Physics of Atomic Nuclei, Vol. 64, No. 2, 2001, pp. 153-168. Translated from Yadernaya Fizika, \ol. 64, No. 2, 2001, pp. 195-210.

Original Russian Text Copyright © 2001 by Vasilieva, Sukhovoj, Khitrov.

NUCLEI

Experiment

Direct Experimental Estimate of Parameters That Deter mine
the Cascade Gamma Decay of Compound States of Heavy Nuclel

E. V. Vaslieva, A. M. Sukhovoj, and V. A. Khitrov

Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
Received August 9, 1999; in final form, April 24, 2000

Abstract—A method is proposed for simultaneously determining the interval of the most probable values of
the density of levels excited in the radiative capture of slow neutrons and the sum of radiative E1 and M1
strength functions in the excitation-energy interval extending nearly up to the neutron binding energy. Experi-
mental data on the intensities of two-step photon cascades between the compound state and a given low-lying
level of the nucleus being studied are analyzed together with the total radiative widths of neutron resonances.
Such an analysis can be performed for nuclei having an arbitrary level density, including deformed ones. The
resulting data demonstrate that there are significant deviations from the predictions of commonly accepted
level-density models—for example, the Fermi gas model—and specify the range of nuclei and the regions of
their excitation energies where a further experimental investigation can furnish new important information
about the properties of nuclear matter. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The total radiative width of neutron resonances, I,
and the spectra of emitted photons [including the mea—
sured intensities|,, of two-step photon cascadesthat are
excited in (n, 2y) reactions and which proceed to given
low-lying levels] are determined by the level-density
and radiative-strength-function values averaged over
the entire region of excitation energies below the neu-
tron binding energy, as well as by the distribution of
random deviations from these averaged values. The
experimental dataon Iy and |, were obtained to within
10%. However, level densities and radiative strength
functions can be extracted from the experimental val-
ues of I, and I, only by invoking some model con-
cepts; as a consequence, the accuracy of the results
obtained in this way is poorly controllable. For exam-
ple, the level density can be extracted from the spectra
of products of nuclear reactions only by using realistic
models of the reactions being studied. The situation
around radiative strength functionsis even less satisfac-
tory. Apart from adirect determination of these quanti-
ties from data on (n, ya) reactionsin [1] and the esti-
mates obtained in [2, 3] for the radiative strength func-
tions on the basis of the spectra of two-step photon
cascades for three even—odd compound nuclei, there
are no reliable experimental data on radiative strength
functionsin the excitation-energy interval 0< E,,. < B,
where B, is the neutron binding energy, although some
information about the lifetimes of a number of excited
states below B, is available. Indirectly, the existing
model assumptions have been tested many times. This
was done, for example, by comparing the calculated
and measured results for total radiative widths[4], total
intensities of two-step photon cascades [5], and the

spectra of emitted gamma rays and cross sections for
neutron—nucleus interactions [6].

The main disadvantage of the methods used previ-
ously to determinelevel densities and radiative strength
functions is that these methods give no way to accom-
plish a reasonable variation of the underlying models
with the aim of fitting the results of the relevant calcu-
lations to experimental data.

Although the measured parameters of any nuclear
reaction are determined completely by the relevant
level densities and radiative strength functions and by
the probability of the emission of all reaction products,
the inverse problem cannot be solved unambiguously in
general. Asamatter of fact, the currently adopted theo-
retical ideas of processes occurring in nuclei at excita-
tion energiesabove afew MeV have not yet been devel-
oped to such an extent that would make it possible to
calculate the parameters of nuclei to the degree of pre-
cision as high as that achieved experimentally. By way
of example, weindicatethat I', and |, val ues cal cul ated
according to currently adopted moa/els of level densi-
ties and radiative strength functions (these models are
usualy used to analyze experimental data) may be
markedly distinct from the corresponding experimental
values. Above dl, thisis so for nuclei from the region
of the 4S resonance of the neutron strength function,
which present the gravest difficulties for experimental
studies.

These discrepancies highlight the inadequacy of
simple models currently used to describe level densities
and radiative strength functions. An analysis of the pos-
sible systematic effectsthat could be operative in deter-
mining |, revealed no grounds to attribute the observed
dlscrepancms to experimental errorsaone[7]. In view
of this, it isrequired to find adirect way to deduce reli-
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able experimental information about level densities and
about radiative strength functions over as wide an exci-
tation-energy interval as is possible for any nuclei.
Experiments that would serve this goal are possible
with modern multidetector systems used together with
the efficient procedure developed at the Frank Labora-
tory of Neutron Physics (Joint Institute for Nuclear
Physics, Dubna) for extracting information from yy
coincidences.

But even at present, comprehensive and reliable
information about excitation regions where there are
discrepancies with modd ideas of level densities and
radiative strength functions can be obtained by analyz-
ing accumulated data on theintensities of two-step pho-
ton cascades.

2. EXPERIMENTAL DATA

Presently, the distributions of the intensities of two-
step photon cascadesin 40 nuclel fromtheregion 114 <
A < 200_114Cd’ 124, 125Te, 128|’ 135,137, 138, 139Ba 140La
143, 144, 146Nd, ISOan, 156, ISSGd’ 160Tb, 163'164'165Dy,
166H0’ 168EI’, ‘7°Tm, 174, 175, 177Y b7 176, 177L u,
178, 179, 180,181Hf, 182Ta’ 183,187W, 188, 19003, 192”, l%Pt,
198 AU, and 2°Hg—have been obtained and analyzed in
experiments performed with reactor beams in Dubna,
Riga, and Rez.

The form of the energy dependence of the probabil-
ity of two-step photon cascades terminating at a group
of low-lying final states was determined (actually, the
result is summed over a0.5-MeV interval of excitation
energies of intermediate levels) for 29 of them (see, for
example, [8]).

Usually, the entire sum of the observed intensities
saturates 20-50% (about 100% in some nuclei) of the
total intensity of primary transitions in neutron-reso-
nance decay. Therefore, an analysis of I, as afunction
of the energy of an intermediate level gives a rather
clear idea of the general regularitiesin the development
of the process through which a compound state (neu-
tron resonance) deexcitesin any nucleus having alarge
density of statesin a given interval AE of its excitation
energies.

An extrapolation of conclusions drawn from the
analysis of |, to the case where the problem to be
solved consists in constructing a complete description
of (n, y) reactions may prove to be incorrect in two
cases. (i) if the process of a cascade gamma decay of a
compound state (neutron resonance) greatly depends
on the structure of its wave function (that such a depen-
denceisin fact exists is suggested by a strong correla
tion between the ratio of the measured and the calcu-
lated cascade intensity, on one hand, and the reduced
neutron width of the compound state in an even—odd
compound nucleus, on the other hand; see [5]) and (ii)
if the radiative strength functions for experimentally
unobservable secondary transitions of two-step photon
cascades to final levels at E; > 1 MeV differ signifi-
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cantly from analogous quantities for cascades that we
have already studied [for example, there are no a priori
reasons for ruling out the possibility that the radiative
strength function for secondary transitions to high-
lying levels (E; in excess of 1 to 2 MeV) isless or is
greater than a similar quantity for a transition that is
characterized by the same change in energy, but which
terminates at alow-lying state (E; < 1 MeV)—the situ-
ation here can be clarified only experimentally].

In any case, theintensity |, of two-step photon cas-
cades (here, thisis the probability of a cascade involv-
ing transitions whose energies lie, in an event of com-
pound-nucleus decay, in preset intervals) is determined
by theratios of thewidths,; and I';; with respect to the
primary and the secondary transition to the total widths
I, =T, 0, and I; = 0T ;; [ of the compound and the
intermediate state of the cascade,

ly = Z(r)\i/r}\)Xn)\ix(rif/ri); (D
I

that is, it is determined by the total number m of states
that are excited, on average, quite intensively in the
decay of the A and i levels, as well as by the quantity
n; = PAE, which correspondsto the number of interme-
diate levels of the cascade in the interval AE that are
characterized by a preset spin—parity J™ If we replace
the total widths by the products of effective partial
widths [Tand the number of levelsexcited in the decay
of the A and i states, theintensity of the cascades can be
represented as

ly = z(rm/ [ yi0my) %y x (M OO e 0ye) . (2)
J, T

Summation over the entire set of quantum numbers
Jand mtof intermediate and, if necessary, theinitial and
thefinal levels of the cascades has been performed here
in order to draw acomparison with relevant experimen-
tal data.

Expression (2) can be modified by using therelation
between the total experimental radiative width and the
radiative-strength-function and level-density values
determining thiswidth. As aresult, we arrive at

r,a,, = eri XNy X (M T5)

J,

3)
= ZFM x Ny x (M O 50y
J,

From (3), We can readily find that the cascade inten-
sity, the calculated and the measured total width of the

compound state, and the quantity B, = T /T

obtained by averaging the probability of emission in
specified secondary transitions over a given interval of
the energies of intermediate levelsi of the cascades are
related by the equation

1 t t 1
M= Ty (B ). )
i
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In the representation given by Eq. (3), the product
I, x 1, isproportional to the absolute value of the radi-
ative strength function for primary transitions charac-
terized by the energy E,,

f = MyU(E AD,), 5)

where A isthe mass of the nucleusand D, isthe spacing
between the decaying states of a given spin and a given
parity; concurrently, this product is also proportional to
the ratio of the number n,, of intermediate levels
excited in the interval AE to the total number m; of
states excited in the decay of thei level.

For apreset model energy dependence of the density
of levels excited by cascade transitions, the use of
Eqg. (3) ensures the highest possible accuracy in deter-
mining the energy dependence of the radiative strength
functions for primary transitions, because inevitable
discrepancies between the level density (number of lev-
els in a given interval) used and its actual values are
compensated to a considerable extent by a positive cor-
relation between the numerator and denominator of the
ratio ny;/my, which is determined by specific values of
the level density within the chosen model. From
expressions (1) and (2), it follows (a) that the cascade
intensity is determined exclusively by the form of the
dependence of the radiative strength functions for pri-
mary and secondary transitions on their energy and not
by the absolute values of these radiative strength func-
tions (for example, the intensity in question is abso-
lutely unaffected by the errors in determining the spac-
ing D, between the decaying states) and (b) that, in con-
trast to what occurs in the previously known methods
for determining level densities, where the probability of
the reaction-product yieldsis in direct proportion to p,
aroughly inverse dependence is observed here.

This conclusion is confirmed by the values that are
obtained by averaging, over all 40 nuclei, theratios R of
the sums of the experimentally observed cascade inten-
sities to the theoretical result derived according to
expression (1) and which are quoted in the table. In our
calculations, we used two models of El radiative
strength, that from [9] and that from [10]; the single-
particle Weisskopf model for M1 transitions; and two
modelsof thelevel density, that from [11] and that from
[12]. The data in the table indicate the direction that
should be followed in modifying the model concepts of
radiative strength functions and level densities in order
to render the theoretical description adequate to the
level achieved in experimenting: radiative strength
functions for primary transitions should feature an
energy dependence that is much more pronounced than
that which is predicted in [9, 10] for E1 and M1 transi-
tions, while the density of the levels that determine the
probability of two-step photon cascades to low-lying
levels must be much smaller than that predicted by the
Fermi gas model.

Here, we would like to highlight the basic condition
under which the possible values can be determined for
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Values obtained by averaging, over 40 nuclei, the ratio R of
the experimental intensity of two-step photon cascadesto the
corresponding intensity computed according to (1) on the ba-
sisof various models

Mode | [9,11]
R 2.1(2)

[10, 11]
2.6(2)

[9, 12]
1.4(1)

[10, 12]
1.6(2)

level densities and for radiative strength functions
simultaneously. As can be seen from Egs. (1)—4), itis
above all the density of states excited by cascade tran-
sitions that controls the degree of agreement between
the calculated intensities and total widths, on one hand,
and the corresponding experimental values, on the
other hand. (This conclusion immediately followsfrom
the form of the dependence of the coefficient B, =
I/ ;n; on the total number m of levels that are
excited in the decay of the i state and on the radiative
widths.) It should be noted that the interval of the pos-
sible values of the above parameters is effectively
reduced precisely by the secondary-transition probabil -
ity, which directly determines the measured intensities
of two-step photon cascades. At B, = 1, it follows from
expression (4) that, for any level density specified
within one model or another, it is always possible to
find strength functions such that they would ensure a
faithful reproduction of the experimenta valuesof I'.

Expressions (1) and (3) were previously used to
implement an iterative process of searches for those
special features of radiative strength functionsand level
densities that determine the devel opment of the process
through which the cascade gamma decay of compound
states in heavy nuclei proceeds. Specificaly, these are
(i) the most probable density of excited states of both
parities that ensures the best fit to the experimental cas-
cade intensities for fixed model assumptions on radia-
tive strength functionsand (ii) the most probable values
of thesumsof E1 and M1 strength functionsfor various
model assumptions on level densities.

For this purpose, the most probable level-density
values yielding the best fit to the dependence of 1, on
the excitation energy of the nucleus were determined
from Eq. (1) for a set of a few models of radiative
strength functions [13]. After that, features that provide
the fullest characterization of the level densities were
extracted from the dependences obtained for them at
the preceding stage, and the region of admissible level-
density values was established. A similar procedure
was applied to expression (3) as well.

It wasfound [13] (@) that, over comparatively broad
intervals, the resulting level densities agree fairly well
with the model from [12] if the generally adopted con-
cepts are used for radiative strength functions and (b)
there do not exist radiative strength functions such that
they would provide, within the Fermi gas model, a
simultaneousfit to I, and I', val ues.
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These results comply with those that were obtained
within the last step of the analysis as described here: a
simultaneous determination of the most probable func-
tional dependences of the level densities and radiative
strength functions on the primary-transition energy E,
(or the excitation energy E.,. = B,— E,) and an estima-
tion of the region of their probable values.

3. IMPLEMENTATION OF THE ANALYSIS

A nonconventional possibility of simultaneously
determining, from experimental data, basic parameters
that characterize the process of the cascade gamma
decay of a nucleus having a maximum possible level
density (above all a deformed nucleus) does indeed
exist for the following two reasons:

(a) The results of two independent experiments are
simultaneously analyzed in determining two indepen-
dent quantities, the level density and the radiative
strength function.

(b) Because of atight (albeit not unambiguous) cor-
relation between the level density and the radiative
strength function, which determine the intensities of
the observed cascade transitions, the cascade-intensity
values found for N intervals of excitation energies plus
one value of I, make it possible to estimate (with a
comparatively small uncertainty) 2N values of the
sought parameters. However, the parameters of cascade
gamma decay cannot be established without resort to
the conditions p > 0, I'(E1) > 0, and I'(M1) > 0, which
are valid for any interval of excitation energy and any
value of thetransition energy. Asaresult, the domain of
the sought quantitiesis found as a solution to the set of
N + 1 equations and 6N inequalities. Naturally, such an
analysis implicitly assumes that the sought level den-
sity and radiative strength function vary quite smoothly
(monotonicaly) with energy (this assumption, how-
ever, does not have far-reaching consegquences).

On the basis of relations (1) and (3), it isimpossible
to determine the sought parameters analytically. For
this reason, we have made use of an iterative process of
searches for some intermediate level-density and radia-
tive-strength-function values that ensure an ever higher
degree of agreement between the experimental values
of the cascade intensities and of the total radiative
width, on one hand, and their values cal culated accord-
ing to expressions (1) and (3), on the other hand. In
order to achieve this, some forms (quite arbitrary in
some versions of the calculation and even sometimes
absolutely unrealistic) of the dependence of the radia-
tive strength function on the transition energy and of
the level density on the excitation energy of the nucleus
being considered were specified for a zero-order
approximation. For the inputs, we have also used the
commonly accepted models of the radiative strength
function and the level density [9-12] and their values
distorted arbitrarily in various intervals of the photon
energy and the excitation energy of the nucleus. Our
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procedure of searches for pairs of the required values
was implemented in the following way: some random
functions (identical for different spins and parities of
the levelsand different for the widthswith respect to E1
and M1 transitions) were added to the logarithms of the
input functional dependences of the level density and
the radiative strength function. For this, we used the
expression

f(E) = Cexp((E=U)%c”). (6)

In order to ensure a sufficiently high rate of conver-
gence of the above iterative process, random values of
the parameters C, U, and ¢ appearing in (6) were cho-
sen fromtheintervals[-0.2, 0.2], [0, B], and [0.1 MeV,
0.3B,], respectively, by using a random variable uni-
formly distributed over the interval [0, 1]. If the level-
density and radiative-strength-function values distorted
in thisway provided better agreement between the cal-
culated and measured cascade intensities, they were
used as inputs for the next step of the iterative process.
Such an iterative process makes it possible to approxi-
mate the experimental cascade intensity and the total
radiative width as closely as is desirable. However, it
was actually terminated as soon as two sets of the ran-
domvariablesp and S=f(El) + f(M1) yielded values of

(157 = 17815 )? that did not exceed 0.5-1.5 per
interval. This residual took large values when the
experimental cascade intensities showed pronounced
fluctuations in the neighboring intervals of the excita-
tion energies of the intermediate levels of the relevant
cascades. After that, the iterative process was repeated
either with new inputs or with the original ones. A rep-
etition of the process many timesin each of the N inter-
vals of the excitation energy resulted in determining the
spectrum of random level-density and radiative-
strength-function val ues that reproduce simultaneously
the total radiative width and the cascade intensity.

If such a procedure is implemented with the aid of
modern computers, one version of the calculation
requires, on average, up to a few tens of minutes, the
specific value of the machine time being dependent on
the choice of the input values of the level density and
the radiative strength function and on the accuracy of
the fit of the results of the calculations to experimental
data. For thisreason, we had to restrict oursel ves at best
to 30 versions for each of the 29 nuclei for which the
cascade intensities were determined as functions of the
energy of their intermediate level. Usually, the calcula-
tion had to be checked thoroughly only at the initial
stage of the iterative process if the input parameter val-
ueswere strongly different from those that are expected
within the currently accepted concepts. It is the region
in which we can arrive at the point where the mean
square of the deviation attainsalocal minimum, but the
values of the level densities and the radiative strength
functions at the observed local minima always featured
larger deviations from the existing model conceptsthan
the results presented below. It is natural that, at the
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points of spurious local minima, the calculated cascade
intensities disagreed completely with the relevant
experimental values.

The above procedure was implemented for a num-
ber of markedly different level-density and radiative-
strength-function values, but it always converged to a
functional dependence that was common to al these
versions and which ensured the best fit of the calcul ated
cascade intensities to their experimental values. Here,
we imply that the term “common functional depen-
dence” corresponds to a distribution of random vari-
ablesthat is characterized by a specific mean value and
a specific variance (presented below in the figures).

It is natural that, within the proposed method for
determining the level density and the radiative strength
function, available experimental information about the
nucleus under study is exploited to the maximum pos-
sible degree. This information includes level densities
at the neutron binding energy, together with the excita-
tion energies and quantum numbers of reliably estab-
lished low-lying levels and modes of their decay below
the energy E, o, Of 1t0 2 MeV for odd and even nuclei.
The relevant values were borrowed from available
compilations where allowance was fully made for spec-
troscopic information that we previously obtained by
analyzing the parameters of the most intense two-step
photon cascades. In addition, we fixed, on the basis of
data presented [14], the ratio of the widths with respect
to M1 and El transitions for their energies slightly
lower than the neutron binding energy B,

The most important result deduced from the first
stage of our data analysis [13] was that which made it

possible to state that the discrepancy between 1" and

I theor

w Isdue primarily to the discrepancy between the

density of levels actually excited in (n, y) reactions and
the concepts formulated in [11] on the subject.

Both in the analysis presented in [13] and in that
described below, the form of the relationship between
the level density, the radiative strength function, and I,
gives no way to determine the required values from a
comparison of experimental dataand theoretical results
unambiguously and independently. Nonetheless, it is
possibleto draw quite reliable conclusions on what and
in which direction one must modify in the current con-
cepts of photon emission and the number of levels
excited as the result of this; moreover, a quantitative
measure of the required modification can a so be estab-
lished along these lines.

The above conclusions are based on the results
deduced from an analysis of the convergence of the
level-density and radiative-strength-function values.
These results indicate that the level density and the
radiative strength function have well-defined values
that depend only slightly on the choice of input approx-
imationsfor the sought parameters of the process being
studied. The main argument in favor of the last state-
ment isillustrated in Fig. 1. Here, we have used abso-
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lutely unredlistic inputs for the level density and the
radiative strength function—namely, the level density
above the region of excited states known precisely from
nuclear spectroscopy was set to that at the neutron
binding energy, while the strength functions were taken
to decrease linearly with increasing transition energy.
Nevertheless, the final result of theiterative process fits
well in a general pattern that was obtained for quite a
wide set of various redlistic and unrealistic input values
of the level densities and radiative strength functions.

The results displayed in Fig. 1 demonstrate that the
procedure used makesit possible to determine the max-
imum possible level density for al nuclei being consid-
ered by varying the inputs for radiative strength func-
tions. The use of an input level density featuring unre-
alistically large deviations from the expected value at
rather realistic inputs for radiative strength functions
gives every reason to expect that, by introducing
numerous small-amplitude distortions of the input
dependence, it will be possible to deduce, for the truly
maximum possible level density, an estimate that
would enable one to reproduce simultaneously the I’
and |, values considered here. Naturally, the processis
repeated many times [for the random parameters C, U,
and o2 in expression (6)], and the average over the
resulting sample is treated as the most probable value.

3.1. Special Features of the Analysis

That no procedures for reliably and unambiguously
determining, from the observed spectra of photons or
the spectra of their coincidences, level densities and
radiative strength functions over the entire range of the
excitation energies of excited levels have been devel-
oped so far means, in our opinion, that the problem can-
not be solved by traditional methods of dataanalysis. It
is this circumstance that furnished a motivation for
devising the present probabilistic approach to assessing
these quantities.

In calculating the cascade intensities according to
expressions (1)—(3), we will consider only the sum of
levelsin agiven energy interval that are excited by pri-
mary E1 and M1 transitions and the sum f(E1) + f(M1)
of strength functions for primary transitions. This
approximation is fully justified by the fact that the
experimentally estimated contribution of higher multi-
pole orders to the development of the cascade gamma
decay of a neutron resonance is significantly smaller
than the error in experimentally determining the cas-
cade intensities.

We do not address here the question of whether the
concept of the strength function for secondary transi-
tions (of the relevant level density as well) has a physi-
cal meaning at low excitation energies of intermediate
cascade levels. The existence of awell-defined |, value
that fluctuates only slightly from oneinterval to another
implies that, although the widths with respect to indi-
vidual secondary transitions are expected to have a
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Fig. 1. Examples of intermediate values of the level density
and the radiative strength function in the odd—odd nucleus
98Au and corresponding cascade intensity (solid lines).
The numbers of iterations are indicated on the curves. The
dotted lines represent the predictions of the models from
[11, 12] for thelevel densitiesand the sum of the predictions
from [9, 10] and f(M1) = const for the strength functions.
The histogram shows the experimental cascade intensity,
together with its statistical uncertainty.

wide scatter, there exist mean values of I';; and of the
number of excited states over the excitation-energy
interval AE, and it is these mean values that ensure
agreement between experimental data and theoretical
results calculated according to (3). Wide variations in
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the values of the radiative strength function for second-
ary transitions tranglate into relatively small uncertain-
ties in the value calculated for the coefficient B, in
expressions (1)—(3) owing to a positive correlation
between its numerator and denominator. The mean
value of B, over the entire spectrum was determined
experimentally and is equal to the sum of all observed
cascade intensities that is normalized per event of com-
pound-state decay. As a result, the effect of possible
variations in the radiative strength functions for pri-
mary and secondary transitions on the sought parame-
tersis weakened.

Yet another question of fundamental importance is
that of the relationship between the actual values of the
parameters characterizing the process and the most
probable estimates as obtained for these parameters by
the method proposed here. It was assumed that, if there
are no systematic errors much greater than the scatter of
random values found for the level densities and for the
radiative strength functions, results obtained as aver-
ages over the intervals in which the quantities being
considered can vary reflect at least the typical features
of the parametersthat govern the cascade gamma decay
of the compound state of aheavy nucleus. Thisis obvi-
ously so if, for the sought parameters, the relevant ran-
dom values deviate in the two directions from the true
value with approximately equal probabilities and if
small deviations appear with higher probabilities than
large deviations. Of course, the problem in question
requires further study, so that the results obtained here
cannot be considered to be conclusive.

3.2. Approximations Used in the Present Analysis

Since available experimental data are insufficient
for unambiguously determining the complete set of
parametersthat affect the experimentally measured val-
ues of I, and I',, there arises the problem of a reason-
able choice of assumptions that would make it possible
to estimate them as accurately asis possible. As a mat-
ter of fact, it is necessary to introduce hypotheses spec-
ifying the relation between the densities of opposite-
parity levels at various excitation energies of the
nucleus being considered and the relation between the
forms of the energy dependences of the radiative
strength functions of primary and secondary transitions
of the same multipole order.

That the densities of levels having opposite parities
can be different at low energies is a fact that has been
known for along time. Most frequently, this occursin
near-magic nuclei. The problem was studied theoreti-
cally, for example, in[15]. For our analysis, it isimpor-
tant (i) that, in nonmagic nuclei, there are no reasons to
expect significant distinctions between the densities of
opposite-parity levels even at moderately high energies
(for example, above 3 MeV in deformed even—even
nuclei) and (ii) that the existing distinctions between
the densities of opposite-parity levels decrease with
increasing energy.
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At this stage of our analysis, it was assumed that
p(Tt= +) = p(Tt=-), but only the sum p(Tt=+) + p(T1=-)
was contrasted against model concepts. To some extent,
thiscompensated for possible errors associated with the
first assumptions. It isworthwhile to note here that pro-
cedures for determining the densities of levels charac-
terized by a specific parity have yet to be developed for
amagjor part of the excitation-energy region below the
neutron binding energy.

The spin dependence of the level density was not
varied in our calculations; in the various versions, it
was instead specified in accordance with the parametri-
zation from [11] or from [12]. The eventual results are
virtually unaffected by the choice of a specific model.
We do not see very strong reasons to expect significant
distinctions between the actual and the model spin
dependences of the level density: for the majority of
nuclei, the ratios of the measured and the calculated
intensities of the cascades proceeding to final states
having different spins do not suggest any disregarded
functional dependence on the spin of thefina level of a
cascade.

In addition to the inputs listed above, the calculation
of the cascade intensities I, requires specifying the
ratios of unknown strength functions for secondary
dipole transitions to their values averaged over the
spectrum—that is, the quantity B, given by (4). Pres-
ently, the analysis described here can be performed
only if some relation between the radiative strength
functions for primary and secondary transitionsis pre-
set: for a zero approximation, we assume that, if the
energy of aprimary transition is equal to the energy of
a secondary transition, their radiative strength func-
tions are identical.

There is no doubt about the circumstance that, with
decreasing excitation energy of the nucleus being stud-
ied, the probability of the relevant gamma transition is
affected by the structure of the wave functions of the
excited states to an ever greater extent; possibly, the
degree of correspondence between this probability and
the mean probability for the emission of a photon of a
given energy by the nucleus at higher energy of itsexci-
tation concurrently becomes smaller. This can be veri-
fied only by means of experiments measuring, with
modern HPGe detectors, the intensities of two-step
photon cascades over amaximally broad interval of the
energies of their final levels.

It goes without saying that the strength functionsfor
primary and secondary transitions, as well as the rela-
tion between the densities of positive- and negative-
parity levels, can appear asindependent variablesin the
analysis being discussed. Unfortunately, there then
arise the following problems:

() Inview of an insufficiently high efficiency of the
above iterative process, large amounts of machine time
are required when the number of relevant parametersis
substantially increased.
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(ii) The interval of possible values determined for
6N parameters from N + 1 equations and 6N inequali-
ties must become much wider than that in the version
that has already been implemented and which involves
variations of a smaller number of parameters. As a
result, the probability for the emergence of large devia-
tionsof valuesfound for the level densitiesand the radi-
ative strength functions from their true values may
increase.

It should be emphasized that the above problems of
the method that we propose for determining the level
density are inherent in any method for evaluating this
guantity on the basis of the spectraof products originat-
ing from an arbitrary nuclear reaction. However, our
method, in contrast to all others known so far, has the
highest (lowest) sensitivity at minima (maximal) val-
ues of the sought quantity and makes it possible to fix
precisely the range of spins for which p values are
determined.

4. MOST PROBABLE FORM OF THE ENERGY
DEPENDENCE OF THE DENSITY
OF HEAVY-NUCLEUS STATES EXCITED
BY CASCADE GAMMA TRANSITIONS

Obvioudly, level-density and radiative-strength-
function values that make it possible to reproduce
simultaneously the experimental values of 1, and T',
cannot be negative or indefinitely large. Among the
results of our analysis, that which isthe most important
one and which could not have been expected from the
outset is the following: the corridor in which the possi-
ble values of the sought quantities vary proved to be so
narrow that the values in question could be contrasted
against various model concepts. Thus, the objective of
the present analysis—searches for models that are
capable of providing the best fit to experimental data
and a determination of the region where these models
fail to reproduce the data—has been attained.

Some of the results that we obtained are presented
in Figs. 2-5. An analysis of these results leads, first of
all, to some definitive conclusions on the modifications
that must be introduced in level-density models so asto
reduce the distinctions between the calculated and the
measured parameters of the cascade gamma-decay pro-
Cess.

We note that, in some nuclei—predominantly in
near-magic and odd—odd ones—the level density found
at low excitation energies is sometimes below that
which corresponds to the data that we previously
obtained for the diagrams of their excited states and
decay modes. The emerging pattern can be qualitatively
explained by the roughness of the approximation that
we adopted in our analysis and which consists in
assuming that the t= + level densities are equal to their

= — counterparts and that the radiative strength func-
tions for cascade transitions are independent of the
excitation energy of the decaying state. The possibility
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Fig. 2. Number of levels of both parities per 100 keV at various values of the excitation energy Eq,. for 14Cd, 124Te, 128, 1350gm,

156Gd, and °°Tb (open circles). The quoted errors correspond to the uncertaintiesin the analysis performed. The histograms repre-
sent datafrom [18], while the open triangles show the numbers of experimentally revealed intermediate |evel s excited by sufficiently
intense cascades. The dotted curves depict the mean level-density values as obtained under various assumptions on the radiative
strength function for p(E.,.) = p(By,) used asinputs for the iterative process. Also presented for the sake of comparison are the pre-

dictions of the models from [11] and [12] (upper and lower solid curves, respectively).

that there are sizable errors in the spectroscopic part of The most probable density of states that are excited
an experiment studying two-step photon cascades can-  in thermal-neutron capture can be characterized as fol-
not be ruled out either. Unfortunately, the sample of lows. Up to an excitation energy of 1 to 2 MeV
accumulated coincidences is statistically insufficient  (depending on the parity of intranuclear nucleons),
for deducing an unambiguous answer to the above available data are compatible with an exponential
guestion. extrapolation of the Fermi gas model with the parame-
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Fig. 3. Asin Fig. 2, but for the '70Tm, 181Hf, 1900s, 192, 196pt, and 20°Hg nuclei.

ter values from [11]. From 1 to 2 MeV up to a certain
threshold value E,, the level density changes with
nuclear excitation energy much more slowly than what
is assumed by any of the existing theoretical concepts
on the subject. Above E, values of about 2to 3 MeV (3
to 4 MeV) for nuclel odd (even) in N, it is most likely
that the level density agrees best of all with the predic-
tions of the generalized model of a superfluid nucleus
initssimplest, original, form [12], but with some slight
modifications to the model parameters. These modifi-
cations, which do not conceal any conceptual content
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of fundamental importance, were only made to ensure
agreement between the level density in the vicinity of
the neutron binding energy and the experimentally
determined spacing between neutron resonances.

The above shape of the level density found as a
function of energy can suggest [16] a qualitative
change in the properties of nuclel in the excitation-
energy region around the neutron-binding energy. Tak-
ing into account previous observations regularly indi-
cating [17] that, in all probability, the spectrum of the
intermediate states of the most intense cascadesis of a
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Fig. 4. Sum of the radratrve strength functronsfor El and M1 transitions caused by radiative thermal-neutron capture in the com-

pound nuclei !'*Cd, ! 0Gd, and

160Th as a function of the energy E; of the cascade primary transition (open

circles). The quoted errors stem from the uncertainties of our anal ysis. Thedotted curves represent the mean value of f(E1) +f(M1)
as obtained with various model values [9, 10] of the input parameters for the iterative process and a fixed input level density
P(E.xe) = P(By). The solid curves correspond to data based on these model concepts (from [9] for the upper curves and from [10]
for the lower curve) and supplemented with the value f(M1) = const fitted to experimental data.

harmonic character, we can assume that, below the neu-
tron binding energy, vibrational excitations (a small
number of high-energy phonons, as can be expected in
view of a large spacing between equidistant levels)
have a dominant effect on the properties of nuclei. A
very fast, exponential (or close to exponential), growth
of the level density above the neutron binding energy

may be due to dominance of internal excitations at this
energy value that involve afairly large number of qua-
Siparticles.

An independent piece of evidence in favor of the
above shape of the level density as afunction of energy
can be obtained if the number of cascade intermediate
levels observed as resolved peaks in the excitation-
2001
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Fig. 5. Asin Fig. 4, but for the '7%Tm, 181Hf, 1900s, 192|r, 196pt, and 2°°Hg nuclei.

energy region extending to an energy value not lower
than 3 to 4 MeV s increased. In practice, this will
become feasible upon lowering the sensitivity thresh-
old achieved presently in recording an individua cas-
cade (about 10 per decay event) by an order of mag-
nitude. This conclusion is suggested by an examination
of theresults obtained in [18] from a statistical analysis
of the deviations of random cascade intensitiesfrom the
relevant mean value and by an extrapolation of the
approximating function to zero value of the experimen-
tal sensitivity threshold. For the level density up to
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excitation energies of 3to 4 MeV, thisanalysis gave the
first direct estimate contradicting the concepts of the
Fermi gas model. This estimate is also displayed in
Figs. 2 and 3.

5. MOST PROBABLE VALUES OF THE SUMS
OF STRENGTH FUNCTIONS FOR DIPOLE
TRANSITIONS

Data on the sum of the strength functions for dipole
transitions from a simultaneous determination of the
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radiative strength functions and level densities on the
basis of expressions (1)—(3) are presented in Figs. 4 and
5. From the resulting sets of random values of f(E1) and
f(M1) at a given energy of the primary cascade transi-
tion, we determined both their mean value and the
probable scatter using conventional relations of math-
ematical statistics. These results were contrasted
against model values obtained in the following way:
to the values of f(E1) that were determined in accor-
dance with the models proposed in[9] and [10] (upper
and lower solid curves, respectively), we added the
valuef(M1) = const normalized in such away that the
ratio of the widths with respect to magnetic and elec-
tric transitions of energies close to the neutron-bind-
ing energy corresponds to the compilation presented
in [14]. The aforementioned models were used only to
draw a comparison with the level-density and radia-
tive-strength-function values obtained experimentally
(although the authors of [10] developed their model
for spherical nuclei rather than for deformed ones).
Thisisjustified since the objective of the present anal-
ysis was to seek the most probable unknown func-
tional dependences of the level densities and radiative
strength functions in the form of deviations from
known model concepts.

For the sake of comparison, the figures in question
present, in addition to experimental values obtained
from an iterative process that starts from level-density
and radiative-strength-function values admitted by the
existing models, analogous quantities as evaluated on
the basis of the same iterative process, but with abso-
lutely unredlistic initial values of the level density,

P(E..) = p(B,) = const.

A comparison of the data on the strength functions
at such distinct inputs for the iterative process proves
that the mean values of thesum f(E1) + f(M1) that were
determined from an analysis of the cascade intensities
depend only dlightly on the choice of inputs; therefore,
they can be considered asthe most probablevalues. The
accuracy of this conclusion is constrained by the
approximations of our analysis that were listed at the
beginning of Subsection 3.2.

A comparison of experimental results with the pre-
dictions of the model sthat were proposed in[9, 10] and
which are used most frequently to analyze such results
leads to the following conclusions:

(i) The sums of E1 and M1 strength functions do not
show a universal dependence on the gamma-transition
energy; in all probability, they reflect the general prop-
erties of the structure of states between which the cas-
cade transition occurs. This can be seen from acompar-
ison of our results (a) for the pair of Gd isotopes, where
the experimental conditions (spin—parities of the levels
connected by the cascades in question, I',, and density
of excited levels) are such that, for the isotope pair
being considered, the difference of the resulting sums
of the strength functions must be less than in any other
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combination appearing in our comparison, and (b) for
even—even and odd—odd nuclei.

(i) The shape of thesum f(E1) + f(M1) asafunction
of energy differsfrom that predicted by the models pro-
posed in [9, 10]. This is valid at least for even—even
compound nuclei from the region of the 4S maximum
of the neutron strength function.

(iif) The sum of the strength functions increases as
we go over from near-magic to deformed nuclei and as
the photon energy isincreased. Thevaluesfound for the
spherical nuclel ''*Cd and '**Te are faithfully repro-
duced by the model from [10] if we assume that the M1
strength function is independent of the photon energy.
For the 128, 140]_g, 146Nd, 150Sm, '81Hf, 188, 190Qs, 196P,
and 2°°Hg nuclei, thismodel as implemented within the
same assumption on M1 transitions either complies
with experimental data or overestimates them for pri-
mary transitions of low energies.

(iv) We cannot rule out the possibility that, around
the neutron binding energy (at least in some nuclei), the
level density noticeably deviates from the nearly mono-
tonic dependences in Figs. 2 and 3. This possihility
must be taken into account in order to explain the dis-
crepancies between the resulting absolute values of the
sums of the strength functions and the corresponding
model predictions for some nuclei having neighboring
values of A. In other words, the kink effect clearly seen
in the energy dependence of the level density at low
energiesis much weaker at high energies, if any. A sm-
ilar type of behavior of thelevel density asafunction of
energy was obtained in the theoretical analysis of
Ignatyuk [19], athough the discrepancy between the
predictions of his model and experimental data (see
Figs. 2, 3) isquite sizable.

An aternative possibility consists in assuming that
strength functions grow significantly owing to the well-
known effect of the collective enhancement of the prob-
ability of the gamma transition accompanying the
decay of states whose wave functions involve sizable
vibrational components. Resolving this dilemma
reguires not only further experimental studies but also
athorough theoretical analysis. If the present interpre-
tation of the results that we obtained isviable at least to
some extent, the physical significance of exploring a
transition from a superfluid state to anormal onein an
exotic system like the nucleus furnishes a sufficient
motivation for performing experimental and theoretical
studies such as those indicated above.

The relative deviations of the results found here for
the strength functions and level densities from their
mean val ues are characterized by a strong negative cor-
relation. In the majority of cases, the correlation coeffi-
cient changes from —0.6 to nearly —1, falling, however,
down to —0.4 for some nuclei. Since the generated pairs
of random values of the parameters that characterize
the gamma-decay process always feature some uncor-
related random deviations (the length of the iterative
processis severely constrained by the computer poten-
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tid), it is natural to conjecture that, in fact, the degree
of coupling of the radiative strength functions and the
level densities is still stronger—that is, they are not
independent variablesin Egs. (1)—(3). Itisowing to this
circumstance that we are able to determine them simul-
taneously on the basis of available experimental data
and physically motivated constraints on their values.

Effect of Systematic Errorsin Determining Cascade
Intensities on Level Densities and Radiative Strength
Functions

The dependence of the cascade intensity on the
energy of intermediate cascade levelswas obtained on
the basis of data measured with systematic errors. The
error in determining the sum of the intensities of all
experimentally observed transitions is the most
important of these. Its value is virtually equal to the
present-day uncertainty in the absolute values of the
intensities of the strongest primary high-energy tran-
sitions in the spectra of gamma rays from radiative
thermal-neutron capture (it is precisely these intensi-
ties that are used to normalize I, values). In order to
minimize the effect of this error, we preferred to use
predominantly data from the compilation presented
on [20] as a reference, since the bulk of these data
come from the same facility for aimost all elements of
the periodic table. If we consider that the total spectra
of gamma rays have also been measured for many of
the nuclei that we studied (for these gamma rays, it
can be deduced on the basis of physical arguments
that the sum of the products of the photon energy and
theintensity in percent per decay event must be 100B,
[21]), it becomes clear that there are no strong reasons
to expect a systematic uncertainty inthel,, values that
is noticeably greater than the statistical error in our
experiment.

The accuracy in determining the most probable
values of the level densities and the radiative strength
functions is also affected quite sizably by the system-
atic error with which the experimental spectra are
decomposed into components that are dependent on
the energies of only primary and only secondary cas-
cade transitions, but the adverse influence of this sys-
tematic error is less pronounced than that of the sys-
tematic error discussed immediately above. Accord-
ing to [8], insufficient statistics of recorded
coincidences would lead to an overestimation (under-
estimation) of the intensity of cascades where the
energy of the primary cascade transition is lower
(higher). The corresponding errors can be estimated
by using the procedure developed in [18] to analyze
the shape of the distribution of random deviations of
the cascade intensities from their mean values. As a
rule, these errors do not exceed 20% of the resulting
value. In practice, it is straightforward to obtain the
relevant estimate under the assumption that, for cas-
cades whose primary transitions correspond to emit-
ted-photon energies below 0.5B,, the observed inten-
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sity must be reduced by, say, 25% if the intensities of
the cascades whose primary transitions are of higher
energies are increased accordingly. This test was per-
formed for all nuclei. Its basic result is the following:
at low excitation energies, the level density can some-
what increase in relation to the datain Figs. 2 and 3,
and this can partly explain the discrepancy between
the observed number of intermediate cascade levels
and the level density determined for 2Ir (see Fig. 3).
However, no significant distinction between these
results and the data in Figs. 2 and 3 is observed at
higher energies—the scatter of the level-density val-
ues from different versions of the calculations often
exceeds their deviations for different shapes of the
dependence of the cascade intensity on the nuclear
excitation energy.

In all probability, the scatter of data displayed in
Figs. 4 and 5 receives a contribution only from the
uncertainties that arise in the strength functions
because of ambiguities of the above level-density val-
ues and, additionally, because of errors in the experi-
mentally measured parameters of the cascade gamma:
decay process.

Sincethe product I, x I, and the sought quantity I,
are related by alinear equation, the experimental rela-
tiveerrorsin thetotal width and in the cascade intensity
(they are usually about 10%) lead to errors at the same
level in the resulting partial widths. A variation in the
energy dependence of 1, at a level of 25%—it was
introduced above to estimate the effect that the possible
systematic error in determining the energy dependence
of I, can exert on the eventual result—changes, for all
nuclei, the sum of the resulting strength functions by a
valuethat usually does not exceed the uncertainties pre-
sented in Figs. 4 and 5 for the level densities and the
radiative strength functions considered here. In other
words, the main contribution to the uncertainty in the
level density, aswell asto the uncertainty in the sum of
the strength functions, comes from the anticorrelation
of thelevel density and the radiative strength functions
in the measured functionals of the cascade gamma
decay process and from the paucity of relevant experi-
mental data rather than from statistical uncertaintiesin
the experimental values of thetotal radiative widthsand
cascade intensities.

On the basis of the above analysis of the possible
methodological errors and on the basis of the resultsin
Figs. 4 and 5 on a determination of the shape of the
energy dependence of the radiative strength functions,
we can therefore conclude with a high degree of confi-
dence that the models proposed in [9, 10] and com-
bined with the idea that M1 transitions are of a single-
particle character, f(M1) = const, cannot describe the
transition-energy dependences of f(El) and f(M1) in
any nucleus. Moreover, we cannot even rule out the sit-
uation where the energy dependences of f(El) and
f(M1) are not identical for neutron resonances charac-

terized by different Fﬂ values. That this possibility can
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be realized is suggested [5] by the presence of a strong
correlation between the intensities of the observed cas-
cades and the reduced neutron width in even—odd com-
pound nuclei. Thisis precisely the assumption that can
also explain qualitatively variations exhibited by the
shape of the energy dependence of the radiative
strength function in response to changes in the nuclear
mass, sincetheratio of the reduced neutron width to the
spacing between the resonances for a compound state
excited by thermal neutrons takes different values for
nuclei having different masses. Presently, it is techni-
cally feasible to check this hypothesis in studying cas-
cadesin individual resonances.

By and large, we can conclude that, at the present
stage of experimental investigations into the cascade
gamma decay of neutron resonances, the data quoted
here for the density of excited states and for radiative
strength functions should be considered as those that
provide the most probable values of these physical
guantities, despite errors in experimental data used to
deduce these values and despite a probabilistic charac-
ter inherent in the above analysis.

6. POSSIBILITIES OF INDEPENDENT
EXPERIMENTAL TESTS

The above analysisis disadvantageousin that it can-
not yield unambiguous results. Therefore, it is neces-
sary to subject the results of thisanalysisto an indepen-
dent test. This does not lead to unsolvable problems.
From the data presented in Figs. 2 and 3, it can be seen
that, at excitation energies up to half the neutron bind-
ing energy in the nuclei being studied, the expected
mean spacing between levels excited in the relevant (n,
y) reactionsisnot lessthan 2 to 3 keV. If modern detec-
tors and a numerical method for improving the resolu-
tion [22] are used, the widths of peaks in the spectra
representing the distribution of the intensities of two-
step photon cascades exceed these values only slightly;
therefore, it is possible to observe directly in experi-
mentsamost all excited states of any nucleusup to 3 or
4 MeV, provided that the results presented in Figs. 2
and 3 are correct. For them, one can also determine the
intensities of primary transitions (that is, radiative
strength functions) as the sum of the intensities of all
possible cascades.

The ambiguity in the relationship between the El
and M1 radiative strength functions over the entire
interval of their values from the actual experimental
threshold of 0.52 MeV to the neutron binding energy is
an important source of uncertainties in the values that
we obtained for the level densities and radiative
strength functions. Thisambiguity isdueto thefact that
the cascades singled out for the majority of the nuclel
studied here are those that terminate at final levels of
the same parity. These are primarily cascades formed
by E1 and M1 transitions. Therefore, there exists a
comparatively wide set of their values that makes it
possible to reproduce the cascade intensities and the
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total radiative width simultaneously even if the result-
ing values deviate from the actual ones. If an attempt is
made to describe not only the sum of all observed cas-
cade intensities but also their sums for transitions to
final levels of opposite parities individualy, the pro-
posed method of analysis is capable in principle of
solving this problem as well, at least partly. For the
majority of the nuclei that we studied, it would then be
required to conduct experiments with high-efficiency
detectors and with an anti-Compton shielding. The rel-
evant data would also make it possible to obtain
directly the shape of the dependence of the radiative
strength functionsfor secondary transitions on the exci-
tation energy of the final cascade level.

In addition to the aforementioned possibility of
obtaining a more precise parity dependence of the level
density and a more precise excitation-energy depen-
dence of radiative strength functions in a feasible
experiment employing more advanced equipment and
extending the number of variables subjected to analy-
sis, there are also possibilitiesfor assessing the reliabil-
ity of our results on the basis of data obtained previ-
ously.

For this, the total population of an individual
nuclear state at E up to an excitation energy of 3 to
4 MeV can be determined by comparing the intensities
of two-step photon cascades with known intensities of
individual gamma transitions. This population is equal
to the sum of the intensities of all cascades terminating
at the above state at E;; hence, it is determined by the
relevant level density and by the E1 and M1 strength
functions. Such a calculation can be performed either
on the basis of the models proposed in [9-12] or on the
basis of the results obtained in [13] and in the present
study. Here, a comparison of the calculated and exper-
imental results provides an additional independent
check on the degree to which various concepts of the
level densities and of the radiative strength functions
correspond to the situation prevalent in actual practice.
Unfortunately, reliable data on the decay diagram that
are necessary for such analysis appeared only recently
and only for '$8Er [23].

8. CONCLUSIONS

A model-independent procedure has been proposed
for determining, on the basis of experimental data on
(n, y) reactions involving thermal neutrons, the most
probable level density and the most probable value of
the sum of dipole strength functions for nuclei with an
arbitrary level density. Although the results obtained
from the analysis performed here cannot be considered
to be conclusive, because this anaysis relies on some
ad hoc assumptions, these results highlight the pres-
ence of some serious discrepancieswith those that were
obtained by extrapolating the existing concepts of the
theory of the nucleus to an as-yet-unexplored region of
its excitation energy.
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At a level of more or less redistic and partly
checked hypotheses, the characteristic features of the
cascade gammadecay of A > 100 nuclel arethe follow-
ing:

(i) Almost over the entire range of excitation ener-
gies below the neutron binding energy, the density of
excited states is less than that which follows from the
generally accepted concepts of the model of anoninter-
acting Fermi gas. Thisis so at least for nuclei from the
region of the 4Smaximum of the neutron strength func-
tion. In al probability, the level density at excitation
energies above E, ~ E,;, + 2 MeV is described best of
all by the generalized model of a superfluid nucleusin
the earliest version considered in [12]. Yet, we cannot
rule out the possibility that the model from [12] system-
aticaly overestimates the level density in odd-odd
nuclei. This conclusion isvalid only in the case where,
in a two-step photon cascade, the probability of popu-
lating its intermediate level having quantum numbers
Jmand occurring in a specified narrow interval of the
excitation energy is independent of the structure of the
corresponding state i. Otherwise, the above conclusion
should be associated with some effective density of
excited states; that is, one is inclined, in this case, to
postul ate a selective character of (n, y) reactions at low
energies.

(i) The properties of a nonmagic deformed nucleus
can undergo qualitative changes at excitation energies
between about 2 to 4 MeV.

These data are in perfect agreement with the qual-
itative pattern previously obtained in [24] for the
process being studied—namely, the situation is gov-
erned by a dominant effect of vibrational excitations
on the properties of the nuclei up to excitation ener-
gies of about 3to 4 MeV and by a prevalent effect of
guasiparticle excitations at higher excitation ener-
gies.

Thisexplanation relies on the fact that the level den-
sity isbelow the predictions of the models disregarding
or underestimating the effect of nuclear vibrations on
this parameter and an increase in the strength functions
for cascade transitions that is correlated in energy with
this effect. The latter can be qualitatively explained in
the simplest way only by collective effects of the
enhancement of the gamma-transition probability that
are known from the theory. A competing possibility for
explaining the enhancement of the strength function is
associated with the fact that, in the region around the
neutron binding energy, the mean spacing D, between
compound states deviates from the averaged depen-
dence toward smaller values. No experimental errors
have been found that could explain the results pre-
sented here.

Since the present analysis has had to rely on a sam-
ple of data on the cascade gamma decays of compound
states that was limited by the technical potentia of the
experimental equipment, the conclusion drawn from
this analysis should be considered to be preliminary
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and, to some extent, hypothetical. Nevertheless, the
scale of the observed effects and the possible reasons
behind their emergence furnish a sufficient motivation
for afurther detailed study of the properties of nuclei in
the excitation-energy region around half the neutron
binding energy, where these properties are expected to
undergo sharp changes.
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Abstract—By means of the reference method, the cross sections for the fission of the 24! Am, 24> Am, and
243 Am isotopes were measured at the microtron of the Institute of Physics and Power Engineering (Obninsk).
These measurements, which employed the cross section for 28U photofission as areference, covered the energy
range 6-12 MeV scanned with a variable step of 50 to 200 keV. Data on 2**”Am photofission in the energy
range 6-12 MeV and **Am photofission in the region between 6 and 7 MeV were obtained for the first time.
New resultsfor 2! Am reveal that the cross sections for 2! Am photofission from previous studies of the present
author were exaggerated. The new results for thisisotope comply well with data of other authors. It is not con-
firmed that the fissility of >*! Am is less than the fissility of >**Am. The energy dependences of the fissilities of
the americium isotopes from photofission data are compared with those that were obtained for these fissilities
from data on direct reactions like 2*°Pu(*He, df )>*! Am. The results of this comparison show that the observed
fission thresholds and the plateaulike dependences at energies above 7.5 MeV from the two types of studies
comply well. The present data show evidence that, in the energy region around 6 MeV, the photofission cross
section has a maximum, which is associated, in all probability, with the low-energy resonance structure in the

cross section for dipole photoabsorption. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Ininquiriesinto the physics of nuclear fission, much
atention is being given to systematic experimental
investigations of various features of the fission process
as functions of the charge and the mass number (Z and
A, respectively) of the fissile nucleus. Data on the cross
sections o;(E) for the photon-induced fission process
show a considerable scatter in the region of the so-
called fission plateau (E < 12 MeV). The method used
to measure the photofission cross section is among the
factorsthat hasanontrivial effect on this scatter. Thisis
the reason why information obtained in aunified exper-
imental approach is of considerable valuein systematic
investigations. The present study, which is a part of
implementation of awide program aimed at investigat-
ing the energy dependences of the cross sections for
actinide photofission by a unified method employing
bremsstrahlung radiation from a microtron [1-6], is
devoted to measuring these cross sections for three
americium isotopes, 2*'Am, 2>™Am, and >***Am.

Previous experiments that studied the photofission
of americium isotopesin the energy region E< 12 MeV
dealt primarily with 2! Am [1, 7-9]. No data have been
published so far on the 2MAm isomer; asto the >*Am
isotope, it has hitherto been studied only in [8], along
with 22! Am. In just the same way as the results of the
present study, all other data on the photofission of
americium isotopes were obtained by using
bremsstrahlung radiation. Of particular interest is the
relationship between the photofission cross sections for
the 2*' Am and 2*Am isotopes that was obtained in [8]
in the energy region corresponding to the fission pla-
teau: with increasing isotope atomic number, the cross

section grows, in contrast to what is known for other
nuclei, whose cross sections decrease. This circum-
stance, together with the fact that the cross sections for
241Am photofission from [1] disagree with those from
[8, 9], has been the motivation for performing the
experiment reported here.

2. DESCRIPTION OF THE EXPERIMENT

The cross sections for 2 Am, 22™Am, and *3Am
photofission were measured by using a beam of
bremsstrahlung photons from the microtron of the
Institute of Physics and Power Engineering (Obninsk).
The measurements were performed intheregion E,,,, =
6-12.4 MeV of the endpoint of the bremsstrahlung
spectrum with a step of 0.05 MeV for E,,,, < 6.7 MeV,
0.1 MeV for E,,, = 6.7-7.7 MeV, and 0.2 MeV for
higher energies. For all threeisotopes of americium, the
data discussed below were obtained in a single experi-
ment. Because of asmall thickness of afissile layer, the
exposure time for the 2*>™Am isomer was increased by
afactor of afew unitsin relation to the exposure times
for the other two isotopes. Use was made in the present
experiment of aprocedure that relies on arelative mea-
surement of photofission cross sections in a
bremsstrahlung-photon beam. For a reference isotope,
this procedure, which was described in detail el sewhere
[1, 2], employs 2*¥U, whose photofission cross section
was estimated in [1].

A water-cooled device consisting of a 1-mm-thick
tungsten disk and a 12-mm-thick aluminum absorber of
electrons served as a braking target. Fissile layers of the
oxides of the isotopes being investigated and of 2*U
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Fi %n 1. Ratios of the yields Y(Ey,,) from (a) 241 Am, (b)

'Am, and (c) >**Am photofission to the corr%pondl ng
yields from the photofission of the reference nucleus 235U
versus the endpoint energy of the bremsstrahlung spectrum:
(closed circles) data of the present study, (open circles) data
from [1], and (open triangles and dashed straight lines) data
from [8].

were deposited onto aluminum substrates 0.1 mm thick
and were arranged in back-to-back geometry. The
experiment measured the ratio of the yield of products
from the photofission of an isotope being studied,
Y(E, ..., to the corresponding yield from the photofis-
sion of the reference isotope, Y, (E,..).

R( Emax) = Y( Emax)/YO(Emax)' ( 1 )

For the bremsstrahlung spectrum, the photofission-
reaction yield asafunction of E,,, and the photofission
cross section o;(E) as a function of the nuclear excita-
tion energy E arerelated by the equation

E

max

Y(Emax) = C(Emax) I Gf(E)N(EI Emax)dE1 (2)

SOLDATOV

where N(E, E,,,) is the spectrum of bremsstrahlung
photons, while C(E,,,,,) is a factor that depends on the
normalization of the spectrum N(E, E,,,,), the number
of nuclei in the fissile target, and the photon flux inci-
dent onit. A similar equation relates the yield from the
photofission of the reference nucleus, Yy(E,,.,), and its

photofission cross section 6 (E).

One holder containing a layer of a fissile isotope
being investigated and a layer of the reference sub-
stance was used for each isotope. The fissile layers
were covered with diaphragms having a hole of diame-
ter 10 mm. Fission fragments were recorded by solid-
state tracking detectors from TV mica, which were
arranged behind the diaphragms that were rigidly
attached to fissile targets and which had a hol e diameter
of 12 mm. The distance from the fissilelayer to the dia-
phragm was 1.5 mm. The 2! Am and >*Am layers were
approximately 100 pg/cm? thick. The thickness of their
23U counterpart layers was 200 pg/cn?. In the
22mAmM-238U pair, the layer thicknesses were 6 and
4 pg/cm?, respectively. The holder containing this pair
of layers was placed more closely to the braking target
than the others, at adistance of 21 mm from itstungsten
element—the holders containing **Am and **'Am
were positioned at distances of 42 and 49 mm, respec-
tively.

Thefissile substance of the 2! Am layer was isotopi-
caly pure. The **Am layer contained 30.3% >*!Am,
3.8% **Cm, and 0.7% 2*’Cm. The amount of admix-
tures was determined by means of alpha-spectrometric
measurements. On the day of preparation, the fissile
substance of the **”Am layer had the following isoto-
pic composition (in weight ratios): **™Am : *!Am :
283Am =1:0.162: 0.006. In contrast to the 24! Am and
23Am layers, which were manufactured immediately
before the experiment, the 2>MAm layer had been pre-
pared 5.75 years earlier. As aresult, the isotopic com-
position of the fissile substance changed to become
242mAm : 241Am : 238Pu : 242Pu : 243Am : 242Cm : 237Np =
0.97:0.16: 0.015: 0004 : 0.006 : 0.003 : 0.001.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 displays the measured values of R(E,,,.)-
The uncertainty AR(E,,,,) includes statistical errors in
the number of tracks that were recorded by the detec-
tors, errors in viewing the detectors under a micro-
scope, and errorsin introducing corrections for the iso-
topic composition of the fissile substance under study
and for the background from spontaneous fission. The
results for 24! Am are free from the last two components
of the error AR(E,,,,,). For >**Am, the background from
spontaneous fission is sizable only at the lowest points
on the energy scale, sharply decreasing from 6 to 1% as
the energy is increased from E,,, = 5.95 to 6.1 MeV
and further to anegligibly small value. For 24*™Am, this
background amounted to 80% near the lower boundary
of the energy interval under study; with increasing
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energy, it decreased down to 10% at E,,, = 6.6 MeV
and still further to a level below 1% of the number of
events recorded by the detector of fission fragments.

The aforementioned uncertainty AR(E,,,,) does not
include a systematic error estimated here at about 15%.
This estimate takes into account errors associated with
a mechanical redlization of the experimental facility
used and the error in determining the ratio of the num-
ber of nuclei in the target from the fissile isotope being
studied and the 2*8U target. These ratios were measured
in a dedicated experiment by exposing, to a beam of
5-MeV monochromatic neutrons, the same combina-
tions of layers as those that were used to measure the
ratios of the photofission yields. The statistical accu-
racy of these measurements was about 3%. The cross
sections o, for neutron-induced fission were taken to

be 1.77, 1.70, and 1.45 b for 2!Am [10], 22™Am [11],
and >Am [10], respectively.

The results of the present measurements for the
ratios R(E,,,,) are shown in Fig. la, aong with the
results from [1, 8] for 24! Am. Within the measurement
errors, theresults obtained here arein accord with those
from [8], but they are approximately 20% below the
dependence R(E,,,.,) reported in [1]. In order to explain
this discrepancy, we recall that, in [1], the ratios of the
number of nuclei in the fissile targets under study were
measured by using neutrons of energy 14.5 MeV. At
this energy value, the scatter of values of the cross sec-
tion for neutron-induced fission that were obtained by
different authorsfor *! Am is aslarge as 15%; as can be
seen from the data sampl e quoted in [ 10], the value cho-
senin [1] onthe basisof the ENDF/B-V1 estimateisthe
largest of al. Moreover, the geometry of the measure-
mentsin [1] was different from back-to-back geometry.
In view of al this, preference should be given to the
present results. In general, the energy dependence
R(E,.,,) has the same qualitative character within the
errors in the two series of measurements.

For the energy dependence of theratios of theyields
from 2mAm and >*U photofission, Fig. 1b displays
results corrected for the presence of the aforementioned
admixtures. Since the admixtures of 242Cm, 2*?Pu, and
23INp are very small (their concentrations are 0.3, 0.4,
and 0.1%, respectively) and since thereis not sufficient
information about 2*>*Cm photofission, the contribution
of the admixtures of these three isotopes was repre-
sented, in calculating the relevant corrections, in terms
of a 0.8% 2*Pu admixture in addition to the actually
present 1.5% of 2*¥Pu. Thisincreased the uncertainty in
the correction itself by not more than 1.5-2%. Owing
to this assumption, it was possible to restrict the inputs
used to describe the dependences R(E,,,,,) measured in
the present experiment and in the analogous experi-
ment reported in [6]. Although the total percentage of
admixtures in the fissile substances did not exceed
20%, the correction for them was significant because,
with decreasing energy, the yield from 2#>MAm photo-
fission begins to decrease faster from E,,,,, = 10 MeV
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than the yield from the photofission of the admixtures.
In view of this, the error in the results for R(E,,,,,) isas
large as 50% at the lowest point measured here, but it
falls down to 5 or even 4% as soon as the energy
reaches 7 MeV. Data on >*™Am photofission have been
obtained here for thefirst time.

Figure 1c shows the experimental dependences
R(E,..») for 2*Am, which were also corrected for the
presence of admixturesin the target of fissile2*3Am. In
taking them into account, it was assumed that the
admixture involves only 2*'Am, but that its amount is
35%. In order to justify this, we recall that the subbar-
rier reduction of the fissility commences at the same
excitation-energy value of 6 MeV for ' Am and for
244Cm and that, at higher energies, thefissility of 24*Cm
cannot exceed the fissility of >*! Am by more than 20%
[12-14]. A 0.7% admixture of *?Cm was al so included
in addition to 30.3% of *!Am. According to my esti-
mates, this increases the uncertainty in the correction
by not more than 2 to 2.5%.

Figure 1c aso showstheratio R(E,,,,) asobtained in
[8]. The present data for >**Am deviate considerably
from the results presented in [8]. In the energy region
covered by the data on R(E,,,,) from [8], our depen-
dence goes much lower. On average, the discrepancy is
60%, which is much greater than the uncertainties in
the two experiments being discussed.

In the calibration measurements of the experiment
reported in [8], the absolute values of the photofission
yields and the relative fissilities of >*!Am, ?Am, and
233U were determined by the same method as in the
present study with the aid of solid-state tracking detec-
tors of fission fragments. Moreover, the results of the
calibration measurements in [8] for the ratio of the
yields of fragments from 2! Am and >3*U fission agree
with the results of the present experiment within the
errors. This gives sufficient ground to believe that the
reason behind the discrepancies between the R values
for 2$Am is not of amethodological character—it may
be rooted either in taking into account admixturesor in
determining the ratio of the numbers of nuclei in fissile
243 Am and 23U targets.

In fissile 23Am substance, the admixtures were
indeed significant, but they were dominated by 2! Am.
It followsthat almost al inputs required for introducing
corrections for impurities were obtained in the same
experiment, so that errors in doing this were mini-
mized. According to estimates, errors stemming from
the fact that a 3.8% admixture of >**Cm and a 0.7%
admixture of 2#2Cm were taken into account indirectly
could not have a pronounced effects on the results.
Although the correction was about 40% in the energy
rangeE,,.. = 10-12 MeV considered here and increased
the statistical uncertainty in the corrected values of
R(E,,,,) from 4% to about 10%, the observed discrep-
ancy can hardly be attributed to this correction.

As was indicated above, the ratio of the number of
nuclei in fissile targets from the americium isotopes
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243 Am photofission as functions of energy: (closed circles)
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triangles) data from [9], and (dashed curves) data from [8].
The arrows indicate the neutron binding energy B,,.

under study and the number of reference nuclei was
determined in a flux of 5-MeV monochromatic neu-
trons. Both for 2! Am and for >**Am, this procedure
made use of the cross sections for neutron-induced fis-
sion that were obtained from a analysis of available
experimental and estimated data presented by the same
group of authors [10]. Owing to this, the probability of
going beyond a 15% accuracy claimed above for the
present determination of the absolute values of the
ratios R was reduced to some extent. All the aforesaid
gives sufficient grounds to state that the observed devi-
ations from the results obtained in [18] are not associ-
ated with the errors in the results of the present experi-
ment.

In order to obtain the integrated dependence Y(E,,,.,)
for the fissile isotope being studied, the photofission
Cross section 0? (E) for reference nuclel 233U that was

estimated in[1] was integrated over the bremsstrahlung
spectrum in just the same way as in (2) [15] and the

SOLDATOV

result was multiplied by the ratio R(E,,,,,) measured in
back-to-back geometry. By applying the iterative
method of directional-discrepancy minimization [16],
the resulting integrated dependences for the americium
isotopes being studied were resolved for the sought
photofission cross sections o;(E). In this procedure, the
integral of the photofission cross section was consid-
ered as a smooth dependence featuring no errors and
having a universal form for the relative measurements
of photofission cross sectionsin the experiments of our
group [1-6]. This means that errors in the estimated

values of the photofission cross section o? (E) for the
reference nucleus were disregarded in our calculations.

The errors in o;(E) were determined by repeatedly
solving Eq. (2) with the left-hand side scattered accord-
ing to the Poisson law with allowance for the errors
AY(E,,,) [these errors were calculated from AR(E,,,,,)
in just the same way as Y(E,,,,) was calculated from
R(E,..x)] and by considering the variance of the result-
ing solutions.

Thefission cross sections deduced from the analysis
described immediately above are displayed in Fig. 2,
where the dark symbols represent the results obtained
in the present study.

Figure 2a shows the cross sections for 24! Am photo-
fission. For this nuclear species, errors in the measure-
ment of R(E,,,,,) in the near-threshold energy region are
about 3%, which exceeds only dlightly the level of
errors in preceding experiments of our group that were
devoted to measuring fission cross sections by therela
tive method. For this reason, the cross sections for
241 Am photofission were calculated, within the iterative
method of directional-discrepancy minimization, by
using a standard number of iterative steps [2] that
makes it possible to trace the structure of the energy
dependence of the cross sections. In particular, the
present measurements, which scan the excitation-
energy scale in somewhat greater detail than the mea-
surementsin [1], revealed amodest peak of width about
200 keV intheregion around E = 6.2 MeV. Itisin con-
nection with the discovery of asimilar maximum in the
immediate vicinity of the fission threshold and below it
in the energy dependence of thefission cross section for
the 2’Np nucleus [2], which is also odd—even, that the
choice of the number of iterations was comprehen-
sively discussed in that study. In addition, Fig. 2a dis-
plays (triangles) the results from [9], which were also
obtained by using bremsstrahlung radiation and which
are, by and large, consistent with the present data, with
the exception of afew pointsfrom [9] that show signif-
icant deviations. In the data from [9], there is also a
maximum in o;(E), but it occurs at lower energies
(around 6 MeV) than in the present study.

The o;(E) curve corresponding to the first measure-
ments of our group [1] lies somewhat higher than the
energy dependence obtained for thiscross sectioninthe
present study. The discrepancies between the absolute
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values of o;(E) were discussed above in comparing the
data on R(E,,,,). The dashed curve represents the cross
sections obtained in [8]; within the errors, they agree
with the data reported here and the data from [9].

Figure 2b displays the cross section for 2MAm
photofission as a function of energy. For this nuclear
species, the input experimental data as represented by
the dependence R(E,,,) are characterized by large sta-
tistical uncertainties associated with corrections for the
isotopic composition, especially in the low-energy
region, where the structure of the fission cross section
largely manifestsitself. It would hardly bejustifiable to
apply the above mathematical procedure to a treatment
of such data and to discuss the resulting resonances in
the photofission cross section. Prior to processing the
dependences Y(E,,,) for >**™Am by the method of
directional-discrepancy minimization, they were there-
fore subjected to smoothing, which was performed on
the basis of five experimental points in the region of
large statistical uncertainties, E,,,, < 7 MeV, and on the
basis of three experimental points in the region where
the reliability of the measurements is higher, E,,, >
7 MeV. The data obtained in the present study furnish
information only about the gross behavior of the energy
dependence o;(E). Below the apparent >*>™Am fission
threshold, which occurs at an energy value around
6.5 MeV, the fission cross sections o;(E) were found
with very large errors. In the region E > 7 MeV, the
uncertainties in o; (E) are on the same order of magni-
tude as the uncertainties in the photofission cross sec-
tions for other nuclei that our group studied by the rel-
ative method.

In Fig. 2c, the cross sections obtained here for
243 Am photofission are contrasted against the cross sec-
tions from [8]. The discrepancies between the data on
the ratios R(E,,,,) that were discussed above survive in
the results for the cross sections as well. Asin the case
of 2¥MAm, large statistical errors and the scatter of
points in the data on R(E,,,,), which play the role of
inputs for calculating the cross sections, required
smoothing the dependence Y(E,,.,) prior to applying
theiterative method of directional-discrepancy minimi-
zation. As a result, only the gross behavior of the
energy dependence of the photofission cross section
and its absolute value were obtained here for >**Am as
well. It can clearly be seen from these results that a sub-
barrier reduction of the cross section commences below
the energy value of E = 6.4 MeV.

The results abtained in the present study for the
photofission of americium isotopes can also compared
with experimental data on the fission probability as
determined from direct reactions. For this purpose, the
photofission cross sectionswere rescaled into the fissil-
ities by taking the ratios of these cross sectionsto those
for photoabsorption. Since the dipole-photoabsorption
process is dominant in the energy region being consid-
ered, the fissilities were specified as

P{(E)=0(E)/ou(E), 3
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where o, (E) is the cross section for dipole photoab-
sorption. Since there are no direct experimental dataon
the dipole-photoabsorption cross sections for ameri-
cium isotopes, a superposition of two Lorentzian
forms,
2 Er?

z R PR
‘-1 (EE—E)" +ET;
with the parameters set to g, = 311 mb, ', =2.37 MeV,
E, =10.77MeV, 0, =459 mb, [, =5.13 MeV, and E, =
13.8 MeV, which was obtained in [17] for 2**U, was
used here to approximate the energy dependence
0,, (E) in computing P; (E). In the present rel ative mea-
surements of the photofission cross sections, the refer-
ence cross section for energies above 7 MeV was esti-
mated in [1] on the basis of the same experimental data
from [17] on the 23U photofission cross section as
those that were used in eval uating the parameters of the
Lorentzian formsin [4]. By invoking the sameinforma-
tion about the cross section for 22U photofission in
multiplying R(E,.,) by the integral of o (E) over the
bremsstrahlung spectrum to evaluate o;(E) and in
dividing this ratio by the dipole-photoabsorption cross

section to evaluate the fissilities, we reduced, to some
extent, the uncertainties in P;(E) that are associated

with the choice of 0? (E) and o4 (E).

The fissilities P;(E) for ' Am versus energy that
were obtained in the present study are shownin Fig. 3a,
alongwiththe P; (E) valuesmeasured in [17, 18] for the
same nucleus **'Am in the relevant direct reaction
(*He, df). In genera, the dependences P;(E) as
obtained in the present study and in[12, 18] aresimilar:
a subbarrier reduction of the fissility with decreasing
energy commences at the same point, and the so-called
fissility plateau is observed in either case in the energy
region from 7 to 11 MeV. Over a mgjor part of the
energy interval being studied, the fissility values from
the different approaches agree within the experimental
errors. Only below 7 GeV does the fissility curve
obtained in the present study goes below data deduced
from the experiments that explored the above direct
reactions. This can be explained by exaggerated values
of dipole-photoabsorption cross section o, (E) that are
obtained at low energies from the approximation of the
data given in [17]. For the photofission of a number of
thorium, uranium, neptunium, and plutonium isotopes,
it was shown in the review article of Ostapenko et al.
[19] that a good description of the dependence o, (E)
by the two Lorentzian forms (4) in the energy region of
the giant dipole resonance leads to an overestimation of
0 (E) at low energies.

A resonance-like irregularity at E = 6.2 MeV is
more spectacular in the dependence P; (E). In the same
energy range, asimilar irregularity was observed in[9],
but with somewhat larger uncertainties in P;(E). In
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Fig. 3. Fissilities of (a) 2*'Am, (b) 2**™Am, and (c) **Am
as functions of energy according to data on photofission
aong with those from direct-reaction data: (closed circles)
data of the present study, (open circles) data from [18],
(open triangles) datafrom [9], and (open inverted triangles)
data from [12]. The arrows indicate the neutron binding
energy B,

Fig. 3a, the triangles represent a segment of the energy
dependence of thefissility from[9] in the energy region
E <7 MeV. In datafrom direct reactions, such an irreg-
ularity does not stand out against the errors. Asto man-
ifestations of a resonance in the fissility of >*'Am at
energies below the neutron binding energy of B, =
6.66 MeV, the situation here is similar to that which
was observed and discussed in detail for 2*’Np in [2].
Asin [2], amanifestation of the resonance in photofis-
sion data and simultaneously its absence from direct-
reaction data can hardly be explained in terms of reso-
nances in the fission-barrier penetrability for Z-odd
nuclei or in terms of the competition between decay
widths. In all probability, this is a manifestation of a
resonance structure in the dipol e-photoabsorption cross
section [20].

Figure 3b presents a comparison of the fissilities
obtained in the present study for the 2*™Am isotope
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with the fissilities of the same nucleus in the relevant
direct reactions (d, pf) [12] and (*He, tf) [18]. The sub-
barrier segments of P; (E) measured in the three studies
agree within the errors, but the energy value from
which the fissility beginsto decrease is lower by about
300 keV in the photofission data. In the energy region
below 7.3 MeV, the fissility is somewhat higher in the
direct-reaction data. In just the same way asin the case
of 24! Am, this seems to be due to the use of the overes-
timated dipol e-photoabsorption cross section from [17]
in the present calculation. The fissility plateau is aso
clearly seen in the dependence P;(E) for 2#2MAm. On
the plateau, the fissility values disagree with data from
[18], but they comply, abeit within a narrow energy
interval, with datafrom [12].

Figure 3c displaysthefissilities of the?*3Am isotope
that were obtained in the present experiment and in the
experiments that studied the relevant direct reaction
(*He, df) [12, 18]. In what is concerned with the char-
acter of the dependence P;(E), our data are consistent
with those from [12, 18]. Even a modest enhancement
of the fissility in the vicinity of the point E = 6.5 MeV
can be explained by an overestimation of the dipole-
photoabsorption cross section in this energy region
[19]. In fact, the fissility maximum at 6.5 MeV occurs
very close to the neutron binding energy of B, = 6.38,
and this makes it possible to interpret this maximum as
the result of the competition between the fission and the
neutron channel of excited-nucleus decay.

In what is concerned with the discrepancies between
the fissility values in the plateau region, it should be
bornein mind that the dependences P; (E ) obtained from
the data.on the same direct reaction 2**Pu(*He, df ) 2> Am
also show variations commensurate with them. Even
the large values of the fissility for 2*Am in the plateau
region do not exceed P; values aobtained in [18] for
241 Am. This circumstance is of importance in connec-
tion with a comparison of the mean values of the >**Am
and >*' Am fissilitiesat 11.5 MeV from [8] (0.61 + 0.04
and 0.53 = 0.03, respectively) with those obtained in the
present study on the basis of the averaged experimental
datafor E,,, from 11 to 12 MeV. The averaged fissili-
ties calculated here for such a comparison with the aid
of the relation presented in [8] are 0.38 = 0.02 and
0.58 + 0.03 for 2*Am and %*'Am, respectively. The
value for 2Am is much less than that in [8], but the
analogous values for 2! Am comply within the errors.
That the averaged fissility of the >*Am isotopeislower
than the fissility of the >*! Am isotope, which is also
odd—even, but which has fewer neutrons, is quite natu-
ral. Thisis confirmed by the direct-reaction data from
[12, 18], which are quoted in the table.

The table lists the averaged values of the fissilities
P;: of the isotopes investigated in the present experi-
ment. In contrast to those from [8], these results were
obtained from the data that are directly associated with

the fissilities and which are displayed in Fig. 3. The
energy intervals over which averaging has been per-
PHYSICS OF ATOMIC NUCLEI
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Averaged values of the fissility Ps in the plateau region, energy intervals AE over which averaging has been performed, and
apparent fission thresholds Eg,, for the nuclei studied in the present experiment

Fissile nucleus R, MeV AE, MeV Eapp, MeV Reaction References
2IAm 0.56 + 0.02 7-12 <6 (v, ) Present study
0.53+0.03 10-12 - (v, ) (8]
0.71+0.03 7-10 57 (v, ) [9]
0.60+0.03 7-7.4 5.8 (®He, df) [12]
0.61 7.4-10.8 57 (He, df) [18]
242MAm 0.45 + 0.02 7-12 6.4 (v, f) Present study
0.50+0.01 7-75 6.5 (®He, df) [12]
0.62+0.01 7.1-12 6.4 (He, df) [18]
2BAm 0.37 +0.02 7-12 <6 (A)) Present study
0.61+0.04 10-12 -~ (v, ) (8]
0.45+0.03 7.1-75 57 (He, df) [12]
0.58+0.01 7.4-11.2 5.6 (He, df) [18]

formed are given in a separate column. Also quoted in
the table are the apparent fission thresholds taken to
mean the energy values that correspond to the fissility
equal to half its value in the plateau region. All the
numerical values in the table were obtained in the
present study by processing graphical data from origi-

nal investigations. That the P¢ value for 2#'Am was
much larger in [9] can be explained by the choice of an
underestimated photoabsorption cross section in [19]
for energies in the range 7-10 MeV.

4. CONCLUSION

In an experiment performed at the microtron of the
Institute of Physic and Power Engineering (Obninsk),
the cross sections for the photofission of the >*!Am,
222mAm, and 2** Am isotopes as functions of energy have
been determined in the energy range from 6 to 12 MeV.
In order to measure the cross sections for the photofis-
sion process induced by bremsstrahlung photons, the
relative method has been applied with the cross section
for 238U photofission as a reference. Data on the cross
sections for 2™Am in the energy range from 6 to
12 MeV and for >** Am photofission in the energy range
from 6 to 7 MeV have been obtained for the first time.
The new results for 2! Am have revealed that the cross
sections for *'Am photofission were exaggerated in
[1]. The results of the present measurements for 24! Am
comply well with the data of other authors. At an
energy value of 6 MeV, the cross sections determined
here show evidence for an irregularity that is likely to
be associated with the low-energy resonance structure
in the dipole-photoabsorption cross section [20] and
which isalso suggested by earlier datafrom[9]. A quite
unexpected relationship between the 2! Am and **’Am
fissilities from [8], where the latter was found, in dis-
agreement with model predictions, to be greater than

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001

the former, has not been confirmed. A comparison of
the americium-isotope fissilities obtained as functions
of energy from the present photofission data and from
data on direct reactions like ?°Pu(*He, df)**' Am has
yielded agreement for the apparent fission thresholds
and for the plateaulike dependences at energies above
7.5 MeV.
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Abstract—Thetime of prompt-fission-neutron emission from 22Cf is evaluated at 1, > (1-2) x 10~'° sby mea-
suring a two-neutron correlation function. The final-state interaction of identical neutrons emitted by moving
fission fragments is taken into account. © 2001 MAIK * Nauka/Interperiodica’ .

The time of prompt-fission-neutron emission is of
importance both for studying various neutron-emission
mechanisms and for further developing the theory of
nuclear fission. According to various theoretical esti-
mates [1-3], this time varies in the interval (0.5-5) x
1020 s. Present-day facilities are unable to measure
directly such short time intervals. By measuring a cor-
relation of two fission neutronswith the aid of nanosec-
ond equipment of resolution about 0.1 ns, one can nev-
ertheless deduce information about the times of
prompt-neutron emission—that is, about time intervals
that are ten orders of magnitude shorter than the time
resolution of the measuring instruments used. There-
fore, an experiment aimed at measuring a two-particle
correlation function is of great interest not only as a
means to eval uate the time of prompt-neutron emission
but also as a unigue method for measuring such short
time intervals, though indirectly.

In [4], we presented the results obtained by measur-
ing the two-neutron correl ation function for >>Cf spon-
taneous fission and evaluated the time of prompt-fis-
sion-neutron emission without allowing for the motion
of fission fragments in the laboratory frame. Here, we
process the extended results of the measurements from
[4] more carefully, taking into account the motion of
fission fragments, which are known to be the main
source of prompt-neutron emission [5]. A more accu-
rate calibration of the energy scale of the facility used
is aso performed.

A detailed description of our facility and of the pro-
cedure of measurements is given elsewhere [4]. Here,
we only recall that the correlation function for two neu-
trons emitted by fragments of thef type (f=1or hfor a
light or the complementary heavy fragment, respec-
tively) was defined as

RP™ = Ni(p1, P2)N(/IN1(p1)N3(p2)] = R™(p, @),

where N; is the number of recorded fragments of the

f type; NI (p,) and N£ (p,) are the numbers of neutrons
that have momenta p, and p, and which were recorded

by detectors 1 and 2, respectively; N{Z (py, po) isthe
number of coincidences between the recording of a
neutron with momentum p, by detector 1 and the
recording of a neutron with momentum p, by detector 2;
p=|p; +p.l/2; and q = |p; — pal-

Having analyzed the background, we restricted the
kinematical region of neutrons taken for processing to
theinterval 40 < p,, p, < 130 MeV/c. Inthisregion, the
background associated with neutron scattering on the
surrounding structures was about 13% of the recorded
intensity. After introducing corrections for the angular
resolution of the system recording fragments [6], we

obtained 162 values of the correlation function Ry (p,

g) for each type of fragments. By using the x> method,
these values were then compared with the theoretical
function R ,(p, g) calculated by the formula

Run(P, @) = R (p, Q)R

where R? (p, g) isthe normalized correlation function

in the laboratory frame—this function also depends on
the spatial and time dimensions of the neutron source,

ro and T, respectively—and R, is an adjustable
parameter that takesinto account the number of emitted

neutrons. The fitted values of this parameter fell within
the interval between 0.7 and 0.8. In order to calculate

R (p, g), we used the formulas obtained in [7] for the
two-neutron correlation function in the source rest
frame with allowance for the final-state interaction of
identical particles and rescaled the results into the lab-
oratory frame. In accordance with the mean masses of
light and heavy fragments (106 and 141.9 amu), the
spatial parameter r, wasset to 2.22 and 2.45 fmfor light
and heavy fragments, respectively. The root-mean-
sguare radius of the neutron-generation region is R, =

/31, Intaking into account the motion of fission frag-
ments in the laboratory frame, we used the values of

1063-7788/01/6402-0177$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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x2 as afunction of the calculated time of neutron emission
by a source for (solid curve) a light fragment and (dashed
curve) the complementary heavy fragment. The horizontal

line corresponds to x> = m+ ./2m.

V= 0.0461¢ and V, = 0.0345¢ from [8] for the mean
velocities of light and heavy fragments, respectively.

The results obtained by comparing experimental
datawith the calculated values areillustrated in the fig-
ure, which shows x? versus the time 1, of neutron emis-
sion by the source. From thisfigure, it can be seen that

the condition x> < m+ ./2m (m= 160 is the number of
degrees of freedom) yields 1, = 1.4 x 10!° s for light
fragments. The agreement with thetheory isinferior for
heavy fragments, and we estimate thelimitont,ast, =2
(1-2) x 10" s according to the data on heavy frag-
ments. It is quite natura to fix the parametersr, and V;
at the above values, because avariation of these param-
eters within reasonable limits affects x2 only dlightly:
the resulting changes in x? are much smaller than the
statistical error in 2.

KATARZHNOV et al.

In summary, we have obtained a more accurate esti-
mate of thetime of prompt-neutron emission, T, = (1-2) X
1071 s, from arefined data treatment with due regard to
the motion of fission fragments. It should be noted that,
for T, = 107" s, the contributions to the correlation
function in question from the final-state interaction of
neutrons (B;) and from the effect of Fermi statistics (B,)
are negligibly small in the momentum region that we
studied. Of greatest interest from the viewpoint of mea-
surement of the two-neutron correlation function is
therefore an advancement toward the region of low
momentum transfers (Q — 0), where the contributions
B, and B; significantly increase. However, within the
experimental approach used, thisinvolves considerable
difficulties associated with a heavy background that
grows sharply when the neutron-detection threshold is
reduced or when the pair detectors are brought closer
together because of rescattering on them.
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Abstract—A dynamical approach is proposed for calculating the angular distributions of fission fragments.
The relaxation time for the degree of freedom associated with the projection of the total angular momentum of
the nuclear system onto the symmetry axis and the coefficient of damping of the fission mode are the basic
parameters of this approach. Experimental data on the anisotropy of the angular distributions of fission frag-

ments and on the multiplicities of prescission neutrons are analyzed within the proposed mode! for 190 + 208pb
(Eig = 110-148 MeV), 60 + 22Th (120-160 MeV), 10 + 245Cm (110-148 MeV), and 0 + 233U (96—
148 MeV). The relaxation time and the damping coefficient are estimated at T« = (5-6) x 102! sand B = 4 x
10?! 57!, respectively. © 2001 MAIK “ Nauka/Interperiodica’ .

1. INTRODUCTION

The understanding of the role of nuclear dissipation
for processes such as deep-inelastic collisions of heavy
ions [1], damping of giant multipole resonances [2],
and nuclear fission [3] is one of the most spectacular
achievements of modern nuclear physics. Nuclear dis-
sipation, which manifests itself as irreversible energy
transfer from collective degrees of freedom to internal
ones, leads to the emergence of nonconservative forces
in the system under study, the amplitude of these forces
being characterized by the damping coefficient (3. Infor-
mation about (3 is usually extracted from an analysis of
experimental data on the multiplicities of prescission
light particles and of photons, on the mass and energy
distributions of fragments originating from the fission
of heavy nuclei, on the cross sections for evaporation-
residue formation, and on the fission probability [3, 4].
In describing collective nuclear motion, use is usually
made of approaches based on the Fokker—Planck equa-
tion [5] or on the set of stochastic Langevin equations
[3, 6]. Unfortunately, estimates of [3 that were obtained
along these lines show alarge scatter from one study to
another (sometimes the difference reaches two orders
of magnitude [4]). Moreover, the existing theoretical
models predict 3 values in the range from 0.3 x 10%! to
100 x 10*! s7! [4]. Presently, there is no unambiguous
information about the energy and the deformation
dependence of B either [4, 7]. It therefore seems neces-
sary to extend the range of observables whose analysis
can provide information about the damping coefficient.
We deem that angular distributions of fragments origi-
nating from the fission of heavy nuclel can serve these
puUrposes.

We note that the Hal pern—Strutinsky model of tran-
sition states[8] is conventionally used to analyze exper-

imental data on angular distributions. It is assumed in
this model that, at some transition point on the path to
fission, the K distribution (K is the projection of the
total angular momentum of the nuclear system onto the
fission axis) becomes equilibrium, undergoing no fur-
ther changes during the subsequent evolution of the fis-
sile system up to the scission point. Traditionally, it is
the states at the saddle point of the fission barrier that
are considered as such transition states. Recently, there
have appeared some pieces of evidence that the time of
motion from the saddle to the scission point is compar-
atively long (1~ 10720 ) [3, 4, 9]. For the time of the
relaxation of the degree of freedom associated with K,
modern estimates are 1 ~ 1072° s [9-11]. Since this
value is commensurate with T, the effective transition
state can occur in between the saddle and the scission
point. In addition, Freifelder et al. [12] compared the
temperature dependence of the experimental values of

KS (variance of the K distribution) with the results of

calculations performed within two versions of the tran-
sition-state model, which differ in the choice of transi-
tion state, that at the saddle point in one version and that
at the scission point in the other version. As aresult, it
appeared that the experimental data lie in between the
curves cal cul ated within these two approaches. The last
circumstance suggeststhat the shape of the nuclear sys-
tem in the effective transition state must be more com-
pact than at the scission point and more stretched than
at the saddle point. It should be noted here that, in solv-
ing this problem, the authors of [13-15] used the
approach based on the assumption that the dinuclear
system whose evolution can lead, depending on the
value of the impact parameter, to complete fusion,
quasifission, or deep-inelastic scattering isformed in a
collision of the projectile nucleus with atarget nucleus.

1063-7788/01/6402-0179$21.00 © 2001 MAIK “Nauka/ Interperiodica’



180

In the quasifission process, there occurs intense
nucleon exchange between the constituents of the dinu-
clear system which does not reach, as arule, deforma-
tions that are peculiar to the fission barrier and, the
more so, to the ground state. In this case, only the final
stage of the fission process—the motion of the fissile
system beyond the saddle point to the scission point—
does actually proceed. By virtue of this, the anisotropy
of the angular distribution for the quasifission process
must be more pronounced than that which is predicted
by the model assuming the occurrence of a transition
state at the saddle point (TSSP model). We note, how-
ever, that quasifission is a process characteristic of
reactionsthat proceed on heavy target nuclei and which
areinduced by A= 20 projectiles[9, 15]. It followsthat,
in the case of sufficiently light projectiles, the observed
discrepancy between experimental data on the anisot-
ropy of the angular distribution and the TSSP predic-
tions cannot be attributed to the contribution of the
quasifission process.

Moreover, the applicability of the TSSP model is
guestionable at high angular momenta and nuclear tem-
peraturesin theregiont = B;(J) [9]. It should be noted
here that, within the standard statistical approach, the
temperature of the nucleus at the saddle point can be
calculated with allowance for the possible emission of
light particles. In order to cal cul ate the temperaturein the
case where the effective transition state is beyond the
saddle point, we must consider the dynamical aspects of
the fission process, taking into account the subsequent
emission of light particles at the stage of descent from
the saddle to the scission point. We emphasize once
again that devel oping such amodel can serve asan effec-
tive tool for obtaining new data both on the relaxation
time 1« and on the damping coefficient 3.

In the present study, we propose a dynamical model
for calculating the angular distributions of fission frag-
ments. Within the proposed approach, data on the angu-
lar distributions and multiplicities of prescission neu-
trons are anayzed for 'O + 2%%Pb (B, = 110-
148 MeV), '°0 + 2*2Th (120-160 MeV), °0 + 2*3Cm
(110-148 MeV), and '°O + 238U (96-148 MeV) inter-
actions.

2. CALCULATION OF ANGULAR
DISTRIBUTIONS OF FISSION FRAGMENTS

In the present study, the evolution of a fissile
nucleusis described on the basis of the set of stochastic
Langevin equations, which, in the one-dimensional
case, can be represented as

da _p

dt m’
dp _ dv(r) y M
@t " ar T mPt i

where r and p are, respectively, the collective coordi-
nate and the corresponding momentum, while mis the
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inertial parameter. For the collective coordinate, we use
the distance between the centers of mass of nascent fis-
sion fragments. In Egs. (1), f (1) is arandom delta-cor-
related force,

Of(t)d0= 0; O (1)) f(t,)d= 2Dd(1,—-T1,), (2)
where D is expressed, through the Einstein relation, in
terms of the nuclear temperature and the coefficient of
nuclear friction as D = ty, being related to the damping
coefficient by the equation 3 = y/m. For the inertial
parameter, we chose the quantity m= A/4, which corre-
sponds to fission into two fragments of identical
masses. | n studies devoted to simul ating fission dynam-
ics by using the Fokker—Planck equation [5] or Lan-
gevin equations [3], it is often assumed that misinde-
pendent of the collective coordinate. Of course, this
assumption is made to simplify the calculations. Esti-
mates of the deformation dependence of m that were
obtained on the basis of the semiempirical relation
from [16] show that variationsin the inertial parameter
over the segment of the trgjectory between the saddle
and the scission point do not exceed 10% of A/4. Such
asmall variation in m can lead only to an insignificant
increasein 1. On the other hand, thetime it takesfor a
fissile system to reach the saddle point is predomi-
nantly determined by the relationship between the tem-
perature and the fission-barrier height. In Egs. (1), the
temperature is defined as t = (E,/a(r))'? with E,, =
E* — p*/(2m) — V(r, J) — E,,,, where E* is the total exci-
tation energy, E., the rotational energy of the system
under study, and a(r) isthe level-density parameter. We
note that the deformation dependence of the level-den-
sity parameter plays an important role in analyzing
experimental data associated with the fission process
and, hence, with the evolution of the shape of the
nuclear system [3, 9, 17]. In our study, the level-density
parameter was chosen in the form a(r) = aA +
a, A?PBg(r), wherea, = 0.073 MeV-!, a, = 0.095 MeV!,
and Bg(r) isthe surface energy of the deformed nucleus.
This dependence complies with the result that was pre-
sented in [18] and which was obtained for the Woods-
Saxon potential. The potential energy V(r, J) [and,
accordingly, Bg(r)] was calculated within the liquid-
drop model with the Myers—Swiatecki parameters by
using the procedure proposed in [16], which makes it
possible to perform a fast calculation of the potential
energy for fissile nuclei over awide range of A, Z, and
Jvalues. Here, we take no account of effects associated
with afinite range of nuclear forces because there are
no simple and fast methods for cal culating relevant cor-
rections either for the level-density parameter or for the
potential energy [3].

The initial values of p were generated for each tra-
jectory under the assumption of the normal momentum
PHY SICS OF ATOMIC NUCLEI
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distribution at r corresponding to the equilibrium defor-
mation:

1 0 p> 0O
F(p) = ex 3)
(p) oo pg th%

Equations (1) were solved with the aid of the Euler dif-
ference scheme.

The emission of light particles (protons, neutrons,
and alpha particles) was simulated within the approach
that is usually used to calculate the multiplicity of light
particles for induced fission and which is based on the
Langevin equations [3, 19]. The specific implementa-
tion was the following. At each time step, the partial
decay widths (I, I, and I) with respect to channels
involving particle emission were computed within the
method of inverse cross sections [20] and a random
number n; uniformly distributed in the interval (0, 1)
was generated. Further, n, was compared with theratio
of the time step At in integrating the Langevin equa-
tionsto the quantity T, =#A/I", wherel =T+, + .
Inthe caseof n, <AT/t,,,, it was assumed that the emis-
sion event had occurred. After that, the type of the emit-
ted particle was sampled. For this purpose, we gener-
ated a second random number ), uniformly distributed
over the interval from zero to unity. This region was
broken down into three subintervals according to the
value of theratios I/, I',/I", and [, /T, the type of a
particle being specified By the subintervals within
which the random number n, fals. In order to deter-
mine the energy of the emitted particle of thei type, we
construct the quantity

Pi(&)

&

O “)
Joim(e)epr(e)ders
0 0

_ 1D(2\1i+1)ui
T eh?pi(E)

where p and pg are the angular-momentum-integrated
level densities in the parent and the daughter nucleus,
respectively; g,,, is the cross section for the inverse
reaction; 1 is the reduced mass of the emitted particle;
and g, is the maximum possible energy of the emitted
particle (it is determined from the energy-conservation
law). The quantity P;(g,) has the meaning of the proba-
bility of the production of an i-type particle whose
energy lyingintheinterval (0, 1) islessthan g,. Break-
ing down the interval (0, 1) into a sufficiently large
number of equal subintervals and generating a random
number n; uniformly distributed over the interval (0,
1), we can determine the energy of the emitted particle.
The change in the angular momentum of the nucleus
upon particle emission was taken into account by
assuming that, on average, a neutron, a proton, and an
alpha particle carry away angular momenta of 14, 14,
and 27, respectively [3]. Upon each emission event, the
excitation energy, the potential energy, and the angular
momentum of the fissile system were corrected. If the
Langevin trajectory approached the scission point, such
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an event was interpreted as fission. In the case where
the value of the collective variable appeared to be less
than the corresponding value at the saddle point and
where, because of light-particle emission, the internal
excitation energy E;,, simultaneously became less than
min(B;, B;(J)) [where B; is the binding energy of the
light particle and B;(J) isthe fission barrier], the calcu-
lations were ceased, and such an event was treated as
the formation of an evaporation residue. But if E;,
remained greater than min(B;, B;(J)) when the temper-
ature decreased (because of light-particle emission) to
avalue such that t < 0.1B;(J) and if the deformation of
the fissile system appeared to be less than the deforma-
tion at the saddle point, we went over to the statistical
branch of the calculation. This was also done when the
current time value exceeded T = 108 s, At such alarge
value of T, al relaxation processes associated with
establishing a quasistationary value of the probahility
current at the saddle point [9, 21] were completed and
the results of the calculations were independent of the
conditions of the transition to the statistical branch of
the calculations. We emphasize that, in the present
study, these conditions were chosen to be more strin-
gent than those, for example, in[3]. Upon thetransition
to the statistical branch of the calculation, the partial
widths with respect to light-particle emission were
computed in the same way asin the dynamical branch,
while the fission width was calculated on the basis of
the Bohr—Wheeler relations with alowance for the
Kramers corrections [9]. In that case, use was made of
a conventional Monte Carlo procedure, and, in just the
same way as in the dynamical calculations, the evapo-
ration cascade was terminated as soon as E,,, became
less than min(B,, B;(J)). If afission event occurred at
one of the steps of the evaporation cascade, atransition
to the dynamical branch of the calculation was again
implemented for such events in order to calculate the
relevant angular distribution, but the initial conditions
in (3) were chosen thistime at the saddle point.

In calculating the angular distributions, we fixed the
values of the deformation and of the internal excitation
energy at each instant when the current time for a spe-
cific Langevin trajectory exceeded an integral multiple
of Tx. This was done until our fissile nuclear system
reached the scission point. The last value of the collec-
tive coordinate fixed in this way was taken as the effec-
tive transition point determining the angular distribu-
tion. At this point, we cal culated the moments of inertia
of the nucleus, 3y, and 3, in the rigid-body approxi-
mation and the quantity K3 = t/A2)(3;; — o). Fur-
ther the angular distributions were calculated by using
the standard Halpern—Strutinsky expressions [8, 22].
Within this approach, the probability of fission-frag-
ment emission at an angle B with respect to the beam
axis at the fixed values of J and M (the latter being the
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Fig. 1. Calculated cross sections for the complete-fusion
versus energy aong with experimental data on fission cross
sections for various reactions. Open boxes, triangles, and
circlesrepresent datafrom[22], [27], and [28], respectively.

projection of the total angular momentum onto the pro-
jectile-beam axis) is given by

Wy (8)
L (23 +1)|d3, «(8) exp(—K/K2)
J }

&)

I Y ep(KIKY)

K=-J

where df,,vK () is the Wigner rotation function. As a

rule, studies that analyze experimental data on the
angular distributions for reactions induced by heavy
ions consider the fission of compound systems formed
as the result of the interaction of spinless nuclei, asso-
ciating the observed angular distributions with the first
nucleus of the emission cascade—that is, it is assumed
that M = 0. However, light-particle emission from a hot
compound nucleus must lead to a situation where the
vector of the total angular momentum does not strictly
lie in the plane orthogonal to the beam axis, in which
case M can take nonzero values; hence, it is necessary
to consider the relevant distributions. As applied to the
analysis of angular distributions for reactions induced
by heavy ions, this question was investigated in [23,
24], where the authors used, by analogy with K, the
Gaussian distribution with respect to M. Under this
assumption, the eventual expression for the angular dis-
tribution has the form

J
_(23+1)T, Z oy (8) exp(—M?/2M2)
W(B) = Z M=)
J=0 Z exp(-M?/2M2)

M=-J

(6)
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Fig. 2. Multiplicity of prescission neutrons from %0 +

208py, jnteraction: (points) experimental data from [29] and
(curve) results of the calculation.

where T, isthe penetrability factor. In the present study,
weset M3 = K3 [23].

The initia distribution with respect to the angular
momentum of the nascent compound nucleus was cal-
culated on the basis of the method proposed in [3]. This
approach relies on the use of the partial-wave cross sec-
tions calculated for fusion [o(J)] within the surface-
friction model [25, 26]. In Fig. 1, the calculated cross
sections for complete fusion are contrasted against the
corresponding experimental data. We note that, for
each initial value of the angular momentum, the num-
ber of Langevin trajectories was chosen in the present
study to be proportional to the partia-wave cross sec-
tion for fusion.

In the proposed approach to a global analysis of
experimental data on the angular distributions and M,
only B and 1, were used as adjustable parameters.

3. ANALY SIS OF EXPERIMENTAL DATA
ON ANGULAR DISTRIBUTIONS
AND PRESCISSION-NEUTRON MULTIPLICITIES

In this section, we present the results obtained from
an anaysis of experimental data on the anisotropy of
the angular distributions and on the prescission-neutron
multiplicities for 1°O + 2%8Pb, 10 + 232Th, '°0 + 24%Cm,
and %0 + 233U interactions. For %0 + 28Pb interac-
tions, the experimental data on the angular distribution
and on the prescission-neutron multiplicity are shown
in Figs. 2 and 3 along with the results of the relevant
calculations. It was noted above that, in order to obtain
the best fit to the experimental data, we varied the
adjustable parameters 3 and 1 in calculating the angu-
lar distribution and the prescission-neutron multiplic-
ity. Since, within the proposed scheme, the numerical
value of 1 does not affect the calculated multiplicity of
prescission light particles, we used only dataon M, in
order to derive the coefficient 3. From the best fit to the
experimental data, we then obtained the value of 3 =
4 x 10?! s, By choosing the value of B in thisway, we

PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.2 2001



DYNAMICAL APPROACH TO CALCULATING ANGULAR DISTRIBUTIONS

thereby fixed the mean time of motion of the fissile
nuclear system over the potential surface. In order to
describe the experimental data on the anisotropy of the
angular distributions at the specific 3 value, we then
varied the parameter 1. With the aim of demonstrating
the sengitivity of the calculated angular distributionsto
changesin 1, curves obtained at various values of this
parameter are displayed in Fig. 3. It can be seen that the
best fit to the experimental datais achieved at 14 = 5 %
102! s. It should be noted here that, for our analysis of
the angular distributions, we choose experimental val-
ues only at those projectile energiesthat lead to the for-
mation of compound nuclei characterized by excita-
tion-energy values in excess of 50 MeV. This is
because, at lower excitation energies, shell effects play
an important role [30], in which case it is necessary to
take into account the two-humped structure of the fis-
sion barrier in calculating the angular distribution (see
[31]). For the sake of comparison, the results of the cal-
culations within the standard TSSP model with and
without allowance for neutron emission are also shown
in this figure. The effect of neutron emission on the
anisotropy of the angular distribution was taken into
account through achangein the excitation energy of the
compound nucleus at the saddle-point configuration
according to the procedure described in [32]. In order
to break down the prescission-neutron multiplicity into
two components—that associated with the emission
before the saddle point and that associated with the
emission at the stage of descent of the fissile system
from the saddl e to the scission point—use was made of
the neutron multiplicities cal culated within the dynam-
ical model described above. In evaluating the anisot-
ropy within the TSSP model, we relied on the simple
approximation

_ 14 30 (7
4K0

The use of this relation was motivated by the following
arguments. At the E,, values being studied, some sec-
tion of the initial angular-momentum distribution cor-
responds to those fission-barrier values at which
B: (J) <t. Theapplication of relations (5) and (6) for the

K5 value taken at the saddle point then leads to an

unphysical result. In expression (7), K(Z, iscalculated at

[J2Ovalues such that the inequality B ([J°0 >t is satis-
fied in the energy region under study. From Fig. 3, it
can be seen that the experimental data fall in between
the results obtained within the two versions of the cal-
culations on the basis of the TSSP model (with and
without allowance for the neutron emission). It should
be emphasized here that relation (7) was obtained under
the assumption of M = 0. As was shown in [31], the
inclusion of the degree of freedom associated with M
reduces the anisotropy of the angular distribution.

Depending on the choice of MS , the curve representing

W(0°) _
W(90°)
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Fig. 3. Angular anisotropy of the fission-fragment yield

from %0 + 298pp interactions. The points correspond exper-
imental data from [22]. The solid curves represent the
results of the calculations within the proposed approach at

B=4x10"' st = (1) 4 x 10721, (2) 5 x 1072, (3) 6 x
10721, and (4) 7 x 102! 5]. The dashed and the dash-dotted
curve show the results of the calculations within the TSSP
model without and with allowance for neutron emission,
respectively.

the results of the calculations allowing for neutron
emission may lie much more closely to the experimen-
tal data. Ascan be seenfrom Figs. 2 and 3, the proposed
dynamical approach ensures a consistent description of
experimental data on the angular distributions and
prescission-neutron multiplicities. Although it cannot
be stated that, for the interaction type under consider-
ation, this approach leads to better agreement between
the calculated and the experimental values of the angu-
lar-distribution anisotropy than the standard TSSP
model, we believe that the dynamical calculations bet-
ter reproduce the slope of the energy dependence of the
angul ar-distribution anisotropy.

The results of the dynamical calculations for the
angular-distribution anisotropy and prescission-neu-
tron multiplicity M, for '°O + 22Th, '*0 + *U, and
160 + 243Cm i nteractions are dlsplayed inFigs.4and 5,
along with relevant experimental data. We emphasze
that, for these interactions, the multiplicity of prescis-
sion neutrons and the anisotropy of the angular distri-
bution were calculated at the same valuesof 3 and 1« as
for 1°0 + 208Pb interactions. This was done because we
wanted to check the correctness of the chosen parame-
ters and because there are no experimental data on the
prescission-neutron multiplicity My, for '°O + **%Cm
and 160 + 23U interactions. In such cases, the calcu-
lated values of M. are compared with the predictions
of the wstematlcs composed by Kozulin et al. [34].
Those authors indicate, however, that, for heavy com-
pound nuclei, there are some di screpanci es between the
predictions of their systematics and experimental data.
This is likely to be the reason why our results deviate
somewhat from the results of the calculations per-
formed within the above systematics (see Fig. 4). In
addition, the example of 0 + 2*2Th interactions, for
which we present both the data of the systematics for
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The dashed and the dash-dotted curves show the results of the calculations within the TSSP model without and with allowance for

neutron emission, respectively.

o and experimental data shows that the M., values
ca'i] culated within the proposed dynamical approach are
in better agreement with the experimental results.

Figure 5 shows the results of the cal culations based
on the TSSP model [see Eg. (7)]. We do not display
these resultsfor the entire energy interval being consid-
ered because, for heavy compound systems and at high
projectile energies, we have B; ([} < t, in which case
relation (7) becomes meaningless. As can be seen from
Fig. 5, the experimental data on the anisotropy of the
angular distributions for these interactions (in contrast
to those for 'O + 2%Pb interactions) cannot be
described within the TSSP model even upon taking into
account the degree of freedom associated with M. For
the interactions being discussed, the best fit to the data
on the anisotropy of the angular distributionswithin the
proposed approach could be achieved at the value of
Tx = 6 x 102! s, which differs insignificantly from the
corresponding value for °O + 2%Pb interactions (the
results of the calculationswith 1, =5 x 102! sare also
presented in Fig. 5). From the datashown in Figs. 3 and
5, we can therefore conclude that the value of 1 liesin
the range (5-6) x 10! s. On the whole, we can high-
light good agreement between the experimental and the

calculated values of the anisotropy of the angular distri-
butions. Thissuggeststhat our choice of T, and 3 values
was correct. It is also worth noting that the value
obtained for 1 iscloseto the estimates (1, = 8 x 102! 5)
obtained in[11] from the analysis of data on the anisot-
ropy of the angular distributions for a number of reac-

tions, but the difference between KS and the corre-

sponding value at the saddle point was considered in
that study only for those events where the temperature
of the fissile system was higher than the fission barrier.
No attention was given there to the dynamical aspects
of the evolution of the compound nuclear system
either—in particular, the stochastic nature of the
motion of a nucleus over the potential-energy surface
toward the scission point was disregarded. The value
determined in the present study for the damping coeffi-
cient B is smaler than the corresponding results
obtained in [3, 7, 37]; nevertheless, it indicates that the
regime of the aperiodic damping [3] istypical of collec-
tive nuclear motion.

In summary, the data presented here (Figs. 2-5)
demonstrate that, in analyzing the angular distributions
for reactions induced by heavy ions, it is necessary to
take into account the dynamical aspects of nuclear fis-
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sion—in particular, the changein KS during themotion

of a fissile nuclear system over the potential-energy
surface from the equilibrium to the scission configura-
tion. Thisconclusion isvalid at least in the cases where
the nuclear temperature is commensurate with or
higher than the fission barrier.

4. CONCLUSION

A dynamical model is proposed for calculating
angular distributions of fission fragments. Within this
model, the angular distribution isinterpreted as a super-
position of various contributions caused by the distribu-
tion of the effective transition-point position in defor-
mation space. The existence of this distribution in turn
is associated with the stochastic nature of the motion of
afissile nuclear system from the equilibriumto the scis-
sion configuration. In this case, the time of relaxation of
the degree of freedom associated with K (projection of
the total angular momentum onto the fission axis) and
the damping coefficient play a decisive role in the cal-
culation of the positions of such transition pointson the
deformation axis. Experimental data on the anisotropy
of the angular distributions and on the multiplicities of
prescission neutrons for 0 +2%Pb (E, = 110-
148 MeV), 0 + 22Th (120-160 MeV), 160 + 25Cm
(110-148 MeV), and '°0 + 238U (96-148 MeV) inter-
actions have been analyzed within the proposed
approach. It has been shown that the shape of the angu-
lar distributionsis substantially affected by the dynam-
ical features of the induced-fission process. In addition,
aglobal analysis of data on the anisotropy of the angu-
lar distributions and on the prescission-neutron multi-
plicity M. makesit possible to obtain new information
about the values of the relaxation time 1« and of the
damping coefficient 3.
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Abstract—A soft dipole modein the 1Li nucleus treated within the microscopic three-cluster model is studied
in the asymptotic-potential approximation. The model faithfully reproduces the energy and the root-mean-
square radius of the ground state and the behavior of the effective photodisintegration cross section at low
energies above the threshold for MLi breakup, suggesting the existence of two resonance statesin thisregion.
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1. INTRODUCTION

An intense electric-dipole transition that was exper-
imentally found [1] to occur in the ''Li nucleus from
the ground state to the region of the low above-thresh-
old energies is usually attributed to the excitation of a
soft dipole mode in this nucleus (see, for example, [2]).
The guestion of the nature of this transition amountsto
resolving the dilemma as to whether it is due to the
existence of aresonance in the continuous spectrum of
Li or the properties of this transition are determined
exclusively by the proximity of the !'Li ground state to
the threshold for the breakup of this nuclear system into
SLi and two neutrons.

The soft dipole mode of the ''Li nucleus has already
been discussed in theoretical studies. In [3], the wave
functions of the ground state of this nucleus and of the
continuum states to which the E1 transition proceeds
were constructed within the method of three-particle
hyperharmonics. The effect of the Pauli exclusion prin-
ciplewas simulated by introducing arepulsive potential
in partial waves that involve forbidden states. This
made it possible to obtain the intensity of the electric-
dipole transition as a function of energy. This function
has a maximum near the energy value of 0.6 MeV
above the threshold for the three-body breakup of !'Li.
The position of the peak agrees with the experimental
results reported in [1].

In just the same way asin [3], we will perform the
ensuing analysis in a hyperspherical basis, restricting,
however, this basis to the hyperharmonics character-
ized by the minimum possible values of the grand
orbital; of the linear combinations of these hyperhar-
monics, we will further consider only those that are
allowed by the Pauli exclusion principle. We also note
that in [3], the °Li cluster was considered as an inert
core, whereby the possibility of exchange of the
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valence neutrons and the p-shell neutrons belonging to
the core was excluded. Of the requirementsimposed by
the Pauli exclusion principle, only that piece was satis-
fied in [3] which corresponds to the ability of the repul-
sive potential to suppress the approach of valence neu-
tronsto the heavy cluster. It is obviousthat this descrip-
tion is not complete. Within the method proposed here
to construct basis functions, the identity of nucleonsis
rigorously taken into account; as a result, the allowed
L states assume the form of superpositions of °Li
states corresponding to the orbital-angular-momentum
valuesof & =1, 2, and 3, the coefficientsin this super-
position being dependent on the vectors of the neutron
clusters. As to the grand-orbital content of continuum
states to which the E1 transition occurs, it is aso
formed on the basis of the Pauli exclusion principle and
differs markedly from that proposed in [4]. We will
demonstrate below that the contribution of the K = 1
hyperharmonic increases as the neutron clusters move
away from the °Li core and that the K = 3 contribution
decreases, but the latter proceeds in such a way that,
even in the asymptotic region, it is 13%.

By considering the ''Li nucleus as a system of three
clusters,

Ui —9%Li+n+n,

wewill useasimplified version of the resonating-group
method, the asymptotic-potential approximation,
whose fundamentals were outlined elsewhere [5] in
connection with the problem of the soft dipole modein
the ®He nucleus. This approximation heavily relies on
thefact that the ''Li nucleusis very soft in the boundary
region, where two valence neutrons (two neutron clus-
ters) reside and where the cluster interaction caused by
the three-body character of the systemisradically sim-
plified. Thisinteraction takesthe form of an asymptotic
power-law potential decreasing in inverse proportion to
the hyperradius cubed. At the same time, the behavior
of thethree-cluster system in the region of small-hyper-
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radius values is simulated by a smoothed extrapolation
of the asymptotic potential.

The ensuing exposition is organized as follows. In
Section 2, we discuss the most significant features of
the '"Li nucleus that distinguish it from the °He
nucleus. In Section 3, we briefly recall some details of
the approximation adopted in the present study. We
conclude by presenting the results of our calculations.

2. THREE-CLUSTER MODEL OF ''Li
AND HARMONIC-OSCILLATOR BASIS STATES

2.1. Minimal-Approximation Basis
for Negative-Parity //Li States

In the standard version of the resonating-group
method, it is assumed that the alpha-particle cluster of
the SHe nucleusisin the ground state of the trandlation-
invariant shell model (TISM), but, in constructing a
harmonic-oscillator basis for the !'Li nucleus, one has
to invoke the multiplet of the °Li-cluster states that
belongs to the (1, 2) irreducible representation of the
U(3) group [6]. The choice of this irreducible repre-
sentation among the irreducible representations that
involve the same number of quanta, but which are of
lower symmetry, is dictated by the requirement that the
potential-energy operator contain the maximum num-
ber of interactions in even nucleon-pair states that are
triplet in spin and singlet in isospin or singlet in spin
and triplet in isospin. In these states, the potential
energy of nucleon pairs has adeep minimum; therefore,
the nuclear system favors them rather than other (odd)
states. The orbital angular momentum &£ in the states of
the (1, 2) multiplet can takevaluesof 1, 2, and 3. These
states are of negative parity. The exchange nucleon—
nucleon interaction removes degeneracy in orbital
angular momentum, with the result that the &£ = 1 state
appearsto be the lowest one. Two unit orthogonal com-
plex vectorsu and w are taken for the independent vari-
ables of the wave function of these °Li states in Fock—
Bargmann space. All wave-function constructions are
linear in the components of the vector u and bilinear in
the components of the vector w. Listing the basis func-
tions and determining the Hamiltonian in Fock—Barg-
mann space, we will use the nucleon mass m, the oscil-

lator length r,, and ﬁz/mrg for units of mass, length,
and energy.

The wave functions of the neutron clusters depend
on two normalized Jacobi vectors a and b [6]. In the
harmonic-oscillator basis, the only wave function that
is characterized by the orbital-angular-momentum
value of L = 1 and by the minimal number of quantaand
which is alowed by the Pauli exclusion principle has
theform

Oy -, = %Bu{ll(w 29w )3 ()
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and belongs to the (1, 0) irreducible representation of
the SU(3) group. The “minus’ superscript on the wave
function indicates that the state in question is of nega-
tive parity. Expression (1) is a composition of three
blocks; of these, two describe states of the neutron clus-
ters, while the third block is associated with the °Li
cluster. Since the components of the third block do not
fix the orbital angular momentum &£ of the cluster °Li,
expression (1) appears to be a superposition of &£ =1,
2, 3 states; that is,

Do -1m
3 2 " (2)
= Z ZAsf,leéM;|qu5£,M(U,W)(P|,m(a' b),

M I,m

where C;&" m aretherelevant Clebsch—Gordan coeffi-

cients, Y, v(u, w) are the basis functions of the core
states, ¢ (a, b) are the basis functions of the states of
the two-neutron (two-cluster) system under the
assumption that the neutrons occur in the p shell, and
Ay | are coefficients that determine the contribution to
the basis function (1) from the core states that are char-
acterized by the orbital angular momentum &£ and the
states of the two-neutron system that are characterized by
the orbital angular momentum I

It follows that, within the approximation adopted
here, the °Li core is not completely inert—it can go
over to excited states, changing the orbital angular
momentum & and its projection M.

If the spin—orbit interaction is not involved in the
formation of the wave functions, the !'Li ground state
is doubly degenerate because the spin of the proton
occurring in the p shell and belonging to the °Li cluster
is unpaired. As soon as the spin-orbit interaction is
switched on, the state characterized by the angular
momentum of J = 3/2 becomesthe lowest, whilethe J =
1/2 state accordingly appears to be excited. In the fol-
lowing, we take no account of the spin—orbit interac-
tion, assuming that basic features of the soft dipole
mode can be understood without considering the split-
ting of the J = 3/2 and J = 1/2 states.

In constructing the harmonic-oscillator basis and in
classifying basis functions, we consistently use the
scheme of LS coupling, paying special attention to
those basis states in which nucleon—nucleon attractive
forces are the strongest. This way is natural if we use
the quantum numbers of the irreducibl e representations
of the SU(3) group as was done above for the °Li clus-
ter. Of course, the number of states in the complete
basis for the scheme of jj coupling (it isusually usedin
the mean-field approach) does not differ from the num-
ber of statesin the complete basis for the scheme of LS
coupling. However, actual microscopic calculations
employing the potential energy determined solely by
nucleon—nucleon forces have to deal with some part of
the complete basis within either scheme. Therefore, the
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problem of choosing one of the two schemes reducesto
the problem of optimally choosing basis states that are
of greatest importance for the problem being studied
and which correspond to the deepest nucleon—nucleon
potential.

Thus, expression (1) is the transform of the TISM
wave function of the '"Li ground state in Fock—Barg-
mann space. This wave function corresponds to the
compact configuration of the oscillator-shell model;
therefore, it cannot reproduce the soft boundary region
of a nucleus. In order to remedy this drawback of the
simplest TISM construction, wewill seek the transform

of the true function W, _, y, in the form of a series of

the minimal approximation of the hyperspherical-func-
tion method (for a detailed explanation, the reader is
referred to [6]); that is,

LP:=1,M = ZC\:,Lzlq);,L:l,M, 3)
v=0

where

CDV,L=1,M

= Nyup{ 11(w [a)>—9(w D))z} (a2 +b%)", @

Ny = 182 J9v+34 (v+3)|v"

are basis states that are allowed by the Pauli exclusion
principle; the coefficients C, | -, are determined by
solving the set of linear algebraic equations of the min-
imal approximation; and u,, are the cyclic projections
of the vector u.

Each of the statesin (4) is alinear superposition of

theterms ®, | -, corresponding to the grand-orbital
valuesof K=0and K = 2; that is,

- [25(v +4) . -
®, -1 = #_‘_]_O)quvxzz,Ln
2(v+1 -
B rs AR
where

- _ A/lOZ
v,K=2L=1 — V(V+4)'V'

—(wb)*}(a" +b%)’,
_ 3 NG

- 1
SN (v+3)I(v+1) 18

)

ch+1,K:0,L:l -

x u{ (w [a)° + (w [b)*} (a* +b%)".

If v =0, theweight of the K = 2 state is 0.98, while the
weight of the K = 0 state is as small as 0.02. But if v
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approaches infinity, the former and the latter weight
tend to 0.93 and 0.07, respectively.

The wave function of the ''Li ground state is fre-
guently interpreted in terms of the shell model, and its
content is discussed by analyzing, in particular, the
contribution of the allowed s orbitals of the valence
neutrons against the contribution of their p orbitals
(see, for example, [7]). At the same time, it follows
from expression (3) that the contribution of the p orbit-
als of the valence neutrons is determined by the square

of the coefficient C,., -,. For al other orbitals,

including s orbitals, the corresponding contribution is
determined by the sum

Y G-}

An estimate of this sum will be given in Section 3.

2.2. E1-Transition Operator

In the approximation of the three-cluster model for
the ''Li nucleus, the electric-dipole-transition operator

M (E1) defined in Fock—Bargmann space is the sum of

two terms—the raising operator M (El) (when
applied to harmonic-oscillator basis functions, it
changes their parity and increases the number of oscil-
lator quanta by unity) and the lowering operator

M (E1) defined asthe Hermitian conjugate to the rais-
ing operator—that is,

M(EL) = M (E1)+M (EL), ©6)
where thefirst term,
_ [Be
M ( 1) = «/;;Tma’ (7)

differs from the analogous expression for °He only by
the numerical value of the constant factor. The operator
a acting on the ground-state basis functions (4) gener-
atesthe positive-parity basisfunctions characterized by
the orbital-angular-momentum values of 0, 1, and 2.
These functions are investigated in the next section.

2.3. Basis of the Minimal-Approximation for Positive-
Parity //Li States

Electric-dipole transitions change the parity of
states. Therefore, such transitions connect the !'Li
ground state characterized by a negative parity and an
orbital angular momentum equal of unity to positive-
parity states characterized by L values of 0, 1, and 2.
The minimal approximation of the method of hyperhar-
monics requiresfirst of all constructing, within the har-
monic-oscillator basis, the simplest allowed states of
Li that are characterized by the orbital-angular-
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momentum values of L =0, 1, and 2 and by the number
of quantathat exceeds the number of quantain thebasis
function (1). Let us list the wave functions of these
states. The function whose indices of SU(3) symmetry
are (0, 1) hasthe form

(0, 1)+
CDO, L=1,M

- 5_14ﬁ[u 0 al{ 11(w )2 = 9(w [b)?},

where [u [ a],bI is the irreducible tensor product of
rank L [8], while (w - a) and (w - b) are the scalar prod-
ucts of the vectors involved.

Another pair of functions has the (2, 0) SU(3) sym-
metry; that is, we have
(2,0)+

®)

CDO,L=2,M
)
_ 1B g *_o(w b)’
= 544/170[u 0 a]y{11(w [a)"—9(w [b)7},
A
(10)

- éj%[u 0 a]%{ 11(w [R)2 = 9(w b)?} .

Each of the basis functions in (8)—10) is the result
obtained by applying the E1-transition operator to the
function in (1) and by subsequently taking a projection
onto a state that is pure in the orbital angular momen-
tum. This does not exhaust the list of positive-parity
states characterized by the orbital-angular-momentum
values of L =1 and 2. Such allowed functions exist for
the (1, 2) and (3, 1) irreducible representations as well.
They are orthogonal to the functions in (9) and (10);
therefore, they cannot arise as the result of the electric-
dipole photodisintegration of ''Li.

The states in (8)—<10) are contained in the three-
guantum TISM basis, where they have, however, a dif-
ferent norm. Thisbasis also includes the states that rep-
resent the excitations of the °Li cluster and which are
not included in our consideration based on the approx-
imation of the resonating-group method. We note here
that the basis of the algebraic version of the resonating-
group method consists of part of the TISM basis, but
the normalization of the functionsincluded init is gen-
eraly different from the normalization of the functions
inthe TISM basis. In addition, the orthogonality of the
statesinvolving equal numbers of quantais defined dif-
ferently within the algebraic version of resonating
group method.

Let us now introduce three branches of the basis
functions of the minimal approximation:

+
q:)\),L=1,M

= Ny ,[u 0 a]y{11(w &)*-9(w [b)*} (a° +b%)’,

N =3J§J 117 ij 4 b
VLT BANANTTY + 1179V (v + 4)Iv!
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+
CDV,L:Z,M

= Ny ,[u O alp{ 11(w ()’ ~9(w [b)*} (a’ + b?)",

MO T Y
V2 7 54N 104/ 293V + 4535V (v + 4)!1 V!

ch,L:O

= Ny o[u O alg{ 11(w [B)’ —9(w [b)*} (a° +b*)",

N+=£J1:3J 101 lJ 4 (13)
V0 7 54N 10441V + 101 VA (v + 4)IV!

The grand-orbital content of these statesis

+ [67(v+1)  +
®, -1 = 77\()_i__——11')?q)v+l,K=l,L=1
10(v+5) .+
+«/77\;+117¢“'K=3'L=1’
where

+ _ 1 41 2 L2V
Dyipk=11=-1= Y ,—(V+4)!(V+l)!(a +b%)

x 5—14[§([u x al{ 6(w [2)2—4(w [b)?)

(14)

+10[u x b] (w [&)(w (b)),

_ 1 5! 2, .2V
EPTICES IR

<2 [3(61u xal{ (w 2~ (w b))

+
CDV,KZS,L:l

(15)

—10[u x b](w [&)(w [b));

26(v +1) o
41V+101 v+1,K=1L=0
15(v+5)  +
Yy 101 PrKesso
where

+ _ 1 41 2 L2V
®yi1k=11=0 = o ,—(V+4)!(V+1)!(a +b%)

1 13 2 2
X ./ 36((u ER)[6(w [8)” — 4(w [b)’]

+

qu,L=O

+10(u [b)(w [A)(w [b)),
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+
CDV,KZS,L:O

_1 5! 2, 2\V
EPTICES IR

<2 |25 ) (w ()~ (w b’

—10[u [b](w [&)(w [b));

253(v+1) o
203y + 453  vV*rlK=1L=1

40(v +5) _ +
293v +453 "ML

(16)

+ —

cD\),L=2 -

where

+ _ 1] 4 2 L2V
q)V+1,K=1,L=2_2V (V+4)I(V+1)I(a+b)

2 [ 210 0 2036w )" - a(w b))

+10[u O b]Z (w [)(w [b)),

+ _1 5! 2, L2V
Dy k=31=2 = o /m(a +b7)

1 /13 2 2 2
X 224 1o 5LU O alu{ (W [2)" — (w [b)}

—10[u O b]Z (w [a)(w (b)).

It should be noted that the weight of the K = 3 hyper-
harmonicinthelL =1, 2 channelsisabout 43% at v =0
and is about 13% in the limitv — o. Inthe L = 0
channel, the weight of the K = 3 hyperharmonic is still
higher (about 74%) at v = 0. For v — oo, its contribu-
tion is about 37%.

Thewave functions W¢ | , of positive-parity states
that belong to the ''Li continuum and which occur at

energy E above the threshold for three-body breakup
can be represented as the superpositions

lPE,L,M = ZC:,L(E)CDJ,L,M- (17)

v=0

The coefficients CJ,L (E) in these superpositions are
determined by solving the set of equationsthat arisein
the algebraic version of the resonating-group model
and which are presented in the next section.

3. MODEL HAMILTONIAN AND ITS SPECTRUM

L et us make use of the asymptotic-potential approx-
imation [5], which is quite appropriate for soft three-
cluster systems like ''Li. In this approximation, the
potential-energy operator of ''Li reduces to the sum of
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two terms, each depending only on the hyperradius.
One of these terms decreases in inverse proportion to
the hyperradius cubed, while the other decreases in
inverse proportion to the fifth power of the hyperradius.
At small values of the hyperradius, it is necessary to
regularize these terms. This is achieved by going over
to the representation of the harmonic-oscillator basis
functions, where, in the limit v — oo, the matrix

M| U |v Cof the potential-energy operator is diagonal
[9] and takes the following regularized form for the odd
0 A + B
Rav +10)*

basis states (4):
(4v + 10)5’2%3“'“ o

Here, A and B are coefficients that are determined from
the condition that the matrix (18) of the effective poten-
tial and the tridiagonal matrix of the kinetic-energy
operator between the basis functions (4),

w0 po=

m|F Vo= %(2\; +5), (19)
2o L (v+1)(v+4)(9v +43)
w + 1T VO 2J vl . (20)

reproduce fairly well the observed ground-state energy
of the ''Li nucleus [10] reckoned from the threshold for
the three-body breakup (—0.3 MeV) and of its ground-
state root-mean-square radius (3.2 fm). From this con-
dition, weobtain A=-37.19 and B=-91.19. We set the
oscillator length r,to 1.69 fmin order to reproduce cor-
rectly the properties of the °Li cluster.

The coefficients C, | -, in the expansion of the

wave function of the !'Li ground state in the harmonic-
oscillator basis (4) are displayed in Fig. 1. A slow
decrease of these coefficients with increasing v and a

small value of the coefficient C, -, -, (about 0.5)

correlate well with the idea that the ''Li boundary
region, which is occupied by the neutron clusters, pos-
sesses a high degree of softness; the contribution of the
state where the clusters are in the p orbitals amounts to
25%. Hence, the contributions of all the remaining con-
figurations, where the neutron clusters occupy the
orbitals of the sd shell and of other shells, amount to
75%. We note that these contributions include the cor-
rections associated with the elimination of the center-
of-mass motion (recoil effects).

For the model Hamiltonians describing the afore-
mentioned three positive-parity states to which the E1
transition from the ground state proceeds, we |leave the
matrix elements of the potential energy virtually
unchanged, setting

A B

3/2

O
D, s. (21)

Vv,V

o O
|0 o= G + [,
(4v +12)°°0

{4v + 12)
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Asto the kinetic-energy matrices, they have equal diag-
onal matrix elements,

,L=0T v L=00=mL=1F|L=10
. 1 (22)
=, L=2F v, L=20= (2 +6),

but their off-diagonal matrix elements are different and
are given by

w+1,L=0F | L=00

_ 1 [VrD(v+5)(4lv + 142) (23)
2 41v + 101 '
w+1,L=1F |, L=10
(24)
_ 1 [(v*D)(v +5)(177v + 194)
2 177y + 117 !
w+1,L=2F |, L=20
(25)

_ 1 [(v+1)(v+5)(293v + 746)
2 293v + 453 '

None of the three Hamiltonians listed above fea-
tures bound states; that is, there are only continuum
states. For such continuum states normalized to the
delta function of momentum, we have caculated the
expansion coefficients that are necessary for evaluating
the matrix elements for the E1 transition from the !!Li
ground state to these states and determined the 3 — 3

phase shifts 6L+ . The analysis of these phase shifts as

functions of energy makes it possible to find out
whether the ''Li nuclear system has (or does not have)
low-energy resonances above the threshold for three-
body breakup.

The behavior of three phase shifts 60+ , 0 e and 62+

in the energy interval from 0to 5 MeV isillustrated in
Fig. 2. The last two phase shifts are close to each other
over the energy-interval under study. First, they
increase rather fast and reach a maximum value of

about 2.3rad at E ~ 1 MeV. Their derivatives dé')L+ JdE

aremaximal at E, ~ 0.1 MeV, where there are therefore

two resonances with quantum numbers L™= 1+ and 2*.
Thewidth of either resonance as estimated on the basis

of the dd ./dE value by using the conventional for-
mulais

M =2dE/dd . [10.35 MeV.

These resonances are not narrow—their widths exceed
the energy E, at which they occur by a factor greater
than 3.

The phase shift . increases more slowly than the
other two phase shifts with increasing energy, and the
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0.2+
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0 10 20
v

Fig. 1. Coefficients C,, in the expansion of the wave func-

tion of the ''Li ground state in the basis functions

CDV,L:l,M'

R hatata sl R PP

0 . I I I I
0 2 4

1
E, MeV

Fig. 2.3 — 3 phase shifts 5 .. for even UL states as
functions of the above-threshold energy: (1) 60+ , (2 61+ ,
and (3) 62+.

shape of its energy dependence shows no traces of the
L™ = 0* resonance state. The maximum value of this
phase shift does not exceed 1.7 rad.

4. CROSS SECTION FOR !'Li
PHOTODISINTEGRATION

The soft dipole mode in ''Li can be studied theoret-
icaly by calculating the intensity of the E1 transition
from the ground state of the !'Li nucleus to its contin-
uum states. As the result of such a transition, the Li
nucleus undergoes photodisintegration into three clus-
ters.

At this stage, it is more convenient to use a conven-
tional system of units.
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The probability P(E1) of electric-dipole photodisin-
tegration per unit of time is expressed in terms of the
reduced probability B(E1) of the El trangition as (see[11])

%T— p;wB(E1),
where fiw is the energy of the photon absorbed by the
nucleus and p; is the density of the final states of the
Li continuum per unit energy interval. In order to cal-
culate thisdensity of states, weintroduce two momenta
k, and k, that determine the divergence of the three
clustersin the c.m. frame and which are normalized in
the same way as the Jacobi vectors a and b. We denote
by p, the momentum of the °Li cluster in the |aboratory
frame and by p, and p; the momenta of the neutron
clusters. We then have

P(E1) = (26)

ky = /\/%B)l—pz-'-ps% ky = %z(pz—ps)- (27)
Further, we set
K> = kf+k§; k, = kcosy, k, = ksiny;
O<sy<T12;

therefore, we can write the expression for the density of
states as

2
_ (4T[)2k5 sinzycoszydy _ k’m (28)
Pt = “GE/dk 6 6,0
s (2m) (2m) 7
The reduced probability B(E1) is given by
21
B(E1) = rz( ) Z|(LIJE L, M|MH|LIJ1 M)| (29)
0 W, M
where
K? = z;;E- (30)

The factor (2m)%/(kr,,)’ appears upon going over from
the functions of the continuous spectrum that are nor-
malized to the delta function d(k — K') to the functions
normalized to the flux v, v = Ak/m.

In order to obtain the cross section for !'Li photodis-
integration, the transition probability in (26) must be
divided by the speed of light ¢ (the photon-flux den-
sity).

For the photodisintegration cross section, thisyields

o¢(E1)

4°E + [m_ (31
= 9_;30 r38 h2E Z|(LPELM|MH|LP1M)|
0

wheree = 0.3 MeV |sthe energy required for the three-
body decay of the nucleus. The resulting cross section
has the dimensions of fm?.
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Theexplicit expression for the matrix element of the
operator M, has the form

(LPE,L,M|I\7IH|WI,M‘) = z C:,L,M(E)

v=0

x (0, L", M|Mylv, 17, M'CC, ; (32)

+, L, M[Mulv+ 1,17, MICy, 1 1 w),
where the partial-wave matrix elements are given by

1 N,

N, L+,M|Mu|\) 1 M'O= ClM 1“ﬁN

, L%, M|Myjv+1,1°, M'O
1 19 Nv L
3ﬂ34NV+1

Here, the quantity 1 takesthe values of 1 and —1, which
correspond to two possible states of photon polariza-
tion.

L,M
1M lp

5. RESULTS OF CALCULATIONS
AND CONCLUSION

On the basis of the formulas from the preceding sec-
tion, we have calculated the effective cross sections

o, . for ''Li photodisintegration that correspond to the

E1 transitions from the ground state to the three contin-
uum states characterized by L = 0, 1, and 2. In Fig. 3,
these cross sections are shown as functions of energy
reckoned from the threshold of the breakup process
"Li — °Li + n + n. The cross sections for the 1- —
1* and 1- — 2* transitions have a pronounced peak at
an energy of 0.55 MeV above the threshold and
decrease with increasing energy rather fast. For the

transitionsto the L = 0 states, the cross sections o oot

change rather dowly, displaying a broad maximum in
the vicinity of 1.6 MeV. Its value does not exceed
0.2 mb, which is nearly one order of magnitude smaller

than the maximum values of the cross sections o Wept

and O, _,

The total photodisintegration cross section

o(E1l) = Zcff
L

in the asymptotic-potential approximation is shown in
Fig. 4. The position of the maximum at E, = 0.55 MeV
and the half-width ' = 0.9 MeV agree well with the
experimental values of E, = 0.7 MeV and ' = 0.8 MeV
presented in [1].
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o +(E1), mb

2,

4 E, MeV

Fig. 3. Effective crosssections o . (E1) for 1L photodis-

integration as functions of the above-threshold energy: (1)
0ot 2 O+ and (3) O

o,(E1), mb
4L .
2 -
i ~"""~""‘
o eenne,
M‘M

0 L

1 1 1 1 1 1

0 2 4  E MeV

Fig. 4. Total effective cross section o3 (E1) for photodisinte-
gration in the asymptotic-potential approximation asafunc-
tion of the above-threshold energy.

The maximum value of the total cross section
amounts to 4.2 mb, which aso complies with experi-
mental data. We note, however, that, in just the same
way asin[3], the cross section presented here decreases
somewhat more slowly with increasing energy than the
experimental cross section.
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In summary, the energy and the wave function of the
Li ground state, aswell asthetotal effective cross sec-
tion for its electric-dipole photodisintegration, can be
correctly reproduced by treating the 1'Li nucleus on the
basis of the microscopic three-cluster model and by
using the approximation of the asymptotic potentia in
the form of a power-law function of the hyperradius;
for this, it is sufficient to retain only basis states associ-
ated with the minimal grand-orbital values and allowed
by the Pauli exclusion principle. The results of the cal-
culations performed without taking into account the
spin—orbit interaction suggest the existence of L™= 1*
and L™= 2* (J™"= 3/2* and J™ = 5/2* if the spin—orbit
interaction is taken into account) resonances of the ''Li
nucleus in the low-energy region extending up to
0.5 MeV.
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Abstract—A set of equations for deriving the SU(3)-irreducible density matrix for U(3(A — 1)) multiquantum

excited states involved is given. For the iBe nucleus, the binding energies, radii, spectra, electric quadrupole

moments, and probabilities B(E2) of electric quadrupole transitions are computed in the multiquantum approx-
imation of the unitary scheme. The values obtained for the above spectroscopic quantities are investigated ver-
sus the number of basis functions involved. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the unitary scheme, basis functions are specified
by the subgroup sequences UG3(A — 1)) O SU3) x
UA-1),UA-1)OOA-1)0YA), and SU3) O
O*(3) [1]. Welabel them as W([E, E,E;1(0, 00,t;)0AKI ),
where [E,E,E;] and (w,w,w;) areirreducible represen-
tations of the U(A — 1) and O(A — 1) groups, respec-
tively, while A denotes the corresponding Young dia-
gram for the permutation group S(A). The symbol
[E,E,E;] aso specifies irreducible representations
(AW) = (E, - E;E, — Ey)) and [E, 0, 0] of the SU(3) and
the U(3(A — 1)) group, respectively, where E= E, +
E, + E; is the number of oscillator quanta since the
basis of the unitary scheme consists of the eigenfunc-
tions of the Hamiltonian of the 3(A — 1)-dimensional
harmonic oscillator. The symbols a and k stand for the
multiplicities of thechainsO(A-1) O SA) and SU3) [
O*(3) accurring in the corresponding multiplet, and I,
denotes all the remaining quantum numbers describing
the orbital and spin-isospin wave functions. The wave
functions of the U(3(A — 1))-symmetric ground states
involve the minimum number of excitations that still
admits, in the reduction associated with the subgroup
chain UA—1) 0 O(A - 1) O SA), the emergence of
irreducible representations A of the S(A) group that are
allowed by the Pauli exclusion principle. Functions that
are labeled by quantum numbers E > E,_;, represent
U(3(A- 1)) excited states. In[2], the method devel oped
in[3] for taking into account U(3(A — 1)) multiquantum
excited states was employed to calculate the spectro-

scopic features of the iBe nucleus. These calculations

proved to be equivalent to those carried out within the
approximate Y(2R) model proposed in [4, 5]. In order
to render a comparison with the results presented in [4,

* email: jonas@ip.ku.lt

5] meaningful, the calculations in [2] were performed,
in just the same way as in those studies, with areduced
Hamiltonian not including Coulomb interaction.

The present study is devoted to (i) considering the
potential of the basis B1 (see Section 2) of E<E,,;, +2
functions—that is, spectroscopic calculations are per-
formed in the basis extended step by step, whereby the
relative weights of the basis functions corresponding to
[E;E,E;] and (w,w,w;) representations of different
symmetries are revealed—and (ii) performing calcula-
tions in the multiguantum approximation of the bases
B2 and B3 involving the functions that are of greatest
importance kinematically. The present calculations,
relying on the full Hamiltonian and employing various
bases and potentials, supplement those reported in [2].
The convergence of these basesis investigated.

The ensuing exposition is organized asfollows. The
bases used in the calculations are presented in Section 2,
together with a compendium of useful formulas and
definitions. The matrix elements of physical operators
are computed within the density-matrix formalism. The
density matrix for U(3(A — 1)) multiquantum excited
states is derived by the method applying the SU(3)-irre-
ducible density matrix [3, 6]. An account of this method
as applied to the bases B2 and B3 harnessed in the
present study is given in Section 3. Section 4 contains

some results of spectroscopic calculations for the iBe
nucleus and a relevant discussion.

2. BASES AND USEFUL FORMULAS

According to genera principles of supermultiplet
theory, U(3(A - 1)) states associated with the most sym-
metric Young diagram A play a key role in describing
low-lying levels. Therefore, we consider the bases con-
sisting of the functions labeled by the Young diagram

1063-7788/01/6402-0194$21.00 © 2001 MAIK “Nauka/Interperiodica’
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= [44] and the following quantum numbers of the
U(n— 1) andO(n-1) groups

w=[4](4), [6](4), [51]1(4), [42](4), [6](6),
[51]1(51), [42],(42), (basis B1),
=[4+2m|4),m=0,1, ..., N< 12 (basis B2),
=[4+2m|4),m=0,1,...,N=12, [6 + 2m,](6),
m; =0, ..., N, <5 (basis B3).
The quantum numbers ST = 00 correspond to the dia-
gram A = [44]. The computations were performed for
=0, 2, 4, and 6. For the [42],(42), states, the repeti-

tion multiplicitiesarea = 1, 2 for the chain O(A— 1) O
S(A) andk =0, 2 for thechain SU(3) 0 O*(3) (at L =2).

For the diagrams A = [4...4], the total Hamiltonian
has the form

H=V +T+VS (1)

where V, is the operator of central nucleon—nucleon
interaction, T is the kinetic-energy operator, and V€ is
the Coulomb energy operator. The central nucleon-
nucleon interaction can be represented in the form

Ve(r) = W(r) + M(r)p' +B(r)p"—H(r)p’, ()

wherethe operatorsp', p°, and p* permute, respectively,
the orbital, the spin, and the isospin nucleon coordi-
nates. The functions W(r), M(r), B(r), and H(r) are
expressed in terms of the commonly used functions
VZS+ 12T+ l(r) [7] [VSI(I’), V13(r), V33(r), and Vll(r)] as

W(r) = %(V11+V13+V31+V33),

M(r) )

_ i(—V11+V13+V31—V
3)
B(r)

%(_Vn_v:ﬂ VSN V33),

H(r) = %-(V11+V13—V31—V33).

The matrix element of the operator in (2) can be repre-
sented in the form

IVAREE ZQ“” M )
wherel isthe set of the quantum numbers specifying a

function in the unitary scheme, the Talmi integrals are
determined by formula (14.8) from [1], v labels the

type of interaction (v = W, M, B, H), and Q,VJ are the

components of the two-particle density matrix. In the
calculations, we use the various Gaussian potentials[8—

DFor the sake of brevity, we will use, along with [E,E,E;] and
(w;,w;3), the notation E and w For the representations of the
U(A - 1) and O(A - 1) groups, we adopt the condensed notation
using (w) instead of («00) and so on.
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10] (the values of the parametersin these potentials are
quoted in Table 1)

25+12T+1

(r) = ZV28+12T+1 -

X eXp[—(r/U2S+ 12T+1) ] .

The expression for the matrix element of the
kinetic-energy operator has the form

T(T|rO= [% + 3—___(A2‘ LG5

1 30w A
R PR
p
where E is the oscillator energy, varr is the density
matrix for Wigner interaction, and r, is the scale
parameter of the radial wave function.

The matrix element of the Coulomb interaction
operator is given by

(6)

crr C

mVE|ro= > Qs (M

where Qg is the density matrix for the Coulomb inter-

action, while the interaction integrals (in MeV) have
the form

© = 2°p! x 1.44r,,

P 2p+1)!

where the parameter r,, is measured in femtometers. In
the case of the diagrams A = [4...4], it is sufficient to
know Q%W and QM for calculating the matrix element (4),

because the remaining quantities are determined from
the relations

Qr = —Qp = 2(Q; - Q).
The density matrices QW and QM are given by
Q=5QcC

EKLII'
Y (DQecC

EKLII"

The density matrix Q° for the Coulomb energy in (7) is
readily expressed in terms of QW and QM. By way of

example, weindicate that, for the diagramsA = [4...4],
the resulting relation has the form

Q; = (7Q, —2Q,)/30.

In Egs. (10) and (11), Q; is the SU(3)-irreducible
two-particle density matrix; C stands for the Clebsch—
Gordan coefficients associated with the chain SU(3) O
O*(3); and [Ele'l'|pOare the Brody—Moshinsky coeffi-

®)

€))

EsE Es E'

<L Cruiee BIET PO (10)

M

Qp =

EsE EeE
KLIKL KL|KL

@le'l'lpd  (11)

(12)
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Tablel
Vi, MeV Vi3 MeV Vi, MeV Vi, MeV
\% i [ i
Hay, fm His, fm Mgz, fm Hyg, fm
i=1 i=2 i=1 i=2 i=1 i=2 i=1 i=2
A 144.86 —83.34 144.86 ~83.34 644 0 644 0
0.82 16 0.82 1.6 0.65 0.65
A 144.86 ~83.34 144.86 ~83.34 16.9 0 16.9 0
0.82 16 0.82 1.6 16 16
A 3895 ~140.6 3895 ~140.6 1000 26 1000 26
0.7 14 0.7 14 0.7 1.4 0.7 14
V, 144.86 ~83.34 144.86 -83.34 ~28.97 16.67 —29 16.66
0.82 1.6 0.82 1.6 0.82 1.6 0.82 1.6
Vs 725 0 -39.15 0 24.16 0 117.45 0
1.47 1.62 1.47 1.62
A 69.22 —55.85 69.22 -55.85 20.09 0 20.09 0
1.141 2.185 1.141 2.185 2185 2.185
A 118.11 ~80.78 118.11 ~80.78 24.77 0 24.77 0
1.172 1.172 2.012 2.012 2.012

cients [11], which represent a particular case of the
coefficients D {seeformula (4.1) in[12]}.

The nuclear radii can be determined from the for-
mula for the equivalent density distribution { Eq. (2.3)
in[13]}:

R = %DD%UZ. (13)

Here r2= zl’fll p’ /A isthe mean-square radius—that

is, the mean sum of the squares of the normalized
Jacobi coordinates p;. It is convenient to represent its
matrix element in the form

WIT'

2 2
T|r3ro= %Z(p+3/2)Qp (14)
p

The electric quadrupole moment is defined as
the expectation value of the operator [16175]'20;

inthe L = L' = M state [7]. The operator Og is
defined as

0 = (15)

NI®D

3 (1-2t) Yo (6. 9)r/,

where eisthe electron charge, téi istheisospin projec-
tion onto the zaxis, Ygi isaspherical harmonic, and ri2
is the coordinate of the ith particle. For the diagrams

A = [4...4], the matrix element of the operator OS has
theform

A-1 erz g€)+1+L-L ' ~Ee eee UL U
mogrn= LoD g qyreamintergEe cie BLLI G
EATir B (16)
"f)(““_l'l) D@D+ +T+2) LRL-DEL*L), 2
6411 (I+1"+3)(I+1I"+1)(I1+1'=1) (L+1)(2L+3) == 7

where ¢ is the SU(3)-irreducible single-particle den-
sity matrix and C stands for the Clebsch—Gordan coef-

ficients associated with the chain SU(3) O O*(3). The
integralsin Eq. (16) are given by

laer = 5 (p+3/2)(2l1|p0] (17)
P

The probability B(E2) of electric quadrupole transi-
tionsis expressed in terms of the matrix element of the

operator Oé [7] as
B(E2, L — L")

L'2L

_ (18)
= M'LU'MIOZrLMB[CL2 1™
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The matrix elements (16) and (18) do not vanish
only for E' = E, E + 2 states. In the case of symmetric
representations of the SU(3) group, there are analytic
expressions for the diagonal matrix elements (16) and
(18) (see[14]).

3. CALCULATION OF SU(3)-IRREDUCIBLE
DENSITY MATRIX FOR U@3(A - 1))
MULTIQUANTUM EXCITED STATES

In dealing with the matrix elementsin Section 2, the
gravest problems arisein calculating the SU(3)-irreduc-
ible density matrix. With increasing E, these difficulties
go from bad to worse. In this section, the SU(3)-irre-
ducible density matrix is computed for the case of the
symmetric representations [w + 2m00](w00) of the
U(A-1) and O(A - 1) groups with the bases B2 and B3.
In this case, the computations can be simplified [6].
Both the two-particle and the single-particle density
matrix are determined by the set of equations

197
(ge'|pd

= 2R=E ke Doy St (e + 2K (1)
P
min%%},sﬁk—p%
2

S= max%),s—

(20)
[sl(e +k—s—p)! (e —-29)!

[3]-#8
><(2p+25—s)!]_l
Here, e=E-E; e =¢+2k=E-E;p=0,1, ...,

(e + €)/2; and the symboal [¢/2] denotestheintegral part
of the bracketed number. The nonhomogeneous terms

(35 - in the set of Eq. (19) are the components of the
density matrix in the canonical basis for the SU(3)

group [6]. In the case of Ew =[w + 2m00](w00) states,
the quantity Qp is expressed in terms of the basic

density matrix Q “ for the [(w00](w00) states (that is,
the density matrix corresponding to identical represen-

. Ee _ AFEF -
> EeP@e =Qp  (P=0,1 ., Prads (19 tations E and wfor the same basis) as
E ~ EE' ~ 000w _ NI, N'ly
= aDp_q, . 21
where Q¢ is the SU(3)-irreducible density matrix and R Z Qo-sDp- @b
the coefficients are given by where
D = [T(N+1g+22)(N+1+1/2)N! N'!]ll2 F((Ix +1c)/2+1/2)[ (p+a+1/2)
p.a al F((Ic +1c)2=p)l(p +1/2) 22)

(m+mM)IT((Ig +1)/2—p+5)

Z (- 1)m+msl mim(N—-m)!(N'—

mms

Here, N=(E-w)/2, lxk=w+ (A-2)2,a=m+m -5,
and summation is actually performed over two indices.
The explicit form of the basic density matrix can
easily be derived from theresults presented in[1, 6]. By
way of example, we indicate that, for the 4 < A< 8
nuclei, the two-particle density matrix for the U(3(A —
1)) states corresponding to the symmetric representa-
tions [w00](w00) at w = E,,;, hasthe form
~0
Q, =

1
Zw(ll - W),
(23)

- g[oo(oo+ 3) +16],

~0 3
Q, = éw(w—l).
For the same states, the single-particle density matrix is
given by
~0 _ A(A-1-w) =~o0_ Aw
0 A-1 ' Tt A-T

For the U(3(A — 1)) states involving O(A — 1) exci-
tations (that is, the w, + w, + w; = E,;;, + 2 states), the

(24)
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basic density matrix can be determined, by invoking
fractional-parentage coefficients, with the aid of the
method proposed in [6].

4. RESULTS OF THE CALCULATIONS
Presented below are some results that were com-

puted for the fBe nucleus and which make it possible

to study the spectroscopic quantities as functions of the
guantum numbers associated with the U(A — 1) and
O(A- 1) groups and to clarify the role of U(3(A - 1))
multiguantum excited states. In these calculations, use
was made of the variationa values of the parameter r,,
appearing in the expression for the wave function. The
results are presented in Tables 2—7 and in the figure.

Levels that were studied here belong to the L = 0*,
2+, and 4* and 0, 2, , 4, , and 6, rotational bands. No
attention has been given here to other levels identified

in [15], which correspond, according preliminary cal-
culations, to the Young diagrams [431] (the excitation
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Table 2. Changesintheenergy (in MeV) and the root-mean-square radius (in fm) in response to the extension of the basisB1

Potential V, Potential V;
L™ L™
1 2 3 4 1 2 3 4

0" | 0(-36.32) | 0(-41.18) | 0(-44.42) | 0(-4551) | 0" | 0(-53.17) | 0(-5844) | 0(-61.27) | 0(-62.98)

2.17 2.19 221 221 256 2.60 2.64 2.63
2t 1.99 2.19 3.0 315 2t 1.36 1.74 2.37 2.42

2.10 2.17 218 2.19 2.56 2.59 259 2.60
4 6.48 7.65 10.75 9.14 4 4.32 6.00 8.75 7.07

2.10 2.14 2.16 2.15 2.49 2.68 2.56 255
0, | 2103 26.45 27.64 26.63 0, | 1696 23.68 24.63 25.17

2.56 2,57 2.62 259 291 2.90 2,97 2.95
2; 22.16 28.45 31.50 30.56 2, | 1740 24.39 27.14 27.49

2.56 2,52 2.48 2.58 2.88 2.86 2.87 291
47 | 2462 31.35 33.85 33.95 4, | 1848 25.65 28.17 29.07

253 2.47 2,52 2.54 2.84 2.77 2.82 2.84

Table 3. Binding energy and spacings between the energy levels (in MeV) according to cal culations with the basis B1

n Potential v, v, Vs Ve
Epin @proximation
0* 0 (-35.75) 0(-34.93) 0(-35.52) 0 (-53.96)
2* 2.10 2.03 2.09 1.49
4* 6.92 6.67 6.82 4.83
Enin + 2 approximation
ot 0 (—45.59) 0(—44.41) 0 (—45.86) 0(—64.12)
2* 325 3.19 3.23 2.57
4* 9.98 9.74 9.97 8.10
oI 27.12 26.52 27.86 25.62
2, 31.04 30.45 31.56 28.04
4I 34.32 33.84 34.28 30.08

energy range between 16 and 20 MeV) and [422] (the
excitation-energy range between 20 and 26 MeV).

Aswas mentioned in the Introduction, the computa-
tions were performed in two steps. The calculations in
the E,;, + 2 approximation at thefirst step made it pos-
sibleto clarify the role of basis states corresponding to
different representations [E,E,E;] and (w,w,w;) and
the potential of the basisB1 (Tables 2-4). At the second
step, the computations were performed in the multi-
guantum approximation by using the bases B2 and B3
(see figure and Tables 5-7).

4.1. E.,, + 2 Approximation

Tables 2 and 3 quote the theoretical values of the
binding energy (in parentheses), the spacings between
the levels under study, and the root-mean-square radii.

Table 2 demonstrates how the results change as we
extend the basis B1 step by step. There, we display the
values calculated with the potentials V, [8] and V; [9].
The results obtained in the E,,,, approximation ([4](4)
function) are shown in the first column. The results
deduced by employing the basis of two functions
{[4](4), [6](4)} are given in the second column. The
results in the third column were derived in the basis

PHYSICS OF ATOMIC NUCLEI
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Table4. Coefficients b(Ew) x 107 in the expansion of the wave function (L) for the potential V,, in the basis B1

11

Eo L o* 2" 4 0, 2, 4;
[4](4) o1 o1 o1 5 -5 -9
[6](4) 22 30 30 % 94 94
[51](4) - -8 12 - 15 24
[42]4(4) 30 22 ~18 21 27 21
[42],(4) - 11 - - -3 -
[6](6) 12 14 -15 36 13 -5
[51](51) - 0 0 - 0 1
[42]0(42), 3 0 - 3 0 -
[42],(42), 0 3 - 2 1
[42]4(42), 7 0 - 6 0 -
[42],(42), - 0 8 - 1 5

Table 5. Changesin the energy (in MeV) and the root-mean-square radius (in fm) in response to the extension of the bases
B2 and B3 for the potentia V,

NN x Experimental
B 0(1*) > 4 8 12 12 0 12 5 | S
0" 0(-36.32) | 0(—44.32) | 0(-47.17) | 0(—4826) | 0(-4832) | 0(-48.94) | 0(-50.02) | 0 (-56.6)
2.17 2.21 2.27 2.32 2.34 2.32 2.35
2t 2.00 2.50 2.94 311 3.12 3.08 3.18 3.04
2.16 2.21 2.27 2.32 2.33 2.32 2.35
4* 6.47 8.76 10.05 10.52 10.54 10.52 10.84 114
2.13 2.18 2.27 2.32 2.33 2.30 2.35
OI 27.22* 26.04 21.92 18.20 17.35 17.47 16.18 20.2
2.57 2.55 2.58 2.72 2.79 2.79 2.84
ZI 28.59 27.28 23.31 19.85 19.06 19.23 18.16 22.2
254 2.52 2.58 2.72 2.80 2.81 2.84
4I 31.35 29.75 26.41 23.65 22.96 23.29 22.60 254
248 2.49 2.55 2.67 2.78 2.79 2.82
6" 33.00 31.23 29.26 27.56 27.21 27.71 26.95
2.58 254 2.62 2.74 2.78 2.81 2.84

* The energies g(L,) are reckoned from the L = O level (the energy £(0) = —41.18 MeV was obtained at N = 1).

involving all w = (4) functions associated with the cor-
responding value of L (for labeling of the functions
involved, see Table 4). The results presented in the
fourth column correspond to the full basis B1—that is,
al functions of the E.;, + 2 approximation that are
associated with the diagram A = [44] are used.

The results for the other potentials in the E,;,, and
E.., + 2 approximations are quoted in Table 3. The
results for the potentials V,, V,, and V; are close to the
results for V,, while the results for the potential V, are
closeto the results for V..

PHY SICS OF ATOMIC NUCLEI
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The structure of the wave function in the E,,, + 2
approximation is shown in Table 4. The states associ-
ated with minimum w = (4) and, among them, the states
corresponding to the most symmetric diagrams
[E,E,E;] are of greatest importance kinematically and
are therefore dominant. The contribution of the w, +
W, + Wy = E;,, + 2 statesis much less.

For the nearly redlistic potentials presented in Table 1,
the binding energy (its experimental value is w;,,q =
56.60 MeV [15]) and the spacings between the levelsin
the first band can be calculated in the E,,;,, + 2 approxi-
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Table 6. Changesin the electric quadrupole moments Q(L) (in e fm?) and the probabilities of electric quadrupoletransitions,
B(E2,L —= L —2) (in €#fm®), in response to the extension of the bases B2 and B3 for the potential V,

NN;

L 0 (1*) 2 4 8 12 12 0 12 5
o+ 0 0 0 0 0 0 0
2+ —4.02 —5.75 —6.85 ~7.65 —7.77 -7.52 ~7.96
4 -4.87 -6.77 -8.18 -9.16 -9.31 -8.94 -9.68
0, 0 0 0 0 0 0 0
2, —5.86 -6.94 -8.91 -1157 -12.81 -12.81 -12.97
47 ~7.06 -8.57 -11.03 -13.93 -15.69 -15.85 -15.99
6" -9.64 -10.88 -1351 ~16.46 -17.90 -17.79 -18.33
2t 0 3.69 8.14 1157 14.50 14.94 14.03 15.62
4> 2 3.18 9.48 14.54 18.60 19.20 17.73 2053
2, — 0, 7.9 11.43 19.25 32.72 40.00 39.87 45.14
4 — 2] 6.83 12.55 24.26 42.32 53.52 54.11 58.70
6" —» 4, 7.81 16.83 30,52 45.32 55.39 56.30 59.45
6" — 4" 0.75 3.70 1057 17.07 17.55 16.67 20.62

* For the levels of the second band, N = 1.

Table 7. Coefficients b(Ew) x 10? in the expansion of the wave function (L) for the potential V, in the basis B3

LT o* 2* 4t 0; 2, 4; 6"
m
0 56 -59 65 50 51 55 0
1 -53 52 -9 -2 5 1 41
2 41 -40 38 -19 21 25 -46
3 -30 29 —26 32 -34 35 42
4 20 20 18 =35 36 -35 -36
5 -14 13 -12 32 32 31 29
6 9 -9 8 27 27 25 22
7 —6 6 -5 22 21 20 17
8 4 -4 3 -18 17 -16 -13
9 -3 3 -3 15 -14 13 10
10 3 —2 2 -14 12 -11 -8
11 -3 3 -2 13 -12 10 7
12 2 -2 2 -11 10 -8 -5
my
0 12 -13 13 4 -4 -4 -8
1 -10 10 -9 9 -9 10 13
2 10 -9 8 -15 15 -13 -14
3 —7 7 -6 19 -18 16 13
4 6 -5 5 21 20 -16 =12
5 -3 3 -3 12 -11 9 6
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Binding energy &g as a function of the number N + 1 +
N; + 1 of the included basis functions.

mation. For example, the result for the binding energy
IS €ping = 56.90 MeV in the basis of the[4](4) and [6](6)
functions for V, and ¢, = 56.56 MeV in the basis of
the [4](4), [6](6), [42]1(42),, and [42](42), functions for
V. In order to compute the energy levelsin the second
band, the quadrupole moments Q(L), and the transition
probabilities B(E2, L — L —2), it is obviously neces-
sary to supplement the basis with E > E,;,, + 2 func-
tions. Thisis not unexpected because collective effects
play an important role in the formation of rotational
bands.

4.2. Multiquantum Approximations

An analysis of the results obtained in the E;, + 2
approximation revealsthat the functions corresponding
to the most symmetric diagrams E and the minimum
value w = (4) must betaken into account aboveall inthe
basis of U(3(A - 1)) multiquantum excited states char-
acterized by E> E,;,, + 2. To put it differently, it is nec-
essary to include the [4 + 2m](4) multiquantum excited
states and, whenever possible, the [4 + 2m2](4) and
[5+2ml]4) stateswithm=1,2, .... Of thew=E_;, +
2 [that is, w = (6)] functions, attention should be given
only to the most symmetric [6 + 2m](6) function.

The computations with the reduced Hamiltonian
(without Coulomb interaction) in the basis B2 consist-
ing of the [4 + 2m](4) functions, m=0, 1, ..., 10, were
performed in [2], where it was indicated that the
method used in these computationsis equivalent to the
(2, R) approximation [4] and to the method of gener-
alized hyperspherical functions [5]. Here, we present
some results of the computations with the full Hamilto-
nian (1) in the basis B2 and in the basis B3, which is
obtained by supplementing the basis B2 with the [6 +
2m|(6) functions, m=1, 2, ..., 6. The results are given
in Tables 57 and in the figure.

For the potential V,, Tables 5 and 6 illustrate the
dependence of the energies € of the levels, the root-
PHY SICS OF ATOMIC NUCLEI
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mean-square radii [M[Y?, the quadrupole moments Q(L),
and the transition probabilities B(E2, L — L — 2) on
thenumber N+ 1 (N+ 1 + N, + 1) of thefunctions taken
into account in the basis B2 (B3). In just the same way
asinthe case of the E,;, + 2 approximation, the results
for the potentials V,, V,, and V; are close to the results
for V,, whereas the results for V, are similar to the
results for V,. The results for Vs differ from the results
for the other potentials to a greater extent. The analo-
gous dependences for the binding energy €, on N and
N, are displayed in the figure for the potentials V,, Vs,
and V,. The coefficients b(m) in the expansions of the
wave function Y(L) inthe basisB3 aregivenin Table 7.

5. CONCLUSIONS

(i) From a comparison of the results presented here
with those from [2], it follows that the inclusion of the
Coulomb interaction has virtually no effect on the
structure of the wave functions, the spacings between
the energy levels, the values of the quadrupole
moments, and the probabilities B(E2).

(ii) For all the potentials used, the extension of the
basis |eads to the following changesin the energy spec-

trum: the 0%, 2*, and 4* and 0; , 2, 4, , and 6 bands
expand and come close together (the spacing between
the bands decreases). Owing to this, reasonably good
agreement with experimental data can be obtained at
some values of N. For example, the theoretical values
of the spacings between the energy levelse(L) aaN=5
and 6 agree well with experimental datafor both bands
(see Table 5).

(iii) Over the first band, the values of Q and B(E2)
areindependent of the number of basisfunctionsfor N =
7. Thisis not so for the second band, where aimost all
functions from the basis B2 must be taken into account.

(iv) Theeffect of the [6 + 2m,] (6) functions, m; =0,
1, 2, ..., from the basis B3 is substantial only for the
binding energies (for the potentia V,, the inclusion of
these functions increases the binding energy by
1.7 MeV) and the probabilities B(E2) for the second
band.

(v) From acomparison of the binding-energy values
in the first and the second column of Table 2, it can be
seen that the inclusion of the [6](4) state increases the
binding energy €,q by 4.9 MeV. An extra increase of
9.0 MeV in the binding energy results from taking into
account the multiquantum excited states [4 + 2m]|(4),
m=2,...,12,and [6 + 2m](6), m; =0, 1, 2, .... The
inclusion of the [42](4) state (see the second and the
third column in Table 2) additionally increases €4 by
morethan 3.2 MeV. It can therefore be expected that, in
the case of the potentials V,-V,, the binding-energy val-
ues complying with experimental data would result
from the use of the basis B3 supplemented with the[4 +
2m2](4) functions, m=0, 1, 2, ....
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Thus, we can hope that the basis B3 supplemented
with the [5 + 2m1](4) and [4 + 2n2](4) functions, m =
0,1, 2, ..., will proveto be sufficient for obtaining sat-
isfactory theoretical values of the aforementioned

quantities for the $Be nucleus.
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Abstract—The equation for the Brueckner G matrix isinvestigated for planar-slab geometry. A method for cal-
culating the G matrix for a planar slab of nuclear matter is developed for a separable form of NN interaction.
Actually, the separable version of the Paris NN potential is used. The singlet 'S, and the triplet *S—D, channel
are considered. The present analysis relies on the mixed momentum—coordinate representation, where use is
made of the momentum representation in the slab plane and of the coordinate representation in the orthogonal
direction. The full two-particle Hilbert space is broken down into the model subspace, where the two-particle
propagator is considered exactly, and the complementary subspace, where the local -potential approximation is
used, which was proposed previoudly for calculating the effective pairing potential. Specific calculations are
performed for the case where the model subspaceis constructed on the basis of negative-energy single-particle
states. The G matrix is parametrically dependent on the total two-particle energy E and the total momentum P
in the dab plane. Since the G matrix is assumed to be further used to calculate the Landau—Migdal amplitude,
the total two-particle energy isfixed at the value E = 2|4, where |1 is the chemical potential of the system under
investigation. The calculations are performed predominantly for P; = 0. The role of nonzero values of P is
assessed. The resulting G matrix is found to depend greatly on [ in the surface region. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The present article reports on a continuation of a
series of studies devoted to extending Brueckner theory
for infinite nuclear matter to nonuniform nuclear sys-
temswithout invoking thelocal-density approximation.
A method for numerically solving the Bethe-Gold-
stone equation in semi-infinite nuclear matter was
developed in[1-3] for the problem of singlet !Spairing.
For a separabl e representation of free nucleon—nucleon
interaction, this equation could be solved without
recourse to any form of local approximation. The pair-
ing problem was formulated on the basis of the effec-
tive pairing interaction in the model subspace wherethe
equation for the pairing gap A was obtained. The model
subspace was taken there in aform that is conventional
for nuclear physics and which includes all negative-
energy single-particle states.

The effective pairing interaction V', satisfies an
equation that is similar in form to the Bethe-Goldstone
equation for the G matrix, which is a basic element of
the Brueckner theory of nuclear matter. In the pairing
problem, thereisasimplifying circumstance associated
with the fact that pairing in an infinite system occurs at
zero total momentum of the two nucleonsinvolved (P =
0). Accordingly, the total orthogonal momentum Pg
must vanish in a semi-infinite system. Specific calcula
tions for 'S-channel pairing in semi-infinite nuclear
matter placed in the one-dimensiona Woods—Saxon

D I¢tituto Nazionadle di Fisica Nucleare, Sezione di Catania, 57
Corso Itdlia, 1-95129 Catania, Italy.

2 Universita di Catania, Dipartimento di Fisica, 57 Corso Italia,
1-95129 Catania, Italy.

potential well V(x) were performed for the separable 3
x 3 version [4, 5] of the Paris potential [6]. This poten-
tial wastested in the cal culations within Brueckner the-
ory in infinite nuclear matter [7, 8].

Inthiscase, the effectiveinteraction V', isfound by
solving a set of one-dimensional integral equations for
six independent components A;; (X, X'), where X and X'
are the c.m. coordinates of two nucleons prior to and
after the interaction event. We note that the matrix /\;
(i,j=1,3) issymmetric, sothat only six coefficientsare
independent. The kernels of these equations represent
the convolutions of the two-particle propagator B;; with
the form factors g and g, for the nucleon—nucleon
potentia (for the sake of brevity, we will often refer to
these convolutions as merely propagators). In[2, 3], we
proposed, in addition to the precise method for calcu-
lating the propagators, quite an accurate approach, the
local-potential approximation. This method consistsin
the following: at afixed half-sum X, = (X + X")/2 of the
c.m. coordinates of interacting nucleons, the exact
expression for B; (X, t) (t = X - X") in the system under
investigation is replaced by the approximate expression

BiLjPA (%o, t) equal to the corresponding expression for

infinite nuclear matter placed in the potential well V,, =
V(X,). Within nuclear matter, the loca-potential
approximation and the standard local-density approxi-
mation have nearly identical accuracies. In the surface
region, however, where the local-density approxima
tion is inapplicable, the local-potential approximation
provides a satisfactory accuracy in calculating the
effective pairing interaction [2, 3].

1063-7788/01/6402-0203%21.00 © 2001 MAIK “Nauka/Interperiodica’
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In order to calculate the Brueckner G matrix, we
construct here a similar scheme where a precise calcu-
lation of the two-particle propagators will be combined
with the local-potential approximation. In the Brueck-
ner method, the G matrix specifies the Landau—Migdal
amplitude

F(ro,rarsry) |
= «/Z(rl)z(rz)z(rs)Z(U)G(r11 rolaly E= 2“—)(1 :

where Z(r) is the renormalization factor of the single-
particle Green’sfunction 4, E isthe total energy of two
nucleons, and | isthe chemical potential of the system.
Thisamplitude, which isthe basic ingredient of thethe-
ory of finite Fermi systems[9], plays the role of effec-
tive quasiparticle interaction in the theory.

Instead of semi-infinite nuclear matter, we consider
a planar nuclear-matter slab placed in the one-dimen-
sional Woods-Saxon potential well V(X) symmetric
with respect to the origin—that is, a system that is the
closest to finite nuclei. Asin semi-infinite systems, the
momentum in the plane orthogonal to the x axisis then
conserved. Hence, it is convenient to go over inrelation
(1) to the momentum representation in this plane. In
relation to the pairing problem, there arises, however, a
significant complication—now, there is no reason to
assumethat P = 0. By using Eqg. (1) within the nuclear-
matter slab to calculate the harmonics of the Landau
expansion of the amplitude F [9], we can easily see that
the result does indeed involve an integral with respect
to P from zero to the doubled Fermi momentum, k.
This renders relevant numerical calculations much
more cumbersome.

In[10, 11], relation (1) was used to compute the sur-
face values of the zeroth harmonics of the invariant
Landau—Migdal amplitudes. Near the nuclear surface,
the local values of the nucleon momenta are small;
therefore, we can approximately set P = 0. Moreover,
the G matrix goes over, at large distances from the
nucleus, to the T matrix for free nucleon—nucleon scat-
tering, the calculation of the latter being much simpler.
It is this approximation that made it possible to repro-
duce faithfully in [10, 11] the empirical values of the
surface amplitudes. In order to obtain a more detailed
description of the coordinate dependence of the Lan-
dau—Migdal amplitudes over the entire surface region,
it is necessary, however, to calculate the G matrix. With
an eye to a subsequent application of the G matrix to
precisely this problem, we also restrict here our consid-
eration to small P values, although the computational
schemeremainsvalidin general for arbitrary P values.
We investigate two channels, the 'S, singlet channel
and the3S; triplet channel coupled to the 3D, one. Inthe
triplet channel, we use the 4 x 4 PEST4 separable
potential, which provides the best description of
nucleon—nucleon scattering among all versions of the
separable representation of the Paris potential that were
discussed in [4].

BALDO et al.

The Bethe—-Goldstone equation for the G matrix dif-
fers only dlightly in form from the equation for the
effective pairing interaction. In solving it, we can use
the same prescription for introducing the model sub-
space and the effective interaction acting in it asin the
pairing problem [2, 3]. The procedure is quite conven-
tional: in the full two-particle Hilbert space &, we sin-
gle out the model subspace ¥, where we calculate pre-
cisely the two-particle propagator and express the G
matrix in terms of this propagator and the effective
interaction. The effective interaction is determined by
the Bethe-Goldstone equation in the complementary
subspace ', where the local-potential approximation
is used to calculate the two-particle propagator. The
model subspace is taken here to be identical to that in
the pairing problem; that is, it is constructed in terms of
negative-energy single-particle states. For the 'S, chan-
nel at P = 0, the effective interaction for the problem
under study therefore coincides with the effective pair-
ing interaction. For the triplet channel, the computa
tional scheme is somewhat more complicated. For
example, ten equations arise here instead of a set of six
equations for the multipole components of the G
matrix. The calculation of the propagators B;; seems
more complicated as well, but, at a fixed value of P,
the two computational schemes are very similar. As
will be seen from the ensuing analysis, the proposed
method can be applied, without significant changes, to
channels of higher multipole order, for which thereisa
separabl e representation of the NN potential in [4].

The present article is organized as follows. In Sec-
tion 2, the general Bethe—Goldstone equation for the G
matrix in the 'S, singlet channel is reduced for planar-
slab geometry to a form convenient for numerical cal-
culations. In doing this, we use the separable represen-
tation [4] of the NN potential and the technique of the
mixed coordinate-momentum representation [2, 3].
Owing to the mirror symmetry of the system under
study, the equation for the G matrix breaks down into
two eguations—one for its even components and the
other for the odd components, each being defined only
a positive x values. It much more straightforward to
obtain a numerical solution to the problem in this case
than in the case of semi-infinite geometry, where there
is no such symmetry. In Section 3, the sameis done for
the 3S—*D, channel. In Sections 4-8, we comprehen-
sively study a solution to the equation for the G matrix
at zero value of the total orthogonal momentum P of
two nucleons. All calculations are performed for the
case wherethe chemical potential of the systemisset to
the value of p = -8 MeV, which is typical of stable
nuclei. For the two-particle propagators, various forms
encountered in solving our problem are considered in
Sections 4 and 5. In Sections 6-9, we investigate the G
matrix. In Section 9, we analyze the chemical-potential
dependence of the G matrix. In Section 10, we estimate
the role of nonzero P values. Section 11 is devoted to
discussing basic results. For the Paris potential, Appen-
dix 1 gives formulas for the coordinate representation
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of the form factors of the separabl e representation used
in this study. In Appendix 2, we give an account of the
method for calculating the free T matrix for the triplet
channel in the coordinate representation.

2. EQUATION FOR THE G MATRIX IN PLANAR-
SLAB GEOMETRY: 'S, SINGLET CHANNEL

In considering nonuniform systems, it is better to
proceed from the general equation for the Brueckner G
matrix in the coordinate representation. It can be writ-
ten as

G(ry,rara g E) =T (ry,rp)d(ry—r3)d(r—ry,)

+ﬁ/(r1:r2)A(r1:r2,r5ar6; E) (2)
X G(rs, re s, r4; E)drsdrg,

where 7" is the potential of nucleon—nucleon interac-
tion and A is the two-particle propagator. Within
Brueckner theory, this propagator is determined as an
integral that involves the product of two single-particle
Green’'sfunctions asthe integrand and which takesinto

account only the contribution of particle poles (Cgp).

We note that the so-called T matrix (an analog of the
Brueckner G matrix in conventional many-body theory
[12, 13]) isdetermined by an equation of thetypein (2)
with the propagator A that involves both the two-parti-

cle (9"4") and the two-hole (4"4") contribution.
Thus, the expression for the two-particle propagator in
Brueckner theory has the form

A(r,rorsry E)

_ de p .E p E o O
_Iﬁcg Bl,rz, §+5%§ Bg,u, >~ ¢q

In the representation of the single-particle eigen-
functions @ (r) diagonalizing the single-particle
Green's function, the propagator A is given by

A(ry, Iy g ry; E)

« . (4)
= ZAM'(E)(PA(H)(PA (r3)@n(ra)ex(ra),
N
where
Aw(E) = J-%Cgf% + S%gf'% —SE
(5)

_(1-n)(1-ny)
T E-g-&

Here, n, and n,. are the single-particle occupation num-
bers, which are equal to unity (zero) for filled (unfilled)
states, while g, and €, are the corresponding single-par-
ticle energies.
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Equation (2), together with the propagator specified
by Egs. (3)—(5), differsfrom the anal ogous equation for
the effective pairing interaction [2, 3] only by the form
of the projection operator in the numerator on the right-
hand side of (5).

In accordance with the above partition of the Hilbert
space & into two parts, the sum in (4) over A\' also
breaks down into two terms,

A= AtA, (6)

where A, contains only states that belong to the model
subspace &, while A' involves all the remaining states.

The standard renormalization procedure leads to an
equation for the G matrix in the model subspace,

G = Vgt + Ve AsG, @)

where the effective-interaction potential V', is deter-
mined by asimilar equation in the complementary sub-
space S; that is,

OVeff = OV + OVAlngff. (8)

We analyze a planar nuclear-matter dab of thick-
ness 2L placed in the one-dimensional Woods-Saxon
potential well V(x) symmetric with respect to the point
x=0,

V
T oI + s D) ©

For the depth and diffuseness potential parameters
(V, and d, respectively) and for the slab half-width (L),
we choose the values of V, =50 MeV, d = 0.65 fm, and
L = 8 fm, which are close to values characteristic of
heavy nuclei. As in the case of semi-infinite nuclear
matter, the system is nonuniform only in one direction
(x axis); in the orthogona plane [(y2) plane, also
referred to as the s plane)], the momentum is con-
served. In order to solve Eq. (2) [or Egs. (7) and (8),
which are equivalent to it], we can therefore use the
technique of a mixed representation [1], where use is
made of the coordinate representation in the x direction
and of the momentum representation in the orthogonal
plane, so that, in expansion (4), the eigenfunctions are
represented as

a(r) = ya(x)exp(iky [¥), (10)

where y,(X) are the eigensolutions to the one-dimen-
sional Schrodinger equation with the potentia (9). The
eigenenergies corresponding to the functions in (10)

ares, =€, + ké/zm. For the sake of simplicity, it is
assumed here that the effective single-particle mass m*
isequal to the vacuum nucleon massm. It is straightfor-
ward to extend the scheme to the general case of m* #
m. We note that the potentia (9) is symmetric with
respect to the point x = O; therefore, the eigenstates y,
of the discrete spectrum have a specific parity—we

denote by y. and y, the even and the odd eigenfunc-

V(X) =

)
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tions, respectively. For the continuous spectrum, it is
convenient to use definite-parity states as well, which
arereal, as can easily be seen.

Injust the sameway asin [2, 3], we will use a sep-
arable representation for a realistic hucleon—nucleon
potential—specifically, a separable version [4, 5] of the
Paris potential [6]. Its appropriateness for calculations
within the Brueckner method was demonstrated in [7,
8] for infinite nuclear matter and in[2, 3] for semi-infi-
nite nuclear matter.

Let usfirst consider the simpler case of the 'S, sin-
glet channel, where the potential from [4, 5] has the
separable 3 x 3 form,

Yk k) =5 Agi(k)g (k). (11)
1]
Here, k (k') is the relative momentum of the incoming
(outgoing) nucleons. Following [2, 3], we change anor-
malization of the form factorsin (11) in relation to that
used inthe original version from[4, 5] in such away as
to ensure fulfillment of the condition g;(0) = 1. The
explicit expressions for the renormalized form factors
(11) aregivenin[2, 3].

In the mixed coordinate-momentum representation,
the G matrix for the channel being considered can be
sought in the form

G(ké, k'DZ, Po; Xq, X9, X3, X4 E)
) P (12)
= zGij(Xa X', E, Pp)gi(kn, X)g;(ka, X),

where P isthetotal momentum in the s plane; k, (k)
is the relative momentum prior to (after) the scattering
event inthes plane; and we have introduced the follow-
ing notation for coordinatesin the x direction: X = (x, +
X)/2, X = X; — %o, X' = (X3 + X4)/2, @nd X = X; — X,. Inthe
mixed representation, the form factors gi(ké, X) are
determined by the inverse Fourier transformation of the

guantity gi(ké + kf) with respect to the variable k,:

00

—ik,x dk
g(kD,x) = Ig(km+k) P

(13)
Their explicit forms are presented in Appendix 1.

An expansion similar to that in (12) is valid for the
effective interaction as well:

V e (K K, P X, X1 X, Xg; E)
) P (14)
= z/\ij(xa X', E, Po)di(ka, X)g;(kg, X).

ij
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By substituting the potential (11) and the G-matrix
expansion (12) into the origina Eg. (2), wefind that the
coefficients G;; satisfy the set of integral equations

Gij( X1z X33 E, P) = AjjO( X2 — X34)

+ Z)\iIIdXSGBIm(XlZ X6, E, Pp) (15)
Im

X Gy (Xsg, Xag5 E, Pp),

where the convolutions B, of the two-particle propaga-
tor and the form factors are given by

Bim( X2 X34; E, Pp)

(1 m)(1-ny)
ZJ'(2n) E-P]

Am—g,—¢€, —kD/

x gnn'(kmf X12)gn'n(kIZI1 X34).
Here, we have introduced the condensed notation A =
(n, Po/2 + kp) and \' = (', P2 — kg) and set
gn (K&, Xao) (
= Idxlzgl(ké1 X12) Yn(X1o + X12/2) Y (X2 = X12/2).

We note that symbolic summation over nn' in (16)
includes both actual summation over the discrete spec-
trum and integration for the continuous spectrum with

the standard substitution % =~ — [dp/21t We aso
considered that the functions y,(x) are real-valued.

By performing similar transformations for the
renormalized Eg. (7) and by using a more compact
notation, we arrive at the set of equations

Gij(X, X', E, Pg) = Aj(X, X'} E, Pp)

(16)

17)

+ Iz J’dxldxz/\”(x- X1, B Pp) (18)

X Blom(xlv X25 B, Pp)Gry (X, X' E, Pp),

where B|O n are two-particle propagators in the model
subspace that are determined by the sums of thetypein
(16) with the constraint (A, A") O &,

Finaly, Eg. (8) for the effective interaction can be
recast into the form

Nij(X, X' E, Pg) = Aj;0(X=X')

) (19)
+ Z?\HJ'XmBm(X Xi; B Po)Am (X, X5 E, Pp),

where the two-particle propagators B,,,, in the comple-

mentary subspace are determined by the same sums
(16), but with the constraint (A, A") O .
PHY SICS OF ATOMIC NUCLEI
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Inthefollowing, wewill find, asarule, the G matrix
on the basis of the set of Egs. (18) and (19). In doing

this, we calculate the propagators B|°m precisely and
use the local-potential approximation in evaluating the

propagators B,,,, . The propagatorsin (16) and their ana-

logs for the model and the complementary subspace
involve, in relation to the corresponding propagators of
the pairing problem [2, 3], one serious complication
associated with the appearance of the dependence in
the integrand on the angle ¢ between the momenta P,
and k. It arises from the dependence of the occupa-
tions numbers n, and n,, in the numerator of expression
(16) on this angle. For example, the condition n, = 0
doesindeed correspond to the inequality €, > |; that is,
€, + (P/2 + kp)¥/2m> , which explicitly depends on
the angle @.

Asin the pairing problem, the integral in (16) with
respect to momenta converges slowly because of the
strong repulsive core in the nucleon—nucleon interac-
tion. This problem is especially serious for the Paris
potential. In just the sameway asin[2, 3], this problem
is solved by renormalizing Eq. (19) with the aid of the
analogous equation describing the off-shell T matrix
for free nucleon—nucleon scattering at E=2p. Inasym-
bolic form, the equation for the T matrix can be written
as

T(E) = V' +VA"(E)T(E), (20)

where A"(E) is the propagator for two free nucleons
whose total energy isE.

By using the coordinate representation in the x
direction and the momentum representation in the
orthogonal plane, we expand the T matrix in a form
similar to that in (12). Here, the expansion coefficients
T;;(t; E, Py) depend only onthe differencet= X- X and
obey the equation

Tij(t; E Pp) = )\ija(t)

21
+Z)\Hfdt'8{{n(t—t'; E, Po)Tow(t; E, Pp). @D
Im

The renormalized equation for the effective interac-
tion can be written in the compact form

N = Tij+zTiI(BIm_Blfrrn)/\mj- (22)
Im

Asinthe case of P =0, the difference kernel of this
equation possesses much better convergence properties
than that in the original Eq. (19). The scheme for com-
puting thefree T matrix in the coordinate representation
for P;# 0 ispresented in Appendix 2.

All the above equations for the G matrix are valid
for any system that is nonuniform only in one direction.
For aplanar slab, they can be simplified by using parity
conservation under the inversion X — —X. As was
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noted above, the potential (9) does indeed conserve the
parity, and the set of the corresponding eigenfunctions
Y, can be broken down into the subset of even functions

y» and the subset of odd functions y;, . Therefore, the
two-particle propagator (4) can be represented asthe sum

A=A +A (23)

of the symmetric (even) and antisymmetric (odd) com-
ponents. The symmetric propagator A stems from
those terms in the sum in (4) where both states (A, A")
have the same parity, while the anti symmetric propaga
tor A? arises from the states of inverse parity. Because
the nucleon—nucleon potential V" in Eq. (2) for the G
matrix conserves the parity, the propagators of inverse
parity are not coupled.

Let usisolate the Born term from the G matrix. The
remainder is the correlation component of the G
matrix; that is,

3G = G-. (24)

The equation for dG can be derived from (2). The
result hasthe form

0G = VAT +V AdG. (25)

It isobviousthat the correlation part of the G matrix
is the sum of a symmetric and an antisymmetric com-
ponent,

3G = 3G’ +3G". (26)

The equations for these components are separated:
3G® = VAV +V A’SG”, 27)
3G" = VAV +V A*8G", (28)

It can easily be verified that the convolutionsin (16)
involving the symmetric (antisymmetric) propagator A
are the even (odd) functions of coordinates X and X;
that is,

Bim(X, X) = Bin(X,=X) = Bin(-X, X),  (29)

Bim(X, X') = =Bin(X, =X) = —Bjn (=X, X).  (30)

Onthisbasis, Egs. (15)—22), whereintegrations are
performed over al values of the c.m. coordinates, can
be reduced to those where integrals are taken only over
positive values of X. For this purpose, we introduce the
symmetrized components of the G matrix and of the
interaction blocks associated with it (nucleon—nucleon
potential, T matrix, and effective interaction):

G (X, X) = Gy(X, X) £ Gy(X,—X), (31
V(X X) = A(B(X=X) £ 3(X+ X)),  (32)
Ti7 (X X) = Ti(X=X) £ T(X+X),  (33)
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NG X) = A XY £AG(X-X). (34)

As can be seen, the correlation components G~ are
twice as large as the above quantities G 2. In order to
simplify the form of the final equations, this coefficient
of 2 must be introduced in the definition of the propa-
gators of specific parity. For example, the propagators
in the model subspace become

0+, 0— 0Os, 0a

B (X, X) = 2B, (X X). (35)

Let us explicitly present the symmetrized equations
in the half-space of positive X values for the case of
positive parity. For example, Eg. (18) for G* reducesto
the form

(XX' EPD)—/\(XX' E, Pp)
+ Z _[dxl_[dle\n(x Xy E, Pp)
Im o
X Bim(X1, Xai E, Po) Gy (X, X' E, Py).

The even component of the effective interaction is
determined from the renormalized Eq. (22), which
takes the form

(36)

(XX'EPD)—T(XX'EPD)

+ZIdX1 dXZTH(X X1 E, PD)(BIm(Xl! X5 E, Pp)
37)

Im o 0
—Bin (X3, Xoi E, Po))Ag (%o X5 E, Pp),
where the symmetrized propagators in the complemen-
tary subspace and in free space are determined by anal-
ogy with Egs. (31)—«(34) as

Bim(X, X') = Bjn(X, X) +Blp(X, -X),  (38)

Bim(X, X) = BlL(IX=X]) +BlL(IX+X]). (39)

Finally, the symmetric part of the free T matrix can be
found by solving the equation

TH(X X3 E, Py) = A (3(X=X) +8(X + X))

" (40)
+ 3 N[ dXyBin (X, X5 B, Po) Ty (X, X E, Po).

All of Egs. (36)—40) were formulated for X = 0;
therefore, the second nonhomogeneous term in (40),
which involves a delta function, does not vanish at the
single point X = 0.

The equations for the case of negative parity are
obtained from the equationsfor the case of positive par-
ity by substituting a minus sign for a plusin the super-
scripts and by reversing sign between the two delta
functions on the right-hand side of Eq. (40).

BALDO et al.

It isobviousthat the even G* matrix acts on the two-
particle states of positive parity (that is, on the basis
states of the types |+, +Cand |-, —[) and that the odd G-
matrix acts on the negative-parity states (|+, —LJ |-, +0).
We recall that it isthe total G matrix

G = %(G+ +G)) 41)
that appears in expression (1) for the Landau—Migdal
amplitude.

3. EQUATION FOR THE G MATRIX
IN THE 3S—°D, TRIPLET CHANNEL

Let usnow go over to the 3S, triplet scattering chan-
nel coupled to the *D, channel. In this case, the separa
ble expansion (11) is generalized as [4, 5]

Vsoa(k k) = YXG()G (KD, (42
i
where the column §; has two components,
L=0,,2
i (kKOO
g0y =" 8 (43)

It was shown in [5] that, in the multipol e representation
of the Paris potential, the best description of nucleon—
nucleon scattering in the channel being considered is
achieved in the 4 x 4 version (PEST4 potentia). Asin
[10, 11], we will use precisely this potential in the cal-
culations. The normalization of the form factorsis nat-
urally similar to that in the singlet channel, but renor-
malization of the two components (L =0and L = 2) is
performed simultaneously since the same coefficients
Aj; appear in expansion (42) for these components. In

the limit kK — 0, we have giL:O(k2 =0)=1and

(k2 0) = 0. Therenormalized expressionsfor the
form factors (43) are presented in Appendix 1.

It can easily be shown that the general Eq. (12) and
Egs. (18) and (19) following from it are valid for the
triplet channel aswell. The main formal modificationis
that in the definition of the convolutionsin (16), which
now become

Blsmzl(xlzv Xas; E, Pp)

(1 m)(1-ny)
ZI(ZH) E-P;

/4m € —&y —k /m
x (g3 (K2, Xi2) g (K3, X2)

+ 98 (K2, X)) g™ (K2, Xa)).

It should be borne in mind that, in the case of the
triplet channel, all multipole expansions like those in
(12) and (14) are 2 x 2 matrices. For the sake of clarity,

(44)
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we indicate that the explicit form of the components of
the relevant matrix for G is

G (K2, KIS, Py Xq, Xo0 Xa, X} E)
L)2 (LY 2 (43)
= ZGij(X1 X'; Po, E)gi (Ko, X)9; (K, X),
ij
where L and L' are equal to 0 or 2. We note that,
although the form factors gi(z)(kz) vanish at k = 0, they

are commensurate with the form factors gi(o)(kz) at k=

Ke (kg ~ 1.4 fmr! is the Fermi momentum) (see Fig. 1).
It is obvious that all of Egs. (36)—(40) for the symme-
trized G matrix are valid for the triplet channel.

4. TWO-PARTICLE PROPAGATORS B,
IN COMPLEMENTARY SUBSPACE AT P =0

In solving Eq. (15) for the G matrix or Egs. (18) and
(29) following from it, the calculation of the propaga-
torsin (16) or their analogs for the model and the com-
plementary subspace is a point that presents the most
serious mathematical difficulties. Here, we investigate
Eqg. (19) for the effectiveinteraction in the simplest case

of Py = 0. In calculating the propagators By, in the

complementary subspace, it is reasonable to use
expression (16) where summation over A and A' is
restricted to states belonging to this subspace ¥'. As
was hoted above, we will use the same model subspace
S, as in [2, 3], which includes al negative-energy
states (g,, €, < 0). The complementary subspace &'
then contains not only positive-energy A and A' states
but also pairs of states such that one of the energiesis
positive, while the other is negative. It can easily be
shown that, at P = 0, the above singlet-channel propa-
gators coincide with the analogous propagators that
arise in calculating the effective pairing interaction and
which were comprehensively investigated in [2, 3].
Therefore, we restrict our analysis here to the triplet
channel.

Instead of adirect calculation of theintegralsin (44)
[thisisthe analog of expression (16) in thetriplet chan-
nel] for a planar dab, we will use the local-potential
approximation for this purpose. As was noted in the
Introduction, this approximation wastested in [2, 3] for
the singlet channel. Here, we admit that it is valid for
the triplet channel as well. The accuracy of the local-
potential approximation for the triplet channel will be
estimated below. It is the formulation of the computa-
tional procedure that is now of importance for us
because, as follows from the qualitative analysis from
[2, 3], the accuracy of the local-potential approxima:
tion can be improved by supplementing the model sub-
space of negative-energy states with some positive-
energy states. Within the local-potential approxima-
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k()

_0‘4 1 1 1 1 1 J
04 —
L=2
0 e

4

_ 2" e
_0'4 1 1 1 1 1 J
0 1 2 3

k, fm™!

Fig. 1. Form factors gi(L)(k). Figures on the curvesindicate
the values of the subscript i.

tion, the computational procedure for the triplet chan-
nel is generally similar to that for the singlet channel.
At afixed value of the chemical potential |, it is neces-
sary to calculate first the basis array of the propagators
B/ ([V,], t; E = 2p) for infinite nuclear matter placed in
the potential V, for agiven set of V,, values. In fact, the
potential-well depth was varied from zero to 58 MeV
with astep of 8V =2 MeV; that is, we employed the val-
uesof V,=0Vx (n-1),n=1, ..., 30. Obvioudly, the
propagators depend only on the differencet = | X — X'|
of the coordinates. They were calculated on a fixed
mesh specified by t, = h(k — 1). The free propagators

Bl () automatically coincide with propagators
B/ ([V,- ], t; E=2p). Further, we fixed the mesh of the
values X, with a step h in the interval (0, L + @). The
parameter a must be taken to be sufficiently large in
order to suppress boundary effects (in the present cal-
culations, we set a = 10 fm). On this mesh, we con-

structed the matrix B,erA (%, X for the planar slab
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Table 1. Renormalized constants A;; (MeV fm?? and strengths of some terms in the separable form of the Paris nucleon-nu-

cleon potential [5] (3 x 3 representation for the 1S, channel and 4 x 4 representation for the 3S—D; channel)

BALDO et al.

j

1

2

w

A W N PR

—3.65919 x 103
2.16929 x 10°
—2.36114 x 10*

-1.61771 x 10°
—-1.29611 x 10°
8.92091 x 102
4.27077 x 10!

2.16929 x 10°
—1.48465 x 103
5.76074 x 10*

—-1.29611 x 10°
7.84747 x 102
1.39388 x 10°

—7.86034 x 102

3 4
S=0
—2.36114 x 10t
5.76074 x 10*
1.71791 x 10t
s=1
8.92091 x 102 4.27077 x 10*
1.39388 x 10° —7.86034 x 102
—7.45037 x 102 —5.72277 x 102
—5.72277 x 10? 1.86482 x 10°

under investigation. For this, the potential-well depth
V(X = (X + X)/2) was calculated from (9) at fixed val-
ues of X; and X,, and the required propagator in the
local-potential approximation was found for each t =
[X; — X, | by means of alinear interpolation between the
two adjacent values Bin, ([V,l. t; E) and By, (Vo . t
E) that were chosen in such away as to ensure fulfill-
ment of the condition V,, < V(Xy) <V, ;-

As was noted above, the form factors g(k) in the
separable expansions (11) and (42) are normalized in
such away that the conditions g;(k) — 1 are satisfied
for k — 0. Thisdefinition of form factorsis more con-
venient than the normalization for the free case [4, 5]
since, when we use a hormalization to unity, the con-
stants A;; appearing in the above expansions and having
the meaning of the intensity of the corresponding com-
ponents of the nucleon—nucleon potential carry direct
information about the strength of these terms. For both
channels, the values of the constants A;; are quoted in
Table 1. As can be seen, the resulting patterns are dif-
ferent in the different channels. The singlet channel
(S=0) isdominated by theij = 11, 12, and 22 compo-
nents, the intensities of al terms carrying the index of
3 being two orders of magnitude smaller. Of course,
their contribution cannot be disregarded in calculating
the effective interaction V' since, at very high

momenta (up to k = 60 fm~!), which are present in the
integralsfor By, , theform factor g,(k), which increases

with k, considerably exceeds the form factors g, (k) and
0,(K), which decrease with increasing k. As aresult, the
contributions of the large and small components
become commensuratefor k= 10 fm!. At momentak ~
ke, however, which are important for the calculation of
the Landau—Migdal amplitude, the small components
of the singlet potential can be disregarded, at least in a
gualitative analysis. On the contrary, no terms in the
triplet channel (S= 1) have intensities that stand out in

magnitude; therefore, we must analyze all components.
By way of example, we present the results of the calcu-
lations for three typical components of the propagator
B, Im=11, 33, and 23. The behavior of the remaining
terms generally reproduces the behavior in one of these
three cases. The calculations in this section, as well as
the majority of other similar calculations, were per-
formed at the chemical-potential value of p = -8 MeV
peculiar to the beta-stable nuclei.

Figure 2 shows the propagator in a medium,
inf

Bim ([Vol, 1), and the free propagator Bfrrn (t), which
coincide with the basis propagators B|'”mf (V.. LE=2p
at n =26 and n = 1, respectively. As can be seen, the
diagonal components have a sharp maximum att = 0
and decrease very fast with increasing t. The t depen-
dence of the off-diagonal component B,; is somewhat
weaker. In addition, we can see that, at small t values,
the propagator in a medium and the free propagator
nearly coincide. This circumstance explains why it is
reasonable to perform arenormalization of Eq. (19) in
terms of thefree T matrix (20). Indeed, the kernel of the
renormalized Eqg. (22) is a much smoother function of
the coordinates than the kernel of Eg. (19). In this
respect, the situation is qualitatively similar to that in
the singlet channel.

We now proceed to analyze the propagators
LPA

B, (X, X,). It was noted above that, in planar-slab
geometry, it is more convenient to employ the symmet-

ric propagators By, (X;, X,) and their antisymmetric

counterparts B, (X, X,). The properties of the propa-
gators can be analyzed in terms of the variables X, and
t, which were introduced above; however, it is more
straightforward to use the asymmetric coordinates X =
X, and t = X, — X,. That the propagators B~ (X, t)
decrease fast with increasing t results in that the sym-
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metric and antisymmetric propagators B (X, t)

virtually coincide everywhere, with the exception of
the region of extremely small values of X. This can be
seen from Fig. 3 by comparing the profile functions

B ®¥(X) and By, ®¥(X) at X' = 2 fm for X <
1.5 fm. Even at such small values of X and X', the dis-
tinction between two functions is very small. At large
X' values, the profiles of the symmetric and antisym-
metric propagatorsin the local-potential approximation
are graphically indistinguishable. Below, in this sec-
tion, we therefore analyze only the symmetric propaga-
tors. The profile functions for the propagators

B|L,§A(s) (X, X") in the local-potential approximation are

compared in Fig. 4 with those for the free propagators

B,,(t), 1073 MeV~! fm™*

Im=11
1 1 J
4+
k 33
1 1 1 1 J
1.0+
| 23
1 2

t, fm

Fig. 2. Componentsof (solid curves) the propagator iname-
inf

dium, By, [V=50MeV], and (dashed curves) thefree prop-

agator, B,frrn , for S=1 asfunctions of therelative coordinate

t=X-X"a u=-8MeV. Thesign of thelm= 11, 33 com-
ponents was reversed.
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B (X, X' = X + t). As might have been expected, the
distinction between the propagators in the local-poten-
tial approximation and the free propagators is insignif-
icant within the dlab (X' = 2 fm). On the slab surface
(X'= 8 fm), this distinction is still smaller, on the
whole, but there arises here a specific boundary
effect—the propagators in the local-potential approxi-
mation are somewhat asymmetric with respect to the
point t = 0, whilethe free propagators are symmetric by
definition.

Asin the case of the singlet channel [2, 3], itiscon-
venient to characterize the properties of the two-parti-
cle propagators on average by the zeroth moments. By
way of example, we indicate that, for the triplet chan-
nel, these zeroth moments of the symmetric propaga-
torsin the local-potential approximation are defined as

—LPA(S),S=1(X) — J.dtBILrEA(s),su(X’ t).

BIm

We note that, for functions that decrease fast with
increasing t, like the propagators in the local-potential
approximation, the definition in (46) and the anal ogous
expression for the zeroth moment in terms of the vari-
ables X, and t lead to nearly coincident results. Only in
a narrow region at the slab surface do there arise dis-
tinctions at alevel of afew percent.

For the Im values chosen above, the zeroth moments
of the propagators in the local-potential approximation
are depicted in Fig. 5. As might have been expected,
they are virtually independent of X within the slab and
change somewhat in the surface region. At large X,

(46)

EﬁEA(X) asymptotically approach the zeroth moments
of the corresponding components of the free propagator,

B =[BT ), (47)

BLPAX, X", 1074 MeV-! fm™

0 Kk
-1
-2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 J
0 0.5 1.0 1.5
X, fm
Fig. 3. Profile functions (solid curve) BL ) (X, X') and
LPA(a)

(dashed curve) By (X, X)) for the propagator in the

local-potential approximation for S=1 a X' = 2 fm and
small X values.
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which are of course independent of X. It can be seen
that, for the Im = 11 and 33 components, the zeroth
moments of the propagator in the local-potential
approximation within the dab and those of the free prop-
agator nearly coincide; for the Im = 23 component, the
distinction between these zeroth momentsis sizable.

5. TWO-PARTICLE PROPAGATORS B,Om
AT P; =0 IN THE MODEL SUBSPACE

It will be seen below that, at fixed Im values, the
symmetric and the antisymmetric propagators in the

Bj,(X, X", 103 MeV~! fm™*

X'=8fm
1

33

X, fm

Fig. 4. Profile functions for (solid curve) the propagators

LPA(s)

B, (X, X) in the local-potential approximation and

fr(s)
Im

(dashed curve) the free propagators B,
X'=2fmand X'=8fm.

X, X")forS=1at
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model subspace differ markedly. This is a typically
guantum effect associated with the different structures
of single-particle states appearing in the opposite-par-
ity propagators and occurring near the Fermi surface. It
is the contribution of precisely these states that stands
out owing to the small denominator on the right-hand
side of (16). Such alarge effect can partly be an artifact
of anot very appropriate choice of the model subspace
that comprises a very narrow (in the momentum repre-
sentation) layer of states whose energies lie between
M =-8MeV and u = 0. In order to investigate qualita:
tively the effect that can arise from the extension of the
model subspace, we have performed a series of calcu-
lations with a few p values equa to -8, —16, and
—-24 MeV.

Let usfirst consider the S = 0 singlet channel. For
the example of Im = 11, the profile functions of the

symmetric and antisymmetric propagators By ° (X,
X' =X,) inthe model subspace are compared within the
dab (X, =2 fm) in Fig. 6 and at the slab surface (X, =
8 fm) in Fig. 7. As can be seen, the two types of propa-
gators in the model subspace differ markedly both
within the slab and on its surface. Asthe model spaceis
extended, the absolute values of either type of propaga-
tor increases, while the relative distinction between

By and B;; decreases. This is so for other Im values
aswell.

Similar conclusions can be drawn by comparing, at
various values of , the zeroth moments of the propa-
gators in the model subspace that are calculated by for-
mula (46) with the substitution of the propagators

B2 and B2 for BI."® 571 It is the point

where a significant distinction between the propagators
in the local-potential approximation and the propaga-
tors in the model subspace manifest themselves. The
former arefast decreasing functions of the variablet, so

Bj,(X), 10> MeV~! fm~3

05F
Im=23
075t
-05F
-1.0
_1'5 1 1 1 1 1 1 1 1 1 J
2 4 6 8 10
X, fm

Fig. 5. Zeroth moments of the components of (solid curve)
the propagators in the local potential approximation,
B|L,TF;A(S)(X), and (dashed curve) the free propagators,

B{LSS)(X), for S=1.
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B (X, X", 107 MeV~! fm™

0 2 4 6 8 10
X, fm

Fig. 6. Profilefunctionsfor (upper panel) the symmetric and
(lower panel) the antisymmetric propagators B?l X XYin

the singlet channel at X' = 2 fm for the chemical-potential
valuesof 1 = (solid curve) -8, (dashed curve) —16, and (dot-
ted curve) —24 MeV.

that, if a cutoff |t| < t; is introduced in the integral in
(46), the result proves to be virtually independent of t,

for t; = 3 fm. On the contrary, the propagators B|°m
involve large long-range components, with the result
that, as a rule, analogous integrals strongly depend on
t.. In our opinion, it is more informative to consider,
instead of the integral between infinite limits in (46),
the zeroth moment cut off as

t

B L25(X) = Idthff’ 020X, X —1).

_tc

(48)

On average, the integral in (48) better reproduces the
behavior of the propagator under study in the vicinity
of agiven point X, since it does not include the contri-
bution that comes from far tails and which carries no
significant information. For the large components at
S=0, the zeroth moments cal cul ated according to (48)
aredisplayed in Fig. 8.

Theresults of asimilar analysisfor thelm= 11 com-
ponent of the two-particle propagator in the triplet
channel are shown in Figs. 9 and 10. For the samelm=
11, 23, 33 components as in the preceding section,
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Fig. 7. Asin Fig. 6, but for X' =8 fm.

which were chosen here by way of example, the cutoff
zeroth moments are displayed in Fig. 11. Here, the dis-
tinction between the symmetric and the antisymmetric
propagators is still more pronounced; as to the effect
originating from the extension of the model subspace,
it ismore spectacular: the relative distinction decreases
with increasing u. Thelatter can be considered as direct
evidence that the accuracy of the local-potentia
approximation isimproved when the model subspaceis
extended. This is because the extended subspace
includes states that are far from the Fermi surface and
which can therefore be taken accurately into account in
the local-potential approximation. However, we have
seen abovethat, in the local-potential approximation, the
symmetric and the antisymmetric propagators nearly
coincide; for thisreason, theinclusion of the correspond-
ing contribution in the propagators of opposite symme-
tries reduces the relative difference between them.

6. ANALYSIS OF THE G MATRIX
IN THE SINGLET AND IN THE TRIPLET
CHANNEL AT P =0

From an analysis of Eqg. (15), we can deduce that its
solution G;;(X, X') involves a singular term, a delta
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B,,[#X), 107 MeV~! fm™

12

X, fm

Fig. 8. Cutoff zeroth moments [B;,,[35(X) of the components
of the propagator in the singlet channel for the chemical-
potential values of p = (solid curve) -8, (dashed curve) 16,
and (dotted curve) —24 MeV.

function with the coefficient A;; equal to that in the non-
homogeneous term on the right-hand side. The correla
tion part of the G matrix as determined in (24) does not
involve singularities; therefore, it is more convenient for a
graphic presentation of the results. For this reason, we
now proceed to analyze the correlation components of the
G matrix,

3G, (X X)) = G (X, X)

49)
=N (d(X=X) £ 3(X+ X))
and of the effective interaction,
6/\ij (X, X) = /\ij (X, X) (50)

N (B(X=X) £ 8(X + X1).

BALDO et al.

B{“(X,X"), 107 MeV~! fm™

0

-04 =

-0.8 [

-127

X, fm

Fig. 9. Asin Fig. 6, but for the S= 1 triplet channel.

Since we consider the G matrix at zero value of P and
afixed energy E = 2|, these variables are suppressed in
the arguments of G;; and A\;;.

Thedéefinitionsin (49) and (50) arevalid both for the
singlet and for the triplet channel. We begin by analyz-
ing the singlet channel. Figure 12 displays the profile
functions 0G;;(X, X' = X,) and &/\;(X, X' = X,) of the
correlation parts of the G matrix and of the effective
interaction for one of the dominant components, ij = 11,
in this channel. As usual, the cases of positive and neg-
ative parity areinvestigated separately. In just the same
way as in the analysis of the propagators above, we
chose the values of X, = 2 fm (within the dab) and X, =
8 fm (at the dab surface); for the reasons of space, two
curves corresponding to the profile functions for the two
X, values are placed near each other. In order that the two
curves not overlap, they were cut off at [X— X'|<4fm. It
can be seen that, even upon isolating the delta-func-
tion Born terms, the G matrix and the effective inter-
action remain very sharp (deltalike) functions of the
difference of the coordinates, and these functions are
very similar to each other. The same s true for others
ij values. Further, we analyze this question quantita-
tively.

Let us now address the case of the triplet channel
(Fig. 13). We again restrict our consideration to the sin-
PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.2 2001



BRUECKNER G MATRIX

B{“(X,X"), 10 MeV~! fm™

0

-0.5

0 2 4 6 8 10
X, fm

Fig. 10. Asin Fig. 6, but for the S= 1 triplet channel and
X' =8fm.

gle component ij = 11. A comparison with the singlet
channel shows that, although the general patterns are
similar in the two cases, there are sizable distinctions.
Apart from a distinct local maximum at X = X', the G
matrix has a pronounced long-rangetail. Thetail of the
effective interaction is much smaller, but it also exceeds
the long-range termsin the singlet channel. The analy-
sisof the G matrix for other ij values (we do not present
the corresponding graphs) shows that the situation in
the triplet channel is much more diversethan in the sin-
glet channel, the relevant details being greatly depen-
dent on ij values. Only in the case of ij = 23 is the pat-
tern virtually identical to that in the singlet channel.

By and large, the distinction between the G matrix
and the effective interaction is more pronounced in the
triplet channel than in the singlet one. The reason can
be understood if we recall the resonance character of
the nucleon—nucleon interaction at low energies. Since
we investigate the G matrix at arather low energy, E =
21 = —16 MeV, the proximity to the virtua level (g, =
0.067 MeV) in the singlet channel or to the real level
(g, = =2.23 MeV) in the triplet channel is of impor-
tance. To be more specific, the free T matrix—the non-
Vol. 64 No. 2
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B,,5X), 1074 MeV~! fm™*

Im=11

X, fm

Fig. 11. Asin Fig. 8, but for the S= 1 triplet channel.

homogeneousterm in Eq. (22)—has a pole at the above
energies. It was shownin[14, 15], however, that, in the
singlet case, the effective interaction virtually coincides
with the free T matrix taken at the negative energy of
E = 2. Thisoccurs because two contributions of oppo-
site signs to the difference kernel of Eq. (22) compen-
sate each other to a considerable extent. We will see
below that the difference of the effective interaction and
the T matrix is greater in the triplet channel than in the
singlet one, but it is not large either, as arule. As fol-
lows from EqQ. (18), the distinction between the G
matrix and the effective interaction is associated with

the contribution of the propagator B|0  in the model
subspace. We have seen above that these propagators
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3G (X, X)), 103 MeV fm?

X, fm

Fig. 12. Profile functions for the (upper panel) even and
(low panel) odd components of (solid curves) 8G;;(X, X")
and (dashed curves) 0/ ;(X, X" in the singlet channel at
X'=2fmand X' =8fm.

are considerably less in absolute value (by one order of
magnitude) than the corresponding propagators B, in

the complementary subspace. If we return to the origi-
nal Eg. (15), it may seem that we should not expect a

considerable contribution from the term B|0 n—thatis, a
considerable difference of G;;(X, X) and A\;;(X, X). As
always occurs near the pole of a solution, however,
even asmall change in the kernel of the integral equa-
tion can lead to a sizable effect.

7. AVERAGED CHARACTERISTICS
OF THE G MATRIX AT P;=0
IN THE SINGLET CHANNEL

Let us first consider the even G* matrix. We have
already seen that, in the singlet channel, al large com-
ponents of the G matrix (werecall that these aretheij =
11, 12, and 22 components) are sharp delta like func-
tions of the difference t = X' — X of the coordinates.
Hence, each of them can be approximately replaced by
the delta function of the corresponding difference coor-
dinate t with the factor [G;;[that depends on the average
c.m. coordinate X, and which is determined by the
zeroth moment of G;(X, X"). As in Sections 4 and 5, it
is more convenient to use the nonsymmetrized defini-

BALDO et al.

(X, X'), 103 MeV fm?

X, fm

Fig. 13. Asin Fig. 12, but for the S= 1 triplet channel.

tion of the zeroth moment cut off as

t

C

G- o(X) = J’dthj’S:O(X,XH). (51)
-

These moments are depicted in Figs. 14-16, along
with the corresponding zeroth moments of the effective
interaction V',

t

c

N o(X) = J’dt/\ij'szo(x,x+t), (52)
_tc
and of the free T matrix,
tC

., = IdtT;’Szc’(t). (53)

_tC

It isobviousthat the zeroth moments of the T matrix do
not depend on X. We note that the cutoff in the integral
for the effective interaction and that in the integral for
the T matrix do not have a pronounced impact on the
results and are introduced only for the sake of consis-
tency.

It was indicated in Section 5 that this definition of
the zeroth moment gives no way to take into account
the long-range tails of the G matrix. Although these
tails are small, their integrated contribution is often not

PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.2 2001



BRUECKNER G MATRIX

(G;0(X), 10° MeV fm’

X, fm

Fig. 14. Zeroth moments of the even components of (solid
curve) the G matrix, [G;; [5(X); (dashed curve) the effective
interaction, [\;(X); and (dotted curve) the T matrix,
[T;;%(X), in the S= 0 singlet channel.

small in relation to the central maximum. That the
result of integration in (51) shows a nonnegligible
dependence on the cutoff parameter t. for someij com-
ponents [there is virtually no such dependence in (52)
and (53)] is asigna of this. We will make use of the
same value of t, = 3 fm as before. The cutoff zeroth
moment characterizes precisely a local maximum of
the G matrix, not absorbing the long-range terms G;.
The proposed localization method is obviously inade-
quate for taking into account these long-range terms. At
the same time, the above definition of the zeroth
moment correctly characterizes, on average, the
strength of interaction in the vicinity of the point being
considered.
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Fig. 15. Asin Fig. 14, but for the odd components.

The zeroth moments of the main components of the
G matrix in the singlet channel are plotted in Fig. 14,
along with the zeroth moments of the effective interac-
tion and of the free T matrix. It was shown in [14, 15]
that, in the singlet channel, the large components of the
effective pairing interaction are very close to those of
the free T matrix. From Fig. 14, it can be seen that this

is true for the relevant even combination [A; Eoo X

and [Tj; @: o (X) as well. By way of example, we indi-
cate that, for the ij = 11 component, the distinction,
which seems sizable at first glance, isinfact assmall as
5%. As to the quantity [G;[F(X), only for the ij = 11
component does it differ insignificantly from the zeroth
moment of the effective interaction and, hence, from
the zeroth moment of the T matrix. For the remaining
two large components, the distinction amounts to 20—
25%.
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(G~ (X), 10° MeV fm?
0+

rAATARAATATA
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-1.5F
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X, fm

Fig. 16. Quantities obtained by averaging (upper panel) the
even and (low panel) the odd components of (solid curve)
the G matrix [[G™ ~(X)], (dashed curve) the effectiveinter-

action [Eﬁl/f;‘ff ™ ~(X)], and (dotted curve) the T matrix
[T ~(X)] inthe S= 0 singlet channel over the Fermi surface.

The analogous mean values for the odd G- matrix,
which are given by the same relations (51)—«53), where
the plus signsin the superscripts are replaced by minus
signs, areplotted in Fig. 15. As can be seen from acom-
parison with the corresponding curves in Fig. 14, the
odd effectiveinteraction shows virtually no distinctions
from the even one (the same istrue for the correspond-
ing T matrix) everywhere, with the exception of small
values of X. Thisis adirect corollary of the smallness
of the effective radius of the relevant quantities. At the
same time, the distinctions between the corresponding
ij =12 and ij = 22 components of the G*~ matrices are
guite pronounced. These distinctions are associated
with long-range termsin the G matrix, which are partly
present even in the calculation of the cutoff zeroth
moment and which are associated with the contribution
of individual single-particle states belonging to the
model subspace. Since different combinations of these
states are involved in the expressions for the positive-
and the negative-parity propagators, the relevant results
are different. It is worth noting that, for a negative par-
ity, the distinction between the G matrix and the effec-
tive interaction is modest.

BALDO et al.

It is not the individual components [G;, [but their
combination averaged at the Fermi surface that is of
prime importance for computing the Landau—Migdal
amplitude. For the even G matrix in the singlet channel,
this combination is given by

(G- o(X)

(54)
= Y B, o(X)8 (ke (X))g; (ke (X)),
ij

where we have defined the local Fermi momentum as

ke(X) = /2m(p—-V(X)) for p — V(X) > 0 and as
ke(X) = 0in the opposite case. This quantity is depicted
in the upper panel of Fig. 16, along with the corre-
sponding localized form of the effective interaction,

O F T o(X)

2 2 (53
=5 L o (XA)ai(ke(X)g; (ke (X)),
ij

and the corresponding localized form of the T matrix,
el o(X) = Y T 00 (ke (X)) gy (Ke(X)). (56)
i

For the odd G matrix, similar quantities averaged
near the Fermi surface are found from Egs. (54)—56),
where a plus sign in the superscripts is replaced by a
minus sign. The relevant results are displayed in the
lower panel of Fig. 16.

It can be seen that, for zero spin S, each of the quan-
tities obtained by averaging, at the Fermi surface, the
effective interaction and the T matrix for the symmetric
case virtually coincide with its antisymmetric counter-
part. Moreover, these quantities are very close to each
other in the case where the symmetry in question is
realized. The last circumstance complies with the
results presented in [14, 15], where we analyzed the
possibility of approximating the effective pairing inter-
action in the singlet channel by the free T matrix. The
averaged symmetric G matrix has the same form as the
effective interaction, but the former is almost twice as
great as the latter in absolute value. Within the dab,
there are small-amplitude oscillations, which reflect the
oscillations of the individual components [G;;[(X). The
distinctions between the G matrix and the effective
interaction is considerably smaller in the case of nega
tive parity. For either sign of parity, the absolute value
of the G matrix averaged at the Fermi surface hasasiz-
able surface maximum, which is more pronounced in
the case of positive parity.

8. AVERAGED FEATURES OF THE G MATRIX
AT P;=0IN THE TRIPLET CHANNEL

The cutoff zeroth moments of theindividual compo-
nents of the G matrix in the triplet channel are defined
PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.2 2001



BRUECKNER G MATRIX

[G;0(X), 10° MeV fm?

Fig. 17. Asin Fig. 14, but for the S= 1 triplet channel.

in just the same way as in the singlet channel—that is,
they are defined by expression (51) with the substitu-
tion of S=1for S=0inthe case of apositive parity and
with the additional substitution of a minus sign in the
superscriptsfor aplus signin the case of anegative par-
ity. From Table 1, it can be seen that, in the triplet chan-
nel—in contrast to what was obtained for the singlet
channel—there are no components that stand out in
absolute value (maybe, with the exception of the com-
paratively small ij = 14 component). For the case of a
positive parity, Fig. 17 displays the zeroth moments of

the three components Gf} chosen earlier for analysis.

For a negative parity, the corresponding results are
shown in Fig. 18. Injust the same way asfor the singlet
channel, we draw a comparison with the zeroth
moments of the effective interaction and the free T
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(G;0X), 10° MeV fm?

X, fm

Fig. 18. Asin Fig. 14, but for the S= 1 triplet channel and
for the odd components.

matrix. Since the total G matrix (41) appears in the
Landau—Migdal amplitude, it is this quantity that must
be considered as the main result of the present calcula-
tion. For this reason, we display the zeroth moments of
all ten components of this matrix (Fig. 19). An analysis
of the datain the figures being discussed shows that it
is difficult here to trace some general regularities (sim-
ilar, for example, to small distinctions between the
effective interaction and the T matrix as observed in the
singlet channel): although the difference of [A;[(X) and
(T;;Cis small for the majority of theij pairs (it does not
exceed 5% for ij = 23), there are cases (ij = 24, 33)
wherethe difference may be aslarge as 20 or even 30%.
The zeroth moment of the G matrix as a function of X
is sometimes (ij = 11, 24, 44) reproduced, on average,
by the corresponding zeroth moment of the effective
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Fig. 19. Zeroth moments of all components of (solid curve) the total G matrix [[G;;[(X)], (dashed curve) the effective interaction
[\;;10X)], and (dotted curve) the T matrix [[T;;[aX)] in the S= 1 triplet channel.

interaction, but, as a rule, the zeroth moment of the G
matrix oscillates about this mean value.

A comparison of the datain Figs. 17 and 18 reveals
that the distinctions between the positive- and negative-
parity components for the same pair of ij values are still
more pronounced than in the singlet channel. In accor-
dance with aqualitative analysis presented in Section 5
and devoted to the effect of the dimension of the model
subspace on the two-particle propagators in this sub-
space, it can be assumed that such a pronounced dis-
tinction in the case of the triplet channel isin part an
artifact of anot quite adequate choice of the model sub-
space, which includes an insufficient number of single-
particle states. This may be the reason for the poor
accuracy of the local-potential approximation in the

complementary subspace. This situation is expected to
be remedied by extending the model subspace. The
problem of optimally choosing a model subspace will
be considered el sawhere.

For the triplet channel, we now proceed to analyze
the G matrix averaged at the Fermi surface. In contrast
to the case of the singlet channel, it appearsto bea?2 x
2 matrix in the space of values of the two-body orbital
angular momentum L. Specifically, we have

[Ge 4 (X)
: (57
= 3 6018 (ke(X))g] (KE(X)),
ij
PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001



BRUECKNER G MATRIX

[GedE (X), 103 MeV fm?

0

............
~

Fig. 20. Quantities obtained by averaging (solid curve) the
even G matrix [EBFE;'; 1(X)], (dashed curve) the effective

interaction [WSfD:;‘l(X)], and (dotted curve) the T

matrix [D’F@t' 1 (X)] in the triplet channel over the Fermi
surface.

where L, L' =0, 2. In order to avoid encumbering the
presentation, we have suppressed the parity super-
scripts of plus and minus on the G matrix. The corre-
sponding averaged values for the even and the odd G
matrix are displayed in Figs. 20 and 21, respectively.
Once again, we can see a strong parity dependence of
the averaged G matrix. This dependence seems to be
dlightly exaggerated in the present calculation, in just
the same way as for the individua components [G;;[]
The averaged values that carry the index L = 2 are con-

siderably less than the dominant term EBF[iozl(X).

These distinctions are especially pronounced at the slab
boundary because of the vanishing of the form factor
PHYSICS OF ATOMIC NUCLEI
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[GedE (X), 103 MeV fm?

Fig. 21. Asin Fig. 20, but for the odd G matrix.

0.2 (kZ (X)) in the classically forbidden region. It can
be seen from Figs. 20 and 21 that, even in the internal
region, the D-wave contribution is modest. In just the
sameway asin the case of the singlet channel, the dom-
inant term of the averaged G matrix features a pro-
nounced surface maximum, which is again sharper for
apositive parity.

9. DEPENDENCE OF THE G MATRIX
ON THE CHEMICAL POTENTIAL
OF THE SYSTEM

Thus far, al our calculations of the G matrix have
been performed for the fixed chemical-potential value
of u = -8 MeV, which is close to the binding energy
(per nucleon) of medium-mass and heavy stable nuclei.
In this section, the result isinvestigated as a function of
M. Previoudly, asignificant 1 dependence was found for
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the effective pairing interaction [3, 11]. Thisquantity is
equal to the half-sum of the averaged effective interac-
tion (55) in the singlet channel for a positive parity and

the analogous quantity ETVS fQ: o(X) for a negative
parity. There are two reasons behind this effect. First, it
isaresonance-type dependence on theenergy E=2pin
the T matrix, which appears to be a nonhomogeneous
term in Eq. (22) for the effective interaction. Second, it
is quite a sharp dependence on the form-factor momen-
tum in the sum appearing in Eq. (55). These two factors
remain operative for the averaged G matrix aswell:

Bl o(X) = 3(BeL_ () + BB o(X). (58)

This quantity at p =—-8 and -4 MeV isdisplayedin
Fig. 22, dong with the corresponding effective interac-
tion and the T matrix averaged at the Fermi surface. It
can be seen that, in the singlet channel, the p depen-
dence of the averaged G matrix is more pronounced
than that of the effective interaction.

Disregarding the small components involving L,
L' = 2, we define the analogous quantity in the triplet
channel as

(Gl 1(X)

59
= %( |:Gqul,oo(X) + [GeL . 1 (X)) &)

[G0X), 103 MeV fm?3

0

E A TAEa YA T AT AT AT

X, fm
Fig. 22. Quantities obtained by averaging the (solid curve)
total G matrix [[Geld- ((X)], (dashed curve) effectiveinter-

action [Ifrlf,ff f E-o(X)], and (dotted curve) T matrix
[OrLE - o(X)] in the singlet channel over the Fermi surface.

BALDO et al.

InFig. 23, thistruncated averaged G matrix for thetrip-
let channel is plotted for the same two values of u
(adlong with the effective interaction and the free T
matrix, as before). There, the u dependence of the aver-
aged G matrix is even more dramatic than in the singlet
channel: in the surface region, it changes sign in the
present case. It isnot clear from the outset whether this
signreversal isan artifact that arises from the use of the
local-potential approximation in calculating the effec-
tiveinteraction at 4 = —4 MeV. Indeed, we have already
indicated that the applicability of this approximation to
the case of the triplet channel is questionable even at
K= —-8MeV, but the accuracy of the local-potential
approximation only becomes poorer with decreasing
absolute value of ||. However, the statement as it is
that the 1 dependence is more pronounced for the trip-
let channel than for the singlet channel is qualitatively
understandable and is correct in al probability. The
reason for this is associated with the proximity of the
pole of thefree T matrix on the energy scale. In thetrip-
let case, therelevant poleis closer to the energy E =2
being considered.

10. ESTIMATING THE ROLE OF NONZERO P
VALUES

So far, we have investigated only the simplest case
of P, =0. It was not solely because of the simplicity of
this case that we restricted our consideration to it—
another point in favor of this choice was that only

[GE{X), 103 MeV fm?

X, fm

Fig. 23. Asin Fig. 22, but for the triplet channel.
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extremely low momenta survive in the asymptotic
region off the slab. Needlessto say, thisis not so within
the slab and in the surface region, so that computing the
Landau—Migdal amplitude over the entire region of X
requires knowledge of the G matrix at honzero values
of P. With an eye to a further extension of the theory
in question to actual spherical nuclei, the orthogonal
momentum in the planar geometry being considered
must be associated with the angular momentum in
spherical geometry. For points at the surface of a
nucleus of radius R, the relation that establishes this
correspondence at a fixed value of the total two-body
orbital angular momentum &£ then has the form

Pé _ 33(33; l).
R

In heavy nuclei around >%Pb, maximum values|,,,
of the one-body orbital angular momentum are 6 to 7.
Accordingly, we have &, = 12-14. In calculating the
zeroth harmonic of the Landau—Migdal amplitude on
the basis of expression (1), summation is performed
over al & from0to £, ,,. Inorder to assess the role of
nonzero P values, we set £ = 6 and R = 8 fm in
Eq. (60). Thisyields P2 = 0.656 fm2. For arough esti-
mate of the effect, we also ssimplify integration in (16)

by replacing the relevant integral with respect to the
angle between P and k5 by 21t The emergence of the

(60)

additional term Pé /4min the denominator on theright-

hand side of (16) is then the only change in relation to
the case of P = 0. The results of the relevant calcula-
tions for the averaged G matrix and the averaged effec-
tive interaction are displayed in Fig. 24 for both chan-
nels being considered. As can be seen, allowances
made for nonzero values of Plevel out to a consider-
able extent the surface maxima in the absolute value of
the G matrix in both channels and reduce strongly the
difference between the effective interaction and the G
matrix. In order to explain the above qualitatively, it is
sufficient to notice that the addition of a comparatively
large quantity to the denominator on theright-hand side
of (16) rendersthe role of the density of states near the
Fermi surface less pronounced, thereby suppressing the
contribution of the propagator B® in the model sub-
space. But it is this propagator that is responsible both
for the distinctions between the G matrix and the effec-
tiveinteraction and for a sharp variation of the G matrix
near the surface.

The correct inclusion of nonvanishing P valuesisa
very cumbersome numerical problem, which will be
considered in separate publication.

11. CONCLUSION

For a separable nucleon—nucleon interaction, we
have developed a method for numerically calculating
the Brueckner G matrix for a planar dab of nuclear
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Fig. 24. Quantities obtained by averaging the (solid curve)
total G matrix [[Ggld_ (P, X)] and (dashed curve) effec-

tiveinteraction [EIV,(?ff &= (P, X)] in (upper panel) thesin-

glet and (lower pand) thetriplet channel at Pé =0.656 fm2
over the Fermi surface.

matter occurring in a preset one-dimensional potential
well. We have relied on the technique that is based on
the mixed coordinate—-momentum representation and
which was previously proposed in [2, 3] for investigat-
ing the problem of pairing in semi-infinite nuclear mat-
ter. We have considered two channels, the 'S, singlet
and the3S,—D, triplet channel, that are dominant at low
energies. Specific cal culations have been performed for
aseparable version [4, 5] of the Paris nucleon—nucleon
potential (3 x 3 potential in the singlet and 4 x 4 poten-
tial in the triplet channel). The Bethe—-Goldstone equa-
tion for the G matrix then reduces to a set of one-
dimensional integral equations in the coordinate space
(six equations in the singlet and ten equations in the
triplet channel) whose kernels are given by the convo-
lutions of the two-particle propagators with the form
factors of the separable expansion of the nucleon—
nucleon potential. The propagators in turn are deter-
mined by multidimensional integrals in momentum
space (and by sums over discrete eigenstatesin the slab
potential). The calculation of these propagators pre-
sents the most serious mathematical difficulty in the
problem under investigation. Instead of precisely calcu-
lating these propagators, we have invoked the local-
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potential approximation, which was developedin[2, 3]
in calculating the effective pairing interaction in the
singlet channel. For this purpose, the full two-particle
Hilbert space has been broken down into a compara-
tively small model subspace, where the two-particle
propagator has been treated precisely, and a comple-
mentary subspace, where the local-potential approxi-
mation has been employed to calculate the propagator.
The model subspace has been taken in the sameform as
in the pairing problem—it includes all negative-energy
single-particle states. When the model subspace is
defined in this way, the effective interaction for the sin-
glet channel in the problem under investigation coin-
cides with the effective pairing interaction calculated in
[2, 3], where we demonstrated arather high accuracy of
thelocal-potential approximation. At the sametime, the
accuracy of the local-potential approximation in the
triplet channel is not known apriori. Pursuing the main
goal of developing the computational method in gen-
eral, we have not investigated this question here in
detail. There is indirect evidence that the accuracy of
the local-potential approximation is noticeably poorer
in the triplet channel than in the singlet channel. How-
ever, it has been shown that the accuracy of the local-
potential approximation improves when the model sub-
space is extended. This brings about a problem of par-
amount importance for the implementation of the pro-
posed method in practice, that of optimizing the choice
of model subspace. On one hand, it must be sufficiently
large in order to ensure a high precision of the local-
potential approximation; on the other hand, it must not
be overly large in order that a precise calculation of the
propagator in the model subspace not consume very
long machine time. A search for optima (from this
point of view) partition of the full Hilbert space will be
discussed elsewhere.

The G matrix has been calculated at a fixed total
energy of two nucleonsthat has been set to the doubled
chemical potential p of the system. In addition, the total
orthogonal momentum has been fixed a P; = 0. The
calculations have been performed predominantly for
L= -8 MeV, a value characteristic of stable heavy
nuclei. In both channels, the G matrix averaged at the
Fermi surface corresponds to a strong attraction in the
surface region. The strength of this attraction has a pro-
nounced maximum at the slab surface, especialy in the
triplet case. In order to find thisamplitude in the surface
region correctly, it is necessary to take consistently into
account the contribution of nonzero P values. We have
roughly estimated their role. It has been shown that the
inclusion of these contributions smears the effects
obtained at P = 0 somewhat, but it does not eliminate
them completely. A calculation of the G matrix with
allowance for the contribution from nonzero P values
will be performed in a separate study.

Finally, we have analyzed the dependence of our
results on the chemical potential 1. A comparison of the
calculations performed at p =—-8MeV and p = -4 MeV
has revedled a pronounced p dependence of the G
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matrix, especialy in the surface region. This effect can
result in an appreciable p dependence of the surface
values of the invariant Landau—Migdal amplitudes.
This is important for a microscopic description of the
features of nuclei near the nucleon drip line.
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APPENDIX 1
Form Factors g; in the Coordinate Representation

For the case of 'S, singlet scattering, the form fac-
tors g;(k?) in Eq. (11) are given by (in the notation sim-
ilar to that from [2, 3])

4 C. k2(n—l)
o) = 5 =
n= 1(k + Bin)
It was noted abovethat, in our calculations, we have
used the potential introduced in [4] and modified in[5].
The coefficients A in Eq. (11) and C;,, in Eq. (A.1) are
redefined in such away as to ensure fulfillment of the
equality g;(k*> = 0) = 1. The renormalized coefficients

are related to the corresponding values from [5] (they
are labeled with atilde) asfollows:

(A.1)

C, = f.Cin, (A.2)

)\” = 2T[2fif|)~\i|, (A3)
Ba

f, = =—. (A4)
Ci1

These formulas were used to calculate the coeffi-
cients appearing in (11) and (A.1). The results are pre-
sented in [2, 3]. The values of the parameters 3, are
identical to thosein [5].

The Fourier transformation (13) of the form factors
(A.1) can befound analytically. Theresult hasthe form

4

g(k5. ) = Cinfin(ks, %), (A5)
n=1
where
fiu(kd, X) = exp(=s¥)/(254),
2
fo(kex) = 208y B gl
252 2s;,
exp(—S,5X)
fio(kZ, x) = —=—322
3( O ) 233
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[1—99(1 +S3X) + 5[3_|3_[3+ 3s3X + (Si3X) ]

Sia Sia } (A.6)
exp(=S;,X)
2s,
3% 38/,
x — (14 54%) + —[3 + 354X+ (S14X) ]
234 8

3i4

fia(kd, X) =

B

2 [15 + 155, + 6(54X) " + (S4X) ]}
4834

0 = B ke

We note that there is a misprint in the expressions that
are presented in [2, 3] for the form factors and which
are analogous to (A.5) [at the same time, all the calcu-
lations were performed correctly in accordance with
(A.5)].

It has been indicated above that, for the case of the

3G, triplet channel coupled to the 3D, channel, formu-
la (11) isreplaced by the matrix expression (42), where

the column §; involves two component, giL =0 (k*) and

9" ~%(k?). At the same time, it has been shown in [5]
that, in the case of the multipole representation of the
Paris potential, the best description of nucleon—nucleon
scattering in the channel under consideration is
achieved with the 4 x 4 version (PEST4 potential). In
our calculations, we have used precisely this potential.
Naturally, the form factors were normalized in a way
similar to that adopted to the singlet channel. Obvi-
ously, the two components (L = 0 and L = 2) must be
renormalized simultaneously since the same coeffi-
cients A; appear in expansion (42) for these compo-

nents. The form factors giL ~° have the same form asin

the singlet case; that is, they are determined by formu-
las (A.2)—(A.6). The corresponding renormalized coef-
ficients are presented in [10].

For the D, channel, expression (A.2) for the renor-
malized form factor is replaced by (see[4])

: CinBizn kzn

L=2,,2
oK) = Y
n;(kwm)( )

The relation between the renormalized coefficients

C.™? and the origina coefficients from [4, 5] differ
somewhat from those in the case of L = 0, and relation
(A.3) isreplaced by

(A7)

L=2 fiL:O ~L=2
Cil’l = 2 Cin ’ (A8)
Bin, L=2
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where the factor f; is equal to the corresponding value
forL=0.

The Fourier transformation of theform factors (A.7)
yields

Bll

Sil

f"lzz(ké X) = exp( silx)|:

25, (1 + Silx)i|
exp(=Si2X)

L=2, 2 _
fiz “(kg, x) = 25,

[1—&(1 +5,X) + Ef—'z[?ﬁ 35X+ (S2X) ]}

Si2 Si2
exp(=SisX)

fia (k5 0) = =5

[1_ﬁ(1+%x)+ B33+ 35.x+ (5007
2s3 8si3
B|3

313

—=[15+ 155;x + 6(513)() +(Si3X) ] (A9)

exp(=S;,X)

fIL=2 k2,X —
4 ( | ) 25i4

[1 2&‘(1+s4x)+%‘[3+3si4x+(s4x)]

Si4 Sia

B|4
1234

+ Bus —4[105 + 1058, ,x + 45(s;4%)°

3845|4

——=[15+ 155,x + 6(3i4x) +(S4X) ]

+5(s,%)° + (mx)“]}.

APPENDIX 2

Coordinate Representation of the T Matrix for Free
Nucleon—Nucleon Scattering in the Triplet Channel

In[2, 3], the coordinate representation for thefree T
matrix in the singlet channel was derived on the basis
of the inverse Fourier transformation of the off-mass-
shell T matrix that was preliminarily found in the
momentum representation. A convenient method for
calculating the inverse Fourier integral in the complex
plane of the total momentum P, was developed in
[11, 14]. Here, we use the same method for the triplet
channel.
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In the momentum representation, the free T matrix
at the negative energy E = 2p isfound by solving the set
of algebraic equations

s=1
Ti; "(Py Pg; E)

fr,s=1 s=1 (A.10)
=N+ z)\an% (Pw Po; E)Try "(Py, Po; E),
Im

where
B> (P, Po; E) (A.11)

_ kg K)gn (K)o (K gm (K

I n® E—PZ2/4m—P2/4m—K’/m

As can be seen, the scattering matrix at a nonzero
value of P isobtained from the T matrix at Py = 0 by
the simple substitution E — E=E- Pé /Am. The
scattering matrix T (t) (we omit heretheindex S= 1 for
the sake of brevity) in the coordinate representation is

expressed in terms of T;;(P,) by means of the inverse
Fourier transformation

- dP, - _
Tyt E) = [52Ty(Pu B)exp(-iPt).  (A12)

For the sake of definiteness, we set, for the time
being, P, =0 and E = E. The analytic properties of the
T;;(P,) matrix in the singlet channel were studiedin[11,

14], and it was shown there that the integral in (A.12)
can be transformed into an integral aong the contour C

ImP,
b
Y
Ya 0
-a x a Re P,

Fig. 25. Contour of integration in the complex plane of Py
for the inverse Fourier transformation (A.12).
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embracing the upper half of the imaginary axis (see
Fig. 25). It can easily be shown that, in the triplet chan-
nel, we can either use the same contour or modify it
slightly. Indeed, the analytic properties of the T;;(P,)
matrix are determined primarily by the propagator in
(A.11). For the singlet case, it was shown in [11, 14]
that the only singularities of B;(P,; E) a negative
energy E =2 aretwo cutson theimaginary axis P, that
are symmetric with respect to the origin and which

issue from the points P, = £iy,, where y§ =-8mu. The
only circumstance that was used in proving this state-
ment isthe fact that the form factors g; in theintegral in
(A.11) arerational functions of k2. Thisisvalid for the
triplet channel aswell [see (A.1) for L =0and (A.7) for
L = 2]; therefore, the singularities of Bifjr(PX; E) occur
on the same cuts in Fig. 25 for the triplet case as well.
As can be seen from (A.10), al singularities of the
propagator B are also present in the free T matrix. The
T matrix can have, however, its own singularities, poles
corresponding to a virtua (in the singlet channel) or a
real (inthetriplet channel) level. It wasindicatedin[11,
14] that, in the case of avirtual level at E=2u <0, the
poles of the T matrix that are inherent in it lie on the
cuts. In the triplet case, thereisared level at the deu-
teron binding energy €4. If the energy E =2 is less
than the deuteron binding energy, the two poles of
T;;(P,) areon theimaginary axis between the origin and
the points P, = xiy,. Their position is determined by the

relation P, = iy, where yg = —4m(2U — &y). In order
to calculate the T matrix in the triplet channel, we can
then use the same contour C asin the singlet case. But
if E= 2> g, the poles of T;;(P,) being considered go
over from the imaginary axis to the real axis, again
occupying symmetric positions P, = +y,, with respect to
the origin. For calculating the T matrix, the contour C
must then be slightly deformed in order that it circum-
vent these poles. The minimal || value used in our cal-
culationswas 4 MeV; therefore, we could consider only
the nondeformed contour C. Actually, we used the con-
tour in Fig. 25 with the same parameter values as in
[14]—that is,a=2fm™! and b = 130 fmr. In this case,
the contour goes rather far away from the cuts, and it is
straightforward to calculate the integral in (A.12)
numerically, the result being nearly exact for all t val-
ues of our prime interest.

It is easy to trace modifications that arise at P # 0.
The contour C does not change form, but we now have
yg =—-8mu + Pé . The other singular pointsin Fig. 25
are shifted in the same way.

Theresults of the calculations are quoted in Table 2.

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001
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Table 2. Components Tj; of the free T matrix (MeV fm3) in
thetriplet channel at P, = O and E = 2 [presented in the sec-
ond column are the renormahzed constants Aj; (MeV fmd) in
the separable form (42) of the original Paris nucl eon-nucle-

on potential]
ij Aj [u| =8 MeV Ul =4 MeVv
11 | -1.6177 x 10° | —3.1102 x 10° | —5.1280 x 103
12 | -1.2961 x 10° | —1.4071 x 10° | —1.4052 x 103
13 8.9209 x 102 | 9.2470x 102 | 9.3429 x 10?
14 42708 x 101 | 1.5917 x 102 | 1.5567 x 102
22 7.8475x 102 | 3.7717 x 102 | 3.5374 x 10?
23 1.3939 x 10% | 1.5447 x10° | 1.5452 x 103
24 | —7.8603 x 102 | —4.1024 x 10? | —4.0296 x 10?
33 | —7.4504 x 10?2 | —1.0999 x 10° | —1.1445 x 103
34 | -5.7228 x 10? | —7.8394 x 102 | —7.8533 x 102
44 1.8648 x 10° | 9.6492 x 102 | 9.4510 x 10?
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Abstract—L ow-energy neutron—deuteron scattering is calculated within the collective adiabatic approach by
using a few versions of realistic NN interaction. The resulting integrated cross sections for the process are in
good agreement with experimental data. © 2001 MAIK “ Nauka/Interperiodica” .

1. FORMULATION OF THE PROBLEM

Recent efforts to construct a microscopic descrip-
tion of few-nucleon systems owe their success to the
adiabatic character of the motion of such systems in
hyperradial space. This property, which was confirmed
by numerous calculations [1-4], was used as abasisin
developing a collective adiabatic approach, a new
method for treating nucleon systems. Within this
approach, whose fundamental s were described in detail
elsewhere [3-5], it was possible to reproduce faithfully
the experimental cross sections for the fusion reaction
d+t— n+a [6-8], for the elastic-scattering process
n+a — n+a[7, 8], for al binary processesin the
four-nucleon system [9, 10], and for some other similar
reactions. However, studies devoted to specific applica
tions of the collective adiabatic approach undeservedly
ignored three-nucleon processes, which were compre-
hensively explored, both theoretically and experimen-
taly (for an overview, see, for example, [11]). The
present study aims at partly filling this gap. Specifi-
caly, we consider the example of low-energy elastic
neutron—deuteron scattering (N + d — n + d).

Werecall that the first step in applying the collective
adiabatic approach consistsin constructing the rel evant
functions for all significant channels. The ith-channel
function U;(p, Q) = U, is an eigenfunction of the oper-
ator

A 10 1 O -
Q= —25—A3A_3+Z(3A—6)(3A—4)E+V (1)
p O O

(where A;,_; is the operator of multidimensional

angles, V is the operator of NN interactions, and A is
the number of nucleons); that is, it satisfiesthe equation

(Q-1i(P)VUi(p, Q,) = 0. )

* e-mail: pavel.komarov@tversu.ru
** e-mail: pavel.nikishov@tversu.ru

In the asymptotic limit p — oo, the eigervalue I;,(p) =
l;, referred to as a collective potential, tends to the
energy threshold for the ith channel.

In the case being considered, there exists only one
binary channel, n+ d, and many democratic channels of
n+ n + p breakup. Hereafter, we restrict our consider-
ation to low energies, in which case all democratic
channels are closed. Only channels characterized by
low values of thegrand orbital K=2s,s=1,2,3, ... can
be virtually manifested.

Solutionsto Eg. (2) are sought herein the form of a
superposition of the cluster function Upy (p, Q,) = Upy
[12, 13] of the n + d channel and all hyperspherical
functions UL (Q,) = UL [12-14], including the main
harmonic Uy(Q,) = Uy

Ui(p, Q) = c(P)Ung(p, Q) + ag(p)Uo(Qp)
Smax 3 (3)
+y Y a(pU(Q).

s=1lv=1

The function UZ, was included in expansion (3) in
order to improve convergence in s with increasing p.

The hyperradial coefficients c(p), ay(p), and aé")(p) are
determined minimizing the functional

w|QuO
TVE

on the class of functions specified by Eq. (3). Thewave
function of the internal motion of the entire system is
expanded in terms of the functions U; found in the way
outlined above:

o(U) = “4)

W= ZRi(p)Ui(p’ Q,). (5)

After that, the hyperradial coefficients R (p) appearing
in (5) are determined from the known set of hyperradial

1063-7788/01/6402-0228%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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equations [3]

2
z<ui‘-"—2+|j—5‘uj> R(p) =0. (6
j op Q
By using conventional methods, the required observ-
ables are extracted from the asymptotic behavior of
Ri(p) for p — oo (see[9]).

The basis of potential harmonics for the three-
nucleon system virtually coincides with the complete
system. Therefore, we include only these harmonicsin
expansion (3). Specific calculations will be performed
with two known versions of realistic NN interactions,
GPT [15] and SSC; [16], aswell as with the Tver cen-
tral potential [9]. The first two reproduce fairly well
binding energiesand radii of light nuclei [17], whilethe
third makesit possibleto describe precisely low-energy
NN scattering and the properties of the extremely light
nuclear systemsd, t, and *He [9].

2. CLUSTER FUNCTION
FOR THE BINARY CHANNEL

Since potential harmonics were constructed previ-
ously (see, for example, [12, 13]), we consider the first

term in expansion (3), U, . By definition, this function
describes the free motion of the fragments n and d in
their relative angular space. The harmonic that enters

into Uﬁ'd with the highest weight is known as a basic

harmonic and is denoted by Uﬂ . Following the general
rule adopted in the collective adiabatic approach, we

normalize U,ﬁ'd by the canonical condition

whuso= 1. (7)

Since we consider low-energy scattering, we take
into account only zero value of the relative orbital
angular momentum, L = 0. Inthiscase, thetotal angular
momentum J can assume two values, J = 1/2 (doublet
scattering) and J = 3/2 (quartet scattering). In view of

the above, US, can be represented as
o _ _ Aph(1/2,1;)
" WRIARL (Y2, 1; )

where (j,,, j4; J) denote the result of composition of the
angular momenta of the fragments (neutron j,, and deu-
teron j,) into the total angular momentum J:

J=1J, =12

®)

01
(U2,1; U2) = G——=04,95(pa)

0 /3
2
+ A/;O(_]ng(ld)(pd) %3-112;
1
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J=1J, =23/

(12,1; 32) = 03,08 (Pa) B_y2:
Here, a,, and B, are, respectively, the spin and the isos-
pin function of the neutron; g (x) isthe deuteron wave

function characterized by a definite value of the angu-
lar-momentum projection onto the z axis;, and py =

P,/ J2 is the deuteron hyperradius. A composition of
the variable py with the hyperradius of relative maotion,
P.u Yields the hyperradius of the full system:

(10)

(11)

The operator A ensuresthe antisymmetrization of par-
ticlesin (8) that belong to the different fragments. The
exponent U = 4 is the polar decrement of then + d
channel (see genera formulasin [4]). It was shown to
be independent of the quantum numbers of fragment
relative motion. For the chosen potentials, all 1,4 values
are close to 0.42. The basic harmonic in the doublet
state hasthe exponent K = K, = 0 and obviously coin-
cides with the triton main harmonic U,,. In the notation
adopted in [5, 12], it hasthe form

1 + +
Uo(Qp) = lé—n'g + — |

P = pay+ Pa

(12)

In the case of quartet scattering, the exponent of the

basic harmonic U‘,L increasesto thevalueof K=K, ;, =
2, the harmonic itself being given by

+ +

Uy(Q,) = + . (13)

32 2
TP 2
p°+ -

3. BASIC COMPUTATIONAL FORMULAS

Let us consider the matrix of the operator Q from
Eq. (4) inthe basis of the functions appearing in expan-
sion (3). The matrix elements W"|QUL Owere con-

structed in[13]. If the Pauli exclusion principleistaken
exactly into account, the remaining elements

W|QUS0and WEOUSLD can be calculated only
numerically. We will use the method of random walks
on a hypersphere in terms of cluster variables [18].
First, we perform averaging in spin—isospin space and
represent the remaining configuration integrals in a
form appropriate for the use of this method.

The result of applying the operator Q to a cluster
function always has the form of the sum of three char-
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Table 1. Binding energies and mass radii of the extremely light nuclei T and *He

Version of the NN potential Er, MeV Rr, fm Es oo MeV Rs . fm
GPT -8.1 177 —7.35 18
SSCg -8.63 17 —7.91 173
TCP -8.48 1.67 —1.72 17
Experiment -8.48 1.56 -1.72 17
acteristic terms that are described in detail elsewhere .= 8hi9y 4(12)'vE - (23)(3v3 + V)

[6,7, 13]:

QU = EUY + Ung + VUG, (14)

Here, Uﬁ'd arises owing to the presence of the operator

Asn_5in Q. As aresult, the required overlap integrals
become

Euﬁldléluﬁldlj: Endmﬁldwﬁldm
+ U Unal+ WV |USD)
WIQIURD= EnE U0
+ W05 WMV Uso

(15)

The overlap integrals W05 and W 050 can
ﬁ|d|U nal @nd
(")|UndD by means of the transformation described in

[13]. The most complicated expression emerges for the

matrix element involving the NN interaction V. By
way of example, we indicate that the expression for

computing the overlap integral W”|QUSOat v = 3
(tensor harmonic) has the form

easily be obtained from, respectively, [

(1,90,

wPvulo= 16
IVIUng 1288nd(p) /w(3)IU_(3)DIdQ , (16)
where
2 (1+p)/2
Bna(P) = IEL Ef x0g ()dx, (1)

Table 2. Doublet (ay) and quartet (a,) scattering lengths

X (3(Np [hyg)® = 1) — (13)¢(= 3v;° + Vi)
[hyg)— 1)} + 4/8h2{[(12)4(3vS"

+(23)5(3v,° + Vi 1(3(Ny2 Thys)* — 1)

x(3(Ny, —2v)

18
[t v -SaaiaE ]

X (3(Ngg (hps)® = 1) + (13)4(=3v." + v
X (2=3((Ny3 [pp)? + (Ny3 tyg)” + (Ny, Thys)?)
+9(ny3 () (N thyg) (Nps [hyy)) ]y

Pontd 520

L
h(l )= Pz

(19)

Here, ¢(Ld’(x) aretheradia components of the deuteron

wave function, vi' = v}’ (p,,) stands for the central

(x=c) or thetensor (x =t) radial components of the NN
interaction, n;; = p;;/p;;, and

10

gl
2(1+s)p”Ps : —&
D g

(i)s = (20)

We note that, in the worst case, about 0.2 x 10° random
walks on a hypersphere are required to achieve a theo-
retical error not exceeding the experimental uncer-
tainty. The can easily be implement with modern com-
puters.

4. NUMERICAL RESULTS AND DISCUSSION
Using the above algorithm specified by Egs. (1)—
(20), we have first calculated the binding energies E
and the massradii R of the triton and *He with the cho-

sen potentials. As can be seen from Table 1, al three
potentials reproduce well the energy difference (E; —

Version of the NN potential a,, fm ay, fm
GPT [15] 25+0.2 6.6+0.2
SSCy [16] 20102 6.3+0.2
TCP[17] 21+0.2 6.6+0.2
Experiment [21] 0.65+0.04 | 6.35+0.02

EaHe), while the TCP potential also reproduces the

absolute values of these energiesindividualy.

We note that the bound states of extremely light
nuclei can be successfully described by expanding the
relevant wave function in terms of abasisthat includes
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0,(SSCp)

| 0,(GPT) Gzl(TCP )

0 0.2 04 0.6 0.8

1.0
T,, MeV

Fig. 1. Cross sections 0, and o, for the elastic-scattering
processn + d — n+ d versus the incident-neutron energy
T, (versions of the potential are indicated in parentheses).

only potential harmonics (a complete convergence is
achieved by taking into account all s=s,,,, < 15 poten-
tial harmonics). The presence of the cluster function in
expansion (3) for the case of A =3 and L = 0 substan-
tially improves the convergence in the index s (Spux <
5). This does not affect the values of the observables,

because Uf,'d involves only the main harmonic and the
potential ones.

Figure 1 displays basic features of the continuous
spectrum—cross sections for doublet and quartet scat-
tering (o, and g,, respectively). Their dependence on
the incident-neutron energy T, shows virtually no qual-
itative variations in going over from one version of NN
potential used to another. Asin the case of the discrete
spectrum, it is incorrect to calculate o, by retaining
only the cluster function in (3). Therole of the potential
harmonics is demonstrated in Fig. 2. The contribution
of the potential harmonics to the cross section g, is
small for obvious reasons: in the region where the
potential of fragment—fragment interaction is operative,
the wave function is suppressed by the Pauli exclusion
principle.

The calculated values of the doublet and the quartet
scattering length (a, and a,, respectively) are quoted in
Table 2. The agreement of our results with those from
[19], where the values of a, = 2.8 £ 0.3 fm and E; =
8.3+ 0.2 MeV were obtained for the GPT potential,
gives sufficient ground to assume that the experimental
data on a, require refinement. Figure 3 displays the
total cross section. It is clear that the curves calculated
for al potentials are within the experimental error.

In conclusion, we emphasize that the expansion in
(3) is not complete, because it does not include nonpo-
PHYSICS OF ATOMIC NUCLEI
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0,, b
12
e cl
08F-—=-——co___ s = 0 .............................
LS oo
0.4 :——_::::::—:—:;:::_—i:::::::-:\::::::::::::
2T N 3
0 0.4 0.8 1.2 1.6 2.0
T,, MeV

Fig. 2. Role of the potential harmonics in the formation of
the cross section o, for the GPT potential: the curve carry-
ing the label “cl” corresponds to the cluster approximation,
while the remaining curves represent the contributions of
harmonics corresponding to the same excitation index s(s=
(K= Kpin)/2).

SSCp

l 1 1 1 1 1 1 1 1 1

J
0.8 1.0
T,, MeV

n»

Fig. 3. Asin Fig. 1, but for the total cross section o = 0, +
0. The shaded area shows the scatter of experimental val-
ues from [21-23].

tential harmonics. From experience gained previously,
it is known, however, that they are immaterial. In order
to construct a numerically precise channel function, an
integral approach where expansion (3) would be used
as an input function at the first step of an iteration pro-
cedure was proposed in [20].
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Abstract—The scattering of two charged strongly interacting particlesis described on the basis of the P-matrix
approach. In the P matrix, it is proposed to isolate explicitly the background term corresponding to purely Cou-
lomb interaction, whereby it becomes possible to improve convergence of the expansions used and to obtain a
correct asymptotic behavior of observables at high energies. The expressions for the purely Coulomb back-
ground P matrix, its poles and residues, and purely Coulomb eigenfunctions in the P-matrix approach are
obtained. The nuclear—Coulomb parameters of the low-energy scattering of two charged hadrons are investi-
gated on the basis of this approach combined with the method for isolating the background P matrix. Simple
explicit expressions for the nuclear—Coulomb scattering length and effective range in terms of the residual P
matrix are derived. For models of short-range strong interaction, these expressions give a general form of
nuclear—Coulomb parameters for low-energy scattering. Specific applications of the general expressions
derived in this study are exemplified by considering, on the basis of these expressions, some exactly solvable
models of strong interaction, including the hard-core model, and, for these models, the nuclear—Coulomb
parameters for low-energy scattering at arbitrary values of the orbital angular momentum are found explicitly
for the first time. In particular, the nuclear—Coulomb scattering length and effective range are obtained explic-
itly for the boundary-condition model, the model of a hard-core delta-shell potential, the Margenau model, and

the model of square-well hard-core potential. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The P-matrix approach to describing hadron—had-
ron interaction was first proposed by Jaffe and Low [1]
and was then developed in a number of studies [2-4].
This approach is a modification of the well-known
Wigner—Eisenbud R-matrix theory [5, 6]. Within P-
matrix approach, the scattering amplitude is expressed
in terms of the logarithmic derivative of the wave func-
tion at the surface of the strong-interaction region—
that is, in terms of the P matrix—so that it is assumed
that the configuration space of the system is broken
down into two regions, the externa region, where the
interaction of particles can be described in terms of a
two-particle potential, and the internal region, where
strong interaction is dominant. For the P matrix, a so-
called dispersion relation that appears to be its pole
expansion and which establishesits energy dependence
can be derived on the basis of quite general assump-
tions. Observables can then be described in terms of a
finite number of parameters.

In [3, 4, 7], a method was proposed for explicitly
isolating a free background part in the P matrix. This
method is advantageous in that it simplifies the imple-
mentation of the P-matrix approach in specific applica-
tions and extends the region of its applicability. The
free P matrix, which corresponds to the absence of

* e-mail: pet@gluk.apc.org

interaction, was isolated as the background part in the
aforementioned studies. Thisis natural in dealing with
the scattering of neutral particles. Here, we propose a
generalization of the isolation method to the case
involving charged particles, so that there is long-range
Coulomb interaction in the system along with strong
interaction. Itiswell known that, in this case, scattering
theory requires a nontrivial modification. We show that
theidea of explicitly isolating a background part in the
P matrix as put forthin [3, 4, 7] can be implemented for
charged particles aswell and that, for the background P
matrix, it is advisable in this case to take the purely
Coulomb P matrix—that is, the logarithmic derivative
of the regular Coulomb function at the surface of the
interaction region. It turns out that the isolation of the
background Coulomb part offers the same advantages
as in the absence of Coulomb interaction.

As an application of the P-matrix approach com-
bined with the method for isolating the background
Coulomb P matrix, we consider the scattering length
and the effective range for low-energy nuclear—Cou-
lomb scattering. These parameters are important phys-
ical quantities characterizing the scattering of charged
hadrons and light nuclei at low energies. We obtain
simple explicit expressions for the nuclear—Coulomb
parameters of low-energy scattering in terms of the
parameters of the residual P matrix; these expressions
make it possible to analyze and evaluate the nuclear—
Coulomb scattering length and effective range and to

1063-7788/01/6402-0233%21.00 © 2001 MAIK “Nauka/Interperiodica’
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find them directly for short-range strong-interaction
potentials. As a matter of fact, the expressions that we
obtain here determine a general form of the nuclear—
Coulomb parameters of low-energy scattering for mod-
els of short-range strong interaction. In[8], expressions
for the nuclear—Coulomb parameters of low-energy
scattering in terms of the P-matrix parameters were
obtained without resort to the isolation method. Those
expressions are more cumbersome and |ess convenient
in applications than the present ones. Basicaly, the
results presented in [8] therefore cease to be of value
and significance.

Much attention has been given to the nuclear—Cou-
lomb parameters of low-energy scattering (see, for
example, [9-12]) since these physical quantities play
animportant role in theoretical and experimental inves-
tigations. In some studies (see for example, [13-17]),
these parameters were determined explicitly for some
specific cases of separable nuclear potentials (in partic-
ular, for the Yamaguchi potential). Here, we find agen-
eral form of the nuclear—Coulomb scattering parame-
ters for a rather broad class of loca strong-interaction
models—namely, for models of short-range interaction.
Genera expressions obtained for the low-energy param-
etersmakeit possiblefor thefirst timeto determinethese
guantities explicitly for a number of exactly solvable
hard-core strong-interaction models. We emphasize that
itisthe use of the simple expressions obtained by theiso-
lation method that made it possible to simplify signifi-
cantly the relevant consideration. It should also be noted
that the investigation presented here was performed for
an arbitrary value of the orbital angular momentum [.

2. DISPERSION RELATION FOR THE P MATRIX
AND NUCLEAR-COULOMB OBSERVABLES

For the elastic scattering of two charged strongly
interacting particles, the radial wave function ,(r) of
relative motion in a state characterized by a specific
value of the orbital angular momentum | is regular at
the origin and satisfies the radial Schrodinger equation

2
5
dr
with the potential
V(r) = Vy{r)+V.(r), (2)

where V(r) is a short-range strong potential (by
assumption, it has afiniterange R) and Vg, (r) = 2&k/r
isaconvenient Coulomb potential. For the sake of con-
venience, we further use the Coulomb parameter

_Hee 1

E—M—V(r)}u.k(r) =0 ()
r

F ak ©
where ag isthe Bohr radius,
hZ
8= oo 4)

BABENKO, PETROV

e, and e, being the charges of the particlesinvolved in
the scattering process. We everywhere use the system
of unitswhere the reduced Planck constant and the dou-
bled reduced mass of the two particles are both equal to
unity (A = 24 = 1), so that the energy of the relative
motion, 2E, is expressed in terms of the wave number k
asE=k.

At infinity, the radial wave function satisfies the
scattering boundary condition

Wi(r) —= P(r)
e Y[ cosv,(K)F, (€, kr) + sinv,(K)G, (&, k)],

&)

where {j,, (r) is the asymptotic wave function for the

continuous spectrum, while F, (€, kr) and G, (€, kr) are,
respectively, the regular and the irregular wave func-
tions [18], whose asymptotic behavior at infinity is
given by

It

(&, k) singkr ~Eln2kr =+ 0Ky ©)
Gy (&, kr) - COSE(F —&In2kr —%T+ o'l(k)Er @)

Here, oy(k) = argl (I + 1 + &) is the purely Coulomb
phase shift, and the total phase shift & (k) has the form

0,(k) = ay(k) +vi(Kk), ®)

where v, (K) is the nuclear—Coulomb phase shift.

The P matrix P,(E) is defined in terms of the loga
rithmic derivative of theradial wave function at the sur-
face of the strong-interaction region (r = R),

_RYL(R)
PE)= R

In theinternal regionr <R, we introduce a complete set
of orthonormalized eigenfunctions u,(r) that satisfy the
Schrddinger equation (1) and the homogeneous bound-
ary conditions

uln(o) = 0! uIn(R) =0 (10)

at the ends of the interval [0, R]. Nontrivial solutions
that obey the conditions in (10) exist only at some
energy eigenvalues E;, that are determined by solving
the Sturm—Liouville problem specified by Egs. (1) and
(10). The orthonormalization conditions have the form

)

R

J’ulmumdr = O (11)
0

By expanding the wave function in the interna
region in a seriesin eigenfunctions u,(r), we find that,
Vol. 64 No. 2
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for the P matrix, thereisthedispersionrelation[1, 3, 4]

z E yln

ECRICED ¥-x-=-I

where

Yin = J/Rui(R). (13)

Relation (12) involves a constant P, (0), the P matrix
at zero energy, and it istheisolation of this constant that
ensures convergence of the remaining series. The dis-
persion relation (12), which represents a pole expan-
sion of the P matrix, establishes the general form of its
energy dependence. This dependence is completely
determined by the states of the compound system
which are characterized by the energy eigenvalues E,,

and the residues y|2n . These quantities in turn are con-

trolled by the physical properties of the system in the
internal region and are independent of energy E.

Let us now establish the relation between the S
matrix and the P matrix. For this, we note that the wave

function in the outer region, {,, (r), can be represented
in the general form

Ti(r) = SLHOCE k) - SOHE k)],
r>R,

(14)

where H™ (&, kr) and H”
solutions given by

(&, kr) are the Coulomb Jost

Fio (k)
e

HE(E kr) = [GI(E, kr) £iF (&, kr)], (15)

which represent the diverging and the converging
waves distorted by the Coulomb potential. Accord-
ingly, their asymptotic behavior is given by

(+) +|B<r—£ln2kr—%-q|§|I

(& kr) —ze (16)
By using the matching conditions at the point r = R and
definition (9), we find that the S matrix can be recast
into the form

)
) = sPo P K =Pik) 17
S(k) = § ()Pf”(k)—P'(k) (17)
where
HO

(& kR)
S (k) = —(—+7———— (18)

(€, kR)

isthe Smatrix corresponding to the scattering on ahard
core of radius R in the presence of the Coulomb poten-
tia and P (k) are the logarithmic derivatives of the
diverging and converging Coulomb waves at the
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boundary surface,

kRH™ (&, kR)
HO(E kR)

Hereafter, a prime denotes differentiation with respect
to the variable p = kR. The real and the imaginary part

of the function P (k) are usually denoted by A, (k) and

PPk = (19)

5(k), respectively; since the relation P{"” (k) = P (k)
obvioudly holds, we can write
POK) = a(K) £is(k), (20)

where the functions s (k) and A (k) are expressed in
terms of the Coulomb functions[19] as

kR
FE(E, kR) + G/ (&, kR)’

s(k) = 1)

A (k) = s(K)[Fi(& kR)F((E, kR)
+G(& kR)G|(&, kR)].
With the aid of Egs. (17) and (20), it can easily be

found that the nuclear—Coulomb phase shift can be rep-
resented as

(22)

si(k)

vi(k) = ¢(k) + ardanm,

(23)

where the phase shift ;(K) for scattering on a hard core
of radius R in the presence of the Coulomb interaction
isgiven by

Fi(& kR)
Gl(E! kR) .

Expressions (17) and (23) for the observables reveal
a significant drawback of the P-matrix approach based
on the dispersion formula (12) as an approximation of
the P matrix: if only a finite number of terms are
retained, the observables in question will have an incor-
rect asymptotic behavior at high energies. By way of
example, we indicate that, with increasing energy, the
phase shift (23) will then behave as the phase shift ;(k)
for scattering on ahard core; that is, it will tend to infinity,

Vi(K) == —kR+ O(1).

¢,(k) = —arctan (24)

(25)

But infact, the phase shift must vanish at high energies,
at least for regular potentials.

3. PURELY COULOMB P MATRIX

An incorrect asymptotic behavior of observables at
high energies can be avoided by isolating the back-
ground part inthe P matrix. In the presence of Coulomb
interaction, we define the background P matrix as the
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purely Coulomb P matrix—that is, in terms of the log-

arithmic derivative of the regular Coulomb function,

kRF/(&, kR)
FI(E! kR) .

We recall that the regular Coulomb function F,(&, p) is
expressed in terms of the confluent hypergeometric
function ®(a, b; 2) as[18]

—|p I+1 . Y
Fi(€, p) = C(&)e ¢(|+1—IE,2|+2,2IP),(27)

PI7(E) = (26)

where

o T2

C®) = ey

isthe Coulomb penetrability factor that isarather com-
plicated function of energy and which isintroduced in
order to ensure the required asymptotic behavior of the
function F,(&, p) at infinity [see Eq. (6)]. If, however,
we consider only theinternal region0<r <R, itismore
convenient to introduce a solution that does not involve
the factor C, (&) and which possesses simpler properties
near the origin. We define such a solution @ (&, p)
through the relation

Fi(& p) = I+ DNC()a(E p), (29)

where the factor (21 + 1)!! wasintroduced in order that,
upon switching the Coulomb interaction off, the func-
tion @ (&, p) reduce to the spherical Riccati—Bessel
function:

F(I+1+i&) (28)

®(0,p) = ji(p). (30)

The expression for the function ¢ (&, p) in terms of
a confluent hypergeometric function can easily be
found with the aid of Egs. (27) and (29). The Coulomb
P matrix as expressed in terms of the solution @ (&, p)
has the form

kR@ (&, kR)
@& kR)
which is analogous to (26).

PI(E) = 31)

The positions E\° = k¥ of the poles of the Cou-
lomb P matrix—they depend on the Bohr radius ag and

on the interaction range R (EY = E9 (a,, R))—are

defined by the roots of the denomi nator of the expres-
sion on the right-hand side of (31),

0l 0
(H&Bklni kInRD 0

The Coulomb eigenfunctions u (r) which obey

the Schrédinger equation (1) with the purely Coulomb
potential and the boundary condition (10), are given by

yln (ﬂ(alnv kInr)
/\/_Rk(c)(pl (Eln- kInR)’

(32)

ui(r) =

(33)

BABENKO, PETROV

where &, = 1/agk,, and where the parameters yIn ,

which are determined from the normalization condition
for the eigenfunctions, can be found if we use the
Green's theorem,

Uy, (R) U|'k2( R) - U|'k1( R)u,,(R)
, R (34)
= (ky— kz)ju|klu|kzdr,

for two solutions to Eq. (1) that correspond to two dif-

ferent energy values, kf and k;. By substituting (33)
into (34), going over to the limit k, — k, = ki, and
taking into account Egs. (11) and (13), we find that the

2
expression for the Coulomb residues yfnc " can be recast

into the form

v = 2E;,
" 1-6,& knR/aREVQ (E knR)

(35)

where the function 6,(€, p), which is the derivative of
the function @ (€, p) with respect to the parameter &,

00(&, P)
g

can be directly expressed in terms of aconfluent hyper-
geometric function.

Thus, we have completely determined the parame-
ters of the Coulomb P matrix (its poles and residues)
and found the Coulomb eigenfunctions. The dispersion
relation for the Coulomb P matrix has the form (12);
that is,

8i(&p)= (36)

© (c)?

E Vi
Pl(c)(E) - PI(C)(O) + Z = EV| = (37)
n=1 In

where the P matrix at zero energy, P,(C) (0), isgiven by
expression

Zl5(2)
121+1(2)

which can be directly derived from (31) for k — 0 by
using the expansion of the regular Coulomb function
and its derivatives in terms of Bessel functions[18, 20,
21]. In expression (38), |,,(2) are modified Bessdl func-
tions and the dimensionless parameter zis given by

=2,/2R/a;.

So far, we have considered the case of Coulomb repul-
sion (ag > 0). In the case of Coulomb attraction (a; <

P9(0) = -1, (38)

(39)
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0), P{? (0) has the form

(Ja(¢)
‘]ZI + 1(Z)

where J,({) are Bessel functionsand { = 2,/2R/|ag| .

PI?(0) =

-1, (40)

4. ISOLATING THE PURELY COULOMB
BACKGROUND P MATRIX

In nuclear—Coulomb P matrix (9), we now isolate
explicitly the purely Coulomb background P matrix
(26), following away that is similar to that used to iso-
late explicitly the free background P matrix in the
absence of Coulomb interaction [3, 4, 7]. We represent
this transformation in the form

P(E) = P(E) + P\(E). (41)

With the aid of Egs. (12) and (37), it can be shown that,

for the residual nuclear—Coulomb P matrix P; (E), we
have the expansion

PI(E) = Pi(0) + z {EI-—E——E--—E—(C—)E . (42)
n n In -

By comparing the expansionsin (12) and in (42) for
the functions P,(E) and P, (E), respectively, we con-
clude that the isolation of the purely Coulomb back-
ground part in the nuclear—Coulomb P matrix accord-
ing to (41) amountsto a partial summation of the series
in (12), where one isolates the part that corresponds to
the Coulomb interaction and which is known explicitly.
This naturally improves convergence of the origina
series, thereby making it possible to obtain a more
accurate representation of observables as functions of
energy. It can be shown that the expansion in (42) con-
verges at the same rate as a series whose general term
isproportional to 1/n*, while the expansionin (12) con-
verges as 1/n>—that is, much more slowly.

By making transformation (41) in Eg. (17) and
using the relation

Fio,

kRe
F,(&, KR)H (€, kR)
-1
E0)

PO(k) PP (k) =

(43)

which can easily be verified for logarithmic derivatives,
we can straightforwardly express the nuclear—Coulomb

S matrix S (E) e in terms of the residual P
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matrix P, (E) as

1+¢(K)P,(E)
1+c(k)P,(E)

S¥(E) = (44)

where the functions c (k) are determined according

to (43) and obvioudly satisfy the relation c (k) =

& )(k) With the aid of (44), we can easily represent the

nucI ear—Coulomb phase shift as

v (k) = —arctan Fi (& kR)P\(E) —— . (45)
kR + F,(&, kR)G, (&, kR)P, (E)

From Egs. (44) and (45), it is obvious that, if only a
finite number of terms are retained in the pole expan-

sion (42) for Py (E), the Smatrix and the phase shift will
have a correct asymptotic behavior at high energies:

Szl vi(k)i==0

Thus, an isolation of the purely Coulomb back-
ground term in the P matrix leads to a correct asymp-
totic behavior of the observables in question at high
energies if the residual P matrix is approximated by a
finite number of pole terms. We can see that the trans-
formation in (41) has a transparent mathematical and
physical substantiation and that its application provides
the same advantages as in the absence of Coulomb
interaction.

(46)

5. EXPRESSIONS
FOR THE NUCLEAR-COULOMB PARAMETERS
OF LOW-ENERGY SCATTERING IN TERMS
OF THE PARAMETERS OF THE RESIDUAL
P MATRIX

A great number of studies (see, for example, [22—
27]) have been devoted to the problem of generalizing
and modifying effective-range theory in the presence of
long-range Coulomb interaction. As a result, the Cou-
lomb-modified effective-range function K(E) was
introduced, and the nuclear—Coulomb scattering length
and effective range were determined for the case of
Swave scattering, as well as for scattering in a state
characterized by an arbitrary value of the orbital angu-
lar momentum |. In [22, 25], it was shown that, in the
case of an arbitrary orbital angular momentum, the
effective-range expansion in the presence of Coulomb
interaction has the form

K,(E) = (21 + ))11°C (E)k2'+1[cotv,(k)
47)




238

where the function h(&) is expressed in terms of the
digamma function Y(2) = I'(2)/I (2) as

h(€) =Rey(1+i&) —InlE]. (48)
In the complex plane of energy E, the nuclear—Cou-
lomb effective-range function K, (E) isanalytic in some
domain near the origin [26]; hence, it can be expanded
inthe Maclaurin series (47) in powersof E inthevicin-
ity of the point E = 0. Thus, a special role of the func-
tion K, (E) is associated with its analyticity near E = 0.
The nuclear—Coulomb scattering length a, and effective
ranger, are determined in this casein termsin the coef-
ficients in the expansion (47) of the function K, (E). We
note that, in a large number of studies, the nuclear—
Coulomb quantities, such asa,, r;, and K;, are equipped
with the additional indices c and s, which label param-
eters and functions associated with, respectively, Cou-
lomb and short-range interactions. This was done in
order to distinguish these quantities from their counter-
partsin the absence of Coulomb interaction, which are
labeled only with theindex s. Since we do not consider
here the case where there is no Coulomb field, the indi-
ces ¢ and s are suppressed on al nuclear—Coulomb
quantities.

For a further analysis, it is reasonable to introduce
the dimensionless inverse scattering length y; and the
dimensionless effective range p, as

I|2a2|+1
= . B
V= (49)
p =3I1%a ', (50)

In the particular case of scattering on a hard core of
radius R [ (R) = 0, P,(E) = ], the parameters y; and
p, can easily be found in the explicit form [8]

h _ K\}(Z)
y| - Iv(z)v (51)
2(\ —
pr o= 1-py + (2' B), (52)
1,(2)

where the superscript h denotes, as previously, a hard
core and 1,,(2) and K, (2) are modified Bessel functions.
The constantsv, A,, and , are given by

v=2l+1, (53)
ANEI+1), (54)
Hi =4VA), (55)
while the dimensionless parameter 3 is defined as
_R
=% (56)

As before, the parameter z has the form (39). In order
to render the expressions presented below |ess cumber-
some, it is convenient to isolate explicitly, in the low-
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energy parametersy, and p;, the partsthat correspond to
scattering on a hard core. Accordingly, we set

AR (57)

P =P+, (58)

defining, in this way, the residual low-energy nuclear—
Coulomb scattering parameters y, and p, .

Let us further express the nuclear—Coulomb scatter-

ing length and effective rangein terms of the residual P

matrix. By substituting (45) into (47), we find that the

nuclear—Coulomb effective-range function as expres-
sed in terms of the residual P matrix is given by

K,(E) = (2l +1)!!2c:,2(z)|<2'”[cfE h(g)
S@H __» ] o2
RGP Fi(E, p)P(E)

where, as before, we use the notation p = kR. Let us
expand the right-hand side of Eq. (59) in a Maclaurin
series in powers of energy E = k2. It is obvious that, as
long aswe are interested neither in the shape parameter
nor in higher expansion coefficients, it is sufficient to
retain only the terms that are linear in E. We further
make use of the known relation for the Coulomb pene-
trability factor [18],

cle) 2
CiE) (21+1)?

and of the asymptotic expression for the function h(§)
a low energies[19],
1 1

h -
&)= 1282 * 120&*

The expansions of the Coulomb wave functions in
power series in energy E were previously studied by
many authors [20, 21, 28, 29]. To terms that are linear
in energy, these expansions for the case of Coulomb
repulsion can written as

(L +E)(22+E%)...(1°+ ED), (60)

+o. 61)

(21 + 1)!1C,(8) 200

FI(E! p) = (ZE)Hl ZEIV(Z)
(62)
3 2l 0
—é—;?[lm(z) ¥ ;Im(z)] "5
21+ DIC U
G(& p) = 2 D)5 (o)
(28) Co(¢) O
(63)
z 2| 0
+ QEZ[KVHL(Z) _EKV+2(Z):| + ... %
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The dispersion relation for the residual P matrix
(42) can be recast into the form

o 2 (0
B _ yln _ yln
PKE"Z[E—ﬂ1E—EP}

n=1

(64)

This expansion contains no additional parameters and
is completely determined by the quantities E;,, and y,2n .
It can be shown that the expansion in (64) converges at
the same rate as a series whose general term is propor-
tional to 1/n?. The analyticity of the residual P matrix
in a vicinity of the point E = 0 immediately follows
from (64) if all energy eigenvalues differ from zero.
The expansion of the residual P matrix in a power
seriesin energy E can be written in the form

P(E) = P+Qp°+..., (65)
where
P, =P (0), (66)
& ==P(0) 67)
R

are dimensionless expansion coefficients. We can eas-
ily express the quantities P, and Q, in terms of the P-
matrix parameters as

" YOy
B = n__Yin
HEE e
n=1 In
© o 2
L1
& = —zz{y'” —V—'Z} (69)
REEY E

We also note that, on the basis of Eqg. (41), the quanti-
ties P, and Q, can be determined from the relations

P, =P+P, (70)
Q = Q?+Q, (71)
where
P, =P/(0), (72)
— 1 1
Q= _2P| (0) (73)
R

are parameters in the expansion of the P matrix,

P(E) = P,+Qp°+.... (74)

The parameters P® and Q' in the expansion of the
purely Coulomb background P matrix can be found
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explicitly from Egs. (26) and (62). The results are
P = |+1+§'VI:(1§)Z), (75)
2B(3Q° +1) = Iv + Bz-%g%
10:2(2) 7

+2(B-A) .
R
Substituting now expressions (60)—63) and (65)
into Eq. (59) and taking into account Eq. (47), wearrive
at explicit expressions for the inverse scattering length
y, and the effective range p,, aso referred to as the

dimensionless nuclear—Coulomb residual parameters.
The results are given by

, (77)

(78)

where |, =1,(2). In the particular case of interaction in
the S state (I = 0), the last formulas are somewhat sim-
plified to become

A 1
= — (79)
21%p
D _gQ_zl2 %0
= = B (80)

In the case of Coulomb attraction (ag < 0), all the above
formulas are valid upon the substitution of conven-
tional Bessel functions for modified ones:

umqﬁmxm@~§m¢

( = 2,/2R/|ay).

Formulas (77) and (78) yield explicit expressions
for the nuclear—Coulomb parameters of low-energy
scattering in terms of the residual P matrix. These
expressions makeit possibleto obtain directly agenera
form of the nuclear—Coulomb scattering length and
effective range for models of short-range strong inter-
action.

(81)

6. NUCLEAR-COULOMB PARAMETERS
OF LOW-ENERGY SCATTERING FOR EXACTLY
SOLVABLE HARD-CORE MODELS

For specific applications of the above genera
expressions, we will consider some exactly solvable
models of hard-core short-range strong interaction. For
these, we will find explicitly the nuclear—Coulomb
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parameters of low-energy scattering for arbitrary val-
ues of the orbital angular momentum.

6.1. Boundary-Condition Model

In the boundary-condition model, the interaction in
the internal domain is determined by a single energy-
independent parameter, the value of the logarithmic
derivative of the wave function at the boundary sur-
face—that is, the constant P;. It is obvious that the
parameter Q, vanishesin this case. Thus, we have

P(E) = P, (82)
Q =0, (83)
whence it follows that
P =P -P? (84)
Q = -7 (85)

The nuclear—Coulomb parameters of low-energy scat-
tering can then be written as
N 1
Y = o (86)
- 2%(P-P®)

~ (c)
AN=Bl,.
2[3| ! + 42 Bv1_|'

) P) z

Y (P - &

wherethe quantities P(® and Q(® aregiven by Egs. (75)
and (76).

6.2. Hard-Core Delta-Shell Potential

L et us consider the case where the strong interaction
isdescribed by the delta-shell potential concentrated on

BABENKO, PETROV

D-I-oo, r<R,

Vi(r) = (88)

—6(r—R) r>R..
7R A

Here, A is the dimensionless interaction constant. In
this case, the wave function in the internal region (r <
R) isalinear combination of the Coulomb wave func-
tions,

Pi(r) = A(K)[G (&, kR)F (&, kr)
_FI(EI kRC)G|(E, kr)],
R.<r <R,

and satisfies the zero boundary condition a r = R;:
P (R.) = 0. At the boundary surface (r = R), the wave
function is continuous, but its derivative undergoes a
discontinuity,

Wi(R+0) -y (R-0) = —ARquk(R)-

By using formulas (89) and (90), we find that, in the
case of a hard-core delta-shell potential, the P matrix
can be represented as

GI(E: X) I:II(EH p) - F|(E, X)GII(E! p)
G(& ¥R (& p)-F (& XNG(E p)

where x = kR;. With the aid of the definition of the
background Coulomb P matrix (26) and the representa-
tion in (41), we obtain the residual P matrix for the
potentia (88) in the form

pFI(El X)/FI (Ei p) _
Gi(& X F(E, p)—Fi(& XNG(E, p)

By means of the expansion of the Coulomb functions
(62) and (63), we derive the parameters of the residual

P matrix, I5I and Ql , according to (65). Theresults are
L (Y)/1,(2)

(89)

(90)

P(E) = p

-\, (91)

P(E) =

A (92)

the sphere of radius R and supplemented with a hard p -1 -\, 93
core of radius R, lessthan R, T K L@ LK@ 3
24p°Q = (17 ) (A + Py)
+()\I_B)()\|—G)/(7\| B) —27[K, (y)|v+1(2)+|V(Y)Kv+1(Z)]|v(Y)/|V(Z)+| qOUR (Z) O4)
[Ky()1,(2) = 1, (Y)K, (2]

where a = R/a, and y = 2./2a. By substituting (93) B p(Y)-p'(2)
and (94) into (77) and (78), we now find that the ~2 " " h, o h,_ 2 (96)
nuclear—Coulomb scattering length and effective range Voo Iv(m-vi(2]

for the hard-core delta-shell potential can be repre-
sented as

. Vi) -y
120151y () -V (2]

(95)

+2021,(9[121,(2) + 4(B-A)1y+1(D],

where ylh (y) and p|h (y) are the low-energy nuclear—
Coulomb parameters for a hard core of radius R,
[Egs. (51) and (52) with substitutions z— y and
PHY SICS OF ATOMIC NUCLEI
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B— al, while /@ =y, and p' (@ = p’ are the
parameters for the hard core of radius R [Egs. (51),
(52)]. In the limiting case of a delta potential without a

core(R,.— 0,y — 0, and y|h () —= ), expressions
(95) and (96) reduce to the known expressions for the
low-energy nuclear—Coulomb parametersfor scattering
on adeltafunction [16, 17]
N 1
Vi = ——, (97)
2\ 15(2)

s>

= 27 2,(9[121,(2) + 4(B-A)1v.a(D)]. (98)

~_<)

6.3. Margenau Model

In the Margenau model [30], strong interaction is
simulated by a hard-core square-well potential; Cou-
lomb interaction is assumed to be absent in the internal
region. The latter is justified by the fact that, in the
internal region, the Coulomb interaction is much
weaker than strong interaction. Thus, the total interac-
tion in this model is described by the potential

E+oo, r< Rc
V(r) = D_VO! Rc <r< R (99)
%Ek/r, r>R.

In this case, the wave function in theinternal region has
theform

Wi(r) = A K[ (KRe) ji (Kr) — ji(KRg)n, (Kr)]

R.<r<R, (100)

whereK = ,/V, + E andj, and n, are the spherical Ric-
cati-Bessel functions. The P matrix can then be writ-
ten as

LN (P) =ni(X)ji(p)
HOM(P) =ni(X)ji(p)’
wherex = KR, and p =KR. From the above, we can eas-

ily determine the P-matrix parameters P, and Q,. The
results are

P(E) =p

(101)

J1(X0) N (Po) =N (Xo) 1 (Po)

102
= PO N (Po) M) 11 (pe). O
2q+1 = MEPRL
Po (103)
b

+

L1 (o) N (Po) =i(%0) j1(Po)]*

whereb=R/R, X, = KR, p, = K,R, and K, = ,/V,. By
using Egs. (70) and (71) and taking into account
PHY SICS OF ATOMIC NUCLEI
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Egs. (75) and (76), we can find the parameters of the

residual P matrix—P, and Q, ; the nuclear—Coulomb
parameters of low-energy scattering are given by

1 _ J1(X0) Ny 4 1(Po) = Ni(Xo0) J1 +1(Po)
129,  11(Xo)ni(Po) —Mi(Xo) §1(Po)
(104)
_zl‘izl,
ﬁl _ IJI Iv+1 3
5 = —B-Ilv+ +2(B—-A)
215 z 1 N

b [J1(Xo) Ny 4 1(Po) — nl(xo)J|+1(po)]
[ (Xo)ni(po) — n|(X0)J|(Po)]

+[3vao+2|po+(B—A.)50'“,:1}
» J1(Xo)Ni + 1(Po) = Ni(X0) 1+ 1(Po)
J1(X0)M(Po) —Mi(Xo) 1 (Po)

1
agKy'

(105)

where ¢, =

6.4. Hard-Core Square-Well Potential

For the case of a strong-interaction potential in the
form of a square well with ahard core,

. Otw, <R
Vilr) = E—VOO(R—r) r>R, (106)

we confine ourselves to determining the nuclear—Cou-
lomb scattering length. For the simpler case of a
square-well potential without a core, the nuclear—Cou-
lomb scattering length and the nuclear—Coulomb range
werefound in [8]. Inthis case, the wave function in the
internal domain has the form

Pi(r) = A(KI[G|(Z, KR,)F((Z, Kr)

—Fi(Z, KR)G (=, Kn)],
R.<r<R,

(107)

where = = i, and the P matrix is given by
agK

0 Fi(Z, X)G|(Z, p) —Gi(Z, X)F|(Z, p)
FEXG(Z, )= Gi(Z OFI(E.P) (103,

where, as in the preceding subsection, x = KR, and
p = KR. In accordance with (70) and (75), the parame-

ter P, of the residual P matrix then assumes the form

P(E) =
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Fi€o X)) Gi (&0, Po) — Gi(€o, X)) Fi(€o: Po)

P PO € 0GB o) — CiEor X0 F o T
Z|v+1(z)
i Y
while the nuclear—Coul omb scattering length is given by
1, Fi(€o. X0)Gi (€0, Po) — Gi(€o0 Xo) FiEo, Po)
|5\7| *Fi(€o X)) Gi(€or Po) — GilEor %) Fi(Eor Po)

| (110)
—z‘;—”—(v +1).

7. CONCLUSION

In summary, an explicit isolation of the purely Cou-
lomb background part in the P matrix leads to a correct
asymptotic behavior of physical observables at high
energieswhen theresidual P matrix is approximated by
afinite number of pole terms. Concurrently, the isola-
tion of the background P matrix makes it possible to
improve convergence of the remaining expansions. The
transformation in (41) has a transparent mathematical
and physical substantiation, and its application pro-
vides the same advantages as in the absence of Cou-
lomb interaction. In addition, the explicit isolation of
the purely Coulomb background part in the P matrix
makes it possible to obtain the simple general expres-
sions (77) and (78) for the nuclear—Coulomb parame-
ters of low-energy scattering in terms of the residual P
matrix. With the aid of these expressions, we can
directly calculate the nuclear—Coulomb scattering
length and effective range for short-range strong-inter-
action potentials. If the Schrodinger equation for these
potentials admits of an exact solution in the presence of
Coulomb interaction, the nuclear—Coulomb parameters
can be found explicitly. In general, the nuclear—Cou-
lomb parameters for low-energy scattering can be
obtained for arbitrary short-range strong-interaction
potentials at any value of the orbital angular momen-
tum |. On the basis of the expressions derived in the
present study, we have found explicitly the nuclear—
Coulomb scattering length and effective range for the
boundary-condition model, for the model of a hard-
core delta-shell potentia, for the Margenau model, and
for the hard-square-well potential at arbitrary values of
the orbital angular momentum.
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Abstract—In the general relativistic case, the nonresonance photoproduction of electron—positron pairs on a
nucleusin the field of two circularly polarized light waves propagating in one direction is theoretically investi-
gated. It is shown that there are two essentially different kinematical regions: the noninterference region, where
the Bunkin—Fedorov quantum parameters play the role of multiphoton parameters, and the interference region,
where interference effects areimportant and where quantum interference parameters are treated as multiphoton
parameters. The interference effect isfound in the photoproduction of an electron—positron pair on anucleusin
the field of two light waves. This effect occursin theinterference region and is due to the production of an elec-
tron—positron pair in the plane spanned by the light wave vector and the incident-photon momentum and to
stimulated correlated emission and absorption of photons of the two waves. The cross sections for pair photo-
production on a nucleus in the above kinematical regions are determined for moderately strong fields. It is
shown that, in the interference region, the partial cross sectionsfor the case wherethereisacorrelated emission
(absorption) of the same number of photons of the two waves can significantly exceed the corresponding cross

sections in any other geometry. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The production of an electron—positron pair by a
nucleusinthefield of aplane el ectromagnetic wave has
been studied for quite a long time. In such investiga-
tions, much attention has been given to resonances
associated with the approach of the Green's function
for the intermediate electron (positron) in the plane-
wave field to the mass shell (see, for example, [1-4]).

Nonresonance spontaneous bremsstrahlung in elec-
tron scattering by a nucleus in the field of two light
waves propagating in the same direction was investi-
gated in [5] for linearly polarized waves and in [6] for
the general case of elliptically polarized waves. These
investigations revealed a spontaneous interference
bremsstrahlung effect occurring in electron scattering
and spontaneous-photon emission at specific anglesin
the plane spanned by the initial-electron momentum
and light wave vector and consisting in the correlated
emission and absorption of equal numbers of photons
of the two waves.

In the present study, we consider the nonresonance
photoproduction of electron—positron pairs on a
nucleusin the field of two circularly polarized electro-
magnetic waves propagating in the same direction. We
emphasize that resonances associated with the
approach of the Green’s function of the intermediate
electron (positron) in the two-wave field to the mass
shell are not investigated here (this will be the subject
of a subsequent publication). We study in detail pair

* e-mail: roshsp@ssu.sumy.ua

photoproduction in the noninterference and in the inter-
ference region; in the latter, we predict an interference
effect that occurs not only in pair production in the
plane spanned by the initial-electron momentum and
light wave vector but aso in the stimulated correlated
emission and absorption (owing to the interference of
waves) of photons of the two waves. It is shown that the
partial cross section for pair photoproduction on anucleus
in the interference region can significantly exceed the cor-
responding cross section in any other geometry. Here, we
use the system of unitswhere =c=1.

2. AMPLITUDE FOR THE PHOTOPRODUCTION
OF AN ELECTRON-POSITRON PAIR

Let us choose the 4-potential of an external field as
the sum of the potentia s of two circularly polarized elec-
tromagnetic wave propagating along the z axis; that is,

A= A(dy) +AxDy), (1
where

F, .
A(d) = Q—;(ejxcos¢j +d,e,8in¢;). (2)
|

Here, &, = +1 and 3, = £1; g, = (0, ¢;,) and g, = (0, ¢;)
are the polarization 4-vectors of the waves; F; and o?
are, respectively, the field strength and the frequency o
the first (j = 1) and the second (j = 2) wave; and the
argument ¢; is given by

¢, = w(t-2), j=12 3)

1063-7788/01/6402-0243%21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Diagrams representing the amplitudes for the photo-
production of electron—positron pairs on a nucleus in the
field of two light waves. Solid incoming and outgoing lines
correspond to the electron and positron wave functions in
thefield of two waves (Volkow functions), dashed lines cor-
respond to the incident photon (k') and the pseudophoton of
the nucleus, and the internal lines represent (@) the electron
and (b) the positron Green'sfunctioninthefield of two waves.

The pair-photoproduction amplitude is derived in the
standard way [4-6]:

DS @)
| =—00 S=—0

Here, the partial-wave amplitude corresponding to the

emission (I > 0, s> 0) or the absorption (I <0, s< 0) of

[l photons of the first wave and |s| photons of the sec-

ond wave has the form

g ze’ (qo)
Ss = " ———=exp(iQ)[0_H,u,] 5)
J2wE.E. |
where
Z Z |:MI rs-s(P- @ )q_ >
|'=—00 S =—0 q— m*
x Kl's(a—’ _b+) + Kl's‘(’b—1 _a+) (6)

++m*
Ncl M s_g(— Q+7—p+)}

+

Here, Ze is the charge of the nucleus involved; @ is a
phase that is independent of the summation indices;

U, = u(-p,) and 0_ = t(p.) are Dirac bispinors; caret-
labeled expressions (4, = vV"8.,) denote the scalar

product of the Dirac matrices y* (n=0, 1,2, 3) and the
corresponding 4-vector; g = (¢, q) isthe 4-momentum
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transfer; and g_ and ¢, are the 4-momenta of, respec-

tively, the intermediate eectron in the amplitude repre-
sented by the diagram in Fig. 1a and the intermediate
positron in the amplitude represented by the diagram in
Fig. 1b,

q = p_+ p.—K +1k; + sk, @)
G = kK—p,—I'k, —Sko,
! - Pemramee )
g, = K—p_—1'k; —sk,.

In formulas(5)—(8) we have used the following nota-
tion: k; = w;n=w,(1, n) and k, = w,n = w,(1, n) arethe
photon 4-momenta in the first and the second wave,
respectively; k' = wn' = w'(1, n') isthe incident-photon
4-momentumn; P, = (E., p. ) arethe positron and elec-
tron 4-quasimomenta; and mis the effective electron
(positron) mass in the wave field (1). We have

2
m 2 2
+ —— + k ,
+ 2(k1pi)[nl nZ] 1

m, = mJ/1+ni+n;3,

where p, = (E,, p,) are the positron and electron 4-
momenta and

©)

n; = ef/(mw;), j =12, (10)

is a classical relativigtically invariant parameter that
characterizes the intensity of the first and the second
wave.

In expression (6), the operators M,_;. s_g, which
determine the amplitude for electron (positron) scatter-
ing by anucleusin thefield of two waves[7, 8], and the
operators K, which determine the amplitude for the
photoproduction of an electron—positron pair in the
field of two waves [provided that the intermediate elec-
tron (positron) istreated as areal one] are given by

2

~ o~ ~ wm
Mrr' ) = Irr B”k
(P Pu) = Yo AR Y
Drr + —— Drrk ’
4(k1 Thpy ek 4(k1 5 Derkavo
2
.~ R w,m -
Kpo(Poy P1) = 8%l + ——ati—e— B,k
IS(pZ pl) I's Z(klpl)(klpz) I'g K1 (12)
M DAL
T O ke

Here, &+ = y"g}, where €} is the incident-photon
polarization 4-vector. It should be noted that, in
Eq. (12),r=1—1"andr' =s—s; wealso havethere p, =
g and p, = p_ for the amplitude represented by the
diagramin Fig. laand p, =-p, and p, =—q, for the
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amplitude represented by the diagram in Fig. 1b. In
Eqg. (12), p, =—p. and p, = q_ for the amplitude rep-
resented by the diagram in Fig. 1a and p, = —@, and
p, = p_ for the amplitude represented by the diagram

in Fig. 1b. The functions B,, and the 4-vector D,, [7, 8]
are then given by

Brr' = (ﬂf*‘ n§)|rr‘+ nln2[|r—1,r'+62+ |r+1,r‘—62]1 (13)

—_ *
Dir = nu(erlisyrteli_yy)

14
+n2(e§|rr'+1+ezlr,r'—l)v ( )
€ = € +|6Jejy, j =12,

where an asterisk denotes complex conjugation and where
the functions |, can be represented as an expansion in a
seriesin Bessdl functions of integral orders[7]:

e = Lee(Xas Vi X20 Ya2i O12)
w (15)

= exp[—i (X1r + O2Xor")] z expli(X1—9,X2)]]

j = —00
X J;(0012) Ir (Y1) Ir 45,5 (Y2)-
The arguments of the functions|,,. are given by

=Y;(P2 P1) = N; mf n; m|GJ

p2 P .
(kip2) (K Py)’

(16)

0 Egj(ﬁz, p) =

mnol 1 D
Oy =015(Py P1) = r]lrlz
Q; m1pl np,H
(17)
le = (01—62(02; XJ = |](e])(’ gj)’

where|g;'| = |g;[sin9; (9; is the angle between the vec-
torsg; and k) isthe absolute value of the g; component
paralel to the polarization plane. It should be recalled
that y; (16) is the well-known Bunkin—Fedorov quan-
tum parameter used to specify the case where mul-
tiphoton effects come into play [9-11, 7] and that a,
(17) isthe quantum interference parameter, which gov-
ernsinterference effects in the scattering of an electron
(positron) on a nucleus and in the photoproduction of
an electron—positron pair in the field of two waves. It
should be emphasized that |Q,,| (17) are combined fre-
guencies that are equal to the difference or the sum of
the wave frequencies for identical or opposite wave
polarizations (0, = +1 or —1, respectively). If the quan-
tum interference parameter o, exceeds unity, the pro-
cesses of the correlated emission and absorption of
photons of the two waves become operative. But if
o, < 1, the effect of interference processes can be dis-
regarded (j = 0), in which case the functions I,,. (15)
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factorize into the product of Bessel functions determin-
ing the independent emission and absorption of pho-
tons of thefirst and the second wave [7].

For electron (positron) vel ocities satisfying the con-
dition v, > Z/137, expressions (4)—6) for the ampli-
tude of the photoproduction of an electron—positron
pair on a nucleus are valid at arbitrary intensities and
frequencies of the two waves. It can easily be shown
that, if one of the wavesis switched off (for example, at
F, = 0), these expressions reduce to the form describing
the amplitude for the photoproduction of an electron—
positron pair on a nucleus in the field of one wave [1-
4]; if both wave are switched off (F, = F, = 0), we
obtain the conventional amplitude for the photoproduc-
tion of an electron—positron pair on a nucleus in the
absence of external fields[12].

At equal frequencies of the waves (w, = w,), expres-
sions (4)—(6) reduce to the form describing the ampli-
tude for the photoproduction of an electron—positron
pair on a nucleus in the field of one wave [5, 6]. In the
following, we therefore assume that the frequencies of
the waves are not close:

[Awl/w, = 1. (18)

We a'so assume that they satisfy the condition
j =12 (19)

Since the Bunkin-Fedorov parameters y (16)
greatly depend on the kinematics of electron scatterl ng
and of the emission of a spontaneous photon, we will
single out, in just the same way as in [5-7], two kine-
matical regions: the noninterference region, where it is
the quantum Bunkin—Fedorov parameters that specify
the condition under which multiphoton effects comeinto
play, and the interference region, where the influence of
these parameters, in view of aspecial type of kinematics,
vanishes (all eight parametersy; are equal to zero in this
region), so that multiphoton processes are determined by
the quantum interference parameters a, (17).

w; < w,

3. PHOTOPRODUCTION
OF AN ELECTRON-POSITRON PAIR
ON A NUCLEUS IN THE NONINTERFERENCE
REGION

Here, we will investigate the photoproduction of an
electron—positron pair on a nucleus in the noninterfer-
ence region, where the Bunkin—Fedorov quantum
parameters y, (16) are not small, appearing to be basic
parameters that specify the conditions under which
multiphoton effects become operative (3; ~ 1; hence,
the vectors g; have a nonzero component paral el to the
wavepolanzatlon plane). It should be noted that this
region is rather broad. Only the production of an elec-
tron—positron pair at specific angles in the plane
spanned by the incident-photon momentum and the
wave vector of the light waveisexcluded in it (see Sec-
tion 4).
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In the noninterference region, the quantum parame-
ters (16) and (17) can be estimated as

. m .
y; Oy = Nig: Y Oy.&, 0y,¢q, | = 1,2, (20)
i

where

& = nym/a (21)

is a quantum parameter, which is humerically equal to
the ratio of the work of the field over the wavelength of
the first or the second wave to the incident-photon
energy and which determines the integrated features of
the process in the noninterference region. Let us now
consider the photoproduction of an electron—positron
pair on a nucleus in the region of moderately strong
fields such that & < 1; for the wave intensities, this
means fulfillment of the condition

(22)

inwhich casewehavea,, <y;, so that multiphoton pro-
cesses are determined primarily by the relevant
Bunkin—Fedorov quantum parameters (I' < y;, S < V,).
Considering that |'w,/w' = &, < 1 and Sw,/w' = &, <
1, wefind that, in the region of moderately strong fields
satisfying the condition in (22), the amplitude of the
photoproduction of an electron—positron pair as given
by Egs. (5)<12) is simplified significantly. For exam-
ple, the expressions for the 4-momentain (7) and (8)
and for the amplitudesin (11) and (12) become

q=p.+p,—-kK, o =k-p,, 0 =K-p;(@23)
M _sos = \~/o||—|',s—s'; Kig = €1y, (24)

From (23), it follows that, in the region of moderately
strong fields, there arise no resonances associated with
the approach of the Green’s function for an intermedi-
ate electron or an intermediate positron in the wave

field to the mass shell (§° # m?, §> # m?)—that is, the

condition in (22) determines the nonresonance region
as well. Since the arguments of the functions I, and
l -1 s_s N (24) are independent of the summation indi-
ces, the amplitude in Eq. (6) with allowance for rela-
tions (24) can easily be summed over al values of the
integral indices |' and s. As a result, the quantity
obtained by averaging the noninterference differential
cross section evaluated for the production of an elec-
tron—positron pair by an unpolarized photon on a
nucleus in the field of two moderately strong light
waves over the polarizations of the particles constitut-
ing the pair assumes the form

n; < w/m,

dojs = |||s(X1- Y1 X2 Yo2i 012)|2d0*, (25)
where dopis the differential cross section for the pho-

toproduction of an electron—positron pair on a nucleus
in a process where the electron and the positron of
given energies are emitted in a specified direction (in
the absence of an externa field) [12] and where it is
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necessary to set p; =—p, and p, = p_in the arguments
of the functions g, that is,

_ . _1p p.
y; = nymlg[sind;, g; = (A—,JE%—KTE 26)
=12
oy = —nyn, MO 4 10
o YPQLMk, kD 27)
Ky = Ei_lptlcosei! e: = D(kl’ p:)-

In the case of ultrarelativistic electron and positron
energies, expression (25) for the partial-wave cross sec-
tion is valid at not overly small angles between the
wave vector k; and the 3-momenta of the electron, the

positron, and the incident photon (95 >n,,ME,, 6?%>
N, .Mw). From (25), it can be seen that, in the region
of moderately strong fields satisfying the condition in
(22), the cross section for the photoproduction of an
electron—positron pair on a nucleus factorizes into the
probability of the emission (absorption) of ||| photons
of the first wave and |s| photons of the second wave and
the cross section for the photoproduction of an elec-
tron—positron pair on a nucleus in the absence of an
external field, the processes of the emission and absorp-
tion of photons of the first and the second wave being
generally correlated owing to a nonzero value of the
quantum interference parameter a,, (27).

Under the condition o, < 1 (in which casey, , <

E;ll > 1), the functions | ¢ (15) in expression (25) can
be represented as the product of independent Bessel

functions, and the partial-wave cross section takes the
form

do, = JP(y1)Je(y2)do,. (28)

This means that, in this case, the emission (absorption)
of photons of the first and the second wave and the pho-
toproduction of an electron—positron pair on a nucleus
proceed independently. Since the electron and the
positron energy are independent of the number of
absorbed or emitted photons of the two waves in the
region of moderately strong fields satisfying the condi-
tion in (22), the partial-wave cross sections (25) and
(28) can easily be summed over all possible absorption
and emission processes. Asaresult, we arrive at aresult
that might have been expected from the outset: the total
cross section coincides with the cross section for the
photoproduction of an electron—positron pair on a
nucleus in the absence of an externa field. In other
words, all essentially quantum contributions cancel out
completely upon summation; that is,

0 00

do = z Z do, = do,.

| =—00 S=—00

(29)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001



INTERFERENCE EFFECT IN THE PHOTOPRODUCTION

To conclude this section, we note that, from the energy-
conservation law [as represented by the zeroth compo-
nent of thefirst relationin Eq. (23)], it followsthat, near
the reaction threshold (w0 — 2m) and owing to the use
of the Born approximation, the above expressions are
valid if

Z w-2m

3w

(30)
which is a conventional condition in the absence of
external fields.

4. PHOTOPRODUCTION
OF AN ELECTRON-POSITRON PAIR
ON A NUCLEUS IN THE INTERFERENCE
REGION

For the general case of arbitrary intensities, it can be
shown that, in the interference region, the amplitudes
corresponding to the diagramsin Figs. 1a and 1b must
satisfy the relativistically invariant relations

0 (P &) = g/(d. —-p.) = 0,
/(P -9.) = g7 (-d.,—p.) = O;

that is, the corresponding vectorsg; are aligned with the
direction of wave propagation. Therefore, these vectors
have no component parallel to the polarization plane
[9; < (y;)" =1, seeEgs. (16), (20)]. By virtue of (31),
the Bunkin—Fedorov quantum parameters y; (16) and
the phases x; (17) vanish. In the interference region
specified by (31), the functions I, (15), which deter-
mine the pair-photoproduction amplitude given by
Egs. (5) and (6), are therefore simplified significantly,
reducing to a Bessel function of integral order:

[+(0,0;0,0; ay,) = J;_(0y5),

3D

1 , (32)
Mo = é(r —0,r").

From (32), it followsthat, in theinterferenceregion, the
numbers of photons emitted and absorbed by electron
and positron from the two waves correlate in such a
way that the half-sum (3, = —1) or the half-difference
(5, = +1) of these numbers (r and r') appears to be an
integer (ry,).

Taking into account the change in the notation for
theindicesin (32), wefurther rewrite the amplitude for
pair production on a nucleus [see Egs. (4)—<6)]. As a
result, the sum (difference) of the integral indicesl’, s
and |, s can be either even,

0'=0,8 = 2sp,, [0 —09,5 = 2ly,,
2 12 2 12 (33)
H'+6zs‘ =0, +9,5 = 0,
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]'-0,8 = 2s,-1, [1-06,s=2,-1,
2 12 2 12 (34)
H'+6zs' = -0,, H+623 = -9,.

For the case specified by Eq. (33), we obtain the corre-
lated emission (absorption) of equal numbers of pho-
tonsin the two waves, and the 4-momentain (7) and (8)
assume the form

d—=Qq = p_+ Py —K + 115Ky,

q— a—(O) = K — P, — 5Ky, (35)
EI+—'EI+(0) = K—p_—s,Kypy,

where
Kz = (Qu K1) = ki =05k, (36)

For the case specified by Eq. (34), we instead have
q—0Qu = P+ P, —K + 1Ky,
1 1
—i(l"' 62)k1—§(1—52)k2,

ﬁ_—>ﬁ_(1) = K =P, =Ky,
37
# 214 8,)Kk, + 5(1- 8k, o0

q. — a+(1) = K —p_—spKp,

1 1
+ i(l +0,)k; + é(l—éz)kz-

From expressions (35) and (37), it can be seen that, in
the interference region, the emission (absorption) of
photons from the product el ectron—positron pair is cor-
related in such a way that the numbers of emitted
(absorbed) photons in the two waves are equa in the
first case (s=-96,l, s =-4,1") and differ by unity in the
second case (s= -0, -1, s = -d,I' — 1), processes
where the numbers of the emitted (absorbed) photons
in the two waves do not satisfy this condition being sup-
pressed. In the interference region, the amplitude for
pair photoproduction on a nucleus eventually assumes
the form

l1p = —c0

where S,(g) and S‘i’ are the partial amplitudes for the

correlated emission (absorption) of photons whose
numbersin the two waves are equal and differ by unity,
respectively. These amplitudes are given by expression
(5), where we must make the substitutions g — g,

and H — H,. for the former and g — g, and



248

He — Hl(llz) for the latter. We also have

0) _ (0,0) (1 1)
H|12 Z [T|12—52512 + |12—52512+1]’
Sp = = (39)
(1) (1,0) (0 1)
z [T|12—52512 + I12—52512] !
Spp = —®
(a b)
112—858;,
_ q () (b) =
= Ilz—azsu(P—’ Q- (b))q—mK s (o) —P4) (“0)
—(b) ™
Q+(b) M@

Kéi)(p—, q+(b)) My s, (— Q+(b), -p,).

Q+(b) -

Here, a, b =0, 1, and we have used the notation

2
oolm o
——1— Ok, @1
8kapo(apy > 4D

KB, B0

Kgi)(pz’ Py = é*Jslz((xlz)

m ~ oA (D) m A@s (42)
= Wpy” P g py Ot
| —6 (P2 Py
12~ 92512
2 43)
~ wm ~
= y0J|12—52512(a12) + m |(12)—52512k1’
I(llz)—ézslz(pZ’ ()
m A (1) A~ (44)

_M_ kD k
4(k1 1) YoK1 |12—52512 4(k1 2) '12—52512 1Yo-

In expressions (41)—(44), the functions Bfo) and 4-vec-

tor Dr(l) can be written as

B = (n; +n3)J(as,)
+N1N2[Jr_1(0g2) + 34 1(0g,)],

(45)

DY = nylef J,(ar) + e, _1(a1)]
(46)

+n,[€; Ji_@ea,y2(012) + €3, _(1-5,)2(01)].

Thus, we can see that, in the interference region, there
occur processes of correlated emission (absorption) of
photons of the two waves from the product electron—
positron pair. As aresult, the amplitude for the process,
as given by Egs. (38)—(46), hasthe sameform asthat in
the field of asingle wave.
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We now investigate the kinematics of the photopro-
duction of an electron—positron pair on anucleusin the
interference region. Writing down explicitly relations
(31) for the amplitudes represented by the diagramsin
Figs. 1la and 1b, we find after some simple algebra that
the kinematical features of the photoproduction of an
electron—positron pair on a nucleus are identical for
these two amplitudes. Specificaly, the electron—
positron pair is generated in the plane spanned by the
incident-photon momentum k' and the wave vector k,
provided that the following relation holds:

kK xp, _ kxk'
(kp.)  (kk)~

The absolute value of this vector equation gives the
sought relation between the polar angles and energies
of the pair and the angle of the photon incidence (here,
the corresponding azimuthal angles take equal values);
that is,

(47)

a, = cot(6'/2), (48)

where
a. = (|p.l/k.)sin®,, 6 = O(n, k). (49)

We notethat, in Egs. (48) and (49), the quantitiesk, and
the angles 6, are determined by expression (27). Onthe
basis of Eg. (48), we can easily obtain the relations

1-—1 E+
V, = [P = [cosei+sineitang} , Ky = -b—=
Ei 2 + (50)
where
b, = 1+ cotB,cot(8'/2). (51)

By virtue of this, the energy-conservation law [zeroth
component of the first relation in Eq. (35) or Eq. (37)]
for arbitrary wave intensitiesis significantly ssmplified,
assuming the form

W =E+E, += (r11+r12)mzdO +|12912 (52)

ED
or

2|:p+ b_
EE

W = E+E+5nf+ndm

(53)
1 1

+|12912_§(1+52)w1_§(1_52)w2-

After some simple transformations, the first relation in
(50) can be represented in the form of aquadratic equa-
tion for the pair emission angles,

(1+vt)tan2%—2%1it eDtan—+(1 v,) = 0.
(54)

It follows from (54) that the pair emission angles are
determined by the velocities v, of the trandational
PHYSICS OF ATOMIC NUCLEI
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motion of the pair constituents and by the angle of pho-
ton incidence; that is,

0. Vs m [Ymm[f
_ T —— =+ —
ten 2 (1+V1)Vmin|:Emin_ ! th Di|1 (55)

where

Vin = €0s(0'/2), E.i,=m/sin(8'/2) (56)
is the minimum velocity and the minimum electron
(positron) energy. It can be seen from (55) that, in con-
trast to what we have in the noninterference region, the
velacities of electron and positron trandational motion
in the interference region are bounded from below by a
quantity that is dependent on the angle of photon inci-
dence [see Eq. (56)]. It should be emphasized that
Egs. (55) and (56) are vaid for arbitrary intensities of
the two waves.

Let usfind out how the process of pair photoproduc-
tion on a nucleus proceeds in the interference region
near the threshold—that is, in the case where the inci-
dent-photon energy is such that the electron and
positron are produced with energies close to E,;,
(Ve — Vi)'

Vi = Vpin

Vi

< 1L 57

If condition (57) is satisfied, it is easy to obtain, on the
basis of relation (55), the angles at which the electron-
positron pair is emitted. We have

— 1- ! D)i_vminlj~1- .
6. =0+ /2D—Vi =30

that is, the electron—positron pair is emitted within a
narrow cone along the bisector of angle between the
wave vector k,; and incident-photon momentum k' [the
t+signin Eqg. (58) in front of the square root refers both
to the electron and to the positron]. It is peculiar to this
process that, as the energy grows (far from the thresh-
old), the direction of electron and positron emission
recedes from the bisector of this angle (see Fig. 2). In
the limit of ultrarelativistic energies (E,. > m), they are
emitted either near the direction of the incident-photon
momentum k' or near the direction of the wave vector
k, [see Eq. (55)]; that is, these angles are given by

(58)

P - m2/2Ef cot(0'/2
6t=mz(2 »)eat(72) (59)
L(m™/2E;) cot(0'/2) < 1.
We note that expression (59) is valid for not overly
small angles6' > (nYE,)?. On the basis of Egs. (52) and
(53) [in the cases of emission (absorption) of photons
that is correlated in such away that their numbersinthe
two waves are equal or differ by unity], we can obtain
the threshold frequency of the incident photon in the
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1.0
V=, arb. units

0 0.5

Fig. 2. Electron (positron) emission angle 8. [see Eq. (55)]
asafunction of the electron (positron) velocity v for vari-

ous values of the angle of photon incidence: (1) 6' = 170°
(Vipin = 0.09), (2) 6" = 140° (Vp;, = 0.34), and (3) 6" = 60°
(Vmin =0.87).

partial process,

Wrin = (2+ ﬂf + n§) Emin +112Q1, (60)

or

Wi = (2+nf+n§)Emin+|12912
1 1 61)
—é(l"'az)(*)l—é(l—éz)wz-

From Egs. (56), (60), and (61), it can be seen that,
by specifying the angles 6" and the incident-photon
energy, we can smoothly change the minimal energy of
the product electron and the product positron. Let us
assume that the incident-photon momentum is nearly
antiparalel to the wave vector k,,

AB = (1-0) < 1. (62)

From Eg. (56), we then find that the minimum nonrela-
tivistic velocity of the electron and the positron is given

by

Vmin = %Ae‘ <1 (63)
and that, in the case specified by Eqg. (52), for example,
the threshold frequency for the incident photon takes
the form

. 1 2 1 2 1 o
Wrin = ZET]'F émein + émvl + émVZD'l- |129121(64)
wherev, , =1, , istherate of electron (positron) oscil-
lations in the first and the second wave. We emphasize
that the second term in the parenthetical expression on
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the right-hand side of Eq. (64) has the meaning of the
minimal kinetic energy of the electron (positron)—
there is no such minimum in the noninterference
region—while the third and the fourth term correspond
to the energy of oscillations. It should also be noted that,
since we use the Born approximation, the values of the
angle AB' (62) cannot be overly small; that is,

AQ' > 27/137. (65)

In the opposite limiting case where the incident-pho-
ton momentum is nearly parallel to the wave vector k,

0 <1, (66)

it follows from Eq. (56) that the ultrarelativistic mini-
mal energy of the electron and the positron is

E., = 2m/6' > m. (67)

The angles (58) of electron and positron emission are
then given by

1o (Emin(f
[ + —_— —_ <
6. =30+ E'm"m 11 AEE <1

If the angle between the incident-photon momentum k'
and the wave vector k, is close neither to zero nor to Tt
[that is, when relations opposite to the inequalities in
(62) and (66) are satisfied], we arrive at relativistic val-
ues for the minimal energies of the electron and the
positron.

In the interference region, multiphoton processes
are determined by the Bessal functions J.(d,,) [see
Egs. (38)—(46)], while the conditions under which such
processes become operative are formulated in terms of
the quantum parameters a,, (17). In addition to the
photoproduction of an electron—positron pair on a
nucleus, there therefore basically proceed, in this case,
processes of the stimulated correlated emission
(absorption) of |,, < a,, photons of the two waves from
the product electron and positron. As a result, the
energy fraction emitted by the electron (positron) or
absorbed by it from both wavesisabout |,,Q /W < .,
where ¢, is the quantum interference parameter deter-
mining the integrated features of the process in the
region specified by Eq. (31),

Cint = €182 (69)

&, being given by expression (21). We define the
region of moderately strong fields for the interference
region (31) by imposing the condition ¢,,, < 1 on the
guantum interference parameter. For the product of the
intensities of the two waves, thisimplies fulfillment of
the inequality

(68)

NiN, < (w/m)”. (70)

We note that the condition in (70) is less stringent than
the analogous condition (22) in the noninterference
region. Taking into account (70), we can disregard, in
expressions (8) for the squares of the 4-momenta, the
energies of the photons of the two waves against the
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incident-photon energy. It follows that G- # m:,
whence we conclude that the region of moderately
strong fields that is specified by the condition in (70) is
not aresonance region. If n, ~ n, in thisregion, we can
set p. = p., in which case the 4-momenta given by

Egs. (7) and (8) assume the form (23). In deriving the
cross section from the amplitude given by Egs. (38)—

(46), there will arise terms in dcfg that are propor-
tiona to niz, niz, and n,n, and to higher powers of
the wave intensities; concurrently, dcfllz) will develop

. 2 .
terms proportional to n; , andn;n, and to higher pow-
ersof these parameters. By virtue of (70), we can there-

fore disregard the amplitude Hfllz) given by the second
equation in (39); for the same reason, we can neglect
B,” (45)and D" (46) intheamplitude H given by

the first equation in (39) and perform summation there
over s,,. As a result, we obtain 3(112) =0 and S‘E’ =
Ji,, (02)S7 where Sin the amplitude for the photo-

production of an electron—positron pair on anucleusin
the absence of an external field. For the production of
an electron—positron pair by an unpolarized photon on
anucleus in the field of two moderately intense waves
satisfying the condition in (70), the result obtained by
averaging, over the polarizations of the pair constitu-
ents, the partial differentia cross section intheinterfer-
ence region (31) has the form

doy) = J¢ (ay,)day, (71)

where dois the differential cross section for the pro-
cess where aphoton produces, on anucleus, an electron
and a positron of specified energies and directions of
emission in the absence of an external field [12] and
where the quantum interference parameter is given by

m’cp. | b

Oy = —MyNom— i + — 72
12 N1N 20, [E.  ED (72)
It should be emphasized that, in the partial cross section
(71), theintegra index |, indicates that equal numbers
of photons in the two waves are emitted or absorbed
(s=zI); on the contrary, there is no similar correlation
between the indices| and sin expressions (25) and (28)
for the noninterference region. From Eq. (71), it can be
seen that, in the region of moderately strong fields sat-
isfying the condition in (70), the partial cross section
for the photoproduction of an electron—positron pair on
a nucleus factorizes into the probability of the corre-
lated emission (absorption) of equal numbers of pho-
tons of the two waves and the cross section for the pho-
toproduction of an electron—positron pair on a nucleus
in the absence of an external field. It is important that,
in the interference region, this correlation between the
PHYSICS OF ATOMIC NUCLEI
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numbers of photons in the two waves is irremovable;
that is, the cross section (71) cannot be represented as
the product of the probabilities of emission and absorp-
tion in each of the two waves separately, as this may
occur in the noninterference region [see Eq. (28)]. It
should also be noted that, in expression (71), the elec-
tron and positron emission angles in the parameters b,
(51) are determined by relation (55). In the region of
moderately strong fields that is specified by the condi-
tion in (70), the threshold frequency of the incident
photon is given by

Wy = (2+ N7+ N3)Emins (73)

and we can set E, = E_;,, in the cross section (71) near
the threshold, in which case the quantum interference
parameter a,, (72) becomes

m|n

= —-2n4N; 0,

(74)

If, in addition to the condition in (70), the wave
intensities satisfy the inequalities

(W /m for E.0Om
NiN2= [0 2 (75)
(W, ,E./m~ for E.,>m,

we have a,, = 1; hence, y, ,~ a/§, | > a, [see
Egs. (20) and (72)] Taking this into account, one can
easily show [13] that, for wave intensities satisfying the
conditions in (70) and (75), the partial cross section
(25) in the noninterference region is much smaller than
the corresponding cross section (71) in the interference
region:

do [
R=—5 = 5 —0(viy,) " <1,
do? 3¢ (a) (76)
for I,s<y,.

L et us estimate the field strengths and the cross-sec-
tion ratios (76) for relativistic energies of the incident
photon and of the product electron—positron pair (w' ~
m, E; ~ m). In this case, we find that, in the region of
optical frequencies (w, , ~ 10'* s7!), the quantum inter-
ference parameter o, is about unity when the field
strengths in the two waves have values of F, , ~ 10°-
107 V/em [see Egs. (72) and (10)], which are widely
used in present-day physical experiments. For such
field strengths and such energies of the pair, the
Bunkin-Fedorov quantum parameters are y; , ~ 3 x
103. Taking thisinto account, we find from Eq. (76) that
the cross-section ratio in question is R ~ 107 for mul-
tiphoton processes where the numbers of photons satis-
fiestheinequality I, s < 3 x 10°.

Thus, we conclude that, if the electron and positron
emission angles and energies are recorded simulta-
neoudly in the plane spanned by the wave vector of the
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light wave and the momentum of the incident photon
moving in the nuclear field, the process in which the
photoproduction of an electron—positron pair on a
nucleus is accompanied by the correlated multiphoton
emission (absorption) of equal numbers of photons in
the two waves can be much more probable than the
anal ogous process in the noninterference region.

The partial cross section (71) can be summed over
all emission and absorption processes. Thiswill yield a
result similar to that obtained in the noninterference
region: for moderately strong fields satisfying the con-
ditionin (70), all essentially quantum contributions are
canceled out completely upon the above summation
[see Eq. 29)]:

Z do(o) = do,.

ljp = —0

(77

5. CONCLUSIONS

The results deduced from our analysis of the photo-
production of an electron—positron pair on anucleusin
thefield of two light waves propagating in one direction
can be summarized as follows:

(i) The photoproduction of an electron—positron pair
on anucleusin the field of two waves depends greatly
on the kinematics of the incident photon and of the
product electron—positron pair. Owing to this, we can
single out two kinematical regions: the noninterference
one [if relations (31) are not satisfied], where the con-
ditions under which multiphoton processes come into
play are governed by the Bunkin—Fedorov quantum
parameters y (16), and the interference one [if relations
(31) are st i ed], where multiphoton processes are con-
trolled by the quantum interference parameters o, (17).

(i) For moderately strong fields [§, , < I, see
Eq. (22)], the partial cross section in the noninterfer-
enceregion factorizesinto the cross section for the pho-
toproduction of an electron—positron pair on a nucleus
in the absence of external fields and the probability of
the emission (absorption) of a specific number of pho-
tons of the first and the second wave [see Eq. (25)]. It
has been shown that, for wave intensities such that the
guantum interference parameter a,, is much less than
unity, processes leading to the photoproduction of an
electron—positron pair on a nucleus and processes
involving the absorption and emission of photons of the
first and the second wave by the electron and the
positron proceed independently [see Eqg. (28)].

(iii) In the photoproduction of an electron—positron
pair on a nucleus in the field of two light waves, an
interference effect has been discovered that occurs if
the electron—positron pair is produced in the plane
spanned by the wave vector of the light wave and the
incident-photon momentum. In this case, the Bunkin—
Fedorov parameters are equal to zero, so that multipho-
ton processes are controlled by the quantum interfer-
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ence parameter a,, (17). Because of this, there occurs
correlated emission (absorption) of photons by the
electron (positron) of the pair, the numbers of these
photonsin the two waves being equal or being different
by unity. It has been shown that, for the electron and the
positron energy, thereisalower bound E,,;;, (56), which
depends greatly on the angle between the incident-pho-
ton momentum k' and the wave vector k,. If the inci-
dent-photon momentum is nearly parallel or nearly
antiparallel to the wave vector, the minimal electron
(positron) energy is, respectively, ultrarelativistic
[Enin = m; see Eq. (67)] or nonrelativistic [v,,;,, < 1; see
Eqg. (63)]. Otherwise, we have E;, ~ m. Herein lies a
significant difference between the photoproduction of
an electron—positron pair on a nucleus in the interfer-
ence region and the analogous process in the noninter-
ference region. Near the threshold, the electron—
positron pair is emitted into a narrow cone around the
bisector of the angle between the incident-photon
momentum and the wave vector of the light wave [see
Eq. (58)]. Asthe energy isincreased, however, the elec-
tron and positron momenta deflect ever more pro-
nouncedly from the bisector of this angle; in the limit
of ultrarelativistic energies, the emission direction is
close to either the incident-photon momentum or the
wave vector [see Eqg. (59)].

(iv) For moderately strong fields [E,,, << 1; see the
condition in (70)], the partial cross section for the pho-
toproduction of an electron—positron pair on a nucleus
in the field of two light waves has been obtained in the
interference region. This expression factorizes into the
cross section for the photoproduction of an e ectron—
positron pair on a hucleus in the absence of external
fields and the probability of the correlated emission
(absorption) of equal numbers of photons in the two
waves [see Eq. (71)]. The latter probability cannot be
represented as the product of the probability of the
emission (absorption) of photons in individual waves
separately, in contrast to what occursin the noninterfer-
enceregion. It has been shown that the partial cross sec-
tion for the processes where there is a correlated emis-
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sion (absorption) of equal numbers of photons in the
two waves and where the electron and the positron are
emitted at given angles and with given energies can
considerably exceed the cross section for the anal ogous
process in any other geometric arrangement [see
Eq. (76)].
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Abstract—Stochastization of asupercritical atom (with anuclear charge number Z in excess of 137) under the
effect of aperiodic perturbation isinvestigated. The Hamiltonian for arelativistic electron in the Coulomb field
of aZ > 137 chargeis obtained. A simple analytic formulais derived for the critical external-field strength cor-
responding to the onset of stochastization. The diffusion coefficient is evaluated. © 2001 MAIK “ Nauka/l nter-

periodica” .

In contemporary physics, much attention has
recently been given to the realms of superheavy ele-
ments. In particular, rapidly growing interest in the syn-
thesis and chemistry of actinide and transactinide
nuclei continues stimulating intensive investigations
into the properties of superheavy elements [1, 2]. That
superheavy atoms are of relativistic nature—because of
a large charge of the nucleus in such an atom, the
motion of its electronsis described by relativistic equa
tions—complicates problems to be solved in these
investigations. In the present study, we analyzethe clas-
sical dynamics of arelativistic electron in the field of a
supercharged (Z > 137) nucleus under the effect of a
periodic perturbation. An atom whose nucleus has a
charge number in excess of 137 isreferred to asasuper-
critical atom [3, 4]. The quantum-mechanical proper-
ties of supercritical atomswere explored in anumber of
studies (see, for example, [3-5]). For deep energy lev-
elsin the lower continuum, the semiclassical dynamics
of such atoms was investigated in [4, 5]. Experimen-
tally, such supercritical statesare generated in slow col-
lisons of heavy ions whose total charge number is
greater than 137 [6-8]. So far, investigations into
dynamical chaos have been performed predominantly
for nonrelativistic systems. Only a few articles [9-13]
have been devoted to studying chaotic behavior in rela
tivistic systems. Stochastization of a subcritical (Z <
137) relativistic hydrogen-like atom, where relativistic
corrections to highly excited states are small, was
investigated in [11, 12]. In contrast to a subcritical
atom, a supercritical one is essentidly a relativistic
object [3-5]. It iswell known [3, 6] that the approxima-
tion of pointlike chargesisinapplicablein studying the
motion of arelativistic electron in thefield of aZ > 137
Coulomb center. For this reason, it is necessary to reg-
ularize the problem with allowance for afinite size of
the nucleus. The regularization in question consists in

redefining the Coulomb potential as

Za

Y for r>R

v(r) =
Zlgf% for 0<r<R,
wheref (r/R) is a cutoff function that takes into account
afinite size of the nucleus and Risits radius (hereafter,
we use the system of unitswherez = m=c=1). Wewill
consider the case of f(r/R) = 1 (surface distribution of

the nuclear charge). The relativistic momentum, which
is given by

2

= /\/(S—V)Z—M—Z—l,

r

where € is the energy of the electron being considered
and M is its orbital angular momentum, can then be
recast into the form

/\/%+ZO(D —M——l for

I’

r>R

I’

The turning points correspond to zero values of the
momentum p. One of these points,

= M[%+Z°‘D T,

lies within the nucleus, while the other,

«/% ZO‘D ———1 for 0<r<R.

_ IsZI—A/szzzo(z—(s
2~ 2
e -1

—1)(Z°a’ = M?)

isoutsideit.

Taking into account afinite size of the nucleus, wecan
therefore determine the action functiona for Z> M as

m = I, +1,, (D

1063-7788/01/6402-0253%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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where or
Z’a —M?
=g o2 Zect
r
i = JZ?a = M*(M — @i/ Z°a = M?) + £Za.
= ﬁ_ JCIn,/B’—4AC— /AR’ + BR+C For r < R, the equation for the trajectory has the form
2) 1/r = aycose, @)
+ B arcs n—“ZA\R-i-B where
2./-A B?-4AC za?
| %= M7 RE 1)
2CJAR*+BR+C| , 2C
+J/Cln R |+'RT+B’ @ being apolar angle.
L et us now consider the interaction of this supercrit-
2 Z 2 VE ica atom with the linearly polarized monochromatic
I, = J’«/ GD ~ % —1dr perturbation field
R R r 3) V = ecoswtsin@[xsiny + ycosy], (8)
' /\/272 a where 6 and  are Euler angles. In order to analyze the
= a[ R —a —aar CCOS‘—H- supercritical atom for stochasticity, we assume the
R orbital angular momentum M to be fixed, thereby
Here, A=¢2—1,B=2¢Z, and C=Z2-M2in(2),and reducing the number of degrees of freedom to unity.

=(e+Z/R?*-1anda=M/a in(3).

Substituting (2) and (3) into (1) and solving the
resulting equation for € in the approximation specified
by the relationships |g| < 1 and M ~ Za, we can derive
the expression for the Hamiltonian of arelativistic elec-
tron in the field of a supercharged nucleus (Z > 137) in
terms of the action—angle variables. Theresult is

Um0
Ho = £=—Jc(R g)ep—'0) )
09

0

wherec(r, g) =exp(g—R)andg = NZPa? = M2,

The fundamental frequency is given by

@ = G = FeR I TE )

For Z > M, the equation for the trgjectory in the
regionr > R hasthe form [14]

Z’a’—M’

—

. (6)

O
> - 10+ €Za.
O

ad
= A/Mzz»:2 + (ZZO(Z— Mz)cosh[qp

O
AtZ~M (g ~ 0), we have

M IM2E2 + (Z2a? —M?)

x(1- cp)/zo‘
M
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The total Hamiltonian can be represented as
JZoa®-M? O ™ E

expr]
Za 0 JZ%a?=M?0 (9

H =

+ ecoswtsinez (X SinY coskA + y,cosPsinkA),

where A is an Euler angle and x, and y, are the Fourier
components of the electron dipole moment. The
explicit expressions for them are [14]

T
X i k(.oot
k koooT_[

T

- ﬁrj’exp[ikwo(ﬂeZlE —sing)] (10)
0

.0 -
x SiN& [Jcos 29 __ 1 sin
 a-—cos§¢ a-— cosé

;
Yo = T TI

_5/2 | kagt

EdE

a-— cosE

i kwot

_iMb sin2&d¢

ke T I 5 VM?cos’E —b’

: (1n

27 1
a—cos¢ a—cos¢

cos EdE

O,
x singsin
[ a-— cosED
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where

a= A JZ°- Mzexp{—rrn/A/Zz— MZ},

_ _ Zrf _ (R=ry)
T = 21w, b—%+§m—1, Ty = o

Evaluating the integralsin (10) and (11) by the sta-
tionary-phase method, we arrive at
R’ exp{—min/g}
K
In order to analyze the supercritical atom for sto-

chasticity, it isnecessary to find, aswasdonein[12, 13,
15], the resonance width

X =0, y= (12)

Av, = (8oog,rke)ﬂz,

wherer, = J/x; +y; and wy = duwy/dn.
From Chirikov’s stochasticity criterion [13, 14],
which has the form
Av, +Avy .,
28] s D@ 7
where wy(K+ 1) — wy(k) = w/(k + 1) — wk isthe spacing
between the neighboring resonances, we find that the

critical external-field strength corresponding to the
onset of the stochastization of electron motion is

JZ%a’ - Mzexp{ —mn/JZ%a% - MZ}

20ZK(K + 1)°(Jre+ fress)’

Taking into account (12), we reduce the critical field to
the form

€ =

(13)

- 9C(R g)exp{—2mn/g}
20Z(2K* + 2k + 1)

Injust the same way asin[13, 15], we calculate the
diffusion coefficient as

GCI‘

(14)

_I GZRZ
2¢(R, g)(Za)°

In summary, stochastization of a supercritical
hydrogen-like atom (Z > 137) interacting with a mono-

exp{-2mnn/g}. (15)
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chromatic field has been investigated. Analytic formu-
las for this case have been obtained, which reveal that
thecritical field strength for the onset of stochastization
ismuch less for a supercritical atom than for a subcrit-
ical atom (Z < 137), which was investigated in [13].
This can be explained by the fact that the condensation
of levels has an exponential character [see Eq. (4)]. The
above results can be of use in studying processes
accompanying slow collisions of heavy ions (with a
total charge in excess of 137) that interact simulta-
neously with a monochromatic radiation field.
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Abstract—A new artificial neutrino source on the basis of the "°Se isotope for calibrating low-threshold solar-
neutrino detectors like GNO, SAGE, and LENS is considered. It is shown that "°Se possesses some advantages
over sources based on 1Cr: the energies of its basic neutrino lines are close to the endpoint of the neutrino spec-
trum associated with proton—proton interactions in the solar cycle, and the production cross section for the
former and its half-life are much larger. A Russian L-2 heavy-water reactor can be used to generate the required
activity of "Sein an optimal mode. © 2001 MAIK “ Nauka/ I nterperiodica’ .

1. INTRODUCTION

The problem of solar neutrinosisone of the pressing
problemsin contemporary physicsand astrophysics. As
amatter of fact, the problem consists in that, according
to the results from four experiments that recorded solar
neutrinos (chlorine—argon experiment [ 1], Kamiokande
[2], GALLEX [3], and SAGE [4]), the fluxes of solar
neutrinos are sizably less than that predicted by the
standard solar model.

In order to solve this problem, it is necessary to con-
tinue Ga—Ge experiments with the aim of improving
the accuracy of the results already obtained (SAGE [4]
and GNO [5] experiments) and to launch new experi-
ments to implement an on-line detection of low-energy
neutrino fluxes from proton—proton interactions and
electron capture in a 'Be nucleus (for example, this
could be achieved with the recently proposed LENS
detector employing atarget based on Yb [6]).

In order to interpret correctly the results of experi-
ments that record solar neutrinos, it is necessary to cal-
ibrate preliminarily the detectors involved by using
artificial neutrino sources whose parameters are known
to within 5%. A number of K-capture sourceswere pro-
posed as artificial neutrino sourcesfor calibrating solar-
neutrino detectors (>'Cr, ®Zn, and 3’ Ar [7-9]). It should
be recalled that artificial neutrino sources based on the
>ICr isotope successfully operated in GALLEX [10]
and SAGE [11] experiments.

For the GNO and SAGE detectors, a calibration
experiment is required for a high-precision determina-
tion of the efficiency of their operation, while, for the
LENS detector, such an experiment is needed above al
for measuring the cross section for neutrino capture by
a'7®Yb nucleus. It should be noted here that the LENS
detector makes use of the reaction in which low-energy
solar neutrinos are captured by a target based on the
176Yb isotope [6]. Upon neutrino capture in a '"Yb
nucleus, there arise excited isomeric states of the "°Lu

nucleus, which decay into a long-lived isomeric state
with lifetime t = 50 ns. In this case, the neutrino-cap-
ture reaction is characterized by the presence of two
events (one from the electron produced as the result of
neutrino capture and the other from the photon deexcit-
ing the long-lived isomeric state of '7°Lu) at the same
place of the detector with a mean delay time of 50 ns.

In the present study, we discuss the possibility of
using the 7>Se isotope for calibrating the low-threshold
detectors SAGE, GNO, and LENS. This isotope has a
number of important advantages over artificial neutrino
sources based on 3!Cr: the half-life of the former is
longer by a factor of 4.3, and the energy of its basic
neutrino lines is close to the endpoint of the neutrino
spectrum associated with proton-proton interactions of
the solar cycle.

2. NEUTRINO RADIATION FROM
AN ARTIFICIAL NEUTRINO SOURCE
ON THE BASIS OF 7Se

Upon electron capture, "3Se transforms into 7As,
releasing a total energy of 863 keV (the relevant half-
lifeis T,, = 119.79 d) [12]. The most probable transi-
tions are accompanied by the energy release of
462.9keV (95.9%), 584.1 keV (1.7%), 598.9 keV
(0.7%), and 863.6 keV (1%) [12]. The diagram of >Se
decay is displayed in the figure, where we can also see
the neutrino energy with allowance for the binding
energy and the probabilities of electron capture from
the K and L shells. We note that the energy of basic neu-
trino lines is close to the highest energies of neutrinos
from proton—proton interactions, whereas the energy of
weak linesis close to the energy of neutrinos from the
solar cycle that are emitted in electron capture by a’Be
nucleus.

1063-7788/01/6402-0256%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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The neutrino-interaction cross section in the
inverse-beta-decay reaction was calculated according
to the formula[13]

o(E,) = ooF(E. Z)(E,—Q+m)
ey

x J(E,~Q+m)’~miM’,
where E, isthe neutrino energy in MeV, F(E,, 2) isthe
Fermi function [14], m. isthe electron massin MeV, Q
isthe difference of AZ + 1) and AZ), 0, = GZ/mi= 1.63 x
104 cm?/MeV? (if the energy is measured in MeV),
and the relevant matrix element sguared is M? =
(0a/9v)*B(GT) = (1.267)*B(GT); we have used here nat-
ural units where 7= ¢ = 1. The values of the Fermi
function F(E,, Z) were borrowed from [14]. The matrix
elementsfor the transitionsto the excited states of '7°Lu
were estimated in terms of the Gamow—Teller strength
function B(GT), whose values were determined in
experiments studying (n, p) and (°He, t) scattering [15];
for "'Ge, they were taken from [16].

The results of the calculations are presented in
Tables 1 and 2. The cross sections for the capture of
neutrinos from the 7Se source by the 7'Ga and '"°Yb
nuclei are 2.88 x 10 and 0.344 x 103 cm?, respec-
tively. From the calculation, it follows that the contribu-
tion to the capture cross section for 7'Ga from the >Se
source is determined by transitions to the ground state
of 7'Ge, amounting to 97% of the total cross section.
Thus, a comparison of the results obtained by calibrat-
ing a gallium detector with the aid of sources based on
>ICr and 7>Se will make it possible to determine inde-
pendently the cross sections for capture in the ground
state of "'Ge and inits excited states.

In calculating the number of events of the capture of
neutrinos from a source based on °Se (and, for the sake
of comparison, from the source based on 3!Cr) in the
SAGE, GNO, and LENS detectors, it was assumed that
the neutrino source, together with a passive shielding,
is arranged at the detector center. For the LENS detec-
tor, which contains 10 t of ytterbium, the length of the
path traveled by neutrinos in a detector material was
taken to be 295 cm, while the concentration of 76Yb
atoms was set to 4.1 x 10! atom/cm?. The geometry of
the calibration experiment with the GNO detector is
anal ogous to the geometry of the GALLEX experiment
[10]. The duration of the calibration experiment was
assumed to be three months, while the activity of the
source was set to 1 MCi.

Under these conditions, the number of eventsin the
GNO detector for 3'Cr will be very closeto that for >Se
(242 and 237, respectively). In the LENS detector, the
number of events will be 109 for 5!Cr and 92 for 7°Se
(only events leading to the excitation of the 195-keV
level of the 7°Lu nucleus were taken into account in the
last case).

From these calculations, it follows that, in order to
achieve a 5% precision (only statistical errors are taken
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7SSe

T1/2 =119.79 days

5/2*

451.08 keV (84.97%)
461.42 keV (10.93%)

572.19 keV (1.51%)
582.53 keV (0.19%)

587.08 keV (0.62%)
597.42 keV (0.08%)

5/2+ _400.659 keV

5/2—_279.543 keV
3/2- 264.658 keV
< 851.73 keV (0.89%)
862.07 keV (0.11%)
_ T5A
7/2 §
/ Stable

Diagram of 7>Se decay (shown in the diagram are neutrino
lineswhose energies are quoted with allowance for the elec-
tron binding energy in the K and L shells)

into account here) in calibrating the LENS detector, the
activity of the artificial neutrino source based on >Se
(°'Cr) isrequired to be 4.4 MCi (4.3 MCi).l) Incalibrat-
ing the GNO detector, the required activity is 1.7 MCi
for 73Se and 1.9 MCi for 5!'Cr. A similar calculation for
the SAGE detector revedls that an artificia neutrino
source of activity aslow as about 0.45 MCi is sufficient
to perform relevant experiments, since the rate at which
the "'Ge isotope is produced is much higher in a metal
target than in the GNO detector based on a solution of
galium chloride (owing to an order of magnitude
higher concentration of Ga atoms).

3. DEVELOPING AN ARTIFICIAL NEUTRINO
SOURCE ON THE BASIS OF Se

The >Se isotope is formed upon neutron capture by
74Se. For thermal neutrons, the capture cross section is
51.8 b, while the effective resonance integral is 520 b
(see Table 3). The material of the target must be
enriched in 7“Se and depleted in 7°Se, since the latter
has alarge cross section for the capture of thermal neu-
trons (85 b) and will substantially reduce the effective
neutron flux. It is worth noting that 7Se is used in
industry (production of defectoscopes) and medicine
(radiopharmaceuticals for medical diagnosis) [18].

DHere, allowances are made for the time (7 days) it takes for deliv-
ering the source to the underground laboratory.
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Table 1. Effective cross section for neutrino capture by “*Ga nuclei into the ground state and the excited states of the "*Ge
nucleus at E, = 175 and 500 keV (with allowance for the contribution from each neutrino line in the spectrum of the source)

Ot 10_45 sz .
Source Total cross section,
Ground state, E,=175keV, E, =500 keV, 107% cm?
B(GT) =0.087 B(GT) = 0.005 B(GT) =0.01
Sicr 5.286 0.206 0.135 5.627
5Se 2.791 0.087 0.002 2.880

Note: Hereand in Table 2, B(GT) is the Gamow—Teller strength function [15, 16].

The production of selenium enriched inthe 7Se iso-
tope does not involve serious technical difficulties,
because SeF,, a gaseous selenium compound that is
available at room temperature, makes it possible to use
the ultracentrifuging technique, which is well devel-
opedinRussia[19]. Sincethisprocedureisvery expen-
sive, the optimum enrichment of selenium in 74Se must
not be higher than 90 to 95% (at a "5Se concentration of
about 10 to 5%).

Selenium isknown to have not lessthan five alotro-
pic modifications; however, only gray hexagona sele-
nium, which is characterized by the melting tempera-
ture of 170°C and the boiling temperature of 685°C (its
density is 4.807 g/cm’), is stable. Selenium is very
active chemically; therefore, it must be hermeticaly
sealed during irradiation and subsequent utilization. If
seleniumisused for atarget, it isimportant to know the
temperature dependence of the pressure of its vapors
(this pressure changes from 15 mm Hg at 450°C to
760 mm Hg at 685°C [20]), since, for reactor safety, it

Table 2. Effective cross section for neutrino capture by
178y nuclei into the excited states of the 15Lu nucleus at
E, = 195 and 339 keV (with allowance for the contribution
from each neutrino line in the spectrum of the source)

O, 1074 cm? Total
Source [E = 195keV, | E, = 339 ke, | CTOSS SECtion,
B(GT)=0.21 | B(GT)=0.12 | 10™cm
SiCr 0.554 0.228 0.782
Se 0.336 0.008 0.344

Table 3. Cross section for neutron capture by stable seleni-
um isotopes [17]

| sotope o, b (thermal I, b (resonance
(concentration, %) neutrons) integral)

"se (0.9) 51.8 520

65 (9.1) 85 40.3
"Se (7.6) 42 30.1
83e (23.6) 0.43 -

805e (49.9) 0.61 2.0
823 (8.9) 0.044 0.039

will be necessary to calculate the required hermetic
sealing.

Questions associated with the production of 7>Se
were comprehensively studied in [18], where it was
shown that, if selenium enriched in 7Se to 100% is
exposed to a neutron flux of density 2 x 10'* cmr? s°!,
the resulting specific activity ranges between 2.9 x 10"
and 4.4 x 10" Bg/g (784 to 1189 Ci/g), depending on
the characteristic target dimensions (from 1 to 5 mm)
and the irradiation time (0.3 yr).

On the basis of the above, we can say that a target
must be a pellet or a rod made from pressed selenium
powder enriched in the 7*Se isotope and enclosed in a
hermetic casing from ultrapure aluminum. The diame-
ter of the target must be between 5 and 6 mm in order
to avoid the effect of thermal and resonance blocking,
whereas the mass of highly enriched selenium must lie
intherange 0.8-1.3 kg in order to achieve an activity of
1 MCi.

In Russia, there are a few reactors appropriate for
obtaining so high an activity of “Se. These are the high-
energy fast-neutron reactor BN-600, which possesses
special irradiation properties[21]; the research reactors
SM-3 and MIR [22]; and the L-2 heavy-water reactor
Mayak [23, 24]. If we take into consideration the reac-
tor operating period (130 d), the neutron flux density
(102 x 10" cm2 1), effective target cooling, and the
possibility of loading large amounts of the initial mate-
rial (distributed over alarge volume), preference should
be given to the L-2 reactor. This reactor makesit possi-
ble to produce a ">Se isotope of high specific activity:
from 737 to 875 Ci/g at an enrichment of 90% in 7Se
(see Table 4). For generating an activity of 1 MCi,
1.5kg (1.26 kg) of selenium is required for targets of
dimensions 5 x 6 mm ([J3 x 3 mm). Thetotal activity
of 7>Se that can be achieved with the aid of this reactor
by irradiating targets highly enriched in the 7Se isotope
isnot less than afew MCi at an irradiation duration of
130 d (this estimate was obtained on the basis of ®°Co
amounts produced by the reactor over ayear [23]).

It should be noted that the same enriched initia
material can be used three or four times, with the activ-
ity of the artificial neutrino source after the third irradi-
ation being about 75 to 80% of the activity obtained
upon the first activation.
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4. GAMMA RADIATION AND HEAT RELEASE
FROM ARTIFICIAL NEUTRINO SOURCES

Gamma radiation from the artificial neutrino source
being considered consists of two components: radiation
accompanying the decay of the selenium isotope °Se
proper into the excited states of ”As and gammaradia-
tion from isotopes obtained as the result of the activa-
tion of some elements appearing in selenium and in a
casing material (aluminum) as admixtures. The activa-
tion of aluminum and selenium isotopes other than 74Se
does not lead to the formation of gammaimpuritiesthat
are hazardous either from the viewpoint of the physics
of the experiment being discussed or for the personnel
running it, because all product isotopes are short-lived
or stable. Radionuclides that originate from theirradia-
tion of selenium isotopes with fast neutrons in the
(n, p), (n, a), and (n, 2n) reactions and which possess
hard gamma radiation are not hazardous either, because
they have a small production cross section (which is
especially important for the long-lived isotope *As, its
half-life being 17.78 d) or are short-lived like 7°As
(1.1d) and 7*Se (7.2 h). Moreover, the fraction of fast
neutrons at the place where the initial materia is
arranged is small in the L-2 reactor (heavy water is a
good moderator of neutrons).

Hence, the requirements on the purity of selenium
and auminum (the mass of the auminum casing is
commensurate with the selenium mass) with respect to
hazardous impurities are high. It should also be noted
that the technology for purifying selenium is well
developed, so that it can be obtained in aform freefrom
the admixtures of elements whose isotopes can be
responsible for the production of dangerous radionu-
clides (in particular, the concentrations of Fe, Ga, Cd,
As, and Ag can be reduced to values not exceeding 2 x
107, 1075, 107°, 104, and 10-°%, respectively).

It followsthat, if the purity of selenium and the cas-
ing materia is sufficiently high, an adverse effect is
expected primarily from the gamma radiation originat-
ing from "Se proper and including the lines of energies
821.6 keV (0.000137%), 617.8 keV (0.00444%),
572.2 keV  (0.0356%), 400.66 keV (11.48%),
279.54 keV (25.20%), and 264.66 keV (59.3%) [12].
That "Se features high-energy gamma lines (those at
821.6, 617.8, and 572.2 keV) substantially toughens
requirements on biological protection for artificial neu-
trino sources based on "*Sein relation to that for artifi-
cial neutrino sources based on >'Cr.

Animportant merit of the”Se isotopeasabasic ele-
ment of artificial neutrino sources is that, owing to its
long half-life, there arises the possibility of storing it
for a period of up to three weeks until the complete
decay (or a considerable reduction of the activity) of
potentially present short-lived radioi sotopes possessing
hard gamma radiation such as ’Ga, 2*Na, 7°As, and
140La. Concurrently, the activity of 7>Se decreases only
by 12%.
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Table 4. Production of "®Se at the L-2 reactor (enrichment
in "Se and "%Se is 90 and 10%, respectively) [25]

Target Specific Selenium mass
dimensions (mm)| activity, Ci/g | for generating 1 MCi, kg

73 %3 875 1.26

25 % 6 737 15

The decay of °Se releases energy (in the form
Auger electrons, characteristic x rays, and photons) in
the amount of 2357 W per 1 MCi of its activity (for the
sake of comparison, we indicate that the energy release
from the decay of 3!Cr of the same activity is 217 W).
Therefore, developing means for protection from radi-
ation and for efficient heat removal is an engineering
problem of paramount importance in constructing arti-
ficial neutron sources on the basis of the 7>Se isotope.

5. CONCLUSION

The isotope proposed in this study possesses anum-
ber of advantages over theisotope>!Cr used previously:
the half-life of the former islonger than the half-life of
the latter by a factor of 4.3 (this makes it possible to
relax the requirements on the time of calibration exper-
iments), the energy of its basic neutrino linesis closeto
the endpoint of the neutrino spectrum associated with
proton—proton interactions occurring on the Sun, the
initial material is characterized by a high purity in haz-
ardous admixtures, and the cross section for 7>Se for-
mation is a few times as large as the cross section for
ICr formation. Moreover, artificial neutrino sources
based on the ">Se isotope are advantageous in that they
provide the possibility of independently determining
the cross section for capture to the 7'Ge ground state,
whereby the interpretation of the results obtained by
measuring the flux of solar neutrinos with a gallium
detector will be refined substantially.

In order to generate the required activity of 7Se in
an optimal mode, a Russian heavy-water reactor of the
L-2 type has been proposed, which makesit possible to
produce this i sotope with a specific activity of 875 Ci/g
by using selenium targets highly enriched in the 74Se
isotope.
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Abstract—Some technical and technological aspects of development, design, and safe operation of an artificial
tritium source with an antineutrino activity of 40 MCi for experiments to measure the neutrino magnetic
momentum are considered. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Low-energy neutrino reactions are a sensitive and
precise probe for testing the Standard Model of elec-
trowesak interactions—in particular, for studying the
nonstandard el ectromagnetic properties of the neutrino.
The problem of the (anti)neutrino magnetic moment
(specificaly, of its existence and magnitude), aswell as
the motivation of its laboratory searches, iswell known
[1-3].

Laboratory measurements of the neutrino magnetic
moment W, are based on extracting its contribution to
the cross section for (anti)neutrino—electron scattering.
At nonzero |, the differentia cross section do/dT,
where T is the kinetic energy of the scattered electron,
receives contributions not only from standard weak (W)
interactions but also from electromagnetic (EM) inter-
actions. At low energy transfers (T < E,), these contri-
butions behave absolutely differently: (do/dT ),y is vir-
tually constant, whereas (do/dT )g,, increasesin propor-
tion to 1/T with decreasing energy. In order to improve
the sensitivity to u,, it isnecessary to reduce the thresh-
old for scattered-electron detection.

The experimental scheme comprises a source (gen-
erator) of (anti)neutrinos and a detector. Since neutrino
interaction with matter is extremely weak, a high neu-
trino-flux density in the detector is a necessary require-
ment on the source, the most important abeit not the
only one.

Four types of (anti)neutrino generators can be used
in experimental neutrino physics. These are nuclear
reactors and [-active isotopes for the electron
antineutrino, accelerators predominantly for the muon
neutrino and antineutrino, and the Sun for the electron
neutrino. In recent years, ever greater attention has
been givento artificial beta-active sources of activity 5—
50 MCi [4-11] as an dlternative to reactors. The use of
SICr sourcesfor calibrating the solar-neutrino detectors
in the GALLEX and SAGE experiments was the first

D Joint Ingtitute for Nuclear Research, Dubna, Moscow oblast,
141980 Russia.

2 All-Russia Ingtitute of Experimental Physics, Sarov, 607190
Russia.

experience of thiskind. Inrelation to reactors, artificial
sources of neutrinos would provide the following
advantages: (i) more intense antineutrino fluxes; (ii) a
considerable suppression of the correlated background,
including that from inverse beta decay; (iii) small
dimensions, which enable one to use |ow-background
underground laboratories and flux modulation to sub-
tract the uncorrel ated background; (iv) rather wide pos-
sihbilities of choosing the energy range; (v) knowledge
of the (anti)neutrino spectrum to a high precision.

An additional important advantage of a tritium
source of antineutrinos isthat it is possible to dispense
with a passive shielding between the source and the
detector: because of alow endpoint energy of the decay
spectrum (E, = 18.6 keV), bremsstrahlung does not
escape from the source. Moreover, available technolo-
gies are capable of producing highly purified tritium.

In a proposal to measure the neutrino magnetic
moment [4, 5], it was shown that the use of a 40-MCi
tritium source of (anti)neutrinos (4 kg of tritium),
together with detectors ensuring an electron-detection
threshold intherange E;,, = 1-10 eV, would permit sig-
nificantly reducing the laboratory limit on the
(anti)neutrino magnetic moment achieved in reactor
experiments [12].

A spherical source of activity 40 MCi generates an
(anti)neutrino-flux density of F = 6.4 x 10'* cm= s ! in
a compact assembly of detectors (volume of a few
liters) that is arranged within the source (Fig. 1) [5].
Thisvalue is more than one order of magnitude greater
than the (anti)neutrino fluxes obtained in reactor exper-
iments[12].

Silicon cryodetectors based on the effect of ioniza-
tion conversion into heat, which are presently being
developed [5], and strip avalanche germanium detec-
torsemploying internal signal amplification [13] can be
used to detect electrons of energy between about 1 and
10 eV. The estimates from [5, 13] show that, within one
to two years of low-background measurements, a labo-
ratory limit on the neutrino magnetic moment can be
obtained at alevel of the most stringent astrophysical
constraints 1, < (1-3) x 10712 pg [14].
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Promising substances for storage of hydrogen isotopes

NEGANOV et al.

Py, MM Hg | Decomposition H, content in hydrides Density, g/cm®

a 25°C temperature, °C cm3/g cm3/em?3 metal hydride
UH3 10610 420430 ~140 ~1570 18.9 11.9
TiH, 9 ~1700 3.8
TiT, ~10- 550-620 ~468 1700 4.5 3341
MgpNiH,, ~102 ~240 ~418 ~1074 347 2.71
ZrCoH ~10™ 340-350 ~186 ~1415 7.68 6.54
LaNisMn,Hq ~102 270 ~127
LaNis_,Al Hy ~101-10 180-250 80-100 550-690 9.66—7.41 8.25-6.54
x=0-1,y=6.7-41
PdH 30-50 ~150 ~105 ~800 11.9
H, liquid -253 780
T, liquid 251 1000

Note: The content of hydrogen is presented for the stoichiometric hydride. The actual content of hydrogen in ahydride is somewhat lower

and depends on the metal state.

It very difficult, both in the scientific and in the tech-
nological aspect, and expensive to construct a tritium
source of ultrahigh activity. Owing to the reduction of
nuclear weapons, large amounts of tritium have
recently become available for fundamental research.
Such aunique situation is unlikely to occur again in the
future, and it would be inexcusable to miss this oppor-
tunity.

In the present study, we consider some technical and
technological aspects of the development and safe
operation of a40-MCi tritium source of (anti)neutrinos.

2. STATE OF TRITIUM IN THE SOURCE

In order to achieve a maximum (anti)neutrino-flux
density in the detector volume, it is necessary to ensure
amaximum volume density of tritium within the source
body. At the same time, such a source must be abso-
lutely safe under any conditions, including extreme
ones. Obvioudly, it is most appropriate to store tritium
chemically bound with hydride-forming metals. On
one hand, such metals are characterized by the highest
volume density of hydrogen; on the other hand, tritium
has low equilibrium pressuresin them at room temper-
atures. Thetableliststhe properties of some substances
that show promise as candidates for hydrogen storage
[15-18].

It can be seen that Ti is the most promising material
in this respect. It has the lowest equilibrium pressure at
room temperature (about 10 mm Hg), the highest
temperature of hydride decomposition, and the maxi-
mum volume concentration of hydrogen. The volume
concentration of tritium in Ti is nearly 1.7-fold higher
thanintheliquid state. At the sametime, a source based
on titanium tritide can be safely used within a wide
temperature range extending up to 500°C, whereas
storage of liquid tritium requires a special powerful

cryogenic apparatus capable of maintaining the tritium
temperature at about 20 K despite its heat release.

A high purity of titanium in the radioactive admix-
tures of the uranium family is another important factor
in favor of choosing Ti asatritium carrier, becauseitis
predominantly these admixtures that contribute to the
background [19].

3. SOURCE SAFETY

Since the source being discussed is of an unprece-
dentedly high activity (40 MCi), it is necessary to
ensure its absolute safety at al stages of the operating
cycle.

Here, heat release in the source and its self-heating
dueto tritium radioactive decay present one of themain
problemsin designing such asource. If the temperature
rises uncontrollably, there is the danger of the conver-
sion of tritium into a gas phase and, as a consequence,
of itsleakage into the atmosphere owing to diffusion or
the destruction of the source casing.

According to the results of calorimetric measure-
ments, only 30% of the energy of tritium beta decay is
converted into heat. The rest of the energy is carried
away by (anti)neutrinos. In this case, the heat releaseis
dH/dt = 0.324 W/g = 1.944 W/mol T, [17]. This corre-
sponds to 1.3 kW per 4 kg of tritium. The temperature
field over the source volume was calculated by using
the ANSY S code for the design in Fig. 1. In this calcu-
lation, it was assumed that there is natural heat
exchange at the source surface. The density of titanium
tritide—deuteride Ti(DT), , was taken to be 3.5 g/cm? at
a96% concentration of tritium intheinitial DT mixture
[18]; the thermal conductivity and the heat capacity
wereset to A = 0.154 W/(cm K) and C = 0.605 J/(g deg)
[17, 20]. Figure 2 demonstrates the results of the calcu-
lations.
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Fig. 1. Layout of the experiment: the assembly of semicon-
ductor detectors of mass 3to 4 kg that is placed within atri-
tium source (TiT,). The active and passive shielding, elec-
tronics, and cryogenic devices are not shown.

It can be seen that the temperature at the hottest
point of the source is368°C. This prevents a safe oper-
ation of a source of the above design with a smooth
external surface. If, however, the external surface of the
source is finned with a finning coefficient of 15, then
the temperature decreases by one order of magnitude
[21], and the conditions of long and safe storage of tri-
tium are automatically realized for this design. Never-
theless, it isnecessary to provide the possibility of addi-
tional ventilation of the source under actual experimen-
tal conditions.

The transportation of the source presents more seri-
ous problems. In accordance with modern international
regulations, rather stringent requirements are placed
upon the casing used for transportation. The casing
must ensure an enhanced shielding of the source and
prevent the radioactive pollution of the environment in
emergency situations, including those that arise when

(1) ashock impact simulating transport accidentsis
applied,;
~ (2) the encased source falls from some height onto a
pin;
(3) some objects fal onto the encased source;
(4) the casing is submerged in water;
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Fig. 2. Distribution of temperature within the source in the
case of free convective heat exchange with the environment.
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Fig. 3. Isotherms of the Ti—H (D, T) system [22]: the equi-
librium pressure P (mm Hg, Pa) as afunction of the degree
Sof saturation of the Ti—H (D, T) system at five temperature
valuesindicated on the curves[S (in cm?/g) isthe volume of
the gaseous hydrogen isotope at standard temperature and
pressure (P = 1bar, T=293K) per 1 g Ti]: (1) hydrogen, (2)
deuterium, and (3) tritium.

(5) the encased sourceis hit by gun bullets and frag-
ments of some conventional weapons,

(6) aheat pulse simulating afire in atransport vehi-
cleisapplied.

It is obvious that, to meet these requirements, the
source must be transported in a specia shielding con-
tainer. In this case, there will be no free convective heat
exchange with the source surface, and the source will
be heated at arate of about 200 deg/h. Asaconsequence,
titanium tritide will undergo decomposition accompa-
nied by the release of gaseous tritium. Figure 3 shows
the equilibrium pressures of the hydrogen i sotopes over
titanium hydride at various temperatures. It can be seen
that, even at 380°C and a saturation degree of
410 cm?/g, the tritium pressure can reach 100 mm Hg.
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As the temperature rises further, the equilibrium pres-
sure of tritium also increases and can exceed atmo-
spheric pressure. Therefore, the design of the casing
must also ensure the removal of heat released in tritium
decay during source operation and storage and prevent
the heating of the source under conditions simulating a
fire.

Figure 4 displays one of the possible designs that
can be used to overcome the problem. The source is
placed into a protective container equipped with ather-
mal column [23] to remove heat released in tritium beta
decay. This container can ensure fulfillment of only the
first five of the requirements mentioned above. In the
case of fire, however, the thermal column can becomea
source of additional heat from the outside and cause a
faster heating of the source than in the case where there
is no natural heat exchange. In order to suppress this
process, it isnecessary to switch off thethermal column
as soon as the temperature of the environment rises
above a certain value. This can be achieved with the aid
of ameltableinsert actuated at a preset limiting temper-
ature. Nevertheless, the temperature in the source will
begin to increase, and the pressure created by tritium

P, g/cm?

4.14
3.7

33

29
0

Time, yr

Fig. 5. Density of titanium tritide-deuteride as afunction of
storage time.

released in the gas phase (see Fig. 3) can eventually
destroy the source casing.

In order to prevent such a situation, gaseous tritium
is removed to a getter through a membrane block as
soon as a preset limiting pressure is attained. Titanium
can be used as aworking material of the getter, since it
has a low equilibrium pressure even at high tempera-
tures (Fig. 3), provided that its degree of saturation is
low. The getter must be arranged in a container similar
to the container of the source and connected to the latter
by a system of rigid gas pipes. The best solution is to
place the containers and the gas pipes within a super-
container (Fig. 4).

The next point to be taken into account in designing
the source is associated with its swelling owing to *He
accumulation in the solid phase of tritide. Figure 5
shows an experimental curve that illustrates a decrease
in the density of titanium tritide—deuteride versus the
storage time. In order to increase the neutrino flux, it is
tempting to have titanium tritide pressed to a maximum
density of 4.09 g/cm3. However, this density will
decrease with time, and the source casing will experi-
ence high loads that can result in violation of its integ-
rity and even to its destruction. To prevent this, provi-
sion should be made in the source design for arranging
appropriate compensators.

4. CONCLUSION

It is possible that, for some problems discussed
here, alternative technical solutions will be found in
constructing the source. In particular, an actual source
can have a different shape, although the geometric
arrangement proposed in [5] is optimal for ensuring a
maximum particle flux in the detector. Nevertheless,
the final choice of design can be made only with allow-
ance for the structural features of the detection system,
the background conditions of a specific laboratory, and
the technological requirements for the production and
operation of the sourcein an experimental setup. How-
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ever, the main conclusion of this study on the possibil-
ity of constructing and safely running a40-MCi tritium
source of antineutrinos will remain valid.
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Abstract—The problem of charm generation in the interactions of nucleonswith nuclei of air atomsat energies
inaccessible at present-day acceleratorsis discussed. Both experimental data on cosmic-ray muons and the pre-
dictions of QCD-based theoretical models are used in analyzing the behavior of the differential cross sections
for charmed-particle production at high energies. The calculated fluxes of muons and neutrinos arriving at sea
level both along the vertical and along the horizontal direction are presented, together with their approximations
for theinterval 2 x 10>-10'° GeV. © 2001 MAIK “ Nauka/Interperiodica’” .

1. INTRODUCTION

The problem of the possible generation of muonsin
the atmosphere directly in the interactions between the
nucleons of primary cosmic radiation and nuclei of air
atoms or asthe result of decays of very short-lived par-
ticles (those whose half-lives are much shorter than the
half-lives of the pions and kaons) produced in such
interactions was posed in cosmic-ray physics many
years ago (see, for example, [1, 2]). In order to explore
this channel of muon generation in the atmosphere, it
was proposed to measure angular distributions of
muons at sealevel [2], and many theoretical and exper-
imental studies have been devoted since then to the sub-
ject. When the discovery of particles of lifetimes about
107''-10"? s in photoemulsion experiments conducted
in cosmic rays [3] had been confirmed in accelerator
experiments, interest in the problem was rekindled
(see, for example, [4-14]). Different theoretical models
were used in different studiesto predict the behavior of
the differential cross sectionsfor charmed-particle pro-
duction at high energies inaccessible to experimental-
istsat modern accel erators. Asaresult, different predic-
tions for the fluxes of muons and neutrinos from
charmed-particle decays in the atmosphere differed by
a few orders of magnitude. However, the creation of
new-generation giant neutrino telescopes that is fore-
seen in the near future can provide the possibility of
launching experiments with cosmic neutrinos, thereby
transforming neutrino astrophysics into an experimen-
tal science from a purely theoretical one. In view of
this, knowledge of the fluxes of cosmic-ray muons and
atmospheric neutrinos appears to be of paramount
importance.

Indeed, the background to experiments with cosmic
neutrinos is dominated by atmospheric neutrinos. It is
the fluxes of atmospheric neutrinos that determine the

* e-mail: volkova@inr.npd.ac.ru

areas that the arrays to be used must have for success-
fully studying diffuse fluxes of cosmic neutrinos, as
well asthe necessary operation time of such arrays and
the minimum energy from which the investigation in
guestion becomes possible. At the same time, con-
straintsimposed on angular resolutions of arrays aimed
at searches for pointlike neutrino sources in the Uni-
verse are chosen with allowance for these fluxes. Since
there is a close genetic relation between cosmic-ray
muons and atmospheric neutrinos (in the atmosphere,
either of these two particle species originates from the
decays of pions, kaons, and charmed particles), an
experimental investigation of muonsto ahigh precision
may provide knowledge of atmospheric-neutrino fluxes
to the corresponding precision.

On the basis of data on cosmic-ray muons and pre-
dictions of modern QCD-based modelsfor the behavior
of differential cross sections for charmed-particle gen-
eration, we calculate here the differential spectra of
muons and neutrinos that were produced in the atmo-
sphere and which arrive at sea level along the vertical
or the horizontal direction. The accuracy of these calcu-
lations is discussed.

2. SPECTRUM OF PRIMARY NUCLEONS

The differential energy spectrum of primary nucle-
ons, Py (Ey), that is based on direct measurements of
the fluxes of primary particles with energies not higher
than 1000 GeV/nucleon [15] can be represented in the
form

CE,;(V +1)
(1+ 1.8/Ey)°dE,

Pn(En)Ey = @.1)

[nucleon/(cm” s st GeV)],

where Ey is the nucleon energy measured in GeV, C =
2.6,andy=1.7.
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The analysis performed in [16, 17] revedls that, up
to nucleon energies of about 3 x 103 GeV, thisform of
the primary-nucleon spectrum describes fairly well the
entire body of experimental data on cosmic-ray muons
arriving at sealevel along the vertical or the horizontal
direction. We assume that the spectrum of primary
nucleons can be described by this form up to 3 x
10° GeV and further for Ey = 3 x 10% GeV, but with C =
228 andy = 2.

3. GENERATION OF CHARMED PARTICLES

3.1. Data on Charm Generation from Accel er ator
Experiments

The probability dWyA(Ey, E,)/dE, that acharmed

particle n (D and D mesons or A, baryon) whose
energy takesvaluesintheinterval between E, and (E, +
dE,) is produced in the interaction of a nucleon N of
energy Ey with the nucleus A of an air atom can be writ-
ten as

DD N D

(Ey) df,(Ey, Ey)
o (Ey) dg,

where o\(E,) is the cross section for the inelastic

interaction of anucleon with the nucleus of an air atom,

cﬁ,‘f AD (Ey) stands for the cross sections describing

the production of DD and A.D pairsin such interac-
tions, and df,(Ey, E,)/dE, representstheinclusive spec-
traof n particles.

Figure 1 displays the cross sections for charm pro-
duction in praton—nucleon (pN) interactions according
to accelerator experiments (points), perturbative QCD
calculations in the next-to-leading order (NLO) [18-
21] (solid curve), and calculations based on the model
of quark—gluon strings (QGS model aso known
QGSM) [22-25] (asterisks). The accelerator experi-
mental data presented here were borrowed from [26].

For energies E, > 2 x 10° GeV, the QGSM resits
[27] that were obtained for the cross sections describ-
ing the production of charmed-particle pairsin proton—
proton interactions and which are normalized to accel-
erator data can be approximated as

Wia(En. En) _
dE,

(3.1

0o (E,) = 0.48(logE,—3.075) for DD-pairs,
(3.2)

Gggﬁ(Ep) = 0.07(logE,—0.84) for /\CB-pairs.(3 ;

These formulas are valid for the generation of
charmed particles in proton—proton interactions. For
interactions between anucleon and the nucleus of an air
atom with an atomic number A, the cross section for
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Fig. 1. Cross sections for charm generation in proton—

nucleon interactions: (open circles) data from accelerator
experiments as quoted in [26], (curve) results of the NLO
calculation within perturbative QCD, and (asterisks) results
of the QGSM calculations.

the production of charmed-particle pairs has the form

0" (Ey) = of(En)(A™)"

where x,, isafunction of the projectile-nucleon-energy
fraction u = E, /Ey carried avay by a charmed particle.
Thisfunction variesfrom 1 for u — 0 to about 0.5 for
u— 1[27]. We set it to about unity for the generation

of DD mesons and to about two-thirds for baryon gen-
eration. These values of x,, are compatible with data
obtained in accelerator experiments that studied the

cross sections for charmed-particle production as a
function of the target atomic number.

Accelerator experiments show that the spectra of
product D mesons reflect the leading-particle effect,

D% Eorf 5 = 5,

E0’
and that the spectra of A baryons are of a central char-
acter

(3.4)

df°(En Ep)

TdE, (3.5)

df"(Ey, Ex)
T dE,

13-z

(3.6)

3.2. Theoretical Concepts of Charm Generation
at High Energies

The charm-generation process is usually treated
within various theoretical models based on QCD. The
spectra of charm generation then prove to be very sen-
sitive to the structure functions for the quark and gluon
distributions with respect to the Bjorken variables x.
For example, two calculations of the flux of cosmic-ray
muons from charmed-particle decays within the same
version of perturbative QCD [12] but with different
gluon structure functions yielded results differing by a
factor of about 20 to 40 for energies 100-1000 TeV.
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Fig. 2. Generation of a charmed quark—antiquark pair
through gluon—gluon interactions in the NLO of perturba-
tive QCD (M 2 isthe square of the mass of the generated par-
ticle pair).

At energies of interest to our present consideration,
it is necessary to know the structure functions for very
small values of the variables (x < 10~#). Schematically,
the process of charmed-quark (cC) generation in pro-
ton—proton (pp) interaction through gluon—gluon (gg)
interaction (it is precisely the process that is basically
responsible for charm generation at energies as high as
those that are of interest to us in the present study) is
illustrated in Fig. 2 (there, X, and x, are the Bjorken
variables for gluons).

Because of the origin of primary cosmic radiation,
the main contribution to the calculated fluxes of
charmed particles that are generated in the atmosphere
comes from x = X, — X, ~ 0.1-0.2. Since x,;%, = M?%/s,
where M? is the square of the mass of the product par-
ticle pair and s is the square of the total energy in the
rest frame of theinteracting protons, we have x, ~ 1074~
10~ for an incident proton of energy about 50 to
500 TeV in the laboratory frame.

In the NLO of perturbative QCD, the cross section
for charm generation in proton—proton interactions is
given by [19-22]

a(pp — cc) O J'dxldxzcgg(Mz) fo(x) fo(xa), (3.7)

wheref, stands for the gluon structure functions, which
are known from accelerator experiments to within 30%
at all x values discussed above.

By studying the behavior of the spectra of product
particles with increasing projectile-proton energy, we
find that xdo/dx can change absolute value, but that it
cannot change shape. An analysis of experimental data
on cosmic-ray muons [17] reveals that, in the case of
pion generation in the interactions between nucleons
and nuclel of air atoms, scaling isviolated only slightly
in the fragmentation region over a broad energy range
from a few GeV to a few hundred TeV. According to
NL O calculations within perturbative QCD, such avio-
lation for charmed-particle generation must be still
weaker.

VOLKOVA, ZATSEPIN
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Fig. 3. Quantities uydfn/du versus the projectile-nucleon-
energy fraction u = E/Ey carried away by acharmed parti-
clen: (curve 1) results of the calculations performed under
the assumption that the spectrum of product D mesonsis of

a scaling character and is proportional to (1 — Ep/Ey)>;
(curves 2 and 2') results of the QGSM calculations at s'/? =
123.2 GeV and 16 TeV, respectively; and (curve 3) results of

the NLO calculations within perturbative QCD at s'/2 =
27.4 GeV.

rEqydf o (Ey Ex)
[E\U d(E,/Ey)
as functions of the projectile-nucleon-energy fraction
E,/Ey carried awvay by a charmed particle n. These
quantitiesintegrated over the spectra of primary nucle-
ons determine the fluxes of muons and neutrinos gener-
ated by charmed-particle decays in the atmosphere.
From Fig. 3, we can see that, although the energy of
interacting nucleons changesin avery broad region, the
guantities in question show very small variations in
going over from one model to another.

Figure 3 shows the quantities

3.3. Charm Generation according to Data
on Cosmic-Ray Muons

As was indicated above, muon generation through
decays of very short-lived particles is a long-standing
problem in cosmic-ray physics.

The underground experiments that measured the
fluxes of cosmic-ray muons in the Colar Gold Field
minein Indiayielded the value of R= (1 £ 0.4) x 103
for the ratio of the number of muons (generated
promptly in the interactions of nucleons with nuclei of
air atoms or in decays of particles whose lifetimes are
much shorter than those of pions or kaons) of energy in
excess of 10 TeV to the number product pions with cor-
responding energy [28]. According to data from the
Baksan neutrino observatory, this ratio is about 1.5 x
1073 [29].

Calculations assuming that scaling is not violated in
the fragmentation region of the interactions between
PHYSICS OF ATOMIC NUCLEI
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Table 1. Explicit expressions used in the present calculations for the quantities Wi,y Wnin, and f(w) characterizing the kine-

matics of three-body charmed-particle decays being considered

Decay process Winin Winax f(w)
My o f s [(1—W)(m2 [0.96—m; )
Ne—=Ng+t+v — 1-—0 Ao, D Ny K
c 0 D’nACD |jn/\c|]
O (1-w)(m, p[0.96)0
D—=K+p+v mllNag - g+ 2 gl Raeo
[ ChgC . Mh,. K

Note: R, =0.633and Ry =1.03.

nucleons and nuclei of air atoms and employing the
cross sections for charmed-particle generation that
were obtained within the QGSM at high energies [27]
and which were normalized to the cross sections mea-
sured in accelerator experiments can explain experi-
mental dataquoted in [10] for cosmic-ray muons. From
the analysis performed in [10], it follows that, at about
70 TeV, the contribution from charmed particles to the
flux of cosmic-ray muonsarriving at sealevel along the
vertical directioniseqgual to the contribution from pions
and kaons. These calculations describe well experi-
mental results obtained at Moscow State University
with an x-ray emulsion calorimeter that measured
angular distributions of muon fluxes up to energies of a
few tens of TeV [30].

The spectra of particlesin cosmic rays descend fast
with increasing energy; therefore, only an upper limit
on charmed-particle contribution to muon generation
can be extracted from experimental dataon cosmic-ray
muons because of low statistical significance of these
data.

4. FLUXES OF COSMIC-RAY MUONS
AND ATMOSPHERIC NEUTRINOS

4.1. Charm-Induced Fluxes of Muons and Neutrinos

The inputs that we employ in calculating the fluxes
of cosmic-ray muons and atmospheric neutrinos gener-
ated in the interaction of primary cosmic radiation with
nuclel of air atoms as the result of charmed-particle
decay (such muons and neutrinos are usualy referred
to as prompt ones, whereas those that originate from
pion and kaon decays are called ordinary muons and
neutrinos) are the following: (i) the cross sections that
were calculated for charmed-particle productionin pro-
ton—proton interactions on the basis of QGSM and
which were normalized to the latest data from acceler-
ator experiments [see Egs. (3.2) and (3.3)]; (ii) the
dependences of these cross sections on the air atomic
number [see Eq. (3.4)]; and (iii) the spectra of D
mesons and A\ baryons consistent with accel erator data
[see Egs. (3.5) and (3.6); according to the assumptions
presented in Subsections 3.2 and 3.3, these spectra
undergo no changes in the fragmentation region of par-
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ticle generation over the entire region of energies con-
sidered here].

The number of muons or neutrinos (muon or elec-
tron ones) generated per event of nuclear interaction of
anucleoninthe atimosphere that arrive at sealevel at an
angle 6 with respect to the vertical direction and which
are produced in the decays of charmed particles can be
represented in the form (here, we disregard the energy
losses of muonsin air)

Whax 1

[ jbqa”(u)(l—u)es

B - min 0 (4.1)
DD,A.D

xOpa © (Ep o/ (uw))/ oy (E, o/ (uw))

x W' f (W)/(1 + E,, ,/(WES'(6)))dudw,

oy (B 8) = S WY
i

W,

where summation is performed over al types of
charmed particles and where b = 1.08 and 6 = 5 for the
D mesonsand b = 1.4 and & = 0.4 for A, baryons. The

notation used in expression (3.1) is the following: W,

is the probability of charmed-particle decay into a
muon and aneutrino; w= E, /E,; Wiy, Wiyin, @Nd f (W)
are associated with the kinematics of the three-body
decay of acharmed particleinto amuon and a neutrino;
u=E,/Ey; $"(u) = u’~* for D mesons, and ¢"(u) = u¥

for A, baryons; and E;' (8) = m,/(ct,(8)) is the criti-
cal energy of the charmed particle n (the energy value
at which the probability for the particle to decay over a
unit range with respect to nuclear interaction is equal to
the probability for this particle to undergo interaction),
where m, istherest mass of the particlen, 1, isitslife-
time in its rest frame, c is the speed of light, 0 is the
angle of particle arrival with respect to the vertica
direction, and ¢(6) = p(h, 8)/h [here, p(h, 6) is the air
density in the atmosphere at a depth h.

Tables 1 and 2 present the values of the quantities
Woao Winins @Nd (W), which are associated with the
kinematics of the three-body decay of a charmed parti-
cle into a muon and a neutrino; the critical energies of
the relevant charmed particles; and the probabilities
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Table 2. Critical energies of charmed particles n and prob-

abilities W] of semileptonic decays into muons and neutri-
nos

Particlen E;(0°), GeV [E;(90°), GeV | Wy [31]
D* mesons 401x10" | 393x108 | 0.07
Do, Dy mesons 1.02 x 108 9.99x 108 | 0.032
Mg baryon 259x108 | 254x10° |<0.02

WY of their semileptonic decays (the rest masses and

the critical energies are expressed in GeV; the values of
the probabilities of semileptonic decays, the rest
masses, and the lifetimes were borrowed from [31]).

4.2. Comparison with the Results Presented
in Other Studies

The fluxes of prompt cosmic-ray muons arriving at
sealevel aong the vertical direction were calculated in
anumber of other studies. Their resultsare displayedin
Fig. 4.

Curves 1 and ' were computed in [12] on the basis
of perturbative QCD for, respectively, the soft and the
hard version of the gluon structure functions (within the
measurement errors, either version is compatible with
the entire body of experimental data). Here, we can
clearly see the dependence of the calculations being
discussed on the gluon structure functions: at energies
in the range 10-1000 TeV, the muon fluxes as calcu-

log(PR'(E, 0°)E)

—1F

-5 1 1 1 1 ]
3 4 5 6 7 8

logE,,

Fig. 4. Differentia spectra Pﬁr(Ep, 0°) of cosmic-ray

muons originating from charmed-particle decays in the
atmosphere and arriving at sealevel along the vertical direc-
tion according to the results obtained in (curves I, ') [12],
(curve 2) the present study, (curve2') [10], and (curve 3) [13]

{ P} (Ey, 0°) isexpressed in units of [muon/(cm” ssr GeV)],
while E, is measured in GeV}.

VOLKOVA, ZATSEPIN

|ated for the two versions of the structure functions dif-
fer by afactor of 10 to 50.

The results of the calculations performed in [10]
(curve 2 differ from the results of the present study

(curve 2), since some parameters (Wg and & for D

mesons) were set to different values in [10] and here
and since different normalizations of the primary-
nucleon spectrawere used (y=1.65and 1.7 in[10] and
in the present study, respectively).

The muon fluxes computed in [13] (curve 3) differ
strongly from our present results (by a factor of about
45 at a muon energy of 10° GeV, for example). If we
take into account the distinctions between the normal-
izations of the primary-nucleon spectra in these two
studies, the difference being discussed reducesto afac-
tor about 30. The remaining distinction can be attrib-
uted to the difference in the spectra adopted for
charmed particles generated in nucleon interactions in
the atmosphere. Indeed, the number of charmed parti-
cles, I, generated per event of nuclear interactions of
nucleons in the atmosphere can be represented as

1 DD, A.D
Ona © (Eqlu) df  (u)
| Ofu 4 1 2 du. (4.2)
" J; o (E /u)y  du

The cross sections for charmed-particle generation
in the interactions of 10°-GeV nucleons (and it is pre-
cisely the nucleons of these energies that are responsi-
ble for the generation of muons being discussed) are
nearly coincident in these two studies.

Figure 5 shows the |, values calculated here and in
[13] for the different charmed particles. For I, to take
the samevalue asin[13] for D mesonsat 10° GeV, pro-

Y n
107!
E D*~(DD), =3
- D*(DD), 5
1073 A

D*~(DD). 30" -

108
En' GeV

L L

1073
100

104

Fig. 5. Numbers|, of various charmed particlesn generated
per event of nuclear interactions of nucleons in the atmo-
sphere according to the calculations performed in (solid
curves) the present study and (dashed curve) [13].
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Table 3. Fitted values of A and y in the approximations of the differential energy spectra (in units of [particle cm™? st sr2
GeV]) of prompt muons and neutrinos arriving at sealevel along the vertical and the horizontal direction

6. deg S 10%-10* 103 x 10° 3% 105-3 % 10° 3% 105-10°
A
0 12x10° 4.6x 10 4.15 % 1072 1.15x 1072
90 12x10° 4.6x 10 41x 107 1.65x 102
Y
0 14 155 2.0 2
9 14 155 191 2

vided that the D-meson spectrumis proportional to (1 —
u)?, it was necessary to set & = 50.

4.3. Approximation of Fluxes of Prompt Muons
and Neutrinos

In various calculations and estimations for the
fluxes of prompt muons and neutrinos, it is useful to
have approximations of the differential spectra

Pﬂf\, (E,, v, 6) of these particles (the number of muons

or neutrinos arriving at sea level at an angle 8 with
respect to the vertical direction with energies in the
interval between E, , and E, , + dE, ). For possible
approximations, we have

—(y+1)
AE,

P (E,,, 0°)dE, , = —&*——dE,_,, (4.3)
K, K, M, 1+ 3x 10—8E“]V W,
AE—(V+1)
pr o — , V
Pl (E, v, 90°)dE, , = Y xulo*?EO'%d E... 44

M,V

The expressions in the denominators of the approxima-
tions of the spectra are determined by the fact that the
exponent of the primary-nucleon spectrum changes
fromy= 17 toy = 2 at an energy value around 3 x
10 GeV and thefact that, at very high energies, nuclear
interactions with nuclei of air atoms must be taken into
account even for charmed particles. The values of the
parameters A and y are quoted in Table 3.

The above approximations are valid for the muon
spectra calculated without alowing for the energy lost
in the atmosphere. However, the error that this intro-
duces in muon fluxes is very small at the energies that
are of interest to us in the present case. Indeed, the
fluxes of muons from charmed particles become com-
mensurate with the flux of muons from pion and kaon
decays only at about 70 TeV for the vertical and at
700 TeV for the horizontal direction. At such energy
values, the energy loss is as small as, respectively, 0.3
and 10% of the particle energy.

PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.2 2001

4.4, Fluxes of Cosmic-Ray Muons at Sea Level

Figure 6 displays the differential fluxes of cosmic-
ray muons at sea level for particles arriving along the
vertical and the horizontal direction. The curves carry-
ing the “pr” label represent the prompt-muon fluxes
calculated in this study with alowance for the energy
losses of muonsin the atmosphere. The fluxes of muons
from pion and kaon decays (Tt + K) were borrowed from
[16], but these fluxes were rescaled by taking into
account the change in the normalization of the primary-
nucleon spectrum (y is equal to 1.65in [16] and to 1.7
in the present study). The figure also shows the muon
fluxes estimated here for the prompt generation of p*
pairs (Uu curve). Kudryavtsev and Ryazhskaya [32]
considered the generation of muon pairs in the atmo-
sphere by photons. They state that, from energies some-
what higher than afew PeV, this process beginsto make
a greater contribution to the production of cosmic-ray
muons than pion and kaon decays.

P(E,, ©) Ej}, muon GeV%/(cm? s sr)

1072

1074

TITTIT T T T TP T T rrmm T 1T

1—6
0102 10* 100 108 1010

Eu’ GeV

Fig. 6. Differential spectraP,(E,, 8) of cosmic-ray muons
generatedinthe atmospheretHaI arrive at sealevel aongthe
vertical (6 = @) or horizontal (8 = 90°) direction: (Tt+ K
curve) muons from pion and kaon decays, (pr curves)
muons from charmed-particle decays, and (L curve) our
estimate of the prompt generation of muon pairs.
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V(Ev, 8)EJ, neutrino GeV?/(cm? s sr)
o1

1073

00
—S Lo v v e 1
102 10* 100 108
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Fig. 7. Differential spectraP, (E,, 8) of atmospheric (a) electron (v¢) and (b) muon (v,,) neutrinos generated in the atmosphere that

arrive at sealevel aong the vertlcal o=

0°) or horizontal (6 = 90°) direction: (curv&s with circles) neutrinos from pion and kaon

decays, (thick solid curves) neutrinos from charmed-particle decays, and (upper and lower thin solid curves) neutrino fluxes origi-
nating from charmed-particle decays and arriving at sea level along the vertical direction according to the calculations performed
under the assumption that the charm-production cross section is, respectively, twice and one-half aslarge asthat given by Egs. (3.2)

and (3.3).

4.5. Atmospheric-Neutrino Fluxes at Sea Level

The differential spectra of atmospheric neutrinos
arriving at sealevel along the vertical and the horizon-
tal direction are shown in Fig. 7a (electron neutrinos
and antineutrinos) and Fig. 7b (muon neutrinos and
antineutrinos). The spectra of neutrinos from pion and
kaon decays (curves with circles) were borrowed from
[33] and rescaled to adifferent normalization of the pri-
mary-nucleon spectrum (y=1.65and 1.7in[33] and in
the present study, respectively). Thick solid curvesrep-
resent the prompt-neutrino spectra calculated here.
Thin solid curves delimit theinterval of uncertaintiesin
the neutrino fluxes due to the second-order uncertain-
ties in the cross sections for charmed-particle produc-
tion around the values quoted in Egs. (3.2) and (3.3).

On the basis of the data displayed in these figures,
one can easily estimate the energy from which the
charmed-particle contribution to neutrino fluxes
exceeds the contribution from pion and kaon decays.
For muon (electron) neutrinos arriving at sea level
along the vertical direction, this occurs at an energy of
about 10 TeV (1 TeV). The difference between the two
cases is associated with the differences between the
fluxes of muon and electron neutrinos from pion and
kaon decays, the former being much greater at the ener-
gies being considered (the fluxes of muon neutrinos
receive significant contributions from 1, and K,
decays, while the fluxes of electron neutrinos are gen-
erated predominantly in K; decays).

The differential spectra of atmospheric neutrino

fluxes from pion and kaon decays, P;"" (E,, 8), can be
approximated as

PC™(E,, 8)dE, = AE,Y"VdE,. (4.5)

For electron and muon neutrinos arriving at sealevel
in thevertica and the horizontal direction, the values of
Aandyarelisted in Table 4.

4.6. Accuracy of the Calculation of Neutrino Fluxes

The uncertainties in the calculation of neutrino
fluxes generated in the atmosphere in pion and kaon
decays stem predominantly from inaccuracies in our
knowledge of primary-nucleon fluxes and of the rela-
tionship between the numbers of pions and kaons from
nucleon—nucleus interaction.

Direct measurements of the fluxes of nucleons with
energies up to about 1000 GeV are accurate to within
20% [15]. At higher energies, the accuracy of direct
measurements is poorer; however, an anaysis of data
on cosmic-ray muons [34] gives sufficient grounds to
believe that the accuracy of our knowledge of the pri-
mary-nucleon spectrum remains on the same order of
magnitude up to nucleon energies of a few hundred
TeV. Accordingly, the accuracy of the values presented
here for the neutrino fluxes from pion and kaon
decays—recall that this accuracy is related to the accu-
racy achieved in estimating the fluxes of primary nucle-
ons—is not poorer than 20% at neutrino energies up to
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Table 4. Fitted values of A and y in the approximations of the differential energy spectra (in units of [particle cm™? st sr2
GeV]) of electron and muon neutrinos originating from pion and kaon decays and arriving at sealevel along the vertical and

the horizontal direction

E,, GeV 10%-10% 10%-10° 105-10° >106
6, deg
Ve A
0 0.1 0.1 0.58 7
90 0.32 0.32 5.8 70
Ve ¥
0 2.7 27 2.85 3.03
90 26 26 2.85 3.03
Vi A
0 2.05 2.05 115 278
90 0.6 6 110 2780
(Y
0 2.65 2.65 28 3.03
90 23 2,55 28 3.03

afew tensof TeV. A similar argument appliesto neutri-
nos generated in the decays of charmed particles.

In the present calculations, data on pion and kaon
production that were obtained in accelerator experi-
ments at a projectile-proton energy of about 20 GeV
were used to establish the relationship between the
numbers of product pions and kaons, and it was
assumed that this relationship undergoes no changesin
the fragmentation region at still higher energies. This
assumption is confirmed by the analysis of data on cos-
mic-ray muons[16].

The accuracy in cal culating the neutrino fluxes from
charmed-particle decaysis determined primarily by the
accuracy of our knowledge of the charm-production
cross section, provided that we assume that, in the frag-
mentation region, the differential spectra of product
charmed particles remain virtually unchanged with
increasing energy (this assumption is justified by the
arguments presented in Subsections 4.2 and 4.3). The
accuracy currently achieved for the charm-production
cross section can be assessed on the basis of the datain
Fig. 1.

5. CONCLUSION

The present analysis hasreveal ed that, by using data
on charm generation from accel erator experiments and
the predictions that the QGSM and the NLO calcula
tions within perturbative QCD yield for charm produc-
tion at energies inaccessible at modern accelerators, it
is possible to describe data on cosmic-ray muons from
experiments at the Colar Gold Fields mine, Baksan
Neutrino Observatory, and Moscow State University
(data obtained with an x-ray emulsion calorimeter) up
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to muon energies of a few hundred TeV (the corre-
sponding effective energies of primary nucleons that
are responsible for such muons are about a few thou-
sand TeV). The possible contribution of the prompt
production of muon pairs to the fluxes of cosmic-ray
muons at high energies is much less than the contribu-
tion from charmed-particle decays (at muon energiesin
the range 3 x 10°-10° GeV, the former contribution is
about 10% of the latter). Photonuclear interactions
induced by photons produced in neutral-pion decays
generate muons in amounts of about 3 to 10% of the
number of muons that originate from charmed-particle
decays; the decays of rho and omega mesons yield
about 1.5% of this number. The contribution of B
mesons and A\, baryons is small at the energies being
considered, but it can grow with increasing energy.

According to the results obtained in the present
study, the contribution of charmed-particle decays to
atmospheric-neutrino fluxes becomes commensurate
with the contribution from pion and kaon decays at
about 10 TeV for muon neutrinos; at still higher ener-
gies, the entire flux of these neutrinos is determined by
charmed-particle decays (for neutrinos arriving at sea
level along the vertical direction). For electron neutri-
nos, this occurs at aneutrino energy of about 1 TeV. For
the horizontal direction, the corresponding energies are
one order of magnitude higher.

To summarize the above, we note that, in discussing
problems associated with possible experiments devoted
to studying cosmic neutrinos, it is of paramount impor-
tanceto takeinto account the generation of atmospheric
neutrinos, because this process appears to be the main
source of background to the experiments being dis-
cussed.
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For the muon and neutrino spectra calculated in the

present study, we have constructed approximations
accurate to within 5%.
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ELEMENTARY PARTICLES AND FIELDS

Theory

Analytic Resultsfor ete-— tt and yy — tt Observables
near the Threshold up to the Next-to-Next-to-L eading
Order of NRQCD*
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Abstract—We present an analytic description of top—antitop pair production near the threshold in e"e™ annihi-
lation and yy collisions. A set of basic observables being considered includes total cross sections, forward—
backward asymmetry, and top-quark polarization. Threshold effects relevant to the basic observables are
described by three universal functions related to Swave production, P-wave production, and S-P interference.
These functions are computed analytically up to the next-to-next-to-leading order of NRQCD. The total
ete” — tt cross section near the threshold is obtained in the next-to-next-to-leading order in a closed form
including the contribution originating from the axial coupling of top quarks that is mediated by the Z boson.
The effects of the running of the strong coupling constant and the finite top-quark width are taken into account
analyticaly for the P-wave production and S-P wave interference. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Being heavy, the top quark undergoes fast weak
decays. A relatively large width I, of the top quark is
mainly saturated by the decay channel t — Wb and
keeps the effective energy of the top—antitop systemin
the complex plane far enough from the cut along the
positive semiaxis. Thus, it serves asasufficient infrared
cutoff for long-distance effects avoiding the problem of
strong coupling. This allows one to bypass possible
nonperturbative regions and is akey observation for the
theoretical study of the top—antitop pair production
near the two-particle threshold [1]. Because the rele-

vant scale ./I';m,, where m, is the top-quark mass, is
much larger than Aqcp, the QCD perturbation-theory
expansion is applicable to the theoretical description of
physical phenomena near the top-quark threshold if
singular Coulomb effects are properly taken into
account [1-3]. Owing to this feature, processes involv-
ing top quarks appear to be a unique laboratory for per-
turbative investigation of threshold effects. Experimen-
tal study of the top—antitop pair threshold productionis
planned at the Next Linear Collider in both high energy
e'e” annihilation and yy collisions [4]. High-quality
experimental data that can be obtained in such experi-
ments, along with their very accurate theoretical

* This article was submitted by authorsin English.

D Ingtitut fur Theoretische Teilchenphysik, Universitat Karlsruhe,
D-76128 Karlsruhe, Germany; on leave of absence from the
Institute for Nuclear Research, Russian Academy of Sciences, pr.
Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 Russia.

2 |ngtitut fir Physik, Johannes-Gutenberg-Universitét, D-55099
Mainz, Germany; on leave of absence from the Institute for
Nuclear Research, Russian Academy of Sciences, pr. Shestide-
syétiletiya Oktyabrya 7a, Moscow, 117312 Russia

description, make the processes of top—antitop pair
threshold production a promising field for investigating
guark—gluon interactions.

Thisinvestigation concerns both general features of
interaction and precise quantitative properties as a
determination of numerical values of the strong-cou-
pling constant o and the top-quark mass and width.
Although the main features are rather similar in both
e'e” and yy processes of top-quark pair threshold pro-
duction, strong-interaction and relativistic corrections
are different for them. Therefore, a joint analysis of
these two processes extends possibilities of studying
fine details of top-quark threshold dynamics. In addi-
tion to the total cross sections, which are mainly satu-
rated by the Swave fina state of the top quark—anti-
guark pair, thereis a set of observables sensitive to the
P-wave component. For example, the S and P partia
waves of the final-state top quark—antiquark pair pro-
duced in yycaollisions can be separated by choosing the
same or opposite helicities of colliding photons [2].
This provides an opportunity of directly measuring the
P-wave amplitude, which is strongly suppressed in the
threshold region in relation to the Swave amplitude.
On the other hand, the forward—backward asymmetry
of the quark—antiquark pair production in e*e- annihila-
tion [5, 6] and top—quark polarization [6, 7] are deter-
mined by S-P interference in both processes. This pro-
vides two additional independent probes of the top-
quark interactions.

The finite-order perturbation theory of QCD breaks
down in the threshold region of particle production due
to the presence of singular (a,/B)* Coulomb terms.
Here, B is the heavy-quark velocity. However, resum-
mation of these Coulomb contributions, which are most

1063-7788/01/6402-0275%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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important quantitatively in the threshold region, is pos-
sible and can be systematically performed within non-
relativistic QCD (NRQCD) [8] (for the recent develop-
ment of the NRQCD effective theory approach see [9—
16]). Note that the characteristic scale a,m, of the Cou-
lomb effects for the top-quark production is compara-

ble numerically with the cutoff scale ,/I';m, for infra-

red effects, and the Coulomb effects are not suppressed
by the top-quark width. To determine higher order cor-
rections in the QCD coupling constant and relativistic
corrections in the case where Coulomb effects have to
be taken into account beyond the finite-order perturba
tion theory, the perturbative expansion for the complete
correlation function should be performed near the Cou-
lomb approximation rather than the free Green’s func-
tions, which is the standard pattern of perturbation the-
ory for the infrared-safe high-energy processes.

Recently, theoretical description of the heavy
guark—antiquark threshold dynamics in NRQCD was
substantialy developed. The evaluation of next-to-
leading order (NLO) and next-to-next-to-leading order
(NNLO) corrections to the heavy-quark threshold pro-
duction in e*e” annihilation was performed both in the
analytic approach [17-25] and numericaly [26-30],
while the NLO corrections to the heavy-quark thresh-
old production in yy collisions were computed analyti-
cally [31]. Theanalysisof NNLO correctionsin thelast
caseis still absent. However, this analysis is necessary
for careful quantitative study of the process since the
NNLO contributionisfound to berelatively largein the
case of thetop-quark production inthe e*e-annihilation
[26, 27] and one can expect that some large corrections
emerge also in the case of the top-quark threshold pro-
duction inyy collisions. Moreover, asemianalytic anal-
ysis of the high-order corrections to the cross section
for top-quark threshold production in e*e~ annihilation
has been performed so far [26-30], while the essential
part of corrections has been taken into account numer-
icaly [3]. Therefore, the compléete analytic description
of the process is also desirable.®) Furthermore, the for-
ward-backward asymmetry and top-quark polarization
[6], aswell asthe axial contribution to the e'e- — tt
process [28], were analyzed in NLO only numerically.
In this case, the numerical study is more involved
because of the need for constructing the P-wave
Green's function, which leads to more singular differ-
ential equations in comparison with the S wave. The
case of P-wave production in the yy collision [2, 31]
clearly demonstrates that the numerical analysis [28]
with the explicit cutoff of the hard-momentum contri-
bution is insufficient for an accurate account of the
finite top-quark width for these quantities because the
relativistic effects are not properly taken into account.

3When this work was at its final stage, letter [22] appeared where
the photon-mediated top-quark production in ete” annihilation
was analyzed analytically.
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In the present paper, we give a simultaneous analy-
sis of several observables relevant to the et'e — tt

annihilation and yy — tt collisions near the top-
guark production threshold in high orders of NRQCD.
The total cross sections are computed in NNLO of

NRQCD, whichincludes (152 , 03, and 32 correctionsin
the coupling constant o, and in the heavy-quark veloc-
ity B to the nonrelativistic Coulomb approximation.
Explicit analytic expressionsfor the soft part of the cor-
rections are obtained. The threshold cross section for

the tt production in e*e” annihilation is obtained in
closed form including the contribution due to the top
guark axial coupling. The hard part of the correction to

theyy— tt threshold cross section isfound with log-
arithmic accuracy. The forward-backward asymmetry
of the top quark—antiquark pair productionin e‘e- anni-

hilation and top-quark polarization in both ete~ annihi-
lation and yy collisions are computed up to NLO.

The paper is organized as follows. In Section 2, the
nonrelativistic approximation for the basic observables
of the top quark—antiquark pair production near the
threshold is formulated. In Section 3, the threshold
effects are described by three universal functions that
are related to the S and the P-wave production and S-
P-wave interference and are computed anayticaly in
NRQCD. In Section 4, we present anumerical analysis
and the discussion of theresults. Section 5 isdevoted to
our conclusions. Some explicit analytic formulas are
given in the Appendices.

2. THE NONRELATIVISTIC APPROXIMATION
NEAR THE PRODUCTION THRESHOLD

In this section, we describe the set of observables
which will be analyzed: thetotal cross sections, the for-
ward-backward asymmetry, and the polarization of the
top quark. We formulate the nonrelativistic approxima-
tion for these observables that is the stage of the com-
plete NRQCD analysis. In Subsection 2.5 we dwell
upon the peculiarities of the introduction of a finite
width of the top quark.

2.1. Effective Theory Description of the Heavy-Quark
Threshold Dynamics

Near the threshold, the heavy quarks are nonrelativ-
istic so that one may treat both the strong-coupling con-
stant and heavy-quark velocity as small parameters.
Thethreshold expansion of the QCD loop integrals was
developed in [14]. However, to take properly into
account the singular threshold effects, one has to go
beyond the finite-order QCD perturbation theory. For
this purpose, the expansion in (3 should be performed
directly in the QCD Lagrangian within the effective
field theory framework. The first step to construct the
effective theory isto identify all the scales appearing in
the problem. The threshold dynamics is characterized
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by the following four scales [14]: (i) the hard scale
(energy and momentum scale like my); (ii) the soft scale
(energy and momentum scale like Bm); (iii) the poten-
tial scale (energy scales like 3?m,, while momentum
scaleslike fmy); and (iv) the ultrasoft scale (energy and
momentum scale like B2m,). The ultrasoft scale is the
only one relevant for gluons. By integrating out the
momenta of the order of the hard scale of QCD, one
arrives at the effective theory of NRQCD [8]. Because
the NRQCD Lagrangian does not explicitly include the
heavy-quark velocity, the power counting rules are nec-
essary to construct the regular expansion in this param-
eter. Thelist of the power counting rulesfor dimension-
aly regularized NRQCD and their relation to the
threshold expansion [14] can befound in[16]. Integrat-
ing out the soft modes and the potential gluons of
NRQCD, one obtains the effective theory of potential
NRQCD [13], which contains potential quarks and
ultrasoft gluons as active particles and isrelevant for an
analysis of the threshold effects. In potential NRQCD,
the quark dynamicsis governed by the effective nonrel-
ativistic Schrodinger equation and by their interaction
with ultrasoft gluons. To obtain a regular perturbative
expansion in [3, this interaction should be expanded in
multipoles. Note that some spurious infrared and ultra-
violet divergences appear in the process of scale sepa-
ration at intermediate steps of calculation but they can-
cel each other in the final results for physical observ-
ables. The dimensional regularization has been
recognized as a powerful tool to deal with these diver-
gences [9-35].

If the ultrasoft effects are neglected, propagation of
the quark—antiquark pair in the color singlet state is
described in the potential NRQCD by the Green's func-
tion G(x, y, E) of the Schrodinger equation

(%_E)G(X! Y, E) = 6(X_y)! (1)

where # is the effective nonrelativistic Hamiltonian.
Near the threshold, the singular (a,/)" Coulomb terms
should be summed in al orders of a,. Thus, in the
threshold region, one has to develop the expansionin 3
and a, around some nonperturbative solution which
properly incorporates the threshold effects, for exam-
ple, around the nonréativistic Coulomb solution. In
this case, the leading-order approximation for the non-
relativistic Green's function is obtained with the Cou-
lomb Hamiltonian

A,
¥He = —Fﬁ +Ve(X),

where A, = af is the kinetic-energy operator, V(X) =
—Cr04/x is the Coulomb potential, and x = [x|. The
harder scale contributions are represented by the
higher-dimensional operators in 3 and by the Wilson
coefficients of the operators entering into the nonrela-
tivistic Hamiltonian leading to the expansion in 3 and
0. On the other hand, the radiation/absorption of the

PHY SICS OF ATOMIC NUCLEI

Vol. 64 No.2 2001

277

ultrasoft gluons by the interacting quark—antiquark
pair, the effect of retardation, does not contribute to
NLO and NNLO (the leading ultrasoft effectsin heavy
guarkonium have been recently computed in [25]).
Thus, the nonrelativistic Green's function of (1) isthe
basic object in the NRQCD analysis of the threshold
effects up to NNLO. In Subsections 2.2-2.4, we relate
the observables of the e'e” — tt annihilation and the

yy — tt collisions in the threshold region to this
Green's function.

2.2. Cross Sections

We study the normalized cross sections for the top
guark—antiquark pair production in e"e” annihilation

and in yy collisions

o(yy —tt)
o(e'e — u'y)
where the leptonic cross section

R'(s) =

2
4T oep
3s

is the standard normalization factor. Here, aqgp is the
fine-structure constant and s is the total energy of the
colliding electrons in their center-of-mass frame. For
unpolarized initial states, the following decomposition
of the total cross sectionsis useful:

oe'e —p'p) =

R(s) = 2YRY(s) + DARY(S), @

0t

R"(s)+R"(s)
5 ,

where RV (R) corresponds to the top-quark vector
(axial) coupling in ete” annihilation, R (R*) corre-
sponds to the colliding photons of the same (opposite)
helicity in the yy collisions, D, , are the standard com-
binations of the electroweak coupling constants (see
below), and q, is the top-quark electric charge. The
cross section for the polarized electron/positron initial
states is discussed, for example, in [36].

Near the threshold, the cross sections are deter-
mined by the imaginary part of the correlation func-
tions of the nonrelativistic vector/axial quark currents,
which can be related to the nonrelativistic Green's
function and its derivatives at the origin. In NNLO, the
(potential) NRQCD provides the following representa-
tion of the cross sections:

) 2
N O, vk
6qut2 °fC¥(ay) + B k—z[lmG(O, 0, k), 4)
m, 0O m. U

R'(s) = 3)

R(s) =
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R(s) = 20002, ImG(, v, k), (5)
- 24mg, N0 ..
R™(s) = = et (a)
m; ]
(6)
KO
+B" X AmG(0,0, k),
m, [
4
R(s) = 2% Nec ()02 ImG(x y. k), (7)

wherel? =—-m,E, E = ./s — 2m, isthe quark-pair energy

measured from the threshold 2m,. The symbol afy is

used for the operator
3

05 F(x, )= 5 0,0, F (X, Y)ly=0)], -,

that extracts the partial P wave of the Green's function.
The standard electroweak factors read

Dy = 020 +29.q Vv d + (vi+ag)vid?,

Dj = (ve+ad)ad’,
Q. = -1, v, =-1+4sin’8,, a, = -1,
G = 2/3, v, =1-8sin’8,, a =1,
d= 1 S

16sin29Wc0526W S— M?

The coefficients C/(a,) and B are the NRQCD param-
eters which are responsible for matching the effective
and full theory cross sections in the limit of weak cou-
pling in NNLO. The coefficients

i _ i~ s i g]smz
account for the hard QCD corrections and are deter-
mined by the corresponding amplitudes with on-shell
heavy quarks at rest. The numerical values of these hard
coefficients in the leading-order approximation have
long been known [37-40] and are given by

c, = -4

The coefficient C¥ has recently been computed in
NNLO in different schemes[22, 26, 27]. Starting from
NNLO, the hard coefficients acquire anomal ous dimen-
sions and the calculation of the NNLO correction
requires an accurate separation of hard and soft contri-
butions. At the same time, these coefficients are inde-
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pendent of the normalization point of the strong-cou-
pling constant in a fixed order of perturbative expan-
sion, and one can use different normalization points of
a, entering into the coefficients C’ (the hard scale )
and the nonrelativistic Green's function (the soft scale
1) (see Subsection 3.1).

The coefficients B in Egs. (4) and (6) describe the
pure relativistic cross-section corrections which appear
when the cross section is evaluated in terms of the cor-
relation function of nonrelativistic quark currents.
Because the corresponding correction first appears in
the O(?) order, the coefficients B can be taken in the
leading order in a,. The coefficient B” is related to the
nonrelativistic expansion of the vector current and is
equal to B = 4/3 [8]. The calculation of the coefficient
B+ necessary for the consistent description of the yy
cross section in NRQCD in NNLO is more involved
because the amplitude of the yy — tt transition is
determined by the nonrelativistic expansion of the T
product of two vector currents [31, 41]. However, this
coefficient can be found by direct comparison with the
relativistic expression for the cross section expanded in
the velocity of the heavy quark (see Subsection 3.1).

For the noninteracting quarks (the Born approxima-
tion), we obtain the following results for the cross sec-

tions (B = A/1—4mt2/s):
R'(B) = 26/N.0(B")(B + O(B")),

R'(B) = NB(B*)(B*+O(B")),
R™(B) = 60, N.8(B*)(B+O(B")),

R™(B) = 8a, N8(B*) (B’ +O(B")).

Note that the cross sections R and R are saturated by
the Swave contribution and are proportional to the
Green's function at the origin, while R* and R~ cross
sections are saturated by the P-wave contribution and
are proportional to the derivative of the Green's func-
tion at the origin. As a consequence, they are sup-
pressed by the factor 3? in comparison to R” and R™. In
the present paper, we study the corrections to the total
cross sections R¢ and RY up to the NNLO of NRQCD.
Thus, R isaNNLO contribution to the total cross sec-
tion Re, and only the leading contribution to R is
important. On the contrary, the R™ part can be sepa-
rated from RY by fixing the opposite helicities of the
colliding photons. This makes possible the direct study
of the P-wave production; therefore, the evaluation of
the corrections to R~ cross section is of practical inter-
est.

Concluding this Subsection, we should aso men-
tion that the electroweak corrections to the cross sec-
tions are known with one-loop accuracy. They have
Vol. 64 No. 2
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been obtained in [42] for e*e annihilation and in [43]
for yycollisions.

2.3. Forward-Backward Asymmetry

The next important parameter related to the thresh-
old production is the asymmetry of the differential
cross sections. This parameter gives more detailed
information on the process and allows one to obtain
independent experimental data for further test of the
theory. The forward—backward asymmetry of the top-
guark production is defined as the difference of the
cross sections averaged over the forward and backward
hemispheres with respect to the electron-beam direc-
tion divided by the total cross section. Nonvanishing
asymmetry appearsin €'e- annihilation dueto the axial
coupling of the top quark to the Z boson. The expres-
sion of this parameter for energies near the threshold is
given by [5]:

Eva Cr — ¢y Ceag
= 5o T ER(K),

Ars D, -

(8)
where

2
Eva = deGia.ad +2vea.vad

is the electroweak factor. The expression for the asym-
metry in (8) isgivenin NLO, and the explicit correction
of order of a, istaken in the linear approximation that
results in the manifest difference between axial and
vector hard coefficientsin this order.

The dynamical quantity isthe function
o = L Re[G*(p. k)F(p. k)p’dp
M [G*(p, KIG(p, k)p°dp

that describes the overlap of the partial Sand P waves.

Here, pF (p, K) and G (p, K) are the Fourier transforms
of i0,G(x, y, K)|,-o and G(x, O, k), respectively. In the
Born approximation, the expression for the function
®(B) can be found in the simple explicit form ®(B) =
Ref. It vanishes for real values of energy below the
threshold.

€))

2.4. Top-Quark Polarization

The longitudinal top-quark polarization in the pro-
cess e'er — tt averaged over the production angle
reads [6, 44]

_ _4Dya c1—¢; Cedy
EPLD_ _3 DV %‘-l- 2 T %)(k)!

where

Dya = QeQiVead + (Vs + a:)Vtatdz
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and ®(K) is given by (9). This function also enters into
the expression for the averaged longitudinal top-quark
polarization in the yy — tt process involving collid-
ing photons with the same helicity [7]

¢, —c¢ Cea
P 0= 25 + 22 k),

where signs + correspond to the positive/negative-
helicity photons.

The extension of the above expressions to the gen-
eral electron/paositron polarization and photon helicity
and to other components of the polarization vector can
be found elsawhere [6, 7].

2.5. Effects of the Finite Top-Quark Width

As mentioned above, the sufficiently large t-quark
decay width suppresses the nonperturbative effects of
strong interactions at large (~1/Aqcp) distances and
makes the perturbation theory applicabl e to the descrip-
tion of the t-quark threshold dynamics. The near-
threshold dynamics is nonrelativistic and is rather
insensitive to the hard-momentum details of t-quark
decays. Therefore, as the leading-order approximation,
theinstability of thetop quark can be parametrized with
the constant mass operator. The finite top-quark width
can then be taken into account by direct replacement
m — m —il,/2 in the relevant argument s — 4mt2
describing the functional dependence of physical quan-
tities near the threshold. Such areplacement is equiva-
lent to the energy shift E— E + il [1]. This approx-
imation accountsfor the leading imaginary electroweak
contribution to the leading-order NRQCD Lagrangian.
Since the essential features of the physical situation are
reflected in this approximation, we neglect the elec-
trowesk effects in higher orders in the strong coupling
constant and heavy-quark velocity.

However, in the case of P-wave production and
S-P-wave interference, the above prescription isinsuf-
ficient for the proper description of the entire effect of
the nonzero top-quark width [2] and more thorough
analysisis necessary (see Subsections 3.2, 3.3).

In the context of the finite top-quark lifetime, we
should also mention that the nonfactorable corrections
due to the top-quark interaction with the decay prod-
ucts are suppressed in the total cross sections [45] but
should be taken into account as NL O contributionsto the
angular distribution and top-quark polarization [46].

3. NONRELATIVISTIC GREEN'S FUNCTION
BEYOND THE LEADING ORDER

The basic quantity in the analysis of the threshold
effects is the nonreativistic Green's function of
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Schrédinger equation (1). The Green's function hasthe
standard partial-wave decomposition

G(x,y, k)

00

= Y@+ 1) (xy)'P,(x By/xy)Gi(x, y, k),

=0

where P,(2) is the Legendre polynomial. Note that the
partial waves of the Green's function G(x, y, k) of the
Coulomb interaction Schrodinger equation are known
in the explicit form

10)

—k(x+ y)

G (x v, k) = <2k)

SRELE (11

Z(m+l

wherev = Ak, A = a,C,m,/2 with a, taken at the soft

scale i, and L, (2) is the Laguerre polynomial, which
ischosen inthe form

(2kx )LZ'”(zky)
+1-v)(m+2l+21)!

EZZ_aDddn —Z_m+a
L (e’z 7).

However, we need to know the nonrelativistic Green's
function for the NNL O Hamiltonian of the form

3 = Hc+ DK,

where the correction to the Coulomb Hamiltonian has
the form

Lm(2) =

1V(X) +A8,V(X) (12)

+AnaV(X) + DBgeV(X, 0y, S).

Here, the first term is the standard correction to the
kinetic energy operator, Ay V(X) = —CACFC(SZ 1(2mx3) is
the so-called non-Abelian potential of quark—antiquark
interaction [47], and AgeV(X, 0, S) isthe standard long-
known Breit—Fermi potential (only the overall color
factor C: is new). The Breit—Fermi potential includes
the quark-spin operator S[48]. In NNLO, the cross sec-
tion R is saturated with the final-state configuration of
tt pair with|1 =0, S= 1, while the cross section R™ is

saturated with thel =0, S=0 configuration. Inthel =0
states, the Breit—Fermi potential takes the form
Cra A, Cea
DgeV(X) = “F)Z—S—‘Z AL ——9(x),

where A¥ =11/3 corresponds to the spin-one final state
of the e'e- — tt production and A** = 1 corresponds
to the zero-spin final state of the yy— tt production.
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Theterms AV (i = 1, 2) represent the first- and the
second-order perturbative QCD corrections to the Cou-
lomb potentia [49, 50]:

AN (X) = Z2Ve(X)(Ch + Clin(xpy),

AN = HEE vc(x)(c0 + C2In(xpy) + CAN*(xpy),

where

Cc1> = a; + 2BYE, Ci = 2By,

B1S

c§_D3

+ 4VE%3§ +2(B1 + 2Boy) Ve + @y,

Ct = 2(By+2Boay) +8BoYe. Ca = 4B,

31
al = ECA__

_ 343, , 2 10
% = O P47 T3

_ 1798 , 56

e * BL@EATen,

-2 - 167(3)ce Ten, + %Tang,

342 20

Bl = §C 3 CATan 4CFTan.

Here, a,isdefinedin M S renormalization scheme. The
invariants of the color-symmetry SU(3) group have the
following numerical valuesfor QCD: C, =3, C: = 4/3,

Tr = 1/2, n,=5isthe number of light quark flavors, B, =
11C,/3-4T:n/3isthefirst B-function coefficient, yg =
0.577216... is the Euler constant, and {(2) is the Rie-
mann ¢ function. Solution to (1) with Hamiltonian (12)
can be found within the standard nonrel ativistic pertur-
bation theory around the Coulomb Green's function as
the leading-order approximation:

G(X! y! k) = GC(X! y! k) + AG(X! yv k),
AG(x,y, k) = —J’Gc(x, Z, K)AH G(z,y, k)dz + (13)

In the previous section, the threshold effects in the
basic observables were reduced to three universal func-
tions: the Green's function at the origin, which is satu-
rated by the S-wave contribution; the derivative of the
Green’'sfunction at the origin which is saturated by the
P-wave contribution; and the function ®(k), which
describes the S-P-wave interference. These functions
are analyzed in detail in Subsections 3.1-3.3.
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3.1. SWave Production

Only the | = 0 component of Green's function (10)
contributes to its value at the origin:

G(0,0,k) = Gy(0, 0, k).

The explicit expression for the Coulomb part of the
Green's function has the form

ML

Go (%, 0,K)|, o = 2~ 2AIn(2xy)

(14)

Kk
2)\Dk ¥ '”54 O+ 2y -1+ w,(1-v)
whereW,(2) = d*Inl" (2)/dz* and I (2) isthe Euler " func-
tion. The energy-independent finite part of this expres-
sion is chosen for convenience. Equation (14) can most
easily be obtained from the general expression for the
Coulomb partial waves:

—kx

G,C(X,O,k)— (2k) r(l+1-v)

(15)
xU(l+ 1—v, 21 + 2, 2kx),

where U(a, b, 2) is the confluent hypergeometric func-
tion. In the short-distance limit x — 0, the Coulomb

Green's function GS(x, 0, K) = G (x, 0, k) has 1/x and
In(X) divergent terms. These terms, however, are energy
independent and do not contribute to the cross section.
Hence, these terms can be subtracted with no effect on
any physical results. The quantity | in Eqg. (14) is an
auxiliary parameter, the factorization scale, which
drops out of the physical observables.

The NLO correction A,G to (14) dueto thefirst iter-
ation of A,V term of the QCD potential has been found
in [18], where the simple and efficient technique for
computation of higher order termswasformulated. The
NLO correction is evaluated in the form

0By Ay

A,Gy(0,0,k) = 5 o

[ )
X DZ F(m)"(m+ 1)(Ly(k) + W1 (m+2))
Lz

-2y ¥ F(m)F(n)r'::

m=1n=0

=42 > Fm(Li(9

1 g
= 2Ye=i(m+ 1) =yeLy(k) + 5L T

where

calch

e
L,(k) = |nD —r 0
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and

\%

Fm) = G Dm+ 1w’

The NNLO correction AEZ)G dueto the A,V part of the

potential and the correction Aél)G due to the second

iteration of the A,V part of the correction to the Cou-
lomb static potential have been obtained in [18, 19].
While the technique is rather straightforward, the
results of the calculations are cumbersome and explicit
formulas are relegated to Appendix A.

The method of calculation of the correction to the
Green's function at the origin due to logarithmic terms
in the potential is described in detail in [21]. It is based
on the representation of the Coulomb Green's function
as an expansion in Laguerre polynomials (11). This
representation is very close to the standard physical
expansion in the eigenfunctions that makes the tech-
nigue transparent and easily interpretable in physical
terms. It isequally suitable for any partial-wave contri-
bution as shown in [31], where results for P-wave pro-
duction were found. The results for the Swave part of
the correctionswere reproduced within adifferent tech-
nical framework based on an integral representation of
the Coulomb Green's function in [20].

The corrections to the Coulomb Green's function at
the origin due to A%V, and Vg terms have been pre-
sented in [26, 27] and formally have the form

_mK b ko
AAZ,NA,BFG = 4_T[Hz|ik+4}\an —

0 11

+ye+ W (1- V) CFG IW,(1- V)D (16)

:}O‘B% A+ 2 HGC(OOk)

In the course of evaluation of this correction to the non-
relativistic Green's function, one encounters the ultra-
violet divergence in the imaginary part of the Green’s
function contained in the last term of (16). This diver-
gence is related to the singular behavior of the Cou-
lomb Green's function at the origin. The particular
form of this divergence depends on the regularization
procedure. The divergence appears in the process of
scale separation and is a consequence of the fact that
the nonrelativistic approximation is not adequate for
the description of the short distance effects. The hard
coefficient C¥-+ computed within the same regulariza-
tion procedure as the Green's function must have an
infrared singular term which exactly cancels the one
appearing in the Green’s function. The hard coefficient
can be evaluated by matching the effective and full-the-
ory cross sections in the weak-coupling limit [17, 26]
or by explicit separation of the hard and soft contribu-
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tions using, for example, the scale factorization in the
dimensional regularization [22, 34, 35]. Let us consider
the cancellation of the divergences and determination
of the hard coefficient in the matching scheme. The nat-
ural regularization for the analysis of the hard part of
the corrections is the dimensional one [32, 33]. In 4 —
2¢ dimensions the infrared divergence of the hard con-
tribution in NNL O has the form of the first-order pole
in €. The Coulomb Green's function at the origin in
Eq. (16) can be regularized in the same way to ensure
the finiteness of the cross section by the explicit cancel-
lation of divergent parts which are represented in a
comparable form. The dimensionally regularized Cou-
lomb Green's function at the origin takes the form (see
Appendix B)

ok
+In—
EipE

+Ye + Wi(1-v)EH+ O(e).

G¥(0,0,k) = —%B(+2)\
(17)

Note that, in contrast to (14), expression (17) has no
divergence in the Born approximation. The Green's
function in this approximation is a nonrelativistic free
propagator and is proportional to k. Thefirst-order pole
in € appearsonly in thefirst order in a,. The O(a?) sin-
gular 1/e term in the imaginary part of Eq. (16) is pro-
portional to Im(G(0, O, k)) and, therefore, can be
absorbed by the redefinition of the hard coefficient
C"-**. For the Green’sfunction, this redefinition results

in the substitution G (0, 0, k) —= Gg (0, 0, K) in (16),
where the “ subtracted” Green’'s function reads

G3(0,0,k) = G¥(0,0,k) —T—TA[%.

(18)
Within the redefined hard coefficient, the O(a?) “ ultra-
violet” 1/e term stemming from the corrections to the
Green's function (16) exactly cancelsthe O(a?) “infra-
red” 1/e term of the hard part of the corrections. This
can be explicitly checked for the CV coefficient sinceits
singularity is determined by the one of the hard renor-
malization coefficients of the nonrelativistic vector cur-
rent [32, 33]. Then, the finite coefficient CV-++ can be
found directly by matching the effective theory expres-
sion for the cross sections and the result of perturbative
QCD calculation of the spectral density in the formal

limita, < 3 < 1 upto the order 0(52 for u, = Ys. EQua
tions (4) and (6) in the matching limit take the form

R’ = SN.q7B[(1+ (1-B")F)
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vl v, a0 sCf
*Cnmpp et 3P CFDnD %:F12B
(19)
2 C1 10 a1, (2BMO, 1 mn'!
TS T g Cilng—p+Co _ZBOVEDEE
5 25—A" . Cary (BMyT]
+CF¥ +c, —CgTt DT + —HHDED]},

R™ = 6Ncq33[(1+(1—B”)Bz)

sl of
+CFT[D2[3+C1 +3 CFDnD B:Flzﬁ
(20)
C++ l Bm
e 5t Cl'“Dz o 2BovelE
5 A" Matilinn
+Croge + Gy —Cel % O, D]}’

where the terms of the relative order O(3?) are retained.
Comparing (19) with the NNLO QCD result for the
cross section RV expanded in the velocity of the heavy
guark near the threshold [32, 51], we find

oY =& - 1sz0 %LT:D+ DzCF+CAEInSJn% 21)
where the coefficient ¢, has been obtained in [26, 27]
& = B3+ —|n2—3f—g2 -
- Zye)+ ——I 2- 190,
54_4 4;[ 9 fST

Thefirst logarithm in (21) is determined by the renor-
malization group running of the strong coupling con-
stant in the hard momentum regime and is proportional
to the first coefficient of the 3 function. Thus, both the
hard coefficient and the Green's function do not depend
on the normalization point of a; in the fixed order of
perturbation theory so one can use different scales for
o, in these quantities. The second logarithm corre-
sponds to the anomalous dimension of the hard coeffi-
cient and precisely cancels the factorization-scale
dependence of the Green's function due to Eq. (16).
This cancellation makes the total result independent of
the factorization scale. Note that the use of different
hard and soft normalization scales leads to the incom-
plete cancellation of the factorization scale depen-

dence, which, however, isan O(a 3 ) effect.
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As was mentioned above, one can bypass the direct
matching by the consistent use of the dimensional reg-
ularization, where the factorization and matching are
automatic [14, 34, 35]. In this approach, the hard coef-
ficient is completely determined by the hard renormal-
ization coefficient of the nonrelativistic vector current
[22]. However, to compute the corrections to the
Green's function in this case, one has to define accu-
rately the Breit—Fermi Hamiltonian in 3 — 2¢ dimen-
sions[22, 35] (in our analysis, we use the three-dimen-
sional Breit—Fermi Hamiltonian, and the direct match-
ing is necessary, though the ultraviolet and infrared
divergent terms cancel each other explicitly).

The NNLO analysis of the R** cross section is still
absent, and the constant in the hard coefficient is
unknown. The logarithmic part of the NNLO contribu-
tion to C**(a) reads

+ ~+t
cC, =6GC —

;*Bz"lng?% P(3C, + cA)lnE'mID (22)

where ¢, isaconstant to be determined. Therelativis-
tic correction to this cross section, however, can be
extracted from the calculations presented earlier in the
literature. Comparing the known result [52]
++ 2

R7(B) = 6a/NBL+5p°+O(BY)]  (23)
with our expression (20), we find B = 1/3. The
Green’'sfunction at the origin can bewritten in theform
that includes only single poles in the energy variable.

This form seems to be natural for the Green’s function
of the nonrelativistic Schrodinger equation:

z IlIJOm(O)I IUJOE( )|

Eom— E
where U, (0) is the wave functlon at the origin, the
sum goes over the bound states, and the integral goes
over the states of the continuous spectrum. In this way
the corrections to the Green's function stemming from
the discrete spectrum reduce to corrections to Coulomb
bound-state energies

G(0,0,E) = dE’,

(24)

c
Eom = Eom(1+A:Eom + 8Eqm)

and to the values of Coulomb bound-state wave func-
tions at the origin:

2
Wom(0)® = [Wem(O)| (L + AW + AW5n),

where

WS, =

A
(m+1)* m(m+1)%

AyEom = A Eom+ A5 Eom + A5 Eoms

c _
EOm__

A% NA, BF
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2 _ 2 2 (2).,.2 (1).,.2
BoWom = ByeWom + B2 p geWom + 82 " Wom + 82 " Won,
and Akglngm is the correction due to relativistic correc-
tions parametrized by the coefficients B' which we
include into the definition of the wave function.

In NLO, an explicit analytic expression for the cor-
rectionsto the bound-state parameters hasthe form [ 20,
21, 53]

SBO

AEon = (Ly(m) + W, (m+2)),

SBO

Ao = < FLa(m) +Wy(m+2)

2 O
—-2(m+1)W,(m+ 1)_1_2VE+m+1D

where L; (m) = L,(M(m + 1)). The expressions for the
NNLO correctionsto the energy levels[20, 21, 53] and
wave functions at the origin [20, 21] are rather cumber-
some and are given in Appendices C and D.

The continuum contributions in (24) can be directly
found by subtracting the discrete part of these equa-
tions expanded around the Coulomb approximation up
to NNLO,

Z |lIJOm( )| DL+A1"IJOm+A2lIJOm

2
+ (1+AWom)AEom + AEgy, +

A Eor g
C
1-E/E;,

(1-E/ES )0

from the result obtained within the nonrelativistic per-
turbation theory for the Green’s function at the origin
(13) multiplied by (1 — BE/m). This procedure
removes the double and triple poles from (13) and
leaves only the single poles in expression (24) for the
Green's function.

An important consequence of the relatively large
top-quark width is that most of the Coulomb reso-
nances are smoothed out. The numerica analysis
shows that only the ground-state resonance in the cross
sectionsis distinguishable. Its separation from othersis
not completely covered by the infrared cutoff provided
by the top-quark width. Indeed, using the pure Cou-
lomb formulas for estimation within an order of magni-
tude, we find the value

3
am,
to be compared with thetop-quark width I, = 1.43 GeV.
The second spacing between radia excitations for the

[EG—ES| = =06 Gev
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| = 0 partial wave and the first spacing for thel = 1 par-
tial wave are, however, much smaller,
c c| _ |~C cl| _ é)\_
|E01 - E02| = |E10 E11| = 36m, 0.11 GeV,

and are completely smeared out with the top-quark
width.

Inthelimit of vanishing top-quark width, the NNLO
approximation for the energy of the resonance in e
annihilation reads

v _ Ao, G
B = i+ 7220 +1-ve)

BBl (L) +1-v0)

Y RLM v+ 1-T-w o)
+2C5HL(A) +1-vg) —1+’é%
+Cra 52%\ 0
where
L(\) = |n%‘§g L) = |nEL§fE

This value is related to the energy of the resonance of
the top-quark production in the yy collision by hyper-
fine splitting,

4\°
3m

The convergence of the perturbation-theory series (25)
is not fast. For some typical values of the soft normal-
ization scale, the series for the resonance energy reads

Ew —Ege = =2Cla’

Ew = Eq(1+0.36+0.30), p, = 25GeV,
Eu = Eg(1+058+0.38), . = 50 GeV, o6
Ew = Eg(1+0.68+045), . = 75GeV,

Ew = Ego(1+0.74+0.50), . = 100 GeV.

The poor convergence of the series for the resonance
energy can be assigned to high infrared sensitivity of
the pole mass (see, for example, [54]). The convergence
can be manifestly improved by removing the pole mass
from the theoretical expressions in favor of some less
infrared-sensitive mass parameter, for example, the
short-distance [20], potential-subtracted [22], or 1S
mass [24]. Note that all the mass definitions are pertur-
batively equivalent in a finite order of the expansion.

PENIN, PIVOVAROV

The infrared-safe mass parameters, however, are
“closer” to the physical observables since the corre-
sponding perturbative series, in contrast to the pole
mass, are supposed to be convergent.

Dueto thefinite top-quark width, the location of the
peak (maximum) of the cross section is not given only
by the position of the ground-state resonance but is also
affected by the contribution of the higher (smeared out)
resonances and the continuum contribution. Dueto this
effect, the absolute value of the NNLO peak energy
(25) measured from the threshold is less than the abso-
lute value of the energy of the ground-state resonance

Eqo " by about 200 MeV, i.e., ~7%. This shift is essen-
tially smaller than the one related to the perturbative
QCD caorrections to Coulomb values but is consider-
ably larger than the leading nonperturbative contribu-
tion due to the gluon condensate [55], which is sup-

pressed parametrically as (Agcp/A)* < 1%.

3.2. P-Wave Production

The derivative of the Green’s function at the origin
is saturated with its | = 1 component and is explicitly
given by therelation

5, G(x, ¥, K) = 9G4(0, 0, k).

For the Coulomb Green's function given in (15), we
obtain the closed formula for the | = 1 partial-wave
Green’'sfunction at the small space separation of a par-
ticle:

m 03 3\, 60" 3K
G](_:(X,O,k)lxﬁo = @T%:B'F?"'T

+ 20 (K2 =2\ In(2x{1;) + A%(kz—)\z)% Q27)

+InCK o+ 2y - 1—1+ Wy(1-v) g+ k—%\

i

where [i; isthe analog of the parameter Hfor thel =0

partial wave. In the short-distance limit x — 0, the
derivative of the Coulomb Green's function (or the | =
1 partial wave) has 1/x* (n=1, 2, 3) and In(x) singular-
ities. In contrast to the case of the Swave production,
the value at the origin for the partial P-wave Green's
function contains divergent terms that depend explic-
itly on the energy (or wave vector) k. However, these
terms do not contribute to the cross section for the van-
ishing top-quark width I, = 0 because they have no dis-
continuity across the physical cut in the complex
energy plane in the approximation of zero top-quark
width. The case of the nonzero top-quark width
requires a more detailed analysis given below.
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The correction to thel = 1 partial wave at the origin
due to the first iteration of A,V term of the QCD poten-
tial has been found in [31]:

a8y AmK’

£:64(0,0.k) = 2m 18T

Dz F(m)*(m+1)
x(m+2)(m+3)(Ly(k) +Wi(m+4))
_2 z z F(m)F(n)(n+ 1)(n+ 2)(n+3)

m=1n=0

+2'% F(m)z23o(m) + (m+ 1)(m+ 2)Ly(K)
m=0
+(L+v)(Ja(m) + (M+ 1) Ly(K)
D) Gy + 21,0) B+ 00
u

where

v(vz—l)
(m+2-v)(m+1)(m+2)(m+3)’

Jo(m) = —2W,(m+ 1) -4y +3,

F(m) =

Ju(m) = (M+1)(=Wy(m+2) -2y +2),

32(m) _ (m+ 1)2(m+2)D W, (m+3) -2y + 2%
(ve—1)°
(k) = —T—l—z—(4 3yg)V

2 2
+1—9VE+6VE+T[V2+
4 2 4

9-12y 33, 1
+ H/E—l—Sv +TEV2+§V3+ZV4 (k)

_l+3 ZEL (k)

For the derivative of the Green's function at the origin
(or for the | = 1 partial wave), the analog of Eq. (24)
reads

+G(x Y, E)
W) 1)
Z 1—E—IO OE'—E—iOdE’
where
Wi e O] = 0,0 ()0, W ey o
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Here, E,,, isthe | = 1 bound-state energy. In the NLO
approximation, these quantities read [31]

)\2

Eyy =~
m(m+2)

a _
xHL+ 722G (Ly(m+ 1) + Wy(m+ a))d

and
(m+1)(m+3)
(m+2)°

A
Tt

win(0)]

O oag .0
x[1+—=C;bL;(m+1)+5¥Y,(m+4)
O 41T g

——(m+2) 1+Zz (n+1)(n+2)(n+3) D:J
oM+ 1) (m+ 3)(m-— n) D]

The continuum contribution is obtained in the same
way as it was done in the previous section for the S
wave production.

In the case of P-wave production, the simple shift
E — E+il" inthe nonrelativistic approximation is not
sufficient to describe properly the total effect of the
nonzero top-quark width [2]. Indeed, Eq. (27) in the
limit x — 0 with the nonvanishing width has the
divergent imaginary part with the leading power singu-
larity ~T",/x related to the free Green's function singu-
larity and the logarithmic singularity ~I",a,In(x) pro-
duced by the Coulomb gluon exchange. The presence
of these singularities clearly indicates that the coeffi-
cient of the constant term linear in ", getsacontribution
from the large momentum region and cannot be
obtained within the pure nonrelativistic approximation.
Asthe hard coefficients, it should be computed in rela-
tivistic theory. This contribution is not suppressed para-
metricaly in comparison to the pure nonrelativistic
contribution in the threshold region. At E= 0, for exam-
ple, the ratio of the relativistic (proportional to I',) and
nonrelativistic (Coulomb) contributions is of order

I',/O(§ m ~ 1. Sincewe areinterested in the NLO correc-
tions, the O(I',ay) term also has to be taken into
account. By construction, the nonrelativistic effective
theory hasto reproduce the perturbation-theory predic-
tions in the formal matching limit ag, B < I'/m < 1,
where both effective theory and perturbation theory
descriptions are valid. Thus, one has to compute O(I")
and O(I",a) termsin the rel ativistic perturbation theory
and then to fix the parameters of the effective nonrela-
tivistic theory so that it reproduces the perturbative
results in the matching limit. In the relativistic pertur-
bation theory, the relevant contributions can be
obtained by inserting the complex momentum-depen-
dent mass operator to the top-quark propagator at 3 =0
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(only the leading termsin I",/m, should be retained). In
the leading order in ag, this procedure has been donein
[2]. The result reads

3

GL(0,0,K)lr, = z5-aul,

where g, is a coefficient coming from the relativistic
treatment with the numerical value g, = 0.185. For the
O(l,a,) term, the necessary calculation has been per-
formed in [31]. It has been shown that the proper rela-
tivistic analysis leads to fixing the auxiliary parameter

of Eq. (27) 1 = g,m, where g, is the coefficient com-

ing from the relativistic treatment. Its numerical value
isg,=0.13.

Here, we should note also the problem of the previ-
ous numerical analysis of the P-wave contribution [28].
Solving Schrodinger equation (1) numericaly for the
finite top-quark width, one has to introduce an explicit
ultraviolet cutoff for the nonrelativistic expressions
divergent in the large-momentum region. To get rid of
the cutoff dependence, one has to compute the hard
contribution within the rel ativistic approximation using
the similar prescription for the infrared cutoff. This,
however, has not been done; as a consequence, the
O(y) and O(';ag) contributions to the cross section
were not determined within the numerical framework
of [28] %) On the other hand, the total O(I"y) contribution
to the cross section is numerically small in comparison
with that of the completely regular nonrelativistic terms
of (27), which saturate the total result for energies not
far below the threshold.

3.3. SPInterference

In the zero-width approximation, function (9) can
be decomposed as

CD(E) = poI(E) + q)con(E)

where @, and ®,,, are the continuum and bound-state
poles contrlbutlons respectively. It is known [7, 44]
that the continuum contribution is not affected by the
Coulomb effects, and above the threshold one has the
Born approximation result

E
®en(E) = Re =
(E) m

even for the Coulomb Green’s function in Eq. (9).
Below the threshold, in the Coulomb approximation,
one obtains

C

= Wa(0)?
(E) = O T
Pua(®) = zo(Elm—E) Eunzo(EOm—E)

4)Recently, the O(T",) contribution has been estimated within the
numerical approach [30] by using the physical (relativistic) phase
space for the unstable top quark to regularize the divergence of
the nonrelativistic approximation.

D—l
-0, (28)
0
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where the quantities

o = A (m+1)(m+3)
TOMI (m+2)°
measure the overlap of the S and P-wave functions.

Note that in the zero-width limit, the function <Dp0,
does not vanish due to the Coulomb degeneration of the

energy levels with different I: Eg,., = Eiy. It was

indicated in [44] that the continuum contribution has no
soft corrections. Thus, in NLO, we have the simple
result for afinite top-quark width:

Pn(E) = Re [t
m

The corrections to the pole contribution are less trivial.
They can be computed using the powerful technique
developed in [18, 21, 31]. The result reads

choI(E)

0- [0) O
= Re[] — ——[]
QHZO(EO(mu)—E""rt)(Elm—E—|rt)D (29)

0 o o
s _ew@F 5
ErL-. o(EOm_E) +r D
where

SBO

0
@, = cprCnEIL B4L(m+ 1) + 4W(m+ 4)

+ —-2—=(m+
m+3 2 (m 2)

(n+1)(n+2)(n+3)
z o(m+1)(m+3)(m- n) 0

In (29), we retain the finite top-quark width to get a
nonvanishing result since the Coulomb degeneration is
removed by the logarithmic correctionsto the potential.
Strictly speaking, our approachisvalid only if the level
splitting E,,,,, — E,,, is much smaller than the top-
guark width (which is realized for the actual values of
these quantities). At E,,,, ., —E;,, > T,, the nonrelativis-
tic analysis is not applicable for the SP interference
below the threshold because the double poles of
Eq. (28) disappear and the nonrelativistic contribution
is not enhanced in comparison to the relativistic one in
this case.

Notethat, for the finite top-quark width, the interfer-
ence of thefreel = 0 and | = 1 partial waves resultsin
the logarithmically divergent O(I",) term in the numer-
ator of Eq. (9) (thisterm does not explicitly include the
factor I',, but it is suppressed in comparison to the lead-
ing term, which is proportiona to 1/T", as the leading
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Fig. 1. Normalized cross section RY(E) in the leading order
(thin solid curves), in NLO (thick dotted curves), and in
NNLO (thick solid curves) form,= 175 GeV, I, = 1.43 GeV,
a,(Mz) =0.118, and p, = 50, 75, and 100 GeV. Thethin dot-
ted curve corresponds to the result in the Born approxima-
tion.

term in the denominator of Eq. (9) for the free quark
Green's function). This divergent term is of the same
origin as the divergence in the P-wave amplitude dis-
cussed in Subsection 3.2. This term can be accurately
calculated only within the rel ativistic approximation. In
contrast to the P-wave production, thisterm is paramet-
rically suppressed above the threshold in comparison to
the nonrelativistic continuum contribution by at least

the factor ,/I'/m, at E ~ 0 and can be safely omitted.

However, it becomes important below the resonance
region when the nonrelativistic contribution becomes
small. Moreover, the denominator on the right-hand
side of Eq. (9) decreasesrapidly below the ground state
pole. Therefore, a small uncertainty in the numerator
would lead to a large uncertainty in the function ®(K),
and areliable estimation of its numerical value is not
possible in this region within the nonrelativistic
approximation. Strictly speaking, the accurate determi-
nation of the function ® below the ground-state pole
requires the calculation of the relativistic O(I",) contri-
bution to the S'wave cross section [the denominator of
(9)], which is not usualy considered since it does not
lead to the divergence in the nonrel ativistic expression.

4. DISCUSSION

The results of the numerical analysis for the physi-
cal observables based on the obtained analytic expres-
sions are plotted in Figs. 1-4.

The constant ¢,  appearing in the hard coefficient

C**(ag) inthe O(a 52) order remains unknown. The cal-

culation of this parameter is necessary for the formal
completion of the NNLO analysis. To find its numerical
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Fig. 2. Normalized cross sections R°(E) (dotted curves) and
RY(E) (solid curves) in NNLO for &," =0, m; = 175 GeV,

My = 143 GeV, agMy) = 0.118, sin’,y = 0.232, M, =
91.2 GeV, and g = 50, 75, and 100 GeV.

value, one hasto compute the O(a f ) perturbative QCD

correction to the yy cross section near the threshold in
the formal limit o5 << 3 < 1 and to compare it with the

O(C(SZ) term in (20). In the case of e*e” annihilation,
however, the analogous contribution parametrized by

C, isrelatively small (about 10% of the total NNLO

correction) and the correction to the physical observ-
ablesin NNL O issaturated with the soft part of thetotal
contribution determined by the corrections to the
parameters of the nonrelativistic Green’s function.
Thus, one can reasonably hope that a similar situation
can aso take place for yy collisions. However, the

R*(E)
0.12
0.08
0.04
0 J
-6 -4 -2 0 2 4 6
E, GeV

Fig. 3. Normalized cross section Rt ~(E) in theleading order
(dotted curves) and in NLO (thick solid curves) for
m, =175 GeV, I', =1.43 GeV, a (M) = 0.118, and p, = 50,
75, and 100 GeV. The thin solid curve corresponds to the
result in the Born approximation.
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Fig. 4. Asin Fig. 3, but for the function ®(E).

importance of this parameter for physical observables
is not crucial; it affects only the overall normalization
of the cross sections. For example, it does not shift the
position of the resonance, which is an important char-
acteristic of the production, and does not enter the ratio
R**(E)/R**(0). For the numerical analysis of the cross

section RY, we set ¢, = 0.

In our approach, we deal with the soft corrections by
summing them into the energy denominators of the dis-
crete part of the Green's function. In other words, we
treat the soft corrections as effective corrections to the
parameters of the Green’s function written in a fixed
functional form. The same approach has been advo-
cated in [22, 27, 29, 30, 56], where al the corrections
to the Green’s function have been found (numerically
or analytically) in the form (24). In [26], however, part
of the NNLO corrections have not been resummed to
the energy denominators of the discrete part of the
Green's function. On the other hand, the Schrddinger
equation (1) has been solved numerically in[27, 29, 30,
56]; i.e., the NLO and the NNL O correction to the Cou-
lomb Hamiltonian have been taken into account effec-
tively in all orders of nonrelativistic series (13) for the
Green'sfunction, while wework strictly in NNLO. Our
formulas reproduce the numerical result for RV of the
most recent numerical analysis[29, 30, 56] with 1-3%
accuracy that can be assigned to the contribution of the
higher iterations of the NLO and NNL O corrections to
the potential in Eq. (13) beyond NNLO.

For thetotal cross sections, which are dominated by
the S'wave contribution, wefind the typical value of the
NNLO corrections to be of the order of ~20% in the
overall normalization of the cross sectionsand ~40%in
the resonance energies expressed in terms of the top-
guark pole mass, i.e., of the order of the NLO ones (see
Fig. 1). Though the inclusion of the NLO corrections
results in a considerabl e stabilization of the theoretical
results for the cross sections against changing the nor-
malization point, the NNLO corrections do not lead to
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better stability as compared to NLO. In the overall nor-
malization of the cross sections, the NLO and NNLO
corrections cancel each other to a large extent, while
the NLO and NNL O corrections to the resonance ener-
giesare of the same sign and shift the resonance farther
from the threshold. They also make the peak more dis-
tinguishable, which is the main difference between the
leading Coulomb and NNL O approximations.

The leading-order approximations for R* and RY
Ccross sections are the same up to the normalization fac-

tor 2qt2 . Uptothe overall factor, the difference between

the cross sections is determined by NNLO QCD and
relativistic corrections (see Fig. 2). Above the thresh-
old, this difference is determined by the difference
between B** and B coefficients and between P-wave
contributions to Egs. (2) and (3), i.e., by the pure rela-
tivistic corrections. Below the threshold in the reso-
nance region, this difference is determined also by A
coefficients and is quite sensitive to the value of o.

Though the use of an infrared safe mass parameter
instead of the pole mass improves the convergence of
the series for the resonance energies, it does not affect
the huge NNLO corrections to the cross section nor-
malization. Moreover, it is not clear if there exist phys-
ically motivated mass and strong-coupling parameters
providing fast uniform convergence of the perturbative
expansion for the cross sectionsin the threshold region.
The absence of such a parametrization would mean the
unavoidabl e significance of the high-order terms of the
threshold expansion. Some high-order effects have
been already considered in the literature. The leading

logarithmic corrections of the form ag +lIn”[_% have

been computed [22]. These corrections originate from
the corrections to the Green’s function due to the high
iterations of the A? kinetic term and the non-Abelian
and the Breit—Fermi potential of (12) and can be taken
into account by the renormalization group evolution of
the hard coefficient C": ** from p; = m down to ; = m,
[22]. The corresponding correctionsto the RV cross sec-
tion are £5%. In [29], the running of the strong cou-
pling constant has been taken into account by introduc-
ing the energy dependent soft normalization point of o
entering the Coulomb potential in the numerical solu-
tion of the Schrodinger equation. The resummation of
the renormalization group logarithms has an essential
(up to 10%) effect in the resonance region and reduces
the normalization-scale dependence of the result. Fur-
thermore, the effect of retardation which introduces a
new type of contributions absent in NLO and NNLO
has been analyzed for the low-lying resonances [25].
The characteristic scale of the leading ultrasoft contri-
bution was found to be about —5% for the square of the
ground state wave function at the origin and +100 MeV
for the ground-state pole position.

The result for the axial coupling contribution to the
ete — tt crosssectionisin good agreement with the
PHYSICS OF ATOMIC NUCLEI
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numerical analysis presented in [28]. Up to the trivia
normalization, this contribution coincides with the
cross section R~ (Fig. 3). Numerically, it does not
exceed 2% of thetotal cross section and isless than the
uncertainty resulting from the normalization scale
dependence.

The cross section R~ and the function ®(k) have no
contribution from the ground-state resonance; there-
fore, they are rather smooth because the top-quark
width smears the higher resonance contributions very
efficiently (Figs. 3, 4). These quantities are rather
insensitive to variation in the normalization scale. A
typical NLO correction to R~ is about 10%, while the
one to ®(K) is about 15% [the corrections to the for-
ward-backward asymmetry and top-quark polarization
also include the hard normalization factors which have
not been included to ®(k) and the nonfactorable correc-
tions discussed in Subsection 2.4]. Our result for the
function ®(k) (Fig. 4) is in good agreement with the
results of numerical analysis [5, 6] for the energies
above the ground-state resonance. There is some dis-
crepancy between the results below the resonance.
However, a reliable estimate for the function @ is not
possible in this region with the pure nonrelativistic
treatment of the top-quark width, as was explained in
Subsection 3.3.

The final remark of this section concerns the opti-
mal choice of the normalization and factorization
scales. The hard scale appears in the hard coefficients
as In(m/p,,); i.e., the typical hard scale of the problem
is the top-quark mass. Though in a fixed order of the
perturbative expansion the hard coefficients do not
depend on p,, one can set Y, ~ m, to minimize the
potentially large logarithmic contributions of the higher
order terms. In practice, the NNLO results are amost
independent of W, when p, ~ m,. On the other hand, the
requirement of convergence of the perturbative expan-
sion around the Coulomb Green’s function restricts the
allowed range for the choice of a soft normalization
point that can be used for reliable estimates. The soft
physical scale of the problem is determined by the nat-
ura infrared cutoff related to the top-quark width

Jm[; that measures the distance to the nearest singu-

larity in the complex energy plane and/or by the char-
acteristic scale of the Coulomb problem A, i.e, pg ~
15 GeV. Both scales are rather close to each other for
the case of the top quark, which makes possible a uni-
form description of both perturbative QCD and Cou-
lomb resonance effects. Indeed, for ps ~ 15 GeV, the
soft NLO correction, for example, to energy level (25),
reaches its minimal magnitude. However, at this scale,
the NNLO correction exceeds the NLO one and the
seriesfor the energy levels seemsto diverge. Moreover,
for such alow soft normalization point, the NNLO cor-
rections to the wave function at the origin that cannot
be eliminated by the quark mass redefinition become
uncontrollable. Thisis not surprising since the normal-
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ization scaleis defined in arather artificial MS scheme

that has little to do with peculiarities of tt physics and
thereis no reason for aliteral coincidence of parameter
K with any physical scale of the process. The relative
weight of the NNL O correction to the Green’sfunction,
aswell as the dependence of the cross sectionson g, is
stabilized at pg = 40 GeV, which can be considered as
an optimal choice of the soft normalization point. The
price one pays for using different soft and hard normal -
ization scales is the incomplete cancellation of the fac-
torization scale dependence, but this effect is sup-
pressed by an additional power of a.. Another source of
the dependence on the factorization scale is factorized
form (4), (6) of the cross sections, where some higher
order p-dependent terms are retained. The numerical
analysis, however, shows that the results are rather
insengitive to the factorization scale chosen in the

region i ~ m.

5. CONCLUSION

The basic observables of the top-quark pair produc-
tion in e"e annihilation and yy collisions have been
considered in the threshold region. The threshold
effects are described by three universal functions
related to the S and the P-wave production and S-P
interference which have been computed analytically
within (potential) NRQCD. An explicit analytic expres-
sion for the soft part of the NNLO corrections to the
total cross section has been obtained. The threshold
etes — tt cross section has been obtained in NNLO
in closed form including the contribution due to the
top-quark axial coupling. The forward-backward
asymmetry of the quark—antiquark pair production in
e*e” annihilation and top-quark polarization in both
processes have been computed analytically up to NLO.
The running of the strong-coupling constant and the
finite top-quark width effects in the P-wave production
and S-P-wave interference have been taken into
account properly within the analytic approach.

In combination, these uncorrelated observables
form an efficient tool for investigating quark interac-
tions. Asindependent sources, they can also be used for
determination of the theoretical uncertainty in the
numerical values of the strong-coupling constant a,
the top-quark mass, and the top-quark width extracted
from the experimental data on top—antitop production.

The high-order corrections turn out to be relatively
large for al observables and important for the accurate
description of the top-quark physics near the produc-
tion threshold.
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APPENDIX A

The correction AéZ)G due to the A,V part of the
potential has the form [18]

A9G = [P Ceatsm; Jm O

0 an DZ F(m)*((m+ 1)(C?

+L(K)C + L(K)’C7) + (m+ 1)Wy(m+2)

x (Cf +2L(Kk)C;) + K(m)C3)

25 3 FmFmELEL 2L 9c)

m=1n=0

+K(mn)Cg+2 5 F(m)(Co + LT +(L(K)

+3(m))C; — (2ye + Wy(m+ 1))(C; + 2L(K)C3))

0
#LIICE + fyel () + 5LOOECE +109CET

where

_ 1n[HsO
L(k) = InEQkD
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Tt 2 U
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+Wy(m+1) — W (m+1)° +2yZ,

2
1K) = He+ BHL09 - el (07 + 3L,
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The correction Aél) G dueto the second iteration of A,V
term hasthe form [19]

) Pscf(Cea s) m
827G = B0 an szZ H(m)*(m+1)

X (Co + (W(m+2) + L(K))Cy)’

-2y Y EciimHm s
+B(m+2) + L) -3 =i

+H(MH(n)*HCo + HP(n+2) + L(K)

n+1

2(m n)(m+ 1)5b

oomlll

+2(Cl) Dz z ZH(m)H(n)H(I)

—2I 1 n=

n+1

(I=n)(m-n)

m-1n-1

S 3 HmHHO)

[+1
(n=1)(m-n)

'3,

® -1 m-1
(I+1)(m+1)
+nZZ le |Z()H(m)H(n)H(I)(n+ 1)(n-1)(n—m)

where

1l
i}
il

1
m+1-v’

H(m) =

APPENDIX B

We define the dimensionally regularized value of
the Coulomb Green's function at the origin directly
through the relation

GS(0,0,k) = jd"pé(p, k)

with d = 3 — 2¢. Representing the momentum space
Green'sfunction as

_ Dl+td’ 4K*(1 + 2t)
G(p, k) = — ,
P I I ke 2y
one obtains
G¥(0,0,K) = mk £ [;L+tﬁ dt

2n0k 0 0T 0 2™
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Here, we omit inessential factors related to the precise
definition of integration measure in d dimensions that
lead to the multiplication of the Green’s function with
an additional quantity 1 + O(g) and can be taken into
account by the redefinition of i, scale. The integral on
the right-hand side of this equation reads

m[ﬂ_+tﬂ dt
Ut O 2
0 (1+2t)

—2¢€ . .1|:J
=27 B(-1+2¢, 1-V),Fi 2, - 1+ 2¢; 2e-v; 30

where B(z, w) isthe Euler B function and ,F,(a, b; ¢; 2)
is the hypergeometric function. Upon expanding the
above expression in € around € = 0, one arrives at the
final result for the dimensionally regularized Coulomb
Green's function. The factorization scale [, in (17) is
chosenin such away that it istrue as written. Note that
the Green's function regularized in this way does not
automatically match the hard coefficient computed in

the MS scheme of the orthodox dimensional regular-
ization [32, 33].

APPENDIX C

The NNLO corrections to the sgquare of the Cou-
lomb 3S, and 1S, heavy-quark bound-state wave func-
tion at the origin have the form [21]

, Cial
AKZlIng = BIF—ST
4(m+1)
2 2 2[ﬂ.5 1
AAZ,NA,BFqum = —Cra 5D8( +1)
+ A, Cam (M g
02 C:LU A 0
1 M

+yE+qJ1(m+1)_(m+1)Dj

2
AW, = HEE B(C+ Lm)cE + [(m)’C))
0 2
+=1-2yc+ +llJ 1(m+2)

o

—2(m+ 1)Wy(m+ 1)HC] + 2L(M)C3)

+ B8 4 o (my— 2w, (m + 2)
n+1
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APPENDIX D

The NNLO corrections to the Coulomb 3S; and 'S,
heavy-quark bound-state energy levels have the form
[20, 21, 53]

AAZ, NA, BFEOm
_ Clal (£, 5-A' 111 [
(m+1e, 2 16(m+1)U

2
B Eor = 2R L + L(m)CE + [(m)°C

K(m)
(m+1)

ci0

+W(m+2)(CT +2L(m)C3) + 20

05 Eon,
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Abstract—The axion self-energy in an external magnetic field is investigated. It is shown that, in addition to
the standard contribution due to axion interaction with virtual fermions, there exists the contribution induced
by photon exchange. For the two contributions, expressions that take exactly into account an external field are
obtained, and the limit of an ultrastrong magnetic field is explored for them. The question of whether two-
dimensional QED, which effectively arisesin the limit of a strong magnetic field, is applicable to calculating
the virtual-fermion-induced contribution to the axion self-energy is analyzed. © 2001 MAIK “ Nauka/Interpe-

riodica” .

1. INTRODUCTION

The interaction of quantum particles with active
matter (for example, plasma or an external magnetic
field) in higher orders of perturbation theory can signif-
icantly affect the properties of particles. In particular,
effects associated with such interactions can change the
particle mass (or induce an effective mass) and generate
anomalous magnetic and electric moments. If such
changes in the properties of particles are sizable, they
affect the kinematics of quantum processes.

The problem of the axion-mass value [1, 2] and of
the axion lifetime is of paramount importance for cos-
mology, since the axion is considered as one of the
main candidates for dark-matter particles in the Uni-
verse. In quantum theory, the axion, which is intro-
duced as a massless particle, acquires mass owing to
mixing with the T meson [3],

m. = mnan z Dl/Z
2 f, U1+2)(1+z+w)0
10’ GeV] b
= 0.60 eV ,
0 f, O

where m;= 135 MeV and f, =93 MeV are the neutral-
pion mass and decay constant, respectively, and where
we have used the quark-massratios z= m,/my= 0.568 £
0.042 and w = m,/m, = 0.0290 + 0.0043 [4]. It can be
seen that the axion mass is determined by the energy
scale of the breakdown of Upg(1) symmetry (Peccei—
Quinn symmetry) of the theory f,; according to the cur-
rent estimates, it is rather small, m, = 10~ eV, since
astrophysical datayield alarge valuefor thisscale, f, =
10® GeV [5].

Having traversed aregion where there is an external
electromagnetic field, an axion acquires an electromag-
netic correction to the mass. The field shift of the axion
mass squared is determined by thereal part of thea —

a transition amplitude AM induced by an external elec-
tromagnetic field,

dm’ = —ReAM. (1.2)

Theimaginary part of the amplitude AM determinesthe
axion-decay probability W,

ImAM = E,W,, (1.3)

where E, is the axion energy. For an analysis of the
properties of an axion that propagates in an external
classical field, it is of great interest to calculate this
amplitude.

2. GENERAL EXPRESSION
FOR THE TRANSITION AMPLITUDE

In the existing axion models, the interaction of the
axion with a fermion f of mass m is described by the
Lagrangian

2P (%) = f—r;ff[f‘(x)v“vgsf(x)]aua(x), @.1)

where g = C; m /f, is the dimensionless Yukawa cou-
pling constant; C; is a dimensionless factor that is
dependent on the specific model of the invisible axion;
ys =—1 YoY'y2y?, yH being the set of the Dirac y matrices
[6]; 0,a(x) = da(x)/oxH; and f(x% and a(x) are the quan-
fized fermion and axion fields.

In the lowest nonvanishing order of perturbation
theory in g, the axion-to-axion (a — a) transition
amplitude is described by the fermion loop diagram
(see Fig. 1). We note that, in order to derive a correct
result in calculating amplitudes involving not less than
two axion fields that interact with fermions (for exam-
ple, the amplitude corresponding to the axion self-
energy diagram in Fig. 1), it is necessary, as was indi-

DHere, we use the system of unitswhere # = ¢ = 1 and the pseudo-
Euclidean metric of signature (+ ——-).

1063-7788/01/6402-0294$21.00 © 2001 MAIK “Nauka/Interperiodica’
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cated for the first time in [7], to use the Lagrangian
involving the derivative, such asthat in Eq. (2.1), rather

than the pseudoscalar Yukawa coupling, 58;? =

-igy (fysf)a

The S'matrix element associated with the contribu-
tion of virtual charged fermions (see the diagram in
Fig. 1) isgiven by

Si= Z,Z@(qn [d*xd*yT{ L' () Lar ()} ()

i gafJ.d xd’ye (@ 1@Y)
4mf J2E,V x 2E.V

xtr{ Ge(y, X)(aY)YsGe(X, Y)(A'Y)Ys},

where |a(q)Cand |a(q")Care the vectors of theinitial and
thefinal state of the axionswith 4-momentagt = (E,, q)

and g* = (E,, q), respectively; (qy) = q,y*; V is the
normalization volume; and Gg (X, y) is the charged-fer-
mion propagator.

In an arbitrary constant uniform electromagnetic
field, the propagator for a fermion with charge & pos-
sesses neither gauge nor trandlation invariance. The non-
invariant component can be factored out in the form of a
phase, so that the propagator can be represented as[8]

S:(x—-y),

2.2)

iIQ(x,y)

Ge(xy) = e (2.3)

where
I 1 ’
Q(xy) =~ [de| A8) + 3Fu(E-Y)"]. @4
y

We note that the expression for the phase in (2.4) does
not depend on the path of integration between the
points x and y of four-dimensional spacetime [8].

In a constant uniform electromagnetic field, the
noninvariant phases of two fermion propagators cancel
out in two-point loop diagrams (including the axion
self-energy diagram), making no contribution to the
amplitude. Proceeding from the definition of phase in
(2.4), we do indeed obtain

X

Q06 Y) + (3 %) = —3 Fy (x—) [k
y

= 2R, (- (x-y)" =

because the constant field tensor F, can be factored
outside the integral sign together with 4-vector xX-y),
so that the resulting vector integral reduces to the 4-
vector (X — Y)M. In view of this, the Smatrix element
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Fig. 1. Diagram representing the axion-to-axion (a — a)
transition in the lowest order of perturbation theory in an
external electromagnetic field.

proves to be trangdlation- and gauge-invariant and takes
the form

S = Zizgsf (2m*5”(q-q)
; 4m$ 2EaV

x Id“Xe‘“qX)tr{ S-(=X)(ay)YsS:(X) (ay)ys}

where X = x—y. In the Smatrix element, we have iso-
lated a four-dimensional delta function expressing the
law of energy—momentum conservation. Thisis due to
the fact that the initial and the final state are formed by
electrically neutral particles. Therefore, we can use, in
this case, the standard definition of the invariant ampli-
tude [6],

2.5)

i(2m*3®(q-q),,

St = 2EV ana (2.6)
whereby we arrive at the following result:
|gaf —i(gX)
Maﬁa - d Xe
Z 4mff 2.7

xtr{ S:(=X)(qy)YsS:=(X)(ay)ys} -

The invariant part S(X) of the fermion propagator
(2.3) can be expanded in acomplete set of 4 x 4 matri-
ces [6]. Upon substituting such expressions into the
transition amplitude, evaluation of the traces of the y
matrix becomes rather cumbersome. However, the cal-
culations can be ssimplified considerably by represent-
ing S- (X) asthe sum of two termsinvolving the product
of an even and an odd number of Dirac matrices:

S(X) = Si(X) +S.(X), VYsSys = S, (2.8)
On the basis of the commutation properties of the y
matrices, it can be deduced that S,(X) (S.(X)) is propor-
tional to the even (odd) number of Dirac matrices. The

expression for the amplitude can then be reduced to the
form

My 2= M,+M.,
v, = 5y 1 o d'xe " 2.9)
4mf

xtr{ S.(=X)(qy)S.(X)(ay)}.
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Y(@) Y(q')

f

Fig. 2. Diagram describing the photon-to-photon (y —> V)
trangition in the lowest order of perturbation theory in an
external electromagnetic field.

We notethat the contributionsM, and M_are equal; this
can be demonstrated by using the gauge invariance of
the photon self-energy. Indeed, this self-energy isdeter-
mined by the photon-to-photon (y — y) transition
amplitude,

iM, (2.10)

where €* is the photon polarization vector. The Feyn-
man diagram for the process y — Yy in the one-loop
approximation is presented in Fig. 2. By taking into
account the results of the above analysis for the axion,
we can recast the photon self-energy into the form

My = _Z 4T Q; Id“Xe‘“qX)
X r{ S(=X)V,S(X)ys},

where g, is the photon 4-momentum, Q is the relative
fermion charge in the loop, and a = 1/137 is the fine-
structure constant. Substituting the propagators in the
form (2.8) into Eq. (2.11) and using the gauge-invari-
ance condition (grg) = 0, we obtain the integral rela-
tion

— HV*
= I‘sts ,

2.11)

Id“Xe‘“qX’tr{ S.(=X)(ay) S.(X)(ay)

+ S (=X)(qy)S(X)(ay)} =0,
whence it follows that M, is equal to M_.

By using this relation, we can reduce thea — a
transition amplitude to the form

M, . = z'ziiffj'd X&)

(2.12)

x tr{ S,(=X)(qy) S.(X)(ay)} 2.13)
-y 1% L (d'xe P S (-X) (@S (X))}
2mf

For asubsequent evaluation of thetransition amplitude,
it isnecessary to know the explicit form of theinvariant
part S- (X) of the fermion propagator (2.3). We will ana-
lyze the axion self-energy in an external magnetic field
by using an exact expression for the propagator in the
field of this configuration.

VASSILEVSKAYA et al.

3. EXTERNAL MAGNETIC FIELD

Within the proper-time formalism [9], the transla-
tion- and gauge-invariant part S-(X) of the fermion
propagator (2.3) in aconstant uniform magnetic field B
can be represented as [8]

S(X) = —P2 _[—E(X/\v)cot(BS)—l(Xd)v)vs
2(4m)
(3.1
__Bs O+ sl 200t (B) + (YY)
sin’(ps)

X exp%—i[mfs+ L%S(X/KX) —%(XAX)Er

where ¢op = Fop/Band §qp = (1/2)€4p,, O are, respec-
tively, the dimensionless tensor of the external-mag-
netic-field strength and itsdual; Agg = (0¢)eg and Aap =
(8 )op = Gop + Aggs ad B= & [B| = & /~(FF)/2. In
the propagator S-(X), the part even in the product of the
Dirac matrices has the form

—[ZCOt(BS) +(Yoy)]

3.2)
x exp i [m?s+ 4—S(xi\X) - %(XAX)}%

We note that, in S,(X), the dependence on the 4-coordi-
nate X is entirely absorbed in the phase factor.

By substituting the expression for S, (X) into the
transition amplitude (2.13), we obtain

exp{—im; (s, +S,)}

. 2 2%
102 B" ds,ds;
M =

e 28(411)4{ $iS;

x tr{[2cot(Bs,) + (voy)](ay)

x [2cot(Bs,) + (voy)1(ay)} (3.3)

x [d Xexpg—l(qX)——[ %2(XAX)
_ Bsin(B(s: + 7))
sin(Bs;)sin(Bs,)

Here, the integral with respect to the 4-coordinate X is
ageneralized Gaussian integral,

(X/\X)} E;

no O i 0
[ Xexpg-u(qX)—"—l(XAX)g

(3.4)
.\Nn/2
-4t . _
= )1,2exp{l(qA )},
(det A)
PHY SICS OF ATOMIC NUCLEI Vol. 64 No.2 2001



AXION SELF-ENERGY IN A MAGNETIC FIELD

where A is a symmetric n X n matrix, detA isits deter-
minant, and A! isthe matrix inverseto A.

For the sake of completeness, explicit expressions
for the matrices A and A™' and for detA are presented
immediately below for the case corresponding to the
transition amplitude (3.3):

o _StSE  BSN(B(s +5)
" TS T Sn(s) sn(Bs)
WSS 5 sn(s)sn(Bs)
A = S s BanB s v O
e = LB+ S)SN(B(s + )]

U s;ssin(Bs)sin(Bs;) 0

A direct calculation of thetrace in the transition ampli-
tude (3.3) presents no serious difficulties. By taking
into account expressions (3.4) and (3.5), we can recast
the transition amplitude into the form

gaf BI dt

M. _ o(a, a2, B) = Sn(BY)

1
XJ’du[qﬁcos(Bt) - qé cos(Btu)]
(3.6)

2
X exp E—i [mft - 9-|-'t(1 - uz)
u 4

2 cos(tu) — cos(f3t)
T 2psn(BY ]5‘

where qé = (g/\g) and q|2| =(gA\q)=¢*+ qé . Inderiv-
ing the last formula, we went over to the new integra-
tionvariablest =5, + s, and u = (s, — SH/.

The analysis of the transition amplitude (3.6) shows
that the integral with respect to t diverges at the lower
limit. This is a manifestation of the ultraviolet diver-
gencethat appearsin thefield-free part of the amplitude
and which can be removed by renormalizing the axion
mass and the axion wave function. The external-field-
induced part of theamplitudein (3.6) isfreefrom diver-
gences. We restrict our consideration to calculating the
field-induced component of the amplitude AM,

AM(?, a2, B)

, ) (3.7
= Maa a(q » Oos B)_Ma-.a(q 101 O),
which can be represented in the form
AM(q’, q5, B)
gif ;i 3-8)
= J’du[q”J(u 1) - qDJ(u u)].
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Here, we have introduced the integral
_ mdtgycos(ﬁtv) Ho o,
J(u,v) = [= - e -—-e
(U, v) JO’tD sin(pt) %
2 2
2 Qg 2 g; cos(Btu) — cos(Pt)
P [mf 4(1 u)}t+2[3 D) ,(3'9)

where

®, = [mf——(l u .

The integral J(u, v) features no ultraviolet divergence
because the integrand vanishes at the lower limit of
integration.

We note that the expression in (3.8) represents the
a — a transition amplitude induced by an externa
field of arbitrary intensity. If, for the axion on the mass

shell, its small mass is disregarded (¢ = qf — q7 =
mi = 0), expression (3.8) for the amplitude reduces to
that quoted in [10].

By using the definitionin (1.2), we can represent the
virtual-fermion-induced correction to the axion mass

squared, (6m§ e, intheform

(3m2)e

) g2 ! , , (3.10)
; 81t 5

3.1. Crossed-Field Limit
Thea — atransition amplitude in amagnetic field

isdetermined by threeinvariant parameters, g2, qé ,and
B. In the case where the purely field parameter B is
small—that is, B < qé —the crossed-field limit isreal-
ized (E = B, E O B). This situation arises when an
ultrarelativistic particle movesin arelatively weak con-
stant uniform magnetic field, in which case the charac-
teristics of processes involving this particle (ampli-
tudes, probabilities, and so on) are dependent only on

the product qué , Whichis proportional to the invariant
field variable x>

parameter.

The a — a transition amplitude in a crossed field
can be derived from expression in (3.8) by making the

substitutions q|2I =+ q) and of = mX:/B? and by
going over to the limit p — 0. Theresult is

Idu%—§+lnn+——+-—

3

=B2q’/m; referred to asadynamical

— gaf
161 D

AM
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Fig. 3. Complex plane of the variable and contour of inte-
grationin theintegral in Eq. (3.9)

2B 3B
- Rez

) 2df(n) O

—J'dzf(z)D—mfxfIdu(l u)r] an E (3.11)

Where

) 4 2/3 q (1 y )}
= | — 1-
! [Xf(l—uz)} { 4mf

C = 0.5772 is the Euler constant [11], and f(n) is the
Hardy—Stokes function

f(n) = |Idzexp[1—|ﬁ]z+ 3DE

The above expression for the amplitude coincides with
theresult obtained in [12, 13]. The axion self-energy in
a crossed field was also studied in [14]; however, the
expression presented there is more cumbersome and
involves an additional factor of 1/2.

3.2. Srong-Magnetic-Field Limit

The axion transition amplitude (3.8) is of special
interest because it was calculated for an arbitrary
strength of the magnetic field. In [15-17], this ampli-
tude was calculated in the strong-field limit by using
the formalism developed in [18], but the results were
different in those studies. For the amplitude in (3.8), it
isstraightforward to find the strong-field limit when the
purely field parameter 3 is the largest energy scale of

the problem; that is, B > o2, 7, m:.

In calculating the strong-field limit, we note that the
integral in (3.9) isgenerally taken in the complex plane
of the variable of integration along the positive semi-
axis. The integrand has a set of poles on the real axis,
and it is necessary to circumvent these poles from
below, as is demonstrated in Fig. 3. Rotating this con-
tour in the clockwise direction in such a way that it
becomes coincident with the imaginary semiaxis—this
corresponds to the substitution t — —it—we reduce
theintegral in Eq. (3.9) to the form

_wdr tcosh(Btv) o o]
v = [ e e

VASSILEVSKAYA et al.

45 cosh(BT) — cosh(Btu)
2B ST (312

2
P = [mf - %(1 - uz)}r +

2
o, = [mf —qz(l—uz)}t

Going over to the limit  — oo and retaining termsto
thefirst order in B! inclusive, we then obtain

4Be
4mf —q”(l—u )’

whered, | isaKronecker deltasymbol. By substituting
this asymptotic expression into the axion transition
amplitude (3.8) and taking the integral with respect to
u, we reduce the a — a transition amplitude recast by
astrong magnetic field into the form

QD/ZB

J(u, v) = (3.13)

2
Qar B_—a’r2p
AM = Zza—;Tze F(2),

f

(3.14)

wherez= 4mf / q|2| . Here, we have introduced the func-
tion F(z) as

[In J1-z-1 —in@(z)e(l—z)},
2J1-2L | 1-z+1
F(2) =4 z<1 (3.15)
1 z=21,
Jz-1 J_l

where ©(2) is a Heaviside step function. The existence
of the imaginary part of the amplitude AM in the kine-
matical region 0 < z < 1 indicates that, in a magnetic

field, axion decay into the fermion pair (a — ff)
becomes possible for g > 4m; [10].

Taking into account the definition in (1.2), we find
that, in the limit of a strong magnetic field, the virtual-
fermion-induced correction to the axion mass squared

(6m§ )r, hasthe form

(6ma)FL——z@’é‘fB "ReF(2).  (3.16)

We note that the axion self-energy in the limit of a
strong magnetic field was investigated in [15-17] by
using an approximate expression for the charged-fer-
mion propagator. The results obtained in [15, 16] differ
from those in (3.14)—(3.16) and are incorrect in our
opinion. The result from [17] formally coincides with
expression (3.16), but, in fact, it is merely a correct
guess, since there is no physical substantiation of the
method used there to evaluate the axion self-energy. It
would be of interest to analyze in detail the reason
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behind the discrepancy between the relevant results for
the a — atransition amplitude.

Since the trandation- and gauge-invariant part
S-(X) of the fermion propagator (2.3) in a constant uni-
form electromagnetic field depends only on the differ-
ence X, = (X—Y),,, we can represent it in the form of the
Fourier integral

e ™Is.(p). (3.17)

d4p
S0 = [
(2m
Substituting (3.17) into the general expression (2.7),

we obtain the a — a transition amplitude in the
momentum representation:

Igaf
4mf-[(2n)

xtr{ Sp(p)(qv)vssp( pP—a)(ay)ys}-

Inthelimit of astrong magnetic field, the Fourier trans-
form of the fermion propagator S-(p) is simplified con-
siderably, effectively becoming two-dimensional. In
momentum space, the leading external-field-induced
contribution to the propagator is given by [15]

(3.18)

Py =

S:(p) = (3.19)

where p; = (pAp) and pjj = (pAp) = P* + p; are,
respectively, the transverse and the longitudinal com-

ponent of p2 (py)= (PAY); and M = [2 + i(ydy) /4.

Substituting the approximate expression (3.19) for
the propagator S-(p) into (3.18) and evaluating theinte-
gral with respect to momenta in the two-dimensional
Euclidean space orthogonal to the magnetic-field-
strength vector, we obtain the external-field-induced
component of the amplitude in the form

ige B a%i2p
AM = Z—e

2
T 4Timy
2 2 2.2 2 2 2 (3.20)
Id Py 2(Pa); — Py — gy (Pa); — Mt qy
(2 (pj; —m;) (P —2(pa), + qj —m;)

where p, = (Ap), and (pg), = (pAQg). The Feynman
parametrization [6] was used in[15] to calculate AM; in
[16], this amplitude was derived by the Fock—
Schwinger proper-time method [19]. By way of exam-
ple, we perform an analysis of the amplitude in (3.20)
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on the basis of the Feynman parametrizati on.2 We have
IQar B <26

2
— 4Tt

AM =
(3.21)

1

xIdx{ 2(qTq) - q|2|(T7\) - Q|2|(0IV) - quﬁS} '
0

v ~ ~ K
where (qTq) = Ty, 0qy. (TA) =T,A, and (QV) =

qul‘f. By S V,, and T,,, we mean here a scalar, a vec-

tor, and atensor integral, respectively. The scalar and
the tensor integral are finite, and it is easy to calculate
them. Theresults are

2
s= 9Py 1
J’(21T)2[p2—2><(|oq) +xqj—m]’
I ' I I f (3.22)
_ i
4T[[m$—q|2|X(l—X)]’
2
V. = d'py Pl
u I 51021 2 2 1292
(2m)°[p, —_2X(I0Q)u+xqu‘mf] (3.23)
_ XA
2 2 )
Anfmi — o x(1-x)]
The tensor integral
Py Py (3.24)

- Id Py
H 2 2
(2m)°[ py —2x(pa)y + xqy —my]
diverges, and it must be properly regularized. In this
context, it is of interest to explore the stability of the
amplitude in (3.21) to various regul arization methods.
M omentum-cutoff method. A direct calculation of

the tensor integral (3.24) by the momentum-cutoff
method [20] yields

_ i
W T A

2
X GGy
2 2
4T[Unf =g X(1-x)
(3.25)
~ 2 2
/\uv ms —q X(l—X) g
A RTINSl
> [1 In A }E

where A is a cutoff parameter for the sguare of the
momentum with respect to which integration is per-

formed, p|2| (A > q|2|, mf). This logarithmically diver-

gent tensor integral appears in amplitude (3.21) as the
difference of contractions, which is finite:

LC—
4mm; —qx(1—x)]

2(qTa) — i (TA) = (3.26)

AThe proper-time method yields the same final results.
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Hence, the external-magnetic-field-induced amplitude
(3.21) can be reduced to the form

2
() YarB_-abi2p 1
AMCD Z—Ze [F(z) 22}, (3.27)

21T

where the function F(z) is given by (3.15). This result,
which does not coincide with the limiting amplitude
(3.14), is presented as the axion self-energy in [15], but
itisincorrect, in our opinion. The reason isthat thereg-
ularization method used is not impeccable. It is note-

worthy that, in the difference 2(qTq) — q|2| (T/~\) of the

contractions, which appearsin the tensor integral, there
is an indefinite form of the “infinity minus infinity”
type. That this indefinite form is evaluated incorrectly
by the momentum-cutoff method can be demonstrated
by considering the example of the photon self-energy,
for which there arises a gauge-noninvariant expression.
Let us demonstrate this explicitly. In perfect analogy
with the axion transition amplitude (3.21), it can be
found that, in the strong-magnetic-field limit, the con-
traction (grq) in the photon self-energy (2.11) (by virtue
of the gauge invariance of QED in external fields, this
contraction must vanish) can be represented as

2 —q/2p

(gnaq) = z—4aBQfe
. f (3.28)
x [ 2(aTa) —qi(TA) -qf(qV) + qim: S} .
0

The substitution of the scalar, vector, and tensor inte-
gras[Egs. (3.22), (3.23), and (3.25), respectively] into
the contraction (gq) yields

2
2 2 —uq/2p

.
(afq) = z—| ﬁBqu“e
f
which demonstrates that the photon self-energy as cal-
culated by the method used in [15] does not possessthe
property of gauge invariance.
To overcome this difficulty, Borisov and Sizin [16]
renormalize the a — a transition amplitude by means
of the double-subtraction procedure

AMg(qf) = AM(qj) —AM(m?)
dAM(q)

£0, (3.29)

(3.30)
— (g -m;)

T gz = me
It should be noted, however, that, in a strong magnetic
field, this procedure does not have the physical mean-
ing of arenormalization of anything (the procedure of
axion-mass and axion-wave-function renormalization
is applied only to the divergent vacuum component of
the axion transition amplitude—the finite external-
el ectromagneti c-field-induced component of the ampli-
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tude needs no renormalization); moreover, it also leads
to an incorrect result:

(3.31)

2
Tt

2
Oar B —Qé/ZB 1

AMg Z e [F(z) Z}.
Dimensional-regularization method. Since the
axion transition amplitude (3.18) contains an even
number of the matricesys under thetrace sign, thistrace
can be reduced to a form admitting a generalization to
the case of n-dimensional space. This circumstance
makes it possible to use the dimensional-regularization
method [21, 22] to remove divergences in amplitude
(3.21) in the momenta. Thetensor integral (3.24) calcu-

lated by this method can be represented as

_ i M(1+¢)
(410" [m? —grx(1-x)]°

MV

, (3.32)
X Gy Gy

2]
m; — g X(1—X) 2

wheree = 1 — n/2, so that the difference of the contrac-
tions of T,,, in amplitude (3.21) proves to be indepen-
dent of € and has the form

.2 2 2
Ty = i X9
2(qTa) —q;(TA) 41‘[[mf_q|2|x(l—X) 1](3-33)

It is useful to note that, in effective two-dimensiona

QED, /~\u\, plays the role of a metric tensor, so that its
contraction in n-dimensional space is given by

/\w/\Ll =n = 2(1 — €). By substituting the difference
of contractions in the form (3.33) and the scalar and
vector integrals (3.22) and (3.23) into the amplitude
(3.21), we obtain the expression

2 2
AMU™ = Zﬁfe‘qﬂ’z%(z), (3.34)
— 2T

which exactly coincides with the amplitude in (3.14).
Thus, the above analysis has shown that the result cal-
culated by using the approximate expression (3.19) for
the propagator depends on the method of regularization
and that only the method of dimensional regularization
makes it possible to obtain the correct expression for
the axion transition amplitude within effective two-
dimensional QED [18]. The use of this method for the
photon self-energy also leads to a correct gauge-invari-
ant result. It is interesting to note that an attempt at
using, for the above purposes, the Pauli—Villarsregular-
ization method [23], which proved to be appropriate for
calculating the photon self-energy, leads to an incorrect

3For the sake of simplicity, we have considered the case of zero
axion mass.
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result for the external-field-induced component of the
axion transition amplitude.

The reason behind the discrepancy between the
results obtained by using the different regularization
methods lies in the nature of the approximate propaga-
tor (3.19), which takes into account only the contribu-
tion of the charged fermion occupying the first Landau
level. The use of this propagator in calculating two-
pointsloop diagramsisillegitimate in general when the
square of the virtual fermion momentum becomes com-
mensurate with or larger than the strength of the exter-
nal magnetic field. In this region of integration with
respect to momentum in the loop, it is necessary to take
into account the contribution from higher Landau lev-
els, which removes the ultraviolet divergence in the
field-induced component of the amplitude. We note that
the application of dispersion relations to derive the
axion transition amplitude [17] does not remove the
uncertainty associated with employing the approximate
propagator (3.19) since this method requires a physi-
cally motivated subtraction procedure.

4. VIRTUAL-PHOTON CONTRIBUTION
TO THE AXION SELF-ENERGY

In addition to the above fermion-loop-induced con-
tribution to the axion self-energy, there exists a contri-
bution generated by avirtual photon. The diagram cor-
responding to the invariant amplitude for thea — a
transition mediated by a photon isillustrated in Fig. 4.
The existence of this extra channel is due to the specia
features of axion—photon interaction. Let us dwell on
this point at some length. In an external electromag-
netic field, there exists the effective axion—photon
Lagrangian

Pay(X) = goF [0,AL(0]A(X).

Here, g,, = 0& /211, is the axion—photon coupling con-
stant, where § = E/N - 1.92 + 0.08 is a parameter on the
order of unity that is determined by a specific axion
model [5], E and N being quantities that characterize
the electromagnetic and the color anomaly, respec-
tively, and Ay (x) is the 4-potential of the photon field.

The effective Lagrangian (4.1) arises at the loop level
owing to the triangle diagram and can be considered to
be local under the assumption that the square of the
axion (photon) 4-momentum is small in relation to the
square of the charged-fermion mass in the loop. Since
an analysis of the axion self-energy will be performed
near the axion mass shell, the above requirement is sat-
isfied to a high precision.

@.1)

It should be noted that, in the presence of an external
field, the photon propagator is modified by the interac-
tion with the virtual fermions, whereby the dispersion
properties of the photon modes change. For a further
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Fig. 4. Diagram describing the axion-to-axion (a — a)
transition induced by avirtual photon in an external electro-
magnetic field.

analysis, it is convenient to use the representation of the
photon propagator in the form [24]

3
b™p®

q _Z@(A)

where we have used the basis b{" [b{"b{" =

(b™)23,,] constructed from the photon 4-momentum
g, and the strength tensor F,,, for an externa electro-
magnetic field:

G 4.2)

W = ")y
x=1 (b

b = (qF),, b? = (aF)y,

b = q*(qFF),—(qFFQq)q,, bl" = q,.

Thebasisin (4.3) iscomplete; it isthe most convenient
for analyzing photon processes in an external field,

since the 4-vectors bff) (A =1, 2, 3) constitute a set of
eigenvectors of the photon self-energy I, that corre-

(4.3)

spond to the eigenvalues % 9) .

The invariant amplitude for the a — a transition
through avirtual photon is described by the diagram in
Fig. 4. The relevant expression can be represented as

MY = —igZ (qFG(q)Fq).

From this expression, we can see that a photon of the

4.4)

second polarization mode with 8(2) = b(z)/ (b(z))2

and, hence, the A = 2 part of the photon propagator (4.2)
contribute to the amplitude. Upon the substitution of
the photon propagator (4.2), the correction to the axion
mass squared takes the form

2 2 2
gayB q[| Re 1 (4 5)
a . .

_z@Q

f

(dm3), = -ReM™ =

In the one-loop approximation, the external-field-

induced contribution to the eigenvalue P ﬁz) of the sec-
ond photon polarizati on mode has the form [24]

"t 0 pt_

»? = J’du f ¢ 5 (Bt)[qﬁ(l— u?) cos(Bt)
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usin(But)cos(Bt)D}e_im

— g’ Fbos(But) - S0 (4.6)

~q(1-w)e’
where the phases ®(t, u) and P (t, u) are defined in
(3.9). In the strong-magnetic-field limit ( > q|2|, qé,

mf ), the expression for the eigenvalue QPﬁz) is signifi-
cantly simplified to become

PO _ ZQ?aB[mng gfmfg_ 1}
qp Uayt

where F(2) isthefunction defined in (3.15). It should be
noted that, in the kinematical region below the thresh-
old for the production of a fermion—antifermion pair

4.7)

(q|2| < 4mf), the eigenvalue 9’?2) is real and negative,
so that the amplitude for the transition a — a through
a virtual photon [see Eq. (4.4)] is real-valued in this
kinematical region and has no poles. Attention should
also be given to the fact that, in the kinematical region

q|2| < 4m§ , the correction (6m§ )y IS positive in contrast

to the negative correction (3.10), which is induced by
virtual fermions.

5. ELECTROMAGNETIC CORRECTION
TO THE AXION MASS

The existence of the external-el ectromagnetic-field-
induced correction to the axion self-energy can lead to
achangein the dispersion relation for the axion, so that
a detailed anaysis of this correction is generally
needed. In the present study, we will not perform a
comprehensive analysis of the dispersion relations for
the axion, restricting our consideration to the case of
zero momentum (q = 0). The corresponding values of
the invariant variables are

qf = m:, a5 =0. 5.1

At this momentum value, the contribution to the axion
self-energy determines an electromagnetic correction
to the axion mass m,.

If the invariant variables are given by (5.1), the vir-
tual-fermion-induced correction to the axion mass
squared (3.10) hasthe form

— ga m dt|:| Bt |:|
(6m§)FL —_Z f I ItEtan(Bt) |:|

X cos[t%n ——(1— )g}
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In the limit of a strong-magnetic field (f > mf) and a
small axion mass (m, < m), thedoubleintegral in (5.2)
can easily be calculated; as a result, the fermion-
induced correction to the axion mass squared can be
recast into the form

(dm2)p = (5.3)

mZB

2
—=» Ch)

f.4
where f, is the energy scale of the breakdown of Pec-
cei—Quinn symmetry and C; is aparameter that charac-
terizes axion—fermion interaction and which is on the
order of unity, its specific value being determined by
the choice of axion model [5].

In order to deduce the virtual-photon-induced cor-
rection (4.5) under the condition in (5.1), we note that,
at zero momentum transfer, the eigenvalue of the sec-
ond-mode photon is given by

P = -miG(p), (5.4)
where
dt t
Gi(B) = 3 jdu( - )It%af(m) 15
(5.5)

O 2 m2 2 DD
; a
x expCHtEn; ——*(1 -1
O O
For the photon-induced correction to the square of the
axion mass, thisyields
2 A2
Oy B Re 1 }
a 1+ Z G:(B)

In contrast to the fermion-induced correction (5.2),

which is proportional to the axion mass squared m§

and which vanishes for the originally massless axion,
the photon-induced correction is virtually independent

2 . . .
of m; and remains nonzero even in the massless-axion

(dm3), =

(5.6)

limit. In the case of a strong magnetic field (B > m?),
the function in (5.5) assumes the simple form

QfO(B
31Tmf

and the virtual-photon-induced correction (5.6)
becomes

Gi(B) = (5.7)

2 =1
[IL+°‘B g
ST m{0

gayB

(dm3), = (5.8)

In order to perform a further numerical analysis of
corrections to the axion mass squared, we note first of
all that the leading contribution to al fermion-induced
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corrections comes from the electron since this particleis
afermion that shows the highest sensitivity to the effect
of an external electromagnetic field. In numerically esti-
mating the correction in (5.3), which is induced by fer-
mion loops, we therefore take into account only the elec-
tron contribution. The result isthen given by

(dM’)g = -3.3x 107 eV?

2E[;1_08GeVEZD m, f
*Bll o Hhg2eyvH

It can be seen that this correction is suppressed in direct
proportion to the square of the axion mass and in
inverse proportion to the square of the energy scale of
violation of Peccei—Quinn symmetry.

In analyzing the virtual-photon-induced correction
(5.8), we note that, at magnetic-field strengths of about
B ~ B,, radiative correctionsto the photon propagator are
small (avirtua photon is nearly unaffected by an exter-
nd field), whenceit follows that the photon-induced cor-
rection to the square of the axion mass becomes

(5.9)
xC

. B #10° GeV({
(dm2), = 1.26 x 10 ° eV x £°L2 ,
oY BHE fa D510

where & is a parameter on the order of unity [see the
explanation of the notation after Eq. (4.1)], which is
determined by a specific model of the axion [5]. As
long as the external-field effect on avirtual photon can
be disregarded (B < 31B,/a = 1.3 x 10°B,), this correc-
tion is proportional to the square of the magnetic-field
strength. When the magnetic-field strength achieves a
value of 10! G or higher, the external-magnetic-field
effect onavirtual photon becomes sizable; according to
(5.8), the quadratic dependence then givesway to alin-
ear dependence. According to the scalar virial theorem
[25] as applied to magnetized astrophysical objects,
magnetic fields of strength about 10*" G are the maxi-
mum possible for such objects.

Still stronger magnetic fields, those of order 10%3—
10?* G, could exist in the early Universe [26]. It should
be emphasized that, under such conditions, the axion is
amassless particle. To explainthis, it should berecalled
that, at the above values of the magnetic field, matter
exists in the form of a quark—gluon and electron—
positron plasma. Since T mesons have not yet been
produced, the standard mechanism of axion-mass gen-
eration cannot be operative. Therefore, there is no way
to produce the axion mass in the absence of alternative
mechanisms. According to (5.3), the contribution of
fermion loops is proportional to the bare axion mass
and vanishes in this case, whereas the photon-induced
contribution (5.8) isnonzero for the originally massless
axion. In this case, there arises an externa-field-
induced axion mass:

_ |j|.08 GeVigp B ({72
om, = 0.058 eV x ED f, gl
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With decreasing external field, the axion mass
decreases in proportion to the sguare root of the
strength of thisfield. The above estimate indicates that,
in the early Universe, the axion could have amass at a
level of the current upper limit, m, < 103 eV [5], in the
presence of amagnetic field of strength B ~ 10> G.

6. CONCLUSION

We have studied the contribution that a constant
external electromagnetic field inducesin the axion self-
energy. This contribution coincides with the real part of
the a — a transition amplitude in absolute value, but
it has an opposite sign.

The external magnetic field has been taken into
account exactly in the virtual-fermion-induced contri-
bution. The limit of a strong magnetic field has been
obtained, and the results are compared with the well-
known expressions for this contribution that were
found by using the technique of two-dimensional QED,
which effectively arisesin thislimit. It has been shown
that, in calculating the fermion contribution to the
axion self-energy, indeterminate forms arise, which can
be correctly evaluated only by means of dimensional
regularization.

Since the axion features an effective interaction with
photons in an external magnetic field, it is necessary to
take additionally into account the virtual-photon-
induced contribution to the axion self-energy. For this
photon-induced contribution, we have obtained an
expression that includes the external magnetic field
exactly and which alows for virtual-photon interaction
with the external magnetic field; on this basis, we have
deduced the strong-field limit.

A numerical analysis of the resulting fermion- and
photon-induced contributions has been performed at
zero momentum transfer. In this case, the above contri-
butions yield a magnetic correction to the axion mass.
It has been shown that, in strong magnetic fields of B ~
10'7 G, which can exist in magnetized astrophysical
objects, the corrections to the axion mass are negligibly
small. It has been indicated that the photon-induced
correction to the axion mass does not vanish at zero
bare mass of the axion, thereby determining its mass.
Under the conditions of the early Universe (B ~ 10> G),
this magnetic mass is commensurate with the current
upper limit on the axion mass, m, = 10~ eV, and
decreases with field in inverse proportion to the square
root of its strength.
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Abstract—The left—right asymmetric model featuring the bidoublet and two triplets of Higgs fieldsis investi-
gated. It was established that, from an analysis of the reaction |-y — Wy, it is possible to deduce not only

information about the properties of the singly charged Higgs bosons 57 and h” but also an answer to the

question of whether the neutrino is a Majorana or a Dirac particle. The processes f;f; — Af—)s(ﬂ and

eEY — Ai_;) y leading to the production of doubly charged Higgs bosons are investigated. It is shown that
information about the properties of singly charged Higgs bosons can also be obtained by studying the ultrahigh-
energy cosmic neutrinos from the reaction eve —= pv,,. © 2001 MAIK “ Nauka/Interperiodica’ .

1. INTRODUCTION

One of the most important problems in contempo-
rary physicsisto answer the question of whether non-
Abelian gauge theories featuring a spontaneous break-
down of symmetry are true theories that describe actual
interactions in nature. Higgs bosons—and among
these, a special role is played by charged bosons—
appear to be a necessary element. The reasons for this
arethefollowing: (i) Their detection would be an indis-
putable argument in favor of going beyond the Standard
Model (SM). (ii) Singly charged Higgs bosons, along
with charged gauge bosons, determine the potential of
neutrino interaction with matter—since the effect of
these bosons on the potential is significant [1], the con-
clusions derived for the neutrino masses and mixing
angles on the basis of the Mikheev—Smirnov—Wolfen-
stein effect [2] must be revised should the existence of
these bosons be confirmed. (iii) The detection of a dou-
bly charged Higgs boson would be an indirect corrobo-
ration of the Magjorana character of the neutrinos.

The objective of this study is to analyze processes
involving charged physical Higgs bosons within the
model based on the U(2), x JQ)g x U(1)z_, gauge
group. The main argument in favor of choosing this
model is that its Higgs sector includes elements com-
mon to popular extensions of the SM such as the mini-
mal supersymmetric standard model, the SM modifica-
tion involving two doublets of the Higgs fields [3], and
the model based on the SU(3), x U(1)y gauge group [4].

The ensuing exposition isorganized asfollows. In Sec-
tion 2, we derive the Lagrangians describing the interac-
tion of charged Higgs bosons both with gauge bosons and
with matter fields for the most generad form of the scaar
potential proposed in [5]. Equations relating the parame-

* e-mail:boyarkin@bspu.unibel .by

ters of the Higgs sector to the neutrino-oscillation param-
eters are dso presented there. In Section 3, we study col-
lider experiments with Higgs bosons both in real and in
virtual states and problems associated with the detection
of Higgs bosons in interactions of the ultrahigh-energy
neutrinos with matter. In Section 4, we discuss our results.

2. LEFT-RIGHT ASYMMETRIC MODEL.:
V(2) x V(2)g x U(1)g_ (OL # Tr)
We will study the nonsupersymmetric left—right
model involving the bidoublet

0 +0

ol da _ O0®; @0

EQ' 21 |:| B 0 |:|

O®, @0

and two triplets

5.0 Br [
0 .0 0 .0
A (1,0,2) = 05,0, Ar(0,1,2) = 05:0.
O O O O
O, 0 Dol

We will make use of the most general form of the
Higgspotential V asproposedin[5]. InAppendix A, we
present the explicit expression for V [(A.1)] and neces-
sary information about the structure of the sector of
charged physical Higgs bosons.

The interaction of leptons and the physical Higgs
bosonsisdetermined by the Yukawa L agrangian, which
we choose in the form

£y = —z{ hapWa ®Wpg + hlablTJaL&)LPbR
ab (D

+if [ Wa CTo(t (A )Wy + (L — R)] +hc.},

1063-7788/01/6402-0305%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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where W, (W,r) denotestheleft-handed (right-handed)
lepton doublet; T, , ; are the Pauli matrices; C is the

charge-conjugation matrix; ® =1,P*1,;a, b=¢ W, T;
and hy, h, , and f,, are, respectively, the bidoublet and

the triplet Yukawa constants of lepton coupling to the
Higgs bosons. After spontaneous symmetry breaking,
which isrealized according to the chain

SU(2), x SU(2)gxU(1)g_.
—SU(2), xU(1)y — U(1)o,
we obtain 14 physical Higgs bosons. Of these, eight are
~(®)
charged (four singly charged h® and &  bosons and

four doubly charged A(“) bosons) and six are neutral
bosons (four scalars S, , ; , and two pseudoscalar P, ,).
By going over from the gauge basis to the basis of pure
mass states and using Eq. (1), we can find the
Lagrangians for the interactions of physical Higgs
bosonswith leptons and gauge bosons. For the sector of
charged Higgs bosons, the explicit expressions for
these Lagrangians are given by {there, a;, p;, and [3; are
constants appearing in the Higgs potentia [see
Eqg. (A.1) in Appendix Al}

h. Kk, —h_ .k
§B|Svc = Z%z[wzk—mvaﬂm
a,b|:| *

_ habkzk_ hab kl NaRI bLi| h(+)
2
0 dipk’ o =m0
+/\/§fab 03 3[3 0 Zh( )—d36 D;val_
Ha +p,—ps/2)ve 0
|jjlk0 ™ 4 d, Bk, ”( ) 0
DVR (O“"pl—ps/z)VR HaRNbR +hCD
where
74
B, 0= —=F 0=k, 0= k,,
L,R ,\/é 1 1 2 2
v, <max(ky Ky) < Vg K. = JKEKS,
o = Ko L K(Biki + 2Bgky)
° T J2k, 2k%K,
O 2 oKz
d, = |1+ + B 0
O (a+p;—ps/2) g
-1/2
O O
6, =B+t
0 vad

BOYARKIN

-1/2
d; = |1+ BZké = G3kf
(o +p;,—psl2)°vi 2k?

V, (N,) describes the light (heavy) neutrino of genera-
tion a (both neutrinos can be either left-handed or right-
handed), |, describes the charged lepton, and the super-
script ¢ denotes charge-conjugation operation;

bk’ .
553\72 - %_QLQRCW% h)

O W2k,

 0.0rg'Sw(g Gy * g;zlsq))[akoh(ﬂ

Cw

apk,
(o +p;—psf2)

~(+)
6 i| éNRuzlu

0.5V (9%r +0:0 )0 dBk
Cw Mo +py—paf2)ve

3)

h(+)

~»0
—d5 Wy, Zy, + e,

where ¢y, = cosBy, Sy =sinBy, Cy = cos(l)\/?—sm(l) ,Ce =
cosg, & = sing, Wg, = —sWy, + Wy, W, = G W, +

SWo, ¢ (§) is the angle of mixing of the neutral
(charged) gauge bosons, and 0y, is the Weinberg angle;

$SC _ engOBdl
Wy - 2
2d; (o + p; —ps/2)

engodlh(+) %N

2 Ru w

e Va ~(+)
_favia |3

2d,d> “

chP|dc = —z fan(l LIbLCG _IaRIbRSB )A(++) 5)

+(1—> 2, ed—>9d—

dc

£, = [(GLCB +O(Rse )Al

172),
)a A(++)

() A (+4)
+(GLC6d +GRSSd)A1 AV R

+(1—>2,9d —>9d+T[/2) (6)

—S5,Co, (01 —OR)AT 0,87

2 2 —) p (++
—Sg,C, (O —O(R)A1 )Aé )Zu +hc.]Z,,

(++)

P = '3La [30,(co, A — 5,05
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(++) (++)

~(5)

—0,0 (Co A1 =S, )WL,

igrapk, ~() - . (D
193K 15 57 (5,807 + o AL
b™(a+p;—ps/2) vy

~() ++ ++
~8 '0,(s0,A1" + Co,AF) I Wy,
dc |9 ak - ++ ++

T = = —10,h (s 07 + 0,27 ©

~h0, (55,85 + o A7) I Wiy,
where g, = cosBy, Sg, = sinfy,
2K[Ba(ks + k3) + Bik;ko]

K:(2p,—Ps—4p2) Vi
, 1

g:—__-__7

a, = e[2cot28,C, —9'SyCwr 1,

tan20, =

Og = €[—2CySuwCy + SyCw 0 Or (Gr—9)].

It turns out that, in the left—right model—as in any
gauge theory where the neutrino acquires mass owing
to the spontaneous breakdown of symmetry—the
Yukawa coupling constants are related to the neutrino-
oscillation parameters. By way of example, we indicate
that, for the case of two lepton generations, we havethe
relations [6]

M5 = Cp,Sp,(~MiCs, —MaSy, + My, +M,S;), (9)
Mp = Cy,Sy,Ca,Ss,(My —M;)
* $9,C4,Co,So, (M — M),
FexVr = S,5,Ce,Se, (Mg —My)

+ C¢ec¢xC9NSeN(m4 - m2) !

(10)

(1D

2 2
feeVR = (Sp,Co,) My +(Cy.Co ) M, (12)
2 2
+(Sp,S0,) Ms + (Cy Se, ) My,

Vi = feVr(Ge—= 05 8, — 6, +102), (13)
fpve = ve(d, — ¢, + 172, ¢, — ¢, +1U2),(14)
m5 = mp(¢e —= &, 8, — 6, +702),

Mp = Mp(de=— ),

where X = U, T; Mp = hek; + hi ks Mp = hyk, +

(15)

hioko |, I'= €, and T; my = hyk, + hi ky; ¢, isthe
mixing angle within the generation I; 6, (8y) is the
PHY SICS OF ATOMIC NUCLEI
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angle of mixing between thev (N) neutrinos from the e
and X generations; m, (m,) is the mass of the light
(heavy) electron neutrino; m; (m,) is the mass of the
light (heavy) neutrino belonging to the X generation;
and ¢, = cosQ,, Sy = sind,, €tc. The off-diagonal

Yukawa coupling constants lead, on one hand, to non-
zero mixing angles both within and between the neu-
trino generations and, on the other hand, to the exist-
ence of the flavor-violating currents at the tree level. As
can be seen from the above formulas, the left—right
model is advantageous in that we always can obtain
nonvanishing 6, values even at zero off-diagonal
Yukawa coupling constants. For example, the constants

hex, hiy , and fe can vanish in the case of degeneracy of
the neutrino masses (M, = m;, m, = m,) aswell.

3. COLLIDER AND COSMIC-RAY EXPERIMENTS

In this section, we investigate processes involving
neutrinos and charged Higgs bosons. We begin by dis-
cussing reactions at accelerators. It is known that the
planned 500-GeV electron—pasitron collider (Next Lin-
ear Collider) and muon colliders (First Muon Collider
and Next Muon Collider) can also operatein the yyand
I*y (I = e, ) modes. Thisis possible owing to the pro-
cesses of classical photon bremsstrahlung from a |1+
beam and to the Compton scattering of laser photonson
|- and I*. The process

'y — Wy, (16)
is among the most interesting ones for observationsin
the I*y mode.

This is because the differential cross section for
reaction (16) in the c.m. frame vanishes at a 180° angle
between the W and y momentain the case where the W
boson anomal ous magnetic moment W is given by [7]

H, = e/my,. (17)

It is precisdly this value of the anomalous magnetic
moment that is predicted by the SM and by its exten-
sions. Thereis, however, aclass of so-called composite
models, where it is assumed that all particles or at least
some of them that, within the SM, were considered to
be elementary and pointlike are in fact composite and
extended objects. The fundamental constituents,
referred to as preons, interact via the exchange of
guanta of the hypercolor gaugefield. Thisinteractionis
asymptotically free and renormalized; possesses the
property of infrared confinement; and, below the char-
acteristic energy scale A, becomes strong and binds all
preons into hypercolor-singlet states, in the same way
asthe conventional strong interaction does for compos-

ite hadrons at Agcp. At energies Js in excess of A,
manifestations of the compositeness of particles are
readily observable. At these energies, multiparticle pro-
duction processes dominate over ordinary binary scat-
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Fig. 1. Feynman diagrams for the process |y —= Wv,.

tering processes. One of the manifestations of the com-

posite structure of the W bosons at energies ./s less
than A would be a deviation of the anomal ous magnetic
moment from the value given by (17). Thus, investiga-
tion of reaction (16) would be a good test for non-Abe-
lian gauge theories featuring a spontaneous breakdown
of symmetry.

Let us investigate reaction (16) from a different
point of view—namely, we will address the question of
whether this reaction can furnish information about the
structure of the Higgs sector of the SM extension under
study. In the case being considered, the processin (16)
is characterized by two more diagrams that are associ-
ated with the exchanges of singly charged Higgs
bosons in the t channels (see Fig. 1). The differential
cross section for unpolarized primary particles now has
the form

do _ dog 3e’t (fnT)2
dt  Hdthy,  16ms? (t—md)"+2m’

(18)

2
+ Kj| }

2,2 2 2/
(t—my) +Iymg

where
- QLVLCzaz_ngoszBad
226 2.20%,
- grKoS:aba, _ hapko—hgpky
=T Y T T
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Cy = a+p;—ps/2

while the differential cross section (do/dt)g,, for pro-
cess (16) inthe SM is given by [7]

4
dog  _ eu
Hat L, 32n35\,33(t - m\f\,)

S(U%+ 8" —2mgt). (19)

By taking into account the definition of m and m'D ,
we obtain

2k komy —KZmy,

(20)
KK,

If the Yukawa Lagrangian in the form (A.4) is used

in the quark sector, the 5“) and h® bosons do not inter-
acted with quarks. For m; and m,, there are no con-

straints in this case that follow from measurement of
the inclusive cross section for the reaction b — sy. We
can then state that the masses of these bosons must be
larger than 44.1 GeV, since it is this result that follows
from an analysis of LEP experiments (at a95% C.L.) [§].

As follows from [18], the partial differential cross
section (do/d(cos9)), associated with h® exchange
increases either upon going over to large mixing angles
within the neutrino generation or upon changing the
original electron beam by the muon one. But even at
u= 0, it appears to be very small. For example,
(do/d(cos8)), amounts to afew tenths of fb at ¢, ~ 10~
and m, = 100 GeV.

Nearly the same dtuation prevails for
(do/d(cos0)); at ¢y ~ 1 and (V)pe ~ 2 GeV. Itisaso
necessary to take into account the possibility that the

combination ¢, of the scalar-potential parameters is
small (cy < 1). Thisis compatible with the inequality

P1—Ps/2<0,

which follows from the condition of vacuum stability
[5]. Atu=0and ¢y, = 1072, the differential cross section

for process (16) as a function of ./s is displayed in
Fig. 2 for various values of m:.

There is one more factor that leads to a nonvanish-
ing cross section at u = 0. It is associated with taking
into account the total decay width of the W boson. It is
necessary to estimate this factor, at least by order of
magnitude. From [9], we know that a mere substitution
of the Breit-Wigner expression

=i (8,,, — 9,/ M)
2 2 .
g —my +ilymy
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for the W-boson propagator

— (Buv _ qpqv/rn\il)
2 2
q —My
leads to a breakdown of gauge invariance; as a resullt,
the unitary limit is violated for the reaction cross sec-
tion. The degree of thisviolation is not large (it is pro-
portional to I',/my), but, in our case, where we are
dealing with the vanishing of the cross section, it is
mandatory to take into account the factor of W-boson
instability. In order to preserve gauge invariance and,
consequently, to ensure fulfillment of the Ward identity,
the modification of the propagator must be accompa-
nied by a modification of the vertex function. Follow-
ing [10], we represent the WW-boson propagator and ver-
tex function as

v . 1
|:6uv - qu? (1 + IyW)i| 2 2 2 ’
My q -—-my+dJdVYw

Vi = Via(1+iVw),

where vy = Nyw/my and Vﬁw is the W-boson vertex

function in the tree approximation. The differential
cross section for process (16) can now be obtained from
(18) by means of the substitution

4

don | e
Hdthhy  ans? S[(t—md)” + ty2)]

21
x { 2u(u® + & — 2mit) D

+yo [u(5S” + 4st + 2t°) + mit(s+ 4t)]} .

The calculations show that, at u = 0 and /s =
123 GeV, theterm on theright-hand side of (21) attains
amaximum value of 0.82 fb. Thus, we conclude that, if
the differential cross section for reaction (16) at u =0
amounts to a few fb, there are the following possibili-
ties: (i) The W-boson anomal ous magnetic moment dif-
fersfrom the value predicted by the SM. (ii) There exist
charged physical Higgs bosons whose emergence is
due to the presence of the scalar triplet in the theory,
whence it follows that the neutrino is a Mg orana parti-
cle. In order to distinguish between cases (i) and (ii), it
is necessary to measure the differential cross section at
zero scattering angle. Agreement with the relevant SM
result would imply that version (ii) isvalid. Otherwise,
version (i) isrealized.

If expression (A.2) is used for the Yukawa
Lagrangian, the h® boson interacts with quarks. For
the process

ud —Wy, (22)

wethen have an extra (with respect to the SM case) dia-
gram involving h® exchange in the s channel. There
now arises the question of whether we can hope that,
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do/d(cosB), pb

100

SEEE PR W R

100,
100

1 J
400 500
Js, Gev

1 1
200 300
Fig. 2. Differential cross section for the process ey —
W-vasafunctionof /s at& =102 gg=1.4g,, v = 1.7 x
1072 GeV, k; = 10 GeV, and ¢y = 1072: (solid curve) m; =
42 GeV and (dotted curve) my = 120 GeV.

owing to the resonance-enhancement mechanism, the
partial cross section (do/d(cos0)),, at u = 0 will appear
to be within reach of experimental possibilities. The
calculationsyield

N do g _ (BOrS(f 3(s—my)
td(cosO)Y,  Cao/m g (s—m?)*+2m3]  (23)

x[(m,sin2p —my)® + (mgsin2p —m,)],

where
Sn2p = 2k.k,/K>.
If the parameters are set to the values

£=102 m,=2MeV, my=15MeV,
m, =120 GeV, k, =10 GeV

and if u=0, the cross section for process (22) involving
the h® resonance is 1.6 fb. With increasing k; and m,,
(do/d(cos8)),, decreases. If quarks are combined into
hadrons, the angular distribution for reaction (22) at
cos(B = 180°) has a deep minimum rather than a zero.
Thus, attempts at detecting h® Higgs bosons by using
the reaction

ab — W yX,

wherea, b=p, p, seem hopeless.
Further, we addressed the process

- =)
ff—a775 24)
where f; is a pointlike fermion of flavor i. Figure 3 pre-
sents the Feynman diagrams for the case of leptons.
The first (second) diagram corresponds to the neutrino
of right-hand (left-hand) circular polarization. For
guarks, only the first diagram contributes. If we neglect
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Fig. 3. Feynman diagrams for the process f; f i

2.

102

800
Js, Gev

200 400 600

Fig. 4. Total cross section for the process ud —=

Ai )6 as a function of ./s at 6y = O: (solid curve)
my, =120 GeV and m8(+) = 42 GeV and (dotted curve)

m, =200 GeV and m.,, =120 GeV.
1 3

the fermion masses, the total cross section correspond-
ing to this diagram has the form

_ ngEZBAlg
B4TIS[(s—myy)” + M gymiy]
me)” —ps/6] + s(s—2m;, —2md)},

o _ .
ud - 073"

(25)

x{2[(ms, -

where

2 2
U my + m~[f my M:
BAlé = /\/DL— = °0 — E? 21 o]

The cross section (25) as a function of energy in the
c.m. frame is presented in Fig. 4 for various values of

m,, and mz . Under the assumption that

my <2my,, M;<my +m,,

BOYARKIN

nearly all 100% of product Higgs bosons decay through
the channels

) _

Ai"’—»T_T , 0 —TV

The background to the processin (24) is dominated by
the contribution from the reaction

ud — W Z. (26)
If only the t-lepton decay channels are used to detect

thefinal states of reactions (24) and (26), the cross sec-
tion for reaction (26) must be multiplied by Br(W- —

TV;) Br(Z — 171%) = 3.66 x 107%; the corresponding

factor for reaction (24) is about unity. Since the cross

section for reaction (26) isonly afew times as large as

the cross section 6 -+, it is obvious that, with
-1

the aid of the t-lepton identification of the Higgs
bosons produced in the reactions

ab— A8 X (ab=p,p),

we can reliably separate the signal from the back-
ground.

Let us now consider |epton-flavor-violating reac-
tions. The intensity of these reactions is controlled by
off-diagonal Yukawa coupling constants. Many studies
were devoted to setting upper limits on these constants
(see [11] and references therein). The most stringent
constraints follow from searches for the decay process

W —eee. (27)
Within the left—right model, this process in the second-
order of perturbation theory is associated with dia-

grams featuring virtual Al 2 , S, and S, Higgs bosons.
For the decay width, the calculationsyield

5
_
H_ae_eJ'e_ - 96(2")3, (28)
where
1 0
T= (feefep) E,_+_D
A, mAZD
+ a_zugne 6, 59 C(eek+se mese Ce + aeek Cgog
4ka mél mi a
4mefeelzeuaeug_1? _12_5
MK, L, m, O

2 2
% Eneceoseo - aeek+seo _ meseoceo + aeek+CSOEL
O me, ms, O
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and where we have set 8, = 0 for the sake of simplicity.
If the upper limit of 10~'2 from [12] isused for theratio

- core /T an Wearrive at the constraint

J1<232x10" GeV™?

for determining the Yukawa coupling constants.

The smallness of the off-diagonal Yukawa coupling
constants leads to the conclusion that the most optimal
way to measure them at high energiesis to study lep-
ton-flavor-violating reactions, which are either gov-
ermned by the mechanism of s-channel resonance
enhancement or described by the Feynman diagrams
that contain only one vertex featuring Yukawa coupling
constants. Such reactions are exemplified by the pro-
cess

(29)

e —a7y (i=1,2), (30)

which can be investigated at muon colliders either in
the electron-beam or in the fixed-electron-target mode.
In the second order of perturbation theory, the relevant
Feynman diagrams are displayed in Fig. 5. Assuming
that primary particles are polarized, disregarding the
lepton masses, and setting i = 1, we represent the total
Cross section as

2€°f2,(c P, + 55 P)(S—my)
ew oy~

o ,» 31

22, 2 2
Ts[(s—m, ) +T, my ]

where P, = (1 £ A)(1 £ A), A being the polarization of
the primary lepton.

The quantity O is maximal near the

-0y
threshold (./s),,. There are, however, two factors that
restrict our possibilities in studying the near-threshold
behavior of reaction (30):

(i) Owing to afinite lifetime of the A{™ boson, the

threshold (A/é)thr is smeared over the energy region of
W|dth abOUt AE] = rAl Sal-

(it) Theinclusion of radiative correctionsto the pro-
cess being considered and the contributions from dia-
gramsinvolving soft-photon bremsstrahlung results not
only in the cancellation of infrared divergences but also
in the dependence of the cross section on the quantity
AE,, which corresponds to the energy value below
which real photons cannot be recorded in experiments.
The quantity AE, is determined by the energy resolu-
tion of the detector used in a given experiment.

The decay width of the A, boson is much less than
AE, Atf, =09and m, =400 GeV, itisassmal as

0.25 MeV, whereas, for example, the photonic energy
threshold of the electromagnetic cal orimeter used in the
OPAL detector is1 GeV. Figure 6 illustrates the behav-

ior of O - oty in the energy range from (A/_s)thr +
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Fig. 5. Feynman diagrams for the process ey~ —

Ai__)y .

o, fb
10°
10' -
10—1 i 1 1 1 1 1 )
200 300 400 500
Js, GeV

Fig. 6. Total cross section for the processe ™ —» Ai__)y

asafunction of /s at A=0.8, A, = 0.9, and AE, = 1 GeV:
(solid curve) m, =200 GeV and fy, =3 X 1073 and (dotted

curve) m, =300 GeV and fg, = 107,

AE, to 500 GeV. Since thereis virtually no background
to reaction (30), then it follows from the datain Fig. 6
that studying this reaction is one of the most precise

means for assessing the quantity fo,mj. .

Let us now proceed to discuss reactions involving
cosmic neutrinos of ultrahigh energies. Active galaxy
cores represent one of the sources of such neutrinos.
Since a typical luminosity of active galaxy cores is
between 10* and 10* erg/s, we can assume that the
evolution of active galaxy coresis determined by grav-
ity—that is, by the accretion of matter to a supermas-
sive (M = 10°M,) black hole. Inthevicinity of an active
galaxy core, protons accelerated to ultrahigh energies
interact either with matter or with radiation, generating
pions, whose decay products include photons and neu-
trinos. The maximum energy of neutrinos from active
galaxy coresis on the order of 10'° GeV. The products
of the decay of pions generated ininelastic collisions of
protons with photons that constitute the cosmic micro-
wave radiation background appear to be another source
of ultrahigh-energy neutrinos. The energy of the neutri-
nos generated by this source may be as high as
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(d)

Fig. 7. Feynman diagrams for the process € ve —= V.

102 GeV. There are a large number of studies devoted
to estimating the diffuse fluxes of neutrinos originating
from active galaxy cores and from the cosmic micro-
wave radiation background (see [13] and references
therein). Obviously, cosmic neutrinos of ultrahigh ener-
gies can be used to determine the properties of singly
charged Higgs bosons. In thisrespect, the highest hopes
are pinned on reactions involving virtual Higgs bosons
in the s channel such as

e_\)e —_— W_Z, (32)
ev, — Wy, (33)
eV, — UV, (34)

The processes in (32)«34) can be studied at the
BAIKAL NT-200, NESTOR, and AMANDA neutrino
telescopes.

By way of example, we consider in detail the pro-
cess in (34). The Feynman diagrams for this reaction
are shown in Fig. 7. For the sake of convenience, we
study separately the cases of el ectrons having right- and

BOYARKIN

left-hand circular polarization. Thetotal crosssectionis
written as

4 43
[l

1 0 C:S
O, = == q1-A,) B
goms’ll IBI(s—mp) + Twmi]
2 2.2 2 2
N 29chzfeg(s 2mwz) %—mgs
[(s—m@)"+ Fymy] 2
22 4
m: r~(_) — M |:| D (35)
<] ]
+ Ny 2T QE (1) (o)’

2 2
29, C; rwrg(-)meSD] )
s+ mN; +

3 2
mS - mSFS(_)
(5—mgy)” + T ymiy [

Mo
50

1l
Q;D
1N

4f2.ths O

+(1+A) 5
(S_mgz) + Fgmmgﬂ

for electrons having left-hand circular polarization and as

1 O CRCES
O = SH1-A,) ezez““ -
128ms™ (s—my) +I om,
. (36)
2 O 2 my—myl o [
+(1+A)0g, 5+ MmNy + ——— Q[
0 rh<—>

for electrons having right-hand circular polarization.
Here, A, denotes the neutrino helicity, and

4 2 2
N, = In m, + T "m, ,
(s+mp)” +emg
-~ arct B+ M tan kO]
Qi = ac anDrkmk D—arcanu_kEr
, ~()
withk=06 , ho.

For electron having left-hand circular polarization
and neutrinos having right-hand circular polarization,
the deviations from the SM predictions are very small
because they depend primarily on f,. For example,
these deviations are about 0.1% at f,, = 3 x 102 We
also recal that the height of the W-boson-resonance
peak in this channel (Glashow resonance) is 10* pb.

It was shown in [14] that, even if the seesaw relation

_ 2
m, my, = m

holds, it is necessary to distinguish between two possi-
bilities within the left—right model: (i) The angles ¢, of
mixing within the neutrino generation are small (10--
10-%)—this may correspond either to the case of v, =0
PHYSICS OF ATOMIC NUCLEI
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or tothecaseof v, #0. (ii) At nonvanishing v, theval-
ues of the angle ¢, can be on the order of 102,

For the masses of the left-handed neutrinos and for
the angle 6, of mixing between the neutrino genera-
tions, we will use their experimental upper limits (6, <

0.03) and set
6,=6y, my =1TeV, my =15TeV.

In order to suppress e == |- oscillations, it is neces-
sary to assume that the bidoubl et off-diagonal constants

313
hy, and hg, satisfy the relation
Kohe, + klh('eu = 0.

By taking into account the definitions of m,, and Mp,
we then obtain
ae, = QK. /ky, (37)

where

Q =

J(1+pAp, — 4k1/vR)[29LmW Ki(1+pApy)] My

29L mW 2k} 1(1+ pApo) + 4k, /VR

p; = 3Gk mf/ﬁ T2 (M, isthe t-quark mass), and k, takes

valuesin theinterval from0to ngzm\f\,/(l + Pdpy). In
Eq. (37), we havereplaced v, by itsupper boundary [14],

-1 2 2 o
Vi <PApodL 4/4my —2¢c,mz,

which follows from an analysis of the CDF and DO
experiments that measured the parameter p,,

(38)

2

My
2 2 '
CwMz(1+py)

In the case of My, # 0, the quantity a,, is extremely
small even at large values of ¢, and ¢,,. For example, we
have 0, = 1.8 x 107 & ¢ = 2.5 X 10*2 =3x107,

and k; = 70 GeV. Because q, |sdeterm|neof1 by Eq. (20),
the above estimate is valid for o as well. At the same

time, ay,, can be as Iargeasvalues about 102 even at
small angles ¢,,.

The left—ight model admits large values for the bi-
doublet off-diagonal and diagonal constants either in
the case of degeneracy of the bidoublet vacuum expec-
tations, Mp = 0, or in the case of quasidegeneracy Mp =
0. In the former case, these constants become arbitrary
because the only condition imposed on them is that
their sum must vanish. In this case, we have

Po = 1+Ap, =

Oga = 2h,,.

Even at anomalously great values of a,, (for example,

2 x 1072), the cross sections for the right-hand circular
polarization of electrons and the left-hand circular
polarization of neutrinos can amount only to values of

about 3 x 10~ fb. Hence, the cases of the initial e v,
and egVv ., are of primeinterest to us.

Figure 8 shows the total cross section ¢, for the
left-hand circular polarization of initial leptons. We
cannot rule out the possibility that the height of the
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O -resonance peak, (0, );—it is determined by the

values of mg, fe, and f,—exceeds the height of the

Glashow peak, oy,. By way of example, we indicate

that, at m; = 65 GeV, fe=5.5 x 10, and f,, = 7.5 x

1071, theratio of the heights of these peaksis
(O',_,_)S/GW 010.

In analyzing the cross section for the processin (34)
with initial egveg, it is necessary to specify the choice
of the Yukawa Lagrangian in the quark sector. If we
make use of expression (A.4), the total decay width of
the h® boson takes the form

5 = zrh«)alvm"'r
|

where the partial decay widths are defined in Appendix
B (we assume here that m, < m,, , m, , my ). If the

(39)

9wz,

Orz, Pb

103

10!

150 250 350 450
Js, Gev

107!
50

Fig. 8. Crosssection 6| asafunctionof /s a A, =1,f; =
0.9, iy, =075, fe = 8.5 x 1072, and k; = 100 GeV: (solid
curve) my = 100 GeV and (dotted curve) my = 180 GeV.
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Ogg» Pb

103

10!

350 450
Js, GeV

50 150 250

Fig. 9. Cross section ogg asafunction of ./s: (solid curve)
m, = 150 GeV and (dotted curve) m,, = 185 GeV. For both
curves, we choose ¢ = 8 x 1072, Op=0r= 1072, and k; =
115 GeV.

angles of mixing within aneutrino generation are small
(e ~ 107, ¢, ~ 10), T ,oand T _ are

hO e hO L Var
about afew eV and a few keV, respectively. For m, <
my, + M, the problem of evaluating o, becomes more
important, because this quantity determines the width
with respect to the decay channd h® — 1 v It
should be recalled that, at present, there is no experi-
mental information about the Yukawa coupling con-
stants associated with the tau lepton. In order to obtain
arough estimate of Fh(,) v, we choose

my =2TeV, m, =24 MeV

and assume that there exists mixing between T and
neutrinos that is characterized by the angles of 6, =
By = 0.03. A transition to the Yukawa Lagrangian (A.2)
means the opening of the quark-decay channels, in
which case expression (39) must be supplemented with

the terms th e and th i given by

. 3 (m+my)*
I-h(f) cs 2 2 1- 2
- 167k, my,cos 23 m,

x [(m; + m2)(1 + sin"2B) —4m;m,sin2]
x w(mg, m;, ma),

rh(—) b rh(—> . Cs(mc—’ m, mg— my),

tanp = ky/k,.

At small values of the angle ¢,, the cross section ogg
is extremely small. Even in this case, however, the
height of the h®-resonance peak can be as large as a
few hundred fb. For example, we have (Org),, = 376 fb
a ¢o=2x10" ¢, =6x 10" and m, = 45 GeV.

BOYARKIN

For the Lagrangian & in the form (A.2), Fig. 9

shows the cross section Ogg as a function of ./s for
large values of ¢,.

It can be seen from Fig. 9 that, at specific parameter
values, the cross section obtained here exceeds the cor-
responding SM cross section by afew orders of magni-
tude and that the height of the h®-resonance peak is a
few times as great as the height of the Glashow peak.
We emphasize that, within the left—right model, there
are no grounds to rule out the situation where the

~()
Glashow resonance overlaps the 6  or the h® reso-
nance.

4. CONCLUSION

We have shown that the absence of zerosin the dif-
ferential cross section for the reaction

'y — Wy,

at a scattering angle of 180° may suggest not only a
composite structure of the W boson but also the exist-

~()
ence of the 8 Higgs boson appearing in the theories
featuring thetriplet of scalar fields. A detection of asig-

~()
na from the & boson in turn would confirm the
Majorana character of the neutrino.

Investigation of the production of charged Higgs
bosonsin the reactions

- =™
f.f; —a8

and observation of their decay products will furnish
information about the Yukawa coupling constants f,

feqi her, @nd hy, . Let us recall reactions that show the

greatest promise for setting constraints on the remain-
ing Yukawa coupling constants. The constants f,,, and

. e — a5y

fe Can be measured either by using the Ai(") resonance
in the reactions [15]
HU —WW, ee —WW
or by studying Ai(")—boson production in the proces-
ses[16]
W — ATy, ee —ATy.
Information about hee, hee, hy s hey @nd he, can
be deduced from the features of the reactions [17]
e’ —ep’, ep — e
At the same time, we can also derive constraints on the
neutrino masses and mixing angles by solving Egs. (9)—
(15) with the known values of the Yukawa coupling
constants and known vacuum expectation values. Thus,
PHY SICS OF ATOMIC NUCLEI
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the results obtained here confirm the previous conclu-
sions [14, 18]; that is, in the extensions of the SM, all
parameters of neutrino oscillations are determined
simultaneously in studying the Higgs sector.

APPENDIX A

The Higgs field potential proposed in [5] has the
form

= —pltr(® )] —p[tr(PD") + tr(P D))
—p3Ttr(AA]) + tr(AaAR)] + A { [tr(@®")]}
A (D) + [tr(® ©)] )
FAL@ D) (D D)] + A tr(@DH[tr(@ D)
+1r(® D)1} + puf [tr(A, A1) + [tr(2eA D] )
+p,[tr(AAOI(AA)) + tr(AgAR) I (ALAY)]
+ (AL A I(ARBR)] + Pltr(AA)(ARAR)

+tr(A AN (ARAR)] Al
+a,{ tr(PP[tr(A, A
FU(DAN)]Y + o[t (DD ) r(Dedh)
+r(D DYr(AA])] + a [tr(d D) tr(ARAL)
+1r(® DYtr(A AN + astr(PDTA AT
(P DARAR)] + Bl tr(PAD'A))
+r(D'A DAY + B,[tr(PAD'A))
Ftr(® A BAL)] + Ba[tr(PAD A

+r(d A PAL)].

By means of (A.1), we can derive formulas for
going over from the gauge basis to the basis of pure
mass states. For the physical charged Higgs bosons, we
have

2
h(i) — dzq)J(rt) +d1k06;+ dsBko 26L_r
VR (a+p;—psf2)vi
~(%) d.Bk + +
> 1Bk Og — dsd;

T (a+p—psl2)ve
Aiii) _ Cedéfﬂ) "‘Sedaézﬁ)-

(¥£)

nyY = —Sp,01

(+£)

+Co,0r

where
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+ k+ )
k, @57 —k,
K, '
The sguares of the masses of these bosons are given
by

o™ =

m? = 0k’ +4p,va
1 2
2
, LKIBs(Ki + ko) + Bikakol}
2K\ (4p, + ps—2p1) Va

mi — 0(3kf—(2p1—p3)v§
2 2
2
{ICIBa(Ks + K3) + Brkiko]}
2ki(4p, + Ps—2p1) Vi

B
2 _ 2, .2 0

= (Vi) + o
2,2

2 _ Coyyio— Pk

ms = (Pa/2—p1) Vi a+p,—pa2

In the case of degeneracy of the bidoublet vacuum
expectations (k, = k, = k), the requirement ensuring the
compatibility of the existence of the minima,

LA\
LN Lo
|eads to the condition

:0’

as(vi + VR)2+ (Bs—Bo)v Vg = 0.

This condition in turn results in redefining the h®-
boson mass. The calculations yield

2 2
2 v,V
m,=f,v v+ %%3_(31% Il-(z R

In order to estimate v, it is necessary to use the ine-
quality in (38). Setting (ps/2 —p) =B, =1 and vg=
103 GeV and using an upper limit on v, we obtainm, <
140 GeV. Thus, even in the case of degeneracy of the
bidoublet vacuum expectations, the h® boson can
become as heavy as the singly charged Higgs boson of
the minimal supersymmetric extension of the Standard
Model, where the rel evant masses satisfy the conditions

M, > My,

If, in the case of degeneracy of the bidoublet vac-
uum expectations, the conventional expression for the
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Yukawa Lagrangian, Af |2,a2[32k§
_ OFS Fo =
Py = —z(ha‘é QaLPQur A - 16mmi(a - p, - paf2)’ v
(@ Emg _mi_md 0
+ gt Qan)QbR +he), x o N m, mmlEW(mg, m’, min),
where Q, (Q.) describes the left-handed (right- o 2 O
handed) quark doublet, is used in the quark sector, the )
diagonal mass matrices for the up and down quarksin (grOL Sy CySsaBko)
the symmetric left—ight models satisfy the relation Mo = >3 5
o ~Wz o 16me, mi(a + Py —Paf2)
'/M/u = ‘/‘/Ld' (A3) 2
2 2 2
For the condition in (A.3) to be violated, we can intro- N (mg —my, —mz,) £ 2|w(md m2,, m2)
duce the extra Higgsttriplets A| (1,0, 2/3) and Ag (0, 1, 4mg, m;, PR
2/3) and supplement the Lagrangian (A.2) with the
terms[19] Mo y
=3 [fQa Cro(r () Qu + (L — R) +hel]. b(h! k, — h k
Z —r~<) [«/éfnd ‘Q‘LT‘(—‘LL), mgth},
There is another way associated with introducing the '
extrabidoublet ®,(1/2, 1/2, 0) that interactswith up and re -
down quarks, but which contributes only to the mass of o1 Nie
the up quark [20Q]. In either approach, however, there ak, b(h, k,—hk;)
occurs an undesirable increase in the number of physi- = FSH N [v_ — T my —» mhi|1
cal Higgs bosons. In the asymmetric version of the left— TonLUR +
right model, it is not necessary to complicate the Higgs )
sector in order to arrive at the condition M, # Jg. grOL Sw CyS:aBKy
Instead of (A.2), we can use, by way of example, the Mo wz = T50 s
Lagrangian | ey (a +py—psl2)
SVEE —Z(h(q)QaLT D1, Qpr A4 gRgLC¢52bk M —m }
. h |
+ h( QaLT_D*T,Qyr), , -
where 1, =T, *iT1,, which issimilar in form to the cor- - Feem; _Am
responding SM Lagrangian. In turn, the use of Arz 8mm, , mi ’

Lagrangian (A.4) reduces only the flavor-diagonal cou-
plings of the up and down quarks to the neutral Higgs
bosons.

APPENDIX B
The decay width of the charged Higgs bosons are
given by

Mo = z . +I. +I .
50 ( 59 ()HI’N“) 9wz,

rh(i) = z (rh(i) - |7V|L * rh(i) i |7N|R) * rh(i) - W1Z1’
[
where
4f|2|d2|:m§_m|2_m5\ a
r~(_) = 3[} > _mlmv|D
5~ 1V 16mm: ] u

X w(mg, my, m;),

w(a b, c) = [a>+b?+c?—2(ab+ac+bc)] "
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Parameters S, T, and U of Radiative Corrections and M asses
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Abstract—The contributions to the parameters S T, and U of radiative corrections are discussed within the
minimal model featuring four-color symmetry of the Pati—Salam type. A numerical analysis of these contribu-
tions is given for the Higgs mechanism of mass generation for scalar leptoquarks and the simplest version of
scalar-leptoquark mixing. It is shown that up-to-date experimental dataon S T, and U are compatible with the
existence of relatively light scalar |eptoquarks (of masses about 1 TeV or below), still lighter scalar leptoquarks
(of massesbelow 1 TeV) improving the agreement of theoretical results with experimental dataon S T, and U.

© 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, the Standard Model (SM) of electroweak
and strong interactions, which is based on the SU(3) x
U, (2) x U(1) group, is considered as a reliable theo-
retical basis for describing the interactions of quarks,
leptons, and gaugefields at energies of present-day col-
liders. At the same time, it is of interest to investigate
those versions of new physics beyond the SM (super-
symmetry, left—right symmetry, etc.) that could mani-
fest themselves with increasing energy of colliding par-
ticles.

Possible versions of new physicsinclude that which
is based on four-color symmetry between quarks and
leptons of the Pati—Salam type [1]. The prediction of
new gauge particles, vector leptogquarks, mediating a
pointlike interaction between quarks and leptons and
having masses about the mass scale M, of the break-
down of four-color symmetry, is an obvious conse-
guence of this symmetry. Depending of the choice of
model, a lower limit on M, can change from M, ~
102 GeV [2] or M, ~ 10°-10° GeV [3] in the Grand
Unification models featuring four-color symmetry as
an intermediate stage of symmetry breaking to M, ~
1000 TeV [4], M, ~ 100 TeV, or even lower value in
models where four-color symmetry is primary [4-9].

It is worth noting that four-color symmetry of
quarks and leptons can manifest itself not only through
vector leptoquarks but also through scalar leptoquarks,
whose existence is quite natural in schemes involving
four-color symmetry [10-12]. This brings about the
question of deducing constraints on the scalar-lepto-
guark masses from available experimental data. A

* e-mail: smirnov@univ.uniyar.ac.ru

lower limit of 250 GeV [13] results from nonobserva-
tion of these objects in direct-production experiments.
At such mass values, the scalar |eptoquarks can mani-
fest themselves of present-day accelerators only
through radiative corrections. It is of interest to esti-
mate constraints on the scal ar-leptoquark masses on the
basis of existing data on radiative corrections.

It is well known that, in processes involving light
external fermions (m << m,), electroweak radiative cor-
rections from new physics are dominated by radiative
corrections induced by vacuum polarization (so-called
indirect radiative corrections). For the case where the
masses of new particles, m,.,,, are much larger than the
Z-boson mass (m,.,, = M), these corrections can be
taken into account in terms of three parameters—for
example, the Peskin—Takeuchi parameters S T, and U
[14]. For these parameters of new physics, experimen-
tal datayield the constraints

S = —0.16 + 0.14(-0.10),
Trew = —0.21+0.16(+0.10), (1)
Urey = 0.25+0.24(+0.01),

where the central values correspond to m, = m,, while
their variations for my = 300 GeV are given parentheti-
caly [13]. Note that, by definition, these parameters
vanish in the SM:

sMo=0 T =0 UM =0 Q)

An analysisrevealsthat scalar leptoquarks possessing a
nontrivial U, (2) structure contribute to the parameters
S T, and U, whence it follows that constraints on their
masses can be extracted from available data on these
parameters. In this connection, it would be of interest to

1063-7788/01/6402-0318%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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find the contributions to the parameters S T, and U
from scalar leptoquarks within a relatively simple
gauge model that predicts the existence of such parti-
cles.

Here, this program is accomplished within the min-
imal model featuring four-color symmetry. For the
U, (2)-doublet structure, constraints on the scalar-lep-
toquark masses are further discussed on the basis of
datafrom (1) on the parameters S T, and U.

2. SCALAR SECTOR OF THE MODEL

Here use is made of the minimal model featuring
four-color quark-lepton symmetry [5, 6]. The model is
based on the U,(4) x SU,(2) x Ux(1) group, and it is
the most economical SM extension featuring four-color
guark—{epton symmetry in the number of newly intro-
duced gauge fields. Its fermion sector contains only
known quarks and leptons forming SUy, (4) quartets in
each generation. With respect to the SU, (2) x Ug(1)
group, the left-handed fermions are zero-hypercharge
doublets, while the right-handed fermions are singlets
characterized by the hypercharge Yi = +1 for the upper
and lower fermions, respectively.

In addition to the photon, gluons, and the W* and Z
bosons, the gauge sector contains new particles, color
triplets of vector leptoquarks Vﬁu (a =1, 2, 3) with
charges of £2/3 and an extra neutral Z' boson.

In general, the scalar sector of the model contains
four multiplets,

o sP 0
(4,1,1): ¥ = DE] W, (1%
0 2 O
(1,2,1) : 0P = 5,72 + ¢
R

g
0(Fa)qg 0 O+ 0

(15,2,1) : o = 0 15,al15

O S(aB 0 D

oY Lo
a

@ 2
(15,1,0): & = % /2 E+ (s +X)tas,
4)
o U4
0 ﬁs(ﬁ 0

which transform according to, respectively, the (4, 1,
1), (4, 2,2), (15, 2, 1), and (15, 1, O) representations of

the SUy(4) x SU,(2) x Ug(1) group. Here, @), =

0,N;5 + (p(135’,a; N, N2, N3, @nd n, are vacuum expectation
values, t,; isthe 15th generator of SU,,(4) group; a=1,
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2isthe U, (2) index; and a, B =1, 2, 3 arethe SU(3)

color indices.

The U, (2)-doublet multiplets ®? and ®® have
Yukawartype couplings to fermions, whereby the latter
acquire masses via spontaneous breakdown of symme-
try. Concurrently, the splitting of the quark and lepton
masses is achieved in each generation owing to the ®®
multiplet.

The ®® multiplet contains two scalar-leptoquark
doublets S5 with SM hypercharge Y3 = 1 * 4/3;

eight scalar-gluon doublets i, j= 1,2, ..., 8 with Yg' =
1; and the doublet ®$2, , which, being mixed with the
doublet @ viathe superposition

& = o cosg + 0,30

@, = -0 sinB + Y, cosp,
formsthe SM doublet

g o

(SM) _
) -B]JrX(SM)ng
O /2 0

with the SM vacuum expectation valuen = .,/n5 + n; =

(J2G.) ™ =250 GeV and one extra scalar doublet
O @i %
Q' = "+ I(JO'D
02

Here, the angle B is determined by the ratio of the vac-
uum expectation values as tanf3 = n;/n..

Let usconsider the original Lagrangian of the scalar
fields

L= = (0,0))' D0l +(D,0F) D0 |
+1r((D, ) D, ) + tr((D, ) D, &)
An analysis of this Lagrangian shows that, in addition

to the SM Goldstone modes ®{*" and w, the model

under consideration also involves the Goldstone modes
w and

I P D$+’+$)
SO_[ 25t [D 2

D 2
+ nS‘”D}/ /n—4—1 + g(ni +n3),
0
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which are associated with the breakdown of four-color
symmetry. Since the mode S is formed by the fields

R : .

S, S &P and S with an electric charge of 2/3,
the mixing of these fields is mandatory, and they can be
represented as superpositions of the Goldstone mode S,
and the physical leptoquarks S;, S,, and S; that have an
electric charge of 2/3 and which are orthogonal to this
mode. In general, these superpositions are given by

9 (+) &) )

§Z - Ck S(v §Z Ck S(!

] 3
sV =5ycl’s, sY=5cls,

3 ;
ENNPNEN @ (=
where C,”7, C,”,and C,” (k=0, 1, 2, 3) arethe ele-
ments of the 4 x 4 unitary mixing matrix.

In the unitary gauge, the Goldstone modes are elim-
inated,

(&)

o™ =0, w=0, &!M=0 §=0;
for the physical fields, we then have two triplets of up

scalar leptoquarks, é;,) and é[a) , with electric charges
of 5/3 and 1/3, respectively; three scalar leptoquarks

So k=1, 2, 3, with an electric charge of 2/3; eight dou-
blets of scalar gluons, Fj, with Y2' = 1; the extra

SU(3)-color-singlet doublet @' with Y3 = 1; the SM
Higgs boson XM and the scalar fields xV, x®, and
Fi%,j=1,2, ..., 8. An analysis reveals, however, that

these scalars, the vector leptoquarks V', and the new Z'
boson do not contribute to the parameters S T, and U.

3. SCALAR-SECTOR CONTRIBUTIONS
TO THE PARAMETERS § T, AND U

In genera case, the electroweak radiative correc-
tionsinduced by new physicsthrough vacuum polariza-
tion can be described in terms of the corresponding
self-energy functions Maa(k?), Mazx(K?), My (k?), and
My (k) for the photon, the Z boson, and the W boson,
respectively. In the case where the masses m,.,, of new
particles are much greater than m, (m,.,, = mM,), we can
approximate these functions by fast convergent power
seriesin k? and retain thefirst two termsin these expan-
sions [14]. We then have six expansion coefficients
[because of Ug,(1) gauge invariance, Maa(0) =Mz (0) =
0]. Three linear combinations of these coefficients,
together with ultraviolet divergences, are absorbed
upon renormalizing three input SM parameters (for
instance, €, sin’6,y, and my), while the remaining three
independent combinations can be used as three param-
eters describing indirect radiative corrections in the
approximation being considered. Various sets of such

SMIRNOV

three parameters are presented in the literature; here,
we use the Peskin—Takeuchi parameters S T, and U
[14].

Theinput equationsfor the Peskin—-Takeuchi param-
eters S T, and U [14] can be expressed in terms of the
coefficients in the expansions of the self-energy func-
tions for the photon, the Z boson, and the W boson as

aS = 4sy,Cy[swCw(Mzz(0) —Mxa(0))
—(clu—Sw)Mza(0)],

aT = 1

S[ My (0) = CiyM2(0)],

C\Z/vmz
aU = 4sy,[Miyw(0) —ciyMyz(0)
— CyTTan(0) = 2¢yy Sy M2A(0)],

where M4y (K2) = gVMy (k) + (kMK terms) are the self-
energy functions for the fields X and Y with My, (k*) =
Myy(0) + K2 My (0) + ...; here, X and Y stand for the

fields A, Z,, and Wﬁ, which interact with fermionsin
astandard way (in what follows, we disregard small Z-
Z' mixing). To indirect radiative corrections, the dis-
carded kHk¥ terms make contributions of order (my/m,)?,
which are very small in the case of light external fermi-
ons. It should be emphasized that the formalism of the
parameters S T, and U is appropriate for describing
indirect electroweak radiative corrections only if the
masses m,..,, of hew particles are much greater than the
Z-boson mass (m,.,, > m,). The resulting relative error

in the radiative correctionsis of order (m,/m,..,)>.
The scalar-gluon doublets Fy, j =1, 2, ..., 8, and

doublet @' interact with the fields A Z,, and Wﬁ ina
standard way. Their contributions to the parameters S
T, and U can be expressed in terms of the contributions
from one scalar doublet ® with a hypercharge Yi\" [6],

which are depicted by the diagramsin Fig. 1, and can
be represented as

Y ome
® _ _p Yo M
1
T® =k f,(my, my), (7)
CD]_GT[C\ZNS\ZN ; 1 1 2
U® = Ky £ (Mg, my) (8)
¢)12T[ 2 1y 2]
where
omPme . mé
fi(m,my) = m+m—-—="-=In—, (9
m—-m, m
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4 4 2 2
5m1 + 5m2 - 22m1m2

3(mi -

fo(my, my) = >2
m;)

, (10)
3m1m2 3m1m2 + m2| my
mz) mg,
where m; and m, are the masses of, respectively, the
upper and the lower component of the doublet ®. Here,

Yy = Yﬁ?" =1; weaso haveky = 1 and m, = my, for
the multiplet @ and kg, =8 and m, = me, for the mul-
tiplet F;.

The scalar-leptoquarks contributions to the parame-
ters S T, and U have a more complicated form. In addi-
tion to the standard interactions of photons, Z bosons,

and W* bosons with the scalar-leptoquark doublets S
and the gauge interactions

. %
ognr = 000000, 8780 ~ho), k=

(ml

1,4,

_ 0 V0 ;&K (k)
zLx?x?s(k)s‘k) = zgXiOS(k)S(k)gx?s(k)S(k)xipxju(gx éx )
i i

characterized by gauge coupling constants
gx?s‘“s‘“ = gxioswsw = —(213)e{ 1, -ty},
1,2,

(11)
i =
where X, = (A, Z;}, with Z; standing for the Z

boson interacting with fermions in a conventional way
(without allowance for Z-Z' mixing), we also have the

interactions of thefields A, Z,, and W;; with the vector
and scalar leptoquarks having a charge of 2/3:

ES
LX?S{1Z3)V = gX?S@VX?u[(SﬁS)VG“) + h.C.],
Ly = Gy IWEA(SEV,,) + hel,
ko, ok
Loy = e [Wi (SidVey) + heel].

The coupling constants for these interactions are pro-
portional to vacuum expectation values; that is,

Gyogey = [|dg4ﬂ3Eﬂ 1WB'F§_S\2N%§ (12)
Oyocoy = Slelgn:{ 1, -tu}, (13)

Oyogay = —%Jﬁlelmm{ 1, ~tw}, (14)
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a

Fig. 1. Diagrams representing the contributions to the
parameters S T, and U from the scalar gluons Fj and an extra

doublet @' (®, = @, Fj5, wherea=1,2,j=1,2, ..., 8,
and X and Y stand for a photon or a Z boson).

Oy = F2/30294N3, (15)

where 3%3) = {QZ), *_a) il), if) },n=1,23 4, are
scalar leptoquark fields with a charge of 2/3. These
fields are expressed in terms of thefields S, (k=1, 2,
3) of physical leptoquarks with a charge of 2/3 by
means of Eq. (5). Thisleadsto interactions of thefields

0 . . . .
X;,, with physical leptoquarks. The emerging coupling
constants Oyogrgs » s Inos.s > Inos v ? and g, <,
are determined by the standard interactions of photons,
Z bosons, and W* bosons with the scalar-leptoquark
doublets S and by Egs. (11)—(15) and (5). Asaresult,
the coupling constant 905y (aswell as gwéf)v) proves
to be proportional to the vacuum expectation value s,
while g,gy Vanishes (gasy = 0) in the unitary gauge.
Figure 2 shows the self-energy diagrams describing
the contributions to the parameters S T, and U from the
leptoquarks. Omitting the details of the calculations,
we present the calculated contributions S, TEQ), and

UTQ from the leptoquarks to the parameters S T, and
U. They are given by

ne O

S < Gy S

% Z By fo(m,, m) + Ez[z |C1k|2

k1 k
(16)

N Erlzmvfl( o mv)

PR + f(my, mk)D
O (mk—mv)
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Fig. 2. Diagrams representing the contributions to the parameters S T, and U from the scalar leptoquarks S(f) and §, k,/=1,2,3
(Visavector leptoquark, and X and Y stand for a photon or aZ boson).

2 2
1 m, 2, m |0 tQ _ Nc O (£)|2
+=N In—-ZIn— | U = —=T] |Ck fo(m, m)
1
e —— SR 53 Y Bufamm +E'S 5 [l
16msy Coymy 04 4 * a -

(18)
x[%‘( fo(my, my) — f,(m,, my))

1 2 2
-5 By f1(my, my) +¢& |Ca (17)
24 Z ZZ _Gmsgfl(mi, my) _ fi(me m)E .

Q2 —m2)*  (mi—-m2)°0) 0

where f,(m;, m,) and f,(m;, m,) are defined by Egs. (9)
and (10) and where

<[ 3U01(m ) = (. m) + 4 o, m; m)5

msmaIn(mz/ms) + mé,(—msz In(ms/mé) + maIn(ma/m))
(mi —m&)(m3 —m2)

fa(mg, my; my) =

In Egs. (16)—18), we have also used the notation complex vectors. In general, the vectors C,, and C,, can
be parametrized in terms of three mixing angles and

K (+) ~(+ Ry (=
By = |C{7c{”"-Cc)’, three phases; for example,

i3, i85
c® = —j_é(All —8°Cy tCy), k1 =123, Cic ={C13C2 C13S12€ , S13€ "},
—id, i(=8y3+0y3)
, 2, B]Z > . 25 s Co = {—Cysp00 I —323513(312(9I ,
& = zn3/ M4+ z(N3+N2)7 = 59an3/my; (= By + 31y + Byg) 5,
3 3 03 C23C1p — 55351351,€ +S23C13€ "},

Y =1243 0. =3 m=mg, m= Mg, and my is

the vector-leptoquark mass; g, is the SU,,(4) coupling
constant; and C,, and C,, are two orthonormalized

Where Cij = COSGij and Sj = Sineij, 9” and 6” bang the
mixing angles and phases. Expressions (16)—18),
which represent the contributions to the parameters S
T, and U from the scalar leptoquarks, differ substan-
2001
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tiadly from expressions (6)—(8), which correspond to
the relevant contributions from ordinary scalar dou-
blets.

First, the contributionsin (17) and (18) from the sca
lar leptoquarks to the parameters T and U are not posi-
tive definite because of mixing as given by (5). The
mixing of the components of two scalar doublets as a
possible mechanism of obtaining negative T and U val-
ues is considered in [15]. In our case, the mixing
between the components of the doublets of scalar lep-
toquarks with a charge 2/3 is due to the presence of the
Goldstone mode S, in the scalar-leptoquark sector and
isanintrinsic feature of the model being considered.

Second, there isadistinction in the case of degener-
ate scalar-leptoquark masses, m,=m_=m, =mg, where
expressions (16)—(18) yield

2

L) _ Neé 2 f1(ms my)

s = m[—lz”wﬁ
(ms—m})

2
+fo(mgm,) + In”—‘z}, (19)
m

S
T — o Yyt = g,

whereas the contributions in (6)—8) to the parameters
S T, and U from ordinary scalar doublets vanish in the
case of degenerate masses. It should be noted, however,
that, for alarge vector-leptoquark mass, the parameter
&2 is small, in which case the nonzero contribution in
(19) to the parameter Sis also small. In the particular
cases of mg> m,, mg=m,, and mg << m,, the contribu-
tion in (19) becomes S = -5ng&%36m SO =
~nE2/31, and SLQ = —(nEY12M0)(41/3 + 2In(m /m3)),
respectively.

Let us consider the case of the simplest mixing,

wherethefields S and < in (5) contain (in addition
to the Goldstone mode S)) only two physical lepto-
quarks S, and S—that is, 5,5 = S)3 = 0. Neglecting the
small parameter &2, we can then represent the scalar-
leptoquark doubletsin the form

0o s [0 0 )0
sY =g S 0 S? =0 51 «0 (20
€S, + sS,[] [3-sS, + ¢S,

where ¢ = cos0 and s= sin6, 8 being the mixing angle
(6=174-6,,, 6,5 =6,; =0). In this case, expressions
(16)—(18) are simplified significantly to become

O m m;
st = Do g ysul 2Ty 2y
12T[D ¥ mi mg

21)

2 2

m- m- U

—YM LI + PIn— | + 4’ f,(my, my) [
m; m; O
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T _ ____I‘_c____z{ [ f,(m,, my) + f (M, m)]

167TS5,Coy M5 22)
+S7[f,(m,, my) + fi(m, m;)] —4c’s*f (g, my)},

Ut = Do rorg m,, m;) + f,(m, m
o L 1) + o 5)] o3

+ [ f,(m,, my) + fo(m., my)] —4c”s f,(my, my)},
wherem, = My =My, M= Mgy = My, andm, , =

Mg s, =My; ,5. Hereafter, the indices of 5/3, 1/3, and

2/3 on the masses denate the el ectric charges of the cor-
responding scalar leptoquarks.

At 6 =0, expressions (21)—23) represent the contri-

butions from the scalar-leptoquark doublets at small &2
without their mixing and coincide with expressions

6)8) at Yo' =Y3h andke=n,.

4. INTERACTION
WITH THE STANDARD-MODEL HIGGS
DOUBLET AND SCALAR-LEPTOQUARK
MASSES

A first numerical analysis of the contributions in
(16)—<18) versus available experimental data on the
parameters S, T, and U revealed that some scalar |epto-
guarks may be rather light (possibly, their masses are
not very far from the SM mass scale). Moreover, these
leptoquarks can improve the agreement between the
experimental data on the parameters S T, and U with
theoretical results if the scalar-leptoguark masses and
mixing angle are treated as independent parameters
[16]. Below, we present the results of a numerical anal-
ysis of the contributionsin (16)—(18) for the case where
the scalar-leptoguark masses and mixing angle are gen-
erated by the Higgs symmetry-breaking mechanism
from the scalar potential of scalar-leptoquark interac-
tion with the standard Higgs doublet. At present, this
mechanism of generation of scalar leptoquark masses
seems the most natural; moreover, it will be shown
below that it enables us to reduce the region of admis-
sible values of the adjustable parameters and to obtain
new constraints on the scalar-leptoquark masses.

Generally, that part of the scalar potential for scalar
leptoquarks which contributes to their masses can be
written as

V@™, = 3 [m?*(s¥sY)

+ Bi@(SM)qJ(SM))(é(i) S(*))
YL (@SS Sy
+ 3D (@S + he],

(24)



2.0
m2/3, TeV

1.2 1.6

Fig. 3. xﬁﬂn (my3, 0) as afunction of the mass m, 5 of the

lightest scalar leptoquark at 6 = (1) 0.5, (2) 1.0, and (3) 1.5
for my = 300 GeV.

where m®? isaparameter that has dimensions of mass
squared, while B, V., and & are dimensionless coupling

constants. Upon symmetry breaking, the potential (24)
generates the scalar-leptoquark massterm

V(@) s)
Eoreon L Eow DSV E. @9
= 3 IS (s, &Ml e
0 0

where m2 = m(%? + B,n?/2 are the masses of the up
scalar leptoquarks and
M = EMH My, E
OMy My, O
0 . 0 (26)
_Ogm+y.n2 a2 g
O [l
O on’2 m+yn’2n

is the mass matrix for the down scalar |eptoquarks.

At rea & values, the mass matrix (26) leads to the
following masses for the scalar leptoquarks with an
electric charge of 2/3 and the following mixing angle 6:

mg/a,z/s'
2 2 27)
= [M11+M22¢«/(M11—M22) +4M7,]/2,

Here, m,; and m,; are the masses of, respectively, the
lightest and the heaviest scalar leptoquark.

In what follows, we treat the masses m,; and m,3
and the dimensionless coupling constantsy,, y., and &

SMIRNOV

in the potential as adjustable parameters and calculate
the masses m, and m_ and the mixing angle 6 on the
basis of Egs. (26)—28). The values obtained in thisway
for the masses m, 5, my/5, m,, and m_and for the mixing

angle 6 determine the scalar-leptogquark contributions
(21)—«23) to the parameters S T, and U. Note that, for
perturbation theory to be valid, the coupling constants
V.. Y., and d in the potential (24) must not be overly
large, which constrains the allowed region of the
adjustable masses and mixing parametersin Egs. (16)—
(18) and (21)—(23).

5. NUMERICAL ANALYSIS AND DISCUSSION
OF THE RESULTS

In order to clarify the effect of scalar-leptoquark
doublets on the parameters S T, and U, it is assumed
here that the scalar-gluon doublets Fj, and the extra

doublet ®, are nearly degenerate in mass, so that their

contributions to S T, and U can be disregarded. A
numerical analysis of the contributions (21)—«23) of
scalar leptoquarks to the parameters S T, and U was
performed on the basis of datain (1) by minimizing the
x? functional defined as

2 2 2
2 _ (S=Sa) , (T-Taw) , (U-URS
(8S)° (AT)? (AU)?

where S T, and U are the scalar-leptoquark contribu-
tions (21)—23), while AS AT and AU are the experi-
mental errorsin (1). It should be noted that the values
in (2) that correspond to the SM agree with the experi-
mental datain (1) at alevel of x¥>?=5.1and x> =4.1at
my, = 300 GeV and my = my, respectively.

Minimizing x> a S T, and U from (21)—(23) by
varying m,; and the coupling constants y, and y_ at

fixed m,; and , we obtained xﬁﬂn asafunction of my;,
(the mass of the lightest scalar leptoquark) and d,

XGin (M5, ). Its dependence on m,; at 5= 0.5, 1.0, and
15isdisplayed in Figs. 3 and 4 at m, = 300 GeV and
my = My, respectively.
According to these graphs, the experimental dataon
S T, and U admit the existence of a scalar leptoquark
with a charge of 2/3 in a wide mass range from large
mass values, in which case scalar-leptoquark contribu-
tionsto S T, and U are small, to amass my; of 1 TeV
or below (in this case, the remaining scalar leptoquarks
have masses on the same order of magnitude if the cou-
pling constants vy,, y_, and & are not very large). It is
interesting to note that the lighter scalar leptoquarks (of
mass below 1 TeV) even improve the agreement
between the theoretical results and experimental data—
they make negative contributions to Sand T, rendering
their values closer to the experimental data in (1), as
contrasted against the SM zero valuesin (2).
PHYSICS OF ATOMIC NUCLEI
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Fig. 4. Asin Fig.3, but for my = my.

By way of example, weindicatethat at d = 1 and

300 GeV, my; = 350 GeV,
380 GeV, M,y = 390 GeV,

3
N
&
no

it follows from (21)—23) that

St = 0054, T“? = _0.040,
Ut = 4x10™

At m, = 300 GeV, these contributions agree with those
in (1) at alevel of x> = 3.5 (the corresponding SM value
isx?=5.1).

At the same value of & = 1, the contributions (21)—
(23) of the scalar leptoquarks that have the masses

My3
Ms;3

= 300 GeV, my; = 360 GeV,
= 360 GeV, Myy = 390 GeV

are

st = 0028, T9 = _0.156,
u*? = _0.001;

these values agree with the dataiin (1) at my = my,, the
relevant x2 value being 2.1 to be compared with the SM
value of x> =4.1.

The existence of relatively light scalar leptoquarks
(of masses about 1 TeV or below) may be compatible
with other experimental data—in particular, with the
most stringent constraints on leptoquark masses from

nonobservation of rare decayslike KE — pesince, in

the model being considered, the constants of scalar-1ep-
toquark coupling to quarks and leptons are proportional
to the ratio of the quark masses to the SM vacuum
expectation value [12] and are therefore small.
PHYSICS OF ATOMIC NUCLEI
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6. CONCLUSION

In summary, the contributions to the parameters S T,
and U from the scalar-leptoquark doublets, scalar gluons
and an extra scalar doublet have been calculated within
the minima mode! featuring four-color symmetry.

It has been shown that, in contrast to the contribu-
tions from ordinary scalar (or fermion) doublets, the
contributionsto the parameters T and U from the scalar-
leptoquark doublets are not positive definite in the
model because of the mixing of the scalar leptoquark
fields having an electric charge of 2/3.

On the basis of available experimental data on the
parameters S T, and U, anumerical analysis of the con-
tributionsto S T, and U from scalar-leptoquark dou-
blets has been performed for the Higgs leptoquark-
mass-generation mechanism and the simplest version
of leptoquark mixing.

It has also been shown that experimental data on the
parameters S T, and U admit the existence of scalar
leptoquarks of masses ranging between large values
and about 1 TeV or below and that lighter scalar |epto-
guarks (of massbelow 1 TeV) even slightly improvethe
agreement between the theoretical results and experi-
mental datain relation to the SM case.
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Abstract—A nonlocal separable potential of K*N interaction in theisospin-0 and isospin-1 S P, D, ..., J scat-
tering channelsis constructed. This potential describes satisfactorily the results of the SP92 phase-shift analysis
(R. Arndt) at incident-kaon energies in the interval from 0 to 2.4 GeV. The off-shell amplitudes for kaon—
nucleon scattering are calculated. They are shown to differ significantly from the commonly used off-shell

amplitudes. © 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Both on-shell and off-shell amplitudesfor scattering
on nucleons are required for describing nuclear reac-
tionsinitiated by strongly interacting probes. The sim-
plest methodsfor cal culating such amplitudes are based
on the use of separable potentias. In this study, we pro-
pose a phenomenological separable potential of K*N
interaction. This potential, which allows for inelastic
effects, reproduces the data of the SP92 phase-shift
analysis [1] in the kaon-energy region extending up to
2.4 GeV.

For the isospin-0 and isospin-1 scattering channels,
a potential was constructed in [2] that describes K*N
scattering for kaon energies up to 550 MeV inthe S P,
and D partia waves. The parameters of this potentia
were determined from the best fit to the data from the
phase-shift analysis reported in [3]. The new potential
presented here reproduces the data of the more recent
SP92 phase-shift analysis [1] of kaon—nucleon scatter-
ingintheS P, D, F, G, H, |, and J partial waves of the
isospin-1 channel and inthe S P, D, F, and G partia
waves of the isospin-0 channel.

2. PHENOMENOLOGICAL SEPARABLE
POTENTIAL OF K*N INTERACTION

The on-shell and off-shell amplitudes for the elastic
scattering of positive kaons by nucleons, i, (k, K, E),
are calculated here as solutions to the Kadyshevsky
equation

ta(k K, E) = V4(k K)
, L _P’dpVy(k p)ta(p. K, E) 1)
| EPENP)E-E(P) +18)’

wheree — 0; kand K' are the rel ative momenta of the
kaon and the nucleon before and after the scattering

* e-mail: shishlo@twonet.stu.neva.ru

event, respectively; o stands for the set of spin-isospin
indices; t, isthe pseudoelastic amplitude; and E isthe
total energy of the K*N system,

E(p) = Ex(p) + En(p), El(p) = Jm;+p’,

X = K, N.

Here, m¢ and my are, respectively, the kaon and the
nucleon mass.

The on-shell pseudodastic amplitude , can be
expressed in terms of the pseudoel astic phase shift . 8

£ (k K, E(K)) = —ZiET(kk)(exp(Zisa)—l).

The conventional scattering amplitude t, is
expressed in terms of the pseudoel astic amplitude f, as

ta(k, K, E) = JAa(K)Aa(K)la(k K, E),
where 1, isthe pseudoelastic inelagticity parameter.

The pseudoel astic parameters 8 and fj, arerelated
to the conventional phase shift §, and the inelasticity
parameter n,, which are determined from a phase-shift
analysis, by the equation

nuexp(2i5a) -1
a= -
2i

The interaction potentia in Eq. (1) is taken in the
separable form (the index a is suppressed)

R 21854) =1
= 7, 2222 )

V(k k) = Z)\igi(k)gi(k')i 3)

wherer is the rank of the potential, A; are the parame-
ters of the potential, and g;(k) areits form factors.

1063-7788/01/6402-0326%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Amplitudes a for K*N scattering that are determined by expression (2) for the 01, SI 1, P, D03, and D13 partial waves (the
channel index L{T, 2J}, where L isthe spectroscopic notation for the orbital angular momentum, T istheisospin of the K*N system,

and Jisitstotal angular momentum, isindicated in thefigure) versusp,
resent the results of the SP92 phase-shift analysis[1]: (m) real parts of%

(relative momentum of the kaon and the nucleon). Points rep-
he amplitudes and (@) imaginary parts of the amplitudes. The

solid and the dashed curves show, respectively, the real and the imaginary parts of the amplitudes cal culated with the potentia (3).

We determined the potential parameters through a
two-step procedure. By solving the inverse scattering
problem [4], wefirst calculated the form factors for the
K*N-scattering channelswhere the phase shift is of con-
stant sign. Here, the rank of the potential was assumed
to be equal to unity. After that, we parametrized the
form factors g;(k) as

[Ex(K)En(K), O 1
g|(k) — KEn)mN( )kID - —
K K+ Biy)
, 4)
ylk 'Jﬁlj:l
t——r q;; expg— e
| +i+ J |:| O
(K +BE) " le G -0
PHY SICS OF ATOMIC NUCLEI Vol. 64 No.2 2001

where i is the rank number; | is the orbital angular
momentum of the scattering channel; and B3;;, By, Vi, &,
by, and c;; are the potential parameters. At the second
step, the potential parameters were varied in order to
obtain the best fit to data from a phase-shift analysis.

We failed to achieve a satisfactory description of
these data in the D05, D15, 1113, and J115 channels.
This was either because of the alternating sign of the
relevant phase shift or because of its complicated
energy dependence. For these channels, the procedure
for determining the parameters started from the second
step. We set the rank of the potentia to the lowest pos-
sible value of two and discarded the last two Gaussian
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Fig. 2. Asin Fig. 1, but for the partial-wave amplitudes D03, D15, F, G07, and G17.

termsin expression (4) for the form factors; the param-
eters a; in (4) were set to zero.

Tables 1 and 2 display the potential and the form-
factors parameters for potentials of rank one and two,
respectively.

Figures 1-3 demonstrate the quality of our fitsto the
data from the phase shift analysis reported in [1].

3. OFF-SHELL BEHAVIOR OF THE K*N
SCATTERING AMPLITUDES

At the moment, much attention is being given to the
problem of possible modifications to the nucleon
dimensions and properties in nuclear matter. Such
information can be obtained, in particular, by studying
the energy dependence of the ratios of the elastic cross
sections for various types of target nuclei. The results

obtained from an analysis of elastic K* scattering by
light and extremely light nuclei suggest a possible mod-
ification to kaon—nucleon amplitudesin light nuclei [5,
6]. Among factors that affect the interpretation of these
results, we would like to mention a correct description
of the off-shell behavior of kaon—nucleon scattering
amplitudes.

In describing the off-shell behavior of K*N scatter-
ing amplitudes, use was made in [5, 6] of the approxi-
mation of the rank-one separable potential

t(k, K, ko) = 9————("2)?((k)t(ko, Koy Ko), (5)

0

where g( p) = exp(—-p*/A?) and A = 1.0 GeV/c.

There, the form and the parameters of the form fac-
torsin (5) were assumed to be independent of the scat-
PHY SICS OF ATOMIC NUCLEI
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Table 1. Parameters of the rank-one K*N potentials (the scattering channel index is L{T, 2J}, where L is the spectroscopic
notation for the orbital angular momentum |, T isthe isospin of K*N system, and J is the total angular momentum of the sys-

tem)
Channel \, Gev2 +2 y B, GeV ¢t B,, GeV ¢t B B
r=1 2-2 -1 -1 s | P2 GEVC G2y GEV
a,, GeV b, GeV ¢ cy, GeV ¢ a,, GeV
D1 4834 %1073 24.717 0.2847 0.4009
—18.568 0.5394 0.4070 18.483 0.8825 0.1420
PO1 —70.397 0.2479 1.7224 1.1814
2.200 x 1072 1.7259 0.3857 0.1809 -7.019x 103 0.4548
P03 1.4039 2.5351 0.6605 1.6746
—0.4797 0.7416 0.2893 -1.093 0.3372 0.2973
D03 —1.000 x 10° 0.2393 6.8954 1.5765
3537 x 1072 | 1.440x% 107 0.2689 2.659 x 1073 0.5714 0.1532
FO05 —1.000 x 10° 1.5928 2.0019 1.2168
1.645 x 1073 1.7986 0.3996 2.766 x 1072 0.3782 0.3686
FO7 1.5555 9.9950 0.7067 1.7889
0.6849 1.3427 0.1799 0.1884 0.9264 0.2676
G07 -5.000 x 10° —1.1046 1.6955 1.9788
2.811x 1073 0.5112 0.2270 3.805 x 101 0.2074 0.1099
G09 1.4824 23.000 0.7892 1.2995
19.999 5.608 x 1073 0.2498 2.201 x 1072 1.6172 0.5410
Sl1 1.6940 1.3866 0.5290 0.7539
—0.4603 0.9482 0.2162 0.6383 0.9461 0.4484
P11 11.402 2.9983 0.7857 2.9051
—0.4229 0.3579 0.1259 —4.631 x 1072 0.7433 0.1638
P13 -1.1561 0.1294 1.7583 1.3714
1.8513 4.367 x 10 0.3530 0.2348 0.6529 0.1946
D13 7.000 x 10° 1.1232 3.5188 0.7304
—0.3344 0.3813 0.4932 —-0.1796 0.3249 6.806 x 1072
F15 2.500 x 10? 1.9987 0.8344 1.9057
4.1760 5.334 x 1073 0.8157 —0.2282 0.1741 1.648 x 1072
F17 —850.0 1.0 1.3476 4.0
1.665 x 1073 1.0988 0.4448 1.829x 102 | 5.468 x 107 0.3007
G17 7.0x 10* 1.1001 1.3887 2.1991
—6.737 x 10* 1.4508 4.0438 1.828 x 1072 0.5520 0.1572
G19 —6.0 x 102 4.0 1.3372 2.4989
4.603 x 1078 0.7749 0.3698 7.426 x 1073 0.6330 0.1523
H19 20.191 28.155 2.6200 0.8594
0.2437 0.9121 0.4145 —-3.0451 0.4836 0.1272
H111 -15.003 18.983 1.2379 0.9408
—0.6877 0.5132 0.1862 —0.5960 0.5762 0.3658
1111 21.100 27.399 2.2300 1.1276
-1.158 x 1074 0.8931 0.4995 —6.456 x 1072 0.3051 0.5020
J113 1.1x10° 33.381 11.0 1.0034
0.8369 7.155 x 1072 0.2064 —0.8369 0.4791 8.570 x 102
PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001
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Fig. 3. AsinFig. 1, but for the partial-wave amplitudes G09, G19, H19, H111, 1111, 1113, J113, and J115.
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Fig. 4. Noyes—-Kowalski function for K*N elastic-scattering
amplitudes (k = 300 MeV/c). Points represent the function
given by expression (5). The solid and the dashed curve
depict the functions cal culated with the potentia (3) in the
Sl 1 and the 1 scattering channel, respectively.

tering channel. For this parametrization of the off-shell
behavior, the projectilenucleon amplitudes change
slowly with increasing distance from the mass shell;
therefore, it ispossible to neglect the off-shell contribu-
tion to kaon—nucleon interaction in anucleus[5, 6].

In the present study, we analyze the off-shell behav-
ior of the K*N amplitudest,(K, k, k) found for the sepa-
rable potential (3). We have calculated the half-off-
shell Noyes—Kowalski functions

fo(K, K) = t (K, k K)/t(k K, K).

Recall that a stands for the set of spin-isospin indices
of the channel.

The resulting functions f, are strongly different for
different scattering channels. Only in the S11 channel
of K*N scattering does the function f, exhibits behavior
similar to that prescribed by Eq. (5); for the remaining
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Table 2. Parameters of the rank-two K*N potentials (the notation isidentical to that in Table 1)
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Channel Ay, Gev2+2 Y1 Biy, GeV ¢ Bi» Gev et
r=2 \,, Gev2 +4 Vo B,y GeV ¢t By, GeV ¢t
D05 —20.896 —4.5699 0.9506 1.0160
11.992 0.1450 1.9281 0.5952
D15 —20.829 -3.6733 0.9199 0.8974
11.997 1.0081 x 1072 1.4362 0.3704
1113 1.9912 10.335 0.7535 0.9181
-3.0x10° 6.3951 1.6472 1.2428
J115 3.002 x 10? -3.0788 0.8708 1.2756
-1.0x 10° 4.8220 1.2382 1.0890
channels, the functions f, are nonmonotonic and differ REFERENCES
significantly from unity. By way of example, the func-
along with those that are cal cul ated with the potentid (3) D 46, 961 (1992).
for the S11 and the 01 channel. 2. Ya A. Berdnikov and A. P. Shishlo, Yad. Fiz. 49, 528
(1989) [Sov. J. Nucl. Phys. 49, 330 (1989)].
4. CONCLUSION 3. B.R. Martinet al., Nucl. Phys. B 94, 413 (1975).

The proposed separable potential of K*Ninteraction 4. C. Coronis and R. H. Landau, Phys. Rev. C 24, 605
describes satisfactorily the data from the modern (1981).
phase-shift analysis SP92 [1]. .

This potential predicts different types of off-shell 5. M. F.Jiang and D. J. Ernst, Phys. Rev. C 51, 857 (1995).
behavior for the partial amplitudes of kaon—nucleon 6. L. Kurth Kerr, B. C. Clark, S. Hama, et al., nucl-
scattering. A customary description of this behavior th/9801003.
presumesthe sameforminall partial-wave channels[5,

6], but this is true only in the primary-energy region
dominated by the contribution of the SI1 partial wave. Translated by M. Kobrinsky
PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001
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Abstract—Quark substructure effects that should manifest themselves at LHC energies are examined. The
inclusive jet transverse-energy spectrum as would be observed by the ATLAS detector is predicted. The effect
of the choice of parton distribution function and cal orimeter nonlinearity on the compositeness effect is studied.
The sensitivity of datato the quark-compositeness scale for low and high LHC luminosity is discussed. © 2001

MAIK “ Nauka/Interperiodica” .

The test of QCD predictions provides a useful tool
in probing the underlying dynamics and in seeking new
physics such as quark compositeness and the existence
of axigluons or other new particles. Measurement of
the inclusive jet cross section and study of the dijet
mass spectrum and angular distributions open a new
window to this field. A relationship between jets and
partons has been clearly demonstrated in high-statistics
LEP, Tevatron, and HERA experiments. The existence
of a quark substructure would appear as an excess of
the high-P, jets over the level predicted by QCD or as
dijet angular distributions more isotropic than those
expected from a pointlike-quark theory. Dijet angular
distributions were studied in the CDF [1] and DO [2]
experiments at a center-of-mass energy of 1.8 TeV. The
highest E; reached so far at the Tevatron, about
500 GeV, corresponds to a distance scale of 10" cm.
The experimental data were compared with QCD pre-
dictions, including compositeness. No evidence of
quark substructure was found. Previous studies of dijet
invariant-mass spectrum reported by UA1 [3] and UA2

[4] at /s = 630 GeV and by CDF [5] also yielded data
that were consistent with QCD predictions. The CDF
[6] and DO [7] results on high-mass Drell-Yan cross
sections set a lower limit on the quark—electron com-
positeness scale about 5.5 TeV. From the ratio of
charged-current to neutral-current cross sections mea-
sured in the CCFR fixed-target neutrino experiment [8]
at Tevatron, alimit of about 8 TeV on /A was achieved.

Searches for a quark substructure will be continued
at future hadron colliders. We investigate here the effect
of quark compositeness as would be seen by ATLAS
[9] at the LHC. To simulate ascenario with aquark sub-
structure, the event generator PYTHIA-5.7 [10] has
been used. This has enabled one to use a simple phe-
nomenological approach of contact interactions
between quark constituents with a compositeness scale

* This article was submitted by the author in English.

N [11], where the sign of the effective Lagrangian for a
flavor diagonal definite-chirality current is positive
(destructive interference) or negative (constructive
interference). The data simulated within the Standard
Model (SM) are compared with those obtained under
the assumption of quark compositeness. The simulated
event sample included the following hard-scattering
subprocesses: qq, qg, 99, gy, ay, and yy. The y*/Z-, W,
and tt-production subprocesses are also alowed. To
collect a sufficiently large number of events with high-
P, jetsin areasonable central processor unit time, a cut
on the transverse momentum of the hard scattering sub-
processwas set to 1 and 1.2 TeV for low and high lumi-
nosity, respectively. Initial- and final-state QCD and
QED radiation, fragmentation, and decay of partons
and particles, as well as multiple interactions, were
allowed. First-order running-og calculations were
applied. The Aqcp value was chosen according to the
parton-distribution-function parametrizations used in
PYTHIA. For the Q? scalein the 2 — 2 hard-scatter-

ing process, Q2 = (m;; + M, )/2 was used. The detector

performance was simulated by using the ATLFAST
package [12], which provides areliable estimate for the
detector response to hadronic jets. Jets were recon-
structed with ATLFAST using the standard procedure
of summing the energy deposited in a cone of radius

AR = JANn® + A¢? =0.7. All calorimeter cellswith E, >
1.5 GeV were taken as possible initiators of clusters.
Thetotal E, summed over all cellsin acone AR should
be larger than 15 GeV. Jets were reconstructed down to
In|<5.0.

Figures 1 and 2 show the effect of compositeness on
the inclusive jet energy spectrum for an integrated
luminosity of 30 fb. The case of constructive interfer-
ence is shown; the destructive-interference case is sim-
ilar. Only events with two jets of E; > 400 GeV are
included. The deviation from SM prediction under the
assumption that al quarks are compoasite is shown.

1063-7788/01/6402-0332%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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N~ dN/dE,, TeV~!
10°

1072

104 %

10—6 1 1
1
E, TeV

Fig. 1. E; distribution for two leading jets according to the

SM prediction (open circles) and with the effect of quark
compositeness to the scales indicated: closed triangles,

closed stars, and crosses correspond to A, = 15, 20, and
25 TeV, respectively. The integrated luminosity was
assumed to be 30 fb L.

N-! dN/dE,, TeV-!
107!

1073

1073

—7 1 1
107 2 3 E,TeV

Fig. 3. Asin Fig. 1, but for L = 300 fb. Closed triangles,

closed stars, and crosses correspond to A, = 20, 30, and
40 TeV, respectively.

These figures demonstrate that the deviation is signifi-
cant for the largest E; values. Figures 3 and 4 show the
effects on the jet E, distribution for an mtegrated lumi-
nosity of 300 fb and larger values of A. 0)

The effects of compositeness could be masked by
uncertainties in the parton distribution functions. Fig-
ure 5 shows a band corresponding to the results

Dintegrated luminosities of 30 (300) fb L should be collected after
3 (10) yr of data accumulation at the LHC.
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(Neomp — Nsm)/Nsm
2 —
_ “YW**I + j}
QRS C -2 se2aderee) + |
I | > | 3

Fig. 2. Difference of the SM prediction and the effect of
compositeness on the jet E; distribution normalized to the

SM rate. Closed triangles, open circles, and closed stars cor-
respond to Ay, = 15, 20, and 25 TeV, respectively. The
errors correspond to an integrated luminosity of 30 fl™.

(Ncomp - NSM)/NSM

2

| *

AR AT
i 2 3 B, Tev

Fig. 4. Asin Fig. 2, but for L = 300 fb. Closed triangles,

open circles, and closed stars correspond to A, = 20, 30,
and 40 TeV, respectively.

obtained with all the parton distribution functions in
PYTHIA-5.7 (except for DO1 and EHLQ1, which have
large inconsistencies with present data). For this case,

Ay =15 TeV.

The nonlinear response of the hadron calorimeter
can affect the observed difference between the SM and
the compositeness scenario or may fake a composite-
ness signal. To study this effect, we considered a non-
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N~ dN/dE,, TeV~!
10°

1072
104
Y
—6 1 1 1 1 1
10 1 2 3
E, TeV

Fig. 5. Jet E; spectrum indicating the uncertainty due to the
present parton distribution functions. The integrated lumi-

nosity is assumed to be 30 fb~L. The closed triangles corre-
spond to the resulting predictions for calorimeter nonlinear-

ity. Ay, =15 TeV for all cases.

linearity of thejet E, scale according to therelation [13]

1

E(mess) = & e ah — binEy)’

(D

where E;(meas) and E; are the measured and the true jet
transverse energy, respectively; e/h = 1.36; and c is
adjusted such that at 500 GeV the scale is unchanged.

nonlin lin lin

(Nsw~ —Nsw)/ Nay
2=

s A

_ v""va,vaY ¥ +

O | |
1 2

1
3 E,TeV

Fig. 6. Fractional difference between the E; spectrum mea-
sured by alinear and nonlinear calorimeter. The closed and
opentriangles correspond to b = 0.11 and b = 0.025, respec-
tively (seemain body of thetext). Therateswere normalized
at 1.20 TeV.

USUBOV

The parameter b controlsthe size of calorimeter nonlin-
earity. After introducing a correction, the residual
uncertainty can be parametrized by this formula with
b= 0.025 and corresponds to a 1.5% nonlinearity at
3 TeV. If no correction ismade, b = 0.11 and thereisa
5% nonlinearity at 3 TeV.

To illustrate the effect of nonlinearity, Fig. 6 shows
the fractional deviation of the transverse energy spec-
trum measured by a nonlinear calorimeter from that
measured by alinear one. The rates are normalized to
be equal at 1.20 TeV. Two cases corresponding to b =
0.025 and b = 0.11 are shown. Comparison of this plot
with Fig. 4 demonstrates that, at the worst, the effect of
nonlinearity is similar in magnitude to that due to a
composite scale of 20 TeV. If the 1.5% nonlinearity can
be achieved, the effect is comparable to that of the
30-TeV composite scale. The pointsin Fig. 5 show dis-
tributions resulting with cal orimeter nonlinearity inclu-
sion.

In order to estimate the cal orimeter nonlinearity part
in the effect, we introduce the variable

Rgonlin_RInin
R= —— 2
R,
where
r - NE>E)|  NE>E)
N(Et< E?) comp N(Et< E?) SM

and N(E, > EY) (N(E, < E?)) is the number of events
with E, > E{ (E, < E). Figure 7, displaying R versus
Mg, demonstrates that the nonlinear calorimeter

R, %

100

75

50

25

v v
20

1
30
N, TeV
Fig. 7. Ratio R versus the compositeness scale A, (see

main body of the text). The integrated luminosity was
assumed to be 30 fb L.
PHY SICS OF ATOMIC NUCLEI
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response almost doubles the effect at A, = 6 TeV. We
choseb =0.11and E) = 1.5 TeV.

In conclusion, the effects caused by quark compos-
iteness have good chance to be observed by ATLAS at
LHC. High transverse energy jet production at a center-
of-mass energy of 14 TeV can give bounds to quark
compositeness scale A above ~25(40) TeV for inte-
grated LHC luminosity of 30 (300) fb. We can note
that A limit estimation using the inclusive E; spectrum
of jets is very sensitive to calorimeter nonlinearity
effects and choice of parton distribution function.
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Abstract—The Nambu—Jona-L asinio model at nonzero values of an external magnetic field H and of the chem-
ical potential is considered in the strong-coupling region G > G... The phase portrait of the model exhibits an
infinitely large number of massless chiral-invariant phases and massive phases resulting from a spontaneous
breakdown of chiral invariance. This phase structure is responsible for aperiodic oscillations of some thermo-
dynamic parameters of the system, including the dynamical fermion mass, as functions of H-!. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

It iswell known that, for the mgjority of metals, the
magnetization generated by an external magnetic field
H oscillates at low temperatures as a function of the
parameter (eH)!, where e is the absolute value of the
electron charge. In modern condensed-matter physics,
this phenomenon is referred to as the de Haas—Van
Alphen effect. This effect was theoretically predicted
and then observed experimentally more than 60 years
ago [1-3]. Apart from the magnetization, some other
thermodynamic characteristics of metals also oscillate
in amagnetic field—periodically, asarule, asfunctions
of (eH)™! (standard magnetic oscillations) [2, 3].2) Nev-
ertheless, there are compounds like the degenerate
magnetic semiconductor HgCr,Se, where the magneti-
zation and the electric resistance oscillate aperiodically
asfunctions of (eH)! [4]. Such oscillations, which can-
not be explained within the simplest Fermi liquid mod-
els, will henceforth be referred to as nonstandard mag-
netic oscillations.?

The de Haas—Van Alphen effect is a very efficient
tool for studying the Fermi surface and its topology
and, consequently, the energy spectrum of conduction
electrons [2]. This is the reason why magnetic oscilla-
tions are still being investigated; as to relevant theoret-

D Moscow State Institute of Radio Engineering, Electronics, and
Automation (Technical University), pr. Vernadskogo 78, Mos-
cow, 117454 Russia.

2 |ntitut firr Physik, Humbolt-Universitét zu Berlin, Invaliden-
strasse 110, D 10115, Berlin, Germany.

* e-mail: kklim@mx.ihep.su

** eemail: debert@physik.hu-berlin.de

3 At low temperatures, the ensemble of conduction electrons in
metals forms a Fermi liquid. Even the simplest description of an
electron Fermi liquid in terms of a degenerate ideal gas of nonrel-
?Iivi)stlici' 3f]ermion quasiparticles leads to periodic oscillations in
eH)™ [3].

4 In addition to nonstandard magnetic oscillations, the aforemen-
tioned semiconductor exhibits unusual temperature oscillations
of the magnetization [5].

ical studies, much attention has recently been given
thereto analysis of magnetic oscillations within relativ-
istic quantum field theory (see, for example, [6, 7]). The
problem in question isinvestigated within a broad pro-
gram amed a developing guantum theories with
allowance for various external conditions (temperature,
electromagnetic fields, etc.), which is expected to yield
results covering applications in astrophysics and cos-
mology, heavy-ion physics, and the physics of neutron
stars[8]. However, the relativistic de Haas—Van Alphen
effect can also have applications in condensed-matter
physics. The point is that modern facilities enable ever
more precise measurements, whose results can be
explained only by taking into account relativistic cor-
rections. Further, the Fermi energy grows with increas-
ing matter density. At high pressures and densities, the
dynamics of an eectron Fermi liquid therefore
becomes essentially relativistic, so that the field-theo-
retical methods are required for smulating it.

In[6, 7], an effective Lagrangian L. for an external
magnetic field at a nonzero value of the chemical
potential 1 was considered within QED. As a matter of
fact, the one-loop effective Lagrangian L. for the prob-
lem being discussed is determined by the thermody-
namic potential of arelativistic ideal gas of fermions at
M, H # 0. It turns out that, here, the thermodynamic
potentia itself and its derivatives with respect to H and
p—that is, respectively, the pressure, the magnetiza-
tion, and the particle-number density of thisrelativistic
system—exhibit standard oscillations as functions of
the variable (2eH)~! with a frequency (u> - M?) (M is
the electron mass), which is independent of the mag-
netic field at ) = const.

Here, the effect of an external magnetic field H and
of the chemical potentia 1 on the properties of the vac-
uum and on the allied phenomena of magnetic oscilla-
tions are considered within the simplest quantum the-

1063-7788/01/6402-0336%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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ory involving four-fermion interaction. Its Lagrangian,
given by

N
Ly = ijkialpk
K=1
(D
c oM f oM EF}
5ol 0) GO + 0% Qysy O |,
N q; O @; O

is invariant under continuous chiral transformation

W — € Y, (k= 1, ..., N). Theories like that speci-
fied by Eq. (1) are usually associated with the Nambu—
Jona-Lasinio (NJL) model, which features the effect of
a dynamical breakdown of chiral symmetry in the
strong-coupling region [9]. In order to employ the non-
perturbative method of 1/N expansion, we consider the
N-fermion version of the original NJL model. Sincethe
concept of adynamical breakdown of chiral symmetry
playsan important role in the modern theory of elemen-
tary particles, a large number of studies have been
devoted so far to the analysis of this phenomenon with
allowance for the effect of various external factors,
including temperature and the chemical potential [10,
11], external (chromo)magnetic fields [12], and non-
trivial spacetime topology and curvature [13], on the
vacuum structure of models similar to that specified by
Eqg. (1). Moreover, the concerted effect of gravity and
magnetic fields on the critical properties of variousthe-
ories involving four-fermion interaction was consid-
ered in [14] and in some other studies. However, the
properties of the ground state of the model whose
Lagrangianisgiven by (1) have not yet been considered
at nonzero values of the external magnetic field H and
the chemical potential p.

2. PHASE STRUCTURE OF THE MODEL
AT W, H#0

The phase structure of the model in question is con-
trolled by the effective potential. In the leading order of
the 1/N expansion, the effective potential at nonzero p
and H hasthe form

eH
Vi (2) = V(2 -— » a,8(p-
wu(Z) = Vu(2) 4T[2kZO O(H-5)
— (2)
<« /uz_si_sgm[m}g
O Sk O
where s = /=% + 2eHk and
Viu(Z) = Vo(2)
(eH)ZEK, 1, 2 g
——-'(-1, x) —z[x =X]Inx+ =
ot o (=1, %) =3I ] 70
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is the effective potential at u = 0and H # 0. In Eg. (3),
we have used the following notation: x = 2/(2eH), {(v,
X) isageneralized Riemann zetafunction [15], {'(-1, X) =
dd(v, x/dvl, - _;,

22

Vo(2) = 2G

%H

is the effective potential at zero p and H, and A is the
ultraviolet-cutoff parameter (this cutoff is necessary
sincethe original model isnonrenormalizable). We a so
note that an auxiliary scalar field Z, which enters into
the equations of motion as a quantity proportional to
Py, appears in the argument of al functions in (2)—
(4); sincethisfield is, in particular, the argument of the
effective potential, it is independent of spacetime coor-
dinates. For any of the potentials in Egs. (2)—(4), the
point of the global minimum is the vacuum expectation
value of the field ~ and coincides with the dynamical
mass of fermion fields. The procedure of introducing
the auxiliary field X in the NJL model is described in
detail elsewhere [11].

At 4, H = 0 and G < G, = 41¢/A\?, the stationarity
condition for the potential (4) has no solutions other
than the trivial one, = = O—that is, there is no break-
down of chiral invariance in this case: the fermions
remain massess. If G > G, the function V,(X) has a
nontrivial globa minimum (we denote by M the corre-
sponding point). This implies a spontaneous break-
down of chiral symmetry and the appearance of a non-
zero fermion mass, M. Obviously, M depends on G and
A [11].

In the case of zero u and H # 0, the chiral symmetry
of the model appears to be spontaneously broken at any
value of the coupling constant G [12], since V4(Z) has
anonzero point of global minimum, Z,(H).

(4)
+/\ si_y In%H

16n25 D

In order to find out how the vacuum of the model
behaves when both p and H take nonzero values, it is
necessary to analyze the function in (2) for the absolute
minimum. For this purpose, we seek all solutionsto the
stationarity equation

d

2 V() = Ly
2 2
Zeszake(p sk)ln[ WS*: ﬂ -0

and choose that which minimizes the potentia (2); we
then consider the properties of this global minimum
versus | and H. For the reasons of space, we omit here
the details of this analysis, performed numerically, and
present only basic results.
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JeH

Phase portrait of Nambu—Jona-Lasinio model for G, < G <
(1.225...)G; (here, M isthe fermion massat p = H =0 and

M = A//\2/2 _21%/G ; adetailed description of the figure
is given in the main body of the text).

In the figure, the phase portrait of the model in the

(1, ~/eH) planeis shown for coupling-constant values
intheinterval G, < G < (1.225...)G... Here, we can see
an infinite set of massless symmetric phases A, A,, ...
and an infinite set of massive phases C,, C,, ... charac-
terized by a spontaneous breakdown of chiral symme-
try. In addition, there arises one more massive phase B,
where the fermion massis equal to Z,(H), asin the case
of zero p and nonzero H. The solid and dashed curves
in the figure correspond to critical curves of, respec-
tively, second- and first-order phase transitions. Thus,
the boundary separating the massless and the massive
phases (chira boundary) contains an infinite number of
tricritical pointst,, s (k=0, 1, 2, ...). (The point on the
phase plane is referred to as a tricritical point if, in any
arbitrary small vicinity of this point, there occur both
first- and second- order phase transitions.) The table pre-
sents the magnetic-field val ues corresponding to the tric-
ritical pointst, and 5, versustheratio G/G.. We a so note
that a part of the chird boundary—namely, the curve
tol—is described by the equation Vy,(0) = Vi, (Zo(H)).

Obvioudly, the region above the chiral boundary
(see figure) corresponds to the chiral-invariant ground

External-magnetic-field values corresponding to the tricriti-
cal pointsty and s, of the phase portrait (see figure) for vari-
ous values of G/G,

GIG, 101 11 1.15 12
thOI/\2 0.0129... |0.08119...|0.10769...|0.12987...
EHsO//\Z 0.00614...|0.05639...|0.08088... |0.10338...

VDOVICHENKO et al.

state of the NJL model. Thisimpliesthat, here, the glo-
bal minimum of the potential (2) is achieved at the point
> =0. Wewill show that, infact, thisregion splitsinto an
infinite set of various masdess phases Ay, A, ....

The thermodynamic-equilibrium state (ground
state) of any quantum field theory is described by the
thermodynamic potential whose space density Q(, H)
is equal to the value of the effective potentia at the
point of global minimum. Below, Q(u, H) is aways
associated with the thermodynamic potential. The ther-
modynamic potential isequal to the sign-reversed pres-
sure in the system; in the case being considered, it
assumes the form

Q1 H) = Vi, (0) = Vul(0) - 75 5 a,6( )
k=0

x{ U —ef —erIn[ (JU2 — g + W) /e ]},

wheree, = ./2eHk . We then make use of the following
well-known phase-transition criterion: at the points of
first-order (second-order) phase transition, al partia
derivatives of the thermodynamic potential with respect
to any argument from the first (second) one undergo a
discontinuity. Applying this criterion, we analyze the
phase structure of the model above the chiral boundary.
We are going to show that the curves |, = {(4, H) : p =

J2eHk } (k=1,2, ...) represent critical curves of sec-
ond-order phase transitions. For this purpose, we indi-
cate that, below the curve I, only the term that corre-
spondsto k = 0 makes anonzero contribution to the sum
on the right-hand side of Eq. (6). In the region below
the curve |,, the nonvanishing terms in the sum corre-
spond to k=0, 1, and so on. Taking this into account,
we arrive at

(6)

0Q -0Q =0, ™
OH (M) — 1 OH |G H) 1

9°Q _9°Q

O =1 (OW) g -1 )
_ eHu o

2 2

2T[2A/p —€lu - e
Theequality in (7) meansthat thefirst derivative 0Q/0u
is continuous on all curves|,. However, it follows from
(8) that each curve I, corresponds to the second-order
phase transition in the system since, there, the second
derivative of the thermodynamic potential with respect
to 1 undergoes an infinite jJump. Similarly, we can show
that, on each of the curves |,, the second derivatives
0’Q/(0H)? and 0*Q/0udH are discontinuous as well
(they undergo infinite jumps).

The existence of an infinite set of massive phases C,
is caused by the specific structure of the stationarity
Eq. (5). Our numerical calculations and the relevant
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graphs show that, for (i, H) O C,, Eq. (5) usualy hasa
few solutions, one of them, Z,(u, H), corresponding to
the global minimum of V,,(2). Uponintersection of the
curve Mt,, ,, the globa mlnlmum jumps to another
solution, Z, . (4, H), to the stationarity eguation. This
means that the system undergoes a first-order phase
transition to the new phase C, ., ;, and so on. In each of
the phases C,, the fermion mass equa to Z (4, H),
depends on p. On the contrary, the fermion mass ,(H)
in the phase B isindependent of u. Another special fea
ture of the phase B is that, in the ground state, the parti-
cle-number density n = —0Q/0u is identically equal to
zero; however, it does not vanish in any of the phases C,.

From statistical physics (see, for example, [3)]), itis
known that more than three curves of first-order phase
transitions cannot intersect at the same point. This
means that more than three phases cannot coexist in
nature. In the figure, however, an infinite number of
curves corresponding to first-order phase transitions
intersect at the point M. As matter of fact, this contra-
dictionis only apparent since M represents the point of
asecond-order phase transition [11]: it does not belong
to any of the curves of first-order phase transitions and
is not a point where the phases coexist.

3. STANDARD MAGNETIC OSCILLATIONS

We now consider the case of L > M, and 1 = const.
In the (U, H) plane, this case corresponds to the straight
line that intersects the curves|, ..., |, ... at the points
H,, ...,Hy, ..., respectively. Let usconsider the particle-
number density n(H) and the magnetization m(H) =
—-0Q/0H asfunctions of the magnetic field at 1 = const.
From the aforementioned properties of the thermody-
namic potential (6), it follows that, a H = 0, n(H) and
m(H) are continuous functions having characteristic
kinks at an infinite number of points H,, .... Functions
that exhibit this type of behavior are usually referred to
as oscillating functions. Thus, the presence of an infi-
nite cascade of phases results in magnetic oscillations
of the thermodynamic parameters in the NJL model.
Below, we will demonstrate that these oscillations are
of a ?tandard character—that is, they are periodic in
(eH)!.

To do this, we will follow the procedure adopted in
condensed-matter physics [2, 3], representing the ther-
modynamic potential (6) as the sum of two terms, Q(|,
H) = Qon + Qo Thefirst of these absorbs the mono-
tonic part of the thermodynamic potential, while the
second involves all oscillations. In order to obtain the
explicit expression for Q,,., we use in (6) the Poisson
summation formula[2, 3]

[

o, ®(n) = 2 o, fP(x)cos(2rkx)dx, (9)
nZO kZO J(:

where a,, = 2 — §,,. After some simple algebra (similar
calculations within QCD were performed in [7]), we
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arrive at

1 o ceH"
2 & Hrkd (10)

x [Q(kv) cos(Tkv + 1U/4) + P(1tkv) cos(Tikv — 174)],

where v = p?/(eH) and where the functions P(x) and
Q(x) arerelated to the Fresnel integrals C(x) and S(x) by
the equations [15]

1 X .
==+ | = +
C 5 2T[[Psmx Qcosx],
S= 1_ li[Pcosx—Qsinx].
2 N2m

For x — oo, their asymptotic expansions are [ 15]

Q(X)———X‘2+ %x*w

From Eq. (10), it can be seen that, with increasing
(2eH)!, the thermodynamic potential and all its deriv-
atives (consequently, the pressure, the particle-number
density, and the magnetization of the system under con-
sideration) oscillate with the frequency 2. In just the
same way as in QED [7], we have here standard (peri-
odic) oscillations, since the frequency does not depend
on the magnetic field.

Qosc =

3
=x!_S2x34+
P(X) = x 4>c

4. NONSTANDARD MAGNETIC OSCILLATIONS
We now consider thecase of M < i < M, and l =

const. In the (1, +/eH ) plane, this case corresponds to
the straight line traversing an infinite set of massive
phases C,. Here, the position Z(u, H) of the global min-
imum of the potential (2) depends on the parameters |t
and H. It is obvious that, in each region C,, (4, H)
coincides with the relevant solution Z,(u, H) to the sta-
tionarity equation. Upon intersecting the curves Mt
(see figure), this quantity changes drastically. Below
the chiral boundary, the thermodynamic potential of the
system assumes the form Q(u, H) = Vi, (Z(1, H)).
Using (9) on the right-hand side of (2), we find that the
oscillating part of the thermodynamic potential can be
represented as

z anDa [Q(1kv) cos(2Tkw + T[/é(lil)

Qosc -

3/2

+ P(nkv)cos(2nkm—n/4)],

wherev = p?/(eH) and w = (4> — Z2 (Y, H))/(2eH). From
(12), it can be seen that the thermodynamic potential
and al the parameters of the system that are associated
with it oscillate as functions of the variable (2eH)!, the
frequency p? — Z%(u, H) of oscillations being dependent
on H. Thus, we have, in this case, nonstandard (aperi-
odic) oscillations.
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Finaly, we would like to highlight yet another spe-
cia feature of the model being considered. Here—in
distinction to what occurs in QED—it is not only ther-
modynamic parameters of the system but also its
dynamical parametersthat oscillate. We mean above all
the dynamical fermion mass (U, H)) and al quantities
associated with it. In order to demonstrate this, we use
expression (9) in the stationarity Eg. (5). In the limiting
case H — 0, we can then represent the oscillating part
of the dynamical fermion mass as

Zosc(M, H) D(eH)slzi S'”(ZTtkoo n/4)’

k=1

(12)

where & = (12— M%)/(2eH) and M = M(p) is the fer-
mion mass at H = 0 and nonzero .

5. CONCLUSION

We have shown that, in the relativistic strongly cou-
pled (G > G,) fermion system governed by Lagrangian
(1) and placed in an external magnetic field, there can
occur oscillations of thermodynamic parameters in
(eH)™!, either periodic or aperiodic (depending on the
chemical-potential value). Moreover, the dynamical
fermion mass and al physica quantities associated
with it also oscillate.

Let us now estimate the interval of external-mag-
netic-field val ues at which nonstandard magnetic oscil-
lations can be observed. For this purpose, we make use
of the data in the table, which presents the results of
numerical calculationsfor twotricritical pointss, andt,
of the model phase portrait (see figure). It is obvious

that, if H 0 (0, Hy ), the thermodynamic parameters of

the system as functions of the magnetic field can
exhibit oscillatory behavior. At A = 700 MeV and

G/G, ~ 1.1, we easily estimate H, at 10'8 G.Y

Thisinterval issowidethat it covers even magnetic-
field values typical of neutron stars: it is well known
[16] that the magnetic fieldisH ~ 10'?> G near their sur-
face and reaches values of 10'® G near their center. If
the interaction of particles constituting a neutron star is
described on the basis of models of the NJL type, the
magnetic-field dependence of quantities characterizing
the star (magnetization, particle-number density, etc.)
may have an oscillatory character in advancing from
the surface to the center.

Degspite the relativistic method of this study, we
believethat our results are qualitatively correct for non-
relativistic strongly correlated electron systemsaswell;

9In the system of units where the speed of light and the reduced
Planck constant are equal to unity, we made use of the relation

mg/e ~ 4.4 x 101 G, e and m, being the electron charge and

mass, respectively, from which we can easily find the relation
between quantities having dimensions of MeV?2 and G.

VDOVICHENKO et al.

hence, it can prove to be applicable in solid-state phys-
ics.
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Abstract—The cross sections for B-meson production as obtained on the basis of the PY THIA code and the
Quark—Gluon String Model (QGSM) are compared at energies of the proton colliders SPS, Tevatron, and LHC.
Model predictions are based on the idea of exchanges of a supercritical Pomeron with phenomenological inter-
cept Ap(0) = 0.3 for heavy-quark production. The transverse-momentum spectra of B mesons are also com-

pared. It is shown that the cross sections calculated with PY THIA using CTEQ structure functions are at odds
with the asymptotic estimate of the cross sectionsfor BB production within the QGSM. Asymmetries between

the spectra of B and BO mesons also contradict the PY THIA result. The reasons for the difference are dis-

cussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

We cannot say that the complete knowledge on
beauty-quark pair production has been obtained now,

since the data that we have on bb-production cross sec-
tions are not yet sufficient. In order to monitor the
model ideas on the phenomenon, it seems useful to
revise once in awhile the collected data. The results of
afew recent experiments[1-3] carried out at two ener-
giesof colliding protons, 630 GeV and 1.8 TeV, are pre-
sented in the literature.

In this article, two of the models are compared: on
one hand, the phenomenological Quark—Gluon String
Model (QGSM) [4], based on the idea of hadronic-
amplitude duality and on the theory of a supercritical
Pomeron, and, on the other hand, the widespread
Monte Carlo code PYTHIA [5], which includes the
results of QCD perturbative diagram calculations.

That the production cross sections grows with
energy is a fact that was widely discussed in recent
studies [6, 7]. The theory of a supercritical Pomeron
postulates that cross sections grow in proportion to

SAP(O) , where Ap(0) = ap(0) — 1, 0p(0) being the inter-

cept of the Regge trgjectory of the Pomeron.

The energy behavior of the production cross section
in perturbative QCD is determined by the choice of
gluon structure functions of interacting hadrons. The

* This article was submitted by the author in English.

** e-mail: piskoun@sci.lebedev.ru

Deas the Pythian oracle declares today,” Plato, The Laws (trans-
lated by R. G. Bury, 1926).

“...10 ¢ Nudag ypappa dpacel tavov .2
Miatwv, Nopot P

majority of these functions that are accepted now for
Monte Carlo simulations of high-energy collisions are
constructed to approximate the recent datafrom HERA
that were measured up to x = 10-%. It should be noted
that all known gluon structure functions that satisfied

these recent data can be taken for simulating bb pro-

duction at LHC, because the value 10~ is in the very
region of x attributed to B-meson production at 14 TeV
due to the estimate: X = 2mg/(14 TeV) ~ 10-4. One of
those appropriate gluon distributions is the CTEQ
structure function, which is involved in the PYTHIA
code as a default distribution.

2. PARAMETERS DETERMINING
THE CROSS SECTIONS FOR B-MESON
PRODUCTION IN THE QGSM

The value of the major parameter of the QGSM
determining the energy dependence of the cross sec-
tion, Ap(0).¢, must differ from the intercept value for
one-Pomeron exchange, because the diagrams with
multi-Pomeron exchanges should be taken into account
in the calculations. This parameter depends on the
mean vaue of transverse-momentum transfer in the
process. Therefore, the energy dependences of the
cross sections for the production of particles of differ-
ent masses must be governed by different Ap(0), val-
Ues.

The @ dependence of Ap(0).; can beillustrated well

with the data obtained in the H1 experiment at HERA
[8]. Pomeron exchange plays an important role in elec-

1063-7788/01/6402-0342%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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tron—proton collisions too. The multihadron production
occurs in this process owing to Pomeron exchange
between the photon and a proton of the beam. The
A(Q?) data are shown in Fig. 1, where each point was
extracted from the measured function F,(x, Q%) by
using the approximation featuring the simple depen-

2
dence F, ~ x (@),

It should be noted that, in contrast to the case of pro-
ton—proton interactions, the theoretical curve in Fig. 1
was calculated [8] under the assumption of one-
Pomeron exchange, which does not include cuts. The
QGSM scheme for heavy-meson production must be
similar to the one-Pomeron-exchange pattern because
of energy conservation. For A, we can therefore take
the value of 0.3, which corresponds to the H1 data
approximation at Q> = (2mg)?. It is worth emphasizing
here that this value differs from A = 0.12, which was
chosen for light-quark-meson production in early stud-

ies[7].

Another Regge trajectory parameter important for a
model description of the inclusive cross sections for B-

meson-pair production isa(0), theintercept of bb tra-
jectory. It provides an increasing cross section at ener-
gies slightly exceeding the threshold for B-pair produc-
tion. There are various opinions on the value of this
parameter. From the QGSM point of view, it may vary
in the range between —16 and 0 [7]. Other authors pre-
fer a(0) =-91[9].

Thevalue a(0) =-16 will be taken here to estimate
the upper limit of growing cross section when it
increasesrapidly after thethreshold. The parameter dis-
cussed above existsin the functions of fragmentation of
guark—gluon strings into each sort of B mesons. Those
functions are written in QGSM according to the rules
fulfilled by the Regge asymptotic behavior [10].

For example, the function for d-quark string frag-
mentation into B* contains the following factors:

—a,(0) + A

35 @) = 201-2"" @D, W

Here, ag isthe density parameter for the fragmentation

of a quark—gluon string into B mesons, and af is the
parameter of string fragmentation asymmetry intro-
duced in [7] to provide atransition between probabili-
ties of the B production at z— 0 and z— 1. The

valueof a; can be on the order of 10 and actually does

not produce an impact on the value of the B-production
cross section at energies higher than 1.8 TeV. The frag-
mentation function of the string beginning from u quark

does not contain the parameter af‘ . It isthe fragmenta-
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Fig. 1. A(Q*) obtained in H1 [8] and one-Pomeron
exchange approximation (solid line).

tion of nonleading type:

—ay(0) +A+1

B
352 = 2(1-2) @

The calculations of p spectra of the produced had-
rons are also possible in the framework of QGSM, as
was done in [11] for Tt mesons. The spectra can be
described up to momenta on the order of afew GeV/c
in this substantially nonperturbative model. The distri-
butions were of exponentia character at low p; in this
approach. Therefore, the transverse-momentum distri-
butions for heavy-flavor particles were not elaborated
in this model.

3. PYTHIA MACHINERY

The version PY THIA 5.7 was taken to calculate the
spectra of B mesons at three energies of colliding pro-
tons: 630 GeV, 1.8 TeV, and 14 TeV. The CTEQ gluon
structure functions [12] are used in this version to
describe theincreasing cross sections. On the one hand,
the process of production of such heavy quarksasb is
good enough for being described by the perturbative
QCD diagram with gluon—gluon fusion. On the other
hand, more and more low-x gluons are involved in this
process at rising energy, and the cross section becomes
dependent on the accuracy of the gluon structure func-
tion measured at low x.

Aswas mentioned in the Introduction, dueto HERA
experiments we have precise dataon F, up to X ~ 104,

which isenough for the calculation of bb production at
LHC energies. This way, CTEQ structure functions
have to provide the correct description of increasing

cross sections of bb pair production.
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Fig. 2. Transverse-momentum distributions of B mesonsfit-
ted with PYTHIA.

However, b quarks can be obtained not only in gluon
fusion process. Two additional ways exist to produce a

bb pair. They are gluon splitting gg — gg, where glu-

ons give a bb pair in the next-to-leading order of cor-
rections, and heavy-flavor excitation Qg — Q,g. In
PYTHIA, these subprocesses are taken into account
with massless matrix elements. It is a problem how to
sum the resulting distributions from such different
deposits.

It makes the p spectraat 1.8 TeV comparable with
the dataobtained in CDF experiment (seeFig. 2). At the
same time, the description of UA1 data is not good
enough. It lookslike the p spectrawere increased with
additional fractions only by afactor and thereis no dif-
ference between the patterns of spectra for different
subprocesses. It leadsto arather flat form of transverse-
momentum distributions at low p;in PYTHIA and, as
aresult, to asmall total cross section of B production at
various energies.

4. COMPARISON OF CROSS-SECTION ENERGY
DEPENDENCES

The resulting energy dependences of the production
cross section are shown in Fig. 3 for the PYTHIA pro-
gram and for the QGS model as well.

Aswas mentioned, above the QGSM curve fitted to
the data point of the CDF cross section was taken as
rapidly increasing as is possible in this model. But the
CDF value of cross section has been obtained due to
PYTHIA (see Fig. 2). Thus the comparison of both

PISKOUNOVA

o(pp — BBX), ub
10°

PYTHIA

102

10!

100

10%

103

107!
104 /s, GeV

Fig. 3. Cross section for B meson as afunction of energy.

models (see Fig. 3) is rather conventional because the
result depends on the form of p; spectra at low trans-
verse momenta accepted in PYTHIA.

5. PYTHIA AND QGSM PREDICTIONS

FOR THE ASYMMETRY BETWEEN B’/B’
SPECTRA

It would be interesting to consider the |eading effect
in the spectra of B mesons at various energies. The

valuable asymmetry between B°- and B-meson spectra
at LHC energy will beimportant for CP-violation mea-
surements. The asymmetry dependence on rapidity, v,
can be defined as

dN® /dy —dN°® /dy
dN°® /dy + dN°® /dy

The recent prediction of the rapidity dependence of
such leading/nonleading asymmetry [13] provided by
PYTHIA simulations gives zero value of A(y) inawide
range of y in the central region (see Fig. 4). The A(y)
dependence in the fragmentation region x; — 1 con-
tradicts al similar asymmetry measurements for D
meson spectra [14-17] The intersection of inclusive
spectra of different type of B mesons gives the asym-
metry passing through zero at somey,, while the mea-
sured spectra of leading particles are always higher
than nonleading-particle spectra, so the asymmetry is
positive. Contrary to PYTHIA predictions, the asym-
metry calculated in the framework of QGSM isarising

A(y) =

3)
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Fig. 4. BY BO asymmetries at the LHC energy as given by
(dash-dotted curve) PYTHIA [13] and by (solid curve) the
QGS model; the value A = 0.3 corresponds to the produc-

tion of the mass of the B meson.

function uptox — 1. Thisbehavior isusually peculiar
for the string approach because of a so-called “beam-
drag” effect. The spectrum of particles of leading type
seems as if it is dragged by beam valence quarks into
the region X, — 1. The valuable asymmetry in the
central region given in QGSM prediction [18] is not
small enough for it not to be taken into account in
CP-violation measurements. It looks important to con-
sider both these predictions in detail and to discuss the
probability of nonzero asymmetry in the production
spectraat LHC energy.

6. CONCLUSION

We have compared two approaches for the under-
standing of the heavy flavored particle production: one
of them is mostly perturbative, and the other one is
totally nonperturbative. This comparison shows that
some different suggestion hasto be made for low trans-
verse-momenta distributions of B mesons to put into
agreement both model predictions at LHC energy. The

contradicting dependences for BY/ B° asymmetry in the
B-meson-production spectra might be important for
CP-violation measurements.
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Abstract—A model that describes the formation of n mesic nuclei inthey + A — N + , A' reactionsis for-
mulated on the basis of the quasifree meson photoproduction on nuclei and the concept of a meson-nucleus
optical potential. The amplitude of this reaction involving more than four nucleons is obtained in the general
form within the nuclear shell model featuring intermediate coupling. The dependences of the cross sections for
these reactions on the excitation level s of n mesic nuclei, on the discrete excitation levels of the nucleonic cores
of these nuclei, on the type of emitted nucleon, and on the final-state interaction are analyzed for the incident-
photon energies from the reaction threshold to 1 GeV. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Liu and Haider [1, 2] stated that n mesic nucle that
involve many nucleons can exist and proposed an
experiment that could discover them. However, the
estimated probabilities of the formation of n mesic
nuclei by pion beams were likely far from actual val-
ues, and this experiment failed [3], which gave rise to
doubt about the very existence of N mesic nuclei. Infor-
mation about a signal from n mesic nuclei in reactions
with light ions was surprising. Since these experiments
were beyond the mainstream of searches for n mesic
nuclei [4], they were ambiguously interpreted. In my
opinion, the question of whether n mesic nuclel exist
will remain open until these nuclei are observed in
those reactions and with those properties that were pre-
dicted theoreticaly.

It iswell known that n mesic nuclei can be formed
in various nuclear reactions accompanied by the pro-
duction of n mesons and by subsequent interactions
between these mesons and nuclei. In particular, n mesic
nucle can be formed in a photonuclear reaction like

Y+A—N+A+.. — A+,

where A’ is some nuclear fragment whose vel ocity with
respect to the product n meson is small. Reactions
resulting in the formation of only two nuclear frag-
ments are the ssimplest for atheoretical and, as| believe,
for an experimental analysis. This can be, in particular,
areaction where anucleon N appears to be one of such
fragments:

Y+A— N+n+A — N+ A, (1)

Figure 1 schematically represents the mechanism of
this reaction. The first studies aimed at estimating the
probability of the formation of n mesic nuclei in reac-
tions of the typein (1) [5-7] brought about some ques-
tions associated with an insufficient validation of the

model used to describe the reactions in question. At
present, when n mesic nuclei are transforming from
hypothetical objects into actual nuclei with properties
becoming ever more precisely specified, the model of
the formation of n mesic nuclei in reaction (1) requires
amore rigorous and detailed validation, and thisis one
of the objectives in the present study. The formation of

the extremely light n mesic nuclei ,T and r?He in reac-

tion (1) on “He target nuclei was considered in [7],
where it was shown that the relevant cross sections do
not exceed 1 pb. For a larger target mass number, we
can expect a larger cross section for the formation of
corresponding n mesic nuclei in reactions (1), so that
an experimental investigation of n mesic nuclei would
become possible. However, calculations for target
nuclei consisting of more than four nucleons involve
difficulties associated with the shell structure, the pres-
ence of severa levelsin heavy (A > 6) N mesic nuclel,
and the possibility of the excitation of discrete levelsin
the nucleonic cores of systems formed by an n meson
and a nucleus. These and other alied problems—in
particular, the expected near-threshold behavior of the
cross sections for reactions (1)—are discussed in this
study by considering the example of the reactionsy +

2C — N+ 7A andy+ %0 — N+ TA.

Fig. 1. Diagram describing a possible mechanism of the
photoproduction of n mesic nuclel iny + A — N + A
reactions.

1063-7788/01/6402-0346%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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2. DESCRIPTION OF THE FORMALISM

The total Hamiltonian for reaction (1) can be repre-
sented in the form

H = Hy+V+U,

where H,, isthe Hamiltonian describing the free motion
of all particlesinvolved in thereaction and Vand U are
the interactions responsible for, respectively, n-meson
photoproduction and n-meson scattering on a nucleus.
Theamplitudefor reactions (1) can then bewritten as[8]

/(v +U)Iwo= xOMveo k7uleD
= x{IT1¢.0

where ¢, X, and U are eigenstates of the Hamiltonians
H,, Hy + U, and H, respectively, while T isthetransition
operator for the photoproduction processin the absence
of meson—nucleus interaction. The second equality in
the last formulais valid by virtue of the relation

X lul$0= o,
whichisvalid owing to thefact that the state ¢; does not
involve the meson.

It is now convenient to rewrite the generic Eq. (1)
for the reaction type in question as

y(k, &) + A(Q;) — N(p) + A (Qs), (la)

Wherek: {kO’k}9q= {q09 q}’ p= {pO’ p}’ Qi = {QOi’ Qi}v
and Q; = {Qy, Qs} are the 4-momenta of the photon,

meson, nucleon, initial nucleus, and final N mesic
nucleus, respectively, while g, is the photon polariza-
tion vector. Theamplitudefor reactionsof thetypein (1),

OF | Thali
is calculated below. It isrelated to the differential cross
section for such reactions by the equation

do _ K A2
d—QN— 5 Z |Df|TnA||[l],

A My

2)

where K, is a kinematical factor; in the laboratory
frame, it is given by

2
P PoQot
+ M) —kyp,cosBy’

K, = (2m)~ 3
where M is the target-nucleus mass and 6 is the
nucleon emission angle.

In order to calculate the reaction cross sections in
the impul se approximation, it is necessary to know the
amplitudes of n-meson photoproduction on protons
and neutrons. These amplitudes have been calculated in
the purely resonance model of the yYN — Nn pro-
cesses by taking into account the contributions from the
P,1(1440), D5(1520), and S;;(1535) resonances. The
masses, total widths, and y widths of these resonances
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were varied within the limits recommended in [9] in
order to reproduce the most precise data on the near-
threshold cross section for the process yp — np [10].
Fixing the contribution from these resonances to the
yn — nnamplitude by using datafrom [9], we obtain,
in agreement with experimental data from [11], the
ratio

olyn— nn) _ 3 4
a(yp— np) @

at the photon energy corresponding to the excitation of
the S;,(1535) resonance.

3. AMPLITUDES FORY + A — N + A
REACTIONS ON p-SHELL NUCLEI

Using the second-quanti zation technique and taking
into account the antisymmetry of the wave functions of
theinitial (A) and final (A, N) nucleon systems, we can
recast the relevant amplitude into the form

Df|-’|\-r]A|||:|

A
—)* —)* i N (5)
= SIS W Owxe (re el
n=1

where |0and |YOare the wave functions of the
nucleus A; consisting of A nucleons and the nucleus A

- e w
consisting of (A— 1) nucleons, respectively; W, " (x,) =

cbé') (rA)Xa(S)Xp(ta) is the wave function of the
nucleon emitted with the momentum p [, is the set of

the variables {r,, Sa, ta}, While CDE,_) (r) is the spatia
component of the wave function of the neutron interact-

ing with the nucleus Ay ; and fﬁ =1, - €, istheoperator
of n-meson photoproduction on an intranuclear
nucleon. In the impulse approximation, this operator
coincides with the operator of photoproduction on a
free nucleon, its spin-isospin structure being given by

£ = [R°+R'1,+ Lo+ 0V o15]),  (6)

where ¢ and t© = {1, T,, T} are, respectively, the
nucleon spin and isospin operators, while the super-
scripts Sand V label, respectively, the isoscalar and the
isovector component of the amplitude. For nucleons
whose kinetic energies Ty are in excess of 50 MeV,
their interaction with a nucleus can be rather accurately
estimated on the basis of simple models—for example,
by using the intranuclear-nucleon wave function

1
B
which is a solution to the Schrédinger equation with
uniform optical potential V(r) = Vg +iV,, where B isthe

velocity and d(r) is the length of the proton path in the
nucleus; following [12], thistragjectory istreated here as

(1) = exp| 5(IVa+ V) [exp(ip ), (7
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Energy eigenvalues for  mesic nuclei

11 11 15 15

nB(hC) aN(70)
1s |-(27.5+i16.75) MeV |—(30.2 +i16.85) MeV
1p |-(10.28+i7.88) MeV |—(13.13 +i11.86) MeV

aclassical one—that is, it is assumed to be parallel to
the momentum p. Since the wave function (7) is appli-
cableexclusively to calculationswith auniform nuclear

density in a nucleus of radius R, the function tDE,_) (r)

appearing in (5) factorizes, according to the mean value
theorem, as

®$(r) = Dexp(ip [F). ®)

The quantity D isfactored out of the matrix element in
the form

3
41IR

3exp[§(—ivR+ Vi)d(o |

D* (Vg V,) = Id3x

= (229 [6(L+2)e” + (32 -3y’ —6y—6)e” -
+y(3Z°-y)l,
where
_ = RATT——.
g7 B
In calculating this integral, it was considered that a
nucleon emitted from the outer nuclear layer of thick-
ness RA-'3 must not undergo interaction. A quasista-
tionary n—nucleus state is formed over a finite time,
whereas knock-on nucleons are fast at any incident
energies (with the exception of those that are close to
the reaction threshold, which is considered below).
Therefore, final-state interaction between the nucleons
can be treated as that in ordinary nuclei consisting of
(A—1) nucleons (seeFig. 1).
The wave function of the n meson in a nucleus can
be represented in the form

z=2R

_ = Uy (r
x7() = 3 0P cose),
1=0
where P, (cosB) is a Legendre polynomial and the func-

tion u,, (r) isasolution to the radial Schrodinger equa-
tion

F2Un(r) + [2pr(Ey + U () =1(1 + D]uy(r) = 0.
(10)

Here, W isthe reduced mass, and the depth of the spin-
independent square-well potential U(r) is determined
from afit to the NN free-scattering length [13]

a, = (0.717 +i0.263) fm.

)]

(11)

TRYASUCHEV

Equation (10) has an elementary solution at | = 0 and
analytic solutions in the form of Riccati functions for
| > 0. As usua, the conditions of energy quantization
are obtained by matching the logarithmic derivatives of
the wave functions u,, (r) at the boundary of the region
where the potential is operative. The resulting energy
eigenvalues of n mesic nuclei are presented in the table
in the form

E=—(e+i/20T),

where € and I' are, respectively, the binding energy of
the quasi stationary n—nucleus state and the width of the
corresponding level.

The same wave functions were used for the mem-

bers of the isotopic doublets 1§A and 1§A of N mesic
nuclei.

By isolating the last term in the sum entering into
amplitude (5), we obtain

OF | TaliO
_ [ (=) (-)* ik [rp (12)
= JAI W, (Xa)Xq ™ (ra)e “ta[E, Wi+ A,

where

A

o (O ik (1 (12a)
= ’\/'_A‘Epfl Z qu (XA)Xq (rm)e mtm &)\lwiD
m=1

The first term in amplitude (12) corresponds to the
guasifree photoproduction of mesons on nuclei, in
which case the nucleon emitted from the nucleus car-
ries away the entire momentum transfer associated with
meson photoproduction. The residual nucleus A then
appears to be a spectator [14] having the same momen-
tum before and after the reaction event,

Q¢ = —pi, (13)

where the nucleon momentum p; in the nucleus before
the meson-production event is taken to be equal to the
value used in calculating the amplitudes for n-meson
photoproduction on an intranuclear nucleon. Aslong as
|Qs| < 250 MeV/c, the absolute value of the amplitude
component under consideration is much greater than |A|
(12a). With increasing |Q;|, the amplitude component
responsible for quasifree photoproduction decreases
sharply, so that the remaining component A of the
amplitude becomes substantial. This component of the
amplitude has yet to be clearly understood, but it is
known that the component A in amplitude (12) can be
neglected in calculating the cross sections if the |Q;|
value falls within the most probable interval of the
momentum distribution of intranuclear nucleons—this
relationship can be seen from Eq. (13). In what follows,
we will consider reactions (1) in a kinematical region
where 50 < |Q; | < 250 MeV/c and thereforeset A=0in
amplitude (12).
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In calculating the amplitudes and cross sections for
reactions (1), the contribution from the n-meson photo-
production on the s-shell nucleons of the 2C and °O
nuclei is neglected here, whereby the intricate problem
of the contribution from the a pha-particle cores of the
target nuclei to the cross sections for these reactionsis
removed from the present analysis. Within this approx-
imation, it is sufficient to treat nuclel on the basis of the
shell model featuring intermediate coupling [15, 16]. In
thismodel, wherethe central potential isrepresented by
a harmonic oscillator, the wave function of the '2C
nucleusis taken in the simple form whose spatial com-
ponent possesses the highest possible symmetry in the
p-shell nucleons:

l*IJi(‘]ii MI)

44\ (14)
= |(1s); (1p) [44]L;=0,5 =0, T; = 0LJ
Here J; is the spin of the nucleus, and M; is its projec-
tion; L;, S, and T, are, respectively, the total orbital
angular momentum, spin, and isospin of the p-shell
nucleons; and [44] = [f] is the Young diagram [17] for
these nucleons. The wave function of the '°O nucleus
with the closed p shell iswritten in the similar form

l*I'Ji(‘]ii MI)

4. (g 12 (15)

= (1s)"; (1p)[444]L;=0,5 =0, T; = OLJ
Within the approximations being used, the amplitude of
reactions (1) for p-shell target nuclel whose spin and
isospin are both equal to zero can be represented in the
form (LS representation)

O|Thali0= JA-4

(1]
asrOs, O, L0, 101,1.11]

LST[fl,Ly S T

X

L% S, T5 LS, ShmT,v

xIL,L%, 1m|ooqsfs§, %z‘oo> (16)

<T T?, = ‘00>[l]_ LZ, lvjaMO

x M, S;S13:MHEP (M) G,(Q)),

where [.., | .Oare ordinary Clebsch—-Gordan coeffi-

cientsand aLST are single-particle fractional -parentage
coefficients for p-shell nuclei. For °O, the relevant
coefficient can take only one value (unity), while, for

the 12C nucleus with the LS configuration (14), the only
nonzero fractional -parentage coefficient is

[43]
Q1212 = 1.
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In Eq. (16),

Hi'Q) = 5 Xp(OXa(DMA(S DXe(X:(D) (A7)

is the spin- and isospin-dependent amplitude for n-
meson photoproduction on anucleon, and we have also
used the notation

Gi(Qy) = Idsrq)g;)*

ik O

(rye” uy(r)ir

(18)
= 41IN|N (|)Z Z ORA (Qf)”[Y ()]*
K=0n=-—k

9]

r/2rO n,(r) 2

XYm(r)Y (f)dQ, D*IJ (Qqr) . —r"dr,

where Q¢ = k — p; N, () is the normalization factor for
the Ith partial wave of the  meson in the nucleus; and

N _|: 8 i|1/2
! 3rod/m

is the normalization factor for the wave function of the
p-shell nucleon of the nucleus, r, being the oscillator
parameter taken to be 1.67 and 1.80 fm for the >C and
180 nuclel, respectively.

4. CROSS SECTIONS FOR THE FORMATION
OF n MESIC NUCLEI IN THE 1s STATE

Setting | =0in Eq. (16), we obtain the amplitude for
the photoproduction of N mesic nuclei inthe 1s statein
the form

Gimfin= A2 z( _p)th ”‘DrfT?,1

THee (M) Go(Qy),

oon
(19)

where
Go(Qr) = i/4TIN;N,(0)D* Y (Q1)141(Q1);  (20)
. —r2/2rg
14(Qy) = pl(er)rzumme dr. @D
0

The differential cross sections for the reactions
y+°C —= p+11Bys(19), (22p)
y+ “C——n+ 1§Cgs (1s), (22n)
y+7°0 — p+ Ny (1), (23p)
y+*0 —n+%0,.(19), (23n)
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do/dQ, Jb/sr
4

0 20

40
Gp, deg

Fig. 2. Angular distribution of protons from the reaction

12C(y, p)lé Bg.s(ls) inthelaboratory framefor the incident-

photon energies of k, = (1) 600, (2) 700, and (3) 800 MeV.

where the nucleon cores ''A and A of the product n
mesic nuclel are in their ground states, can be repre-
sented in the form

do

ZJT{N,(0)[°
dQ, 5

o

K
(24)
xS (K M+ L M1 *IDP.
A

We have KP=K®+K"and L" =LS + LY when the
knock-on nucleonsare protons (N = p) and K"= KS— KV

and L" = L°—L" when the knock-on nucleons are

neutrons (N = n), KSY and L3V in the operator form
being given by (6). In addition to the convolutions of
the Clebsch—Gordan coefficients, the factors Z involve
the factor 8(A — 4)/3; eventually, Z = 128/9 for reaction
(22) and Z = 32/3 for reaction (23). Thus, the cross sec-
tions for reactions (22) and (23) differ only by a con-
stant factor. For this reason, only the differential cross
sectionsfor 1By (19) formation in reaction (22) isdis-
played in Fig. 2 (for various photon energies). The
angular distribution of protonsis concentrated predom-
inantly in the forward hemisphere. With increasing
energy of incident photons, the angular distribution of
protons develops a maximum at 6, = 12°, whose posi-
tion is stable to variations of the photon energy within
the range under consideration (see Fig. 2). To a high
precision, the ratio of the cross sections for reactions
(1) resulting in the knockout of neutrons and protonsis
equal to theratio in (4), aresult that is due to the use of
theimpulse approximation. Curves / in Fig. 3 represent
thetotal cross sectionsfor reactions (22) asfunctions of
the photon energy. Recall that the same wave functions
were used for both members of each isotopic doubl et of
n mesic nuclei (seetable). Curves ] in Fig. 4 depict the
total cross sectionsfor reactions (23) asfunctions of the

TRYASUCHEV

Fig. 3. Total cross sections for the reactions (solid curve 1)

11,

y+12c —p+ nBgs (19), (solid curve 2) y + ?c —»

p+ l&B* (19), (solid curve 3) y + 12C —= p + 1$B* (1p),

11

(deshed curve 1) y+ '*C—=n+".C ¢

2)y+'2C —»=n+ 1C* (19), and (dashed curve 3) y +

(1s), (dashed curve

2c —n+ 1&0* (1p) asfunctions of the incident-photon
energy.

incident-photon energy. Although the number of nucle-
ons in the '?C nucleus is less than that in the °O
nucleus, the total cross section for reaction (22p) is
larger than that for reaction (23p) because the spin J =

3/2 of the !B, . nucleus exceeds the spin J = 1/2 of the

n-gs.
15

ﬂNg-S
Because the n—nucleus interaction described by the
potential U(r) isindependent of the nuclear spin, the set
of the spin states of the product n mesic nuclei is com-
plete. Therefore, it is convenient to caculate the
sguared absolute values of the amplitude by sampling
the spins of various stationary excited states of their
nucleon cores. As aresult, we approximately obtain the

differential cross sections for the reactions

nucleus (see curves I in Figs. 3, 4).

y+PC— p+1B*(1s), (25p)
y+%C— n+C*(19), (25n)
y+ 0 — p+IN*(1s), (26p)
y+ %0 — n+%0*(1s), (26n)

where n mesic nuclei are formed with various spins.
The cross sections for reactions (25) and (26) are deter-
mined by Eq. (24) with Z = 192/9 and 32, respectively.
The !B nucleus has an excited discrete level at 5 MeV,
whose quantum numbers coincide with those of the
ground state. The contribution from this level to the
cross sections for reactions (25) can be estimated by
replacing the value of Z = 192/9 in expression (24) for
the cross sections by

Z=(192 + 1280)/9,

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001
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where a is the ratio of the spectroscopic factor for the
stripping of one p-shell nucleon from the '>C nucleus
with the formation of the residual nucleus in the afore-
mentioned excited state to the spectroscopic factor for
the stripping accompanied by the formation of the
residual nucleus in the ground state. For this ratio, the
calculation in [16] on the basis of the nuclear model
being considered yielded 0.30, and it is this value that
was used in the present calculations. Figures 3 and 4
show thetotal cross sections calcul ated for reactions (25)
and (26). These cross sections for nucleons with identi-
cal eectric charges are approximately equal to each
other owing to the inclusion of a low-lying ''B level
whose quantum numbers coincide with those of the
ground state. In all probability, the cross-section values
calculated for reactions (25) by approximate Eq. (24)
must be treated as maximum possible values, because
other estimations of the contribution from the discrete

degrees of freedom of the nucleon core of the B
nucleusyield the smaller value

Z=(183 + 1280)/9

if use is made of the spectroscopic factors calculated in
[16] for the dissociation reaction 12C — p + !'B*. A
calculation with data quoted in [18] for the strengths of
the nuclear transitions '2C — p + !'B* leads to a still
smaller value of Z in expression (24) for the cross sec-
tion for reaction (25):

Z= (147 +1280)/9.

The cross sections for lﬁB* photoproduction that are

calculated with above values of Z and with allowance
for the possible excitations of the nucleon core are plot-
ted in Fig. 5. As can be seen from this figure, the con-
tribution from the discrete levels of the core to the cross
section for reaction (25p) may be one-fourth aslarge as
that presented in Fig. 3 (curves 2). As might have been
expected, the cross sections for the reactions that lead
to neutron emission accompanying the formation of n

. .11 15 :
mesic nuclei | |C and O are considerably smaller

than those for the corresponding reactions that lead to
proton emission (see Fig. 3, 4).

5. CROSS SECTIONS FOR THE FORMATION
OF n-MESIC NUCLEI IN THE 1p STATE

Setting | = 1 in the general expression (16) for the
amplitudes of the reactions being studied, we obtain the

amplitudesfor the formation of 1p-staten-mesic nuclei
in reactions (1):

FTaain= [A=2 Y ()T
m &, v

x [ -m,1v|Iv —mIIv —m, %—E|JfoD 27)
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Fig. 4. Asin Fig. 3 but for 160 target nuclei.
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Fig. 5. Total cross sections for the formation of l&B* (1s)

nuclei in the reactiony + >C — p+ l;B* (1s) according

to the present calculation with allowance for only those
excited core states that are described in the main body of the
text: (dotted curve) maximum possible result, (dashed
curve) result obtained by using the computational datafrom
[16], and (solid curve) result derived with allowancefor data
quoted in [18].

z 1 T
x [Or¢Ts, §T|00D4§r (A)G1(Qy).

By using the standard algebra of spherical harmonics,
the tensor G, in the angular-momentum representation
(18) can be recast into the form

Gi(Qy) = Nan(l) D*
(28)

(1) - [2EE. () Cam, 10 2m + VD1 Q) |

where

1(Q0) = [ix(Qine” Toua(nyridr.  (29)
0

In the approximation of compl eteness of the spins of
product n mesic nuclei, the differential cross sections
for the reactions

y+“C — p+1B*(1p), (30p)

y+%C— n+7C*(1p), (30n)
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do/dQ, Ub/sr

40
Gp, deg
Fig. 6. Angular distribution of protons from the reaction

160y, p) N+ (1p) in the laboratory frame for the incident-
photon energus of ky = (1) 600, (2) 700, and (3) 800 MeV.

y+7°0 — p+IN*(1p), (31p)
y+16O—» n+1;’0*(1p) (31n)
can be represented as?
d N
dg ZK2|5:]/|_|D|

x { 7|1 10(Qy)|* + [/2(9c0s’8 — 5) — 1805’6 + 2]
(32)
x Re[116(Q¢) 112(Q1)]

+[18 +2./2(5- cos’0)]|1 1.(Q1)|*}

where Z = 16/27 and 8/9 for reactions (30) and (31),
respectively. Figure 6 shows the differential cross sec-
tionsfor reaction (31p) that were calculated by Eq. (32)
at various photon energies. They exhibit a complicated
structure at energies above 650 MeV. However, the gen-
eral behavior characterized by predominantly forward
emission remains similar to that in the formation of 1s-
state n mesic nuclei (comparewith Fig. 2). Curves3 in
Figs. 3 and 4 represent the total cross sections for the
formation of 1p-state n mesic nuclei. The energy
dependences of the total cross sections for these reac-
tions and those considered above are markedly differ-
ent: the maxima in the total cross sections are shifted
toward higher photon energies to a greater extent than
those in the cross sections for the corresponding reac-
tions that lead to the formation of n mesic nuclei in 1s
states (see Figs. 3 and 4). For knock-on nucleons of
identical species, the absolute values of the cross sec-
tions for reactions (30) and (31) differ only dlightly
from those of the cross sections for reactions (25) and
(26).

Dy apologize for making a mistake in calculating the cross sections
for the formation of 1p-state n mesic nuclei in [19].

TRYASUCHEV

Fig. 7. Tota cross sections for the reactions (curves 1) y+

2c — P+ 0 g« and (curves 1p) y+ 12C —= P+ g

as functions of the incident-photon energy according to the
calculations (solid curves) with and (dashed curves) without
alowance for final-state interaction.

6. FINAL-STATE INTERACTION

The cross sections for reactions (1) are sizably
affected by the final-state interaction (FSI) between the
outgoing nucleon and a nucleus. This interaction is
taken into account through the factor |DJ? in front of the
differential cross section derived with the emitted-
nucleon wave function taken in the form of plane
waves. If the total nuclear optical potential V(r) = Vg +
iV, borrowed from [14] is incorporated in the model
under consideration, the differential and total cross sec-
tions for reactions (1) are reduced by a factor greater
than 2. In this case, the inclusion of the real part of the
potential in addition to theimaginary part enhancesthis
suppression [19]. A considerable reduction of the cross
section for reactions (1) owing to FSI is explained to a
considerable extent by the fact that the model used here
isoversimplified [see Eq. (7)]. In accordance with [20],
the factor |DP in front of the cross sections was there-
fore replaced by the expression

BV = fd'x Im( )
which is given by Eq. (8a) at
VI —1/3VI
z = 4R—, —2RA T —,
B Y B

whereby the diagonal termsin the expression from [20]
for the cross section for the inclusive photoproduction
of mesons on nuclei are justifiably identified with our
expression for the quasifree photoproduction on a
nucleus. Figures 7 and 8 show the cross sections calcu-
lated for the formation of n mesic nuclei in reactions (1)
with allowancefor the FS| asdescribed above. It should
be noted that EqQ. (7) reflects adequately the interaction
between nucleons and a nucleus only for nucleon ener-
gies above 50 MeV [12]—that is, somewhat higher
than the reaction thresholds. When nucleons are formed
PHYSICS OF ATOMIC NUCLEI
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Fig. 8. Asin Fig. 7 but for 160 target nuclei.

with energies below 40 MeV, the effect of nucleon—
nucleus interaction depends strongly on the state of a
residual nucleus because the interaction predominantly
proceeds through a giant dipole resonance and cannot
be taken into account within a simple model. For reac-
tions (1) near the threshold (T, < 40 MeV), the FSI
effect was taken from [18], where it was calculated for
12C(y, p)!'B* reactions. Note that this result, presented
in Figs. 7 and 8, must be considered as a qualitative
one—namely, aresult that showswhat can be expected
from the FSI near the thresholds for reactions (1).

The near-threshold behavior of the cross sections
for reactions (1) requires a dedicated investigation
because the approximation A = 0 [see Eq. (12)] failsin
this case, so that N mesic nuclei are formed through a
different mechanism. In particular, reactions of thetype
in (1) may proceed, in this case, through the multiparti-
cle mechanism

y+A—  A(lp) — ,A(ls)+N (33)
because the transition
JA(lp) — A(1s) + N (34)

is allowed owing to the difference in the binding ener-
gies of the 1sand 1p states of the n mesic nucleus (see
table). It isinteresting to note that the formation [(33)]
and the decay [(34)] of n mesic nuclei can be responsi-
ble for nonobservation of the threshold anomaliesin the
cross sections for the production of  mesons on nuclei
heavier than “He. The formation of 1s-state n mesic
nuclei on '2C and '°O target nuclei in reaction (33) is
forbidden because of their zero quantum numbers.

In conclusion, we note that more elaborate calcula-
tions of the cross sections for reactions (1) on the
p-shell nuclei and a procedure for taking FSI into

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No.2 2001
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account are required to assess the contribution of the
excited discrete states of the nucleon cores of N mesic
nuclei to the cross sections for the reactions considered
in the present study.
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Abstract—A method is proposed that is appropriate for resolving the Hamiltonian constraint and which leads
to a reparametrization-invariant reduced theory specified by a well-defined nonzero local Hamiltonian. This
method is based on introducing a global (dependent only on time) conformal variable. The physical and geo-
metric meaning of the variablesin the reduced action functional isinvestigated. It is shown that, within the the-
ory, the method of small perturbations is self-consistent. It is demonstrated that, in the theory of gravity, there
are no wavelike excitations that make a negative contribution to the Hamiltonian. From an analysis of the
reduced classical theory in the linear approximation, it follows that, at the first instants from the birth of the
Universe, the extremely rigid equation of state appeared to be the effective equation of the state of gravity mat-

ter. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, the commonly accepted Hamiltonian
formulation of the general theory of relativity is based
on the Arnovit-Deser—Misner (ADM) parametrization
of the four-metric of the spacetime manifold [1]. Orig-
inally, this formulation was developed with the aim of
guantizing the gravitational field. Intensive investiga
tions have been performed in order to reveal the geo-
metric and the dynamical meaning of the ADM param-
eters and the so-called physical sector of variables cor-
responding to graviton degrees of freedom [2-5]. Much
attention has also been given to the initial-condition
problem [2, 6-9] and to the problem of energy and sur-
faceterms[1, 10, 11].

Below, we list some as-yet-unsolved problems that
hinder, in our opinion, a correct quantization of the
gravitational field.

The first of these is the Hamiltonian problem. The
point is that the general theory of relativity, which isa
singular theory featuring primary and secondary first-
class constraints, has a Hamiltonian that is proportional
to constraints and which vanishes on the manifold spec-
ified by the equations of motion. This fact complicates
an unambiguous definition of the generator of evolution
for the state function in the quantum theory and the
interpretation of the energy of the gravitational field. As
to the direct quantization of constraints that yields, for
example, the Wheeler—-DeWitt equation, it leads to an
unnormalized wave function for the state. In all proba
bility, this will occur for all general covariant metric
formulations of gravitation.

The second problem concerns the self-consistency
of perturbation theory. It was noted by Kuchar [12] that,

* email: smirvi@thsunl.jinr.ru

upon taking the divergence of the transverse constraint,
the shift vector drops out from the constraint equation;
asto the lapse function, it does not appear in the linear-
ized constraint equation. Herein lies non-self-consis-
tency complicating the formulation of perturbative
guantum theory. Indeed, the metric representation of
the state functional is based on the assumption that the
components of the metric tensor g, can be taken to be
independent variables. In classical theory, this assump-
tion was formulated as the thin-sandwich theorem.
According to this theorem, the initia values g,
together with the derivatives g, , (for appropriate
boundary conditions), unambiguously determine the
metric of spacetime. It is assumed that, if gy o and g,
are specified on the initial hypersurface, it is possible,
on the basis of four constraint equations, to find four
unknown quantities—the lapse function and the shift
vector—that determine completely the 4-metric of
spacetime. In the linear approximation, this theorem is
violated, so that we must fix, in some way, the lapse
function and the shift vector. It follows that, in the lin-
ear approximation, available information is insufficient
for determining, for example, the lapse function on the
basis of fixed g, and gy , values. Itisobviousthat, if we
have no well-defined perturbation theory at the classi-
cal level, we can hardly hope that the perturbative quan-
tum theory of gravitation will be successful.

The next problem isthat of reduction. By reduction,
one implies the separation of the dynamical content of
the theory on the constraint surface from redundant
variables that are responsible for gauge arbitrariness.
Undoubtedly, this problem is related to the aforemen-
tioned two. There are two methods for solving it. The
first consists in imposing additional gauge conditions
that eliminate redundant variables. The second is to
resolve congtraints. The first method is advantageousin

1063-7788/01/6402-0354%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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that it is convenient and straightforward because the
conditionsin question are usually chosen in such away
as to smplify significantly the calculations. However,
the method has some disadvantages—in particular, the
applicability range of a specifically chosen gauge is
rather narrow, and we cannot be positive about the com-
patibility of this gauge with actua dynamics. The
method of resolving constraints, should we be able to
implement it completely, would be an ideal tool for
researchers, and this would mean that the true dynamics
on the constraint manifold is found in the general case.
However, it is difficult to realize this method technically
because of the complicated structure of congtraints.

It is possible that the true strategy for studying
the reduction problem consists in combining the two
methods.

In the present study, we try to solve al three prob-
lems indicated above.

1.1. Arnovit-Deser—Misner Parameters
and Kinemetric Transfor mations

In order to construct the Hamiltonian formalism, it
is necessary to separate space from time or to perform
aso-caled 3 + 1 partition of the spacetime into a set of
spacelike hypersurfacest = const. The Arnovit—-Deser—
Misner (ADM) parametrization

ds’ = gquxade
= N°dt®—hy(dx + N'dt)(dx’ + N'dt),

which is unambiguously related to quantities that char-
acterize the set of hypersurfacest = const, is the most
appropriate for this. Here, the lapse function N and the
shift vector N are used to form the 4-vector v® = (1/N,
—N¥/N), which is aunit normal to the hypersurface. By

(D

additionally using the intrinsic metric h;, we can spec-
ify the second quadratic form as
1 .

which determines the embedding of the three-dimen-
sional hypersurface into the enveloping four-dimensional
spacetime. Coordinate transformations that preserve a
given partition into a set of hypersurfaces t = const are
referred to as kinemetric transformations [13, 14]:

t=t(),
X = X(t, x).

For the lapse function N and the shift vector N¥, the cor-
responding transformations are

Y
N - thu (3)
Wk i yoak
N = P90t XX )
ax ot ot ox
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The first and the second quadratic form change in this
case as rank-2 3-tensors. We can aso find out how the
ADM parameters change under nonkinemetric trans-
formations [15], which correspond to atransition from
one set of hypersurfaces to another. Nevertheless, we
will use only kinemetric transformations because this
corresponds to fixing a 3 + 1 partition. The conditions
of thisfixing will be specified below.

We note here that kinemetric transformations of
coordinates include the reparametrization of time, t' =
t'(t). It isthis reparametrization invariance of the action
functional that plays akey rolein defining the reduction
procedure and in constructing a nonzero Hamiltonian.

1.2. Invariance under Time Reparametrization
and Reduction

Let us consider the reparametrization-invariant sys-
tem specified by
WE[piv Gi; Pos Golt, N]

ty 0 ' ' 0 (5)
= Ithr Polo + z P4 — NHe(do, Po; G P10
t . i H

where

He(o, Pos G Pi) = [—Po+ H(pi q)]
is the extended Hamiltonian.

The action functional (5) was constructed on the
basis of the conventional action functional

(6)

Go(2)
dq;
Wp, i = d i— —H(p;, 7
[Puaifaol = [ qo{Zpdqo (p q)} (7
Go(1) !
of classical mechanicsby introducing an additional pair

of canonical variables, (p,, q,), and a Lagrange multi-
plier, N.

A reduction of the extended system specified by (5)
to (7) means exactly solving the equations

oW

N 0— —po+H(p: ) =0, 3)
oW .
— =0—py =0, )
6qo pO

oW

— = 0— dqgy = Ndt=dT. (10)

6p0 qO

Equation (8) is a constraint, Eq. (9) is a conservation
law, and EqQ. (10) establishes a relation between the
parameter of evolution for the reduced system specified
by (7) and the Lagrange time,

dT = Ndt.
The Lagrange timeisan invariant [T(t") = T(t)].

(1)
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In our case, the two times g, and T coincide. In rel-
ativistic mechanics specified by the action functional

WE[pi, 0i; Pos Go|t, N]

t

2 (12)
= (gt o 3 — N1 p2 4+ 2+ mA0
= IdtD— poqo+Zpiqi—2m[ po+pi+ml5

4y

thisis not so. In such atheory, the constraint equation
—po + P +MP=0

is usually solved for the momentum appearing in the
extended Hamiltonian with a negative sign; that is,

SW
s = 0 — (Po. = +./p’+ .

Thus, the variable conjugate to this momentum
becomes the parameter of evolution for the correspond-
ing reduced system:
do(2)
Wiyl aijadl = [ dqo[z piqia/p?+m2}. (14)
go(1) i
This corresponds to resolving the constraint equation.

A variation of the action functional (12) with respect
to the additional momentum p, yields

é\.,\_/ = _d_gg-{- &) = 0
op, dt m
9o (15)
m
— Ty, = 2[dG———=.
' J; Jpr+m’
On the manifolds specified by the equations of

motion, formula (15) represents a L orentz transforma-
tion of the proper time q, of a particle into the proper

timeT=qy/1- v of an observer.

In contrast to what occurs in classical mechanics,
the parameter of evolution here does not coincide with
the Lagrange time, which is measured in the comoving
reference frame.

We note that any reparametrization-invariant theory
involves three times: (i) the coordinate timet [the cor-
responding Hamiltonian vanishes on the manifold
specified by the constraint in (8)], which is unobserv-
able; (i) theinvariant Lagrangetime T constructed with
the aid of the Lagrange multiplier (11) (in the case of
relativistic mechanics, it coincides with the particle
proper time);? and (iii) the dynamical parameter of
evolution for the corresponding reduced system {in our
case [specified by Eq. (7)], thisisq,}.

The last two times are related by the equation of
motion for the additional momentum. The idea of this

(13)

N

l)By the term proper time, we will henceforth imply the Lagrange
time.

BOROWIEC, SMIRICHINSKI

classification of time in reparametrization-invariant
theories was set forth by Gyngazov et al. [16], who a so
gave a prescription for a Hamiltonian reduction of such
theories. Briefly, it amounts to the following.

In the process of Hamiltonian reduction, any
extended system specified by
WES[ Pi, G Po Golt, N]
t
= [dte-Podo+ Y Pici—NH"(co, Po; 4, P
1, !

issplit into two subsets of equations. Thefirst isaset of
reduced subsystems specified by

W(Rl,sz, P Qi|CIo]
Go(2)
dq

= I d%[z pid_q:)_ H(Rl,sz, )}
do(1) '
and associated with various solutions to the Hamilto-
nian constraint equation

ES RS
H™ =0—Pyy12.) = Haiz .-

The second is determined by the equations for the addi-
tional momentum,

ES

SW™ dgy _ oH™® _ ——
6_p0_0_> dT __apo - p(qO)
(16)
da

Y%
—T(do) = I

Jp(a0)’

and for the additional coordinate that reduces to the
dynamical parameter of evolution. Equation (16)
describes the evolution of the proper time with respect
to the dynamical parameter of the reduced system.

It should be noted here that, for the Hamiltonian
reduction, the following two statements are valid:

(i) The parameter of evolution for the reduced sys-
tem is one of the origina dynamical variables of the
extended system.

(ii) The variational principle must be supplemented
with a convention on the measurable time.

Thus, it is shown by exactly resolving the Hamilto-
nian constraint that one of the primary variables of the
original extended system drops out from the phase
space and becomes the parameter of evolution for the
reduced system. The action functional for a reparame-
trization-invariant theory must be supplemented with a
geometric convention according to which the measur-
able time interval is put into correspondence with the
parameters and variables of the extended system. In
addition, we have proper-time dynamics described by
two equations, one for the additional momentum and
one for the coordinate. In the special theory of relativ-
ity, proper-time dynamics is merely represented by the

PHYSICS OF ATOMIC NUCLEI
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relation between the proper time of an observer and the
proper time of a particle (Lorentz transformation).

1.3. Formulation of the Problem

The main abjectives of the present study are to con-
struct consistently and to justify a Hamiltonian reduc-
tion for the general theory of relativity in aform as gen-
eral asis possible, to perform a dynamical analysis of
this system in the present context, and to formulate per-
turbation theory in the reduced theory and to investi-
gate the linear approximation.

In accordance with all the aforesaid, this article is
organized asfollows. Section 2 isdevoted to describing
and justifying the method of Hamiltonian reduction
implemented in the general theory of relativity by intro-
ducing aglobal variable and by resolving one Hamilto-
nian constraint. The meaning of the reduced action
functional in relation to the original theory is discussed
further. In Section 3, we formulate perturbation theory
and analyze linearized theory.

1.4. Notation

In this article, we use the following notation. The
signature of the metric of spacetimeis (1, -1, -1, —-1).
The Greek indices a, 3, v, ... run through the values 0,
1, 2, 3 and denote world tensor indices. The Latin indi-
ces run through the values 1, 2, 3 and label space com-
ponents of tensors. The symbol [J; denotes a covariant
differentiation for the intrinsic metrlc h; of the space-
like hypersurface, while [J, denotes a covarlant differ-
entiation for the 4-metric of spacetime. The Riemann
curvature tensor is defined as

- O O, :
R!klm(h) = '_k|—m ? —d+ rnlrkm rrlwmrl?lv
0x
Rim = Rikima D|D|<Ai—DkD|'°\i = —AmREmm-

2. HAMILTONIAN REDUCTION
IN THE GENERAL THEORY OF RELATIVITY

2.1. Extended Action Functional

We praceed from the Einstein—Hilbert action func-
tional, where an electromagnetic field is chosen for
matter. We have

W(glu) = [d xJ_g[——R(g) e F““], (17)

2 3

H = Mg 8Tt
where Mp, isthe Planck mass. In order to perform arep-
arametrization-invariant Hamiltonian reduction, we
must single out an additional variable and resolve the
constraint with respect to the momentum conjugate to
this variable. This variable must depend only on time;
that is, it must be global. Naturally, there is no such

Fo = 0,A—0,A,,
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variableinthe original set of variables. Let usintroduce
it by parametrizing the metric as

_ [w( )if -

0 Gep( ), (18)

(t X)aB

where @(t) isascalar conformal factor. Thus, weintro-
duce the required additional global variable and for-
mally fix a kinemetric group. Indeed, the function ¢
defined as that which is a scalar and which depends
only on time preserves these properties only under
kinemetric transformations. Under nonkinemetric
transformations—for example, under the t' = t'(t, x)
tranformation— ceases to be a function that depends
only on time. Thus, the action functional takestheform

W(ale)

1o B

(19)
1]

2
- Jd“xJ—_g[— TR@ + 90" 00—

For the metric g, , we choose the parametrization

(NNg(1)? =N N* =N,
—Ny -

(@]

ap

I |

From the standard ADM parametrization, this parame-
trization differs only by a factorization of the lapse
function into two factors, alocal and a global one:

N(t, X) = N(t, X)No(t). 1)

Under kinemetric changes of variables, the global lapse
function Ny(t) transforms as

ot
No = Nogy:

at the same time, the local lapse function N'(t, X)
remains a kinemetric scalar. In terms of the ADM
parametrization (20), the action functional can be rep-
resented as

W(o|e) = Idtd xNNNﬁ[ R(h)——

. 10 .
+9(bijb”—b2)— -2y F (22)
+—1 (F FuN"N™+2N"FL o+ Fly Fo,)} ‘3
2NON
where
o _ 09
© = gt 23)
b = ZNNO(h” LiN;j = 0;N3), (24)
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and
_ 3 0 120
> = J’dtd X[@OD/ﬁ(p+ Jﬁém b
——cpaﬁ\(a (NN )+Nb)}

is asurface term.

To compensate for the introduction of two addi-
tional global variables, it is necessary to introduce two
global conditionsin order to preserve the original num-
ber of independent variables. One of these conditions
can be chosen as

J’d3xﬁ1b = 0. (26)

It diagonalizes the kinetic term in the action functional .
The second global condition will be introduced bel ow.

By going over to the first-order formalism, we
obtain the action functional in the form

(25)

w! = J'dt[Pin+Id3x(Pijhij +P'A)=H], @7

with the extended Hamiltonian being given by

H = Not Py e+ [ XJhN I

(28)

+J'd3X(2P”DiNj +P'E,N"+P'9.Ay) -5,

where
P

605—305—‘2 J’d x3;,(J/A(NO'N + N'b)), (29)

6 ij 1.0

= _—R(h)+ (Jﬁ)z% Pi—5Pg
i (30)

+%FHF” + % Pipz,
(J/h)

E = J’d3 wh 31)
Here, { P, h;}, {P', A} isthe set of canonically conju-

gate variables, while { Py(t), ¢(t)} are additional global
variables.

The set of constraintsis given by

sw _ Pg _ 43
6N0 = 0~— 4_E = J-d X/\/FIN‘%, (32)
sw Po
=0 = %, 33
ON 4E°N? 9
(1 ) .
W_ 0. . _20p +PF, =0, (4
5N
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sw)
0A,
We note that the constraint in (32) can be obtained from

(33) by means of integration over space. The additional
momentum satisfies the equation

sw
3P,

= 0-—0OP =0 (35)

:O<—>

0= _Ng0 36
(p__OZE' ()

2.2. Reduction

In accordance with the prescription of Hamiltonian
reduction, we resolve constraint (32) for the additional
momentum P,; further, we use Eq. (33) to determine
the local lapse function N'. As aresult, we arrive at

P, = izIdsxﬂuJ%s Hry» 37)
Py

N =Pl 38

-~ (38)

where Hr isthe generator of evolution with respect to
(p By tal)<| ng into account solutions to the constraints
in (37) and (38), we can recast the action functional into
the form (the surface term is omitted here)

()
w® = J’d(pJ'dsx[Pija(phij +P'9,A -2/
[
— (2P O;N; + P'FN"+ P'a,Ag)].
On the manifold specified by the remaining transverse

constraints (34) and (35), this action functiona has a
nonzero local Hamiltonian:

®
wt = Id¢1d3x[P'Jhij +P'A-Hg)l
[
(an overdot denotes differentiation with respect to ¢).
The relevant reduced Hamiltonian is constructed from
time-reparametrization invariants; it completely speci-
fies the dynamics of the variables { P!, h;} and {P', A}
entering into it. Since nondynamical vanables(ln partlc-
ular, thelocal lapse function ') are eliminated from this
system, its dynamicsis determined unambiguously.

In order to establish correspondence with the gen-
era theory of relativity, we need here the additional
relations (36)—(38). We now recall that we have at our
disposal an additional global condition that we must
impose on the parameters of the extended action func-
tional and which we choosein the form

E = Id3ﬁ‘

X_
2For the sake of defi niteness, we will henceforth always take a
negative sign in (37). Geometrically, this corresponds to the fact
that the congruence of observers that is normal to the hypersur-
facest = const diverges with time.

(39)

(40)

= Vo, 41)
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where V,, is afixed constant, 9,V, = 0. Relations (38),
(37), and (36) are written as

2V, /%
P, = —2J'd3xﬂ1ﬁ€, (43)
2V0d—(p = —Nydt =—dn. (44)
Po

Eliminating P, from (42) and (44) with the aid of (43),
we can recast these equations into the form

_ 1dg
N = =S¢ 45
Jan )
d*x./h.J%¢
j—r‘]" = IV— (46)
0

where dn is an interval invariant under time reparame-
trizations.

The dynamical system specified by the reduced
action functional (40) and supplemented with relations
(45) and (46) determines completely the metric of
spacetimein the general theory of relativity in the coor-
dinate frame where g,; = 0.

Let us demonstrate theoreticaly how the above
scheme works.

We specify the initial data {PY, hy}|,-, and (P,
A}le=q,» Where PI and P; satisfy the transverse con-
straints (34) and (35). By using the reduced Hamilto-
nian H g, we then obtain h; (¢, X') and A(¢, X). From
relation (46), we further find the dependence of gonn;
after that, we deduce the local lapse function N from

(45). Thus, we compl etely determine the metric (18) of
spacetime in the coordinate frame where all g, vanish.

We use the following classification of time: (i) the
coordinate time t (the corresponding Hamiltonian van-
ishes on the manifold specified by the relevant con-
straint), which is unobservable; (ii) the invariant
Lagrange time n constructed with the aid of the
Lagrange multiplier N,; and (iii) the dynamical param-
eter of evolution for the corresponding reduced system
(itisequal to @in our case).

In addition, the general theory of relativity specifies
the measurable proper time of an observer at rest,

dT = E%EN(Q x)dn.

We would like to highlight the following special fea-
tures of the reduced action functional:

(1) The Hamiltonian density 2.J% isaloca function
of field variables; moreover, it is akinemetric scalar.

(I1) The Hamiltonian density (and, hence, the
reduced Hamiltonian itself) does not vanish on the
manifold specified by the equations of motion; other-

(47)
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wise, this would contradict relation (45) (the lapse
function cannot be equal to zero).

(111) The reduced Hamiltonian explicitly dependson
time (on the evolution parameter ).

The first two features are quite appealing from the
point of view of interpreting the Hamiltonian density
on the manifold specified by the equations of motion as
measurable-energy density. The time dependence of
the Hamiltonian complicates the construction of con-
servation laws—for example, the law of energy conser-
vation. Nevertheless, we will further associate the con-
cept of the physical energy of fields with the reduced
Hamiltonian. In the next section, this question will be
analyzed within linearized theory in more detail.

Here, we note that Eq. (45) directly relates the con-
cept of the Iapse function to the Hamiltonian density
and, hence, to the density of the field energy.

Problems associated with the validation of the
Hamiltonian reduction were investigated in [15, 17],
where it was proven that no choice of coordinate frame
can lead to the vanishing of the global momentum.

3. PERTURBATION THEORY

We begin to formulate perturbation theory by con-
sidering the reduced system specified by Eq. (40), for
which we introduce the expansions

hi = hie +hi?+h{7+ ., (48)

Pl = p4 p®ly (49)

where hi(jl) and P are perturbations of order A, A <

1, while hi(jz) and P@ii are perturbations of order A2. The

metric hi(,? ) issome background metric in whose vicin-

ity the expansions are performed. Let us also assume
that all perturbation fields admit a decomposition into
the transverse and the longitudina parts [2-5] with

respect to the metric hi(,?) ;

fuo = oo + fic+ fip, (50)
DifiTkT =0, fiTkTh(O)ik =0, fikh(O)ik - fi'll'(h(O)ik’ s
O(f—f) = O'fh, fh@ =0 (52

Hereafter, the covariant derivative is consistent with
respect to the background metric as well. Since there
are no nondynamical variables in the reduced action
functional, consistent calculations within perturbation
theorg do not involve difficulties of fundamental char-
acterd)

3If difficulties of a technical character that are associated with
complexity and nonlinearity are not considered to be fundamen-
tal.



360

3.1. Zero-Order Approximation

Let us assume that the metric of the zero-order
approximation is the Friedmann—Robertson—Walker
metric

dsiy = hidx'dx’
= ro(dx’ + F2(x)(d6® + sin’8de’)),

wheref(x) = {sin¥X, X, sinhy } for the spaces of, respec-
tively, positive, zero, and negative curvatureand ry isa
constant having dimensions of length.

In the zero-order approximation, # is given by

(53)

2 .. . i
% = %(O)_'_ o= _k9+}Fi.FIJ+1———Fj—P—— vy
(2 4 2, [(0),2
0 (Wh™) (54
k =1,0,-1.

Since the dynamics of matter fieldsis of no interest to
us, we take the contribution of matter in the form of an
effective constant C,; that is,

2

# =%+ .. = k& +cy+ (55)
Fo
k=10-L

Substituting (55) into the additional relations (46) and
(45), we obtain

Vodop

2 1
4nr§_[dxf2(x) - k(r% +C,
0

_ 4T[rg| dx fz(x)
Vo '
We now determine the constant V,, in such a way that
thelocal lapse function is N' = 1. For the cases of k=0,
—1—that is, for open spaces—the integral o dxfz(x)

and the constant V,, () are divergent. We can then admit
the existence of the limit

X

4Ttr§J’dx' f 2()(‘)

dn=

(56)

N=lim—2—uo— =1, (57)
X - Vo(X)
in which case expression (46) takes the form
dn = —99 (58)

—
k& + ¢,
lo

Thus, we have completely determined the metric in
(18) in the zero-order approximation. With allowance
for the above two relations, this metric determines the
Friedmann—-Robertson—Walker metric of the space
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filled with a photon gas whose energy density € is pro-
portional to C,/¢*. Relations (45) and (46) and the

expression for 5" specify the law of evolution of the
cosmological Friedmann metric in terms of the global
motion of the system.

3.2. Linearized Approximation

We assume that interaction between matter and
gravity isnegligibly small. Moreover, only the effective
constant C, is retained as the contribution of matter in
this approximation, since we are going to investigate
the dynamics associated exclusively with gravitational
perturbations. We begin by considering the linearized
constraint (34):

OPY =0, (59)
. . , -(1)
Considering that P»(~l) isexpressed intermsof h;; as
@)

(1) . -(1)
P = 2Ot -hPR), R = ha'h®, (60)

and that h(o) isindependent of time and using (59), we
obtain
0'(hi? -h{?ny = 0. (61)

Thelast expressionisacorollary of the transverse con-
straint rather than a gauge condition. We now go over

from the canonical set of variables { Pl hi(jl)} to a

. ~ij o~ 0 U
new set of variables { p , hij b, %1 P®M, h™ 7 by means
O
of the transformation

pl = pwil _ 1 ©@ipw
_n® 1 0.
PY = hOpWi
h® = hOh®Y,

This transformation is not canonical for h® # 0, but it
is nondegenerate, so that we can investigate the dynam-
ics in question by using the new set of variables. The
reduced action functional takes the form

Wi = Id(pUd3x[ﬁ>”ﬁ}j " %p”)h(l)}—H(R)} 63)
where

_ L0 @
Hir = Hr tHEr + (64)

Apart from a time-dependent coeff|C|ent, the kinetic
2

part Hgg, can bewritten as
0 1)2
1R Dfex PP -3P (65)
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The transverse expansion [2-5] for P, j hastheform

I5ij = Pi('TT) + LW, + LW,

(66)
ZhOAWE
+2eh0w- h AW
where W, is a transverse vector, W = 0, and P{™" is

the tracel ess transverse part.

The constraint equation (59) can now be represented
in the form

i 1 ) aaf]
O [Diwj + 0w+ 2H7,0,W - 2h AWD}
(67)
- 1.0

Considering that the metric hi(jo) isisotropic, Rth®); =

2kh|(J°), and that, if two vectors are equal to each other,
their transverse and longitudinal parts are also equal,

we have W = 0, and Eq. (67) reducesto

2%3Djw Z0,AWH = —D P, (68)
The last equation can be recast into the form
2%]1.Aw+ 2K0,W -3 in AWD —D PP (69)
whence we obtain
252AW + 2kwD P(l) (70)

We further consider the case of k = 0—that is, the case
where the background metric is flat. We then have

apw = PY. (71)

In this case, the transverse expansion can be repre-
sented as

where W satisfies Eq. (71).

Taking into account the last expansion and calcul at-
ing the right-hand side of (65), we arrive at

[ [55 P — P“)ZD Id [P‘TT)Z
h(O)AW%] O'w
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[P(TT)Z +adhow- %hfj")AWE

[ (TT)2 (73)

P(m] J’d

x(0'D'W) — P‘”Z} [d*

_2ipM (1)2 (TT)2
oPYOw- P } Id [P
250 1)2 (Tm)2
+Z X—= .
<Paw - P } Id [P 1

We conclude that, in the second-order approximation,
the quantity P does not appear in the reduced Hamil-
tonian. This means that a variation of the reduced
action functional with respect to PV leads to the equa-
tion

-(1

h( ) = 0. (74)
Consequently, we can set h" = 0 at theinitial hypersur-
face, and this condition will be satisfied on all hypersur-
faces at all subsequent instants of time. Thus, the pair
of the variables { P!, h)} drops out from the reduced
Hamiltonian in the second-order approximation (lin-
earized equations), and thisfollows from the transverse
constraints and the Hamiltonian structure rather than
from the gauge.

For the reduced Hamiltonian, we now present the
full expression correct to the A% terms inclusive. The
quantity #€ then takes the form

% = Co%ﬁ h(TT)h(TT)D |:§2Pi(jTT)Pi(jTT)
? 75)

(gla h(TT)a h(TT) + 3 6 5 (h(TT) (TT) }

Here, we have considered that a contribution that is pro-
portional to A% and which arises from the perturbation
of the metric is added to the factor C, corresponding to
the effective contribution of matter. It can be seen that,
in 7€, there is no contribution linear in A. The reduced
Hamiltonian assumes the form

Hey = ZIdsxﬁJ%: Id&{z@
(76)
1 6 P(TT)P(TT) (p la h(TT)a h(TT)|:|i|.

e e

Let us go over to a new set of variables {T1), ¢;} by
means of the transformations

= %P(TT)”, € = J‘%hff”, (77)
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which are canonical in the limit of large @. We then
arrive at the reduced Hamiltonian in the form

Hwy =Id3x[2J€0

1 1 e, (78)
At @ values so large that the last term on the right-hand
side of (78) can be disregarded, the reduced Hamilto-
nian Hg, exactly describes the wave equation, so that
the concept of energy can be associated with this
Hamiltonian.

A system specified by a Hamiltonian similar to that
in (78) was analyzed in [18] within the holomorphic
representation of the oscillatory approximation.

At small @ values, the Hamiltonian in (78) greatly
depends on the evolution parameter. In this case, the
reduced Hamiltonian can be represented in the form
(we now investigate the more general case of R? =

6k/re, k=1,0,-1)%
He = Ioﬁxﬁwﬁff

2 6 (79)
- fexih |- Lics S
o @
The dynamical equation for Pi(jm has the form
dpm g,
d(pplJ 0; (80)

that is, Pi(jTT) is independent of ¢. The equation that
relates the invariant time n to the evolution parameter @
(scale factor) hasthe form

Vodp

2
3 (0] 6 (TT)~(TT)
J.d X/\/_—2k+ —2P P

i P
lo

dn =

81

Taking the integral in the denominator on the right-
hand side of (81) to mean averaging over space and
retaining only the space-averaged contribution to
proper-time dynamics, we obtain

do

dn O———="ee, (82)

where C, is the averaged contribution from

6P{""P{"". Equation (82) exactly replicates the
dynamics of the scale factor of the cosmological Fried-

mann model for the extremely rigid equation of state
for homogeneous matter.

“We also set C,y = 0.
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Following the same line of reasoning, we can show
that the averaged contribution of gravitational excita-
tions to cosmological dynamics at large ¢ values corre-
sponds to the Friedmann radiation-dominated Uni-
verse.

4. CONCLUSION

The reduction described above leads to a Hamilto-
nian theory invariant under time reparametrizations.
The existence of aglobal partition of a4-manifold into
afamily of spacelike hypersurfaces and the isolation of
the dynamics of the global variable associated with this
partition have made it possible to formulate, on the
basis of the Einstein equations, areduced theory featur-
ing no nondynamical parameters. This version of solu-
tion to the reduction problem leads to a nonzero local
Hamiltonian that serves as the generator of evolution of
the reduced system with respect to the invariant param-
eter .

We note that the popular opinion that the gravita-
tiona energy is not localized in terms of the Hamilto-
nian formulation is based on the fact that the Hamilto-
nian conjugate to the noninvariant time t vanishes on
the manifold specified by the equations of motion, so
that a nonvanishing contribution can arise only fromthe
surface terms in the action functional. If, however, the
reduced Hamiltonian is associated with the concept of
energy, we arrive at awell-defined local energy density
for the gravitational field; moreover, this density is a
kinemetric scalar. In thisway, the Hamiltonian problem
is solvable.

The proposed perturbation theory isfree from draw-
backs associated with ambiguities of nondynamical
parameters like the lapse function, because they do not
appear in the reduced Hamiltonian. The loca lapse
function, which is a nondynamical parameter, is deter-
mined in terms of the reduced Hamiltonian on the man-
ifold specified by the equations of motion.

An analysis of linearized theory has reveadled that
there are no wave excitations of the gravitational field
that make a negative contribution to the Hamiltonian.
Since it is the Hamiltonian of linearized theory that
determinesthe spectrum of particlesin quantum theory,
we can state that there are no particle-like gravitational
excitations making a negative contribution to energy.

Yet another interesting statement can be made on
the basis of adynamical analysis of the reduced Hamil-
tonian of classical (nonquantum) theory in the limit of
small @: the effective equation of state for gravitational
matter isthe extremely rigid equation of state

€= p.
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