( )

–
ρ S 2k2ν+( )

4ν
-----------------------------σ1

2 ρ S k2ν+( )
2ν

--------------------------σ2
2+

+
k 3S 2k 3k q–( )ν+( )ρ

2ν 3k q–( ) S 2k k q+( )ν+( )
--------------------------------------------------------------------

× Sσ1σ2 d k q–( )( )sinh ν k q+( ) kσ1
2 qσ2

2–( )+( )

× d k q–( )( )cosh ) k 3S 2k 3k q+( )ν+( )ρ
2ν 3k q+( ) S 2k k q–( )ν+( )
--------------------------------------------------------------------–

× Sσ1σ2 d k q+( )( )sinh( ν k q–( )–

× kσ1
2 qσ2

2+( ) d k q+( )( ) );cosh

R13 k3σ1 dk( )sinh–= k2qσ1 dq( )sinh+

– k2qσ2 dk( )cosh k2qσ2 dq( )cosh+

–
iS S 2k 3k q+( )ν+( )

8ν2 3k q+( ) S 2k k q–( )ν+( )
----------------------------------------------------------------------

× k q+( )σ1σ2 d k q+( )( )cosh kσ1
2 qσ2

2+( )+(

× d k q+( )( ) )sinh
iS S 2k 3k q–( )ν+( )

8ν2 3k q–( ) S 2k k q+( )ν+( )
----------------------------------------------------------------------+

× k q–( )σ1σ2 d k q–( )( )cosh(

– kσ1
2 qσ2

2–( ) d k q–( )( ) );sinh

R21
ik S S 4k2ν–( ) 8k4ν2–( )

4νS S 8k2ν–( )
----------------------------------------------------------σ1

2–=

+
2ik3 S k2ν+( )
S S 8k2ν–( )

---------------------------------σ2
2;

R22
4k4νq

S S 8k2ν–( )
----------------------------σ1σ2.–=

ξ2 2α2 Z1 2ReSt( )exp=

× 2ImSt 2kx– ArgZ1+( ).cos

ξ x t,( ) α rt( ) θcosexp=

+ 2α2 Z1 2rt( ) 2θ ArgZ1+( );cosexp

Q ImSt kx; r ReS,≡–≡
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(6) Amplitude factor Z1 in the nonlinear correction
to the wave profile is the most informative parameter of
the solution obtained. This factor is complex: its real
and imaginary parts depend on the physical parameters
of the problem, including the thickness of the layer and
viscosity of the liquid. Its absolute value, |Z1|, charac-
terizes the amount of internal nonlinear interaction
between the term linear in amplitude α and the term
quadratic in α (see expression (28) for the wave pro-
file).

The profile of a traveling wave is frequently an
object of interest in studies of nonlinear waves on the
liquid surface. Specifically, its parameters, such as the
sharpness and slope of the wave ridge, are estimated,
which are also determined by factor Z1. For example,
|Z1| is a measure of skewness of the nonlinear wave pro-
file relative to the strictly cosinusoidal shape. As |Z1|
grows, blunted capillary waves become still more
blunted, while gravitational waves, which have a
sharper profile, become still sharper.

Ratio Im(Z1)/Re(Z1), specifying the argument of
complex quantity Z1, also characterizes the skewness of
the wave profile relative to the symmetric cosinusoidal
shape: if Im(Z1)/Re(Z1) < 0, the profile is skewed in the
direction of wave propagation; if Im(Z1)/Re(Z1) > 0, the
profile is skewed in the opposite direction.

Figures 1–6 plot |Z1| and ratio Im(Z1)/Re(Z1) versus
dynamic viscosity η at E0 = 0 for different thicknesses
of the water layer (ρ = 0.998 g/cm3, γ = 72.8 dyn/cm,
g = 981 cm/s2). It is known that capillary waves on the
surface of a deep ideal liquid have blunted ridges. In the
finite-thickness layer, the ridges of the waves sharpen
with increasing viscosity, as follows from Fig. 1. More-
over, they become skewed in the direction opposite to
the wave propagation, the skew growing with viscosity.
As the layer gets thinner, the reverse effect is observed:
the ridges become more blunt and the skew opposite to
the direction of wave propagation disappears. The
decrease in the layer thickness to 0.1λ, where λ is the
wavelength, changes qualitatively the run of the curves.
First, the radius of curvature of the ridges increases
with the viscosity (Fig. 2) and, second, the waves
become skewed in the direction of wave propagation.
Moreover, in such a shallow liquid, the viscosity depen-
dence of their skew becomes nonmonotonic, unlike in the
deep liquid: as the viscosity grows, the skew initially
increases and then starts declining and changes sign.

For short gravitational waves, these dependences
are somewhat different: in thick (d @ 0.1λ) and thin
(d ≤ 0.1λ) liquid layers, they are qualitatively similar.
However, the amount of nonlinear interaction in thick
layers is 2–3 orders of magnitude lower than for capil-
lary waves, while in thin layers, the amount of interac-
tion is of the same order of magnitude as in capillary
waves (Figs. 3–6).

The ridges of gravitational waves on the liquid layer
with a depth on the order of wavelength are sharp and
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slightly skewed in the direction of wave propagation.
As the layer gets thinner, the ridges become still sharper
and their skew decreases and changes sign at a thick-
ness of ≈0.2λ. As the viscosity grows, the ridges
become blunt and their skew increases. For very thin
layers (≈0.05λ; Figs. 5 and 6), the run of the associated
curves is basically similar: the only difference is that
viscosity increases, rather than decreases, the sharpness
of the ridges.

The effect of the electric charge on the wave flow on
the surface of a viscous liquid was considered earlier
for indefinitely deep liquids [5, 6]. It influences prima-
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0.10

102 × η, P

ImZ1/ReZ1
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1

(a)

(b) 1

2

3

4

Fig. 1. (a) Absolute value of amplitude factor Z1 appearing
in the nonlinear correction to the wave profile and (b) the
ratio between the imaginary and real parts of Z1 vs. viscos-
ity for short waves (λ = 0.1 cm) and thick layers. d = (1) 4λ,
(2) 0.4λ, (3) 0.25λ, and (4) 0.2λ.
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2
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1|,
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m

–
1
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Fig. 3. Absolute value of amplitude factor Z1 vs. viscosity
for waves with λ = 30 cm and thick layers. d = (1) 4λ,
(2) 0.73λ, (3) 0.63λ, and (4) 0.58λ.
rily the positions of internal nonlinear resonances (not
considered here, although it is evident from expression
(27) that resonant interaction of waves takes place and
its amount will depend both on the viscosity of the liq-
uid and on the thickness of the layer) and the curvature
of the ridges. Basically, the effect of the charge on the
wave flow of an indefinitely deep viscous liquid, which
was discovered earlier, is the same as in finite-thickness
layers. As for thin (d ≤ 0.1λ) and thick (d @ 0.1λ) lay-
ers, the effect of the electric charge calls for thorough
analysis with inclusion of higher order corrections,
which will be carried out later.
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Fig. 2. (a) Absolute value of amplitude factor Z1 and (b) the
ratio between the imaginary and real parts of Z1 vs. viscos-
ity for short waves (λ = 0.1 cm) and shallow layers. d = (1)
0.1λ, (2) 0.095λ, (3) 0.09λ, and (4) 0.085λ.
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Fig. 4. Ratio between the imaginary and real parts of Z1 vs.
viscosity for waves with λ = 30 cm and thick layers. d = (1)
4λ, (2) 0.33λ, (3) 0.23λ, (4) 0.19λ, and (5) 0.17λ.
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In the approximation quadratic in wave amplitude,
the damping of nonlinear capillary–gravitational waves
in a viscous liquid of finite thickness is completely
determined, according to (28), by the damping rate well
known from the linear theory [13], which is described
by real component r = ReS of complex frequency S. It
is seen from (28) that the nonlinear (quadratic in wave
amplitude) component of the total solution decreases
with time with the double damping rate (unlike the lin-
ear part of the solution, which falls with the single
damping rate). The dependence of the damping rate on
the viscosity and liquid layer thickness was compre-
hensively studied in [12]. Specifically, it was found that
the layer thickness has an effect on the damping rate
only in shallow liquids with d ≤ λ/π. At d ≥ λ, bottom
damping influences the time evolution of the wave

1 2
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2
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4
|Z1|, cm–1

102 × η, P

3.6

1 2
0

–0.05

–0.10

–0.15
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3
4ImZ1/ReZ1

102 × η, P

Fig. 5. Absolute value of amplitude factor Z1 vs. viscosity
for waves with λ = 30 cm and shallow layers. d = (1) 5 ×
10−2λ, (2) 4.93 × 10–2λ, (3) 4.87 × 10–2λ, and (4) 4.8 ×
10−2λ.

Fig. 6. Ratio between the imaginary and real parts of Z1 vs.
viscosity for waves with λ = 30 cm and shallow layers. d =
(1) 5.67 × 10–2λ, (2) 5.17 × 10–2λ, (3) 4.83 × 10–2λ, and
(4) 4.67 × 10–2λ.
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amplitude only slightly: the amplitude is totally speci-
fied by damping in the volume.

CONCLUSIONS

For both capillary and gravitational waves, the vis-
cosity dependences of the curvature and skew of the
wave ridges are different in thick (d @ 0.1λ) and shal-
low (d ≤ 0.1λ) liquid layers. This indicates that the
wave flow in shallow and thick liquids differ qualita-
tively and validates the popular opinion that long and
short (compared with the layer thickness) waves on the
viscous liquid surface should be studied by radically
different methods.
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Abstract—Mathematical expedients used in designing ground tests of aerodynamic object models with the aim
of finding experimental conditions optimal in terms of the body and accuracy of extracted information are
described. In the first part of this paper, the method used in designing ballistic experiment is demonstrated with
processing of single-experiment data. In the second part, the validity of the design approach is illustrated by
simultaneously processing trajectory data obtained in several experiments. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The ballistic experiment implies flight tests of mod-
els of aerodynamic objects under laboratory or natural
conditions. Such tests are usually aimed at determining
the force and moment characteristics of the object. We
shall focus our attention on this problem.

The need for mathematical design of the ballistic
experiment arises both at the stage of designing a new
ballistic range and during investigation. In the latter
case, the goal of experimental design is to find experi-
mental conditions that are optimal in terms of the body
and accuracy of extracted information. The approaches
considered below allow one to solve both problems.

A ballistic range intended for determining the aero-
dynamic characteristics of an object from trajectory
data comprises a launcher and a set of means (most fre-
quently optical) for recording separate points of the tra-
jectory. The number of these points may amount to several
tens. By trajectory data are meant three linear coordinates
of the center of mass of the object and three angular coor-
dinates specifying the orientation of the object in space at
certain time instants. The problem of finding the force
characteristics from the trajectory data is reduced to solv-
ing the inverse problem of dynamics of a rigid body with
the use of discrete trajectory data (points) involving
measurement errors. It is obvious that such a problem,
like any inverse problem, is ill-posed.

CONCISE DESCRIPTION 
OF THE MATHEMATICAL APPROACHES

The approaches to be discussed are based on nonlin-
ear estimation of the system’s parameters [1, 2] by fit-
1063-7842/05/5010- $26.00 ©1268
ting a mathematical model to numerical output data
(the so-called responses) of the system. As far as we
know, Chapman and Kirk [3] were the first to apply the
approach used in this paper to the problem considered
when analyzing the trajectory data of the Gemini
lander. They named this approach “the method of dif-
ferential correction.” In the theory of nonlinear estima-
tion, this approach is known as the Gauss–Newton
method. The problem is solved by the least squares
method with the aim to minimize the objective func-
tion, which is the residual sum of the squares of the
deviations of the measured coordinates from the ones
calculated using a chosen mathematical model and a
certain approximation of desired parameters. The min-
imization is carried out by correcting the initial approx-
imation of the parameters. However, analytical expres-
sions for the objective function are impossible to
derive, since analytical solutions to the set of nonlinear
ordinary differential equations of motion are absent.
The Gauss–Newton approach consists in representing
unknown solutions in the form of linear parts of multi-
variate Taylor series in desired parameters. Following
the authors of [3], we exemplify the aforesaid with a
simple expression for the residual sum of squares in one
coordinate,

(1)

εi
2

i 1=

N

∑ qexp xi( ) qcalc xi( )0∫–
i 1=

N

∑=

–
∂q
∂C j

--------- 
 

i

∆C j
∂q
∂q0
--------∆q0–

∂q
∂q0'
--------∆q0'–

j 1=

M

∑
2

.

 2005 Pleiades Publishing, Inc.
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Here, εi are the deviations of coordinates qexp(xi) mea-
sured at N points xi from values qcalc(xi)0 calculated
using a chosen mathematical model, initial approxima-
tions of M desired parameters Cj, and two unknown ini-
tial conditions of motion q0 and . Small increments

of Cj, q0, and  (differentials ∆Cj, ∆q0, and ∆ ,
respectively) are expected to improve the approxima-
tion provided that the parenthesized first derivatives in
expression (1) will be found and then these increments
will be calculated from the minimum condition for the
entire expression.

The first derivatives of the response function with
respect to the desired parameters can be found as fol-
lows. The initial differential equation of motion for the
response function (the coordinate of the object in the
given case),

is differentiated with respect to all desired parameters
Cj in view of the initial conditions of motion, since
function q depends on them too,

The independent variable is denoted as x arbitrarily:
it may be the coordinate along the flight direction (as in
[3]) or flight time. The sequence of differentiating func-
tion q with respect to the independent variable and
desired parameters can be varied. This allows one to
consider the derived equations as second-order linear
differential equations with variable coefficients in the
first partial derivatives of function q with respect to the
desired parameters (including the initial conditions of
motion). These equations are called the sensitivity
equations. The initial conditions for the derivatives with
respect to the aerodynamic coefficients that supplement
the sensitivity equations are equal to zero and unity
only for the derivatives with respect to the initial coor-
dinate and initial rate of change of this coordinate. This
is exemplified in detail in [3]. The coefficients of the
sensitivity equations and their right-hand sides can be
found by numerically integrating the initial equation of
motion at a certain approximation of the desired param-
eters. Thus, by jointly numerically integrating the ini-
tial equation of motion and the sensitivity equations,
one can find the partial derivatives of the response func-
tion with respect to the desired parameters at points xi

of the experimental design.

From the local minima of expression (1) in terms of
the desired parameters, one finds M + 2 linear algebraic
equations for corrections ∆Cj, ∆q0, and ∆  and,
accordingly, new approximations of these parameters,

e.g.,  =  + ∆ , where superscript t is the serial
number of the iteration. The iterative process converges

q0'

q0' q0'

d2q

dx2
-------- f

dq
dx
------ q, 

 + 0,=

q q C1 C2 C3 … Cm q0 qx' x, , , , , , ,( ).=

q0'

C j
t 1+ C j

t C j
t
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very rapidly even if the initial approximations of the
parameters are crude.

At the stage of solving the set of algebraic equations
derived from the minimum condition for expression
(1), it is reasonable to apply linear regression analysis
[2, 4, 5] and, thereby, to statistically estimate the signif-
icance of the desired parameters in the course of con-
struction of an adequate mathematical model of
motion. The same approach allows one to evaluate the
confidence intervals of the final parameters appearing
in the dependences of the aerodynamic coefficients on
the angle of attack and Mach number. In addition, it
becomes possible to determine the confidence intervals
for these functions themselves. To do this, the N × (M +
2) rectangular matrix of the coefficients of the algebraic
equations obtained from the minima of expression (1)
and the vector of residuals are multiplied from the left
by the transposed matrix of the coefficients. The result-
ing square matrix is referred to as the information
matrix. A solution to the matrix equation derived gives
corrections to the desired coefficients. The inverse to
the information matrix is the variance matrix. The ele-
ments of the variance matrix possess important proper-
ties. The diagonal elements of the variance matrix,
being multiplied by the variance of measurements esti-
mated from the root-mean-square residual give the vari-
ances of the desired coefficients. The off-diagonal ele-
ments, which are correlation coefficients for the model
parameters, make it possible to evaluate the variances
of the dependences of the aerodynamic coefficients on
the angle of attack and Mach number. Based on the
variances obtained, one can estimate, using the Student
statistical distribution, the confidence intervals for the
desired parameters at a given confidence probability at
each step of the iteration process and judge the signifi-
cance of the coefficients involved in the mathematical
model. Thus, the construction of an adequate mathe-
matical model through its successive complication at
each step is controlled with the statistical tests.

An important property of the approach proposed in
[3] is that it admits of simultaneous processing of tra-
jectory data taken in several experiments with model
objects of the same shape. The dimensions, weights,
and moments of inertia of the objects, as well as the
density of the gas in which the objects move, may vary
from run to run. Naturally, the aerodynamic coefficients
remain invariable in this case (if Reynolds numbers
correspond to the same flow regime); only the initial
conditions of motion may differ. This means that
expression (1) written for each experiment must
involve the partial derivatives with respect to the initial
conditions of other experiments, which all will be iden-
tically equal to zero. Accordingly, the dimension of the
information matrix including the results of all runs will
increase by the double number of additional runs as
compared with the matrix for a single test.

The possibility of jointly processing data collected
in several runs is important not only because the num-
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ber of points of the general experimental design
increases, thereby increasing the number of degrees of
freedom (i.e., the difference between the amount of
measurements and the number of parameters to be eval-
uated). The fact is that, at a weak nonlinearity of the
pitching moment, the oscillations are nearly sinusoidal
(within the accuracy of measurement of the angular
coordinates) [6]. Therefore, by analyzing the shape of
oscillations alone, one cannot find nonlinear terms
involved in the expression for the pitching moment. At
the same time, the nonlinearity of the moment makes
the oscillations asynchronous: their period (or wave-
length) appreciably depends on the amplitude. In
jointly processing the results of several runs with differ-
ent peak-to-peak amplitudes, the moment as a function
of the angle of attack is selected so as to fit all experi-
mental results. (Chapman and Kirk [3] emphasized this
merit of their approach.) Note also that simultaneous
processing of data taken in several runs allows one, for
example, to establish the Mach dependence of the
moment even if the trajectory is short. For this purpose,
it is sufficient that data for the same model object mov-
ing with different initial velocities be processed in order
to cover the range where the Mach number has a tangi-
ble influence.

In mathematical design of the experiment, the direct
problem of motion of a model object is solved as
applied to a specific ballistic range (already existing or
being designed). In this case, the residuals mentioned
above are absent, since the trajectory is derived by
numerically integrating the equation of motion. Resid-
uals can be simulated by a random number generator
with a given variance and mathematical expectation.
However, there is no need to do this, because there
exists the nondegenerate information matrix, and, con-
sequently, its inverse, namely, the variance matrix with
the remarkable properties discussed above. Therefore,
it will suffice to set hypothetical variances of coordinate

Cn
ρS
2

------V2

Cm
ρS
2

------lV2

Cx
ρS
2

------V2

Ct
ρS
2

------V2

Cy
ρS
2

------V2

mg

α

θ

ϑ

V

x

y

Fig. 1. Coordinate system, as well as the aerodynamic force
components and aerodynamic moment acting on a flying
body.
measurements in order to calculate expected variances
and confidence intervals for the parameters to be evalu-
ated.

The goal of this paper is to exemplify the efficiency
of mathematical design of the ballistic experiment. By
multistage design, we mean successive refinement of
optimal experimental conditions found from experi-
mental data gained at the previous stages. We will syn-
opsize the method used and cite the publications where
the related approaches and algorithms are described in
detail.

SIMULATION OF THE FREE FLIGHT 
OF AN AXISYMMETRIC OBJECT AIMED 

AT PROCESSING SINGLE-EXPERIMENT DATA

The parameters to be determined upon processing
trajectory data (denoted above as Cj) are involved in the
polynomial representations of the coefficients of drag,
lift, and aerodynamic (pitching and damping) moments
as functions of the angle of attack and Mach number.
For even functions of angle of attack, such representa-

tions have the form Cj =  + α2 + α4 + …; for
odd functions, the powers of angle of attack are odd.
The dependence on the Mach number is given, in the
general form, by a polynomial in (M – M0), where M0 is
chosen according to the specific form of the depen-
dence.

We will consider the plane motion of an object oscil-
lating in the vertical plane. The components of the aero-
dynamic force and moment are shown in Fig. 1. Let us
write the equation of motion in the form [7]

(2)

(3)

(4)

(5)

Here, t is the flight time, y is the vertical coordinate of
the center of mass of the object, ϑ  is the pitching angle,
α is the angle of attack, and θ is the slope angle of the
trajectory. The distance along the horizontal x coordi-
nate is taken for an independent variable; the deriva-
tives with respect to this coordinate are marked by the
prime. The aerodynamic force is presented via its pro-
jections onto the wind coordinate axes. The aerody-
namic coefficients have the form

(6)

(7)

C j
0 C j

α2

C j
α

t'' kt' Cx Cyy'+( ) 1 y'( )2+[ ] 1/2
,=

y'' kCy 1 y'( )2+[ ] 3/2
t'( )2g,–=

ϑ '' k Cx Cyy'+( ) 1 y'( )2+[ ] 1/2ϑ '=

+ kr 2– lCm 1 y'( )2+[ ] ,

ϑ α θ+ α dy
dx
------ 

  .arctan+= =

Cx Cx α M,( ),=

Cy Cy
α α M,( )α Cy

ϖ α M,( ) 1 y'( )2+[ ] 1/2–
lϑ ',+=
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(8)

where

For illustration, we take a model object in the form
of a body of revolution with a length of 0.1 m, diameter
of 0.045 m, and weight of 0.2 kg. The principal moment
of inertia about the transverse axis is 5 × 10–5 kg m2.
The working medium is air under the normal conditions
with a density of 1.25 kg/m3. It is assumed that the
model executes a plane motion, because it is clear from
general considerations that the effect of nonlinearity of
the aerodynamic characteristics shows up most vividly
in this case (at regular precession, for example, the
angle of attack has a value equal to the angle of nutation
and so the nonlinear dependences of the coefficients on
the angle of attack remain latent).

The aerodynamic characteristics are taken from the
range typical of bodies of revolution with the given
aspect ratio. They are assigned nonlinearities in such a
way that the coefficients multiplying the angle of attack
in the second power on, when determined from trajec-
tory data at a given measurement error, are close to their
limiting significance. The coefficients thus chosen are
listed in Table 1 together with their confidence half-
intervals at a confidence probability of 0.95. In Table 1,
subscripts x, y, and m refer, respectively, to the parame-
ters of expansion of the drag coefficient, parameters of
expansion of the lift, and parameters of the pitching
moment coefficient; the superscripts relate the coeffi-
cients to the corresponding powers of the angle of

attack; and  and  are the constant coefficients of
the damping lift and damping moment, respectively.
The angle of attack is taken in radians; so, all the coef-
ficients are dimensionless.

The confidence half-intervals listed in Table 1 are
calculated under the following conditions. The trajec-
tory data were obtained at twenty points equally spaced
over a trajectory length of 60 m. The mean measure-
ment errors are 0.25 mm for the linear coordinates, 0.2°
for the angular ones, and 0.5 µs for the flight time. The
initial velocity of the model is 1000 m/s; a decline of
the velocity, 5.7%; and the average Mach number, 2.82.
The trajectory segment being considered accommo-
dates 4.14 oscillation wavelengths. The initial ampli-
tude variation of the angle of attack is 20°.

Figure 2 is a graphical representation of the aerody-
namic coefficients, and Fig. 3 shows the variation of the
pitching angle and vertical coordinate of the center of
mass of the object along the trajectory.

From Table 1, it follows that the accuracy of deter-
mining the nonlinear components of the aerodynamic
force and moment is poor, as was expected. The accu-
racy of determining the damping and nonlinear compo-
nents of the lift should also be raised. The reason for the

Cm Cm
α α M,( )α Cm

ϖ α M,( ) 1 y'( )2+[ ] 1/2–
lϑ ',+=

ϖ dϑ
dt
------- l

V
--- 1 y'( )2+[ ] 1/2– ϑ 'l.= =

Cy
ϖ Cm

ϖ
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poor accuracy may be a high oscillation frequency of
the object, that is, a short time within which the lift is of
constant sign. As a result, the oscillation amplitude of
the center of mass in the vertical direction reaches
7 mm. To decrease the error involved in the lift coeffi-
cient, it is necessary to extend the time of action of the
lift, in other words, to increase the oscillation period or
wavelength. The question arises of how this can be
done.

Let us consider the motion of the object in a linear
approximation when the lift and moment are linear

Table 1

Coefficient Dimensionless value Error, %

0.2 1.4

0.1 87.7

2.0 27.9

1.0 6.8

–2.0 53.9

–0.1 4.8

–0.1 1.4

0.02 131.9
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Fig. 2. Aerodynamic coefficients of the hypothetical model
vs. angle of attack α (1) Cx = 0.2 + 0.1α2, (2) Cy = 1.0α –

2.0α3, (3) Cm = –0.1α + 0.02α3, and (4) Cm = –0.025α +

0.02α3.
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functions of the angle of attack and are independent of
the Mach number in the absence of damping. Taking
distance x along the trajectory as an independent vari-
able [7] and setting the pitching angle equal to the angle
of attack (the oscillations are weak, and the trajectory is
near-horizontal), we can write the equation of oscilla-
tion in the form

(9)

Here, α is the angle of attack,  is the derivative of the
moment coefficient with respect to the angle of attack,
ρg is the gas density, S is the midsectional area of the
object, Iz is the principal central moment of inertia
about to the transverse axis, and l is the characteristic
length of the object. The squared velocity entering into
the expression for the dynamic head disappeared when
the longitudinal coordinate was taken as an indepen-
dent variable instead of time. It is obvious that the solu-
tion to Eq. (9) is

(10)

where

αm is the oscillation amplitude, and ϕ0 is the initial
phase.
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Fig. 3. Variation of the pitching angle (circles) and vertical
coordinate of the center of mass along the trajectory
(rhombs). The circles and rhombs correspond to the loca-
tions of trajectory recording stations.
The equation of motion of the center of mass in the
vertical plane has the form [7]

(11)

where  is the derivative of the lift coefficient with
respect to the angle of attack, m is the weight of the
object, and g is the acceleration of gravity.

Double integration of the first term on the right of
(11) with regard to (10) yields

(12)

The factor multiplying the sine in (12) is oscillation
amplitude ym of the center of mass in the vertical plane.
This quantity is proportional (see (10)) to the following
parameters:

(13)

since the weight and moment of inertia vary as the third
and fifth power of the object’s linear size, respectively.

From (13), it follows that, to increase the oscillation
amplitude of the center of mass of a model, one should
increase its linear size. However, such a possibility in
experimental ballistics is only speculative: it is limited
by the diameter of the bore of a launcher.

However, expression (13) involves one more param-
eter that can be varied: the derivative of the pitching
moment. This parameter decreases when the center of
mass shifts toward the center of pressure, thereby

d2y

dx2
-------- Cy

αρgS
2m
--------α t'( )2g,–=

Cy
α

y Cy
αρgS

2m
--------αm

2π
L

------ 
 

2– 2π
L

------x ϕ0+ 
  .sin–=

ym

Cy
α

Cm
α------
ρgS
2m
--------

2Iz

ρgSl
----------

Cy
α

Cm
α------l,≈ ≈

–20

–10

0

10

20

Pi
tc

hi
ng

 a
ng

le
, d

eg

0 20 40 60
0

0.02

0.04

0.06

Distance along the trajectory, m

V
er

tic
al

 c
oo

rd
in

at
e 

of
 th

e 
ce

nt
er

 o
f 

m
as

s,
 m

Fig. 4. Variation of the pitching angle and vertical coordi-
nate of the center of mass for the model with the reduced
pitching moment. For the circles and rhombs, see Fig. 3.
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diminishing the static stability margin of the body. In so
doing, the transverse moment of inertia may change
insignificantly. Therefore, we assume that, when the
position of the center of mass changes due to the mass
redistribution over the volume of the model, the trans-
verse moment of inertia remains unchanged. This
assumption will be used in the following consideration.
Thus, a change in the pitching moment turns out to be
the decisive factor. Naturally, either the pitching
moment found in such experiments should then be
reduced to the given center of mass or special experi-
ments should be carried out to determine the initial val-
ues of the pitching and damping moments.

To simulate such an approach, we decrease the
derivative of the pitching moment at the zero angle of
attack (Table 1) by a factor of 4 (Fig. 2) with the
moment of inertia and other parameters of expansions
of the aerodynamic coefficients remaining unchanged
(in this case, the oscillation wavelength increases
approximately twofold). Figure 4 demonstrates the
variation of the pitching angle and vertical coordinate

Table 2

Coefficient Dimensionless value Error, %

0.2 1.4

0.1 88.3

2.0 15.5

1.0 1.7

–2.0 14.6

–0.1 4.6

–0.25 3.1

0.02 77.7
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0
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α2

Cy
ϖ

Cy
α

Cy
α3

Cm
ϖ

Cm
α

Cm
α3
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of the center of mass of the new model along the trajec-
tory. Now the trajectory accommodates two oscillation
wavelengths.

It is seen from Fig. 4 that the oscillation amplitude
of the center of mass of the model has increased several
times up to 30 mm. Accordingly, the accuracy of deter-
mining the components of the lift coefficient has
improved (Table 2). The errors involved in the moment
and drag coefficients have changed insignificantly,
whereas the lift coefficients have been determined
much more accurately. This example illustrates the effi-
ciency and necessity of multistage design of the ballis-
tic experiment. In Part II of this paper, we perform sim-
ulation using the parameters from Table 2 to demon-
strate the efficiency of simultaneously processing data
obtained in several experiments with models of the
same shape.
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Abstract—Mathematical expedients used in designing ground tests of aerodynamic object models with the aim
of finding experimental conditions optimal in terms of the body and accuracy of extracted information are
described. In the first part of this paper, the method used in designing the ballistic experiment is demonstrated
with processing of single-experiment data. In the second part, the validity of the design approach is illustrated
by simultaneously processing trajectory data obtained in several experiments. © 2005 Pleiades Publishing, Inc.
SIMULATION OF THE FREE FLIGHT 
OF AN AXISYMMETRIC OBJECT: 

SIMULTANEOUS PROCESSING OF DATA 
OF SEVERAL EXPERIMENTS

In Part I of this paper, we considered the flight of an
axisymmetric aerodynamic object in air. It will be
remembered that the object has a length of 0.1 m, diam-
eter of 0.045 m, and mass of 0.2 kg. Its principal
moment of inertia about the transverse axis equals 5 ×
10–5 kg m2. The air density was taken to be equal to
1.25 kg/m3. The 60-m-long trajectory is provided with
20 stations for recording trajectory data with an accu-
racy of 0.25 mm for the linear coordinates of the center
of mass, 0.2° for the angular coordinates, and 0.5 µs for
time. The initial velocity of the body amounts to
1000 m/s, and the initial angle of attack is 20°. The
aerodynamic object is assigned aerodynamic character-
istics that are specified by the initial coefficients of their
expansions into power series in the angle of attack.

These are drag coefficient Cx =  + , damping lift

coefficient  = const, lift coefficient Cy = α +

α3, damping moment coefficient  = const, and

static pitching moment coefficient Cm = α + α3.
The equations of motion are given in Part I.

The coefficients of the polynomial representations
of the aerodynamic characteristics are listed in Table 1
together with the confidence half-intervals for their
estimates based on single-experiment data obtained
under the experimental conditions mentioned above.
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ϖ Cy
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α3
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From Table 1, it follows that the accuracy in deter-
mining the nonlinear (in angle of attack) components of
the drag and pitching moment coefficients is very low.
The reason for a low accuracy was discussed in Part I.
To decrease the errors, we simultaneously process data
of four model experiments with initial angles of attack
of 5°, –10°, 15°, and 20°. The associated confidence
half-intervals are presented in Table 2.

It is seen that the accuracy of determining the expan-
sion coefficients has noticeably increased compared
with the data in Table 1. For the errors involved in the
higher expansion coefficients to decline further, it is

Table 1

Coefficient Dimensionless value Error, %

0.2 1.4

0.1 88.3

2.0 15.5

1.0 1.7

–2.0 14.6

–0.1 4.6

–0.25 3.1

0.02 77.7
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Cx
α2
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ϖ

Cy
α

Cy
α3

Cm
ϖ

Cm
α

Cm
α3
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necessary either to measure the coordinates and time
with a higher accuracy, which seems unrealistic, or pro-
cess a larger body of experimental data, including those
obtained at different oscillation amplitudes.

Importantly, the errors in the nonlinear components
of the aerodynamic coefficients, which may be as high
as 20–30%, affect the calculated dependences of the
coefficients on the angle of attack insignificantly. This
is because these components correlate with each other
(the correlation results from their linear interrelation,
which, in turn, reflects the fact that the components are
related by linear algebraic equations [1–3]). By way of
illustration, Table 3 lists the aerodynamic coefficients
and their confidence half-intervals as functions of the
angle of attack that were calculated using the data from
Table 2 with regard to the coefficients of correlation
between the parameters of expansions of the coeffi-
cients. The coefficients of correlation, which are the
off-diagonal elements of the variance matrix, are omit-
ted here.

From Table 3, it follows that the confidence intervals
for the functions describing the variation of the aerody-
namic coefficients increase noticeably near the upper
limit of the angle-of-attack range. However, this
increase is not too strong, as might be expected based
on 20–30% confidence half-intervals for the higher
coefficients in the expansions of these functions
(Table 2).

INFLUENCE OF THE NUMBER AND LOCATION 
OF TRAJECTORY RECORDING STATIONS

Now consider how the number of recording stations
uniformly located along a 60-m-long flight path influ-
ences the accuracy of finding the aerodynamic coeffi-
cients when the data of four experiments are processed
simultaneously (the problem of designing a new ballis-
tic range). The associated results are shown in Figs. 1
and 2. It is seen that the confidence intervals for the lin-
ear components and damping moment are one order of
magnitude smaller than those for the nonlinear compo-
nents and damping lift. Recall that the latter compo-
nents were deliberately chosen near their significance
limit in processing single-experiment data. Simulta-
neous processing of data taken in four experiments has
allowed us to decrease the errors involved in these coef-
ficients by three times on average. As was expected, the
errors in determination of the aerodynamic coefficients
decrease with increasing number of recording stations;
however, these dependences smooth out in this case.
Since the errors in the aerodynamic coefficients can be
diminished by increasing the number of experiments
processed simultaneously, it seems reasonable to limit
the number of the stations over a flight path of 60 m to
twenty or thirty. In this case, the spacing between regu-
larly arranged recording stations (approximately 2 m)
is sufficient for placing processing equipment and aux-
iliary facilities. However, the descending curves in
Figs. 1 and 2 mean increased costs of construction and
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
maintenance of a range; therefore, the optimal number
of recording stations depends on many, including sub-
jective, factors.

It can be shown by simulation that whether record-
ing stations are arranged regularly or not is of minor
significance. When, say, ten stations are placed over the
first 20 m of the trajectory and other ten over the
remaining 40 m, the errors change by fractions of per-
cent in Fig. 1 and by 1–2% in Fig. 2. Then, it follows
that it is reasonable to arrange the stations nonuni-
formly in order to use, if necessary, only the initial part
of the trajectory and still have an acceptable number of
points in the experimental design.

ON THE INFLUENCE OF THE WORKING GAS 
PRESSURE

If a ballistic range is equipped with a measuring
pressure chamber allowing one to control the parame-
ters of the gas medium where an object flies, additional
possibilities appear for choosing a relationship between
the wavelength of object’s oscillations and the length of
the trajectory being recorded. The oscillation wave-
length can be extended up to the entire length of the
pressure chamber by reducing the gas pressure inside
the chamber. Figure 3 demonstrates the variation of the
pitching angle and vertical coordinate of the center of
mass of the object along the 60-m trajectory when the
air pressure is reduced to 10–4 Pa. Table 4 lists errors
expected when the data of four experiments at the
reduced pressure were processed simultaneously. From
this table, it follows that, at the pressure equal to one-
tenth of the atmospheric value, it is necessary to extend
the trajectory length in order to determine the nonlinear
components of the aerodynamic coefficients, because
even simultaneous processing of several tests does not
help (cf. Table 1). With the trajectory length extended

Table 2

Coefficient Dimensionless value Error, %

0.2 0.14

0.1 14.5

2.0 11.5

1.0 0.9

–2.0 9.4

–0.1 3.3

–0.25 0.9

0.02 27.9

Cx
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Cx
α2

Cy
ϖ

Cy
α

Cy
α3

Cm
ϖ

Cm
α

Cm
α3
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three times (180 m), the errors diminish appreciably
(Table 5).

INFLUENCE OF THE OBJECT’S INITIAL 
VELOCITY

The influence of the initial velocity of the object on
errors in determination of the aerodynamic coefficients
from the trajectory data can be clarified without resort
to numerical simulation. Paper [4] gives equations of
plane motion of an object in a gas in the linear approx-
imation. Ignoring the terms of little significance in
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Fig. 1. Confidence half-intervals for the (s) damping
moment and linear components of the aerodynamic coeffi-
cients: (n) pitching moment, (u) lift, and (e) drag vs. the
number of recording stations when simultaneously process-
ing data of four experiments over a trajectory of length
60 m. The confidence probability is 0.95.
 these equations yields

(1)

(2)

(3)

where the primes denote derivatives of time t, coordi-
nate y, and pitching angle ϑ with respect to longitudinal
coordinate x [5, 6]); k = ρS/2m; ρ is the gas density; S is
the mid-sectional area of the object; m and l are the
mass and length of the object, respectively; rz is the
radius of inertia about the transverse axis; Cx, Cy, and
Cm are the coefficients of drag, lift, and total aerody-

t'' kt'Cx,=

y'' kCy t'( )2g,–=

ϑ '' krz
2– lCm,–=
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Fig. 2. Same as in Fig. 1 for the (o) damping lift component
and nonlinear components of the static aerodynamic coeffi-
cients: (n) pitching moment, (u) lift, and (e) drag.
Table 3

Angle
of attack, deg

Drag coefficient Lift coefficient Pitching moment coefficient

dimensionless 
value

confidence
half-interval, %

dimensionless 
value

confidence
half-interval, %

dimensionless 
value

confidence
half-interval, %

0 0.2000 0.14 0.0000 0.0000

2.00 0.2001 0.13 0.0348 0.86 –0.0009 0.88

4.00 0.2005 0.11 0.0691 0.81 –0.0017 0.81

6.00 0.2011 0.09 0.1024 0.72 –0.0026 0.69

8.00 0.2019 0.09 0.1342 0.61 –0.0034 0.54

10.00 0.2030 0.14 0.1639 0.51 –0.0043 0.41

12.00 0.2044 0.22 0.1911 0.48 –0.0051 0.41

14.00 0.2060 0.33 0.2152 0.64 –0.0058 0.66

16.00 0.2078 0.45 0.2357 0.98 –0.0065 1.05

18.00 0.2099 0.58 0.2521 1.46 –0.0072 1.55

20.00 0.2122 0.73 0.2965 2.10 –0.0079 2.14
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namic moment (including damping), respectively; and
g is the gravitational acceleration.

Omitting the second term on the right of (2) (the free
fall of the model may be approximately taken into
account by neglecting a small vertical component of the
drag through addition of gt2/2 to the corresponding y
coordinate), one can see that neither time nor the flight
velocity enter into Eqs. (2) and (3) explicitly (the veloc-
ity dependences of coefficients Cy and Cm can be
neglected over a short part of the trajectory). Thus, both
quantities do not influence the estimates of the lift and
aerodynamic moment.

Not so with Eq. (1). Here, the response function (the
flight time) itself directly depends on the flight velocity,
growing monotonically: the higher the velocity, the
slower the growth (t' ~ V–1, where V is the model instan-
taneous velocity). However, we are interested in the
contribution to the response function from the wind
resistance rather than in the whole response function.

At constant Cx, the second integral of Eq. (1) has the
form

(4)

Lets us expand expression (4) into a power series
in x,

(5)

The first two terms on the right of (5) correspond to
uniform motion (without drag). The expression in
parentheses describes the contribution due to a velocity

t t0

t0'

kCx

--------- kCxx( )exp 1–( ).+=

t t0 t0' x t0' kCx
x2

2!
----- k2Cx

2 x3

3!
----- …+ + 

  .+ +=
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Fig. 3. Variation of the (d) pitching angle and (r) vertical
coordinate of the center of mass of the object along the tra-
jectory. The air pressure is one-tenth of the atmospheric
value.
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decrease, which is velocity-independent (if one
neglects the dependence of the drag on the Mach num-
ber; however, this effect is of the second order of small-
ness in this case). The factor multiplying the parenthe-
sis is the reciprocal of the model’s initial velocity. Thus,
the higher the initial velocity, the smaller the absolute
contribution of the wind resistance to the response
function (flight time); that is, the quantity of interest
varies inversely with the velocity. It is natural to sup-
pose that the relative error of estimation of the drag
over a fixed part of the trajectory will grow nearly pro-
portionally to an increase in the initial velocity if the
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Fig. 4. Variation of the pitching angle (curve without sym-
bols) and (r) vertical coordinate of the center of mass along
the trajectory for the model half as large as that in Fig. 1
with the same mass distribution over the volume. The initial
flight velocity is 2.5 km/s.

Table 4

Coefficient Dimensionless value Error, %

0.2 1.4

0.1 92.0

2.0 291.0

1.0 3.5

–2.0 25.2

–0.1 179.3

–0.25 4.1

0.02 72.6
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errors involved in the time and flight path remain con-
stant. Numerical simulation completely confirms this
supposition. Thus, to maintain the error in determina-
tion of the drag coefficient from trajectory data at an
accepted level when the initial velocity increases, it is nec-
essary, as in the case of decreasing pressure of the working
gas, to extend the recorded part of the flight path. In this
case, the extension of the flight path should be roughly
proportional to the increase in the initial velocity.

ON THE CHOICE OF THE DIMENSIONS 
AND INERTIAL CHARACTERISTICS 

OF THE OBJECT

The experimental conditions may also be optimized
by properly choosing the dimensions of the model
(with its shape remaining invariable) and its inertial
characteristics. The former and the latter can be done

Table 5

Coefficient Dimensionless value Error, %

0.2 0.16

0.1 10.5

2.0 27.1

1.0 0.9

–2.0 7.1

–0.1 9.0

–0.25 0.8

0.02 16.0

Cx
0

Cx
α2

Cy
ϖ

Cy
α

Cy
α3

Cm
ϖ

Cm
α

Cm
α3

Table 6

Coefficient Dimensionless value Error, %

0.2 0.15

0.1 27.2

2.0 26.0

1.0 1.8

–2.0 19.9

–0.1 2.4

–0.25 0.5

0.02 22.1

Cx
0

Cx
α2

Cy
ϖ

Cy
α

Cy
α3

Cm
ϖ

Cm
α

Cm
α3
independently; however, change of the dimensions
seems to be more promising and logical (to change the
density of the model material is a much more difficult
task than to change the dimensions of a model). Let us
simulate the four previous atmospheric-pressure exper-
iments having cut the dimensions of the model by half.
Its mass and moment of inertia then decrease eightfold
and 32-fold, respectively. The angular oscillations and
transverse displacement of the center of mass of the
model observed in one of the experiments are shown in
Fig. 4, and the related errors are given in Table 6.

Under the given conditions, as the oscillation fre-
quency grows (because of decreasing the moment of
inertia), the error involved in the lift coefficient compo-
nents increases, as follows from Fig. 4 and Table 6.
However, this does not mean that variation of the
dimensions and inertial characteristics of a model can-
not provide good results.

CONCLUSIONS

The algorithm for numerically simulating the plane
motion of an axisymmetric object in a gas medium
elaborating upon the approaches proposed by other
authors to identifying the aerodynamic characteristics
of the object from the trajectory data is helpful in for
multistage design of the ballistic experiment. These
approaches are supplemented by the procedures used in
statistic estimation of expected identification errors for
given errors of measurement of the trajectory data.
Mathematical design of the ballistic experiment is
aimed at optimizing experimental conditions to
improve the measurement accuracy.
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Abstract—The properties of NiO nanopowders prepared by electrical explosion of a wire in an oxygen-con-
taining atmosphere are presented. Most of the NiO nanopowders are found to be oxygen-enriched, the excess
of oxygen depending mainly on the nickel vapor concentration. The dependences of the powder particle size on
the oxygen concentration and overheating of the exploding metal are discussed. The powder nanoparticles are
both single-crystal and polycrystalline with a rhombohedral lattice and have different shapes (from cubic to
spherical). There typical sizes range from 15 to 50 nm, depending on the explosion conditions. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

NiO powders were prepared by electrical explosion
of a wire with the aim of studying their activity in vari-
ous solid-phase reactions and producing a conducting
phase in the anodes of fuel elements.

When producing powders consisting of oxides of Al
[1, 2], as well as Zr and Ti [3], i.e., of metals whose heat
of oxidation is substantially higher than their energy of
sublimation (by a factor of 2.6, 2.2, and 1.3 for Al, Ti,
and Zr, respectively), we noticed that a decrease in the
overheating of the metal makes it possible to diminish
the particle size through a decrease in the concentration
of suspended burning liquid metal droplets (metal
vapor). For the same reason (a reduction of the vapor
concentration), the particles shrink with decreasing
diameter of the exploding wire, all other things being
equal. It was also found that the particle size can be
decreased further by extending the combustion time via
reduction of the oxygen concentration [4].

It is of interest to verify these dependences with
nickel oxide powders, since the energy of oxidation of
Ni is as low as 0.66 of its energy of sublimation.

EXPERIMENTAL

The powders were prepared from two pieces of NP2
nickel wire (99.5% Ni) with diameter d = 0.3 and
0.5 mm and length l = 227 and 150 mm long. The dis-
charge circuit had an inductance of 0.5 µH and a total
capacitance of a capacitor bank of 3.1 µF. The charging
voltage was varied from 10 to 33 kV, which provided
overheat factor K = W/Ws (W is the energy applied to
the wire, and Ws is the energy of sublimation of the
metal) ranging from 0.4 to 1.3. The wire was exploded
1063-7842/05/5010- $26.00 1279
under normal pressure in a N2 + O2 mixture, where the
O2 concentration, , was varied from 8 to 30 vol%.

Combustion produces a mixture of nanopowders
containing nonevaporated drops whose size may reach
several tens of microns. Therefore, the flue gas path was
equipped with a set of devices for particle separation
[5], namely, a screw separator connected to the explo-
sion chamber, the first cyclone 40 mm in diameter, the
second cyclone 40 mm in diameter, an electric filter,
and a fabric filter. Such an experimental scheme was
applied earlier in production of Al, Zr, Ti, etc., oxides.
The cross section of the pipeline and screw separator
was 690 mm2. We analyzed only the powders collected
in the electric filter.

The powders were sorted in accordance with their
specific surface area S by argon sorption on/desorption
from an argon–helium mixture with a GKh-1 device.
The content of volatiles in the powders was determined
with a Q-1500 derivatograph. In addition, the phase
composition of the powders (DRON-4 diffractometer)
and their elemental composition (Jobin Yvon 48 spec-
trometer) were analyzed. The powders were also exam-
ined by transmission electron microscopy and electron
diffraction (JEM-200 microscope), as well as by scan-
ning electron microscopy (LEO-982 microscope).

RESULTS AND DISCUSSION
The results obtained indicate that, as for the metals

studied earlier, combustion makes it possible to
decrease the particle size roughly by 3.5 times with the
overheat decreasing from 1.3 to 0.45–0.40 (Fig. 1).

The powder yield in the electric filter is ~8%. How-
ever, we failed to reliably establish the dependence of

kO2
© 2005 Pleiades Publishing, Inc.
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the yield on the overheat in small lots of samples
because of strong adhesion of the fine fraction to the
walls of the flue gas path. A major portion of the pow-
der (up to 80% of the wire weight) settles in the primary
separators (traps, screws, and the first cyclone) and in
the chamber; thereby, the nanofraction is partly lost. To
determine the total yield of fractions with a particle size
of less than 200 nm, we performed sedimentation anal-
ysis of the powders collected from all relevant sites and
measured the weight of the collections. It was found
that the real content of nanoparticles in the powder var-
ies from 15 to 30 wt% as the overheat increases from
0.5 to 1.0.

In an effort to reduce adhesion to the interior of the
flue gas path and improve the yield at sites of collec-
tion, we diminished the particle concentration in the
flow. To this end, we increased the cross section of the
gas tubes fivefold and the diameter of the first cyclone
by a factor of 7.5.

As follows from the experimental data, the use of
wider tubes allowed us to decrease the amount of the
powder remaining in the flue gas path by one order of
magnitude. The increased heat-exchange surface and
decreased particle concentration in the flow provided
more rapid cooling of the particles and, hence, lowered
adhesion losses.

As follows from Fig. 1, the specific surface area of
the powder from the electric filter after explosion of the
wire with d = 0.5 mm is larger than that of the powder
produced from the wire with d = 0.3 mm under similar
conditions. This seems contrary to the dependence of
the specific surface area on the wire diameter found in
[2]: S increases with decreasing wire diameter, all
things being equal. However, in [2] and other studies,
the specific surface areas of the powders collected with-
out separation (i.e., the total amount of the powder pro-
duced by explosion and collected in the explosion
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Fig. 1. Overheat dependence of the specific surface area of
the NiO powder in the electric filter at  = 21 vol%.

(1) l = 227 mm, d = 0.3 mm and (2) l = 150 mm, d = 0.5 mm.

kO2
chamber) were compared. Therefore, we carried out
special experiments and, as in [2], collected the whole
powder in the explosion chamber. The results (Fig. 2)
demonstrated that the dependence of the total specific
surface area on the wire diameter remains the same.

Unlike the metals studied earlier, a rise in the oxy-
gen concentration increases, rather than decreases, the
specific surface area, all other things being equal
(Fig. 3). In the oxygen concentration range from 8 to
30 vol %, the increase amounts to 25%. However, as
the nickel overheats more and more, an increase in the
oxygen concentration gives a smaller increase in S, and
the specific surface area even decreases at K ≥ 1.

Such behavior can qualitatively be explained as fol-
lows. The rate of a chemical reaction is known to be
controlled by the concentrations of reagents. Under the
conditions of wire explosion, this means that the higher
the oxygen concentration in the vapor, the more intense
combustion and evaporation of drops. Accordingly, the
vapor concentration grows and the vapor may become
supersaturated with subsequent condensation on appro-
priate nuclei. The higher the supersaturation, the higher
the particle growth rate and, hence, the coarser the par-
ticles. Such a scenario was observed in production of
powder oxides of chemically active metals (Al, Ti, Zr,
and MgAl2Ox) [1–4]. Therefore, in the works cited, the
oxygen concentration was lowered in order to decrease
the particle size; as a result, the combustion rate and
vapor concentration declined.

Since the heat of oxidation of nickel is low, nickel
drops evaporate with a much lower rate. Therefore, one
can safely raise the oxygen concentration to a certain
value without supersaturating the vapor. Higher rates of
oxidation and evaporation increase the amount of the
vapor phase and its temperature, thereby extending the
condensation range because of later cooling and, even-
tually, decreasing the particle size. As the overheating
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K
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Fig. 2. Overheat dependence of the total specific surface
area of the NiO powder at  = 21 vol%. (1) l = 227 mm,

d = 0.3 mm and (2) l = 150 mm, d = 0.5 mm.
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grows, so does the vapor phase concentration, and an
increase in the O2 concentration in the working gas has
no longer a significant influence. At K = 1, the vapor
seems to be supersaturated even at the very beginning
of expansion: the particle size grows, and the specific
surface area of the powder declines (Fig. 3).

To determine the oxygen content, we proceeded as
follows. The nickel content was determined by elemen-
tal analysis using an inductively coupled plasma (ICP),
and the Ni and NiO contents in the powder were found
by X-ray diffraction (XRD). The Ni content determined
by the ICP analysis was corrected for the content of vol-
atiles that was obtained by thermogravimetric analysis
(TGA). From the resulting value, the nickel content cal-
culated from the XRD data was subtracted. Then, the
oxygen content was calculated. The tabulated data
show that the powders free of metallic nickel are both
stoichiometric in oxygen content (lot NiO-56) and oxy-
gen-enriched to 9%. The oxygen content in the lots
with metallic Ni (NiO-9 and others) was calculated
approximately, since the Q-1500 derivatograph failed
in correctly measuring the content of volatiles in the
neutral gas. The TGA data represent the sum of desorp-
tion from and oxidation of metallic nickel. Analyzing
the explosion conditions and oxygen content, we found
that the latter grows with decreasing nickel vapor con-
centration. The oxygen content in the powders prepared
by explosion of the thinner wire is higher, all other
things being equal.

There is evidence that higher nickel oxides (Ni2O3)
exist [6]. This suggests that the excessive oxygen
observed in the nickel oxide nanopowders enters into
Ni2O3 present in NiO in the form of a solid solution.
However, the existence of Ni2O3 is not yet a well-docu-
mented fact [6].

After sedimentation under the conditions described,
the powders contain particles up to 300 nm in size and
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kO2

Fig. 3. Dependence of the specific surface area of NiO in the
electric filter on the oxygen concentration at l = 227 mm and
d = 0.3 mm. K = (1) 0.46, (2) 0.52, (3) 0.58, and (4) 1.
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are free of metallic nickel (see the XRD data in table);
therefore, we may conclude that Ni is present in parti-
cles whose size exceeds 300 nm.

From micrographs (Fig. 4a) and electron diffraction
patterns (Fig. 4c) taken of the powder particles, it fol-
lows that they have different shapes (from cubic to
spherical) and a crystal structure where the basic phase
is rhombohedral NiO. The latter fact is supported by the

(‡)

100 nm

1 µm 021242×10.00030 kV

1005 1642

705 1639

(b)

(c)

Fig. 4. Typical micrographs of the (a) nanoparticles and
(b) sediments and (c) the electron diffraction pattern of the
nanoparticles.
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Table

Lot no. S, m2/g Ni content (ICP 
analysis), wt %

Content of vola-
tiles (TGA), wt %

Metallic Ni con-
tent (XRD), wt %

Ni content in NiO, 
wt %

Oxygen content 
in oxide

NiO-6ns 36 75.9 2.75 0 78.05 NiO1.033

NiO-7ns 54 74.4 3.5 0 77.1 NiO1.09

NiO-9ns 30 76.05 1.94 0 77.6 NiO1.06

NiO-10ns 45 75.4 3.3 0 78.0 NiO1.04

NiO-9 24 77.4 1.48 3.7 74.9 NiO1.23

NiO-13 21 76.8 1.73 1.3 76.8 NiO1.11

NiO-50 47 75.8 2.82 1.0 77.0 NiO1.096

NiO-52 27 75.1 2.71 <0.5 76.7 NiO1.11

NiO-56 57 75.5 4.0 0 78.6 NiO1.0

NiO-61 16 77.2 1.77 <0.5 78.1 NiO1.029

Notes:The error in the Ni content determined by both methods is ±0.3%. The stoichiometric Ni content in the NiO oxide is 78.58 wt %.
Letters ns in the batch number indicate that the powder was subjected to sedimentation in isopropyl alcohol and does not contain
particles coarser than 300 nm.
XRD data. The lattice parameters along the hexagonal
axes are a = 0.2952 nm and c = 0.7237 nm. Comparing
the grain sizes determined by XRD (34–49 nm) with
the mean of the bulk and surface particle diameters
(dBET = 15–50 nm) from lot to lot shows that these val-
ues may both coincide and differ by roughly twofold.
This suggests that the NiO particles are in both the sin-
gle-crystal and polycrystalline states. We failed to
establish any correlation between the grain size and
explosion conditions.

The micrographs of the powder sediments (Fig. 4b)
exhibit particles that are likely to form when the liquid
metal splashes out through the solidifying surface layer
(the melting point of nickel is lower than that of its
oxide) because of heating the particles by the energy of
oxidation. This finding confirms our concepts of the
particle formation mechanism.

0 100 300

100

200

400

500

Number of particles

Particle size, nm

600

300

~ ~

Fig. 5. Particle size distribution in the powder from lot
10 ns.
The particle size distribution in the powder sediment
(Fig. 5, a total of 2448 particles included) turns out to
be close to the logarithmically normal distribution with
average geometric diameter dg = 24.4 nm and standard
deviation σg = 2.3. Here, 28 particles have a diameter
falling into the range 100–200 nm and four particles
have a diameter of >200 nm (the largest one had a diam-
eter of 317 nm). The calculation based on this distribu-
tion demonstrates that the weight of particles smaller
than 100 nm across accounts for 58% of the total
weight and the percentage of these particles is more
than 98%.

CONCLUSIONS

The conditions for production of nickel oxide nan-
opowders by electrical explosion of a wire were stud-
ied. A decrease in the overheat and an increase in the
oxygen concentration favor the preparation of the pow-
ders with a nanoparticle size of ≈15 nm by explosion in
a gaseous atmosphere under normal pressure.

The yield of the powder fraction with a particle size
of less than 100 nm accounts for about 15% of the
weight of the wire for low-overheat explosions and
increases to 30% at K = 1.

A decrease in the particle concentration in the flow
through an increase in the cross section of the gas tubes
and in the diameter of the cyclones substantially
improves powder separation and increases the weight
of the nanofraction.

The particles have various shapes and may be both
single-crystal and polycrystalline.

The nickel oxide prepared under our conditions is
oxygen-enriched to 9% relative to its stoichiometric
composition.
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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Abstract—An analytic model is proposed of a dielectric-barrier discharge in the Townsend mode, in which the
space charge is small compared to the charge accumulated on the dielectric surface. The discharge mode
depends substantially on the ratio between the frequency of the external voltage and the ion drift time through
the gap. A low-frequency case is investigated, in which the space charge can be ignored. The analytic expres-
sions obtained agree well with experiments and numerical simulations. The physical mechanism for the onset
of relaxation oscillations in the Townsend mode is revealed. The time behavior of a dielectric-barrier discharge
is qualitatively described, and its basic scaling parameters are determined. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The dielectric-barrier discharge (DBD) is a gas dis-
charge operating between electrodes one (or both) of
which is covered with a dielectric (see Fig. 1). DBDs
were first utilized to produce ozone [1, 2]. Nowadays,
they are widely used for the sterilization of medical
instrumentation [3], in plasma panels [4], and in exci-
mer lamps [5]. When an ac voltage is applied to the
electrodes, the electric field in the gap is determined by
the applied voltage and the charge accumulated on the
dielectric surface. The discharge occurs when the field
strength exceeds the breakdown level. DBD experi-
ments were carried out over a wide range of the dis-
charge parameters: the pressure was varied from a few
Torr to several hundred Torr [6, 7], and the frequency of
the applied voltage was varied from a few kHz to sev-
eral hundred kHz [7, 8]. The electrode gap length was
usually on the order of several millimeters.

Three fundamentally different DBD modes can be
distinguished: the Townsend mode, the uniform glow
mode, and the filamentary mode. The simplest is the
Townsend mode, in which the electric field is not dis-
turbed by the space charge and no plasma is produced.
In the glow discharge mode, which is often observed at
high frequencies of the external voltage, the field is
strongly disturbed by the space charge and most of the
discharge volume is occupied by the plasma. A filamen-
tary discharge is an ensemble of thin conducting
plasma channels (filaments) growing chaotically
between the electrodes.

In spite of significant progress in numerical simula-
tions (see, e.g., [5, 9]), it is desirable to obtain a quali-
tative analytic picture of such discharges. In this study,
we consider the basic scaling laws that allow one to pre-
dict the time dependences of the DBD current and elec-
tric field in the Townsend mode. The physical mecha-
nism for the onset of oscillations of the current and
1063-7842/05/5010- $26.00 1284
electric field in a DBD discharge is revealed, and sim-
ple analytic expressions describing such oscillations
are obtained.

Here, we consider the case where the frequency of the
applied voltage ω is much lower than the inverse ion
drift time through the discharge gap, τ –1. If the ion
motion is governed by the ion mobility, then we have

(1)

where Ebr is the breakdown electric field and bi is the
ion mobility. In Section 1, we present the basic equa-
tions of the problem. If there are no charged particles in
the gap (passive phase II), then the surface charge is
constant and the electric field in the gap follows the
applied voltage U(t). Active phase I is accompanied by
oscillations of the discharge current, the electric field in
the gap, and the surface charge. A relation between the
applied voltage U(t), the electric field in the gap, and
the surface charge density is obtained. In Section 2, the
equation for the conduction current is derived. Oscilla-

τ L
Ebrbi

----------- ! 
2π
ω
------,=

U(t)

Electrode
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–
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σ1 ≈ –σ2
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L
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ε

ε

+ + +

– – –

Electrode

Fig. 1. Scheme of a discharge cell.
© 2005 Pleiades Publishing, Inc.
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tion mode I is investigated in Section 3. The oscillation
mode that occurs when the applied voltage U(t) varies
gradually over time is investigated in Sections 4 and 5.
It is shown that, when U(t) varies abruptly (a meander-
ing voltage), no oscillations are excited. In Section 6,
the calculated results are compared to experiments and
numerical simulations. The distortion of the electric
field in the gap by the space charge is considered in the
Appendix.

1. BASIC EQUATIONS
AND SIMPLE ESTIMATES

The current in the dielectric is entirely carried by the
displacement current, whereas, in the discharge gap, it
is carried by both the displacement and conduction cur-
rents. The charges produced in the gap are rapidly (over
a time of about τ) carried away from the gap to the
dielectric surface and accumulate on it over a time on
the order of ω–1. Therefore, when inequality (1) is sat-
isfied, the space charge is small compared to the surface
charge and the charge densities on the electrodes differ
only in their signs,

(2)

In this case, the electric field in the gap is deter-
mined by the applied voltage and the surface charges.
The field produced by the surface charges can partially
neutralize the applied voltage; therefore, in the case of
high overvoltages, the net field in the gap is the differ-
ence of the two large terms. The condition under which
the distortion of the field in the gap by the space charge
is small in comparison to the breakdown field is found
in the Appendix.

In order to solve the problem, it is necessary to
express the field in the gap through the applied voltage
U(t) and the charge density on the dielectric surface,
σ(t) = |σ1(t)|. According to the Gauss theorem, we have

(3)

As soon as the field in the gap exceeds Ebr , the cur-
rent begins to grow rapidly. The discharge current as a
function of the electric field is determined by the expo-
nential dependence of the first Townsend ionization
coefficient α on the electric field. In turn, the ratio M of
the electron flux onto the anode to that onto the cathode
depends exponentially on α. The current through the
gap increases by a factor of M – 1 over a time on the
order of τ. Therefore, the current grows over time by a
nearly exponential law with the power index

dt. According to the Le Chatelier principle,

such a rapidly growing current keeps the electric field
at a level close to Ebr . Therefore, when developing a
simplified model, we can assume that the electric field

σ1 t( ) σ2 t( ).–≈

E U
1

L
2d
ε

------+
---------------- σ 8π

L
2d
ε

------+
----------------d

ε
---.+=

M 1–
τ

--------------
t∫
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in a Townsend discharge does not exceed the break-
down field, |E(t)| ≤ Ebr. The discharge operation over the
entire period of the applied voltage can be separated
into two phases. During active phase I (t* < t < π/2ω),
the conduction current flowing through the gap changes
the surface charge density and maintains the electric
field at the level E ≈ Ebr. According to Eq. (3), the sur-
face charge density varies in proportion to –U(t). Dur-
ing phase II,

the electric field in the gap is lower than Ebr. At the very
beginning of this phase, all the charged particles are
carried away from the gap to the dielectric surface.
After this, the conduction current is zero and the sur-
face charge density is constant. According to Eq. (3), a
change in the applied voltage leads only to a change in
the electric field in the gap. The beginning of active
phase I is uniquely determined by the formula

(4)

When phase I changes into phase II, the electric field
in the gap varies continuously,

(5)

The time evolution of the electric field, the surface
charge density, and the current in the case of a sinusoi-
dal voltage is shown in Fig. 2.

When the overvoltage is low,

(6)

breakdown occurs after U(t) changes its sign. Con-
versely, in the case of high overvoltages,

breakdown occurs before U(t) changes its sign. It can
be seen that the durations of phases I and II depend on
the amplitude of the applied voltage. The overall pat-
tern of the time evolution of the electric field is illus-
trated in Fig. 3.
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From Eq. (3), we obtain the expression for the con-
duction current that is necessary to limit the electric
field:

(7)

In fact, the current during phase II is very low. It
cannot increase instantaneously to the value prescribed
by Eq. (7). Therefore, the current is delayed relative to
the applied voltage; this circumstance is not accounted
for in our simplified model. When the electric field
reaches Ebr, the current is still very low and the surface
charge density is essentially constant. Since the voltage
U(t) varies with time, while the surface charge density
remains constant, the electric field in the gap continues
to grow (see Eq. (3)) and exceeds Ebr. This process con-
tinues until the current becomes high enough for the
surface charge density to vary significantly; as a result,
the electric field begins to decrease. The current
increases until E(t) becomes lower than Ebr. Such
behavior corresponds to relaxation oscillations. To
describe these oscillations quantitatively, it is necessary
to determine the functional dependence between the
electric field and the current. Below, we will derive a
closed equation describing oscillation phase I.

j
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Fig. 2. Time evolution of the current, the surface charge, and
the electric field in the gap. In phase I, the current maintains
the electric field at a level of E ≈ Ebr. In phase II, the con-
duction current is absent.
2. CURRENT EVOLUTION

We restrict ourselves to a simple Townsend model in
which the electrons in the gap are multiplied mostly via
the impact ionization of neutral atoms. This process is
determined by the electric field alone. The secondary
electrons are emitted from the cathode due to its bom-
bardment by ions. The duration of the electron multipli-
cation cycle in a Townsend discharge is determined by
the characteristic drift time τ of an ion from the place of
its origin to the cathode surface (the cathode and the
anode are defined in relation to the electric field in the
gap). Let us first consider the case of local ionization.
In this case, the current varies according to the formula
[10]

(8)

Here, j(t) is the conduction current at the cathode, jext(t)
the ion-induced electron emission (the external ionizer
current), and u is the ion drift velocity. Note that, know-
ing solution (8) with jext(t) ∝ δ (t – t'), we can find the
solution for an arbitrary time dependence of jext(t):

(9)

Therefore, the solution i = i(t, t') is a kind of Green’s
function for our problem. Since we describe variations
in the electric field during phase I, we have γ(eα(t)L –
1) ≈ 1. In case of a constant overvoltage, the current
grows exponentially, i = i0exp(β(t – t')). Indeed, such a
time dependence is a solution to Eq. (9). The coefficient
β satisfies the transcendent equation

(10)

which always has a solution. For example, when γ ! 1,
we have

If β changes only slightly over the time τ, then we
can use an approach similar to the WKB approxima-
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tion; i.e., we can assume

(11)

where β depends explicitly on time,

(12)

It follows from Eqs. (9) and (11) that, in the case of
local ionization, the current varies as

(13)

The results obtained can be generalized to the case
of nonlocal ionization. Thus, solution (8) can be rewrit-
ten as

(14)

where M(x, E) is the coefficient of electron multiplica-
tion.

This coefficient is equal to the number of secondary
electrons generated by one primary electron as it travels
a distance x from the cathode. In the case of local ion-
ization, we have

(15)

Therefore, the only characteristic of the ionization
process is the coefficient M(x, E). A conventionally
used multiplication coefficient is equal to M(E(t)) =
M(L, E(t)). Hence, solution (14) can be rewritten as

(16)

Expression (16) has a clear physical meaning. The
current at the time t is determined by the values of the
external ionizer current and the electric field at the pre-
vious times. The ionizer currents generated at the pre-
vious times are amplified by a factor of Mt/τ and are
added together. It can be seen that the current does not
change instantaneously, as was assumed in the above
simplified model (see Fig. 2).

The lower integration limit in Eq. (16) corresponds
to phase II, in which M ! 1. The conduction current at
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the instant of breakdown is determined by the expres-
sion

(17)

For the sake of convenience, we will further assume
that t* = 0 (see Fig. 3).

3. OSCILLATORY DISCHARGE MODE

Expression (16) is a solution to the differential equa-
tion

(18)

By differentiating Eq. (3) over time, we obtain an
additional equation for the electric field in the gap,

(19)

Combining Eqs. (18) and (19), we obtain a closed
differential equation for the electric field in phase I,

(20)

To analyze this equation, we introduce the following
dimensionless variables: the time θ = t/τ, the electric
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Fig. 3. The effect of the overvoltage on the electric field in
the gap.
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field E = E/Ebr, the external voltage

and the ionizer current ι  = jext/j|t = 0. We also introduce
the dimensionless coefficient

(21)

The current at the instant of breakdown, j|t = 0, is pro-
portional to the ionizer current and is defined by
Eq. (17). Hence, Eq. (20) can be rewritten as

(22)

In the case of local ionization, the coefficient M(E)
is determined by Eq. (15). The ionization coefficient α
is related to the electric field and gas pressure as α/p =
f(E/p) and is usually written as

It is worth noting that the above equations remain
valid for any other dependence of the multiplication
coefficient on the electric field.

Equation (22) describes relaxation oscillations of
the electric field. If the frequency of these oscillations
is much higher than ω, which takes place when expres-
sion (1) is satisfied with a large margin, then the oscil-
lation characteristics adiabatically follow dΦ/dθ. This
was proved experimentally for the first time in [11].
The value of d2Φ/dθ2 does not influence the solution
because, as follows from condition (1),

An exception is the case where Φ(θ) varies abruptly.
We will consider this case using a meandering Φ(θ) as
an example.

4. THE CASE OF A GRADUALLY VARYING 
EXTERNAL VOLTAGE

In the case of a gradually varying external voltage,
Eq. (22) can be rewritten as

(23)
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Note that there is a small parameter κ in both
Eq. (23) and the initial condition for the time derivative.
The smallness of the parameter κ follows from its pro-
portionality to the external ionizer current. Omitting
this parameter in the equation is equivalent to the
switching-off of the ionizer at the time θ = 0. The mul-
tiplication of electrons in the growing electric field
E(θ) > 1 is always very intense; hence, taking into
account the ionizer current against this background
leads only to small corrections that decrease with
decreasing κ, as will be shown below. Ignoring these
corrections, we obtain

(24)

This equation describes the motion of a particle in a
system with a driving force and alternating friction. The
driving force and friction change their signs at E = 1.
Homogeneous equation (24) has a strictly periodic
solution. The electric field E(θ) oscillates from Emax =

E) to Emin = E), so that

(25)

Let us consider the case of small-amplitude oscilla-
tions. In this case, we have M(E) = 1 + M'(E – 1). It can
be seen from Eq. (25) that this equality is equivalent to
the condition

(26)

The phase portrait of the solution in this case,

(27)

is shown in Fig. 4.

At large values of the parameter X (starting from
X ≈ 1), the phase trajectory in the region of a decreasing
electric field can be approximated by p = z2 – X. This
allows us to determine both the law according to which
the electric filed decreases and the oscillation period Θ,

(28)

d2E

dθ2
--------- M E( )( ) dE

dθ
------- Φ'– 

 ln– 0.=

(
θ

max (
θ

min

Mln Ed

1

Emax

∫ κ Φ' Φ'
κ
-----ln 1– 

  ,+=

Mln Ed

Emin

Emax

∫ 0.=

Emax 1– 1 Emin.–≈

p p 1–ln+ z2 X–=

p = 
dE
dθ
------- 1

Φ'
-----, Z  = 

M'
2Φ'
--------- 

 
1/2

E 1–( ); X  = Φ'
κ
----- 1–ln







E 1 2Φ'X
M'

------------- θ Θ
2
----– 

  M'Φ'X
2

---------------- 
 tanh–=

≈ 1 Φ'X θ Θ
2
----– 

  ,–
TECHNICAL PHYSICS      Vol. 50      No. 10      2005



LOW FREQUENCY DIELECTRIC-BARRIER DISCHARGE 1289
(29)

A strictly periodic solution (see Fig. 5) can be
obtained only when the external ionizer is completely
switched off at the time θ = 0. Taking into consideration
the ionizer current at a constant Φ' results in a gradual
decrease in the oscillation amplitude with time. In this
case, the field approaches a limiting value Elim, satisfy-
ing the equation

(30)

In the case of Elim ≈ 1, Eq. (30) has the solution

The characteristic decay time of the electric-field
oscillations can easily be estimated. Defining E as a
solution to Eq. (24) and E + δE as a solution to Eq. (23),
we can expand δE in a series up to the first nonvanish-
ing term,

This allows us to estimate the correction to the elec-
tric field over a time interval during which the field
increases, i.e., up to

A small inhomogeneity of Eq. (23) affects the solu-
tion only in the phase in which the electric field grows

with time and the difference  – Φ'  is small. Over

one oscillation period, the oscillation amplitude
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Fig. 4. Phase trajectories of the electric field in a DBD dis-
charge (the case of small-amplitude oscillations).
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decreases by

As a result, we find that the characteristic time of the
oscillation damping due to the action of the external
ionizer is equal to

(31)

If time (31) is much longer than the time during
which dΦ/dθ = const, then the electric field decreases
insignificantly. The condition

(32)

which follows from expression (31), can serve as a cri-
terion of the applicability of Eq. (24) instead of
Eq. (23).

This condition is satisfied at sufficiently small val-
ues of κ. When this condition is not satisfied, electric-
field oscillations are almost absent, E(θ) = Elim (see
Fig. 3). Expressions (27), (29), and (31) determine the
basic scaling parameters in the case of a gradually vary-
ing external voltage.

5. THE CASE OF A MEANDERING EXTERNAL 
VOLTAGE

The problem is significantly simplified in the case of
a step external voltage. The main simplification is the
absence of phase II (see Fig. 2), because the electric
field in the gap is always on the order of the breakdown
field. Equation (22) for the electric field in the gap takes

δE
ικ
2
-----

Emax 1–( )
Φ'

------------------------
2

.≈

Φ' 1 X+( )
ικ X
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------------------------ @ Θ.

Fig. 5. Small-amplitude oscillations of the electric field in
the gap for X = 4.
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the form

(33)

Like in the case of a gradually varying external volt-
age, we consider a homogeneous equation, keeping a
small parameter in the initial condition,

(34)

d2E

dθ2
--------- M E( )( )dE

dθ
-------ln– ικ–=

E θ 0= Emax, dE
dθ
-------

θ 0=

κ .–= =








d2E

dθ2
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1
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J, arb. units

E = E/Ebr
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2î
Time, θ = t/τ0 θ

~

E = Emin

E = E/Ebr

Fig. 6. Time evolution of the electric field and conduction
current in the gap in the case of a meandering external volt-
age.

Fig. 7. Time evolution of the electric field and external volt-
age in a DBD [11].
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Solution to Eq. (34) can be written in quadratures,

(35)

It can be seen from Eq. (35) that the electric field is
a monotonically decreasing function that asymptoti-
cally approaches the value Emin, defined by the condi-
tion

(36)

To investigate solution (35) qualitatively, we write
down the expressions for the time dependences of the
electric field and current in the case of low overvoltages
(this is equivalent to the expansion of the multiplication
coefficient into a series M(E) = 1 + M'(E – 1)),

(37)

It can be seen that the current pulse is delayed rela-
tive to the Φ(θ) and reaches its maximum at the time

The maximum current is proportional to the over-

voltage squared, J( ) ~ (Emax – 1)2. It can also be seen
that, at low overvoltages, we have Emax – 1 ≈ 1 – Emin.

If the duration of phase I (see Fig. 6) is much longer

than 2 , i.e., if  ! π/2ωτ, then it is necessary to con-
sider corrections associated with the external ionizer
current (i.e., to take into account the inhomogeneity of
Eq. (33)),

(38)
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Solutions (37) were found earlier in [10]. However,
an important advantage of the present approach is the
possibility of analyzing the case of high overvoltages
and determining Emax. The condition of the discharge
periodicity and the parity of the electrodes allows us to
write the equation

Emax 2Φ E
π

ϖτ
------- 

 – 2Φ Emin.–≈=
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Fig. 8. Measured [11] and calculated time dependences of
the electric field and current for (a) a linearly varying and
(b) a sinusoidal external voltages.
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Taking into consideration condition (36), we obtain
the equation for Emax,

(39)

In formula (39), correction (38) can also be taken
into account.

6. COMPARISON WITH EXPERIMENT

The above model agrees surprisingly well with
existing experimental and simulation results [6, 8, 11,
12]. The observed time evolution of the discharge
parameters is analogous to those described by Eq. (5).
Figure 7 illustrates the time evolution of the electric
field in a discharge operating in a helium flow at a pres-
sure of 730 Torr [11]. The frequency of the external
voltage (sawtooth in case (a) and sinusoidal in case (b))
was 1.5 kHz, the other parameters being L = 0.2 cm,
d = 0.23 cm, and ε = 5. Relaxation oscillations are
clearly seen. The amplitude value of U(t)/(L + 2d/ε)
was close to 2Ebr; therefore, in accordance with Eqs. (4)
and (6), phase I began just after U(t) changed its sign.
In accordance with simplified model (5), the oscilla-
tions terminated when the voltage reached its maxi-
mum. Note that, in the case of a sawtooth voltage, the
oscillations (except for the first one) were almost peri-
odic. Since the surface charge was constant during pas-
sive phase II, the curve E(t) in this phase almost exactly
followed U(t)/L + 2d/ε (see Eq. (5)). The parameter pL
corresponded to the right branch of the Paschen curve.
When comparing the results of calculations by using
Eq. (22) to the experiment, we used the Townsend
approximation,
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where A = 3 (cm Torr)–1 and B = 25 V/(cm Torr) [13].

Such a comparison allows us to estimate the current
density of the external ionizer in the range from 10–4 to
10–5 mA/cm2. The simulation results are presented in
Fig. 8. The only adjustable parameter in these calcula-
tions was the value of jext. For linearly varying and a
sinusoidal external voltages, this parameter was set at
10–4 and 3 × 10–4 mA/cm2, respectively. It should be
noted that the results are almost insensitive to jext. Thus,
in order to adequately describe the first current pulse,
which differs from the others by a factor of about 2, it
would necessary to assume jext ≈ 10–6 mA/cm2.

As was mentioned above, the expressions obtained
depend only on the multiplication coefficient, so they
are applicable both to the right branch of the Paschen
curve, when the ionization can be considered local, and
to its left branch, when the ionization is nonlocal and
approximation (15) is inapplicable (see [14]). Such a
situation took place, e.g., in [6], where a discharge in
methane at a pressure of 0.75 Torr was investigated, the
other parameters being L = 0.5 cm, d = 0.5 cm, and f =
1.4 kHz. The separation of the discharge into two
phases in accordance with our simplified model is illus-
trated in Fig. 9. The breakdown time determined by for-
mula (4) is in good agreement with the experiment, in
particular, at negative currents.
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From the Paschen curve presented in [6], the local
values of the coefficients in the Townsend approxima-
tion were found to be A = 12 (cm Torr)–1 and B =
800 V/(cm Torr). The time τ was estimated from the
characteristic cross sections for ion–molecular colli-
sions, and it was assumed that jext ≈ 10–4 mA/cm2. The
experimental data and theoretical results are presented
in Fig. 10.

In [8], a discharge in helium at atmospheric pressure
was investigated. An advantage of those experiments
was that they were conducted within a wide frequency
range (from 100 Hz to 10 kHz) satisfying condition (1).
When comparing the results of calculations by using
Eq. (24) to the experiment (see Fig. 11), we used the
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approximation

where C = 44 (cm Torr)–1, D = 14 V1/2/(cm Torr)1/2, L =
0.3 cm, d = 0.23 cm, ε = 7.63, and γ = 0.01 (see [8]).

It can be seen from Fig. 11 that the theoretical
results are in good agreement with the experimental
data. In calculations, it was assumed that jext ≈ 5 ×
10−4 mA/cm2 for f = 500 Hz and jext = 10–4 mA/cm2 for
f = 100 Hz. These values of jext are in agreement with
the assumption that the external ionizer current is
caused by the interaction of metastable atoms with the
cathode surface. However, the calculated value of the
oscillation period was found to be half again the
observed one. We failed to achieve better agreement in
the period and shape of oscillations by varying the jext
value.

The scaling of the oscillation period (see Eq. (29))
allows us to determine the number of current pulses
during active phase I (Fig. 12). An approximately two-
fold decrease in the duration of phase I and a twofold
increase in τ when passing from L = 0.3 to 0.5 cm
should lead to a fourfold decrease in the number of cur-
rent pulses. In the experiment, however, the number of
current pulses did not change as compared to the case
of L = 0.3 cm. This is presumably associated with the
influence of the space charge (see Eq. (42)). Indeed, at
the same frequency and waveform of the applied volt-
age, the space charge in the case of L = 0.5 cm is
approximately twice as large as that in the case of L =
0.3 cm. It can be seen from Eq. (29) that the oscillation
period is proportional to ω1/2. The duration of phase I is
proportional to ω–1 and, at a given frequency, is only
determined by the overvoltage (see Fig. 3). Therefore,
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Fig. 12. The number of current pulses vs. frequency [8] and
its scaling.
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the number of current pulses is proportional to ω–1/2,
which agrees with the experiment over the entire fre-
quency range. Our model is also in good agreement
with numerical simulations, e.g., with the results of
[12], where a uniform Townsend DBD was simulated.
A specific feature of those simulations was the presence
of a strong external ionizer (the desorption of electrons
from the cathode). As was noted above, the presence of
a sufficiently strong ionizer results in the decay of
relaxation oscillations (see Eq. (31)) even in the case of
a linearly growing voltage. The numerical simulations
carried out in [12] corresponded to a discharge in nitro-
gen at a pressure of 760 Torr, the other parameters
being L = 0.1 cm, d = 0.01 cm, and ε = 1. The voltage
grew linearly with dU/dt = 4 × 108 V/s. The coefficients
in the Townsend approximation were assumed to be A =
8.8 (cm Torr)–1 and B = 275 V/(cm Torr) [13]. The sim-
ulation results [12] and the results of calculations of the
electric field and current by using Eq. (22) and formula
(16) are presented in Fig. 13.

CONCLUSIONS

An analytic model of a uniform DBD has been pro-
posed. It is shown that, when the frequency of the exter-
nal voltage is low as compared to the ion drift time
through the gap, the discharge operates in the
Townsend mode. The analytic expressions obtained are
in good agreement with experimental results. The phys-
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ical mechanism for the onset of relaxation oscillations
in the Townsend DBD is revealed. The time behavior of
a DBD is qualitatively described, and its basic scaling
parameters are determined.

APPENDIX

Disturbance of the Electric Field 
by the Space Charge

In a Townsend discharge, the electric field is only
slightly disturbed by the space charge. Let us estimate
the space charge and find the disturbed electric field.
We represent the electric field in the gap as a sum of two
components: E(t) = EEbr + δE, where Ebr @ δE, E is a
solution to Eq. (22) and δE(x, t) is a correction associ-
ated with the space charge. The correction δE satisfies
the equation

(40)

where

The factor M appears due to the noncoincidence of
the cathode and anode currents. Therefore, we have

(41)

A discharge operates in the Townsend mode only
when the inequality

is satisfied.

Let us estimate (δE)max/Ebr for the case of a gradu-
ally varying external voltage. Using Eqs. (19) and (28),
the maximum current can be estimated at

Substituting this current into Eq. (41), we obtain

(42)

It is also easy to estimate (δE)max/Ebr for the case of
a meandering external voltage. Using Eq. (37), the

d δE( )
dx

--------------- 4πnione,–=

nion x t,( ) = 
jion x t,( )
ebEbr

--------------------

M t
L x–
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------------– 

  j L t
L x–
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1 x
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Φ'εEbr 1 X+( ) L
2d
ε

------+ 
 
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maximum current can be estimated at

Then, we have

(43)

When condition (1) is satisfied and ratio (42) or (43)
is small, the discharge operates in the Townsend mode.
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Abstract—The response of magnetic losses to rotation-induced magnetization reversal in single-crystal
Fe−3 wt%Si disks is studied as a function of the disk thickness and magnetic induction. It is shown that the loss
power varies nonmonotonically with disk thickness d, exhibiting a minimum at d = 0.15 mm. The crystallo-
graphic orientation of the disk surface significantly influences the amount of the losses. The variation of the
losses is discussed with regard to the effect a rotating magnetic field has on the domain structure. © 2005 Ple-
iades Publishing, Inc.
INTRODUCTION

A challenging problem, which is associated with
using silicon steels in the electric engineering industry,
consists in decreasing energy losses due to magnetiza-
tion reversal in magnetic circuits subjected to variable
linearly polarized (hereafter alternating) and rotating
magnetic fields. Alternating fields and their related
alternating magnetic fluxes are commonly encountered
in the magnetic circuits of transformers. Great
advances have been achieved in developing steels fea-
turing low losses in harmonically varying magnetic
fields (see, e.g., [1]). These are (110)[001] textured
steels with a high level of perfection (the [001] axis is
one of the easy magnetic axes), where (110) plane devi-
ates from the plane of the sheet by small angle β (sev-
eral degrees).

Efficient ways of improving the quality of electrical
steels (reducing specific magnetic losses) are thinning
of the sheet and proper orientation of the surface of
crystallites relative to the plane of the textured sheet
(i.e., the proper choice of β). The effect of these factors
on magnetic losses has been carefully studied on
Fe−3 wt%Si specimens magnetically switched in alter-
nating magnetic fields [2–6]. It has been shown, in par-
ticular, that, as thickness d of steel sheets decreases,
magnetic loss power P varies nonmonotonically for a
given harmonically varied magnetic induction. Ini-
tially, P declines, reaching a minimal value at certain
d = d0, and then rises. It has been found [4] that the
value of d0 depends on the hysteresis component of the
total electromagnetic losses.

The effect of the grain surface orientation in tex-
tured Fe–3 wt%Si sheets placed in sinusoidal magnetic
fields on the amount of electromagnetic losses has been
1063-7842/05/5010- $26.00 1295
studied at length in [5]. The total losses have been
shown to be the lowest when the plane of the sheet devi-
ates from the (110) plane by β ≈ 3°, rather than when
these two planes totally coincide (β = 0). Minimization
of the losses at β ≠ 0 was related to a smaller domain
width (L) in this case compared with the case β = 0.
Accordingly, the loss component due to eddy currents
diminishes. Similar data for single-crystal Fe–3 wt%Si
specimens have been obtained in [6], where the losses
have been shown to be minimal at a certain (optimal)
orientation of the specimen surface about the (110)
crystal axis.

At the same time, the effect of specimen thickness
and orientation on magnetic losses at rotation-induced
magnetization reversal is scantily known. However, the
problem of loss minimization in this case is of no less
importance than in the case of alternating fields. This
issue is of both scientific and applied value, since rota-
tional magnetization reversal is typical of magnetic cir-
cuits in a variety of motors and generators.

Sparse investigations into the problem of loss mini-
mization at rotational magnetic reversal are explained
primarily by the lack of a reliable commonly accepted
magnetic loss measuring technique. Treating of experi-
mental data is also a bottleneck. It will be remembered
that some insights into the nature of losses under the
action of alternating fields have been gained after the
role of the domain structure (DS) dynamics in occur-
rence of eddy current losses was clarified [1, 7–10]
(largely owing to experimental studies of DS dynamic
reconfiguration taking place when the specimens are
magnetically switched in alternating magnetic fields
[4, 11–13]). Works [4, 11–13] pioneered investigation
into the DS dynamics under rotational magnetization
reversal. Specifically, losses due to rotational magneti-
© 2005 Pleiades Publishing, Inc.
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zation reversal (RMR) versus specimen thickness d
were examined in [11, 14]. Unfortunately, the authors
of [14] restricted the analysis to the hysteresis compo-
nent. Yet, the important result was obtained that, under
RMR, the hysteresis losses grow as the specimen gets
thinner, as in the case of magnetization reversal in lin-
early polarized fields [4]. An attempt to take the d
dependence of total losses P was undertaken in [11]. It
was established that P decreases with decreasing the
specimen thickness. However, the range of d studied
was narrow (0.25–0.40 mm) because of a poor sensitiv-
ity of the instrument.

In this work, we show that the P versus d behavior
in a wider range of d is nonmonotonic and akin to that
for magnetization reversal in linearly polarized fields.

The effect of grain axis misorientation relative to the
plane of Fe–3 wt%Si sheets on losses under RMR is yet
to be understood. The fact is that RMR losses have been
studied either on polycrystals [14], where such a corre-
lation is basically impossible to establish, or on single
crystals whose surface coincided with the (100), (110),
or (111) planes [15]. However, one may expect that the
losses considerably depend on β not only under reversal
in alternating fields but also under RMR, which the
similar DS dynamics in both cases [12] indicates.

Thus, the aim of this work is to comprehensively
examine the effect of specimen thickness and small
deviation of the sheet plane from the (110) plane on
total losses under RMR.

EXPERIMENTAL

We prepared two groups of single-crystal
Fe−3 wt%Si disks of diameter 18 mm and thickness
ranging from 0.08 to 0.40 mm. The disks were cut by
means of an electric arc from two thick crystals of tex-
tured electrical steel. The surface of group-I specimens

1.5

0 0.5

Prot , W/kg

Bm, T

1

2

3

4

1.0 1.5 2.0

3.0

4.5

Fig. 1. RMR loss power Prot vs. induction amplitude Bm for
specimen thicknesses d = (1) 0.4, (2) 0.25, (3) 0.18, and
(4) 0.08 mm. β = 1.5°.
coincided with the (110) plane. In group-II specimens,
the [001] easy magnetic axis made angle β = 1.5° with
the surface. The thickness of the specimens was varied
by grinding with abrasive powders followed by polish-
ing with diamond paste. Then, the single-crystal disks
were annealed under a pressure of 10–6 mm Hg for 1 h
to relieve mechanical stresses.

Magnetization curves Bm(H) were taken from the
specimens by the technique described in [13] (here, Bm
is the maximal (amplitude) value of the induction and
H is the external magnetic field strength). RMR losses
Prot(H) were determined from the twist of the sus-
pended disk rotating in the field of an electromagnet
with a rate of 50 Hz (for details, see [16]). The refine-
ment of this measuring technique has made it possible
to raise the sensitivity of the instrument and, thereby,
measure losses in thin (d < 0.1 mm) specimens. The
measurement error did not exceed 8%. Based on the
curves Bm(H) and Prot(H), we constructed curves
Prot(Bm) for each thickness.

RESULTS AND DISCUSSION

Figure 1 plots the RMR losses versus induction
amplitude Bm for a number of single crystals of differ-
ent thickness with β = 1.5°. The losses are seen to vary
nonmonotonically with Bm for all the specimens. At low
inductions, the losses grow, reaching a maximum at
Bm = 1.7–1.8 T, and then decline. Such behavior has
been observed previously; importantly, however, it is
characteristic of all the specimens studied, irrespective
of their thickness. This allowed us to discover a new
effect: the loss minimum shifts toward lower inductions
as the specimen gets thinner.

From Fig. 1, it also follows that the thickness depen-
dence of the losses is nonmonotonic at any Bm in the
thickness range used in the experiment. Let us try to
explain the findings.

First of all, it should be noted that, in some cases (for
example, under magnetization reversal along the [001]
axis), magnetic losses observed in an alternating field
are much lower than rotational hysteresis losses [4–6].
If an alternating field is aligned with the [111] direc-
tion, RMR losses become as high as those in a rotating
magnetic field. It will be shown here that, on average,
there is no discrepancy between the losses in one or
another direction and that both the amount and behav-
ior of the losses as a function of crystal parameters can
be explained in the same way in both cases. Work [9] is
worth noting in this respect, where it was demonstrated
that both the total and eddy-current losses in a (110)
single-crystal sheet depend on angle α nonmonotoni-
cally (α is the angle between a linearly polarized field
and the [001] axis lying in the plane of the sheet). For
α near 55°, total losses P reach a maximum and, signif-
icantly, the maximal losses are roughly three times
higher (at Bm = 0.75 T, d = 0.25 mm) than P at α = 0.
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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Let us average losses obtained in [9] over angle α as
follows:

Averaging is carried out numerically based on
experimental data [9] for P(α). For the 0.25-mm-thick
specimens at Bm = 0.75 T and f = 60 Hz, we obtain  =

0.92 W/kg,  = 0.7 W/kg, and  = 0.219 W/kg.

Here,  and  are the eddy-current and hysteresis

losses, respectively, found in the same way as . The
total RMR losses obtained in this work equal
0.96 W/kg, i.e., agree well with the above value of .

Two conclusions can be drawn from this compari-
son. First, RMR losses are in good agreement with
losses due to magnetization reversal in a linearly polar-
ized field. RMR losses turn out to be high, since their
components at any α add up, including α close to 55°,
at which even magnetization reversal losses in an alter-
nating field are very high.

The second conclusion is that the eddy current com-
ponent is the major contributor to the total losses mea-
sured. Moreover, according to [12], where RMR-
induced changes in the domain structure were revealed,
one can assume that, at least up to Bm = 1 T, RMR losses
have the same origin as magnetization reversal losses in
an alternating field (α ≠ 0); i.e., they are related to the
DS dynamic reconfiguration. By way of example,
Fig. 2 demonstrates the DS reconfiguration in a quasi-
static magnetic field applied to the specimens studied.
In the demagnetized state (Fig. 2a), the DS of the sin-
gle-crystal disks consists of large strip domains sepa-
rated by 180° walls. Even in a weak field directed at an
angle to the [001] axis, the disks are magnetized owing
to a closure DS propagating from their edges (Fig. 2b)
and consisting of a set of fine domains making an angle
of 55°–60° with the strip domains. The closure DS,
compensating for stray magnetic fields at the edges of
the disk, is not continuous: it consists of a variety of
inner and surface domains (for more details, see [9]).

As the field grows further (Fig. 2c), so does the
specimen area occupied by the closure DS, which even-
tually covers the initial strip DS. The dynamics of the
strip and closure DSs in single-crystal Fe–3 wt%Si
disks subjected to rotating magnetic fields was studied
at length in [11, 12].

Let us concentrate now on the nonmonotonic induc-
tion dependence of the losses. Such a dependence
seems surprising, since, according to the electromag-
netic field theory, the losses must be proportional to the

time-averaged variation of the induction,  ~

, provided that the permeability has a moderate and
constant value. Actually, however, nothing of this sort is

P
2
π
--- P α( ) α .d

0

π/2

∫=

P

Pe Ph

Pe Ph

P

P

dB/dt( )2

Bm
2
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observed. This means that (see, e.g., [1, 10]) the elec-
trodynamics of ferromagnets must take into account the
DS dynamics in variable magnetic fields. It is because
of this dynamics that the dependence P(Bm) becomes
more complicated than linear. The decrease in the
losses after a maximum in the curve P(Bm) may be
related to the fact [12] that the wall motion takes place
only in part of the crystal at a high induction. Regions
appear where magnetization reversal is observed. The
specific (and hence, integral) contribution from these
regions to the total losses is much smaller than the con-
tribution from the regions with DS reconstruction. It is
natural to assume that the higher Bm, the larger the vol-
ume of magnetization reversal regions, and so the
losses will decrease with increasing Bm. Nevertheless,
the DS dynamics goes on contributing significantly to
the losses even at Bm = 2 T. As follows from Fig. 1, P =
2.25 W/kg (for d = 0.25 mm) in this case. If, however,
the DS dynamics is not included explicitly, the well-
known formula [17]

P
1
6
---

πdf Bm( )2

ρρEc2
-----------------------=

(‡)

(b)

(c)

Fig. 2. Domain structure of the 0.3-mm-thick disk magne-
tized at an angle of 90° to the [001] axis: (a) demagnetized
state, (b) state with Bm = 0.66 T, and (c) state with Bm =
1.02 T.
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(where ρ is the density of the material, ρE is the resis-
tivity, and c is the speed of light) yields P = 0.48 W/kg,
all other specimen parameters being the same.

Such a discrepancy is impossible to explain even if
the hysteresis losses estimated above are taken into
account.

Let us enlarge upon the shift of the maximum in the
P(Bm) dependence as the specimen gets thinner. It will
be remembered first of all that, as the crystal gets thin-
ner, the hysteresis component of magnetic losses grows
[14]. This means that thinning of the crystal places
obstacles in the motion of domain walls and in recon-
figuration of the DS as a whole. Therefore, for the
induction in the specimen to reach a certain level with
a fixed magnetic field, an additional magnetization
reversal mechanism must come into play. Such may be
the process of magnetization rotation. Thus, the thinner
the specimen, the earlier the rotation process has an
effect, indicating (see above) that the induction at
which the losses are minimal shifts toward lower val-
ues. One more important point needs to be made. We
assume that the difficulties associated with DS recon-
figuration are related not to defects but to internal fac-
tors, i.e., specific domain structures that may reconfig-
ure only by overcoming an energy barrier.

3.5

2.5
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Prot , W/kg

d, mm

1

2

0.2 0.3 0.4

4.5

5.5
(b)
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2.5
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Fig. 3. RMR losses Prot vs. specimen thickness d for Bm =
(a) 1.0 and (b) 1.7 T and β = (1) 1.5° and (2) 0.
Now let us trace how magnetic losses in the single
crystals vary with thickness. Figure 3a plots these
dependences for a moderate induction, Bm = 1.0 T. As
the specimens from both groups get thinner, the losses
first decrease monotonically, reaching a minimum at
thicknesses of 0.15–0.18 mm, and then grow. It is easy
to see that the losses in the specimens with β = 0 exceed
those in the specimens with β = 1.5° throughout the
thickness range.

At Bm = 1.7 T (Fig. 3b), the run of the loss curves is
in many ways similar to the case Bm = 0.1 T. As above,
the losses in the specimens of both groups first
decrease, become minimal near 0.15 mm, and then
grow. However, unlike Fig. 3a, the losses differ not
throughout the thickness range but only at the initial
thickness. In fact, at d = 0.4 mm, the difference is the
greatest, 25–30%. As d decreases, the curves approach
together and, at d = 0.30 mm, the losses in the speci-
mens of both groups coincide (within the measurement
error).

Interestingly, the thickness of the single crystals at
which the losses in rotating fields are minimal is 1.5–
2.0 times larger than that when the Fe–3 wt% Si single
crystals are switched by an alternating field. Such a dif-
ference in the specimen thickness seems to be the result
of different hysteresis losses when magnetization rever-
sal takes place in linearly polarized and rotating mag-
netic fields. It was shown, in particular [4], that, when
magnetization reversal occurs in a linearly polarized
field, the thickness corresponding to minimal magnetic
losses increases (decreases) with increasing (decreas-
ing) hysteresis component. With this in mind and also
taking into account that hysteresis losses observed
when the specimens is magnetically switched in rotat-
ing fields are higher than those in alternating fields [18],
one can assume that the difference between the mini-
mal-loss thicknesses is really associated with the differ-
ence in hysteresis losses.

Thus, as the Fe–3 wt%Si specimens get thinner, the
d dependence of the losses in rotating, as well as in
alternating, magnetic fields is nonmonotone: the curves
first decrease, reaching a minimum at d = 0.15 mm, and
then grow. Even a slight misorientation of the specimen
plane about the [001] axis changes the d dependence of
magnetic losses.

Let us discuss the thickness dependence of the
losses (Fig. 3). It is known [14] that thinning of
Fe−3 wt%Si specimens is accompanied by a rise in the
hysteresis component of RMR losses. Then, one can
argue (Fig. 3) that the total losses in the thickness range
0.15–0.40 mm decline owing to a decrease in the eddy
current component alone. The decrease in this compo-
nent is likely to be associated with the specific behavior
of the domain structure in the specimens. Its dynamics
in rotating magnetic fields was studied in [11, 19]. For
example, it was demonstrated [19] that, when the
induction is not too high (B < 1.2 T), magnetization
reversal in Fe–3 wt%Si specimens proceeds largely
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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through the motion of 180° domain walls in the strip
DS, the number of the wall remaining constant during
a magnetization reversal cycle. In this case, the contri-
bution from the closure DS to the magnetization is
insignificant.

Based on the aforesaid, let us estimate the eddy cur-
rent losses at Bm = 1.0 T. Assuming that magnetization
reversal at such Bm is accomplished by uniform dis-
placement of flat 180° walls, we find, according to [7],

that eddy current losses Pe are proportional to Ld f 2,
where L is the width of basic domains. In our case, of
importance is the fact that losses Pe are proportional to
the thickness of the specimen. According to [7], L may
also depend on d. However, in the crystallites under
study, this dependence is very weak and can be ignored.
Therefore, the amount of eddy current losses is bound
to vary in proportion to d. Unfortunately, our loss-mea-
suring technique cannot discriminate between eddy-
current and hysteresis loss components. As for the total
losses, it follows from Fig. 1 that, when the crystal
thickness decreases from 0.4 and 0.2 mm (i.e., two-
fold), the total RMR losses measured change by a fac-
tor of 1.5. It then becomes clear that, up to the mini-
mum, the eddy current component prevails in the d
dependence of the RMR losses. The observed deviation
of this dependence from linearity can be explained by a
contribution from the hysteresis component, which is
known [11] to grow as the specimen gets thinner. This
growth may explain the increase in the total losses in
the specimens less than 0.15 mm thick.

Note that, in [19], the motion velocities of 180°
domain walls in Fe–3 wt%Si single crystals during
magnetization reversal cycles in rotating fields were
measured. From these velocities, the induction depen-
dence of the eddy current component was estimated in
the range 0.5–1.2 T. The estimated and measured
induction dependences turned out to be in satisfactory
quantitative agreement. This corroborates the earlier
supposition that the displacement of 180° domain walls
in the strip DS is the major source of magnetic losses in
rotating fields at moderate induction values (1.0–1.2 T
or lower).

To reveal specific features of the DS dynamics that
are responsible for a reduction of the losses with
decreasing specimen thickness at high induction ampli-
tudes (Fig. 2b) is a much more challenging task. This is
because magnetization reversal in rotating fields at such
amplitudes proceeds solely through the displacement of
the walls of the closure DS [12]. Strip domains do not
emerge on the specimen surface throughout a reversal
cycle. In addition, the sizes of domains in the closure
DS vary considerably at different sites of the specimen
because of the nonuniformity of their internal fields. In
light of this, the contribution of the closure DS to mag-
netic losses can be estimated by visualizing its dynam-
ics on the entire specimen surface. In our case, this
seems infeasible in view of the large dimensions of the
specimens studied.

Bm
2

TECHNICAL PHYSICS      Vol. 50      No. 10      2005
Yet, based on the results obtained in [20], let us try
to explain the variation of the magnetic losses that is
demonstrated in Fig. 3b. Theoretical analysis per-
formed in [20] showed that, as Fe–3 wt%Si specimens
with the [001] axis lying in the specimen plane get thin-
ner, the domains forming the fine structure of the clo-
sure regions narrow. This causes the closure domains,
as well as their related sizes of the basic strip structure,
to diminish. Therefore, the reduction of magnetic losses
at high inductions may be associated with a decrease in
the mean size of the domains in the closure DS when
the specimens become thinner. The subsequent growth
of the losses is due, as before, to a rise in the hysteresis
component, which accounts for more than half of the
total losses at thicknesses below 0.15 mm. Finally, let
us see why the losses differ in the specimens with dif-
ferent orientations of the [001] axis. As is known [6],
the misorientation of the magnetization relative to the
specimen plane by small angle β causes a large number
of droplike domains to emerge on the surface. Upon
magnetization reversal, some of them penetrate into
new strip domains and decrease the mean width of the
already existing strip domain structure. This, in turn,
diminishes the eddy current component and, accord-
ingly, the total magnetic losses in the specimen. Using
the same line of reasoning, we can also explain why the
losses in the specimens with β = 1.5° are higher than in
those with β = 0 (Fig. 3a). A similar relationship
between the loss components in specimens comparable
in size is observed when the induction is high (Fig. 3b).
In this case, as was noted above, magnetization reversal
is associated only with the displacement of the walls of
the closure DS. One may therefore suppose that misori-
entation of the magnetization ([001] axis) relative to the
specimen surface shrinks not only strip domains but
also domains in the closure DS.

It has been already noted that the difference between
magnetic losses in the specimens with the variously ori-
ented [001] axis decreases as the specimens become
thinner. A reason may be a nontrivial variation of the
domain width when the specimens with β = 1.5° are
thinned. In experiments [3] with single crystals with
β > 0, it was conjectured that, as the thickness of the
crystal drops to a value less than the strip domain width,
the domain width is governed by magnetostatic poles
on opposite faces of the specimen rather than by mag-
netoelastic interaction at the end faces that are normal
to the magnetization projections onto the specimen sur-
face. In this case, the basic strip DS naturally shrinks.
Such a variation of the DS sizes was observed in [4]
during dynamic magnetization reversal in Fe–3 wt%Si
with β = 1°. The aforesaid leads us to conclude that, as
the specimens in Fig. 3 become thinner, the difference
between magnetic losses diminishes because of a
decrease in the DS “dispersion” (and, hence, in the
eddy-current losses) in the specimen with β = 1.5°.
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CONCLUSIONS

Thus, we have ascertained how RMR losses depend
on the thickness of the Fe–3 wt%Si specimen, misori-
entation of its surface relative to the (110) plane, and
induction amplitude. It has been found that total losses
P depend on induction amplitude Bm nonmonotonically
in a wide specimen thickness range (0.08–0.40 mm)
and that the minimum of the curve P(Bm) shifts toward
lower Bm as the specimens are thinned. Specifically, as
they become thinner, RMR losses first decline, reach-
ing a minimum at 0.15 mm, and then grow. In the min-
imum, the total losses are, on average, 30–50% lower
than at the initial thickness. The minimal-loss thickness
under RMR is 1.5–2.0 times larger than the correspond-
ing value under magnetization reversal in a linearly
polarized field.

A small deviation of the crystal surface relative to
the (110) plane (β is roughly equal to 1.5°) results in a
substantial decrease in the magnetic losses compared
with the losses in the specimens with β = 0. The amount
of decrease is the most significant (by about 25%) in the
thickest specimens and monotonically declines with
decreasing specimen thickness.

It has been demonstrated that the data on RMR
losses can be explained by considering the DS dynam-
ics.
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Abstract—The compositions of higher fullerenes produced by ablation of various carboniferous materials are
experimentally studied. The yield of fullerenes versus the type of carboniferous materials and laser radiation
parameters is found. © 2005 Pleiades Publishing, Inc.
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INTRODUCTION

The production of pure fullerenes is known to be
based on their extraction with organic solvents from
fullerene soot prepared by laser ablation [1] or using an
electric arc [2]. According to the publications, the yield
of the most abundant fullerenes (C60 and C70) from
fullerene soot is less than 15% and the yield of heavier
fullerenes up to C84 does not exceed a few fractions of
a percent.

The low yield of higher fullerenes makes them
extremely expensive, which to a great extent prevents
insight into the properties of these molecules. However,
interest in these materials is continuously growing,
especially in light of their potential use in large
endocomplexes. Such complexes are expected to con-
tain not only individual atoms but also molecules inside
the cavities of higher fullerenes, which will substan-
tially extend the application of fullerenes in various
fields of science and technology.

An important factor that is responsible for such a
low yield of higher fullerenes is their content in
fullerene soot. In this work, we study the formation of
higher and giant fullerenes by laser ablation versus the
parameters of laser radiation and the type of carbonif-
erous materials.

EXPERIMENTAL

We developed a technique based on detection of
positive ions that form during the laser ablation of car-
boniferous materials by time-of-flight (TOF) mass
spectrometry. The experimental setup consisted of a
TOF mass spectrometer with an ion source generating
a laser plasma. As a radiation source, we used a tunable
dye laser pumped by a pulsed excimer laser. Two wave-
length ranges, 480–520 and 240–260 nm, were used.
The laser pulse duration was 15 ns, and the pulse repe-
1063-7842/05/5010- $26.00 1301
tition rate was 1 Hz. The radiation was focused on the
sample placed at the axis of the mass spectrometer. The
diameter of a laser spot on the sample was 0.1 mm, and
the radiation power density was 105–107 W/cm2. The
samples were prepared from powdered carboniferous
materials by their sedimentation in an alcohol solution
onto a metallic substrate. They were first degassed in a
low-pressure chamber and then placed in an ultrahigh-
vacuum chamber by means of a manipulator. The num-
ber of laser pulses depended on the signal-to-noise
ratio. A pulsed voltage injected ionic ablation products
into the drift chamber of the mass spectrometer, whose
resolution allowed us to reliably record neighboring
fullerene ions (C2N, C2(N+1)).

Along with routine recording of the mass spectra of
ablation products, we used the TOF technique to ana-
lyze the ionic composition of the ablation products at
each stage of laser plasma formation. This technique
consists in recording laser plasma ions within short
time intervals delayed relative to a laser pulse. By vary-
ing the delay time and recording time interval, one can
obtain additional information on the ion formation pro-
cess. As applied to materials that initially contain car-
bon aggregates, this technique is of special importance,
since it can detect those fullerene ions in the mass spec-
trum forming during clustering of ions from initial mol-
ecules and/or their fragments.

RESULTS AND DISCUSSION

As noted above, from the mass spectra of positive
ions that appear as a result of the laser ablation of car-
boniferous materials, one can reveal the dependence of
the fullerene composition on the type of the material. In
this work, we studied various types of graphites; carbon
and fullerene soots; carbon sorbents; and nanoporous
carbon materials produced from boron, silicon, or tita-
nium carbides.
© 2005 Pleiades Publishing, Inc.
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The results indicate that higher fullerenes are diffi-
cult to prepare from these materials, except for
fullerene soot; in some cases, we could obtain the most
abundant C60 and C70 fullerenes and a minor amount of
fullerenes having a mass of C180 or less. The carbonif-
erous material most promising for preparing higher
fullerenes turned out to be fullerene soot, whose abla-
tion products contained higher fullerenes with up to
500 carbon atoms. To compare the yield of higher
fullerenes from different materials, Fig. 1 shows the
mass spectra of graphite and fullerene soot taken at the
same parameters of laser radiation. The graphite spec-
trum exhibits only small C3–C27 carbon clusters, the
structures of which do not correspond to fullerene ions.
At the same time, the ionic composition of the laser
plasma of the fullerene soot consists mainly of
fullerene ions with the characteristic distribution
including giant fullerenes. It is interesting that, as the
number of laser pulses per irradiation area increases,
heavy ions gradually disappear from the spectrum of
fullerene soot and the mass spectrum becomes similar
to that of the graphite sample (Fig. 2). In other words,
increasing the number of laser actions on the fullerene
soot causes its graphitization. The yield of higher
fullerenes from the soot indicates that the initial prod-
uct contains carbon compounds, which transform
readily into higher fullerenes during radiation.

It was shown [3, 4] that initially fullerene soot
exhibits a variety of carbon structures: from small car-
bon flakes to giant carbon clusters. Attempts to separate
these clusters with active solvents revealed the
fullerene nature of their crystal structure. In [4], sepa-
rated clusters were analyzed by mass spectrometry with
laser desorption and ionization and the extraction prod-
ucts were found to contain a wide spectrum of fullerene
molecules from C60 to C418. However, the interpretation
of these data seems to be doubtful, because molecular
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Fig. 1. Mass spectra of (a) graphite and (b) fullerene soot.

(a)

(b)
ions of higher fullerenes might be synthesized during
the laser ablation of the extraction products.

Our next goal was to clarify the dependence of the
ablation product composition on the type of fullerene
soot. Figures 3 and 4 show that the mass spectra of the
fullerene soots produced by combustion of various
graphite electrodes (Fig. 3) at different buffer gas pres-
sures in a synthesis chamber (Fig. 4). All the curves
exhibit a wide ion distribution up to C400–C500. It should
be noted that the recorded ions belong to fullerene com-
pounds, since the difference between neighboring
peaks is equal to 24 m/z. This difference, being a char-
acteristic sign of fullerene mass spectra, corresponds to
complex C2 (the main building block of fullerenes),
which is lost upon treatment [5–7]. The extents and
forms of the distributions shown in Figs. 3 and 4 indi-
cate that, first, the synthesis conditions influence the
soot composition and, second, some types of soot are
more favorable for producing higher fullerenes by laser
ablation.

To additionally support the efficiency of fullerene
soot as a starting material to form fullerenes in a laser
plasma, we analyzed the dependence of the fullerene
yield on the number of laser pulses. The results demon-
strate that ablation leads to deposition of the laser
plasma products on the sample surface, and so the
fullerene ions result from interaction of laser radiation
with the surface covered by carbon compounds (depos-
ited previously) rather than with the initial surface [1].
This situation shows up most vividly in ablation of
graphite, where higher fullerenes cannot be produced
by a single laser shot. These data confirm the efficiency
of using fullerene soot, whose nature is similar to that
of deposits due to graphite ablation [1, 8–10].

Thus, our results demonstrate that the carboniferous
material most promising for the production of higher
fullerenes is fullerene soot, whose ablation products
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C23C
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Fig. 2. Mass spectra of fullerene soot after (a) the first
5 laser shots, (b) 50 shots, and (c) 70 shots.
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contain higher fullerenes consisting of up to 500 carbon
atoms. In the other products, higher fullerenes were
extremely difficult to detect; in some cases, we man-
aged to obtain ordinary C60 and C70 fullerenes and a
small amount of fullerenes having a mass of C180 at
most.

When studying the formation efficiency of positive
ions of higher fullerenes, we used the fullerene soots
providing a maximum yield of higher fullerenes. To
find the dependence of the formation efficiency of these
compounds on the irradiation conditions, we varied the
radiation wavelength and power and studied the ionic
composition at different stages of laser plasma develop-
ment.

Since the dye laser could operate in two wavelength
ranges (240–260 and 480–520 nm), we analyzed the
spectral dependence of the fullerene yield in the near
ultraviolet and visible ranges by varying the power den-
sity of the radiation from 105 to 107 W/cm2.

Our results show that coalescence, which is respon-
sible for the formation of higher fullerenes, goes in par-
allel with fragmentation, which results in degradation
of fullerene compounds and increases the fraction of
small carbon clusters. The same dependence is also
observed for a radiation power density higher than
106 W/cm2 irrespective of the wavelength. Such behav-
ior indicates that, as the laser plasma temperature
exceeds a certain threshold, the initial carbon com-
pounds decompose into atoms and tiny clusters, which
form linear or planar configurations rather than bulk
fullerene compounds upon subsequent coalescence. It
should be noted that a plasma overheat due to visible
radiation is likely to be due to radiation absorption in
the surface layer of the sample, where the concentration
of evaporated carbon particles, which are responsible
for the formation of higher fullerenes, is maximum.

To see how the plasma temperature influences the
yield of fullerene ions, we studied the mass spectrum of

C602500
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0 1000 2000 3000 4000 5000
Mass, m/z

Intensity, arb. units

Fig. 3. Mass spectra of fullerene soot for various graphites.
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the fullerene soot at each stage of laser plasma develop-
ment. Figure 5 shows the evolution of the mass spec-
trum of ions coming to the detector at different time
instants after the laser pulse is incident on the fullerene
soot. As is seen, the distribution substantially depends
on the stage of plasma development. At the early stage,
characterized by the fastest ions, it consists of two
broad components with greatly differing masses. As the
plasma develops, these distribution components first
broaden and shift toward higher masses and then the
double-humped distribution changes to one broad dis-
tribution.

Such an evolution of the mass spectrum can be
explained by clustering of fullerene ions early in
plasma development, when the concentration of initial
ions (region A) still suffices to form heavier fullerene
ions (region B). The same velocities of particles greatly
differing in mass can be explained only by clustering
and gasdynamic acceleration of the clusters; otherwise,
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Fig. 4. Mass spectra of fullerene soot at a helium pressure
of (a) 100, (b) 400, and (c) 500 Torr.
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Fig. 5. Mass spectra of fullerene soot as a function of the
delay time between the laser pulse and injection voltage:
(a) 5, (b) 10, (c) 15, (d) 20, and (e) 40 µs.
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the particles would have velocities inversely propor-
tional to the square root of their masses [11]. A similar
explanation for the formation of giant fullerene ions is
given in [12], where these ions were the products of
graphite ablation.

However, the origin of the fullerene ions with
smaller masses (region A) remains unclear. They may
be formed by laser ionization of the corresponding mol-
ecules if they are present in the fullerene soot or
through clustering of still lighter ions appearing when
graphite flakes in the soot vaporize.

CONCLUSIONS
The material most promising for the formation of

higher fullerenes by pulsed laser ablation seems to be
fullerene soot. The maximal effect is reached when
ultraviolet radiation of power less than 106 W/cm2 is
used. It should be emphasized that, with graphite used
as a starting material at the same ultraviolet radiation
power, the mass spectra contain only small C3–C27 car-
bon clusters. The yield of fullerene compounds
depends on the stage of laser plasma development. The
processes responsible for coalescence and fragmenta-
tion are qualitatively outlined.

Our data make it possible to find laser radiation
parameters providing a maximal yield of higher
fullerenes.
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Abstract—An equation in the Gilbert form that describes the motion of the magnetization vector in intense
high-frequency magnetic fields is solved numerically. The solution obtained is used to study switching of the
magnetization of a single-domain ferromagnetic particle that has the shape of an ellipsoid of revolution and pos-
sesses cubic anisotropy from the position parallel to an easy axis to the position normal to this axis. The ranges
of amplitudes and frequencies of the magnetic field where magnetization switching is observed are determined.
An expression for the response of an ensemble of variously oriented particles is derived. It is shown that a par-
ticle ensemble generated by an rf field may serve as a data carrier on which information is written and read out
by means of nonlinear and linear ferromagnetic resonances. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

An ensemble of unrelated oriented single-domain
ferromagnetic particles can be viewed as an alternative
medium for nonvolatile storage devices [1–3]. Data
readout from such an ensemble implies its excitation by
a low-power pulse of a variable magnetic field at the
ferromagnetic resonance (FMR) frequency. Informa-
tion is read out by scanning the variable field fre-
quency: a response at a certain frequency corresponds
to logic unity; its absence, to logic zero [4, 5]. For data
writing using a pulsed high-frequency field, the magne-
tization vector in the particle must be switched from the
position parallel to an easy axis to the position normal
to this axis [2, 3].

To date, the problem of switching at resonant fre-
quencies has been poorly explored experimentally; so,
the only way to tackle this problem today is theoretical
analysis and numerical simulation of the magnetization
behavior in a single-domain particle placed in various
fields. In our previous work [2], a solution method for
this problem in the case of spherical particles was out-
lined. In this work, the problem of magnetization
switching in single-domain particles is extended to the
case of particles in the form of an ellipsoid of revolution
subjected to an intense pulsed high-frequency field and
an expression for the electromagnetic response from an
ensemble of variously oriented particles is derived.

EQUATION OF MOTION OF MAGNETIZATION 
VECTOR

Consider the behavior of magnetization vector M of
one particle. We assume that the particles are indepen-
dent (uncoupled) and have the form of an oblate ellip-
soid of revolution whose axis coincides with one of
1063-7842/05/5010- $26.00 ©1305
crystallographic axes. The magnetic energy density of
the particle is represented as a sum of the cubic anisot-
ropy energy density, demagnetizing field energy den-
sity, and Zeeman energy density (the energy density of
the magnetic moment of the particle in a variable mag-
netic field) [6],

(1)

Here, K1 > 0 and K2 < 0 are the first and second con-
stants of cubic anisotropy, respectively; H~ = hsin(ωt)
is the external magnetic field with frequency ω; m =
M/M0 is the direction cosine vector of magnetization

M, M0 = |M|; and  = diag(Nx, Ny, Nz) is the diagonal
tensor of demagnetizing factors of the ellipsoid, where
Nx = Ny ≤ Nz. Coordinate axes Ox, Oy, and Oz are
directed along the crystallographic axes [100], [010],
and [001] of the particle.

In the absence of an external field, the magnetization
vector is in either of two stable positions, which corre-
spond to a minimum of energy: it runs parallel to either
axis Ox or Oy. Upon change of variables, the equation
of motion of magnetization vector in the Gilbert form
can be recast as [2]

(2)

where α is a dimensionless damping parameter;  =
–δU*/δm is the reduced effective magnetic field acting
on the magnetic moment (U*(m) = U(m)/2K1 is the
reduced free energy density); t* = t22γK1/M0 is the
reduced time; ω* = ωM0/2γK1 is the reduced frequency;

U m( ) K1 mx
2my

2
my

2mz
2

mx
2mz

2
+ +( )=

+ K2mx
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2mz
2 2πMN̂M M H~.⋅–+
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-------- m Heff*×[ ]– α m
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--------× ,+=

Heff*
 2005 Pleiades Publishing, Inc.
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h* = hM0/2K1 and h* are, respectively, the reduced vec-
tor and magnitude of the variable magnetic field; and
γ is the gyromagnetic ratio.

In the spherical coordinate system such that the azi-
muth axis is aligned with axis Oz and the polar axis is
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Fig. 1. Component my vs. reduced time t* and variable field

frequency ω*: (a) spherical particle at α = 0.01,  =

0.9999, and h* = 0.09; (b) spherical particle at α = 1,  =

0.5, and h* = 0.33; and (c) disk-shaped particle at α = 0.01,
 = 6.35, and h* = 0.1.

ωres*

ωres*

ωres*
aligned with axis Ox, Eq. (2) takes the form

(3)

where θ and ϕ are the azimuth and polar angles.

NUMERICAL ANALYSIS AND DISCUSSION
OF RESULTS

We assume that, prior to switching of a variable
magnetic field aligned with the Ox axis, magnetization
vector M is directed along the Oy axis. Equation (3)
was solved by the Runge–Kutta methods of orders four
and five [7]. In calculation, the time of action of the
variable field and the observation time were taken to be
(in terms of the reduced time) τ* = 20/α and ∆t* =
1.5τ*, respectively. Also, we put K2/K1 = –0.16 and

/K1 = 6.25. The numerical solution of set (3) shows
(Fig. 1) that, as amplitude h* of the variable field grows,
oscillating magnetization vector M deviates from the
stable equilibrium position, passes through the unstable
equilibrium position, and switches to another stable
equilibrium position that is normal to the initial stable
position. Such behavior is of resonant character. The
magnetization vector switches in a certain band of
reduced frequencies ∆ω*, which we call the switching
band. The extent of this band depends on reduced vari-
able field amplitude h*, dimensionless damping param-
eter α, and shape of the particle. If a minimal value of
h* (with a field frequency fixed), , at which M
rotates by π/2 is taken for the switching threshold, then
resonant switching at  takes place at frequencies

close to reduced FMR frequency  of an oblate ellip-
soid of revolution,

(4)

(5)

where  is the reduced precession eigenfrequency (or

Kittel frequency) of the ellipsoid and  is the reduced
relaxation frequency [3].

For spherical particles, the switching band always
lies below the reduced FMR frequency, the separation
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increasing with damping parameter (Figs. 1a and 1b).
For disk-shaped particles, the switching band includes
the reduced frequency of linear FMR at the same
reduced field amplitude (Fig. 1c). This is because the
demagnetizing field in our system is several times
higher than the anisotropy field, and so the first har-
monic, which is embodied in linear FMR in isotropic
disks (uniform precession in the plane of the disk under
a low anisotropy field) prevails in magnetization vector
oscillation. The higher h*, the wider the switching band
for spherical particles and the larger damping parame-
ter α, the narrower the switching band at a fixed vari-
able field amplitude. Also, with increasing damping
parameter, the switching band shifts toward lower fre-
quencies, moving away from the linear FMR frequency
(Fig. 2). When the variable field amplitude is very high
(h* @ ), magnetization vector M behaves in a ran-
dom manner. In this case, the variable field causes the
magnetization to switch in the directions normal, anti-
parallel, and parallel to its initial position. The run of
the frequency dependence of the switching threshold is
the same for all oblate ellipsoids of revolution: the
curve “expands” as the semiaxis of revolution
decreases (Fig. 3).

ELECTROMAGNETIC RESPONSE 
FROM A SINGLE-DOMAIN FERROMAGNETIC 

PARTICLE

The response will be described using modified Gil-
bert equation (2) as the equation of motion. Let a parti-
cle be subjected to alternating magnetic field (t*) =

h*exp(iω*t*). For h* ! , a solution to (2) will be
sought in the form

(6)

where m0 is the component of vector m in the stable
equilibrium position in the absence of the magnetic
field (in the presence of the field, m0 || (m0)).

Let the magnetic field be aligned with the Ox axis
and the orientations of the particle magnetization along
the Ox and Oy axes be designated as positions a and b.
Then, for position a, h* || m0, m0 × h* = 0, and the solu-
tion to Eq. (2) is m = m0. For position b, the sets of
equations for the components of vectors m1 (m1y = 0)
and m2 (m2y = 0) have the form (accurate to the second
order of smallness in m1 and m2)

(7)
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From set (8), one can find the resonant and relax-
ation frequencies appearing in (6). A solution to set (7)
can be represented in the form

(9)
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Response E (in volts) from one particle, which is
proportional to the rate of change of the magnetic
moment, is sensed by an induction coil whose axis is
directed along the Oz axis of the laboratory frame of
reference [4],

(10)

where µ0 = 4π × 10–7 H/m is the magnetic constant, V is
the particle volume, and n is the number of turns per
unit length.

From solution (9), one can obtain the steady-state
response amplitude per particle as a function of the
reduced frequency,

(11)

As follows from (6), the relaxation time of the par-
ticle magnetization, τr = 2π/ωr ~ 1/α (which coincides
with the time of excitation of particle magnetization
oscillation), depends on damping parameter α. From
(11), we see that the response of the particle is maximal
at reduced FMR frequency  and is ∆ω* ~  wide.

RESPONSE OF A PARTICLE ENSEMBLE 
TO A FIELD PULSE

Consider now the response from a particle ensemble
excited by a variable field. We assume that the basic
crystallographic axes are parallel to and the axes of rev-
olution of all particles are directed along the Oz axis of
the laboratory frame of reference. Then, we have the

E µ0M0

dmz

dt
---------Vn,–=

U ω*( ) 1

1 α2+
---------------=

×
µ0M0h*Vnω*
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Fig. 4. Frequency dependence of the relative amplitude of
the response from 1000 particles half of which are in state a
and the other half, in state b. α = 0.01.
unique coordinate system for all the particles. Let the
magnetizations of the particles be aligned with the Oy
axis and h || Ox Then, after the ensemble has been
exposed to an intense pulsed high-frequency field,
some of the particles whose switching bands contain
the variable field frequency switch to the position par-
allel to the Ox axis (write event). Switching of magne-
tization M can be detected from a change in the electro-
magnetic response of the particles exposed to a small-
amplitude variable field with a frequency close to the
write frequency. Response E from the entire ensemble
of independent particles, which is detected by the coil,
equals the sum of partial responses Ek (see (10)) [1, 8],

(12)

For fine particles, a spread in sizes (volumes) is con-
sidered to be Gaussian in accordance with experimental
data [4, 8]. We also assume that the particle shape dis-
tribution provides the uniform distribution of the
demagnetizing factor along the axis of revolution in the
interval Nz ∈  [1/3, 1]. When the particles in the ensem-
ble are oriented randomly, i.e., when the number of par-
ticles in states a and b is the same, the response from the
ensemble will show several discrete peaks against the
diffuse background, the density of the peaks depending
on the number of particles in the ensemble (Fig. 4). If
all particles the resonant frequencies of which fall into
a certain interval are in state a, while the remaining
ones are in state b, the spectrum will exhibit a dip near
this frequency interval and the depth of this dip will
depend on damping parameter α (Figs. 5a and 5b).
Hence, the dip will characterize the amount of particles
with a definite direction of the magnetization vector. Its
presence may be used for reading-out of information
written by intense pulses of the variable field.

FMR-BASED WRITING/READING 
FEASIBILITY

As was already noted, when the magnetization of
the particles is aligned with or normal to the variable
field, the response is, respectively, high and low.
Accordingly, from the amount of response, one can
judge the particle magnetization orientation distribu-
tion. The data currently available suggest the feasibility
of a data carrier based on the frequency writing/reading
mechanism [1, 4, 5, 9]. Unlike the mechanism proposed
in [4, 5, 9], where information is written by means of
two rf pulses, here one pulse is used, which cuts the
write time by more than one order of magnitude. Infor-
mation is stored by some of the particles whose magne-
tization is parallel to the field and whose resonant fre-
quencies are close to each other. If the response ampli-
tude at a given frequency is below a certain level, one
can assume that the logic zero is written at this fre-
quency. In other words, this means that the magnetiza-
tions of most of the particles with closely spaced reso-
nant frequencies are collinear with a scanning weakly

E Ek.
k

∑=
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varying magnetic field (Fig. 6). Otherwise (the
response exceeds a certain level at a given frequency),
one can assume that the logic unity is written. In the
simplest case of highly anisotropic particles, the writ-
ing density depends on relaxation frequency  ≈
−α  or damping parameter α. The smaller the damp-
ing parameter, the higher the frequency writing density
and vice versa.

The condition of particle independence can be writ-
ten in the form of the inequality Hdd ! Han, where Hdd ≈
VM0/d3 is the field of dipole–dipole interaction between
two particles d distant from each other and Han =
2K1/M0 is the anisotropy field. Hence, the mean dis-
tance between the particles must obey the relationship

d @ (V /2K1)1/3. In our system, /K1 = 6.25 and the
particles are 10–100 nm across (as follows from the fact
that they are single-domain [8]); therefore, d = 10–5–

ωr*
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Fig. 5. Frequency dependence of the relative amplitude of
the response from 1000 particles for α = (a) 0.01 and
(b) 0.001. The dotted lines depict the response from all the
particles whose magnetization runs normally to the variable
field.
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10−4 m. Accordingly, the particle concentration is 108–
109 cm–3 and the writing density is 108–109 bit/cm3 (two
to three particles per bit). As the amount of anisotropy
rises, the writing density is bound to grow as (Han)1/3.
Thus, nonlinear and linear FMRs can be used for data
writing/reading in an ensemble of fine single-domain
particles.

CONCLUSIONS

We considered the linear and nonlinear dynamics of
magnetization in an ensemble of independent single-
domain particles subjected to high-frequency electro-
magnetic field pulses. At certain values of the pulse
amplitude and frequency, the magnetization vector of
one particle resonantly switches to the position perpen-
dicular to its initial orientation. This phenomenon is
akin to the occurrence of nonuniform nonlinear FMR,
since the frequency dependence of the switching
threshold is similar to the frequency dependence of the
nonlinear FMR excitation threshold [10].

If the field amplitude is small, the oscillations of
magnetization vector M are based on nonlinear FMR.
In this case, the response both from one particle, if its
size exceeds a certain value [11], and from a particle
ensemble can be detected. The amount of the electro-
magnetic response is related to the particle shape, since
its spectrum depends on the particle distribution over
resonant frequencies, which, in turn, depend on the par-
ticle shape distribution. The spectrum of the response is
also affected by the orientation of the magnetization
vector in the particles relative to a given axis. Numeri-
cal analysis of the solution to the equation of motion of

0 2 4 6 8

0.2

0.8

1.0

U/Umax

ω*

0.6

0.4

10

Fig. 6. Frequency dependence of the relative amplitude of
the response from 1000 particles some of which are in state
a and the rest of them are in state b (near reduced frequen-
cies of 3, 4, and 5) for α = 0.01. The dotted line depicts the
response from all the particles whose magnetization runs
normally to the variable field.
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magnetization vector convincingly suggests that an
ensemble of single-domain particles excited by an rf
field may be used as an information carrier where data
writing/reading is based on nonlinear/linear FMR.
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Abstract—The effect of the structural state of Fe5Co70Si15B10, Fe60Co20Si5B15, and Co81.5Mo9.5Zr9 amor-
phous alloys on their magnetic properties is studied under different nanocrystallization conditions. A permanent
magnetic field applied during thermomagnetic treatment is found to affect structuring in the amorphous alloys
at the initial stage of devitrification. The fine structure of the devitrified amorphous alloys is shown to correlate
with the field shifting the hysteresis loop. A mechanism accounting for a hysteresis loop shift in amorphous
alloys is discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The magnetic properties of soft magnetic materials
depend on their structure, the structures of domain
walls, and the domain wall stability. By modifying the
structure of ferromagnets, one can control their mag-
netic properties. Electron microscopy is widely applied
to study the structural state of amorphous and nanoc-
rystalline alloys. Additional information on the struc-
ture of the alloys can be extracted from the key param-
eters involved in the Barkhausen effect [1, 2].

In this work, we studied the effect of the structural
state of Fe- and Co-based amorphous alloys on their
magnetic properties and parameters of the Barkhausen
effect under various conditions of heat treatment and
thermomagnetic treatment (TMT). Specifically, we
revealed how the annealing temperature, cooling rate,
and magnetic field frequency influence the magnetic
properties of the heat-treated alloys and found a rela-
tionship between the structure of the amorphous alloys
(disperse phase precipitation) and field ∆H shifting a
hysteresis loop (∆H is the field between the center of
the loop and the origin).

The chemical compositions of the disperse phases
were determined. Concepts concerning a mechanism
accounting for a hysteresis loop shift in the amorphous
alloys are presented.

RESULTS AND DISCUSSION

Amorphous ribbons 20–25 µm thick and 5 mm wide
were produced by quenching from the melt on a rotat-
ing copper wheel. The samples had the shape of strips
and toroids. The amorphous samples had different val-
ues of magnetostriction λs: ~30 × 10–6 for
Fe60Co20Si5B15 and ~0.5 × 10–6 for Fe5Co70Si15B10. For
Co81.5Mo9.5Zr9, λs was close to zero.
1063-7842/05/5010- $26.00 1311
To relieve quenching-induced stresses, the samples
were vacuum-annealed at temperatures varying from
300 to 450°C. Then, they were subjected to longitudi-
nal magnetic fields of different frequencies (namely, in
a permanent field, in an ac field with f = 50 Hz, and in
a high-frequency field with f = 80 kHz). Some of the
samples were subjected to complex thermomagnetic
treatment: they were annealed in a certain temperature
range and simultaneously exposed to a constant or
high-frequency magnetic field. Some of the samples
were water-quenched in an ac magnetic field starting
from the Curie temperature (the cooling rate was
50 K/min).

The structure of the amorphous ribbons was studied
under a JEM-200KX transmission electron micro-
scope. For electron microscopic analysis, the ribbons
were electrolytically thinned to foils having regions as
thin as 200–300 nm.

As a key (information-carrying) parameter of the
Barkhausen effect, we chose electromotive force ε of
the flux of magnetization (Barkhausen) jumps averaged
over the magnetization reversal period. The flux of
magnetization jumps (MJs) was displayed on an oscil-
loscope screen, and ε was measured on the strip sam-
ples by an add-on transducer [3, 4]. The toroidal sam-
ples were used to measure static hysteresis loops, initial
permeability µ0, and magnetic losses P0.2/20000. The
magnetic losses measured at a frequency of 20 kHz and
an induction of 0.2 T were calculated from the area of
stroboscopically recorded dynamic hysteresis loops.
The initial permeability was determined at a frequency
of 80 Hz in a field of 0.05 A/m. From the strip samples,
we also took static hysteresis loops.

The basic parameters of the alloys, namely, Curie
temperature TC and crystallization temperature Tcr, are
given in Table 1. Table 2 lists the magnetic properties of
© 2005 Pleiades Publishing, Inc.



 

1312

        

NOSKOVA 

 

et al

 

.

                                                                                                                                       
the Fe60Co20Si5B15, Fe5Co70Si15B10, and Co81.5Mo9.5Zr9
alloys after the heat and thermomechanical treatments.
Here, µ0 is the initial permeability, Hc is the coercive
force, P0.2/20000 is the magnetic losses, and Br/Bm is the
squareness ratio of a hysteresis loop.

Figure 1 shows the hysteresis loops for different
states of the Fe5Co70Si15B10 alloy: after annealing in the
absence of the magnetic field, after TMT in the perma-
nent magnetic field, and after TMT in the high-fre-
quency magnetic field (f = 80 kHz). After rapid quench-
ing from the melt on the rotating wheel, the sample has
a rounded symmetrical hysteresis loop. After no-field
annealing, the hysteresis loop has inflections (Fig. 1a).
After TMT in the permanent magnetic field, the loop
becomes rectangular and shifts along the field axis
(Fig. 1b). TMT in the 80-kHz field leads to a symmetric
rounded hysteresis loop with a minimum coercive force
(Fig. 1c). In the last case, the effect is similar to that of
TMT in a rotating magnetic field. Note that water
quenching of the Fe5Co70Si15B10 alloy from the Curie
temperature and TMT in the high-frequency magnetic
field give the same result.

Figure 2 plots shift field ∆H against the temperature
of TMT in the permanent field for the Fe5Co70Si15B10
alloy. The annealing time was 1 h for all the samples.

Table 1.  Values of TC and Tcr for the amorphous alloys

Alloy TC, °C Tcr, °C

Fe5Co70Si15B10 380 480

Fe60Co20Si5B15 550 490

Co81.5Mo9.5Zr9 462 540

–2 2

0.5

B, T

H, A/m

0.5

–2 2
H, A/m

(a) (b)

(c)

0 2 0

Fig. 1. Hysteresis loops in the Fe5Co70Si15B10 amorphous
alloy after (a) annealing in the absence of the magnetic field,
(b) TMT in the permanent magnetic field, and (c) TMT in
the high-frequency magnetic field.

0.5
It is seen that TMT at temperatures to 250°C does
not shift the hysteresis loop. The treatment in the tem-
perature range 250–350°C slightly shifts the loop (by
about 1–2 Hc). At higher TMT temperatures, the shift of
the hysteresis loop increases sharply, reaching 10–
15 Hc.

Similar results were obtained for the Fe60Co20Si5B15
and Co81.5Mo9.5Zr9 alloys. The experimental data indi-
cate that the shape of the hysteresis loop, magnetic
losses, and permeability of the samples depend on the
treatment conditions.

The Fe- and Co-based amorphous alloys annealed in
the absence of the field exhibit hysteresis loops of the
Perminvar type. Hysteresis loops with inflections are
associated with the stabilizing domain structure:
domain walls tend to return to their initial positions as
the applied magnetic field decreases to zero. The pres-
ence of the stabilized domain structure in the samples
annealed without the magnetic field can be judged from
elevated magnetic losses and low initial permeabilities.

During TMT in the 80-kHz field, magnetization
reversal in the amorphous ribbons occurs via magneti-
zation rotation. When the sample is annealed in this
field, induced anisotropy does not arise because of the
absence of a preferred orientation. The destabilization
of the domain structure that occurs at TMT in the high-
frequency field results in rounded symmetric hysteresis
loops, low magnetic losses, a low coercive force, and a
high permeability.

The rectangular hysteresis loops shifted along the
field axis that are observed after TMT in the constant

2.5

0
300

∆H, A/m

T, °C

5.0

400200

Fig. 2. Field shifting the hysteresis loop vs. the temperature
of TMT in the permanent magnetic field for
Fe5Co70Si15B10.
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magnetic field are likely to be related to microcrystal-
line high-coercivity precipitates in the amorphous
matrix with their magnetization directions specified by
the direction of the magnetic field during TMT. The
results of structure analysis that follow confirm this
assumption.

For the Fe5Co70Si15B10 amorphous alloy, it turned
out that, after TMT in the constant magnetic field at
280°C (∆H is at most 1–2 Hc), its matrix contains dis-
perse α-Co clusters. In dark-field images of the alloy
after this treatment, these clusters appear as diffuse and
clear-cut spots and the inner ring in the electron diffrac-
tion pattern is smeared (Fig. 3a). After TMT in the con-
stant magnetic field at 380°C, ∆H equals 10–15 Hc. The
alloy contains disperse precipitates (<5 nm across) of
the Co2Si and Fe3Si phases (Fig. 3b), which are not
observed after annealing at a lower temperature
(280°C). Remarkably, these phases (disperse precipi-
tates) are arranged into chains.

The structure analysis suggests that the small shift
of the hysteresis loop in the case of the Fe5Co70Si15B10
amorphous alloy subjected to TMT in the temperature
range 250–350°C is related mainly to the formation of

Fig. 3. Electron micrographs taken of amorphous
Fe5Co70Si15B10 and the corresponding electron diffraction
patterns taken after TMT in the permanent field at (a) 280
and (b) 380°C.

(‡)

(b)

100 nm
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α-Co clusters, which stabilize the domain structure.
The shift of the hysteresis loops in the samples
annealed at higher temperatures is likely to be caused
by the precipitation of disperse phases with a higher
coercive force and the magnetization direction speci-
fied by the direction of the magnetic field in the course
of TMT.

After TMT in the constant magnetic field at 400°C,
the Fe60Co20Si5B15 alloy also contains disperse (<5-nm)
Co2Si and Fe3Si precipitates. The magnetization direc-
tion in them depends on the direction of the magnetic
field in the course of treatment. Note that such a treat-
ment causes a significant shift of the hysteresis loop
(∆H = 10–15 Hc).

Figure 4 shows the electron micrographs taken of
the Co81.5Mo9.5Zr9 alloy after heat treatment at 300°C
for 2 h (Fig. 4a) and after TMT in the constant magnetic
field at 450°C for 1 h (Fig. 4b).

It is seen that the matrix of the alloy annealed at
300°C for 2 h remains amorphous. However, along with
the first and second diffuse halos, the electron diffrac-
tion pattern contains diffraction spots and rings, the lat-

(‡)

(b)

Fig. 4. Electron micrographs taken of amorphous
Co81.5Mo9.5Zr9 and the corresponding electron diffraction
patterns after (a) heat treatment at 300°C for 2 h and
(b) TMT in the permanent field at 450°C for 1 h.
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Table 2.  Magnetic properties of the amorphous alloys after different treatments

Alloy Treatment µ0 Hc, A/m P0.2/20000, W/kg Br/Bm

Fe5Co70Si15B10 Annealing 4500 1.3 30 0.3

TMT in permanent field 5200 0.6 37 0.97

Rapid cooling in ac field 45 000 0.4 5 0.96

Fe60Co20Si5B15 Annealing 1050 2.5 55 0.3

TMT in permanent field 1200 2.5 60 0.97

Complex TMT 7500 1.0 7 0.97

Co81.5Mo9.5Zr9 Annealing 1200 1.5 35 0.4

TMT in permanent field 3500 0.8 40 0.97

Rapid cooling in ac field 50 000 0.3 5 0.96
ter consisting of small reflections. The dark-field image
of the alloy demonstrates crystalline phases; by inter-
planar spacings, these can be identified as α-Co and
β-Co precipitates less than 2 nm across.

Although the alloy annealed in the constant mag-
netic field at 450°C contains the α-Co, β-Co, and
Co2(Mo,Zr) disperse phases, its alloy structure still
remains largely amorphous. The effect of a constant
magnetic field on structuring early in devitrification of
the amorphous alloy during heat treatment is of partic-
ular interest. The constant magnetic field seems to favor
the growth of α-Co clusters and their aggregation into
linear (inside the ribbon) or 3D arrays, which originate
at the ribbon surface.

Figure 5 shows the oscillograms of the envelopes of
the MJ flux amplitudes in the metalloid-free
Co81.5Mo9.5Zr9 amorphous alloy subjected to heat treat-

100

0 0.5

ε

Hm, A/cm

1

2

50

Fig. 5. Oscillograms of the MJ flux amplitude envelopes for
Co81.5Mo9.5Zr9 after (1) heat treatment at 300°C for 2 h and
(2) TMT in the permanent magnetic field at 450°C for 1 h.
ment at 300°C for 2 h (curve 1) and to TMT in the con-
stant magnetic field at 450°C for 1 h (curve 2). Compar-
ing these oscillograms with the electron micrographs
taken of the Co81.5Mo9.5Zr9 alloy (Fig. 4) indicates a
correlation between the alloy structure and the chosen
information-carrying parameter of the Barkhausen
effect. Specifically, the field distribution of MJs in the
Gaussian form (Fig. 5, curve 1) corresponds to the
amorphous structure, while intervals of critical start
fields in the oscillogram are assigned to precipitation in
the amorphous matrix (Fig. 5, curve 2).

After TMT in the constant magnetic field, the oscil-
logram of the MJ flux amplitude envelope shifts along
the field axis, in accordance with the shift of the hyster-
esis loop. The oscillogram exhibits several intervals of
critical start fields. The α-Co, β-Co, and Co2(Mo,Zr)
disperse phases (with their magnetization directions
specified by the direction of the constant magnetic field
during TMT) precipitating in this alloy result in an
increase in the MJ flux amplitude and simultaneously
narrow the intervals of critical start fields.

CONCLUSIONS

A constant magnetic field applied during thermo-
magnetic treatment has been found to affect structuring
at the initial stage of devitrification of the amorphous
alloys. The fine structure of the devitrified amorphous
alloys correlates with the field shifting the hysteresis
loop. The parameters of the Barkhausen effect are
shown to correlate with the fine structure of the devitri-
fied amorphous alloys.

It is shown that magnetization reversal in the sam-
ples subjected to thermomagnetic treatment in a con-
stant magnetic field is accomplished via a set of magne-
tization jumps in start fields close to each other, which
results in an increase in the magnetic losses.

Methods that could prevent a shift of the hysteresis
loop and significantly improve the magnetic properties
of amorphous soft magnetic materials are (i) complex
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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thermomagnetic treatment (the simultaneous action of
high-frequency and permanent magnetic fields) and
(ii) rapid cooling starting from a temperature above the
Curie temperature at a rate of 50 K/min in an ac mag-
netic field. Changes in the magnetic properties of the
alloys after such treatments are due to the occurrence of
uniaxial magnetic anisotropy and the destabilization of
domain walls.

ACKNOWLEDGMENTS

This work was supported by the project “Integra-
tion” in cooperation with the Siberian Division, Rus-
sian Academy of Sciences.
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
REFERENCES

1. É. S. Gorkunov, Yu. N. Dragoshanskiœ, and M. Micov-
sky, Defektoskopiya, No. 6, 3 (2000).

2. É. S. Gorkunov, V. V. Shulika, A. G. Lavrent’ev, et al.,
Dokl. Akad. Nauk 386, 468 (2002) [Dokl. Phys. 47, 728
(2002)].

3. G. S. Korzunin and A. G. Lavrent’ev, Defektoskopiya,
No. 6, 24 (1999).

4. A. A. Glazer, V. V. Shulika, and A. P. Potapov, Dokl.
Akad. Nauk SSSR 324, 1191 (1992) [Sov. Phys. Dokl.
37, 314 (1992)].

Translated by K. Shakhlevich



  

Technical Physics, Vol. 50, No. 10, 2005, pp. 1316–1318. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 10, 2005, pp. 66–68.
Original Russian Text Copyright © 2005 by Avakyants, Bokov, Chervyakov.

                                                                 

OPTICS,
QUANTUM ELECTRONICS

       
Computerized Setup for Double-Monochromator 
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Abstract—An experimental setup for studying semiconductor structures by photoreflectance spectroscopy is
designed. The double-monochromator-based optical scheme of the setup makes it possible to depress uncon-
trolled heating of the sample and diminishes a bending of the energy bands due to charge carrier photogenera-
tion. Accordingly, the photoreflectance spectra are detected with a minimal influence of the modulating and
probe radiations on the sample. With this setup, the room-temperature photoreflectance spectra from
GaAs/GaAsP superlattices are taken and the interband transition energies, as well as a potential step in the con-
duction band of these superlattices, are measured. © 2005 Pleiades Publishing, Inc.
The techniques of modulation spectroscopy are
being widely used in studying semiconductor struc-
tures, such as quantum wells and superlattices. The
most popular are the photoreflectance and electroreflec-
tance methods [1], which measure the variation of
reflectance R of the sample in the presence of an elec-
tric field. In the case of photoreflectance (PR), R is
modulated by the electric field varying in the space
charge region when electron–hole pairs are generated
by a modulating laser radiation. Although the relative
variation of the reflectance under the action of the mod-
ulating radiation is small, ∆R/R ~ 10–5, it can be
recorded using synchronous detection. The PR method
is contactless and offers a high spatial locality.

PR spectra can be recorded with a monochromator
placed in front of the object (Fig. 1a) [2] or behind it
(Fig. 1b) [3]. In the former case, the radiation from
spectrometer lamp 1 (probe radiation shown with the
dashed line) passes through monochromator 2 and is
incident on the sample. The reflected beam strikes pho-
todetector 4 [2]. Modulating beam 5 is incident on the
same place on the sample as the probe radiation. In such
a configuration, the photodetector receives both the
desired PR signal and the modulating radiation scat-
tered by the surface roughness. Therefore, the signal to
be measured may fall outside the dynamic range of
measurements in the case of synchronous detection.

In the latter case (Fig. 1b), the total radiation from
spectrometer lamp 1 and modulating radiation 5 are
incident on the sample, reflect from it, and enter the
entrance slit of monochromator 2. The monochromator
transmits only the probe radiation (dashed line), which
is then recorded by photodetector 4. In this case, the
monochromator filters out the modulating radiation
scattered by the surface roughness. However, the sam-
ple is constantly irradiated by the entire spectrum of the
1063-7842/05/5010- $26.00 ©1316
intense lamp. This leads to local heating of the sample,
photoexcitation of carriers, and, eventually, an uncon-
trolled bending of the energy bands.

To get rid of the disadvantages inherent in the above
schemes, we developed a setup for recording PR spec-
tra that is based on a double monochromator (Fig. 1c).
Here, the radiation from spectrometer lamp 1 passes
through first monochromator 2 and is incident on sam-
ple 3. The modulating radiation strikes the sample at the
same place. The reflected radiation passes through sec-
ond monochromator 2 and arrives at photodetector 4.
Such a scheme prevents sample heating, and the scat-
tered modulating radiation is filtered out by the second
monochromator. Figure 2 shows the block diagram of
the experimental setup for PR spectroscopy equipped
with an MDR-6 double monochromator (the focal
length 30 cm, the aperture ratio 1 : 6). Additional
entrance slit A is mounted in the second stage of the
monochromator instead of the middle slit.

The radiation from 30-W spectrometer lamp 1 is
focused by optical system 2 on the entrance slit of first
monochromator 3(I), passes through it, and is directed
to sample 5 by means of optical system 4. The radiation
of He–Ne laser 10 modulated with mechanical chopper
11 is incident at the same point of the sample. The mod-
ulation frequency can be varied from 50 to 1500 Hz.
The probe radiation reflected from the sample (the
dashed line in Fig. 2) is focused by objective 6 on
entrance slit A of second monochromator 3(II) inter-
faced with low-noise photoamplifier 7. An FDK-263
silicon photodiode connected by the zero-bias scheme
serves as the sensor of the photoamplifier. The fre-
quency response of the amplifier is optimized for the
frequency band 50–1500 Hz. The output signal of the
amplifier is applied to lock-in detector 8 of a Unipan-
232B selective nanovoltmeter. The signal from photo-
 2005 Pleiades Publishing, Inc.
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Fig. 1. Recording of PR spectra with (a, b) one and (c) two monochromators: (1) spectrometer lamp, (2) monochromator, (3) sample,
(4) photodetector, and (5) modulating radiation.
diode 13 serves as a reference voltage for the lock-in
detector. Photodiode 13 detects the modulating radia-
tion from laser 10, which reflects from the sample (the
dotted line in Fig. 2). Thus, the output voltage of the
lock-in detector is proportional to the variation of
reflectance R at the modulation frequency. The aper-
tures of optical systems 2, 4, and 6 are matched with the
aperture of the monochromator. To control the positions
of the monochromator gratings and to measure the PR
signal, we used PC 9 with an RS-232 interface and an
original interface unit [4] based on an Amtel 89c51
microcontroller. The spectral width of the monochro-
mator’s instrument function was 1 meV. The PR spectra
were recorded at room temperature.

Figures 3a and 3b show the PR spectra of a
GaAs/GaAsP superlattice that were taken using a sin-
gle (Fig. 1a) and double (Fig. 1b) monochromator,
respectively. The spectral lines at 1.459 and 1.903 eV
correspond to basic transitions in the strained GaAs and
GaAs0.6P0.4 layers, respectively. The lines in the range
1.459–1.903 eV are assigned to interband transitions in
the superlattice. It is seen that the PR spectra differ in
signal-to-noise ratio and shape because of a reduced
effect of the probe radiation on the sample in Fig. 3b.

To find the energies of the interband transitions, the
experimental spectra were fitted to the Aspnes low-field
model [5],

(1)

Here, A and ϕ are the amplitude and phase parameters,
E is the probe radiation energy, Ei is the position of an
ith spectral feature, Γ is a phenomenological broaden-
ing parameter, and m is a parameter depending on the
type of the critical point and on the order of the deriva-
tive of permittivity ε(E) with respect to energy.

In the case under consideration, m = 2 [5]. The
arrows in Fig. 3b indicate the energies of interband
transitions in the superlattice calculated from the exper-
imental spectrum. Based on the simulation results for
the GaAs/GaAsP band structure and the experimental
data obtained from the PR spectra, we estimate a band
discontinuity at the heterojunction, ∆Ec/∆Eg = 0.15 [6].
Here, ∆Eg is the difference between the energy gaps of

∆R
R

------- E( ) Re Aeiϕ E Ei– Γ+( ) m–[ ] .=
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Fig. 2. Block diagram of the experimental setup for PR
spectroscopy: (1) spectrometer lamp, (2, 4, 6) objectives,
(3) MDR-6 double monochromator, (5) sample, (7) photo-
detector with low-noise amplifier, (8) Unipan-232B selec-
tive nanovoltmeter, (9) PC with microprocessor-based inter-
face unit, (10) He–Ne laser, (11) chopper, (12) deflecting
mirror, and (13) reference signal photodetector.
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the barrier and well and ∆Ec is the conduction band dis-
continuity at the heterojunction.

Thus, we developed a computerized setup for PR
spectroscopy of semiconductor compounds. Our
approach makes it possible to suppress probe-radiation-
induced perturbing effects and, thereby, to avoid uncon-
trolled heating of the sample and bending of energy
bands due to photogeneration of carriers. The room-
temperature experiments carried out with this setup
allowed us to estimate the interband transition energies
in the strained GaAs/GaAsP superlattice and a potential
step at the heterojunction.
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Abstract—New findings concerning a double-pass amplifier of original design allowing for a significant
increase in the peak power of laser pulses without changing the lasing mean power and pump power are pre-
sented. A peak power of 305 kW is demonstrated at a lasing mean power of about 25 W. The physics of such
an amplifier and prospects for its application are discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The creation of self-terminating laser systems with
a relatively high peak power is a topical problem for a
number of applications, such as laser frequency conver-
sion with nonlinear crystals, dye laser pumping, micro-
processing of materials, etc. Earlier [1, 2], we proposed
a scheme of a multipass amplifier in order to increase
the peak power of a copper-vapor laser. The specific
design of this amplifier makes it possible to increase the
peak power severalfold without changing the way and
amount of energy deposition into the active medium.

The effect is reached by the multiple passage of a
sharp short laser pulse generated by a master oscillator
(MO) through the active medium of the amplifier.
Duration τ0s of this pulse must be substantially shorter
than inversion lifetime τinv in the active medium of the
amplifier stage. It has been experimentally demon-
strated [3] that the energy taken from the active medium
by and accumulated in a short input pulse is nearly
equal to the energy acquired by a long input pulse, τ0s ≥
τinv, in a one-pass scheme, the lasing volume being
equal. Therefore, the amplitude of the short pulse is
higher than that of the long pulse by a factor of τinv/τ0s.
Using qualitative expressions derived in [3], one can
find optimal relationships between τ0s, τinv, length Lamp
of the active medium of the amplifier, and delay time
τdel of the beam-turning unit of a copper-vapor multi-
pass amplifier. In this work, we perform experimental
verification of these expressions and refine the optical
scheme of a copper-vapor multipass amplifier with the
aim of improving the parameters of radiation.

EXPERIMENTAL

In experiments, we employed a simple (double-
pass) copper-vapor laser amplifier with counterpropa-
gating and polarization-decoupled beams (Fig. 1). The
1063-7842/05/5010- $26.00 1319
system consists of MO 1; collimator 2; polarization
beamsplitter (Glan prism) 3; amplifier stage 4; and
beam-turning unit 5, containing quarter-wave plate 6
and plane mirror 7.

MO 1 (LT-1Cu commercial laser tube [4]) equipped
with an unstable resonator (mirrors 8 and 9) with mag-
nification M = 5 and polarizer 11 (Glan prism) gener-
ates pulses with wavelengths of 0.51 and 0.578 µm at a
repetition rate of 10 kHz. The radiation is polarized
horizontally, so that electric vector E|| lies in the plane
of Fig. 1. Telescopic collimator 2 consisting of two con-
cave spherical mirrors 8 and 9 magnifies the diameter
of the MO beam to 20 mm and partly suppresses its
superluminescent background, separating out (through
pinhole 10) the central part of the beam with divergence
ϕin, which is approximately five times greater than the
diffraction-limited divergence. The (input) MO radia-

J–
out A

E⊥

E||

J–

J+

BLamp

Ldel

1
2

3

4 5

6 7

8

9

10
11

12 13

14 15

Fig. 1. Experimental scheme: (1) MO, (2) collimator,
(3) polarization beamsplitter, (4) amplifier stage, (5) beam-
turning unit, (6) quarter-wave phase plate, (7) plane mirror,
(8, 9) mirrors, (10) collimator pinhole, (11) MO polarizer,
(12, 13) mirrors of MO resonator, and (14, 15) mirrors of
amplifier stage.
© 2005 Pleiades Publishing, Inc.
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tion power at the entrance to the amplifier stage is Win =
0.3 W, and the width of the pulse base is τ0s = 12–13 ns.
In several experiments, an LT-3Cu higher power com-
mercial laser tube [4] was used, which raised Win to
0.7–0.9 W at M = 230. In this case, duration τ0s was
about 17 ns and ϕin was three times as large as the dif-
fraction-limited divergence.

The application of the unstable resonator incorpo-
rated into the MO, mirror collimator with spatial filter-
ing, and high-quality optical windows and mirrors,
along with the upgraded MO pump source, made it pos-
sible to decrease the divergence and increase the power
of the beam at the entrance to the amplifier stage com-
pared with early values [3] of these parameters. The
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Fig. 2. (a) Pulses from the MO built around the LT-1Cu tube
at the entrance to the amplifier (Win = 0.3 W) and (b) the
corresponding output pulses of the amplifier: (1) total
power, (2) power at a wavelength of 0.51 µm, and (3) power
at a wavelength of 0.578 µm.
chromatic aberrations and beam astigmatism at the
entrance to and exit from the amplifier stage were also
reduced.

Amplifier stage 4 contains a GL-201 tube with
working chamber length Lamp = 80 cm and a diameter
of 20 mm. The inversion lifetime (measured at the base)
is τinv ≈ 35 ns at a typical pump power of 3.0–3.2 kW
and a pulse repetition rate of 10 kHz. Horizontally
polarized beam J+ enters the active medium of amplifier
stage 4 through section A and falls on turning unit 5.
Beam J– propagating in the opposite direction acquires
orthogonal polarization (E⊥ ). Therefore, it does not
interfere with beam J+ and is removed from the system
by means of polarization beamsplitter 3.

Delay time τdel and its corresponding distance Ldel
from section B of the discharge chamber containing the
active medium of the amplifier stage to mirror 7 were
taken so as to satisfy the relationships derived in [3] for
a double-pass system at given τ0s. In the experiments,
ratio τinv/τ0s was varied from 2 to 3.

Repetition-rate-averaged input power Win of ampli-
fier stage 4 and average amplified power Wout at the out-
put of this stage were measure with an IMO-4S calo-
rimeter. Corresponding waveforms Uin(t) and Uout(t)
were detected using FÉK-22spu phototubes and a sam-
pling oscilloscope with a bandwidth of 3.7 GHz. The
waveforms were related to the time axis with regard to
the delays in the optical measuring paths. For the dou-
ble-pass configuration, waveforms Uin(t) and Uout(t) in
section A are shown.

The results were compared with those obtained in
[3, 5] for a single-pass amplifier with the same ampli-
fier stage and pump power. In [3, 5], the MO generated
pulses of duration equal to the inversion lifetime in the
amplifier stage (about 35 ns). For the single-pass ampli-
fier, the maximal powers were Wout = 23 W and Uout =
136 kW.

RESULTS AND DISCUSSION
Figures 2 and 3 show waveforms Uin(t) (panels (a))

of pulses from the MO and waveforms Uout(t) (panels
(b)) of pulses from the double-pass amplifier for the
MOs based on the LT-1Cu and LT-3Cu tubes, respec-
tively. Either version had its own optimal length Ldel
corresponding to τdel. It is seen from Fig. 3a that the
input pulse generated by the LT-3Cu-based MO is not
smooth, exhibiting three humps (τ0s is about 17 ns). In
both cases, the output pulse of the double-pass ampli-
fier is 2–3 ns longer than the input pulse. The increase
in the peak power is the highest for a short smooth pulse
with τ0s ≈ 12.5 ns. It is seen from Fig. 2b that the total
(for two wavelengths) output peak power (curve 1)
amounts to 305 kW at a mean power of 25 W (curves 2
and 3 correspond to green and yellow lines, respec-
tively). When the input pulse is generated using the LT-
3Cu tube, the maximum output peak power of the dou-
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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ble-pass amplifier is 210 kW (Fig. 3b). This value is
lower than that obtained in [3] (240 kW) for a smooth
input pulse with the same duration of 17 ns. This indi-
cates that the shape and steepness of the input (MO)
pulse have a significant effect on the peak power.

Note that, in both cases, the peak power of the dou-
ble-pass amplifier built around the scheme from [2] is
1.5–2.2 times higher than the peak power (136 kW) of
the conventional single-pass amplifier with the mean
radiation powers, pump powers, and lasing volumes
being equal.

It follows from the results presented that the ener-
gies extracted from the active medium in the single- and
double-pass amplifiers are virtually equal to each other.
The pulse duration at the entrance to the double-pass
amplifier remains approximately equal to the input
pulse duration and is twice as short as the superlumi-
nescence pulse duration.

Figure 4 demonstrates the peak power of the double-
pass amplifier optimized in this parameter versus delay
time τdel and pulse duration τ0s with the amplifier exci-
tation mode remaining unchanged (τinv = 35–40 ns). It
is seen that each τ0s can be assigned optimal τdel. Com-
parison of curves 1 and 2 obtained for the smooth MO
pulses with durations of 12.5 and 17 ns, respectively,
shows that such a dependence complies with the opti-
mization relationships derived in [3]. For a double-pass
amplifier, these relationships are written as

(1)

(2)

Expression (1) was obtained under the assumption
that two passes of a single MO pulse cover the inversion
time in the amplifier stage. Expression (2) implies that
an MO pulse completely fills the volume of the ampli-
fying medium for the inversion lifetime. For τ0s and τdel

much shorter than those satisfying the above formulas,
an MO pulse covers the inversion time incompletely
and cannot totally fill the working volume of the ampli-
fier. Accordingly, part of the excitation energy remains
unutilized. If τdel is much greater than the optimal value,
the trailing edge of the pulse has no time to leave the
channel before the inversion is terminated and the pulse
energy is partially absorbed. In both cases, the ampli-
tude of the power pulse at the exit of the double-pass
amplifier decreases. The maxima in the curves depicted
in Fig. 4 correspond to an optimal value of τdel. On the
other hand, when the MO generates shorter pulses, we,
in accordance to expression (2), need to decrease an
optimal value of τdel, as demonstrated in the experi-
ment: the maxima in the curves in Fig. 4 shift leftward.

τ0s τ inv
2Lamp

c
-------------– τdel,–≈

τ0s
2Lamp

c
------------- τdel+ 

  .≥
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Note that the value of τinv in expression (1) is to a
great extent uncertain, since this quantity depends on
the amplification dynamics and laser energy density in
the active medium of self-terminating lasers. In addi-
tion, expressions (1) and (2) ignore an increase in the
pulse duration at the exit from the amplifier. The super-
luminescence lifetime (35–40 ns for the system under
study) may apparently be taken as the maximum value
of τinv. For developed stimulated emission with an
energy density higher by one order of magnitude, one
should keep in mind more the pulse duration for a
plane-resonator laser (25–30 ns for the given experi-
mental conditions). Figure 4 supports the above state-
ment. Specifically, substituting optimal delays τdel ≈
8 ns (curve 1) and τdel ≈ 14 ns (curve 3) into expression
(1), we obtain τinv ≈ 26 and ≈36 ns, respectively. Esti-
mation of the electromagnetic field energy density
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Fig. 3. (a) Pulses from the MO built around the LT-3Cu tube
at the entrance to the amplifier (Win = 0.7 W) and (b) the
corresponding output pulses of the amplifier: (1) total
power, (2) power at a wavelength of 0.51 µm, and (3) power
at a wavelength of 0.578 µm.
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averaged over the laser pulse duration yields 5 and
≈3.4 µJ/cm3: i.e., the higher the peak power of the
amplifier, the shorter the inversion lifetime. A more rig-
orous analysis of the multipass amplifier considered
requires the self-consistent solution of the kinetic equa-
tions for populations, equation of the energy balance in
a plasma, and transfer equations for amplified radia-
tion.

CONCLUSIONS

Upgrading of a copper-vapor double-pass amplifier
and the application of an MO pulse shorter than in the
previous work [3] made it possible to raise the peak
power of the output pulse to 305 kW. This value is
2.2 times higher than that of a single-pass amplifier
with the mean output power (23–25 W), pump power,
and lasing medium of the amplifiers being equal. The
results obtained support the validity of the qualitative
physical model that explains the method [1] of increas-
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Fig. 4. Peak power of the amplified pulses vs. delay time
τdel at (1) τ0s ≈ 12.5 ns and U0s = 5.7 kW, (2) τ0s ≈ 17.5 ns
and U0s = 6–9 kW, and (3) τ0s ≈ 17 ns and U0s = 3 kW [3].
ing the pulse amplitude without significantly changing
the specific mean power. Note that single-pass amplifi-
ers using MO pulses shorter than the inversion lifetime
in the amplifier stage also offer a high output power.
However, the mean power here decreases, because the
inversion energy is utilized incompletely. In particular,
using tubes with a volume two to four times greater,
Evtushenko et al. [6] obtained a peak power of 600 kW
at a specific mean power seven to eight times lower than
the mean power in this work.

To clarify the prospects of our approach, additional
calculations and experiments (in particular, with a
larger number of passes in the amplifier stage) are
needed. Such amplifiers would make it possible to
effectively employ small and, hence, cheap lasing ele-
ments [4] with a mean radiation power of 10–20 W
instead of expensive devices with a mean output of tens
or hundreds of watts in technological equipment requir-
ing high-peak-power radiation pulses.
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Abstract—The interaction of a powerful femtosecond laser pulse with a thin aluminum foil containing a hydro-
gen admixture is investigated. The calculations in question are performed for actual ion charges and at a solid-
state density. The investigation is carried out with the aid of the previously developed theory of interaction of
powerful short laser pulses with plasmas. This theory is based on constructing propagators for plasma-particle
distributions. The calculated fast-proton distributions are in good agreement with experimental data. © 2005
Pleiades Publishing, Inc.
INTRODUCTION

Present-day lasers of power in the multitera- and
petawatt ranges make it possible to obtain high-inten-
sity femtosecond pulses (see, for example, [1]). In such
cases, the intensity may range between 1018 and
1020 W/cm2 at the focus of a laser pulse. At intensities
as high as this, the oscillatory motion of an electron in
the field of a wave becomes relativistic (at a wavelength
of about 1 µm). An intensity of 8 × 1018 W/cm2 can also
be obtained by means of a portable laser as well [2]. A
great number of experiments [3–16] and a numerical
simulation by the “particles in a cell” method [17–27]
showed that the interaction of such intense laser pulses
with a thin target (or a thick target in the presence of a
weak prepulse) may produce intense fast-proton
beams, which can be used for a fast ignition of a ther-
monuclear target [28, 29], diagnostics of fast processes
in plasmas [30], and isochoric heating of a solid body
with the aim of obtaining high pressures [31], as well as
in neutron sources [3].

The mechanism of proton acceleration in the inter-
action of an intense femtosecond laser pulse with a thin
target is as follows. The ponderomotive force acceler-
ates electrons, with the result that there arises charge
separation. This generates an ambipolar electric field,
and it is this field that accelerates ions in the target
plasma. An additional acceleration may be due to the
Coulomb explosion of ions [17] and a vortex electric
field [18]. There is also a stochastic mechanism of elec-
tron acceleration [32], in which case the conditions for
proton acceleration are optimal [26]. Ions may be
accelerated both near the forward boundary of a thin
target [3, 14, 20, 21] and near its rear boundary [6, 8,
13, 17, 18, 22]. In the calculations reported in [27], the
accelerating ambipolar field was distributed over a
wide region. In the case where a laser pulse is incident
1063-7842/05/5010- $26.00 1323
to a thick target, ions are also accelerated owing to the
emergence of an ambipolar field [1]. It should be
emphasized that the energy distribution of accelerated
ions depends on the distribution of displaced electrons.
For the case of a free plasma expansion into a vacuum,
this was proven in [33].

BASIC RELATIONS

Plasma dynamics is studied here within the theory
developed previously in [34] to describe the interaction
of powerful short laser pulses with plasma. This theory
is based on constructing propagators for plasma-parti-
cle distributions at times shorter than the relaxation
time for these distributions. In the approximation of a
self-consistent field, the propagator for the density
matrix (distribution function in the coordinate repre-
sentation) describing particles of sort a has the form

(1)

where S0 is the action functional for a particle in a laser
field of linear polarization (which is typical of powerful
lasers). In this functional, the nonuniformity of the field
is taken into account parametrically; that is,
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(2)

where A = A0(r⊥ , ϕ/ω)sinϕ is the vector potential of a
laser field, with r⊥  ⊥  k, k being the wave vector; ϕ1, 2 =
ωt1, 2 – kr1, 2; ∆ϕ1, 2 = –k∆r/2; and ω is the laser-field
frequency.

In Eq. (1), ∆Sp is the addition that the action func-
tional develops under the effect of the ponderomotive
forces that arise owing to the nonuniformity of the
laser-field amplitude A0. The ponderomotive forces
were taken into account by perturbation theory, this
being legitimate for rather short times within which the
displacement of a particle is small in relation to the
characteristic size of the nonuniformity of the laser-
field amplitude A0,

(3)

Here, ∆ra is the trajectory of a particle in a uniform
laser field, the boundary conditions being ∆ra(t1) = ∆r1
and ∆ra(t2) = ∆r2. The contribution ∆Sst to the action
from particle interaction is given by (this contribution is
also calculated by perturbation theory)

(4)

(5)

Here, Zb, pb, vb, and nb are, respectively, the charge,
momentum, velocity, and mean density of plasma par-
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ticles of sort b. The density matrix ρ(r + ∆r/2, r – ∆r/2)
is related to the distribution function by the equation

(6)

where V is the plasma volume.
If the initial distributions of plasma particles are

known, their evolution can be found by repeatedly
applying the propagators given by Eqs. (1)–(5) accord-
ing to the relation

(7)

In order to study the generation of fast protons, it is
necessary to consider particles of three sorts: electrons,
target ions, and admixed hydrogen ions.

GENERATION OF FAST PROTONS 
UPON THE IRRADIATION 

OF A THIN ALUMINUM FOIL

Here, we consider the interaction of a linearly polar-
ized laser pulse whose envelope is given by

(8)

the z and x axes being aligned with, respectively, the
wave vector of the laser pulse and the polarization axis.
The parameters of the laser pulse are the following: τ =
20T, σ = 7λ, and λ = 0.8 µm, where T and λ are the
laser-pulse period and wavelength, respectively. The
maximum intensity reaches the value of I0 =
1020 W/cm2. The aluminum foil used is shown in
Fig. 1. The angle α between the laser-radiation wave
vector and the normal to the plane is 22°, as in the
experiment reported in [13]. The foil thickness is 3 µm,
the initial concentrations of electrons and Al+13 ions
corresponding to a solid-state density. There are also
admixed hydrogen ions.

By and large, the interaction process proceeds in just
the same way as in a simulation by the “particles in a
cell” method. The large ponderomotive force of a laser
pulse expels electrons and accelerates them along the
direction of its propagation, generating a strong separa-
tion of charges. The distributions of electrons in the
(z, pz) and (y, pz) phase planes are shown in Figs. 2 and
3, respectively. These distributions are given for a time
instant following the completion of laser-pulse interac-
tion with the target. As can be seen from Figs. 2 and 3,
the electrons are accelerated to relativistic energies in
the direction of pulse propagation. Owing to the devel-
opment of Weibel instability [35], an electron current is
generated in the opposite direction. An averaged
description (the characteristic scale is about the wave-
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length) of this instability is given in Fig. 3. Usually, the
Weibel instability develops to smaller scales [36].

The electron-density distribution at a time instant
following the completion of laser-pulse interaction
with the target is displayed in Fig. 4. One can see that
there occurs electron detachment at the target center,
the electron-density value in the detached parts remain-
ing close to a solid-state value. In a simulation by the
“particles in a cell” method, relativistic electrons form
a dilute halo around the target (see, for example, [13,
21, 22]). However, a model initial electron concentra-
tion that is an order of magnitude lower than a solid-
state value was taken in those studies.

The ambipolar electric field formed upon the sepa-
ration of charges accelerates ions, predominantly
admixed protons. The distribution of fast protons with
respect to the momentum pz is displayed in Fig. 5. In the
case where the initial concentrations of aluminum ions
and protons are equal to each other, the temperature of
fast protons is Tph = 4 MeV, while the total number of
accelerated protons whose energy is above 1 MeV is
approximately 3.5 × 1011 (the accuracy of the calcula-
tion is about 20%). These results agree with experimen-
tal data from [13], which indicate that Tph = 3.2 ±
0.3 MeV and that the number of accelerated protons is
1.6 × 1011. The total number of accelerated protons
depends strongly on their initial relative concentration
in the target, since, at their concentration of 3%, the
number of accelerated protons falls down to 0.5 × 1010

(see Fig. 5). The source of the discrepancy between the
numbers of accelerated protons is that the initial con-
centration of the protons in the target is unknown.

From Fig. 6, which shows the distribution of fast
protons in the (z, pz) phase plane, one can see that the
bulk of the protons are accelerated in the region around
z = 5–6λ, which is close to the z value at which the x = 0

x

y

α

z

Fig. 1. Three-dimensional representation of a thin alumi-
num foil.
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plane intersects the rear boundary of the target. There-
fore, the protons are accelerated predominantly in the
vicinity of the rear boundary of the target, this being
consistent with the results of the simulation performed
in [13].
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Fig. 3. Distribution of electrons in the (y, pz) phase plane.
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The absence of proton acceleration in the target in
the vicinity of y = 0 (see Fig. 7) is an interesting feature.
In all probability, this is associated with the intense
inverse current of relativistic electrons in the vicinity of
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200

f(pz)
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150100 250 300 350 400

1.67017E–5

6.14421E–6

1.2341E–4

Fig. 5. Distribution of fast protons with respect to the
momentum pz at various concentrations of protons in the
aluminum target: (solid curve) result for the proton concen-
tration equal to the concentration of target ions and (dashed
curve) result for the relative proton concentration of 3%.
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Fig. 7. Distribution of fast protons in the (y, pz) plane.
this value of y (see Fig. 3). The calculations were per-
formed by using a Pentium-4 PC.

CONCLUSIONS

The interaction of a femtosecond relativistic (I =
1020 W/cm2) laser pulse with an aluminum foil of thick-
ness 3 µm has been studied on the basis of the previ-
ously developed theory of interaction of powerful short
laser pulses. The new method used has made it possible
to perform a simulation at realistic solid-state densities.
By and large, the interaction process follows the same
scenario as that observed in a simulation by the conven-
tional “particles in a cell” method at densities much
lower than a solid-state value. A strong ponderomotive
force leads to the separation of charges and to the accel-
eration of protons by an ambipolar electric field. At ini-
tial solid-state concentrations, however, the electron
cloud is ruptured without a sizable decrease in the con-
centration. The protons are accelerated predominantly
in the vicinity of the rear boundary of the target. The
momentum distribution of fast protons is of a Max-
wellian character and is characterized by the tempera-
ture of Tph = 4 MeV.
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Abstract—A nonstationary gasdynamic model of sealed laser and luminescent cells pumped by uranium fis-
sion fragments is developed. This model extends the earlier 1D model of gas dynamics in cells of flat geometry
to the case of cells with buffer volumes and allows analysis of gasdynamic processes for the energy deposition
step distribution over the laser cell length. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Gaining insight into thermal gasdynamic processes
taking place in the active medium of gas lasers and
luminescent cells pumped by uranium fission frag-
ments [2] is a challenging problem. It covers such
issues as the amount and distribution of energy deposi-
tion, as well as the velocity, density, temperature, and
pressure of the active medium.

The effect of gasdynamic processes is the most pro-
nounced when the energy delivered to the active
medium is comparable to its initial inner energy. In this
case, gas density redistribution is observed, which dras-
tically changes the energy deposition distribution.

Among the available theoretical models of gas
dynamics in nuclear-pumped sealed laser and lumines-
cent cells, two merit attention: the model of low energy
deposit [3] and the 1D model of gas dynamics in cells
of flat geometry [1].

When the energy deposition is low, the gas flow is
potential [3]; therefore, the former model allows 3D
analysis of gas dynamics with regard to heat conduc-
tion. The essential disadvantage of this model is a
severe limitation of the energy deposition.

In the latter model, the energy deposition is related
to the Lagrangean coordinate of a fluid particle and a
solution to the gasdynamic problem is given in quadra-
tures [1], which is a serious advantage of this model. Its
disadvantages are the unfeasibility of adequate inclu-
sion of heat conduction and a low dimension of the
problem. The latter factor makes it impossible to take
into account the nonuniformity of the energy deposition
distribution over the cell length (i.e., along the layers
containing the fissioner).

Most experimental cells have spaces of relief: the
so-called buffer volumes, where the pump intensity is
zero [2, 4]. A specific feature of cells with buffer vol-
umes is forcing the heated gas out of the active volume
1063-7842/05/5010- $26.00 1328
(where the energy deposition is other than zero) into a
buffer during a pump pulse. Obviously, buffered cells
may be viewed as the limiting case of cells with energy
deposition nonuniform distribution.

This paper presents a gasdynamic model of buffered
cells that extends the model developed in [1]. The new
model assumes that acoustic pressure oscillations dur-
ing a pump pulse are negligible, the active volume is
bounded by plane-parallel plates with a fissioner, and
the plate spacing is much shorter than the active volume
length. The last-named assumption allows us to ignore
edge effects at the boundary between the active volume
and a buffer and, thereby, solve the gasdynamic prob-
lem by integrating an ordinary differential equation for
the mean pressure to obtain a solution in the form of a
quadrature in Lagrangean coordinates.

BASIC EQUATIONS
The set of gasdynamic equations for an ideal non-

heat-conducting gas involves the continuity and energy
equations (the Navier–Stokes equation in the model is
lacking) [5],

(1)

where ρ, u, and p are, respectively, the density, velocity,
and pressure of the gas; γ is the adiabatic exponent; and
q is the pump power.

It was shown [1] that, if pump pulse duration τ sat-
isfies the inequality τν @ L, where ν is the sound veloc-
ity and L is the cell length, the kinetic energy in the
energy equation may be ignored (it is much lower than
the potential energy). Below, we disregard the intensity

∂ρ
∂t
------ ∇ ρ u⋅( )+ 0=

∂
∂t
----- p

γ 1–
----------- ρu2

2
---------+

 
 
 

div γp
γ 1–
----------- ρu2

2
---------+

 
 
 

+ q,=







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of pressure waves and assume that the pressure is uni-
form within the cell. Then, the energy equation simpli-
fies to [3]

(2)

where P is the cell-volume-averaged pressure value.

Consider the idealized representation of a buffered
cell (Fig. 1). The cell has the form of a rectangular par-
allelepiped consisting of active and buffer volumes. A
layer of the fissioner is applied on a plate coinciding
with the plane z = 0 (the fissioner can also be applied on
a plate z = h) and is in contact with the active volume.
The pump intensity is assumed to be uniform (edge
effects near the fissioner are ignored), and so the pump
intensity in the active volume depends only on coordi-
nate z. In addition, we assume that the length of the
active volume far exceeds the spacing between the
plates with uranium fuel. This allows us to ignore edge
effects at the boundary between the active volume and
buffer.

It is easy to check that, with the conditions men-
tioned above satisfied, the density and gas velocity
component w along the 0z axis in the active volume will
depend on only time and coordinate z, while velocity
components u and v  along the 0x and 0y coordinates
will be z-independent. This is because the pressure
along the 0z axis levels off much more rapidly than
along the 0x and 0y axes. Note that the above assump-
tions were used previously [3] to provide quasi-one-
dimensional flow in flat cells.

Eventually, the continuity and energy equations take
the form

(3)

Let us integrate the second equation in set (3) over
cell volume V,

(4)

where V and V0 are the total and active volumes of the
cell, respectively, and 〈q〉  is the mean pump intensity in
the active volume.

Below, the gasdynamic parameters will be consid-
ered only in the active volume and 〈…〉  will mean aver-
aging of a parameter over the active volume. Averaging
set (3) over coordinate z and using the no-percolation

1
γ 1–
-----------dP

dt
------- γP

γ 1–
----------- ∇ u⋅( )+ q,=

∂ρ
∂t
------ ∂ρw

∂z
---------- ρ ∂u

∂x
------ ∂v

∂y
-------+

 
 
 

+ + 0=

1
γ 1–
-----------dP

dt
------- γP

γ 1–
----------- ∇ u⋅( )+ q.=









1
γ 1–
-----------dP

dt
------- β q〈 〉 , β

V0

V
------,= =
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conditions at the cell walls, we obtain

(5)

Eliminating mean pump intensity 〈q〉  in the active
volume, we find from (4) and (5) a relationship between
the gas density and pressure in the active volume,

(6)

Formula (6), which was derived in [6], relates the
pressure and mean density in the active volume, i.e., has
the form of an equation of state with adiabatic exponent
ϕ. In the absence of the buffer volume, ϕ = 0 and the
mean density in the active volume is constant.

By way of deviation, let us consider the effect of
heat conduction on equation of state (6). For a heat-
conducting gas, the second equation in set (3) and
Eq. (4) take the form

(7)

where

(8)

are the total heat flux toward the cell wall and the heat
flux toward the cell wall in the active volume, respec-
tively, and λ is the thermal conductivity.

After eliminating 〈q〉 from set (7) and integrating
over time, we arrive at an equation of state of the gas in

∂u
∂x
------ ∂v

∂y
-------+

d ρ〈 〉ln
dt

-----------------,–=

1
γ 1–
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dt
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-------+
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 
 
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------------.= =
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dt
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dt
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dt
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Fig. 1. Sealed cell with buffer volumes: (1) active volume,
(2) buffer volume, and (3) plates with the fissioner.
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the active volume with allowance for heat removal,

(9)

where  = JS –  is the heat flux toward the cell
wall in the buffer volume.

It follows from formula (9) that the accuracy of
equation of state (6) depends on the energy the heated
gas transfers to the buffer volume walls. The effect of
heat conduction on gas dynamics in sealed cells has
been comprehensively considered elsewhere [3, 7] and
here is omitted.

Let us turn to the expression for mean pump inten-
sity 〈q〉  in the active volume. It was shown [8] that, if 〈q〉
is proportional to the energy deposited into the gas by
fission fragments, the pump intensity due to a plane-
parallel indefinitely long layer with a fissioner is given
by the formula

(10)

Here, η is the relative shape of the pump pulse,  =

ρ  is the relative density of the gas, 〈 〉 z is the mean
relative density within the segment [0, z],

(11)

is the pump power in the maximum of the reactor pulse
for local density  = 1, E0 is the mean fission energy,
L0 is the range of a mean fission fragment in the fis-
sioner layer, Lgas is the range of a fission fragment in the
gas of density ρ0, 〈n〉  is the number of fission events per
unit volume in a unit of time averaged over the uranium
layer surface area, and f = f0 – fδ is a dimensionless fac-
tor of energy deposition (hereafter, the energy factor).

If fission fragments slow down by a quadratic law
and the gas density is uniform, we have the following
expressions for the energy factor [8]:

(12)

where h is the Heaviside function; δ and δAl are the
thicknesses of the uranium layer and protective alumi-
num film, respectively; and LAl is the range of a fission
fragment in aluminum.

As follows from formulas (11) and (12), the energy
deposition depends only on relative fragment range ζ
calculated in the 0z direction, which is normal to the fis-
sioner layer surface, and has a constant value in the
Lagrangean variables.

ρ〈 〉 Pϕ ρ0P0
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
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
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PASSAGE TO THE LAGRANGEAN 
VARIABLES

Consider now the gas flow in the active volume.
Combining formulas (3) and (5), we obtain

(13)

where it is assumed that the pressure, gas mean density
〈 〉 , and mean pump intensity 〈q〉  in the active volume
are known functions of time.

Set (13) will be solved in the Lagrangean variables
[9]. The initial coordinates of a fluid particle are (x0, y0,
z0), and the relative density equals unity. The law of
conservation of mass for the particle in the Lagrangean
coordinates has the form dV0 = dV, and the running
coordinates of the particles can be found by integrating
the equations

(14)

Combining the second equation of set (13) and
Eqs. (14), we get

(15)

Also,

(16)

From (10) and the first equation of set (16), it fol-
lows that the pump intensity in the Lagrangean coordi-
nates has the form

(17)

and the pump intensity averaged over the active volume
is given by

(18)

where  is the active-vol-

ume-averaged pump intensity in the pulse maximum
for the uniform distribution of density 〈 〉 .

Substituting relationships (6) and (18) into formula
(4) yields a set of equations for gas mean density 〈 〉

γP
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and pressure in the active volume,

(19)

Equation (19) can be solved numerically, for exam-
ple, by the Runge–Kutta method or by integration in
quadratures using the method of successive approxima-
tions [10].

It should be noted that, if, during a pump pulse, the
range of a mean fission fragment in the gas does not
exceed spacing h between the plates with the fissioner,
the mean pump intensity does not depend on the gas
density, 〈qT〉  = h(t)〈q0〉 . In this case, Eq. (19) is easy to
integrate,

(20)

where P0 is the initial pressure.

Formula (20) characterizes one of two limiting cases
for the pressure shock (for details, see [6]) and coin-
cides with the pressure equation derived in the low
energy deposition approximation [3].

SOLUTION IN THE LAGRANGEAN 
VARIABLES

Consider the solution of set (13) where the gas pres-
sure and mean density 〈 〉  are solutions to set (19).
Substituting (18) into the first equation of (13) in view
of the fact that ∂z0/∂z = /〈 〉 , which follows from the
first equation of set (15), we get

(21)

The solution to Eq. (21) under the initial condition
ρ(0, z0) = ρ0 is

(22)

where

In (22), it is convenient to change integration over
time to integration over pressure,

(23)

1
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where

From the definition of θ, it follows that θβ – 1 = 〈 〉 .
Since the time dependence of the pressure is known
from the solution to Eq. (19), parameter θ is a given
function of time and so the integral on the right of (23)
can be taken numerically. From (14), (16), and (23),
one can find the density and coordinate z of the fluid
particle; namely,

(24)

To return to the Eulerian (fixed) coordinates, it is
necessary to pass from Lagrangean coordinates (x0, y0,
z0, t) to running coordinates (x, y, z, t) in all the formulas
derived. To do this requires inversion of set (14), which
is a routine numerical procedure if the trajectory of the
fluid particle is known.

Expression (23) is an extension of the formula
derived in [1] for buffered cells. In the absence of the
buffer, the integrand in formula (23) clearly does not
depend on the variable of integration; therefore, for the
density and Lagrangean coordinate of the particle, we
obtain the following relationships:

(25)

Formulas (25) coincide with those derived in [1].

COMPUTATIONAL RESULTS

Of special interest in studying the gas dynamics and
optics of laser and luminescent cells are optical inho-
mogeneities and the energy deposition distribution over
the cell volume. Accordingly, one must know the den-
sity and energy factor. In the model considered, the
energy factor is a function of the mean density and
Lagrangean coordinate of the fluid particle,

(26)

as is easy to see from (11) and (17).
Using formulas (23) and (25), one can reduce

expression (24) for the density in the Lagrangean coor-

θ P
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dinates to the form

(27)

As follows from (26) and (27), the energy factor and
the density, when expressed in the Lagrangean coordi-
nates, depend only on the gas pressure (and, certainly,

1
ρ
---

P0

P
-----

 
 
 

1/γ
f ζβ 1– z0( )
f ζβ 1–( )〈 〉

------------------------- ζd

1

θ

∫ 1+
 
 
 

,=

f p( )〈 〉 1
h
--- f pz0( ) z0.d

0

h

∫=
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Fig. 2. Energy factor distribution along the 0z axis for β =
0.4 (numbers by the curves are the relative pressures).
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Fig. 3. Mean density in the active volume vs. pressure for
β = (1, 1') 0.8, (2, 2') 0.6, and (3, 3') 0.4. The primed curves
are constructed in the low energy deposition approximation.
on parameter β, adiabatic exponent γ, and the initial dis-
tribution of this factor, that is, on the quantities that
remain constant during pumping). Since the displace-
ment of fluid particles along the 0z axis also depends
only on the pressure (see formula (24)), we find that the
energy factor and the density depend only on the pres-
sure in the Eulerian coordinates too. The pressure is a
thermodynamic parameter that is the easiest to measure
experimentally; therefore, the computational results for
the density and energy factor are convenient to repre-
sent as parametric dependences of pressure. This is not
pertinent to the gas velocity components, which, as fol-
lows from relationships (13) and (21), depend also on
the shape and amplitude of the pump pulse.

By way of illustration, we give the results of model
calculations for the pressure dependences of the gas
density distribution at β = 1.0, 0.8, 0.6, and 0.4. It was
assumed that the cell is filled with an inert gas (γ = 1.67)
in which the range of a mean fission fragment is twice
as large as the cell transverse dimension (R0 = 2h). At
h = 1 cm, this condition is met for helium at an initial
pressure of 7 atm, neon (1.8 atm), argon (1.2 atm), and
xenon (0.65 atm) [11]. It was also assumed that a 3-µm-
thick 235-uranium layer applied on the lower plate (the
plane z = 0) is covered by a protective aluminum film
0.038 µm thick (such parameters are typical of fuel ele-
ments used in nuclear-pumped laser and luminescent
cells). The energy factor was calculated on the assump-
tion that fission fragments slow down by a quadratic
law (see formula (12)).

For the uniform gas density, the distribution of the
energy factor is shown by curve 1 in Fig. 2. Figure 3
plots the mean density versus pressure in the active vol-
ume. The results obtained in the low energy deposition
approximation are also shown for comparison. From
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P

∆z
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3

0

4

0.15

Fig. 4. Fluid particle displacement along the 0z axis vs.
pressure for β = 0.4. z0/h = (1) 0.2, (2) 0.4, (3) 0.6, and
(4) 0.8.
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the active volume. z/h = (2) 0, (3) 0.25, (4) 0.5, (5) 0.75, and (6) 1.0.
Fig. 3, it follows that the presence of the buffer volume
leads to a considerable decrease in the density in the
active volume as the pressure grows. In particular,
when the pressure grows fivefold, the mean density in
the active volume drops roughly by 20% at β = 0.8,
twofold at β = 0.6, and more than fourfold at β = 0.4.

Figure 4 shows the displacement of fluid particles in
the 0z direction as a function of their initial pressure at
β = 0.4. As the relative pressure rises up to 2.5, the par-
ticles rapidly move away from the plate with the fis-
sioner. With a further increase in the pressure, the par-
ticles start moving in the opposite direction, since the
energy factor distribution levels off with pressure
(Fig. 2).

The relative density versus pressure in the active
volume is demonstrated in Fig. 5 for β = 1.0, 0.8, 0.6,
and 0.4. Thick curve 1 refers to the mean density in the
active volume. It is seen that the interior of the cell may
be subdivided into two regions in the 0z direction: that
where the density is lower than the mean value and that
where the density is higher than the mean. The bound-
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
ary between these regions is roughly coincident with
the middle of the cell (z = 0.5) and depends on the pres-
sure only slightly (the slight dependence on the pres-
sure is associated with the nonzero shift of the parti-
cles). In cells without the buffer volume, the particles
stop as the pressure tends to infinity, as follows from
(25), and the density distribution in the Lagrangean
coordinates becomes inversely proportional to the
energy factor distribution [1].

In the presence of the buffer volume, the density dis-
tribution is affected by two factors: the decrease in the
mean density in the active volume as the gas flows into
the buffer and the redistribution of the gas density in the
transverse direction (i.e., toward the plates with the fis-
sioner). In the lower (expansion) region of the cell, 0 <
z < 0.5, these processes add up and so the gas density
decreases more rapidly than in the case β = 1. In the
upper (compression) region, 0.5 < z < 1, these processes
compete: as the pressure grows, the gas first may con-
tract (under certain conditions) and then necessarily
expands (Fig. 5).
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CONCLUSIONS
Thus, the given study shows that the presence of

buffer volumes in nuclear-pumped laser and lumines-
cent cells appreciably affects gas dynamics in the cells.
The basic effect is the leakage of the gas from the active
volume into the buffer during a pump pulse. Because of
this, the mean gas density in the active volume
decreases, the distribution of the energy deposition lev-
els off, and its absolute value diminishes.

The model considered in this work is an extension of
the 1D model of gas dynamics in cells of flat geometry
[1] and applies at any energy deposited into the active
volume. Therefore, the model may be helpful in esti-
mating the thermal, gasdynamic, and optical parame-
ters of laser and luminescent cells pumped by uranium
fission fragments at a high value of energy deposition.
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Abstract—An up-converter in which a capacitor with a nonlinear dielectric film is used as a nonlinear element
is analyzed. Relationships between the conversion gain and capacitor parameters, such as loss tangent and the
parameters of the C–V characteristic, which are of importance in converter design, are given. An up-converter
using BaxSr1 – xTiO3 capacitors is designed and tested. Experimental characteristics of this up-converter raising
the frequency from 0.8 to 4.4 GHz are reported. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Frequency converters are basic elements of trans-
ceiver systems, since heterodyne reception of signals
remains the main approach. Development of frequency
converters (along with tunable filters, delay lines, and
phase shifters [1, 2]) where a thin-film ferroelectric
capacitor in paraphase serves as a nonlinear element is
among the mainstream areas in microwave application
of ferroelectrics. This avenue of inquiry seems to be
promising for tackling the challenging problem of
designing microwave converters. The feasibility of
such converters is apparent from a high-speed (10–11 s
[3]) dielectric response to an external electric field and
a relatively low loss tangent (tanδ = 5 × 10–3–5 × 10–2)
of ferroelectric films in the paraelectric state at frequen-
cies between 1 and 60 GHz [4], which is of special
importance for the upper part of the microwave range.
To date, little has been known about the performance of
thin-film nonlinear BaxSr1 − xTiO3 (BSTO) ferroelec-
trics in frequency converters. Works devoted to fre-
quency conversion in coplanar waveguides made of
strontium titanate and (Ba,Sr)TiO3 solid solutions [5–7]
have appeared only recently, and generation of harmon-
ics and signals at combination frequencies in a cavity
including a ferroelectric capacitor has been considered
in [8]. However, reliable data indicating a great poten-
tial of using ferroelectrics in microwave converters are
still lacking and ways of improving the performance of
these devices are not quite clear.

In this work, we report theoretical results concern-
ing optimal operating conditions and achievable param-
eters of ferroelectric frequency converters, as well as
simulate and measure the characteristics of a converter
designed for up-conversion from 0.8 to 4.4 GHz that
employs thin-film BSTO capacitors.
1063-7842/05/5010- $26.00 1335
1. ANALYSIS OF AN UP-CONVERTER 
WITH A NONLINEAR FERROELECTRIC 

CAPACITOR

A high-speed response of a thin-film paraelectric
capacitor in paraphase to an applied voltage lets us
assume that dynamic capacitance C = dQ/dU responds
to an instantaneous high-amplitude control microwave
signal virtually inertialessly (the pump signal is up =
Upcosωpt) according to the small-signal dc C–V charac-
teristic.

Experimental C–V characteristics of thin-film ferro-
electric capacitors are usually described well by the
expression [3]

(1)

where C(0) is the capacitance at U = 0, U0 is a phenom-
enological parameter having the dimension of voltage,
K = C(0)/C(∞) is the adjustability factor of the capaci-
tor, and C(∞) is the high-voltage capacitance
(U  ∞).

Generally, parameter U0 depends on the structure
and composition of the ferroelectric and is intimately
related with the geometry of the capacitor.

The operation of the up-converter was analyzed
under the assumption that only the input signal, the sig-
nal picked up from the load (output signal), and pump
signals (at input frequency fin, output frequency fout, and
pump frequency fp, respectively) may be present in the
converter’s circuit (this condition is provided by insert-
ing filters in corresponding circuits, see Fig. 1a) and
that pump signal amplitude Up far exceeds the ampli-
tudes of the input, Uin, and output, Uout, signals. Under
this assumption, the nonlinear capacitance may be

C U( ) C 0( )
K

------------ 1 K 1–

1
U
U0
------ 

  2

+
-----------------------+ ,=
© 2005 Pleiades Publishing, Inc.
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viewed as a parametric capacitance varying in time
with frequency fp according to the C–V characteristic.
Then, the instantaneous small-signal dynamic capaci-
tance of a ferroelectric capacitor can be expanded into
the Fourier series in pump harmonics,

(2)

where

is the constant component of the capacitance and

is the amplitude of an nth harmonic of the capacitance
at frequency nfp (this frequency characterizes the con-
version of the input signal with frequency fin to the out-
put signal with frequency fout = nfp + fin).

Indeed, if weak input signal uin = Uincos(ωint + ϕin)
is applied to the converter with its output short-cir-

C t( ) C0 2 Cn nωpt( ),cos
n 1=

∝

∑+=
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Fig. 1. (a) Basic diagram and (b) equivalent electrical circuit
of the frequency converter.
cuited, the current passing through the capacitor,

(3)

contains a larger number of components at combination
frequencies (nωp ± ωin), the conversion to which is
characterized by coefficient Cn in expansion (2). In the
presence of filters in the input and output circuits of the
converter, only two terms of the Fourier series with
coefficients C0 and Cn should be taken into consider-
ation. Usually, the conversions at the fundamental (n =
1) and the second (n = 2) harmonics of the pump signal
are of interest. According to (3), for frequencies fin and
fout, the constant component of the capacitance at the
working point, C0, as well as linear conductivities gc,in
and gc, out characterizing losses in the nonlinear capaci-
tor at frequencies fin and fout, respectively, can be
assigned to the respective resonant circuits of the con-
verter. Figure 1b shows the equivalent electrical circuit
of the up-converter, where the dashed rectangle outlines
the nonlinear two-port network responsible for conver-
sion (the pump circuit in Fig. 1b is omitted). In Fig. 1b,
Yg and YL are the conductivities of the pump generator
and load, respectively, and gin and gout are the conduc-
tivities characterizing losses due to linear inductances
and capacitances in the input and output resonant cir-
cuits (Lin, Lout, Cin, and Cout).

Analytical expressions relating Fourier coefficients
C0 and Cn to the pump voltage and dc bias voltage
across the plates of the capacitor, Ub, can be found from
theoretical relationship (1) for the C–V characteristic.
Substituting the instantaneous voltages specifying the
working point of the nonlinear capacitor, u(t) = Ub +
Upcos(ωpt), into (1), we find the Fourier coefficient in
the form

(4a)

(4b)

i
d
dt
----- C t( )uin t( )[ ] ωinC0U in ωint ϕ in+( )sin–= =

– U in nωp ωin±( )Cn nωp ωin±( )t ϕ in±[ ]sin
n 1=

∝

∑
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K
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F0 Ub Up,( ) 1
2π
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1
Ub
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 
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where F0 and Fn are dimensionless functions depending
on the pump voltage amplitude and dc bias voltage.

Clearly, the higher the absolute value of Fn, the more
efficient the conversion. Figure 2 plots functions F0, F1,
and F2 versus normalized pump voltage Up/U0 with the
bias voltage taken as a parameter. It is seen that conver-
sion at the second-harmonic frequency of the pump sig-
nal (fout = 2fp + fin) is the most efficient in the absence of
the dc bias (Ub = 0) at Up ≅  2U0. In this case, F0 ≈ 0.45
and |F2| ≈ 0.18. Conversion at the fundamental fre-
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
quency of the pump signal ( fout = fp + fin) is the most
efficient at Ub = (1–3)U0 and Up = (1–3)U0, respec-
tively. In particular, for Ub = Up = U0, F0 ≈ 0.55 and
|F1| ≈ 0.22.

Conversion gain G = Pout/Pin (where Pout and Pin are,
respectively, the powers of the output and input signals)
is maximal when the nonlinear two-port network is
matched to external circuits. For the circuit depicted in
Fig. 1b, the expression for the maximal conversion gain
has the form
(5)

Gopt

GMR
----------

= 
ωoutωinCn

2

gcout gout+( ) gcin gin+( ) 1 1
ωinωoutCn

2

gcout gout+( ) gcin gin+( )
-------------------------------------------------------++

 
 
 

2
---------------------------------------------------------------------------------------------------------------------------------------------
at optimal conductivities of the pump generator, Yg, and
load, YL, defined as

(6)

where GMR = ωout/ωin is the maximal conversion gain
corresponding to a lossless nonlinear-reactance converter
(as follows from the Manley–Rowe relationships [9]).

Yg opt, = gcin gin+( ) 1
ωinωoutCn

2

gcin gin+( ) gcout gout+( )
-------------------------------------------------------+

YL opt, = gcout gout+( ) 1
ωinωoutCn

2

gcin gin+( ) gcout gout+( )
-------------------------------------------------------+ ,









Let us take into account that

(7)

and introduce the notation

gcout ωoutC0 δout,tan=

gout

ωout C0 Cout+( )
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-----------------------------------, ξout

C0

C0 Cout+
---------------------,= =

gcin ωinC0 δin,tan=

gin

ωin C0 Cin+( )
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C0 Cin+
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m
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where tanδin and tanδout are the loss tangents of the fer-
roelectric capacitor at the input, fin, and output, fout, fre-
quencies, respectively; Qin and Qout are, respectively,
the quality factors of the input and output circuits of the
converter without the nonlinear capacitor; and ξin and
ξout are the coefficients of insertion of the nonlinear
capacitor into the input and output resonant circuits,
respectively, which are defined as the energy stored in
the capacitor divided by the total energy stored in the
resonant circuit.

In view of the aforesaid, relationships (5) and (6)
can be recast as

(9)

The depth of modulation of the capacitance, m, at
frequency nfp depends on only adjustability factor K
and control voltages Up and Ub. For values of K typical
of standard ferroelectric capacitors, K = 1.5–3.0, and

Gopt

GMR
---------- m2

b 1 1 m2

b
------++ 

 
2

----------------------------------------=

Y inYL( )opt ωinωoutC0
2 m2 b+( ).= 







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the values of F0 and Fn mentioned above, m falls into
the range 0.07–0.70 at n = 1 and 2. Quantity b charac-
terizes conversion losses due to losses in the ferroelec-
tric capacitor and those in the resonant circuits. If (K –
1)F0 @ 1, the adjustability factor has a negligible influ-
ence on the conversion efficiency. For the inverse ine-
quality, an increase in the adjustability of the capacitor
may partially compensate for losses in the converter.
Below, we will consider conversion only at the funda-
mental pump frequency (n = 1, fout = fin + fp).

Figures 3 and 4 plot optimal conversion gain
Gopt/GMR and the product of the optimal conductivities
of the pump and load, (YgYL)opt, versus adjustability fac-
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TECHNICAL PHYSICS      Vol. 50      No. 10      2005



MICROWAVE UP-CONVERTER BASED ON A NONLINEAR FERROELECTRIC CAPACITOR 1339
tor K of the ferroelectric capacitor for different b at
Ub = Up = U0. Product (YgYL)opt is normalized to the
product of frequencies ωin and ωout and the capacitance
of the ferroelectric capacitor squared in the absence of
the pump signal. With such plots, the converter can be
designed for any frequency. For example, it follows
from Fig. 3 that, at b ≤ 10–4, there is no need to use
capacitors with K higher than two, since the maximum
conversion gain changes by no more than 1 dB at such
b, whereas, at b = 10–2, an increase in K from 2 to 8
raises conversion gain Gopt by 3 dB.

In today’s microstrip resonant circuits, quality fac-
tors Q and insertion coefficients ξ are typically 102 and
0.1–0.3, respectively, at frequencies on the order of
10 GHz. In resonant cavities, Q reaches several thou-
sand at the same frequencies, while the coefficient of
insertion of a ferroelectric capacitor into a cavity is low,
usually ξ ~ 10–2. Taking into account that tanδ in ferro-
electric capacitors varies between 5 × 10–3 and 5 × 10–2

in the frequency interval 1–60 GHz, one can assume
that losses due to the linear elements in the converter’s
circuit prevail. Then, values of b ≅  (ξinξoutQinQout)–1 =
10–2–10–3 apply to both microstrip resonant lines and
resonant cavities. Consequently, conversion gain Gopt is
below the Manley–Rowe value by 2.5–8.0 dB at K =
1.5–2.0 (in Fig. 3, the range of values expected in prac-
tice is hatched).

As follows from Fig. 2 and expression (4), at Ub =
U0, coefficient Cn reaches a maximum when the pump
voltage amplitude approaches U0. This circumstance
specifies a necessary level of pump power Pp. If the
converter is matched to the pump circuit at frequency fp,
the power delivered by the pump can be written as

where gp and gc,p characterize losses due to the linear
elements in the pump resonant circuit and nonlinear
capacitor at frequency fp.

Taking into account that Up = U0 and relationships
similar to (7), the pump power providing a maximal
conversion gain takes the form

(10)

where Qp, ξp, and tanδp are, respectively, the quality
factor of the pump resonant circuit, coefficient of inser-
tion of nonlinear capacitor in it, and tanδ of the capac-
itor at frequency fp.

Expression (10) implies that the pump power
depends on the parameters of the ferroelectric capacitor
(C0, U0, and tanδ) and efficiency of its insertion into the
converter’s circuit. The pump power dissipated in the
active region of the ferroelectric capacitor, Pdis =

0.5 ωpC0tanδp, may cause overheating of the ferro-

Pp
1
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---Up

2 gp gc p,+( ),=
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ξpQp δptan
-------------------------+ 

  ,tan=
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2
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electric film. The amount of overheating depends on the
capacitor’s design and to a large extent on parameter
U0. This fact should be taken into account in designing
the converters.

From relationship (9) and the run of the normalized
conversion gain and external circuit conductivities
(Figs. 3 and 4), one can easily estimate the parameters
of ferroelectric frequency converters by taking small-
signal C–V curves and measuring the loss tangent of a
ferroelectric capacitor, the parameters of which (K, U0,
and tanδ) may be varied (according to the thickness,
microstructure, and composition of compound oxide
thin-film ferroelectrics) during fabrication of the capac-
itive structure.

2. UP-CONVERTER DESIGN AND SIMULATION 
OF ITS CHARACTERISTICS

As nonlinear elements of the converter, we used pla-
nar and parallel-plate thin-film BSTO capacitors. Com-
pared with the planar design, parallel-plate capacitors
allow one to reduce the capacitance-controlling voltage
with ferroelectric films being the same. This fact is of
crucial importance for selecting the pump power. The
design of the capacitors is schematically shown in the
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Fig. 5. Capacitance and tanδ vs. dc bias voltage at a fre-
quency of 3 GHz for thin-film BSTO capacitors (m) 1, (d) 2,
(r) 3, and (.) 4. The inset shows the cross-sectional view of
(1–3) planar and (4) parallel-plate capacitors.
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inset to Fig. 5. They were formed on a 0.5 × 1.5 ×
0.5-mm Polikor (alumina-based ceramics) substrate,
and a BSTO film was applied by magnetron sputtering.
The length, t, and width, s, of the gap in the planar
capacitors and the electrode surface area, s × s, in the
parallel-plate capacitors provided the same rated capac-
itances (≈6 pF) of the capacitors used in the converters.

Prior to implementing the converter, we took C–V
curves from and measured tanδ in a large number of
capacitors with different geometries where both poly-

Parameters of the BaxSr1 – xTiO3 capacitors

Capac-
itor no.

Structure of 
film x h, µm s, µm U0, V K

1 Ceramic 0.6 8.0 20 150 2.2

2 Polycrystalline 0.3 0.5 5 165 2.5

3 » 0.5 0.5 5 27 2.8

4 » 0.3 0.8 30 25 3.4

(a) Pp

PoutPin

OtputInput

C

1

1

1

2

2

3

3

(b)

ffoutfpfin0

0.8 GHz
–60.4 dBm

3.6 GHz
–24.2 dBm

4.4 GHz
–18.7 dBm

4

Fig. 6. (a) Layout of the frequency converter and (b) output
signal spectrum of the optimized converter for Pp =
+30 dBm, Pin = –20 dBm, and Ub = 27 V. (1) Closed stubs;
(2, 3) open stubs serving as rejection filters for signals at
frequencies fp and 2fp, respectively; and (4) contact pad
used to apply the bias voltage to the nonlinear capacitor.
crystalline and ceramic BaxSr1 – xTiO3 films of different
composition x and thickness h were used. The table lists
geometric parameters h and s of (1–3) planar and
(4) parallel-plate capacitors, composition x of the
BSTO films, and parameters K and U0 appearing in
expression (1) for the C–V characteristic of a ferroelec-
tric capacitor.

The small-signal capacitance and tanδ of the capac-
itors as functions of dc bias Ub that were measured at a
frequency of 3 GHz are shown in Fig. 5. Two sets of
capacitors the C–V curves of which differ markedly in
parameter U0 can be distinguished. High U0 (≈150 V) is
observed for planar capacitors based on thick ceramic
films with x = 0.6 (capacitor 1) and thin polycrystalline
films with a small barium content (x = 0.3, capacitor 2).
For planar capacitor 3 (x = 0.5) and parallel-plate
capacitor 4 (x = 0.3), U0 ≈ 25 V. It was noted [10] that
U0 in parallel-plate capacitors can be decreased to sev-
eral volts. Thus, one can vary parameter U0 and, hence,
the pump power of the converter over wide limits by
varying the design, composition, and thickness of
BSTO films. In spite of elevated values of tanδ for
capacitors 3 and 4, just these capacitors were selected
for implementing the converter with the aim of reduc-
ing the pump power.

An up-converter (fin = 0.8 GHz, fout = 4.4 GHz)
intended for a 50-Ω termination was implemented on a
48 × 30 × 0.64-mm Rogers 3010 substrate with ε = 10.2
and tanδ = 3.5 × 10–3. The layout of the converter and
the frequency spectrum at the output of its optimized
version are shown in Fig. 6. Nonlinear capacitor C is
connected in series to the capacitive branches of paral-
lel resonant circuits produced by the inductances of
closed stubs and capacitances of linear capacitors
inserted into the gaps of the microstrip lines. Open λ/2
stubs at the inputs of each of the three converter’s cir-
cuits serve as rejection filters for signals at fundamental
frequency fp and at second-harmonic frequency 2fp of
the pump. The contact pad facilitates application of the
bias voltage to the nonlinear capacitor through resis-
tance R = 1 MΩ .

The characteristics of the converter were simulated
with computer routines intended for microwave circuit
analysis. The input data of simulation were the C–V
characteristic of planar capacitor 3 and tanδ = 0.05. In
simulation, the nonlinear voltage dependence of the
capacitance of this capacitor was described by the ana-
lytic relationship C(U) = C0 + C2U2 + C4U4 + … +
C2kU2k + … containing only even powers of voltage.
Such a description is valid if hysteresis phenomena at
the initial portion of the C–V curve are neglected. We
leave the first eight terms of the series (k = 7).

In simulation, the input signal power was taken to be
Pin = –20 dBm. The pump power was varied from –20
to +34 dBm and was limited from above by a voltage
across the nonlinear capacitor, for which the above
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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approximation of the C–V curve by a power series is
valid.

Figure 7 illustrates the simulated dependence of the
output power of the converter on the bias voltage at a
pump power of +30 dBm (Fig. 7a) and on the pump
power at different biases (Fig. 7b). From Fig. 7a, it fol-
lows that, in the pump power range considered, the con-
version gain is maximal at Ub = U0 = 27 V. The decrease
in the output power of the converter at Ub ≠ U0 is asso-
ciated largely with a mismatch of the converter’s circuit
and also with a decrease in coefficient C1 in the expan-
sion of the nonlinear capacitance in the Fourier series
(this coefficient is responsible for conversion to fre-
quency fout; see expression (4) and Fig. 2). From
Fig. 7b, it is seen that the output power of the converter
is directly proportional to the pump power at Pp <
+25 dBm for any Ub. The curve Pout(Pp) becomes non-
linear at Pp ≥ +25 dBm and Ub = 20–30 V, possibly
because the depth of modulation of the capacitance
depends on the pump power only slightly near the
extremum of function F1(Up) (Fig. 2). Another reason is
a mismatch of the converter’s circuit arising when the con-
stant component of the capacitance changes under the
action of the pump power. In practice, the same effect may
be due to heating of the BSTO film by the pump signal dis-
sipated power (the heating of the film was disregarded in
the converter model used in the simulation).

The spectrum of the output signal from the opti-
mized converter (Fig. 6) was simulated at Ub = 27 V and
Pp = +30 dBm. The latter value provides a pump signal
amplitude Up across the nonlinear capacitor of 26 V. In
full accordance with the analytical results (see Sect. 1),
that conversion gain G = Pout/Pin reaches a maximum
under the condition Ub ≈ Up ≈ U0 and its maximum
equals 1.3 dB, which is 6 dB below the value for an ide-
alized lossless converter.

3. EXPERIMENTAL CHARACTERISTICS 
OF THE UP-CONVERTER

As follows from Fig. 6b, the output spectrum con-
tains the basic signal at fundamental frequency fout and
also spurious components at frequencies fin, fp, and
combination frequencies. A narrow-band filter (a band-
width of 0.9%) with insertion losses of 5 dB was placed
at the output of the converter to suppress the spurious
components. Below are the characteristics of a develop-
mental version of the converter designed for frequen-
cies fin = 0.83 GHz (S11 = –11 dB), fp = 3.57 GHz (S22 =
–12 dB), and fout = 4.4 GHz (S33 = –9 dB).

The dependences of the output power of the con-
verter on the bias voltage and pump power are shown in
Fig. 8. The output power is given in relative units (is
divided by a maximal value obtained in experiments
with planar capacitors) for conveniently comparing the
measured and simulated results with allowance for
external losses (in the measuring scheme) and losses
inside the converter.
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
The dependence of the output power on the bias
voltage for the planar capacitor (Fig. 8) qualitatively
agrees with the simulation results (Fig. 7a). However,
the maximum of the experimental curve Pout(U0) is
broader, presumably because the quality factor of the
resonant circuits in the real converter is lower than the
model result. For the converter with the parallel-plate
capacitor, the dependence Pout(U0) also weakens near
Ub = U0 but does not exhibit a maximum as a result of
degradation of the capacitor’s parameters when Ub
exceeds 30 V with the pump signal applied. The maxi-
mal value of the conversion gain for the converter with
the parallel-plate capacitor is 3–4 dB lower than for the
planar-capacitor device.

From Fig. 8, it follows that measured output power
Pout is directly proportional to pump power Pp at any Ub
for Pp up to +30 dBm when the planar capacitor is
applied. For the converters with the parallel-plate
capacitor, direct proportionality between Pout and Pp
breaks at Pp > +26 dBm. It seems that, in the parallel-
plate capacitor, the conversion gain is depressed by
heating of its active region due to the dissipated power
of the pump.
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Fig. 7. Simulated dependences of the converter’s output
power at frequency fout (a) on bias voltage Ub at Pp =
+30 dBm and (b) on pump power at different Ub. The input
signal power is Pin = –20 dBm.
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We roughly estimated overheating ∆T of the ferro-
electric film by removing heat from the BSTO film into
the substrate with cylindrical (for the planar capacitor)
and spherical (for the parallel-plate capacitor) heat
sinks. The back side of the substrate was kept at a con-
stant temperature. For a planar capacitor,

(11)

for a parallel-plate capacitor,

(12)

Here, λf and λsub are the thermal conductivities of the
BSTO film and substrate, respectively; H and h are the
thicknesses of the film and substrate, respectively; s is
the gap of the planar capacitor and the length of a side
of the square electrode in the parallel-plate capacitor;
and l is the length of the gap in the planar capacitor.

Taking into account that λf = 2 W/(m K) and λsub =
25 W/(m K) [3], we find that, with the dissipated power
being the same, the overheating of the parallel-plate
capacitor is roughly 40 times that of the planar capaci-
tor. Thus, overheating may become an obstacle for
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Fig. 8. Experimental dependences of the converter’s output
power (a) on bias voltage Ub at Pp = +28 dBm and (b) on
pump power at different Ub. (d) Planar and (s) parallel-
plate capacitor.

Ub, V
using parallel-plate capacitors in elevated-power
microwave circuits.

CONCLUSIONS

We analyzed the performance of a frequency con-
verter using a thin-film ferroelectric capacitor in
paraphase as a nonlinear element. Based on the phe-
nomenological description of the small-signal C–V
characteristic of the nonlinear capacitor, the conditions
were found under which the conversion gain reaches a
maximum. For the best values of tanδ currently avail-
able, the feasible conversion gain is expected to be 2.5–
8.0 dB lower than the value predicted by the Manley–
Rowe relationship.

We simulated and evaluated the performance of up-
converters built around planar and parallel-plate BSTO
capacitors. The measurements are in good agreement
with the simulation results.

In the case of using parallel-plate capacitors, over-
heating of the ferroelectric film due to pump power dis-
sipation may limit the application of up-converters on
their basis.

The results obtained in this work may be helpful in
optimizing the circuit design of frequency converters of
this class and, specifically, the design of capacitors
involved in the device; in refining noise-measuring
techniques; and in developing transceiver equipment.
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Abstract—The yield of incoherent bremsstrahlung due to 1.2-GeV ultrarelativistic electrons moving near
atomic chains in crystals is investigated by numerical simulation. It is shown that the electron distribution over
the number of close collisions with crystal atoms deviates significantly from the Poisson distribution. The sim-
ulation results are compared with experimental data. © 2005 Pleiades Publishing, Inc.
The flux peaking effect [1, 2], which is observed
when electrons move in the channeling mode, increases
the cross section of their interaction (showing up as
scattering or bremsstrahlung) with atoms in a crystal
compared with in an amorphous target. In particular,
the effect of enhanced incoherent bremsstrahlung (IB)
of 3-GeV electrons in an oriented tungsten crystal has
recently been used to increase the yield of electron–
positron pairs from an amorphous target placed behind
the crystal [3]. Earlier [4, 5], the enhanced IB of 1.2-
GeV electrons was observed in a (110) silicon crystal.

The theory of IB in oriented crystals has been devel-
oped by many authors [6–8]. It has been established
that the IB cross section in crystals may be represented
in the form σc(ω, r) = σam(ω)P(r), where σc is the IB
cross section in a crystal; σam(ω) is the IB cross section
in the amorphous state; and function P(r), being inde-
pendent of bremsstrahlung frequency ω, specifies the
dependence on distance r between the electron and
atomic chain [9, 10]. Such an expression for the cross
section implies that a rise in the IB intensity is unrelated
to the energy of emitted photons, which is consistent
with experimental data. In [9], the IB cross section in a
crystal, σc(ω, r), calculated by the virtual photon
method was carefully compared with the results
obtained elsewhere. In this work, we numerically sim-
ulate the IB yield in thick silicon crystals with allow-
ance for dechanneling and analyze the orientation
dependence of the IB enhancement effect, i.e., its
dependence on the angle the electrons make with a
given crystallographic axis when entering the crystal.

Simulation of multiple scattering of an electron
moving in an oriented crystal has been carried out with
regard to each event of its interaction with lattice atoms
[10–13]. Such an approach makes it possible to find the
electron distribution over the number of scattering
events that change transverse electron energy ε (inco-
herent scattering). The transverse energy is the integral
of motion in the field of the continuous potential of an
1063-7842/05/5010- $26.00 1343
atomic chain [14] (coherent scattering by a continuous
potential). The continuous potential raises the cross
sections of incoherent scattering and IB by a factor of
S0/S(ε) compared with an amorphous medium (see, i.e.,
[15]), where S0 = 1/Nd is the cross-sectional area per
chain, N is the number of atoms per unit volume, and d
is the least atomic spacing in the chain. The cross-sec-
tional area accessible for the electron is S(ε) = πr2(ε),
where r(ε) is determined from the condition U(r) = ε,
where U(r) is the continuous potential of the atomic
chain. Factor S0/S(ε) arises upon averaging function
P(r), which specifies the dependence on the impact
parameter, over the accessible area with regard to the
uniform electron distribution over transverse coordi-
nates [14]. Function P(r) is assumed to have the Gaus-

sian form, P(r) ~ exp(–r2/ ). Strictly speaking, it is
also necessary to take into account factor 1 –

exp[−r2(ε)/ ] ≈ 1 [15], since r(ε) @ u⊥ , where u⊥  is the
temperature oscillation amplitude of crystal atoms.

The cross section of incoherent scattering by an
atom was calculated using the Moliere potential, which
gives realistic values of the cross section in the vicinity
of the atom (r ≤ aF, where aF is the Thomas–Fermi
screening parameter) and has regular asymptotics at
r  0. Atomic chain continuous potential U(r) was
calculated from the Doyle–Turner atomic potential
[16], which is preferable at distances r ≥ aF. This cir-
cumstance is essential for proper calculation of acces-
sible area S(ε).

The Moliere atomic potential has the form

(1)

where αi = (0.1, 0.55, 0.35), βi = (6.0, 1.2, 0.3), and Z is
the atomic number of the material.

u⊥
2

u⊥
2

V r( ) Ze2/r( ) α i βir– /aF( ),exp
i 1=

3

∑–=
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Calculated in the first Born approximation for
potential (1), the differential cross section of electron
scattering by angle θ is given by

(2)

Here, θa = "c/(EaF) is the characteristic angle of elec-
tron scattering by an atom; E = γmc2 is the electron
energy; γ is the Lorentz factor; m is the electron mass at
rest; aF is the Thomas–Fermi screening parameter;

(3)

is the Debye–Waller factor; u⊥  is the mean temperature

oscillation amplitude of crystal atoms; σ0 = π η2 is
the scattering total cross section calculated for the
screened Coulomb potential; η = 2αZ is the Bohr
parameter [17], which defines the condition of applica-
bility of the Born approximation (η ! 1); and α =
1/137.

The Debye–Waller factor makes it possible to sepa-
rate the scattering coherent component, which is asso-
ciated with scattering by the atomic chain continuous
potential. Therefore, one may say that expression (2)
describes incoherent scattering of electrons by individ-
ual atoms.

According to (2) and (3), the total cross section of
scattering by an atom is given by

(4)

dσ σ0θa
2 α iα k2θ θD θ( )d

θ2 βi
2θa

2+( ) θ2 βk
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Fig. 1. (m) Ratio between the numbers of electron–atom
close collisions in the (110)Si crystal and in the amorphous
target (on the left) and (n) the number of electrons in the
channel (on the right). In the abscissa, the target thickness
is plotted in micrometers. The electron energy and initial
divergence are, respectively, 1.2 GeV and ±0.5θL.
where

Here, xi = exp(µi)Ei(–µi), µi = (u⊥ βi/aF)2, and Ei(x) is the
integral exponent. Expression (4) specifies the free path
of quasi-channeled electrons (ε > 0), lq = (σN)–1. For
such electrons, the entire cross-sectional area, S(ε) = S0,
is accessible. The free path of an electron with ε < 0 is,
accordingly, S0/S(ε) times shorter. In silicon, lq ≈ 1 µm,
which is roughly twice as much as without considering
the Debye–Waller factor.

Let k(z) be the mean number of inelastic scattering
events for electrons in a target of thickness z. It is worth
comparing this value in an oriented crystal and in an
amorphous material of the same thickness. Figure 1
(the left-hand vertical axis) plots ratio 〈k〉/〈k〉am where
〈k〉  is the number of inelastic scattering events (close
collisions) for 1.2-GeV electrons in an axially oriented
(110) silicon crystal and 〈k〉am is the number of colli-
sions in the disordered crystal) versus the thickness. In
calculations, the initial angular divergence of the elec-
trons, ∆θ, was set equal to ±0.5θL, where θL =
(4Ze2/dE)1/2 is the Lindhard critical angle [14]. The
number of close collisions in the amorphous material
was calculated by the formula 〈k〉am = Nσz with cross
section σ defined by expression (4).

The right-hand vertical axis in Fig. 1 plots the num-
ber of electrons at a certain depth in the channel, Nc(z)
(the dashed line; cf. [18]). Of practical importance is
the effective channeling length [19]

(5)

In Fig. 1, zeff ≈ 15 µm at a crystal thickness of
240 µm. At crystal thicknesses of 20 and 1000 µm, the
effective channeling depth is 3 and 27 µm, respectively.

Thus, it follows from Fig. 1 that, even in a relatively
thick (z @ zeff) crystal, the number of electron–atom
close collisions may significantly exceed that in the
amorphous material. At large z, ratio 〈k〉/〈k〉am declines
with increasing z more slowly than by the law 1/z,
which is consistent with the statistical theory developed
in [20].

The mean number of close collisions in an oriented
crystal, 〈k(z)〉 , does not give adequate insight into the
nature of multiple scattering, since the spread in the
number of collisions about the mean value in the crystal
is much higher than in the amorphous material. Let
Pk(z) be the probability that an electron in a target of
thickness z experiences k incoherent scattering events.

f ik

α i
2xi, i– k=

α iα k µi µk–( ) 1– µi/µk( )ln xk xi–+[ ] , i k.≠



=

zeff z( ) Nc z'( ) z'.d

0

z

∫=
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Then, the mean number of such events will be

(6)

It is this value that is plotted on the left of Fig. 1.
In the amorphous medium, quantity Pk(z) obeys the

Poisson distribution,

(7)

where 〈k(z)〉am = Nσz and σ is given by (4).
Probability Pk(z) that an electron experiences k inco-

herent scatterings is shown in Figs. 2 and 3 for the 15-
and 240-µm-thick crystals, respectively (the dashed
lines refer to the oriented crystals), at the same energy
and angular divergence of the electrons as in Fig. 1. The
continuous curves in Figs. 2 and 3 show Poisson distri-
bution (7) for the amorphous medium. The abscissa
axis in Figs. 2 and 3 plots ratio k/〈k〉am; the ordinate axis,
distribution Pk multiplied by 〈k〉am. Thus, the distribu-
tions in Figs. 2 and 3 are normalized to unity. It is seen
that distribution Pk(z) in the crystal deviates signifi-
cantly from Poisson distribution (7) because of factor
S0/S(ε). Namely, the former has a long tail at a large
number of close collisions. At thicknesses z ~ zeff in the
crystal (Fig. 2), the number of collisions decreases
sharply for k/〈k〉am < 1. Note that the maximum of the
distribution in the oriented crystal exceeds that in the
amorphous medium. In thick targets (z @ zedd, Fig. 3),
conversely, the distribution peak in the amorphous tar-
get is higher than in the crystal, the tail in the thick crys-
tal being more pronounced than in the thin one.

The number of photons emitted within a given fre-
quency interval per unit length in an amorphous target
is given by the Bethe–Heitler formula

(8)

where 1/L = 4αZ2 Nln(183Z–1/3), L is the radiation
length, u = "ω/E, and r0 = e2/mc2.

The IB cross section for an electron with given
transverse energy ε in an oriented crystal is expressed
through cross section (8) for an amorphous medium as
n = namS0/S(ε).

Free path z0 between two successive radiation events
is found from the formula for probability W that an
electron will emit no photons over length z0,

(9)

Here, the dependence of the total probability of radia-
tion per unit length, n, on penetration depth z takes into

k z( )〈 〉 kPk z( ).
k 0=

∞

∑=

Pk z( )
k z( )〈 〉 am

k

k!
-------------------- k z( )〈 〉 am–( ),exp=

nam u( )
d2nam

dudz
-------------≡ 4

3Lu
---------- 1 u–

3
4
---u2+ 

  ,=

r0
2

W z0( ) n z'( ) z'd

0

z0

∫– .exp=
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account the fact that this quantity in an oriented crystal
is related to the electron transverse energy and this
energy changes after multiple scattering.

The total probability of radiation per unit length, n,
is found by integration of formula (8) over frequencies
starting from some minimal frequency umin. In our cal-
culations, umin was set equal to 0.01.

Figure 4 compares the calculated IB yield in the
240-µm-thick (110)Si crystal with experimental data

1

0 0.5
k/〈k〉am

2

3

4

1.0 1.5 2.0 2.5

Fig. 2. Probability distribution for the number of close col-
lisions for 1.2-GeV electrons in the 15-µm-thick (110)Si
crystal (dashed line). The abscissa plots the number of col-
lisions in terms of their mean value for the amorphous tar-
get. The continuous line shows the Poisson distribution in
the amorphous target. The initial angular divergence of
electrons is ±0.5θL.

2

0
k/〈k〉am

4

6

1 2 3

Fig. 3. The same as in Fig. 2 for the 240-µm-thick silicon
crystal.
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[4] for electrons with an energy of 1.2 GeV. The filled
symbols in Fig. 4 are data points; the empty ones con-
nected by the continuous line refer to the numerical
simulation. The ordinate axis plots the ratio between
the IB intensities in the crystal and amorphous medium.
Note that in the experiments in [4], just the incoherent
part of the spectrum was measured. In this work, the IB

0.5

0 0.2
\ω/E

1.0

1.5

2.0

2.5

0.4 0.6 0.8 1.0

Fig. 4. Ratio between the IB yields for 1.2-GeV electrons in
the 240-µm-thick (110)Si crystal and in the amorphous tar-
get: (m) data points [4] and (n) analytical data. The initial
angular divergence of electrons is ±0.5θL.

1.0
0 0.2

\ω/E

1.2

1.4

1.6

0.4 0.6 0.8 1.0

Fig. 5. (n) Analytical and (m) experimental [5] data on the
IB yield for 1.2-GeV electrons in the 500-µm-thick (110)Si
crystal. The abscissa axis plots the photon energy; the ordi-
nate axis, the ratio between the IB intensities in the crystal
and in the amorphous target. The initial angular divergence
of electrons is ±1.3θL.
intensity in the amorphous medium was also calculated
by numerical simulation. The 1.5-fold excess of the
intensity in the crystal over that in the amorphous mate-
rial (as demonstrated in Fig. 4) is in exact coincidence
with the excess of the number of close collisions in the
crystal (z = 240 µm, Fig. 1). Thus, from Fig. 1, one can
judge how much the IB intensity in the crystal target
exceeds that in the amorphous target at different target
thicknesses. For example, in the 15-µm-thick crystal,
the IB intensity is roughly 2.4 times higher. Although
the data points in Fig. 4 lie somewhat above the analyt-
ical values, the calculation and experiment are in fairly
good agreement. Hence, the supposition that factor
S0/S(ε) differentiates the oriented crystal from the
amorphous medium is valid.

In [5], IB was measured in 500-µm-thick (110)Si
crystals for a widely divergent electron beam (~1.3θL)
of energy 1.2 GeV. Figure 5 compares our calculation
results (empty symbols) with experimental data (filled
symbols) when the electron beam axis runs parallel to
the 〈110〉 direction in the crystal. The high excess of the
experimental data over the calculated values in the soft
part of the spectrum is due to coherent scattering [21]
in the atomic chain continuous potential, which was
disregarded in the calculation. It is seen from Fig. 5 that
the excess in the case at hand (for photon energy "ω >
200 MeV) is ≈1.2 times.

Figure 6 illustrates the orientation dependence of
the IB yield (the photon energy is 1.05 ± 0.03 GeV) for
electrons in the 500-µm-thick silicon crystal (E =
1.2 GeV). The abscissa axis plots the angle (in degrees)
between the electron beam and the 〈110〉 direction in

1.0

0
deg

1.2

1.4

0.1 0.2
0.8

Fig. 6. Orientation dependence of the IB yield for 1.2-GeV
electrons in the 500-µm-thick (110)Si crystal: (s) data
points [5] and (m) analytical data. The abscissa axis plots
the angle between the electron beam axis and 〈110〉 crystal-
lographic direction. The angular divergence of the electron
beam is ±1.3θL. The dashed line is drawn for the divergence
±0.2θL.
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the crystal (θL = 0.024° in this case). Here, the empty
symbols are data points [5] and the filled symbols show
the results of our calculation. The angular divergence of
the electron beam is ≈1.3θL. At small angles, the exper-
iment and calculation are in good agreement, while at
angles on the order of several critical channeling
angles, the analytical curve goes above the experimen-
tal one. The dashed curve in Fig. 6 is drawn for a
smaller angular divergence of the electrons, ≈0.2θL.
The discrepancy between the analytical and experimen-
tal data in the range (2–3)θL is a surprise in view of the
good agreement observed for the parallel arrangement
of the beam axis and 〈110〉 crystallographic axis. This
discrepancy cannot be explained by photon collima-
tion, since in [5] the output energy of the electrons was
measured. In light of this, one should bear in mind that,
in the case of inclined incidence of electrons, high
coherent scattering by the atomic chain continuous
potential takes place with the transverse energy of the
electrons preserved. Then, the electron angular distri-
bution at the exit from the target is no longer azimuth-
symmetric [22, 23] and so it remains unclear whether
all the electrons in the experiment [5] fell into the
detector in the angular range (2–3)θL.
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Abstract—When atomic rows in a crystal layer are used to focus a beam from an electron microscope, the
intensity distribution behind the crystal represents a grating of narrow peaks with diameters from 0.03 to
0.04 nm in the first Fourier plane. A scheme of scanning transmission electron microscopy (STEM) with such
a grating is simulated that makes it possible to reconstruct the transmission function of an object from the signal
recorded. The reconstruction quality depends on the type and amount of distortions. Distortions due to the fol-
lowing two factors are simulated: random noise imposed on the signal detected in the experiment and the lack
of information about the wave incident on the object because of uncertainty involved in the width of the electron
beam striking the focusing crystal. The range of distortions within which the object can be reconstructed with
a tolerable quality is determined. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The idea of an atomic lens in corpuscular optics has
been proposed and elaborated upon in [1–14]. The
essence of this concept is the formation of narrow
crossovers of corpuscular (electron, atomic, etc.) beams
focused by various atomic- and nanometer-scale sys-
tems, the simplest example of which is an atom. The
methods based on this concept hold promise for many
applications, including microscopy. For example, it has
been theoretically shown [1, 6] that single heavy atoms
or columns of atoms in a thin crystal may act as a lens
focusing an electron beam into a spot several tens of
picometers across. This speculation has been experi-
mentally supported in [2], where one of the schemes
described in [6] provided a resolution of 0.06 nm using
a transmission electron microscope (TEM) with a reso-
lution of no higher than 0.34 nm.

If the diameter of an electron beam incident on a
focusing crystal is wider than the atomic row spacing,
the pattern resulting behind the crystal represents a
grating of narrow intensity peaks several tens of picom-
eters in size. By scanning such a grating over the object,
one may basically reconstruct the image with a resolu-
tion comparable to the peak diameter.

In this study, we numerically simulate image recon-
struction based on such scanning.

The schematic of the system under study is shown in
Fig. 1. The simulation procedure includes three stages:
(1) propagation of a TEM beam through a thin crystal
layer, (2) propagation of the transmitted beam from the
crystal to an object to be visualized (it is supposed that
1063-7842/05/5010- $26.00 1348
the wave travels in a vacuum at this stage), and
(3) image reconstruction from the wave scattered by the
object as a result of scanning.

1. PROPAGATION THROUGH A CRYSTAL

Electron beam channeling in a crystal was simulated
using Earl J. Kirkland’s software package. It utilizes the
Cowley–Moodie multislice simulation technique [15],
which is widely used for simulation in electron micros-
copy. For example, beam channeling in a 6-nm-thick
gold crystal (15 unit cells along the [100] crystallo-
graphic direction) was considered in [4]. In this work,
the parameters of the beam are typical of a TEM: the
electron energy is 100 keV; angle of convergence,
10 mrad; and the minimal diameter in the crossover,
about 0.2 nm.

Calculations made for different shifts of the initial
beam axis from a selected column of atoms showed that

STEM
beam

Crystal Specimen

Fig. 1. General picture of the experiment.
© 2005 Pleiades Publishing, Inc.
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a narrow (30 pm in diameter) crossover forms behind
the crystal with a maximal intensity approximately
0.2 nm distant from the last atom in the column. The
output intensity profile is firmly related to the axis of
the column and does not change upon shifting the ini-
tial beam. When the beam covers a neighboring chain,
a satellite focus (intensity peak) appears. The peaks do
not broaden upon shifting the beam.

To analyze a grating of focuses, we calculated the
transmission of a wider primary beam. Figure 2 com-
pares the intensity profiles over the cross section of a
beam leaving the TEM (the energy 300 keV, angle of
convergence 0.5 mrad), at the exit surface of a 6-nm-
thick gold crystal (15 unit cells along the [100] crystal-
lographic direction), and in the crossover with a mini-
mal diameter of about 1.6 nm. The profiles were calcu-
lated by the multislice method.

2. PROPAGATION THROUGH VACUUM

As was mentioned above, the beam leaving the crys-
tal forms a narrow crossover with a maximal intensity
located several tenths of a nanometer away from the last
crystal atom. Since the surface of a real crystal is rough,
scanning at such a close distance to the crystal surface
is hardly possible. Practically, the gap between the
crystal and crossover depends on the surface rough-
ness; therefore, conditions should generally be pro-
vided under which the crossover is as distant from the
crystal as possible. A method to overcome these diffi-
culties was suggested in [5]. The Fourier principle of
planes, which is well known in wave optics, says that an
infinite grating of point coherent sources periodically
arranged in a plane (with their spatial intensity distribu-
tion described by the delta function) is periodically
translated in space (i.e., divergent rays are focused
again with a certain spatial period).

However, if the grating is finite and sources are non-
point (in our case, the peaks have a finite width and
height), the signal in each subsequent focusing plane
becomes more and more distorted. Hence, it follows
that the larger the number of crystal rows covered by
the TEM beam, the higher the reproducibility of the
beam in the Fourier planes (it can be reproduced even
in the zeroth-order plane). On the other hand, when the
incident wave carries a large number of peaks, noise,
which is inevitable in real experiments, may adversely
affect the image reconstruction. Thus, one has to
choose an optimal number of peaks that would provide
for periodic beam focusing with small distortions, at
least in the first focusing plane, and still offer a reason-
ably high accuracy of image reconstruction.

For point sources, the distance to the Fourier planes
can be calculated by the well-known formula [5]

(1)R
na2

2λ
--------,=
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where R is the distance to a Fourier plane, a is the
source spacing, n is the number (order) of the plane,
and λ is the wavelength.

For a finite grating and nonpoint sources, the Fourier
planes turn out to be displaced relative to their positions
in the ideal case. Our calculation shows that this dis-
placement is insignificant (at least, for the beam config-
urations considered here).

Calculation by formula (1) for a 300-keV electron
beam striking a gold target with a = 0.2 nm yields dis-
tance R = 9.3 nm to the first Fourier plane. Advanced
technologies allow for placing and moving a specimen
at such a small distance from the crystal.

After the beam has left the crystal, the wave can be
found as a convolution over transverse coordinates r
with a vacuum propagator given by [6]

(2)

where λ is the wavelength and k is the wavenumber.
This expression is valid as long as the range of lon-

gitudinal coordinate z far exceeds the ranges of the
transverse coordinates.

Figure 2 shows the intensity profile in the first Fou-
rier plane that was obtained by the convolution of the
output wave with vacuum propagator (2).

3. IMAGE RECONSTRUCTION

The image of an object can be obtained by scanning
it with electron beam 1 (Fig. 2) produced as described
above. However, the specimen visualization quality
depends on a number of factors, some of which are con-
sidered below. If the specimen is scanned by one nar-
row peak (ideally, in the form of the delta function), the
distortions in the reconstructed image will be minor
(the closer the peak’s shape to the delta function, the
smaller the distortions). However, when the number of
focuses (peaks) is large, the images from each of the

p r z,( ) 1
iλz
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Fig. 2. Intensity distribution (1) in the first Fourier plane,
(2) near the exit crystal surface, and (3) over the cross sec-
tion of the TEM beam.
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focuses superimpose and the resulting pattern becomes
fuzzy.

Let wave w(x, y) strike an object with transmission
function v(x, y), where (x, y) are the coordinates in the
object plane (i.e., transverse coordinates r in formula
(2) for the vacuum propagator). According to [5], the
output wave in the plane behind a thin object (in which
diffraction can be neglected) is given the product wv
and its intensity can be expressed as R' = gf, where g ≡
|w|2 and f ≡ |v |2.

The recorded signal is given by R = (x, y)dx dy,

where F is the domain occupied by the object. In accor-
dance with [5], v  = exp(–iσU), where σ = m/k (m is the

electron mass, k is the wavenumber), U(r) = (r,

z)dz is the so-called projected potential distribution,
and V is the scattered potential. Thus, given f =
exp(2σIm(U)), one can find the imaginary part of the
projected potential of the object,

The imaginary part of the complex scattered poten-
tial corresponds to absorption in the object [16]. Thus,
the absorptivity of the object is embodied in function f.

Scanning of the object by the incident wave can evi-
dently be represented by the convolution

(3)

Here, R(∆x, ∆y) is the function of displacements
(∆x, ∆y) associated with scanning.

R'∫
F

∫

V
∞–

∞∫

Im U( ) 1
2
---σ f( ).ln=

g f⊗ R.=

Fig. 3. Initial object (on the left), result of scanning (in the
middle), and reconstructed image (on the right).

Fig. 4. Reconstructed images of the pattern described by
function f (Fig. 3) for ∆r1 = 0.15 (on the left), 0.25 (in the
middle), and 0.30 nm (on the right). Function g is character-
ized by ∆r1 = 0.25 nm.
With g and recorded signal R known, to reconstruct
f means to carry out deconvolution in (3). This is done,
first, by applying the Fourier transformation to Eq. (3),

(4)

and then applying the inverse Fourier transformation to
resulting equation (4),

According to (4), any point where the value of func-
tion F[g] is small is a singular point of function F[f];
thus, the regularization procedure is required, for exam-
ple, in the form

(5)

where reg is the regularization parameter.
Basically, the processes of recording and recon-

struction may be simulated using the multislice
method, as described in Sect. 1. Such an approach gives
a close approximation to a real wave. However, for pre-
liminary qualitative analysis, less elaborate models are
preferable.

Model function g was taken in the form of a mesh
function in which nodes the Gaussian functions

(where r = ) modulated by the Gaussian enve-
lope exp(–r2/(∆r1)2) are set; i.e.,

In numerical simulation, we put ∆r = 0.04 nm (the
result of multislice simulation of the peaks in the first
Fourier plane) and set the node spacing equal to 0.2 nm
(which corresponds to the gold crystal). It was assumed
that, at the stage of reconstruction, we will use function
R determined from a real experiment and distribution g
obtained by the multislice method (curve 1 in Fig. 2).
The envelope width used in the simulation, ∆r1 =
0.25 nm, corresponds to a 0.5-nm-wide primary beam
that forms a grating of nine intense peaks and many
weak peaks.

Model transmission function f is shown on the left of
Fig. 3. Such a test pattern is easily discernible and has
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a typical feature size of 0.6 nm, which is comparable in
order of magnitude to the probe width, ∆r = 0.04 nm.
The pattern to be reconstructed is of no concern for or
the simulation process. The simulated area is 4 × 4 nm.

The need for image construction from the detected
signal follows from Fig. 3, which shows a result of
scanning.

When simulating, we also revealed factors that limit
the scope of visualization.

Since the width of the TEM beam intensity distribu-
tion can never be known exactly, width g of the grating
envelope cannot be determined accurately. For this rea-
son, the intensity distribution in the wave incident on
the object is simulated by another grating g', the enve-
lope width of which differs from the true value. It there-
fore makes sense to see how the reconstruction quality
depends on the difference between the envelope width
used in reconstruction and its true value, as well as to
determine the associated range of discrepancy
(between the true envelope width and the envelope
width of grating g') that allows visualization with a
desired quality.

(‡) (b)

(c) (d)

Fig. 5. Reconstruction of the noisy image. The noise param-
eters are ε = (a) 0.03, (b) 0.05, (c) 0.09, and (d) 0.11 nm and
β = (a) 0.5, (b) 2.0, (c) 5.0, and (d) 6.0%.

Table

ε, nm β, %

0.03 0.5

0.05 2.0

0.09 5.0

0.11 6.0
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In real experiments, there invariably exist factors
distorting the signal recorded. These may be vibration
due to scanning, foreign particles in the detector, a drift
of the TEM beam, pollution of the scanning chamber or
specimen, thermal drift, damage to the specimen, etc. It
is therefore important to determine the amount of dis-
tortions that makes visualization with a desired quality
possible. A tolerable amount of distortions can be
found only experimentally. As a simple source of dis-
tortions, we consider random noise superposed on the
signal.

First, we studied the reconstruction quality versus
the regularization parameter (see formula (5)). The
highest quality was obtained for a regularization
parameter of the order of 10–3. This value was used in
the following calculations.

To simulate uncertainty in specifying wave g, the
recorded signal was found by formula (3) and, at the
stage of reconstruction, function g in (5) was substi-
tuted for by function g', which differs from g in the
value of parameter ∆r1. The results are shown in Fig. 4.

When the effect of noise was simulated, recorded
signal (3) was mixed with random noise components
having various spatial frequencies (or periods ε) and
amplitudes β. The corresponding numerical results are
given in Fig. 5, where noise amplitude β is expressed in
percentage of maximum signal R.

CONCLUSIONS

In this work, we found the STEM parameter ranges
that provide a tolerable accuracy of image reconstruc-
tion by scanning an electron-beam-produced grating of
atomic lens focuses. In particular, the width of the enve-
lope of the incident wave intensity distribution peaks
must fall into the range ∆r1 = 0.15–0.30 nm (the true
width is ∆r1 = 0.25 nm). Maximum noise amplitudes β
that allow a reasonable visualization quality are listed
in the table for various spatial frequencies ε–1 of noise.

The results obtained may serve as tentative data in
design of experiments.
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Abstract—The dynamic characteristics of field emission from nanocarbon films subjected to microsecond
electric field pulses are studied. The emission curves exhibit hysteresis the parameters of which are complicated
functions of the pulse amplitude, length, and shape. The experimental results are explained based on a phenom-
enological model that assumes two-stage emission involving shallow acceptor levels localized near the emitting
surface. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The recent progress in fabrication of effective cold
cathodes is mainly related to the use of nanodisperse
carbon films (such as nanotubes, fulleroids, nanodia-
monds, nanographites, etc.) serving as distributed field
emitters of electrons [1–8]. According to the published
data, the mean emission current density in such systems
may exceed 1 A/cm2, with emission becoming appre-
ciable (e.g., 1 µA/cm2) even in electric fields under
1 kV/mm (without regard to its enhancement due to the
surface microrelief). The reasons for such a high emis-
sivity of carbon materials are not yet fully understood.
They are the clearest in the case of carbon nanotubes,
where the decisive factor is considerable “geometric”
enhancement of the field. The existing models explain
not only the high values of the emission current from
nanotubes but also fine effects, such as the deviation of
the emission characteristics from the Fowler–Nord-
heim law at high currents [9]. At the same time, to gain
insight into emission from nanocarbon films, whose
surface structure cannot tangibly enhance the field, is a
great challenge. The work function of carbon films is
rather high (4.0–4.5 eV), and so their high emissivity
has not yet found sound explanation. Nor have mecha-
nisms underlying a number of phenomena typical of
carbon films, such as hysteresis of the emission charac-
teristics [10–13] and a rise in the emissivity upon ther-
mal–field treatment [14], been understood.

Below, we present the results of experiments per-
formed under typical operating conditions of advanced
field-emission cathodes. The electric field was gener-
ated in a wide emission gap by applying a constant
and/or pulsed potential difference up to 50 kV. The
emitted electrons were taken out of the gap into a field-
free region. During the measurements, the residual gas
pressure was kept at a level of (3–10) × 10–7 Torr.
1063-7842/05/5010- $26.001353
EXPERIMENTAL

The field-emission cathodes under study were made
from two types of nanocarbon materials: (1) nanopo-
rous carbon obtained by chemical extraction of silicon
from silicon carbide at the Prikladnaya Khimiya Fed-
eral State Unitary Enterprise [14] and (2) powder of
astralenes (heavy fulleroids with particles about
100 nm across) prepared by Astrin Holding Co.) [15].

The powders were fixed on the cathodes by electro-
phoresis, sintering in a ceramic matrix, or using a
binder. After a chamber with the sample had been evac-
uated, the sample was annealed at 200–300°C and then
subjected to thermal–field activation (for details,
see [14]).

The setup used to measure the pulsed emission char-
acteristics of distributed field-emission cathodes is
schematically shown in Fig. 1. Emitter 1 with heater-
activating emitter 2 is fixed behind a hole of diameter
3.3 mm in thin-walled (0.2 mm) protective electrode 3.
The surfaces of the emitter and protective electrode
form the cathode of a quasi-plane emission gap. The

3

1
2

5
4

Fig. 1. Experimental setup for taking pulsed emission
curves.
 © 2005 Pleiades Publishing, Inc.
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gap width can be varied from 1.5 to 5.0 mm. Emission
current collector 4 is placed inside anode 5 behind a
hole 2.5 mm in diameter. Such an arrangement of the
probing electrode eliminates the contribution of the
emission from the protective electrode and consider-
ably suppresses the contribution of capacitive crosstalk
to the pulsed current signal recorded. The remaining
portion of the capacitive current (crosstalk) was sub-
tracted from the recorded signal at the stage of data pro-
cessing.

HYSTERESIS OF THE EMISSION 
CHARACTERISTICS IN THE CASE 
OF “SMOOTH” VOLTAGE PULSES

Typical waveforms U(t) of the voltage across the
emission gap and of the current of collector 4, I(t), in
the case of smooth bell-shaped applied voltage pulses
are shown in Fig. 2a. A pair of such waveforms allows
one to construct two I–V characteristics for the cases
when the voltage rises and drops. We will call them the
forward and backward branches of the emission curve
and denote them as Iup(U) and Idown(U), respectively.
The data taken of the nanocarbon films under study
show a considerable divergence of these branches (hys-
teresis of the emission curve).

Figure 2b demonstrates the emission curve for the
above pair of waveforms that is plotted in the Fowler–

0 20 40 60 80 0

15

30

50

100

U, kV I, µA

t, µs

Ub

U*

U

I
Idown(U*)

Iup(U*)

(a)

40 50 60 70

–14

–13

log(I/U2)

(1/U*)

Idown

Iup

(b)
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Fig. 2. (a) Typical waveforms of the voltage across the
emission gap and of the emission current and (b) corre-
sponding emission curve I(U) plotted in the Fowler–Nord-
heim coordinates. The emitter is a nanoporous carbon film.
Nordheim coordinates. The straight lines Iup(U) and
Idown(U) count in favor of the field mechanism of emis-
sion. According to the theory, the difference in their
slopes may be viewed as evidence of a rapid change in
the emission center parameters (work function W,
effective emitting area, and/or field enhancement coef-
ficient β) at the instant the rise in the field switches to
its decrease. For any fixed voltage U*, ratio
Idown(U*)/Iup(U*) > 1, which indicates emitter activa-
tion during the pulse.

The experiments showed that the amount of hyster-
esis (which can be evaluated, e.g., through ratio
Idown(U*)/Iup(U*)) depends on both the emitter proper-
ties and measurement conditions. Figure 3a illustrates
the variation of the emission curve with constant bias
voltage Ub. As Ub, as well as the maximal voltage and
current (over the pulse), increases, the backward branch
of the emission curve shifts almost parallel to itself
toward the high current range. Since the forward branch
remains virtually the same, one can state that the
amount of hysteresis grows with the applied field and
extracted current.
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Fig. 3. Variation of the emission curves with the applied
voltage parameters. (a) Curve 1, which is the curve plotted
in Fig. 2, vs. curves 2 and 3 obtained at the same amplitude
and shape of the voltage pulsed component but lower values
of voltage constant component Ub and (b) emission curves
taken for voltage pulses with differing widths of their flat
top. The waveforms of the pulses are shown in the inset. The
emitter is a nanoporous carbon film.
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Such an increase in the emissivity of the samples
during the pulse could be related, e.g., to a rise in the
temperature of emission centers, reconfiguration of
these centers under the action of the field, or desorption
of gases from the surface. In any of these cases, one can
expect that the activated state of the emitter will persist
for a certain time after the current has been terminated
and the amount of hysteresis will grow with the pulse
width. However, experiments did not support these
assumptions. Figure 3b illustrates that the emission
curves taken for an extended voltage pulse (extended
plateau where U(t) ≈ const) remain invariable. To mea-
sure the time within which the emission centers remain
in the activated state, we carried out experiments using
a pair of identical voltage pulses of duration τ = 3 µs
with delay ∆t between them ranging from 10 to 500 µs
(Fig. 4a). It turned out that, as the delay decreases to
∆t = τ, the initial section of the emission curve due to
the latter pulse remains unchanged; i.e., the emitter
becomes deactivated immediately after the current has
been switched off. Figure 4b shows the case ∆t < τ,
when both voltage pulses merge into a single pulse with
two maxima. These plots make it possible to estimate
the time interval within which the emitter passes into
the inactive state (i.e., to the forward branch of the char-
acteristic) after the voltage again starts rising from the
dip between the peaks. This time does not exceed 5 µs,
which is much shorter than the time taken to maintain
the elevated emitter activity at a monotonic decay of the
voltage at the end of the pulse. Thus, the characteristic
time for which the system “memorizes” its state cannot
be determined unambiguously. This time could be iden-
tified with the time of emitter cooling, time of recovery
of its initial structure, time of deposition of a gas mono-
layer, etc. However, none of these speculations can
explain the phenomenon of fast recovery of the emitter
into the initial inactive state when the current is termi-
nated or the applied voltage is increased. It seems that
the emission mechanism described below might be
helpful in theoretical comprehension of the experimen-
tal data obtained.

TWO-STAGE MECHANISM OF EMISSION 
FROM CARBON FILMS

Let us suppose that the most effective mechanism of
field emission from the films under study is indirect
electron transfer from the conduction band of the emit-
ter to a vacuum through intermediate states localized
near the surface. Energy levels χs corresponding to
these (initially vacant) surface acceptor states lie
between the Fermi level and the level of a vacuum, 0 <
χs < W (Fig. 5). Their physical origin here is of no
importance: they may be, e.g., surface electron states of
graphite particles, levels in the conduction band of dia-
mond or amorphous inclusions, etc. [3, 11, 16]. We
assume that the emission current from these surface
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
states into a vacuum is described by a formula similar
to the Fowler–Nordheim formula,

(1)

where a and A (as well as b, B, c, and C used below) are
constants and Ns is the number of intermediate states
occupied by electrons.

I Isv ANsU
2 aχs
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Fig. 4. Emission curves taken of the nanoporous carbon film
using a pair of voltage pulses 1 and 2. The delay between the
pulses is ∆t = (a) 100 and (b) 20 µs.
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Fig. 5. To the model of emission mechanism: I, emitter vol-
ume; II, acceptor energy levels in the surface layer of the
emitter; III, vacuum; and IV, anode. In the absence of volt-
age across the emission gap (dashed line), U = 0, Us = 0, and
Ns = 0.
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Quantity Ns can be determined from the difference
between the currents from the bulk to the surface, Ibs,
and from the surface to a vacuum, Isv,

(2)

Electron transfer between the volume and surface
states will be described by an asymmetrical (e.g., expo-
nential) I–V characteristic,

(3)

Quantity Us has the dimension of voltage and can be
viewed as a measure of variation of the energy position
of the intermediate levels relative to the Fermi level in
the emitter volume. This variation depends on two fac-
tors: penetration of the external electric field into the
emitting film and charging of the film surface upon fill-
ing the acceptor levels. Accordingly,

(4)

With the constants chosen appropriately, solutions
to the system of Eqs. (1)–(4) simulate the emission
dynamics with a reasonable accuracy, including the case
when voltage pulses are of an intricate shape (Fig. 6).

Based on the simulation results, one can describe
the hysteresis observed experimentally in the following
way. The emission current grows with the voltage
applied to the emission gap (forward branch Iup(U) of
the emission curve), because the surface barrier
becomes more transparent and also because the surface
levels are filled with electrons (Ns rises) when the
energy positions of these levels change. By contrast,
when the current drops, backward branch Idown(U), Ns
remains nearly constant. If the voltage declines at a suf-
ficiently high rate, electron escape into a vacuum can-
not be regarded as an effective mechanism of electron
emission from the intermediate states, since the emis-
sion current decreases with decreasing applied field.
The curve Ibs(Us) is asymmetric by virtue of Eq. (3);

Ns
1
e
--- Ibs Isv–( ) t.d∫=

Ibs B bUs( )exp 1–( ).=

Us U/c eNs/C.–=
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Fig. 6. (1) Emission current pulse measured in the experi-
ment with a real voltage pulse (Fig. 4b) vs. (2) the result of
numerical solution of Eqs. (1)–(4).
therefore, electron transfer to the emitter volume is also
ineffective. Thus, the elevated emissivity of the samples
at the trailing edge of the voltage pulse can be explained
by high population Ns of the intermediate states. Its
value depends on the history, i.e., on the current and
voltage attained during the pulse. The electrons may
stay on the intermediate levels only if Us < 0 (Eq. (3)).
According to (4), this condition is provided by the
action of the self-field of the excess (for a given external
field) surface charge. When the voltage grows again,
the condition Us < 0 is quickly violated and electron
exchange between the intermediate states and volume
is regained (the volume–surface transition “opens”). In
other words, we return to the forward branch of emis-
sion curve I(U).

EMISSION ACTIVATION BY A RAPIDLY 
DAMPED ELECTRIC FIELD

From comparison of the experimental data and sim-
ulation results, we can conclude that the model pro-
posed adequately describes the situation in a wide
range of voltage pulse widths and amplitudes. The dis-
crepancy between the model and experiment arises
when the rate of change of the field exceeds a certain
limiting value. In this case, the shape of the pulsed
emission characteristics changes dramatically.
Figure 7a compares the data obtained for voltages
pulses 1 and 2 with almost identical amplitudes and
widths, which differ in that voltage 2 applied to the gap
decreases starting with a shallow but abrupt drop (the
dashed areas in the waveform and emission character-
istic). During this short time period and in several
microseconds after it, the emission current continues to
grow with decreasing voltage. The delay between the
voltage and current maxima for the given pulse is about
8 µs. In the Fowler–Nordheim coordinates, this interval
corresponds to that portion of the characteristic running
roughly parallel to the line I = const (a shift to the right
and upward). This portion is absent in the characteristic
obtained for “smooth” pulse 1. The discrepancy
between these two characteristics that has been accu-
mulated for this relatively short time period persists up
to the applied voltage pulses are switched off. Thus, we
can state that the interval of the fast electric field damp-
ing has a long-term activating effect on the emission
from the samples. In this case, the hysteresis of the
pulsed emission characteristic becomes more pro-
nounced, but its main features (such as the dependence
of the amount of hysteresis Idown(U*)/Iup(U*) on the
maximal current and voltage values during the pulse
and the stability of the slope of the backward branch
(Fig. 7b)) are retained. In terms of phenomenological
model (1)–(4), the observed parallel shift of the emis-
sion curve backward branch should be related to a fur-
ther increase in intermediate electron states population
Ns rather than with the variation of the emission centers
properties (which specify the slope of the backward
branch). In terms of our model, this phenomenon can be
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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explained of the inhomogeneity of the emitter surface is
taken into account.

Equations (1)–(4) are written on the assumption that
electrons are emitted from a single emission center or
from an ensemble of emission centers with similar
characteristics. Actually, the surface of the film emitters
under study is formed by nanoparticles of different
shape and electronic structure [14]. However, both
these statements do not necessarily contradict to each
other. Let us assume that a major part of the emission
current flows through active emission centers that are
nanoparticles or their complexes. We also suppose that
the shape and arrangement of the particles (complexes)
provide a highest geometric amplification of the
applied electric field, while the electronic structure of
the centers involves the highest surface acceptor levels
(which are characterized by lowest electron affinity χs),
which serve as intermediate electronic states for field
emission. For particles with deeper acceptor levels,
emission, at the same electric field amplification, will
be weaker because of a lower transparency of the
energy barrier between the intermediate levels and vac-
uum. However, occupation of such nonemitting centers
by electrons from deeper acceptor states in the bulk
may begin at a lower strength of the applied field and
result in the accumulation of a larger number of elec-
trons on these centers. For a stationary or slowly vary-
ing electric field, these electrons insignificantly con-
tribute to the emission. The electric field component
parallel to the emitter surface acts on the electrons in
the surface layer and collects them at the sites of field
enhancement (at protrusions on the emitter), thereby
separating these sites from each other. However, when
the field abruptly decreases, the efficiency of such a
separation drops and Coulomb repulsion of the elec-
trons accumulated on the surface states in certain emit-
ter regions (primarily, at the nonemitting sites of field
enhancement) may cause their redistribution in favor of
the emitting centers. In our opinion, it is such a redistri-
bution of the electrons over the inhomogeneous nano-
carbon film surface under the action of a nonstationary
electric field that caused a long-term rise in the emissiv-
ity after the voltage across the gap had been drastically
decreased [13].

EFFECT OF THE VOLTAGE PULSE SHAPE 
ON EMISSION CHARACTERISTICS

The model dependences of the emission characteris-
tics on the parameters of voltage pulses applied to the
emission gap were verified in experiments with a num-
ber of carbon films.

According to formula (1), if the rate of fall of the
voltage suffices to fulfill the condition Ns ≈ const, the
slope of the backward branch of the emission curve
plotted in the Fowler–Nordheim coordinates is bound
to depend on only the emitter properties and to be inde-
pendent of the parameters of the pulse. Figure 8 com-
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
pares the results obtained for one of the samples when
voltage pulses of different amplitude (Fig. 8a) and
width (Fig. 8b) were applied to the gap. In spite of dif-
ferent rates of voltage variation, the slope of the back-
ward branches in the two curves is the same. The situa-
tion with the forward branch is much more compli-
cated. For instance, if the leading edge of the pulse is
5 µs wide (Fig. 8b), the rectilinear portion of the for-
ward branch remains almost unresolved, since the
emission current is detectable only near the maximum
of the voltage (and increases approximately by a factor
of 8 within the following 5 µs of voltage drop).

At a slow variation of the voltage, when electrons
are not trapped by the acceptor levels and the condition
Ns ≈ const does not hold, hysteresis of the emission
characteristics is absent (see, e.g., the initial portion of
the trailing edge of the pulse in Fig. 3b).

When the emitter properties change, the slope of the
backward branch of the pulsed emission curve changes
in a regular fashion. Figure 8c compares the data mea-
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Fig. 7. (a) Emission curves taken of the nanoporous carbon
film for (1) a smooth bell-shaped voltage pulse and (2) a
voltage pulse containing a rapidly descending portion
immediately after the maximum (dashed area by the wave-
form and emission curve). (b) Emission curves obtained for
different constant bias Ub with the shape and amplitude of
the pulsed component of the voltage remaining the same.
The waveforms in the inset correspond to the pulse with the
largest value of Ub. The source of emission is a small
amount of astralenes appearing on the surface of the protec-
tive electrode (stainless steel) as a result of diffusion from
the sample.
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sured during the degradation of one of the samples. A
general decrease in its emissivity is accompanied by a
noticeable (severalfold) increase in the backward
branch slope. The slope of the forward branch changes
little, which may be explained by different current dis-
tributions among the emission centers for the intervals
of voltage rise and fall. During the leading edge of the
pulse, a lower transparency of the surface barrier for the
centers with deep intermediate levels may be compen-
sated for by a higher rate of occupation of these levels,
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Fig. 8. (a) Emission curves taken at voltage pulses of differ-
ent amplitude. The voltage and current waveforms are given
in the inset; the emitter is the same as in Fig. 7b. (b) Emis-
sion curves taken at voltage pulses of different length; the
emitter is a trace amount of nanoporous carbon on the sur-
face of niobium foil. (c) Emission curves taken of the same
surface during its degradation due to multiple breakdowns
of the emission gap. Curve 1 corresponds to the “as-pre-
pared” emitter. The measurements were carried out with the
shape and amplitude of the voltage pulsed component
remaining the same and with constant bias Ub gradually
increasing (to compensate for the degradation of the sam-
ple’s emissivity).
as a result of which the emission current is distributed
fairly uniformly among the centers. During the trailing
edge of the pulse, the occupation of the intermediate
layers evens out (e.g., due to the redistribution of the
electrons under the action of the nonstationary field)
and the emission concentrates at the centers with lowest
χs. Probably, it is these centers that collapse first during
the degradation of the film, which the form of the
pulsed emission curves indicates.

CONCLUSIONS

Thus, our results indicate that field emission from
heterogeneous carbon films is a complex process. To
explain the hysteresis of the emission curves observed
in the experiments, a model of indirect electron transfer
to a vacuum is suggested that assumes the participation
of intermediate acceptor-type electron states. The phe-
nomenon of activation of emission from the carbon
films under the action of a nonstationary field, which
was revealed in the experiments, may explain the diffi-
culties arising in fabrication of field film emitters
intended for high-current operating mode and be help-
ful for development of new types of such emitters with
improved performance.
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Abstract—Control grids used in high-current devices with field emission cathodes should be made of an appro-
priate, “grid-grade” material. Such a material must offer a high mechanical strength, thermal conductivity, and
electric conductivity. In addition, grids as thin as several microns must be available. As a grid material, boron-
doped diamond is tested. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Electron guns with field emission cathodes have a
number of advantages over their thermionic counter-
parts, specifically, a much lower power consumption, a
much higher speed of response, and a narrower energy
spectrum of electrons emitted. It is of no less impor-
tance that field-emission electron sources operate at
low (room) temperatures and, therefore, occupy the
niche where thermionic emitters fail [1].

Along with the cathode, any device of this sort must
incorporate elements providing independent control of
the current and energy of the electron beam. The most
popular control element is a grid. In thermionic elec-
tron guns, a modulating (control) grid usually blocks
the electrons (it has a negative potential with respect to
the cathode). In field emission devices, conversely, the
first grid serves to extract the electrons and, thereby, to
raise the field at the cathode surface to the point where
electron emission starts. It is clear that the parameters
of the cathode–grid assembly considerably depend on
the physical characteristics of the field-emission cath-
ode. In this study, an electron gun made of nanocrystal-
line carbon films [2, 3] is investigated for feasibility of
its effective control.

The basic mechanism of electron emission in cold
cathodes is tunneling through a potential surface barrier
in a strong electric field. The probability of such a tun-
neling is specified by the fundamental properties of a
material. In the best case, emission currents needed in
practice are provided by extremely high electric fields
(on the order of 10 MV/cm) on the emitter surface. The
only way of generating such high electric fields is appli-
cation of tip-shaped emitters. Then, even if an applied
electric field is not too high, its value at the tips will be
higher by several orders of magnitude because of geo-
metrical enhancement. Many recent studies have shown
that the most promising material for cold cathodes is
1063-7842/05/5010- $26.00 1360
films consisting of carbon nanoplatelets several nanom-
eters in thickness and several microns in length and
height that are oriented normally to the cathode surface
[2, 3].

Let us note some problems associated with grid con-
trol in devices with field emission cathodes. To
decrease the control voltage, it is necessary to decrease
the cathode–grid distance down to several tens of
microns (basically, this distance can be decreased to a
fraction of a micron [4] by applying microelectronic
technologies; however, the cost of the device inevitably
increases in this case). At the same time, for a high uni-
formity of emission from the cathode surface and trans-
parency of the grid for the current to be kept at a desired
level, it is necessary to shrink a grid mesh and to
increase its geometrical transparency. In this case, the
mechanical strength and thermal conductivity of the
grid decreases. The grid exceedingly heats up, sags, and
eventually shorts the cathode.

Similar problems appear in modern high-power
microwave tubes with a thermionic cathode operating
in the high grid current regime. Therefore, in the major-
ity of these devices, grids are made of refractory metals,
such as W, Mo, Hf, Zr, and Ta. However, since the con-
trol grid is located near the cathode (which is especially
true for microwave tubes), its temperature deformation
(sagging) may change the grid–cathode gap and,
thereby, the device performance. In this connection, the
search for more appropriate grid materials intended for
use in high-power electron vacuum devices is being
actively pursued today. Pyrolytic graphite offering
good thermal properties is one of the most promising
materials. However, this material is extremely brittle
and anisotropic; therefore, it is necessary to deposit it
on a metallic substrate, which is a technological chal-
lenge. Moreover, thermal stresses arising at the points
where the graphite grid is in contact with the metallic
© 2005 Pleiades Publishing, Inc.
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holder cause its failure. Other disadvantages of grids
made of pyrolytic graphite are their rough surface, giv-
ing rise to secondary electron emission from the grid,
and a poor high-voltage resistance. The roughness may
be due to stuck graphite particles and also to the sharp
irregular edges of holes after laser drilling. In the latter
case, the carbon condensing near the holes forms gran-
ules on or near the edges. In general, formation of car-
bon particles (or particles of another sort) upon material
recrystallization is typical not only of laser cutting but
of any (ion, electron-beam, spark, mechanical, and
electromechanical) cutting method. To remove these
particles, graphite grids are annealed in a chemically
active atmosphere (air, oxygen, or an oxygen–nitrogen
mixture) at lower pressures and temperatures of 900–
1000°C. This all complicates the preparation and use of
grids made of pyrolytic graphite.

Thus, to eliminate the problems discussed above, it
is necessary to use a grid made of a material with a high
mechanical strength, low thermal expansion coeffi-
cient, and high thermal conductivity. In addition, the
material of choice must be well conducting in order to
avoid charging effects. Based on the aforesaid, we pro-
posed that control and focusing grids be made of a
doped diamond film, which is known to offer unique
thermal and mechanical properties and a high isotropic
strength. Such a film heteroepitaxially grown on an iri-
dium film (related growth techniques have been
recently developed) may be both single- and polycrys-
talline.

A thin (2–5 µm) diamond grid placed near the cath-
ode (at a distance of about 10 µm) would make it possi-
ble to reduce the control voltage and time of flight of
electrons in the cathode–grid gap. This is central to
using the grid in microwave (operating at frequencies
above 2 GHz) devices (for comparison, the distance
between a thermionic cathode and a control metal grid
in electron vacuum devices is usually greater than
100 µm).

DIAMOND GRIDS

Diamond is well known as a material featuring a
high thermal conductivity, mechanical strength, and
corrosion stability, together with other remarkable
properties, which makes it promising for a wide range
of applications. Moreover, pure diamond has an
extremely low electrical conductivity. For diamond to
acquire p-type conductivity, it is doped by boron, which
is easily activated even at room temperature [5].

Electron-beam-controlling grids may be plane,
cylindrical, or of any other geometry depending on the
type of device. A diamond grid may be obtained either
by etching a continuous diamond membrane or by
selective CVD. Doped diamond films were deposited in
a reactor with a microwave-discharge-excited active
medium (the frequency is 2.45 GHz; the power deliv-
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
ered to the discharge, 1 kW). For details concerning the
reactor and deposition method, see [6].

A typical example of a grid thus produced is shown
in Fig. 1. It is seen that the grid is fairly homogeneous
and has a rather high transparency. Raman spectros-
copy and X-ray diffraction examinations of the films
showed that the grids consist of high-quality diamond
with a low content of nondiamond phases.

FIELD-EMISSION TRIODE WITH A DIAMOND 
GRID

In this case, we used a field-emission cathode simi-
lar to that described in [2]. The diameter of the emission
spot was 2.3 mm (S = 0.04 cm2). The emission charac-
teristics of this cathode were preliminary investigated
in a diode scheme with a phosphor screen. The results
of measurements are presented in Fig. 2. As is seen, the
emission current distribution is uniform and the density
of emission centers is high. This cathode was subse-
quently used in a triode scheme with a diamond grid.

The gap between the cathode and diamond grid was
equal to 40 µm. Such a gap, on the one hand, provided
the uniform distribution of the electric field intensity
over the cathode and, on the other hand, made it possi-
ble to control the electron beam by applying low poten-
tials to the grid.

Fig. 1. Diamond grid visualized with an electron micro-
scope. The transparency is about 50%.
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Fig. 2. Emission characteristic for the diode scheme with a
phosphor screen.
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The experiments were performed in both the contin-
uous and pulsed regimes. In the latter case, negative
pulses with a duration of 340 µs and a frequency of
50 Hz were applied to the cathode. Note that the results
obtained for the diamond grid in both regimes were vir-
tually the same (in contrast to metallic grids), which
indicates a high stability of diamond grids. A typical I–
V characteristics taken for one of the grids in the pulsed
regime is depicted in Fig. 3. As follows from Figs. 2 and
3, the I–V characteristics in the diode and triode
schemes nearly coincide, which suggests a high unifor-
mity of the electric field over the cathode surface.

In a number of applications, of primary importance
is the modulating voltage amplitude rather than the
total cathode–grid potential difference. In our case, the
current could be modulated starting from only the
ascending portion of the curve, for example, from
3 V/µm. As is seen from Fig. 3, in the case of the 40-µm
gap, a current of 6 mA can be completely modulated by
voltage difference ∆U = 120 V (Fig. 3). This value cor-
responds to a current density at the cathode of
150 mA/cm2 and a power density at the grid of about
0.3 W/cm2.

50

2

100 150 200 2500

4

6

V

mA

Fig. 3. I–V characteristic for the 40-µm gap.

10

0.4

20 300

0.6

0.8

0.2

min

mA

40 µm, 180 V

Fig. 4. Aging in the dc regime for the 40-µm gap.
Our measurements showed that the transparency of
the grid for electrons is 50%, which exactly coincides
with the geometric transparency. The grid withstood a
pulsed current density from the cathode of 1 A/cm2 at a
voltage of 1.5 kV. None of the many metallic grids
investigated made a close approach to such values.

The operating stability of the diamond grid was
investigated in the dc regime for a gap of 40 µm. The
measurements of the long-term current stability are
presented in Fig. 4. It is seen that the current is stable:
no marked oscillations (including in the pulsed regime)
are observed. Note that similar experiments with metal-
lic grids invariably showed the presence of mechanical
vibration of a grid due to its thermal expansion and sag-
ging in a strong electric field.

CONCLUSIONS

Doped CVD-grown diamond grids are proposed to
be used as extracting grids of field-emission cathodes.
Comparative analysis of diamond and metallic grids is
presented.

From our measurements, it follows that the diamond
grid withstands a pulsed current density from the cath-
ode of 1 A/cm2 at a voltage of 1.5 kV. None of the
metallic grids investigated made a close approach to
such values.

The possibility of controlling the field-emission cur-
rent up to 150 mA/cm2 with a modulation voltage of no
higher than 120 V is demonstrated.
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Abstract—A motion-induced magnetic or electric field is calculated by the integral method in the first order of
smallness in the ratio of the motion velocity to the speed of light for homogenous media with an arbitrary sta-
tionary velocity distribution that are placed in static electric or magnetic fields. For the case of rotation of a
sphere, the validity of the results is corroborated by comparing with a solution obtained by joining the fields in
the moving and quiescent parts of the medium. Estimates suggest the feasibility of experimentally observing
this effect of continuum electrodynamics. © 2005 Pleiades Publishing, Inc.
The electrodynamics of moving media, which is
based on the Maxwell equations and Minkowski mate-
rial equations [1–3], basically allows solving a wide
number of problems [4, 5]. However, the medium–
medium interface is, as a rule, considered plane, cylin-
drical, or spherical [3–5], because using continuity con-
ditions at the interface in the general case poses great
difficulty.

Generally speaking, continuity conditions at the
interface are not independent of the Maxwell equations.
On the contrary, they are consequences of the Maxwell
equations. These conditions are dropped out if we intro-
duce a smooth transition range between the parameters
of the media and then shrink this range down to zero.
Using such an approach, we have recently considered
the relativistic scattering (diffraction) of electromag-
netic radiation by nonuniformities of the velocity of a
dielectric medium [6]. We assumed that the medium is
homogenous and isotropic but part of the medium
rotates with some angular velocity. A solution to wave
equations of the retarded potential type that was
obtained in the first order of smallness in the ratio
between the velocity of the medium and speed of light
allowed us to find, in the integral form, the scattered
field for an arbitrary distribution of the velocity. In [6],
we also estimated the maximum velocity at which rela-
tivistic effects dominate over those caused by the
mechanical deformation of a body (dynamooptical
effects [3]).

The aim of this paper is to demonstrate the possibil-
ity of using a similar integral approach (without invok-
ing continuity conditions at the interface) for determi-
nation of the static electric and magnetic field intensi-
ties in the case of an arbitrary (to some extent)
distribution of the velocity of a homogenous medium.
To be specific, we shall consider the case of the station-
ary (time-independent) velocity distribution, which
1063-7842/05/5010- $26.00 1363
occurs, for example, when part of an axisymmetric
body rotates about a symmetry axis. In this case, the
electric and/or magnetic field remains stationary in the
moving medium too. As in [6], the permittivities and
permeabilities of the moving and quiescent parts are
assumed to be the same and effects of the first order of
smallness in the ratio between the velocity of the
medium and the speed of light are analyzed. Attendant
effects associated with mechanical stresses due to rota-
tion are neglected (for the conditions when they can be
neglected, see [6]). We will show that, in the case at
hand (a rotating sphere), for which a solution can also
be found by the standard method using continuity con-
ditions at the interface between the moving and quies-
cent parts of the medium [3], both approaches yield
consistent results.

For static fields, the “differential” Maxwell equa-
tions have the form

(1)

Here, E and H are the electric and magnetic fields and
D and B are the electric and magnetic inductions. The
Minkowski material equations are used in the approxi-
mation form, i.e., in the first order of smallness in small
parameter v/c, where v is the velocity of the medium
(hereafter velocity) and c is the speed of light in
vacuum,

(2)

Permittivity ε and permeability µ are constant and
correspond to the quiescent medium. In such a defini-
tion of the problem, relativistic effects show up most
vividly.

Let us consider the case when the medium moves
with a coordinate-dependent velocity in a uniform

divB 0, curlE 0, divD 0, curlH 0.= = = =

D εE
εµ 1–

c
--------------- v H×[ ] , B+ µH

εµ 1–
c

--------------- E v×[ ] .+= =
© 2005 Pleiades Publishing, Inc.
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static electric field with intensity E0 = const. In the
zeroth order of smallness in v /c, the electric field coin-
cides with E0 and the magnetic field is H0 = 0. In the
first order of smallness in v /c, material equations (2)
take the form

(3)

Then, from Maxwell equations (1) it follows that

(4)

By virtue of the second equation in (1), the magnetic
field is irrotational and has the potential

(5)

In view of (4), the potential has the form

(6)

where R = |r – r'| is the distance between point r at
which the field is calculated and vector of variable of
integration r'.

Since for uniform electric field E0 we have

(7)

Eq. (6) can be recast as

(8)

Equations (6) and (8) are the general solution to the
problem for an arbitrary distribution of the velocity. In
the case of rotation of an axisymmetric body, the veloc-
ity experiences a jump at the boundary,

(9)

Since

(10)

where l is the coordinate along the normal to the sur-
face, ls is its value on the surface, and n is the unit vector
normal to the surface, the integral on the right of Eq. (8)
reduces to a sum of two integrals, one of which is taken
over the volume of the rotating part and the other over
the surface of this part,

(11)
Let us apply the above results to the case of a sphere

of radius a rotating with angular velocity Ω directed
along the z axis; i.e., Ω = (0, 0, Ω). We assume that the

D1 εE1, B1 µH1
εµ 1–

c
--------------- E0 v×[ ] .+= =

divH1
εµ 1–

µc
---------------div E0 v×[ ] .–=

H1 gradΨ.–=

Ψ r( ) 1
4π
------

divH1 r'( )
R

----------------------- r'd∫–=

=  
εµ 1–
4πµc
---------------

div E0 v× r'( )[ ]
R

------------------------------------- r',d∫

div E0 v×[ ] E0 curlv⋅( ),–=

Ψ r( ) εµ 1–
4πµc
---------------

E0 curlv r'( )⋅( )
R

------------------------------------ r'.d∫–=

v u r( )Φ r( ), Φ r( )
1 r V ,∈
0 r V .∉




= =

curl Φ r( )u r( )( ) Φcurlu gradΦ u×[ ] ,+=

gradΦ n
dΦ
dl
-------– nδ l ls–( ),–= =

Ψ εµ 1–
4πµc
--------------- V

E0 curlu⋅( )
R

----------------------------d

V

∫ S
E0 n u×[ ]⋅( )

R
---------------------------------d

S

∫–
 
 
 

.=
external electric field is also directed along the z axis,
E0 = (0, 0, E0). Then, the linear velocity is u = [Ω × r],
(E0 · curlu) = 2E0Ω , and (E0 · [n × u]) = E0Ω(nxx + nyy).
In view of axial symmetry of the problem, the integrals
in Eq. (11) can be reduced to the one-dimensional form.
Eventually, the magnetic potential outside the sphere
will have the form

(12)

Here, r is the distance from the center of the sphere.
Similarly, for a dielectric sphere rotating in a constant
magnetic field with intensity H0 directed along the axis
of rotation, we obtain electric potential Φ outside the
sphere in the form

(13)

For comparison with the conventional approach,
which is based on joining the solutions at the interface
between the moving and quiescent media, it is neces-
sary to generalize the solution of the problem obtained
in [3], where a sphere rotated in a vacuum (i.e., it was
assumed that ε(e) = 1 and µ(e) = 1 outside the rotating
sphere). For an external magnetic field with intensity
H0 and arbitrary values of ε(e) and µ(e) of the environ-
ment, electric field potential Φ outside the sphere can
be expressed by

(14)

where

(15)

When the permittivities of the environment and
rotating sphere are equal to each other, Eq. (15) takes
the form

(16)

Similarly, for a sphere rotating in a uniform electric
field, the magnetic field potential outside the sphere is
given by

(17)

Ψ 4
15
------εµ 1–

µc
---------------E0Ω

a5

r3
----- 1 3

z2

r2
----– 

  .–=

Φ 4
15
------εµ 1–

εc
---------------H0Ω

a5

r3
----- 1 3

z2

r2
----– 

  .=

Φ 1
2
--- Dik

nink

r3
---------,

i k, 1=

3

∑=

Dik
a5

c
----- 3 εiµi 1–( )µe

3ε e( ) 2ε i( )+( ) 2µ e( ) µ i( )+( )
---------------------------------------------------------------–=

× H0iΩk H0kΩi
2
3
---δik H0 Ω,( )–+

 
 
 

.

Dik
a5

c
----- εµ 1–( )

5ε
--------------------–=

× H0iΩk H0kΩi
2
3
---δik H0 Ω,( )–+

 
 
 

.

Ψ 1
2
--- Bik

nink

r3
---------,

i k, 1=

3

∑=
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where

(18)

When the permeabilities inside and outside the
sphere are the same, we have

(19)

It is easy to show that, when the axis of rotation is
aligned with the constant field direction on the outside,
the integrals corresponding to Eqs. (16) and (19) turn
into Eqs. (12) and (13), respectively, which confirms
the validity of the integral approach.

As one more example, we give the magnetic poten-
tial at the axis of rotation of a circular cylinder with
base radius a and length 2h that was calculated at a
point z distant from the center of inertia of the cylinder.
Integrating over the surface and volume of the cylinder
in Eq. (11) yields

(20)

Let us compare the magnetic potentials of the
sphere, Ψsp, and cylinder, Ψc, at the axis of rotation for
a point z distant from the center of inertia, z @ a, h.
From Eqs. (12) and (20), we obtain

(21)

(22)

where Vsp and Vc are the volumes of the sphere and cyl-
inder, respectively.

Thus, the integral approach allows one to determine
the electro- and magnetostatic fields for media with a
fairly nonuniform velocity distribution. The use of the
perturbation theory here is justified by the smallness of
the velocity relative to the speed of light. For a sphere
rotating in a uniform magnetic or electric field applied
to such media, the integral approach is in agreement
with the conventional one, which is based on joining
solutions inside the moving and quiescent media.

Note that experiments of such a type concerning the
electrodynamics of moving media are of undeniable
importance, since relevant experimental data are sparse
and a number of theoretical issues call for further dis-
cussion (see, e.g., different approaches by Minkowski

Bik
a5

c
----- 3 ε i( )µ i( ) 1–( )ε e( )

3µ e( ) 2µ i( )+( ) 2ε e( ) ε i( )+( )
---------------------------------------------------------------=

× E0iΩk E0kΩi
2
3
---δik E0 Ω,( )–+

 
 
 

.

Bik
a
c
----- εµ 1–( )

5µ
-------------------- E0iΩk E0kΩi

2
3
---δik E0 Ω,( )–+

 
 
 

.=

Ψc E0Ω z h+( ) z h+( )2 a2+{=

+ z h–( ) z h–( )2 a2+ 4zh– } .

Ψsp 0 0 z, ,( ) 2
5π
------ εµ 1–( )

µc
--------------------

a2V sp

z3
-------------E0Ω,=

Ψc 0 0 z, ,( ) 1
8π
------ εµ 1–( )

µc
--------------------

a2V c

z3
-----------E0Ω,=
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and Abragam stated in monograph [1]). The results of
earlier investigations [7–9], as well as our estimates
[6, 10], indicate that the above effect concerned with
the electrodynamics of moving media can be verified
experimentally. In fact, the intensity of the static elec-
tric field under rotation of a sphere (cylinder) in the
magnetic field and that of the static magnetic field for a
sphere (cylinder) rotating in the electric field are deter-
mined through the gradients of the corresponding
potentials. Their maximal values are estimated as
(u/c)H0 and (u/c)E0, where u = Ωa is the maximum lin-
ear velocity on the spherical (cylindrical) surface. The
results of a more rigorous calculation are the following.
The static permittivity, for example, of glass varies
from 5.5 to 11 (depending on its type) [11], and its per-
meability is close to unity. Then, for u ~ 103 cm/s, the
electric field intensity due to rotation of a sphere in the
magnetic field is ~10–7H0, while for a sphere rotating in
a uniform electric field, the induced magnetic field
intensity is ~10–6E0 (compare the denominators of the
first fractions in (12) and (13)). It seems that such inten-
sities can be detected experimentally.
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Abstract—The harmonically varying field of point electric and magnetic dipoles in an anisotropic medium
with an anisotropic axis is found for the first time. © 2005 Pleiades Publishing, Inc.
In this work, we for the first time give a complete
and, more importantly, exact solution to the Maxwell
equations for the radiation of point electric and mag-
netic dipoles in a homogeneous anisotropic medium
where the conductivity and permittivity along the
anisotropy axis differ from those in the transverse
directions. The solution is found for any orientation of
the dipole relative to the anisotropy axis. When finding
the electromagnetic field of the dipole, which varies by
a harmonic law, we apply two approaches, one of which
is suggested in [1]. Here, the basic Maxwell equations,
where displacement currents are ignored, are reduced
to equations for vector potential that allow determina-
tion of these currents. The second approach [2–4] con-
sists in converting the basic set of Maxwell equations
(reduced at any point of the domain) to an equation for
the electric field strength and applying the Fourier
transformation to this equation. In this case, finding of
the transforms of the electric field components is
reduced to solving a set of linear algebraic equations
and the field components themselves can be determined
by applying the inverse Fourier transformation to their
transforms. However, the creators of such an approach,
also ignoring displacement currents, restricted the anal-
ysis to finding the transforms of only two electric field
components and one magnetic field component [3], not
explaining how it was obtained. In this work, we for the
first time derive an exact solution to the Maxwell equa-
tion for electric and magnetic dipoles in an anisotropic
medium, which allows for displacement currents, con-
trary to works [1–4]. To solve the problem, we chose
the second approach. First, it is more general and does
not require the presence of the anisotropy axis. Second,
studying the electromagnetic field near the dipole is
unnecessary in this approach.

Let a homogeneous anisotropic medium contain a
point dipole in which the density of extraneous electric,
jE, and magnetic, jH, currents varies by a harmonic law,
exp(–iωt). We choose a rectangular coordinate system
with the origin at the site of the dipole and assume that
the conductivity and permittivity components in the
1063-7842/05/5010- $26.00 1366
tangential x and z directions are the same (γt and εt,
respectively) and the respective components in the nor-
mal y direction are γn and εn. Note at once that the
choice of direction where the conductivity differs is of
no significance, since an otherwise stated problem is
reduced to that under consideration merely by coordi-
nate transformation. Let the electromagnetic field of the
dipole also vary by a harmonic law, exp(–iωt). Then,
according to the Maxwell equations, the amplitudes of
the electric, E, and magnetic, H, fields of the dipole sat-
isfy the equation [5]

(1)

(2)

Here, , , and µ are the conductivity tensor, permit-
tivity tensor, and permeability of the medium, respec-
tively. Matrices  and  have the diagonal form

Applying the curl operator to both sides of Eq. (2),
we obtain

(3)

The direct and inverse Fourier transformations of
function f(x, y, z) in coordinates x, y, and z look as fol-
lows:

curlH σ̂E jE iωε̂E,–+=

curlE iωµH jH.–=

σ̂ ε̂

σ̂ ε̂

σ( )11 σ( )33 γt, σ( )22 γn,= = =

σ( )kl 0 k l≠( ),=

ε( )11 ε( )33 εt, ε( )22 εn,= = =

ε( )kl 0 k l≠( ).=

curlcurlE iωµσ̂E– ω2µε̂E– iωµjE curljH.–=

f + ξ η m, ,( )

=  f x y z, ,( ) iξx– iηy– imz–( )exp xd yd z,d∫
∞–

∞

∫∫
© 2005 Pleiades Publishing, Inc.
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Let us recast Eq. (3) componentwise by applying the
Fourier transformation to both sides of the resulting set
of equations. Eventually, we arrive at a set of linear
algebraic equations for the electric field component
transforms,

(4)

where

Having found the electric field component trans-
forms from a solution to set (4), we then find the desired
field components by applying the inverse Fourier trans-
formation to the transforms of these components. The
magnetic field components can be derived from (2).

Let us write the electromagnetic field components
when magnetic and electric dipoles are oriented along
one of the coordinate axes. To do this, we introduce the
following notation:

1. MAGNETIC DIPOLE
(i) Orientation along the y axis. In this case, only

one component of the extraneous magnetic current is
nonzero,

where M is the moment of the magnetic dipole.

f x y z, ,( ) 1

2π( )3
-------------=

× f + ξ η m, ,( ) iξx iηy imz+ +( )exp ξd ηd m.d∫
∞–

∞

∫∫

η2 m2 kt
2+ + ξη– ξm–

ξη– ξ2 m2 kn
2+ + ηm–

ξm– ηm– ξ2 η2 kt
2+ + 

 
 
 
 
 

Ex
+

Ey
+

Ez
+

 
 
 
 
 
 

=  
Fx

Fy

Fz 
 
 
 
 

,

Fl iωjl
E curllj

H–( )∫
∞–

∞

∫∫=

× –iξx iηy– imz–( )dxdydz,exp

kt
2 iωµγt', kn

2– iωµγn' ,–= =

Rekt 0, Rekn 0,> >

γt' γt iωεt, γn'– γn iωεn.–= =

λ2 γt'/γn' , r2 x2 z2,+= =

R2 r2 y2, R
2

+ r2 λ2y2.+= =

jy
H iωµMδ x( )δ y( )δ z( ),–=
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The electromagnetic field components are given by

(ii) Orientation along the x axis. Only one compo-
nent of the extraneous magnetic current is nonzero,

The electromagnetic field components are given by

Ex
iωµMz

4π
----------------- ktR–( )

kt

R2
----- 1

R3
-----+ 

  ,exp=

Ey 0,=

Ez
iωµMx

4π
------------------ ktR–( )

kt

R2
----- 1

R3
-----+ 

  ,exp–=

Hx
Mxy
4π

----------- ktR–( )
kt

2

R3
-----

3kt

R4
------- 3

R5
-----+ +

 
 
 

,exp=

Hy
M
4π
------ ktR–( )

kt
2

R
----–

kt

R2
-----–

1

R3
-----–exp=

+ y2 kt
2

R3
-----

3kt

R4
------- 3

R5
-----+ +

 
 
 

,

Hz
Myz
4π

---------- ktR–( )
kt

2

R3
-----

3kt

R4
------- 3

R5
-----+ +

 
 
 

.exp=

jx
H iωµMδ x( )δ y( )δ z( ).–=

Ex
iωµMxyz

4π
----------------------- k1R–( )

kt

r2R2
---------- 1

r2R3
---------- 2

r4R
--------+ + 

 exp




=

– λ knR–( )
kn

r2R
2

---------- 1

r2R
3

---------- 2

r4R
--------+ + 

 exp




,

Ey
iωµMλz

4π
--------------------- knR–( )

kn

R
2

----- 1

R
3

-----+ 
  ,exp=

Ez
iωµMy

4π
------------------– ktR–( )

kt

R2
----- 1

r2R
-------- 1

R3
-----+ +exp





=

– z2 kt

r2R2
---------- 1

r2R3
---------- 2

r4R
--------+ + 

 


 iωµMyλ

4π
---------------------–

× knR–( ) 1

r2R
--------– z2 kn

r2R
2

---------- 1

r2R
3

---------- 2

r4R
--------+ + 

 +exp
 
 
 

,
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(iii) Orientation along the z axis. Only one compo-
nent of the extraneous magnetic current is nonzero,

All the electromagnetic field components are found
from the previous case by substituting z for x, x for z,
and –µ for µ.

2. ELECTRIC DIPOLE

(i) Orientation along the y axis. In this case, only
one component of the extraneous electric current is
nonzero,

where I is the moment of the electric dipole.
The electromagnetic field components are given by

Hx
M
4π
------ ktR–( )

kt

R2
----- 1

R3
-----

kt

r2
-------–+exp





=

+ x2 2kt

r4
-------

kt
2

r2R
--------

kt
2

R3
-----–

3kt

R4
-------– 3

R5
-----–+

 
 
 





+
Mkt

4π
--------- knR–( )

kn

R
---- 1

r2
---- x2 kn

r2R
-------- 2

r4
----+ 

 –+exp
 
 
 

,

Hy
Mxy

4πR3
------------ ktR–( ) kt

2 3kt

R
------- 3

R2
-----+ + 

  ,exp–=

Hz
Mxz
4π

---------- ktR–( )
2kt

r4
-------

kt
2

r2R
--------

kt
2

R3
-----–

3kt

R4
-------– 3

R5
-----–+

 
 
 

exp




=

– kt knR–( ) 2

r4
----

kn

r2R
--------+ 

 exp




.

jz
H iωµMδ x( )δ y( )δ z( ).–=

jy
E Iδ x( )δ y( )δ z( ),=

Ex
iωµIλxy

4πkn
2R

3
--------------------- knR–( ) kn

2 3kn

R
-------- 3

R
2

-----+ + 
  ,exp–=

Ey
iωµIλ
4πkn

2R2
------------------–=

× knR–( ) 2kn
2
R
--- r2 kn

2

R
----

3kn

R
2

-------- 3

R
3

-----+ +
 
 
 

–+
 
 
 

,exp

Ez
iωµIλyz

4πkn
2R

3
--------------------- knR–( ) kn

2 3kn

R
-------- 3

R
2

-----+ + 
  ,exp–=

Hx
Iλz

4πR
2

------------ knR–( ) kn
1
R
---+ 

  ,exp=
(ii) Orientation along the x axis. Only one compo-
nent of the extraneous electric current is nonzero,

The electromagnetic field components are given by

H0 0,=

Hz
Iλx

4πR
2

------------ knR–( ) kn
1
R
---+ 

  .exp–=

jx
E Iδ x( )δ y( )δ z( ).=

Ex
iωµI
4πkt
------------ ktR–( )

kt

R
---- 1

r2
---- x2 kt

r2R
-------- 2

r4
----+ 

 –+exp
 
 
 

=

+
iωµIλ
4πkt

2
--------------- knR–( )

kn

R
2

----- 1

R
3

-----
kn

r2
---------–+exp





+ x2 kn
2

r2R
--------

kn
2

R
3

-----–
2kn

r4
--------

3kn

R
4

--------– 3

R
5

-----–+
 
 
 





,

Ey
iωµIλxy

4πkn
2R

3
--------------------- knR–( ) kn

2 3kn

R
-------- 3

R
2

-----+ + 
  ,exp–=

Ez
iωµIxz

4πkt
2

----------------- ktR–( )
kt

2

r2R
--------

2kt

r4
-------+

 
 
 

exp




–=

+ λ knR–( )
kn

2

r2R
--------–

kn
2

R
3

-----
2kn

r4
--------–

3kn

R
4

-------- 3

R
5

-----+ + +
 
 
 

exp




,

Hx
Ixyz

4πr2
----------- ktR–( )

kt

R2
----- 2

r2R
-------- 1

R3
-----+ + 

 exp




=

– λ knR–( )
kn

R
2

----- 2

r2R
-------- 1

R
3

-----+ + 
 exp





,

Hy
Iz

4πR2
------------ ktR–( ) kt

1
R
---+ 

  ,exp–=

Hz
Iy
4π
------ ktR–( ) 1

r2R
--------exp





–=

– z2 kt

r2R2
---------- 2

r4R
-------- 1

r2R3
----------+ + 

 


 Iyλ

4π
-------- k– nR( )exp{+

×
kn

R
2

----- 1

r2R
-------- 1

R
3

----- z
2 kn

r2R
2

---------- 2

r4R
-------- 1

r2R
3

----------+ + 
 –+ +





.
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(iii) Orientation along the z axis. Only one compo-
nent of the extraneous electric current is nonzero,

All the electromagnetic field components are found
from the previous case by substituting z for x, x for z,
−µ for µ, and –I for I.

Below, magnetic and electric dipoles were oriented
along one of the coordinate axes. The field of an arbi-
trary oriented dipole is found as a superposition of the
field projections onto the coordinate axes.

APPENDIX

It should be noted that not all the field components
can be found by direct integration of the transforms;
specifically, we omitted from consideration the orienta-
tion along the axis r = 0. The field components along
this axis are found by passing to the limit r  0.
Below, we give only those field components along the
axis r = 0 which appear nontrivial.

Magnetic dipole oriented along the x axis, r = 0.

jz
E Iδ x( )δ y( )δ z( ).=

Ex 0,=

Ez
iωµMy

4π
------------------ kt y–( )

kt

2y2
-------- 1 1

λ2
-----+ 

  1

y 3
-------+

 
 
 

,exp–=

Hz
M
4π
------ kt y–( )

kt
2

2 y
--------- 1 1

λ2
-----+ 

  kt

y2
---- 1

y 3
-------+ +

 
 
 

,exp=

Hz 0.=
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The components of the magnetic dipole oriented
along the z axis are found by making an appropriate
change of variables (see Sect. 1(iii)).

Electric dipole oriented along the x axis, r = 0.
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Abstract—The possibility of designing thermoelectric sensors based on multielement structures of higher
manganese silicide (HMS) polycrystalline films is considered. Test structures with various configurations are
developed for studying electrical and thermoelectric parameters of polycrystalline HMS films. The geometrical
sizes of the elements of test structures are chosen to match the grain size in polycrystalline HMS films. The test
structures are prepared using the planar silicon technology. In these structures, the current-voltage characteris-
tics, Hall constant, charge carrier concentration, and mobility are measured. The thermopower (α) and electrical
conductivity (σ) are studied in a temperature range of T = 77–600 K, where α > 250 µV/K and electrical con-
ductivity σ ~ 20 (Ω cm)–1. It is shown that the sensitivity and thermopowers increase upon a decrease in the
cross-sectional area of the elements. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Thin and thick films of transient metal silicides
attract considerable attention due to their unique photo-
and thermoelectric properties, high-temperature stabil-
ity, and compatibility with silicon technology. It is well
known from the literature [1] that the higher manganese
silicide (HMS) MnSi1.71–1.75 is one of the most promis-
ing thermoelectric materials among silicides since bulk
HMS samples exhibit a thermoelectric effectiveness
Z = 0.7 × 10–3 K–1 in the temperature range 300–
1000 K. Intense studies aimed at obtaining thin and
ultrathin HMS films have been carried out in Germany,
China, and Japan [2–5]. However, film-type thermo-
electric elements based on the HMS MnSi1.71–1.75 have
not been developed so far.

The possibility of obtaining continuous polycrystal-
line HMS films by reactive diffusion of manganese
vapor atoms directly into a silicon substrate was dem-
onstrated by us earlier [6]. The features of the crystal-
line structure of HMS films grown from silicon were
studied in [7], where it was found that the films pre-
pared at a substrate temperature of 1040–1070°C and
then annealed at 350–800°C consist of HMS crystal-
lites with a preferred orientation of the c axis along the
normal to the substrate. Subsequently, the possibility of
designing nonselective sensors based on HMS films
was demonstrated [8]. The present study is devoted to
the development of multielement test structures of ther-
moelectric sensors based on HMS film and to analysis
of their electrophysical properties.
1063-7842/05/5010- $26.00 1370
EXPERIMENTAL TECHNIQUE

Film-type thermocouples and thermopiles are devel-
oped on the basis of the standard planar technology,
where thin films of silicon dioxide SiO2 are widely used
as the main protecting and separating layer for active
elements. In our earlier publications [9, 10], we demon-
strated that a SiO2 surface layer grown during silicide
formation serves as a mask preventing the formation of
silicide on the surface of a silicon substrate. This
allowed us to develop a technology for obtaining test
structures based on HMS films on the silicon surface in
the form of thermopiles of various configurations. The
geometrical sizes of the elements of test structures were
chosen depending on the grain size of polycrystalline
HMS films.

In developing the technology for preparing test
structures, we chose special designs and worked out
sketch versions of photomasks, in which the details of
individual units of test structures were envisaged. We
developed three types of test structures; the model sets
of these structures are shown in Fig. 1. The first type of
test structure is a continuous HMS film on a Si substrate
with four Ni or Al contacts for measuring the Hall effect
using the van der Pauw method and strip contacts
across the sample for measuring the thermal emf and
the sensitivity coefficient (Figs. 1a and 1b). The second
type has the form of continuous HMS strips separated
by insulating SiO2 layers and Al contacts for measuring
electrophysical parameters (Fig. 1c). Test structures of
the third type are similar to the second type, but with
© 2005 Pleiades Publishing, Inc.
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additional lateral contacts for studying separately the
current transport in the grains proper (Fig. 1d).

Test structures of the second and third types con-
tained several identical elements being measured of
various thicknesses (10, 20, 100, 200, 400, 800, and
1000 µm) of the same length (7000 µm) and thickness
(8–10 µm). This enabled us to perform a number of
measurements of electrical parameters of test structures
under the same conditions, which made it possible to
obtain averaged data on the measured quantities and
estimate the spread in the parameters of the elements of
test structures. Metallization of test structures was car-
ried out by vacuum sputtering of a 1.5-µm-thick Al or
Ni film followed by vacuum annealing at temperatures
of 300–350°C.

For each chip with a size of 9.5 × 9.5 mm, special
packages of metallized glass fiber plastic were pre-
pared, on which contact area elements with leads were
obtained photolithographically. Chips were fixed to the
packages by a special adhesive. After mounting a crys-
tal into the package, the contact area was connected to
the leads of the package with the help of ultrasonic
welding. One of the test structures is shown in Fig. 2.

For first-type test structures, we measured the ther-
mopower, electrical conductivity, and Hall coefficient
by the van der Pauw method. The Hall emf of HMS
films was measured in a constant magnetic field of
0.1 T for two directions of the current.

The longitudinal and transverse thermal emf emerg-
ing in polycrystalline HMS films were measured in
accordance with the technique described in [11]. The
sample under investigation was placed on a copper
table, and copper probes of a configuration correspond-
ing to the contacts with built-in thermocouples were
pressed against the metallic contacts of the sample (see
Fig. 1). An electric heater producing a temperature gra-
dient was wound on one of the probes, while the other
probe had the same temperature as the copper table.
The temperature drop between the probes did not
exceed ∆T = 5–10 K. The thermal emf produced in the
film was measured by a Shch-300 microvoltmeter. Pas-
sage from the longitudinal to transverse thermal emf
measurements and vice versa was made by rotating the
sample through 90° in the horizontal plane, which
made it possible to determine the anisotropy in the ther-
moelectric (Seebeck) coefficient.

To detect the anisotropic thermal emf, a pulse laser
radiation with wavelengths λ = 1.06 and 10.6 µm was
supplied to the middle of the sample, which produced a
temperature gradient across the film thickness. The
incident beam diameter d was much smaller than the
distance l between the contacts (i.e., d ! l). We mea-
sured thermal emf εα emerging at the contacts and its
dependence on the incident radiation power P. The con-
version factor (sensitivity) S in this case was

S
εα

P
-----.=
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The anisotropy of thermal emf was determined by
rotating the sample through 90° in the horizontal plane.

To study sensitivity S and time constant τ, the pre-
pared test structures were placed in a screened package
and the thermal emf emerging at the contacts upon irra-
diation of the structure was fed to the input of an oscil-
loscope. The values of S and τ were measured at radia-
tion wavelengths λ = 1.06 µm for pulse durations 40–
200 ns and λ = 10.6 µm for radiation modulated with a
frequency of 102–104 Hz for pulse durations 0.1–1.5

(a)

(c) (d)

(b)

1

11

3

1

2
3 3

2

4 2
4

2

Fig. 1. Model form of test structures: first type (a, b), second
type (c), and third type (d) (1—Si substrate, 2—HMS layer,
3—Al ohmic contacts, and 4—SiO2 layer).

Fig. 2. Photograph of a test structure: 1—copper contacts,
2—Al leads, 3—silicide strips, 4—Si substrate, and 5—Al
ohmic contacts.
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ms. To take into account the contribution from the pho-
toelectromotive force, measurements were made for the
same radiation flux with different laser wavelengths.

RESULTS AND DISCUSSION

The kinetic parameters investigated for the test
structures of HMS films had the following values at T =
300 K: electrical conductivity σ = 11–25 Ω–1 cm–1; Hall
coefficient Rx = 0.058–0.065 C–1 cm–3 (the correspond-
ing hole concentration was p ≈ 1019–1020 cm–3), charge
carrier mobility µp = 0.6–2 cm2/V s, and thermopower
α = +250–280 µV/K. In addition, the temperature
dependences of the thermopower and electrical con-
ductivity were studied in the temperature range T = 77–
600 K (Fig. 3). It can be seen from the figure that the
thermopower of HMS films has values exceeding those
attained in bulk HMS single crystals by a factor of 1.5–
2 [1]. This is probably associated with the emergence of
potential barriers at grain boundaries of polycrystalline
HMS films.

The first-type test samples with HMS films grown
with a columnar structure tilted relative to the normal to
the substrate exhibit anisotropic thermoelectric effect
[8]. This was confirmed by the measurement of the lon-
gitudinal and transverse thermal emfs, the difference
between which was ∆α = 50–70 µV/K. The sensitivity
of the anisotropic effect on such samples was S = 0.5–
1.0 mV/W and the time constant was τ ~ 10–6 s.

The anisotropic effect was not observed in samples
with HMS films grown with a columnar structure ori-
ented so that one of the crystallographic axes (c axis in
our case) was perpendicular to the surface of the Si sub-
strate and was not deflected from the normal to the sub-
strate. However, the longitudinal thermoelectric effect
was predominant in such samples: the signs of the reg-
istered dc thermal emf and the ac phase were reversed
as the thermal probe moved from the region of one con-

10

1
150

σ, Ω–1 cm–1

T, K
225 300 375 450 520 580

100

77

150

200

250

300

100

50

0

α, µV/K

a

b

Fig. 3. Temperature dependences of (a) conductivity and
(b) thermopower of HMS films.
tact to the other contact. In such test structures, radia-
tion was incident in contact regions. The volt-watt sen-
sitivity was S = 0.1 V/W, and the time constant was τ ~
10–6 s. The sensitivity and the time constant of the films
exceeded the values attained in bulk monocrystalline
HMS samples by one and three orders of magnitude,
respectively [12].

We measured the current-voltage characteristics
(I−V curves) in three types of structures under bias volt-
ages ranging from 10 mV to 10 V in the dc mode as well
as in the ac mode with a frequency up to 10 kHz. The
results showed that the I−V characteristics were linear
in all test structures. Such a behavior of the transport
current in the structures indicates that the contacts are
of the ohmic type.

For test structures of the second and third types, we
measured the resistances of each element of the test
structure and compared them with calculated values
depending on their widths. The comparison shows that
for widths of the elements smaller than 100 µm, the
experimental values of the resistance are much larger
than the calculated values. This is probably due to a
smaller number of contacts between grain boundaries
in the transverse direction relative to the current, while
grain boundaries along the current naturally form addi-
tional potential barriers, which facilitate an increase in
the resistance of the elements.

Analysis of thermoelectric parameters in the struc-
tures of the second and third types revealed that the
thermopower and the sensitivity increased with
decreasing width of the elements of the test structures
(800, 600, and 400 µm). In all probability, this is due to
a decrease in the surface dissipation of heat across the
elements with small cross-sectional areas. When such
elements were connected in series, the thermopower
attained values exceeding 500 µV/K and the values of S
were on the order of 0.2–0.3 V/W.

CONCLUSIONS

Test structures with elements having various geo-
metrical sizes were developed using planar technology
based on HMS films.

Analysis of kinetic parameters of the test structures
shows that values of thermopower α ≥ 500 µV/K and
sensitivity S ~ 0.2–0.3 V/W can be attained by varying
the width of the structure elements. The results suggest
that thermoelectric sensors can be prepared on the basis
of multielement structures of HMS films.
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Experimental Study of the Stability of the Interface 
between a Liquid Electrolyte and the Glow Discharge Plasma

D. V. Vyalykh, A. E. Dubinov, K. E. Mikheev, Yu. N. Lashmanov, I. L. L’vov, 
S. A. Sadovoœ, and V. D. Selemir

All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center,
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Abstract—The stability of the interface between a liquid electrolyte and the plasma of a contracted low-pres-
sure dc glow discharge in air is investigated by means of digital photography. Water solutions of potassium per-
manganate and copper sulfate were used as electrolytes. It is found that, in the case of potassium permanganate,
the instability of the interface leads to ejection of the electrolyte into the plasma and extinction of the discharge.
Discharge modes with different types of quasi-steady interface are observed for copper sulfate at different val-
ues of the discharge current: a smooth interface, a solitary wave perturbation, regular ripples, and a churning
foamed turbulent mixing zone. © 2005 Pleiades Publishing, Inc.
The gas discharge over the electrolyte surface is one
of the most interesting objects of study in applied
plasma chemistry [1–3]. The aim of the present work is
the visual and photographic investigation of the inter-
face between a liquid electrolyte and the plasma of a
low-pressure dc glow discharge.

The experiments were conducted in a vertical glass
discharge tube 200 mm in length and 30 mm in diame-
ter. A stainless-steel cathode and anode were located at
the lower and upper ends of the tube, respectively.
1063-7842/05/5010- $26.00 1374
The tube was filled with a liquid electrolyte up to a
130-mm height. Red-brown 0.2% water solutions of
potassium permanganate (KMnO4) and blue 10% water
solutions of copper sulfate (CuSO4) were used as elec-
trolytes.

The air pressure in the remaining part of the tube
was set at 40–60 Torr. A further decrease in the pressure
led to intense boiling of the electrolyte at room temper-
ature. At a pressure just above the boiling threshold, the
(a) (b) (c) (d) (e) (f)

Fig. 1. Dynamics of a glow discharge over a potassium permanganate solution: (a) smooth surface, (b) warped surface, (c) wave
perturbation of the surface, (d) growing perturbation, (e) turbulent ejection of the plasma–electrolyte mixture into the discharge
zone, and (f) another turbulent ejection of the plasma–electrolyte mixture into the discharge zone.
© 2005 Pleiades Publishing, Inc.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Modes of a glow discharge over a copper sulfate solution: (a, b) smooth surface, (c, d) solitary wave perturbation, (e, f) reg-
ular ripples, and (g, h) churning foamed turbulent mixing zone.
discharge gap was appreciably saturated with electro-
lyte vapor.

The discharge was powered from a dc power supply.
The discharge current flowing through the electrolyte
was carried by ions, and, in the glow discharge plasma,
it was carried by electrons. The change of the current
carriers at the plasma–electrolyte interface is a rather
complicated kinetic process. Besides kinetic processes,
the surface is also affected by intense acoustic oscilla-
tions excited by the current flowing through the electro-
lyte. Therefore, investigation of the plasma–electrolyte
interface is of great importance for understanding the
processes occurring in the discharge.

The discharge was observed visually and was pho-
tographed with an Olimpus C-40ZOOM digital cam-
era. This allowed us to obtain high-quality color photo-
graphs of the discharge in different stages of the pro-
cess and to study the discharge dynamics by means of
short-term (over a few seconds) digital video recording.

At pressures of 40–60 Torr, dc glow discharge is
contracted for both types of solution. The dynamics of
the plasma–electrolyte interface for these two solutions
is, however, different.

A 250-mA discharge over a potassium permangan-
ate solution operated over 3–5 s and passed through
several stages. Initially, it was a contracted discharge
over a smooth plasma–electrolyte interface. A surface
glow was also observed in this stage. Further on, the
interface warped, intense surface waves were excited,
the electrolyte and plasma underwent turbulent mixing,
and the mixture produced was ejected into the dis-
charge zone. After the ejected mixture reached the upper
electrode, the discharge was extinguished. Figure 1
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
shows photographs of six successive stages of this
dynamic process.

In the case of a copper sulfate solution, the situation
is quite different: the discharge is quieter and can occur
in different quasi-steady modes, which differ in the
structure of perturbations of the plasma–electrolyte
interface. The following modes were observed as the
discharge current was increased from 50 to 150 mA: a
smooth surface, a solitary wave perturbation, regular
ripples (Faraday waves), and a churning foamed turbu-
lent mixing zone (see Fig. 2).

Thus, in this study, we have observed for the first
time glow discharges over an electrolyte surface that
are quite different in their dynamics and structure.
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Abstract—A magnetooptic Kerr setup is designed for investigating the dynamic properties of domain walls in
thin ferromagnetic films subjected to an external magnetic field in the temperature range 20–150°C. With this
setup, the method of interrupted magnetization is implemented and the magnetic (domain) structure is visual-
ized based on the meridional Kerr effect. The domain structure is displayed on a PC monitor using a Nikon
DXM 1200 high-resolution digital video camera. A dedicated software makes it possible to automatize mea-
surements and data processing. © 2005 Pleiades Publishing, Inc.
Study of magnetization reversal in ferromagnets
occupies a prominent place in solid-state physics. Com-
prehensive insight into the physics of transient pro-
cesses can be gained only by directly observing the
magnetic structure of a sample and tracing its variation
upon magnetization reversal. Bulk magnetic materials
are difficult to study, since it is impossible to visualize
their internal magnetic structure. In thin ferromagnetic
films, the domain structure occupies the entire sample;
therefore, pulsed processes in them occur under condi-
tions more favorable to analysis than those in bulk
materials. Being largely a vacuum condensate, thin fer-
romagnetic films have a specular reflecting surface,
which makes observation of the domain structure
dynamics by applying the magnetooptic Kerr effect
basically possible. The advantage of magnetooptic
observation over other methods is that it has no effect
on the magnetization reversal process in the films and
on the domain wall (DW) structure.

To investigate the DW dynamics in thin ferromag-
netic films, we designed a setup schematically shown in
Fig. 1. Its optics consists of light source 1 (halogen
lamp); lenses 2 and 3 and polarizing filter 4, which form
a parallel plane-polarized light beam; Polaroid analyzer
5; and microscope 6 interfaced with digital video cam-
era 7.

Since the angle of rotation of plane of polarization
depends on the orientation of the magnetization vector
relative to the plane of incidence of the light beam, ana-
lyzer 5 can be adjusted in such a way that the image
received by video camera 7 will consist of dark and
bright regions corresponding to different orientations
of the magnetization in the sample (Fig. 2).
1063-7842/05/5010- $26.00 1376
The magnification of the optics is varied in steps
from ×10 to ×100. The digital video camera makes it
possible to visualize an area of interest with a resolution
of 3840 × 3072 pix. The exposure time varies between
80 µs and 700 s.

When the light reflects from the surface of a thin fer-
romagnetic film, the rotation of plane of polarization is
small and so the image formed by the video camera is
of low contrast. The contrast was raised by digital
image processing.

In our setup, the DW dynamics was investigated by
the method of interrupted magnetization [1, 2]. In this
method, the sample is exposed either to single rectan-
gular pulses or to a periodic train of pulses of a mag-
netic field. The time between pulses is much longer
than the DW relaxation time. The DW average velocity

1

2

3
4

5

6

7

89 10

Fig. 1. Block diagram of the pulsed magnetooptic setup:
(1) light source, (2) lens system, (3) diaphragm, (4) polar-
izer, (5) analyzer, (6) microscope, (7) Nikon DXM
1200 digital video camera, (8) tube with heater, (9) air com-
pressor, and (10) magnetization-reversing rings.
© 2005 Pleiades Publishing, Inc.
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here is defined as the distance the wall travels during
magnetization reversal divided by the total time of
reversal. In addition, the following conditions must be
fulfilled: the rise time and fall time of the (rectangular)
magnetization-reversing pulses should be much shorter
than the pulse duration and the top of the rectangular
pulses must be flat.

Since magnetization reversal in our work was
accomplished with low-inductance low-resistance
Helmholtz rings, rectangular current pulses of ampli-
tude as high as 100 A were necessary to generate mag-
netic fields of desired intensity. Such rectangular mag-
netization-reversing pulses were produced by a genera-
tor with the discharge circuit in the form of a coaxial
cable [1]. A thyratron with an ionization time of 10–
15 ns was used as a switch. The rise and fall times of the
rectangular pulse in the aggregate did not exceed 50 ns
for a pulse duration of more than 0.5 µs. Thyratron-
igniting pulses were generated by a square-wave hand-
operated one-shot generator.

The duration of the current pulses was controlled by
the length of the storage cable; their amplitude, by the
charging voltage of the cable.

Rectangularity of a magnetization-reversing pulse is
a key issue in the method of interrupted magnetization.
To control the pulse shape, we used a trigger-mode
oscilloscope synchronized with the igniting-pulse gen-
erator.

The reversing-pulse generator terminates in double-
coil Helmholtz rings 1 (Fig. 3). In combination with the
generator, these low-inductance magnetization-revers-
ing rings generate rectangular magnetic pulses with a
duration from 500 ns to 10 µs and an amplitude from
80 A/m to 4 kA/m. Constructively, the double-coil
Helmholtz rings are a part of the reversing device,
which can apply, along with pulsed magnetic fields,
mutually orthogonal uniform magnetic fields to the
sample (Fig. 3).

The reversing device (Fig. 3) consists of three pairs
of Helmholtz rings and a hollow ceramic sample holder
on a mica substrate. Rings 4 and 5 generate mutually
orthogonal uniform magnetic fields of intensity up to
16 kA/m and are fed by regulated current sources
(Fig. 3).

To exclude the effect of external magnetic fields (of
both natural and technogenic origin), the device was
placed in compensating Helmholtz rings generating
orthogonal triaxial magnetic fields (not shown in
Figs. 1–3).

To study the DW dynamics in a temperature range,
the reversing device was equipped with a specially
designed thermal attachment (Fig. 1) consisting of air
compressor 9 and a copper tube with heating element 8.
The air from the compressor passes through the copper
tube with the heater and then enters the interior of the
sample holder, where it warms the mica substrate with
the sample. The sample temperature can be varied
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
between 20 and 150°C by varying the voltage applied
to the heater.

The temperature was measured with a thermocouple
mounted in the magnetization-reversing device and a
digital voltmeter with an accuracy of 2%.

To automatize measurements, we developed a soft-
ware package making it possible to measure the DW
displacement and automatically generate data lists.

The DW displacement along the hard and easy mag-
netization axes is found by a change in the coordinates
of a cursor, which indicates the initial and final posi-
tions of the wall on the monitor. Three reference points
of the domain wall can be fixed simultaneously.

Along with DW displacements, the data list also
contains the name of the sample, its temperature, the
number of magnetization-reversing pulses, and the val-
ues of acting magnetic fields.

To improve the reliability of experimental results,
the program allows for statistical treatment of the

0.1 mm 0.1 mm

Fig. 2. Domain walls visualized by using the meridional
Kerr effect.

1

2
3

4

5

Fig. 3. External view of the magnetization-reversing device
(not to scale). (1) Double-coil reversing rings, (2) sample
holder on mica substrate, (3) beam propagation direction,
and (4, 5) pairs of Helmholtz rings generating mutually
orthogonal magnetic fields.
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results obtained under identical experimental condi-
tions.

Thus, the digital image processing techniques com-
bined with data acquisition and processing software
tools enable one to effectively study the DW dynamics
using the setup based on the magnetooptic Kerr appara-
tus.

ACKNOWLEDGMENTS

This work was supported by a program in support
of scientific instrumentation development at the Min-
istry of Education and Science of the Russian Federa-
tion.

REFERENCES
1. O. S. Kolotov, V. A. Pogozhev, and R. V. Telesnin, Meth-

ods and Equipment for Investigation into the Pulsed
Properties of Thin Magnetic Films (Mosk. Gos. Univ.,
Moscow, 1970) [in Russian].

2. A. V. Semirov and A. V. Gavrilyuk, Fiz. Met. Metall-
oved. 87 (2), 44 (1999).

Translated by Yu. Vishnyakov
TECHNICAL PHYSICS      Vol. 50      No. 10      2005



  

Technical Physics, Vol. 50, No. 10, 2005, pp. 1379–1382. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 10, 2005, pp. 131–134.
Original Russian Text Copyright © 2005 by Surnychev, Kovalenko, Lagunov, Belyaev.

                                                                                        

SHORT
COMMUNICATIONS
Relaxation of the Volume and Shear Viscosities in Diethyl 
Siloxane and Ethyloctyl Siloxane

V. V. Surnychev, V. I. Kovalenko, A. S. Lagunov, and V. V. Belyaev

Moscow State Regional University, 
ul. Radio 10a, Moscow, 107005 Russia

e-mail: conrad@nm.ru

Received February 10, 2005

Abstract—The variable distance pulsed phase-locked method is applied to study the temperature and fre-
quency dependences of the rate and coefficient of ultrasound absorption in diethyl siloxane and ethyloctyl silox-
ane in the frequency range 4–63 MHz at temperatures from 293 to 348 K. Based on experimental data, the fre-
quency dependence of the volume and shear viscosities is derived. The values of the shear and volume viscosity
coefficients, as well as the relaxation times of processes discovered, are found. © 2005 Pleiades Publishing, Inc.
Organosiloxanes belong to the class of substances
whose molecules contain the main siloxane chain with
Si–O main-chain links and organic substitutes in silicon
[1, 2]. Some of the properties of organosiloxanes are as
yet little understood. Of special interest is investigation
into the relaxation of their viscoelastic properties by the
acoustic spectroscopy method. Data for the rate and
coefficient of ultrasound absorption are of great value
both for applications and for clarifying the domain of
applicability of the phenomenological theories of vis-
coelastic media. Compression and shear strains due to
elastic wave propagation change the arrangement of
molecules and their associated complexes, i.e., cause
restructuring modifying the structure-sensitive proper-
ties, which are of relaxation character. According to [3],

(1)

where ηs and ηv are the shear and volume viscosities,
respectively.

At ηv = 0, we obtain the relationship

(2)

which describes losses due to shear viscosity (Stokes
absorption). Quantity (α/f 2) – (α/f 2)S is called the
super-Stokes absorption. This absorption and, hence,
volume viscosity ηv may be attributed to both structural
and thermal relaxation [3–5].

The objects of investigation in this work were
diethyl siloxane (DES) and ethyloctyl siloxane (EOS)
(the general formula
(C2H5)3SiO[(C2H5)2SiO]4Si(C2H5)3 and

α
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ρc0
3
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3
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 
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(C2H5)3SiO[C2H5C8H17SiO]18Si(C2H5)3, respectively)
with triethyl siloxane terminal links. The samples were
prepared at the State Research Institute of Chemistry
and Technology of Organoelemental Compounds
(Moscow). Such compounds are used as lubricants and
biological liquids. The molar weights of DES and EOS
are 0.65 and 3.5 kg/mol, respectively.

The rate and coefficient of ultrasound absorption
were measured by the variable distance pulsed phase-
locked method [6, 7]. The thermal physical properties
of DES were studied in [8]. The measurements are plot-
ted in Fig. 1 together with calculated values. At certain
temperatures, Stokes absorption (α/f 2)S are seen to
exceed experimental values of (α/f 2) (domain II in the
temperature dependences plotted in Fig. 2). Similar
results were obtained for high-viscosity liquids [9, 10].
This fact testifies that the volume and shear viscosities
relax at low temperatures in the given compounds. Fur-
thermore, at all temperatures, the frequency depen-
dences of the absorption coefficient decrease monoton-
ically without clear-cut inflections, the presence of
which would indicate a set of widely spaced discrete
relaxation times. Thus, in DES and EOS, processes
related to volume and shear viscosity relaxation super-
impose.

According to the relaxation theory, specifically, in
terms of the single-process model, the frequency
dependence of the absorption coefficient is given by

(3)α
f 2
----- A

1 ω2τ2+
-------------------- B.+=
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Table 1.  Relaxation parameters of DES and EOS

t, °C
A B As Bs τα τs τα/τs (α/f2)s B/(α/f2)s

×1012, m–1 s2 ×109, s ×1012, m–1 s2

DES

0 0.28 0.61 0.37 0.58 8.2 6.4 1.28 1.02 0.60

5 0.27 0.59 0.28 0.58 7.9 6.1 1.30 0.90 9.65

10 0.25 0.57 0.25 0.56 7.5 5.7 1.31 0.80 0.71

15 0.24 0.55 0.2 0.55 7.1 5.3 1.35 0.72 0.77

25 0.22 0.51 0.14 0.52 5.7 4.2 1.35 0.58 0.87

45 0.18 0.43 4.3 0.4 1.00

60 0.15 0.37 3.4 0.4 1.02

75 0.13 0.30 2.7 0.3 0.95

EOS

0 1.81 1.16 2.2 0.9 12.2 6.9 1.77 3.0 0.39

5 1.60 1.07 1.72 0.87 10.6 6.4 1.67 2.6 0.41

10 1.45 0.98 1.5 0.83 9.4 6.1 1.53 2.3 0.43

15 1.28 0.90 1.15 0.79 8.4 5.5 1.53 2.0 0.45

30 0.91 0.68 0.75 0.64 6.2 4.1 1.51 1.4 0.50

45 0.66 0.53 4.0 1.0 0.55

60 0.50 0.41 3.7 0.7 0.58

75 0.40 0.36 2.8 0.5 0.66
Using these relationship, one can find relaxation
parameters A, B, τα (relaxation time), and B/(α/f 2)S
(Table 1).

The dependences of τα were assumed to obey the
Arrhenius law with activation energies ∆Eα listed in
Table 2.

The ultrasound velocity in both substances varies
considerably depending on frequency and temperature.
In the frequency range 4.2–63 MHz at a temperature of
303 K, it falls into the interval 1214–1219 m/s in DES
and into the interval 1309–1330 m/s in EOS; at T =
348 K, it varies from 1078 to 1102 m/s in DES and
from 1180 to 1240 m/s in EOS. Within the limits of
measurement error, the ultrasound velocity is a linear
function of temperature throughout the temperature
interval studied.

Knowing the relevant parameters, one can find vol-
ume viscosity ηv by the formula

(4)ηv
ρc3

2π2
-------- α

f 2
----- 

  B– .=
The values of ηv for several temperatures and fre-
quencies are listed in Table 3.

Since in domain II in Fig. 2 ηv = 0, the ultrasound
absorption depends only on ηs; that is, quantity (α/f 2)s

becomes frequency-dependent. Taking into account the
values of (α/f 2) in domain II and assuming that As +
Bs = (α/f 2)s, one can find with (2) parameters As, Bs, and
τ characterizing the relaxation of absorption in the clas-
sical sense (Table 1), as well as activation energy ∆Es

(Table 2). Then, using the resulting values, one finds ηs

Table 2.  Activation energies for DES and EOS in kJ/mol

∆Eα ∆Es ∆Eη ∆Eα ∆Es ∆Eη

DES EOS

13.1 11.8 17.8 15.3 16.6 24.6
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at different temperatures and frequencies (Table 3),

(5)

Table 3 lists ratios ηv/ηs for various temperatures
and frequencies, and Table 1 gives ratios τα/τs at differ-
ent temperatures. In both materials, ηv/ηs < 1 and
τα/τs = 1.3–1.7. Both ratios depend on temperature only
slightly. Therefore, we can infer that both materials

η s
3ρc3

8π2
----------- α

f 2
----- 

  Bs– .=
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Fig. 1. Frequency dependences of (1–4) measured absorp-
tion coefficient α/f 2 vs. (9–12) its values calculated by (3)
and (5–8) absorption coefficient (α/f 2)s calculated by (2)
for (a) DES and (b) EOS. T = (1, 5, 9) 30, (2, 6, 10) 45, (3,
7, 11) 60, and (4, 8, 12) 75°C.
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exhibit structural relaxation. The fact that the relaxation
times of volume and shear viscosities differ insignifi-
cantly and activation energies ∆Eα, ∆Es, and ∆Eη (the
activation energy of viscous flow, which was obtained
from the temperature dependence of the shear viscos-
ity) are fairly close to each other (Table 2) lets us sup-
pose that mechanisms underlying shear and volume
viscosities are of similar nature.

The data for the relaxation behavior and viscosity of
DES and EOS suggest that the ultrasound absorption
coefficient, both viscosities ηv and ηs, and activation
energy ∆Eη are of greater importance for EOS, which
has longer-chain and more ridgelike molecules.

40
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90

100 1
2
3
4

(a)

30

80
5
6

I

II

(α /f 2) × 1014, m–1 s2

100

150

200

250

300

0 20 40 60 80

(b)

50
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II

t, °C

Fig. 2. Temperature dependences of ultrasound absorption
coefficient α/f 2 at frequency f = (1) 4.2, (2) 9.6, (3) 27.3, (4)
45, and (5) 63 MHz vs. (6) absorption coefficient (α/f 2)s
calculated by (2) for (a) DES and (b) EOS. I and II, domains
where α/f 2 > (α/f 2)s and α/f 2 < (α/f 2)s, respectively.
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Table 3.  Values of ηv ,ηs, and ηv/ηs for DES and EOS at different temperatures and frequencies

t, °C

ηv × 102, Pa s ηs × 102, Pa s ηv/η s

f, MHz

4.2 9.2 27.3 45 63 4.2 9.2 27.3 45 63 4.2 9.2 27.3 45 63

DES

0 3.5 2.3 1.2 0.6 0.2 10 9.1 8.2 7.4 7.0 0.34 0.25 0.15 0.080 0.028

5 3.2 2.2 1.2 0.6 0.2 9.5 8.4 7.6 6.9 6.5 0.34 0.25 0.16 0.087 0.034

10 2.9 2 1.2 0.6 0.2 8.0 7.8 7.0 6.4 6.0 0.36 0.26 0.16 0.095 0.041

15 2.65 1.9 1.1 0.6 0.3 6.9 6.9 6.4 5.9 5.6 0.39 0.28 0.17 0.104 0.048

20 2.4 1.7 1.1 0.6 0.3 5.9 5.9 5.9 5.4 5.1 0.41 0.30 0.18 0.111 0.057

25 2.2 1.6 1.0 0.6 0.3 5.1 5.1 5.1 5.0 4.7 0.43 0.32 0.20 0.120 0.065

EOS

0 22 19 8.1 2.4 0.8 30 27 18 13 11 0.74 0.69 0.45 0.18 0.07

5 20 17 7.3 2.5 1.2 25 23 16 12 10 0.79 0.71 0.46 0.21 0.12

10 17 15 6.5 2.6 1.4 21 20 14 11 10 0.82 0.71 0.47 0.24 0.15

15 16 13 5.8 2.6 1.5 18 16 12 10 9 0.88 0.79 0.47 0.27 0.17

20 14 11 5.3 2.7 1.5 15 14 11 8.9 8.0 0.92 0.80 0.49 0.30 0.18

25 12 10 4.7 2.6 1.6 13 12 10 8.1 7.4 0.95 0.86 0.48 0.32 0.22

30 11 8.9 4.4 2.7 1.9 11 11 8.6 7.4 6.8 0.99 0.85 0.51 0.37 0.28

35 9.3 7.8 4.0 2.7 2.0 9.1 10 7.7 6.7 6.2 1.02 0.82 0.52 0.40 0.32
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Abstract—An experimental method for checking the isotropy of the speed of light is proposed. It is based on
excitation of Cherenkov radiation by a virtual electric charge moving with a faster-than-light velocity. © 2005
Pleiades Publishing, Inc.
The motion of a light spot from a rotating projector
on a screen was considered in classical works [1, 2] (see
also [3–5]). If projector–screen distance R is large, i.e.,
satisfies the condition v proj = RΩ > c (where v proj is the
linear velocity of the spot on the screen, Ω is the angu-
lar velocity of the projector, and c is the speed of light
in free space), the spot on the screen may take a faster-
than-light phase velocity (v proj). In [6], we proposed
faster-than-light spots of different nature (for example,
from a rotating electron beam) satisfying the condition
v proj = RΩ @ c that can be used for synchronization of
space-separated clocks with the aim to check the equal-
ity of the speeds of light in the forward and backward
directions and, thereby, to strengthen the validity of the
second postulate of special relativity [7].

In [2] (see also [8]), faster-than-light spots of elec-
tromagnetic nature were investigated for feasibility of
generating Cherenkov radiation. Indeed, such a spot
moving over the inner surface of a cylindrical metallic
screen for a moment produces the nonuniform charge
distribution on the metal surface or, which is much
more efficient for generating Cherenkov radiation,
knocks out electrons from the metal (in the latter case,
the screen virtually serves as a cathode). This gives rise
to a virtual electric charge moving with a velocity
v proj > c. However, to overcome the potential barrier
(electron work function), an electromagnetic radiation
with a wavelength much shorter than that of visible
light is required. Such an experiment with X rays has
been recently carried out to advantage in [9] (however,
under conditions somewhat different from those sug-
gested in [2, 8]).

The aim of this study is to experimentally verify the
isotropy of the speed of light by generating Cherenkov
radiation with a virtual electric charge [2, 8, 9] moving
with a faster-than-light velocity.

First, recall that special relativity assumes the speed
of light to be isotropic; therefore, an experimental sup-
port of this assumption would be a direct proof of the
1063-7842/05/5010- $26.00 1383
validity of special relativity or, more precisely, of its
second postulate. Anisotropy of the speed of light is
asserted, for example, in the theory of luminiferous
ether. This outdated but unfortunately still persisting
theory states that, in a certain hypothetical inertial
frame of references (IFR) in which the ether is at rest,
the speed of light is isotropic and equals c, while in any
other IFR, the speed of light is the sum of speed c the
direction of which coincides with that of the source and
ether velocity veth. Without loss in generality, the ether
velocity may be directed along the X axis. Then, the
light from a source oriented at angle ϕ to the X axis has
the velocity

and propagates at the angle

to this axis.

Note that, if v eth = 0, V = c and ψ = ϕ. Straightfor-
ward while cumbersome calculations show that, if the
source placed at the center of a cylindrical screen
rotates with angular velocity Ω , the spot moves on the
screen with the linear velocity

(1)

where t is the time.

V ϕ( ) c 1
2v eth

c
------------ ϕcos

v eth
2

c2
--------+ +  v eth ! c( ),=

ψ ϕ( ) c ϕsin
c ϕcos v eth+
------------------------------arctan=

v proj = RΩ
1

v eth

c
-------- Ωtcos+ 

  1 2
v eth

c
-------- Ωtcos v 2

c2
------+ +

1 2
v eth

c
-------- Ωtcos RΩ

v eth

c2
-------- Ωsin t

v 2

c2
------+ + +

-------------------------------------------------------------------------------------------,
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This expression may be considerably simplified by

omitting small quantities v eth/c and /c2 ! RΩ/c,

(2)

Since the velocity of the spot is periodic in time and,
hence, so is the velocity of the virtual charge, the
parameters of Cherenkov radiation (the apex angle and
the radiation frequency) will vary in a similar way.
Moreover, when radius R is so large that

(3)

even the direction of motion of the spot on the screen is
bound to periodically vary in time1 with the velocity of
the spot tending to infinity at certain instants. Such vari-
ations are basically detectable, and their absence would
be direct evidence for the validity of the second postu-
late. In the opinion of adherents of the theory of lumin-
iferous ether, velocity v eth lies in the range from 30 (the
orbital velocity of the Earth) to 360 km/s (the velocity
of the Solar System with respect to the IFR where the
relic background is isotropic [13]). Thus, condition (3)
is met with v proj = RΩ falling into the range (103–104)c.

Let us now consider how to make a virtual charge
move with a faster-than-light velocity on the surface of
a cylindrical screen using rotating continuous X-ray
radiation (see [2, 8]). One obvious way is to rotate the
X-ray source, as was done in [14] for detection of the
Sagnac effect. However, to impart a sufficiently high
angular velocity to the source seems unrealistic because
of its considerable weight. Another way is to make use
of the transient radiation (predicted as early as in 1946
[15]), which arises when an electron beam crosses the
interface between two insulators with different permit-
tivities. Currently, portable sources of transient X-ray
radiation based on multilayer periodic nanostructures
are being developed [16]. Finally, one can use X rays
reflected from a rotating X-ray mirror, for example,
from a silicon single crystal serving as a diffraction
grating with the source remaining quiescent [14].

However, rotation of an X-ray source (or beam) is
not a necessary condition for creating a faster-than-
light spot. Instead, one may use a short widely diver-
gent X-ray pulse and a specially configured screen.

This idea was implemented in [9].2 A short (0.3–0.5 ns)
pulsed beam with a diameter of ≈1 mm from a high-
power optical laser (λ = 1.315 µm) was incident on a
planar gold target, inducing a short (0.6–1.0 ns) X-ray
pulse with a spherical wave front. Striking an alumi-

1 Such a conjecture is difficult to recognize: nobody has observed a
change in the direction of motion of light spots from pulsars [1, 2,
10] or from a diffraction grating [11, 12]; the absence of such
observations is indirect evidence for the isotropy of the speed of
light.

2 A comprehensive theoretical consideration of experiments [9]
can be found in [17].

v eth
2

v proj . 
RΩ

1 RΩ
v eth

c2
-------- Ωtsin+

------------------------------------------.

RΩv eth c2,>
num cathode, this pulse knocked out electrons toward a
grid anode, which was under a voltage of several tens
of kilovolts. The anode, being transparent to X rays and
electrons, accelerated the electron flow and, thus,
greatly enhanced the Cherenkov radiation power. The
presence of the anode has a negligible effect on the rel-
ativistic effects concerned. If the cathode (screen) were
cylindrical, all parts of the incident X-ray pulse with a
spherical wave front would reach the cathode surface
simultaneously, which corresponds to v proj = ∞. It is
known, however, that a virtual charge moving over a
screen (cathode) with an infinite velocity does not
induce Cherenkov radiation. Therefore, the cathode
used in [9] was made in the form of an 850-mm-long
plane-parallel plate placed 340 mm from the target, i.e.,
from a point X-ray source. The distance from the
source to the near and far ends of the plate was 400 and
1100 mm, respectively. The angle of incidence on the
cathode surface ranged from 70° to 25°. In this case,
velocity v proj of the virtual charge on the cathode was
not constant: under the assumption that the speed of
light is isotropic and equal to c, it varied from 1.3c to
1.05c at the near and far ends of the plate, respectively.
These values are in agreement with the parameters of
Cherenkov radiation measured in [9]. Thus, the results
of [9] suggest that the anisotropy of the speed of light
does not exceed 25–30% for angles near 40°; other-
wise, Cherenkov radiation from certain regions of the
cathode would be absent. Since measurements in [9]
were taken at various times of the astronomical day,
that is, at different orientations of the experimental
setup with respect to outer space, this conclusion is
valid for a wider range of angles.

Although the accuracy of estimating the isotropy of
the speed of light in [9] is not high, this does not mean
that such an approach to verifying the basic postulates
of special relativity should be disregarded. Recall that
the pioneering experiments of Michelson [18] also fea-
tured a very low accuracy; moreover, it was even over-
estimated by a factor of 2, as indicated by Lorentz [19].
In the subsequent experiments by Michelson and Mor-
ley [20], the accuracy was appreciably higher, and to
date it has been improved by several orders of magni-
tude [21, 22]. Note that experiments similar to those of
Michelson and Morley may only indicate that the average
speed of reciprocating light is the same in all directions
(for details, see [6]). Study [9] was the first to demonstrate
the feasibility of experimentally checking the isotropy of
one-way speed of light; in this respect, its significance
for special relativity can hardly be overstated.

The upper estimate of the anisotropy can be deter-
mined with a much higher accuracy by using the cath-
ode of a special shape. Specifically, if the cathode rep-
resents a fragment of the Archimedean spiral [23], the
virtual charge will move with constant velocity v proj,
naturally, provided that the speed of light is isotropic.
Under this condition, the equality v proj = Kc (where K is
the excess velocity factor) is satisfied when distance R
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
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between a point X-ray source and the cathode depends
on angle ϕ as

(4)

where R0 is the minimal source–cathode distance.

For v proj = 103 c, R0 = 1000 mm, and angle ϕ varying
by 40° along the cathode, it follows from formula (4)
that the far end of the cathode is 1000.4 mm distant
from the X-ray source. Such an accuracy of manufac-
turing and installing the cathode is practically feasible.
Let the speed of light be anisotropic and the anisotropy
be greater than 10–3 of its mean value c (in terms of the
opponents of special relativity, this corresponds to the
condition v eth > 300 km/s). Then, it is easy to check that
the projection of a spherical wave (spot) onto a screen
(cathode) in the form of the Archimedean spiral would
periodically change the direction of motion, as in the
case of a rotating X-ray beam and cylindrical screen
(see formulas (2) and (3)). The absence of such an
unusual behavior of the spot would serve as a direct
proof of the second postulate. Clearly, the deviation of
the X-ray wave front from ideal sphericity has to be
substantially smaller than 0.4 mm and a large number
of sensors should be located over the cathode surface to
detect the Cherenkov radiation (in [9], three sensors
were used). Another important factor in the case at hand
is the X-ray pulse duration: if the pulse is too long, all
parts of the wave front almost simultaneously reach the
cathode surface and the size of the spot becomes com-
parable to that of the cathode. In our conditions, the
spot will be sufficiently small if the X-ray pulse dura-
tion is much shorter than 1 ps. The larger the value of K
(the excess velocity factor), the smaller should be the
step of the Archimedean spiral and, accordingly, the
shorter should be the X-ray pulse.

The main result of this study is that the isotropy of
the one-way speed of light is confirmed by the charac-
teristics of the Cherenkov radiation induced by the spot
of an X-ray beam moving with a faster-than-light speed
over the screen (cathode). The spot may be produced
both by a rotating source of continuous X-ray radiation
(then, a cylindrical screen should be used [2, 8]) and by
a pulsed X-ray beam with a spherical wave front (the
screen in this case should be plane [9] or have the form
of a segment of the Archimedean spiral.
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Abstract—The complex susceptibility of a magnetic fluid based on vacuum oil, which is used in engineering
as a magnetosealing liquid, is investigated. Features of magnetic moment relaxation of disperse particles, which
are associated with their structural organization under the action of external factors, are determined from anal-
ysis of the results. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Magnetic and structural properties of magnetic flu-
ids (MFs) have been studied by many authors [1, 2].
Kerosene-based MFs are the most abundant and well-
studied objects. However, fluids based on more viscous
substances, such as mineral oils and organosilicon
materials, have found applications in practice. The
effects of interaction of particles in such MFs and their
structural properties have not been studied extensively
as yet. This work is devoted to experimental study of
the effect of structural organization on magnetic
moment relaxation of disperse particles in a magnetic
fluid based on vacuum oil.

EXPERIMENTAL TECHNIQUE AND OBJECT 
OF INVESTIGATION

As the initial sample, we used a magnetic fluid with
magnetite particles based on vacuum oil with a volume
concentration of ϕ = 8.6% and a saturation magnetiza-
tion of 4.3 kA/m. The sample was a homogeneous mag-
netic fluid, which was stable to phase separation upon a
change in temperature and under the action of magnetic
fields. The initial sample was used to obtain a concen-
tration series of magnetic fluids consisting of 14 sam-
ples by diluting with a carrier fluid; the concentration of
the most dilute sample was ϕ = 0.67%. The magnetic
susceptibility was measured by the bridge method. The
real (χ') and imaginary (χ'') parts of the complex mag-
netic susceptibility were calculated from the change in
the inductance and Q-factor of the solenoid upon intro-
duction of the sample into it. Measurements were made
using an LCR-817 immittance meter; the error in deter-
mining the effective value did not exceed 0.1% for the
real part χ' of magnetic susceptibility and 0.3% for its
imaginary part χ''. Frequency dependences of the sus-
1063-7842/05/5010- $26.00 1386
ceptibility were studied in the absence and in the pres-
ence of a constant uniform external magnetic field.

EXPERIMENTAL RESULTS 
AND DISCUSSION

It was found that the initial segment of the concen-
tration dependence of the magnetic susceptibility dif-
fers from linearity only slightly up to a concentration of
~4% (curve 1 in Fig. 1).

The action of a constant external magnetic field
leads to “smoothing” of the χ'(θ) curve so that it
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Fig. 1. Dependence of the magnetic susceptibility on the
concentration of disperse particles under the action of a con-
stant magnetic field H, kA/m: 0 (1), 2.15 (2), 4.3 (3), and
5.8 (4).
© 2005 Pleiades Publishing, Inc.
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becomes almost linear in the entire concentration range
for large values of the constant magnetic field
(curves 2–4 in Fig. 1).

Optical microscope observations revealed that
structure formation processes begin in a magnetic fluid
upon a change in its concentration by diluting the initial
homogeneous sample in a concentration range corre-
sponding to 4%. The largest number of aggregates are
observed in samples with a disperse phase concentra-
tion of 3–3.5%; this is also confirmed by the results of
analysis of light scattering from thin layers of the sam-
ples (curve 1 in Fig. 2 was obtained in zero magnetic
field, while curve 2 was obtained under the action of a
magnetic field = 4.6 kA/m directed along the plane of
an MF layer). Here, I0 is the intensity of light incident
on the sample and I is the intensity of scattered light.

We can assume that dilution of an initially homoge-
neous MF leads to the formation of aggregates with
partly closed magnetic moments of single-domain dis-
perse particles due to the emerging deficit of a surface-
active substance. The presence of such aggregates may
be responsible for the linearity of the initial segment of
the concentration dependence. Under the action of a
constant external magnetic field, the aggregates are
combined into chains aligned along the direction of the
field, which results in the experimentally observed
enhancement of anisotropic light scattering under the
action of the field.

It was found that the frequency dependences of the
imaginary part of the complex magnetic susceptibility
obtained in zero field and under the action of a constant
external magnetic field are different for all samples
studied here. In zero external field, susceptibility χ''
increases monotonically (curve 1 in Fig. 3) with the
measuring field frequency. After the application of a
magnetic field, the frequency dependence χ''( f ) of the
imaginary part acquires a peak at a certain frequency
depending on the value of the constant magnetic field
(curves 2–7 in Fig. 3). As the magnetic field increases
from 0 to ~1.6 kA/m, the frequency corresponding to
the peak of χ'' slightly decreases, while a further
increase in the magnetic field leads to its increase. Cal-
culating the effective magnetic moment relaxation time
of disperse particles using the peak frequency (τ = 1/fp),
we were able to plot the dependence of τ on the external
magnetic field, which is shown in Fig. 4 (Figs. 3 and 4
show the dependences obtained for a sample with con-
centration ϕ = 8.6%; the dependences obtained for
remaining samples are analogous). Our experiments
also led to the dependence of the relaxation time on the
disperse phase concentration ϕ for various values of the
magnetic field (Fig. 5).

The observed features of magnetic moment relax-
ation are apparently associated with the emergence of
structural organization in the system of disperse parti-
cles under the action of a magnetic field, which was the-
oretically investigated earlier in [3–6]. In particular, the
TECHNICAL PHYSICS      Vol. 50      No. 10      2005
time variation of relaxation upon the formation of chain
aggregates in magnetic fluids is considered in [3].

The qualitative agreement between our results and
the conclusions drawn in [3] suggests that the observed
features of the magnetic properties of the MF samples
studied here are associated with the formation of chain
aggregates under the action of a constant external mag-
netic field. The chain parameters depend on the dis-
perse phase concentration, the initial structural state of
the sample, and the magnetic field strength.
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Fig. 2. Dependence of the relative intensity of light scatter-
ing on the concentration of disperse particles.
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Fig. 3. Frequency dependence of the imaginary part of the
complex magnetic susceptibility under the action of a con-
stant magnetic field H, kA/m: 0 (1), 0.4 (2), 0.8 (3), 1.75 (4),
3.26 (5), 6.45 (6), and 9.67 (7).
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It should be noted that, in actual practice, a spread
of particle size is observed in a magnetic fluid. For this
reason, a magnetic fluid cannot be described by a dis-
crete set of relaxation times: it is characterized by a set
of relaxation times τ with a weight c(τ). Function c(τ)
is introduced in such a way that quantity c(τ)dτ is a part
of the equilibrium differential magnetic susceptibility
dM/dH with a relaxation time varying from τ to τ + dτ.
In this case, we can write

(1)χ' ω( ) c τ( ) τd

1 ω2τ2+
--------------------, χ'' ω( )

0

∞

∫ ωc τ( ) τd

1 ω2τ2+
--------------------,

0

∞

∫= =
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Fig. 4. Dependence of the relaxation time on the constant
magnetic field.
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Fig. 5. Dependence of the relaxation time on the concentra-
tion of disperse particles under the action of a constant mag-
netic field (1) H = 3.26 and (2) 6.45 kA/m.
for the complex magnetic susceptibility components,
where ω = 2πf.

The relaxation time distribution function c(τ) in for-
mulas (1) can be calculated from the experimentally
obtained dependences χ'(ω) and χ''(ω). This problem
was solved in [7], where it was found that the behaviour
of magnetization for low frequencies can be described
by a single effective relaxation time τef:

(2)

Here, function c*(ξ) is introduced as a result of substi-
tution of variables (τ = exp(βξ), c(τ) = c*(ξ)exp(−βξ),
β = ln10) so that the relation c*(ξ)dξ = c(τ)dτ holds.

The largest contribution to the effective relaxation
time comes from values of time τ corresponding to the
largest value of c*. However, the contribution of parti-
cles to the magnetic susceptibility of a fluid is propor-
tional to the square of their volume. Consequently,
large particles considerably affect the magnetic proper-
ties of the liquid in spite of their small number.

In a constant magnetic field, the particle relaxation
time decreases in an increasing field. The field depen-
dence of the relaxation time is determined by the Lan-
gevin parameter MSVH/kT [8]. For coarse particles, the
Langevin parameter becomes large even in weak fields.
As a result, function c*(ξ) decreases sharply. For the
same value of field, coarse particles are closer to satu-
ration than small particles. Consequently, the contribu-
tion of coarse particles to the susceptibility decreases
with increasing field more rapidly than the contribution
from small particles. As a result, the relaxation time
decreases. Aggregation processes occurring in an MF
under the action of a magnetic field enhance the effect
of the above processes on the relaxation time.

We can assume that it is these processes that are
responsible for the features of magnetization relaxation
observed by us here. The application of a constant
external magnetic field to an initially homogeneous MF
initiates the formation of chain aggregates. This leads
to an increase in the relaxation time (Fig. 4). Upon a
further increase in the magnetic field, the chain growth
continues, but the decisive role is this case is played by
the growth of aggregates, which leads to a decrease in
relaxation time τ.

It should also be noted in conclusion that the high
serviceability of the sample under investigation in MF
sealing is apparently associated with the emergence of
structural ordering under the action of a constant mag-
netic field.

τef
1
κ
--- c* ξ( ) τ , κd

0

∞

∫ c τ( ) τ .d
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