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Abstract—A method is proposed for simultaneously determining the interval of the most probable values of
the density of levels excited in the radiative capture of slow neutrons and the sum of radiative E1 and M1
strength functions in the excitation-energy interval extending nearly up to the neutron binding energy. Experi-
mental data on the intensities of two-step photon cascades between the compound state and a given low-lying
level of the nucleus being studied are analyzed together with the total radiative widths of neutron resonances.
Such an analysis can be performed for nuclei having an arbitrary level density, including deformed ones. The
resulting data demonstrate that there are significant deviations from the predictions of commonly accepted
level-density models—for example, the Fermi gas model—and specify the range of nuclei and the regions of
their excitation energies where a further experimental investigation can furnish new important information
about the properties of nuclear matter. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The total radiative width of neutron resonances, Γγ,
and the spectra of emitted photons [including the mea-
sured intensities Iγγ of two-step photon cascades that are
excited in (n, 2γ) reactions and which proceed to given
low-lying levels] are determined by the level-density
and radiative-strength-function values averaged over
the entire region of excitation energies below the neu-
tron binding energy, as well as by the distribution of
random deviations from these averaged values. The
experimental data on Γγ and Iγγ were obtained to within
10%. However, level densities and radiative strength
functions can be extracted from the experimental val-
ues of Γγ and Iγγ only by invoking some model con-
cepts; as a consequence, the accuracy of the results
obtained in this way is poorly controllable. For exam-
ple, the level density can be extracted from the spectra
of products of nuclear reactions only by using realistic
models of the reactions being studied. The situation
around radiative strength functions is even less satisfac-
tory. Apart from a direct determination of these quanti-
ties from data on (n, γα) reactions in [1] and the esti-
mates obtained in [2, 3] for the radiative strength func-
tions on the basis of the spectra of two-step photon
cascades for three even–odd compound nuclei, there
are no reliable experimental data on radiative strength
functions in the excitation-energy interval 0 < Eexc < Bn,
where Bn is the neutron binding energy, although some
information about the lifetimes of a number of excited
states below Bn is available. Indirectly, the existing
model assumptions have been tested many times. This
was done, for example, by comparing the calculated
and measured results for total radiative widths [4], total
intensities of two-step photon cascades [5], and the
1063-7788/01/6402- $21.00 © 0153
spectra of emitted gamma rays and cross sections for
neutron–nucleus interactions [6].

The main disadvantage of the methods used previ-
ously to determine level densities and radiative strength
functions is that these methods give no way to accom-
plish a reasonable variation of the underlying models
with the aim of fitting the results of the relevant calcu-
lations to experimental data.

Although the measured parameters of any nuclear
reaction are determined completely by the relevant
level densities and radiative strength functions and by
the probability of the emission of all reaction products,
the inverse problem cannot be solved unambiguously in
general. As a matter of fact, the currently adopted theo-
retical ideas of processes occurring in nuclei at excita-
tion energies above a few MeV have not yet been devel-
oped to such an extent that would make it possible to
calculate the parameters of nuclei to the degree of pre-
cision as high as that achieved experimentally. By way
of example, we indicate that Γγ and Iγγ values calculated
according to currently adopted models of level densi-
ties and radiative strength functions (these models are
usually used to analyze experimental data) may be
markedly distinct from the corresponding experimental
values. Above all, this is so for nuclei from the region
of the 4S resonance of the neutron strength function,
which present the gravest difficulties for experimental
studies.

These discrepancies highlight the inadequacy of
simple models currently used to describe level densities
and radiative strength functions. An analysis of the pos-
sible systematic effects that could be operative in deter-
mining Iγγ revealed no grounds to attribute the observed
discrepancies to experimental errors alone [7]. In view
of this, it is required to find a direct way to deduce reli-
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able experimental information about level densities and
about radiative strength functions over as wide an exci-
tation-energy interval as is possible for any nuclei.
Experiments that would serve this goal are possible
with modern multidetector systems used together with
the efficient procedure developed at the Frank Labora-
tory of Neutron Physics (Joint Institute for Nuclear
Physics, Dubna) for extracting information from γγ
coincidences.

But even at present, comprehensive and reliable
information about excitation regions where there are
discrepancies with model ideas of level densities and
radiative strength functions can be obtained by analyz-
ing accumulated data on the intensities of two-step pho-
ton cascades.

2. EXPERIMENTAL DATA

Presently, the distributions of the intensities of two-
step photon cascades in 40 nuclei from the region 114 ≤
A ≤ 200—114Cd, 124, 125Te, 128I, 135, 137, 138, 139Ba, 140La,
143, 144, 146Nd, 150Sm, 156, 158Gd, 160Tb, 163, 164, 165Dy,
166Ho, 168Er, 170Tm, 174, 175, 177Yb, 176, 177Lu,
178, 179, 180, 181Hf, 182Ta, 183, 187W, 188, 190Os, 192Ir, 196Pt,
198Au, and 200Hg—have been obtained and analyzed in
experiments performed with reactor beams in Dubna,
Riga, and e .

The form of the energy dependence of the probabil-
ity of two-step photon cascades terminating at a group
of low-lying final states was determined (actually, the
result is summed over a 0.5-MeV interval of excitation
energies of intermediate levels) for 29 of them (see, for
example, [8]).

Usually, the entire sum of the observed intensities
saturates 20–50% (about 100% in some nuclei) of the
total intensity of primary transitions in neutron-reso-
nance decay. Therefore, an analysis of Iγγ as a function
of the energy of an intermediate level gives a rather
clear idea of the general regularities in the development
of the process through which a compound state (neu-
tron resonance) deexcites in any nucleus having a large
density of states in a given interval ∆E of its excitation
energies.

An extrapolation of conclusions drawn from the
analysis of Iγγ to the case where the problem to be
solved consists in constructing a complete description
of (n, γ) reactions may prove to be incorrect in two
cases: (i) if the process of a cascade gamma decay of a
compound state (neutron resonance) greatly depends
on the structure of its wave function (that such a depen-
dence is in fact exists is suggested by a strong correla-
tion between the ratio of the measured and the calcu-
lated cascade intensity, on one hand, and the reduced
neutron width of the compound state in an even–odd
compound nucleus, on the other hand; see [5]) and (ii)
if the radiative strength functions for experimentally
unobservable secondary transitions of two-step photon
cascades to final levels at Ef > 1 MeV differ signifi-
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cantly from analogous quantities for cascades that we
have already studied [for example, there are no a priori
reasons for ruling out the possibility that the radiative
strength function for secondary transitions to high-
lying levels (Ef in excess of 1 to 2 MeV) is less or is
greater than a similar quantity for a transition that is
characterized by the same change in energy, but which
terminates at a low-lying state (Ef < 1 MeV)—the situ-
ation here can be clarified only experimentally].

In any case, the intensity Iγγ of two-step photon cas-
cades (here, this is the probability of a cascade involv-
ing transitions whose energies lie, in an event of com-
pound-nucleus decay, in preset intervals) is determined
by the ratios of the widths Γλi and Γif with respect to the
primary and the secondary transition to the total widths
Γλ = 〈Γ λi 〉mλi and Γ i = 〈Γ if 〉mif of the compound and the
intermediate state of the cascade,

(1)

that is, it is determined by the total number m of states
that are excited, on average, quite intensively in the
decay of the λ and i levels, as well as by the quantity
nλi = ρ∆E, which corresponds to the number of interme-
diate levels of the cascade in the interval ∆E that are
characterized by a preset spin–parity J π. If we replace
the total widths by the products of effective partial
widths 〈Γ〉  and the number of levels excited in the decay
of the λ and i states, the intensity of the cascades can be
represented as

(2)

Summation over the entire set of quantum numbers
J and π of intermediate and, if necessary, the initial and
the final levels of the cascades has been performed here
in order to draw a comparison with relevant experimen-
tal data.

Expression (2) can be modified by using the relation
between the total experimental radiative width and the
radiative-strength-function and level-density values
determining this width. As a result, we arrive at

(3)

From (3), we can readily find that the cascade inten-
sity, the calculated and the measured total width of the
compound state, and the quantity Br = /Γi

obtained by averaging the probability of emission in
specified secondary transitions over a given interval of
the energies of intermediate levels i of the cascades are
related by the equation

(4)

Iγγ Γλ i/Γλ( ) nλ i Γ if /Γ i( )×× ;
J π,
∑=

Iγγ Γλ i/ Γλ i〈 〉 mλ i( ) nλ i Γ if / Γ if〈 〉 mif( )×× .
J π,
∑=

Γγ Iγγ⋅ Γλ i nλ i Γ if /Γ i( )××
J π,
∑=

=  Γλ i nλ i× Γ if / Γ if〈 〉 mif( )× .
J π,
∑

Γ iff∑

Γγ
calc Γγ

expt Iγγ
expt/Br

calc( )i.
i

∑=
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DIRECT EXPERIMENTAL ESTIMATE OF PARAMETERS 155
In the representation given by Eq. (3), the product
Γγ × Iγγ is proportional to the absolute value of the radi-
ative strength function for primary transitions charac-
terized by the energy Eγ,

(5)

where A is the mass of the nucleus and Dλ is the spacing
between the decaying states of a given spin and a given
parity; concurrently, this product is also proportional to
the ratio of the number nλi of intermediate levels
excited in the interval ∆E to the total number mif of
states excited in the decay of the i level.

For a preset model energy dependence of the density
of levels excited by cascade transitions, the use of
Eq. (3) ensures the highest possible accuracy in deter-
mining the energy dependence of the radiative strength
functions for primary transitions, because inevitable
discrepancies between the level density (number of lev-
els in a given interval) used and its actual values are
compensated to a considerable extent by a positive cor-
relation between the numerator and denominator of the
ratio nλi/mif , which is determined by specific values of
the level density within the chosen model. From
expressions (1) and (2), it follows (a) that the cascade
intensity is determined exclusively by the form of the
dependence of the radiative strength functions for pri-
mary and secondary transitions on their energy and not
by the absolute values of these radiative strength func-
tions (for example, the intensity in question is abso-
lutely unaffected by the errors in determining the spac-
ing Dλ between the decaying states) and (b) that, in con-
trast to what occurs in the previously known methods
for determining level densities, where the probability of
the reaction-product yields is in direct proportion to ρ,
a roughly inverse dependence is observed here.

This conclusion is confirmed by the values that are
obtained by averaging, over all 40 nuclei, the ratios R of
the sums of the experimentally observed cascade inten-
sities to the theoretical result derived according to
expression (1) and which are quoted in the table. In our
calculations, we used two models of E1 radiative
strength, that from [9] and that from [10]; the single-
particle Weisskopf model for M1 transitions; and two
models of the level density, that from [11] and that from
[12]. The data in the table indicate the direction that
should be followed in modifying the model concepts of
radiative strength functions and level densities in order
to render the theoretical description adequate to the
level achieved in experimenting: radiative strength
functions for primary transitions should feature an
energy dependence that is much more pronounced than
that which is predicted in [9, 10] for E1 and M1 transi-
tions, while the density of the levels that determine the
probability of two-step photon cascades to low-lying
levels must be much smaller than that predicted by the
Fermi gas model.

Here, we would like to highlight the basic condition
under which the possible values can be determined for

f Γλ i〈 〉 / Eγ
3 A2/3Dλ( ),=
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level densities and for radiative strength functions
simultaneously. As can be seen from Eqs. (1)–(4), it is
above all the density of states excited by cascade tran-
sitions that controls the degree of agreement between
the calculated intensities and total widths, on one hand,
and the corresponding experimental values, on the
other hand. (This conclusion immediately follows from
the form of the dependence of the coefficient Br =
Γif /〈Γ if〉mif on the total number m of levels that are
excited in the decay of the i state and on the radiative
widths.) It should be noted that the interval of the pos-
sible values of the above parameters is effectively
reduced precisely by the secondary-transition probabil-
ity, which directly determines the measured intensities
of two-step photon cascades. At Br = 1, it follows from
expression (4) that, for any level density specified
within one model or another, it is always possible to
find strength functions such that they would ensure a
faithful reproduction of the experimental values of Γγ.

Expressions (1) and (3) were previously used to
implement an iterative process of searches for those
special features of radiative strength functions and level
densities that determine the development of the process
through which the cascade gamma decay of compound
states in heavy nuclei proceeds. Specifically, these are
(i) the most probable density of excited states of both
parities that ensures the best fit to the experimental cas-
cade intensities for fixed model assumptions on radia-
tive strength functions and (ii) the most probable values
of the sums of E1 and M1 strength functions for various
model assumptions on level densities.

For this purpose, the most probable level-density
values yielding the best fit to the dependence of Iγγ on
the excitation energy of the nucleus were determined
from Eq. (1) for a set of a few models of radiative
strength functions [13]. After that, features that provide
the fullest characterization of the level densities were
extracted from the dependences obtained for them at
the preceding stage, and the region of admissible level-
density values was established. A similar procedure
was applied to expression (3) as well.

It was found [13] (a) that, over comparatively broad
intervals, the resulting level densities agree fairly well
with the model from [12] if the generally adopted con-
cepts are used for radiative strength functions and (b)
there do not exist radiative strength functions such that
they would provide, within the Fermi gas model, a
simultaneous fit to Iγγ and Γγ values.

Values obtained by averaging, over 40 nuclei, the ratio R of
the experimental intensity of two-step photon cascades to the
corresponding intensity computed according to (1) on the ba-
sis of various models

Model [9, 11] [10, 11] [9, 12] [10, 12]

R 2.1(2) 2.6(2) 1.4(1) 1.6(1)
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These results comply with those that were obtained
within the last step of the analysis as described here: a
simultaneous determination of the most probable func-
tional dependences of the level densities and radiative
strength functions on the primary-transition energy E1
(or the excitation energy Eexc = Bn – E1) and an estima-
tion of the region of their probable values.

3. IMPLEMENTATION OF THE ANALYSIS

A nonconventional possibility of simultaneously
determining, from experimental data, basic parameters
that characterize the process of the cascade gamma
decay of a nucleus having a maximum possible level
density (above all a deformed nucleus) does indeed
exist for the following two reasons:

(a) The results of two independent experiments are
simultaneously analyzed in determining two indepen-
dent quantities, the level density and the radiative
strength function.

(b) Because of a tight (albeit not unambiguous) cor-
relation between the level density and the radiative
strength function, which determine the intensities of
the observed cascade transitions, the cascade-intensity
values found for N intervals of excitation energies plus
one value of Γγ make it possible to estimate (with a
comparatively small uncertainty) 2N values of the
sought parameters. However, the parameters of cascade
gamma decay cannot be established without resort to
the conditions ρ > 0, Γ(E1) > 0, and Γ(M1) > 0, which
are valid for any interval of excitation energy and any
value of the transition energy. As a result, the domain of
the sought quantities is found as a solution to the set of
N + 1 equations and 6N inequalities. Naturally, such an
analysis implicitly assumes that the sought level den-
sity and radiative strength function vary quite smoothly
(monotonically) with energy (this assumption, how-
ever, does not have far-reaching consequences).

On the basis of relations (1) and (3), it is impossible
to determine the sought parameters analytically. For
this reason, we have made use of an iterative process of
searches for some intermediate level-density and radia-
tive-strength-function values that ensure an ever higher
degree of agreement between the experimental values
of the cascade intensities and of the total radiative
width, on one hand, and their values calculated accord-
ing to expressions (1) and (3), on the other hand. In
order to achieve this, some forms (quite arbitrary in
some versions of the calculation and even sometimes
absolutely unrealistic) of the dependence of the radia-
tive strength function on the transition energy and of
the level density on the excitation energy of the nucleus
being considered were specified for a zero-order
approximation. For the inputs, we have also used the
commonly accepted models of the radiative strength
function and the level density [9–12] and their values
distorted arbitrarily in various intervals of the photon
energy and the excitation energy of the nucleus. Our
procedure of searches for pairs of the required values
was implemented in the following way: some random
functions (identical for different spins and parities of
the levels and different for the widths with respect to E1
and M1 transitions) were added to the logarithms of the
input functional dependences of the level density and
the radiative strength function. For this, we used the
expression

(6)

In order to ensure a sufficiently high rate of conver-
gence of the above iterative process, random values of
the parameters C, U, and σ appearing in (6) were cho-
sen from the intervals [–0.2, 0.2], [0, Bn], and [0.1 MeV,
0.3Bn], respectively, by using a random variable uni-
formly distributed over the interval [0, 1]. If the level-
density and radiative-strength-function values distorted
in this way provided better agreement between the cal-
culated and measured cascade intensities, they were
used as inputs for the next step of the iterative process.
Such an iterative process makes it possible to approxi-
mate the experimental cascade intensity and the total
radiative width as closely as is desirable. However, it
was actually terminated as soon as two sets of the ran-
dom variables ρ and S = f(E1) + f(M1) yielded values of

((  – )/δ )2 that did not exceed 0.5–1.5 per
interval. This residual took large values when the
experimental cascade intensities showed pronounced
fluctuations in the neighboring intervals of the excita-
tion energies of the intermediate levels of the relevant
cascades. After that, the iterative process was repeated
either with new inputs or with the original ones. A rep-
etition of the process many times in each of the N inter-
vals of the excitation energy resulted in determining the
spectrum of random level-density and radiative-
strength-function values that reproduce simultaneously
the total radiative width and the cascade intensity.

If such a procedure is implemented with the aid of
modern computers, one version of the calculation
requires, on average, up to a few tens of minutes, the
specific value of the machine time being dependent on
the choice of the input values of the level density and
the radiative strength function and on the accuracy of
the fit of the results of the calculations to experimental
data. For this reason, we had to restrict ourselves at best
to 30 versions for each of the 29 nuclei for which the
cascade intensities were determined as functions of the
energy of their intermediate level. Usually, the calcula-
tion had to be checked thoroughly only at the initial
stage of the iterative process if the input parameter val-
ues were strongly different from those that are expected
within the currently accepted concepts. It is the region
in which we can arrive at the point where the mean
square of the deviation attains a local minimum, but the
values of the level densities and the radiative strength
functions at the observed local minima always featured
larger deviations from the existing model concepts than
the results presented below. It is natural that, at the

f E( ) C E U–( )2/σ2( )exp .=

Iγγ
expt Iγγ

expt Iγγ
expt
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points of spurious local minima, the calculated cascade
intensities disagreed completely with the relevant
experimental values.

The above procedure was implemented for a num-
ber of markedly different level-density and radiative-
strength-function values, but it always converged to a
functional dependence that was common to all these
versions and which ensured the best fit of the calculated
cascade intensities to their experimental values. Here,
we imply that the term “common functional depen-
dence” corresponds to a distribution of random vari-
ables that is characterized by a specific mean value and
a specific variance (presented below in the figures).

It is natural that, within the proposed method for
determining the level density and the radiative strength
function, available experimental information about the
nucleus under study is exploited to the maximum pos-
sible degree. This information includes level densities
at the neutron binding energy, together with the excita-
tion energies and quantum numbers of reliably estab-
lished low-lying levels and modes of their decay below
the energy Ediscr of 1 to 2 MeV for odd and even nuclei.
The relevant values were borrowed from available
compilations where allowance was fully made for spec-
troscopic information that we previously obtained by
analyzing the parameters of the most intense two-step
photon cascades. In addition, we fixed, on the basis of
data presented [14], the ratio of the widths with respect
to M1 and E1 transitions for their energies slightly
lower than the neutron binding energy Bn.

The most important result deduced from the first
stage of our data analysis [13] was that which made it

possible to state that the discrepancy between  and

 is due primarily to the discrepancy between the
density of levels actually excited in (n, γ) reactions and
the concepts formulated in [11] on the subject.

Both in the analysis presented in [13] and in that
described below, the form of the relationship between
the level density, the radiative strength function, and Iγγ
gives no way to determine the required values from a
comparison of experimental data and theoretical results
unambiguously and independently. Nonetheless, it is
possible to draw quite reliable conclusions on what and
in which direction one must modify in the current con-
cepts of photon emission and the number of levels
excited as the result of this; moreover, a quantitative
measure of the required modification can also be estab-
lished along these lines.

The above conclusions are based on the results
deduced from an analysis of the convergence of the
level-density and radiative-strength-function values.
These results indicate that the level density and the
radiative strength function have well-defined values
that depend only slightly on the choice of input approx-
imations for the sought parameters of the process being
studied. The main argument in favor of the last state-
ment is illustrated in Fig. 1. Here, we have used abso-

Iγγ
expt

Iγγ
theor
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lutely unrealistic inputs for the level density and the
radiative strength function—namely, the level density
above the region of excited states known precisely from
nuclear spectroscopy was set to that at the neutron
binding energy, while the strength functions were taken
to decrease linearly with increasing transition energy.
Nevertheless, the final result of the iterative process fits
well in a general pattern that was obtained for quite a
wide set of various realistic and unrealistic input values
of the level densities and radiative strength functions.

The results displayed in Fig. 1 demonstrate that the
procedure used makes it possible to determine the max-
imum possible level density for all nuclei being consid-
ered by varying the inputs for radiative strength func-
tions. The use of an input level density featuring unre-
alistically large deviations from the expected value at
rather realistic inputs for radiative strength functions
gives every reason to expect that, by introducing
numerous small-amplitude distortions of the input
dependence, it will be possible to deduce, for the truly
maximum possible level density, an estimate that
would enable one to reproduce simultaneously the Γγ
and Iγγ values considered here. Naturally, the process is
repeated many times [for the random parameters C, U,
and σ2 in expression (6)], and the average over the
resulting sample is treated as the most probable value.

3.1. Special Features of the Analysis

That no procedures for reliably and unambiguously
determining, from the observed spectra of photons or
the spectra of their coincidences, level densities and
radiative strength functions over the entire range of the
excitation energies of excited levels have been devel-
oped so far means, in our opinion, that the problem can-
not be solved by traditional methods of data analysis. It
is this circumstance that furnished a motivation for
devising the present probabilistic approach to assessing
these quantities.

In calculating the cascade intensities according to
expressions (1)–(3), we will consider only the sum of
levels in a given energy interval that are excited by pri-
mary E1 and M1 transitions and the sum f(E1) + f(M1)
of strength functions for primary transitions. This
approximation is fully justified by the fact that the
experimentally estimated contribution of higher multi-
pole orders to the development of the cascade gamma
decay of a neutron resonance is significantly smaller
than the error in experimentally determining the cas-
cade intensities.

We do not address here the question of whether the
concept of the strength function for secondary transi-
tions (of the relevant level density as well) has a physi-
cal meaning at low excitation energies of intermediate
cascade levels. The existence of a well-defined Iγγ value
that fluctuates only slightly from one interval to another
implies that, although the widths with respect to indi-
vidual secondary transitions are expected to have a
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wide scatter, there exist mean values of Γif and of the
number of excited states over the excitation-energy
interval ∆E, and it is these mean values that ensure
agreement between experimental data and theoretical
results calculated according to (3). Wide variations in
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Fig. 1. Examples of intermediate values of the level density
and the radiative strength function in the odd–odd nucleus
198Au and corresponding cascade intensity (solid lines).
The numbers of iterations are indicated on the curves. The
dotted lines represent the predictions of the models from
[11, 12] for the level densities and the sum of the predictions
from [9, 10] and f(M1) = const for the strength functions.
The histogram shows the experimental cascade intensity,
together with its statistical uncertainty.
the values of the radiative strength function for second-
ary transitions translate into relatively small uncertain-
ties in the value calculated for the coefficient Br in
expressions (1)–(3) owing to a positive correlation
between its numerator and denominator. The mean
value of Br over the entire spectrum was determined
experimentally and is equal to the sum of all observed
cascade intensities that is normalized per event of com-
pound-state decay. As a result, the effect of possible
variations in the radiative strength functions for pri-
mary and secondary transitions on the sought parame-
ters is weakened.

Yet another question of fundamental importance is
that of the relationship between the actual values of the
parameters characterizing the process and the most
probable estimates as obtained for these parameters by
the method proposed here. It was assumed that, if there
are no systematic errors much greater than the scatter of
random values found for the level densities and for the
radiative strength functions, results obtained as aver-
ages over the intervals in which the quantities being
considered can vary reflect at least the typical features
of the parameters that govern the cascade gamma decay
of the compound state of a heavy nucleus. This is obvi-
ously so if, for the sought parameters, the relevant ran-
dom values deviate in the two directions from the true
value with approximately equal probabilities and if
small deviations appear with higher probabilities than
large deviations. Of course, the problem in question
requires further study, so that the results obtained here
cannot be considered to be conclusive.

3.2. Approximations Used in the Present Analysis

Since available experimental data are insufficient
for unambiguously determining the complete set of
parameters that affect the experimentally measured val-
ues of Iγγ and Γγ, there arises the problem of a reason-
able choice of assumptions that would make it possible
to estimate them as accurately as is possible. As a mat-
ter of fact, it is necessary to introduce hypotheses spec-
ifying the relation between the densities of opposite-
parity levels at various excitation energies of the
nucleus being considered and the relation between the
forms of the energy dependences of the radiative
strength functions of primary and secondary transitions
of the same multipole order.

That the densities of levels having opposite parities
can be different at low energies is a fact that has been
known for a long time. Most frequently, this occurs in
near-magic nuclei. The problem was studied theoreti-
cally, for example, in [15]. For our analysis, it is impor-
tant (i) that, in nonmagic nuclei, there are no reasons to
expect significant distinctions between the densities of
opposite-parity levels even at moderately high energies
(for example, above 3 MeV in deformed even–even
nuclei) and (ii) that the existing distinctions between
the densities of opposite-parity levels decrease with
increasing energy.
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
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At this stage of our analysis, it was assumed that
ρ(π = +) = ρ(π = –), but only the sum ρ(π = +) + ρ(π = –)
was contrasted against model concepts. To some extent,
this compensated for possible errors associated with the
first assumptions. It is worthwhile to note here that pro-
cedures for determining the densities of levels charac-
terized by a specific parity have yet to be developed for
a major part of the excitation-energy region below the
neutron binding energy.

The spin dependence of the level density was not
varied in our calculations; in the various versions, it
was instead specified in accordance with the parametri-
zation from [11] or from [12]. The eventual results are
virtually unaffected by the choice of a specific model.
We do not see very strong reasons to expect significant
distinctions between the actual and the model spin
dependences of the level density: for the majority of
nuclei, the ratios of the measured and the calculated
intensities of the cascades proceeding to final states
having different spins do not suggest any disregarded
functional dependence on the spin of the final level of a
cascade.

In addition to the inputs listed above, the calculation
of the cascade intensities Iγγ requires specifying the
ratios of unknown strength functions for secondary
dipole transitions to their values averaged over the
spectrum—that is, the quantity Br given by (4). Pres-
ently, the analysis described here can be performed
only if some relation between the radiative strength
functions for primary and secondary transitions is pre-
set: for a zero approximation, we assume that, if the
energy of a primary transition is equal to the energy of
a secondary transition, their radiative strength func-
tions are identical.

There is no doubt about the circumstance that, with
decreasing excitation energy of the nucleus being stud-
ied, the probability of the relevant gamma transition is
affected by the structure of the wave functions of the
excited states to an ever greater extent; possibly, the
degree of correspondence between this probability and
the mean probability for the emission of a photon of a
given energy by the nucleus at higher energy of its exci-
tation concurrently becomes smaller. This can be veri-
fied only by means of experiments measuring, with
modern HPGe detectors, the intensities of two-step
photon cascades over a maximally broad interval of the
energies of their final levels.

It goes without saying that the strength functions for
primary and secondary transitions, as well as the rela-
tion between the densities of positive- and negative-
parity levels, can appear as independent variables in the
analysis being discussed. Unfortunately, there then
arise the following problems:

(i) In view of an insufficiently high efficiency of the
above iterative process, large amounts of machine time
are required when the number of relevant parameters is
substantially increased.
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(ii) The interval of possible values determined for
6N parameters from N + 1 equations and 6N inequali-
ties must become much wider than that in the version
that has already been implemented and which involves
variations of a smaller number of parameters. As a
result, the probability for the emergence of large devia-
tions of values found for the level densities and the radi-
ative strength functions from their true values may
increase.

It should be emphasized that the above problems of
the method that we propose for determining the level
density are inherent in any method for evaluating this
quantity on the basis of the spectra of products originat-
ing from an arbitrary nuclear reaction. However, our
method, in contrast to all others known so far, has the
highest (lowest) sensitivity at minimal (maximal) val-
ues of the sought quantity and makes it possible to fix
precisely the range of spins for which ρ values are
determined.

4. MOST PROBABLE FORM OF THE ENERGY 
DEPENDENCE OF THE DENSITY 

OF HEAVY-NUCLEUS STATES EXCITED
BY CASCADE GAMMA TRANSITIONS

Obviously, level-density and radiative-strength-
function values that make it possible to reproduce
simultaneously the experimental values of Iγγ and Γγ
cannot be negative or indefinitely large. Among the
results of our analysis, that which is the most important
one and which could not have been expected from the
outset is the following: the corridor in which the possi-
ble values of the sought quantities vary proved to be so
narrow that the values in question could be contrasted
against various model concepts. Thus, the objective of
the present analysis—searches for models that are
capable of providing the best fit to experimental data
and a determination of the region where these models
fail to reproduce the data—has been attained.

Some of the results that we obtained are presented
in Figs. 2–5. An analysis of these results leads, first of
all, to some definitive conclusions on the modifications
that must be introduced in level-density models so as to
reduce the distinctions between the calculated and the
measured parameters of the cascade gamma-decay pro-
cess.

We note that, in some nuclei—predominantly in
near-magic and odd–odd ones—the level density found
at low excitation energies is sometimes below that
which corresponds to the data that we previously
obtained for the diagrams of their excited states and
decay modes. The emerging pattern can be qualitatively
explained by the roughness of the approximation that
we adopted in our analysis and which consists in
assuming that the π = + level densities are equal to their
π = – counterparts and that the radiative strength func-
tions for cascade transitions are independent of the
excitation energy of the decaying state. The possibility
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Fig. 2. Number of levels of both parities per 100 keV at various values of the excitation energy Eexc for 114Cd, 124Te, 128I, 150Sm,
156Gd, and 160Tb (open circles). The quoted errors correspond to the uncertainties in the analysis performed. The histograms repre-
sent data from [18], while the open triangles show the numbers of experimentally revealed intermediate levels excited by sufficiently
intense cascades. The dotted curves depict the mean level-density values as obtained under various assumptions on the radiative
strength function for ρ(Eexc) = ρ(Bn) used as inputs for the iterative process. Also presented for the sake of comparison are the pre-
dictions of the models from [11] and [12] (upper and lower solid curves, respectively).
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that there are sizable errors in the spectroscopic part of
an experiment studying two-step photon cascades can-
not be ruled out either. Unfortunately, the sample of
accumulated coincidences is statistically insufficient
for deducing an unambiguous answer to the above
question.
The most probable density of states that are excited
in thermal-neutron capture can be characterized as fol-
lows. Up to an excitation energy of 1 to 2 MeV
(depending on the parity of intranuclear nucleons),
available data are compatible with an exponential
extrapolation of the Fermi gas model with the parame-
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Fig. 3. As in Fig. 2, but for the 170Tm, 181Hf, 190Os, 192Ir, 196Pt, and 200Hg nuclei.
ter values from [11]. From 1 to 2 MeV up to a certain
threshold value Eb, the level density changes with
nuclear excitation energy much more slowly than what
is assumed by any of the existing theoretical concepts
on the subject. Above Eb values of about 2 to 3 MeV (3
to 4 MeV) for nuclei odd (even) in N, it is most likely
that the level density agrees best of all with the predic-
tions of the generalized model of a superfluid nucleus
in its simplest, original, form [12], but with some slight
modifications to the model parameters. These modifi-
cations, which do not conceal any conceptual content
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of fundamental importance, were only made to ensure
agreement between the level density in the vicinity of
the neutron binding energy and the experimentally
determined spacing between neutron resonances.

The above shape of the level density found as a
function of energy can suggest [16] a qualitative
change in the properties of nuclei in the excitation-
energy region around the neutron-binding energy. Tak-
ing into account previous observations regularly indi-
cating [17] that, in all probability, the spectrum of the
intermediate states of the most intense cascades is of a
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Fig. 4. Sum of the radiative strength functions for E1 and M1 transitions caused by radiative thermal-neutron capture in the com-
pound nuclei 114Cd, 124Te, 128I, 150Sm, 156Gd, and 160Tb as a function of the energy E1 of the cascade primary transition (open
circles). The quoted errors stem from the uncertainties of our analysis. The dotted curves represent the mean value of  f(E1) + f(M1)
as obtained with various model values [9, 10] of the input parameters for the iterative process and a fixed input level density
ρ(Eexc) = ρ(Bn). The solid curves correspond to data based on these model concepts (from [9] for the upper curves and from [10]
for the lower curve) and supplemented with the value f(M1) = const fitted to experimental data.
harmonic character, we can assume that, below the neu-
tron binding energy, vibrational excitations (a small
number of high-energy phonons, as can be expected in
view of a large spacing between equidistant levels)
have a dominant effect on the properties of nuclei. A
very fast, exponential (or close to exponential), growth
of the level density above the neutron binding energy
may be due to dominance of internal excitations at this
energy value that involve a fairly large number of qua-
siparticles.

An independent piece of evidence in favor of the
above shape of the level density as a function of energy
can be obtained if the number of cascade intermediate
levels observed as resolved peaks in the excitation-
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Fig. 5. As in Fig. 4, but for the 170Tm, 181Hf, 190Os, 192Ir, 196Pt, and 200Hg nuclei.
energy region extending to an energy value not lower
than 3 to 4 MeV is increased. In practice, this will
become feasible upon lowering the sensitivity thresh-
old achieved presently in recording an individual cas-
cade (about 10–4 per decay event) by an order of mag-
nitude. This conclusion is suggested by an examination
of the results obtained in [18] from a statistical analysis
of the deviations of random cascade intensities from the
relevant mean value and by an extrapolation of the
approximating function to zero value of the experimen-
tal sensitivity threshold. For the level density up to
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excitation energies of 3 to 4 MeV, this analysis gave the
first direct estimate contradicting the concepts of the
Fermi gas model. This estimate is also displayed in
Figs. 2 and 3.

5. MOST PROBABLE VALUES OF THE SUMS 
OF STRENGTH FUNCTIONS FOR DIPOLE 

TRANSITIONS

Data on the sum of the strength functions for dipole
transitions from a simultaneous determination of the
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radiative strength functions and level densities on the
basis of expressions (1)–(3) are presented in Figs. 4 and
5. From the resulting sets of random values of f(E1) and
f(M1) at a given energy of the primary cascade transi-
tion, we determined both their mean value and the
probable scatter using conventional relations of math-
ematical statistics. These results were contrasted
against model values obtained in the following way:
to the values of f (E1) that were determined in accor-
dance with the models proposed in [9] and [10] (upper
and lower solid curves, respectively), we added the
value f (M1) = const normalized in such a way that the
ratio of the widths with respect to magnetic and elec-
tric transitions of energies close to the neutron-bind-
ing energy corresponds to the compilation presented
in [14]. The aforementioned models were used only to
draw a comparison with the level-density and radia-
tive-strength-function values obtained experimentally
(although the authors of [10] developed their model
for spherical nuclei rather than for deformed ones).
This is justified since the objective of the present anal-
ysis was to seek the most probable unknown func-
tional dependences of the level densities and radiative
strength functions in the form of deviations from
known model concepts.

For the sake of comparison, the figures in question
present, in addition to experimental values obtained
from an iterative process that starts from level-density
and radiative-strength-function values admitted by the
existing models, analogous quantities as evaluated on
the basis of the same iterative process, but with abso-
lutely unrealistic initial values of the level density,
ρ(Eexc) = ρ(Bn) = const.

A comparison of the data on the strength functions
at such distinct inputs for the iterative process proves
that the mean values of the sum f(E1) + f(M1) that were
determined from an analysis of the cascade intensities
depend only slightly on the choice of inputs; therefore,
they can be considered as the most probable values. The
accuracy of this conclusion is constrained by the
approximations of our analysis that were listed at the
beginning of Subsection 3.2.

A comparison of experimental results with the pre-
dictions of the models that were proposed in [9, 10] and
which are used most frequently to analyze such results
leads to the following conclusions:

(i) The sums of E1 and M1 strength functions do not
show a universal dependence on the gamma-transition
energy; in all probability, they reflect the general prop-
erties of the structure of states between which the cas-
cade transition occurs. This can be seen from a compar-
ison of our results (a) for the pair of Gd isotopes, where
the experimental conditions (spin–parities of the levels
connected by the cascades in question, Γλ, and density
of excited levels) are such that, for the isotope pair
being considered, the difference of the resulting sums
of the strength functions must be less than in any other
combination appearing in our comparison, and (b) for
even–even and odd–odd nuclei.

(ii) The shape of the sum f(E1) + f(M1) as a function
of energy differs from that predicted by the models pro-
posed in [9, 10]. This is valid at least for even–even
compound nuclei from the region of the 4S maximum
of the neutron strength function.

(iii) The sum of the strength functions increases as
we go over from near-magic to deformed nuclei and as
the photon energy is increased. The values found for the
spherical nuclei 114Cd and 124Te are faithfully repro-
duced by the model from [10] if we assume that the M1
strength function is independent of the photon energy.
For the 128I, 140La, 146Nd, 150Sm, 181Hf, 188, 190Os, 196Pt,
and 200Hg nuclei, this model as implemented within the
same assumption on M1 transitions either complies
with experimental data or overestimates them for pri-
mary transitions of low energies.

(iv) We cannot rule out the possibility that, around
the neutron binding energy (at least in some nuclei), the
level density noticeably deviates from the nearly mono-
tonic dependences in Figs. 2 and 3. This possibility
must be taken into account in order to explain the dis-
crepancies between the resulting absolute values of the
sums of the strength functions and the corresponding
model predictions for some nuclei having neighboring
values of Ä. In other words, the kink effect clearly seen
in the energy dependence of the level density at low
energies is much weaker at high energies, if any. A sim-
ilar type of behavior of the level density as a function of
energy was obtained in the theoretical analysis of
Ignatyuk [19], although the discrepancy between the
predictions of his model and experimental data (see
Figs. 2, 3) is quite sizable.

An alternative possibility consists in assuming that
strength functions grow significantly owing to the well-
known effect of the collective enhancement of the prob-
ability of the gamma transition accompanying the
decay of states whose wave functions involve sizable
vibrational components. Resolving this dilemma
requires not only further experimental studies but also
a thorough theoretical analysis. If the present interpre-
tation of the results that we obtained is viable at least to
some extent, the physical significance of exploring a
transition from a superfluid state to a normal one in an
exotic system like the nucleus furnishes a sufficient
motivation for performing experimental and theoretical
studies such as those indicated above.

The relative deviations of the results found here for
the strength functions and level densities from their
mean values are characterized by a strong negative cor-
relation. In the majority of cases, the correlation coeffi-
cient changes from –0.6 to nearly –1, falling, however,
down to –0.4 for some nuclei. Since the generated pairs
of random values of the parameters that characterize
the gamma-decay process always feature some uncor-
related random deviations (the length of the iterative
process is severely constrained by the computer poten-
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tial), it is natural to conjecture that, in fact, the degree
of coupling of the radiative strength functions and the
level densities is still stronger—that is, they are not
independent variables in Eqs. (1)–(3). It is owing to this
circumstance that we are able to determine them simul-
taneously on the basis of available experimental data
and physically motivated constraints on their values.

Effect of Systematic Errors in Determining Cascade 
Intensities on Level Densities and Radiative Strength 

Functions

The dependence of the cascade intensity on the
energy of intermediate cascade levels was obtained on
the basis of data measured with systematic errors. The
error in determining the sum of the intensities of all
experimentally observed transitions is the most
important of these. Its value is virtually equal to the
present-day uncertainty in the absolute values of the
intensities of the strongest primary high-energy tran-
sitions in the spectra of gamma rays from radiative
thermal-neutron capture (it is precisely these intensi-
ties that are used to normalize Iγγ values). In order to
minimize the effect of this error, we preferred to use
predominantly data from the compilation presented
on [20] as a reference, since the bulk of these data
come from the same facility for almost all elements of
the periodic table. If we consider that the total spectra
of gamma rays have also been measured for many of
the nuclei that we studied (for these gamma rays, it
can be deduced on the basis of physical arguments
that the sum of the products of the photon energy and
the intensity in percent per decay event must be 100Bn
[21]), it becomes clear that there are no strong reasons
to expect a systematic uncertainty in the Iγγ values that
is noticeably greater than the statistical error in our
experiment.

The accuracy in determining the most probable
values of the level densities and the radiative strength
functions is also affected quite sizably by the system-
atic error with which the experimental spectra are
decomposed into components that are dependent on
the energies of only primary and only secondary cas-
cade transitions, but the adverse influence of this sys-
tematic error is less pronounced than that of the sys-
tematic error discussed immediately above. Accord-
ing to [8], insufficient statistics of recorded
coincidences would lead to an overestimation (under-
estimation) of the intensity of cascades where the
energy of the primary cascade transition is lower
(higher). The corresponding errors can be estimated
by using the procedure developed in [18] to analyze
the shape of the distribution of random deviations of
the cascade intensities from their mean values. As a
rule, these errors do not exceed 20% of the resulting
value. In practice, it is straightforward to obtain the
relevant estimate under the assumption that, for cas-
cades whose primary transitions correspond to emit-
ted-photon energies below 0.5Bn, the observed inten-
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sity must be reduced by, say, 25% if the intensities of
the cascades whose primary transitions are of higher
energies are increased accordingly. This test was per-
formed for all nuclei. Its basic result is the following:
at low excitation energies, the level density can some-
what increase in relation to the data in Figs. 2 and 3,
and this can partly explain the discrepancy between
the observed number of intermediate cascade levels
and the level density determined for 192Ir (see Fig. 3).
However, no significant distinction between these
results and the data in Figs. 2 and 3 is observed at
higher energies—the scatter of the level-density val-
ues from different versions of the calculations often
exceeds their deviations for different shapes of the
dependence of the cascade intensity on the nuclear
excitation energy.

In all probability, the scatter of data displayed in
Figs. 4 and 5 receives a contribution only from the
uncertainties that arise in the strength functions
because of ambiguities of the above level-density val-
ues and, additionally, because of errors in the experi-
mentally measured parameters of the cascade gamma-
decay process.

Since the product Γλ × Iγγ and the sought quantity Γλi
are related by a linear equation, the experimental rela-
tive errors in the total width and in the cascade intensity
(they are usually about 10%) lead to errors at the same
level in the resulting partial widths. A variation in the
energy dependence of Iγγ at a level of 25%—it was
introduced above to estimate the effect that the possible
systematic error in determining the energy dependence
of Iγγ can exert on the eventual result—changes, for all
nuclei, the sum of the resulting strength functions by a
value that usually does not exceed the uncertainties pre-
sented in Figs. 4 and 5 for the level densities and the
radiative strength functions considered here. In other
words, the main contribution to the uncertainty in the
level density, as well as to the uncertainty in the sum of
the strength functions, comes from the anticorrelation
of the level density and the radiative strength functions
in the measured functionals of the cascade gamma-
decay process and from the paucity of relevant experi-
mental data rather than from statistical uncertainties in
the experimental values of the total radiative widths and
cascade intensities.

On the basis of the above analysis of the possible
methodological errors and on the basis of the results in
Figs. 4 and 5 on a determination of the shape of the
energy dependence of the radiative strength functions,
we can therefore conclude with a high degree of confi-
dence that the models proposed in [9, 10] and com-
bined with the idea that M1 transitions are of a single-
particle character, f(M1) = const, cannot describe the
transition-energy dependences of f(E1) and f(M1) in
any nucleus. Moreover, we cannot even rule out the sit-
uation where the energy dependences of f(E1) and
f(M1) are not identical for neutron resonances charac-

terized by different  values. That this possibility canΓn
0
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be realized is suggested [5] by the presence of a strong
correlation between the intensities of the observed cas-
cades and the reduced neutron width in even–odd com-
pound nuclei. This is precisely the assumption that can
also explain qualitatively variations exhibited by the
shape of the energy dependence of the radiative
strength function in response to changes in the nuclear
mass, since the ratio of the reduced neutron width to the
spacing between the resonances for a compound state
excited by thermal neutrons takes different values for
nuclei having different masses. Presently, it is techni-
cally feasible to check this hypothesis in studying cas-
cades in individual resonances.

By and large, we can conclude that, at the present
stage of experimental investigations into the cascade
gamma decay of neutron resonances, the data quoted
here for the density of excited states and for radiative
strength functions should be considered as those that
provide the most probable values of these physical
quantities, despite errors in experimental data used to
deduce these values and despite a probabilistic charac-
ter inherent in the above analysis.

6. POSSIBILITIES OF INDEPENDENT 
EXPERIMENTAL TESTS

The above analysis is disadvantageous in that it can-
not yield unambiguous results. Therefore, it is neces-
sary to subject the results of this analysis to an indepen-
dent test. This does not lead to unsolvable problems.
From the data presented in Figs. 2 and 3, it can be seen
that, at excitation energies up to half the neutron bind-
ing energy in the nuclei being studied, the expected
mean spacing between levels excited in the relevant (n,
γ) reactions is not less than 2 to 3 keV. If modern detec-
tors and a numerical method for improving the resolu-
tion [22] are used, the widths of peaks in the spectra
representing the distribution of the intensities of two-
step photon cascades exceed these values only slightly;
therefore, it is possible to observe directly in experi-
ments almost all excited states of any nucleus up to 3 or
4 MeV, provided that the results presented in Figs. 2
and 3 are correct. For them, one can also determine the
intensities of primary transitions (that is, radiative
strength functions) as the sum of the intensities of all
possible cascades.

The ambiguity in the relationship between the E1
and M1 radiative strength functions over the entire
interval of their values from the actual experimental
threshold of 0.52 MeV to the neutron binding energy is
an important source of uncertainties in the values that
we obtained for the level densities and radiative
strength functions. This ambiguity is due to the fact that
the cascades singled out for the majority of the nuclei
studied here are those that terminate at final levels of
the same parity. These are primarily cascades formed
by E1 and M1 transitions. Therefore, there exists a
comparatively wide set of their values that makes it
possible to reproduce the cascade intensities and the
total radiative width simultaneously even if the result-
ing values deviate from the actual ones. If an attempt is
made to describe not only the sum of all observed cas-
cade intensities but also their sums for transitions to
final levels of opposite parities individually, the pro-
posed method of analysis is capable in principle of
solving this problem as well, at least partly. For the
majority of the nuclei that we studied, it would then be
required to conduct experiments with high-efficiency
detectors and with an anti-Compton shielding. The rel-
evant data would also make it possible to obtain
directly the shape of the dependence of the radiative
strength functions for secondary transitions on the exci-
tation energy of the final cascade level.

In addition to the aforementioned possibility of
obtaining a more precise parity dependence of the level
density and a more precise excitation-energy depen-
dence of radiative strength functions in a feasible
experiment employing more advanced equipment and
extending the number of variables subjected to analy-
sis, there are also possibilities for assessing the reliabil-
ity of our results on the basis of data obtained previ-
ously.

For this, the total population of an individual
nuclear state at Ei up to an excitation energy of 3 to
4 MeV can be determined by comparing the intensities
of two-step photon cascades with known intensities of
individual gamma transitions. This population is equal
to the sum of the intensities of all cascades terminating
at the above state at Ei; hence, it is determined by the
relevant level density and by the E1 and M1 strength
functions. Such a calculation can be performed either
on the basis of the models proposed in [9–12] or on the
basis of the results obtained in [13] and in the present
study. Here, a comparison of the calculated and exper-
imental results provides an additional independent
check on the degree to which various concepts of the
level densities and of the radiative strength functions
correspond to the situation prevalent in actual practice.
Unfortunately, reliable data on the decay diagram that
are necessary for such analysis appeared only recently
and only for 168Er [23].

8. CONCLUSIONS

A model-independent procedure has been proposed
for determining, on the basis of experimental data on
(n, γ) reactions involving thermal neutrons, the most
probable level density and the most probable value of
the sum of dipole strength functions for nuclei with an
arbitrary level density. Although the results obtained
from the analysis performed here cannot be considered
to be conclusive, because this analysis relies on some
ad hoc assumptions, these results highlight the pres-
ence of some serious discrepancies with those that were
obtained by extrapolating the existing concepts of the
theory of the nucleus to an as-yet-unexplored region of
its excitation energy.
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At a level of more or less realistic and partly
checked hypotheses, the characteristic features of the
cascade gamma decay of A > 100 nuclei are the follow-
ing:

(i) Almost over the entire range of excitation ener-
gies below the neutron binding energy, the density of
excited states is less than that which follows from the
generally accepted concepts of the model of a noninter-
acting Fermi gas. This is so at least for nuclei from the
region of the 4S maximum of the neutron strength func-
tion. In all probability, the level density at excitation
energies above Eb ~ Epair + 2 MeV is described best of
all by the generalized model of a superfluid nucleus in
the earliest version considered in [12]. Yet, we cannot
rule out the possibility that the model from [12] system-
atically overestimates the level density in odd–odd
nuclei. This conclusion is valid only in the case where,
in a two-step photon cascade, the probability of popu-
lating its intermediate level having quantum numbers
Jπ and occurring in a specified narrow interval of the
excitation energy is independent of the structure of the
corresponding state i. Otherwise, the above conclusion
should be associated with some effective density of
excited states; that is, one is inclined, in this case, to
postulate a selective character of (n, γ) reactions at low
energies.

(ii) The properties of a nonmagic deformed nucleus
can undergo qualitative changes at excitation energies
between about 2 to 4 MeV.

These data are in perfect agreement with the qual-
itative pattern previously obtained in [24] for the
process being studied—namely, the situation is gov-
erned by a dominant effect of vibrational excitations
on the properties of the nuclei up to excitation ener-
gies of about 3 to 4 MeV and by a prevalent effect of
quasiparticle excitations at higher excitation ener-
gies.

This explanation relies on the fact that the level den-
sity is below the predictions of the models disregarding
or underestimating the effect of nuclear vibrations on
this parameter and an increase in the strength functions
for cascade transitions that is correlated in energy with
this effect. The latter can be qualitatively explained in
the simplest way only by collective effects of the
enhancement of the gamma-transition probability that
are known from the theory. A competing possibility for
explaining the enhancement of the strength function is
associated with the fact that, in the region around the
neutron binding energy, the mean spacing Dλ between
compound states deviates from the averaged depen-
dence toward smaller values. No experimental errors
have been found that could explain the results pre-
sented here.

Since the present analysis has had to rely on a sam-
ple of data on the cascade gamma decays of compound
states that was limited by the technical potential of the
experimental equipment, the conclusion drawn from
this analysis should be considered to be preliminary
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
and, to some extent, hypothetical. Nevertheless, the
scale of the observed effects and the possible reasons
behind their emergence furnish a sufficient motivation
for a further detailed study of the properties of nuclei in
the excitation-energy region around half the neutron
binding energy, where these properties are expected to
undergo sharp changes.
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Abstract—By means of the reference method, the cross sections for the fission of the 241Am, 242mÄm, and
243Am isotopes were measured at the microtron of the Institute of Physics and Power Engineering (Obninsk).
These measurements, which employed the cross section for 238U photofission as a reference, covered the energy
range 6–12 MeV scanned with a variable step of 50 to 200 keV. Data on 242mÄm photofission in the energy
range 6–12 MeV and 243Am photofission in the region between 6 and 7 MeV were obtained for the first time.
New results for 241Am reveal that the cross sections for 241Am photofission from previous studies of the present
author were exaggerated. The new results for this isotope comply well with data of other authors. It is not con-
firmed that the fissility of 241Am is less than the fissility of 243Am. The energy dependences of the fissilities of
the americium isotopes from photofission data are compared with those that were obtained for these fissilities
from data on direct reactions like 240Pu(3He, df )241Am. The results of this comparison show that the observed
fission thresholds and the plateaulike dependences at energies above 7.5 MeV from the two types of studies
comply well. The present data show evidence that, in the energy region around 6 MeV, the photofission cross
section has a maximum, which is associated, in all probability, with the low-energy resonance structure in the
cross section for dipole photoabsorption. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In inquiries into the physics of nuclear fission, much
attention is being given to systematic experimental
investigations of various features of the fission process
as functions of the charge and the mass number (Z and
A, respectively) of the fissile nucleus. Data on the cross
sections σf(E) for the photon-induced fission process
show a considerable scatter in the region of the so-
called fission plateau (E < 12 MeV). The method used
to measure the photofission cross section is among the
factors that has a nontrivial effect on this scatter. This is
the reason why information obtained in a unified exper-
imental approach is of considerable value in systematic
investigations. The present study, which is a part of
implementation of a wide program aimed at investigat-
ing the energy dependences of the cross sections for
actinide photofission by a unified method employing
bremsstrahlung radiation from a microtron [1–6], is
devoted to measuring these cross sections for three
americium isotopes, 241Am, 242mÄm, and 243Am.

Previous experiments that studied the photofission
of americium isotopes in the energy region E < 12 MeV
dealt primarily with 241Am [1, 7–9]. No data have been
published so far on the 242mÄm isomer; as to the 243Am
isotope, it has hitherto been studied only in [8], along
with 241Am. In just the same way as the results of the
present study, all other data on the photofission of
americium isotopes were obtained by using
bremsstrahlung radiation. Of particular interest is the
relationship between the photofission cross sections for
the 241Am and 243Am isotopes that was obtained in [8]
in the energy region corresponding to the fission pla-
teau: with increasing isotope atomic number, the cross
1063-7788/01/6402- $21.00 © 20169
section grows, in contrast to what is known for other
nuclei, whose cross sections decrease. This circum-
stance, together with the fact that the cross sections for
241Am photofission from [1] disagree with those from
[8, 9], has been the motivation for performing the
experiment reported here.

2. DESCRIPTION OF THE EXPERIMENT

The cross sections for 241Am, 242mÄm, and 243Am
photofission were measured by using a beam of
bremsstrahlung photons from the microtron of the
Institute of Physics and Power Engineering (Obninsk).
The measurements were performed in the region Emax =
6–12.4 MeV of the endpoint of the bremsstrahlung
spectrum with a step of 0.05 MeV for Emax < 6.7 MeV,
0.1 MeV for Emax = 6.7–7.7 MeV, and 0.2 MeV for
higher energies. For all three isotopes of americium, the
data discussed below were obtained in a single experi-
ment. Because of a small thickness of a fissile layer, the
exposure time for the 242mÄm isomer was increased by
a factor of a few units in relation to the exposure times
for the other two isotopes. Use was made in the present
experiment of a procedure that relies on a relative mea-
surement of photofission cross sections in a
bremsstrahlung-photon beam. For a reference isotope,
this procedure, which was described in detail elsewhere
[1, 2], employs 238U, whose photofission cross section
was estimated in [1].

A water-cooled device consisting of a 1-mm-thick
tungsten disk and a 12-mm-thick aluminum absorber of
electrons served as a braking target. Fissile layers of the
oxides of the isotopes being investigated and of 238U
001 MAIK “Nauka/Interperiodica”
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were deposited onto aluminum substrates 0.1 mm thick
and were arranged in back-to-back geometry. The
experiment measured the ratio of the yield of products
from the photofission of an isotope being studied,
Y(Emax), to the corresponding yield from the photofis-
sion of the reference isotope, Y0(Emax),

R(Emax) = Y(Emax)/Y0(Emax). (1)

For the bremsstrahlung spectrum, the photofission-
reaction yield as a function of Emax and the photofission
cross section σf(E) as a function of the nuclear excita-
tion energy E are related by the equation

(2)Y Emax( ) C Emax( ) σ f E( )N E Emax,( ) E,d

0

Emax

∫=

R

3

2

0

1 241Am

(a)

3

2

0

1 242mAm

(b)

3

2

0

1
243Am

(c)
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Emax, MeV

Fig. 1. Ratios of the yields Y(Emax) from (a) 241Am, (b)
242mAm, and (c) 243Am photofission to the corresponding
yields from the photofission of the reference nucleus 238U
versus the endpoint energy of the bremsstrahlung spectrum:
(closed circles) data of the present study, (open circles) data
from [1], and (open triangles and dashed straight lines) data
from [8].
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where N(E, Emax) is the spectrum of bremsstrahlung
photons, while C(Emax) is a factor that depends on the
normalization of the spectrum N(E, Emax), the number
of nuclei in the fissile target, and the photon flux inci-
dent on it. A similar equation relates the yield from the
photofission of the reference nucleus, Y0(Emax), and its

photofission cross section (E).

One holder containing a layer of a fissile isotope
being investigated and a layer of the reference sub-
stance was used for each isotope. The fissile layers
were covered with diaphragms having a hole of diame-
ter 10 mm. Fission fragments were recorded by solid-
state tracking detectors from TV mica, which were
arranged behind the diaphragms that were rigidly
attached to fissile targets and which had a hole diameter
of 12 mm. The distance from the fissile layer to the dia-
phragm was 1.5 mm. The 241Am and 243Am layers were
approximately 100 µg/cm2 thick. The thickness of their
238U counterpart layers was 200 µg/cm2. In the
242mAm–238U pair, the layer thicknesses were 6 and
4 µg/cm2, respectively. The holder containing this pair
of layers was placed more closely to the braking target
than the others, at a distance of 21 mm from its tungsten
element—the holders containing 243Am and 241Am
were positioned at distances of 42 and 49 mm, respec-
tively.

The fissile substance of the 241Am layer was isotopi-
cally pure. The 243Am layer contained 30.3% 241Am,
3.8% 244Cm, and 0.7% 242ëm. The amount of admix-
tures was determined by means of alpha-spectrometric
measurements. On the day of preparation, the fissile
substance of the 242mAm layer had the following isoto-
pic composition (in weight ratios): 242mAm : 241Am :
243Am = 1 : 0.162 : 0.006. In contrast to the 241Am and
243Am layers, which were manufactured immediately
before the experiment, the 242mAm layer had been pre-
pared 5.75 years earlier. As a result, the isotopic com-
position of the fissile substance changed to become
242mAm : 241Am : 238Pu : 242Pu : 243Am : 242Cm : 237Np =
0.97 : 0.16 : 0.015 : 0004 : 0.006 : 0.003 : 0.001.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 displays the measured values of R(Emax).
The uncertainty ∆R(Emax) includes statistical errors in
the number of tracks that were recorded by the detec-
tors, errors in viewing the detectors under a micro-
scope, and errors in introducing corrections for the iso-
topic composition of the fissile substance under study
and for the background from spontaneous fission. The
results for 241Am are free from the last two components
of the error ∆R(Emax). For 243Am, the background from
spontaneous fission is sizable only at the lowest points
on the energy scale, sharply decreasing from 6 to 1% as
the energy is increased from Emax = 5.95 to 6.1 MeV
and further to a negligibly small value. For 242mAm, this
background amounted to 80% near the lower boundary
of the energy interval under study; with increasing

σ f
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energy, it decreased down to 10% at Emax = 6.6 MeV
and still further to a level below 1% of the number of
events recorded by the detector of fission fragments.

The aforementioned uncertainty ∆R(Emax) does not
include a systematic error estimated here at about 15%.
This estimate takes into account errors associated with
a mechanical realization of the experimental facility
used and the error in determining the ratio of the num-
ber of nuclei in the target from the fissile isotope being
studied and the 238U target. These ratios were measured
in a dedicated experiment by exposing, to a beam of
5-MeV monochromatic neutrons, the same combina-
tions of layers as those that were used to measure the
ratios of the photofission yields. The statistical accu-
racy of these measurements was about 3%. The cross
sections σnf for neutron-induced fission were taken to
be 1.77, 1.70, and 1.45 b for 241Am [10], 242mÄm [11],
and 243Am [10], respectively.

The results of the present measurements for the
ratios R(Emax) are shown in Fig. 1‡, along with the
results from [1, 8] for 241Am. Within the measurement
errors, the results obtained here are in accord with those
from [8], but they are approximately 20% below the
dependence R(Emax) reported in [1]. In order to explain
this discrepancy, we recall that, in [1], the ratios of the
number of nuclei in the fissile targets under study were
measured by using neutrons of energy 14.5 MeV. At
this energy value, the scatter of values of the cross sec-
tion for neutron-induced fission that were obtained by
different authors for 241Am is as large as 15%; as can be
seen from the data sample quoted in [10], the value cho-
sen in [1] on the basis of the ENDF/B-VI estimate is the
largest of all. Moreover, the geometry of the measure-
ments in [1] was different from back-to-back geometry.
In view of all this, preference should be given to the
present results. In general, the energy dependence
R(Emax) has the same qualitative character within the
errors in the two series of measurements.

For the energy dependence of the ratios of the yields
from 242mÄm and 238U photofission, Fig. 1b displays
results corrected for the presence of the aforementioned
admixtures. Since the admixtures of 242Cm, 242Pu, and
237Np are very small (their concentrations are 0.3, 0.4,
and 0.1%, respectively) and since there is not sufficient
information about 242Cm photofission, the contribution
of the admixtures of these three isotopes was repre-
sented, in calculating the relevant corrections, in terms
of a 0.8% 238Pu admixture in addition to the actually
present 1.5% of 238Pu. This increased the uncertainty in
the correction itself by not more than 1.5–2%. Owing
to this assumption, it was possible to restrict the inputs
used to describe the dependences R(Emax) measured in
the present experiment and in the analogous experi-
ment reported in [6]. Although the total percentage of
admixtures in the fissile substances did not exceed
20%, the correction for them was significant because,
with decreasing energy, the yield from 242mÄm photo-
fission begins to decrease faster from Emax ≈ 10 MeV
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
than the yield from the photofission of the admixtures.
In view of this, the error in the results for R(Emax) is as
large as 50% at the lowest point measured here, but it
falls down to 5 or even 4% as soon as the energy
reaches 7 MeV. Data on 242mAm photofission have been
obtained here for the first time.

Figure 1c shows the experimental dependences
R(Emax) for 243Am, which were also corrected for the
presence of admixtures in the target of fissile 243Am. In
taking them into account, it was assumed that the
admixture involves only 241Am, but that its amount is
35%. In order to justify this, we recall that the subbar-
rier reduction of the fissility commences at the same
excitation-energy value of 6 MeV for 241Am and for
244ëm and that, at higher energies, the fissility of 244ëm
cannot exceed the fissility of 241Am by more than 20%
[12–14]. A 0.7% admixture of 242ëm was also included
in addition to 30.3% of 241Am. According to my esti-
mates, this increases the uncertainty in the correction
by not more than 2 to 2.5%.

Figure 1c also shows the ratio R(Emax) as obtained in
[8]. The present data for 243Am deviate considerably
from the results presented in [8]. In the energy region
covered by the data on R(Emax) from [8], our depen-
dence goes much lower. On average, the discrepancy is
60%, which is much greater than the uncertainties in
the two experiments being discussed.

In the calibration measurements of the experiment
reported in [8], the absolute values of the photofission
yields and the relative fissilities of 241Am, 243Am, and
238U were determined by the same method as in the
present study with the aid of solid-state tracking detec-
tors of fission fragments. Moreover, the results of the
calibration measurements in [8] for the ratio of the
yields of fragments from 241Am and 238U fission agree
with the results of the present experiment within the
errors. This gives sufficient ground to believe that the
reason behind the discrepancies between the R values
for 243Am is not of a methodological character—it may
be rooted either in taking into account admixtures or in
determining the ratio of the numbers of nuclei in fissile
243Am and 238U targets.

In fissile 243Am substance, the admixtures were
indeed significant, but they were dominated by 241Am.
It follows that almost all inputs required for introducing
corrections for impurities were obtained in the same
experiment, so that errors in doing this were mini-
mized. According to estimates, errors stemming from
the fact that a 3.8% admixture of 244Cm and a 0.7%
admixture of 242Cm were taken into account indirectly
could not have a pronounced effects on the results.
Although the correction was about 40% in the energy
range Emax = 10–12 MeV considered here and increased
the statistical uncertainty in the corrected values of
R(Emax) from 4% to about 10%, the observed discrep-
ancy can hardly be attributed to this correction.

As was indicated above, the ratio of the number of
nuclei in fissile targets from the americium isotopes
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under study and the number of reference nuclei was
determined in a flux of 5-MeV monochromatic neu-
trons. Both for 241Am and for 243Am, this procedure
made use of the cross sections for neutron-induced fis-
sion that were obtained from a analysis of available
experimental and estimated data presented by the same
group of authors [10]. Owing to this, the probability of
going beyond a 15% accuracy claimed above for the
present determination of the absolute values of the
ratios R was reduced to some extent. All the aforesaid
gives sufficient grounds to state that the observed devi-
ations from the results obtained in [18] are not associ-
ated with the errors in the results of the present experi-
ment.

In order to obtain the integrated dependence Y(Emax)
for the fissile isotope being studied, the photofission

cross section (E) for reference nuclei 238U that was
estimated in [1] was integrated over the bremsstrahlung
spectrum in just the same way as in (2) [15] and the
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Fig. 2. Cross sections for (‡) 241Äm, (b) 242mAm, and (c)
243Am photofission as functions of energy: (closed circles)
data of the present study, (open circles) data from [1], (open
triangles) data from [9], and (dashed curves) data from [8].
The arrows indicate the neutron binding energy Bn.
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result was multiplied by the ratio R(Emax) measured in
back-to-back geometry. By applying the iterative
method of directional-discrepancy minimization [16],
the resulting integrated dependences for the americium
isotopes being studied were resolved for the sought
photofission cross sections σf (E). In this procedure, the
integral of the photofission cross section was consid-
ered as a smooth dependence featuring no errors and
having a universal form for the relative measurements
of photofission cross sections in the experiments of our
group [1–6]. This means that errors in the estimated

values of the photofission cross section (E) for the
reference nucleus were disregarded in our calculations.

The errors in σf (E) were determined by repeatedly
solving Eq. (2) with the left-hand side scattered accord-
ing to the Poisson law with allowance for the errors
∆Y(Emax) [these errors were calculated from ∆R(Emax)
in just the same way as Y(Emax) was calculated from
R(Emax)] and by considering the variance of the result-
ing solutions.

The fission cross sections deduced from the analysis
described immediately above are displayed in Fig. 2,
where the dark symbols represent the results obtained
in the present study.

Figure 2‡ shows the cross sections for 241Äm photo-
fission. For this nuclear species, errors in the measure-
ment of R(Emax) in the near-threshold energy region are
about 3%, which exceeds only slightly the level of
errors in preceding experiments of our group that were
devoted to measuring fission cross sections by the rela-
tive method. For this reason, the cross sections for
241Am photofission were calculated, within the iterative
method of directional-discrepancy minimization, by
using a standard number of iterative steps [2] that
makes it possible to trace the structure of the energy
dependence of the cross sections. In particular, the
present measurements, which scan the excitation-
energy scale in somewhat greater detail than the mea-
surements in [1], revealed a modest peak of width about
200 keV in the region around E = 6.2 MeV. It is in con-
nection with the discovery of a similar maximum in the
immediate vicinity of the fission threshold and below it
in the energy dependence of the fission cross section for
the 237Np nucleus [2], which is also odd–even, that the
choice of the number of iterations was comprehen-
sively discussed in that study. In addition, Fig. 2a dis-
plays (triangles) the results from [9], which were also
obtained by using bremsstrahlung radiation and which
are, by and large, consistent with the present data, with
the exception of a few points from [9] that show signif-
icant deviations. In the data from [9], there is also a
maximum in σf (E), but it occurs at lower energies
(around 6 MeV) than in the present study.

The σf (E) curve corresponding to the first measure-
ments of our group [1] lies somewhat higher than the
energy dependence obtained for this cross section in the
present study. The discrepancies between the absolute

σ f
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values of σf (E) were discussed above in comparing the
data on R(Emax). The dashed curve represents the cross
sections obtained in [8]; within the errors, they agree
with the data reported here and the data from [9].

Figure 2b displays the cross section for 242mAm
photofission as a function of energy. For this nuclear
species, the input experimental data as represented by
the dependence R(Emax) are characterized by large sta-
tistical uncertainties associated with corrections for the
isotopic composition, especially in the low-energy
region, where the structure of the fission cross section
largely manifests itself. It would hardly be justifiable to
apply the above mathematical procedure to a treatment
of such data and to discuss the resulting resonances in
the photofission cross section. Prior to processing the
dependences Y(Emax) for 242mAm by the method of
directional-discrepancy minimization, they were there-
fore subjected to smoothing, which was performed on
the basis of five experimental points in the region of
large statistical uncertainties, Emax < 7 MeV, and on the
basis of three experimental points in the region where
the reliability of the measurements is higher, Emax >
7 MeV. The data obtained in the present study furnish
information only about the gross behavior of the energy
dependence σf (E). Below the apparent 242mAm fission
threshold, which occurs at an energy value around
6.5 MeV, the fission cross sections σf (E) were found
with very large errors. In the region E > 7 MeV, the
uncertainties in σf (E) are on the same order of magni-
tude as the uncertainties in the photofission cross sec-
tions for other nuclei that our group studied by the rel-
ative method.

In Fig. 2c, the cross sections obtained here for
243Äm photofission are contrasted against the cross sec-
tions from [8]. The discrepancies between the data on
the ratios R(Emax) that were discussed above survive in
the results for the cross sections as well. As in the case
of 242mAm, large statistical errors and the scatter of
points in the data on R(Emax), which play the role of
inputs for calculating the cross sections, required
smoothing the dependence Y(Emax) prior to applying
the iterative method of directional-discrepancy minimi-
zation. As a result, only the gross behavior of the
energy dependence of the photofission cross section
and its absolute value were obtained here for 243Äm as
well. It can clearly be seen from these results that a sub-
barrier reduction of the cross section commences below
the energy value of E = 6.4 MeV.

The results obtained in the present study for the
photofission of americium isotopes can also compared
with experimental data on the fission probability as
determined from direct reactions. For this purpose, the
photofission cross sections were rescaled into the fissil-
ities by taking the ratios of these cross sections to those
for photoabsorption. Since the dipole-photoabsorption
process is dominant in the energy region being consid-
ered, the fissilities were specified as

(3)P f E( ) σ f E( )/σc1 E( ),≈
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
where σc1(E) is the cross section for dipole photoab-
sorption. Since there are no direct experimental data on
the dipole-photoabsorption cross sections for ameri-
cium isotopes, a superposition of two Lorentzian
forms,

(4)

with the parameters set to σ1 = 311 mb, Γ1 = 2.37 MeV,
E1 = 10.77 MeV, σ2 = 459 mb, Γ2 = 5.13 MeV, and E2 =
13.8 MeV, which was obtained in [17] for 238U, was
used here to approximate the energy dependence
σc1 (E) in computing Pf (E). In the present relative mea-
surements of the photofission cross sections, the refer-
ence cross section for energies above 7 MeV was esti-
mated in [1] on the basis of the same experimental data
from [17] on the 238U photofission cross section as
those that were used in evaluating the parameters of the
Lorentzian forms in [4]. By invoking the same informa-
tion about the cross section for 238U photofission in

multiplying R(Emax) by the integral of (E) over the
bremsstrahlung spectrum to evaluate σf (E) and in
dividing this ratio by the dipole-photoabsorption cross
section to evaluate the fissilities, we reduced, to some
extent, the uncertainties in Pf (E) that are associated

with the choice of (E) and σc1(E).

The fissilities Pf (E) for 241Am versus energy that
were obtained in the present study are shown in Fig. 3‡,
along with the Pf (E) values measured in [17, 18] for the
same nucleus 241Am in the relevant direct reaction
(3He, df). In general, the dependences Pf (E) as
obtained in the present study and in [12, 18] are similar:
a subbarrier reduction of the fissility with decreasing
energy commences at the same point, and the so-called
fissility plateau is observed in either case in the energy
region from 7 to 11 MeV. Over a major part of the
energy interval being studied, the fissility values from
the different approaches agree within the experimental
errors. Only below 7 GeV does the fissility curve
obtained in the present study goes below data deduced
from the experiments that explored the above direct
reactions. This can be explained by exaggerated values
of dipole-photoabsorption cross section σc1(E) that are
obtained at low energies from the approximation of the
data given in [17]. For the photofission of a number of
thorium, uranium, neptunium, and plutonium isotopes,
it was shown in the review article of Ostapenko et al.
[19] that a good description of the dependence σc1(E)
by the two Lorentzian forms (4) in the energy region of
the giant dipole resonance leads to an overestimation of
σc1(E) at low energies.

A resonance-like irregularity at E = 6.2 MeV is
more spectacular in the dependence Pf (E). In the same
energy range, a similar irregularity was observed in [9],
but with somewhat larger uncertainties in Pf (E). In
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E2Γ i
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2
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Fig. 3‡, the triangles represent a segment of the energy
dependence of the fissility from [9] in the energy region
E < 7 MeV. In data from direct reactions, such an irreg-
ularity does not stand out against the errors. As to man-
ifestations of a resonance in the fissility of 241Am at
energies below the neutron binding energy of Bn =
6.66 MeV, the situation here is similar to that which
was observed and discussed in detail for 237Np in [2].
As in [2], a manifestation of the resonance in photofis-
sion data and simultaneously its absence from direct-
reaction data can hardly be explained in terms of reso-
nances in the fission-barrier penetrability for Z-odd
nuclei or in terms of the competition between decay
widths. In all probability, this is a manifestation of a
resonance structure in the dipole-photoabsorption cross
section [20].

Figure 3b presents a comparison of the fissilities
obtained in the present study for the 242mAm isotope

Pf

0.8

0.4

0

241AmBn

0.8

0.4

0

242mAmBn

0.8

0.4

0

243AmBn

5 7 9 11 13
Eγ, MeV

(a)

(b)

(c)

Fig. 3. Fissilities of (‡) 241Am, (b) 242mAm, and (c) 243Am
as functions of energy according to data on photofission
along with those from direct-reaction data: (closed circles)
data of the present study, (open circles) data from [18],
(open triangles) data from [9], and (open inverted triangles)
data from [12]. The arrows indicate the neutron binding
energy Bn.
with the fissilities of the same nucleus in the relevant
direct reactions (d, pf) [12] and (3He, tf) [18]. The sub-
barrier segments of Pf (E) measured in the three studies
agree within the errors, but the energy value from
which the fissility begins to decrease is lower by about
300 keV in the photofission data. In the energy region
below 7.3 MeV, the fissility is somewhat higher in the
direct-reaction data. In just the same way as in the case
of 241Am, this seems to be due to the use of the overes-
timated dipole-photoabsorption cross section from [17]
in the present calculation. The fissility plateau is also
clearly seen in the dependence Pf (E) for 242mAm. On
the plateau, the fissility values disagree with data from
[18], but they comply, albeit within a narrow energy
interval, with data from [12].

Figure 3c displays the fissilities of the 243Am isotope
that were obtained in the present experiment and in the
experiments that studied the relevant direct reaction
(3He, df) [12, 18]. In what is concerned with the char-
acter of the dependence Pf (E), our data are consistent
with those from [12, 18]. Even a modest enhancement
of the fissility in the vicinity of the point E = 6.5 MeV
can be explained by an overestimation of the dipole-
photoabsorption cross section in this energy region
[19]. In fact, the fissility maximum at 6.5 MeV occurs
very close to the neutron binding energy of Bn = 6.38,
and this makes it possible to interpret this maximum as
the result of the competition between the fission and the
neutron channel of excited-nucleus decay.

In what is concerned with the discrepancies between
the fissility values in the plateau region, it should be
borne in mind that the dependences Pf (E ) obtained from
the data on the same direct reaction 242Pu(3He, df ) 243Am
also show variations commensurate with them. Even
the large values of the fissility for 243Am in the plateau
region do not exceed Pf values obtained in [18] for
241Äm. This circumstance is of importance in connec-
tion with a comparison of the mean values of the 243Am
and 241Äm fissilities at 11.5 MeV from [8] (0.61 ± 0.04
and 0.53 ± 0.03, respectively) with those obtained in the
present study on the basis of the averaged experimental
data for Emax from 11 to 12 MeV. The averaged fissili-
ties calculated here for such a comparison with the aid
of the relation presented in [8] are 0.38 ± 0.02 and
0.58 ± 0.03 for 243Am and 241Äm, respectively. The
value for 243Am is much less than that in [8], but the
analogous values for 241Am comply within the errors.
That the averaged fissility of the 243Am isotope is lower
than the fissility of the 241Äm isotope, which is also
odd–even, but which has fewer neutrons, is quite natu-
ral. This is confirmed by the direct-reaction data from
[12, 18], which are quoted in the table.

The table lists the averaged values of the fissilities
 of the isotopes investigated in the present experi-

ment. In contrast to those from [8], these results were
obtained from the data that are directly associated with
the fissilities and which are displayed in Fig. 3. The
energy intervals over which averaging has been per-
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Averaged values of the fissility Pf in the plateau region, energy intervals ∆E over which averaging has been performed, and
apparent fission thresholds Eapp for the nuclei studied in the present experiment

Fissile nucleus , MeV ∆E, MeV Eapp, MeV Reaction References

241Am 0.56 ± 0.02 7–12 <6 (γ, f) Present study

0.53 ± 0.03 10–12 – (γ, f) [8]

0.71 ± 0.03 7–10 5.7 (γ, f) [9]

0.60 ± 0.03 7–7.4 5.8 (3He, df) [12]

0.61 7.4–10.8 5.7 (3He, df) [18]
242mAm 0.45 ± 0.02 7–12 6.4 (γ, f) Present study

0.50 ± 0.01 7–7.5 6.5 (3He, df) [12]

0.62 ± 0.01 7.1–12 6.4 (3He, df) [18]
243Am 0.37 ± 0.02 7–12 <6 (γ, f) Present study

0.61 ± 0.04 10–12 – (γ, f) [8]

0.45 ± 0.03 7.1–7.5 5.7 (3He, df) [12]

0.58 ± 0.01 7.4–11.2 5.6 (3He, df) [18]

Pf
formed are given in a separate column. Also quoted in
the table are the apparent fission thresholds taken to
mean the energy values that correspond to the fissility
equal to half its value in the plateau region. All the
numerical values in the table were obtained in the
present study by processing graphical data from origi-
nal investigations. That the  value for 241Äm was
much larger in [9] can be explained by the choice of an
underestimated photoabsorption cross section in [19]
for energies in the range 7–10 MeV.

4. CONCLUSION

In an experiment performed at the microtron of the
Institute of Physic and Power Engineering (Obninsk),
the cross sections for the photofission of the 241Am,
242mAm, and 243Am isotopes as functions of energy have
been determined in the energy range from 6 to 12 MeV.
In order to measure the cross sections for the photofis-
sion process induced by bremsstrahlung photons, the
relative method has been applied with the cross section
for 238U photofission as a reference. Data on the cross
sections for 242mAm in the energy range from 6 to
12 MeV and for 243Am photofission in the energy range
from 6 to 7 MeV have been obtained for the first time.
The new results for 241Am have revealed that the cross
sections for 241Am photofission were exaggerated in
[1]. The results of the present measurements for 241Am
comply well with the data of other authors. At an
energy value of 6 MeV, the cross sections determined
here show evidence for an irregularity that is likely to
be associated with the low-energy resonance structure
in the dipole-photoabsorption cross section [20] and
which is also suggested by earlier data from [9]. A quite
unexpected relationship between the 241Am and 243Am
fissilities from [8], where the latter was found, in dis-
agreement with model predictions, to be greater than

P f
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the former, has not been confirmed. A comparison of
the americium-isotope fissilities obtained as functions
of energy from the present photofission data and from
data on direct reactions like 240Pu(3He, df )241Am has
yielded agreement for the apparent fission thresholds
and for the plateaulike dependences at energies above
7.5 MeV.
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Abstract—The time of prompt-fission-neutron emission from 252Cf is evaluated at τ0 ≥ (1–2) × 10–19 s by mea-
suring a two-neutron correlation function. The final-state interaction of identical neutrons emitted by moving
fission fragments is taken into account. © 2001 MAIK “Nauka/Interperiodica”.
The time of prompt-fission-neutron emission is of
importance both for studying various neutron-emission
mechanisms and for further developing the theory of
nuclear fission. According to various theoretical esti-
mates [1–3], this time varies in the interval (0.5–5) ×
10–20 s. Present-day facilities are unable to measure
directly such short time intervals. By measuring a cor-
relation of two fission neutrons with the aid of nanosec-
ond equipment of resolution about 0.1 ns, one can nev-
ertheless deduce information about the times of
prompt-neutron emission—that is, about time intervals
that are ten orders of magnitude shorter than the time
resolution of the measuring instruments used. There-
fore, an experiment aimed at measuring a two-particle
correlation function is of great interest not only as a
means to evaluate the time of prompt-neutron emission
but also as a unique method for measuring such short
time intervals, though indirectly.

In [4], we presented the results obtained by measur-
ing the two-neutron correlation function for 252Cf spon-
taneous fission and evaluated the time of prompt-fis-
sion-neutron emission without allowing for the motion
of fission fragments in the laboratory frame. Here, we
process the extended results of the measurements from
[4] more carefully, taking into account the motion of
fission fragments, which are known to be the main
source of prompt-neutron emission [5]. A more accu-
rate calibration of the energy scale of the facility used
is also performed.

A detailed description of our facility and of the pro-
cedure of measurements is given elsewhere [4]. Here,
we only recall that the correlation function for two neu-
trons emitted by fragments of the f type (f = l or h for a
light or the complementary heavy fragment, respec-
tively) was defined as

where Nf is the number of recorded fragments of the

f type; (p1) and (p2) are the numbers of neutrons
that have momenta p1 and p2 and which were recorded

R f
meas

 = N12
f p1 p2,( )N f / N1

f p1( )N2
f p2( )[ ]  = Rmeas p q,( ),

N1
f N2

f
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by detectors 1 and 2, respectively; (p1, p2) is the
number of coincidences between the recording of a
neutron with momentum p1 by detector 1 and the
recording of a neutron with momentum p2 by detector 2;
p = |p1 + p2|/2; and q = |p1 – p2 |.

Having analyzed the background, we restricted the
kinematical region of neutrons taken for processing to
the interval 40 ≤ p1, p2 ≤ 130 MeV/c. In this region, the
background associated with neutron scattering on the
surrounding structures was about 13% of the recorded
intensity. After introducing corrections for the angular
resolution of the system recording fragments [6], we

obtained 162 values of the correlation function (p,
q) for each type of fragments. By using the χ2 method,
these values were then compared with the theoretical
function Rnn(p, q) calculated by the formula

where (p, q) is the normalized correlation function
in the laboratory frame—this function also depends on
the spatial and time dimensions of the neutron source,

r0 and τ0, respectively—and  is an adjustable
parameter that takes into account the number of emitted
neutrons. The fitted values of this parameter fell within
the interval between 0.7 and 0.8. In order to calculate

(p, q), we used the formulas obtained in [7] for the
two-neutron correlation function in the source rest
frame with allowance for the final-state interaction of
identical particles and rescaled the results into the lab-
oratory frame. In accordance with the mean masses of
light and heavy fragments (106 and 141.9 amu), the
spatial parameter r0 was set to 2.22 and 2.45 fm for light
and heavy fragments, respectively. The root-mean-
square radius of the neutron-generation region is R0 =

r0. In taking into account the motion of fission frag-
ments in the laboratory frame, we used the values of

N12
f

R f
expt

Rnn p q,( ) Rnn
lab p q,( )Rnn

∞ ,=

Rnn
lab

Rnn
∞

Rnn
lab
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Vl = 0.0461Ò and Vh = 0.0345Ò from [8] for the mean
velocities of light and heavy fragments, respectively.

The results obtained by comparing experimental
data with the calculated values are illustrated in the fig-
ure, which shows χ2 versus the time τ0 of neutron emis-
sion by the source. From this figure, it can be seen that

the condition χ2 ≤ m +  (m = 160 is the number of
degrees of freedom) yields τ0 ≥ 1.4 × 10–19 s for light
fragments. The agreement with the theory is inferior for
heavy fragments, and we estimate the limit on τ0 as τ0 ≥
(1–2) × 10–19 s according to the data on heavy frag-
ments. It is quite natural to fix the parameters r0 and Vf

at the above values, because a variation of these param-
eters within reasonable limits affects χ2 only slightly:
the resulting changes in χ2 are much smaller than the
statistical error in χ2.

2m

200

300

100
10–20 10–19 10–18

τ0, s

χ2

χ2 as a function of the calculated time of neutron emission
by a source for (solid curve) a light fragment and (dashed
curve) the complementary heavy fragment. The horizontal

line corresponds to χ2 = m + .2m
P

In summary, we have obtained a more accurate esti-
mate of the time of prompt-neutron emission, τ0 ≥ (1–2) ×
10–19 s, from a refined data treatment with due regard to
the motion of fission fragments. It should be noted that,
for τ0 ≥ 10–19 s, the contributions to the correlation
function in question from the final-state interaction of
neutrons (Bi) and from the effect of Fermi statistics (B0)
are negligibly small in the momentum region that we
studied. Of greatest interest from the viewpoint of mea-
surement of the two-neutron correlation function is
therefore an advancement toward the region of low
momentum transfers (q  0), where the contributions
B0 and Bi significantly increase. However, within the
experimental approach used, this involves considerable
difficulties associated with a heavy background that
grows sharply when the neutron-detection threshold is
reduced or when the pair detectors are brought closer
together because of rescattering on them.
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Abstract—A dynamical approach is proposed for calculating the angular distributions of fission fragments.
The relaxation time for the degree of freedom associated with the projection of the total angular momentum of
the nuclear system onto the symmetry axis and the coefficient of damping of the fission mode are the basic
parameters of this approach. Experimental data on the anisotropy of the angular distributions of fission frag-
ments and on the multiplicities of prescission neutrons are analyzed within the proposed model for 16O + 208Pb
(Elab = 110–148 MeV), 16O + 232Th (120–160 MeV), 16O + 248Cm (110–148 MeV), and 16O + 238U (96–
148 MeV). The relaxation time and the damping coefficient are estimated at τK = (5–6) × 10–21 s and β = 4 ×
1021 s–1, respectively. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The understanding of the role of nuclear dissipation
for processes such as deep-inelastic collisions of heavy
ions [1], damping of giant multipole resonances [2],
and nuclear fission [3] is one of the most spectacular
achievements of modern nuclear physics. Nuclear dis-
sipation, which manifests itself as irreversible energy
transfer from collective degrees of freedom to internal
ones, leads to the emergence of nonconservative forces
in the system under study, the amplitude of these forces
being characterized by the damping coefficient β. Infor-
mation about β is usually extracted from an analysis of
experimental data on the multiplicities of prescission
light particles and of photons, on the mass and energy
distributions of fragments originating from the fission
of heavy nuclei, on the cross sections for evaporation-
residue formation, and on the fission probability [3, 4].
In describing collective nuclear motion, use is usually
made of approaches based on the Fokker–Planck equa-
tion [5] or on the set of stochastic Langevin equations
[3, 6]. Unfortunately, estimates of β that were obtained
along these lines show a large scatter from one study to
another (sometimes the difference reaches two orders
of magnitude [4]). Moreover, the existing theoretical
models predict β values in the range from 0.3 × 1021 to
100 × 1021 s–1 [4]. Presently, there is no unambiguous
information about the energy and the deformation
dependence of β either [4, 7]. It therefore seems neces-
sary to extend the range of observables whose analysis
can provide information about the damping coefficient.
We deem that angular distributions of fragments origi-
nating from the fission of heavy nuclei can serve these
purposes.

We note that the Halpern–Strutinsky model of tran-
sition states [8] is conventionally used to analyze exper-
1063-7788/01/6402- $21.00 © 20179
imental data on angular distributions. It is assumed in
this model that, at some transition point on the path to
fission, the K distribution (K is the projection of the
total angular momentum of the nuclear system onto the
fission axis) becomes equilibrium, undergoing no fur-
ther changes during the subsequent evolution of the fis-
sile system up to the scission point. Traditionally, it is
the states at the saddle point of the fission barrier that
are considered as such transition states. Recently, there
have appeared some pieces of evidence that the time of
motion from the saddle to the scission point is compar-
atively long (τss ~ 10–20 s) [3, 4, 9]. For the time of the
relaxation of the degree of freedom associated with K,
modern estimates are τK ~ 10–20 s [9–11]. Since this
value is commensurate with τss, the effective transition
state can occur in between the saddle and the scission
point. In addition, Freifelder et al. [12] compared the
temperature dependence of the experimental values of

 (variance of the K distribution) with the results of
calculations performed within two versions of the tran-
sition-state model, which differ in the choice of transi-
tion state, that at the saddle point in one version and that
at the scission point in the other version. As a result, it
appeared that the experimental data lie in between the
curves calculated within these two approaches. The last
circumstance suggests that the shape of the nuclear sys-
tem in the effective transition state must be more com-
pact than at the scission point and more stretched than
at the saddle point. It should be noted here that, in solv-
ing this problem, the authors of [13–15] used the
approach based on the assumption that the dinuclear
system whose evolution can lead, depending on the
value of the impact parameter, to complete fusion,
quasifission, or deep-inelastic scattering is formed in a
collision of the projectile nucleus with a target nucleus.
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In the quasifission process, there occurs intense
nucleon exchange between the constituents of the dinu-
clear system which does not reach, as a rule, deforma-
tions that are peculiar to the fission barrier and, the
more so, to the ground state. In this case, only the final
stage of the fission process—the motion of the fissile
system beyond the saddle point to the scission point—
does actually proceed. By virtue of this, the anisotropy
of the angular distribution for the quasifission process
must be more pronounced than that which is predicted
by the model assuming the occurrence of a transition
state at the saddle point (TSSP model). We note, how-
ever, that quasifission is a process characteristic of
reactions that proceed on heavy target nuclei and which
are induced by A ≥ 20 projectiles [9, 15]. It follows that,
in the case of sufficiently light projectiles, the observed
discrepancy between experimental data on the anisot-
ropy of the angular distribution and the TSSP predic-
tions cannot be attributed to the contribution of the
quasifission process.

Moreover, the applicability of the TSSP model is
questionable at high angular momenta and nuclear tem-
peratures in the region t ≥ Bf (J) [9]. It should be noted
here that, within the standard statistical approach, the
temperature of the nucleus at the saddle point can be
calculated with allowance for the possible emission of
light particles. In order to calculate the temperature in the
case where the effective transition state is beyond the
saddle point, we must consider the dynamical aspects of
the fission process, taking into account the subsequent
emission of light particles at the stage of descent from
the saddle to the scission point. We emphasize once
again that developing such a model can serve as an effec-
tive tool for obtaining new data both on the relaxation
time τK and on the damping coefficient β.

In the present study, we propose a dynamical model
for calculating the angular distributions of fission frag-
ments. Within the proposed approach, data on the angu-
lar distributions and multiplicities of prescission neu-
trons are analyzed for 16O + 208Pb (Elab = 110–
148 MeV), 16O + 232Th (120–160 MeV), 16O + 248Cm
(110–148 MeV), and 16O + 238U (96–148 MeV) inter-
actions.

2. CALCULATION OF ANGULAR 
DISTRIBUTIONS OF FISSION FRAGMENTS

In the present study, the evolution of a fissile
nucleus is described on the basis of the set of stochastic
Langevin equations, which, in the one-dimensional
case, can be represented as

(1)

where r and p are, respectively, the collective coordi-
nate and the corresponding momentum, while m is the

dr
dτ
-----

p
m
----,=

dp
dτ
------ dV r( )

dr
--------------–

γ
m
---- p– f τ( ),+=
inertial parameter. For the collective coordinate, we use
the distance between the centers of mass of nascent fis-
sion fragments. In Eqs. (1), f (τ) is a random delta-cor-
related force,

(2)

where D is expressed, through the Einstein relation, in
terms of the nuclear temperature and the coefficient of
nuclear friction as D = tγ, being related to the damping
coefficient by the equation β = γ/m. For the inertial
parameter, we chose the quantity m = A/4, which corre-
sponds to fission into two fragments of identical
masses. In studies devoted to simulating fission dynam-
ics by using the Fokker–Planck equation [5] or Lan-
gevin equations [3], it is often assumed that m is inde-
pendent of the collective coordinate. Of course, this
assumption is made to simplify the calculations. Esti-
mates of the deformation dependence of m that were
obtained on the basis of the semiempirical relation
from [16] show that variations in the inertial parameter
over the segment of the trajectory between the saddle
and the scission point do not exceed 10% of A/4. Such
a small variation in m can lead only to an insignificant
increase in τss. On the other hand, the time it takes for a
fissile system to reach the saddle point is predomi-
nantly determined by the relationship between the tem-
perature and the fission-barrier height. In Eqs. (1), the
temperature is defined as t = (Eint/a(r))1/2 with Eint =
E* – p2/(2m) – V(r, J) – Erot, where E* is the total exci-
tation energy, Erot the rotational energy of the system
under study, and a(r) is the level-density parameter. We
note that the deformation dependence of the level-den-
sity parameter plays an important role in analyzing
experimental data associated with the fission process
and, hence, with the evolution of the shape of the
nuclear system [3, 9, 17]. In our study, the level-density
parameter was chosen in the form a(r) = a1A +
a2A2/3BS(r), where a1 = 0.073 MeV–1, a2 = 0.095 MeV–1,
and BS(r) is the surface energy of the deformed nucleus.
This dependence complies with the result that was pre-
sented in [18] and which was obtained for the Woods–
Saxon potential. The potential energy V(r, J) [and,
accordingly, BS(r)] was calculated within the liquid-
drop model with the Myers–Swiatecki parameters by
using the procedure proposed in [16], which makes it
possible to perform a fast calculation of the potential
energy for fissile nuclei over a wide range of A, Z, and
J values. Here, we take no account of effects associated
with a finite range of nuclear forces because there are
no simple and fast methods for calculating relevant cor-
rections either for the level-density parameter or for the
potential energy [3].

The initial values of p were generated for each tra-
jectory under the assumption of the normal momentum

f τ( )〈 〉 0; f τ1( ) f τ2( )〈 〉 2Dδ τ1 τ2–( ),= =
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distribution at r corresponding to the equilibrium defor-
mation:

(3)

Equations (1) were solved with the aid of the Euler dif-
ference scheme.

The emission of light particles (protons, neutrons,
and alpha particles) was simulated within the approach
that is usually used to calculate the multiplicity of light
particles for induced fission and which is based on the
Langevin equations [3, 19]. The specific implementa-
tion was the following. At each time step, the partial
decay widths (Γn, Γp, and Γα) with respect to channels
involving particle emission were computed within the
method of inverse cross sections [20] and a random
number η1 uniformly distributed in the interval (0, 1)
was generated. Further, η1 was compared with the ratio
of the time step ∆τ in integrating the Langevin equa-
tions to the quantity τpart = \/Γ, where Γ = Γn + Γp + Γα.
In the case of η1 < ∆τ/τpart, it was assumed that the emis-
sion event had occurred. After that, the type of the emit-
ted particle was sampled. For this purpose, we gener-
ated a second random number η2 uniformly distributed
over the interval from zero to unity. This region was
broken down into three subintervals according to the
value of the ratios Γn/Γ, Γp/Γ, and Γα /Γ, the type of a
particle being specified by the subintervals within
which the random number η2 falls. In order to deter-
mine the energy of the emitted particle of the i type, we
construct the quantity

(4)

where ρ and ρR are the angular-momentum-integrated
level densities in the parent and the daughter nucleus,
respectively; σinv is the cross section for the inverse
reaction; µi is the reduced mass of the emitted particle;
and εk is the maximum possible energy of the emitted
particle (it is determined from the energy-conservation
law). The quantity Pi(εk) has the meaning of the proba-
bility of the production of an i-type particle whose
energy lying in the interval (0, 1) is less than εk. Break-
ing down the interval (0, 1) into a sufficiently large
number of equal subintervals and generating a random
number η3 uniformly distributed over the interval (0,
1), we can determine the energy of the emitted particle.
The change in the angular momentum of the nucleus
upon particle emission was taken into account by
assuming that, on average, a neutron, a proton, and an
alpha particle carry away angular momenta of 1", 1",
and 2", respectively [3]. Upon each emission event, the
excitation energy, the potential energy, and the angular
momentum of the fissile system were corrected. If the
Langevin trajectory approached the scission point, such

F p( ) 1

2πmt
----------------- p2

2mt
---------–

 
 
 

.exp=

Pi εk( )

=  
1
Γ i

----
2Ji 1+( )µi

π2
"

2ρ2 E*( )
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0

εk
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,
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an event was interpreted as fission. In the case where
the value of the collective variable appeared to be less
than the corresponding value at the saddle point and
where, because of light-particle emission, the internal
excitation energy Eint simultaneously became less than
min(Bi, Bf (J)) [where Bi is the binding energy of the
light particle and Bf (J) is the fission barrier], the calcu-
lations were ceased, and such an event was treated as
the formation of an evaporation residue. But if Eint
remained greater than min(Bi, Bf (J)) when the temper-
ature decreased (because of light-particle emission) to
a value such that t < 0.1Bf (J) and if the deformation of
the fissile system appeared to be less than the deforma-
tion at the saddle point, we went over to the statistical
branch of the calculation. This was also done when the
current time value exceeded τ = 10–18 s. At such a large
value of τ, all relaxation processes associated with
establishing a quasistationary value of the probability
current at the saddle point [9, 21] were completed and
the results of the calculations were independent of the
conditions of the transition to the statistical branch of
the calculations. We emphasize that, in the present
study, these conditions were chosen to be more strin-
gent than those, for example, in [3]. Upon the transition
to the statistical branch of the calculation, the partial
widths with respect to light-particle emission were
computed in the same way as in the dynamical branch,
while the fission width was calculated on the basis of
the Bohr–Wheeler relations with allowance for the
Kramers corrections [9]. In that case, use was made of
a conventional Monte Carlo procedure, and, in just the
same way as in the dynamical calculations, the evapo-
ration cascade was terminated as soon as Eint became
less than min(Bi, Bf (J)). If a fission event occurred at
one of the steps of the evaporation cascade, a transition
to the dynamical branch of the calculation was again
implemented for such events in order to calculate the
relevant angular distribution, but the initial conditions
in (3) were chosen this time at the saddle point.

In calculating the angular distributions, we fixed the
values of the deformation and of the internal excitation
energy at each instant when the current time for a spe-
cific Langevin trajectory exceeded an integral multiple
of τK. This was done until our fissile nuclear system
reached the scission point. The last value of the collec-
tive coordinate fixed in this way was taken as the effec-
tive transition point determining the angular distribu-
tion. At this point, we calculated the moments of inertia
of the nucleus, III and I⊥ , in the rigid-body approxi-

mation and the quantity  = (t/"2)(  – )–1. Fur-
ther the angular distributions were calculated by using
the standard Halpern–Strutinsky expressions [8, 22].
Within this approach, the probability of fission-frag-
ment emission at an angle θ with respect to the beam
axis at the fixed values of J and M (the latter being the

K0
2 III

1– I⊥
1–
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projection of the total angular momentum onto the pro-
jectile-beam axis) is given by

(5)

where (θ) is the Wigner rotation function. As a
rule, studies that analyze experimental data on the
angular distributions for reactions induced by heavy
ions consider the fission of compound systems formed
as the result of the interaction of spinless nuclei, asso-
ciating the observed angular distributions with the first
nucleus of the emission cascade—that is, it is assumed
that M = 0. However, light-particle emission from a hot
compound nucleus must lead to a situation where the
vector of the total angular momentum does not strictly
lie in the plane orthogonal to the beam axis, in which
case M can take nonzero values; hence, it is necessary
to consider the relevant distributions. As applied to the
analysis of angular distributions for reactions induced
by heavy ions, this question was investigated in [23,
24], where the authors used, by analogy with K, the
Gaussian distribution with respect to M. Under this
assumption, the eventual expression for the angular dis-
tribution has the form

(6)

ωM
J θ( )

=  
2J 1+( ) dM K,

J θ( ) 2
K2/K0

2–( )exp

K2/K0
2–( )exp
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∑
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Fig. 1. Calculated cross sections for the complete-fusion
versus energy along with experimental data on fission cross
sections for various reactions. Open boxes, triangles, and
circles represent data from [22], [27], and [28], respectively.
 where TJ is the penetrability factor. In the present study,

we set  =  [23].

The initial distribution with respect to the angular
momentum of the nascent compound nucleus was cal-
culated on the basis of the method proposed in [3]. This
approach relies on the use of the partial-wave cross sec-
tions calculated for fusion [σ(J)] within the surface-
friction model [25, 26]. In Fig. 1, the calculated cross
sections for complete fusion are contrasted against the
corresponding experimental data. We note that, for
each initial value of the angular momentum, the num-
ber of Langevin trajectories was chosen in the present
study to be proportional to the partial-wave cross sec-
tion for fusion.

In the proposed approach to a global analysis of
experimental data on the angular distributions and Mpre,
only β and τK were used as adjustable parameters.

3. ANALYSIS OF EXPERIMENTAL DATA
ON ANGULAR DISTRIBUTIONS

AND PRESCISSION-NEUTRON MULTIPLICITIES
In this section, we present the results obtained from

an analysis of experimental data on the anisotropy of
the angular distributions and on the prescission-neutron
multiplicities for 16O + 208Pb, 16O + 232Th, 16O + 248Cm,
and 16O + 238U interactions. For 16O + 208Pb interac-
tions, the experimental data on the angular distribution
and on the prescission-neutron multiplicity are shown
in Figs. 2 and 3 along with the results of the relevant
calculations. It was noted above that, in order to obtain
the best fit to the experimental data, we varied the
adjustable parameters β and τK in calculating the angu-
lar distribution and the prescission-neutron multiplic-
ity. Since, within the proposed scheme, the numerical
value of τK does not affect the calculated multiplicity of
prescission light particles, we used only data on Mpre in
order to derive the coefficient β. From the best fit to the
experimental data, we then obtained the value of β =
4 × 1021 s–1. By choosing the value of β in this way, we

M0
2 K0

2

Mpre

4

3

2

1

0
80 100 120 140

Elab, MeV

Fig. 2. Multiplicity of prescission neutrons from 16O +
208Pb interaction: (points) experimental data from [29] and
(curve) results of the calculation.
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thereby fixed the mean time of motion of the fissile
nuclear system over the potential surface. In order to
describe the experimental data on the anisotropy of the
angular distributions at the specific β value, we then
varied the parameter τK. With the aim of demonstrating
the sensitivity of the calculated angular distributions to
changes in τK, curves obtained at various values of this
parameter are displayed in Fig. 3. It can be seen that the
best fit to the experimental data is achieved at τK = 5 ×
10–21 s. It should be noted here that, for our analysis of
the angular distributions, we choose experimental val-
ues only at those projectile energies that lead to the for-
mation of compound nuclei characterized by excita-
tion-energy values in excess of 50 MeV. This is
because, at lower excitation energies, shell effects play
an important role [30], in which case it is necessary to
take into account the two-humped structure of the fis-
sion barrier in calculating the angular distribution (see
[31]). For the sake of comparison, the results of the cal-
culations within the standard TSSP model with and
without allowance for neutron emission are also shown
in this figure. The effect of neutron emission on the
anisotropy of the angular distribution was taken into
account through a change in the excitation energy of the
compound nucleus at the saddle-point configuration
according to the procedure described in [32]. In order
to break down the prescission-neutron multiplicity into
two components—that associated with the emission
before the saddle point and that associated with the
emission at the stage of descent of the fissile system
from the saddle to the scission point—use was made of
the neutron multiplicities calculated within the dynam-
ical model described above. In evaluating the anisot-
ropy within the TSSP model, we relied on the simple
approximation

(7)

The use of this relation was motivated by the following
arguments. At the Elab values being studied, some sec-
tion of the initial angular-momentum distribution cor-
responds to those fission-barrier values at which
Bf (J) ≤ t. The application of relations (5) and (6) for the

 value taken at the saddle point then leads to an

unphysical result. In expression (7),  is calculated at
〈J 2〉  values such that the inequality Bf (〈J2〉) > t is satis-
fied in the energy region under study. From Fig. 3, it
can be seen that the experimental data fall in between
the results obtained within the two versions of the cal-
culations on the basis of the TSSP model (with and
without allowance for the neutron emission). It should
be emphasized here that relation (7) was obtained under
the assumption of M = 0. As was shown in [31], the
inclusion of the degree of freedom associated with M
reduces the anisotropy of the angular distribution.

Depending on the choice of , the curve representing

W 0°( )
W 90°( )
------------------- 1

J2〈 〉
4K0
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the results of the calculations allowing for neutron
emission may lie much more closely to the experimen-
tal data. As can be seen from Figs. 2 and 3, the proposed
dynamical approach ensures a consistent description of
experimental data on the angular distributions and
prescission-neutron multiplicities. Although it cannot
be stated that, for the interaction type under consider-
ation, this approach leads to better agreement between
the calculated and the experimental values of the angu-
lar-distribution anisotropy than the standard TSSP
model, we believe that the dynamical calculations bet-
ter reproduce the slope of the energy dependence of the
angular-distribution anisotropy.

The results of the dynamical calculations for the
angular-distribution anisotropy and prescission-neu-
tron multiplicity Mpre for 16O + 232Th, 16O + 238U, and
16O + 248Cm interactions are displayed in Figs. 4 and 5,
along with relevant experimental data. We emphasize
that, for these interactions, the multiplicity of prescis-
sion neutrons and the anisotropy of the angular distri-
bution were calculated at the same values of β and τK as
for 16é + 208Pb interactions. This was done because we
wanted to check the correctness of the chosen parame-
ters and because there are no experimental data on the
prescission-neutron multiplicity Mpre for 16O + 248Cm
and 16O + 238U interactions. In such cases, the calcu-
lated values of Mpre are compared with the predictions
of the systematics composed by Kozulin et al. [34].
Those authors indicate, however, that, for heavy com-
pound nuclei, there are some discrepancies between the
predictions of their systematics and experimental data.
This is likely to be the reason why our results deviate
somewhat from the results of the calculations per-
formed within the above systematics (see Fig. 4). In
addition, the example of 16O + 232Th interactions, for
which we present both the data of the systematics for

W(0°)/W(90°)
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1
2
3
4

120 140
Elab, MeV

Fig. 3. Angular anisotropy of the fission-fragment yield
from 16O + 208Pb interactions. The points correspond exper-
imental data from [22]. The solid curves represent the
results of the calculations within the proposed approach at
β = 4 × 1021 s–1 [τK = (1) 4 × 10–21, (2) 5 × 10−21, (3) 6 ×
10−21, and (4) 7 × 10–21 s]. The dashed and the dash-dotted
curve show the results of the calculations within the TSSP
model without and with allowance for neutron emission,
respectively.
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Fig. 4. Multiplicities of the prescission neutrons for various reactions: (closed circles) experimental data for 16O + 232Th interactions
[33], (open triangles) results of the calculations based on the systematics from [34], and (solid curve) results of the calculations at
β = 4 × 1021 s–1.

Fig. 5. Angular anisotropy of the fission-fragment yield for various reactions. Points correspond to experimental data from (d) [22],
(j) [35], (r) [13], and (n) [36] (the quoted studies give no information about errors in the measurements of the anisotropy of angular
distributions). The solid curves represent the results of the calculations at β = 4 × 1021 s–1 [τK = (1) 5 × 10–21 and (2) 6 × 10–21 s].
The dashed and the dash-dotted curves show the results of the calculations within the TSSP model without and with allowance for
neutron emission, respectively.
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Mpre and experimental data shows that the Mpre values
calculated within the proposed dynamical approach are
in better agreement with the experimental results.

Figure 5 shows the results of the calculations based
on the TSSP model [see Eq. (7)]. We do not display
these results for the entire energy interval being consid-
ered because, for heavy compound systems and at high
projectile energies, we have Bf (〈J2〉) ≤ t, in which case
relation (7) becomes meaningless. As can be seen from
Fig. 5, the experimental data on the anisotropy of the
angular distributions for these interactions (in contrast
to those for 16O + 208Pb interactions) cannot be
described within the TSSP model even upon taking into
account the degree of freedom associated with M. For
the interactions being discussed, the best fit to the data
on the anisotropy of the angular distributions within the
proposed approach could be achieved at the value of
τK = 6 × 10–21 s, which differs insignificantly from the
corresponding value for 16O + 208Pb interactions (the
results of the calculations with τK = 5 × 10–21 s are also
presented in Fig. 5). From the data shown in Figs. 3 and
5, we can therefore conclude that the value of τK lies in
the range (5–6) × 10–21 s. On the whole, we can high-
light good agreement between the experimental and the
calculated values of the anisotropy of the angular distri-
butions. This suggests that our choice of τK and β values
was correct. It is also worth noting that the value
obtained for τK is close to the estimates (τK = 8 × 10–21 s)
obtained in [11] from the analysis of data on the anisot-
ropy of the angular distributions for a number of reac-

tions, but the difference between  and the corre-
sponding value at the saddle point was considered in
that study only for those events where the temperature
of the fissile system was higher than the fission barrier.
No attention was given there to the dynamical aspects
of the evolution of the compound nuclear system
either—in particular, the stochastic nature of the
motion of a nucleus over the potential-energy surface
toward the scission point was disregarded. The value
determined in the present study for the damping coeffi-
cient β is smaller than the corresponding results
obtained in [3, 7, 37]; nevertheless, it indicates that the
regime of the aperiodic damping [3] is typical of collec-
tive nuclear motion.

In summary, the data presented here (Figs. 2–5)
demonstrate that, in analyzing the angular distributions
for reactions induced by heavy ions, it is necessary to
take into account the dynamical aspects of nuclear fis-
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sion—in particular, the change in  during the motion
of a fissile nuclear system over the potential-energy
surface from the equilibrium to the scission configura-
tion. This conclusion is valid at least in the cases where
the nuclear temperature is commensurate with or
higher than the fission barrier.

4. CONCLUSION

A dynamical model is proposed for calculating
angular distributions of fission fragments. Within this
model, the angular distribution is interpreted as a super-
position of various contributions caused by the distribu-
tion of the effective transition-point position in defor-
mation space. The existence of this distribution in turn
is associated with the stochastic nature of the motion of
a fissile nuclear system from the equilibrium to the scis-
sion configuration. In this case, the time of relaxation of
the degree of freedom associated with K (projection of
the total angular momentum onto the fission axis) and
the damping coefficient play a decisive role in the cal-
culation of the positions of such transition points on the
deformation axis. Experimental data on the anisotropy
of the angular distributions and on the multiplicities of
prescission neutrons for 16O + 208Pb (Elab = 110–
148 MeV), 16O + 232Th (120–160 MeV), 16O + 248Cm
(110–148 MeV), and 16O + 238U (96–148 MeV) inter-
actions have been analyzed within the proposed
approach. It has been shown that the shape of the angu-
lar distributions is substantially affected by the dynam-
ical features of the induced-fission process. In addition,
a global analysis of data on the anisotropy of the angu-
lar distributions and on the prescission-neutron multi-
plicity Mpre makes it possible to obtain new information
about the values of the relaxation time τK and of the
damping coefficient β.
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Abstract—A soft dipole mode in the 11Li nucleus treated within the microscopic three-cluster model is studied
in the asymptotic-potential approximation. The model faithfully reproduces the energy and the root-mean-
square radius of the ground state and the behavior of the effective photodisintegration cross section at low
energies above the threshold for 11Li breakup, suggesting the existence of two resonance states in this region.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An intense electric-dipole transition that was exper-
imentally found [1] to occur in the 11Li nucleus from
the ground state to the region of the low above-thresh-
old energies is usually attributed to the excitation of a
soft dipole mode in this nucleus (see, for example, [2]).
The question of the nature of this transition amounts to
resolving the dilemma as to whether it is due to the
existence of a resonance in the continuous spectrum of
11Li or the properties of this transition are determined
exclusively by the proximity of the 11Li ground state to
the threshold for the breakup of this nuclear system into
9Li and two neutrons.

The soft dipole mode of the 11Li nucleus has already
been discussed in theoretical studies. In [3], the wave
functions of the ground state of this nucleus and of the
continuum states to which the E1 transition proceeds
were constructed within the method of three-particle
hyperharmonics. The effect of the Pauli exclusion prin-
ciple was simulated by introducing a repulsive potential
in partial waves that involve forbidden states. This
made it possible to obtain the intensity of the electric-
dipole transition as a function of energy. This function
has a maximum near the energy value of 0.6 MeV
above the threshold for the three-body breakup of 11Li.
The position of the peak agrees with the experimental
results reported in [1].

In just the same way as in [3], we will perform the
ensuing analysis in a hyperspherical basis, restricting,
however, this basis to the hyperharmonics character-
ized by the minimum possible values of the grand
orbital; of the linear combinations of these hyperhar-
monics, we will further consider only those that are
allowed by the Pauli exclusion principle. We also note
that in [3], the 9Li cluster was considered as an inert
core, whereby the possibility of exchange of the

* e-mail: gfilippov@gluk.ape.org
1063-7788/01/6402- $21.00 © 0186
valence neutrons and the p-shell neutrons belonging to
the core was excluded. Of the requirements imposed by
the Pauli exclusion principle, only that piece was satis-
fied in [3] which corresponds to the ability of the repul-
sive potential to suppress the approach of valence neu-
trons to the heavy cluster. It is obvious that this descrip-
tion is not complete. Within the method proposed here
to construct basis functions, the identity of nucleons is
rigorously taken into account; as a result, the allowed
11Li states assume the form of superpositions of 9Li
states corresponding to the orbital-angular-momentum
values of + = 1, 2, and 3, the coefficients in this super-
position being dependent on the vectors of the neutron
clusters. As to the grand-orbital content of continuum
states to which the E1 transition occurs, it is also
formed on the basis of the Pauli exclusion principle and
differs markedly from that proposed in [4]. We will
demonstrate below that the contribution of the K = 1
hyperharmonic increases as the neutron clusters move
away from the 9Li core and that the K = 3 contribution
decreases, but the latter proceeds in such a way that,
even in the asymptotic region, it is 13%.

By considering the 11Li nucleus as a system of three
clusters,

11Li  9Li + n + n,

we will use a simplified version of the resonating-group
method, the asymptotic-potential approximation,
whose fundamentals were outlined elsewhere [5] in
connection with the problem of the soft dipole mode in
the 6He nucleus. This approximation heavily relies on
the fact that the 11Li nucleus is very soft in the boundary
region, where two valence neutrons (two neutron clus-
ters) reside and where the cluster interaction caused by
the three-body character of the system is radically sim-
plified. This interaction takes the form of an asymptotic
power-law potential decreasing in inverse proportion to
the hyperradius cubed. At the same time, the behavior
of the three-cluster system in the region of small-hyper-
2001 MAIK “Nauka/Interperiodica”
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radius values is simulated by a smoothed extrapolation
of the asymptotic potential.

The ensuing exposition is organized as follows. In
Section 2, we discuss the most significant features of
the 11Li nucleus that distinguish it from the 6He
nucleus. In Section 3, we briefly recall some details of
the approximation adopted in the present study. We
conclude by presenting the results of our calculations.

2. THREE-CLUSTER MODEL OF 11Li
AND HARMONIC-OSCILLATOR BASIS STATES

2.1. Minimal-Approximation Basis 
for Negative-Parity 11Li States

In the standard version of the resonating-group
method, it is assumed that the alpha-particle cluster of
the 6He nucleus is in the ground state of the translation-
invariant shell model (TISM), but, in constructing a
harmonic-oscillator basis for the 11Li nucleus, one has
to invoke the multiplet of the 9Li-cluster states that
belongs to the (1, 2) irreducible representation of the
SU(3) group [6]. The choice of this irreducible repre-
sentation among the irreducible representations that
involve the same number of quanta, but which are of
lower symmetry, is dictated by the requirement that the
potential-energy operator contain the maximum num-
ber of interactions in even nucleon-pair states that are
triplet in spin and singlet in isospin or singlet in spin
and triplet in isospin. In these states, the potential
energy of nucleon pairs has a deep minimum; therefore,
the nuclear system favors them rather than other (odd)
states. The orbital angular momentum + in the states of
the (1, 2) multiplet can take values of 1, 2, and 3. These
states are of negative parity. The exchange nucleon–
nucleon interaction removes degeneracy in orbital
angular momentum, with the result that the + = 1 state
appears to be the lowest one. Two unit orthogonal com-
plex vectors u and w are taken for the independent vari-
ables of the wave function of these 9Li states in Fock–
Bargmann space. All wave-function constructions are
linear in the components of the vector u and bilinear in
the components of the vector w. Listing the basis func-
tions and determining the Hamiltonian in Fock–Barg-
mann space, we will use the nucleon mass m, the oscil-

lator length r0, and \2/m  for units of mass, length,
and energy.

The wave functions of the neutron clusters depend
on two normalized Jacobi vectors a and b [6]. In the
harmonic-oscillator basis, the only wave function that
is characterized by the orbital-angular-momentum
value of L = 1 and by the minimal number of quanta and
which is allowed by the Pauli exclusion principle has
the form

(1)

r0
2

Φ0 L, 1=
– 1

18
------u 11 w a⋅( )2 9 w b⋅( )2–{ }=
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and belongs to the (1, 0) irreducible representation of
the SU(3) group. The “minus” superscript on the wave
function indicates that the state in question is of nega-
tive parity. Expression (1) is a composition of three
blocks; of these, two describe states of the neutron clus-
ters, while the third block is associated with the 9Li
cluster. Since the components of the third block do not
fix the orbital angular momentum + of the cluster 9Li,
expression (1) appears to be a superposition of + = 1,
2, 3 states; that is,

(2)

where  are the relevant Clebsch–Gordan coeffi-
cients, ψ+, M(u, w) are the basis functions of the core
states, φl, m(a, b) are the basis functions of the states of
the two-neutron (two-cluster) system under the
assumption that the neutrons occur in the p shell, and
A+, l are coefficients that determine the contribution to
the basis function (1) from the core states that are char-
acterized by the orbital angular momentum + and the
states of the two-neutron system that are characterized by
the orbital angular momentum l.

It follows that, within the approximation adopted
here, the 9Li core is not completely inert—it can go
over to excited states, changing the orbital angular
momentum + and its projection M.

If the spin–orbit interaction is not involved in the
formation of the wave functions, the 11Li ground state
is doubly degenerate because the spin of the proton
occurring in the p shell and belonging to the 9Li cluster
is unpaired. As soon as the spin–orbit interaction is
switched on, the state characterized by the angular
momentum of J = 3/2 becomes the lowest, while the J =
1/2 state accordingly appears to be excited. In the fol-
lowing, we take no account of the spin–orbit interac-
tion, assuming that basic features of the soft dipole
mode can be understood without considering the split-
ting of the J = 3/2 and J = 1/2 states.

In constructing the harmonic-oscillator basis and in
classifying basis functions, we consistently use the
scheme of LS coupling, paying special attention to
those basis states in which nucleon–nucleon attractive
forces are the strongest. This way is natural if we use
the quantum numbers of the irreducible representations
of the SU(3) group as was done above for the 9Li clus-
ter. Of course, the number of states in the complete
basis for the scheme of jj coupling (it is usually used in
the mean-field approach) does not differ from the num-
ber of states in the complete basis for the scheme of LS
coupling. However, actual microscopic calculations
employing the potential energy determined solely by
nucleon–nucleon forces have to deal with some part of
the complete basis within either scheme. Therefore, the

Φ0 L, 1 M,=
–

=    A + l , C + M ;  lm
L M

 
, ψ + M , u w ,( )φ l m , a b ,( ) , 

l m

 

,
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 ∑  

+

 

M

 

,

 

3

 ∑

C+M ; lm
L M,
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problem of choosing one of the two schemes reduces to
the problem of optimally choosing basis states that are
of greatest importance for the problem being studied
and which correspond to the deepest nucleon–nucleon
potential.

Thus, expression (1) is the transform of the TISM
wave function of the 11Li ground state in Fock–Barg-
mann space. This wave function corresponds to the
compact configuration of the oscillator-shell model;
therefore, it cannot reproduce the soft boundary region
of a nucleus. In order to remedy this drawback of the
simplest TISM construction, we will seek the transform

of the true function  in the form of a series of
the minimal approximation of the hyperspherical-func-
tion method (for a detailed explanation, the reader is
referred to [6]); that is,

(3)

where

(4)

are basis states that are allowed by the Pauli exclusion
principle; the coefficients  are determined by
solving the set of linear algebraic equations of the min-
imal approximation; and uM are the cyclic projections
of the vector u.

Each of the states in (4) is a linear superposition of

the terms  corresponding to the grand-orbital
values of K = 0 and K = 2; that is,

(5)

where

If ν = 0, the weight of the K = 2 state is 0.98, while the
weight of the K = 0 state is as small as 0.02. But if ν

ΨL 1 M,=
–

ΨL 1 M,=
–

Cν L, 1=
– Φν L, 1 M,=

–
,

ν 0=

∞

∑=

Φν L, 1 M,=
–

=  Nν
–uM 11 w a⋅( )2

9 w b⋅( )2
–{ } a

2
b

2
+( )

ν
,

Nν
– 1

18
------ 1

2
ν----- 34

9ν 34+
------------------ 3!

ν 3+( )!ν!
------------------------,=

Cν L, 1=
–

Φν K L, , 1=
–

Φν L, 1=
– 25 ν 4+( )

27ν 102+
------------------------Φν K, 2 L, 1= =

–
=

+ 2 ν 1+( )
27ν 102+
------------------------Φν 1+ K, 0= L, 1=

–
,

Φν K, 2 L, 1= =
– 1

2
ν----- 4!

ν 4+( )!ν!
------------------------

102
18

-------------u w a⋅( )2{=

– w b⋅( )2 } a
2

b
2

+( )
ν
,

Φν 1+ K, 0= L, 1=
– 1

2
ν----- 3!

ν 3+( )! ν 1+( )!
--------------------------------------

51
18

----------=

× u w a⋅( )2 w b⋅( )2
+{ } a

2
b

2
+( )

ν
.

                                   

approaches infinity, the former and the latter weight
tend to 0.93 and 0.07, respectively.

The wave function of the 11Li ground state is fre-
quently interpreted in terms of the shell model, and its
content is discussed by analyzing, in particular, the
contribution of the allowed s orbitals of the valence
neutrons against the contribution of their p orbitals
(see, for example, [7]). At the same time, it follows
from expression (3) that the contribution of the p orbit-
als of the valence neutrons is determined by the square

of the coefficient . For all other orbitals,
including s orbitals, the corresponding contribution is
determined by the sum

An estimate of this sum will be given in Section 3.

2.2. E1-Transition Operator

In the approximation of the three-cluster model for
the 11Li nucleus, the electric-dipole-transition operator

(E1) defined in Fock–Bargmann space is the sum of

two terms—the raising operator (E1) (when
applied to harmonic-oscillator basis functions, it
changes their parity and increases the number of oscil-
lator quanta by unity) and the lowering operator

(E1) defined as the Hermitian conjugate to the rais-
ing operator—that is,

(6)

where the first term,

(7)

differs from the analogous expression for 6He only by
the numerical value of the constant factor. The operator
a acting on the ground-state basis functions (4) gener-
ates the positive-parity basis functions characterized by
the orbital-angular-momentum values of 0, 1, and 2.
These functions are investigated in the next section.

2.3. Basis of the Minimal-Approximation for Positive-
Parity 11Li States

Electric-dipole transitions change the parity of
states. Therefore, such transitions connect the 11Li
ground state characterized by a negative parity and an
orbital angular momentum equal of unity to positive-
parity states characterized by L values of 0, 1, and 2.
The minimal approximation of the method of hyperhar-
monics requires first of all constructing, within the har-
monic-oscillator basis, the simplest allowed states of
11Li that are characterized by the orbital-angular-

Cν 0= L, 1=
–

Cν L, 1=
–{ }

2
.

ν 1=

∞

∑

M̂

M̂
+

M̂
–

M̂ E1( ) M̂
+

E1( ) M̂
–

E1( ),+=

M̂
+

E1( ) 3
4π
------

e

11
----------a,=
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momentum values of L = 0, 1, and 2 and by the number
of quanta that exceeds the number of quanta in the basis
function (1). Let us list the wave functions of these
states. The function whose indices of SU(3) symmetry
are (0, 1) has the form

(8)

where [u ⊗ a  is the irreducible tensor product of
rank L [8], while (w · a) and (w · b) are the scalar prod-
ucts of the vectors involved.

Another pair of functions has the (2, 0) SU(3) sym-
metry; that is, we have

(9)

(10)

Each of the basis functions in (8)–(10) is the result
obtained by applying the E1-transition operator to the
function in (1) and by subsequently taking a projection
onto a state that is pure in the orbital angular momen-
tum. This does not exhaust the list of positive-parity
states characterized by the orbital-angular-momentum
values of L = 1 and 2. Such allowed functions exist for
the (1, 2) and (3, 1) irreducible representations as well.
They are orthogonal to the functions in (9) and (10);
therefore, they cannot arise as the result of the electric-
dipole photodisintegration of 11Li.

The states in (8)–(10) are contained in the three-
quantum TISM basis, where they have, however, a dif-
ferent norm. This basis also includes the states that rep-
resent the excitations of the 9Li cluster and which are
not included in our consideration based on the approx-
imation of the resonating-group method. We note here
that the basis of the algebraic version of the resonating-
group method consists of part of the TISM basis, but
the normalization of the functions included in it is gen-
erally different from the normalization of the functions
in the TISM basis. In addition, the orthogonality of the
states involving equal numbers of quanta is defined dif-
ferently within the algebraic version of resonating
group method.

Let us now introduce three branches of the basis
functions of the minimal approximation:

(11)

Φ0 L, 1 M,=
0 1,( )+

=  
1
54
------ 3

4
--- u a⊗[ ]M

1
11 w a⋅( )2 9 w b⋅( )2

–{ } ,

]M
L

Φ0 L, 2 M,=
2 0,( )+

=  
1
54
------ 13

10
------ u a⊗[ ]M

2
11 w a⋅( )2

9 w b⋅( )2
–{ } ,

Φ0 L, 0=
2 0,( )+

=  
1
54
------ 13

10
------ u a⊗[ ]0

0
11 w a⋅( )2

9 w b⋅( )2
–{ } .

Φν L, 1 M,=
+

=  Nν 1,
+ u a⊗[ ]M

1
11 w a⋅( )2

9 w b⋅( )2
–{ } a

2
b

2
+( )

ν
,

Nν 1,
+ 1

54
------ 3

4
--- 117

77ν 117+
------------------------

1

2
ν----- 4!

ν 4+( )!ν!
------------------------;=
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(12)

(13)

The grand-orbital content of these states is

(14)

where

(15)

where

Φν L, 2 M,=
+

=  Nν 2,
+ u a⊗[ ]M

2
11 w a⋅( )2
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b

2
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ν
,
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10
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1

2
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2
b
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ν
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54
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(16)

where

It should be noted that the weight of the K = 3 hyper-
harmonic in the L = 1, 2 channels is about 43% at ν = 0
and is about 13% in the limit ν  ∞. In the L = 0
channel, the weight of the K = 3 hyperharmonic is still
higher (about 74%) at ν = 0. For ν  ∞, its contribu-
tion is about 37%.

The wave functions  of positive-parity states
that belong to the 11Li continuum and which occur at
energy E above the threshold for three-body breakup
can be represented as the superpositions

(17)

The coefficients (E) in these superpositions are
determined by solving the set of equations that arise in
the algebraic version of the resonating-group model
and which are presented in the next section.

3. MODEL HAMILTONIAN AND ITS SPECTRUM
Let us make use of the asymptotic-potential approx-

imation [5], which is quite appropriate for soft three-
cluster systems like 11Li. In this approximation, the
potential-energy operator of 11Li reduces to the sum of
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+ 1

2
ν----- 5!

ν 5+( )!ν!
------------------------ a

2
b

2
+( )

ν
=

× 1
54
------ 13

30
------ 5 u a⋅( ) w a⋅( )2 w b⋅( )2

–[ ](

– 10 u b⋅[ ] w a⋅( ) w b⋅( ) );

Φν L, 2=
+ 253 ν 1+( )

293ν 453+
---------------------------Φν 1+ K, 1 L, 1= =

+
=

+ 40 ν 5+( )
293ν 453+
---------------------------Φν K, 3 L, 1= =

+
,

Φν 1 K,+ 1 L, 2= =
+ 1

2
ν----- 4!

ν 4+( )! ν 1+( )!
-------------------------------------- a

2
b

2
+( )

ν
=

× 1
54
------ 13

10
------ u a⊗[ ]M

2
6 w a⋅( )2

4 w b⋅( )2
–{ }(

+ 10 u b⊗[ ]M
2 w a⋅( ) w b⋅( ) ),

Φν K, 3 L, 2= =
+ 1

2
ν----- 5!

ν 5+( )!ν!
------------------------ a

2
b

2
+( )

ν
=

× 1
54
------ 13

10
------ 5 u a⊗[ ]M

2 w a⋅( )2 w b⋅( )2
–{ }(

– 10 u b⊗[ ]M
2 w a⋅( ) w b⋅( ) ).

ΨE L M, ,
+

ΨE L M, ,
+

Cν L,
+

E( )Φν L M, ,
+

.
ν 0=

∞

∑=

Cν L,
+

two terms, each depending only on the hyperradius.
One of these terms decreases in inverse proportion to
the hyperradius cubed, while the other decreases in
inverse proportion to the fifth power of the hyperradius.
At small values of the hyperradius, it is necessary to
regularize these terms. This is achieved by going over
to the representation of the harmonic-oscillator basis
functions, where, in the limit ν  ∞, the matrix

〈ν| | 〉 of the potential-energy operator is diagonal
[9] and takes the following regularized form for the odd
basis states (4):

(18)

Here, A and B are coefficients that are determined from
the condition that the matrix (18) of the effective poten-
tial and the tridiagonal matrix of the kinetic-energy
operator between the basis functions (4),

(19)

(20)

reproduce fairly well the observed ground-state energy
of the 11Li nucleus [10] reckoned from the threshold for
the three-body breakup (–0.3 MeV) and of its ground-
state root-mean-square radius (3.2 fm). From this con-
dition, we obtain A = –37.19 and B = –91.19. We set the
oscillator length r0 to 1.69 fm in order to reproduce cor-
rectly the properties of the 9Li cluster.

The coefficients  in the expansion of the
wave function of the 11Li ground state in the harmonic-
oscillator basis (4) are displayed in Fig. 1. A slow
decrease of these coefficients with increasing ν and a

small value of the coefficient  (about 0.5)
correlate well with the idea that the 11Li boundary
region, which is occupied by the neutron clusters, pos-
sesses a high degree of softness; the contribution of the
state where the clusters are in the p orbitals amounts to
25%. Hence, the contributions of all the remaining con-
figurations, where the neutron clusters occupy the
orbitals of the sd shell and of other shells, amount to
75%. We note that these contributions include the cor-
rections associated with the elimination of the center-
of-mass motion (recoil effects).

For the model Hamiltonians describing the afore-
mentioned three positive-parity states to which the E1
transition from the ground state proceeds, we leave the
matrix elements of the potential energy virtually
unchanged, setting

(21)

Û
–
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ν〈 |Û
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ν̃| 〉 A
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ν〈 |T̂
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2
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ν 1+〈 |T̂– ν| 〉 1
2
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9ν 34+
-----------------------------------------------------------,–=

Cν L, 1=
–

Cν  = 0 L, 1=
–

ν〈 |Û
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ν̃| 〉 A
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----------------------------- B
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-----------------------------+
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 
 

δν ν̃, .=
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As to the kinetic-energy matrices, they have equal diag-
onal matrix elements,

(22)

but their off-diagonal matrix elements are different and
are given by

(23)

(24)

(25)

None of the three Hamiltonians listed above fea-
tures bound states; that is, there are only continuum
states. For such continuum states normalized to the
delta function of momentum, we have calculated the
expansion coefficients that are necessary for evaluating
the matrix elements for the E1 transition from the 11Li
ground state to these states and determined the 3  3
phase shifts . The analysis of these phase shifts as

functions of energy makes it possible to find out
whether the 11Li nuclear system has (or does not have)
low-energy resonances above the threshold for three-
body breakup.

The behavior of three phase shifts , , and 

in the energy interval from 0 to 5 MeV is illustrated in
Fig. 2. The last two phase shifts are close to each other
over the energy-interval under study. First, they
increase rather fast and reach a maximum value of
about 2.3 rad at E ~ 1 MeV. Their derivatives /dE

are maximal at Er ~ 0.1 MeV, where there are therefore
two resonances with quantum numbers Lπ = 1+ and 2+.
The width of either resonance as estimated on the basis
of the /dE value by using the conventional for-

mula is

These resonances are not narrow—their widths exceed
the energy Er at which they occur by a factor greater
than 3.

The phase shift  increases more slowly than the

other two phase shifts with increasing energy, and the
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shape of its energy dependence shows no traces of the
Lπ = 0+ resonance state. The maximum value of this
phase shift does not exceed 1.7 rad.

4. CROSS SECTION FOR 11Li 
PHOTODISINTEGRATION

The soft dipole mode in 11Li can be studied theoret-
ically by calculating the intensity of the E1 transition
from the ground state of the 11Li nucleus to its contin-
uum states. As the result of such a transition, the 11Li
nucleus undergoes photodisintegration into three clus-
ters.

At this stage, it is more convenient to use a conven-
tional system of units.

0.6

0.4

0.2

0
0 10 20

ν

C–
ν, L = 1

Fig. 1. Coefficients  in the expansion of the wave func-

tion of the 11Li ground state in the basis functions
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Fig. 2. 3  3 phase shifts  for even 11Li states as

functions of the above-threshold energy: (1) , (2) ,

and (3) .
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The probability P(E1) of electric-dipole photodisin-
tegration per unit of time is expressed in terms of the
reduced probability B(E1) of the E1 transition as (see [11])

(26)

where \ω is the energy of the photon absorbed by the
nucleus and ρf is the density of the final states of the
11Li continuum per unit energy interval. In order to cal-
culate this density of states, we introduce two momenta
k1 and k2 that determine the divergence of the three
clusters in the c.m. frame and which are normalized in
the same way as the Jacobi vectors a and b. We denote
by p1 the momentum of the 9Li cluster in the laboratory
frame and by p2 and p3 the momenta of the neutron
clusters. We then have

(27)

Further, we set

therefore, we can write the expression for the density of
states as

(28)

The reduced probability B(E1) is given by 

(29)

where

(30)

The factor (2π)6/(kr0)5 appears upon going over from
the functions of the continuous spectrum that are nor-
malized to the delta function δ(k – k') to the functions
normalized to the flux v, v = \k/m.

In order to obtain the cross section for 11Li photodis-
integration, the transition probability in (26) must be
divided by the speed of light c (the photon-flux den-
sity).

For the photodisintegration cross section, this yields

(31)

where ε = 0.3 MeV is the energy required for the three-
body decay of the nucleus. The resulting cross section
has the dimensions of fm2.
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The explicit expression for the matrix element of the

operator  has the form

(32)

where the partial-wave matrix elements are given by

Here, the quantity µ takes the values of 1 and –1, which
correspond to two possible states of photon polariza-
tion.

5. RESULTS OF CALCULATIONS
AND CONCLUSION

On the basis of the formulas from the preceding sec-
tion, we have calculated the effective cross sections

 for 11Li photodisintegration that correspond to the

E1 transitions from the ground state to the three contin-
uum states characterized by L = 0, 1, and 2. In Fig. 3,
these cross sections are shown as functions of energy
reckoned from the threshold of the breakup process
11Li  9Li + n + n. The cross sections for the 1– 
1+ and 1–  2+ transitions have a pronounced peak at
an energy of 0.55 MeV above the threshold and
decrease with increasing energy rather fast. For the
transitions to the L = 0 states, the cross sections 

change rather slowly, displaying a broad maximum in
the vicinity of 1.6 MeV. Its value does not exceed
0.2 mb, which is nearly one order of magnitude smaller
than the maximum values of the cross sections 

and .

The total photodisintegration cross section

in the asymptotic-potential approximation is shown in
Fig. 4. The position of the maximum at Er = 0.55 MeV
and the half-width Γ = 0.9 MeV agree well with the
experimental values of Er = 0.7 MeV and Γ = 0.8 MeV
presented in [1].
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The maximum value of the total cross section
amounts to 4.2 mb, which also complies with experi-
mental data. We note, however, that, in just the same
way as in [3], the cross section presented here decreases
somewhat more slowly with increasing energy than the
experimental cross section.

2

1

0

0 2 4 Ε, MeV

        (E1), mb

1

2

3

Fig. 3. Effective cross sections (E1) for 11Li photodis-

integration as functions of the above-threshold energy: (1)
, (2) , and (3) .

σ
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σ
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Fig. 4. Total effective cross section σf (E1) for photodisinte-
gration in the asymptotic-potential approximation as a func-
tion of the above-threshold energy.
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In summary, the energy and the wave function of the
11Li ground state, as well as the total effective cross sec-
tion for its electric-dipole photodisintegration, can be
correctly reproduced by treating the 11Li nucleus on the
basis of the microscopic three-cluster model and by
using the approximation of the asymptotic potential in
the form of a power-law function of the hyperradius;
for this, it is sufficient to retain only basis states associ-
ated with the minimal grand-orbital values and allowed
by the Pauli exclusion principle. The results of the cal-
culations performed without taking into account the
spin–orbit interaction suggest the existence of Lπ = 1+

and Lπ = 2+ (Jπ = 3/2+ and Jπ = 5/2+ if the spin–orbit
interaction is taken into account) resonances of the 11Li
nucleus in the low-energy region extending up to
0.5 MeV.
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Abstract—A set of equations for deriving the SU(3)-irreducible density matrix for U(3(A – 1)) multiquantum

excited states involved is given. For the  nucleus, the binding energies, radii, spectra, electric quadrupole
moments, and probabilities B(E2) of electric quadrupole transitions are computed in the multiquantum approx-
imation of the unitary scheme. The values obtained for the above spectroscopic quantities are investigated ver-
sus the number of basis functions involved. © 2001 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

In the unitary scheme, basis functions are specified
by the subgroup sequences U(3(A – 1)) ⊃ SU(3) ×
U(A – 1), U(A – 1) ⊃ O(A – 1) ⊃ S(A), and SU(3) ⊃
O+(3) [1]. We label them as ψ([E1E2E3](ω1ω2ω3)αλκΓ 0),
where [E1E2E3] and (ω1ω2ω3) are irreducible represen-
tations of the U(A – 1) and O(A – 1) groups, respec-
tively, while λ denotes the corresponding Young dia-
gram for the permutation group S(A). The symbol
[E1E2E3] also specifies irreducible representations
(λµ) = (E1 – E2E2 – E3)) and [E, 0, 0] of the SU(3) and
the U(3(A – 1)) group, respectively, where E = E1 +
E2 + E3 is the number of oscillator quanta since the
basis of the unitary scheme consists of the eigenfunc-
tions of the Hamiltonian of the 3(A – 1)-dimensional
harmonic oscillator. The symbols α and κ stand for the
multiplicities of the chains O(A – 1) ⊃ S(A) and SU(3) ⊃
O+(3) occurring in the corresponding multiplet, and Γ0
denotes all the remaining quantum numbers describing
the orbital and spin–isospin wave functions. The wave
functions of the U(3(A – 1))-symmetric ground states
involve the minimum number of excitations that still
admits, in the reduction associated with the subgroup
chain U(A – 1) ⊃ O(A – 1) ⊃ S(A), the emergence of
irreducible representations λ of the S(A) group that are
allowed by the Pauli exclusion principle. Functions that
are labeled by quantum numbers E > Emin represent
U(3(A – 1)) excited states. In [2], the method developed
in [3] for taking into account U(3(A – 1)) multiquantum
excited states was employed to calculate the spectro-

scopic features of the  nucleus. These calculations
proved to be equivalent to those carried out within the
approximate Sp(2R) model proposed in [4, 5]. In order
to render a comparison with the results presented in [4,

Be8
4

* e-mail: jonas@ip.ku.lt
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5] meaningful, the calculations in [2] were performed,
in just the same way as in those studies, with a reduced
Hamiltonian not including Coulomb interaction.

The present study is devoted to (i) considering the
potential of the basis B1 (see Section 2) of E ≤ Emin +2
functions—that is, spectroscopic calculations are per-
formed in the basis extended step by step, whereby the
relative weights of the basis functions corresponding to
[E1E2E3] and (ω1ω2ω3) representations of different
symmetries are revealed—and (ii) performing calcula-
tions in the multiquantum approximation of the bases
B2 and B3 involving the functions that are of greatest
importance kinematically. The present calculations,
relying on the full Hamiltonian and employing various
bases and potentials, supplement those reported in [2].
The convergence of these bases is investigated.

The ensuing exposition is organized as follows. The
bases used in the calculations are presented in Section 2,
together with a compendium of useful formulas and
definitions. The matrix elements of physical operators
are computed within the density-matrix formalism. The
density matrix for U(3(A – 1)) multiquantum excited
states is derived by the method applying the SU(3)-irre-
ducible density matrix [3, 6]. An account of this method
as applied to the bases B2 and B3 harnessed in the
present study is given in Section 3. Section 4 contains

some results of spectroscopic calculations for the 
nucleus and a relevant discussion.

2. BASES AND USEFUL FORMULAS

According to general principles of supermultiplet
theory, U(3(A – 1)) states associated with the most sym-
metric Young diagram λ play a key role in describing
low-lying levels. Therefore, we consider the bases con-
sisting of the functions labeled by the Young diagram

Be8
4
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λ = [44] and the following quantum numbers of the
U(n – 1)  and O(n – 1) groups:1) 

Eω = [4](4), [6](4), [51](4), [42]κ(4), [6](6), 

[51](51), [42]κ(42)α (basis B1),

Eω = [4 + 2m](4), m = 0, 1, …, N ≤ 12 (basis B2),

Eω = [4 + 2m](4), m = 0, 1, …, N = 12, [6 + 2m1](6),

m1 = 0, …, N1 ≤ 5 (basis B3).

The quantum numbers ST = 00 correspond to the dia-
gram λ = [44]. The computations were performed for
L = 0, 2, 4, and 6. For the [42]κ(42)α states, the repeti-
tion multiplicities are α = 1, 2 for the chain O(A – 1) ⊃
S(A) and κ = 0, 2 for the chain SU(3) ⊃ O+(3) (at L = 2).

For the diagrams λ = [4…4], the total Hamiltonian
has the form

(1)

where Vc is the operator of central nucleon–nucleon
interaction, T is the kinetic-energy operator, and VC is
the Coulomb energy operator. The central nucleon-
nucleon interaction can be represented in the form

(2)

where the operators pr, pσ, and pτ permute, respectively,
the orbital, the spin, and the isospin nucleon coordi-
nates. The functions W(r), M(r), B(r), and H(r) are
expressed in terms of the commonly used functions
V 2S + 1 2T + 1(r) [7] [V 31(r), V 13(r), V 33(r), and V 11(r)] as

(3)

The matrix element of the operator in (2) can be repre-
sented in the form

(4)

where Γ is the set of the quantum numbers specifying a
function in the unitary scheme, the Talmi integrals are
determined by formula (14.8) from [1], ν labels the

type of interaction (ν = W, M, B, H), and  are the
components of the two-particle density matrix. In the
calculations, we use the various Gaussian potentials [8–

1)For the sake of brevity, we will use, along with [E1E2E3] and
(ω1ω2ω3), the notation E and ω. For the representations of the
U(A – 1) and O(A – 1) groups, we adopt the condensed notation
using (ω) instead of (ω00) and so on.
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10] (the values of the parameters in these potentials are
quoted in Table 1)

(5)

The expression for the matrix element of the
kinetic-energy operator has the form

(6)

where E is the oscillator energy,  is the density
matrix for Wigner interaction, and rψ is the scale
parameter of the radial wave function.

The matrix element of the Coulomb interaction
operator is given by

(7)

where  is the density matrix for the Coulomb inter-
action, while the interaction integrals (in MeV) have
the form

(8)

where the parameter rψ is measured in femtometers. In
the case of the diagrams λ = [4…4], it is sufficient to
know QW and QM for calculating the matrix element (4),
because the remaining quantities are determined from
the relations

(9)

The density matrices QW and QM are given by 

(10)

(11)

The density matrix QC for the Coulomb energy in (7) is
readily expressed in terms of QW and QM. By way of
example, we indicate that, for the diagrams λ = [4…4],
the resulting relation has the form

(12)

In Eqs. (10) and (11),  is the SU(3)-irreducible
two-particle density matrix; C stands for the Clebsch–
Gordan coefficients associated with the chain SU(3) ⊃
O+(3); and 〈εlε'l '|p〉 are the Brody–Moshinsky coeffi-

V
2S 1 2T 1+ +

r( ) V2S 1 2T 1+ +
i

i
∑=

× r/µ2S 1 2T 1+ +
i( )

2
–[ ] .exp

Γ〈 |T Γ '| 〉 E
3 A 1–( )

2
---------------------+ 

  δ ΓΓ '( ) ∑=

–
1
A
--- p

3
2
---+ 

  Qp
WΓΓ '

p
∑ "

2

mrψ
2

----------,

Qp
WΓΓ '

Γ〈 |VC Γ '| 〉 Qp
CΓΓ '

I p
C
,∑=

Qp
C

I p
C 2

p
p! 1.44rψ×
2 p 1+( )!!

---------------------------------,=

Qp
B

Qp
H

– 2 Qp
W

Qp
M

–( )/5.= =

Qp
W

QE

EE '
Cκ LlκL

EεE
Cκ LlκL

Eε'E ' εlε' l ' p〈 | 〉 ,
Eκ Lll '
∑=

Qp
M

1–( )ε
QE

EE '
Cκ LlκL

EεE
Cκ LlκL

Eε'E ' εlε' l ' p〈 | 〉 .
Eκ Lll '
∑=

Qp
C

7Qp
W

2Qp
M

–( )/30.=

QE



196 JANKAUSKAS
Table 1

V

, MeV , MeV , MeV , MeV

, fm , fm , fm , fm

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

V1 144.86 –83.34 144.86 –83.34 644 0 644 0
0.82 1.6 0.82 1.6 0.65 0.65

V2 144.86 –83.34 144.86 –83.34 16.9 0 16.9 0
0.82 1.6 0.82 1.6 1.6 1.6

V3 389.5 –140.6 389.5 –140.6 1000 –26 1000 –26
0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4

V4 144.86 –83.34 144.86 –83.34 –28.97 16.67 –29 16.66
0.82 1.6 0.82 1.6 0.82 1.6 0.82 1.6

V5 –72.5 0 –39.15 0 24.16 0 117.45 0
1.47 1.62 1.47 1.62

V6 69.22 –55.85 69.22 –55.85 20.09 0 20.09 0
1.141 2.185 1.141 2.185 2.185 2.185

V7 118.11 – 80.78 118.11 –80.78 24.77 0 24.77 0
1.172 1.172 2.012 2.012 2.012

V31
i

V13
i

V33
i

V11
i

µ31
i µ13

i µ33
i µ11

i

cients [11], which represent a particular case of the
coefficients D {see formula (4.1) in [12]}.

The nuclear radii can be determined from the for-
mula for the equivalent density distribution {Eq. (2.3)
in [13]}:

(13)

Here, r2 = /A is the mean-square radius—that
is, the mean sum of the squares of the normalized
Jacobi coordinates ρi . It is convenient to represent its
matrix element in the form

(14)
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The electric quadrupole moment is defined as

the expectation value of the operator [16π/5]1/2

in the L = L' = M state [7]. The operator  is
defined as

(15)

where e is the electron charge,  is the isospin projec-

tion onto the z axis,  is a spherical harmonic, and 
is the coordinate of the ith particle. For the diagrams

λ = [4…4], the matrix element of the operator  has
the form
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2( ),
where  is the SU(3)-irreducible single-particle den-
sity matrix and C stands for the Clebsch–Gordan coef-
ficients associated with the chain SU(3) ⊃ O+(3). The
integrals in Eq. (16) are given by

(17)

qE

Iεlε'l ' p 3/2+( ) εlε'l ' p〈 | 〉 .
p
∑=
The probability B(E2) of electric quadrupole transi-
tions is expressed in terms of the matrix element of the
operator  [7] as

(18)

O0
2

B E2 L L',( )

=  Γ 'L'M '〈 |O0
2 ΓLM| 〉 2

CM0M
L'2L[ ]

2–
.
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The matrix elements (16) and (18) do not vanish
only for E ' = E, E ± 2 states. In the case of symmetric
representations of the SU(3) group, there are analytic
expressions for the diagonal matrix elements (16) and
(18) (see [14]).

3. CALCULATION OF SU(3)-IRREDUCIBLE 
DENSITY MATRIX FOR U(3(A – 1)) 

MULTIQUANTUM EXCITED STATES

In dealing with the matrix elements in Section 2, the
gravest problems arise in calculating the SU(3)-irreduc-
ible density matrix. With increasing E, these difficulties
go from bad to worse. In this section, the SU(3)-irre-
ducible density matrix is computed for the case of the
symmetric representations [ω + 2m00](ω00) of the
U(A – 1) and O(A – 1) groups with the bases B2 and B3.
In this case, the computations can be simplified [6].
Both the two-particle and the single-particle density
matrix are determined by the set of equations

(19)

where  is the SU(3)-irreducible density matrix and
the coefficients are given by

εε' p〈 | 〉 QE

EE '

E

∑ Q̃p
EE '

p 0 1 … pmax, , ,=( ),=

QE
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(20)

Here, ε = E – ; ε' = ε + 2k = E' – ; p = 0, 1, …,
(ε + ε')/2; and the symbol [ε/2] denotes the integral part
of the bracketed number. The nonhomogeneous terms

 in the set of Eq. (19) are the components of the
density matrix in the canonical basis for the SU(3)
group [6]. In the case of Eω ≡ [ω + 2m00](ω00) states,

the quantity  is expressed in terms of the basic

density matrix  for the [ω00](ω00) states (that is,
the density matrix corresponding to identical represen-
tations E and ω for the same basis) as

(21)

where

εε' p〈 | 〉

=  
2 p ε– k–

p
1/2

------------------------Γ p
1
2
---+ 

  ε! ε 2k+( )![ ]1/2 1–( )ε p–

× s! ε k s– p–+( )! ε 2s–( )![

s max 0 ε ε
2
---– p–, 

 =

min
ε
2
--- ε k p–+, 

 

∑

× 2 p 2s ε–+( )! ] 1–
.

E E

Q̃p
EE '

Q̃p

EE '

Q̃
0ωω'

Q̃p
EE '

Q̃p α–
0ωω'

Dp α– α,
NlK N 'lK' ,

α
∑=
(22)
Dp α,

Γ N lK 1/2+ +( )Γ N lK' 1/2+ +( )N!N'![ ] 1/2

α!
-----------------------------------------------------------------------------------------------------

Γ lK lK'+( )/2 1/2+( )Γ p a 1/2+ +( )
Γ lK lK'+( )/2 p– )Γ p( 1/2+( )

------------------------------------------------------------------------------------=

× 1–( )m m'+ m m'+( )!Γ lK lK'+( )/2 p– s+( )
s!m!m' N m–( )! N ' m'–( )!Γ lK m 1/2+ +( )Γ lK' m' 1/2+ +( )
----------------------------------------------------------------------------------------------------------------------------------------.

mm's
∑

Here, N = (E – ω)/2, lK = ω + (A – 2)/2, α = m + m' – s,
and summation is actually performed over two indices.

The explicit form of the basic density matrix can
easily be derived from the results presented in [1, 6]. By
way of example, we indicate that, for the 4 ≤ A ≤ 8
nuclei, the two-particle density matrix for the U(3(A –
1)) states corresponding to the symmetric representa-
tions [ω00](ω00) at ω = Emin has the form

(23)

For the same states, the single-particle density matrix is
given by

(24)

For the U(3(A – 1)) states involving O(A – 1) exci-
tations (that is, the ω1 + ω2 + ω3 = Emin + 2 states), the

Q̃0

0 3
8
--- ω ω 3+( ) 16+[ ] , Q̃1

0 1
4
---ω 11 ω–( ),= =

Q̃2

0 3
8
---ω ω 1–( ).=

q̃0
0 A A 1– ω–( )

A 1–
--------------------------------, q̃1

0 Aω
A 1–
------------.= =
basic density matrix can be determined, by invoking
fractional-parentage coefficients, with the aid of the
method proposed in [6].

4. RESULTS OF THE CALCULATIONS
Presented below are some results that were com-

puted for the  nucleus and which make it possible
to study the spectroscopic quantities as functions of the
quantum numbers associated with the U(A – 1) and
O(A – 1) groups and to clarify the role of U(3(A – 1))
multiquantum excited states. In these calculations, use
was made of the variational values of the parameter rψ
appearing in the expression for the wave function. The
results are presented in Tables 2–7 and in the figure.

Levels that were studied here belong to the L = 0+,

2+, and 4+ and 0+, , , and  rotational bands. No
attention has been given here to other levels identified
in [15], which correspond, according preliminary cal-
culations, to the Young diagrams [431] (the excitation

Be8
4

21
+

41
+

61
+
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Table 2.  Changes in the energy (in MeV) and the root-mean-square radius (in fm) in response to the extension of the basis B1

Lπ
Potential V4

Lπ
Potential V7

1 2 3 4 1 2 3 4

0+ 0(–36.32) 0(–41.18) 0(–44.42) 0(–45.51) 0+ 0(–53.17) 0(–58.44) 0(–61.27) 0(–62.98)

2.17 2.19 2.21 2.21 2.56 2.60 2.64 2.63

2+ 1.99 2.19 3.0 3.15 2+ 1.36 1.74 2.37 2.42

2.10 2.17 2.18 2.19 2.56 2.59 2.59 2.60

4+ 6.48 7.65 10.75 9.14 4+ 4.32 6.00 8.75 7.07

2.10 2.14 2.16 2.15 2.49 2.68 2.56 2.55

21.03 26.45 27.64 26.63 16.96 23.68 24.63 25.17

2.56 2.57 2.62 2.59 2.91 2.90 2.97 2.95

22.16 28.45 31.50 30.56 17.40 24.39 27.14 27.49

2.56 2.52 2.48 2.58 2.88 2.86 2.87 2.91

24.62 31.35 33.85 33.95 18.48 25.65 28.17 29.07

2.53 2.47 2.52 2.54 2.84 2.77 2.82 2.84

01
+

01
+

21
+

21
+

41
+

41
+

Table 3.  Binding energy and spacings between the energy levels (in MeV) according to calculations with the basis B1

Potential
Lπ V1 V2 V3 V6

Emin approximation

0+ 0 (–35.75) 0 (–34.93) 0 (–35.52) 0 (–53.96)

2+ 2.10 2.03 2.09 1.49

4+ 6.92 6.67 6.82 4.83

Emin + 2 approximation

0+ 0 (–45.59) 0 (–44.41) 0 (–45.86) 0 (–64.12)

2+ 3.25 3.19 3.23 2.57

4+ 9.98 9.74 9.97 8.10

27.12 26.52 27.86 25.62

31.04 30.45 31.56 28.04

34.32 33.84 34.28 30.08

01
+

21
+

41
+

energy range between 16 and 20 MeV) and [422] (the
excitation-energy range between 20 and 26 MeV).

As was mentioned in the Introduction, the computa-
tions were performed in two steps. The calculations in
the Emin + 2 approximation at the first step made it pos-
sible to clarify the role of basis states corresponding to
different representations [E1E2E3] and (ω1ω2ω3) and
the potential of the basis B1 (Tables 2–4). At the second
step, the computations were performed in the multi-
quantum approximation by using the bases B2 and B3
(see figure and Tables 5–7).
4.1. Emin + 2 Approximation

Tables 2 and 3 quote the theoretical values of the
binding energy (in parentheses), the spacings between
the levels under study, and the root-mean-square radii.

Table 2 demonstrates how the results change as we
extend the basis B1 step by step. There, we display the
values calculated with the potentials V4 [8] and V7 [9].
The results obtained in the Emin approximation ([4](4)
function) are shown in the first column. The results
deduced by employing the basis of two functions
{[4](4), [6](4)} are given in the second column. The
results in the third column were derived in the basis
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
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Table 4.  Coefficients b(Eω) × 102 in the expansion of the wave function ψ(L) for the potential V4 in the basis B1

Lπ

Eκωα
0+ 2+ 4+

[4](4) 91 91 91 5 –5 – 9

[6](4) 22 30 30 90 94 94

[51](4) – –8 12 – 15 24

[42]0(4) 30 22 –18 21 –27 –21

[42]2(4) – 11 – – –3 –

[6](6) 12 14 –15 36 13 –5

[51](51) – 0 0 – 0 1

[42]0(42)1 3 0 – 3 0 –

[42]2(42)1 – 0 3 – 2 1

[42]0(42)2 7 0 – 6 0 –

[42]2(42)2 – 0 8 – 1 5

01
+

21
+

41
+

Table 5.  Changes in the energy (in MeV) and the root-mean-square radius (in fm) in response to the extension of the bases
B2 and B3 for the potential V4

NN1
Lπ 0(1*) 2 4 8 12 12    0 12    5 Experimental 

values [15]

0+ 0 (–36.32) 0 (–44.32) 0 (–47.17) 0 (–48.26) 0 (–48.32) 0 (–48.94) 0 (–50.02) 0 (–56.6)

2.17 2.21 2.27 2.32 2.34 2.32 2.35

2+ 2.00 2.50 2.94 3.11 3.12 3.08 3.18 3.04

2.16 2.21 2.27 2.32 2.33 2.32 2.35

4+ 6.47 8.76 10.05 10.52 10.54 10.52 10.84 11.4

2.13 2.18 2.27 2.32 2.33 2.30 2.35

27.22* 26.04 21.92 18.20 17.35 17.47 16.18 20.2

2.57 2.55 2.58 2.72 2.79 2.79 2.84

28.59 27.28 23.31 19.85 19.06 19.23 18.16 22.2

2.54 2.52 2.58 2.72 2.80 2.81 2.84

31.35 29.75 26.41 23.65 22.96 23.29 22.60 25.4

2.48 2.49 2.55 2.67 2.78 2.79 2.82

6+ 33.00 31.23 29.26 27.56 27.21 27.71 26.95

2.58 2.54 2.62 2.74 2.78 2.81 2.84

* The energies ε(L1) are reckoned from the L = 0 level (the energy ε(0) = –41.18 MeV was obtained at N = 1).

01
+

21
+

41
+

involving all ω = (4) functions associated with the cor-
responding value of L (for labeling of the functions
involved, see Table 4). The results presented in the
fourth column correspond to the full basis B1—that is,
all functions of the Emin + 2 approximation that are
associated with the diagram λ = [44] are used.

The results for the other potentials in the Emin and
Emin + 2 approximations are quoted in Table 3. The
results for the potentials V1, V2, and V3 are close to the
results for V4, while the results for the potential V6 are
close to the results for V7.
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The structure of the wave function in the Emin + 2
approximation is shown in Table 4. The states associ-
ated with minimum ω = (4) and, among them, the states
corresponding to the most symmetric diagrams
[E1E2E3] are of greatest importance kinematically and
are therefore dominant. The contribution of the ω1 +
ω2 + ω3 = Emin + 2 states is much less.

For the nearly realistic potentials presented in Table 1,
the binding energy (its experimental value is ωbind =
56.60 MeV [15]) and the spacings between the levels in
the first band can be calculated in the Emin + 2 approxi-
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Table 6.  Changes in the electric quadrupole moments Q(L) (in e fm2) and the probabilities of electric quadrupole transitions,
B(E2, L  L – 2) (in e2 fm4), in response to the extension of the bases B2 and B3 for the potential V4

NN1

Lπ 0 (1*) 2 4 8 12 12    0 12    5

0+ 0 0 0 0 0 0 0

2+ –4.02 –5.75 –6.85 –7.65 –7.77 –7.52 –7.96

4+ –4.87 –6.77 –8.18 –9.16 –9.31 –8.94 –9.68

0 0 0 0 0 0 0

–5.86 –6.94 –8.91 –11.57 –12.81 –12.81 –12.97

–7.06 –8.57 –11.03 –13.93 –15.69 –15.85 –15.99

–9.64 –10.88 –13.51 –16.46 –17.90 –17.79 –18.33

2+  0+ 3.69 8.14 11.57 14.50 14.94 14.03 15.62

4+  2+ 3.18 9.48 14.54 18.60 19.20 17.73 20.53

  7.99 11.43 19.25 32.72 40.00 39.87 45.14

  6.83 12.55 24.26 42.32 53.52 54.11 58.70

  7.81 16.83 30.52 45.32 55.39 56.30 59.45

  4+ 0.75 3.70 10.57 17.07 17.55 16.67 20.62

* For the levels of the second band, N = 1.
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Table 7.  Coefficients b(Eω) × 102 in the expansion of the wave function ψ(L) for the potential V4 in the basis B3

Lπ 0+ 2+ 4+ 6+

m
0 56 –59 65 50 –51 55 0
1 –53 52 – 9 –2 5 1 41
2 41 –40 38 –19 21 –25 –46
3 –30 29 –26 32 –34 35 42
4 20 20 18 –35 36 –35 –36
5 –14 13 –12 32 32 31 29
6 9 –9 8 –27 27 25 –22
7 –6 6 –5 22 –21 20 17
8 4 –4 3 –18 17 –16 –13
9 –3 3 –3 15 –14 13 10

10 3 –2 2 –14 12 –11 –8
11 –3 3 –2 13 –12 10 7
12 2 –2 2 –11 10 –8 –5

m1

0 12 –13 13 4 –4 –4 –8
1 –10 10 –9 9 –9 10 13
2 10 –9 8 –15 15 –13 –14
3 –7 7 –6 19 –18 16 13
4 6 –5 5 –21 20 –16 –12
5 –3 3 –3 12 –11 9 6

01
+

21
+

41
+
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mation. For example, the result for the binding energy
is εbind = 56.90 MeV in the basis of the [4](4) and [6](6)
functions for V6 and εbind = 56.56 MeV in the basis of
the [4](4), [6](6), [42](42)1, and [42](42)2 functions for
V7. In order to compute the energy levels in the second
band, the quadrupole moments Q(L), and the transition
probabilities B(E2, L  L – 2), it is obviously neces-
sary to supplement the basis with E > Emin + 2 func-
tions. This is not unexpected because collective effects
play an important role in the formation of rotational
bands.

4.2. Multiquantum Approximations

An analysis of the results obtained in the Emin + 2
approximation reveals that the functions corresponding
to the most symmetric diagrams E and the minimum
value ω = (4) must be taken into account above all in the
basis of U(3(A – 1)) multiquantum excited states char-
acterized by E > Emin + 2. To put it differently, it is nec-
essary to include the [4 + 2m](4) multiquantum excited
states and, whenever possible, the [4 + 2m2](4) and
[5 + 2m1](4) states with m = 1, 2, …. Of the ω = Emin +
2 [that is, ω = (6)] functions, attention should be given
only to the most symmetric [6 + 2m](6) function.

The computations with the reduced Hamiltonian
(without Coulomb interaction) in the basis B2 consist-
ing of the [4 + 2m](4) functions, m = 0, 1, …, 10, were
performed in [2], where it was indicated that the
method used in these computations is equivalent to the
Sp(2, R) approximation [4] and to the method of gener-
alized hyperspherical functions [5]. Here, we present
some results of the computations with the full Hamilto-
nian (1) in the basis B2 and in the basis B3, which is
obtained by supplementing the basis B2 with the [6 +
2m](6) functions, m = 1, 2, …, 6. The results are given
in Tables 5–7 and in the figure.

For the potential V4, Tables 5 and 6 illustrate the
dependence of the energies ε of the levels, the root-

V7

V4

V5

0 4 8 12 12 1212
0 4 6

12
2

N
N1

20

40

60

–εbind, MeV

Binding energy εbind as a function of the number N + 1 +
N1 + 1 of the included basis functions.
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
mean-square radii 〈r〉1/2, the quadrupole moments Q(L),
and the transition probabilities B(E2, L  L – 2) on
the number N + 1 (N + 1 + N1 + 1) of the functions taken
into account in the basis B2 (B3). In just the same way
as in the case of the Emin + 2 approximation, the results
for the potentials V1, V2, and V3 are close to the results
for V4, whereas the results for V6 are similar to the
results for V7. The results for V5 differ from the results
for the other potentials to a greater extent. The analo-
gous dependences for the binding energy εbind on N and
N1 are displayed in the figure for the potentials V4, V5,
and V7. The coefficients b(m) in the expansions of the
wave function ψ(L) in the basis B3 are given in Table 7.

5. CONCLUSIONS

(i) From a comparison of the results presented here
with those from [2], it follows that the inclusion of the
Coulomb interaction has virtually no effect on the
structure of the wave functions, the spacings between
the energy levels, the values of the quadrupole
moments, and the probabilities B(E2).

(ii) For all the potentials used, the extension of the
basis leads to the following changes in the energy spec-

trum: the 0+, 2+, and 4+ and , , , and 6 bands
expand and come close together (the spacing between
the bands decreases). Owing to this, reasonably good
agreement with experimental data can be obtained at
some values of N. For example, the theoretical values
of the spacings between the energy levels ε(L) at N = 5
and 6 agree well with experimental data for both bands
(see Table 5).

(iii) Over the first band, the values of Q and B(E2)
are independent of the number of basis functions for N ≥
7. This is not so for the second band, where almost all
functions from the basis B2 must be taken into account.

(iv) The effect of the [6 + 2m1] (6) functions, m1 = 0,
1, 2, …, from the basis B3 is substantial only for the
binding energies (for the potential V4, the inclusion of
these functions increases the binding energy by
1.7 MeV) and the probabilities B(E2) for the second
band.

(v) From a comparison of the binding-energy values
in the first and the second column of Table 2, it can be
seen that the inclusion of the [6](4) state increases the
binding energy εbind by 4.9 MeV. An extra increase of
9.0 MeV in the binding energy results from taking into
account the multiquantum excited states [4 + 2m](4),
m = 2, …, 12, and [6 + 2m1](6), m1 = 0, 1, 2, …. The
inclusion of the [42](4) state (see the second and the
third column in Table 2) additionally increases εbind by
more than 3.2 MeV. It can therefore be expected that, in
the case of the potentials V1–V4, the binding-energy val-
ues complying with experimental data would result
from the use of the basis B3 supplemented with the [4 +
2m2](4) functions, m = 0, 1, 2, ….

01
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+
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+
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Thus, we can hope that the basis B3 supplemented
with the [5 + 2m1](4) and [4 + 2m2](4) functions, m =
0, 1, 2, …, will prove to be sufficient for obtaining sat-
isfactory theoretical values of the aforementioned

quantities for the  nucleus.
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Abstract—The equation for the Brueckner G matrix is investigated for planar-slab geometry. A method for cal-
culating the G matrix for a planar slab of nuclear matter is developed for a separable form of NN interaction.
Actually, the separable version of the Paris NN potential is used. The singlet 1S0 and the triplet 3S1–3D1 channel
are considered. The present analysis relies on the mixed momentum–coordinate representation, where use is
made of the momentum representation in the slab plane and of the coordinate representation in the orthogonal
direction. The full two-particle Hilbert space is broken down into the model subspace, where the two-particle
propagator is considered exactly, and the complementary subspace, where the local-potential approximation is
used, which was proposed previously for calculating the effective pairing potential. Specific calculations are
performed for the case where the model subspace is constructed on the basis of negative-energy single-particle
states. The G matrix is parametrically dependent on the total two-particle energy E and the total momentum P⊥
in the slab plane. Since the G matrix is assumed to be further used to calculate the Landau–Migdal amplitude,
the total two-particle energy is fixed at the value E = 2µ, where µ is the chemical potential of the system under
investigation. The calculations are performed predominantly for P⊥  = 0. The role of nonzero values of P⊥  is
assessed. The resulting G matrix is found to depend greatly on µ in the surface region. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION
The present article reports on a continuation of a

series of studies devoted to extending Brueckner theory
for infinite nuclear matter to nonuniform nuclear sys-
tems without invoking the local-density approximation.
A method for numerically solving the Bethe–Gold-
stone equation in semi-infinite nuclear matter was
developed in [1–3] for the problem of singlet 1S pairing.
For a separable representation of free nucleon–nucleon
interaction, this equation could be solved without
recourse to any form of local approximation. The pair-
ing problem was formulated on the basis of the effec-
tive pairing interaction in the model subspace where the
equation for the pairing gap ∆ was obtained. The model
subspace was taken there in a form that is conventional
for nuclear physics and which includes all negative-
energy single-particle states.

The effective pairing interaction 9eff satisfies an
equation that is similar in form to the Bethe–Goldstone
equation for the G matrix, which is a basic element of
the Brueckner theory of nuclear matter. In the pairing
problem, there is a simplifying circumstance associated
with the fact that pairing in an infinite system occurs at
zero total momentum of the two nucleons involved (P =
0). Accordingly, the total orthogonal momentum P⊥
must vanish in a semi-infinite system. Specific calcula-
tions for 1S0-channel pairing in semi-infinite nuclear
matter placed in the one-dimensional Woods–Saxon

1) Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57
Corso Italia, I-95129 Catania, Italy.

2) Università di Catania, Dipartimento di Fisica, 57 Corso Italia,
I-95129 Catania, Italy.
1063-7788/01/6402- $21.00 © 0203
potential well V(x) were performed for the separable 3
× 3 version [4, 5] of the Paris potential [6]. This poten-
tial was tested in the calculations within Brueckner the-
ory in infinite nuclear matter [7, 8].

In this case, the effective interaction 9eff is found by
solving a set of one-dimensional integral equations for
six independent components Λij(X, X '), where X and X '
are the c.m. coordinates of two nucleons prior to and
after the interaction event. We note that the matrix Λij

(i, j = 1, 3) is symmetric, so that only six coefficients are
independent. The kernels of these equations represent
the convolutions of the two-particle propagator Bij with
the form factors gi and gj for the nucleon–nucleon
potential (for the sake of brevity, we will often refer to
these convolutions as merely propagators). In [2, 3], we
proposed, in addition to the precise method for calcu-
lating the propagators, quite an accurate approach, the
local-potential approximation. This method consists in
the following: at a fixed half-sum X0 = (X + X ')/2 of the
c.m. coordinates of interacting nucleons, the exact
expression for Bij(X0, t) (t = X – X ') in the system under
investigation is replaced by the approximate expression

(X0, t) equal to the corresponding expression for
infinite nuclear matter placed in the potential well V0 =
V(X0). Within nuclear matter, the local-potential
approximation and the standard local-density approxi-
mation have nearly identical accuracies. In the surface
region, however, where the local-density approxima-
tion is inapplicable, the local-potential approximation
provides a satisfactory accuracy in calculating the
effective pairing interaction [2, 3].

Bij
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In order to calculate the Brueckner G matrix, we
construct here a similar scheme where a precise calcu-
lation of the two-particle propagators will be combined
with the local-potential approximation. In the Brueck-
ner method, the G matrix specifies the Landau–Migdal
amplitude

(1)

where Z(r) is the renormalization factor of the single-
particle Green’s function &, E is the total energy of two
nucleons, and µ is the chemical potential of the system.
This amplitude, which is the basic ingredient of the the-
ory of finite Fermi systems [9], plays the role of effec-
tive quasiparticle interaction in the theory.

Instead of semi-infinite nuclear matter, we consider
a planar nuclear-matter slab placed in the one-dimen-
sional Woods–Saxon potential well V(x) symmetric
with respect to the origin—that is, a system that is the
closest to finite nuclei. As in semi-infinite systems, the
momentum in the plane orthogonal to the x axis is then
conserved. Hence, it is convenient to go over in relation
(1) to the momentum representation in this plane. In
relation to the pairing problem, there arises, however, a
significant complication—now, there is no reason to
assume that P⊥  = 0. By using Eq. (1) within the nuclear-
matter slab to calculate the harmonics of the Landau
expansion of the amplitude F [9], we can easily see that
the result does indeed involve an integral with respect
to P⊥  from zero to the doubled Fermi momentum, kF.
This renders relevant numerical calculations much
more cumbersome.

In [10, 11], relation (1) was used to compute the sur-
face values of the zeroth harmonics of the invariant
Landau–Migdal amplitudes. Near the nuclear surface,
the local values of the nucleon momenta are small;
therefore, we can approximately set P⊥  = 0. Moreover,
the G matrix goes over, at large distances from the
nucleus, to the T matrix for free nucleon–nucleon scat-
tering, the calculation of the latter being much simpler.
It is this approximation that made it possible to repro-
duce faithfully in [10, 11] the empirical values of the
surface amplitudes. In order to obtain a more detailed
description of the coordinate dependence of the Lan-
dau–Migdal amplitudes over the entire surface region,
it is necessary, however, to calculate the G matrix. With
an eye to a subsequent application of the G matrix to
precisely this problem, we also restrict here our consid-
eration to small P⊥  values, although the computational
scheme remains valid in general for arbitrary P⊥  values.
We investigate two channels, the 1S0 singlet channel
and the 3S1 triplet channel coupled to the 3D1 one. In the
triplet channel, we use the 4 × 4 PEST4 separable
potential, which provides the best description of
nucleon–nucleon scattering among all versions of the
separable representation of the Paris potential that were
discussed in [4].

F r1 r2 r3 r4, , ,( )

=  Z r1( )Z r2( )Z r3( )Z r4( )G r1 r2 r3 r4; E, , , 2µ=( ),
The Bethe–Goldstone equation for the G matrix dif-
fers only slightly in form from the equation for the
effective pairing interaction. In solving it, we can use
the same prescription for introducing the model sub-
space and the effective interaction acting in it as in the
pairing problem [2, 3]. The procedure is quite conven-
tional: in the full two-particle Hilbert space 6, we sin-
gle out the model subspace 60 where we calculate pre-
cisely the two-particle propagator and express the G
matrix in terms of this propagator and the effective
interaction. The effective interaction is determined by
the Bethe–Goldstone equation in the complementary
subspace 6', where the local-potential approximation
is used to calculate the two-particle propagator. The
model subspace is taken here to be identical to that in
the pairing problem; that is, it is constructed in terms of
negative-energy single-particle states. For the 1S0 chan-
nel at P⊥  = 0, the effective interaction for the problem
under study therefore coincides with the effective pair-
ing interaction. For the triplet channel, the computa-
tional scheme is somewhat more complicated. For
example, ten equations arise here instead of a set of six
equations for the multipole components of the G
matrix. The calculation of the propagators Bij seems
more complicated as well, but, at a fixed value of P⊥ ,
the two computational schemes are very similar. As
will be seen from the ensuing analysis, the proposed
method can be applied, without significant changes, to
channels of higher multipole order, for which there is a
separable representation of the NN potential in [4].

The present article is organized as follows. In Sec-
tion 2, the general Bethe–Goldstone equation for the G
matrix in the 1S0 singlet channel is reduced for planar-
slab geometry to a form convenient for numerical cal-
culations. In doing this, we use the separable represen-
tation [4] of the NN potential and the technique of the
mixed coordinate–momentum representation [2, 3].
Owing to the mirror symmetry of the system under
study, the equation for the G matrix breaks down into
two equations—one for its even components and the
other for the odd components, each being defined only
at positive x values. It much more straightforward to
obtain a numerical solution to the problem in this case
than in the case of semi-infinite geometry, where there
is no such symmetry. In Section 3, the same is done for
the 3S1–3D1 channel. In Sections 4–8, we comprehen-
sively study a solution to the equation for the G matrix
at zero value of the total orthogonal momentum P⊥  of
two nucleons. All calculations are performed for the
case where the chemical potential of the system is set to
the value of µ = –8 MeV, which is typical of stable
nuclei. For the two-particle propagators, various forms
encountered in solving our problem are considered in
Sections 4 and 5. In Sections 6–9, we investigate the G
matrix. In Section 9, we analyze the chemical-potential
dependence of the G matrix. In Section 10, we estimate
the role of nonzero P⊥  values. Section 11 is devoted to
discussing basic results. For the Paris potential, Appen-
dix 1 gives formulas for the coordinate representation
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of the form factors of the separable representation used
in this study. In Appendix 2, we give an account of the
method for calculating the free T matrix for the triplet
channel in the coordinate representation.

2. EQUATION FOR THE G MATRIX IN PLANAR-
SLAB GEOMETRY: 1S0 SINGLET CHANNEL

In considering nonuniform systems, it is better to
proceed from the general equation for the Brueckner G
matrix in the coordinate representation. It can be writ-
ten as

(2)

where 9 is the potential of nucleon–nucleon interac-
tion and A is the two-particle propagator. Within
Brueckner theory, this propagator is determined as an
integral that involves the product of two single-particle
Green’s functions as the integrand and which takes into

account only the contribution of particle poles ( ).
We note that the so-called T matrix (an analog of the
Brueckner G matrix in conventional many-body theory
[12, 13]) is determined by an equation of the type in (2)
with the propagator A that involves both the two-parti-

cle ( ) and the two-hole ( ) contribution.
Thus, the expression for the two-particle propagator in
Brueckner theory has the form

(3)

In the representation of the single-particle eigen-
functions φλ(r) diagonalizing the single-particle
Green’s function, the propagator A is given by

(4)

where

(5)

Here, nλ and nλ' are the single-particle occupation num-
bers, which are equal to unity (zero) for filled (unfilled)
states, while ελ and ελ' are the corresponding single-par-
ticle energies.

G r1 r2 r3 r4; E, , ,( ) = 9 r1 r2,( )δ r1 r3–( )δ r2 r4–( )

+ 9 r1 r2,( )A r1 r2 r5 r6; E, , ,( )∫
× G r5 r6 r3 r4; E, , ,( )dr5dr6,

&
p

&
p
&

p
&

h
&

h

A r1 r2 r3 r4; E, , ,( )

=  
εd

2πi
--------&

p
r1 r2; 

E
2
--- ε+, 

  &
p

r3 r4; 
E
2
--- ε–, 

  .∫

A r1 r2 r3 r4; E, , ,( )

=  Aλλ' E( )φλ r1( )φλ* r3( )φλ' r2( )φλ'* r4( ),
λλ'

∑

Aλλ' E( ) εd
2πi
--------&λ

p E
2
--- ε+ 

  &λ'
p E

2
--- ε– 

 ∫=

=  
1 nλ–( ) 1 nλ'–( )

E ελ– ελ'–
---------------------------------------.
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Equation (2), together with the propagator specified
by Eqs. (3)–(5), differs from the analogous equation for
the effective pairing interaction [2, 3] only by the form
of the projection operator in the numerator on the right-
hand side of (5).

In accordance with the above partition of the Hilbert
space 6 into two parts, the sum in (4) over λλ ' also
breaks down into two terms,

(6)

where A0 contains only states that belong to the model
subspace 60, while A' involves all the remaining states.

The standard renormalization procedure leads to an
equation for the G matrix in the model subspace,

(7)

where the effective-interaction potential 9eff is deter-
mined by a similar equation in the complementary sub-
space 6'; that is,

(8)

We analyze a planar nuclear-matter slab of thick-
ness 2L placed in the one-dimensional Woods–Saxon
potential well V(x) symmetric with respect to the point
x = 0,

(9)

For the depth and diffuseness potential parameters
(V0 and d, respectively) and for the slab half-width (L),
we choose the values of V0 = 50 MeV, d = 0.65 fm, and
L = 8 fm, which are close to values characteristic of
heavy nuclei. As in the case of semi-infinite nuclear
matter, the system is nonuniform only in one direction
(x axis); in the orthogonal plane [(yz) plane, also
referred to as the s plane)], the momentum is con-
served. In order to solve Eq. (2) [or Eqs. (7) and (8),
which are equivalent to it], we can therefore use the
technique of a mixed representation [1], where use is
made of the coordinate representation in the x direction
and of the momentum representation in the orthogonal
plane, so that, in expansion (4), the eigenfunctions are
represented as

(10)

where yn(x) are the eigensolutions to the one-dimen-
sional Schrödinger equation with the potential (9). The
eigenenergies corresponding to the functions in (10)

are ελ = εn + /2m. For the sake of simplicity, it is
assumed here that the effective single-particle mass m*
is equal to the vacuum nucleon mass m. It is straightfor-
ward to extend the scheme to the general case of m* ≠
m. We note that the potential (9) is symmetric with
respect to the point x = 0; therefore, the eigenstates yn

of the discrete spectrum have a specific parity—we
denote by  and  the even and the odd eigenfunc-

A A0 A',+=

G 9eff 9effA0G,+=

9eff 9 9A'9eff.+=

V x( )
V0

1 x L–( )/d( )exp x L+( )/d–( )exp+ +
---------------------------------------------------------------------------------------------.=

φλ r( ) yn x( ) ik⊥ s⋅( ),exp=

k ⊥
2

yn
+

yn
–



206 BALDO et al.

    
tions, respectively. For the continuous spectrum, it is
convenient to use definite-parity states as well, which
are real, as can easily be seen.

In just the same way as in [2, 3], we will use a sep-
arable representation for a realistic nucleon–nucleon
potential—specifically, a separable version [4, 5] of the
Paris potential [6]. Its appropriateness for calculations
within the Brueckner method was demonstrated in [7,
8] for infinite nuclear matter and in [2, 3] for semi-infi-
nite nuclear matter.

Let us first consider the simpler case of the 1S0 sin-
glet channel, where the potential from [4, 5] has the
separable 3 × 3 form,

(11)

Here, k (k') is the relative momentum of the incoming
(outgoing) nucleons. Following [2, 3], we change a nor-
malization of the form factors in (11) in relation to that
used in the original version from [4, 5] in such a way as
to ensure fulfillment of the condition gi(0) = 1. The
explicit expressions for the renormalized form factors
(11) are given in [2, 3].

In the mixed coordinate–momentum representation,
the G matrix for the channel being considered can be
sought in the form

(12)

where P⊥  is the total momentum in the s plane; k⊥  ( )
is the relative momentum prior to (after) the scattering
event in the s plane; and we have introduced the follow-
ing notation for coordinates in the x direction: X = (x1 +
x2)/2, x = x1 – x2, X' = (x3 + x4)/2, and x' = x3 – x4. In the

mixed representation, the form factors gi( , x) are
determined by the inverse Fourier transformation of the

quantity gi(  + ) with respect to the variable kx:

(13)

Their explicit forms are presented in Appendix 1.
An expansion similar to that in (12) is valid for the

effective interaction as well:

(14)

9 k k',( ) λ ijgi k
2( )g j k'

2( ).
ij

∑=

G k ⊥
2

k ⊥'
2

P⊥ ; x1 x2 x3 x4; E, , , , ,( )

=  Gij X X'; E P⊥, ,( )gi k ⊥
2

x,( )g j k ⊥'
2

x',( ),
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∑

k⊥'

k ⊥
2
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2
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2

gi k ⊥
2

x,( ) gi k ⊥
2
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2

+( )e
ikx x–
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2
 π -------. 

∞
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∞
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9eff k ⊥
2

k ⊥'
2

P⊥ ; x1 x2 x3 x4; E, , , , ,( )

=  Λ ij X X'; E P⊥, ,( )gi k ⊥
2

x,( )g j k ⊥'
2

x',( ).
ij

∑

 

By substituting the potential (11) and the 

 

G

 

-matrix
expansion (12) into the original Eq. (2), we find that the
coefficients 

 

G

 

ij

 

 satisfy the set of integral equations

 

(15)

 

where the convolutions 

 

B

 

lm

 

 of the two-particle propaga-
tor and the form factors are given by

 

(16)
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We note that symbolic summation over 

 

nn

 

'

 

 in (16)
includes both actual summation over the discrete spec-
trum and integration for the continuous spectrum with

the standard substitution 

 

  /2

 

π

 

. We also

considered that the functions 

 

y

 

n

 

(

 

x

 

)

 

 are real-valued.
By performing similar transformations for the

renormalized Eq. (7) and by using a more compact
notation, we arrive at the set of equations

 

(18)

 

where 

 

 

 

are two-particle propagators in the model
subspace that are determined by the sums of the type in
(16) with the constraint  (  λ  ,  λ  ')  ∈  6

 0  .
Finally, Eq. (8) for the effective interaction can be

recast into the form

 

(19)

 

where the two-particle propagators  in the comple-
mentary subspace are determined by the same sums
(16), but with the constraint 
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In the following, we will find, as a rule, the G matrix
on the basis of the set of Eqs. (18) and (19). In doing

this, we calculate the propagators  precisely and
use the local-potential approximation in evaluating the

propagators . The propagators in (16) and their ana-
logs for the model and the complementary subspace
involve, in relation to the corresponding propagators of
the pairing problem [2, 3], one serious complication
associated with the appearance of the dependence in
the integrand on the angle φ between the momenta P⊥
and k⊥ . It arises from the dependence of the occupa-
tions numbers nλ and nλ' in the numerator of expression
(16) on this angle. For example, the condition nλ = 0
does indeed correspond to the inequality ελ > µ; that is,
εn + (P⊥ /2 + k⊥ )2/2m > µ, which explicitly depends on
the angle φ.

As in the pairing problem, the integral in (16) with
respect to momenta converges slowly because of the
strong repulsive core in the nucleon–nucleon interac-
tion. This problem is especially serious for the Paris
potential. In just the same way as in [2, 3], this problem
is solved by renormalizing Eq. (19) with the aid of the
analogous equation describing the off-shell T matrix
for free nucleon–nucleon scattering at E = 2µ. In a sym-
bolic form, the equation for the T matrix can be written
as

(20)

where Afr(E) is the propagator for two free nucleons
whose total energy is E.

By using the coordinate representation in the x
direction and the momentum representation in the
orthogonal plane, we expand the T matrix in a form
similar to that in (12). Here, the expansion coefficients
Tij(t; E, P⊥ ) depend only on the difference t = X – X' and
obey the equation

(21)

The renormalized equation for the effective interac-
tion can be written in the compact form

(22)

As in the case of P⊥  = 0, the difference kernel of this
equation possesses much better convergence properties
than that in the original Eq. (19). The scheme for com-
puting the free T matrix in the coordinate representation
for P⊥  ≠ 0 is presented in Appendix 2.

All the above equations for the G matrix are valid
for any system that is nonuniform only in one direction.
For a planar slab, they can be simplified by using parity
conservation under the inversion x  –x. As was

Blm
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Blm'

T E( ) 9 9A
fr

E( )T E( ),+=

Tij t; E P⊥,( ) λ ijδ t( )=

+ λ il t'Blm
fr

t t'; E– P⊥,( )Tmj t'; E P⊥,( ).d∫
lm

∑

Λ ij T ij Til Blm' Blm
fr

–( )Λmj.
lm

∑+=
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noted above, the potential (9) does indeed conserve the
parity, and the set of the corresponding eigenfunctions
yn can be broken down into the subset of even functions

 and the subset of odd functions . Therefore, the
two-particle propagator (4) can be represented as the sum

(23)

of the symmetric (even) and antisymmetric (odd) com-
ponents. The symmetric propagator As stems from
those terms in the sum in (4) where both states (λ, λ')
have the same parity, while the antisymmetric propaga-
tor Aa arises from the states of inverse parity. Because
the nucleon–nucleon potential 9 in Eq. (2) for the G
matrix conserves the parity, the propagators of inverse
parity are not coupled.

Let us isolate the Born term from the G matrix. The
remainder is the correlation component of the G
matrix; that is,

(24)

The equation for δG can be derived from (2). The
result has the form

(25)

It is obvious that the correlation part of the G matrix
is the sum of a symmetric and an antisymmetric com-
ponent,

(26)

The equations for these components are separated:

(27)

(28)

It can easily be verified that the convolutions in (16)
involving the symmetric (antisymmetric) propagator As

are the even (odd) functions of coordinates X and X';
that is,

(29)

(30)

On this basis, Eqs. (15)–(22), where integrations are
performed over all values of the c.m. coordinates, can
be reduced to those where integrals are taken only over
positive values of X. For this purpose, we introduce the
symmetrized components of the G matrix and of the
interaction blocks associated with it (nucleon–nucleon
potential, T matrix, and effective interaction):

(31)
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(33)
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(34)

As can be seen, the correlation components G+, – are
twice as large as the above quantities δGs, a. In order to
simplify the form of the final equations, this coefficient
of 2 must be introduced in the definition of the propa-
gators of specific parity. For example, the propagators
in the model subspace become

(35)

Let us explicitly present the symmetrized equations
in the half-space of positive X values for the case of
positive parity. For example, Eq. (18) for G+ reduces to
the form

(36)

The even component of the effective interaction is
determined from the renormalized Eq. (22), which
takes the form

(37)

where the symmetrized propagators in the complemen-
tary subspace and in free space are determined by anal-
ogy with Eqs. (31)–(34) as

(38)

(39)

Finally, the symmetric part of the free T matrix can be
found by solving the equation

(40)

All of Eqs. (36)–(40) were formulated for X ≥ 0;
therefore, the second nonhomogeneous term in (40),
which involves a delta function, does not vanish at the
single point X = 0.

The equations for the case of negative parity are
obtained from the equations for the case of positive par-
ity by substituting a minus sign for a plus in the super-
scripts and by reversing sign between the two delta
functions on the right-hand side of Eq. (40).
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It is obvious that the even G+ matrix acts on the two-
particle states of positive parity (that is, on the basis
states of the types |+, +〉 and |–, –〉) and that the odd G–

matrix acts on the negative-parity states (|+, –〉, |–, +〉).
We recall that it is the total G matrix

(41)

that appears in expression (1) for the Landau–Migdal
amplitude.

3. EQUATION FOR THE G MATRIX
IN THE 3S1–3D1 TRIPLET CHANNEL

Let us now go over to the 3S1 triplet scattering chan-
nel coupled to the 3D1 channel. In this case, the separa-
ble expansion (11) is generalized as [4, 5]

(42)

where the column  has two components,

(43)

It was shown in [5] that, in the multipole representation
of the Paris potential, the best description of nucleon–
nucleon scattering in the channel being considered is
achieved in the 4 × 4 version (PEST4 potential). As in
[10, 11], we will use precisely this potential in the cal-
culations. The normalization of the form factors is nat-
urally similar to that in the singlet channel, but renor-
malization of the two components (L = 0 and L = 2) is
performed simultaneously since the same coefficients
λij appear in expansion (42) for these components. In

the limit k  0, we have (k2 = 0) = 1 and

(k2 = 0) = 0. The renormalized expressions for the
form factors (43) are presented in Appendix 1.

It can easily be shown that the general Eq. (12) and
Eqs. (18) and (19) following from it are valid for the
triplet channel as well. The main formal modification is
that in the definition of the convolutions in (16), which
now become

(44)

It should be borne in mind that, in the case of the
triplet channel, all multipole expansions like those in
(12) and (14) are 2 × 2 matrices. For the sake of clarity,
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+
k'

2( ),
ij

∑=

ĝi
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we indicate that the explicit form of the components of
the relevant matrix for G is

(45)

where L and L' are equal to 0 or 2. We note that,

although the form factors (k2) vanish at k = 0, they

are commensurate with the form factors (k2) at k =
kF (kF ~ 1.4 fm–1 is the Fermi momentum) (see Fig. 1).
It is obvious that all of Eqs. (36)–(40) for the symme-
trized G matrix are valid for the triplet channel.

4. TWO-PARTICLE PROPAGATORS 
IN COMPLEMENTARY SUBSPACE AT P⊥  = 0

In solving Eq. (15) for the G matrix or Eqs. (18) and
(19) following from it, the calculation of the propaga-
tors in (16) or their analogs for the model and the com-
plementary subspace is a point that presents the most
serious mathematical difficulties. Here, we investigate
Eq. (19) for the effective interaction in the simplest case

of P⊥  = 0. In calculating the propagators  in the
complementary subspace, it is reasonable to use
expression (16) where summation over λ and λ' is
restricted to states belonging to this subspace 6'. As
was noted above, we will use the same model subspace
60 as in [2, 3], which includes all negative-energy
states (ελ, ελ' < 0). The complementary subspace 6'
then contains not only positive-energy λ and λ' states
but also pairs of states such that one of the energies is
positive, while the other is negative. It can easily be
shown that, at P⊥  = 0, the above singlet-channel propa-
gators coincide with the analogous propagators that
arise in calculating the effective pairing interaction and
which were comprehensively investigated in [2, 3].
Therefore, we restrict our analysis here to the triplet
channel.

Instead of a direct calculation of the integrals in (44)
[this is the analog of expression (16) in the triplet chan-
nel] for a planar slab, we will use the local-potential
approximation for this purpose. As was noted in the
Introduction, this approximation was tested in [2, 3] for
the singlet channel. Here, we admit that it is valid for
the triplet channel as well. The accuracy of the local-
potential approximation for the triplet channel will be
estimated below. It is the formulation of the computa-
tional procedure that is now of importance for us
because, as follows from the qualitative analysis from
[2, 3], the accuracy of the local-potential approxima-
tion can be improved by supplementing the model sub-
space of negative-energy states with some positive-
energy states. Within the local-potential approxima-
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tion, the computational procedure for the triplet chan-
nel is generally similar to that for the singlet channel.
At a fixed value of the chemical potential µ, it is neces-
sary to calculate first the basis array of the propagators

([Vn], t; E = 2µ) for infinite nuclear matter placed in
the potential Vn for a given set of Vn values. In fact, the
potential-well depth was varied from zero to 58 MeV
with a step of δV = 2 MeV; that is, we employed the val-
ues of Vn = δV × (n – 1), n = 1, …, 30. Obviously, the
propagators depend only on the difference t = |X – X ' |
of the coordinates. They were calculated on a fixed
mesh specified by tk = h(k – 1). The free propagators

(t) automatically coincide with propagators

([Vn = 1], t; E = 2µ). Further, we fixed the mesh of the
values Xk with a step h in the interval (0, L + a). The
parameter a must be taken to be sufficiently large in
order to suppress boundary effects (in the present cal-
culations, we set a = 10 fm). On this mesh, we con-

structed the matrix (Xi , Xk) for the planar slab
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Table 1.  Renormalized constants λij (MeV fm3) and strengths of some terms in the separable form of the Paris nucleon–nu-
cleon potential [5] (3 × 3 representation for the 1S0 channel and 4 × 4 representation for the 3S1–3D1 channel)

j
i

1 2 3 4

S = 0

1 –3.65919 × 103 2.16929 × 103 –2.36114 × 101

2 2.16929 × 103 –1.48465 × 103 5.76074 × 101

3 –2.36114 × 101 5.76074 × 101 1.71791 × 101

S = 1

1 –1.61771 × 103 –1.29611 × 103 8.92091 × 102 4.27077 × 101

2 –1.29611 × 103 7.84747 × 102 1.39388 × 103 –7.86034 × 102

3 8.92091 × 102 1.39388 × 103 –7.45037 × 102 –5.72277 × 102

4 4.27077 × 101 –7.86034 × 102 –5.72277 × 102 1.86482 × 103
under investigation. For this, the potential-well depth
V(X0 = (Xi + Xk)/2) was calculated from (9) at fixed val-
ues of Xi  and Xk, and the required propagator in the
local-potential approximation was found for each t =
|Xi – Xk | by means of a linear interpolation between the

two adjacent values ([Vn], t; E) and ([Vn + 1], t;
E) that were chosen in such a way as to ensure fulfill-
ment of the condition Vn < V(X0) < Vn + 1.

As was noted above, the form factors gi(k) in the
separable expansions (11) and (42) are normalized in
such a way that the conditions gi(k)  1 are satisfied
for k  0. This definition of form factors is more con-
venient than the normalization for the free case [4, 5]
since, when we use a normalization to unity, the con-
stants λij appearing in the above expansions and having
the meaning of the intensity of the corresponding com-
ponents of the nucleon–nucleon potential carry direct
information about the strength of these terms. For both
channels, the values of the constants λij are quoted in
Table 1. As can be seen, the resulting patterns are dif-
ferent in the different channels. The singlet channel
(S = 0) is dominated by the ij = 11, 12, and 22 compo-
nents, the intensities of all terms carrying the index of
3 being two orders of magnitude smaller. Of course,
their contribution cannot be disregarded in calculating
the effective interaction 9eff since, at very high
momenta (up to k = 60 fm–1), which are present in the
integrals for , the form factor g3(k), which increases
with k, considerably exceeds the form factors g1(k) and
g2(k), which decrease with increasing k. As a result, the
contributions of the large and small components
become commensurate for k ≥ 10 fm–1. At momenta k ~
kF , however, which are important for the calculation of
the Landau–Migdal amplitude, the small components
of the singlet potential can be disregarded, at least in a
qualitative analysis. On the contrary, no terms in the
triplet channel (S = 1) have intensities that stand out in

Blm
inf

Blm
inf

Blm'
magnitude; therefore, we must analyze all components.
By way of example, we present the results of the calcu-
lations for three typical components of the propagator
Blm, lm = 11, 33, and 23. The behavior of the remaining
terms generally reproduces the behavior in one of these
three cases. The calculations in this section, as well as
the majority of other similar calculations, were per-
formed at the chemical-potential value of µ = –8 MeV
peculiar to the beta-stable nuclei.

Figure 2 shows the propagator in a medium,

([V0], t), and the free propagator (t), which

coincide with the basis propagators ([Vn], t; E = 2µ)
at n = 26 and n = 1, respectively. As can be seen, the
diagonal components have a sharp maximum at t = 0
and decrease very fast with increasing t. The t depen-
dence of the off-diagonal component B23 is somewhat
weaker. In addition, we can see that, at small t values,
the propagator in a medium and the free propagator
nearly coincide. This circumstance explains why it is
reasonable to perform a renormalization of Eq. (19) in
terms of the free T matrix (20). Indeed, the kernel of the
renormalized Eq. (22) is a much smoother function of
the coordinates than the kernel of Eq. (19). In this
respect, the situation is qualitatively similar to that in
the singlet channel.

We now proceed to analyze the propagators

(X1, X2). It was noted above that, in planar-slab
geometry, it is more convenient to employ the symmet-

ric propagators (X1, X2) and their antisymmetric

counterparts (X1, X2). The properties of the propa-
gators can be analyzed in terms of the variables X0 and
t, which were introduced above; however, it is more
straightforward to use the asymmetric coordinates X =

X1 and t = X2 – X1. That the propagators (X, t)
decrease fast with increasing t results in that the sym-
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metric and antisymmetric propagators (X, t)
virtually coincide everywhere, with the exception of
the region of extremely small values of X. This can be
seen from Fig. 3 by comparing the profile functions

(X) and (X') at X ' = 2 fm for X <
1.5 fm. Even at such small values of X and X ', the dis-
tinction between two functions is very small. At large
X ' values, the profiles of the symmetric and antisym-
metric propagators in the local-potential approximation
are graphically indistinguishable. Below, in this sec-
tion, we therefore analyze only the symmetric propaga-
tors. The profile functions for the propagators

(X, X ') in the local-potential approximation are
compared in Fig. 4 with those for the free propagators

Blm
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Fig. 2. Components of (solid curves) the propagator in a me-

dium, [V = 50 MeV], and (dashed curves) the free prop-

agator, , for S = 1 as functions of the relative coordinate

t = X – X ' at µ = –8 MeV. The sign of the lm = 11, 33 com-
ponents was reversed.
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(X, X ' = X + t). As might have been expected, the
distinction between the propagators in the local-poten-
tial approximation and the free propagators is insignif-
icant within the slab (X ' = 2 fm). On the slab surface
(X ' = 8 fm), this distinction is still smaller, on the
whole, but there arises here a specific boundary
effect—the propagators in the local-potential approxi-
mation are somewhat asymmetric with respect to the
point t = 0, while the free propagators are symmetric by
definition.

As in the case of the singlet channel [2, 3], it is con-
venient to characterize the properties of the two-parti-
cle propagators on average by the zeroth moments. By
way of example, we indicate that, for the triplet chan-
nel, these zeroth moments of the symmetric propaga-
tors in the local-potential approximation are defined as

(46)

We note that, for functions that decrease fast with
increasing t, like the propagators in the local-potential
approximation, the definition in (46) and the analogous
expression for the zeroth moment in terms of the vari-
ables X0 and t lead to nearly coincident results. Only in
a narrow region at the slab surface do there arise dis-
tinctions at a level of a few percent.

For the lm values chosen above, the zeroth moments
of the propagators in the local-potential approximation
are depicted in Fig. 5. As might have been expected,
they are virtually independent of X within the slab and
change somewhat in the surface region. At large X,

(X) asymptotically approach the zeroth moments
of the corresponding components of the free propagator,

(47)
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small X values.
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which are of course independent of X. It can be seen
that, for the lm = 11 and 33 components, the zeroth
moments of the propagator in the local-potential
approximation within the slab and those of the free prop-
agator nearly coincide; for the lm = 23 component, the
distinction between these zeroth moments is sizable.

5. TWO-PARTICLE PROPAGATORS  
AT P⊥  = 0 IN THE MODEL SUBSPACE

It will be seen below that, at fixed lm values, the
symmetric and the antisymmetric propagators in the

Blm
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Fig. 4. Profile functions for (solid curve) the propagators

(X, X') in the local-potential approximation and

(dashed curve) the free propagators (X, X ') for S = 1 at

X ' = 2 fm and X ' = 8 fm.
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Blm
fr s( )

0.5

2 6 10
model subspace differ markedly. This is a typically
quantum effect associated with the different structures
of single-particle states appearing in the opposite-par-
ity propagators and occurring near the Fermi surface. It
is the contribution of precisely these states that stands
out owing to the small denominator on the right-hand
side of (16). Such a large effect can partly be an artifact
of a not very appropriate choice of the model subspace
that comprises a very narrow (in the momentum repre-
sentation) layer of states whose energies lie between
µ = –8 MeV and µ = 0. In order to investigate qualita-
tively the effect that can arise from the extension of the
model subspace, we have performed a series of calcu-
lations with a few µ values equal to –8, –16, and
−24 MeV.

Let us first consider the S = 0 singlet channel. For
the example of lm = 11, the profile functions of the

symmetric and antisymmetric propagators (X,
X' = X0) in the model subspace are compared within the
slab (X0 = 2 fm) in Fig. 6 and at the slab surface (X0 =
8 fm) in Fig. 7. As can be seen, the two types of propa-
gators in the model subspace differ markedly both
within the slab and on its surface. As the model space is
extended, the absolute values of either type of propaga-
tor increases, while the relative distinction between

 and  decreases. This is so for other lm values
as well.

Similar conclusions can be drawn by comparing, at
various values of µ, the zeroth moments of the propa-
gators in the model subspace that are calculated by for-
mula (46) with the substitution of the propagators

 and  for . It is the point
where a significant distinction between the propagators
in the local-potential approximation and the propaga-
tors in the model subspace manifest themselves. The
former are fast decreasing functions of the variable t, so
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Fig. 5. Zeroth moments of the components of (solid curve)
the propagators in the local potential approximation,

(X), and (dashed curve) the free propagators,

(X), for S = 1.
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that, if a cutoff |t | < tc is introduced in the integral in
(46), the result proves to be virtually independent of tc

for tc ≥ 3 fm. On the contrary, the propagators 
involve large long-range components, with the result
that, as a rule, analogous integrals strongly depend on
tc. In our opinion, it is more informative to consider,
instead of the integral between infinite limits in (46),
the zeroth moment cut off as 

(48)

On average, the integral in (48) better reproduces the
behavior of the propagator under study in the vicinity
of a given point X, since it does not include the contri-
bution that comes from far tails and which carries no
significant information. For the large components at
S = 0, the zeroth moments calculated according to (48)
are displayed in Fig. 8.

The results of a similar analysis for the lm = 11 com-
ponent of the two-particle propagator in the triplet
channel are shown in Figs. 9 and 10. For the same lm =
11, 23, 33 components as in the preceding section,
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Fig. 6. Profile functions for (upper panel) the symmetric and

(lower panel) the antisymmetric propagators (X, X ') in

the singlet channel at X ' = 2 fm for the chemical-potential
values of µ = (solid curve) –8, (dashed curve) –16, and (dot-
ted curve) –24 MeV.
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which were chosen here by way of example, the cutoff
zeroth moments are displayed in Fig. 11. Here, the dis-
tinction between the symmetric and the antisymmetric
propagators is still more pronounced; as to the effect
originating from the extension of the model subspace,
it is more spectacular: the relative distinction decreases
with increasing µ. The latter can be considered as direct
evidence that the accuracy of the local-potential
approximation is improved when the model subspace is
extended. This is because the extended subspace
includes states that are far from the Fermi surface and
which can therefore be taken accurately into account in
the local-potential approximation. However, we have
seen above that, in the local-potential approximation, the
symmetric and the antisymmetric propagators nearly
coincide; for this reason, the inclusion of the correspond-
ing contribution in the propagators of opposite symme-
tries reduces the relative difference between them.

6. ANALYSIS OF THE G MATRIX
IN THE SINGLET AND IN THE TRIPLET 

CHANNEL AT P⊥  = 0

From an analysis of Eq. (15), we can deduce that its
solution Gij(X, X ') involves a singular term, a delta

B11
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Fig. 7. As in Fig. 6, but for X' = 8 fm.
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function with the coefficient λij equal to that in the non-
homogeneous term on the right-hand side. The correla-
tion part of the G matrix as determined in (24) does not
involve singularities; therefore, it is more convenient for a
graphic presentation of the results. For this reason, we
now proceed to analyze the correlation components of the
G matrix,

(49)

and of the effective interaction,

(50)

δGij
+ –,

X X',( ) Gij
+ –,

X X',( )=

– λ ij δ X X'–( ) δ X X'+( )±( )

δΛ ij
+ –,

X X',( ) Λ ij
+ –,

X X',( )=

– λ ij δ X X'–( ) δ X X'+( )±( ).
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Fig. 8. Cutoff zeroth moments 〈Blm〉0s(X) of the components
of the propagator in the singlet channel for the chemical-
potential values of µ = (solid curve) –8, (dashed curve) –16,
and (dotted curve) –24 MeV.
Since we consider the G matrix at zero value of P⊥  and
a fixed energy E = 2µ, these variables are suppressed in
the arguments of Gij and Λij .

The definitions in (49) and (50) are valid both for the
singlet and for the triplet channel. We begin by analyz-
ing the singlet channel. Figure 12 displays the profile
functions δGij(X, X ' = X0) and δΛij(X, X ' = X0) of the
correlation parts of the G matrix and of the effective
interaction for one of the dominant components, ij = 11,
in this channel. As usual, the cases of positive and neg-
ative parity are investigated separately. In just the same
way as in the analysis of the propagators above, we
chose the values of X0 = 2 fm (within the slab) and X0 =
8 fm (at the slab surface); for the reasons of space, two
curves corresponding to the profile functions for the two
X0 values are placed near each other. In order that the two
curves not overlap, they were cut off at |X – X '| < 4 fm. It
can be seen that, even upon isolating the delta-func-
tion Born terms, the G matrix and the effective inter-
action remain very sharp (deltalike) functions of the
difference of the coordinates, and these functions are
very similar to each other. The same is true for others
ij values. Further, we analyze this question quantita-
tively.

Let us now address the case of the triplet channel
(Fig. 13). We again restrict our consideration to the sin-

Fig. 9. As in Fig. 6, but for the S = 1 triplet channel.
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gle component ij = 11. A comparison with the singlet
channel shows that, although the general patterns are
similar in the two cases, there are sizable distinctions.
Apart from a distinct local maximum at X = X ', the G
matrix has a pronounced long-range tail. The tail of the
effective interaction is much smaller, but it also exceeds
the long-range terms in the singlet channel. The analy-
sis of the G matrix for other ij values (we do not present
the corresponding graphs) shows that the situation in
the triplet channel is much more diverse than in the sin-
glet channel, the relevant details being greatly depen-
dent on ij values. Only in the case of ij = 23 is the pat-
tern virtually identical to that in the singlet channel.

By and large, the distinction between the G matrix
and the effective interaction is more pronounced in the
triplet channel than in the singlet one. The reason can
be understood if we recall the resonance character of
the nucleon–nucleon interaction at low energies. Since
we investigate the G matrix at a rather low energy, E =
2µ = –16 MeV, the proximity to the virtual level (ε0 =
0.067 MeV) in the singlet channel or to the real level
(ε1 = –2.23 MeV) in the triplet channel is of impor-
tance. To be more specific, the free T matrix—the non-
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Fig. 10. As in Fig. 6, but for the S = 1 triplet channel and
X' = 8 fm.
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homogeneous term in Eq. (22)—has a pole at the above
energies. It was shown in [14, 15], however, that, in the
singlet case, the effective interaction virtually coincides
with the free T matrix taken at the negative energy of
E = 2µ. This occurs because two contributions of oppo-
site signs to the difference kernel of Eq. (22) compen-
sate each other to a considerable extent. We will see
below that the difference of the effective interaction and
the T matrix is greater in the triplet channel than in the
singlet one, but it is not large either, as a rule. As fol-
lows from Eq. (18), the distinction between the G
matrix and the effective interaction is associated with

the contribution of the propagator  in the model
subspace. We have seen above that these propagators
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Fig. 11. As in Fig. 8, but for the S = 1 triplet channel.
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are considerably less in absolute value (by one order of
magnitude) than the corresponding propagators  in
the complementary subspace. If we return to the origi-
nal Eq. (15), it may seem that we should not expect a

considerable contribution from the term —that is, a
considerable difference of Gij(X, X') and Λij(X, X'). As
always occurs near the pole of a solution, however,
even a small change in the kernel of the integral equa-
tion can lead to a sizable effect.

7. AVERAGED CHARACTERISTICS
OF THE G MATRIX AT P⊥  = 0
IN THE SINGLET CHANNEL

Let us first consider the even G+ matrix. We have
already seen that, in the singlet channel, all large com-
ponents of the G matrix (we recall that these are the ij =
11, 12, and 22 components) are sharp delta like func-
tions of the difference t = X ' – X of the coordinates.
Hence, each of them can be approximately replaced by
the delta function of the corresponding difference coor-
dinate t with the factor 〈Gij〉 that depends on the average
c.m. coordinate X0 and which is determined by the
zeroth moment of Gij(X, X '). As in Sections 4 and 5, it
is more convenient to use the nonsymmetrized defini-
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Fig. 12. Profile functions for the (upper panel) even and
(low panel) odd components of (solid curves) δG11(X, X ')
and (dashed curves) δΛ11(X, X ') in the singlet channel at
X ' = 2 fm and X ' = 8 fm.
 tion of the zeroth moment cut off as

(51)

These moments are depicted in Figs. 14–16, along
with the corresponding zeroth moments of the effective
interaction 9eff,

(52)

and of the free T matrix,

(53)

It is obvious that the zeroth moments of the T matrix do
not depend on X. We note that the cutoff in the integral
for the effective interaction and that in the integral for
the T matrix do not have a pronounced impact on the
results and are introduced only for the sake of consis-
tency.

It was indicated in Section 5 that this definition of
the zeroth moment gives no way to take into account
the long-range tails of the G matrix. Although these
tails are small, their integrated contribution is often not
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X( ) tGij
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tc
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Fig. 13. As in Fig. 12, but for the S = 1 triplet channel.
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small in relation to the central maximum. That the
result of integration in (51) shows a nonnegligible
dependence on the cutoff parameter tc for some ij com-
ponents [there is virtually no such dependence in (52)
and (53)] is a signal of this. We will make use of the
same value of tc = 3 fm as before. The cutoff zeroth
moment characterizes precisely a local maximum of
the G matrix, not absorbing the long-range terms Gij .
The proposed localization method is obviously inade-
quate for taking into account these long-range terms. At
the same time, the above definition of the zeroth
moment correctly characterizes, on average, the
strength of interaction in the vicinity of the point being
considered.

〈Gij〉+(X), 103 MeV fm3
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Fig. 14. Zeroth moments of the even components of (solid
curve) the G matrix, 〈Gij〉+(X); (dashed curve) the effective
interaction, 〈Λ ij〉+(X); and (dotted curve) the T matrix,
〈Tij〉+(X), in the S = 0 singlet channel.
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The zeroth moments of the main components of the
G matrix in the singlet channel are plotted in Fig. 14,
along with the zeroth moments of the effective interac-
tion and of the free T matrix. It was shown in [14, 15]
that, in the singlet channel, the large components of the
effective pairing interaction are very close to those of
the free T matrix. From Fig. 14, it can be seen that this

is true for the relevant even combination 〈Λ ij (X)

and 〈Tij (X) as well. By way of example, we indi-
cate that, for the ij = 11 component, the distinction,
which seems sizable at first glance, is in fact as small as
5%. As to the quantity 〈Gij〉+(X), only for the ij = 11
component does it differ insignificantly from the zeroth
moment of the effective interaction and, hence, from
the zeroth moment of the T matrix. For the remaining
two large components, the distinction amounts to 20–
25%.
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Fig. 15. As in Fig. 14, but for the odd components.
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The analogous mean values for the odd G– matrix,
which are given by the same relations (51)–(53), where
the plus signs in the superscripts are replaced by minus
signs, are plotted in Fig. 15. As can be seen from a com-
parison with the corresponding curves in Fig. 14, the
odd effective interaction shows virtually no distinctions
from the even one (the same is true for the correspond-
ing T matrix) everywhere, with the exception of small
values of X. This is a direct corollary of the smallness
of the effective radius of the relevant quantities. At the
same time, the distinctions between the corresponding
ij = 12 and ij = 22 components of the G+, – matrices are
quite pronounced. These distinctions are associated
with long-range terms in the G matrix, which are partly
present even in the calculation of the cutoff zeroth
moment and which are associated with the contribution
of individual single-particle states belonging to the
model subspace. Since different combinations of these
states are involved in the expressions for the positive-
and the negative-parity propagators, the relevant results
are different. It is worth noting that, for a negative par-
ity, the distinction between the G matrix and the effec-
tive interaction is modest.

〈GF〉+, –(X), 103 MeV fm3
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Fig. 16. Quantities obtained by averaging (upper panel) the
even and (low panel) the odd components of (solid curve)
the G matrix [〈GF〉+, –(X)], (dashed curve) the effective inter-

action [〈 〉+, –(X)], and (dotted curve) the T matrix

[〈TF〉+, –(X)] in the S = 0 singlet channel over the Fermi surface.
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It is not the individual components 〈Gik〉  but their
combination averaged at the Fermi surface that is of
prime importance for computing the Landau–Migdal
amplitude. For the even G matrix in the singlet channel,
this combination is given by

(54)

where we have defined the local Fermi momentum as

kF(X) =  for µ – V(X) > 0 and as
kF(X) = 0 in the opposite case. This quantity is depicted
in the upper panel of Fig. 16, along with the corre-
sponding localized form of the effective interaction,

(55)

and the corresponding localized form of the T matrix,

(56)

For the odd G matrix, similar quantities averaged
near the Fermi surface are found from Eqs. (54)–(56),
where a plus sign in the superscripts is replaced by a
minus sign. The relevant results are displayed in the
lower panel of Fig. 16.

It can be seen that, for zero spin S, each of the quan-
tities obtained by averaging, at the Fermi surface, the
effective interaction and the T matrix for the symmetric
case virtually coincide with its antisymmetric counter-
part. Moreover, these quantities are very close to each
other in the case where the symmetry in question is
realized. The last circumstance complies with the
results presented in [14, 15], where we analyzed the
possibility of approximating the effective pairing inter-
action in the singlet channel by the free T matrix. The
averaged symmetric G matrix has the same form as the
effective interaction, but the former is almost twice as
great as the latter in absolute value. Within the slab,
there are small-amplitude oscillations, which reflect the
oscillations of the individual components 〈Gij〉(X). The
distinctions between the G matrix and the effective
interaction is considerably smaller in the case of nega-
tive parity. For either sign of parity, the absolute value
of the G matrix averaged at the Fermi surface has a siz-
able surface maximum, which is more pronounced in
the case of positive parity.

8. AVERAGED FEATURES OF THE G MATRIX
AT P⊥  = 0 IN THE TRIPLET CHANNEL

The cutoff zeroth moments of the individual compo-
nents of the G matrix in the triplet channel are defined

GF〈 〉 S 0=
+

X( )

=  Gij〈 〉 S 0=
+

X( )gi kF
2

X( )( )g j kF
2

X( )( ),
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∑

2m µ V X( )–( )
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in just the same way as in the singlet channel—that is,
they are defined by expression (51) with the substitu-
tion of S = 1 for S = 0 in the case of a positive parity and
with the additional substitution of a minus sign in the
superscripts for a plus sign in the case of a negative par-
ity. From Table 1, it can be seen that, in the triplet chan-
nel—in contrast to what was obtained for the singlet
channel—there are no components that stand out in
absolute value (maybe, with the exception of the com-
paratively small ij = 14 component). For the case of a
positive parity, Fig. 17 displays the zeroth moments of

the three components  chosen earlier for analysis.
For a negative parity, the corresponding results are
shown in Fig. 18. In just the same way as for the singlet
channel, we draw a comparison with the zeroth
moments of the effective interaction and the free T
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Fig. 17. As in Fig. 14, but for the S = 1 triplet channel.
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matrix. Since the total G matrix (41) appears in the
Landau–Migdal amplitude, it is this quantity that must
be considered as the main result of the present calcula-
tion. For this reason, we display the zeroth moments of
all ten components of this matrix (Fig. 19). An analysis
of the data in the figures being discussed shows that it
is difficult here to trace some general regularities (sim-
ilar, for example, to small distinctions between the
effective interaction and the T matrix as observed in the
singlet channel): although the difference of 〈Λ ij〉(X) and
〈Tij〉  is small for the majority of the ij pairs (it does not
exceed 5% for ij = 23), there are cases (ij = 24, 33)
where the difference may be as large as 20 or even 30%.
The zeroth moment of the G matrix as a function of X
is sometimes (ij = 11, 24, 44) reproduced, on average,
by the corresponding zeroth moment of the effective
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Fig. 18. As in Fig. 14, but for the S = 1 triplet channel and
for the odd components.
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Fig. 19. Zeroth moments of all components of (solid curve) the total G matrix [〈Gij〉(X)], (dashed curve) the effective interaction
[〈Λ ij〉(X)], and (dotted curve) the T matrix [〈Tij〉(X)] in the S = 1 triplet channel.
interaction, but, as a rule, the zeroth moment of the G
matrix oscillates about this mean value.

A comparison of the data in Figs. 17 and 18 reveals
that the distinctions between the positive- and negative-
parity components for the same pair of ij values are still
more pronounced than in the singlet channel. In accor-
dance with a qualitative analysis presented in Section 5
and devoted to the effect of the dimension of the model
subspace on the two-particle propagators in this sub-
space, it can be assumed that such a pronounced dis-
tinction in the case of the triplet channel is in part an
artifact of a not quite adequate choice of the model sub-
space, which includes an insufficient number of single-
particle states. This may be the reason for the poor
accuracy of the local-potential approximation in the
complementary subspace. This situation is expected to
be remedied by extending the model subspace. The
problem of optimally choosing a model subspace will
be considered elsewhere.

For the triplet channel, we now proceed to analyze
the G matrix averaged at the Fermi surface. In contrast
to the case of the singlet channel, it appears to be a 2 ×
2 matrix in the space of values of the two-body orbital
angular momentum L. Specifically, we have

(57)
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where L, L' = 0, 2. In order to avoid encumbering the
presentation, we have suppressed the parity super-
scripts of plus and minus on the G matrix. The corre-
sponding averaged values for the even and the odd G
matrix are displayed in Figs. 20 and 21, respectively.
Once again, we can see a strong parity dependence of
the averaged G matrix. This dependence seems to be
slightly exaggerated in the present calculation, in just
the same way as for the individual components 〈Gij〉 .
The averaged values that carry the index L = 2 are con-

siderably less than the dominant term 〈GF (X).
These distinctions are especially pronounced at the slab
boundary because of the vanishing of the form factor
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even G matrix [〈GF (X)], (dashed curve) the effective

interaction [ (X)], and (dotted curve) the T

matrix [〈TF (X)] in the triplet channel over the Fermi

surface.
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( (X)) in the classically forbidden region. It can
be seen from Figs. 20 and 21 that, even in the internal
region, the D-wave contribution is modest. In just the
same way as in the case of the singlet channel, the dom-
inant term of the averaged G matrix features a pro-
nounced surface maximum, which is again sharper for
a positive parity.

9. DEPENDENCE OF THE G MATRIX
ON THE CHEMICAL POTENTIAL

OF THE SYSTEM

Thus far, all our calculations of the G matrix have
been performed for the fixed chemical-potential value
of µ = –8 MeV, which is close to the binding energy
(per nucleon) of medium-mass and heavy stable nuclei.
In this section, the result is investigated as a function of
µ. Previously, a significant µ dependence was found for
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Fig. 21. As in Fig. 20, but for the odd G matrix.
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the effective pairing interaction [3, 11]. This quantity is
equal to the half-sum of the averaged effective interac-
tion (55) in the singlet channel for a positive parity and

the analogous quantity (X) for a negative
parity. There are two reasons behind this effect. First, it
is a resonance-type dependence on the energy E = 2µ in
the T matrix, which appears to be a nonhomogeneous
term in Eq. (22) for the effective interaction. Second, it
is quite a sharp dependence on the form-factor momen-
tum in the sum appearing in Eq. (55). These two factors
remain operative for the averaged G matrix as well:

(58)

This quantity at µ = –8 and –4 MeV is displayed in
Fig. 22, along with the corresponding effective interac-
tion and the T matrix averaged at the Fermi surface. It
can be seen that, in the singlet channel, the µ depen-
dence of the averaged G matrix is more pronounced
than that of the effective interaction.

Disregarding the small components involving L,
L' = 2, we define the analogous quantity in the triplet
channel as

(59)
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Fig. 22. Quantities obtained by averaging the (solid curve)
total G matrix [〈GF〉S = 0(X)], (dashed curve) effective inter-

action [〈 〉S = 0(X)], and (dotted curve) T matrix

[〈TF〉S = 0(X)] in the singlet channel over the Fermi surface.
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In Fig. 23, this truncated averaged G matrix for the trip-
let channel is plotted for the same two values of µ
(along with the effective interaction and the free T
matrix, as before). There, the µ dependence of the aver-
aged G matrix is even more dramatic than in the singlet
channel: in the surface region, it changes sign in the
present case. It is not clear from the outset whether this
sign reversal is an artifact that arises from the use of the
local-potential approximation in calculating the effec-
tive interaction at µ = –4 MeV. Indeed, we have already
indicated that the applicability of this approximation to
the case of the triplet channel is questionable even at
µ = −8 MeV, but the accuracy of the local-potential
approximation only becomes poorer with decreasing
absolute value of |µ|. However, the statement as it is
that the µ dependence is more pronounced for the trip-
let channel than for the singlet channel is qualitatively
understandable and is correct in all probability. The
reason for this is associated with the proximity of the
pole of the free T matrix on the energy scale. In the trip-
let case, the relevant pole is closer to the energy E = 2µ
being considered.

10. ESTIMATING THE ROLE OF NONZERO P⊥  
VALUES

So far, we have investigated only the simplest case
of P⊥  = 0. It was not solely because of the simplicity of
this case that we restricted our consideration to it—
another point in favor of this choice was that only
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Fig. 23. As in Fig. 22, but for the triplet channel.
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extremely low momenta survive in the asymptotic
region off the slab. Needless to say, this is not so within
the slab and in the surface region, so that computing the
Landau–Migdal amplitude over the entire region of X
requires knowledge of the G matrix at nonzero values
of P⊥ . With an eye to a further extension of the theory
in question to actual spherical nuclei, the orthogonal
momentum in the planar geometry being considered
must be associated with the angular momentum in
spherical geometry. For points at the surface of a
nucleus of radius R, the relation that establishes this
correspondence at a fixed value of the total two-body
orbital angular momentum + then has the form

(60)

In heavy nuclei around 208Pb, maximum values lmax
of the one-body orbital angular momentum are 6 to 7.
Accordingly, we have +max = 12–14. In calculating the
zeroth harmonic of the Landau–Migdal amplitude on
the basis of expression (1), summation is performed
over all + from 0 to +max. In order to assess the role of
nonzero P⊥  values, we set + = 6 and R = 8 fm in

Eq. (60). This yields  = 0.656 fm–2. For a rough esti-
mate of the effect, we also simplify integration in (16)
by replacing the relevant integral with respect to the
angle between P⊥  and k⊥  by 2π. The emergence of the

additional term /4m in the denominator on the right-
hand side of (16) is then the only change in relation to
the case of P⊥  = 0. The results of the relevant calcula-
tions for the averaged G matrix and the averaged effec-
tive interaction are displayed in Fig. 24 for both chan-
nels being considered. As can be seen, allowances
made for nonzero values of P⊥ level out to a consider-
able extent the surface maxima in the absolute value of
the G matrix in both channels and reduce strongly the
difference between the effective interaction and the G
matrix. In order to explain the above qualitatively, it is
sufficient to notice that the addition of a comparatively
large quantity to the denominator on the right-hand side
of (16) renders the role of the density of states near the
Fermi surface less pronounced, thereby suppressing the
contribution of the propagator B0 in the model sub-
space. But it is this propagator that is responsible both
for the distinctions between the G matrix and the effec-
tive interaction and for a sharp variation of the G matrix
near the surface.

The correct inclusion of nonvanishing P⊥  values is a
very cumbersome numerical problem, which will be
considered in separate publication.

11. CONCLUSION

For a separable nucleon–nucleon interaction, we
have developed a method for numerically calculating
the Brueckner G matrix for a planar slab of nuclear

P⊥
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matter occurring in a preset one-dimensional potential
well. We have relied on the technique that is based on
the mixed coordinate–momentum representation and
which was previously proposed in [2, 3] for investigat-
ing the problem of pairing in semi-infinite nuclear mat-
ter. We have considered two channels, the 1S0 singlet
and the 3S1–3D1 triplet channel, that are dominant at low
energies. Specific calculations have been performed for
a separable version [4, 5] of the Paris nucleon–nucleon
potential (3 × 3 potential in the singlet and 4 × 4 poten-
tial in the triplet channel). The Bethe–Goldstone equa-
tion for the G matrix then reduces to a set of one-
dimensional integral equations in the coordinate space
(six equations in the singlet and ten equations in the
triplet channel) whose kernels are given by the convo-
lutions of the two-particle propagators with the form
factors of the separable expansion of the nucleon–
nucleon potential. The propagators in turn are deter-
mined by multidimensional integrals in momentum
space (and by sums over discrete eigenstates in the slab
potential). The calculation of these propagators pre-
sents the most serious mathematical difficulty in the
problem under investigation. Instead of precisely calcu-
lating these propagators, we have invoked the local-
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potential approximation, which was developed in [2, 3]
in calculating the effective pairing interaction in the
singlet channel. For this purpose, the full two-particle
Hilbert space has been broken down into a compara-
tively small model subspace, where the two-particle
propagator has been treated precisely, and a comple-
mentary subspace, where the local-potential approxi-
mation has been employed to calculate the propagator.
The model subspace has been taken in the same form as
in the pairing problem—it includes all negative-energy
single-particle states. When the model subspace is
defined in this way, the effective interaction for the sin-
glet channel in the problem under investigation coin-
cides with the effective pairing interaction calculated in
[2, 3], where we demonstrated a rather high accuracy of
the local-potential approximation. At the same time, the
accuracy of the local-potential approximation in the
triplet channel is not known a priori. Pursuing the main
goal of developing the computational method in gen-
eral, we have not investigated this question here in
detail. There is indirect evidence that the accuracy of
the local-potential approximation is noticeably poorer
in the triplet channel than in the singlet channel. How-
ever, it has been shown that the accuracy of the local-
potential approximation improves when the model sub-
space is extended. This brings about a problem of par-
amount importance for the implementation of the pro-
posed method in practice, that of optimizing the choice
of model subspace. On one hand, it must be sufficiently
large in order to ensure a high precision of the local-
potential approximation; on the other hand, it must not
be overly large in order that a precise calculation of the
propagator in the model subspace not consume very
long machine time. A search for optimal (from this
point of view) partition of the full Hilbert space will be
discussed elsewhere.

The G matrix has been calculated at a fixed total
energy of two nucleons that has been set to the doubled
chemical potential µ of the system. In addition, the total
orthogonal momentum has been fixed at P⊥  = 0. The
calculations have been performed predominantly for
µ = –8 MeV, a value characteristic of stable heavy
nuclei. In both channels, the G matrix averaged at the
Fermi surface corresponds to a strong attraction in the
surface region. The strength of this attraction has a pro-
nounced maximum at the slab surface, especially in the
triplet case. In order to find this amplitude in the surface
region correctly, it is necessary to take consistently into
account the contribution of nonzero P⊥  values. We have
roughly estimated their role. It has been shown that the
inclusion of these contributions smears the effects
obtained at P⊥  = 0 somewhat, but it does not eliminate
them completely. A calculation of the G matrix with
allowance for the contribution from nonzero P⊥  values
will be performed in a separate study.

Finally, we have analyzed the dependence of our
results on the chemical potential µ. A comparison of the
calculations performed at µ = –8 MeV and µ = –4 MeV
has revealed a pronounced µ dependence of the G
matrix, especially in the surface region. This effect can
result in an appreciable µ dependence of the surface
values of the invariant Landau–Migdal amplitudes.
This is important for a microscopic description of the
features of nuclei near the nucleon drip line.
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APPENDIX 1

Form Factors gi in the Coordinate Representation

For the case of 1S0 singlet scattering, the form fac-
tors gi(k2) in Eq. (11) are given by (in the notation sim-
ilar to that from [2, 3])

(A.1)

It was noted above that, in our calculations, we have
used the potential introduced in [4] and modified in [5].
The coefficients λil in Eq. (11) and Cin in Eq. (A.1) are
redefined in such a way as to ensure fulfillment of the
equality gi(k2 = 0) = 1. The renormalized coefficients
are related to the corresponding values from [5] (they
are labeled with a tilde) as follows:

(A.2)

(A.3)

(A.4)

These formulas were used to calculate the coeffi-
cients appearing in (11) and (A.1). The results are pre-
sented in [2, 3]. The values of the parameters βin are
identical to those in [5].

The Fourier transformation (13) of the form factors
(A.1) can be found analytically. The result has the form

(A.5)

where
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(A.6)

We note that there is a misprint in the expressions that
are presented in [2, 3] for the form factors and which
are analogous to (A.5) [at the same time, all the calcu-
lations were performed correctly in accordance with
(A.5)].

It has been indicated above that, for the case of the
3S1 triplet channel coupled to the 3D1 channel, formu-
la (11) is replaced by the matrix expression (42), where

the column  involves two component, (k2) and

(k2). At the same time, it has been shown in [5]
that, in the case of the multipole representation of the
Paris potential, the best description of nucleon–nucleon
scattering in the channel under consideration is
achieved with the 4 × 4 version (PEST4 potential). In
our calculations, we have used precisely this potential.
Naturally, the form factors were normalized in a way
similar to that adopted to the singlet channel. Obvi-
ously, the two components (L = 0 and L = 2) must be
renormalized simultaneously since the same coeffi-
cients λij appear in expansion (42) for these compo-

nents. The form factors  have the same form as in
the singlet case; that is, they are determined by formu-
las (A.2)–(A.6). The corresponding renormalized coef-
ficients are presented in [10].

For the 3D1 channel, expression (A.2) for the renor-
malized form factor is replaced by (see [4])

(A.7)

The relation between the renormalized coefficients

 and the original coefficients from [4, 5] differ
somewhat from those in the case of L = 0, and relation
(A.3) is replaced by

(A.8)
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where the factor fi is equal to the corresponding value
for L = 0.

The Fourier transformation of the form factors (A.7)
yields

(A.9)

APPENDIX 2
Coordinate Representation of the T Matrix for Free 
Nucleon–Nucleon Scattering in the Triplet Channel

In [2, 3], the coordinate representation for the free T
matrix in the singlet channel was derived on the basis
of the inverse Fourier transformation of the off-mass-
shell T matrix that was preliminarily found in the
momentum representation. A convenient method for
calculating the inverse Fourier integral in the complex
plane of the total momentum Px was developed in
[11, 14]. Here, we use the same method for the triplet
channel.
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In the momentum representation, the free T matrix
at the negative energy E = 2µ is found by solving the set
of algebraic equations

(A.10)

where

(A.11)

As can be seen, the scattering matrix at a nonzero
value of P⊥  is obtained from the T matrix at P⊥  = 0 by

the simple substitution E   = E – /4m. The
scattering matrix Tij(t) (we omit here the index S = 1 for
the sake of brevity) in the coordinate representation is
expressed in terms of Tij(Px) by means of the inverse
Fourier transformation

(A.12)

For the sake of definiteness, we set, for the time

being, P⊥  = 0 and  = E. The analytic properties of the
Tij(Px) matrix in the singlet channel were studied in [11,
14], and it was shown there that the integral in (A.12)
can be transformed into an integral along the contour C
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Fig. 25. Contour of integration in the complex plane of Px
for the inverse Fourier transformation (A.12).
 

embracing the upper half of the imaginary axis (see
Fig. 25). It can easily be shown that, in the triplet chan-
nel, we can either use the same contour or modify it
slightly. Indeed, the analytic properties of the 

 

T

 

ij

 

(

 

P

 

x

 

)

 

matrix are determined primarily by the propagator in
(A.11). For the singlet case, it was shown in [11, 14]
that the only singularities of 

 

B

 

ij
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; 

 

E

 

)

 

 at negative
energy 

 

E

 

 = 2

 

µ

 

 are two cuts on the imaginary axis 

 

P

 

x

 

 that
are symmetric with respect to the origin and which

issue from the points  P  x   =  ±  i  γ  0  , where   = –8 m µ . The
only circumstance that was used in proving this state-
ment is the fact that the form factors 

 

g

 

i

 

 in the integral in
(A.11) are rational functions of 

 

k

 

2

 

. This is valid for the
triplet channel as well [see (A.1) for 

 

L

 

 = 0 and (A.7) for

 

L

 

 = 2]; therefore, the singularities of 
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)

 

 occur
on the same cuts in Fig. 25 for the triplet case as well.
As can be seen from (A.10), all singularities of the
propagator 

 

B

 

fr

 

 are also present in the free 

 

T

 

 matrix. The

 

T

 

 matrix can have, however, its own singularities, poles
corresponding to a virtual (in the singlet channel) or a
real (in the triplet channel) level. It was indicated in [11,
14] that, in the case of a virtual level at 

 

E

 

 = 2

 

µ

 

 < 0, the
poles of the 

 

T 

 

matrix that are inherent in it lie on the
cuts. In the triplet case, there is a real level at the deu-
teron binding energy 

 

ε

 

d

 

. If the energy E = 2µ is less
than the deuteron binding energy, the two poles of
Tij(Px) are on the imaginary axis between the origin and
the points Px = ±iγ0. Their position is determined by the

relation Px = ±iγd , where  = –4m(2µ – εd). In order
to calculate the T matrix in the triplet channel, we can
then use the same contour C as in the singlet case. But
if E = 2µ > εd, the poles of Tij(Px) being considered go
over from the imaginary axis to the real axis, again
occupying symmetric positions Px = ±γd with respect to
the origin. For calculating the T matrix, the contour C
must then be slightly deformed in order that it circum-
vent these poles. The minimal |µ| value used in our cal-
culations was 4 MeV; therefore, we could consider only
the nondeformed contour C. Actually, we used the con-
tour in Fig. 25 with the same parameter values as in
[14]—that is, a = 2 fm–1 and b = 130 fm–1. In this case,
the contour goes rather far away from the cuts, and it is
straightforward to calculate the integral in (A.12)
numerically, the result being nearly exact for all t val-
ues of our prime interest.

It is easy to trace modifications that arise at P⊥  ≠ 0.
The contour C does not change form, but we now have

 = –8mµ + . The other singular points in Fig. 25
are shifted in the same way.

The results of the calculations are quoted in Table 2.
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Abstract—Low-energy neutron–deuteron scattering is calculated within the collective adiabatic approach by
using a few versions of realistic NN interaction. The resulting integrated cross sections for the process are in
good agreement with experimental data. © 2001 MAIK “Nauka/Interperiodica”.
1. FORMULATION OF THE PROBLEM

Recent efforts to construct a microscopic descrip-
tion of few-nucleon systems owe their success to the
adiabatic character of the motion of such systems in
hyperradial space. This property, which was confirmed
by numerous calculations [1–4], was used as a basis in
developing a collective adiabatic approach, a new
method for treating nucleon systems. Within this
approach, whose fundamentals were described in detail
elsewhere [3–5], it was possible to reproduce faithfully
the experimental cross sections for the fusion reaction
d + t  n + α [6–8], for the elastic-scattering process
n + α  n + α [7, 8], for all binary processes in the
four-nucleon system [9, 10], and for some other similar
reactions. However, studies devoted to specific applica-
tions of the collective adiabatic approach undeservedly
ignored three-nucleon processes, which were compre-
hensively explored, both theoretically and experimen-
tally (for an overview, see, for example, [11]). The
present study aims at partly filling this gap. Specifi-
cally, we consider the example of low-energy elastic
neutron–deuteron scattering (n + d  n + d).

We recall that the first step in applying the collective
adiabatic approach consists in constructing the relevant
functions for all significant channels. The ith-channel
function Ui(ρ, Ω) ≡ Ui is an eigenfunction of the oper-
ator

(1)

(where ∆3A – 3 is the operator of multidimensional

angles,  is the operator of NN interactions, and A is
the number of nucleons); that is, it satisfies the equation

(2)

Q̂
1
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1
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1063-7788/01/6402- $21.00 © 20228
In the asymptotic limit ρ  ∞, the eigenvalue Ii(ρ) ≡
Ii , referred to as a collective potential, tends to the
energy threshold for the ith channel.

In the case being considered, there exists only one
binary channel, n + d, and many democratic channels of
n + n + p breakup. Hereafter, we restrict our consider-
ation to low energies, in which case all democratic
channels are closed. Only channels characterized by
low values of the grand orbital K = 2s, s = 1, 2, 3, … can
be virtually manifested.

Solutions to Eq. (2) are sought here in the form of a

superposition of the cluster function (ρ, Ωρ) ≡ 
[12, 13] of the n + d channel and all hyperspherical

functions (Ωρ) ≡  [12–14], including the main
harmonic U0(Ωρ) ≡ U0:

(3)

The function  was included in expansion (3) in
order to improve convergence in s with increasing ρ.

The hyperradial coefficients c(ρ), a0(ρ), and (ρ) are
determined minimizing the functional

(4)

on the class of functions specified by Eq. (3). The wave
function of the internal motion of the entire system is
expanded in terms of the functions Ui found in the way
outlined above:

(5)

After that, the hyperradial coefficients Ri(ρ) appearing
in (5) are determined from the known set of hyperradial
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equations [3]

(6)

By using conventional methods, the required observ-
ables are extracted from the asymptotic behavior of
Ri(ρ) for ρ  ∞ (see [5]).

The basis of potential harmonics for the three-
nucleon system virtually coincides with the complete
system. Therefore, we include only these harmonics in
expansion (3). Specific calculations will be performed
with two known versions of realistic NN interactions,
GPT [15] and SSCB [16], as well as with the Tver cen-
tral potential [9]. The first two reproduce fairly well
binding energies and radii of light nuclei [17], while the
third makes it possible to describe precisely low-energy
NN scattering and the properties of the extremely light
nuclear systems d, t, and 3He [9].

2. CLUSTER FUNCTION 
FOR THE BINARY CHANNEL

Since potential harmonics were constructed previ-
ously (see, for example, [12, 13]), we consider the first
term in expansion (3), . By definition, this function
describes the free motion of the fragments n and d in
their relative angular space. The harmonic that enters

into  with the highest weight is known as a basic

harmonic and is denoted by . Following the general
rule adopted in the collective adiabatic approach, we

normalize  by the canonical condition

(7)

Since we consider low-energy scattering, we take
into account only zero value of the relative orbital
angular momentum, L = 0. In this case, the total angular
momentum J can assume two values, J = 1/2 (doublet
scattering) and J = 3/2 (quartet scattering). In view of

the above,  can be represented as

(8)

where (jn, jd ; J) denote the result of composition of the
angular momenta of the fragments (neutron jn and deu-
teron jd) into the total angular momentum J:

(9)
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(10)

Here, αµ and βµ are, respectively, the spin and the isos-

pin function of the neutron; (x) is the deuteron wave
function characterized by a definite value of the angu-
lar-momentum projection onto the z axis; and ρd =

ρij/  is the deuteron hyperradius. A composition of
the variable ρd with the hyperradius of relative motion,
ρout, yields the hyperradius of the full system:

(11)

The operator  ensures the antisymmetrization of par-
ticles in (8) that belong to the different fragments. The
exponent µ ≡ µnd is the polar decrement of the n + d
channel (see general formulas in [4]). It was shown to
be independent of the quantum numbers of fragment
relative motion. For the chosen potentials, all µnd values
are close to 0.42. The basic harmonic in the doublet
state has the exponent K = Kmin = 0 and obviously coin-
cides with the triton main harmonic U0. In the notation
adopted in [5, 12], it has the form

(12)

In the case of quartet scattering, the exponent of the

basic harmonic  increases to the value of K = Kmin =
2, the harmonic itself being given by

(13)

3. BASIC COMPUTATIONAL FORMULAS

Let us consider the matrix of the operator  from
Eq. (4) in the basis of the functions appearing in expan-

sion (3). The matrix elements  were con-
structed in [13]. If the Pauli exclusion principle is taken
exactly into account, the remaining elements

 and  can be calculated only
numerically. We will use the method of random walks
on a hypersphere in terms of cluster variables [18].
First, we perform averaging in spin–isospin space and
represent the remaining configuration integrals in a
form appropriate for the use of this method.

The result of applying the operator  to a cluster
function always has the form of the sum of three char-
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Table 1.  Binding energies and mass radii of the extremely light nuclei T and 3He

Version of the NN potential ET, MeV RT, fm , MeV , fm

GPT –8.1 1.77 –7.35 1.8

SSCB –8.63 1.7 –7.91 1.73

TCP –8.48 1.67 –7.72 1.7

Experiment –8.48 1.56 –7.72 1.7

E
He

3 R
He

3

acteristic terms that are described in detail elsewhere
[6, 7, 13]:

(14)

Here,  arises owing to the presence of the operator

∆3A – 3 in . As a result, the required overlap integrals
become

(15)

The overlap integrals  and  can

easily be obtained from, respectively,  and

 by means of the transformation described in
[13]. The most complicated expression emerges for the

matrix element involving the NN interaction . By
way of example, we indicate that the expression for

computing the overlap integral  at ν = 3
(tensor harmonic) has the form
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Table 2.  Doublet (a2) and quartet (a4) scattering lengths

Version of the NN potential a2, fm a4, fm

GPT [15] 2.5 ± 0.2 6.6 ± 0.2

SSCB [16] 2.0 ± 0.2 6.3 ± 0.2

TCP [17] 2.1 ± 0.2 6.6 ± 0.2

Experiment [21] 0.65 ± 0.04 6.35 ± 0.02
(18)

(19)

Here, (x) are the radial components of the deuteron

wave function,  ≡ (ρ12) stands for the central
(x = c) or the tensor (x = t) radial components of the NN
interaction, nij = rij/ρij, and

(20)

We note that, in the worst case, about 0.2 × 106 random
walks on a hypersphere are required to achieve a theo-
retical error not exceeding the experimental uncer-
tainty. The can easily be implement with modern com-
puters.

4. NUMERICAL RESULTS AND DISCUSSION

Using the above algorithm specified by Eqs. (1)–
(20), we have first calculated the binding energies E
and the mass radii R of the triton and 3He with the cho-
sen potentials. As can be seen from Table 1, all three
potentials reproduce well the energy difference (ET –

), while the TCP potential also reproduces the

absolute values of these energies individually.
We note that the bound states of extremely light

nuclei can be successfully described by expanding the
relevant wave function in terms of a basis that includes
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only potential harmonics (a complete convergence is
achieved by taking into account all s = smax ≤ 15 poten-
tial harmonics). The presence of the cluster function in
expansion (3) for the case of A = 3 and L = 0 substan-
tially improves the convergence in the index s (smax ≤
5). This does not affect the values of the observables,

because  involves only the main harmonic and the
potential ones.

Figure 1 displays basic features of the continuous
spectrum—cross sections for doublet and quartet scat-
tering (σ2 and σ4, respectively). Their dependence on
the incident-neutron energy Tn shows virtually no qual-
itative variations in going over from one version of NN
potential used to another. As in the case of the discrete
spectrum, it is incorrect to calculate σ2 by retaining
only the cluster function in (3). The role of the potential
harmonics is demonstrated in Fig. 2. The contribution
of the potential harmonics to the cross section σ4 is
small for obvious reasons: in the region where the
potential of fragment–fragment interaction is operative,
the wave function is suppressed by the Pauli exclusion
principle.

The calculated values of the doublet and the quartet
scattering length (a2 and a4, respectively) are quoted in
Table 2. The agreement of our results with those from
[19], where the values of a2 = 2.8 ± 0.3 fm and ET =
8.3 ± 0.2 MeV were obtained for the GPT potential,
gives sufficient ground to assume that the experimental
data on a2 require refinement. Figure 3 displays the
total cross section. It is clear that the curves calculated
for all potentials are within the experimental error.

In conclusion, we emphasize that the expansion in
(3) is not complete, because it does not include nonpo-

Und
cl

σ2, σ4, b
4

3

2

1

0 0.2 0.4 0.6 0.8 1.0
Tn, MeV

σ4(GPT)

σ4(SSCB)

σ4(TCP)

σ2(GPT) σ2(TCP)
σ2(SSCB)

Fig. 1. Cross sections σ2 and σ4 for the elastic-scattering
process n + d  n + d versus the incident-neutron energy
Tn (versions of the potential are indicated in parentheses).
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tential harmonics. From experience gained previously,
it is known, however, that they are immaterial. In order
to construct a numerically precise channel function, an
integral approach where expansion (3) would be used
as an input function at the first step of an iteration pro-
cedure was proposed in [20].
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Abstract—The scattering of two charged strongly interacting particles is described on the basis of the P-matrix
approach. In the P matrix, it is proposed to isolate explicitly the background term corresponding to purely Cou-
lomb interaction, whereby it becomes possible to improve convergence of the expansions used and to obtain a
correct asymptotic behavior of observables at high energies. The expressions for the purely Coulomb back-
ground P matrix, its poles and residues, and purely Coulomb eigenfunctions in the P-matrix approach are
obtained. The nuclear–Coulomb parameters of the low-energy scattering of two charged hadrons are investi-
gated on the basis of this approach combined with the method for isolating the background P matrix. Simple
explicit expressions for the nuclear–Coulomb scattering length and effective range in terms of the residual P
matrix are derived. For models of short-range strong interaction, these expressions give a general form of
nuclear–Coulomb parameters for low-energy scattering. Specific applications of the general expressions
derived in this study are exemplified by considering, on the basis of these expressions, some exactly solvable
models of strong interaction, including the hard-core model, and, for these models, the nuclear–Coulomb
parameters for low-energy scattering at arbitrary values of the orbital angular momentum are found explicitly
for the first time. In particular, the nuclear–Coulomb scattering length and effective range are obtained explic-
itly for the boundary-condition model, the model of a hard-core delta-shell potential, the Margenau model, and
the model of square-well hard-core potential. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The P-matrix approach to describing hadron–had-
ron interaction was first proposed by Jaffe and Low [1]
and was then developed in a number of studies [2–4].
This approach is a modification of the well-known
Wigner–Eisenbud 5-matrix theory [5, 6]. Within P-
matrix approach, the scattering amplitude is expressed
in terms of the logarithmic derivative of the wave func-
tion at the surface of the strong-interaction region—
that is, in terms of the P matrix—so that it is assumed
that the configuration space of the system is broken
down into two regions, the external region, where the
interaction of particles can be described in terms of a
two-particle potential, and the internal region, where
strong interaction is dominant. For the P matrix, a so-
called dispersion relation that appears to be its pole
expansion and which establishes its energy dependence
can be derived on the basis of quite general assump-
tions. Observables can then be described in terms of a
finite number of parameters.

In [3, 4, 7], a method was proposed for explicitly
isolating a free background part in the P matrix. This
method is advantageous in that it simplifies the imple-
mentation of the P-matrix approach in specific applica-
tions and extends the region of its applicability. The
free P matrix, which corresponds to the absence of

* e-mail: pet@gluk.apc.org
1063-7788/01/6402- $21.00 © 20233
interaction, was isolated as the background part in the
aforementioned studies. This is natural in dealing with
the scattering of neutral particles. Here, we propose a
generalization of the isolation method to the case
involving charged particles, so that there is long-range
Coulomb interaction in the system along with strong
interaction. It is well known that, in this case, scattering
theory requires a nontrivial modification. We show that
the idea of explicitly isolating a background part in the
P matrix as put forth in [3, 4, 7] can be implemented for
charged particles as well and that, for the background P
matrix, it is advisable in this case to take the purely
Coulomb P matrix—that is, the logarithmic derivative
of the regular Coulomb function at the surface of the
interaction region. It turns out that the isolation of the
background Coulomb part offers the same advantages
as in the absence of Coulomb interaction.

As an application of the P-matrix approach com-
bined with the method for isolating the background
Coulomb P matrix, we consider the scattering length
and the effective range for low-energy nuclear–Cou-
lomb scattering. These parameters are important phys-
ical quantities characterizing the scattering of charged
hadrons and light nuclei at low energies. We obtain
simple explicit expressions for the nuclear–Coulomb
parameters of low-energy scattering in terms of the
parameters of the residual P matrix; these expressions
make it possible to analyze and evaluate the nuclear–
Coulomb scattering length and effective range and to
001 MAIK “Nauka/Interperiodica”
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find them directly for short-range strong-interaction
potentials. As a matter of fact, the expressions that we
obtain here determine a general form of the nuclear–
Coulomb parameters of low-energy scattering for mod-
els of short-range strong interaction. In [8], expressions
for the nuclear–Coulomb parameters of low-energy
scattering in terms of the P-matrix parameters were
obtained without resort to the isolation method. Those
expressions are more cumbersome and less convenient
in applications than the present ones. Basically, the
results presented in [8] therefore cease to be of value
and significance.

Much attention has been given to the nuclear–Cou-
lomb parameters of low-energy scattering (see, for
example, [9–12]) since these physical quantities play
an important role in theoretical and experimental inves-
tigations. In some studies (see for example, [13–17]),
these parameters were determined explicitly for some
specific cases of separable nuclear potentials (in partic-
ular, for the Yamaguchi potential). Here, we find a gen-
eral form of the nuclear–Coulomb scattering parame-
ters for a rather broad class of local strong-interaction
models—namely, for models of short-range interaction.
General expressions obtained for the low-energy param-
eters make it possible for the first time to determine these
quantities explicitly for a number of exactly solvable
hard-core strong-interaction models. We emphasize that
it is the use of the simple expressions obtained by the iso-
lation method that made it possible to simplify signifi-
cantly the relevant consideration. It should also be noted
that the investigation presented here was performed for
an arbitrary value of the orbital angular momentum l.

2. DISPERSION RELATION FOR THE P MATRIX 
AND NUCLEAR–COULOMB OBSERVABLES

For the elastic scattering of two charged strongly
interacting particles, the radial wave function ψlk(r) of
relative motion in a state characterized by a specific
value of the orbital angular momentum l is regular at
the origin and satisfies the radial Schrödinger equation

(1)

with the potential

(2)

where Vs(r) is a short-range strong potential (by
assumption, it has a finite range R) and VCoul(r) = 2ξk/r
is a convenient Coulomb potential. For the sake of con-
venience, we further use the Coulomb parameter

(3)

where aB is the Bohr radius,

(4)

d
2

dr
2

-------- E
l l 1+( )

r
2

-----------------– V r( )–+ ψlk r( ) 0=

V r( ) Vs r( ) Vc r( ),+=

ξ
µe1e2

"
2
k

-------------≡ 1
aBk
--------,=

aB
"

2

µe1e2
-------------,≡
e1 and e2 being the charges of the particles involved in
the scattering process. We everywhere use the system
of units where the reduced Planck constant and the dou-
bled reduced mass of the two particles are both equal to
unity (" = 2µ = 1), so that the energy of the relative
motion, E, is expressed in terms of the wave number k
as E = k2.

At infinity, the radial wave function satisfies the
scattering boundary condition

(5)

where (r) is the asymptotic wave function for the
continuous spectrum, while Fl(ξ, kr) and Gl(ξ, kr) are,
respectively, the regular and the irregular wave func-
tions [18], whose asymptotic behavior at infinity is
given by

(6)

(7)

Here, σl(k) ≡ (l + 1 + iξ) is the purely Coulomb
phase shift, and the total phase shift δl(k) has the form

(8)

where νl(k) is the nuclear–Coulomb phase shift.

The P matrix Pl(E) is defined in terms of the loga-
rithmic derivative of the radial wave function at the sur-
face of the strong-interaction region (r = R),

(9)

In the internal region r ≤ R, we introduce a complete set
of orthonormalized eigenfunctions uln(r) that satisfy the
Schrödinger equation (1) and the homogeneous bound-
ary conditions

(10)

at the ends of the interval [0, R]. Nontrivial solutions
that obey the conditions in (10) exist only at some
energy eigenvalues Eln that are determined by solving
the Sturm–Liouville problem specified by Eqs. (1) and
(10). The orthonormalization conditions have the form

(11)

By expanding the wave function in the internal
region in a series in eigenfunctions uln(r), we find that,

ψlk r( ) ψlk r( )

≡ e
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for the P matrix, there is the dispersion relation [1, 3, 4]

(12)

where

(13)

Relation (12) involves a constant Pl(0), the P matrix
at zero energy, and it is the isolation of this constant that
ensures convergence of the remaining series. The dis-
persion relation (12), which represents a pole expan-
sion of the P matrix, establishes the general form of its
energy dependence. This dependence is completely
determined by the states of the compound system
which are characterized by the energy eigenvalues Eln

and the residues . These quantities in turn are con-
trolled by the physical properties of the system in the
internal region and are independent of energy E.

Let us now establish the relation between the S
matrix and the P matrix. For this, we note that the wave
function in the outer region, (r), can be represented
in the general form

(14)

where (ξ, kr) and (ξ, kr) are the Coulomb Jost
solutions given by

(15)

which represent the diverging and the converging
waves distorted by the Coulomb potential. Accord-
ingly, their asymptotic behavior is given by

(16)

By using the matching conditions at the point r = R and
definition (9), we find that the S matrix can be recast
into the form

(17)

where

(18)

is the S matrix corresponding to the scattering on a hard
core of radius R in the presence of the Coulomb poten-

tial and (k) are the logarithmic derivatives of the
diverging and converging Coulomb waves at the
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boundary surface,

(19)

Hereafter, a prime denotes differentiation with respect
to the variable ρ = kR. The real and the imaginary part

of the function (k) are usually denoted by ∆l(k) and

sl(k), respectively; since the relation (k) = (k)
obviously holds, we can write

(20)

where the functions sl(k) and ∆l(k) are expressed in
terms of the Coulomb functions [19] as

(21)

(22)

With the aid of Eqs. (17) and (20), it can easily be
found that the nuclear–Coulomb phase shift can be rep-
resented as

(23)

where the phase shift ζl(k) for scattering on a hard core
of radius R in the presence of the Coulomb interaction
is given by

(24)

Expressions (17) and (23) for the observables reveal
a significant drawback of the P-matrix approach based
on the dispersion formula (12) as an approximation of
the P matrix: if only a finite number of terms are
retained, the observables in question will have an incor-
rect asymptotic behavior at high energies. By way of
example, we indicate that, with increasing energy, the
phase shift (23) will then behave as the phase shift ζl(k)
for scattering on a hard core; that is, it will tend to infinity,

(25)

But in fact, the phase shift must vanish at high energies,
at least for regular potentials.

3. PURELY COULOMB P MATRIX

An incorrect asymptotic behavior of observables at
high energies can be avoided by isolating the back-
ground part in the P matrix. In the presence of Coulomb
interaction, we define the background P matrix as the
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purely Coulomb P matrix—that is, in terms of the log-
arithmic derivative of the regular Coulomb function,

(26)

We recall that the regular Coulomb function Fl(ξ, ρ) is
expressed in terms of the confluent hypergeometric
function Φ(a, b; z) as [18]

(27)

where

(28)

is the Coulomb penetrability factor that is a rather com-
plicated function of energy and which is introduced in
order to ensure the required asymptotic behavior of the
function Fl(ξ, ρ) at infinity [see Eq. (6)]. If, however,
we consider only the internal region 0 ≤ r ≤ R, it is more
convenient to introduce a solution that does not involve
the factor Cl(ξ) and which possesses simpler properties
near the origin. We define such a solution φl(ξ, ρ)
through the relation

(29)

where the factor (2l + 1)!! was introduced in order that,
upon switching the Coulomb interaction off, the func-
tion φl(ξ, ρ) reduce to the spherical Riccati–Bessel
function:

(30)

The expression for the function φl(ξ, ρ) in terms of
a confluent hypergeometric function can easily be
found with the aid of Eqs. (27) and (29). The Coulomb
P matrix as expressed in terms of the solution φl(ξ, ρ)
has the form

(31)

which is analogous to (26).

The positions  ≡  of the poles of the Cou-
lomb P matrix—they depend on the Bohr radius aB and

on the interaction range R (  = (aB, R))—are
defined by the roots of the denominator of the expres-
sion on the right-hand side of (31),

(32)

The Coulomb eigenfunctions (r), which obey
the Schrödinger equation (1) with the purely Coulomb
potential and the boundary condition (10), are given by

(33)
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where ξln ≡ 1/aBkln and where the parameters ,
which are determined from the normalization condition
for the eigenfunctions, can be found if we use the
Green’s theorem,

(34)

for two solutions to Eq. (1) that correspond to two dif-

ferent energy values,  and . By substituting (33)
into (34), going over to the limit k1  k2 = kln , and
taking into account Eqs. (11) and (13), we find that the

expression for the Coulomb residues  can be recast
into the form

(35)

where the function θl(ξ, ρ), which is the derivative of
the function φl(ξ, ρ) with respect to the parameter ξ,

(36)

can be directly expressed in terms of a confluent hyper-
geometric function.

Thus, we have completely determined the parame-
ters of the Coulomb P matrix (its poles and residues)
and found the Coulomb eigenfunctions. The dispersion
relation for the Coulomb P matrix has the form (12);
that is,

(37)

where the P matrix at zero energy, (0), is given by
expression

(38)

which can be directly derived from (31) for k  0 by
using the expansion of the regular Coulomb function
and its derivatives in terms of Bessel functions [18, 20,
21]. In expression (38), Iν(z) are modified Bessel func-
tions and the dimensionless parameter z is given by

(39)

So far, we have considered the case of Coulomb repul-
sion (aB > 0). In the case of Coulomb attraction (aB <

γln
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0), (0) has the form

(40)

where Jν(ζ) are Bessel functions and ζ ≡ 2 .

4. ISOLATING THE PURELY COULOMB 
BACKGROUND P MATRIX

In nuclear–Coulomb P matrix (9), we now isolate
explicitly the purely Coulomb background P matrix
(26), following a way that is similar to that used to iso-
late explicitly the free background P matrix in the
absence of Coulomb interaction [3, 4, 7]. We represent
this transformation in the form

(41)

With the aid of Eqs. (12) and (37), it can be shown that,

for the residual nuclear–Coulomb P matrix (E), we
have the expansion

(42)

By comparing the expansions in (12) and in (42) for

the functions Pl(E) and (E), respectively, we con-
clude that the isolation of the purely Coulomb back-
ground part in the nuclear–Coulomb P matrix accord-
ing to (41) amounts to a partial summation of the series
in (12), where one isolates the part that corresponds to
the Coulomb interaction and which is known explicitly.
This naturally improves convergence of the original
series, thereby making it possible to obtain a more
accurate representation of observables as functions of
energy. It can be shown that the expansion in (42) con-
verges at the same rate as a series whose general term
is proportional to 1/n4, while the expansion in (12) con-
verges as 1/n2—that is, much more slowly.

By making transformation (41) in Eq. (17) and
using the relation

(43)

which can easily be verified for logarithmic derivatives,
we can straightforwardly express the nuclear–Coulomb

S matrix (E) =  in terms of the residual P

Pl
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-------------------- l,–=
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matrix (E) as

(44)

where the functions (k) are determined according

to (43) and obviously satisfy the relation (k) =

(k). With the aid of (44), we can easily represent the
nuclear–Coulomb phase shift as

(45)

From Eqs. (44) and (45), it is obvious that, if only a
finite number of terms are retained in the pole expan-

sion (42) for (E), the S matrix and the phase shift will
have a correct asymptotic behavior at high energies:

(46)

Thus, an isolation of the purely Coulomb back-
ground term in the P matrix leads to a correct asymp-
totic behavior of the observables in question at high
energies if the residual P matrix is approximated by a
finite number of pole terms. We can see that the trans-
formation in (41) has a transparent mathematical and
physical substantiation and that its application provides
the same advantages as in the absence of Coulomb
interaction.

5. EXPRESSIONS 
FOR THE NUCLEAR–COULOMB PARAMETERS 

OF LOW-ENERGY SCATTERING IN TERMS
OF THE PARAMETERS OF THE RESIDUAL

P MATRIX 

A great number of studies (see, for example, [22–
27]) have been devoted to the problem of generalizing
and modifying effective-range theory in the presence of
long-range Coulomb interaction. As a result, the Cou-
lomb-modified effective-range function Kcsl(E) was
introduced, and the nuclear–Coulomb scattering length
and effective range were determined for the case of
S-wave scattering, as well as for scattering in a state
characterized by an arbitrary value of the orbital angu-
lar momentum l. In [22, 25], it was shown that, in the
case of an arbitrary orbital angular momentum, the
effective-range expansion in the presence of Coulomb
interaction has the form

(47)
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where the function h(ξ) is expressed in terms of the
digamma function ψ(z) ≡ Γ'(z)/Γ(z) as

(48)
In the complex plane of energy E, the nuclear–Cou-
lomb effective-range function Kl(E) is analytic in some
domain near the origin [26]; hence, it can be expanded
in the Maclaurin series (47) in powers of E in the vicin-
ity of the point E = 0. Thus, a special role of the func-
tion Kl(E) is associated with its analyticity near E = 0.
The nuclear–Coulomb scattering length al and effective
range rl are determined in this case in terms in the coef-
ficients in the expansion (47) of the function Kl(E). We
note that, in a large number of studies, the nuclear–
Coulomb quantities, such as al , rl , and Kl, are equipped
with the additional indices c and s, which label param-
eters and functions associated with, respectively, Cou-
lomb and short-range interactions. This was done in
order to distinguish these quantities from their counter-
parts in the absence of Coulomb interaction, which are
labeled only with the index s. Since we do not consider
here the case where there is no Coulomb field, the indi-
ces c and s are suppressed on all nuclear–Coulomb
quantities.

For a further analysis, it is reasonable to introduce
the dimensionless inverse scattering length γl and the
dimensionless effective range ρl as

(49)

(50)

In the particular case of scattering on a hard core of
radius R [ψlk(R) = 0, Pl(E) = ∞], the parameters γl and
ρl can easily be found in the explicit form [8]

(51)

(52)

where the superscript h denotes, as previously, a hard
core and Iν(z) and Kν(z) are modified Bessel functions.
The constants ν, λl , and µl are given by

(53)

(54)

(55)

while the dimensionless parameter β is defined as

(56)

As before, the parameter z has the form (39). In order
to render the expressions presented below less cumber-
some, it is convenient to isolate explicitly, in the low-

h ξ( ) Re ψ 1 iξ+( )≡ ξ .ln–

γl
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2
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2l 1+
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------------------,≡
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2
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h Kν z( )
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2

z( )
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ν 2l 1,+≡

λ l l l 1+( ),≡

µl 4νλ l,≡

β R
aB
-----.≡
energy parameters γl and ρl, the parts that correspond to
scattering on a hard core. Accordingly, we set

(57)

(58)

defining, in this way, the residual low-energy nuclear–
Coulomb scattering parameters  and .

Let us further express the nuclear–Coulomb scatter-
ing length and effective range in terms of the residual P
matrix. By substituting (45) into (47), we find that the
nuclear–Coulomb effective-range function as expres-
sed in terms of the residual P matrix is given by

(59)

where, as before, we use the notation ρ = kR. Let us
expand the right-hand side of Eq. (59) in a Maclaurin
series in powers of energy E = k2. It is obvious that, as
long as we are interested neither in the shape parameter
nor in higher expansion coefficients, it is sufficient to
retain only the terms that are linear in E. We further
make use of the known relation for the Coulomb pene-
trability factor [18],

(60)

and of the asymptotic expression for the function h(ξ)
at low energies [18],

(61)

The expansions of the Coulomb wave functions in
power series in energy E were previously studied by
many authors [20, 21, 28, 29]. To terms that are linear
in energy, these expansions for the case of Coulomb
repulsion can written as

(62)
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The dispersion relation for the residual P matrix
(42) can be recast into the form

(64)

This expansion contains no additional parameters and

is completely determined by the quantities Eln and .
It can be shown that the expansion in (64) converges at
the same rate as a series whose general term is propor-
tional to 1/n2. The analyticity of the residual P matrix
in a vicinity of the point E = 0 immediately follows
from (64) if all energy eigenvalues differ from zero.
The expansion of the residual P matrix in a power
series in energy E can be written in the form

(65)

where

(66)

(67)

are dimensionless expansion coefficients. We can eas-

ily express the quantities  and  in terms of the P-
matrix parameters as

(68)

(69)

We also note that, on the basis of Eq. (41), the quanti-

ties  and  can be determined from the relations

(70)

(71)

where

(72)

(73)

are parameters in the expansion of the P matrix,

(74)

The parameters  and  in the expansion of the
purely Coulomb background P matrix can be found
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explicitly from Eqs. (26) and (62). The results are

(75)

(76)

Substituting now expressions (60)–(63) and (65)
into Eq. (59) and taking into account Eq. (47), we arrive
at explicit expressions for the inverse scattering length

 and the effective range , also referred to as the
dimensionless nuclear–Coulomb residual parameters.
The results are given by

(77)

(78)

where Iν ≡ Iν(z). In the particular case of interaction in
the S state (l = 0), the last formulas are somewhat sim-
plified to become

(79)

(80)

In the case of Coulomb attraction (aB < 0), all the above
formulas are valid upon the substitution of conven-
tional Bessel functions for modified ones:

(81)

Formulas (77) and (78) yield explicit expressions
for the nuclear–Coulomb parameters of low-energy
scattering in terms of the residual P matrix. These
expressions make it possible to obtain directly a general
form of the nuclear–Coulomb scattering length and
effective range for models of short-range strong inter-
action.

6. NUCLEAR–COULOMB PARAMETERS 
OF LOW-ENERGY SCATTERING FOR EXACTLY 

SOLVABLE HARD-CORE MODELS

For specific applications of the above general
expressions, we will consider some exactly solvable
models of hard-core short-range strong interaction. For
these, we will find explicitly the nuclear–Coulomb
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parameters of low-energy scattering for arbitrary val-
ues of the orbital angular momentum.

6.1. Boundary-Condition Model

In the boundary-condition model, the interaction in
the internal domain is determined by a single energy-
independent parameter, the value of the logarithmic
derivative of the wave function at the boundary sur-
face—that is, the constant Pl . It is obvious that the
parameter Ql vanishes in this case. Thus, we have

(82)

, (83)

whence it follows that

(84)

(85)

The nuclear–Coulomb parameters of low-energy scat-
tering can then be written as

(86)

(87)

where the quantities  and  are given by Eqs. (75)
and (76).

6.2. Hard-Core Delta-Shell Potential

Let us consider the case where the strong interaction
is described by the delta-shell potential concentrated on
the sphere of radius R and supplemented with a hard
core of radius Rc less than R,
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(88)

Here, λ is the dimensionless interaction constant. In
this case, the wave function in the internal region (r <
R) is a linear combination of the Coulomb wave func-
tions,

(89)

and satisfies the zero boundary condition at r = Rc:
ψlk(Rc) = 0. At the boundary surface (r = R), the wave
function is continuous, but its derivative undergoes a
discontinuity,

(90)

By using formulas (89) and (90), we find that, in the
case of a hard-core delta-shell potential, the P matrix
can be represented as

(91)

where x ≡ kRc . With the aid of the definition of the
background Coulomb P matrix (26) and the representa-
tion in (41), we obtain the residual P matrix for the
potential (88) in the form

(92)

By means of the expansion of the Coulomb functions
(62) and (63), we derive the parameters of the residual

P matrix,  and , according to (65). The results are

(93)

Vs r( )
+∞, r Rc<

λ
R
---δ r R–( ), r– Rc.>







=

ψlk r( ) Al k( ) Gl ξ kRc,( )Fl ξ kr,( )[=

– Fl ξ kRc,( )Gl ξ kr,( ) ] ,

Rc r R,< <

ψlk' R 0+( ) ψlk' R 0–( )–
λ
R
---ψlk R( ).–=

Pl E( ) ρ
Gl ξ x,( )Fl' ξ ρ,( ) Fl ξ x,( )Gl' ξ ρ,( )–
Gl ξ x,( )Fl ξ ρ,( ) Fl ξ x,( )Gl ξ ρ,( )–
-------------------------------------------------------------------------------- λ ,–=

P̂l E( )
ρFl ξ x,( )/Fl ξ ρ,( )

Gl ξ x,( )Fl ξ ρ,( ) Fl ξ x,( )Gl ξ ρ,( )–
-------------------------------------------------------------------------------- λ .–=

P̂l Q̂l

P̂l
1
2
---

Iν y( )/Iν z( )
Kν y( )Iν z( ) Iν y( )Kν z( )–
----------------------------------------------------------- λ ,–=
(94)

24β2
Q̂l lz

2 µl–( ) λ P̂l+( )=

+ λ l β–( )
λ l α–( )/ λ l β–( ) 2z Kν y( )Iν 1+ z( ) Iν y( )Kν 1+ z( )+[ ] Iν y( )/Iν z( )– Iν

2
y( )/Iν

2
z( )+

Kν y( )Iν z( ) Iν y( )Kν z( )–[ ] 2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,
where α ≡ Rc/aB and y ≡ 2 . By substituting (93)
and (94) into (77) and (78), we now find that the
nuclear–Coulomb scattering length and effective range
for the hard-core delta-shell potential can be repre-
sented as

(95)
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where (y) and (y) are the low-energy nuclear–
Coulomb parameters for a hard core of radius Rc

[Eqs. (51) and (52) with substitutions z  y and
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β  α], while (z) ≡  and (z) ≡  are the
parameters for the hard core of radius R [Eqs. (51),
(52)]. In the limiting case of a delta potential without a

core (Rc  0, y  0, and (y)  ∞), expressions
(95) and (96) reduce to the known expressions for the
low-energy nuclear–Coulomb parameters for scattering
on a delta function [16, 17]

(97)

(98)

6.3. Margenau Model

In the Margenau model [30], strong interaction is
simulated by a hard-core square-well potential; Cou-
lomb interaction is assumed to be absent in the internal
region. The latter is justified by the fact that, in the
internal region, the Coulomb interaction is much
weaker than strong interaction. Thus, the total interac-
tion in this model is described by the potential

(99)

In this case, the wave function in the internal region has
the form
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where K ≡  and jl and nl are the spherical Ric-
cati–Bessel functions. The P matrix can then be writ-
ten as
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where x ≡ KRc and ρ ≡ KR. From the above, we can eas-
ily determine the P-matrix parameters Pl and Ql . The
results are
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Eqs. (75) and (76), we can find the parameters of the

residual P matrix—  and ; the nuclear–Coulomb
parameters of low-energy scattering are given by

(104)

(105)

where ξ0 ≡ .

6.4. Hard-Core Square-Well Potential

For the case of a strong-interaction potential in the
form of a square well with a hard core,

(106)

we confine ourselves to determining the nuclear–Cou-
lomb scattering length. For the simpler case of a
square-well potential without a core, the nuclear–Cou-
lomb scattering length and the nuclear–Coulomb range
were found in [8]. In this case, the wave function in the
internal domain has the form
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where Ξ ≡ , and the P matrix is given by
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ξ0
-----

Iν 1+

Iν
----------+ +

×
jl x0( )nl 1+ ρ0( ) nl x0( ) jl 1+ ρ0( )–

jl x0( )nl ρ0( ) nl x0( ) jl ρ0( )–
---------------------------------------------------------------------------,

1
aBK0
------------

Vs r( )
+∞, r Rc<

V0θ R r–( ), r– Rc,>



=

ψlk r( ) Al k( ) Gl Ξ KRc,( )Fl Ξ Kr,( )[=

– Fl Ξ KRc,( )Gl Ξ Kr,( ) ] ,

Rc r R,< <

1
aBK
----------

Pl E( ) ρ
Fl Ξ x,( )Gl' Ξ ρ,( ) Gl Ξ x,( )Fl' Ξ ρ,( )–
Fl Ξ x,( )Gl Ξ ρ,( ) Gl Ξ x,( )Fl Ξ ρ,( )–
----------------------------------------------------------------------------------------,=

P̂l
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(109)

while the nuclear–Coulomb scattering length is given by

(110)

7. CONCLUSION
In summary, an explicit isolation of the purely Cou-

lomb background part in the P matrix leads to a correct
asymptotic behavior of physical observables at high
energies when the residual P matrix is approximated by
a finite number of pole terms. Concurrently, the isola-
tion of the background P matrix makes it possible to
improve convergence of the remaining expansions. The
transformation in (41) has a transparent mathematical
and physical substantiation, and its application pro-
vides the same advantages as in the absence of Cou-
lomb interaction. In addition, the explicit isolation of
the purely Coulomb background part in the P matrix
makes it possible to obtain the simple general expres-
sions (77) and (78) for the nuclear–Coulomb parame-
ters of low-energy scattering in terms of the residual P
matrix. With the aid of these expressions, we can
directly calculate the nuclear–Coulomb scattering
length and effective range for short-range strong-inter-
action potentials. If the Schrödinger equation for these
potentials admits of an exact solution in the presence of
Coulomb interaction, the nuclear–Coulomb parameters
can be found explicitly. In general, the nuclear–Cou-
lomb parameters for low-energy scattering can be
obtained for arbitrary short-range strong-interaction
potentials at any value of the orbital angular momen-
tum l. On the basis of the expressions derived in the
present study, we have found explicitly the nuclear–
Coulomb scattering length and effective range for the
boundary-condition model, for the model of a hard-
core delta-shell potential, for the Margenau model, and
for the hard-square-well potential at arbitrary values of
the orbital angular momentum.
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P̂l ρ0

Fl ξ0 x0,( )Gl' ξ0 ρ0,( ) Gl ξ0 x0,( )Fl' ξ0 ρ0,( )–
Fl ξ0 x0,( )Gl ξ0 ρ0,( ) Gl ξ0 x0,( )Fl ξ0 ρ0,( )–
--------------------------------------------------------------------------------------------------=

–
z
2
---

Iν 1+ z( )
Iν z( )

----------------- l 1+( ),–

1

Iν
2 γ̂l

--------- = 2ρ0

Fl ξ0 x0,( )Gl' ξ0 ρ0,( ) Gl ξ0 x0,( )Fl' ξ0 ρ0,( )–
Fl ξ0 x0,( )Gl ξ0 ρ0,( ) Gl ξ0 x0,( )Fl ξ0 ρ0,( )–
--------------------------------------------------------------------------------------------------
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Abstract—In the general relativistic case, the nonresonance photoproduction of electron–positron pairs on a
nucleus in the field of two circularly polarized light waves propagating in one direction is theoretically investi-
gated. It is shown that there are two essentially different kinematical regions: the noninterference region, where
the Bunkin–Fedorov quantum parameters play the role of multiphoton parameters, and the interference region,
where interference effects are important and where quantum interference parameters are treated as multiphoton
parameters. The interference effect is found in the photoproduction of an electron–positron pair on a nucleus in
the field of two light waves. This effect occurs in the interference region and is due to the production of an elec-
tron–positron pair in the plane spanned by the light wave vector and the incident-photon momentum and to
stimulated correlated emission and absorption of photons of the two waves. The cross sections for pair photo-
production on a nucleus in the above kinematical regions are determined for moderately strong fields. It is
shown that, in the interference region, the partial cross sections for the case where there is a correlated emission
(absorption) of the same number of photons of the two waves can significantly exceed the corresponding cross
sections in any other geometry. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The production of an electron–positron pair by a
nucleus in the field of a plane electromagnetic wave has
been studied for quite a long time. In such investiga-
tions, much attention has been given to resonances
associated with the approach of the Green’s function
for the intermediate electron (positron) in the plane-
wave field to the mass shell (see, for example, [1–4]).

Nonresonance spontaneous bremsstrahlung in elec-
tron scattering by a nucleus in the field of two light
waves propagating in the same direction was investi-
gated in [5] for linearly polarized waves and in [6] for
the general case of elliptically polarized waves. These
investigations revealed a spontaneous interference
bremsstrahlung effect occurring in electron scattering
and spontaneous-photon emission at specific angles in
the plane spanned by the initial-electron momentum
and light wave vector and consisting in the correlated
emission and absorption of equal numbers of photons
of the two waves.

In the present study, we consider the nonresonance
photoproduction of electron–positron pairs on a
nucleus in the field of two circularly polarized electro-
magnetic waves propagating in the same direction. We
emphasize that resonances associated with the
approach of the Green’s function of the intermediate
electron (positron) in the two-wave field to the mass
shell are not investigated here (this will be the subject
of a subsequent publication). We study in detail pair

* e-mail: roshsp@ssu.sumy.ua
1063-7788/01/6402- $21.00 © 20243
photoproduction in the noninterference and in the inter-
ference region; in the latter, we predict an interference
effect that occurs not only in pair production in the
plane spanned by the initial-electron momentum and
light wave vector but also in the stimulated correlated
emission and absorption (owing to the interference of
waves) of photons of the two waves. It is shown that the
partial cross section for pair photoproduction on a nucleus
in the interference region can significantly exceed the cor-
responding cross section in any other geometry. Here, we
use the system of units where " = c = 1.

2. AMPLITUDE FOR THE PHOTOPRODUCTION 
OF AN ELECTRON–POSITRON PAIR

Let us choose the 4-potential of an external field as
the sum of the potentials of two circularly polarized elec-
tromagnetic wave propagating along the z axis; that is,

(1)

where

(2)

Here, δ1 = +1 and δ2 = ±1; ejx = (0, ejx) and ejy = (0, ejy)
are the polarization 4-vectors of the waves; Fj and ωj
are, respectively, the field strength and the frequency of
the first (j = 1) and the second (j = 2) wave; and the
argument ϕj is given by

(3)

A A1 ϕ1( ) A2 ϕ2( ),+=

A j ϕ j( )
F j

ωj

----- e jx ϕ jcos δje jy ϕ jsin+( ).=

ϕ j ωj t z–( ), j 1 2.,= =
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The pair-photoproduction amplitude is derived in the
standard way [4–6]:

(4)

Here, the partial-wave amplitude corresponding to the
emission (l > 0, s > 0) or the absorption (l < 0, s < 0) of
|l| photons of the first wave and |s | photons of the sec-
ond wave has the form

(5)

where

(6)

Here, Ze is the charge of the nucleus involved; φ is a
phase that is independent of the summation indices;
u+ ≡ u(–p+) and  ≡ (p–) are Dirac bispinors; caret-

labeled expressions (  = ) denote the scalar

product of the Dirac matrices  (µ = 0, 1, 2, 3) and the
corresponding 4-vector; q = (q0, q) is the 4-momentum
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Fig. 1. Diagrams representing the amplitudes for the photo-
production of electron–positron pairs on a nucleus in the
field of two light waves. Solid incoming and outgoing lines
correspond to the electron and positron wave functions in
the field of two waves (Volkow functions), dashed lines cor-
respond to the incident photon (k') and the pseudophoton of
the nucleus, and the internal lines represent (‡) the electron
and (b) the positron Green’s function in the field of two waves.
 

transfer; and  and  are the 4-momenta of, respec-
tively, the intermediate electron in the amplitude repre-
sented by the diagram in Fig. 1
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 and the intermediate
positron in the amplitude represented by the diagram in
Fig. 1
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In formulas(5)–(8) we have used the following nota-
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tron 4-quasimomenta; and 

 

m

 

∗

 

 

 

is the effective electron
(positron) mass in the wave field (1). We have
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where 
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 are the positron and electron 4-
momenta and

 

(10)

 

is a classical relativistically invariant parameter that
characterizes the intensity of the first and the second
wave.

In expression (6), the operators Ml – l ', s – s', which
determine the amplitude for electron (positron) scatter-
ing by a nucleus in the field of two waves [7, 8], and the
operators Kl 's' , which determine the amplitude for the
photoproduction of an electron–positron pair in the
field of two waves [provided that the intermediate elec-
tron (positron) is treated as a real one] are given by

(11)

(12)

Here,  = , where  is the incident-photon
polarization 4-vector. It should be noted that, in
Eq. (11), r = l – l' and r' = s – s'; we also have there  =

 and  =  for the amplitude represented by the

diagram in Fig. 1a and  = –  and  = –  for the
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amplitude represented by the diagram in Fig. 1b. In
Eq. (12),  = –  and  =  for the amplitude rep-

resented by the diagram in Fig. 1a and  = –  and

 =  for the amplitude represented by the diagram
in Fig. 1b. The functions Brr ' and the 4-vector Drr ' [7, 8]
are then given by

(13)

(14)

where an asterisk denotes complex conjugation and where
the functions Irr' can be represented as an expansion in a
series in Bessel functions of integral orders [7]:

(15)

The arguments of the functions Irr ' are given by

(16)

(17)

where | | = |gj |sinϑ j (ϑ j is the angle between the vec-
tors gj  and k1) is the absolute value of the gj component
parallel to the polarization plane. It should be recalled
that γj (16) is the well-known Bunkin–Fedorov quan-
tum parameter used to specify the case where mul-
tiphoton effects come into play [9–11, 7] and that α12
(17) is the quantum interference parameter, which gov-
erns interference effects in the scattering of an electron
(positron) on a nucleus and in the photoproduction of
an electron–positron pair in the field of two waves. It
should be emphasized that |Ω12| (17) are combined fre-
quencies that are equal to the difference or the sum of
the wave frequencies for identical or opposite wave
polarizations (δ2 = +1 or –1, respectively). If the quan-
tum interference parameter α12 exceeds unity, the pro-
cesses of the correlated emission and absorption of
photons of the two waves become operative. But if
α12 ! 1, the effect of interference processes can be dis-
regarded (j = 0), in which case the functions Irr ' (15)

p̃1 p̃+ p̃2 q̃–
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factorize into the product of Bessel functions determin-
ing the independent emission and absorption of pho-
tons of the first and the second wave [7].

For electron (positron) velocities satisfying the con-
dition ν± @ Z/137, expressions (4)–(6) for the ampli-
tude of the photoproduction of an electron–positron
pair on a nucleus are valid at arbitrary intensities and
frequencies of the two waves. It can easily be shown
that, if one of the waves is switched off (for example, at
F2 = 0), these expressions reduce to the form describing
the amplitude for the photoproduction of an electron–
positron pair on a nucleus in the field of one wave [1–
4]; if both wave are switched off (F1 = F2 = 0), we
obtain the conventional amplitude for the photoproduc-
tion of an electron–positron pair on a nucleus in the
absence of external fields [12].

At equal frequencies of the waves (ω1 = ω2), expres-
sions (4)–(6) reduce to the form describing the ampli-
tude for the photoproduction of an electron–positron
pair on a nucleus in the field of one wave [5, 6]. In the
following, we therefore assume that the frequencies of
the waves are not close:

(18)

We also assume that they satisfy the condition

(19)

Since the Bunkin–Fedorov parameters γj (16)
greatly depend on the kinematics of electron scattering
and of the emission of a spontaneous photon, we will
single out, in just the same way as in [5–7], two kine-
matical regions: the noninterference region, where it is
the quantum Bunkin–Fedorov parameters that specify
the condition under which multiphoton effects come into
play, and the interference region, where the influence of
these parameters, in view of a special type of kinematics,
vanishes (all eight parameters γj are equal to zero in this
region), so that multiphoton processes are determined by
the quantum interference parameters α12 (17).

3. PHOTOPRODUCTION
OF AN ELECTRON–POSITRON PAIR

ON A NUCLEUS IN THE NONINTERFERENCE 
REGION

Here, we will investigate the photoproduction of an
electron–positron pair on a nucleus in the noninterfer-
ence region, where the Bunkin–Fedorov quantum
parameters γj (16) are not small, appearing to be basic
parameters that specify the conditions under which
multiphoton effects become operative (ϑ j ~ 1; hence,
the vectors gj have a nonzero component parallel to the
wave-polarization plane). It should be noted that this
region is rather broad. Only the production of an elec-
tron–positron pair at specific angles in the plane
spanned by the incident-photon momentum and the
wave vector of the light wave is excluded in it (see Sec-
tion 4).

∆ω /ω1 * 1.

ωj ! ω', j 1 2.,=
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In the noninterference region, the quantum parame-
ters (16) and (17) can be estimated as

(20)

where

(21)

is a quantum parameter, which is numerically equal to
the ratio of the work of the field over the wavelength of
the first or the second wave to the incident-photon
energy and which determines the integrated features of
the process in the noninterference region. Let us now
consider the photoproduction of an electron–positron
pair on a nucleus in the region of moderately strong
fields such that ξj ! 1; for the wave intensities, this
means fulfillment of the condition

(22)

in which case we have α12 ! γj, so that multiphoton pro-
cesses are determined primarily by the relevant
Bunkin–Fedorov quantum parameters (l ' & γ1, s' & γ2).
Considering that l 'ω1/ω' & ξ1 ! 1 and s'ω2/ω' & ξ2 !
1, we find that, in the region of moderately strong fields
satisfying the condition in (22), the amplitude of the
photoproduction of an electron–positron pair as given
by Eqs. (5)–(12) is simplified significantly. For exam-
ple, the expressions for the 4-momenta in (7) and (8)
and for the amplitudes in (11) and (12) become

(23)

(24)

From (23), it follows that, in the region of moderately
strong fields, there arise no resonances associated with
the approach of the Green’s function for an intermedi-
ate electron or an intermediate positron in the wave

field to the mass shell (  ≠ m2,  ≠ m2)—that is, the
condition in (22) determines the nonresonance region
as well. Since the arguments of the functions Il 's' and
Il − l ', s – s' in (24) are independent of the summation indi-
ces, the amplitude in Eq. (6) with allowance for rela-
tions (24) can easily be summed over all values of the
integral indices l ' and s'. As a result, the quantity
obtained by averaging the noninterference differential
cross section evaluated for the production of an elec-
tron–positron pair by an unpolarized photon on a
nucleus in the field of two moderately strong light
waves over the polarizations of the particles constitut-
ing the pair assumes the form

(25)

where dσ∗  is the differential cross section for the pho-
toproduction of an electron–positron pair on a nucleus
in a process where the electron and the positron of
given energies are emitted in a specified direction (in
the absence of an external field) [12] and where it is

γ j γ j'∼ η j
m
ωj

-----, α12 γ1ξ2 γ2ξ1, j∼ ∼ 1 2,,= =

ξ j η jm/ω'=

η j ! ω'/m,

q p– p+ k', q̃––+ k' p+, q̃+– k' p–;–= = =

Ml l '– s s'–, γ̃0Il l '– s s'–, , Kl 's' ε̂*Il 's' .= =

q̃–
2

q̃+
2

dσls Ils χ1 γ1; χ2 γ2; α12, ,( ) 2
dσ*,=
necessary to set  = –p+ and  = p– in the arguments
of the functions Ils; that is,

(26)

(27)

In the case of ultrarelativistic electron and positron
energies, expression (25) for the partial-wave cross sec-
tion is valid at not overly small angles between the
wave vector k1 and the 3-momenta of the electron, the

positron, and the incident photon (  @ η1, 2m/E±, θ'2 @
η1, 2m/ω'). From (25), it can be seen that, in the region
of moderately strong fields satisfying the condition in
(22), the cross section for the photoproduction of an
electron–positron pair on a nucleus factorizes into the
probability of the emission (absorption) of |l| photons
of the first wave and |s | photons of the second wave and
the cross section for the photoproduction of an elec-
tron–positron pair on a nucleus in the absence of an
external field, the processes of the emission and absorp-
tion of photons of the first and the second wave being
generally correlated owing to a nonzero value of the
quantum interference parameter α12 (27).

Under the condition α12 ! 1 (in which case γ1, 2 !

 @ 1), the functions Ils (15) in expression (25) can
be represented as the product of independent Bessel
functions, and the partial-wave cross section takes the
form

(28)

This means that, in this case, the emission (absorption)
of photons of the first and the second wave and the pho-
toproduction of an electron–positron pair on a nucleus
proceed independently. Since the electron and the
positron energy are independent of the number of
absorbed or emitted photons of the two waves in the
region of moderately strong fields satisfying the condi-
tion in (22), the partial-wave cross sections (25) and
(28) can easily be summed over all possible absorption
and emission processes. As a result, we arrive at a result
that might have been expected from the outset: the total
cross section coincides with the cross section for the
photoproduction of an electron–positron pair on a
nucleus in the absence of an external field. In other
words, all essentially quantum contributions cancel out
completely upon summation; that is,

(29)
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To conclude this section, we note that, from the energy-
conservation law [as represented by the zeroth compo-
nent of the first relation in Eq. (23)], it follows that, near
the reaction threshold (ω'  2m) and owing to the use
of the Born approximation, the above expressions are
valid if

(30)

which is a conventional condition in the absence of
external fields.

4. PHOTOPRODUCTION
OF AN ELECTRON–POSITRON PAIR

ON A NUCLEUS IN THE INTERFERENCE 
REGION

For the general case of arbitrary intensities, it can be
shown that, in the interference region, the amplitudes
corresponding to the diagrams in Figs. 1a and 1b must
satisfy the relativistically invariant relations

(31)

that is, the corresponding vectors gj are aligned with the
direction of wave propagation. Therefore, these vectors
have no component parallel to the polarization plane
[ϑ j ! ( )–1 & 1; see Eqs. (16), (20)]. By virtue of (31),
the Bunkin–Fedorov quantum parameters γj (16) and
the phases χj (17) vanish. In the interference region
specified by (31), the functions Irr ' (15), which deter-
mine the pair-photoproduction amplitude given by
Eqs. (5) and (6), are therefore simplified significantly,
reducing to a Bessel function of integral order:

(32)

From (32), it follows that, in the interference region, the
numbers of photons emitted and absorbed by electron
and positron from the two waves correlate in such a
way that the half-sum (δ2 = –1) or the half-difference
(δ2 = +1) of these numbers (r and r') appears to be an
integer (r12).

Taking into account the change in the notation for
the indices in (32), we further rewrite the amplitude for
pair production on a nucleus [see Eqs. (4)–(6)]. As a
result, the sum (difference) of the integral indices l ', s'
and l, s can be either even,

(33)

Z
137
--------- ! 

ω' 2m–
ω'

------------------ ! 1,

g j
2

p̃– q̃–,( ) g j
2

q̃– p̃+–,( ) 0,= =

g j
2

p̃– q̃+–,( ) g j
2

q̃+– p̃+–,( ) 0;= =

γ j'

Irr' 0 0; 0 0; α12, ,( ) Jr12
α12( ),=

r12
1
2
--- r δ2r'–( ).=

l ' δ2s'– 2s12,=

l ' δ2s'+ 0,=

 l δ2s– 2l12,=

l δ2s+ 0,=


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or odd

(34)

For the case specified by Eq. (33), we obtain the corre-
lated emission (absorption) of equal numbers of pho-
tons in the two waves, and the 4-momenta in (7) and (8)
assume the form

(35)

where

(36)

For the case specified by Eq. (34), we instead have

(37)

From expressions (35) and (37), it can be seen that, in
the interference region, the emission (absorption) of
photons from the product electron–positron pair is cor-
related in such a way that the numbers of emitted
(absorbed) photons in the two waves are equal in the
first case (s = –δ2l, s' = –δ2l ') and differ by unity in the
second case (s = –δ2l – 1, s' = –δ2l ' – 1), processes
where the numbers of the emitted (absorbed) photons
in the two waves do not satisfy this condition being sup-
pressed. In the interference region, the amplitude for
pair photoproduction on a nucleus eventually assumes
the form

(38)

where  and  are the partial amplitudes for the
correlated emission (absorption) of photons whose
numbers in the two waves are equal and differ by unity,
respectively. These amplitudes are given by expression
(5), where we must make the substitutions q  q(0)

and Hls   for the former and q  q(1) and
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Hls   for the latter. We also have

(39)

(40)

Here, a, b = 0, 1, and we have used the notation

(41)

(42)

(43)

(44)

In expressions (41)–(44), the functions  and 4-vec-

tor  can be written as

(45)

(46)

Thus, we can see that, in the interference region, there
occur processes of correlated emission (absorption) of
photons of the two waves from the product electron–
positron pair. As a result, the amplitude for the process,
as given by Eqs. (38)–(46), has the same form as that in
the field of a single wave.
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We now investigate the kinematics of the photopro-
duction of an electron–positron pair on a nucleus in the
interference region. Writing down explicitly relations
(31) for the amplitudes represented by the diagrams in
Figs. 1a and 1b, we find after some simple algebra that
the kinematical features of the photoproduction of an
electron–positron pair on a nucleus are identical for
these two amplitudes. Specifically, the electron–
positron pair is generated in the plane spanned by the
incident-photon momentum k' and the wave vector k1,
provided that the following relation holds:

(47)

The absolute value of this vector equation gives the
sought relation between the polar angles and energies
of the pair and the angle of the photon incidence (here,
the corresponding azimuthal angles take equal values);
that is,

(48)

where

(49)

We note that, in Eqs. (48) and (49), the quantities κ± and
the angles θ± are determined by expression (27). On the
basis of Eq. (48), we can easily obtain the relations

(50)

where

(51)

By virtue of this, the energy-conservation law [zeroth
component of the first relation in Eq. (35) or Eq. (37)]
for arbitrary wave intensities is significantly simplified,
assuming the form

(52)

or

(53)

After some simple transformations, the first relation in
(50) can be represented in the form of a quadratic equa-
tion for the pair emission angles,

(54)

It follows from (54) that the pair emission angles are
determined by the velocities ν± of the translational
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motion of the pair constituents and by the angle of pho-
ton incidence; that is,

(55)

where

(56)

is the minimum velocity and the minimum electron
(positron) energy. It can be seen from (55) that, in con-
trast to what we have in the noninterference region, the
velocities of electron and positron translational motion
in the interference region are bounded from below by a
quantity that is dependent on the angle of photon inci-
dence [see Eq. (56)]. It should be emphasized that
Eqs. (55) and (56) are valid for arbitrary intensities of
the two waves.

Let us find out how the process of pair photoproduc-
tion on a nucleus proceeds in the interference region
near the threshold—that is, in the case where the inci-
dent-photon energy is such that the electron and
positron are produced with energies close to Emin
(ν±  νmin):

(57)

If condition (57) is satisfied, it is easy to obtain, on the
basis of relation (55), the angles at which the electron-
positron pair is emitted. We have

(58)

that is, the electron–positron pair is emitted within a
narrow cone along the bisector of angle between the
wave vector k1 and incident-photon momentum k' [the
± sign in Eq. (58) in front of the square root refers both
to the electron and to the positron]. It is peculiar to this
process that, as the energy grows (far from the thresh-
old), the direction of electron and positron emission
recedes from the bisector of this angle (see Fig. 2). In
the limit of ultrarelativistic energies (E± @ m), they are
emitted either near the direction of the incident-photon
momentum k' or near the direction of the wave vector
k1 [see Eq. (55)]; that is, these angles are given by

(59)

We note that expression (59) is valid for not overly
small angles θ' @ (m/E±)2. On the basis of Eqs. (52) and
(53) [in the cases of emission (absorption) of photons
that is correlated in such a way that their numbers in the
two waves are equal or differ by unity], we can obtain
the threshold frequency of the incident photon in the
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partial process,

(60)

or

(61)

From Eqs. (56), (60), and (61), it can be seen that,
by specifying the angles θ' and the incident-photon
energy, we can smoothly change the minimal energy of
the product electron and the product positron. Let us
assume that the incident-photon momentum is nearly
antiparallel to the wave vector k1,

(62)

From Eq. (56), we then find that the minimum nonrela-
tivistic velocity of the electron and the positron is given
by

(63)

and that, in the case specified by Eq. (52), for example,
the threshold frequency for the incident photon takes
the form

(64)

where ν1, 2 = η1, 2 is the rate of electron (positron) oscil-
lations in the first and the second wave. We emphasize
that the second term in the parenthetical expression on
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Fig. 2. Electron (positron) emission angle  [see Eq. (55)]

as a function of the electron (positron) velocity  for vari-

ous values of the angle of photon incidence: (1) θ' = 170°
(νmin = 0.09), (2) θ' = 140° (νmin = 0.34), and (3) θ' = 60°
(νmin = 0.87).
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the right-hand side of Eq. (64) has the meaning of the
minimal kinetic energy of the electron (positron)—
there is no such minimum in the noninterference
region—while the third and the fourth term correspond
to the energy of oscillations. It should also be noted that,
since we use the Born approximation, the values of the
angle ∆θ' (62) cannot be overly small; that is,

(65)

In the opposite limiting case where the incident-pho-
ton momentum is nearly parallel to the wave vector k1,

θ' ! 1, (66)

it follows from Eq. (56) that the ultrarelativistic mini-
mal energy of the electron and the positron is

(67)

The angles (58) of electron and positron emission are
then given by

(68)

If the angle between the incident-photon momentum k'
and the wave vector k1 is close neither to zero nor to π
[that is, when relations opposite to the inequalities in
(62) and (66) are satisfied], we arrive at relativistic val-
ues for the minimal energies of the electron and the
positron.

In the interference region, multiphoton processes
are determined by the Bessel functions Jr(α12) [see
Eqs. (38)–(46)], while the conditions under which such
processes become operative are formulated in terms of
the quantum parameters α12 (17). In addition to the
photoproduction of an electron–positron pair on a
nucleus, there therefore basically proceed, in this case,
processes of the stimulated correlated emission
(absorption) of l12 & α12 photons of the two waves from
the product electron and positron. As a result, the
energy fraction emitted by the electron (positron) or
absorbed by it from both waves is about l12Ω12/ω' & ζint,
where ζint is the quantum interference parameter deter-
mining the integrated features of the process in the
region specified by Eq. (31),

(69)

ξ1, 2 being given by expression (21). We define the
region of moderately strong fields for the interference
region (31) by imposing the condition ζint ! 1 on the
quantum interference parameter. For the product of the
intensities of the two waves, this implies fulfillment of
the inequality

(70)

We note that the condition in (70) is less stringent than
the analogous condition (22) in the noninterference
region. Taking into account (70), we can disregard, in
expressions (8) for the squares of the 4-momenta, the
energies of the photons of the two waves against the
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incident-photon energy. It follows that  ≠ ,
whence we conclude that the region of moderately
strong fields that is specified by the condition in (70) is
not a resonance region. If η1 ~ η2 in this region, we can
set  = p±, in which case the 4-momenta given by
Eqs. (7) and (8) assume the form (23). In deriving the
cross section from the amplitude given by Eqs. (38)–

(46), there will arise terms in  that are propor-

tional to , , and η1η2 and to higher powers of

the wave intensities; concurrently,  will develop

terms proportional to  and η1η2 and to higher pow-
ers of these parameters. By virtue of (70), we can there-

fore disregard the amplitude  given by the second
equation in (39); for the same reason, we can neglect

 (45) and  (46) in the amplitude  given by
the first equation in (39) and perform summation there

over s12. As a result, we obtain  = 0 and  =

(α12)S∗ , where S∗  in the amplitude for the photo-
production of an electron–positron pair on a nucleus in
the absence of an external field. For the production of
an electron–positron pair by an unpolarized photon on
a nucleus in the field of two moderately intense waves
satisfying the condition in (70), the result obtained by
averaging, over the polarizations of the pair constitu-
ents, the partial differential cross section in the interfer-
ence region (31) has the form

(71)

where dσ∗  is the differential cross section for the pro-
cess where a photon produces, on a nucleus, an electron
and a positron of specified energies and directions of
emission in the absence of an external field [12] and
where the quantum interference parameter is given by

(72)

It should be emphasized that, in the partial cross section
(71), the integral index l12 indicates that equal numbers
of photons in the two waves are emitted or absorbed
(s = ±l); on the contrary, there is no similar correlation
between the indices l and s in expressions (25) and (28)
for the noninterference region. From Eq. (71), it can be
seen that, in the region of moderately strong fields sat-
isfying the condition in (70), the partial cross section
for the photoproduction of an electron–positron pair on
a nucleus factorizes into the probability of the corre-
lated emission (absorption) of equal numbers of pho-
tons of the two waves and the cross section for the pho-
toproduction of an electron–positron pair on a nucleus
in the absence of an external field. It is important that,
in the interference region, this correlation between the
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numbers of photons in the two waves is irremovable;
that is, the cross section (71) cannot be represented as
the product of the probabilities of emission and absorp-
tion in each of the two waves separately, as this may
occur in the noninterference region [see Eq. (28)]. It
should also be noted that, in expression (71), the elec-
tron and positron emission angles in the parameters b±
(51) are determined by relation (55). In the region of
moderately strong fields that is specified by the condi-
tion in (70), the threshold frequency of the incident
photon is given by

(73)

and we can set E± = Emin in the cross section (71) near
the threshold, in which case the quantum interference
parameter α12 (72) becomes

(74)

If, in addition to the condition in (70), the wave
intensities satisfy the inequalities

(75)

we have α12 * 1; hence, γ1, 2 ~ α12/ξ2, 1 @ α12 [see
Eqs. (20) and (72)]. Taking this into account, one can
easily show [13] that, for wave intensities satisfying the
conditions in (70) and (75), the partial cross section
(25) in the noninterference region is much smaller than
the corresponding cross section (71) in the interference
region:

(76)

Let us estimate the field strengths and the cross-sec-
tion ratios (76) for relativistic energies of the incident
photon and of the product electron–positron pair (ω' ~
m,  ~ m). In this case, we find that, in the region of
optical frequencies (ω1, 2 ~ 1015 s–1), the quantum inter-
ference parameter α12 is about unity when the field
strengths in the two waves have values of F1, 2 ~ 106–
107 V/cm [see Eqs. (72) and (10)], which are widely
used in present-day physical experiments. For such
field strengths and such energies of the pair, the
Bunkin–Fedorov quantum parameters are γ1, 2 ~ 3 ×
103. Taking this into account, we find from Eq. (76) that
the cross-section ratio in question is R ~ 10–7 for mul-
tiphoton processes where the numbers of photons satis-
fies the inequality l, s ! 3 × 103.

Thus, we conclude that, if the electron and positron
emission angles and energies are recorded simulta-
neously in the plane spanned by the wave vector of the
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light wave and the momentum of the incident photon
moving in the nuclear field, the process in which the
photoproduction of an electron–positron pair on a
nucleus is accompanied by the correlated multiphoton
emission (absorption) of equal numbers of photons in
the two waves can be much more probable than the
analogous process in the noninterference region.

The partial cross section (71) can be summed over
all emission and absorption processes. This will yield a
result similar to that obtained in the noninterference
region: for moderately strong fields satisfying the con-
dition in (70), all essentially quantum contributions are
canceled out completely upon the above summation
[see Eq. 29)]:

(77)

5. CONCLUSIONS

The results deduced from our analysis of the photo-
production of an electron–positron pair on a nucleus in
the field of two light waves propagating in one direction
can be summarized as follows:

(i) The photoproduction of an electron–positron pair
on a nucleus in the field of two waves depends greatly
on the kinematics of the incident photon and of the
product electron–positron pair. Owing to this, we can
single out two kinematical regions: the noninterference
one [if relations (31) are not satisfied], where the con-
ditions under which multiphoton processes come into
play are governed by the Bunkin–Fedorov quantum
parameters γj (16), and the interference one [if relations
(31) are satisfied], where multiphoton processes are con-
trolled by the quantum interference parameters α12 (17).

(ii) For moderately strong fields [ξ1, 2 ! 1; see
Eq. (22)], the partial cross section in the noninterfer-
ence region factorizes into the cross section for the pho-
toproduction of an electron–positron pair on a nucleus
in the absence of external fields and the probability of
the emission (absorption) of a specific number of pho-
tons of the first and the second wave [see Eq. (25)]. It
has been shown that, for wave intensities such that the
quantum interference parameter α12 is much less than
unity, processes leading to the photoproduction of an
electron–positron pair on a nucleus and processes
involving the absorption and emission of photons of the
first and the second wave by the electron and the
positron proceed independently [see Eq. (28)].

(iii) In the photoproduction of an electron–positron
pair on a nucleus in the field of two light waves, an
interference effect has been discovered that occurs if
the electron–positron pair is produced in the plane
spanned by the wave vector of the light wave and the
incident-photon momentum. In this case, the Bunkin–
Fedorov parameters are equal to zero, so that multipho-
ton processes are controlled by the quantum interfer-

dσ σl12

0( )
d

l12 ∞–=

∞

∑ σ*.d= =
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ence parameter α12 (17). Because of this, there occurs
correlated emission (absorption) of photons by the
electron (positron) of the pair, the numbers of these
photons in the two waves being equal or being different
by unity. It has been shown that, for the electron and the
positron energy, there is a lower bound Emin (56), which
depends greatly on the angle between the incident-pho-
ton momentum k' and the wave vector k1. If the inci-
dent-photon momentum is nearly parallel or nearly
antiparallel to the wave vector, the minimal electron
(positron) energy is, respectively, ultrarelativistic
[Emin @ m; see Eq. (67)] or nonrelativistic [νmin ! 1; see
Eq. (63)]. Otherwise, we have Emin ~ m. Herein lies a
significant difference between the photoproduction of
an electron–positron pair on a nucleus in the interfer-
ence region and the analogous process in the noninter-
ference region. Near the threshold, the electron–
positron pair is emitted into a narrow cone around the
bisector of the angle between the incident-photon
momentum and the wave vector of the light wave [see
Eq. (58)]. As the energy is increased, however, the elec-
tron and positron momenta deflect ever more pro-
nouncedly from the bisector of this angle; in the limit
of ultrarelativistic energies, the emission direction is
close to either the incident-photon momentum or the
wave vector [see Eq. (59)].

(iv) For moderately strong fields [ξint ! 1; see the
condition in (70)], the partial cross section for the pho-
toproduction of an electron–positron pair on a nucleus
in the field of two light waves has been obtained in the
interference region. This expression factorizes into the
cross section for the photoproduction of an electron–
positron pair on a nucleus in the absence of external
fields and the probability of the correlated emission
(absorption) of equal numbers of photons in the two
waves [see Eq. (71)]. The latter probability cannot be
represented as the product of the probability of the
emission (absorption) of photons in individual waves
separately, in contrast to what occurs in the noninterfer-
ence region. It has been shown that the partial cross sec-
tion for the processes where there is a correlated emis-
sion (absorption) of equal numbers of photons in the
two waves and where the electron and the positron are
emitted at given angles and with given energies can
considerably exceed the cross section for the analogous
process in any other geometric arrangement [see
Eq. (76)].
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Abstract—Stochastization of a supercritical atom (with a nuclear charge number Z in excess of 137) under the
effect of a periodic perturbation is investigated. The Hamiltonian for a relativistic electron in the Coulomb field
of a Z > 137 charge is obtained. A simple analytic formula is derived for the critical external-field strength cor-
responding to the onset of stochastization. The diffusion coefficient is evaluated. © 2001 MAIK “Nauka/Inter-
periodica”.
In contemporary physics, much attention has
recently been given to the realms of superheavy ele-
ments. In particular, rapidly growing interest in the syn-
thesis and chemistry of actinide and transactinide
nuclei continues stimulating intensive investigations
into the properties of superheavy elements [1, 2]. That
superheavy atoms are of relativistic nature—because of
a large charge of the nucleus in such an atom, the
motion of its electrons is described by relativistic equa-
tions—complicates problems to be solved in these
investigations. In the present study, we analyze the clas-
sical dynamics of a relativistic electron in the field of a
supercharged (Z > 137) nucleus under the effect of a
periodic perturbation. An atom whose nucleus has a
charge number in excess of 137 is referred to as a super-
critical atom [3, 4]. The quantum-mechanical proper-
ties of supercritical atoms were explored in a number of
studies (see, for example, [3–5]). For deep energy lev-
els in the lower continuum, the semiclassical dynamics
of such atoms was investigated in [4, 5]. Experimen-
tally, such supercritical states are generated in slow col-
lisions of heavy ions whose total charge number is
greater than 137 [6–8]. So far, investigations into
dynamical chaos have been performed predominantly
for nonrelativistic systems. Only a few articles [9–13]
have been devoted to studying chaotic behavior in rela-
tivistic systems. Stochastization of a subcritical (Z <
137) relativistic hydrogen-like atom, where relativistic
corrections to highly excited states are small, was
investigated in [11, 12]. In contrast to a subcritical
atom, a supercritical one is essentially a relativistic
object [3–5]. It is well known [3, 6] that the approxima-
tion of pointlike charges is inapplicable in studying the
motion of a relativistic electron in the field of a Z > 137
Coulomb center. For this reason, it is necessary to reg-
ularize the problem with allowance for a finite size of
the nucleus. The regularization in question consists in
1063-7788/01/6402- $21.00 © 20253
redefining the Coulomb potential as

where f (r/R) is a cutoff function that takes into account
a finite size of the nucleus and R is its radius (hereafter,
we use the system of units where " = m = c = 1). We will
consider the case of f(r/R) = 1 (surface distribution of
the nuclear charge). The relativistic momentum, which
is given by

where ε is the energy of the electron being considered
and M is its orbital angular momentum, can then be
recast into the form

The turning points correspond to zero values of the
momentum p. One of these points,

lies within the nucleus, while the other,

is outside it.
Taking into account a finite size of the nucleus, we can

therefore determine the action functional for Z > M as
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where

(2)

(3)

Here, A = ε2 – 1, B = 2εZ, and C = Z2 – M2 in (2), and
a' = (ε + Z/R)2 – 1 and a = M/a' in (3).

Substituting (2) and (3) into (1) and solving the
resulting equation for ε in the approximation specified
by the relationships |ε| ! 1 and M ~ Zα, we can derive
the expression for the Hamiltonian of a relativistic elec-
tron in the field of a supercharged nucleus (Z > 137) in
terms of the action–angle variables. The result is

(4)

where c(r, g) = exp(g – R) and g = .

The fundamental frequency is given by

(5)

For Z > M, the equation for the trajectory in the
region r > R has the form [14]
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For r < R, the equation for the trajectory has the form
(7)

where

φ being a polar angle.
Let us now consider the interaction of this supercrit-

ical atom with the linearly polarized monochromatic
perturbation field

(8)
where θ and ψ are Euler angles. In order to analyze the
supercritical atom for stochasticity, we assume the
orbital angular momentum M to be fixed, thereby
reducing the number of degrees of freedom to unity.

The total Hamiltonian can be represented as

(9)

where λ is an Euler angle and xk and yk are the Fourier
components of the electron dipole moment. The
explicit expressions for them are [14]
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where

Evaluating the integrals in (10) and (11) by the sta-
tionary-phase method, we arrive at

(12)

In order to analyze the supercritical atom for sto-
chasticity, it is necessary to find, as was done in [12, 13,
15], the resonance width

where rk =  and  = dω0/dn.

From Chirikov’s stochasticity criterion [13, 14],
which has the form

where ω0(k + 1) – ω0(k) = ω/(k + 1) – ω/k is the spacing
between the neighboring resonances, we find that the
critical external-field strength corresponding to the
onset of the stochastization of electron motion is

(13)

Taking into account (12), we reduce the critical field to
the form

(14)

In just the same way as in [13, 15], we calculate the
diffusion coefficient as
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In summary, stochastization of a supercritical
hydrogen-like atom (Z > 137) interacting with a mono-
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chromatic field has been investigated. Analytic formu-
las for this case have been obtained, which reveal that
the critical field strength for the onset of stochastization
is much less for a supercritical atom than for a subcrit-
ical atom (Z < 137), which was investigated in [13].
This can be explained by the fact that the condensation
of levels has an exponential character [see Eq. (4)]. The
above results can be of use in studying processes
accompanying slow collisions of heavy ions (with a
total charge in excess of 137) that interact simulta-
neously with a monochromatic radiation field.
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Abstract—A new artificial neutrino source on the basis of the 75Se isotope for calibrating low-threshold solar-
neutrino detectors like GNO, SAGE, and LENS is considered. It is shown that 75Se possesses some advantages
over sources based on 51Cr: the energies of its basic neutrino lines are close to the endpoint of the neutrino spec-
trum associated with proton–proton interactions in the solar cycle, and the production cross section for the
former and its half-life are much larger. A Russian L-2 heavy-water reactor can be used to generate the required
activity of 75Se in an optimal mode. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of solar neutrinos is one of the pressing
problems in contemporary physics and astrophysics. As
a matter of fact, the problem consists in that, according
to the results from four experiments that recorded solar
neutrinos (chlorine–argon experiment [1], Kamiokande
[2], GALLEX [3], and SAGE [4]), the fluxes of solar
neutrinos are sizably less than that predicted by the
standard solar model.

In order to solve this problem, it is necessary to con-
tinue Ga–Ge experiments with the aim of improving
the accuracy of the results already obtained (SAGE [4]
and GNO [5] experiments) and to launch new experi-
ments to implement an on-line detection of low-energy
neutrino fluxes from proton–proton interactions and
electron capture in a 7Be nucleus (for example, this
could be achieved with the recently proposed LENS
detector employing a target based on Yb [6]).

In order to interpret correctly the results of experi-
ments that record solar neutrinos, it is necessary to cal-
ibrate preliminarily the detectors involved by using
artificial neutrino sources whose parameters are known
to within 5%. A number of K-capture sources were pro-
posed as artificial neutrino sources for calibrating solar-
neutrino detectors (51Cr, 65Zn, and 37Ar [7–9]). It should
be recalled that artificial neutrino sources based on the
51Cr isotope successfully operated in GALLEX [10]
and SAGE [11] experiments.

For the GNO and SAGE detectors, a calibration
experiment is required for a high-precision determina-
tion of the efficiency of their operation, while, for the
LENS detector, such an experiment is needed above all
for measuring the cross section for neutrino capture by
a 176Yb nucleus. It should be noted here that the LENS
detector makes use of the reaction in which low-energy
solar neutrinos are captured by a target based on the
176Yb isotope [6]. Upon neutrino capture in a 176Yb
nucleus, there arise excited isomeric states of the 176Lu
1063-7788/01/6402- $21.00 © 20256
nucleus, which decay into a long-lived isomeric state
with lifetime τ = 50 ns. In this case, the neutrino-cap-
ture reaction is characterized by the presence of two
events (one from the electron produced as the result of
neutrino capture and the other from the photon deexcit-
ing the long-lived isomeric state of 176Lu) at the same
place of the detector with a mean delay time of 50 ns.

In the present study, we discuss the possibility of
using the 75Se isotope for calibrating the low-threshold
detectors SAGE, GNO, and LENS. This isotope has a
number of important advantages over artificial neutrino
sources based on 51ër: the half-life of the former is
longer by a factor of 4.3, and the energy of its basic
neutrino lines is close to the endpoint of the neutrino
spectrum associated with proton-proton interactions of
the solar cycle.

2. NEUTRINO RADIATION FROM
AN ARTIFICIAL NEUTRINO SOURCE

ON THE BASIS OF 75Se

Upon electron capture, 75Se transforms into 75As,
releasing a total energy of 863 keV (the relevant half-
life is T1/2 = 119.79 d) [12]. The most probable transi-
tions are accompanied by the energy release of
462.9 keV (95.9%), 584.1 keV (1.7%), 598.9 keV
(0.7%), and 863.6 keV (1%) [12]. The diagram of 75Se
decay is displayed in the figure, where we can also see
the neutrino energy with allowance for the binding
energy and the probabilities of electron capture from
the K and L shells. We note that the energy of basic neu-
trino lines is close to the highest energies of neutrinos
from proton–proton interactions, whereas the energy of
weak lines is close to the energy of neutrinos from the
solar cycle that are emitted in electron capture by a 7Be
nucleus.
001 MAIK “Nauka/Interperiodica”
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The neutrino-interaction cross section in the
inverse-beta-decay reaction was calculated according
to the formula [13]

(1)

where Eν is the neutrino energy in MeV, F(Ee, Z) is the
Fermi function [14], me is the electron mass in MeV, Q

is the difference of A(Z + 1) and A(Z), σ0 = /π = 1.63 ×
10–44 cm2/MeV2 (if the energy is measured in MeV),
and the relevant matrix element squared is M2 =
(gA/gV)2B(GT) = (1.267)2B(GT); we have used here nat-
ural units where " = c = 1. The values of the Fermi
function F(EÂ, Z) were borrowed from [14]. The matrix
elements for the transitions to the excited states of 176Lu
were estimated in terms of the Gamow–Teller strength
function B(GT), whose values were determined in
experiments studying (n, p) and (3He, t) scattering [15];
for 71Ge, they were taken from [16].

The results of the calculations are presented in
Tables 1 and 2. The cross sections for the capture of
neutrinos from the 75Se source by the 71Ga and 176Yb
nuclei are 2.88 × 10–45 and 0.344 × 10–43 cm2, respec-
tively. From the calculation, it follows that the contribu-
tion to the capture cross section for 71Ga from the 75Se
source is determined by transitions to the ground state
of 71GÂ, amounting to 97% of the total cross section.
Thus, a comparison of the results obtained by calibrat-
ing a gallium detector with the aid of sources based on
51Cr and 75Se will make it possible to determine inde-
pendently the cross sections for capture in the ground
state of 71GÂ and in its excited states.

In calculating the number of events of the capture of
neutrinos from a source based on 75Se (and, for the sake
of comparison, from the source based on 51Cr) in the
SAGE, GNO, and LENS detectors, it was assumed that
the neutrino source, together with a passive shielding,
is arranged at the detector center. For the LENS detec-
tor, which contains 10 t of ytterbium, the length of the
path traveled by neutrinos in a detector material was
taken to be 295 cm, while the concentration of 176Yb
atoms was set to 4.1 × 1019 atom/cm3. The geometry of
the calibration experiment with the GNO detector is
analogous to the geometry of the GALLEX experiment
[10]. The duration of the calibration experiment was
assumed to be three months, while the activity of the
source was set to 1 MCi.

Under these conditions, the number of events in the
GNO detector for 51Cr will be very close to that for 75Se
(242 and 237, respectively). In the LENS detector, the
number of events will be 109 for 51Cr and 92 for 75Se
(only events leading to the excitation of the 195-keV
level of the 176Lu nucleus were taken into account in the
last case).

From these calculations, it follows that, in order to
achieve a 5% precision (only statistical errors are taken
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into account here) in calibrating the LENS detector, the
activity of the artificial neutrino source based on 75Se
(51Cr) is required to be 4.4 MCi (4.3 MCi).1) In calibrat-
ing the GNO detector, the required activity is 1.7 MCi
for 75Se and 1.9 MCi for 51Cr. A similar calculation for
the SAGE detector reveals that an artificial neutrino
source of activity as low as about 0.45 MCi is sufficient
to perform relevant experiments, since the rate at which
the 71Ge isotope is produced is much higher in a metal
target than in the GNO detector based on a solution of
gallium chloride (owing to an order of magnitude
higher concentration of Ga atoms).

3. DEVELOPING AN ARTIFICIAL NEUTRINO 
SOURCE ON THE BASIS OF 75Se

The 75Se isotope is formed upon neutron capture by
74Se. For thermal neutrons, the capture cross section is
51.8 b, while the effective resonance integral is 520 b
(see Table 3). The material of the target must be
enriched in 74Se and depleted in 76Se, since the latter
has a large cross section for the capture of thermal neu-
trons (85 b) and will substantially reduce the effective
neutron flux. It is worth noting that 75Se is used in
industry (production of defectoscopes) and medicine
(radiopharmaceuticals for medical diagnosis) [18].

1)Here, allowances are made for the time (7 days) it takes for deliv-
ering the source to the underground laboratory.

T1/2 = 119.79 days
5/2+

75Se

5/2+

5/2–

3/2–

7/2– 0 75As

851.73 keV (0.89%)
862.07 keV (0.11%)

587.08 keV (0.62%)
597.42 keV (0.08%)

400.659 keV

279.543 keV
264.658 keV

582.53 keV (0.19%)
572.19 keV (1.51%)

461.42 keV (10.93%)
451.08 keV (84.97%)

Stable

Diagram of 75Se decay (shown in the diagram are neutrino
lines whose energies are quoted with allowance for the elec-
tron binding energy in the K and L shells)
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Table 1.  Effective cross section for neutrino capture by 71Ga nuclei into the ground state and the excited states of the 71Ge
nucleus at Ex = 175 and 500 keV (with allowance for the contribution from each neutrino line in the spectrum of the source)

Source

σeff, 10–45 cm2

Total cross section,
10–45 cm2Ground state,

B(GT) = 0.087
Ex = 175 keV,
B(GT) = 0.005

Ex = 500 keV,
B(GT) = 0.01

51Cr 5.286 0.206 0.135 5.627
75Se 2.791 0.087 0.002 2.880

Note: Here and in Table 2, B(GT) is the Gamow–Teller strength function [15, 16].
The production of selenium enriched in the 74Se iso-
tope does not involve serious technical difficulties,
because SeF6, a gaseous selenium compound that is
available at room temperature, makes it possible to use
the ultracentrifuging technique, which is well devel-
oped in Russia [19]. Since this procedure is very expen-
sive, the optimum enrichment of selenium in 74Se must
not be higher than 90 to 95% (at a 76Se concentration of
about 10 to 5%).

Selenium is known to have not less than five allotro-
pic modifications; however, only gray hexagonal sele-
nium, which is characterized by the melting tempera-
ture of 170°ë and the boiling temperature of 685°ë (its
density is 4.807 g/cm3), is stable. Selenium is very
active chemically; therefore, it must be hermetically
sealed during irradiation and subsequent utilization. If
selenium is used for a target, it is important to know the
temperature dependence of the pressure of its vapors
(this pressure changes from 15 mm Hg at 450°ë to
760 mm Hg at 685°ë [20]), since, for reactor safety, it

Table 2.  Effective cross section for neutrino capture by
176Yb nuclei into the excited states of the 176Lu nucleus at
Ex = 195 and 339 keV (with allowance for the contribution
from each neutrino line in the spectrum of the source)

Source

σeff, 10–43 cm2
Total

cross section, 
10–43 cm2Ex = 195 keV, 

B(GT) = 0.21
Ex = 339 keV, 
B(GT) = 0.12

51Cr 0.554 0.228 0.782
75Se 0.336 0.008 0.344

Table 3.  Cross section for neutron capture by stable seleni-
um isotopes [17]

Isotope
(concentration, %)

σ, b (thermal
neutrons)

I, b (resonance
integral)

74Se (0.9) 51.8 520
76Se (9.1) 85 40.3
77Se (7.6) 42 30.1
78Se (23.6) 0.43 –
80Se (49.9) 0.61 2.0
82Se (8.9) 0.044 0.039
will be necessary to calculate the required hermetic
sealing.

Questions associated with the production of 75Se
were comprehensively studied in [18], where it was
shown that, if selenium enriched in 74Se to 100% is
exposed to a neutron flux of density 2 × 1014 cm–2 s–1,
the resulting specific activity ranges between 2.9 × 1013

and 4.4 × 1013 Bq/g (784 to 1189 Ci/g), depending on
the characteristic target dimensions (from 1 to 5 mm)
and the irradiation time (0.3 yr).

On the basis of the above, we can say that a target
must be a pellet or a rod made from pressed selenium
powder enriched in the 74Se isotope and enclosed in a
hermetic casing from ultrapure aluminum. The diame-
ter of the target must be between 5 and 6 mm in order
to avoid the effect of thermal and resonance blocking,
whereas the mass of highly enriched selenium must lie
in the range 0.8–1.3 kg in order to achieve an activity of
1 MCi.

In Russia, there are a few reactors appropriate for
obtaining so high an activity of 74Se. These are the high-
energy fast-neutron reactor BN-600, which possesses
special irradiation properties [21]; the research reactors
SM-3 and MIR [22]; and the L-2 heavy-water reactor
Mayak [23, 24]. If we take into consideration the reac-
tor operating period (130 d), the neutron flux density
(1014–2 × 1014 cm–2 s–1), effective target cooling, and the
possibility of loading large amounts of the initial mate-
rial (distributed over a large volume), preference should
be given to the L-2 reactor. This reactor makes it possi-
ble to produce a 75Se isotope of high specific activity:
from 737 to 875 Ci/g at an enrichment of 90% in 74Se
(see Table 4). For generating an activity of 1 MCi,
1.5 kg (1.26 kg) of selenium is required for targets of
dimensions ∅ 5 × 6 mm (∅ 3 × 3 mm). The total activity
of 75Se that can be achieved with the aid of this reactor
by irradiating targets highly enriched in the 74Se isotope
is not less than a few MCi at an irradiation duration of
130 d (this estimate was obtained on the basis of 60Co
amounts produced by the reactor over a year [23]).

It should be noted that the same enriched initial
material can be used three or four times, with the activ-
ity of the artificial neutrino source after the third irradi-
ation being about 75 to 80% of the activity obtained
upon the first activation.
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4. GAMMA RADIATION AND HEAT RELEASE 
FROM ARTIFICIAL NEUTRINO SOURCES

Gamma radiation from the artificial neutrino source
being considered consists of two components: radiation
accompanying the decay of the selenium isotope 75Se
proper into the excited states of 75As and gamma radia-
tion from isotopes obtained as the result of the activa-
tion of some elements appearing in selenium and in a
casing material (aluminum) as admixtures. The activa-
tion of aluminum and selenium isotopes other than 74Se
does not lead to the formation of gamma impurities that
are hazardous either from the viewpoint of the physics
of the experiment being discussed or for the personnel
running it, because all product isotopes are short-lived
or stable. Radionuclides that originate from the irradia-
tion of selenium isotopes with fast neutrons in the
(n, p), (n, α), and (n, 2n) reactions and which possess
hard gamma radiation are not hazardous either, because
they have a small production cross section (which is
especially important for the long-lived isotope 74As, its
half-life being 17.78 d) or are short-lived like 76As
(1.1 d) and 73Se (7.2 h). Moreover, the fraction of fast
neutrons at the place where the initial material is
arranged is small in the L-2 reactor (heavy water is a
good moderator of neutrons).

Hence, the requirements on the purity of selenium
and aluminum (the mass of the aluminum casing is
commensurate with the selenium mass) with respect to
hazardous impurities are high. It should also be noted
that the technology for purifying selenium is well
developed, so that it can be obtained in a form free from
the admixtures of elements whose isotopes can be
responsible for the production of dangerous radionu-
clides (in particular, the concentrations of Fe, Ga, Cd,
As, and Ag can be reduced to values not exceeding 2 ×
10–5, 10–5, 10–5, 10–4, and 10–5%, respectively).

It follows that, if the purity of selenium and the cas-
ing material is sufficiently high, an adverse effect is
expected primarily from the gamma radiation originat-
ing from 75Se proper and including the lines of energies
821.6 keV (0.000137%), 617.8 keV (0.00444%),
572.2  keV (0.0356%), 400.66 keV (11.48%),
279.54 keV (25.20%), and 264.66 keV (59.3%) [12].
That 75Se features high-energy gamma lines (those at
821.6, 617.8, and 572.2 keV) substantially toughens
requirements on biological protection for artificial neu-
trino sources based on 75Se in relation to that for artifi-
cial neutrino sources based on 51Cr.

An important merit of the 75Se isotope as a basic ele-
ment of artificial neutrino sources is that, owing to its
long half-life, there arises the possibility of storing it
for a period of up to three weeks until the complete
decay (or a considerable reduction of the activity) of
potentially present short-lived radioisotopes possessing
hard gamma radiation such as 72Ga, 24Na, 76As, and
140La. Concurrently, the activity of 75Se decreases only
by 12%.
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The decay of 75Se releases energy (in the form
Auger electrons, characteristic x rays, and photons) in
the amount of 2357 W per 1 MCi of its activity (for the
sake of comparison, we indicate that the energy release
from the decay of 51Cr of the same activity is 217 W).
Therefore, developing means for protection from radi-
ation and for efficient heat removal is an engineering
problem of paramount importance in constructing arti-
ficial neutron sources on the basis of the 75Se isotope.

5. CONCLUSION

The isotope proposed in this study possesses a num-
ber of advantages over the isotope 51Cr used previously:
the half-life of the former is longer than the half-life of
the latter by a factor of 4.3 (this makes it possible to
relax the requirements on the time of calibration exper-
iments), the energy of its basic neutrino lines is close to
the endpoint of the neutrino spectrum associated with
proton—proton interactions occurring on the Sun, the
initial material is characterized by a high purity in haz-
ardous admixtures, and the cross section for 75Se for-
mation is a few times as large as the cross section for
51Cr formation. Moreover, artificial neutrino sources
based on the 75Se isotope are advantageous in that they
provide the possibility of independently determining
the cross section for capture to the 71Ge ground state,
whereby the interpretation of the results obtained by
measuring the flux of solar neutrinos with a gallium
detector will be refined substantially.

In order to generate the required activity of 75Se in
an optimal mode, a Russian heavy-water reactor of the
L-2 type has been proposed, which makes it possible to
produce this isotope with a specific activity of 875 Ci/g
by using selenium targets highly enriched in the 74Se
isotope.
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Table 4.  Production of  75Se at the L-2 reactor (enrichment
in 74Se and 76Se is 90 and 10%, respectively) [25]

Target
dimensions (mm)

Specific
activity, Ci/g

Selenium mass
for generating 1 MCi, kg

ø3 × 3 875 1.26

ø5 × 6 737 1.5
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Abstract—Some technical and technological aspects of development, design, and safe operation of an artificial
tritium source with an antineutrino activity of 40 MCi for experiments to measure the neutrino magnetic
momentum are considered. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Low-energy neutrino reactions are a sensitive and
precise probe for testing the Standard Model of elec-
troweak interactions—in particular, for studying the
nonstandard electromagnetic properties of the neutrino.
The problem of the (anti)neutrino magnetic moment
(specifically, of its existence and magnitude), as well as
the motivation of its laboratory searches, is well known
[1–3].

Laboratory measurements of the neutrino magnetic
moment µν are based on extracting its contribution to
the cross section for (anti)neutrino–electron scattering.
At nonzero µν, the differential cross section dσ/dT,
where T is the kinetic energy of the scattered electron,
receives contributions not only from standard weak (W)
interactions but also from electromagnetic (EM) inter-
actions. At low energy transfers (T ! Eν), these contri-
butions behave absolutely differently: (dσ/dT )W is vir-
tually constant, whereas (dσ/dT )EM increases in propor-
tion to 1/T with decreasing energy. In order to improve
the sensitivity to µν, it is necessary to reduce the thresh-
old for scattered-electron detection.

The experimental scheme comprises a source (gen-
erator) of (anti)neutrinos and a detector. Since neutrino
interaction with matter is extremely weak, a high neu-
trino-flux density in the detector is a necessary require-
ment on the source, the most important albeit not the
only one.

Four types of (anti)neutrino generators can be used
in experimental neutrino physics. These are nuclear
reactors and β-active isotopes for the electron
antineutrino, accelerators predominantly for the muon
neutrino and antineutrino, and the Sun for the electron
neutrino. In recent years, ever greater attention has
been given to artificial beta-active sources of activity 5–
50 MCi [4–11] as an alternative to reactors. The use of
51Cr sources for calibrating the solar-neutrino detectors
in the GALLEX and SAGE experiments was the first

1) Joint Institute for Nuclear Research, Dubna, Moscow oblast,
141980 Russia.

2) All-Russia Institute of Experimental Physics, Sarov, 607190
Russia.
1063-7788/01/6402- $21.00 © 0261
experience of this kind. In relation to reactors, artificial
sources of neutrinos would provide the following
advantages: (i) more intense antineutrino fluxes; (ii) a
considerable suppression of the correlated background,
including that from inverse beta decay; (iii) small
dimensions, which enable one to use low-background
underground laboratories and flux modulation to sub-
tract the uncorrelated background; (iv) rather wide pos-
sibilities of choosing the energy range; (v) knowledge
of the (anti)neutrino spectrum to a high precision.

An additional important advantage of a tritium
source of antineutrinos is that it is possible to dispense
with a passive shielding between the source and the
detector: because of a low endpoint energy of the decay
spectrum (E0 = 18.6 keV), bremsstrahlung does not
escape from the source. Moreover, available technolo-
gies are capable of producing highly purified tritium.

In a proposal to measure the neutrino magnetic
moment [4, 5], it was shown that the use of a 40-MCi
tritium source of (anti)neutrinos (4 kg of tritium),
together with detectors ensuring an electron-detection
threshold in the range Ethr . 1–10 eV, would permit sig-
nificantly reducing the laboratory limit on the
(anti)neutrino magnetic moment achieved in reactor
experiments [12].

A spherical source of activity 40 MCi generates an
(anti)neutrino-flux density of F = 6.4 × 1014 cm–2 s–1 in
a compact assembly of detectors (volume of a few
liters) that is arranged within the source (Fig. 1) [5].
This value is more than one order of magnitude greater
than the (anti)neutrino fluxes obtained in reactor exper-
iments [12].

Silicon cryodetectors based on the effect of ioniza-
tion conversion into heat, which are presently being
developed [5], and strip avalanche germanium detec-
tors employing internal signal amplification [13] can be
used to detect electrons of energy between about 1 and
10 eV. The estimates from [5, 13] show that, within one
to two years of low-background measurements, a labo-
ratory limit on the neutrino magnetic moment can be
obtained at a level of the most stringent astrophysical
constraints µν ≤ (1–3) × 10–12 µB [14].
2001 MAIK “Nauka/Interperiodica”
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Promising substances for storage of hydrogen isotopes

Pdec, mm Hg
at 25°C

Decomposition 
temperature, °C

H2 content in hydrides Density, g/cm3

cm3/g cm3/cm3 metal hydride

UH3 10–6–10–4 420–430 ~140 ~1570 18.9 11.9
TiH2 ~10–9 550–620 ~468

~1700
4.5

3.8
TiT2 ~1700 3.3–4.1
Mg2NiH4 ~10–2 ~240 ~418 ~1074 3.47 2.71
ZrCoH ~10–5 340–350 ~186 ~1415 7.68 6.54
LaNi3Mn2H6 ~10–2 270 ~127
LaNi5 – xAlxHy ~10–1–10 180–250 80–100 550–690 9.66–7.41 8.25–6.54
x = 0–1, y = 6.7–4.1
PdH 30–50 ~150 ~105 ~800 11.9
H2 liquid –253 780
T2 liquid –251 1000

Note: The content of hydrogen is presented for the stoichiometric hydride. The actual content of hydrogen in a hydride is somewhat lower
and depends on the metal state.
It very difficult, both in the scientific and in the tech-
nological aspect, and expensive to construct a tritium
source of ultrahigh activity. Owing to the reduction of
nuclear weapons, large amounts of tritium have
recently become available for fundamental research.
Such a unique situation is unlikely to occur again in the
future, and it would be inexcusable to miss this oppor-
tunity.

In the present study, we consider some technical and
technological aspects of the development and safe
operation of a 40-MCi tritium source of (anti)neutrinos.

2. STATE OF TRITIUM IN THE SOURCE

In order to achieve a maximum (anti)neutrino-flux
density in the detector volume, it is necessary to ensure
a maximum volume density of tritium within the source
body. At the same time, such a source must be abso-
lutely safe under any conditions, including extreme
ones. Obviously, it is most appropriate to store tritium
chemically bound with hydride-forming metals. On
one hand, such metals are characterized by the highest
volume density of hydrogen; on the other hand, tritium
has low equilibrium pressures in them at room temper-
atures. The table lists the properties of some substances
that show promise as candidates for hydrogen storage
[15–18].

It can be seen that Ti is the most promising material
in this respect. It has the lowest equilibrium pressure at
room temperature (about 10–9 mm Hg), the highest
temperature of hydride decomposition, and the maxi-
mum volume concentration of hydrogen. The volume
concentration of tritium in Ti is nearly 1.7-fold higher
than in the liquid state. At the same time, a source based
on titanium tritide can be safely used within a wide
temperature range extending up to 500°ë, whereas
storage of liquid tritium requires a special powerful
cryogenic apparatus capable of maintaining the tritium
temperature at about 20 K despite its heat release.

A high purity of titanium in the radioactive admix-
tures of the uranium family is another important factor
in favor of choosing Ti as a tritium carrier, because it is
predominantly these admixtures that contribute to the
background [19].

3. SOURCE SAFETY

Since the source being discussed is of an unprece-
dentedly high activity (40 MCi), it is necessary to
ensure its absolute safety at all stages of the operating
cycle.

Here, heat release in the source and its self-heating
due to tritium radioactive decay present one of the main
problems in designing such a source. If the temperature
rises uncontrollably, there is the danger of the conver-
sion of tritium into a gas phase and, as a consequence,
of its leakage into the atmosphere owing to diffusion or
the destruction of the source casing.

According to the results of calorimetric measure-
ments, only 30% of the energy of tritium beta decay is
converted into heat. The rest of the energy is carried
away by (anti)neutrinos. In this case, the heat release is
dH/dt = 0.324 W/g = 1.944 W/mol T2 [17]. This corre-
sponds to 1.3 kW per 4 kg of tritium. The temperature
field over the source volume was calculated by using
the ANSYS code for the design in Fig. 1. In this calcu-
lation, it was assumed that there is natural heat
exchange at the source surface. The density of titanium
tritide–deuteride Ti(DT)1.9 was taken to be 3.5 g/cm3 at
a 96% concentration of tritium in the initial DT mixture
[18]; the thermal conductivity and the heat capacity
were set to λ = 0.154 W/(cm K) and C = 0.605 J/(g deg)
[17, 20]. Figure 2 demonstrates the results of the calcu-
lations.
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It can be seen that the temperature at the hottest
point of the source is 368°ë. This prevents a safe oper-
ation of a source of the above design with a smooth
external surface. If, however, the external surface of the
source is finned with a finning coefficient of 15, then
the temperature decreases by one order of magnitude
[21], and the conditions of long and safe storage of tri-
tium are automatically realized for this design. Never-
theless, it is necessary to provide the possibility of addi-
tional ventilation of the source under actual experimen-
tal conditions.

The transportation of the source presents more seri-
ous problems. In accordance with modern international
regulations, rather stringent requirements are placed
upon the casing used for transportation. The casing
must ensure an enhanced shielding of the source and
prevent the radioactive pollution of the environment in
emergency situations, including those that arise when

(1) a shock impact simulating transport accidents is
applied;

(2) the encased source falls from some height onto a
pin;

(3) some objects fall onto the encased source;

(4) the casing is submerged in water;

Fig. 1. Layout of the experiment: the assembly of semicon-
ductor detectors of mass 3 to 4 kg that is placed within a tri-
tium source (TiT2). The active and passive shielding, elec-
tronics, and cryogenic devices are not shown.
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(5) the encased source is hit by gun bullets and frag-
ments of some conventional weapons;

(6) a heat pulse simulating a fire in a transport vehi-
cle is applied.

It is obvious that, to meet these requirements, the
source must be transported in a special shielding con-
tainer. In this case, there will be no free convective heat
exchange with the source surface, and the source will
be heated at a rate of about 200 deg/h. As a consequence,
titanium tritide will undergo decomposition accompa-
nied by the release of gaseous tritium. Figure 3 shows
the equilibrium pressures of the hydrogen isotopes over
titanium hydride at various temperatures. It can be seen
that, even at 380°ë and a saturation degree of
410 cm3/g, the tritium pressure can reach 100 mm Hg.

315.878
321.673
327.468
333.264
339.059
344.854
350.65
356.445
362.24
368.035

Fig. 2. Distribution of temperature within the source in the
case of free convective heat exchange with the environment.
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Fig. 4. Layout of the container for transportation.
As the temperature rises further, the equilibrium pres-
sure of tritium also increases and can exceed atmo-
spheric pressure. Therefore, the design of the casing
must also ensure the removal of heat released in tritium
decay during source operation and storage and prevent
the heating of the source under conditions simulating a
fire.

Figure 4 displays one of the possible designs that
can be used to overcome the problem. The source is
placed into a protective container equipped with a ther-
mal column [23] to remove heat released in tritium beta
decay. This container can ensure fulfillment of only the
first five of the requirements mentioned above. In the
case of fire, however, the thermal column can become a
source of additional heat from the outside and cause a
faster heating of the source than in the case where there
is no natural heat exchange. In order to suppress this
process, it is necessary to switch off the thermal column
as soon as the temperature of the environment rises
above a certain value. This can be achieved with the aid
of a meltable insert actuated at a preset limiting temper-
ature. Nevertheless, the temperature in the source will
begin to increase, and the pressure created by tritium

ρ4.1

3.7

3.3

2.9
0 4 8

ρ, g/cm3

Time, yr

Fig. 5. Density of titanium tritide–deuteride as a function of
storage time.
released in the gas phase (see Fig. 3) can eventually
destroy the source casing.

In order to prevent such a situation, gaseous tritium
is removed to a getter through a membrane block as
soon as a preset limiting pressure is attained. Titanium
can be used as a working material of the getter, since it
has a low equilibrium pressure even at high tempera-
tures (Fig. 3), provided that its degree of saturation is
low. The getter must be arranged in a container similar
to the container of the source and connected to the latter
by a system of rigid gas pipes. The best solution is to
place the containers and the gas pipes within a super-
container (Fig. 4).

The next point to be taken into account in designing
the source is associated with its swelling owing to 3He
accumulation in the solid phase of tritide. Figure 5
shows an experimental curve that illustrates a decrease
in the density of titanium tritide–deuteride versus the
storage time. In order to increase the neutrino flux, it is
tempting to have titanium tritide pressed to a maximum
density of 4.09 g/cm3. However, this density will
decrease with time, and the source casing will experi-
ence high loads that can result in violation of its integ-
rity and even to its destruction. To prevent this, provi-
sion should be made in the source design for arranging
appropriate compensators.

4. CONCLUSION

It is possible that, for some problems discussed
here, alternative technical solutions will be found in
constructing the source. In particular, an actual source
can have a different shape, although the geometric
arrangement proposed in [5] is optimal for ensuring a
maximum particle flux in the detector. Nevertheless,
the final choice of design can be made only with allow-
ance for the structural features of the detection system,
the background conditions of a specific laboratory, and
the technological requirements for the production and
operation of the source in an experimental setup. How-
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ever, the main conclusion of this study on the possibil-
ity of constructing and safely running a 40-MCi tritium
source of antineutrinos will remain valid.
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Abstract—The problem of charm generation in the interactions of nucleons with nuclei of air atoms at energies
inaccessible at present-day accelerators is discussed. Both experimental data on cosmic-ray muons and the pre-
dictions of QCD-based theoretical models are used in analyzing the behavior of the differential cross sections
for charmed-particle production at high energies. The calculated fluxes of muons and neutrinos arriving at sea
level both along the vertical and along the horizontal direction are presented, together with their approximations
for the interval 2 × 102–1010 GeV. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the possible generation of muons in
the atmosphere directly in the interactions between the
nucleons of primary cosmic radiation and nuclei of air
atoms or as the result of decays of very short-lived par-
ticles (those whose half-lives are much shorter than the
half-lives of the pions and kaons) produced in such
interactions was posed in cosmic-ray physics many
years ago (see, for example, [1, 2]). In order to explore
this channel of muon generation in the atmosphere, it
was proposed to measure angular distributions of
muons at sea level [2], and many theoretical and exper-
imental studies have been devoted since then to the sub-
ject. When the discovery of particles of lifetimes about
10–11–10–12 s in photoemulsion experiments conducted
in cosmic rays [3] had been confirmed in accelerator
experiments, interest in the problem was rekindled
(see, for example, [4–14]). Different theoretical models
were used in different studies to predict the behavior of
the differential cross sections for charmed-particle pro-
duction at high energies inaccessible to experimental-
ists at modern accelerators. As a result, different predic-
tions for the fluxes of muons and neutrinos from
charmed-particle decays in the atmosphere differed by
a few orders of magnitude. However, the creation of
new-generation giant neutrino telescopes that is fore-
seen in the near future can provide the possibility of
launching experiments with cosmic neutrinos, thereby
transforming neutrino astrophysics into an experimen-
tal science from a purely theoretical one. In view of
this, knowledge of the fluxes of cosmic-ray muons and
atmospheric neutrinos appears to be of paramount
importance.

Indeed, the background to experiments with cosmic
neutrinos is dominated by atmospheric neutrinos. It is
the fluxes of atmospheric neutrinos that determine the

* e-mail: volkova@inr.npd.ac.ru
1063-7788/01/6402- $21.00 © 0266
areas that the arrays to be used must have for success-
fully studying diffuse fluxes of cosmic neutrinos, as
well as the necessary operation time of such arrays and
the minimum energy from which the investigation in
question becomes possible. At the same time, con-
straints imposed on angular resolutions of arrays aimed
at searches for pointlike neutrino sources in the Uni-
verse are chosen with allowance for these fluxes. Since
there is a close genetic relation between cosmic-ray
muons and atmospheric neutrinos (in the atmosphere,
either of these two particle species originates from the
decays of pions, kaons, and charmed particles), an
experimental investigation of muons to a high precision
may provide knowledge of atmospheric-neutrino fluxes
to the corresponding precision.

On the basis of data on cosmic-ray muons and pre-
dictions of modern QCD-based models for the behavior
of differential cross sections for charmed-particle gen-
eration, we calculate here the differential spectra of
muons and neutrinos that were produced in the atmo-
sphere and which arrive at sea level along the vertical
or the horizontal direction. The accuracy of these calcu-
lations is discussed.

2. SPECTRUM OF PRIMARY NUCLEONS

The differential energy spectrum of primary nucle-
ons, PN (EN), that is based on direct measurements of
the fluxes of primary particles with energies not higher
than 1000 GeV/nucleon [15] can be represented in the
form

(2.1)

where EN is the nucleon energy measured in GeV, C =
2.6, and γ = 1.7.

PN EN( )dEN

CEN
γ 1+( )–

1 1.8/EN+( )3dEN

-------------------------------------------=

nucleon/ cm2 s sr GeV( )[ ] ,
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The analysis performed in [16, 17] reveals that, up
to nucleon energies of about 3 × 105 GeV, this form of
the primary-nucleon spectrum describes fairly well the
entire body of experimental data on cosmic-ray muons
arriving at sea level along the vertical or the horizontal
direction. We assume that the spectrum of primary
nucleons can be described by this form up to 3 ×
106 GeV and further for EN ≥ 3 × 106 GeV, but with C =
228 and γ = 2.

3. GENERATION OF CHARMED PARTICLES

3.1. Data on Charm Generation from Accelerator 
Experiments

The probability  that a charmed

particle η (D and  mesons or Λc baryon) whose
energy takes values in the interval between Eη and (Eη +
dEη) is produced in the interaction of a nucleon N of
energy EN with the nucleus A of an air atom can be writ-
ten as

(3.1)

where (EN) is the cross section for the inelastic
interaction of a nucleon with the nucleus of an air atom,

(EN) stands for the cross sections describing

the production of  and  pairs in such interac-
tions, and dfη(EN, Eη)/dEη represents the inclusive spec-
tra of η particles.

Figure 1 displays the cross sections for charm pro-
duction in proton–nucleon (pN) interactions according
to accelerator experiments (points), perturbative QCD
calculations in the next-to-leading order (NLO) [18–
21] (solid curve), and calculations based on the model
of quark–gluon strings (QGS model also known
QGSM) [22–25] (asterisks). The accelerator experi-
mental data presented here were borrowed from [26].

For energies Ep ≥ 2 × 103 GeV, the QGSM results
[27] that were obtained for the cross sections describ-
ing the production of charmed-particle pairs in proton–
proton interactions and which are normalized to accel-
erator data can be approximated as

(3.2)

(3.3)

These formulas are valid for the generation of
charmed particles in proton–proton interactions. For
interactions between a nucleon and the nucleus of an air
atom with an atomic number Aair, the cross section for

dWNA
η EN Eη,( )/dEη

D

dWNA
η EN Eη,( )

dEη
-----------------------------------

σNA
DD ΛcD,

EN( )
σin

NA EN( )
------------------------------  

d f
 

η 
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η 
,( )

 
dE
 

η
 ------------------------------,=

σin
NA

σNA
DD ΛcD,

DD ΛcD

σpp
DD Ep( ) 0.48 Ep 3.075 )– for DD-pairs,log(=

σpp
ΛcD

Ep( ) 0.07 Ep 0.84 )– for ΛcD-pairs.log(=
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the production of charmed-particle pairs has the form
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 is a function of the projectile-nucleon-energy
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 [27]. We set it to about unity for the generation
of  mesons and to about two-thirds for baryon gen-
eration. These values of 
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 are compatible with data
obtained in accelerator experiments that studied the
cross sections for charmed-particle production as a
function of the target atomic number.

Accelerator experiments show that the spectra of
product 
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 mesons reflect the leading-particle effect,
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and that the spectra of 
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 baryons are of a central char-
acter
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3.2. Theoretical Concepts of Charm Generation 
at High Energies

 

The charm-generation process is usually treated
within various theoretical models based on QCD. The
spectra of charm generation then prove to be very sen-
sitive to the structure functions for the quark and gluon
distributions with respect to the Bjorken variables 

 

x

 

.
For example, two calculations of the flux of cosmic-ray
muons from charmed-particle decays within the same
version of perturbative QCD [12] but with different
gluon structure functions yielded results differing by a
factor of about 20 to 40 for energies 100–1000 TeV.
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Fig. 1. Cross sections for charm generation in proton–
nucleon interactions: (open circles) data from accelerator
experiments as quoted in [26], (curve) results of the NLO
calculation within perturbative QCD, and (asterisks) results
of the QGSM calculations.
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At energies of interest to our present consideration,
it is necessary to know the structure functions for very
small values of the variables (x < 10–4). Schematically,
the process of charmed-quark ( ) generation in pro-
ton–proton (pp) interaction through gluon–gluon (gg)
interaction (it is precisely the process that is basically
responsible for charm generation at energies as high as
those that are of interest to us in the present study) is
illustrated in Fig. 2 (there, x1 and x2 are the Bjorken
variables for gluons).

Because of the origin of primary cosmic radiation,
the main contribution to the calculated fluxes of
charmed particles that are generated in the atmosphere
comes from x = x1 – x2 ~ 0.1–0.2. Since x1x2 = M2/s,
where M2 is the square of the mass of the product par-
ticle pair and s is the square of the total energy in the
rest frame of the interacting protons, we have x2 ~ 10−4–
10–5 for an incident proton of energy about 50 to
500 TeV in the laboratory frame.

In the NLO of perturbative QCD, the cross section
for charm generation in proton–proton interactions is
given by [19–22]

(3.7)

where fg stands for the gluon structure functions, which
are known from accelerator experiments to within 30%
at all x values discussed above.

By studying the behavior of the spectra of product
particles with increasing projectile-proton energy, we
find that xdσ/dx can change absolute value, but that it
cannot change shape. An analysis of experimental data
on cosmic-ray muons [17] reveals that, in the case of
pion generation in the interactions between nucleons
and nuclei of air atoms, scaling is violated only slightly
in the fragmentation region over a broad energy range
from a few GeV to a few hundred TeV. According to
NLO calculations within perturbative QCD, such a vio-
lation for charmed-particle generation must be still
weaker.

cc

σ pp cc( ) dx1 x2σgg M2( ) f g x1( ) f g x2( ),d∫∼

p

g

c

p

g x1

x2
M2

c–

Fig. 2. Generation of a charmed quark–antiquark pair
through gluon–gluon interactions in the NLO of perturba-
tive QCD (M 2 is the square of the mass of the generated par-
ticle pair).
Figure 3 shows the quantities 

as functions of the projectile-nucleon-energy fraction
Eη /EN carried away by a charmed particle η. These
quantities integrated over the spectra of primary nucle-
ons determine the fluxes of muons and neutrinos gener-
ated by charmed-particle decays in the atmosphere.
From Fig. 3, we can see that, although the energy of
interacting nucleons changes in a very broad region, the
quantities in question show very small variations in
going over from one model to another.

3.3. Charm Generation according to Data 
on Cosmic-Ray Muons

As was indicated above, muon generation through
decays of very short-lived particles is a long-standing
problem in cosmic-ray physics.

The underground experiments that measured the
fluxes of cosmic-ray muons in the Colar Gold Field
mine in India yielded the value of R = (1 ± 0.4) × 10–3

for the ratio of the number of muons (generated
promptly in the interactions of nucleons with nuclei of
air atoms or in decays of particles whose lifetimes are
much shorter than those of pions or kaons) of energy in
excess of 10 TeV to the number product pions with cor-
responding energy [28]. According to data from the
Baksan neutrino observatory, this ratio is about 1.5 ×
10–3 [29].

Calculations assuming that scaling is not violated in
the fragmentation region of the interactions between

Eη

EN

------ 
 

γd f η Eη EN,( )
d Eη /EN( )

------------------------------

0.05

0

uγdfη/du

u0.2 0.4

0.10

0.15

2

2'

3

1

Fig. 3. Quantities uγdfη /du versus the projectile-nucleon-
energy fraction u = Eη /EN carried away by a charmed parti-
cle η: (curve 1) results of the calculations performed under
the assumption that the spectrum of product D mesons is of
a scaling character and is proportional to (1 – ED/EN)5;

(curves 2 and 2') results of the QGSM calculations at s1/2 =
123.2 GeV and 16 TeV, respectively; and (curve 3) results of
the NLO calculations within perturbative QCD at s1/2 =
27.4 GeV.
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Table 1.  Explicit expressions used in the present calculations for the quantities wmax, wmin, and  f(w) characterizing the kine-
matics of three-body charmed-particle decays being considered

Decay process wmin wmax f(w)

Λc  Λ0 + µ + ν

D  K + µ + ν

Note:  = 0.633 and RD = 1.03.

mµ

mΛc

-------- 
  2

1
mΛo

mΛc

---------
 
 
  2

– 1 w–( ) mΛc D,
2 0.96 mΛo K,

2
–⋅( )

× 1
1 w–( ) mΛc D, 0.96⋅( )

mΛo K,
2

----------------------------------------------------ln+
 
 
 

RΛc D,⁄mµ

mD
------- 

  2

1
mK

mD
------- 

  2

–

RΛc
nucleons and nuclei of air atoms and employing the
cross sections for charmed-particle generation that
were obtained within the QGSM at high energies [27]
and which were normalized to the cross sections mea-
sured in accelerator experiments can explain experi-
mental data quoted in [10] for cosmic-ray muons. From
the analysis performed in [10], it follows that, at about
70 TeV, the contribution from charmed particles to the
flux of cosmic-ray muons arriving at sea level along the
vertical direction is equal to the contribution from pions
and kaons. These calculations describe well experi-
mental results obtained at Moscow State University
with an x-ray emulsion calorimeter that measured
angular distributions of muon fluxes up to energies of a
few tens of TeV [30].

The spectra of particles in cosmic rays descend fast
with increasing energy; therefore, only an upper limit
on charmed-particle contribution to muon generation
can be extracted from experimental data on cosmic-ray
muons because of low statistical significance of these
data.

4. FLUXES OF COSMIC-RAY MUONS 
AND ATMOSPHERIC NEUTRINOS

4.1. Charm-Induced Fluxes of Muons and Neutrinos

The inputs that we employ in calculating the fluxes
of cosmic-ray muons and atmospheric neutrinos gener-
ated in the interaction of primary cosmic radiation with
nuclei of air atoms as the result of charmed-particle
decay (such muons and neutrinos are usually referred
to as prompt ones, whereas those that originate from
pion and kaon decays are called ordinary muons and
neutrinos) are the following: (i) the cross sections that
were calculated for charmed-particle production in pro-
ton–proton interactions on the basis of QGSM and
which were normalized to the latest data from acceler-
ator experiments [see Eqs. (3.2) and (3.3)]; (ii) the
dependences of these cross sections on the air atomic
number [see Eq. (3.4)]; and (iii) the spectra of D
mesons and Λc baryons consistent with accelerator data
[see Eqs. (3.5) and (3.6); according to the assumptions
presented in Subsections 3.2 and 3.3, these spectra
undergo no changes in the fragmentation region of par-
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
ticle generation over the entire region of energies con-
sidered here].

The number of muons or neutrinos (muon or elec-
tron ones) generated per event of nuclear interaction of
a nucleon in the atmosphere that arrive at sea level at an
angle θ with respect to the vertical direction and which
are produced in the decays of charmed particles can be
represented in the form (here, we disregard the energy
losses of muons in air)

(4.1)

where summation is performed over all types of
charmed particles and where b = 1.08 and δ = 5 for the
D mesons and b = 1.4 and δ = 0.4 for Λc baryons. The

notation used in expression (3.1) is the following: 
is the probability of charmed-particle decay into a
muon and a neutrino; w = Eµ, ν /Eη ; wmax, wmin, and f (w)
are associated with the kinematics of the three-body
decay of a charmed particle into a muon and a neutrino;
u = Eη /EN; ϕη(u) = uγ – 1 for D mesons, and ϕη (u) = uγ

for Λc baryons; and (θ) = mη/(cτ0ηζ(θ)) is the criti-
cal energy of the charmed particle η (the energy value
at which the probability for the particle to decay over a
unit range with respect to nuclear interaction is equal to
the probability for this particle to undergo interaction),
where mη is the rest mass of the particle η, τ0η is its life-
time in its rest frame, c is the speed of light, θ is the
angle of particle arrival with respect to the vertical
direction, and ζ(θ) = ρ(h, θ)/h [here, ρ(h, θ) is the air
density in the atmosphere at a depth h].

Tables 1 and 2 present the values of the quantities
wmax, wmin, and f (w), which are associated with the
kinematics of the three-body decay of a charmed parti-
cle into a muon and a neutrino; the critical energies of
the relevant charmed particles; and the probabilities

αµ ν,
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∫
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∫
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 of their semileptonic decays (the rest masses and
the critical energies are expressed in GeV; the values of
the probabilities of semileptonic decays, the rest
masses, and the lifetimes were borrowed from [31]).

4.2. Comparison with the Results Presented 
in Other Studies

The fluxes of prompt cosmic-ray muons arriving at
sea level along the vertical direction were calculated in
a number of other studies. Their results are displayed in
Fig. 4.

Curves 1 and 1' were computed in [12] on the basis
of perturbative QCD for, respectively, the soft and the
hard version of the gluon structure functions (within the
measurement errors, either version is compatible with
the entire body of experimental data). Here, we can
clearly see the dependence of the calculations being
discussed on the gluon structure functions: at energies
in the range 10–1000 TeV, the muon fluxes as calcu-

W sl
η

Table 2.  Critical energies of charmed particles η and prob-

abilities  of semileptonic decays into muons and neutri-
nos

Particle η  [31]

D± mesons 4.01 × 107 3.93 × 108 0.07

D0,  mesons 1.02 × 108 9.99 × 108 0.032

Λ0 baryon 2.59 × 108 2.54 × 109 <0.02

Wsl
η

Eη
 cr

0°( ) GeV, Eη
 cr

90°( ) GeV, Wsl
η

D0

3 4

log(Pµ
pr(E, 0°)E3

µ)

logEµ
5 6 7 8

–1

–2

–3

–4

–5

1

2

1'

3

2'

Fig. 4. Differential spectra (Eµ, 0°) of cosmic-ray

muons originating from charmed-particle decays in the
atmosphere and arriving at sea level along the vertical direc-
tion according to the results obtained in (curves 1, 1') [12],
(curve 2) the present study, (curve 2') [10], and (curve 3) [13]

{ (Eµ, 0°) is expressed in units of [muon/(cm2 s sr GeV)],

while Eµ is measured in GeV}.

Pµ
pr

Pµ
pr
lated for the two versions of the structure functions dif-
fer by a factor of 10 to 50.

The results of the calculations performed in [10]
(curve 2') differ from the results of the present study

(curve 2), since some parameters (  and δ for D
mesons) were set to different values in [10] and here
and since different normalizations of the primary-
nucleon spectra were used (γ = 1.65 and 1.7 in [10] and
in the present study, respectively).

The muon fluxes computed in [13] (curve 3) differ
strongly from our present results (by a factor of about
45 at a muon energy of 105 GeV, for example). If we
take into account the distinctions between the normal-
izations of the primary-nucleon spectra in these two
studies, the difference being discussed reduces to a fac-
tor about 30. The remaining distinction can be attrib-
uted to the difference in the spectra adopted for
charmed particles generated in nucleon interactions in
the atmosphere. Indeed, the number of charmed parti-
cles, Iη, generated per event of nuclear interactions of
nucleons in the atmosphere can be represented as

(4.2)

The cross sections for charmed-particle generation
in the interactions of 106-GeV nucleons (and it is pre-
cisely the nucleons of these energies that are responsi-
ble for the generation of muons being discussed) are
nearly coincident in these two studies.

Figure 5 shows the Iη values calculated here and in
[13] for the different charmed particles. For Iη to take
the same value as in [13] for D mesons at 105 GeV, pro-

W sl
η

Iη uγσNA
DD ΛcD,

Eη /u( )
σin

NA Eη /u( )
-----------------------------------  

f
 

η 
u

 
( )

 
d

du
 ----------------- u . d 

0

1

 ∫  ∼                                   

10–1

Iη

Eη, GeV

10–3

10–5

104 106 108

π+–

D+–(DD), δ = 3

D+–(DD), 5

D+–(DD), 50

D+– [13]

D+–(DD), 15

D–, D0(Λc D), 5
Λc

Fig. 5. Numbers Iη of various charmed particles η generated
per event of nuclear interactions of nucleons in the atmo-
sphere according to the calculations performed in (solid
curves) the present study and (dashed curve) [13].
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Table 3.  Fitted values of A and γ in the approximations of the differential energy spectra (in units of [particle cm–2 s–1 sr–1

GeV–1]) of prompt muons and neutrinos arriving at sea level along the vertical and the horizontal direction

Eµ, ν , GeV
θ, deg

103–104 104–3 × 105 3 × 105–3 × 106 3 × 106–109

A

0 1.2 × 10–5 4.6 × 10–5 4.15 × 10–2 1.15 × 10–2

90 1.2 × 10–5 4.6 × 10–5 4.1 × 10–3 1.65 × 10–2

γ
0 1.4 1.55 2.09 2

90 1.4 1.55 1.91 2
vided that the D-meson spectrum is proportional to (1 –
u)δ, it was necessary to set δ = 50.

4.3. Approximation of Fluxes of Prompt Muons
and Neutrinos

In various calculations and estimations for the
fluxes of prompt muons and neutrinos, it is useful to
have approximations of the differential spectra

(Eµ, ν, θ) of these particles (the number of muons
or neutrinos arriving at sea level at an angle θ with
respect to the vertical direction with energies in the
interval between Eµ, ν and Eµ, ν + dEµ, ν). For possible
approximations, we have

(4.3)

(4.4)

The expressions in the denominators of the approxima-
tions of the spectra are determined by the fact that the
exponent of the primary-nucleon spectrum changes
from γ = 1.7 to γ = 2 at an energy value around 3 ×
106 GeV and the fact that, at very high energies, nuclear
interactions with nuclei of air atoms must be taken into
account even for charmed particles. The values of the
parameters A and γ are quoted in Table 3.

The above approximations are valid for the muon
spectra calculated without allowing for the energy lost
in the atmosphere. However, the error that this intro-
duces in muon fluxes is very small at the energies that
are of interest to us in the present case. Indeed, the
fluxes of muons from charmed particles become com-
mensurate with the flux of muons from pion and kaon
decays only at about 70 TeV for the vertical and at
700 TeV for the horizontal direction. At such energy
values, the energy loss is as small as, respectively, 0.3
and 10% of the particle energy.

Pµ ν,
pr

Pµ ν,
pr Eµ ν, 0°,( )dEµ ν,

AEµ ν,
γ 1+( )–

1 3 10 8– Eµ ν,×+
---------------------------------------dEµ ν, ,=

Pµ ν,
pr Eµ ν, 90°,( )dEµ ν,  = 

AEµ ν,
γ 1+( )–

1 2.9 10 6– Eµ ν,
0.685×+

----------------------------------------------dEµ ν, .
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4.4. Fluxes of Cosmic-Ray Muons at Sea Level

Figure 6 displays the differential fluxes of cosmic-
ray muons at sea level for particles arriving along the
vertical and the horizontal direction. The curves carry-
ing the “pr” label represent the prompt-muon fluxes
calculated in this study with allowance for the energy
losses of muons in the atmosphere. The fluxes of muons
from pion and kaon decays (π + K) were borrowed from
[16], but these fluxes were rescaled by taking into
account the change in the normalization of the primary-
nucleon spectrum (γ is equal to 1.65 in [16] and to 1.7
in the present study). The figure also shows the muon
fluxes estimated here for the prompt generation of µ±

pairs (µµ curve). Kudryavtsev and Ryazhskaya [32]
considered the generation of muon pairs in the atmo-
sphere by photons. They state that, from energies some-
what higher than a few PeV, this process begins to make
a greater contribution to the production of cosmic-ray
muons than pion and kaon decays.

102 104 106 108 101010–6

10–4

10–2

Eµ, GeV

Pµ(Eµ, θ) Eµ
3, muon GeV2/(cm2 s sr)

0°

90°

pr 90°

pr 0°

µµ

π + K 0° 

Fig. 6. Differential spectra Pµ(Eµ, θ) of cosmic-ray muons
generated in the atmosphere that arrive at sea level along the
vertical (θ = 0°) or horizontal (θ = 90°) direction: (π + K
curve) muons from pion and kaon decays, (pr curves)
muons from charmed-particle decays, and (µµ curve) our
estimate of the prompt generation of muon pairs.
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Pν(Eν, θ)Eν
3, neutrino GeV2/(cm2 s sr)

10–7

10–5

10–3

90°

0°

90°

0°

(a)

Eν, GeV

10–1

108102 104 106
10–5

10–3

90°

0°

90°

0°

(b)

Pν(Eν, θ)Eν
3, neutrino GeV2/(cm2 s sr)

Eν, GeV
108102 104 106

Fig. 7. Differential spectra Pν(Eν , θ) of atmospheric (‡) electron (νe) and (b) muon (νµ) neutrinos generated in the atmosphere that
arrive at sea level along the vertical (θ = 0°) or horizontal (θ = 90°) direction: (curves with circles) neutrinos from pion and kaon
decays, (thick solid curves) neutrinos from charmed-particle decays, and (upper and lower thin solid curves) neutrino fluxes origi-
nating from charmed-particle decays and arriving at sea level along the vertical direction according to the calculations performed
under the assumption that the charm-production cross section is, respectively, twice and one-half as large as that given by Eqs. (3.2)
and (3.3).
4.5. Atmospheric-Neutrino Fluxes at Sea Level

The differential spectra of atmospheric neutrinos
arriving at sea level along the vertical and the horizon-
tal direction are shown in Fig. 7‡ (electron neutrinos
and antineutrinos) and Fig. 7b (muon neutrinos and
antineutrinos). The spectra of neutrinos from pion and
kaon decays (curves with circles) were borrowed from
[33] and rescaled to a different normalization of the pri-
mary-nucleon spectrum (γ = 1.65 and 1.7 in [33] and in
the present study, respectively). Thick solid curves rep-
resent the prompt-neutrino spectra calculated here.
Thin solid curves delimit the interval of uncertainties in
the neutrino fluxes due to the second-order uncertain-
ties in the cross sections for charmed-particle produc-
tion around the values quoted in Eqs. (3.2) and (3.3).

On the basis of the data displayed in these figures,
one can easily estimate the energy from which the
charmed-particle contribution to neutrino fluxes
exceeds the contribution from pion and kaon decays.
For muon (electron) neutrinos arriving at sea level
along the vertical direction, this occurs at an energy of
about 10 TeV (1 TeV). The difference between the two
cases is associated with the differences between the
fluxes of muon and electron neutrinos from pion and
kaon decays, the former being much greater at the ener-
gies being considered (the fluxes of muon neutrinos
receive significant contributions from πµ2 and Kµ2
decays, while the fluxes of electron neutrinos are gen-
erated predominantly in Ke3 decays). 
The differential spectra of atmospheric neutrino

fluxes from pion and kaon decays, (Eν, θ), can be
approximated as

(4.5)

For electron and muon neutrinos arriving at sea level
in the vertical and the horizontal direction, the values of
A and γ are listed in Table 4.

4.6. Accuracy of the Calculation of Neutrino Fluxes

The uncertainties in the calculation of neutrino
fluxes generated in the atmosphere in pion and kaon
decays stem predominantly from inaccuracies in our
knowledge of primary-nucleon fluxes and of the rela-
tionship between the numbers of pions and kaons from
nucleon–nucleus interaction.

Direct measurements of the fluxes of nucleons with
energies up to about 1000 GeV are accurate to within
20% [15]. At higher energies, the accuracy of direct
measurements is poorer; however, an analysis of data
on cosmic-ray muons [34] gives sufficient grounds to
believe that the accuracy of our knowledge of the pri-
mary-nucleon spectrum remains on the same order of
magnitude up to nucleon energies of a few hundred
TeV. Accordingly, the accuracy of the values presented
here for the neutrino fluxes from pion and kaon
decays—recall that this accuracy is related to the accu-
racy achieved in estimating the fluxes of primary nucle-
ons—is not poorer than 20% at neutrino energies up to

Pν
conv

Pν
conv Eν θ,( )dEν AEν

γ 1+( )– dEν.=
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Table 4.  Fitted values of A and γ in the approximations of the differential energy spectra (in units of [particle cm–2 s–1 sr–1

GeV–1]) of electron and muon neutrinos originating from pion and kaon decays and arriving at sea level along the vertical and
the horizontal direction

Eν , GeV
θ, deg

103–104 104–105 105–106 ≥106

νe; A

0 0.1 0.1 0.58 7

90 0.32 0.32 5.8 70

νe; γ

0 2.7 2.7 2.85 3.03

90 2.6 2.6 2.85 3.03

νµ; A

0 2.05 2.05 11.5 278

90 0.6 6 110 2780

νµ; γ

0 2.65 2.65 2.8 3.03

90 2.3 2.55 2.8 3.03
a few tens of TeV. A similar argument applies to neutri-
nos generated in the decays of charmed particles.

In the present calculations, data on pion and kaon
production that were obtained in accelerator experi-
ments at a projectile-proton energy of about 20 GeV
were used to establish the relationship between the
numbers of product pions and kaons, and it was
assumed that this relationship undergoes no changes in
the fragmentation region at still higher energies. This
assumption is confirmed by the analysis of data on cos-
mic-ray muons [16].

The accuracy in calculating the neutrino fluxes from
charmed-particle decays is determined primarily by the
accuracy of our knowledge of the charm-production
cross section, provided that we assume that, in the frag-
mentation region, the differential spectra of product
charmed particles remain virtually unchanged with
increasing energy (this assumption is justified by the
arguments presented in Subsections 4.2 and 4.3). The
accuracy currently achieved for the charm-production
cross section can be assessed on the basis of the data in
Fig. 1.

5. CONCLUSION

The present analysis has revealed that, by using data
on charm generation from accelerator experiments and
the predictions that the QGSM and the NLO calcula-
tions within perturbative QCD yield for charm produc-
tion at energies inaccessible at modern accelerators, it
is possible to describe data on cosmic-ray muons from
experiments at the Colar Gold Fields mine, Baksan
Neutrino Observatory, and Moscow State University
(data obtained with an x-ray emulsion calorimeter) up
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
to muon energies of a few hundred TeV (the corre-
sponding effective energies of primary nucleons that
are responsible for such muons are about a few thou-
sand TeV). The possible contribution of the prompt
production of muon pairs to the fluxes of cosmic-ray
muons at high energies is much less than the contribu-
tion from charmed-particle decays (at muon energies in
the range 3 × 103–105 GeV, the former contribution is
about 10% of the latter). Photonuclear interactions
induced by photons produced in neutral-pion decays
generate muons in amounts of about 3 to 10% of the
number of muons that originate from charmed-particle
decays; the decays of rho and omega mesons yield
about 1.5% of this number. The contribution of Ç
mesons and Λb baryons is small at the energies being
considered, but it can grow with increasing energy.

According to the results obtained in the present
study, the contribution of charmed-particle decays to
atmospheric-neutrino fluxes becomes commensurate
with the contribution from pion and kaon decays at
about 10 TeV for muon neutrinos; at still higher ener-
gies, the entire flux of these neutrinos is determined by
charmed-particle decays (for neutrinos arriving at sea
level along the vertical direction). For electron neutri-
nos, this occurs at a neutrino energy of about 1 TeV. For
the horizontal direction, the corresponding energies are
one order of magnitude higher.

To summarize the above, we note that, in discussing
problems associated with possible experiments devoted
to studying cosmic neutrinos, it is of paramount impor-
tance to take into account the generation of atmospheric
neutrinos, because this process appears to be the main
source of background to the experiments being dis-
cussed.
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For the muon and neutrino spectra calculated in the
present study, we have constructed approximations
accurate to within 5%.
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Abstract—We present an analytic description of top–antitop pair production near the threshold in e+e– annihi-
lation and γγ collisions. A set of basic observables being considered includes total cross sections, forward–
backward asymmetry, and top-quark polarization. Threshold effects relevant to the basic observables are
described by three universal functions related to S-wave production, P-wave production, and S–P interference.
These functions are computed analytically up to the next-to-next-to-leading order of NRQCD. The total
e+e−   cross section near the threshold is obtained in the next-to-next-to-leading order in a closed form
including the contribution originating from the axial coupling of top quarks that is mediated by the Z boson.
The effects of the running of the strong coupling constant and the finite top-quark width are taken into account
analytically for the P-wave production and S–P wave interference. © 2001 MAIK “Nauka/Interperiodica”.

tt tt

tt
1. INTRODUCTION

Being heavy, the top quark undergoes fast weak
decays. A relatively large width Γt of the top quark is
mainly saturated by the decay channel t  Wb and
keeps the effective energy of the top–antitop system in
the complex plane far enough from the cut along the
positive semiaxis. Thus, it serves as a sufficient infrared
cutoff for long-distance effects avoiding the problem of
strong coupling. This allows one to bypass possible
nonperturbative regions and is a key observation for the
theoretical study of the top–antitop pair production
near the two-particle threshold [1]. Because the rele-

vant scale , where mt is the top-quark mass, is
much larger than ΛQCD, the QCD perturbation-theory
expansion is applicable to the theoretical description of
physical phenomena near the top-quark threshold if
singular Coulomb effects are properly taken into
account [1–3]. Owing to this feature, processes involv-
ing top quarks appear to be a unique laboratory for per-
turbative investigation of threshold effects. Experimen-
tal study of the top–antitop pair threshold production is
planned at the Next Linear Collider in both high energy
e+e– annihilation and γγ collisions [4]. High-quality
experimental data that can be obtained in such experi-
ments, along with their very accurate theoretical

Γ tmt
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description, make the processes of top–antitop pair
threshold production a promising field for investigating
quark–gluon interactions.

This investigation concerns both general features of
interaction and precise quantitative properties as a
determination of numerical values of the strong-cou-
pling constant αs and the top-quark mass and width.
Although the main features are rather similar in both
e+e– and γγ processes of top-quark pair threshold pro-
duction, strong-interaction and relativistic corrections
are different for them. Therefore, a joint analysis of
these two processes extends possibilities of studying
fine details of top-quark threshold dynamics. In addi-
tion to the total cross sections, which are mainly satu-
rated by the S-wave final state of the top quark–anti-
quark pair, there is a set of observables sensitive to the
P-wave component. For example, the S and P partial
waves of the final-state top quark–antiquark pair pro-
duced in γγ collisions can be separated by choosing the
same or opposite helicities of colliding photons [2].
This provides an opportunity of directly measuring the
P-wave amplitude, which is strongly suppressed in the
threshold region in relation to the S-wave amplitude.
On the other hand, the forward–backward asymmetry
of the quark–antiquark pair production in e+e– annihila-
tion [5, 6] and top–quark polarization [6, 7] are deter-
mined by S–P interference in both processes. This pro-
vides two additional independent probes of the top-
quark interactions.

The finite-order perturbation theory of QCD breaks
down in the threshold region of particle production due
to the presence of singular (αs/β)n Coulomb terms.
Here, β is the heavy-quark velocity. However, resum-
mation of these Coulomb contributions, which are most
001 MAIK “Nauka/Interperiodica”
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important quantitatively in the threshold region, is pos-
sible and can be systematically performed within non-
relativistic QCD (NRQCD) [8] (for the recent develop-
ment of the NRQCD effective theory approach see [9–
16]). Note that the characteristic scale αsmt of the Cou-
lomb effects for the top-quark production is compara-

ble numerically with the cutoff scale  for infra-
red effects, and the Coulomb effects are not suppressed
by the top-quark width. To determine higher order cor-
rections in the QCD coupling constant and relativistic
corrections in the case where Coulomb effects have to
be taken into account beyond the finite-order perturba-
tion theory, the perturbative expansion for the complete
correlation function should be performed near the Cou-
lomb approximation rather than the free Green’s func-
tions, which is the standard pattern of perturbation the-
ory for the infrared-safe high-energy processes.

Recently, theoretical description of the heavy
quark–antiquark threshold dynamics in NRQCD was
substantially developed. The evaluation of next-to-
leading order (NLO) and next-to-next-to-leading order
(NNLO) corrections to the heavy-quark threshold pro-
duction in e+e– annihilation was performed both in the
analytic approach [17–25] and numerically [26–30],
while the NLO corrections to the heavy-quark thresh-
old production in γγ collisions were computed analyti-
cally [31]. The analysis of NNLO corrections in the last
case is still absent. However, this analysis is necessary
for careful quantitative study of the process since the
NNLO contribution is found to be relatively large in the
case of the top-quark production in the e+e– annihilation
[26, 27] and one can expect that some large corrections
emerge also in the case of the top-quark threshold pro-
duction in γγ collisions. Moreover, a semianalytic anal-
ysis of the high-order corrections to the cross section
for top-quark threshold production in e+e– annihilation
has been performed so far [26–30], while the essential
part of corrections has been taken into account numer-
ically [3]. Therefore, the complete analytic description
of the process is also desirable.3) Furthermore, the for-
ward–backward asymmetry and top-quark polarization
[6], as well as the axial contribution to the e+e–  
process [28], were analyzed in NLO only numerically.
In this case, the numerical study is more involved
because of the need for constructing the P-wave
Green’s function, which leads to more singular differ-
ential equations in comparison with the S wave. The
case of P-wave production in the γγ collision [2, 31]
clearly demonstrates that the numerical analysis [28]
with the explicit cutoff of the hard-momentum contri-
bution is insufficient for an accurate account of the
finite top-quark width for these quantities because the
relativistic effects are not properly taken into account.

3)When this work was at its final stage, letter [22] appeared where
the photon-mediated top-quark production in e+e– annihilation
was analyzed analytically.

Γ tmt

tt
In the present paper, we give a simultaneous analy-
sis of several observables relevant to the e+e–  
annihilation and γγ   collisions near the top-
quark production threshold in high orders of NRQCD.
The total cross sections are computed in NNLO of

NRQCD, which includes , αsβ, and β2 corrections in
the coupling constant αs and in the heavy-quark veloc-
ity β to the nonrelativistic Coulomb approximation.
Explicit analytic expressions for the soft part of the cor-
rections are obtained. The threshold cross section for
the  production in e+e– annihilation is obtained in
closed form including the contribution due to the top
quark axial coupling. The hard part of the correction to
the γγ   threshold cross section is found with log-
arithmic accuracy. The forward–backward asymmetry
of the top quark–antiquark pair production in e+e– anni-
hilation and top-quark polarization in both e+e– annihi-
lation and γγ collisions are computed up to NLO.

The paper is organized as follows. In Section 2, the
nonrelativistic approximation for the basic observables
of the top quark–antiquark pair production near the
threshold is formulated. In Section 3, the threshold
effects are described by three universal functions that
are related to the S- and the P-wave production and S–
P-wave interference and are computed analytically in
NRQCD. In Section 4, we present a numerical analysis
and the discussion of the results. Section 5 is devoted to
our conclusions. Some explicit analytic formulas are
given in the Appendices.

2. THE NONRELATIVISTIC APPROXIMATION 
NEAR THE PRODUCTION THRESHOLD

In this section, we describe the set of observables
which will be analyzed: the total cross sections, the for-
ward–backward asymmetry, and the polarization of the
top quark. We formulate the nonrelativistic approxima-
tion for these observables that is the stage of the com-
plete NRQCD analysis. In Subsection 2.5 we dwell
upon the peculiarities of the introduction of a finite
width of the top quark.

2.1. Effective Theory Description of the Heavy-Quark 
Threshold Dynamics

Near the threshold, the heavy quarks are nonrelativ-
istic so that one may treat both the strong-coupling con-
stant and heavy-quark velocity as small parameters.
The threshold expansion of the QCD loop integrals was
developed in [14]. However, to take properly into
account the singular threshold effects, one has to go
beyond the finite-order QCD perturbation theory. For
this purpose, the expansion in β should be performed
directly in the QCD Lagrangian within the effective
field theory framework. The first step to construct the
effective theory is to identify all the scales appearing in
the problem. The threshold dynamics is characterized

tt
tt

α s
2

tt

tt
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by the following four scales [14]: (i) the hard scale
(energy and momentum scale like mq); (ii) the soft scale
(energy and momentum scale like βmq); (iii) the poten-
tial scale (energy scales like β2mq , while momentum
scales like βmq); and (iv) the ultrasoft scale (energy and
momentum scale like β2mq). The ultrasoft scale is the
only one relevant for gluons. By integrating out the
momenta of the order of the hard scale of QCD, one
arrives at the effective theory of NRQCD [8]. Because
the NRQCD Lagrangian does not explicitly include the
heavy-quark velocity, the power counting rules are nec-
essary to construct the regular expansion in this param-
eter. The list of the power counting rules for dimension-
ally regularized NRQCD and their relation to the
threshold expansion [14] can be found in [16]. Integrat-
ing out the soft modes and the potential gluons of
NRQCD, one obtains the effective theory of potential
NRQCD [13], which contains potential quarks and
ultrasoft gluons as active particles and is relevant for an
analysis of the threshold effects. In potential NRQCD,
the quark dynamics is governed by the effective nonrel-
ativistic Schrödinger equation and by their interaction
with ultrasoft gluons. To obtain a regular perturbative
expansion in β, this interaction should be expanded in
multipoles. Note that some spurious infrared and ultra-
violet divergences appear in the process of scale sepa-
ration at intermediate steps of calculation but they can-
cel each other in the final results for physical observ-
ables. The dimensional regularization has been
recognized as a powerful tool to deal with these diver-
gences [9–35].

If the ultrasoft effects are neglected, propagation of
the quark–antiquark pair in the color singlet state is
described in the potential NRQCD by the Green’s func-
tion G(x, y, E) of the Schrödinger equation

(1)

where * is the effective nonrelativistic Hamiltonian.
Near the threshold, the singular (αs/β)n Coulomb terms
should be summed in all orders of αs. Thus, in the
threshold region, one has to develop the expansion in β
and αs around some nonperturbative solution which
properly incorporates the threshold effects, for exam-
ple, around the nonrelativistic Coulomb solution. In
this case, the leading-order approximation for the non-
relativistic Green’s function is obtained with the Cou-
lomb Hamiltonian

where ∆x =  is the kinetic-energy operator, VC(x) =
−CFαs/x is the Coulomb potential, and x = |x |. The
harder scale contributions are represented by the
higher-dimensional operators in * and by the Wilson
coefficients of the operators entering into the nonrela-
tivistic Hamiltonian leading to the expansion in β and
αs. On the other hand, the radiation/absorption of the

* E–( )G x y E, ,( ) δ x y–( ),=

*C
∆x

mt

-----– VC x( ),+=

∂x
2
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ultrasoft gluons by the interacting quark–antiquark
pair, the effect of retardation, does not contribute to
NLO and NNLO (the leading ultrasoft effects in heavy
quarkonium have been recently computed in [25]).
Thus, the nonrelativistic Green’s function of (1) is the
basic object in the NRQCD analysis of the threshold
effects up to NNLO. In Subsections 2.2–2.4, we relate
the observables of the e+e−   annihilation and the
γγ   collisions in the threshold region to this
Green’s function.

2.2. Cross Sections

We study the normalized cross sections for the top
quark–antiquark pair production in e+e– annihilation

and in γγ collisions

where the leptonic cross section

is the standard normalization factor. Here, αQED is the
fine-structure constant and s is the total energy of the
colliding electrons in their center-of-mass frame. For
unpolarized initial states, the following decomposition
of the total cross sections is useful:

(2)

(3)

where Rv (Ra) corresponds to the top-quark vector
(axial) coupling in e+e– annihilation, R++ (R+–) corre-
sponds to the colliding photons of the same (opposite)
helicity in the γγ collisions, DV, A are the standard com-
binations of the electroweak coupling constants (see
below), and qt is the top-quark electric charge. The
cross section for the polarized electron/positron initial
states is discussed, for example, in [36].

Near the threshold, the cross sections are deter-
mined by the imaginary part of the correlation func-
tions of the nonrelativistic vector/axial quark currents,
which can be related to the nonrelativistic Green’s
function and its derivatives at the origin. In NNLO, the
(potential) NRQCD provides the following representa-
tion of the cross sections:

(4)

tt
tt
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(5)

(6)

(7)

where k2 = –mt E, E =  – 2mt is the quark-pair energy

measured from the threshold 2mt . The symbol  is
used for the operator

that extracts the partial P wave of the Green’s function.
The standard electroweak factors read

The coefficients C i(αs) and Bi are the NRQCD param-
eters which are responsible for matching the effective
and full theory cross sections in the limit of weak cou-
pling in NNLO. The coefficients 

account for the hard QCD corrections and are deter-
mined by the corresponding amplitudes with on-shell
heavy quarks at rest. The numerical values of these hard
coefficients in the leading-order approximation have
long been known [37–40] and are given by

The coefficient Cv has recently been computed in
NNLO in different schemes [22, 26, 27]. Starting from
NNLO, the hard coefficients acquire anomalous dimen-
sions and the calculation of the NNLO correction
requires an accurate separation of hard and soft contri-
butions. At the same time, these coefficients are inde-
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pendent of the normalization point of the strong-cou-
pling constant in a fixed order of perturbative expan-
sion, and one can use different normalization points of

 

α

 

s

 

 entering into the coefficients 

 

C

 

i

 

 (the hard scale 

 

µ

 

h

 

)
and the nonrelativistic Green’s function (the soft scale

 

µ

 

s

 

) (see Subsection 3.1).

The coefficients 

 

B

 

i

 

 in Eqs. (4) and (6) describe the
pure relativistic cross-section corrections which appear
when the cross section is evaluated in terms of the cor-
relation function of nonrelativistic quark currents.
Because the corresponding correction first appears in
the 

 

O

 

(

 

β

 

2

 

) order, the coefficients 

 

B

 

i

 

 can be taken in the
leading order in 

 

α

 

s

 

. The coefficient 

 

B

 

v

 

 is related to the
nonrelativistic expansion of the vector current and is
equal to 

 

B

 

v

 

 = 4/3 [8]. The calculation of the coefficient

 

B

 

++

 

 necessary for the consistent description of the 

 

γγ

 

cross section in NRQCD in NNLO is more involved
because the amplitude of the 

 

γγ 

 

 

 

 transition is
determined by the nonrelativistic expansion of the 

 

T

 

product of two vector currents [31, 41]. However, this
coefficient can be found by direct comparison with the
relativistic expression for the cross section expanded in
the velocity of the heavy quark (see Subsection 3.1).

For the noninteracting quarks (the Born approxima-
tion), we obtain the following results for the cross sec-

tions (

 

β

 

 = ):

Note that the cross sections 

 

R

 

v

 

 and 

 

R

 

++

 

 are saturated by
the 

 

S

 

-wave contribution and are proportional to the
Green’s function at the origin, while 

 

R

 

a

 

 and 

 

R

 

+–

 

 cross
sections are saturated by the 

 

P

 

-wave contribution and
are proportional to the derivative of the Green’s func-
tion at the origin. As a consequence, they are sup-
pressed by the factor 

 

β

 

2

 

 in comparison to 

 

R

 

v

 

 and 

 

R

 

++

 

. In
the present paper, we study the corrections to the total
cross sections 

 

R

 

e

 

 and 

 

R

 

γ

 

 up to the NNLO of NRQCD.
Thus, 

 

R

 

a

 

 is a NNLO contribution to the total cross sec-
tion 

 

R

 

e

 

, and only the leading contribution to 

 

R

 

a

 

 is
important. On the contrary, the 

 

R

 

+–

 

 part can be sepa-
rated from 

 

R

 

γ

 

 by fixing the opposite helicities of the
colliding photons. This makes possible the direct study
of the P-wave production; therefore, the evaluation of
the corrections to R+– cross section is of practical inter-
est.

Concluding this Subsection, we should also men-
tion that the electroweak corrections to the cross sec-
tions are known with one-loop accuracy. They have
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been obtained in [42] for e+e– annihilation and in [43]
for γγ collisions.

2.3. Forward–Backward Asymmetry

The next important parameter related to the thresh-
old production is the asymmetry of the differential
cross sections. This parameter gives more detailed
information on the process and allows one to obtain
independent experimental data for further test of the
theory. The forward–backward asymmetry of the top-
quark production is defined as the difference of the
cross sections averaged over the forward and backward
hemispheres with respect to the electron-beam direc-
tion divided by the total cross section. Nonvanishing
asymmetry appears in e+e– annihilation due to the axial
coupling of the top quark to the Z boson. The expres-
sion of this parameter for energies near the threshold is
given by [5]:

(8)

where

is the electroweak factor. The expression for the asym-
metry in (8) is given in NLO, and the explicit correction
of order of αs is taken in the linear approximation that
results in the manifest difference between axial and
vector hard coefficients in this order.

The dynamical quantity is the function

(9)

that describes the overlap of the partial S and P waves.

Here, p (p, k) and (p, k) are the Fourier transforms
of i∂yG(x, y, k)|y = 0 and G(x, 0, k), respectively. In the
Born approximation, the expression for the function
Φ(β) can be found in the simple explicit form Φ(β) =
Reβ. It vanishes for real values of energy below the
threshold.

2.4. Top-Quark Polarization

The longitudinal top-quark polarization in the pro-
cess e+e–   averaged over the production angle
reads [6, 44]

where
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and Φ(k) is given by (9). This function also enters into
the expression for the averaged longitudinal top-quark
polarization in the γγ   process involving collid-
ing photons with the same helicity [7]

where signs ± correspond to the positive/negative-
helicity photons.

The extension of the above expressions to the gen-
eral electron/positron polarization and photon helicity
and to other components of the polarization vector can
be found elsewhere [6, 7].

2.5. Effects of the Finite Top-Quark Width

As mentioned above, the sufficiently large t-quark
decay width suppresses the nonperturbative effects of
strong interactions at large (~1/ΛQCD) distances and
makes the perturbation theory applicable to the descrip-
tion of the t-quark threshold dynamics. The near-
threshold dynamics is nonrelativistic and is rather
insensitive to the hard-momentum details of t-quark
decays. Therefore, as the leading-order approximation,
the instability of the top quark can be parametrized with
the constant mass operator. The finite top-quark width
can then be taken into account by direct replacement

mt   mt – iΓt/2 in the relevant argument s – 4
describing the functional dependence of physical quan-
tities near the threshold. Such a replacement is equiva-
lent to the energy shift E  E + iΓt [1]. This approx-
imation accounts for the leading imaginary electroweak
contribution to the leading-order NRQCD Lagrangian.
Since the essential features of the physical situation are
reflected in this approximation, we neglect the elec-
troweak effects in higher orders in the strong coupling
constant and heavy-quark velocity.

However, in the case of P-wave production and
S−P-wave interference, the above prescription is insuf-
ficient for the proper description of the entire effect of
the nonzero top-quark width [2] and more thorough
analysis is necessary (see Subsections 3.2, 3.3).

In the context of the finite top-quark lifetime, we
should also mention that the nonfactorable corrections
due to the top-quark interaction with the decay prod-
ucts are suppressed in the total cross sections [45] but
should be taken into account as NLO contributions to the
angular distribution and top-quark polarization [46].

3. NONRELATIVISTIC GREEN’S FUNCTION 
BEYOND THE LEADING ORDER

The basic quantity in the analysis of the threshold
effects is the nonrelativistic Green’s function of

tt
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Schrödinger equation (1). The Green’s function has the
standard partial-wave decomposition

(10)

where Pl(z) is the Legendre polynomial. Note that the
partial waves of the Green’s function GC(x, y, k) of the
Coulomb interaction Schrödinger equation are known
in the explicit form

(11)

where ν = λ/k, λ = αsCFmt/2 with αs taken at the soft

scale µs , and (z) is the Laguerre polynomial, which
is chosen in the form

However, we need to know the nonrelativistic Green’s
function for the NNLO Hamiltonian of the form

where the correction to the Coulomb Hamiltonian has
the form

(12)

Here, the first term is the standard correction to the

kinetic energy operator, ∆NAV(x) = –CACF /(2mtx2) is
the so-called non-Abelian potential of quark–antiquark
interaction [47], and ∆BFV(x, ∂x , S) is the standard long-
known Breit–Fermi potential (only the overall color
factor CF is new). The Breit–Fermi potential includes
the quark-spin operator S [48]. In NNLO, the cross sec-
tion Rv is saturated with the final-state configuration of

 pair with l = 0, S = 1, while the cross section R++ is
saturated with the l = 0, S = 0 configuration. In the l = 0
states, the Breit–Fermi potential takes the form

where Av =11/3 corresponds to the spin-one final state
of the e+e–   production and A++ = 1 corresponds
to the zero-spin final state of the γγ   production.
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The terms ∆iV (i = 1, 2) represent the first- and the
second-order perturbative QCD corrections to the Cou-
lomb potential [49, 50]:

where

Here, αs is defined in  renormalization scheme. The
invariants of the color-symmetry SU(3) group have the
following numerical values for QCD: CA = 3, CF = 4/3,
TF = 1/2, nf = 5 is the number of light quark flavors, β0 =
11CA/3 – 4TFnf /3 is the first β-function coefficient, γE =
0.577216… is the Euler constant, and ζ(z) is the Rie-
mann ζ function. Solution to (1) with Hamiltonian (12)
can be found within the standard nonrelativistic pertur-
bation theory around the Coulomb Green’s function as
the leading-order approximation:

(13)

In the previous section, the threshold effects in the
basic observables were reduced to three universal func-
tions: the Green’s function at the origin, which is satu-
rated by the S-wave contribution; the derivative of the
Green’s function at the origin which is saturated by the
P-wave contribution; and the function Φ(k), which
describes the S–P-wave interference. These functions
are analyzed in detail in Subsections 3.1–3.3.
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3.1. S-Wave Production

Only the l = 0 component of Green’s function (10)
contributes to its value at the origin:

The explicit expression for the Coulomb part of the
Green’s function has the form 

(14)

where Ψn(z) = dnlnΓ(z)/dzn and Γ(z) is the Euler Γ func-
tion. The energy-independent finite part of this expres-
sion is chosen for convenience. Equation (14) can most
easily be obtained from the general expression for the
Coulomb partial waves:

(15)

where U(a, b, z) is the confluent hypergeometric func-
tion. In the short-distance limit x  0, the Coulomb

Green’s function GC(x, 0, k) = (x, 0, k) has 1/x and
ln(x) divergent terms. These terms, however, are energy
independent and do not contribute to the cross section.
Hence, these terms can be subtracted with no effect on
any physical results. The quantity µf in Eq. (14) is an
auxiliary parameter, the factorization scale, which
drops out of the physical observables.

The NLO correction ∆1G to (14) due to the first iter-
ation of ∆1V term of the QCD potential has been found
in [18], where the simple and efficient technique for
computation of higher order terms was formulated. The
NLO correction is evaluated in the form
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 due to the 
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 part of the

potential and the correction 

 

G

 

 due to the second
iteration of the 

 

∆

 

1

 

V

 

 part of the correction to the Cou-
lomb static potential have been obtained in [18, 19].
While the technique is rather straightforward, the
results of the calculations are cumbersome and explicit
formulas are relegated to Appendix A.

The method of calculation of the correction to the
Green’s function at the origin due to logarithmic terms
in the potential is described in detail in [21]. It is based
on the representation of the Coulomb Green’s function
as an expansion in Laguerre polynomials (11). This
representation is very close to the standard physical
expansion in the eigenfunctions that makes the tech-
nique transparent and easily interpretable in physical
terms. It is equally suitable for any partial-wave contri-
bution as shown in [31], where results for 

 

P

 

-wave pro-
duction were found. The results for the 

 

S

 

-wave part of
the corrections were reproduced within a different tech-
nical framework based on an integral representation of
the Coulomb Green’s function in [20].

The corrections to the Coulomb Green’s function at
the origin due to 
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 terms have been pre-
sented in [26, 27] and formally have the form
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In the course of evaluation of this correction to the non-
relativistic Green’s function, one encounters the ultra-
violet divergence in the imaginary part of the Green’s
function contained in the last term of (16). This diver-
gence is related to the singular behavior of the Cou-
lomb Green’s function at the origin. The particular
form of this divergence depends on the regularization
procedure. The divergence appears in the process of
scale separation and is a consequence of the fact that
the nonrelativistic approximation is not adequate for
the description of the short distance effects. The hard
coefficient 

 

C

 

v

 

, ++

 

 computed within the same regulariza-
tion procedure as the Green’s function must have an
infrared singular term which exactly cancels the one
appearing in the Green’s function. The hard coefficient
can be evaluated by matching the effective and full-the-
ory cross sections in the weak-coupling limit [17, 26]
or by explicit separation of the hard and soft contribu-
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tions using, for example, the scale factorization in the
dimensional regularization [22, 34, 35]. Let us consider
the cancellation of the divergences and determination
of the hard coefficient in the matching scheme. The nat-
ural regularization for the analysis of the hard part of
the corrections is the dimensional one [32, 33]. In 4 –
2ε dimensions the infrared divergence of the hard con-
tribution in NNLO has the form of the first-order pole
in ε. The Coulomb Green’s function at the origin in
Eq. (16) can be regularized in the same way to ensure
the finiteness of the cross section by the explicit cancel-
lation of divergent parts which are represented in a
comparable form. The dimensionally regularized Cou-
lomb Green’s function at the origin takes the form (see
Appendix B)

(17)

Note that, in contrast to (14), expression (17) has no
divergence in the Born approximation. The Green’s
function in this approximation is a nonrelativistic free
propagator and is proportional to k. The first-order pole
in ε appears only in the first order in αs . The O(α2) sin-
gular 1/ε term in the imaginary part of Eq. (16) is pro-
portional to Im(GC(0, 0, k)) and, therefore, can be
absorbed by the redefinition of the hard coefficient
Cv, ++. For the Green’s function, this redefinition results

in the substitution (0, 0, k)  (0, 0, k) in (16),
where the “subtracted” Green’s function reads

(18)

Within the redefined hard coefficient, the O(α2) “ultra-
violet” 1/ε term stemming from the corrections to the
Green’s function (16) exactly cancels the O(α2) “infra-
red” 1/ε term of the hard part of the corrections. This
can be explicitly checked for the Cv coefficient since its
singularity is determined by the one of the hard renor-
malization coefficients of the nonrelativistic vector cur-
rent [32, 33]. Then, the finite coefficient Cv, ++ can be
found directly by matching the effective theory expres-
sion for the cross sections and the result of perturbative
QCD calculation of the spectral density in the formal

limit αs ! β ! 1 up to the order  for µh = µs . Equa-
tions (4) and (6) in the matching limit take the form
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where the terms of the relative order O(β2) are retained.
Comparing (19) with the NNLO QCD result for the
cross section Rv expanded in the velocity of the heavy
quark near the threshold [32, 51], we find

(21)

where the coefficient  has been obtained in [26, 27]

The first logarithm in (21) is determined by the renor-
malization group running of the strong coupling con-
stant in the hard momentum regime and is proportional
to the first coefficient of the β function. Thus, both the
hard coefficient and the Green’s function do not depend
on the normalization point of αs in the fixed order of
perturbation theory so one can use different scales for
αs in these quantities. The second logarithm corre-
sponds to the anomalous dimension of the hard coeffi-
cient and precisely cancels the factorization-scale
dependence of the Green’s function due to Eq. (16).
This cancellation makes the total result independent of
the factorization scale. Note that the use of different
hard and soft normalization scales leads to the incom-
plete cancellation of the factorization scale depen-

dence, which, however, is an O( ) effect.
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As was mentioned above, one can bypass the direct
matching by the consistent use of the dimensional reg-
ularization, where the factorization and matching are
automatic [14, 34, 35]. In this approach, the hard coef-
ficient is completely determined by the hard renormal-
ization coefficient of the nonrelativistic vector current
[22]. However, to compute the corrections to the
Green’s function in this case, one has to define accu-
rately the Breit–Fermi Hamiltonian in 3 – 2ε dimen-
sions [22, 35] (in our analysis, we use the three-dimen-
sional Breit–Fermi Hamiltonian, and the direct match-
ing is necessary, though the ultraviolet and infrared
divergent terms cancel each other explicitly).

The NNLO analysis of the R++ cross section is still
absent, and the constant in the hard coefficient is
unknown. The logarithmic part of the NNLO contribu-
tion to C++(αs) reads

(22)

where  is a constant to be determined. The relativis-
tic correction to this cross section, however, can be
extracted from the calculations presented earlier in the
literature. Comparing the known result [52]

(23)

with our expression (20), we find B++ = 1/3. The
Green’s function at the origin can be written in the form
that includes only single poles in the energy variable.
This form seems to be natural for the Green’s function
of the nonrelativistic Schrödinger equation:

(24)

where ψ0m, E '(0) is the wave function at the origin, the
sum goes over the bound states, and the integral goes
over the states of the continuous spectrum. In this way
the corrections to the Green’s function stemming from
the discrete spectrum reduce to corrections to Coulomb
bound-state energies

and to the values of Coulomb bound-state wave func-
tions at the origin:
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and  is the correction due to relativistic correc-
tions parametrized by the coefficients Bi which we
include into the definition of the wave function.

In NLO, an explicit analytic expression for the cor-
rections to the bound-state parameters has the form [20,
21, 53]

where (m) = L1(λ/(m + 1)). The expressions for the
NNLO corrections to the energy levels [20, 21, 53] and
wave functions at the origin [20, 21] are rather cumber-
some and are given in Appendices C and D.

The continuum contributions in (24) can be directly
found by subtracting the discrete part of these equa-
tions expanded around the Coulomb approximation up
to NNLO,

from the result obtained within the nonrelativistic per-
turbation theory for the Green’s function at the origin
(13) multiplied by (1 – BiE/mt). This procedure
removes the double and triple poles from (13) and
leaves only the single poles in expression (24) for the
Green’s function.

An important consequence of the relatively large
top-quark width is that most of the Coulomb reso-
nances are smoothed out. The numerical analysis
shows that only the ground-state resonance in the cross
sections is distinguishable. Its separation from others is
not completely covered by the infrared cutoff provided
by the top-quark width. Indeed, using the pure Cou-
lomb formulas for estimation within an order of magni-
tude, we find the value

to be compared with the top-quark width Γt = 1.43 GeV.
The second spacing between radial excitations for the
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l = 0 partial wave and the first spacing for the l = 1 par-
tial wave are, however, much smaller,

and are completely smeared out with the top-quark
width.

In the limit of vanishing top-quark width, the NNLO
approximation for the energy of the resonance in e+e–

annihilation reads

(25)

where

This value is related to the energy of the resonance of
the top-quark production in the γγ collision by hyper-
fine splitting,

The convergence of the perturbation-theory series (25)
is not fast. For some typical values of the soft normal-
ization scale, the series for the resonance energy reads

(26)

The poor convergence of the series for the resonance
energy can be assigned to high infrared sensitivity of
the pole mass (see, for example, [54]). The convergence
can be manifestly improved by removing the pole mass
from the theoretical expressions in favor of some less
infrared-sensitive mass parameter, for example, the
short-distance [20], potential-subtracted [22], or 1S
mass [24]. Note that all the mass definitions are pertur-
batively equivalent in a finite order of the expansion.
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The infrared-safe mass parameters, however, are
“closer” to the physical observables since the corre-
sponding perturbative series, in contrast to the pole
mass, are supposed to be convergent.

Due to the finite top-quark width, the location of the
peak (maximum) of the cross section is not given only
by the position of the ground-state resonance but is also
affected by the contribution of the higher (smeared out)
resonances and the continuum contribution. Due to this
effect, the absolute value of the NNLO peak energy
(25) measured from the threshold is less than the abso-
lute value of the energy of the ground-state resonance

 by about 200 MeV, i.e., ~7%. This shift is essen-
tially smaller than the one related to the perturbative
QCD corrections to Coulomb values but is consider-
ably larger than the leading nonperturbative contribu-
tion due to the gluon condensate [55], which is sup-
pressed parametrically as (ΛQCD/λ)4 < 1%.

3.2. P-Wave Production

The derivative of the Green’s function at the origin
is saturated with its l = 1 component and is explicitly
given by the relation

For the Coulomb Green’s function given in (15), we
obtain the closed formula for the l = 1 partial-wave
Green’s function at the small space separation of a par-
ticle:

(27)

where  is the analog of the parameter µf for the l = 0
partial wave. In the short-distance limit x  0, the
derivative of the Coulomb Green’s function (or the l =
1 partial wave) has 1/xn (n = 1, 2, 3) and ln(x) singular-
ities. In contrast to the case of the S-wave production,
the value at the origin for the partial P-wave Green’s
function contains divergent terms that depend explic-
itly on the energy (or wave vector) k. However, these
terms do not contribute to the cross section for the van-
ishing top-quark width Γt = 0 because they have no dis-
continuity across the physical cut in the complex
energy plane in the approximation of zero top-quark
width. The case of the nonzero top-quark width
requires a more detailed analysis given below.
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The correction to the l = 1 partial wave at the origin
due to the first iteration of ∆1V term of the QCD poten-
tial has been found in [31]:

where

For the derivative of the Green’s function at the origin
(or for the l = 1 partial wave), the analog of Eq. (24)
reads
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Here, E1m is the l = 1 bound-state energy. In the NLO
approximation, these quantities read [31]

and

The continuum contribution is obtained in the same
way as it was done in the previous section for the S-
wave production.

In the case of P-wave production, the simple shift
E  E + iΓ in the nonrelativistic approximation is not
sufficient to describe properly the total effect of the
nonzero top-quark width [2]. Indeed, Eq. (27) in the
limit x  0 with the nonvanishing width has the
divergent imaginary part with the leading power singu-
larity ~Γt/x related to the free Green’s function singu-
larity and the logarithmic singularity ~Γtαsln(x) pro-
duced by the Coulomb gluon exchange. The presence
of these singularities clearly indicates that the coeffi-
cient of the constant term linear in Γt gets a contribution
from the large momentum region and cannot be
obtained within the pure nonrelativistic approximation.
As the hard coefficients, it should be computed in rela-
tivistic theory. This contribution is not suppressed para-
metrically in comparison to the pure nonrelativistic
contribution in the threshold region. At E = 0, for exam-
ple, the ratio of the relativistic (proportional to Γt) and
nonrelativistic (Coulomb) contributions is of order

Γt/ mt ~ 1. Since we are interested in the NLO correc-
tions, the O(Γtαs) term also has to be taken into
account. By construction, the nonrelativistic effective
theory has to reproduce the perturbation-theory predic-
tions in the formal matching limit αs , β ! Γt/mt ! 1,
where both effective theory and perturbation theory
descriptions are valid. Thus, one has to compute O(Γt)
and O(Γtαs) terms in the relativistic perturbation theory
and then to fix the parameters of the effective nonrela-
tivistic theory so that it reproduces the perturbative
results in the matching limit. In the relativistic pertur-
bation theory, the relevant contributions can be
obtained by inserting the complex momentum-depen-
dent mass operator to the top-quark propagator at β = 0
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(only the leading terms in Γt/mt should be retained). In
the leading order in αs, this procedure has been done in
[2]. The result reads

where g1 is a coefficient coming from the relativistic
treatment with the numerical value g1 ≈ 0.185. For the
O(Γtαs) term, the necessary calculation has been per-
formed in [31]. It has been shown that the proper rela-
tivistic analysis leads to fixing the auxiliary parameter
of Eq. (27)  = g2mt , where g2 is the coefficient com-
ing from the relativistic treatment. Its numerical value
is g2 ≈ 0.13.

Here, we should note also the problem of the previ-
ous numerical analysis of the P-wave contribution [28].
Solving Schrödinger equation (1) numerically for the
finite top-quark width, one has to introduce an explicit
ultraviolet cutoff for the nonrelativistic expressions
divergent in the large-momentum region. To get rid of
the cutoff dependence, one has to compute the hard
contribution within the relativistic approximation using
the similar prescription for the infrared cutoff. This,
however, has not been done; as a consequence, the
O(Γt) and O(Γtαs) contributions to the cross section
were not determined within the numerical framework
of [28].4) On the other hand, the total O(Γt) contribution
to the cross section is numerically small in comparison
with that of the completely regular nonrelativistic terms
of (27), which saturate the total result for energies not
far below the threshold.

3.3. S–P Interference

In the zero-width approximation, function (9) can
be decomposed as

where Φcon and Φpol are the continuum and bound-state
poles contributions, respectively. It is known [7, 44]
that the continuum contribution is not affected by the
Coulomb effects, and above the threshold one has the
Born approximation result

even for the Coulomb Green’s function in Eq. (9).
Below the threshold, in the Coulomb approximation,
one obtains

(28)

4)Recently, the O(Γt) contribution has been estimated within the
numerical approach [30] by using the physical (relativistic) phase
space for the unstable top quark to regularize the divergence of
the nonrelativistic approximation.
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where the quantities

measure the overlap of the S- and P-wave functions.

Note that in the zero-width limit, the function 
does not vanish due to the Coulomb degeneration of the

energy levels with different l:  = . It was
indicated in [44] that the continuum contribution has no
soft corrections. Thus, in NLO, we have the simple
result for a finite top-quark width:

The corrections to the pole contribution are less trivial.
They can be computed using the powerful technique
developed in [18, 21, 31]. The result reads

(29)

where

In (29), we retain the finite top-quark width to get a
nonvanishing result since the Coulomb degeneration is
removed by the logarithmic corrections to the potential.
Strictly speaking, our approach is valid only if the level
splitting E0m + 1 – E1m is much smaller than the top-
quark width (which is realized for the actual values of
these quantities). At E0m + 1 – E1m > Γt, the nonrelativis-
tic analysis is not applicable for the S–P interference
below the threshold because the double poles of
Eq. (28) disappear and the nonrelativistic contribution
is not enhanced in comparison to the relativistic one in
this case.

Note that, for the finite top-quark width, the interfer-
ence of the free l = 0 and l = 1 partial waves results in
the logarithmically divergent O(Γt) term in the numer-
ator of Eq. (9) (this term does not explicitly include the
factor Γt, but it is suppressed in comparison to the lead-
ing term, which is proportional to 1/Γt as the leading
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term in the denominator of Eq. (9) for the free quark
Green’s function). This divergent term is of the same
origin as the divergence in the P-wave amplitude dis-
cussed in Subsection 3.2. This term can be accurately
calculated only within the relativistic approximation. In
contrast to the P-wave production, this term is paramet-
rically suppressed above the threshold in comparison to
the nonrelativistic continuum contribution by at least

the factor  at E ~ 0 and can be safely omitted.
However, it becomes important below the resonance
region when the nonrelativistic contribution becomes
small. Moreover, the denominator on the right-hand
side of Eq. (9) decreases rapidly below the ground state
pole. Therefore, a small uncertainty in the numerator
would lead to a large uncertainty in the function Φ(k),
and a reliable estimation of its numerical value is not
possible in this region within the nonrelativistic
approximation. Strictly speaking, the accurate determi-
nation of the function Φ below the ground-state pole
requires the calculation of the relativistic O(Γt) contri-
bution to the S-wave cross section [the denominator of
(9)], which is not usually considered since it does not
lead to the divergence in the nonrelativistic expression.

4. DISCUSSION

The results of the numerical analysis for the physi-
cal observables based on the obtained analytic expres-
sions are plotted in Figs. 1–4.

The constant  appearing in the hard coefficient

C++(αs) in the O( ) order remains unknown. The cal-
culation of this parameter is necessary for the formal
completion of the NNLO analysis. To find its numerical

Γ t/mt

c̃2
++

α s
2

Rv(E)
1.2

0.8

0.4

0
–6 –4 –2 0 2 4 6

E, GeV

Fig. 1. Normalized cross section Rv(E) in the leading order
(thin solid curves), in NLO (thick dotted curves), and in
NNLO (thick solid curves) for mt = 175 GeV, Γt = 1.43 GeV,
αs(MZ) = 0.118, and µs = 50, 75, and 100 GeV. The thin dot-
ted curve corresponds to the result in the Born approxima-
tion.
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value, one has to compute the O( ) perturbative QCD
correction to the γγ cross section near the threshold in
the formal limit αs ! β ! 1 and to compare it with the

O( ) term in (20). In the case of e+e– annihilation,
however, the analogous contribution parametrized by

 is relatively small (about 10% of the total NNLO
correction) and the correction to the physical observ-
ables in NNLO is saturated with the soft part of the total
contribution determined by the corrections to the
parameters of the nonrelativistic Green’s function.
Thus, one can reasonably hope that a similar situation
can also take place for γγ collisions. However, the

α s
2

α s
2

c̃2
v

Re, γ(E)
1.2

0.8

0.4

–6 –4 –2 0 2 4 6
E, GeV

Fig. 2. Normalized cross sections Re(E) (dotted curves) and

Rγ(E) (solid curves) in NNLO for  = 0, mt = 175 GeV,

Γt = 1.43 GeV, αs(MZ) = 0.118, sin2θW = 0.232, MZ =
91.2 GeV, and µs = 50, 75, and 100 GeV.

c̃2
++

R+–(E)
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0
–6 –4 –2 0 2 4 6
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Fig. 3. Normalized cross section R+–(E) in the leading order
(dotted curves) and in NLO (thick solid curves) for
mt =175 GeV, Γt =1.43 GeV, αs(MZ) = 0.118, and µs = 50,
75, and 100 GeV. The thin solid curve corresponds to the
result in the Born approximation.
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importance of this parameter for physical observables
is not crucial; it affects only the overall normalization
of the cross sections. For example, it does not shift the
position of the resonance, which is an important char-
acteristic of the production, and does not enter the ratio
R++(E)/R++(0). For the numerical analysis of the cross

section Rγ, we set  = 0.

In our approach, we deal with the soft corrections by
summing them into the energy denominators of the dis-
crete part of the Green’s function. In other words, we
treat the soft corrections as effective corrections to the
parameters of the Green’s function written in a fixed
functional form. The same approach has been advo-
cated in [22, 27, 29, 30, 56], where all the corrections
to the Green’s function have been found (numerically
or analytically) in the form (24). In [26], however, part
of the NNLO corrections have not been resummed to
the energy denominators of the discrete part of the
Green’s function. On the other hand, the Schrödinger
equation (1) has been solved numerically in [27, 29, 30,
56]; i.e., the NLO and the NNLO correction to the Cou-
lomb Hamiltonian have been taken into account effec-
tively in all orders of nonrelativistic series (13) for the
Green’s function, while we work strictly in NNLO. Our
formulas reproduce the numerical result for Rv of the
most recent numerical analysis [29, 30, 56] with 1–3%
accuracy that can be assigned to the contribution of the
higher iterations of the NLO and NNLO corrections to
the potential in Eq. (13) beyond NNLO.

For the total cross sections, which are dominated by
the S-wave contribution, we find the typical value of the
NNLO corrections to be of the order of ~20% in the
overall normalization of the cross sections and ~40% in
the resonance energies expressed in terms of the top-
quark pole mass, i.e., of the order of the NLO ones (see
Fig. 1). Though the inclusion of the NLO corrections
results in a considerable stabilization of the theoretical
results for the cross sections against changing the nor-
malization point, the NNLO corrections do not lead to

c̃2
++

Fig. 4. As in Fig. 3, but for the function Φ(E).

Φ(E)
0.2

0.1

0
–6 –4 –2 0 2 4 6

E, GeV
better stability as compared to NLO. In the overall nor-
malization of the cross sections, the NLO and NNLO
corrections cancel each other to a large extent, while
the NLO and NNLO corrections to the resonance ener-
gies are of the same sign and shift the resonance farther
from the threshold. They also make the peak more dis-
tinguishable, which is the main difference between the
leading Coulomb and NNLO approximations.

The leading-order approximations for Re and Rγ

cross sections are the same up to the normalization fac-

tor 2 . Up to the overall factor, the difference between
the cross sections is determined by NNLO QCD and
relativistic corrections (see Fig. 2). Above the thresh-
old, this difference is determined by the difference
between B++ and Bv coefficients and between P-wave
contributions to Eqs. (2) and (3), i.e., by the pure rela-
tivistic corrections. Below the threshold in the reso-
nance region, this difference is determined also by Ai

coefficients and is quite sensitive to the value of αs .

Though the use of an infrared safe mass parameter
instead of the pole mass improves the convergence of
the series for the resonance energies, it does not affect
the huge NNLO corrections to the cross section nor-
malization. Moreover, it is not clear if there exist phys-
ically motivated mass and strong-coupling parameters
providing fast uniform convergence of the perturbative
expansion for the cross sections in the threshold region.
The absence of such a parametrization would mean the
unavoidable significance of the high-order terms of the
threshold expansion. Some high-order effects have
been already considered in the literature. The leading

logarithmic corrections of the form lnnβ have
been computed [22]. These corrections originate from
the corrections to the Green’s function due to the high
iterations of the ∆2 kinetic term and the non-Abelian
and the Breit–Fermi potential of (12) and can be taken
into account by the renormalization group evolution of
the hard coefficient Cv, ++ from µf = mt down to µf = βmt

[22]. The corresponding corrections to the Rv cross sec-
tion are ±5%. In [29], the running of the strong cou-
pling constant has been taken into account by introduc-
ing the energy dependent soft normalization point of αs

entering the Coulomb potential in the numerical solu-
tion of the Schrödinger equation. The resummation of
the renormalization group logarithms has an essential
(up to 10%) effect in the resonance region and reduces
the normalization-scale dependence of the result. Fur-
thermore, the effect of retardation which introduces a
new type of contributions absent in NLO and NNLO
has been analyzed for the low-lying resonances [25].
The characteristic scale of the leading ultrasoft contri-
bution was found to be about –5% for the square of the
ground state wave function at the origin and +100 MeV
for the ground-state pole position.

The result for the axial coupling contribution to the
e+e–   cross section is in good agreement with the

qt
2

α s
n 1+

tt
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numerical analysis presented in [28]. Up to the trivial
normalization, this contribution coincides with the
cross section R+– (Fig. 3). Numerically, it does not
exceed 2% of the total cross section and is less than the
uncertainty resulting from the normalization scale
dependence.

The cross section R+– and the function Φ(k) have no
contribution from the ground-state resonance; there-
fore, they are rather smooth because the top-quark
width smears the higher resonance contributions very
efficiently (Figs. 3, 4). These quantities are rather
insensitive to variation in the normalization scale. A
typical NLO correction to R+– is about 10%, while the
one to Φ(k) is about 15% [the corrections to the for-
ward–backward asymmetry and top-quark polarization
also include the hard normalization factors which have
not been included to Φ(k) and the nonfactorable correc-
tions discussed in Subsection 2.4]. Our result for the
function Φ(k) (Fig. 4) is in good agreement with the
results of numerical analysis [5, 6] for the energies
above the ground-state resonance. There is some dis-
crepancy between the results below the resonance.
However, a reliable estimate for the function Φ is not
possible in this region with the pure nonrelativistic
treatment of the top-quark width, as was explained in
Subsection 3.3.

The final remark of this section concerns the opti-
mal choice of the normalization and factorization
scales. The hard scale appears in the hard coefficients
as ln(mt/µh); i.e., the typical hard scale of the problem
is the top-quark mass. Though in a fixed order of the
perturbative expansion the hard coefficients do not
depend on µh, one can set µh ~ mt  to minimize the
potentially large logarithmic contributions of the higher
order terms. In practice, the NNLO results are almost
independent of µh when µh ~ mt . On the other hand, the
requirement of convergence of the perturbative expan-
sion around the Coulomb Green’s function restricts the
allowed range for the choice of a soft normalization
point that can be used for reliable estimates. The soft
physical scale of the problem is determined by the nat-
ural infrared cutoff related to the top-quark width

 that measures the distance to the nearest singu-
larity in the complex energy plane and/or by the char-
acteristic scale of the Coulomb problem λ, i.e., µs ~
15 GeV. Both scales are rather close to each other for
the case of the top quark, which makes possible a uni-
form description of both perturbative QCD and Cou-
lomb resonance effects. Indeed, for µs ~ 15 GeV, the
soft NLO correction, for example, to energy level (25),
reaches its minimal magnitude. However, at this scale,
the NNLO correction exceeds the NLO one and the
series for the energy levels seems to diverge. Moreover,
for such a low soft normalization point, the NNLO cor-
rections to the wave function at the origin that cannot
be eliminated by the quark mass redefinition become
uncontrollable. This is not surprising since the normal-

mtΓ t
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ization scale is defined in a rather artificial  scheme
that has little to do with peculiarities of  physics and
there is no reason for a literal coincidence of parameter
µs with any physical scale of the process. The relative
weight of the NNLO correction to the Green’s function,
as well as the dependence of the cross sections on µs, is
stabilized at µs * 40 GeV, which can be considered as
an optimal choice of the soft normalization point. The
price one pays for using different soft and hard normal-
ization scales is the incomplete cancellation of the fac-
torization scale dependence, but this effect is sup-
pressed by an additional power of αs . Another source of
the dependence on the factorization scale is factorized
form (4), (6) of the cross sections, where some higher
order µf-dependent terms are retained. The numerical
analysis, however, shows that the results are rather
insensitive to the factorization scale chosen in the
region µf ~ mt .

5. CONCLUSION

The basic observables of the top-quark pair produc-
tion in e+e– annihilation and γγ collisions have been
considered in the threshold region. The threshold
effects are described by three universal functions
related to the S- and the P-wave production and S–P
interference which have been computed analytically
within (potential) NRQCD. An explicit analytic expres-
sion for the soft part of the NNLO corrections to the
total cross section has been obtained. The threshold
e+e–   cross section has been obtained in NNLO
in closed form including the contribution due to the
top-quark axial coupling. The forward–backward
asymmetry of the quark–antiquark pair production in
e+e– annihilation and top-quark polarization in both
processes have been computed analytically up to NLO.
The running of the strong-coupling constant and the
finite top-quark width effects in the P-wave production
and S–P-wave interference have been taken into
account properly within the analytic approach.

In combination, these uncorrelated observables
form an efficient tool for investigating quark interac-
tions. As independent sources, they can also be used for
determination of the theoretical uncertainty in the
numerical values of the strong-coupling constant αs ,
the top-quark mass, and the top-quark width extracted
from the experimental data on top–antitop production.

The high-order corrections turn out to be relatively
large for all observables and important for the accurate
description of the top-quark physics near the produc-
tion threshold.
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APPENDIX A

The correction G due to the ∆2V part of the
potential has the form [18] 

where 
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The correction G due to the second iteration of ∆1V
term has the form [19] 

where

APPENDIX B

We define the dimensionally regularized value of
the Coulomb Green’s function at the origin directly
through the relation

with d = 3 – 2ε. Representing the momentum space
Green’s function as

one obtains

∆2
1( )

∆2
1( )

G
α s

4π
------ 

 
2 CFα s( )2

4π
-------------------

mt
3

2k
------ H m( )3

m 1+( )
m 0=

∞

∑



=

× C0
1 Ψ m 2+( ) L k( )+( )C1

1
+( )

2

– 2   
n

 
1+

 
m n

 
–

------------- C 1
1

 H m ( ) 
2

 H n ( ) C 0
1 --- 



 

n

 

0=

 

m

 

1–

 ∑  

m

 

1=

 

∞

 ∑

+ Ψ m 2+( ) L k( ) 1
2
--- 1

m n–
-------------–+ 

  C1
1




+ H m( )H n( )2
C0

1 Ψ n 2+( ) L k( ) -+
+



–
1
2
--- n 1+

m n–( ) m 1+( )
------------------------------------

 C1
1






+ 2 C1
1( )

2
   H m ( ) H n ( ) H l ( ) 

n
 

1+
 

l n
 

–
 ( ) 

m n
 

–
 ( ) --------------------------------- 

n

 

0=

 

l

 

1–

 ∑  

l

 

1=

 

m

 

1–

 ∑  

m

 

2=

 

∞

 ∑  




+    H m ( ) H n ( ) H l ( ) 
l

 
1+

 
n l

 
–

 ( ) 
m n

 
–

 ( ) --------------------------------- 

l

 

0=

 

n

 

1–

 ∑  

n

 

1=

 

m

 

1–

 ∑  

m

 

2=

 

∞

 ∑

+    H m ( ) H n ( ) H l ( ) 
l

 
1+ ( )

 
m

 
1+ ( )

 
n

 
1+

 ( ) 
n l

 
–

 ( ) 
n m

 
–

 ( ) --------------------------------------------------- 

l

 

0=

 

m

 

1–

 ∑  

m

 

1=

 

n

 

1–

 ∑  

n

 

2=

 

∞

 ∑  








 ,

H m( ) 1
m 1 ν–+
----------------------.=

GC
dr

0 0 k, ,( ) d
d
pG̃ p k,( )∫=

G̃ p k,( )
mt

8π3
-------- 1 t+

t
----------- 

 
ν

t
4k

2
1 2t+( )

p
2

k
2

1 2t+( )2
+( )

2
---------------------------------------------,d

0

∞

∫=

GC
dr

0 0 k, ,( )
mtk
2π
--------

µ f

k
----- 

 
2ε 1 t+

t
----------- 

 
ν td

1 2t+( )2ε-----------------------.

0

∞

∫=
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001



ANALYTIC RESULTS 291
Here, we omit inessential factors related to the precise
definition of integration measure in d dimensions that
lead to the multiplication of the Green’s function with
an additional quantity 1 + O(ε) and can be taken into
account by the redefinition of µf scale. The integral on
the right-hand side of this equation reads

where B(z, w) is the Euler B function and 2F1(a, b; c; z)
is the hypergeometric function. Upon expanding the
above expression in ε around ε = 0, one arrives at the
final result for the dimensionally regularized Coulomb
Green’s function. The factorization scale µf in (17) is
chosen in such a way that it is true as written. Note that
the Green’s function regularized in this way does not
automatically match the hard coefficient computed in

the  scheme of the orthodox dimensional regular-
ization [32, 33].

APPENDIX C

The NNLO corrections to the square of the Cou-
lomb 3S1 and 1S0 heavy-quark bound-state wave func-
tion at the origin have the form [21]
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where (m) = L(λ /(m + 1)) and

APPENDIX D

The NNLO corrections to the Coulomb 3S1 and 1S0
heavy-quark bound-state energy levels have the form
[20, 21, 53]
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Abstract—The axion self-energy in an external magnetic field is investigated. It is shown that, in addition to
the standard contribution due to axion interaction with virtual fermions, there exists the contribution induced
by photon exchange. For the two contributions, expressions that take exactly into account an external field are
obtained, and the limit of an ultrastrong magnetic field is explored for them. The question of whether two-
dimensional QED, which effectively arises in the limit of a strong magnetic field, is applicable to calculating
the virtual-fermion-induced contribution to the axion self-energy is analyzed. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The interaction of quantum particles with active
matter (for example, plasma or an external magnetic
field) in higher orders of perturbation theory can signif-
icantly affect the properties of particles. In particular,
effects associated with such interactions can change the
particle mass (or induce an effective mass) and generate
anomalous magnetic and electric moments. If such
changes in the properties of particles are sizable, they
affect the kinematics of quantum processes.

The problem of the axion-mass value [1, 2] and of
the axion lifetime is of paramount importance for cos-
mology, since the axion is considered as one of the
main candidates for dark-matter particles in the Uni-
verse. In quantum theory, the axion, which is intro-
duced as a massless particle, acquires mass owing to
mixing with the π0 meson [3],

(1.1)

where mπ . 135 MeV and fπ . 93 MeV are the neutral-
pion mass and decay constant, respectively, and where
we have used the quark-mass ratios z = mu/md = 0.568 ±
0.042 and w = mu/ms = 0.0290 ± 0.0043 [4]. It can be
seen that the axion mass is determined by the energy
scale of the breakdown of UPQ(1) symmetry (Peccei–
Quinn symmetry) of the theory fa; according to the cur-
rent estimates, it is rather small, ma & 10–3 eV, since
astrophysical data yield a large value for this scale, fa *
108 GeV [5].

Having traversed a region where there is an external
electromagnetic field, an axion acquires an electromag-
netic correction to the mass. The field shift of the axion
mass squared is determined by the real part of the a 

ma

mπ f π

f a

------------ z
1 z+( ) 1 z w+ +( )

------------------------------------------- 
 

1/2

=

. 0.60 eV
10

7
 GeV
f a

--------------------- 
  ,
1063-7788/01/6402- $21.00 © 20294
a transition amplitude ∆M induced by an external elec-
tromagnetic field,

(1.2)

The imaginary part of the amplitude ∆M determines the
axion-decay probability Wa,

(1.3)

where Ea is the axion energy. For an analysis of the
properties of an axion that propagates in an external
classical field, it is of great interest to calculate this
amplitude.

2. GENERAL EXPRESSION 
FOR THE TRANSITION AMPLITUDE

In the existing axion models, the interaction of the
axion with a fermion f of mass mf is described by the
Lagrangian

(2.1)

where gaf = Cf mf /fa is the dimensionless Yukawa cou-
pling constant; Cf is a dimensionless factor that is
dependent on the specific model of the invisible axion;
γ5 = – i γ0γ1γ2γ3, γµ being the set of the Dirac γ matrices
[6]; ∂µa(x) = ∂a(x)/∂xµ; and f(x) and a(x) are the quan-
tized fermion and axion fields.1) 

In the lowest nonvanishing order of perturbation
theory in gaf, the axion-to-axion (a  a) transition
amplitude is described by the fermion loop diagram
(see Fig. 1). We note that, in order to derive a correct
result in calculating amplitudes involving not less than
two axion fields that interact with fermions (for exam-
ple, the amplitude corresponding to the axion self-
energy diagram in Fig. 1), it is necessary, as was indi-

1)Here, we use the system of units where " = c = 1 and the pseudo-
Euclidean metric of signature (+ – – –).

δma
2

Re∆M.–=

Im ∆M EaWa,=

+af
D( )

x( )
gaf

2m f

---------- f x( )γµγ5 f x( )[ ]∂ µa x( ),=
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cated for the first time in [7], to use the Lagrangian
involving the derivative, such as that in Eq. (2.1), rather

than the pseudoscalar Yukawa coupling,  =

−igaf ( )a.

The S-matrix element associated with the contribu-
tion of virtual charged fermions (see the diagram in
Fig. 1) is given by

(2.2)

where |a(q)〉 and |a(q')〉 are the vectors of the initial and
the final state of the axions with 4-momenta qµ = (Ea, q)

and q'µ = ( , q'), respectively; (q γ) = qµγµ; V is the
normalization volume; and GF (x, y) is the charged-fer-
mion propagator.

In an arbitrary constant uniform electromagnetic
field, the propagator for a fermion with charge ef pos-
sesses neither gauge nor translation invariance. The non-
invariant component can be factored out in the form of a
phase, so that the propagator can be represented as [8]

(2.3)

where

(2.4)

We note that the expression for the phase in (2.4) does
not depend on the path of integration between the
points x and y of four-dimensional spacetime [8].

In a constant uniform electromagnetic field, the
noninvariant phases of two fermion propagators cancel
out in two-point loop diagrams (including the axion
self-energy diagram), making no contribution to the
amplitude. Proceeding from the definition of phase in
(2.4), we do indeed obtain

because the constant field tensor Fµν can be factored
outside the integral sign together with 4-vector (x – y)ν,
so that the resulting vector integral reduces to the 4-
vector (x – y)µ. In view of this, the S-matrix element
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proves to be translation- and gauge-invariant and takes
the form

(2.5)

where X = x – y. In the S-matrix element, we have iso-
lated a four-dimensional delta function expressing the
law of energy–momentum conservation. This is due to
the fact that the initial and the final state are formed by
electrically neutral particles. Therefore, we can use, in
this case, the standard definition of the invariant ampli-
tude [6],

(2.6)

whereby we arrive at the following result:

(2.7)

The invariant part S(X) of the fermion propagator
(2.3) can be expanded in a complete set of 4 × 4 matri-
ces [6]. Upon substituting such expressions into the
transition amplitude, evaluation of the traces of the γ
matrix becomes rather cumbersome. However, the cal-
culations can be simplified considerably by represent-
ing SF (X) as the sum of two terms involving the product
of an even and an odd number of Dirac matrices:

(2.8)

On the basis of the commutation properties of the γ
matrices, it can be deduced that S+(X) (S–(X)) is propor-
tional to the even (odd) number of Dirac matrices. The
expression for the amplitude can then be reduced to the
form

(2.9)
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Fig. 1. Diagram representing the axion-to-axion (a  a)
transition in the lowest order of perturbation theory in an
external electromagnetic field.
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We note that the contributions M+ and M– are equal; this
can be demonstrated by using the gauge invariance of
the photon self-energy. Indeed, this self-energy is deter-
mined by the photon-to-photon (γ  γ) transition
amplitude,

(2.10)

where εµ is the photon polarization vector. The Feyn-
man diagram for the process γ  γ in the one-loop
approximation is presented in Fig. 2. By taking into
account the results of the above analysis for the axion,
we can recast the photon self-energy into the form

(2.11)

where qµ is the photon 4-momentum, Qf is the relative
fermion charge in the loop, and α . 1/137 is the fine-
structure constant. Substituting the propagators in the
form (2.8) into Eq. (2.11) and using the gauge-invari-
ance condition (qΠq) = 0, we obtain the integral rela-
tion

(2.12)

whence it follows that M+ is equal to M–.
By using this relation, we can reduce the a  a

transition amplitude to the form

(2.13)

For a subsequent evaluation of the transition amplitude,
it is necessary to know the explicit form of the invariant
part SF (X) of the fermion propagator (2.3). We will ana-
lyze the axion self-energy in an external magnetic field
by using an exact expression for the propagator in the
field of this configuration.
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Fig. 2. Diagram describing the photon-to-photon (γ  γ)
transition in the lowest order of perturbation theory in an
external electromagnetic field.
3. EXTERNAL MAGNETIC FIELD
Within the proper-time formalism [9], the transla-

tion- and gauge-invariant part SF(X) of the fermion
propagator (2.3) in a constant uniform magnetic field B
can be represented as [8]

(3.1)

where ϕαβ = Fαβ /B and  = (1/2)εαβµνϕµν are, respec-
tively, the dimensionless tensor of the external-mag-

netic-field strength and its dual; Λαβ = (ϕϕ)αβ and  =

( )αβ = gαβ + Λαβ; and β = ef |B | = ef . In
the propagator SF(X), the part even in the product of the
Dirac matrices has the form

(3.2)

We note that, in S+(X), the dependence on the 4-coordi-
nate X is entirely absorbed in the phase factor.

By substituting the expression for S+(X) into the
transition amplitude (2.13), we obtain

(3.3)

Here, the integral with respect to the 4-coordinate X is
a generalized Gaussian integral,

(3.4)
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where A is a symmetric n × n matrix, detA is its deter-
minant, and A–1 is the matrix inverse to A.

For the sake of completeness, explicit expressions
for the matrices A and A–1 and for detA are presented
immediately below for the case corresponding to the
transition amplitude (3.3):

(3.5)

A direct calculation of the trace in the transition ampli-
tude (3.3) presents no serious difficulties. By taking
into account expressions (3.4) and (3.5), we can recast
the transition amplitude into the form

(3.6)

where  = (qΛq) and  = ( ) = q2 + . In deriv-
ing the last formula, we went over to the new integra-
tion variables t = s1 + s2 and u = (s1 – s2)/t.

The analysis of the transition amplitude (3.6) shows
that the integral with respect to t diverges at the lower
limit. This is a manifestation of the ultraviolet diver-
gence that appears in the field-free part of the amplitude
and which can be removed by renormalizing the axion
mass and the axion wave function. The external-field-
induced part of the amplitude in (3.6) is free from diver-
gences. We restrict our consideration to calculating the
field-induced component of the amplitude ∆M,

(3.7)

which can be represented in the form

(3.8)
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Here, we have introduced the integral

(3.9)
where

The integral J(u, v) features no ultraviolet divergence
because the integrand vanishes at the lower limit of
integration.

We note that the expression in (3.8) represents the
a  a transition amplitude induced by an external
field of arbitrary intensity. If, for the axion on the mass

shell, its small mass is disregarded (q2 =  –  =

 . 0), expression (3.8) for the amplitude reduces to
that quoted in [10].

By using the definition in (1.2), we can represent the
virtual-fermion-induced correction to the axion mass

squared, ( )FL, in the form

(3.10)

3.1. Crossed-Field Limit

The a  a transition amplitude in a magnetic field

is determined by three invariant parameters, q2, , and
β. In the case where the purely field parameter β is

small—that is, β ! —the crossed-field limit is real-
ized (E = B, E ⊥ B). This situation arises when an
ultrarelativistic particle moves in a relatively weak con-
stant uniform magnetic field, in which case the charac-
teristics of processes involving this particle (ampli-
tudes, probabilities, and so on) are dependent only on

the product β2 , which is proportional to the invariant

field variable  = β2 /  referred to as a dynamical
parameter.

The a  a transition amplitude in a crossed field
can be derived from expression in (3.8) by making the

substitutions  = q2 +  and  = /β2 and by
going over to the limit β  0. The result is
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(3.11)

where

C . 0.5772 is the Euler constant [11], and f (η) is the
Hardy–Stokes function

The above expression for the amplitude coincides with
the result obtained in [12, 13]. The axion self-energy in
a crossed field was also studied in [14]; however, the
expression presented there is more cumbersome and
involves an additional factor of 1/2.

3.2. Strong-Magnetic-Field Limit

The axion transition amplitude (3.8) is of special
interest because it was calculated for an arbitrary
strength of the magnetic field. In [15–17], this ampli-
tude was calculated in the strong-field limit by using
the formalism developed in [18], but the results were
different in those studies. For the amplitude in (3.8), it
is straightforward to find the strong-field limit when the
purely field parameter β is the largest energy scale of

the problem; that is, β @ q2, , .

In calculating the strong-field limit, we note that the
integral in (3.9) is generally taken in the complex plane
of the variable of integration along the positive semi-
axis. The integrand has a set of poles on the real axis,
and it is necessary to circumvent these poles from
below, as is demonstrated in Fig. 3. Rotating this con-
tour in the clockwise direction in such a way that it
becomes coincident with the imaginary semiaxis—this
corresponds to the substitution t  –iτ—we reduce
the integral in Eq. (3.9) to the form
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0

Fig. 3. Complex plane of the variable and contour of inte-
gration in the integral in Eq. (3.9)
(3.12)

Going over to the limit β  ∞ and retaining terms to
the first order in β–1 inclusive, we then obtain

(3.13)

where δv, 1 is a Kronecker delta symbol. By substituting
this asymptotic expression into the axion transition
amplitude (3.8) and taking the integral with respect to
u, we reduce the a  a transition amplitude recast by
a strong magnetic field into the form

(3.14)

where z = / . Here, we have introduced the func-
tion F(z) as

(3.15)

where Θ(z) is a Heaviside step function. The existence
of the imaginary part of the amplitude ∆M in the kine-
matical region 0 < z < 1 indicates that, in a magnetic
field, axion decay into the fermion pair (a  )

becomes possible for  >  [10].

Taking into account the definition in (1.2), we find
that, in the limit of a strong magnetic field, the virtual-
fermion-induced correction to the axion mass squared

( )FL has the form

(3.16)

We note that the axion self-energy in the limit of a
strong magnetic field was investigated in [15–17] by
using an approximate expression for the charged-fer-
mion propagator. The results obtained in [15, 16] differ
from those in (3.14)–(3.16) and are incorrect in our
opinion. The result from [17] formally coincides with
expression (3.16), but, in fact, it is merely a correct
guess, since there is no physical substantiation of the
method used there to evaluate the axion self-energy. It
would be of interest to analyze in detail the reason
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behind the discrepancy between the relevant results for
the a  a transition amplitude.

Since the translation- and gauge-invariant part
SF (X) of the fermion propagator (2.3) in a constant uni-
form electromagnetic field depends only on the differ-
ence Xµ = (x – y)µ, we can represent it in the form of the
Fourier integral

(3.17)

Substituting (3.17) into the general expression (2.7),
we obtain the a  a transition amplitude in the
momentum representation:

(3.18)

In the limit of a strong magnetic field, the Fourier trans-
form of the fermion propagator SF(p) is simplified con-
siderably, effectively becoming two-dimensional. In
momentum space, the leading external-field-induced
contribution to the propagator is given by [15]

(3.19)

where  = (pΛp) and  = ( ) = p2 +  are,
respectively, the transverse and the longitudinal com-

ponent of p2; (pγ)|| = ( ); and Π− = [2 + i(γϕγ)]/4.

Substituting the approximate expression (3.19) for
the propagator SF(p) into (3.18) and evaluating the inte-
gral with respect to momenta in the two-dimensional
Euclidean space orthogonal to the magnetic-field-
strength vector, we obtain the external-field-induced
component of the amplitude in the form

(3.20)

where p||µ = ( )µ and (pq)|| = ( ). The Feynman
parametrization [6] was used in [15] to calculate ∆M; in
[16], this amplitude was derived by the Fock–
Schwinger proper-time method [19]. By way of exam-
ple, we perform an analysis of the amplitude in (3.20)
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on the basis of the Feynman parametrization.2) We have

(3.21)

where (qTq) = Tµν , ( ) = Tµν , and (qV ) =

Vµ . By S, Vµ, and Tµν, we mean here a scalar, a vec-
tor, and a tensor integral, respectively. The scalar and
the tensor integral are finite, and it is easy to calculate
them. The results are

(3.22)

(3.23)

The tensor integral

(3.24)

diverges, and it must be properly regularized. In this
context, it is of interest to explore the stability of the
amplitude in (3.21) to various regularization methods.

Momentum-cutoff method. A direct calculation of
the tensor integral (3.24) by the momentum-cutoff
method [20] yields

(3.25)

where ∆ is a cutoff parameter for the square of the
momentum with respect to which integration is per-

formed, (∆ @ , ). This logarithmically diver-
gent tensor integral appears in amplitude (3.21) as the
difference of contractions, which is finite:

(3.26)

2)The proper-time method yields the same final results.
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Hence, the external-magnetic-field-induced amplitude
(3.21) can be reduced to the form

(3.27)

where the function F(z) is given by (3.15). This result,
which does not coincide with the limiting amplitude
(3.14), is presented as the axion self-energy in [15], but
it is incorrect, in our opinion. The reason is that the reg-
ularization method used is not impeccable. It is note-

worthy that, in the difference 2(qTq) – ( ) of the
contractions, which appears in the tensor integral, there
is an indefinite form of the “infinity minus infinity”
type. That this indefinite form is evaluated incorrectly
by the momentum-cutoff method can be demonstrated
by considering the example of the photon self-energy,
for which there arises a gauge-noninvariant expression.
Let us demonstrate this explicitly. In perfect analogy
with the axion transition amplitude (3.21), it can be
found that, in the strong-magnetic-field limit, the con-
traction (qΠq) in the photon self-energy (2.11) (by virtue
of the gauge invariance of QED in external fields, this
contraction must vanish) can be represented as

(3.28)

The substitution of the scalar, vector, and tensor inte-
grals [Eqs. (3.22), (3.23), and (3.25), respectively] into
the contraction (qΠq) yields

(3.29)

which demonstrates that the photon self-energy as cal-
culated by the method used in [15] does not possess the
property of gauge invariance.

To overcome this difficulty, Borisov and Sizin [16]
renormalize the a  a transition amplitude by means
of the double-subtraction procedure

(3.30)

It should be noted, however, that, in a strong magnetic
field, this procedure does not have the physical mean-
ing of a renormalization of anything (the procedure of
axion-mass and axion-wave-function renormalization
is applied only to the divergent vacuum component of
the axion transition amplitude—the finite external-
electromagnetic-field-induced component of the ampli-
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tude needs no renormalization); moreover, it also leads
to an incorrect result:3) 

(3.31)

Dimensional-regularization method. Since the
axion transition amplitude (3.18) contains an even
number of the matrices γ5 under the trace sign, this trace
can be reduced to a form admitting a generalization to
the case of n-dimensional space. This circumstance
makes it possible to use the dimensional-regularization
method [21, 22] to remove divergences in amplitude
(3.21) in the momenta. The tensor integral (3.24) calcu-
lated by this method can be represented as

(3.32)

where ε = 1 – n/2, so that the difference of the contrac-
tions of Tµν in amplitude (3.21) proves to be indepen-
dent of ε and has the form

(3.33)

It is useful to note that, in effective two-dimensional

QED,  plays the role of a metric tensor, so that its
contraction in n-dimensional space is given by

 = n = 2(1 – ε). By substituting the difference
of contractions in the form (3.33) and the scalar and
vector integrals (3.22) and (3.23) into the amplitude
(3.21), we obtain the expression

(3.34)

which exactly coincides with the amplitude in (3.14).
Thus, the above analysis has shown that the result cal-
culated by using the approximate expression (3.19) for
the propagator depends on the method of regularization
and that only the method of dimensional regularization
makes it possible to obtain the correct expression for
the axion transition amplitude within effective two-
dimensional QED [18]. The use of this method for the
photon self-energy also leads to a correct gauge-invari-
ant result. It is interesting to note that an attempt at
using, for the above purposes, the Pauli–Villars regular-
ization method [23], which proved to be appropriate for
calculating the photon self-energy, leads to an incorrect

3)For the sake of simplicity, we have considered the case of zero
axion mass.
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result for the external-field-induced component of the
axion transition amplitude.

The reason behind the discrepancy between the
results obtained by using the different regularization
methods lies in the nature of the approximate propaga-
tor (3.19), which takes into account only the contribu-
tion of the charged fermion occupying the first Landau
level. The use of this propagator in calculating two-
points loop diagrams is illegitimate in general when the
square of the virtual fermion momentum becomes com-
mensurate with or larger than the strength of the exter-
nal magnetic field. In this region of integration with
respect to momentum in the loop, it is necessary to take
into account the contribution from higher Landau lev-
els, which removes the ultraviolet divergence in the
field-induced component of the amplitude. We note that
the application of dispersion relations to derive the
axion transition amplitude [17] does not remove the
uncertainty associated with employing the approximate
propagator (3.19) since this method requires a physi-
cally motivated subtraction procedure.

4. VIRTUAL-PHOTON CONTRIBUTION 
TO THE AXION SELF-ENERGY

In addition to the above fermion-loop-induced con-
tribution to the axion self-energy, there exists a contri-
bution generated by a virtual photon. The diagram cor-
responding to the invariant amplitude for the a  a
transition mediated by a photon is illustrated in Fig. 4.
The existence of this extra channel is due to the special
features of axion–photon interaction. Let us dwell on
this point at some length. In an external electromag-
netic field, there exists the effective axion–photon
Lagrangian

(4.1)

Here, gaγ = αξ /2πfa is the axion–photon coupling con-
stant, where ξ = E/N – 1.92 ± 0.08 is a parameter on the
order of unity that is determined by a specific axion
model [5], E and N being quantities that characterize
the electromagnetic and the color anomaly, respec-
tively, and Aµ(x) is the 4-potential of the photon field.
The effective Lagrangian (4.1) arises at the loop level
owing to the triangle diagram and can be considered to
be local under the assumption that the square of the
axion (photon) 4-momentum is small in relation to the
square of the charged-fermion mass in the loop. Since
an analysis of the axion self-energy will be performed
near the axion mass shell, the above requirement is sat-
isfied to a high precision.

It should be noted that, in the presence of an external
field, the photon propagator is modified by the interac-
tion with the virtual fermions, whereby the dispersion
properties of the photon modes change. For a further

+aγ x( ) gaγF̃
µν

∂ν Aµ x( )[ ]a x( ).=
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analysis, it is convenient to use the representation of the
photon propagator in the form [24]

(4.2)

where we have used the basis  [  =
(b(λ))2δλλ '] constructed from the photon 4-momentum
qµ and the strength tensor Fµν for an external electro-
magnetic field:

(4.3)

The basis in (4.3) is complete; it is the most convenient
for analyzing photon processes in an external field,

since the 4-vectors  (λ = 1, 2, 3) constitute a set of
eigenvectors of the photon self-energy Πµν that corre-

spond to the eigenvalues .

The invariant amplitude for the a  a transition
through a virtual photon is described by the diagram in
Fig. 4. The relevant expression can be represented as

(4.4)

From this expression, we can see that a photon of the

second polarization mode with  = /
and, hence, the λ = 2 part of the photon propagator (4.2)
contribute to the amplitude. Upon the substitution of
the photon propagator (4.2), the correction to the axion
mass squared takes the form

(4.5)

In the one-loop approximation, the external-field-

induced contribution to the eigenvalue  of the sec-
ond photon polarization mode has the form [24]
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Fig. 4. Diagram describing the axion-to-axion (a  a)
transition induced by a virtual photon in an external electro-
magnetic field.
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(4.6)

where the phases Φ(t, u) and Φ0(t, u) are defined in

(3.9). In the strong-magnetic-field limit (β @ , ,

), the expression for the eigenvalue  is signifi-
cantly simplified to become

(4.7)

where F(z) is the function defined in (3.15). It should be
noted that, in the kinematical region below the thresh-
old for the production of a fermion–antifermion pair

(  < ), the eigenvalue  is real and negative,
so that the amplitude for the transition a  a through
a virtual photon [see Eq. (4.4)] is real-valued in this
kinematical region and has no poles. Attention should
also be given to the fact that, in the kinematical region

 < , the correction ( )γ is positive in contrast
to the negative correction (3.10), which is induced by
virtual fermions.

5. ELECTROMAGNETIC CORRECTION
TO THE AXION MASS

The existence of the external-electromagnetic-field-
induced correction to the axion self-energy can lead to
a change in the dispersion relation for the axion, so that
a detailed analysis of this correction is generally
needed. In the present study, we will not perform a
comprehensive analysis of the dispersion relations for
the axion, restricting our consideration to the case of
zero momentum (q = 0). The corresponding values of
the invariant variables are

(5.1)

At this momentum value, the contribution to the axion
self-energy determines an electromagnetic correction
to the axion mass ma.

If the invariant variables are given by (5.1), the vir-
tual-fermion-induced correction to the axion mass
squared (3.10) has the form

(5.2)
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In the limit of a strong-magnetic field (β @ ) and a
small axion mass (ma ! mf ), the double integral in (5.2)
can easily be calculated; as a result, the fermion-
induced correction to the axion mass squared can be
recast into the form

(5.3)

where fa is the energy scale of the breakdown of Pec-
cei–Quinn symmetry and Cf is a parameter that charac-
terizes axion–fermion interaction and which is on the
order of unity, its specific value being determined by
the choice of axion model [5].

In order to deduce the virtual-photon-induced cor-
rection (4.5) under the condition in (5.1), we note that,
at zero momentum transfer, the eigenvalue of the sec-
ond-mode photon is given by

(5.4)

where

(5.5)

For the photon-induced correction to the square of the
axion mass, this yields

(5.6)

In contrast to the fermion-induced correction (5.2),

which is proportional to the axion mass squared 
and which vanishes for the originally massless axion,
the photon-induced correction is virtually independent

of  and remains nonzero even in the massless-axion

limit. In the case of a strong magnetic field (β @ ),
the function in (5.5) assumes the simple form

(5.7)

and the virtual-photon-induced correction (5.6)
becomes

(5.8)

In order to perform a further numerical analysis of
corrections to the axion mass squared, we note first of
all that the leading contribution to all fermion-induced
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corrections comes from the electron since this particle is
a fermion that shows the highest sensitivity to the effect
of an external electromagnetic field. In numerically esti-
mating the correction in (5.3), which is induced by fer-
mion loops, we therefore take into account only the elec-
tron contribution. The result is then given by

(5.9)

It can be seen that this correction is suppressed in direct
proportion to the square of the axion mass and in
inverse proportion to the square of the energy scale of
violation of Peccei–Quinn symmetry.

In analyzing the virtual-photon-induced correction
(5.8), we note that, at magnetic-field strengths of about
B ~ B0, radiative corrections to the photon propagator are
small (a virtual photon is nearly unaffected by an exter-
nal field), whence it follows that the photon-induced cor-
rection to the square of the axion mass becomes

(5.10)

where ξ is a parameter on the order of unity [see the
explanation of the notation after Eq. (4.1)], which is
determined by a specific model of the axion [5]. As
long as the external-field effect on a virtual photon can
be disregarded (B ! 3πB0/α . 1.3 × 103B0), this correc-
tion is proportional to the square of the magnetic-field
strength. When the magnetic-field strength achieves a
value of 1017 G or higher, the external-magnetic-field
effect on a virtual photon becomes sizable; according to
(5.8), the quadratic dependence then gives way to a lin-
ear dependence. According to the scalar virial theorem
[25] as applied to magnetized astrophysical objects,
magnetic fields of strength about 1017 G are the maxi-
mum possible for such objects.

Still stronger magnetic fields, those of order 1023–
1024 G, could exist in the early Universe [26]. It should
be emphasized that, under such conditions, the axion is
a massless particle. To explain this, it should be recalled
that, at the above values of the magnetic field, matter
exists in the form of a quark–gluon and electron–
positron plasma. Since π0 mesons have not yet been
produced, the standard mechanism of axion-mass gen-
eration cannot be operative. Therefore, there is no way
to produce the axion mass in the absence of alternative
mechanisms. According to (5.3), the contribution of
fermion loops is proportional to the bare axion mass
and vanishes in this case, whereas the photon-induced
contribution (5.8) is nonzero for the originally massless
axion. In this case, there arises an external-field-
induced axion mass:

(5.11)
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With decreasing external field, the axion mass
decreases in proportion to the square root of the
strength of this field. The above estimate indicates that,
in the early Universe, the axion could have a mass at a
level of the current upper limit, ma & 10–3 eV [5], in the
presence of a magnetic field of strength B ~ 1023 G.

6. CONCLUSION

We have studied the contribution that a constant
external electromagnetic field induces in the axion self-
energy. This contribution coincides with the real part of
the a  a transition amplitude in absolute value, but
it has an opposite sign.

The external magnetic field has been taken into
account exactly in the virtual-fermion-induced contri-
bution. The limit of a strong magnetic field has been
obtained, and the results are compared with the well-
known expressions for this contribution that were
found by using the technique of two-dimensional QED,
which effectively arises in this limit. It has been shown
that, in calculating the fermion contribution to the
axion self-energy, indeterminate forms arise, which can
be correctly evaluated only by means of dimensional
regularization.

Since the axion features an effective interaction with
photons in an external magnetic field, it is necessary to
take additionally into account the virtual-photon-
induced contribution to the axion self-energy. For this
photon-induced contribution, we have obtained an
expression that includes the external magnetic field
exactly and which allows for virtual-photon interaction
with the external magnetic field; on this basis, we have
deduced the strong-field limit.

A numerical analysis of the resulting fermion- and
photon-induced contributions has been performed at
zero momentum transfer. In this case, the above contri-
butions yield a magnetic correction to the axion mass.
It has been shown that, in strong magnetic fields of B ~
1017 G, which can exist in magnetized astrophysical
objects, the corrections to the axion mass are negligibly
small. It has been indicated that the photon-induced
correction to the axion mass does not vanish at zero
bare mass of the axion, thereby determining its mass.
Under the conditions of the early Universe (B ~ 1023 G),
this magnetic mass is commensurate with the current
upper limit on the axion mass, ma & 10–3 eV, and
decreases with field in inverse proportion to the square
root of its strength.
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Abstract—The left–right asymmetric model featuring the bidoublet and two triplets of Higgs fields is investi-
gated. It was established that, from an analysis of the reaction l–γ  W–νl, it is possible to deduce not only

information about the properties of the singly charged Higgs bosons  and  but also an answer to the

question of whether the neutrino is a Majorana or a Dirac particle. The processes    and

e−µ−  γ leading to the production of doubly charged Higgs bosons are investigated. It is shown that
information about the properties of singly charged Higgs bosons can also be obtained by studying the ultrahigh-
energy cosmic neutrinos from the reaction e–νe  µ–νµ. © 2001 MAIK “Nauka/Interperiodica”.

δ̃ –( ) h –( )

f i f j ∆1
––( )δ̃ +( )

∆1 2,
––( )
1. INTRODUCTION

One of the most important problems in contempo-
rary physics is to answer the question of whether non-
Abelian gauge theories featuring a spontaneous break-
down of symmetry are true theories that describe actual
interactions in nature. Higgs bosons—and among
these, a special role is played by charged bosons—
appear to be a necessary element. The reasons for this
are the following: (i) Their detection would be an indis-
putable argument in favor of going beyond the Standard
Model (SM). (ii) Singly charged Higgs bosons, along
with charged gauge bosons, determine the potential of
neutrino interaction with matter—since the effect of
these bosons on the potential is significant [1], the con-
clusions derived for the neutrino masses and mixing
angles on the basis of the Mikheev–Smirnov–Wolfen-
stein effect [2] must be revised should the existence of
these bosons be confirmed. (iii) The detection of a dou-
bly charged Higgs boson would be an indirect corrobo-
ration of the Majorana character of the neutrinos.

The objective of this study is to analyze processes
involving charged physical Higgs bosons within the
model based on the SU(2)L × SU(2)R × U(1)B – L gauge
group. The main argument in favor of choosing this
model is that its Higgs sector includes elements com-
mon to popular extensions of the SM such as the mini-
mal supersymmetric standard model, the SM modifica-
tion involving two doublets of the Higgs fields [3], and
the model based on the SU(3)L × U(1)N gauge group [4].

The ensuing exposition is organized as follows. In Sec-
tion 2, we derive the Lagrangians describing the interac-
tion of charged Higgs bosons both with gauge bosons and
with matter fields for the most general form of the scalar
potential proposed in [5]. Equations relating the parame-

* e-mail:boyarkin@bspu.unibel.by
1063-7788/01/6402- $21.00 © 20305
ters of the Higgs sector to the neutrino-oscillation param-
eters are also presented there. In Section 3, we study col-
lider experiments with Higgs bosons both in real and in
virtual states and problems associated with the detection
of Higgs bosons in interactions of the ultrahigh-energy
neutrinos with matter. In Section 4, we discuss our results.

2. LEFT–RIGHT ASYMMETRIC MODEL:
SU(2)L × SU(2)R × U(1)B – L (gL ≠ gR)

We will study the nonsupersymmetric left–right
model involving the bidoublet

and two triplets

We will make use of the most general form of the
Higgs potential V as proposed in [5]. In Appendix A, we
present the explicit expression for V [(A.1)] and neces-
sary information about the structure of the sector of
charged physical Higgs bosons.

The interaction of leptons and the physical Higgs
bosons is determined by the Yukawa Lagrangian, which
we choose in the form
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where ΨaL  (ΨaR) denotes the left-handed (right-handed)
lepton doublet; τ1, 2, 3 are the Pauli matrices; C is the

charge-conjugation matrix;  = τ2Φ*τ2; a, b = e, µ, τ;

and hab , , and fab are, respectively, the bidoublet and
the triplet Yukawa constants of lepton coupling to the
Higgs bosons. After spontaneous symmetry breaking,
which is realized according to the chain

we obtain 14 physical Higgs bosons. Of these, eight are

charged (four singly charged h(±) and  bosons and

four doubly charged  bosons) and six are neutral
bosons (four scalars S1, 2, 3, 4 and two pseudoscalar P1, 2).
By going over from the gauge basis to the basis of pure
mass states and using Eq. (1), we can find the
Lagrangians for the interactions of physical Higgs
bosons with leptons and gauge bosons. For the sector of
charged Higgs bosons, the explicit expressions for
these Lagrangians are given by {there, αi, ρi, and βi are
constants appearing in the Higgs potential [see
Eq. (A.1) in Appendix A]}
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(7)

(8)

where  = cosθd ,  = sinθd ,

It turns out that, in the left–right model—as in any
gauge theory where the neutrino acquires mass owing
to the spontaneous breakdown of symmetry—the
Yukawa coupling constants are related to the neutrino-
oscillation parameters. By way of example, we indicate
that, for the case of two lepton generations, we have the
relations [6]
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angle of mixing between the ν (N) neutrinos from the e
and X generations; m1 (m2) is the mass of the light
(heavy) electron neutrino; m3 (m4) is the mass of the
light (heavy) neutrino belonging to the X generation;
and  = cosϕe ,  = sinϕe, etc. The off-diagonal
Yukawa coupling constants lead, on one hand, to non-
zero mixing angles both within and between the neu-
trino generations and, on the other hand, to the exist-
ence of the flavor-violating currents at the tree level. As
can be seen from the above formulas, the left–right
model is advantageous in that we always can obtain
nonvanishing θν values even at zero off-diagonal
Yukawa coupling constants. For example, the constants
heX , , and feX can vanish in the case of degeneracy of
the neutrino masses (m1 = m3, m2 = m4) as well.

3. COLLIDER AND COSMIC-RAY EXPERIMENTS

In this section, we investigate processes involving
neutrinos and charged Higgs bosons. We begin by dis-
cussing reactions at accelerators. It is known that the
planned 500-GeV electron–positron collider (Next Lin-
ear Collider) and muon colliders (First Muon Collider
and Next Muon Collider) can also operate in the γγ and
l±γ (l = e, µ) modes. This is possible owing to the pro-
cesses of classical photon bremsstrahlung from a l–l+

beam and to the Compton scattering of laser photons on
l– and l+. The process

(16)

is among the most interesting ones for observations in
the l±γ mode.

This is because the differential cross section for
reaction (16) in the c.m. frame vanishes at a 180° angle
between the W and γ momenta in the case where the W-
boson anomalous magnetic moment µ γ is given by [7]

(17)

It is precisely this value of the anomalous magnetic
moment that is predicted by the SM and by its exten-
sions. There is, however, a class of so-called composite
models, where it is assumed that all particles or at least
some of them that, within the SM, were considered to
be elementary and pointlike are in fact composite and
extended objects. The fundamental constituents,
referred to as preons, interact via the exchange of
quanta of the hypercolor gauge field. This interaction is
asymptotically free and renormalized; possesses the
property of infrared confinement; and, below the char-
acteristic energy scale Λ, becomes strong and binds all
preons into hypercolor-singlet states, in the same way
as the conventional strong interaction does for compos-

ite hadrons at ΛQCD. At energies  in excess of Λ,
manifestations of the compositeness of particles are
readily observable. At these energies, multiparticle pro-
duction processes dominate over ordinary binary scat-

cϕe
sϕe

heX'

l
–γ W

–ν l

µγ e/mW .=

s
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tering processes. One of the manifestations of the com-

posite structure of the W bosons at energies  less
than Λ would be a deviation of the anomalous magnetic
moment from the value given by (17). Thus, investiga-
tion of reaction (16) would be a good test for non-Abe-
lian gauge theories featuring a spontaneous breakdown
of symmetry.

Let us investigate reaction (16) from a different
point of view—namely, we will address the question of
whether this reaction can furnish information about the
structure of the Higgs sector of the SM extension under
study. In the case being considered, the process in (16)
is characterized by two more diagrams that are associ-
ated with the exchanges of singly charged Higgs
bosons in the t channels (see Fig. 1). The differential
cross section for unpolarized primary particles now has
the form

(18)

where

s

dσ
dt
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dσ
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Fig. 1. Feynman diagrams for the process l–γ  W–νl .

δ̃ –( )
while the differential cross section (dσ/dt)SM for pro-
cess (16) in the SM is given by [7]

(19)

By taking into account the definition of ml and ,
we obtain

(20)

If the Yukawa Lagrangian in the form (A.4) is used

in the quark sector, the  and h(±) bosons do not inter-
acted with quarks. For  and mh, there are no con-

straints in this case that follow from measurement of
the inclusive cross section for the reaction b  sγ. We
can then state that the masses of these bosons must be
larger than 44.1 GeV, since it is this result that follows
from an analysis of LEP experiments (at a 95% C.L.) [8].

As follows from [18], the partial differential cross
section (dσ/d(cosθ))h associated with h(–) exchange
increases either upon going over to large mixing angles
within the neutrino generation or upon changing the
original electron beam by the muon one. But even at
u = 0, it appears to be very small. For example,
(dσ/d(cosθ))h amounts to a few tenths of fb at ϕe, µ ~ 10–2

and mh = 100 GeV.

Nearly the same situation prevails for
(dσ/d(cosθ)  at cY ~ 1 and (vL)max ~ 2 GeV. It is also

necessary to take into account the possibility that the
combination cY of the scalar-potential parameters is
small (cY ! 1). This is compatible with the inequality

which follows from the condition of vacuum stability
[5]. At u = 0 and cY = 10–2, the differential cross section

for process (16) as a function of  is displayed in
Fig. 2 for various values of .

There is one more factor that leads to a nonvanish-
ing cross section at u = 0. It is associated with taking
into account the total decay width of the W boson. It is
necessary to estimate this factor, at least by order of
magnitude. From [9], we know that a mere substitution
of the Breit–Wigner expression 
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for the W-boson propagator

leads to a breakdown of gauge invariance; as a result,
the unitary limit is violated for the reaction cross sec-
tion. The degree of this violation is not large (it is pro-
portional to ΓW/mW), but, in our case, where we are
dealing with the vanishing of the cross section, it is
mandatory to take into account the factor of W-boson
instability. In order to preserve gauge invariance and,
consequently, to ensure fulfillment of the Ward identity,
the modification of the propagator must be accompa-
nied by a modification of the vertex function. Follow-
ing [10], we represent the W-boson propagator and ver-
tex function as

where γW = ΓW/mW and  is the W-boson vertex
function in the tree approximation. The differential
cross section for process (16) can now be obtained from
(18) by means of the substitution

(21)

The calculations show that, at u = 0 and  =
123 GeV, the term on the right-hand side of (21) attains
a maximum value of 0.82 fb. Thus, we conclude that, if
the differential cross section for reaction (16) at u = 0
amounts to a few fb, there are the following possibili-
ties: (i) The W-boson anomalous magnetic moment dif-
fers from the value predicted by the SM. (ii) There exist
charged physical Higgs bosons whose emergence is
due to the presence of the scalar triplet in the theory,
whence it follows that the neutrino is a Majorana parti-
cle. In order to distinguish between cases (i) and (ii), it
is necessary to measure the differential cross section at
zero scattering angle. Agreement with the relevant SM
result would imply that version (ii) is valid. Otherwise,
version (i) is realized.

If expression (A.2) is used for the Yukawa
Lagrangian, the h(±) boson interacts with quarks. For
the process

(22)

we then have an extra (with respect to the SM case) dia-
gram involving h(–) exchange in the s channel. There
now arises the question of whether we can hope that,
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owing to the resonance-enhancement mechanism, the
partial cross section (dσ/d(cosθ))h at u = 0 will appear
to be within reach of experimental possibilities. The
calculations yield

(23)

where

If the parameters are set to the values

ξ = 10–2,   mu = 2 MeV,   md = 15 MeV,
mh = 120 GeV,   k1 = 10 GeV 

and if u = 0, the cross section for process (22) involving
the h(–) resonance is 1.6 fb. With increasing k1 and mh,
(dσ/d(cosθ))h decreases. If quarks are combined into
hadrons, the angular distribution for reaction (22) at
cos(θ = 180°) has a deep minimum rather than a zero.
Thus, attempts at detecting h(±) Higgs bosons by using
the reaction

where a, b = p, , seem hopeless.
Further, we addressed the process

(24)

where fi is a pointlike fermion of flavor i. Figure 3 pre-
sents the Feynman diagrams for the case of leptons.
The first (second) diagram corresponds to the neutrino
of right-hand (left-hand) circular polarization. For
quarks, only the first diagram contributes. If we neglect
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Fig. 2. Differential cross section for the process e–γ 

W–νe as a function of  at ξ = 10–2, gR = 1.4gL , vL = 1.7 ×
10–2 GeV, k1 = 10 GeV, and cY = 10–2: (solid curve)  =

42 GeV and (dotted curve)  = 120 GeV.
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the fermion masses, the total cross section correspond-
ing to this diagram has the form

(25)

where

The cross section (25) as a function of energy in the
c.m. frame is presented in Fig. 4 for various values of

 and . Under the assumption that
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nearly all 100% of product Higgs bosons decay through
the channels

The background to the process in (24) is dominated by
the contribution from the reaction

(26)

If only the τ-lepton decay channels are used to detect
the final states of reactions (24) and (26), the cross sec-
tion for reaction (26) must be multiplied by Br(W– 

) Br(Z  τ –τ+) = 3.66 × 10–3; the corresponding
factor for reaction (24) is about unity. Since the cross
section for reaction (26) is only a few times as large as
the cross section , it is obvious that, with

the aid of the τ-lepton identification of the Higgs
bosons produced in the reactions

we can reliably separate the signal from the back-
ground.

Let us now consider lepton-flavor-violating reac-
tions. The intensity of these reactions is controlled by
off-diagonal Yukawa coupling constants. Many studies
were devoted to setting upper limits on these constants
(see [11] and references therein). The most stringent
constraints follow from searches for the decay process

(27)

Within the left–right model, this process in the second-
order of perturbation theory is associated with dia-

grams featuring virtual , S1, and S2 Higgs bosons.
For the decay width, the calculations yield
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and where we have set θd = 0 for the sake of simplicity.
If the upper limit of 10–12 from [12] is used for the ratio

/Γµ → all, we arrive at the constraint

(29)

for determining the Yukawa coupling constants.
The smallness of the off-diagonal Yukawa coupling

constants leads to the conclusion that the most optimal
way to measure them at high energies is to study lep-
ton-flavor-violating reactions, which are either gov-
erned by the mechanism of s-channel resonance
enhancement or described by the Feynman diagrams
that contain only one vertex featuring Yukawa coupling
constants. Such reactions are exemplified by the pro-
cess

(30)

which can be investigated at muon colliders either in
the electron-beam or in the fixed-electron-target mode.
In the second order of perturbation theory, the relevant
Feynman diagrams are displayed in Fig. 5. Assuming
that primary particles are polarized, disregarding the
lepton masses, and setting i = 1, we represent the total
cross section as

(31)

where P± = (1 ± λe)(1 ± λµ), λl being the polarization of
the primary lepton.

The quantity  is maximal near the

threshold ( )thr . There are, however, two factors that
restrict our possibilities in studying the near-threshold
behavior of reaction (30):

(i) Owing to a finite lifetime of the  boson, the

threshold ( )thr is smeared over the energy region of
width about ∆E1 = .

(ii) The inclusion of radiative corrections to the pro-
cess being considered and the contributions from dia-
grams involving soft-photon bremsstrahlung results not
only in the cancellation of infrared divergences but also
in the dependence of the cross section on the quantity
∆Eγ, which corresponds to the energy value below
which real photons cannot be recorded in experiments.
The quantity ∆Eγ is determined by the energy resolu-
tion of the detector used in a given experiment.

The decay width of the ∆1 boson is much less than
∆Eγ. At fττ = 0.9 and  = 400 GeV, it is as small as
0.25 MeV, whereas, for example, the photonic energy
threshold of the electromagnetic calorimeter used in the
OPAL detector is 1 GeV. Figure 6 illustrates the behav-
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∆Eγ to 500 GeV. Since there is virtually no background
to reaction (30), then it follows from the data in Fig. 6
that studying this reaction is one of the most precise

means for assessing the quantity feµ .

Let us now proceed to discuss reactions involving
cosmic neutrinos of ultrahigh energies. Active galaxy
cores represent one of the sources of such neutrinos.
Since a typical luminosity of active galaxy cores is
between 1044 and 1047 erg/s, we can assume that the
evolution of active galaxy cores is determined by grav-
ity—that is, by the accretion of matter to a supermas-
sive (M ≥ 106M() black hole. In the vicinity of an active
galaxy core, protons accelerated to ultrahigh energies
interact either with matter or with radiation, generating
pions, whose decay products include photons and neu-
trinos. The maximum energy of neutrinos from active
galaxy cores is on the order of 1010 GeV. The products
of the decay of pions generated in inelastic collisions of
protons with photons that constitute the cosmic micro-
wave radiation background appear to be another source
of ultrahigh-energy neutrinos. The energy of the neutri-
nos generated by this source may be as high as

m∆1
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µ–

∆1
(––)

γ

∆1
(––)e–

Fig. 5. Feynman diagrams for the process e–µ– 

.∆1
––( )γ
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Fig. 6. Total cross section for the process e–µ–  

as a function of  at λe = 0.8, λµ = 0.9, and ∆Eγ = 1 GeV:

(solid curve)  = 200 GeV and feµ = 3 × 10–3 and (dotted

curve)  = 300 GeV and feµ = 10–4.
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––( )γ

s
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1012 GeV. There are a large number of studies devoted
to estimating the diffuse fluxes of neutrinos originating
from active galaxy cores and from the cosmic micro-
wave radiation background (see [13] and references
therein). Obviously, cosmic neutrinos of ultrahigh ener-
gies can be used to determine the properties of singly
charged Higgs bosons. In this respect, the highest hopes
are pinned on reactions involving virtual Higgs bosons
in the s channel such as

(32)

(33)

(34)

The processes in (32)–(34) can be studied at the
BAIKAL NT-200, NESTOR, and AMANDA neutrino
telescopes.

By way of example, we consider in detail the pro-
cess in (34). The Feynman diagrams for this reaction
are shown in Fig. 7. For the sake of convenience, we
study separately the cases of electrons having right- and

e
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Z ,

e
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Fig. 7. Feynman diagrams for the process e–νe  µ–νµ.
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h(–)

h(–)
left-hand circular polarization. The total cross section is
written as

(35)

for electrons having left-hand circular polarization and as

(36)

for electrons having right-hand circular polarization.
Here, λν denotes the neutrino helicity, and

with k = , h(–).

For electron having left-hand circular polarization
and neutrinos having right-hand circular polarization,
the deviations from the SM predictions are very small
because they depend primarily on feµ. For example,
these deviations are about 0.1% at feµ = 3 × 10–2. We
also recall that the height of the W-boson-resonance
peak in this channel (Glashow resonance) is 104 pb.

It was shown in [14] that, even if the seesaw relation

holds, it is necessary to distinguish between two possi-
bilities within the left–right model: (i) The angles ϕl of
mixing within the neutrino generation are small (10–5–
10–6)—this may correspond either to the case of vL = 0
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or to the case of vL ≠ 0. (ii) At nonvanishing vL, the val-
ues of the angle ϕl can be on the order of 10–2.

For the masses of the left-handed neutrinos and for
the angle θν of mixing between the neutrino genera-
tions, we will use their experimental upper limits (θν ≤
0.03) and set

θν = θN,    = 1 TeV,    = 1.5 TeV. 

In order to suppress e–  µ– oscillations, it is neces-
sary to assume that the bidoublet off-diagonal constants

mNe
mNµ
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heµ and  satisfy the relation

By taking into account the definitions of mW and MD,
we then obtain

(37)

where

heµ'

k2heµ k1heµ'+ 0.=

α eµ Ωk+/k2,=
Ω
1 ρt∆ρ0 4k1

2
/v R
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4
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---------------------------------------------------------------------------------------------------------------------------------,=
ρt = 3GF / π2 (mt is the t-quark mass), and k1 takes

values in the interval from 0 to 2 /(1 + ρt∆ρ0). In
Eq. (37), we have replaced vL by its upper boundary [14],

(38)

which follows from an analysis of the CDF and D0
experiments that measured the parameter ρ0,

In the case of MD ≠ 0, the quantity αeµ is extremely
small even at large values of ϕe and ϕµ. For example, we
have αeµ = 1.8 × 10–5 at ϕe = 2.5 × 10–2, ϕµ = 3 × 10–2,
and k1 = 70 GeV. Because αll is determined by Eq. (20),
the above estimate is valid for αee as well. At the same
time, αµµ can be as large as values about 10–2 even at
small angles ϕµ.

The left–right model admits large values for the bi-
doublet off-diagonal and diagonal constants either in
the case of degeneracy of the bidoublet vacuum expec-
tations, MD = 0, or in the case of quasidegeneracy MD ≈
0. In the former case, these constants become arbitrary
because the only condition imposed on them is that
their sum must vanish. In this case, we have

Even at anomalously great values of αeµ (for example,
2 × 10–2), the cross sections for the right-hand circular
polarization of electrons and the left-hand circular
polarization of neutrinos can amount only to values of

about 3 × 10–3 fb. Hence, the cases of the initial 

and  are of prime interest to us.

Figure 8 shows the total cross section σLL for the
left-hand circular polarization of initial leptons. We
cannot rule out the possibility that the height of the
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resonance peak, (σLL —it is determined by the

values of , fee, and fµµ—exceeds the height of the

Glashow peak, σW . By way of example, we indicate
that, at  = 65 GeV, fee = 5.5 × 10–2, and fµµ = 7.5 ×
10–1, the ratio of the heights of these peaks is

In analyzing the cross section for the process in (34)

with initial , it is necessary to specify the choice
of the Yukawa Lagrangian in the quark sector. If we
make use of expression (A.4), the total decay width of
the h(–) boson takes the form

(39)

where the partial decay widths are defined in Appendix
B (we assume here that mh < , , ). If the
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angles of mixing within a neutrino generation are small
(ϕe ~ 10–6, ϕµ ~ 10–5),  and  are

about a few eV and a few keV, respectively. For mh <
mW + mZ, the problem of evaluating αττ becomes more
important, because this quantity determines the width
with respect to the decay channel h(–)  τ –ντR. It
should be recalled that, at present, there is no experi-
mental information about the Yukawa coupling con-
stants associated with the tau lepton. In order to obtain
a rough estimate of , we choose

 = 2 TeV,  = 24 MeV 

and assume that there exists mixing between τ and µ
neutrinos that is characterized by the angles of θν =
θN = 0.03. A transition to the Yukawa Lagrangian (A.2)
means the opening of the quark-decay channels, in
which case expression (39) must be supplemented with
the terms  and  given by

At small values of the angle ϕl, the cross section σRR
is extremely small. Even in this case, however, the
height of the h(–)-resonance peak can be as large as a
few hundred fb. For example, we have (σRR)h = 376 fb
at ϕe = 2 × 10–6, ϕµ = 6 × 10–4, and mh = 45 GeV.
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Fig. 9. Cross section σRR as a function of : (solid curve)
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curves, we choose ϕe = 8 × 10–3, ϕµ = ϕτ = 10–2, and k1 =
115 GeV.

s

For the Lagrangian +Y in the form (A.2), Fig. 9

shows the cross section σRR as a function of  for
large values of ϕl.

It can be seen from Fig. 9 that, at specific parameter
values, the cross section obtained here exceeds the cor-
responding SM cross section by a few orders of magni-
tude and that the height of the h(–)-resonance peak is a
few times as great as the height of the Glashow peak.
We emphasize that, within the left–right model, there
are no grounds to rule out the situation where the

Glashow resonance overlaps the  or the h(–) reso-
nance.

4. CONCLUSION

We have shown that the absence of zeros in the dif-
ferential cross section for the reaction

at a scattering angle of 180° may suggest not only a
composite structure of the W boson but also the exist-

ence of the  Higgs boson appearing in the theories
featuring the triplet of scalar fields. A detection of a sig-

nal from the  boson in turn would confirm the
Majorana character of the neutrino.

Investigation of the production of charged Higgs
bosons in the reactions

and observation of their decay products will furnish
information about the Yukawa coupling constants fττ,

feµ,  hττ, and . Let us recall reactions that show the
greatest promise for setting constraints on the remain-
ing Yukawa coupling constants. The constants fµµ and

fee can be measured either by using the  resonance
in the reactions [15]

or by studying -boson production in the proces-
ses [16]

Information about hee , , hµµ, , heµ, and  can
be deduced from the features of the reactions [17]

At the same time, we can also derive constraints on the
neutrino masses and mixing angles by solving Eqs. (9)–
(15) with the known values of the Yukawa coupling
constants and known vacuum expectation values. Thus,
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the results obtained here confirm the previous conclu-
sions [14, 18]; that is, in the extensions of the SM, all
parameters of neutrino oscillations are determined
simultaneously in studying the Higgs sector.

APPENDIX A

The Higgs field potential proposed in [5] has the
form

(A.1)

By means of (A.1), we can derive formulas for
going over from the gauge basis to the basis of pure
mass states. For the physical charged Higgs bosons, we
have

where
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The squares of the masses of these bosons are given
by

In the case of degeneracy of the bidoublet vacuum
expectations (k1 = k2 = kg), the requirement ensuring the
compatibility of the existence of the minima,

leads to the condition

This condition in turn results in redefining the h(±)-
boson mass. The calculations yield

In order to estimate vL, it is necessary to use the ine-
quality in (38). Setting (ρ3/2 – ρ1) ≈ β1 ≈ 1 and vR ≈
103 GeV and using an upper limit on vL, we obtain mh ≤
140 GeV. Thus, even in the case of degeneracy of the
bidoublet vacuum expectations, the h(±) boson can
become as heavy as the singly charged Higgs boson of
the minimal supersymmetric extension of the Standard
Model, where the relevant masses satisfy the conditions

If, in the case of degeneracy of the bidoublet vac-
uum expectations, the conventional expression for the

Φ+
±( ) k1Φ1

±( )
k2Φ2

±( )
+
k+

-------------------------------------,=

Φ–
±( ) k1Φ2

±( )
k2Φ1

±( )
–
k+

------------------------------------.=

m∆1

2 α3k–
2

4ρ2v R
2

+
2

---------------------------------=

+
k–

2 β3 k1
2

k2
2

+( ) β1k1k2+[ ]{ }
2

2k1
4

4ρ2 ρ3 2ρ1–+( )v R
2

--------------------------------------------------------------------,

m∆2

2 α3k–
2

2ρ1 ρ3–( )v R
2

–
2

-------------------------------------------------=

–
k–

2 β3 k1
2

k2
2

+( ) β1k1k2+[ ]{ }
2

2k1
4

4ρ2 ρ3 2ρ1–+( )v R
2

--------------------------------------------------------------------,

mh
2 α v R

2
k0

2
+( )

β2
k0

2

α ρ1 ρ3/2–+
-------------------------------,+=

mδ̃
2 ρ3/2 ρ1–( )v R

2 β2
k0

2

α ρ1 ρ3/2–+
-------------------------------.–=

∂V

∂Φ1
0

---------- 0,
∂V

∂Φ2
0

---------- 0,= =

α3 v L
2

v R
2

+( )/2 β3 β2–( )v Lv R+ 0.=

mh
2 β1v Lv R

ρ3

2
----- ρ1– 

  v L
2
v R

2

k
2

--------------.+≈

m
H

±( ) mW .>



316 BOYARKIN
Yukawa Lagrangian,

(A.2)

where QaL  (QaR) describes the left-handed (right-
handed) quark doublet, is used in the quark sector, the
diagonal mass matrices for the up and down quarks in
the symmetric left–right models satisfy the relation

(A.3)

For the condition in (A.3) to be violated, we can intro-
duce the extra Higgs triplets (1, 0, 2/3) and (0, 1,
2/3) and supplement the Lagrangian (A.2) with the
terms [19]

There is another way associated with introducing the
extra bidoublet Φu(1/2, 1/2, 0) that interacts with up and
down quarks, but which contributes only to the mass of
the up quark [20]. In either approach, however, there
occurs an undesirable increase in the number of physi-
cal Higgs bosons. In the asymmetric version of the left–
right model, it is not necessary to complicate the Higgs
sector in order to arrive at the condition }u ≠ }d.
Instead of (A.2), we can use, by way of example, the
Lagrangian

(A.4)

where τ± = τ1 ± iτ2, which is similar in form to the cor-
responding SM Lagrangian. In turn, the use of
Lagrangian (A.4) reduces only the flavor-diagonal cou-
plings of the up and down quarks to the neutral Higgs
bosons.

APPENDIX B

The decay width of the charged Higgs bosons are
given by

where
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Abstract—The contributions to the parameters S, T, and U of radiative corrections are discussed within the
minimal model featuring four-color symmetry of the Pati–Salam type. A numerical analysis of these contribu-
tions is given for the Higgs mechanism of mass generation for scalar leptoquarks and the simplest version of
scalar-leptoquark mixing. It is shown that up-to-date experimental data on S, T, and U are compatible with the
existence of relatively light scalar leptoquarks (of masses about 1 TeV or below), still lighter scalar leptoquarks
(of masses below 1 TeV) improving the agreement of theoretical results with experimental data on S, T, and U.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the Standard Model (SM) of electroweak
and strong interactions, which is based on the SUc(3) ×
SUL(2) × U(1) group, is considered as a reliable theo-
retical basis for describing the interactions of quarks,
leptons, and gauge fields at energies of present-day col-
liders. At the same time, it is of interest to investigate
those versions of new physics beyond the SM (super-
symmetry, left–right symmetry, etc.) that could mani-
fest themselves with increasing energy of colliding par-
ticles.

Possible versions of new physics include that which
is based on four-color symmetry between quarks and
leptons of the Pati–Salam type [1]. The prediction of
new gauge particles, vector leptoquarks, mediating a
pointlike interaction between quarks and leptons and
having masses about the mass scale Mc of the break-
down of four-color symmetry, is an obvious conse-
quence of this symmetry. Depending of the choice of
model, a lower limit on Mc can change from Mc ~
1012 GeV [2] or Mc ~ 105–106 GeV [3] in the Grand
Unification models featuring four-color symmetry as
an intermediate stage of symmetry breaking to Mc ~
1000 TeV [4], Mc ~ 100 TeV, or even lower value in
models where four-color symmetry is primary [4–9].

It is worth noting that four-color symmetry of
quarks and leptons can manifest itself not only through
vector leptoquarks but also through scalar leptoquarks,
whose existence is quite natural in schemes involving
four-color symmetry [10–12]. This brings about the
question of deducing constraints on the scalar-lepto-
quark masses from available experimental data. A

* e-mail: smirnov@univ.uniyar.ac.ru
1063-7788/01/6402- $21.00 © 20318
lower limit of 250 GeV [13] results from nonobserva-
tion of these objects in direct-production experiments.
At such mass values, the scalar leptoquarks can mani-
fest themselves of present-day accelerators only
through radiative corrections. It is of interest to esti-
mate constraints on the scalar-leptoquark masses on the
basis of existing data on radiative corrections.

It is well known that, in processes involving light
external fermions (mf ! mZ), electroweak radiative cor-
rections from new physics are dominated by radiative
corrections induced by vacuum polarization (so-called
indirect radiative corrections). For the case where the
masses of new particles, mnew, are much larger than the
Z-boson mass (mnew @ mZ), these corrections can be
taken into account in terms of three parameters—for
example, the Peskin–Takeuchi parameters S, T, and U
[14]. For these parameters of new physics, experimen-
tal data yield the constraints

(1)

where the central values correspond to mH = mZ, while
their variations for mH = 300 GeV are given parentheti-
cally [13]. Note that, by definition, these parameters
vanish in the SM:

(2)

An analysis reveals that scalar leptoquarks possessing a
nontrivial SUL(2) structure contribute to the parameters
S, T, and U, whence it follows that constraints on their
masses can be extracted from available data on these
parameters. In this connection, it would be of interest to

Snew
exp 0.16– 0.14 0.10–( ),±=

Tnew
exp 0.21– 0.16 +0.10( ),±=

Unew
exp 0.25 0.24 +0.01( ),±=
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SM 0, Unew
SM 0.= = =
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find the contributions to the parameters S, T, and U
from scalar leptoquarks within a relatively simple
gauge model that predicts the existence of such parti-
cles.

Here, this program is accomplished within the min-
imal model featuring four-color symmetry. For the
SUL(2)-doublet structure, constraints on the scalar-lep-
toquark masses are further discussed on the basis of
data from (1) on the parameters S, T, and U.

2. SCALAR SECTOR OF THE MODEL

Here use is made of the minimal model featuring
four-color quark-lepton symmetry [5, 6]. The model is
based on the SUV(4) × SUL(2) × UR(1) group, and it is
the most economical SM extension featuring four-color
quark–lepton symmetry in the number of newly intro-
duced gauge fields. Its fermion sector contains only
known quarks and leptons forming SUV (4) quartets in
each generation. With respect to the SUL(2) × UR(1)
group, the left-handed fermions are zero-hypercharge
doublets, while the right-handed fermions are singlets
characterized by the hypercharge YR = ±1 for the upper
and lower fermions, respectively.

In addition to the photon, gluons, and the W± and Z
bosons, the gauge sector contains new particles, color

triplets of vector leptoquarks  (α =1, 2, 3) with
charges of ±2/3 and an extra neutral Z ' boson.

In general, the scalar sector of the model contains
four multiplets,

which transform according to, respectively, the (4, 1,
1), (1, 2, 1), (15, 2, 1), and (15, 1, 0) representations of

the SUV (4) × SUL(2) × UR(1) group. Here,  =

δa2η3 + ; η1, η2, η3, and η4 are vacuum expectation
values; t15 is the 15th generator of SUV(4) group; a = 1,

Vαµ
±
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2 is the SUL(2) index; and α, β = 1, 2, 3 are the SUc(3)
color indices.

The SUL(2)-doublet multiplets Φ(2) and Φ(3) have
Yukawa-type couplings to fermions, whereby the latter
acquire masses via spontaneous breakdown of symme-
try. Concurrently, the splitting of the quark and lepton
masses is achieved in each generation owing to the Φ(3)

multiplet.

The Φ(3) multiplet contains two scalar-leptoquark

doublets  with SM hypercharge  = 1 ± 4/3;

eight scalar-gluon doublets Fja, j = 1, 2, …, 8 with  =

1; and the doublet , which, being mixed with the

doublet  via the superposition

forms the SM doublet

with the SM vacuum expectation value η =  =

 ≈ 250 GeV and one extra scalar doublet

Here, the angle β is determined by the ratio of the vac-
uum expectation values as  = η3/η2.

Let us consider the original Lagrangian of the scalar
fields

(3)

An analysis of this Lagrangian shows that, in addition

to the SM Goldstone modes  and ω, the model
under consideration also involves the Goldstone modes
ω(1) and
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which are associated with the breakdown of four-color
symmetry. Since the mode S0 is formed by the fields

, , , and  with an electric charge of 2/3,
the mixing of these fields is mandatory, and they can be
represented as superpositions of the Goldstone mode S0
and the physical leptoquarks S1, S2, and S3 that have an
electric charge of 2/3 and which are orthogonal to this
mode. In general, these superpositions are given by

(5)

where , , and  (k = 0, 1, 2, 3) are the ele-
ments of the 4 × 4 unitary mixing matrix.

In the unitary gauge, the Goldstone modes are elim-
inated,

for the physical fields, we then have two triplets of up

scalar leptoquarks,  and , with electric charges
of 5/3 and 1/3, respectively; three scalar leptoquarks
Skα, k = 1, 2, 3, with an electric charge of 2/3; eight dou-

blets of scalar gluons, Fja with  = 1; the extra

SUc(3)-color-singlet doublet Φ' with  = 1; the SM
Higgs boson χ(SM); and the scalar fields χ(1), χ(4), and

, j = 1, 2, …, 8. An analysis reveals, however, that
these scalars, the vector leptoquarks V ±, and the new Z '
boson do not contribute to the parameters S, T, and U.

3. SCALAR-SECTOR CONTRIBUTIONS 
TO THE PARAMETERS S, T, AND U

In general case, the electroweak radiative correc-
tions induced by new physics through vacuum polariza-
tion can be described in terms of the corresponding
self-energy functions ΠAA(k2), ΠAZ(k2), ΠZZ (k2), and
ΠWW (k2) for the photon, the Z boson, and the W boson,
respectively. In the case where the masses mnew of new
particles are much greater than mZ (mnew @ mZ), we can
approximate these functions by fast convergent power
series in k2 and retain the first two terms in these expan-
sions [14]. We then have six expansion coefficients
[because of Uem(1) gauge invariance, ΠAA(0) = ΠAZ(0) =
0]. Three linear combinations of these coefficients,
together with ultraviolet divergences, are absorbed
upon renormalizing three input SM parameters (for
instance, e2, sin2θW, and mZ), while the remaining three
independent combinations can be used as three param-
eters describing indirect radiative corrections in the
approximation being considered. Various sets of such
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+( ) S1α
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YΦ'
SM

F j
4( )
three parameters are presented in the literature; here,
we use the Peskin–Takeuchi parameters S, T, and U
[14].

The input equations for the Peskin–Takeuchi param-
eters S, T, and U [14] can be expressed in terms of the
coefficients in the expansions of the self-energy func-
tions for the photon, the Z boson, and the W boson as

where (k2) = gµνΠXY(k2) + (kµkν terms) are the self-
energy functions for the fields X and Y with ΠXY (k2) =
ΠXY (0) + k2 (0) + …; here, X and Y stand for the

fields Aµ, Zµ, and , which interact with fermions in
a standard way (in what follows, we disregard small Z–
Z ' mixing). To indirect radiative corrections, the dis-
carded kµkν terms make contributions of order (mf /mZ)2,
which are very small in the case of light external fermi-
ons. It should be emphasized that the formalism of the
parameters S, T, and U is appropriate for describing
indirect electroweak radiative corrections only if the
masses mnew of new particles are much greater than the
Z-boson mass (mnew @ mZ). The resulting relative error
in the radiative corrections is of order (mZ/mnew)2.

The scalar-gluon doublets Fj ,  j = 1, 2, …, 8, and

doublet Φ' interact with the fields Aµ, Zµ, and  in a
standard way. Their contributions to the parameters S,
T, and U can be expressed in terms of the contributions

from one scalar doublet Φ with a hypercharge  [6],
which are depicted by the diagrams in Fig. 1, and can
be represented as

(6)
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(9)

αS 4sWcW sWcW ΠZZ' 0( ) Π AA' 0( )–( )[=

– cW
2 sW

2–( )ΠZA' 0( ) ] ,

αT
1

cW
2 mZ

2
------------- ΠWW 0( ) cW

2 ΠZZ 0( )–[ ] ,=

αU 4sW
2 ΠWW' 0( ) cW

2 ΠZZ' 0( )–[=

– cW
2 Π AA' 0( ) 2cWsWΠZA' 0( )– ] ,

Π XY
µν

Π XY'

Wµ
±

Wµ
±

YΦ
SM

S Φ( ) kΦ–
YΦ

SM

12π
---------

m1
2

m2
2

------,ln=

T Φ( ) kΦ
1

16πcW
2 sW

2 mZ
2

------------------------------ f 1 m1 m2,( ),=

U Φ( ) kΦ
1

12π
--------- f 2 m1 m2,( ),=

f 1 m1 m2,( ) m1
2 m2

2 2m1
2m2

2

m1
2 m2

2–
------------------

m1
2

m2
2

------,ln–+=
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001



PARAMETERS S, T, AND U OF RADIATIVE CORRECTIONS 321
(10)

where m1 and m2 are the masses of, respectively, the
upper and the lower component of the doublet Φ. Here,

 =  = 1; we also have kΦ' = 1 and ma =  for

the multiplet Φ' and kΦ = 8 and ma =  for the mul-
tiplet Fj.

The scalar-leptoquarks contributions to the parame-
ters S, T, and U have a more complicated form. In addi-
tion to the standard interactions of photons, Z bosons,

and W± bosons with the scalar-leptoquark doublets 
and the gauge interactions

characterized by gauge coupling constants

(11)

where  = {Aµ, }, with  standing for the Z
boson interacting with fermions in a conventional way
(without allowance for Z–Z ' mixing), we also have the

interactions of the fields Aµ, Zµ, and  with the vector
and scalar leptoquarks having a charge of 2/3:

The coupling constants for these interactions are pro-
portional to vacuum expectation values; that is,
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(15)

where  = { , , , }, n = 1, 2, 3, 4, are
scalar leptoquark fields with a charge of 2/3. These
fields are expressed in terms of the fields Skα (k = 1, 2,
3) of physical leptoquarks with a charge of 2/3 by
means of Eq. (5). This leads to interactions of the fields

 with physical leptoquarks. The emerging coupling

constants , , , , and 

are determined by the standard interactions of photons,
Z bosons, and W± bosons with the scalar-leptoquark

doublets  and by Eqs. (11)–(15) and (5). As a result,

the coupling constant  (as well as ) proves

to be proportional to the vacuum expectation value η3,
while  vanishes (  = 0) in the unitary gauge.

Figure 2 shows the self-energy diagrams describing
the contributions to the parameters S, T, and U from the
leptoquarks. Omitting the details of the calculations,
we present the calculated contributions S(LQ), T(LQ), and
U(LQ) from the leptoquarks to the parameters S, T, and
U. They are given by

(16)
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Fig. 1. Diagrams representing the contributions to the
parameters S, T, and U from the scalar gluons Fj and an extra

doublet Φ' (Φa = , Fja, where a = 1, 2, j = 1, 2, …, 8,

and X and Y stand for a photon or a Z boson).

Φa'



322 SMIRNOV
+ + 

Sk, S1
(±)

+ + 

Sk, S1
(±)

V

X

Sl, S1
(±) Sk

X X Y X Y

Sk, S1
(±)

S1
(±)

V

W W W W W W
S1

(±)Sk

Fig. 2. Diagrams representing the contributions to the parameters S, T, and U from the scalar leptoquarks  and Sk, k, l = 1, 2, 3

(V is a vector leptoquark, and X and Y stand for a photon or a Z boson).
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where f1(m1, m2) and f2(m1, m2) are defined by Eqs. (9)
and (10) and where
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-------------------------------------------------------------------------------------------------------------------------------------.=
In Eqs. (16)–(18), we have also used the notation

 = 1 ± 4/3; nc = 3; mk = , m± = , and mV is

the vector-leptoquark mass; g4 is the SUV (4) coupling
constant; and C1k and C2k are two orthonormalized

Bkl Ck
+( )Cl

+( ) Ck
–( )Cl

–( )–
2
,=

Ck
±( ) 1

2
------- 1 ξ2– C1k C2k±( ), k l, 1 2 3,, ,= =

* *

ξ2 2
3
---η3

2/ η1
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2
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2 η4
2+( )+ 

  2
3
---g4

2η3
2/mV

2 ;= =

Y±
SM mSk

m
S1

±( )
complex vectors. In general, the vectors C1k and C2k can
be parametrized in terms of three mixing angles and
three phases; for example,

where cij = cosθij and sij = sinθij, θij and δij being the
mixing angles and phases. Expressions (16)–(18),
which represent the contributions to the parameters S,
T, and U from the scalar leptoquarks, differ substan-

C1k c13c12 c13s12e
iδ12 s13e

iδ13, ,{ }= ,

C2k c23s12e
iδ12–

– s23s13c12e
i δ13– δ23+( )

–{ ,=

c23c12 s23s13s12e
i δ13– δ12 δ23+ +( )

s23c13e
iδ23,– } ,
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tially from expressions (6)–(8), which correspond to
the relevant contributions from ordinary scalar dou-
blets.

First, the contributions in (17) and (18) from the sca-
lar leptoquarks to the parameters T and U are not posi-
tive definite because of mixing as given by (5). The
mixing of the components of two scalar doublets as a
possible mechanism of obtaining negative T and U val-
ues is considered in [15]. In our case, the mixing
between the components of the doublets of scalar lep-
toquarks with a charge 2/3 is due to the presence of the
Goldstone mode S0 in the scalar-leptoquark sector and
is an intrinsic feature of the model being considered.

Second, there is a distinction in the case of degener-
ate scalar-leptoquark masses, mk = m– = m+ ≡ mS, where
expressions (16)–(18) yield

(19)

whereas the contributions in (6)–(8) to the parameters
S, T, and U from ordinary scalar doublets vanish in the
case of degenerate masses. It should be noted, however,
that, for a large vector-leptoquark mass, the parameter
ξ2 is small, in which case the nonzero contribution in
(19) to the parameter S is also small. In the particular
cases of mS @ mV, mS = mV , and mS ! mV, the contribu-
tion in (19) becomes S(LQ) = –5ncξ2/36π, S(LQ) =

−ncξ2/3π, and S(LQ) = –(ncξ2/12π)(41/3 + 2 ln( / )),
respectively.

Let us consider the case of the simplest mixing,

where the fields  and  in (5) contain (in addition
to the Goldstone mode S0) only two physical lepto-
quarks S1 and S2—that is, s13 = s23 = 0. Neglecting the
small parameter ξ2, we can then represent the scalar-
leptoquark doublets in the form

(20)

where c = cosθ and s = sinθ, θ being the mixing angle
(θ = π/4 – θ12, θ13 = θ23 = 0). In this case, expressions
(16)–(18) are simplified significantly to become

(21)
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PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
(22)

(23)

where m+ =  = m5/3, m– =  = m1/3, and m1, 2 =

 = m2/3, 2/3'. Hereafter, the indices of 5/3, 1/3, and
2/3 on the masses denote the electric charges of the cor-
responding scalar leptoquarks.

At θ = 0, expressions (21)–(23) represent the contri-
butions from the scalar-leptoquark doublets at small ξ2

without their mixing and coincide with expressions

(6)–(8) at  =  and kΦ = nc.

4. INTERACTION 
WITH THE STANDARD-MODEL HIGGS 
DOUBLET AND SCALAR-LEPTOQUARK 

MASSES 

A first numerical analysis of the contributions in
(16)–(18) versus available experimental data on the
parameters S, T, and U revealed that some scalar lepto-
quarks may be rather light (possibly, their masses are
not very far from the SM mass scale). Moreover, these
leptoquarks can improve the agreement between the
experimental data on the parameters S, T, and U with
theoretical results if the scalar-leptoquark masses and
mixing angle are treated as independent parameters
[16]. Below, we present the results of a numerical anal-
ysis of the contributions in (16)–(18) for the case where
the scalar-leptoquark masses and mixing angle are gen-
erated by the Higgs symmetry-breaking mechanism
from the scalar potential of scalar-leptoquark interac-
tion with the standard Higgs doublet. At present, this
mechanism of generation of scalar leptoquark masses
seems the most natural; moreover, it will be shown
below that it enables us to reduce the region of admis-
sible values of the adjustable parameters and to obtain
new constraints on the scalar-leptoquark masses.

Generally, that part of the scalar potential for scalar
leptoquarks which contributes to their masses can be
written as

(24)
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where  is a parameter that has dimensions of mass
squared, while β±, γ±, and δ are dimensionless coupling
constants. Upon symmetry breaking, the potential (24)
generates the scalar-leptoquark mass term

(25)

where  =  + β±η2/2 are the masses of the up
scalar leptoquarks and

(26)

is the mass matrix for the down scalar leptoquarks.
At real δ values, the mass matrix (26) leads to the

following masses for the scalar leptoquarks with an
electric charge of 2/3 and the following mixing angle θ:

(27)

(28)

Here, m2/3 and  are the masses of, respectively, the
lightest and the heaviest scalar leptoquark.

In what follows, we treat the masses m2/3 and 
and the dimensionless coupling constants γ+, γ–, and δ

m±
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Fig. 3. (m2/3, δ) as a function of the mass m2/3 of the

lightest scalar leptoquark at δ = (1) 0.5, (2) 1.0, and (3) 1.5
for mH = 300 GeV.

χmin
2

in the potential as adjustable parameters and calculate
the masses m+ and m– and the mixing angle θ on the
basis of Eqs. (26)–(28). The values obtained in this way
for the masses m2/3, , m+, and m– and for the mixing
angle θ determine the scalar-leptoquark contributions
(21)–(23) to the parameters S, T, and U. Note that, for
perturbation theory to be valid, the coupling constants
γ+, γ–, and δ in the potential (24) must not be overly
large, which constrains the allowed region of the
adjustable masses and mixing parameters in Eqs. (16)–
(18) and (21)–(23).

5. NUMERICAL ANALYSIS AND DISCUSSION 
OF THE RESULTS

In order to clarify the effect of scalar-leptoquark
doublets on the parameters S, T, and U, it is assumed
here that the scalar-gluon doublets Fja and the extra

doublet  are nearly degenerate in mass, so that their
contributions to S, T, and U can be disregarded. A
numerical analysis of the contributions (21)–(23) of
scalar leptoquarks to the parameters S, T, and U was
performed on the basis of data in (1) by minimizing the
χ2 functional defined as

where S, T, and U are the scalar-leptoquark contribu-
tions (21)–(23), while ∆S, ∆T and ∆U are the experi-
mental errors in (1). It should be noted that the values
in (2) that correspond to the SM agree with the experi-
mental data in (1) at a level of χ2 = 5.1 and χ2 = 4.1 at
mH = 300 GeV and mH = mZ, respectively.

Minimizing χ2 at S, T, and U from (21)–(23) by
varying  and the coupling constants γ+ and γ– at

fixed m2/3 and δ, we obtained  as a function of m2/3,
(the mass of the lightest scalar leptoquark) and δ,

(m2/3, δ). Its dependence on m2/3 at δ = 0.5, 1.0, and
1.5 is displayed in Figs. 3 and 4 at mH = 300 GeV and
mH = mZ, respectively.

According to these graphs, the experimental data on
S, T, and U admit the existence of a scalar leptoquark
with a charge of 2/3 in a wide mass range from large
mass values, in which case scalar-leptoquark contribu-
tions to S, T, and U are small, to a mass m2/3 of 1 TeV
or below (in this case, the remaining scalar leptoquarks
have masses on the same order of magnitude if the cou-
pling constants γ+, γ–, and δ are not very large). It is
interesting to note that the lighter scalar leptoquarks (of
mass below 1 TeV) even improve the agreement
between the theoretical results and experimental data—
they make negative contributions to S and T, rendering
their values closer to the experimental data in (1), as
contrasted against the SM zero values in (2).

m2/3'

Φa
'

χ2 S Snew
exp–( )2

∆S( )2
-------------------------

T Tnew
exp–( )2

∆T( )2
--------------------------

U Unew
exp–( )2

∆U( )2
----------------------------+ + ,=

m2/3'

χmin
2
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2
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By way of example, we indicate that at δ = 1 and

it follows from (21)–(23) that

At mH = 300 GeV, these contributions agree with those
in (1) at a level of χ2 = 3.5 (the corresponding SM value
is χ2 = 5.1).

At the same value of δ = 1, the contributions (21)–
(23) of the scalar leptoquarks that have the masses

are

these values agree with the data in (1) at mH = mZ, the
relevant χ2 value being 2.1 to be compared with the SM
value of χ2 = 4.1.

The existence of relatively light scalar leptoquarks
(of masses about 1 TeV or below) may be compatible
with other experimental data—in particular, with the
most stringent constraints on leptoquark masses from

nonobservation of rare decays like   µe since, in
the model being considered, the constants of scalar-lep-
toquark coupling to quarks and leptons are proportional
to the ratio of the quark masses to the SM vacuum
expectation value [12] and are therefore small.

m2/3 300 GeV, m1/3 350 GeV,= =
m5/3 380 GeV, m2/3' 390 GeV,= =

S LQ( ) 0.054, T LQ( )– 0.040,–= =

U LQ( ) 4 10–4.×–=

m2/3 300 GeV, m1/3 360 GeV,= =
m5/3 360 GeV, m2/3' 390 GeV= =

S LQ( ) 0.028, T LQ( )– 0.156,–= =

U LQ( ) 0.001;–=

KL
0

χmin
2

6

4

2

0 0.4 0.8 1.2 1.6 2.0
m2/3, TeV

1

2

3

χSM
2 = 4.1

Fig. 4. As in Fig.3, but for mH = mZ.
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6. CONCLUSION
In summary, the contributions to the parameters S, T,

and U from the scalar-leptoquark doublets, scalar gluons
and an extra scalar doublet have been calculated within
the minimal model featuring four-color symmetry.

It has been shown that, in contrast to the contribu-
tions from ordinary scalar (or fermion) doublets, the
contributions to the parameters T and U from the scalar-
leptoquark doublets are not positive definite in the
model because of the mixing of the scalar leptoquark
fields having an electric charge of 2/3.

On the basis of available experimental data on the
parameters S, T, and U, a numerical analysis of the con-
tributions to S, T, and U from scalar-leptoquark dou-
blets has been performed for the Higgs leptoquark-
mass-generation mechanism and the simplest version
of leptoquark mixing.

It has also been shown that experimental data on the
parameters S, T, and U admit the existence of scalar
leptoquarks of masses ranging between large values
and about 1 TeV or below and that lighter scalar lepto-
quarks (of mass below 1 TeV) even slightly improve the
agreement between the theoretical results and experi-
mental data in relation to the SM case.
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Abstract—A nonlocal separable potential of K+N interaction in the isospin-0 and isospin-1 S, P, D, …, J scat-
tering channels is constructed. This potential describes satisfactorily the results of the SP92 phase-shift analysis
(R. Arndt) at incident-kaon energies in the interval from 0 to 2.4 GeV. The off-shell amplitudes for kaon–
nucleon scattering are calculated. They are shown to differ significantly from the commonly used off-shell
amplitudes. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Both on-shell and off-shell amplitudes for scattering
on nucleons are required for describing nuclear reac-
tions initiated by strongly interacting probes. The sim-
plest methods for calculating such amplitudes are based
on the use of separable potentials. In this study, we pro-
pose a phenomenological separable potential of K+N
interaction. This potential, which allows for inelastic
effects, reproduces the data of the SP92 phase-shift
analysis [1] in the kaon-energy region extending up to
2.4 GeV.

For the isospin-0 and isospin-1 scattering channels,
a potential was constructed in [2] that describes K+N
scattering for kaon energies up to 550 MeV in the S, P,
and D partial waves. The parameters of this potential
were determined from the best fit to the data from the
phase-shift analysis reported in [3]. The new potential
presented here reproduces the data of the more recent
SP92 phase-shift analysis [1] of kaon–nucleon scatter-
ing in the S, P, D, F, G, H, I, and J partial waves of the
isospin-1 channel and in the S, P, D, F, and G partial
waves of the isospin-0 channel.

2. PHENOMENOLOGICAL SEPARABLE 
POTENTIAL OF K+N INTERACTION

The on-shell and off-shell amplitudes for the elastic
scattering of positive kaons by nucleons, (k, k', E),
are calculated here as solutions to the Kadyshevsky
equation

(1)

where ε  0; k and k' are the relative momenta of the
kaon and the nucleon before and after the scattering

t̂α

t̂α k k' E, ,( ) Vα k k',( )=

+
1
4
---

p2 pVα k p,( ) t̂α p k' E, ,( )d
EK p( )EN p( ) E E p( ) iε+–( )
---------------------------------------------------------------------,∫

* e-mail: shishlo@twonet.stu.neva.ru
1063-7788/01/6402- $21.00 © 20326
event, respectively; α stands for the set of spin–isospin
indices;  is the pseudoelastic amplitude; and E is the
total energy of the K+N system,

Here, mK and mN are, respectively, the kaon and the
nucleon mass.

The on-shell pseudoelastic amplitude  can be

expressed in terms of the pseudoelastic phase shift  as

The conventional scattering amplitude tα is
expressed in terms of the pseudoelastic amplitude  as

where  is the pseudoelastic inelasticity parameter.

The pseudoelastic parameters  and  are related
to the conventional phase shift δα and the inelasticity
parameter ηα, which are determined from a phase-shift
analysis, by the equation

(2)

The interaction potential in Eq. (1) is taken in the
separable form (the index α is suppressed)

(3)

where r is the rank of the potential, λi are the parame-
ters of the potential, and gi(k) are its form factors.

t̂α

E p( ) EK p( ) EN p( ), Ex p( )+ mx
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x K N .,=
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iπk
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Fig. 1. Amplitudes a for K+N scattering that are determined by expression (2) for the S01, S11, P, D03, and D13 partial waves (the
channel index L{T, 2J}, where L is the spectroscopic notation for the orbital angular momentum, T is the isospin of the K+N system,
and J is its total angular momentum, is indicated in the figure) versus pq (relative momentum of the kaon and the nucleon). Points rep-
resent the results of the SP92 phase-shift analysis [1]: (j) real parts of the amplitudes and (d) imaginary parts of the amplitudes. The
solid and the dashed curves show, respectively, the real and the imaginary parts of the amplitudes calculated with the potential (3).
We determined the potential parameters through a
two-step procedure. By solving the inverse scattering
problem [4], we first calculated the form factors for the
K+N-scattering channels where the phase shift is of con-
stant sign. Here, the rank of the potential was assumed
to be equal to unity. After that, we parametrized the
form factors gi(k) as

(4)
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where i is the rank number; l is the orbital angular
momentum of the scattering channel; and βi1, βi2, γi , aij,
bij, and cij are the potential parameters. At the second
step, the potential parameters were varied in order to
obtain the best fit to data from a phase-shift analysis.

We failed to achieve a satisfactory description of
these data in the D05, D15, I113, and J115 channels.
This was either because of the alternating sign of the
relevant phase shift or because of its complicated
energy dependence. For these channels, the procedure
for determining the parameters started from the second
step. We set the rank of the potential to the lowest pos-
sible value of two and discarded the last two Gaussian
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Fig. 2. As in Fig. 1, but for the partial-wave amplitudes D05, D15, F, G07, and G17.

0.45

0.15
terms in expression (4) for the form factors; the param-
eters aij in (4) were set to zero.

Tables 1 and 2 display the potential and the form-
factors parameters for potentials of rank one and two,
respectively.

Figures 1–3 demonstrate the quality of our fits to the
data from the phase shift analysis reported in [1].

3. OFF-SHELL BEHAVIOR OF THE K+N 
SCATTERING AMPLITUDES

At the moment, much attention is being given to the
problem of possible modifications to the nucleon
dimensions and properties in nuclear matter. Such
information can be obtained, in particular, by studying
the energy dependence of the ratios of the elastic cross
sections for various types of target nuclei. The results
obtained from an analysis of elastic K+ scattering by
light and extremely light nuclei suggest a possible mod-
ification to kaon–nucleon amplitudes in light nuclei [5,
6]. Among factors that affect the interpretation of these
results, we would like to mention a correct description
of the off-shell behavior of kaon–nucleon scattering
amplitudes.

In describing the off-shell behavior of K+N scatter-
ing amplitudes, use was made in [5, 6] of the approxi-
mation of the rank-one separable potential

(5)

where g( p) = exp(–p2/Λ2) and Λ = 1.0 GeV/c.

There, the form and the parameters of the form fac-
tors in (5) were assumed to be independent of the scat-

t k k' k0, ,( ) g k( )g k'( )
g2 k0( )

-----------------------t k0 k0 k0, ,( ),=
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Table 1.  Parameters of the rank-one K+N potentials (the scattering channel index is L{T, 2J}, where L is the spectroscopic
notation for the orbital angular momentum l, T is the isospin of K+N system, and J is the total angular momentum of the sys-
tem)

Channel 
r = 1

λ, GeV2l + 2 γ β1, GeV c–1 β2, GeV c–1

b2, GeV c–1 c2, GeV c–1

a1, GeV–2l – 2 b1, GeV c–1 c1, GeV c–1 a2, GeV–2l – 2

S01 4.834 × 10–3 24.717 0.2847 0.4009

–18.568 0.5394 0.4070 18.483 0.8825 0.1420

P01 –70.397 0.2479 1.7224 1.1814

2.200 × 10–2 1.7259 0.3857 0.1809 –7.019 × 10–3 0.4548

P03 1.4039 2.5351 0.6605 1.6746

–0.4797 0.7416 0.2893 –1.093 0.3372 0.2973

D03 –1.000 × 105 0.2393 6.8954 1.5765

3.537 × 10–2 1.440 × 10–2 0.2689 2.659 × 10–3 0.5714 0.1532

F05 –1.000 × 103 1.5928 2.0019 1.2168

1.645 × 10–3 1.7986 0.3996 2.766 × 10–2 0.3782 0.3686

F07 1.5555 9.9950 0.7067 1.7889

0.6849 1.3427 0.1799 0.1884 0.9264 0.2676

G07 –5.000 × 105 –1.1046 1.6955 1.9788

2.811 × 10–3 0.5112 0.2270 3.805 × 10–1 0.2074 0.1099

G09 1.4824 23.000 0.7892 1.2995

19.999 5.608 × 10–3 0.2498 2.201 × 10–2 1.6172 0.5410

S11 1.6940 1.3866 0.5290 0.7539

–0.4603 0.9482 0.2162 0.6383 0.9461 0.4484

P11 11.402 2.9983 0.7857 2.9051

–0.4229 0.3579 0.1259 –4.631 × 10–2 0.7433 0.1638

P13 –1.1561 0.1294 1.7583 1.3714

1.8513 4.367 × 10–4 0.3530 0.2348 0.6529 0.1946

D13 7.000 × 103 1.1232 3.5188 0.7304

–0.3344 0.3813 0.4932 –0.1796 0.3249 6.806 × 10–2

F15 2.500 × 102 1.9987 0.8344 1.9057

4.1760 5.334 × 10–3 0.8157 –0.2282 0.1741 1.648 × 10–2

F17 –850.0 1.0 1.3476 4.0

1.665 × 10–3 1.0988 0.4448 1.829 × 10–2 5.468 × 10–2 0.3007

G17 7.0 × 104 1.1001 1.3887 2.1991

–6.737 × 10–4 1.4508 4.0438 1.828 × 10–2 0.5520 0.1572

G19 –6.0 × 102 4.0 1.3372 2.4989

4.603 × 10–3 0.7749 0.3698 7.426 × 10–3 0.6330 0.1523

H19 20.191 28.155 2.6200 0.8594

0.2437 0.9121 0.4145 –3.0451 0.4836 0.1272

H111 –15.003 18.983 1.2379 0.9408

–0.6877 0.5132 0.1862 –0.5960 0.5762 0.3658

I111 21.100 27.399 2.2300 1.1276

–1.158 × 10–4 0.8931 0.4995 –6.456 × 10–2 0.3051 0.5020

J113 1.1 × 105 33.381 11.0 1.0034

0.8369 7.155 × 10–2 0.2064 –0.8369 0.4791 8.570 × 10–2
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Fig. 3. As in Fig. 1, but for the partial-wave amplitudes G09, G19, H19, H111, I111, I113, J113, and J115.
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Fig. 4. Noyes–Kowalski function for K+N elastic-scattering
amplitudes (k = 300 MeV/c). Points represent the function
given by expression (5). The solid and the dashed curve
depict the functions calculated with the potential (3) in the
S11 and the S01 scattering channel, respectively.
tering channel. For this parametrization of the off-shell
behavior, the projectile–nucleon amplitudes change
slowly with increasing distance from the mass shell;
therefore, it is possible to neglect the off-shell contribu-
tion to kaon–nucleon interaction in a nucleus [5, 6].

In the present study, we analyze the off-shell behav-
ior of the K+N amplitudes tα(k', k, k) found for the sepa-
rable potential (3). We have calculated the half-off-
shell Noyes–Kowalski functions

Recall that α stands for the set of spin–isospin indices
of the channel.

The resulting functions fα are strongly different for
different scattering channels. Only in the S11 channel
of K+N scattering does the function fα exhibits behavior
similar to that prescribed by Eq. (5); for the remaining

f α k' k,( ) tα k' k k, ,( )/tα k k k, ,( ).=
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Table 2.  Parameters of the rank-two K+N potentials (the notation is identical to that in Table 1)

Channel
r = 2

λ1, GeV2l + 2 γ1 β11, GeV c–1 β12, GeV c–1

λ2, GeV2l + 4 γ2 β21, GeV c–1 β22, GeV c–1

D05 –20.896 –4.5699 0.9506 1.0160
11.992 0.1450 1.9281 0.5952

D15 –20.829 –3.6733 0.9199 0.8974
11.997 1.0081 × 10–2 1.4362 0.3704

I113 1.9912 10.335 0.7535 0.9181
–3.0 × 105 6.3951 1.6472 1.2428

J115 3.002 × 102 –3.0788 0.8708 1.2756
–1.0 × 105 4.8220 1.2382 1.0890
channels, the functions fα are nonmonotonic and differ
significantly from unity. By way of example, the func-
tion fα determined by expression (5) is shown in Fig. 4,
along with those that are calculated with the potential (3)
for the S11 and the S01 channel.

4. CONCLUSION

The proposed separable potential of K+N interaction
describes satisfactorily the data from the modern
phase-shift analysis SP92 [1].

This potential predicts different types of off-shell
behavior for the partial amplitudes of kaon–nucleon
scattering. A customary description of this behavior
presumes the same form in all partial-wave channels [5,
6], but this is true only in the primary-energy region
dominated by the contribution of the S11 partial wave.
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 2      2001
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Abstract—Quark substructure effects that should manifest themselves at LHC energies are examined. The
inclusive jet transverse-energy spectrum as would be observed by the ATLAS detector is predicted. The effect
of the choice of parton distribution function and calorimeter nonlinearity on the compositeness effect is studied.
The sensitivity of data to the quark-compositeness scale for low and high LHC luminosity is discussed. © 2001
MAIK “Nauka/Interperiodica”.
The test of QCD predictions provides a useful tool
in probing the underlying dynamics and in seeking new
physics such as quark compositeness and the existence
of axigluons or other new particles. Measurement of
the inclusive jet cross section and study of the dijet
mass spectrum and angular distributions open a new
window to this field. A relationship between jets and
partons has been clearly demonstrated in high-statistics
LEP, Tevatron, and HERA experiments. The existence
of a quark substructure would appear as an excess of
the high-Pt jets over the level predicted by QCD or as
dijet angular distributions more isotropic than those
expected from a pointlike-quark theory. Dijet angular
distributions were studied in the CDF [1] and D0 [2]
experiments at a center-of-mass energy of 1.8 TeV. The
highest Et reached so far at the Tevatron, about
500 GeV, corresponds to a distance scale of 10–17 cm.
The experimental data were compared with QCD pre-
dictions, including compositeness. No evidence of
quark substructure was found. Previous studies of dijet
invariant-mass spectrum reported by UA1 [3] and UA2

[4] at  = 630 GeV and by CDF [5] also yielded data
that were consistent with QCD predictions. The CDF
[6] and D0 [7] results on high-mass Drell–Yan cross
sections set a lower limit on the quark–electron com-
positeness scale about 5.5 TeV. From the ratio of
charged-current to neutral-current cross sections mea-
sured in the CCFR fixed-target neutrino experiment [8]
at Tevatron, a limit of about 8 TeV on Λ was achieved. 

Searches for a quark substructure will be continued
at future hadron colliders. We investigate here the effect
of quark compositeness as would be seen by ATLAS
[9] at the LHC. To simulate a scenario with a quark sub-
structure, the event generator PYTHIA-5.7 [10] has
been used. This has enabled one to use a simple phe-
nomenological approach of contact interactions
between quark constituents with a compositeness scale

s

* This article was submitted by the author in English.
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Λ [11], where the sign of the effective Lagrangian for a
flavor diagonal definite-chirality current is positive
(destructive interference) or negative (constructive
interference). The data simulated within the Standard
Model (SM) are compared with those obtained under
the assumption of quark compositeness. The simulated
event sample included the following hard-scattering
subprocesses: qq, qg, gg, gγ, qγ, and γγ. The γ*/Z-, W-,
and tt-production subprocesses are also allowed. To
collect a sufficiently large number of events with high-
Pt jets in a reasonable central processor unit time, a cut
on the transverse momentum of the hard scattering sub-
process was set to 1 and 1.2 TeV for low and high lumi-
nosity, respectively. Initial- and final-state QCD and
QED radiation, fragmentation, and decay of partons
and particles, as well as multiple interactions, were
allowed. First-order running-αs calculations were
applied. The ΛQCD value was chosen according to the
parton-distribution-function parametrizations used in
PYTHIA. For the Q2 scale in the 2  2 hard-scatter-

ing process, Q2 = (  + )/2 was used. The detector
performance was simulated by using the ATLFAST
package [12], which provides a reliable estimate for the
detector response to hadronic jets. Jets were recon-
structed with ATLFAST using the standard procedure
of summing the energy deposited in a cone of radius

∆R =  = 0.7. All calorimeter cells with Et >
1.5 GeV were taken as possible initiators of clusters.
The total Et summed over all cells in a cone ∆R should
be larger than 15 GeV. Jets were reconstructed down to
|η| ≤ 5.0. 

Figures 1 and 2 show the effect of compositeness on
the inclusive jet energy spectrum for an integrated
luminosity of 30 fb–1. The case of constructive interfer-
ence is shown; the destructive-interference case is sim-
ilar. Only events with two jets of Et > 400 GeV are
included. The deviation from SM prediction under the
assumption that all quarks are composite is shown.

mt1
2 mt2

2

∆η2 ∆φ2+
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These figures demonstrate that the deviation is signifi-
cant for the largest Et values. Figures 3 and 4 show the
effects on the jet Et distribution for an integrated lumi-
nosity of 300 fb–1 and larger values of Λ.1) 

The effects of compositeness could be masked by
uncertainties in the parton distribution functions. Fig-
ure 5 shows a band corresponding to the results

1)Integrated luminosities of 30 (300) fb–1 should be collected after
3 (10) yr of data accumulation at the LHC.

N–1 dN/dEt, TeV–1

100

10–2

10–4

10–6

1 2 3
Et, TeV

Fig. 1. Et distribution for two leading jets according to the
SM prediction (open circles) and with the effect of quark
compositeness to the scales indicated: closed triangles,

closed stars, and crosses correspond to  = 15, 20, and

25 TeV, respectively. The integrated luminosity was
assumed to be 30 fb–1.

Λall
–

N–1 dN/dEt, TeV–1

10–1

10–3

10–5

1 2 3 Et, TeV

Fig. 3. As in Fig. 1, but for L = 300 fb–1. Closed triangles,

closed stars, and crosses correspond to  = 20, 30, and

40 TeV, respectively.

Λall
–

10–7
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obtained with all the parton distribution functions in
PYTHIA-5.7 (except for D01 and EHLQ1, which have
large inconsistencies with present data). For this case,

 = 15 TeV.

The nonlinear response of the hadron calorimeter
can affect the observed difference between the SM and
the compositeness scenario or may fake a composite-
ness signal. To study this effect, we considered a non-

Λall
–

(Ncomp – NSM)/NSM
2

1

0

1 2 3
Et, TeV

Fig. 2. Difference of the SM prediction and the effect of
compositeness on the jet Et distribution normalized to the
SM rate. Closed triangles, open circles, and closed stars cor-

respond to  = 15, 20, and 25 TeV, respectively. The

errors correspond to an integrated luminosity of 30 fb–1.

Λall
–

(Ncomp – NSM)/NSM
2

1

0

1 2 3 Et, TeV

Fig. 4. As in Fig. 2, but for L = 300 fb–1. Closed triangles,

open circles, and closed stars correspond to  = 20, 30,

and 40 TeV, respectively.

Λall
–
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linearity of the jet Et scale according to the relation [13]

(1)

where Et(meas) and Et are the measured and the true jet
transverse energy, respectively; e/h = 1.36; and c is
adjusted such that at 500 GeV the scale is unchanged.

Et meas( ) Et
1

c 1 e/h 1–( )b Etln+( )
-----------------------------------------------------,=

N–1 dN/dEt, TeV–1

100

10–2

10–4

10–6

1 2 3
Et, TeV

2

1

0
1 2 3 Et, TeV

Fig. 5. Jet Et spectrum indicating the uncertainty due to the
present parton distribution functions. The integrated lumi-
nosity is assumed to be 30 fb–1. The closed triangles corre-
spond to the resulting predictions for calorimeter nonlinear-

ity.  = 15 TeV for all cases.Λall
–

Fig. 6. Fractional difference between the Et spectrum mea-
sured by a linear and nonlinear calorimeter. The closed and
open triangles correspond to b = 0.11 and b = 0.025, respec-
tively (see main body of the text). The rates were normalized
at 1.20 TeV.

NSM
nonlin NSM

lin–( ) NSM
lin⁄
The parameter b controls the size of calorimeter nonlin-
earity. After introducing a correction, the residual
uncertainty can be parametrized by this formula with
b = 0.025 and corresponds to a 1.5% nonlinearity at
3 TeV. If no correction is made, b = 0.11 and there is a
5% nonlinearity at 3 TeV.

To illustrate the effect of nonlinearity, Fig. 6 shows
the fractional deviation of the transverse energy spec-
trum measured by a nonlinear calorimeter from that
measured by a linear one. The rates are normalized to
be equal at 1.20 TeV. Two cases corresponding to b =
0.025 and b = 0.11 are shown. Comparison of this plot
with Fig. 4 demonstrates that, at the worst, the effect of
nonlinearity is similar in magnitude to that due to a
composite scale of 20 TeV. If the 1.5% nonlinearity can
be achieved, the effect is comparable to that of the
30-TeV composite scale. The points in Fig. 5 show dis-
tributions resulting with calorimeter nonlinearity inclu-
sion. 

In order to estimate the calorimeter nonlinearity part
in the effect, we introduce the variable

(2)

where

and N(Et > ) (N(Et < )) is the number of events

with Et > (Et < ). Figure 7, displaying R versus

, demonstrates that the nonlinear calorimeter
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Fig. 7. Ratio R versus the compositeness scale  (see

main body of the text). The integrated luminosity was
assumed to be 30 fb–1.
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response almost doubles the effect at  = 6 TeV. We

chose b = 0.11 and  = 1.5 TeV.

In conclusion, the effects caused by quark compos-
iteness have good chance to be observed by ATLAS at
LHC. High transverse energy jet production at a center-
of-mass energy of 14 TeV can give bounds to quark
compositeness scale Λ above ~25(40) TeV for inte-
grated LHC luminosity of 30 (300) fb–1. We can note
that Λ limit estimation using the inclusive Et spectrum
of jets is very sensitive to calorimeter nonlinearity
effects and choice of parton distribution function.
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Abstract—The Nambu–Jona-Lasinio model at nonzero values of an external magnetic field H and of the chem-
ical potential is considered in the strong-coupling region G > Gc. The phase portrait of the model exhibits an
infinitely large number of massless chiral-invariant phases and massive phases resulting from a spontaneous
breakdown of chiral invariance. This phase structure is responsible for aperiodic oscillations of some thermo-
dynamic parameters of the system, including the dynamical fermion mass, as functions of H–1. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that, for the majority of metals, the
magnetization generated by an external magnetic field
H oscillates at low temperatures as a function of the
parameter (eH)–1, where e is the absolute value of the
electron charge. In modern condensed-matter physics,
this phenomenon is referred to as the de Haas–Van
Alphen effect. This effect was theoretically predicted
and then observed experimentally more than 60 years
ago [1–3]. Apart from the magnetization, some other
thermodynamic characteristics of metals also oscillate
in a magnetic field—periodically, as a rule, as functions
of (eH)–1 (standard magnetic oscillations) [2, 3].3) Nev-
ertheless, there are compounds like the degenerate
magnetic semiconductor HgCr2Se4 where the magneti-
zation and the electric resistance oscillate aperiodically
as functions of (eH)–1 [4]. Such oscillations, which can-
not be explained within the simplest Fermi liquid mod-
els, will henceforth be referred to as nonstandard mag-
netic oscillations.4) 

The de Haas–Van Alphen effect is a very efficient
tool for studying the Fermi surface and its topology
and, consequently, the energy spectrum of conduction
electrons [2]. This is the reason why magnetic oscilla-
tions are still being investigated; as to relevant theoret-

1) Moscow State Institute of Radio Engineering, Electronics, and
Automation (Technical University), pr. Vernadskogo 78, Mos-
cow, 117454 Russia.

2) Institut für Physik, Humbolt-Universität zu Berlin, Invaliden-
strasse 110, D 10115, Berlin, Germany.

  * e-mail: kklim@mx.ihep.su
** e-mail: debert@physik.hu-berlin.de
3) At low temperatures, the ensemble of conduction electrons in

metals forms a Fermi liquid. Even the simplest description of an
electron Fermi liquid in terms of a degenerate ideal gas of nonrel-
ativistic fermion quasiparticles leads to periodic oscillations in
(eH)–1 [3].

4) In addition to nonstandard magnetic oscillations, the aforemen-
tioned semiconductor exhibits unusual temperature oscillations
of the magnetization [5].
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ical studies, much attention has recently been given
there to analysis of magnetic oscillations within relativ-
istic quantum field theory (see, for example, [6, 7]). The
problem in question is investigated within a broad pro-
gram aimed at developing quantum theories with
allowance for various external conditions (temperature,
electromagnetic fields, etc.), which is expected to yield
results covering applications in astrophysics and cos-
mology, heavy-ion physics, and the physics of neutron
stars [8]. However, the relativistic de Haas–Van Alphen
effect can also have applications in condensed-matter
physics. The point is that modern facilities enable ever
more precise measurements, whose results can be
explained only by taking into account relativistic cor-
rections. Further, the Fermi energy grows with increas-
ing matter density. At high pressures and densities, the
dynamics of an electron Fermi liquid therefore
becomes essentially relativistic, so that the field-theo-
retical methods are required for simulating it.

In [6, 7], an effective Lagrangian Leff for an external
magnetic field at a nonzero value of the chemical
potential µ was considered within QED. As a matter of
fact, the one-loop effective Lagrangian Leff for the prob-
lem being discussed is determined by the thermody-
namic potential of a relativistic ideal gas of fermions at
µ, H ≠ 0. It turns out that, here, the thermodynamic
potential itself and its derivatives with respect to H and
µ—that is, respectively, the pressure, the magnetiza-
tion, and the particle-number density of this relativistic
system—exhibit standard oscillations as functions of
the variable (2eH)–1 with a frequency (µ2 – M 2) (M is
the electron mass), which is independent of the mag-
netic field at µ = const.

Here, the effect of an external magnetic field H and
of the chemical potential µ on the properties of the vac-
uum and on the allied phenomena of magnetic oscilla-
tions are considered within the simplest quantum the-
2001 MAIK “Nauka/Interperiodica”
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ory involving four-fermion interaction. Its Lagrangian,
given by

(1)

is invariant under continuous chiral transformation

ψk   (k = 1, …, N). Theories like that speci-
fied by Eq. (1) are usually associated with the Nambu–
Jona-Lasinio (NJL) model, which features the effect of
a dynamical breakdown of chiral symmetry in the
strong-coupling region [9]. In order to employ the non-
perturbative method of 1/N expansion, we consider the
N-fermion version of the original NJL model. Since the
concept of a dynamical breakdown of chiral symmetry
plays an important role in the modern theory of elemen-
tary particles, a large number of studies have been
devoted so far to the analysis of this phenomenon with
allowance for the effect of various external factors,
including temperature and the chemical potential [10,
11], external (chromo)magnetic fields [12], and non-
trivial spacetime topology and curvature [13], on the
vacuum structure of models similar to that specified by
Eq. (1). Moreover, the concerted effect of gravity and
magnetic fields on the critical properties of various the-
ories involving four-fermion interaction was consid-
ered in [14] and in some other studies. However, the
properties of the ground state of the model whose
Lagrangian is given by (1) have not yet been considered
at nonzero values of the external magnetic field H and
the chemical potential µ.

2. PHASE STRUCTURE OF THE MODEL
AT µ, H ≠ 0

The phase structure of the model in question is con-
trolled by the effective potential. In the leading order of
the 1/N expansion, the effective potential at nonzero µ
and H has the form

(2)

where sk =  and

(3)

Lψ ψki∂̂ψk
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+
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is the effective potential at µ = 0 and H ≠ 0. In Eq. (3),
we have used the following notation: x = Σ2/(2eH), ζ(ν,
x) is a generalized Riemann zeta function [15], ζ'(–1, x) =
dζ(ν, x)/dν|ν = –1,

(4)

is the effective potential at zero µ and H, and Λ is the
ultraviolet-cutoff parameter (this cutoff is necessary
since the original model is nonrenormalizable). We also
note that an auxiliary scalar field Σ, which enters into
the equations of motion as a quantity proportional to

, appears in the argument of all functions in (2)–
(4); since this field is, in particular, the argument of the
effective potential, it is independent of spacetime coor-
dinates. For any of the potentials in Eqs. (2)–(4), the
point of the global minimum is the vacuum expectation
value of the field Σ and coincides with the dynamical
mass of fermion fields. The procedure of introducing
the auxiliary field Σ in the NJL model is described in
detail elsewhere [11].

At µ, H = 0 and G < Gc = 4π2/Λ2, the stationarity
condition for the potential (4) has no solutions other
than the trivial one, Σ = 0—that is, there is no break-
down of chiral invariance in this case: the fermions
remain massless. If G > Gc, the function V0(Σ) has a
nontrivial global minimum (we denote by M the corre-
sponding point). This implies a spontaneous break-
down of chiral symmetry and the appearance of a non-
zero fermion mass, M. Obviously, M depends on G and
Λ [11].

In the case of zero µ and H ≠ 0, the chiral symmetry
of the model appears to be spontaneously broken at any
value of the coupling constant G [12], since VH(Σ) has
a nonzero point of global minimum, Σ0(H).

In order to find out how the vacuum of the model
behaves when both µ and H take nonzero values, it is
necessary to analyze the function in (2) for the absolute
minimum. For this purpose, we seek all solutions to the
stationarity equation

(5)

and choose that which minimizes the potential (2); we
then consider the properties of this global minimum
versus µ and H. For the reasons of space, we omit here
the details of this analysis, performed numerically, and
present only basic results.

V0 Σ( ) Σ2

2G
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–
1

16π2
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Λ2
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In the figure, the phase portrait of the model in the

(µ,  plane is shown for coupling-constant values
in the interval Gc < G < (1.225…)Gc. Here, we can see
an infinite set of massless symmetric phases A0, A1, …
and an infinite set of massive phases C0, C1, … charac-
terized by a spontaneous breakdown of chiral symme-
try. In addition, there arises one more massive phase B,
where the fermion mass is equal to Σ0(H), as in the case
of zero µ and nonzero H. The solid and dashed curves
in the figure correspond to critical curves of, respec-
tively, second- and first-order phase transitions. Thus,
the boundary separating the massless and the massive
phases (chiral boundary) contains an infinite number of
tricritical points tk, sk (k = 0, 1, 2, …). (The point on the
phase plane is referred to as a tricritical point if, in any
arbitrary small vicinity of this point, there occur both
first- and second- order phase transitions.) The table pre-
sents the magnetic-field values corresponding to the tric-
ritical points t0 and s0 versus the ratio G/Gc. We also note
that a part of the chiral boundary—namely, the curve
t0µc—is described by the equation VHµ(0) = VHµ(Σ0(H)).

Obviously, the region above the chiral boundary
(see figure) corresponds to the chiral-invariant ground

eH )

µ

å1

å B

l4 l3 l2

l1A3 A2

A1

A0

µc

t0C0

C1C2
C3

s3

t3
s2 s1 s0

t2 t1

eH

Phase portrait of Nambu–Jona-Lasinio model for Gc < G <
(1.225…)Gc (here, M is the fermion mass at µ = H = 0 and

M1 = ; a detailed description of the figure
is given in the main body of the text).

Λ2
2⁄ 2π2

G⁄–

External-magnetic-field values corresponding to the tricriti-
cal points t0 and s0 of the phase portrait (see figure) for vari-
ous values of G/Gc

G/Gc 1.01 1.1 1.15 1.2

0.0129… 0.08119… 0.10769… 0.12987…

0.00614… 0.05639… 0.08088… 0.10338…

eHt0
/Λ2

eHs0
/Λ2
state of the NJL model. This implies that, here, the glo-
bal minimum of the potential (2) is achieved at the point
Σ = 0. We will show that, in fact, this region splits into an
infinite set of various massless phases A0, A1, ….

The thermodynamic-equilibrium state (ground
state) of any quantum field theory is described by the
thermodynamic potential whose space density Ω(µ, H)
is equal to the value of the effective potential at the
point of global minimum. Below, Ω(µ, H) is always
associated with the thermodynamic potential. The ther-
modynamic potential is equal to the sign-reversed pres-
sure in the system; in the case being considered, it
assumes the form

(6)

where ek = . We then make use of the following
well-known phase-transition criterion: at the points of
first-order (second-order) phase transition, all partial
derivatives of the thermodynamic potential with respect
to any argument from the first (second) one undergo a
discontinuity. Applying this criterion, we analyze the
phase structure of the model above the chiral boundary.
We are going to show that the curves lk = {(µ, H) : µ =

} (k = 1, 2, …) represent critical curves of sec-
ond-order phase transitions. For this purpose, we indi-
cate that, below the curve l1, only the term that corre-
sponds to k = 0 makes a nonzero contribution to the sum
on the right-hand side of Eq. (6). In the region below
the curve l2, the nonvanishing terms in the sum corre-
spond to k = 0, 1, and so on. Taking this into account,
we arrive at

(7)

(8)

The equality in (7) means that the first derivative ∂Ω/∂µ
is continuous on all curves lk. However, it follows from
(8) that each curve lk corresponds to the second-order
phase transition in the system since, there, the second
derivative of the thermodynamic potential with respect
to µ undergoes an infinite jump. Similarly, we can show
that, on each of the curves lk, the second derivatives
∂2Ω/(∂H)2 and ∂2Ω/∂µ∂H are discontinuous as well
(they undergo infinite jumps).

The existence of an infinite set of massive phases Ck
is caused by the specific structure of the stationarity
Eq. (5). Our numerical calculations and the relevant
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graphs show that, for (µ, H) ∈ Ck, Eq. (5) usually has a
few solutions, one of them, Σk(µ, H), corresponding to
the global minimum of VHµ(Σ). Upon intersection of the
curve Mtk + 1, the global minimum jumps to another
solution, Σk + 1(µ, H), to the stationarity equation. This
means that the system undergoes a first-order phase
transition to the new phase Ck + 1, and so on. In each of
the phases Ck, the fermion mass equal to Σk(µ, H),
depends on µ. On the contrary, the fermion mass Σ0(H)
in the phase B is independent of µ. Another special fea-
ture of the phase B is that, in the ground state, the parti-
cle-number density n ≡ –∂Ω/∂µ is identically equal to
zero; however, it does not vanish in any of the phases Ck.

From statistical physics (see, for example, [3]), it is
known that more than three curves of first-order phase
transitions cannot intersect at the same point. This
means that more than three phases cannot coexist in
nature. In the figure, however, an infinite number of
curves corresponding to first-order phase transitions
intersect at the point M. As matter of fact, this contra-
diction is only apparent since M represents the point of
a second-order phase transition [11]: it does not belong
to any of the curves of first-order phase transitions and
is not a point where the phases coexist.

3. STANDARD MAGNETIC OSCILLATIONS

We now consider the case of µ > M1 and µ = const.
In the (µ, H) plane, this case corresponds to the straight
line that intersects the curves l1, …, lk, … at the points
H1, …, Hk, …, respectively. Let us consider the particle-
number density n(H) and the magnetization m(H) =
−∂Ω/∂H as functions of the magnetic field at µ = const.
From the aforementioned properties of the thermody-
namic potential (6), it follows that, at H ≥ 0, n(H) and
m(H) are continuous functions having characteristic
kinks at an infinite number of points H1, …. Functions
that exhibit this type of behavior are usually referred to
as oscillating functions. Thus, the presence of an infi-
nite cascade of phases results in magnetic oscillations
of the thermodynamic parameters in the NJL model.
Below, we will demonstrate that these oscillations are
of a standard character—that is, they are periodic in
(eH)–1.

To do this, we will follow the procedure adopted in
condensed-matter physics [2, 3], representing the ther-
modynamic potential (6) as the sum of two terms, Ω(µ,
H) = Ωmon + Ωosc. The first of these absorbs the mono-
tonic part of the thermodynamic potential, while the
second involves all oscillations. In order to obtain the
explicit expression for Ωosc, we use in (6) the Poisson
summation formula [2, 3]

(9)

where αn = 2 – δn0. After some simple algebra (similar
calculations within QCD were performed in [7]), we

αnΦ n( )
n 0=

∞

∑ 2 α k Φ x( ) 2πkx( )cos x,d

0

∞

∫
k 0=

∞

∑=
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arrive at

(10)

where ν = µ2/(eH) and where the functions P(x) and
Q(x) are related to the Fresnel integrals C(x) and S(x) by
the equations [15]

For x  ∞, their asymptotic expansions are [15]

P(x) = x–1 – x–3 + …, Q(x) = – x–2 + x–4 + ….

From Eq. (10), it can be seen that, with increasing
(2eH)–1, the thermodynamic potential and all its deriv-
atives (consequently, the pressure, the particle-number
density, and the magnetization of the system under con-
sideration) oscillate with the frequency µ2. In just the
same way as in QED [7], we have here standard (peri-
odic) oscillations, since the frequency does not depend
on the magnetic field.

4. NONSTANDARD MAGNETIC OSCILLATIONS

We now consider the case of M < µ < M1 and µ =

const. In the (µ, ) plane, this case corresponds to
the straight line traversing an infinite set of massive
phases Ck. Here, the position Σ(µ, H) of the global min-
imum of the potential (2) depends on the parameters µ
and H. It is obvious that, in each region Ck, Σ(µ, H)
coincides with the relevant solution Σk(µ, H) to the sta-
tionarity equation. Upon intersecting the curves Mtk

(see figure), this quantity changes drastically. Below
the chiral boundary, the thermodynamic potential of the
system assumes the form Ω(µ, H) ≡ VHµ(Σ(µ, H)).
Using (9) on the right-hand side of (2), we find that the
oscillating part of the thermodynamic potential can be
represented as

(11)

where ν = µ2/(eH) and ω = (µ2 – Σ2(µ, H))/(2eH). From
(11), it can be seen that the thermodynamic potential
and all the parameters of the system that are associated
with it oscillate as functions of the variable (2eH)–1, the
frequency µ2 – Σ2(µ, H) of oscillations being dependent
on H. Thus, we have, in this case, nonstandard (aperi-
odic) oscillations.
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Finally, we would like to highlight yet another spe-
cial feature of the model being considered. Here—in
distinction to what occurs in QED—it is not only ther-
modynamic parameters of the system but also its
dynamical parameters that oscillate. We mean above all
the dynamical fermion mass Σ(µ, H)) and all quantities
associated with it. In order to demonstrate this, we use
expression (9) in the stationarity Eq. (5). In the limiting
case H  0, we can then represent the oscillating part
of the dynamical fermion mass as

(12)

where  = (µ2 – )/(2eH) and  ≡ M(µ) is the fer-
mion mass at H = 0 and nonzero µ.

5. CONCLUSION

We have shown that, in the relativistic strongly cou-
pled (G > Gc) fermion system governed by Lagrangian
(1) and placed in an external magnetic field, there can
occur oscillations of thermodynamic parameters in
(eH)–1, either periodic or aperiodic (depending on the
chemical-potential value). Moreover, the dynamical
fermion mass and all physical quantities associated
with it also oscillate.

Let us now estimate the interval of external-mag-
netic-field values at which nonstandard magnetic oscil-
lations can be observed. For this purpose, we make use
of the data in the table, which presents the results of
numerical calculations for two tricritical points s0 and t0
of the model phase portrait (see figure). It is obvious
that, if H ∈  (0, ), the thermodynamic parameters of
the system as functions of the magnetic field can
exhibit oscillatory behavior. At Λ = 700 MeV and
G/Gc ~ 1.1, we easily estimate  at 1018 G.5) 

This interval is so wide that it covers even magnetic-
field values typical of neutron stars: it is well known
[16] that the magnetic field is H ~ 1012 G near their sur-
face and reaches values of 1018 G near their center. If
the interaction of particles constituting a neutron star is
described on the basis of models of the NJL type, the
magnetic-field dependence of quantities characterizing
the star (magnetization, particle-number density, etc.)
may have an oscillatory character in advancing from
the surface to the center.

Despite the relativistic method of this study, we
believe that our results are qualitatively correct for non-
relativistic strongly correlated electron systems as well;

5)In the system of units where the speed of light and the reduced
Planck constant are equal to unity, we made use of the relation

/e ~ 4.4 × 1013 G, e and me being the electron charge and

mass, respectively, from which we can easily find the relation
between quantities having dimensions of MeV2 and G.

Σosc µ H,( ) eH( )3/2

µM̃
----------------- 2πkω̃ π/4–( )sin

k3/2
-----------------------------------------,

k 1=

∞

∑∼

ω̃ M̃
2

M̃

Hs0

Hs0

me
2

hence, it can prove to be applicable in solid-state phys-
ics.
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Abstract—The cross sections for B-meson production as obtained on the basis of the PYTHIA code and the
Quark–Gluon String Model (QGSM) are compared at energies of the proton colliders SPS, Tevatron, and LHC.
Model predictions are based on the idea of exchanges of a supercritical Pomeron with phenomenological inter-
cept ∆P(0) = 0.3 for heavy-quark production. The transverse-momentum spectra of B mesons are also com-
pared. It is shown that the cross sections calculated with PYTHIA using CTEQ structure functions are at odds
with the asymptotic estimate of the cross sections for  production within the QGSM. Asymmetries between

the spectra of B0 and  mesons also contradict the PYTHIA result. The reasons for the difference are dis-
cussed. © 2001 MAIK “Nauka/Interperiodica”.

“…το της Πυϑιας γραµµα ϕραςει τανυν .”
Πλατων, Νοµοι 1)
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1. INTRODUCTION

We cannot say that the complete knowledge on
beauty-quark pair production has been obtained now,
since the data that we have on -production cross sec-
tions are not yet sufficient. In order to monitor the
model ideas on the phenomenon, it seems useful to
revise once in a while the collected data. The results of
a few recent experiments [1–3] carried out at two ener-
gies of colliding protons, 630 GeV and 1.8 TeV, are pre-
sented in the literature.

In this article, two of the models are compared: on
one hand, the phenomenological Quark–Gluon String
Model (QGSM) [4], based on the idea of hadronic-
amplitude duality and on the theory of a supercritical
Pomeron, and, on the other hand, the widespread
Monte Carlo code PYTHIA [5], which includes the
results of QCD perturbative diagram calculations.

That the production cross sections grows with
energy is a fact that was widely discussed in recent
studies [6, 7]. The theory of a supercritical Pomeron
postulates that cross sections grow in proportion to

, where ∆P(0) = αP(0) – 1, αP(0) being the inter-
cept of the Regge trajectory of the Pomeron.

The energy behavior of the production cross section
in perturbative QCD is determined by the choice of
gluon structure functions of interacting hadrons. The

bb

s
∆P 0( )
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1) “as the Pythian oracle declares today,” Plato, The Laws (trans-

lated by R. G. Bury, 1926).
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majority of these functions that are accepted now for
Monte Carlo simulations of high-energy collisions are
constructed to approximate the recent data from HERA
that were measured up to x = 10–4. It should be noted
that all known gluon structure functions that satisfied
these recent data can be taken for simulating  pro-
duction at LHC, because the value 10–4 is in the very
region of x attributed to B-meson production at 14 TeV
due to the estimate:  = 2mB/(14 TeV) ~ 10–4. One of
those appropriate gluon distributions is the CTEQ
structure function, which is involved in the PYTHIA
code as a default distribution.

2. PARAMETERS DETERMINING
THE CROSS SECTIONS FOR B-MESON 

PRODUCTION IN THE QGSM

The value of the major parameter of the QGSM
determining the energy dependence of the cross sec-
tion, ∆P(0)eff , must differ from the intercept value for
one-Pomeron exchange, because the diagrams with
multi-Pomeron exchanges should be taken into account
in the calculations. This parameter depends on the
mean value of transverse-momentum transfer in the
process. Therefore, the energy dependences of the
cross sections for the production of particles of differ-
ent masses must be governed by different ∆P(0)eff val-
ues.

The Q2 dependence of ∆P(0)eff can be illustrated well
with the data obtained in the H1 experiment at HERA
[8]. Pomeron exchange plays an important role in elec-

bb

x
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tron–proton collisions too. The multihadron production
occurs in this process owing to Pomeron exchange
between the photon and a proton of the beam. The
∆(Q2) data are shown in Fig. 1, where each point was
extracted from the measured function F2(x, Q2) by
using the approximation featuring the simple depen-

dence F2 ~ .

It should be noted that, in contrast to the case of pro-
ton–proton interactions, the theoretical curve in Fig. 1
was calculated [8] under the assumption of one-
Pomeron exchange, which does not include cuts. The
QGSM scheme for heavy-meson production must be
similar to the one-Pomeron-exchange pattern because
of energy conservation. For ∆eff, we can therefore take
the value of 0.3, which corresponds to the H1 data
approximation at Q2 = (2mB)2. It is worth emphasizing
here that this value differs from ∆eff = 0.12, which was
chosen for light-quark-meson production in early stud-
ies [7].

Another Regge trajectory parameter important for a
model description of the inclusive cross sections for B-
meson-pair production is αϒ(0), the intercept of  tra-
jectory. It provides an increasing cross section at ener-
gies slightly exceeding the threshold for B-pair produc-
tion. There are various opinions on the value of this
parameter. From the QGSM point of view, it may vary
in the range between –16 and 0 [7]. Other authors pre-
fer αϒ(0) = –9 [9].

The value αϒ(0) = –16 will be taken here to estimate
the upper limit of growing cross section when it
increases rapidly after the threshold. The parameter dis-
cussed above exists in the functions of fragmentation of
quark–gluon strings into each sort of B mesons. Those
functions are written in QGSM according to the rules
fulfilled by the Regge asymptotic behavior [10].

For example, the function for d-quark string frag-
mentation into B+ contains the following factors:

(1)

Here,  is the density parameter for the fragmentation

of a quark–gluon string into B mesons, and  is the
parameter of string fragmentation asymmetry intro-
duced in [7] to provide a transition between probabili-
ties of the B production at z  0 and z  1. The

value of  can be on the order of 10 and actually does
not produce an impact on the value of the B-production
cross section at energies higher than 1.8 TeV. The frag-
mentation function of the string beginning from u quark

does not contain the parameter . It is the fragmenta-

x ∆ Q
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tion of nonleading type:

(2)

The calculations of p⊥  spectra of the produced had-
rons are also possible in the framework of QGSM, as
was done in [11] for π mesons. The spectra can be
described up to momenta on the order of a few GeV/c
in this substantially nonperturbative model. The distri-
butions were of exponential character at low p⊥  in this
approach. Therefore, the transverse-momentum distri-
butions for heavy-flavor particles were not elaborated
in this model.

3. PYTHIA MACHINERY

The version PYTHIA 5.7 was taken to calculate the
spectra of B mesons at three energies of colliding pro-
tons: 630 GeV, 1.8 TeV, and 14 TeV. The CTEQ gluon
structure functions [12] are used in this version to
describe the increasing cross sections. On the one hand,
the process of production of such heavy quarks as b is
good enough for being described by the perturbative
QCD diagram with gluon–gluon fusion. On the other
hand, more and more low-x gluons are involved in this
process at rising energy, and the cross section becomes
dependent on the accuracy of the gluon structure func-
tion measured at low x.

As was mentioned in the Introduction, due to HERA
experiments we have precise data on F2 up to x ~ 10–4,

which is enough for the calculation of  production at
LHC energies. This way, CTEQ structure functions
have to provide the correct description of increasing
cross sections of  pair production.

$u
B

+

z( )
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B

z
----- 1 z–( )

–αϒ 0( ) λ 1+ +
.=
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Fig. 1. ∆(Q2) obtained in H1 [8] and one-Pomeron
exchange approximation (solid line).
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However, b quarks can be obtained not only in gluon
fusion process. Two additional ways exist to produce a

 pair. They are gluon splitting gg  gg, where glu-

ons give a  pair in the next-to-leading order of cor-
rections, and heavy-flavor excitation Qig  Qig. In
PYTHIA, these subprocesses are taken into account
with massless matrix elements. It is a problem how to
sum the resulting distributions from such different
deposits.

It makes the p⊥  spectra at 1.8 TeV comparable with
the data obtained in CDF experiment (see Fig. 2). At the
same time, the description of UA1 data is not good
enough. It looks like the p⊥  spectra were increased with
additional fractions only by a factor and there is no dif-
ference between the patterns of spectra for different
subprocesses. It leads to a rather flat form of transverse-
momentum distributions at low p⊥  in PYTHIA and, as
a result, to a small total cross section of B production at
various energies.

4. COMPARISON OF CROSS-SECTION ENERGY 
DEPENDENCES

The resulting energy dependences of the production
cross section are shown in Fig. 3 for the PYTHIA pro-
gram and for the QGS model as well.

As was mentioned, above the QGSM curve fitted to
the data point of the CDF cross section was taken as
rapidly increasing as is possible in this model. But the
CDF value of cross section has been obtained due to
PYTHIA (see Fig. 2). Thus the comparison of both

bb

bb
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104

106

CDF s = 1.8 TeV, |y| < 1.0

D0 s = 1.8 TeV, |y| < 1.0

UA1 s = 630 GeV, |y| < 1.5

p⊥ min, GeV/c

σbb(p⊥  > p⊥ min), nb

Fig. 2. Transverse-momentum distributions of B mesons fit-
ted with PYTHIA.
models (see Fig. 3) is rather conventional because the
result depends on the form of p⊥  spectra at low trans-
verse momenta accepted in PYTHIA.

5. PYTHIA AND QGSM PREDICTIONS 

FOR THE ASYMMETRY BETWEEN B0/  
SPECTRA

It would be interesting to consider the leading effect
in the spectra of B mesons at various energies. The

valuable asymmetry between B0- and -meson spectra
at LHC energy will be important for CP-violation mea-
surements. The asymmetry dependence on rapidity, y,
can be defined as

(3)

The recent prediction of the rapidity dependence of
such leading/nonleading asymmetry [13] provided by
PYTHIA simulations gives zero value of A(y) in a wide
range of y in the central region (see Fig. 4). The A(y)
dependence in the fragmentation region xF  1 con-
tradicts all similar asymmetry measurements for D
meson spectra [14–17] The intersection of inclusive
spectra of different type of B mesons gives the asym-
metry passing through zero at some y0, while the mea-
sured spectra of leading particles are always higher
than nonleading-particle spectra, so the asymmetry is
positive. Contrary to PYTHIA predictions, the asym-
metry calculated in the framework of QGSM is a rising
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0

A y( ) dNB
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/dy dNB
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dNB
0

/dy dNB
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/+ dy
-----------------------------------------------.=
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102 103 104 s GeV,
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100
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σ(pp → BBX), µb

Fig. 3. Cross section for B meson as a function of energy.
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function up to x  1. This behavior is usually peculiar
for the string approach because of a so-called “beam-
drag” effect. The spectrum of particles of leading type
seems as if it is dragged by beam valence quarks into
the region xF  1. The valuable asymmetry in the
central region given in QGSM prediction [18] is not
small enough for it not to be taken into account in
CP-violation measurements. It looks important to con-
sider both these predictions in detail and to discuss the
probability of nonzero asymmetry in the production
spectra at LHC energy.

6. CONCLUSION

We have compared two approaches for the under-
standing of the heavy flavored particle production: one
of them is mostly perturbative, and the other one is
totally nonperturbative. This comparison shows that
some different suggestion has to be made for low trans-
verse-momenta distributions of B mesons to put into
agreement both model predictions at LHC energy. The

contradicting dependences for B0/  asymmetry in the
B-meson-production spectra might be important for
CP-violation measurements.

B
0

Fig. 4. B0/  asymmetries at the LHC energy as given by
(dash-dotted curve) PYTHIA [13] and by (solid curve) the
QGS model; the value ∆eff = 0.3 corresponds to the produc-
tion of the mass of the B meson.
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Abstract—A model that describes the formation of η mesic nuclei in the γ + A  N + η A' reactions is for-
mulated on the basis of the quasifree meson photoproduction on nuclei and the concept of a meson–nucleus
optical potential. The amplitude of this reaction involving more than four nucleons is obtained in the general
form within the nuclear shell model featuring intermediate coupling. The dependences of the cross sections for
these reactions on the excitation levels of η mesic nuclei, on the discrete excitation levels of the nucleonic cores
of these nuclei, on the type of emitted nucleon, and on the final-state interaction are analyzed for the incident-
photon energies from the reaction threshold to 1 GeV. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Liu and Haider [1, 2] stated that η mesic nuclei that
involve many nucleons can exist and proposed an
experiment that could discover them. However, the
estimated probabilities of the formation of η mesic
nuclei by pion beams were likely far from actual val-
ues, and this experiment failed [3], which gave rise to
doubt about the very existence of η mesic nuclei. Infor-
mation about a signal from η mesic nuclei in reactions
with light ions was surprising. Since these experiments
were beyond the mainstream of searches for η mesic
nuclei [4], they were ambiguously interpreted. In my
opinion, the question of whether η mesic nuclei exist
will remain open until these nuclei are observed in
those reactions and with those properties that were pre-
dicted theoretically.

It is well known that η mesic nuclei can be formed
in various nuclear reactions accompanied by the pro-
duction of η mesons and by subsequent interactions
between these mesons and nuclei. In particular, η mesic
nuclei can be formed in a photonuclear reaction like

where A' is some nuclear fragment whose velocity with
respect to the product η meson is small. Reactions
resulting in the formation of only two nuclear frag-
ments are the simplest for a theoretical and, as I believe,
for an experimental analysis. This can be, in particular,
a reaction where a nucleon N appears to be one of such
fragments:

(1)

Figure 1 schematically represents the mechanism of
this reaction. The first studies aimed at estimating the
probability of the formation of η mesic nuclei in reac-
tions of the type in (1) [5–7] brought about some ques-
tions associated with an insufficient validation of the

γ A η A' … Aη ' …,+ + + +

γ A N η A' N Aη+ '.+ + +
1063-7788/01/6402- $21.00 © 20346
model used to describe the reactions in question. At
present, when η mesic nuclei are transforming from
hypothetical objects into actual nuclei with properties
becoming ever more precisely specified, the model of
the formation of η mesic nuclei in reaction (1) requires
a more rigorous and detailed validation, and this is one
of the objectives in the present study. The formation of

the extremely light η mesic nuclei ηT and  in reac-
tion (1) on 4He target nuclei was considered in [7],
where it was shown that the relevant cross sections do
not exceed 1 µb. For a larger target mass number, we
can expect a larger cross section for the formation of
corresponding η mesic nuclei in reactions (1), so that
an experimental investigation of η mesic nuclei would
become possible. However, calculations for target
nuclei consisting of more than four nucleons involve
difficulties associated with the shell structure, the pres-
ence of several levels in heavy (A > 6) η mesic nuclei,
and the possibility of the excitation of discrete levels in
the nucleonic cores of systems formed by an η meson
and a nucleus. These and other allied problems—in
particular, the expected near-threshold behavior of the
cross sections for reactions (1)—are discussed in this
study by considering the example of the reactions γ +
12C  N +  and γ + 16O  N + .

He3
η

A11
η A15

η

γ
N'N

Ai A' N ''

η ηA'

Fig. 1. Diagram describing a possible mechanism of the
photoproduction of η mesic nuclei in γ + A  N + η A'
reactions.
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2. DESCRIPTION OF THE FORMALISM

The total Hamiltonian for reaction (1) can be repre-
sented in the form

where H0 is the Hamiltonian describing the free motion
of all particles involved in the reaction and V and U are
the interactions responsible for, respectively, η-meson
photoproduction and η-meson scattering on a nucleus.
The amplitude for reactions (1) can then be written as [8]

where ϕ, χ, and ψ are eigenstates of the Hamiltonians
H0, H0 + U, and H, respectively, while T is the transition
operator for the photoproduction process in the absence
of meson–nucleus interaction. The second equality in
the last formula is valid by virtue of the relation

which is valid owing to the fact that the state ϕi does not
involve the meson.

It is now convenient to rewrite the generic Eq. (1)
for the reaction type in question as

(1‡)

where k = {k0, k}, q = {q0, q}, p = {p0, p}, Qi = {Q0i, Qi},
and Qf = {Q0f, Qf} are the 4-momenta of the photon,
meson, nucleon, initial nucleus, and final η mesic
nucleus, respectively, while  is the photon polariza-
tion vector. The amplitude for reactions of the type in (1),

is calculated below. It is related to the differential cross
section for such reactions by the equation

(2)

where K2 is a kinematical factor; in the laboratory
frame, it is given by

(3)

where M is the target-nucleus mass and θN is the
nucleon emission angle.

In order to calculate the reaction cross sections in
the impulse approximation, it is necessary to know the
amplitudes of η-meson photoproduction on protons
and neutrons. These amplitudes have been calculated in
the purely resonance model of the γN  Nη pro-
cesses by taking into account the contributions from the
P11(1440), D13(1520), and S11(1535) resonances. The
masses, total widths, and γ widths of these resonances

H H0 V U ,+ +=

ϕ f V U+( ) Ψi
+( )〈 〉 χ f

–( )
V Ψi

+( )〈 〉 χ f
–( )

U ϕ i〈 〉+=

=  χ f
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U ϕ i〈 〉 0,=

γ k eλ,( ) Ai Qi( ) N p( ) Aη f Q f( ),+ +
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f T̂ηA i〈 〉 ,

dσ
dΩN
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K2

2
------ f T̂ηA i〈 〉
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K2 2π( ) 2–
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p k0 M+( ) k0 p0 θNcos–
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were varied within the limits recommended in [9] in
order to reproduce the most precise data on the near-
threshold cross section for the process γp  ηp [10].
Fixing the contribution from these resonances to the
γn  ηn amplitude by using data from [9], we obtain,
in agreement with experimental data from [11], the
ratio

(4)

at the photon energy corresponding to the excitation of
the S11(1535) resonance.

3. AMPLITUDES FOR γ + A  N + η A' 
REACTIONS ON p-SHELL NUCLEI

Using the second-quantization technique and taking
into account the antisymmetry of the wave functions of
the initial (Ai) and final (Af , N) nucleon systems, we can
recast the relevant amplitude into the form

(5)

where |ψi 〉  and |ψf 〉  are the wave functions of the
nucleus Ai consisting of A nucleons and the nucleus Af

consisting of (A – 1) nucleons, respectively; (xA) =

(rA)χα(sA)χβ(tA) is the wave function of the
nucleon emitted with the momentum p [xA is the set of

the variables {rA, sA, tA}, while (r) is the spatial
component of the wave function of the neutron interact-

ing with the nucleus Af]; and  =  ·  is the operator
of η-meson photoproduction on an intranuclear
nucleon. In the impulse approximation, this operator
coincides with the operator of photoproduction on a
free nucleon, its spin–isospin structure being given by

(6)

where s and t = {τ1, τ2, τ3} are, respectively, the
nucleon spin and isospin operators, while the super-
scripts S and V label, respectively, the isoscalar and the
isovector component of the amplitude. For nucleons
whose kinetic energies TN are in excess of 50 MeV,
their interaction with a nucleus can be rather accurately
estimated on the basis of simple models—for example,
by using the intranuclear-nucleon wave function

(7)

which is a solution to the Schrödinger equation with
uniform optical potential V(r) = VR + iVI, where β is the
velocity and d(r) is the length of the proton path in the
nucleus; following [12], this trajectory is treated here as

σ γn ηn( )
σ γp ηp( )
---------------------------------- 0.73=

f T̂ηA i〈 〉

=  A ψ f〈 | Ψp
–( )* xA( )χq
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a classical one—that is, it is assumed to be parallel to
the momentum p. Since the wave function (7) is appli-
cable exclusively to calculations with a uniform nuclear

density in a nucleus of radius R, the function (r)
appearing in (5) factorizes, according to the mean value
theorem, as

(8)

The quantity D is factored out of the matrix element in
the form

(8‡)

where

In calculating this integral, it was considered that a
nucleon emitted from the outer nuclear layer of thick-
ness RA–1/3 must not undergo interaction. A quasista-
tionary η–nucleus state is formed over a finite time,
whereas knock-on nucleons are fast at any incident
energies (with the exception of those that are close to
the reaction threshold, which is considered below).
Therefore, final-state interaction between the nucleons
can be treated as that in ordinary nuclei consisting of
(A – 1) nucleons (see Fig. 1).

The wave function of the η meson in a nucleus can
be represented in the form

(9)

where Pl(cosθ) is a Legendre polynomial and the func-
tion unl(r) is a solution to the radial Schrödinger equa-
tion

(10)

Here, µ is the reduced mass, and the depth of the spin-
independent square-well potential U(r) is determined
from a fit to the ηN free-scattering length [13]
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Energy eigenvalues for η mesic nuclei

1s –(27.5 + i16.75) MeV –(30.2 + i16.85) MeV

1p –(10.28 + i7.88) MeV –(13.13 + i11.86) MeV

B
11
η C

11
η( ) N

15
η O

15
η( )
Equation (10) has an elementary solution at l = 0 and
analytic solutions in the form of Riccati functions for
l > 0. As usual, the conditions of energy quantization
are obtained by matching the logarithmic derivatives of
the wave functions unl(r) at the boundary of the region
where the potential is operative. The resulting energy
eigenvalues of η mesic nuclei are presented in the table
in the form

where ε and Γ are, respectively, the binding energy of
the quasistationary η–nucleus state and the width of the
corresponding level.

The same wave functions were used for the mem-

bers of the isotopic doublets  and  of η mesic
nuclei.

By isolating the last term in the sum entering into
amplitude (5), we obtain

(12)

where

(12‡)

The first term in amplitude (12) corresponds to the
quasifree photoproduction of mesons on nuclei, in
which case the nucleon emitted from the nucleus car-
ries away the entire momentum transfer associated with
meson photoproduction. The residual nucleus Af then
appears to be a spectator [14] having the same momen-
tum before and after the reaction event,

(13)

where the nucleon momentum pi in the nucleus before
the meson-production event is taken to be equal to the
value used in calculating the amplitudes for η-meson
photoproduction on an intranuclear nucleon. As long as
|Qf | < 250 MeV/Ò, the absolute value of the amplitude
component under consideration is much greater than |∆|
(12a). With increasing |Qf |, the amplitude component
responsible for quasifree photoproduction decreases
sharply, so that the remaining component ∆ of the
amplitude becomes substantial. This component of the
amplitude has yet to be clearly understood, but it is
known that the component ∆ in amplitude (12) can be
neglected in calculating the cross sections if the |Qf |
value falls within the most probable interval of the
momentum distribution of intranuclear nucleons—this
relationship can be seen from Eq. (13). In what follows,
we will consider reactions (1) in a kinematical region
where 50 < |Qf | < 250 MeV/c and therefore set ∆ = 0 in
amplitude (12).
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=  A ψ f〈 | Ψp
–( )* xA( )χq

–( )* rm( )e
ik rm⋅

tm eλ⋅
m 1=

A 1–

∑ ψi| 〉 .

Q f pi,–=
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In calculating the amplitudes and cross sections for
reactions (1), the contribution from the η-meson photo-
production on the s-shell nucleons of the 12C and 16O
nuclei is neglected here, whereby the intricate problem
of the contribution from the alpha-particle cores of the
target nuclei to the cross sections for these reactions is
removed from the present analysis. Within this approx-
imation, it is sufficient to treat nuclei on the basis of the
shell model featuring intermediate coupling [15, 16]. In
this model, where the central potential is represented by
a harmonic oscillator, the wave function of the 12C
nucleus is taken in the simple form whose spatial com-
ponent possesses the highest possible symmetry in the
p-shell nucleons:

(14)

Here Ji is the spin of the nucleus, and Mi is its projec-
tion; Li,  Si, and Ti are, respectively, the total orbital
angular momentum, spin, and isospin of the p-shell
nucleons; and [44] = [fi] is the Young diagram [17] for
these nucleons. The wave function of the 16O nucleus
with the closed p shell is written in the similar form

(15)

Within the approximations being used, the amplitude of
reactions (1) for p-shell target nuclei whose spin and
isospin are both equal to zero can be represented in the
form (LS representation)

(16)

where  are ordinary Clebsch–Gordan coeffi-

cients and  are single-particle fractional-parentage
coefficients for p-shell nuclei. For 16O, the relevant
coefficient can take only one value (unity), while, for
the 12C nucleus with the LS configuration (14), the only
nonzero fractional-parentage coefficient is
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In Eq. (16),

(17)

is the spin- and isospin-dependent amplitude for η-
meson photoproduction on a nucleon, and we have also
used the notation

(18)

where Q f = k – p; Nη(l) is the normalization factor for
the lth partial wave of the η meson in the nucleus; and 

is the normalization factor for the wave function of the
p-shell nucleon of the nucleus, r0 being the oscillator
parameter taken to be 1.67 and 1.80 fm for the 12C and
16O nuclei, respectively.

4. CROSS SECTIONS FOR THE FORMATION 
OF η MESIC NUCLEI IN THE 1s STATE

Setting l = 0 in Eq. (16), we obtain the amplitude for
the photoproduction of η mesic nuclei in the 1s state in
the form

(19)

where

(20)

(21)

The differential cross sections for the reactions

(22p)

(22n)

(23p)

(23n)

Hξτ
αβ λ( ) χβ

+
t( )χα

+
s( )tA

λ
s t,( )χξ s( )χτ t( )

s t,
∑=

Gl Q f( ) d
3
rΦp

–( )* r( )e
ik r⋅

unl r( )/r∫=

=  4πNlNη l( ) i( )κ
Yn

κ Q̂ f( ) Yn
κ r̂( )[ ]*∫

Ωr

∫
n κ–=

κ

∑
κ 0=

∞

∑

× Ym
1 r̂( )Yν

1 r̂( )dΩrD* jκ Q f r( )re
–r

2
/2r0

2

  
u
 

nl 
r

 
( )

 
r
 -------------- r 

2
 r , d 

0

 

∞

 ∫

N1
8

3r0
5 π

---------------
1/2

=

f〈 |T̂ηA
1s

i| 〉 A 4–
6

------------ 1–( )
ξ J f– m+

T f T f
z 1

2
---τ 00,〈 〉

m ξ,
∑=

× 1m
1
2
---ξ J f M f–,〈 〉 Hξτ

αβ λ( )G0 Q f( ),

G0 Q f( ) i 4πN1Nη 0( )D*Ym
1 Q̂ f( )I11 Q f( );=

I11 Q f( ) j1 Q f r( )r
2
u10 r( )e

r
2
/2r0

2
–

r.d

0

∞

∫=

γ C12 p B11
η g.s. 1s( ),+ +

γ C12 n C11
η g.s. 1s( ),+ +

γ O16 p N15
η g.s. 1s( ),+ +

γ O16 n O15
η g.s. 1s( ),+ +



350 TRYASUCHEV

                    
where the nucleon cores 11A and 15A of the product η
mesic nuclei are in their ground states, can be repre-
sented in the form

(24)

We have  = LS + LV when the
knock-on nucleons are protons (N = p) and Kn = KS – KV

and  when the knock-on nucleons are
neutrons (N = n), KS, V and LS, V in the operator form
being given by (6). In addition to the convolutions of
the Clebsch–Gordan coefficients, the factors Z involve
the factor 8(A – 4)/3; eventually, Z = 128/9 for reaction
(22) and Z = 32/3 for reaction (23). Thus, the cross sec-
tions for reactions (22) and (23) differ only by a con-
stant factor. For this reason, only the differential cross

sections for (1s) formation in reaction (22) is dis-
played in Fig. 2 (for various photon energies). The
angular distribution of protons is concentrated predom-
inantly in the forward hemisphere. With increasing
energy of incident photons, the angular distribution of
protons develops a maximum at θp ≈ 12°, whose posi-
tion is stable to variations of the photon energy within
the range under consideration (see Fig. 2). To a high
precision, the ratio of the cross sections for reactions
(1) resulting in the knockout of neutrons and protons is
equal to the ratio in (4), a result that is due to the use of
the impulse approximation. Curves 1 in Fig. 3 represent
the total cross sections for reactions (22) as functions of
the photon energy. Recall that the same wave functions
were used for both members of each isotopic doublet of
η mesic nuclei (see table). Curves 1 in Fig. 4 depict the
total cross sections for reactions (23) as functions of the
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Fig. 2. Angular distribution of protons from the reaction
12C(γ, p) (1s) in the laboratory frame for the incident-

photon energies of k0 = (1) 600, (2) 700, and (3) 800 MeV.

B
11
η g.s.
incident-photon energy. Although the number of nucle-
ons in the 12C nucleus is less than that in the 16O
nucleus, the total cross section for reaction (22p) is
larger than that for reaction (23p) because the spin J =

3/2 of the  nucleus exceeds the spin J = 1/2 of the

 nucleus (see curves 1 in Figs. 3, 4).

Because the η–nucleus interaction described by the
potential U(r) is independent of the nuclear spin, the set
of the spin states of the product η mesic nuclei is com-
plete. Therefore, it is convenient to calculate the
squared absolute values of the amplitude by sampling
the spins of various stationary excited states of their
nucleon cores. As a result, we approximately obtain the
differential cross sections for the reactions
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(26n
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 mesic nuclei are formed with various spins.
The cross sections for reactions (25) and (26) are deter-
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the cross sections by
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Fig. 3. Total cross sections for the reactions (solid curve 1)

γ + 12C  p + (1s), (solid curve 2) γ + 12C 
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where α is the ratio of the spectroscopic factor for the
stripping of one p-shell nucleon from the 12C nucleus
with the formation of the residual nucleus in the afore-
mentioned excited state to the spectroscopic factor for
the stripping accompanied by the formation of the
residual nucleus in the ground state. For this ratio, the
calculation in [16] on the basis of the nuclear model
being considered yielded 0.30, and it is this value that
was used in the present calculations. Figures 3 and 4
show the total cross sections calculated for reactions (25)
and (26). These cross sections for nucleons with identi-
cal electric charges are approximately equal to each
other owing to the inclusion of a low-lying 11B level
whose quantum numbers coincide with those of the
ground state. In all probability, the cross-section values
calculated for reactions (25) by approximate Eq. (24)
must be treated as maximum possible values, because
other estimations of the contribution from the discrete

degrees of freedom of the nucleon core of the 
nucleus yield the smaller value

Z ≈ (183 + 128α)/9

if use is made of the spectroscopic factors calculated in
[16] for the dissociation reaction 12C  p + 11B*. A
calculation with data quoted in [18] for the strengths of
the nuclear transitions 12C  p + 11B* leads to a still
smaller value of Z in expression (24) for the cross sec-
tion for reaction (25):

Z ≈ (147 +128α)/9.

The cross sections for  photoproduction that are
calculated with above values of Z and with allowance
for the possible excitations of the nucleon core are plot-
ted in Fig. 5. As can be seen from this figure, the con-
tribution from the discrete levels of the core to the cross
section for reaction (25p) may be one-fourth as large as
that presented in Fig. 3 (curves 2). As might have been
expected, the cross sections for the reactions that lead
to neutron emission accompanying the formation of η
mesic nuclei  and  are considerably smaller
than those for the corresponding reactions that lead to
proton emission (see Fig. 3, 4).

5. CROSS SECTIONS FOR THE FORMATION
OF η-MESIC NUCLEI IN THE 1p STATE

Setting l = 1 in the general expression (16) for the
amplitudes of the reactions being studied, we obtain the
amplitudes for the formation of 1p-state η-mesic nuclei
in reactions (1):

(27)
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By using the standard algebra of spherical harmonics,
the tensor G1 in the angular-momentum representation
(18) can be recast into the form

(28)

where

(29)

In the approximation of completeness of the spins of
product η mesic nuclei, the differential cross sections
for the reactions
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Fig. 4. As in Fig. 3 but for 16O target nuclei.
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Fig. 5. Total cross sections for the formation of (1s)

nuclei in the reaction γ + 12C  p + (1s) according

to the present calculation with allowance for only those
excited core states that are described in the main body of the
text: (dotted curve) maximum possible result, (dashed
curve) result obtained by using the computational data from
[16], and (solid curve) result derived with allowance for data
quoted in [18].
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(31p)

(31n)

can be represented as1) 

(32)

where Z = 16/27 and 8/9 for reactions (30) and (31),
respectively. Figure 6 shows the differential cross sec-
tions for reaction (31p) that were calculated by Eq. (32)
at various photon energies. They exhibit a complicated
structure at energies above 650 MeV. However, the gen-
eral behavior characterized by predominantly forward
emission remains similar to that in the formation of 1s-
state η mesic nuclei (compare with Fig. 2). Curves 3 in
Figs. 3 and 4 represent the total cross sections for the
formation of 1p-state η mesic nuclei. The energy
dependences of the total cross sections for these reac-
tions and those considered above are markedly differ-
ent: the maxima in the total cross sections are shifted
toward higher photon energies to a greater extent than
those in the cross sections for the corresponding reac-
tions that lead to the formation of η mesic nuclei in 1s
states (see Figs. 3 and 4). For knock-on nucleons of
identical species, the absolute values of the cross sec-
tions for reactions (30) and (31) differ only slightly
from those of the cross sections for reactions (25) and
(26).

1)I apologize for making a mistake in calculating the cross sections
for the formation of 1p-state η mesic nuclei in [19].
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Fig. 6. Angular distribution of protons from the reaction
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6. FINAL-STATE INTERACTION

The cross sections for reactions (1) are sizably
affected by the final-state interaction (FSI) between the
outgoing nucleon and a nucleus. This interaction is
taken into account through the factor |D|2 in front of the
differential cross section derived with the emitted-
nucleon wave function taken in the form of plane
waves. If the total nuclear optical potential V(r) = VR +
iVI borrowed from [14] is incorporated in the model
under consideration, the differential and total cross sec-
tions for reactions (1) are reduced by a factor greater
than 2. In this case, the inclusion of the real part of the
potential in addition to the imaginary part enhances this
suppression [19]. A considerable reduction of the cross
section for reactions (1) owing to FSI is explained to a
considerable extent by the fact that the model used here
is oversimplified [see Eq. (7)]. In accordance with [20],
the factor |D|2 in front of the cross sections was there-
fore replaced by the expression

which is given by Eq. (8a) at

whereby the diagonal terms in the expression from [20]
for the cross section for the inclusive photoproduction
of mesons on nuclei are justifiably identified with our
expression for the quasifree photoproduction on a
nucleus. Figures 7 and 8 show the cross sections calcu-
lated for the formation of η mesic nuclei in reactions (1)
with allowance for the FSI as described above. It should
be noted that Eq. (7) reflects adequately the interaction
between nucleons and a nucleus only for nucleon ener-
gies above 50 MeV [12]—that is, somewhat higher
than the reaction thresholds. When nucleons are formed
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Fig. 7. Total cross sections for the reactions (curves 1s) γ +
12C  p +  and (curves 1p) γ + 12C  p + 

as functions of the incident-photon energy according to the
calculations (solid curves) with and (dashed curves) without
allowance for final-state interaction.
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with energies below 40 MeV, the effect of nucleon–
nucleus interaction depends strongly on the state of a
residual nucleus because the interaction predominantly
proceeds through a giant dipole resonance and cannot
be taken into account within a simple model. For reac-
tions (1) near the threshold (Tp < 40 MeV), the FSI
effect was taken from [18], where it was calculated for
12C(γ, p)11B* reactions. Note that this result, presented
in Figs. 7 and 8, must be considered as a qualitative
one—namely, a result that shows what can be expected
from the FSI near the thresholds for reactions (1).

The near-threshold behavior of the cross sections
for reactions (1) requires a dedicated investigation
because the approximation ∆ = 0 [see Eq. (12)] fails in
this case, so that η mesic nuclei are formed through a
different mechanism. In particular, reactions of the type
in (1) may proceed, in this case, through the multiparti-
cle mechanism

(33)

because the transition

(34)

is allowed owing to the difference in the binding ener-
gies of the 1s and 1p states of the η mesic nucleus (see
table). It is interesting to note that the formation [(33)]
and the decay [(34)] of η mesic nuclei can be responsi-
ble for nonobservation of the threshold anomalies in the
cross sections for the production of η mesons on nuclei
heavier than 4He. The formation of 1s-state η mesic
nuclei on 12C and 16O target nuclei in reaction (33) is
forbidden because of their zero quantum numbers.

In conclusion, we note that more elaborate calcula-
tions of the cross sections for reactions (1) on the
p-shell nuclei and a procedure for taking FSI into
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Fig. 8. As in Fig. 7 but for 16O target nuclei.
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account are required to assess the contribution of the
excited discrete states of the nucleon cores of η mesic
nuclei to the cross sections for the reactions considered
in the present study.
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Abstract—A method is proposed that is appropriate for resolving the Hamiltonian constraint and which leads
to a reparametrization-invariant reduced theory specified by a well-defined nonzero local Hamiltonian. This
method is based on introducing a global (dependent only on time) conformal variable. The physical and geo-
metric meaning of the variables in the reduced action functional is investigated. It is shown that, within the the-
ory, the method of small perturbations is self-consistent. It is demonstrated that, in the theory of gravity, there
are no wavelike excitations that make a negative contribution to the Hamiltonian. From an analysis of the
reduced classical theory in the linear approximation, it follows that, at the first instants from the birth of the
Universe, the extremely rigid equation of state appeared to be the effective equation of the state of gravity mat-
ter. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the commonly accepted Hamiltonian
formulation of the general theory of relativity is based
on the Arnovit–Deser–Misner (ADM) parametrization
of the four-metric of the spacetime manifold [1]. Orig-
inally, this formulation was developed with the aim of
quantizing the gravitational field. Intensive investiga-
tions have been performed in order to reveal the geo-
metric and the dynamical meaning of the ADM param-
eters and the so-called physical sector of variables cor-
responding to graviton degrees of freedom [2–5]. Much
attention has also been given to the initial-condition
problem [2, 6–9] and to the problem of energy and sur-
face terms [1, 10, 11].

Below, we list some as-yet-unsolved problems that
hinder, in our opinion, a correct quantization of the
gravitational field.

The first of these is the Hamiltonian problem. The
point is that the general theory of relativity, which is a
singular theory featuring primary and secondary first-
class constraints, has a Hamiltonian that is proportional
to constraints and which vanishes on the manifold spec-
ified by the equations of motion. This fact complicates
an unambiguous definition of the generator of evolution
for the state function in the quantum theory and the
interpretation of the energy of the gravitational field. As
to the direct quantization of constraints that yields, for
example, the Wheeler–DeWitt equation, it leads to an
unnormalized wave function for the state. In all proba-
bility, this will occur for all general covariant metric
formulations of gravitation.

The second problem concerns the self-consistency
of perturbation theory. It was noted by Kuchar [12] that,

* e-mail: smirvi@thsun1.jinr.ru
1063-7788/01/6402- $21.00 © 20354
upon taking the divergence of the transverse constraint,
the shift vector drops out from the constraint equation;
as to the lapse function, it does not appear in the linear-
ized constraint equation. Herein lies non-self-consis-
tency complicating the formulation of perturbative
quantum theory. Indeed, the metric representation of
the state functional is based on the assumption that the
components of the metric tensor gik can be taken to be
independent variables. In classical theory, this assump-
tion was formulated as the thin-sandwich theorem.
According to this theorem, the initial values gik,
together with the derivatives gik, 0 (for appropriate
boundary conditions), unambiguously determine the
metric of spacetime. It is assumed that, if gik, 0 and gik
are specified on the initial hypersurface, it is possible,
on the basis of four constraint equations, to find four
unknown quantities—the lapse function and the shift
vector—that determine completely the 4-metric of
spacetime. In the linear approximation, this theorem is
violated, so that we must fix, in some way, the lapse
function and the shift vector. It follows that, in the lin-
ear approximation, available information is insufficient
for determining, for example, the lapse function on the
basis of fixed gik and gik, 0 values. It is obvious that, if we
have no well-defined perturbation theory at the classi-
cal level, we can hardly hope that the perturbative quan-
tum theory of gravitation will be successful.

The next problem is that of reduction. By reduction,
one implies the separation of the dynamical content of
the theory on the constraint surface from redundant
variables that are responsible for gauge arbitrariness.
Undoubtedly, this problem is related to the aforemen-
tioned two. There are two methods for solving it. The
first consists in imposing additional gauge conditions
that eliminate redundant variables. The second is to
resolve constraints. The first method is advantageous in
001 MAIK “Nauka/Interperiodica”
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that it is convenient and straightforward because the
conditions in question are usually chosen in such a way
as to simplify significantly the calculations. However,
the method has some disadvantages—in particular, the
applicability range of a specifically chosen gauge is
rather narrow, and we cannot be positive about the com-
patibility of this gauge with actual dynamics. The
method of resolving constraints, should we be able to
implement it completely, would be an ideal tool for
researchers, and this would mean that the true dynamics
on the constraint manifold is found in the general case.
However, it is difficult to realize this method technically
because of the complicated structure of constraints.

It is possible that the true strategy for studying
the  reduction problem consists in combining the two
methods.

In the present study, we try to solve all three prob-
lems indicated above.

1.1. Arnovit–Deser–Misner Parameters
and Kinemetric Transformations

In order to construct the Hamiltonian formalism, it
is necessary to separate space from time or to perform
a so-called 3 + 1 partition of the spacetime into a set of
spacelike hypersurfaces t = const. The Arnovit–Deser–
Misner (ADM) parametrization

(1)

which is unambiguously related to quantities that char-
acterize the set of hypersurfaces t = const, is the most
appropriate for this. Here, the lapse function N and the
shift vector Nk are used to form the 4-vector να = (1/N,
–Nk/N), which is a unit normal to the hypersurface. By
additionally using the intrinsic metric hij, we can spec-
ify the second quadratic form as

(2)

which determines the embedding of the three-dimen-
sional hypersurface into the enveloping four-dimensional
spacetime. Coordinate transformations that preserve a
given partition into a set of hypersurfaces t = const are
referred to as kinemetric transformations [13, 14]:

For the lapse function N and the shift vector Nk, the cor-
responding transformations are

(3)

(4)

ds
2

gαβdx
α
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2
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The first and the second quadratic form change in this
case as rank-2 3-tensors. We can also find out how the
ADM parameters change under nonkinemetric trans-
formations [15], which correspond to a transition from
one set of hypersurfaces to another. Nevertheless, we
will use only kinemetric transformations because this
corresponds to fixing a 3 + 1 partition. The conditions
of this fixing will be specified below.

We note here that kinemetric transformations of
coordinates include the reparametrization of time, t' =
t'(t). It is this reparametrization invariance of the action
functional that plays a key role in defining the reduction
procedure and in constructing a nonzero Hamiltonian.

1.2. Invariance under Time Reparametrization
and Reduction

Let us consider the reparametrization-invariant sys-
tem specified by

(5)

where

(6)

is the extended Hamiltonian.
The action functional (5) was constructed on the

basis of the conventional action functional

(7)

of classical mechanics by introducing an additional pair
of canonical variables, (p0, q0), and a Lagrange multi-
plier, N.

A reduction of the extended system specified by (5)
to (7) means exactly solving the equations

(8)

(9)

(10)

Equation (8) is a constraint, Eq. (9) is a conservation
law, and Eq. (10) establishes a relation between the
parameter of evolution for the reduced system specified
by (7) and the Lagrange time,

(11)

The Lagrange time is an invariant [T(t') = T(t)].

W
E

pi qi; p0 q0 t N, , ,[ ]

=  t p0q̇0– piq̇i

i

∑ NHE q0 p0; qi pi, ,( )–+
 
 
 

,d

t1

t2

∫

HE q0 p0; qi pi, ,( ) p0– H pi qi,( )+[ ]=

W
R

pi qi q0,[ ] q0 pi

qid
q0d

--------
i

∑ H pi qi,( )–d

q0 1( )

q0 2( )

∫=

δW
δN
-------- 0 p0– H pi qi,( )+ 0,= =

δW
δq0
-------- 0 ṗ0 0,= =

δW
δp0
-------- 0 dq0 Ndt dT .≡= =

dT Ndt.=
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In our case, the two times q0 and T coincide. In rel-
ativistic mechanics specified by the action functional

(12)

this is not so. In such a theory, the constraint equation

–  +  + m2 = 0

is usually solved for the momentum appearing in the
extended Hamiltonian with a negative sign; that is,

(13)

Thus, the variable conjugate to this momentum
becomes the parameter of evolution for the correspond-
ing reduced system:

(14)

This corresponds to resolving the constraint equation.
A variation of the action functional (12) with respect

to the additional momentum p0 yields

(15)

On the manifolds specified by the equations of
motion, formula (15) represents a Lorentz transforma-
tion of the proper time q0 of a particle into the proper

time T = q0  of an observer.
In contrast to what occurs in classical mechanics,

the parameter of evolution here does not coincide with
the Lagrange time, which is measured in the comoving
reference frame.

We note that any reparametrization-invariant theory
involves three times: (i) the coordinate time t [the cor-
responding Hamiltonian vanishes on the manifold
specified by the constraint in (8)], which is unobserv-
able; (ii) the invariant Lagrange time T constructed with
the aid of the Lagrange multiplier (11) (in the case of
relativistic mechanics, it coincides with the particle
proper time);1) and (iii) the dynamical parameter of
evolution for the corresponding reduced system {in our
case [specified by Eq. (7)], this is q0}.

The last two times are related by the equation of
motion for the additional momentum. The idea of this

1)By the term proper time, we will henceforth imply the Lagrange
time.

W
E
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1 v
2

–

classification of time in reparametrization-invariant
theories was set forth by Gyngazov et al. [16], who also
gave a prescription for a Hamiltonian reduction of such
theories. Briefly, it amounts to the following.

In the process of Hamiltonian reduction, any
extended system specified by

is split into two subsets of equations. The first is a set of
reduced subsystems specified by

and associated with various solutions to the Hamilto-
nian constraint equation

The second is determined by the equations for the addi-
tional momentum,

(16)

and for the additional coordinate that reduces to the
dynamical parameter of evolution. Equation (16)
describes the evolution of the proper time with respect
to the dynamical parameter of the reduced system.

It should be noted here that, for the Hamiltonian
reduction, the following two statements are valid:

(i) The parameter of evolution for the reduced sys-
tem is one of the original dynamical variables of the
extended system.

(ii) The variational principle must be supplemented
with a convention on the measurable time.

Thus, it is shown by exactly resolving the Hamilto-
nian constraint that one of the primary variables of the
original extended system drops out from the phase
space and becomes the parameter of evolution for the
reduced system. The action functional for a reparame-
trization-invariant theory must be supplemented with a
geometric convention according to which the measur-
able time interval is put into correspondence with the
parameters and variables of the extended system. In
addition, we have proper-time dynamics described by
two equations, one for the additional momentum and
one for the coordinate. In the special theory of relativ-
ity, proper-time dynamics is merely represented by the

W
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relation between the proper time of an observer and the
proper time of a particle (Lorentz transformation).

1.3. Formulation of the Problem

The main objectives of the present study are to con-
struct consistently and to justify a Hamiltonian reduc-
tion for the general theory of relativity in a form as gen-
eral as is possible, to perform a dynamical analysis of
this system in the present context, and to formulate per-
turbation theory in the reduced theory and to investi-
gate the linear approximation.

In accordance with all the aforesaid, this article is
organized as follows. Section 2 is devoted to describing
and justifying the method of Hamiltonian reduction
implemented in the general theory of relativity by intro-
ducing a global variable and by resolving one Hamilto-
nian constraint. The meaning of the reduced action
functional in relation to the original theory is discussed
further. In Section 3, we formulate perturbation theory
and analyze linearized theory.

1.4. Notation

In this article, we use the following notation. The
signature of the metric of spacetime is (1, –1, –1, –1).
The Greek indices α, β, γ, … run through the values 0,
1, 2, 3 and denote world tensor indices. The Latin indi-
ces run through the values 1, 2, 3 and label space com-
ponents of tensors. The symbol ∇ i denotes a covariant
differentiation for the intrinsic metric hij of the space-
like hypersurface, while ∇ α denotes a covariant differ-
entiation for the 4-metric of spacetime. The Riemann
curvature tensor is defined as

2. HAMILTONIAN REDUCTION
IN THE GENERAL THEORY OF RELATIVITY

2.1. Extended Action Functional

We proceed from the Einstein–Hilbert action func-
tional, where an electromagnetic field is chosen for
matter. We have

(17)

where MPl is the Planck mass. In order to perform a rep-
arametrization-invariant Hamiltonian reduction, we
must single out an additional variable and resolve the
constraint with respect to the momentum conjugate to
this variable. This variable must depend only on time;
that is, it must be global. Naturally, there is no such
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variable in the original set of variables. Let us introduce
it by parametrizing the metric as

(18)

where φ(t) is a scalar conformal factor. Thus, we intro-
duce the required additional global variable and for-
mally fix a kinemetric group. Indeed, the function φ
defined as that which is a scalar and which depends
only on time preserves these properties only under
kinemetric transformations. Under nonkinemetric
transformations—for example, under the t' = t'(t, x)
tranformation—φ ceases to be a function that depends
only on time. Thus, the action functional takes the form

(19)

For the metric , we choose the parametrization

(20)

From the standard ADM parametrization, this parame-
trization differs only by a factorization of the lapse
function into two factors, a local and a global one:

(21)

Under kinemetric changes of variables, the global lapse
function N0(t) transforms as

at the same time, the local lapse function 1(t, x)
remains a kinemetric scalar. In terms of the ADM
parametrization (20), the action functional can be rep-
resented as
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where
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and

(25)

is a surface term.
To compensate for the introduction of two addi-

tional global variables, it is necessary to introduce two
global conditions in order to preserve the original num-
ber of independent variables. One of these conditions
can be chosen as

(26)

It diagonalizes the kinetic term in the action functional.
The second global condition will be introduced below.

By going over to the first-order formalism, we
obtain the action functional in the form

(27)

with the extended Hamiltonian being given by 

(28)

where

(29)

(30)

(31)

Here, {Pij, hij}, {Pi, Ai} is the set of canonically conju-
gate variables, while {P0(t), φ(t)} are additional global
variables.

The set of constraints is given by
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We note that the constraint in (32) can be obtained from
(33) by means of integration over space. The additional
momentum satisfies the equation

(36)

2.2. Reduction

In accordance with the prescription of Hamiltonian
reduction, we resolve constraint (32) for the additional
momentum P0; further, we use Eq. (33) to determine
the local lapse function 1. As a result, we arrive at

(37)

(38)

where H(R) is the generator of evolution with respect to
φ.2) By taking into account solutions to the constraints
in (37) and (38), we can recast the action functional into
the form (the surface term is omitted here)

(39)

On the manifold specified by the remaining transverse
constraints (34) and (35), this action functional has a
nonzero local Hamiltonian:

(40)

(an overdot denotes differentiation with respect to φ).
The relevant reduced Hamiltonian is constructed from
time-reparametrization invariants; it completely speci-
fies the dynamics of the variables {Pij, hij} and {Pi, Ai}
entering into it. Since nondynamical variables (in partic-
ular, the local lapse function 1) are eliminated from this
system, its dynamics is determined unambiguously.

In order to establish correspondence with the gen-
eral theory of relativity, we need here the additional
relations (36)–(38). We now recall that we have at our
disposal an additional global condition that we must
impose on the parameters of the extended action func-
tional and which we choose in the form

(41)

2)For the sake of definiteness, we will henceforth always take a
negative sign in (37). Geometrically, this corresponds to the fact
that the congruence of observers that is normal to the hypersur-
faces t = const diverges with time.
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where V0 is a fixed constant, ∂φV0 = 0. Relations (38),
(37), and (36) are written as

(42)

(43)

(44)

Eliminating P0 from (42) and (44) with the aid of (43),
we can recast these equations into the form

(45)

(46)

where dη is an interval invariant under time reparame-
trizations.

The dynamical system specified by the reduced
action functional (40) and supplemented with relations
(45) and (46) determines completely the metric of
spacetime in the general theory of relativity in the coor-
dinate frame where g0i = 0.

Let us demonstrate theoretically how the above
scheme works.

We specify the initial data {Pij, hij}  and {Pi,

Ai} , where Pij and Pi satisfy the transverse con-
straints (34) and (35). By using the reduced Hamilto-
nian H(R) , we then obtain hij(φ, xi) and Ai(φ, xi). From
relation (46), we further find the dependence of φ on η;
after that, we deduce the local lapse function 1 from
(45). Thus, we completely determine the metric (18) of
spacetime in the coordinate frame where all g0i vanish.

We use the following classification of time: (i) the
coordinate time t (the corresponding Hamiltonian van-
ishes on the manifold specified by the relevant con-
straint), which is unobservable; (ii) the invariant
Lagrange time η constructed with the aid of the
Lagrange multiplier N0; and (iii) the dynamical param-
eter of evolution for the corresponding reduced system
(it is equal to φ in our case).

In addition, the general theory of relativity specifies
the measurable proper time of an observer at rest,

(47)

We would like to highlight the following special fea-
tures of the reduced action functional:

(I) The Hamiltonian density 2  is a local function
of field variables; moreover, it is a kinemetric scalar.

(II) The Hamiltonian density (and, hence, the
reduced Hamiltonian itself) does not vanish on the
manifold specified by the equations of motion; other-
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wise, this would contradict relation (45) (the lapse
function cannot be equal to zero).

(III) The reduced Hamiltonian explicitly depends on
time (on the evolution parameter φ).

The first two features are quite appealing from the
point of view of interpreting the Hamiltonian density
on the manifold specified by the equations of motion as
measurable-energy density. The time dependence of
the Hamiltonian complicates the construction of con-
servation laws—for example, the law of energy conser-
vation. Nevertheless, we will further associate the con-
cept of the physical energy of fields with the reduced
Hamiltonian. In the next section, this question will be
analyzed within linearized theory in more detail.

Here, we note that Eq. (45) directly relates the con-
cept of the lapse function to the Hamiltonian density
and, hence, to the density of the field energy.

Problems associated with the validation of the
Hamiltonian reduction were investigated in [15, 17],
where it was proven that no choice of coordinate frame
can lead to the vanishing of the global momentum.

3. PERTURBATION THEORY

We begin to formulate perturbation theory by con-
sidering the reduced system specified by Eq. (40), for
which we introduce the expansions

(48)

(49)

where  and P(1)ij are perturbations of order λ, λ !

1, while  and P(2)ij are perturbations of order λ2. The

metric  is some background metric in whose vicin-
ity the expansions are performed. Let us also assume
that all perturbation fields admit a decomposition into
the transverse and the longitudinal parts [2–5] with

respect to the metric :

(50)

(51)

(52)

Hereafter, the covariant derivative is consistent with
respect to the background metric as well. Since there
are no nondynamical variables in the reduced action
functional, consistent calculations within perturbation
theory do not involve difficulties of fundamental char-
acter.3) 

3)If difficulties of a technical character that are associated with
complexity and nonlinearity are not considered to be fundamen-
tal.
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3.1. Zero-Order Approximation

Let us assume that the metric of the zero-order
approximation is the Friedmann–Robertson–Walker
metric

(53)

where f(χ) = {sinχ, χ, } for the spaces of, respec-
tively, positive, zero, and negative curvature and r0 is a
constant having dimensions of length.

In the zero-order approximation, * is given by

(54)

Since the dynamics of matter fields is of no interest to
us, we take the contribution of matter in the form of an
effective constant C0; that is,

(55)

Substituting (55) into the additional relations (46) and
(45), we obtain

(56)

We now determine the constant V0 in such a way that
the local lapse function is 1 ≈ 1. For the cases of k = 0,

–1—that is, for open spaces—the integral (χ)

and the constant V0 (χ) are divergent. We can then admit
the existence of the limit

(57)

in which case expression (46) takes the form

(58)

Thus, we have completely determined the metric in
(18) in the zero-order approximation. With allowance
for the above two relations, this metric determines the
Friedmann–Robertson–Walker metric of the space
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filled with a photon gas whose energy density ε is pro-
portional to C0 /φ4. Relations (45) and (46) and the

expression for *
(0)

 specify the law of evolution of the
cosmological Friedmann metric in terms of the global
motion of the system.

3.2. Linearized Approximation

We assume that interaction between matter and
gravity is negligibly small. Moreover, only the effective
constant C0 is retained as the contribution of matter in
this approximation, since we are going to investigate
the dynamics associated exclusively with gravitational
perturbations. We begin by considering the linearized
constraint (34):

(59)

Considering that  is expressed in terms of  as

(60)

and that  is independent of time and using (59), we
obtain

(61)

The last expression is a corollary of the transverse con-
straint rather than a gauge condition. We now go over

from the canonical set of variables {P(1)ij, } to a

new set of variables { , }, P(1), h(1)  by means

of the transformation

(62)

This transformation is not canonical for h(1) ≠ 0, but it
is nondegenerate, so that we can investigate the dynam-
ics in question by using the new set of variables. The
reduced action functional takes the form

(63)

where

. (64)

Apart from a time-dependent coefficient, the kinetic

part  can be written as

(65)
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The transverse expansion [2–5] for  has the form

(66)

where Wj is a transverse vector, ∇ iWi = 0, and  is
the traceless transverse part.

The constraint equation (59) can now be represented
in the form

(67)

Considering that the metric  is isotropic, R(h(0))ij =

2k , and that, if two vectors are equal to each other,
their transverse and longitudinal parts are also equal,
we have Wi = 0, and Eq. (67) reduces to

(68)

The last equation can be recast into the form

(69)

whence we obtain

(70)

We further consider the case of k = 0—that is, the case
where the background metric is flat. We then have

(71)

In this case, the transverse expansion can be repre-
sented as 

(72)

where W satisfies Eq. (71).

Taking into account the last expansion and calculat-
ing the right-hand side of (65), we arrive at
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(73)

We conclude that, in the second-order approximation,
the quantity P(1) does not appear in the reduced Hamil-
tonian. This means that a variation of the reduced
action functional with respect to P(1) leads to the equa-
tion

(74)

Consequently, we can set h(1) = 0 at the initial hypersur-
face, and this condition will be satisfied on all hypersur-
faces at all subsequent instants of time. Thus, the pair
of the variables {P(1), h(1)} drops out from the reduced
Hamiltonian in the second-order approximation (lin-
earized equations), and this follows from the transverse
constraints and the Hamiltonian structure rather than
from the gauge.

For the reduced Hamiltonian, we now present the
full expression correct to the λ2 terms inclusive. The
quantity * then takes the form

(75)

Here, we have considered that a contribution that is pro-
portional to λ2 and which arises from the perturbation
of the metric is added to the factor C0 corresponding to
the effective contribution of matter. It can be seen that,
in *, there is no contribution linear in λ. The reduced
Hamiltonian assumes the form

(76)

Let us go over to a new set of variables {πij, eij} by
means of the transformations
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which are canonical in the limit of large φ. We then
arrive at the reduced Hamiltonian in the form

(78)

At φ values so large that the last term on the right-hand
side of (78) can be disregarded, the reduced Hamilto-
nian H(R) exactly describes the wave equation, so that
the concept of energy can be associated with this
Hamiltonian.

A system specified by a Hamiltonian similar to that
in (78) was analyzed in [18] within the holomorphic
representation of the oscillatory approximation.

At small φ values, the Hamiltonian in (78) greatly
depends on the evolution parameter. In this case, the
reduced Hamiltonian can be represented in the form
(we now investigate the more general case of R(0) =

6k/ , k = 1, 0, –1)4) 

(79)

The dynamical equation for  has the form

(80)

that is,  is independent of φ. The equation that
relates the invariant time η to the evolution parameter φ
(scale factor) has the form

(81)

Taking the integral in the denominator on the right-
hand side of (81) to mean averaging over space and
retaining only the space-averaged contribution to
proper-time dynamics, we obtain

(82)

where C1 is the averaged contribution from

6 . Equation (82) exactly replicates the
dynamics of the scale factor of the cosmological Fried-
mann model for the extremely rigid equation of state
for homogeneous matter.

4)We also set C0 = 0.
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Following the same line of reasoning, we can show
that the averaged contribution of gravitational excita-
tions to cosmological dynamics at large φ values corre-
sponds to the Friedmann radiation-dominated Uni-
verse.

4. CONCLUSION

The reduction described above leads to a Hamilto-
nian theory invariant under time reparametrizations.
The existence of a global partition of a 4-manifold into
a family of spacelike hypersurfaces and the isolation of
the dynamics of the global variable associated with this
partition have made it possible to formulate, on the
basis of the Einstein equations, a reduced theory featur-
ing no nondynamical parameters. This version of solu-
tion to the reduction problem leads to a nonzero local
Hamiltonian that serves as the generator of evolution of
the reduced system with respect to the invariant param-
eter φ.

We note that the popular opinion that the gravita-
tional energy is not localized in terms of the Hamilto-
nian formulation is based on the fact that the Hamilto-
nian conjugate to the noninvariant time t vanishes on
the manifold specified by the equations of motion, so
that a nonvanishing contribution can arise only from the
surface terms in the action functional. If, however, the
reduced Hamiltonian is associated with the concept of
energy, we arrive at a well-defined local energy density
for the gravitational field; moreover, this density is a
kinemetric scalar. In this way, the Hamiltonian problem
is solvable.

The proposed perturbation theory is free from draw-
backs associated with ambiguities of nondynamical
parameters like the lapse function, because they do not
appear in the reduced Hamiltonian. The local lapse
function, which is a nondynamical parameter, is deter-
mined in terms of the reduced Hamiltonian on the man-
ifold specified by the equations of motion.

An analysis of linearized theory has revealed that
there are no wave excitations of the gravitational field
that make a negative contribution to the Hamiltonian.
Since it is the Hamiltonian of linearized theory that
determines the spectrum of particles in quantum theory,
we can state that there are no particle-like gravitational
excitations making a negative contribution to energy.

Yet another interesting statement can be made on
the basis of a dynamical analysis of the reduced Hamil-
tonian of classical (nonquantum) theory in the limit of
small φ: the effective equation of state for gravitational
matter is the extremely rigid equation of state
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